BROCADE=

APl REFERENCE GUIDE

Brocade Vyatta Network OS

Scripting Reference Guide, 5.2R1

Supporting Brocade S600 vRouter, VNF Platform, and Distributed
Services Platform

53-1004756-01
24 October 2016

© 2016, Brocade Communications Systems, Inc. All Rights Reserved.

Brocade, the B-wing symbol, and MyBrocade are registered trademarks of Brocade Communications Systems, Inc., in the United States and in other
countries. Other brands, product names, or service names mentioned of Brocade Communications Systems, Inc. are listed at www.brocade.com/en/legal/
brocade-Legal-intellectual-property/brocade-legal-trademarks.html. Other marks may belong to third parties.

Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning any equipment,
equipment feature, or service offered or to be offered by Brocade. Brocade reserves the right to make changes to this document at any time, without
notice, and assumes no responsibility for its use. This informational document describes features that may not be currently available. Contact a Brocade
sales office for information on feature and product availability. Export of technical data contained in this document may require an export license from the
United States government.

The authors and Brocade Communications Systems, Inc. assume no liability or responsibility to any person or entity with respect to the accuracy of this
document or any loss, cost, liability, or damages arising from the information contained herein or the computer programs that accompany it.

The product described by this document may contain open source software covered by the GNU General Public License or other open source license
agreements. To find out which open source software is included in Brocade products, view the licensing terms applicable to the open source software, and
obtain a copy of the programming source code, please visit http:/www.brocade.com/support/oscd.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
2 53-1004756-01

http://www.brocade.com/en/legal/brocade-Legal-intellectual-property/brocade-legal-trademarks.html
http://www.brocade.com/en/legal/brocade-Legal-intellectual-property/brocade-legal-trademarks.html
http://www.brocade.com/support/oscd

Contents

= T 5
Document conventions.........cccens)
NOTES, CAUtIONS, GNT WAINMINGS ... rvvivieiieeisiesessessessesssss st sss a8 e85 5 8188888815585 8858588888888 5

TEXE fOIMNATHING CONVENTIONS. ..ottt s st s s8R 8 58585888888 5
COMMEANA SYNTAX CONVENTIONS.....cetuieiuiereeeieeeseseeseeese et st se st ss e sssseess s8££ 8188885815882 5 8585858888888t 6

BBIOCAAE FESOUICES. ...ooueeerreesiiseeeseeesse st ess s st e84 8885815858888 1488858158825 8 4585512882888 1 28858588888t 6
DOCUMENT FEEADACK. ...vo1ervvisiviiscsiese ittt a2t 8 8188254288854 8 8585458418188 6
Contacting Brocade TECINICAl SUPPOM ...t ss sttt 85818888 7
BrOCATE CUSTOMIEIS......oeoceeie et eesie ettt es st s8££ 8888888588488 8888 R 8RR 7

BrOCAUE OEM CUSIOMEIS. ...ouiiiieieiieeitisseisisseeessseeessseeessseess s essss 8818858881088 8 4588588558488 E 888880 7

AN oL UL 313 U =TT 9
L 0T T 11
TE VROULET SCHPTING AP ... iittreetsereisseeesiseessssssesessesessssssssssssse st ssss e 588 1400588400558 45 0558454588045 58 8485884558045 8054888888588 11
SUPPOITEA [ANGUAGES .. vevveeeeiieeriissesesseseesse st et sss st 8858858558458 8 0888840058805 8058805881058 8 0458858858888 R8RS 11

P AT FOITNIAES. .ttt ettt 11
D1 &= o F= YT =T o =Y O TS OTTOTSOT 11
USING the VROULET SCrIPtING APLL.....cuieiiccccciesisise e sesesssesss s s s ssss e s se s se s sesssssassssssssessss s sbassesssesssssassssssssesssssssssesssessssssssnnsssnes 13
Setting UP @ CONNECHION 1O CONTIGA. ..ottt ettt 88888888888 13
SEttNG UP @ CONTIGUIATION SESSIONottt e85 8888888588858 13
Manipulating the configuration data 0N the VROULET ...ttt 14
RUNNING COMMANAS IN OPEIHONAI MNOE. ...ttt eeeiee s eeesseeess st ess s8££ 8888888888 15
USING RPCS 10 rUN OPeratioNal COMMIENGS.iviuurieiieieeieeeeiseesssssesesseesesssesesssesss s esss s s8 1881585888888 16
THE COMMIANT RPC.ooriiiireeiiiieiesieeeesseesessseesss s essssssesssses st s88 1881048888808 8445884458818 8140588588458 8 8488888 17

RIPC CallS.eotieeieeieiiseeetiseeesseeeesseesessseesss e sss st e85 5880588145880 8 8588588588448 8445880585888 17
SCTIDHING EXAMIPIES. .. veveeetseeetssee et et ees st et e85 8888858845885 8855845585588 8 8588458855858 R 18
Setting data plane interface addresses... .18
Monitoring the host..........cviriinnriiinnnnns .19

(I gYo TUT=To TSRt o) Tl ol ol a1 =Y o1) o TSSO 20

Y OO 20

PYENON. ettt RS S R ER££RfR£REE £ R £S48 RR R 21

RUDY .ttt 4888858888888 R SRR 21

L2 YT o AN o I Y 1= {3 YT [23
YOS o tvtrerireeeseesi ettt R R8RSR 23
DatADASE ettt E AR 23
INOTESIAEUS .. vevvceer et esse s s sss s8££ 8888858888588 4548880588458 8588458148888 23
NodeType..... .23
IIEHNOAS ..ttt e8RS 23
o] e o OO E TP SRPOON 24

L] | oY o OO OO OO OO OO PP OT OO 25

(7o) /a1 OSSO 26

o =Y 11 =Yoo OO 27

ISCANT. ..ottt e 8885888+ 8 882 £ 8888 28

GOt _fEAIUIES ...ttt 8RR s 29

GO NIt SRR ERRR R S R RERRRS RS R R R S Rt 30

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 3

NOTE _IS_AETAUR ..ottt ettt s8££ 8 5885885885888 8 58858858 32
YOO _BXISTS . vtvuurvuiseiesisesesies st esssee st s st e 8585888888588 5 80488888888 33
YOO GO ettt ettt 34
NOAE GO _STAIUS .ottt s e85 8 128858888 E RS 35
L= V7= OO PO O PSPPSR 36
SESSION _AHACK. ..ottt R A AR ARttt ettt 37
SESSION _CNANGE. ..o ettt sttt 8884888888858 8 2R EE8 RS R R R Rt 38
SESSION _EXISES 1.ttt ettt bbb e s AR R AR bR R AR bR AR bbb AR ARt bbb st e et een 39
SESSION _IOCK .ottt sttt e ARt e A ARt Attt e et st s ettt 40
SESSION _IOCKEM. ... oottt a st s eSS s e s sttt AR A st Attt bttt 41
SESSION _SAVEM......iueiveieeeiesiesiesieesses e ssess s s s sssess s s s s s sse s e e st A s s s s e84 1 SRR e AR AR AR A ARttt ettt en 42
SESSION _SEIUD e rturirrticeierie ettt 8888t 43
SOSSION _EBAITOWN. c..ctoeeeetveeesseeetse st ets et es st 8888885885585 8588055805888 8481888 44
session_unlock........... .45
S s .46
template_get_allowed...... ey
LET 001 01 F= 1 (=T 1=y o 11 [1Y o VOO OSSOSO 48
EEMNPIAEE _VALIATE _DEEN. oottt 49
EEMNPIEE _VALIATE _VAIUES ... ettt s8££ 8 8888585888t 50
LUCST T 1 OO OO OO OO OO TP PSPPSR 51
ErOE GO _ENCOTING ettt ettt ettt e84 8888884848888 88488 R 8RR 52
EEOO GO _TUIL ettt bt s R8s R e 53
10O GO TUI _BNMCOING ettt rettireirreceiiee sttt st 88 8858888588488 888588588 54
O GO _TUI LIMEEINAL. ..ttt 55
LU= TSI 1= G (111 o OO OO OO OO OO 56
LUES TSI 1=y G 11 =T | O OO OO TP OO 57
BT GO XML ettt st 8888888
VAHAATE oot A RS AR AR bR AR A AR A et
validate_path...
Automatically running Scripts 0N SEArTUP ... ———————————————— 61
USING VCliuuuiuiueieciersereseressssssssessessessssesesesssessssssssess s s sesseassssenssessssssssssssssssses s asns senssensnsesssessssssssossaenssensnensnsnsssessseasesassenssensnsnsnsnsssesensnssssssenssensnsnsnsen
vcli shell scripting interface..
INIVOKING VCli.ut1ittiiiiriiieiie ettt s 8888885888288 8 8588585445108 81588888
SPECITYING @ SESSION ID ..ottt s s b8 8828188881881 8 8814858888184
Establishing a persistent CONfIGUIatioN SESSION.......cccc.iiece sttt 64
CONTIGUIAION MNANIPUIBHION. ..ottt ettt ess s s8££ 8888885885888 85885880 64
CONVENIENCE COMIMIANTS. 1 rvvtuurvessaeresssseesssseeesssseesssssessssseeessssasessssasesssssesssssessssssessssassssssaesssssassssssassssssaesssssassssssaessssassssssassssssssssssansssssassssssasssssssnssssssssssssnsssssnes 64
ENtEring OperatioNal COMMBNGS. ... vvuurieeieeieiisecesssesessessesssessesssesss s asss st e85 8888888858858 5888888880 65
USING CONTION STIUCTUIES ..ot ettt sttt e85 8858858858855 65
V/CLI SCIIPHING EXAMIPIES.....ouceirreerreeseeese i et ss s eess st es s8££ 8858585885880 8 4858588585858 8 88845 E 88 65

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
4 53-1004756-01

Preface

DOCUMENT CONVENTIONS ...ttt bbb bbb sttt)
BIOCATE MESOUITES ...ttt e s s sttt et s st 6
DOCUMENT FEEADACK ...ttt ettt s e s bbbt s st e st en s senees 6
Contacting Brocade TeChNICAl SUPPOM ...ttt 7

Document conventions

The document conventions describe text formatting conventions, command syntax conventions, and important notice formats used in
Brocade technical documentation.

Notes, cautions, and warnings
Notes, cautions, and warning statements may be used in this document. They are listed in the order of increasing severity of potential

hazards.

NOTE
A Note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related information.

ATTENTION
An Attention statement indicates a stronger note, for example, to alert you when traffic might be interrupted or the device might
reboot.

CAUTION
A A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware,
firmware, software, or data.

DANGER
A A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety
labels are also attached directly to products to warn of these conditions or situations.

Text formatting conventions

Text formatting conventions such as boldface, italic, or Courier font may be used to highlight specific words or phrases.

Format Description

bold text |dentifies command names.
Identifies keywords and operands.
|dentifies the names of GUI elements.

|dentifies text to enter in the GUI.

italic text |dentifies emphasis.
|dentifies variables.

|dentifies document titles.

Courier font |dentifies CLI output.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

Brocade resources

Format Description

Identifies command syntax examples.

Command syntax conventions

Bold and italic text identify command syntax components. Delimiters and operators define groupings of parameters and their logical
relationships.

Convention Description

bold text Identifies command names, keywords, and command options.

italic text Identifies a variable.

value In Fibre Channel products, a fixed value provided as input to a command option is printed in plain text, for

example, --show WWN.

[] Syntax components displayed within square brackets are optional.

Default responses to system prompts are enclosed in square brackets.

{x|lylz} A choice of required parameters is enclosed in curly brackets separated by vertical bars. You must select
one of the options.

In Fibre Channel products, square brackets may be used instead for this purpose.
x|y A vertical bar separates mutually exclusive elements.
<> Nonprinting characters, for example, passwords, are enclosed in angle brackets.
Repeat the previous element, for example, memberlmember...].

\ Indicates a “soft” line break in command examples. If a backslash separates two lines of a command
input, enter the entire command at the prompt without the backslash.

Brocade resources

Visit the Brocade website to locate related documentation for your product and additional Brocade resources.

White papers, data sheets, and the most recent versions of Brocade software and hardware manuals are available at www.brocade.com.
Product documentation for all supported releases is available to registered users at MyBrocade.

Click the Support tab and select Document Library to access documentation on MyBrocade or www.brocade.com You can locate
documentation by product or by operating system.

Release notes are bundled with software downloads on MyBrocade. Links to software downloads are available on the MyBrocade landing
page and in the Document Library.

Document feedback

Quality is our first concern at Brocade, and we have made every effort to ensure the accuracy and completeness of this document.
However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. You can
provide feedback in two ways:

Through the online feedback form in the HTML documents posted on www.brocade.com

+ By sending your feedback to documentation@brocade.com

Provide the publication title, part number, and as much detail as possible, including the topic heading and page number if applicable, as
well as your suggestions for improvement.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
6 53-1004756-01

http://www.brocade.com
http://my.Brocade.com
http://my.Brocade.com
http://www.brocade.com
http://my.Brocade.com
http://www.brocade.com
mailto:documentation@brocade.com

Contacting Brocade Technical Support

Contacting Brocade Technical Support

As a Brocade customer, you can contact Brocade Technical Support 24x7 online, by telephone, or by e-mail. Brocade OEM customers
should contact their OEM/solution provider.

Brocade customers

For product support information and the latest information on contacting the Technical Assistance Center, go to www.brocade.com and
select Support.

If you have purchased Brocade product support directly from Brocade, use one of the following methods to contact the Brocade
Technical Assistance Center 24x7.

Online Telephone E-mail

Preferred method of contact for non-urgent Required for Sev 1-Critical and Sev 2-High support@brocade.com

issues: issues:)
Please include:

Continental US: 1-800-752-8061
Europe, Middle East, Africa, and Asia

Case management through the

MyBrocade portal. Problem summary

Quick Access links to Knowledge
Base, Community, Document Library,
Software Downloads and Licensing

Pacific: +800-AT FIBREE (+800 28
34 27 33)

Toll-free numbers are available in

Serial number
Installation details

Environment description

tools many countries.

For areas unable to access a toll-free
number: +1-408-333-6061

Brocade OEM customers
If you have purchased Brocade product support from a Brocade OEM/solution provider, contact your OEM/solution provider for all of
your product support needs.

+ OEM/solution providers are trained and certified by Brocade to support Brocade® products.

+ Brocade provides backline support for issues that cannot be resolved by the OEM/solution provider.

Brocade Supplemental Support augments your existing OEM support contract, providing direct access to Brocade expertise.
For more information, contact Brocade or your OEM.

+ For questions regarding service levels and response times, contact your OEM/solution provider.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 7

https://www.brocade.com
https://login.brocade.com/
http://www.brocade.com/services-support/international_telephone_numbers/index.page
mailto:support@brocade.com

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

About This Guide

This guide describes how to use the Brocade 5600 vRouter Scripting AP (referred to as the vRouter Scripting AP, or configd AP, in the
guide) to create scripts that programmatically configure and administer the Brocade 5600 vRouter (referred to as a virtual router,
vRouter, or router in the guide).

This guide also describes how to create vcli scripts to access CLI commands on the vRouter.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 9

10

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

Overview

THE VROULET SCHPHNG AP oot

Supported languages...........
Path formats............

I 1= T FST= TN 1 1= OO

The vRouter Scripting API

The vRouter Scripting API, or configd AP, lets you programmatically configure and manage the Brocade vRouter through configd, a

YANG-based data-modeling management daemon.

NOTE

Configuring a vRouter by using the vRouter Scripting APl is very similar to configuring the device by using the CLI because the

CLlI itself uses this API to configure and manage the Brocade vRouter.

The vRouter Scripting API lets you perform two categories of actions on vRouters: configuration and operation.

The structure of the data that is used by the vRouter Scripting AP is defined in the YANG models and varies freely from the configd API.

Supported languages

The Brocade vRouter Scripting APl is available in the following languages:
Perl
Python
Ruby

NOTE
Many examples in this guide use the Python API.

Path formats

A path in Perl, Python, and Ruby is represented as either a space-separated string or a native-list object. The following method calls

specify the same path.

set ("foo bar baz")
set(["foo", "bar", "baz"])

You can use the path encoding that is more appropriate for the particular context from which the method is currently being called.

Database names

The vRouter Scripting API supports the following three parameter database options in API calls.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

11

Database names

TABLE 1 Parameter databases
Parameter database

AUTO

RUNNING
CANDIDATE

12

Description

Automatically selects the appropriate database (RUNNING or CANDIDATE),
depending on the context.

Operational mode: RUNNING.
Configuration mode: CANDIDATE.
Stores the committed state of the system.

Stores the configuration information for the current configuration session.

If an API call is made externally to a session, the vRouter Scripting API reverts to
the RUNNING database.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

Using the vRouter Scripting API

Setting Up @ CONNECHION 1O CONTIG....uuiiiriiir s
Setting up a configuration sessioN........ccccoeeinrceiiee.
Manipulating the configuration data on the vRouter
Running commands in operational mode............c.........
Using RPCs to run operational COMMANTS. ...ttt
SCIIPtING EXAMNPIES .S
LanNgUAgE-SPECITIC CONVENTIONS. ...t

NOTE
Most examples in the following sections are in Python, but the usage is similar in other languages.

Setting up a connection to configd

When using the vRouter Scripting API to write a script, you must first set up a connection to configd by importing the configd module,
which is included in the Vlyatta package, and creating a configd.client object. You can then communicate with configd by using this
object.

To set up a connection to configd, perform the following steps.

TABLE 2 Setting up a connection to configd

Step Command

Import the configd module.
P 9 from vyatta import configd

Set up the connection to configd by instantiating a client object. client — configd.Client ()

NOTE
If there is a problem connecting to configd, the API raises the configd.FatalException

exception.

Setting up a configuration session

Before you can run configuration commands on the vRouter from your script, you must set up a configuration session with configd.

To set up a configuration session, use the client.session setup () function, which takes as input a session ID, as shown in the
following Python example.

client.session setup (str(os.getpid()))

The session ID must be a unique string. A common practice is to use the process ID (PID).

NOTE
If you initialize the client from inside a configuration session, the client inherits the session ID from the environment. To specify a
different session ID, create a new session, as shown in the preceding example

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 13

Manipulating the configuration data on the vRouter

Manipulating the configuration data on the vRouter

After setting up a configuration session, you can manipulate the configuration data on the vRouter.

The most common manipulation methods are the following. For more information about the supported methods, refer to configd AP
Methods on page 23. Most of these methods take as input a configuration path, which is represented as a space-separated string or
sequence of strings.

Method Returns Description

get (path) List of strings Provides access to subtrees of the configuration database.

tree get dict (path) Dictionary Provides access to a subtree of a configuration database.

node exists(Database, path) Boolean Reports whether a given path exists in the requested
database.

validate path (path) String Determines whether a path is valid according to the
schema.

set (path) String Creates a new path in the configuration data store.

delete (path) String Removes a given path from the configuration data store.

discard() String Throws away all pending (uncommitted) changes for the
current session.

validate () String Checks that the candidate configuration meets all the
constraints that are modeled in the schema.

commit (string) String Validates and applies the candidate configuration.

NOTE

If a configd.Exception is thrown by these methods, a string that contains the informational data about the exception is
returned by the vRouter. You can safely ignore most return values, but it is a good practice to review the informational data in
case it contains information that can help you resolve errors.

If an error occurs when calling these methods, configd exceptions are thrown, as shown in the following Python example. These errors
include providing invalid paths to methods.

>>> client.set ("foo bar")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.7/dist-packages/vyatta/configd.py", line 298, in set
return configd.Client set(self, *args)
vyatta.configd.Exception: Configuration path: foo bar [foo] is not valid

The following sample Python script, add_bridge.py, shows how to manipulate configuration data.

#!/usr/bin/env python

from vyatta import configd

import os, sys

client = configd.Client ()

client.session setup(str(os.getpid()))

try:
brl path = "interfaces bridge brl".split (" ")
client.set (brl path + ["description", "bridge to nowhere"])
client.set (brl path + "address 1.1.1.1/32".split(" "))
print(client.tree get dict(brl path))
client.validate ()
client.commit ("add bridge to nowhere")
client.session_ teardown ()

except configd.Exception as e:
sys.stderr.write (e.what())
exit (1)

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
14 53-1004756-01

Running commands in operational mode

Running this script twice gives you a better feel for how the script behaves. On the first run, everything is as expected.

vyatta@vyatta# python add bridge.py
{u'aging': 300, u'tagnode': u'brl', u'description': u'bridge to nowhere', u'address': [u'l.1.1.1/32']}

However, on the second run, an exception is thrown because the path already exists in the configuration tree.

vyatta@vyatta# python add bridge.py
Configuration path: interfaces bridge brl description [bridge to nowhere] is not wvalid
Node exists

You can handle individual errors independently or you can check for conditions before making API calls, as shown in the following
example.

#!/usr/bin/env python

from vyatta import configd

import os, sys

client = configd.Client ()
client.session_ setup(str(os.getpid()))

brl path = "interfaces bridge brl".split (" ")
try:

client.set (brl path + ["description", "bridge to nowhere"])
except configd.Exception as e:

print e

brl address = brl path + "address 1.1.1.1/32".split(™ ™)
if not client.node exists(client.AUTO, brl address):
client.set (brl address)
print (client.tree get dict (brl path))
try:
client.validate ()
client.commit ("add bridge to nowhere")
client.session_teardown ()
except configd.Exception as e:
sys.stderr.write (e.what())
client.session_teardown ()
exit (1)

Running commands in operational mode

NOTE

Currently, most data about the operational state on the vRouter does not have a YANG model. As a result, you cannot use the
vRouter Scripting AP to call operational commands. Instead, you can use remote procedure calls (RPCs), as described in Using
RPCs to run operational commmands on page 16.

Operational data in the YANG data-modeling language is encoded as nodes in a read-only data tree. The data encoded in the tree varies
freely from the configuration. The data represents the runtime state of the system. The operational and configuration trees are returned
together when both types of nodes exist within the modeled hierarchy.

The data tree can be requested from configd by using the tree get full family of methods. Each method lets you select the
encoding of the returned data.

Python uses a dict encoding that returns a dictionary representing the configuration hierarchy.
Perl and Ruby use a hash encoding that returns the native object for these languages.
The following is a list of the tree get full family of methods.

« tree_get_full on page 53
« tree_get_full_xml on page 56

« tree_get_internal on page 57

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 15

Using RPCs to run operational commands

« tree_get_full_encoding on page 54

NOTE

The tree get full dict () method is the native Python interface for retrieving data trees and uses some syntactic sugar.
This method does not require the database parameter and it is the method that you will most likely use when accessing data
trees. The other methods are provided in case you need to use a raw-text encoding. You can also select the dictionary encoding,
which can be one of the following two JavaScript Object Notation (JSON) encodings. The default encoding is JSON.

TABLE 3 Supported JSON encodings
Encoding Description

JSON (Recommended) Defined by the RESTCONF specification, encodes lists as a list of objects with the
entries keys represented as elements of the objects.

INTERNAL Encodes lists as a dictionary with the entries keys represented as the keys to the
dictionary. This encoding is specific to the vRouter.

The following are sample Python tree get full calls.

>>> client.tree get full(client.AUTO, "hypervisor vm-state")
'{"vm-state": {"vm": [{"name":"vmO", "state" :"running"}, {"name":"vml", "state" :"running"}]1}}"'

>>> client.tree get full xml(client.AUTO, "hypervisor vm-state")

'<data><vm-state xmlns="urn:vyatta.com:mgmt:vyatta-hypervisor:1"><vm xmlns="urn:vyatta.com:mgmt:vyatta-
hypervisor:1"><name xmlns="urn:vyatta.com:mgmt:vyatta-hypervisor:1">vm0</name><state
xmlns="urn:vyatta.com:mgmt:vyatta-hypervisor:1">running</state></vm><vm xmlns="urn:vyatta.com:mgmt:vyatta-
hypervisor:1"><name xmlns="urn:vyatta.com:mgmt:vyatta-hypervisor:1">vml</name><state
xmlns="urn:vyatta.com:mgmt:vyatta-hypervisor:1">running</state></vm></vm-state></data>"'

>>> client.tree get full internal(client.AUTO, "hypervisor vm-state")
'{"vm-state": {"vm": {"vm0": {"state":"running"},"vml": {"state" :"running"}}}}"'

>>> client.tree get full dict("hypervisor vm-state")

{u'vm-state': {u'vm': [{u'state': u'running', u'name': u'vmO0'}, {u'state': u'running', u'name': u'vml'}]}}
[provide paths if comf. With def. no need ot specify db or encoding]

>>> client.tree get full dict("hypervisor vm-state", database=client.CANDIDATE,

encoding=client.INTERNAL ENCODING)

{u'vm-state': {u'vm': {u'vm0': {u'state': u'running'}, u'vml': {u'state': u'running'}}}}

Using RPCs to run operational commands

You can use RPCs, which are independent of the vRouter Scripting AP, to call the operational mode daemon, which returns the output of
any vRouter show command.

NOTE
RPCs access individual services. For any service, RPCs must conform to the YANG specifications for that
service.

For each supported RPC, the YANG specifications define an input object and an output object. To make RPC calls, use the native
call rpc methods that are supported by your language of choice (call rpc dict for Pythonand call rpc hash for Perl and
Ruby).

The following example shows how to make an RPC call in Python to restart the vRouter.

>>>
client.call rpc dict("vyatta-hypervisor-vl", "restart-vm",
{"name" s"ymO" })

{}

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
16 53-1004756-01

Using RPCs to run operational commands

Like the tree get full family of method calls that are defined in the vRouter Scripting API, the call rpc family of calls contains a
method that lets you pass raw strings back and forth without having to convert them to objects that are native to the host language.

The command RPC

The vyatta-opd: command RPC is defined as follows:

rpc command {
configd:call-rpc "oprpc";

input {
leaf command {
type enumeration {
enum show;
}
default show;
}
leaf args {
type string;
}
}
output {

leaf output {
type string;
}

RPC Calls

The following is a sample Python RPC call.

>>> client.call rpc dict ("vyatta-opd-v1l", "command", {"command":"show", "args":"interfaces"})
{u'output': u'Codes: S - State, L - Link, u - Up, D - Down, A - Admin Down\nInterface Ip

Address S/L Description\n--------- = —————————— ——=
——————————— \nbr0 192.168.1.1/24 u/u \ndpOp0s20£0

172.22.20.142/24 u/u \ndpOp0s20fl - A/D
\ndpO0p0s20£2 - A/D \ndpOp0s20£f3

- A/D \ndpOvhost0 - u/u
\ndpOvhostl - A/D \n'}

To format the output of the preceding example so that the columns are aligned, use the print command with the RPC call, as shown in
the following example.

>>> print client.call rpc dict("vyatta-opd-v1l", "command", {"command":"show", "args":"interfaces"})
["output"]

Codes: S - State, L - Link, u - Up, D - Down, A - Admin Down
Interface IP Address S/L Description
bro0 192.168.1.1/24 u/u

dpOp0s20£0 172.22.20.142/24 u/u

dpOp0s20£f1 - A/D

dpOp0s20£2 - A/D

dpOp0s20£3 - A/D

dpOvhost0 - u/u

dpOvhostl - A/D

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 17

Scripting examples

Scripting examples

Setting data plane interface addresses

The Perl, Python, and Ruby examples in this section show how to configure the data plane interfaces on a vRouter to receive their IP
addresses from a DHCP server. The equivalent vRouter CLI command follows:

set interfaces dataplane <interface> address dhcp

Perl scripting
#!/usr/bin/env perl

use strict;

use warnings;

use lib '/opt/vyatta/share/perl5';
use Try::Tiny;

use Vyatta::Configd;

my $client = Vyatta::Configd::Client->new();

sub setup interface_ address {
my ($intf name) = @ ;
print ("$intf name:");
my @addr = $client->get ("interfaces dataplane $intf name address");
printf ("$s\n", join(", ", @addr));
S$client->set ("interfaces dataplane $intf name address dhcp")
if (scalar (@addr) == 0);
}

$client->session setup("$$");

try {
map { setup interface address($_) } $client->get("interfaces dataplane");
Sclient->commit ("setup interface addresses");

} catch {
warn "$ ";

i
Sclient->session teardown();

Python scripting

import vyatta.configd as configd
from sys import stderr, stdout
from os import getpid

def setup interface address(client, intf name):
stdout.write (intf name + ":")

path = ["interfaces", "dataplane", intf name, "address"]
addrs = client.get (path)

print (", ".Jjoin (addrs))
if len (addrs) == :
client.set (path + ["dhcp"])

def main () :
client = configd.Client ()
client.session_setup (str(getpid()))
try:

for intf name in client.get ("interfaces dataplane"):
setup_interface address(client, intf name)
client.commit ("setup interface addresses")
except configd.Exception as e:
stderr.write (str(e))
client.session teardown()

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
18 53-1004756-01

if name == " main ":

main ()

Ruby scripting

require "vyatta/configd";

def setup interface address(client, intf name)

print (intf name, ":")

path = ["interfaces", "dataplane", intf name,

addrs = client.get (path)
puts addrs.join (", ")
if addrs.length ==
client.set (path << "dhcp")
end
end

if FILE == $PROGRAM NAME

client = client = Vyatta::Configd::Client.new

client.session setup($$.to_s())
begin

client.get ("interfaces dataplane") .each {
client.commit ("setup interface addresses")

rescue Vyatta::Configd::Exception => e
puts e.message
end
client.session_teardown ()
end

Monitoring the host

| name |

"address"]

setup interface address(client, name)

Scripting examples

The following Perl script periodically pings a remote address from a vRouter. If the ping loss is beyond a certain percentage, the script

prints a message to the standard error stream (STDERR).
#!/usr/bin/env perl

use strict;
use warnings;

use lib "/opt/vyatta/share/perl5";
use Getopt::Long;

use Try::Tiny;
use Vyatta::Configd;

To run this as a background task

systemd-run --unit=monitor-8.8.8.8 --user --

The background task can be managed using systemctl

$ systemctl --user status monitor-8.8.8.8

® monitor-8.8.8.8.service - /home/vyatta/./monitor-host --address 8.8.8.8

Loaded: loaded (/home/vyatta/.config/systemd/user/monitor-8.8.8.8.service;

Drop-In: /home/vyatta/.config/systemd/user/monitor-8.8.8.8.service.d

L—5O—Description.conf, 50-ExecStart.conf

Active: active (running) since Fri 2015-09-18 14:37:52 UTC;

Main PID: 4952 (perl)

CGroup: /user.slice/user-1000.slice/user@1000.service/monitor-8.8.8.8.service
L-4952 perl /home/vyatta/./monitor-host --address 8.8.8.8

#

$ systemctl --user stop monitor-8.8.8.8

All output from a script run as above can be viewed with journalctl or syslog
for instance:

Sep 18 14:55:15 vyatta monitor-host[5181]:

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

./monitor-host --address 8.8.8.8

packet loss to host 1.1.1.1 exceeded 50%

19

Language-specific conventions

sub address reachable {

my ($client, Saddress, $count, S$percentage) = @ ;
try {
my S$result = $client->call rpc hash("vyatta-op-vl", "ping",
{ "host" => $address, "count" => S$count });

return ($result->{"rx-packet-count"} / $count) * 100 >= S$percentage;
}
catch {

print STDERR "$ \n";

return;

}i

sub usage {
print STDERR "uasge $0:\n";

print STDERR " --address the address to ping [required]\n";

print STDERR " --count the number of pings to send [default: 10]\n";
print STDERR " --percentage the tolerable amount of loss [default: 50]\n";
exit (1) ;

}

my ($address, S$count, S$percentage);

GetOptions (
"address=s" => \S$address,
"count=s" => \S$count,
"percentage=s" => \$percentage,

) or usage();

usage () unless defined($address);

Scount = 10 unless defined($count);

Spercentage = 50 unless defined($percentage);

my $client = Vyatta::Configd::Client->new();

for (; ;) |
if (!'address reachable($client, S$address, Scount, S$Spercentage)) {
printf STDERR "packet loss to host %s exceeded %s%%\n", $address,
Spercentage;

Language-specific conventions

Perl

All Perl methods that take a path as input may take either a space-separated string or an arrayref structure representing the path.

The return strings of Scripting API Perl methods are as arrayref structures or values returned on the stack, depending on the return

context

TABLE 4 Return context

Context Value type
scalar arrayref
array values on stack

The following four special methods provide convenience sugar for the Perl API.

get ($path, S$database) #database is optional $AUTO if not defined
tree get hash($path, $opts) # opts are optional: { "encoding" => $JSON ENCODING, "database" => $SAUTO }

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1

20 53-1004756-01

Language-specific conventions

tree get full hash($path, Sopts) # opts: { "encoding" => $JSON ENCODING, "database" => SAUTO }
call rpc hash($ns, $name, $input) #input is a hash representation of the input stanza of the RPC definition

The Perl configd module exports the following constants so they may be used more easily.

SAUTO
SCANDIDATE
SRUNNING
SEFFECTIVE
SCHANGED
SUNCHANGED
SADDED
$DELETED
SLEAF
SMULTI
STAG
SCONTAINER

These constants can be imported in the standard way.

use Vyatta::Configd gw ($SAUTO $CANDIDATE $RUNNING) ;

Python

All Python methods that take a path as input may take either a space-separated string or an arrayref structure representing the path.
The Scripting API Python methods return strings as dictionary structures.
The following four special methods provide sugar for Python.

get (self, path, database=AUTO)

tree get dict(self, path, database=AUTO, encoding=JSON_ENCODING)

tree get full dict(self, path, database=AUTO, encoding=JSON_ENCODING)
call rpc dict(self, ns, name, input)

Ruby

All Ruby methods that take a path as input may take either a space-separated string or an arrayref structure representing the path.

get (path) -> string
tree_get hash (path) -> hash

tree get full hash(path) -> hash

call rpc hash(ns, name, input) -> hash

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 21

22

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

configd API Methods

Types

Database

An enumeration that specifies the supported database parameters.

Declaration

enum Database { AUTO, RUNNING, CANDIDATE }

NodeStatus

An enumeration that specifies the supported node status values.

Declaration

enum NodeStatus { UNCHANGED, CHANGED, ADDED, DELETED }

NodeType

An enumeration that specifies the supported node types.

Declaration

enum NodeType { LEAF, MULTI, CONTAINER, TAG }

Methods

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

23

Methods

call_rpc
Calls an RPC.
NOTE
RPCs that are called by this function must be defined in the YANG data
models.
Declaration

call rpc(ns, name, input)

Parameters
ns
XML namespace for the model in which the RPC is defined.
name
Nname of an RPC to call.
input
JSON-encoded definition of the input schema.
Returns

call rpc () returns a string containing the JSON-encoded output schema that is defined in the RPC.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
24 53-1004756-01

Methods

call_rpc_xml
Calls an RPC.

NOTE
RPCs that are called by this function must be defined in the YANG data
models.

Declaration

call_rpc_xml(ns, name, input)

Parameters
ns
XML namespace for the model in which the RPC is defined.
name
Name of an RPC to call.
input
XML-encoded definition of the input schema.
Returns

call rpc_xml () returns a string containing the XML-encoded output schema that is defined in the RPC.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 25

Methods

commit

Validates and applies the candidate configuration. The candidate configuration is applied to the vRouter resulting in the running
configuration being updated if the transaction is successful.

Declaration

commit (comment)

Parameters

comment
Comment that describes changes made during this commit operation. An empty string is allowed.

Returns

commit () returns a string that contains all the informational messages that were generated during the commit operation.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
26 53-1004756-01

Methods

delete

Removes a path from the configuration data store. The client has to be attached to a configuration session for this call to work. If
the error occurs, that error is thrown as an exception. Deleting a path that does not exist is considered an error.

Declaration

delete (path)

Parameters

path
Path to a configuration node that is represented as either a space-separated string or an array of strings, which, in turn,
represent the elements of the path.

Returns

delete () returns a string that contains all the informational messages that were generated during the delete operation.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 27

Methods

discard

Throws away all pending (uncommitted) changes for this session.

Declaration

discard()

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
28 53-1004756-01

Methods

get_features

Gets a map of schema IDs and their corresponding enabled features.

Declaration

get features(void)

Returns

get features () returns a map of schema IDs and their corresponding enabled features.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 29

Methods

get_help

Gets help about the children of a node.

Declaration

get help(path, from schema)

Parameters

path
Path of a parent node for which help is requested. The path is represented as either a space-separated string or an
array of strings, which, in turn, represent the elements of the path.

from_schema
Boolean value. If true, generates the help from the schema definition and the data tree. If false, help is retrieved only
from the data tree.

Returns

Returns a map that contains a list of the children of a node and their help strings.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
30 53-1004756-01

load

Replaces the vRouter configuration the candidate database with the configuration from a file.

Declaration
load(file)
Parameters
file
Path to a file that contains the new configuration.
Returns

load () returns true if the load operation is successful. Otherwise, it returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

Methods

31

Methods

node_is_default
Reports whether a path is the default path in a database.

Declaration
node is default (db, path)

Parameters
db
Database to query.
path
Path to a configuration node. The path is represented as either a space-separated string or an array of strings, which, in
turn, represent the elements of the path.
Returns

node is default () returns true if the path is the default path in the database. Otherwise, it returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
32 53-1004756-01

Methods

node_exists

Reports whether a path exists in a database.

Declaration

node exists (db, path)

Parameters
db
Database to query.
path
Path to a configuration node. The path is represented as either a space-separated string or an array of strings, which, in
turn, represent the elements of the path.
Returns

node exists () returns true if the path exists in the database. Otherwise, it returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 33

Methods

node_get

Queries a database for the values at a path.

Declaration
node get (db, path)

Parameters
db
Database to query.
path
Path to a configuration node. The path is represented as either a space-separated string or an array of strings, which, in
turn, represent the elements of the path.
Returns

node get () returns true if the path is the default path in the database. Otherwise, it returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
34 53-1004756-01

Methods

node_get_status

Reports the status of a node in a configuration tree.

Declaration

node get status(db, path)

Parameters
db
Database to query.
path
Path to a configuration node. The path is represented as either a space-separated string or an array of strings, which, in
turn, represent the elements of the path.
Returns

node get status () returns the status of a node. For more information about the possible status values of a node, refer to
NodeStatus on page 23.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 35

Methods

Save

Saves the currently running configuration to the saved configuration.

Declaration

save ()

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
36 53-1004756-01

Methods

session_attach

Attaches the client to a session ID. If the session does not exist, an exception is raised.

Declaration

session_attach (sessid)

Parameters

sessid
Session ID.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 37

Methods

session_changed

Reports whether the current session has configuration changes.

Declaration

session changed()

Returns

session_changed () returns true if the session has configuration changes. Otherwise, it returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
38 53-1004756-01

Methods

session_exists

Reports whether the current session still exists.

NOTE
This function determines whether a shared session has been torn down by another instance.

Declaration

session exists ()

Returns

session_exists () returns true if the current session still exists. Otherwise, it returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 39

Methods

session_lock

Attempts to lock the current session. If the session is currently locked, an exception is raised.

Declaration

session lock()

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
40 53-1004756-01

Methods

session_locked

Reports whether the current configuration session is locked. A lock can be set to prevent multiple writers on a shared session. A
lock also prevents changes during a commit operation. The lock of a session is released if the client that took the lock
disconnects.

Declaration

session_ locked()

Returns

session_locked () returns true if the current session is locked. Otherwise, it returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 41

Methods

session_saved

Reports whether the current configuration session has been saved to the running configuration.

Declaration

session_ saved()

Returns

session_saved () returns true if the current configuration session has been saved to the running configuration. Otherwise, it
returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
42 53-1004756-01

Methods

session_setup

Creates a new configuration session and makes that session the context for this instance of the Client object.

NOTE
Commonly, the PID of the process is used as the session ID, but the ID can be any arbitrary string.

Declaration

session_ setup (sessid)

Parameters

sessid
Session ID.

Returns

session_setup () returns none.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 43

Methods

session_teardown

Destroys a configuration session.

NOTE
A session must be destroyed as soon as it is no longer required because configd maintains the state indefinitely,

unless configd is instructed to destroy the session. However, in some contexts, the destruction of a session by the
client might not be appropriate. Therefore, exercise caution when using this command.

Declaration

session teardown ()

Returns

session_teardown () returns none.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1

44 53-1004756-01

Methods

session_unlock

Attempts to unlock the current session. If the session is currently not locked by this process, an exception is raised.

Declaration

session _unlock ()

Returns

session_unlock () returns none.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 45

Methods

set
Creates a new path in the configuration data store. The client has to be attached to a configuration session for this call to work. If
an error occurs, the error is thrown as an exception. Creating a path that already exists is considered an error.
Declaration
set (path)
Parameters
path
Path to a configuration node. The path is represented as either a space-separated string or an array of strings, which, in
turn, represent the elements of the path.
Returns

set () returns a string that contains all the informational messages that were generated during the set operation.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
46 53-1004756-01

Methods

template_get_allowed

Runs the configd:allowed extension to get the help values for a value node in the schema tree.

Declaration

template get allowed(path)

Parameters

path
Path in a schema tree. The path is represented as either a space-separated string or an array of strings, which, in turn,
represent the elements of the path.

Returns

template get allowed () returns a string that contains the help values for a path in a schema tree.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 47

Methods

template_get_children

Accesses the children of the schema node at a path in a schema tree.

Declaration

template get children (path)

Parameters

path
Path in a schema tree. The path is represented as either a space-separated string or an array of strings, which, in turn,
represent the elements of the path.

Returns

template get children () returns a string that contains the children at a path in a schema tree.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
48 53-1004756-01

Methods

template_validate_path

Determines whether a path is valid according to a schema.

Declaration

template validate path (path)

Parameters

path
Path in a schema tree. The path is represented as either a space-separated string or an array of strings, which, in turn,
represent the elements of the path.

Returns

template validate path () returns true if a path is valid according to a schema. Otherwise, it returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 49

Methods

template_validate_values

Determines whether a path is valid according to a schema and validates all values according to the syntax of the schema.

Declaration

template validate values (path)

Parameters

path
Path in a schema tree. The path is represented as either a space-separated string or an array of strings, which, in turn,
represent the elements of the path.

Returns

template validate values () returns true if a path is valid according to a schema. Otherwise, it returns false.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
50 53-1004756-01

Methods

tree_get

Provides access to a subtree of a configuration database. This call is equivalent to calling tree get encoding() and
specifying JSON_ENCODING as the encoding to use for the returned string.

Declaration

tree get (db, path)

Parameters
db
Database from which to get a subtree.
path
Configuration path at which to root the subtree. The path is represented as either a space-separated string or an array
of strings that represent the elements of the path.
Returns

tree get () returns a JSON-encoded string representing a subtree at a specific location.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 51

Methods

tree_get_encoding

Retrieves a configuration tree by using an encoding.

Declaration

tree get encoding(db, path, encoding)

Parameters

db
Database from which to get a subtree.

path
Path to a configuration node at which to root the tree. The path is represented as either a space-separated string or an
array of strings, which, in turn, represent the elements of the path.

encoding
Encoding of the returned string.

Returns

tree get encoding () returns a string in an encoding that represents a tree at a specific location.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
52 53-1004756-01

Methods

tree_get_full

Provides access to a subtree of the operational data store. The operational data store consists of the configuration database and
any data about the modeled operational state. This call is equivalent to calling tree _get full encoding () and specifying
JSON_ENCODING as the encoding to use for the returned string.

Declaration

tree get full(db, path)

Parameters
db
Database from which to get a subtree.
path
Path to a configuration node at which to root the subtree. The path is represented as either a space-separated string or
an array of strings, which, in turn, represent the elements of the path.
Returns

tree get full () returns a JSON-encoded string that represents a subtree at a specific location.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 53

Methods

tree_get_full_encoding

Provides access to a subtree of the operational data store. The operational data store consists of the configuration database and
any data about the modeled operational state. These trees are encoded in the specified encoding and returned as a string.

Declaration

tree get full encoding(db, path, encoding)

Parameters

db
Database from which to get a subtree.

path
Path to a configuration node at which to root the subtree. The path is represented as either a space-separated string or
an array of strings, which, in turn, represent the elements of the path.

encoding
Encoding of the returned string.

Returns

tree get full encoding () returns a string in an encoding that represents a tree at the given location.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
54 53-1004756-01

Methods

tree_get_full_internal

Provides access to a subtree of the operational data store. The operational data store consists of the configuration database and
any data about the modeled operational state. This call is equivalent to calling tree _get full encoding () and specifying
INTERNAL_ENCODING as the encoding to use for the returned string.

Declaration

tree get full internal (db, path)

Parameters
db
Database from which to get a tree.
path
Path to a configuration node at which to root the subtree. The path is represented as either a space-separated string or
an array of strings, which, in turn, represent the elements of the path.
Returns

tree get full internal () returns a string in the INTERNAL_ENCODING encoding that represents a tree at the given
location.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 55

Methods

tree_get_full_xml

Provides access to a subtree of the operational data store. The operational data store consists of the configuration database and
any data about the modeled operational state. This call is equivalent to calling tree _get full encoding () and specifying
XML_ENCODING as the encoding to use for the returned string.

Declaration

tree get full xml (db, path)

Parameters
db
Database from which to get a subtree.
path
Path to a configuration node at which to root the subtree. The path is represented as either a space-separated string or
an array of strings, which, in turn, represent the elements of the path.
Returns

tree get full xml () returns an XML-encoded string that represents a subtree at the given location.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
56 53-1004756-01

Methods

tree_get_internal

Provides access to a subtree of the configuration database. This call is equivalent to calling tree get encoding () and
specifying INTERNAL_ENCODING as the encoding to use for the returned string.

Declaration

tree get internal (db, path)

Parameters

db
Database from which to get a subtree.

path
Path to a configuration node at which to root the subtree. The path is represented as either a space-separated string or
an array of strings, which, in turn, represent the elements of the path.

encoding
Encoding of the returned string.

Returns

tree get internal () returns a string in the INTERNAL_ENCODING encoding that represents a tree at the given location.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 57

Methods

tree_get_xml

Provides access to a subtree of the configuration database. This call is equivalent to calling tree get encoding () and
specifying XML_ENCODING as the encoding to use for the returned string.

Declaration

tree get xml (db, path)

Parameters
db
Database from which to get a subtree.
path
Path to a configuration node at which to root the subtree. The path is represented as either a space-separated string or
an array of strings, which, in turn, represent the elements of the path.
Returns

tree get xml () returns an XML-encoded string that represents a subtree at the given location.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
58 53-1004756-01

Methods

validate

Checks that the candidate configuration meets all constraints that are modeled in the schema.

Declaration

validate ()

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 59

Methods

validate_path

Checks that a path can be set.

Declaration

validate path (path)

Parameters

path
The path to the configuration node. The path is represented as either a space-separated string or an array of strings
that represent the elements of the path.

Returns

validate path () returns all informational messages that were generated during the validation process. If the path is invalid,
this function throws an exception.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
60 53-1004756-01

Automatically running scripts on startup

You can instruct the vRouter to run a script on startup. The script runs as part of the Linux service that handles system configuration. The
script runs after the vRouter applies the system configuration, which means that the script can modify the loaded configuration.

To instruct the vRouter to automatically run a script on startup, perform the following steps.
1. Add the script to the /config/scripts folder.

For example, enter the following command to create a script in the /config/scripts folder and add the touch /myfile
command to it. The script creates an empty file in the root folder.

echo 'touch /myfile' >> /config/scripts/my-postconfig-bootup.script

NOTE
The script name can be any name and does not have to end with .script.

2. Make the script executable.
For example, enter the following command to make my-postconfig-bootup.script executable.
sudo chmod 770 /config/scripts/my-postconfig-bootup.script

3. Use your favorite editor to add a line to /config/scripts/vyatta-postconfig-bootup.script to run the script.

NOTE
The vRouter runs the scripts referenced in /config/scripts/vyatta-postconfig-bootup.script in the order in which they
appear.

For example, enter the following command to instruct the vRouter to run /config/scripts/vyatta-postconfig-bootup.script on
restart.

echo '/config/scripts/my-postconfig-bootup.script' >> /config/scripts/vyatta-postconfig-bootup.script

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 61

62

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

Using vcli

VCi SNl SCHIPHNG INTEITACE ..o 63
INIVOKING VCli.ut1itittittiiisii st 63
SPECITYING @ SESSION D ..ot 63
Establishing a persistent cONfigUration SESSION ...t 64
CoNfIGUratioN MANIPUIGTION. ..ot 64
CONVENIENCE COMIMIANTS. .. tvttterttseeetseeessseeees s ees 8888888888888 64
Entering 0perational COMMIBNGS. ... 65
Using control structures.... .

VCLI SCIIPHING EXAMIPIES....oouiiii st

vcli shell scripting interface

The vcli shell scripting interface provides a special wrapper to the bash shell, which allows you to seamlessly access CLI commands on
the vRouter. This vcli shell operates as if it is in the vRouter configuration mode, but you have to set up and terminate sessions before
manipulating the candidate data tree.

Invoking vcli

To invoke vcli, enter the following command:
vcli [options]
For more information about supported vcli options, enter the following command:

$ vcli -h
Invalid option: -h
vcli [OPTIONS]
OPTIONS: { -s SID | -c COMMAND | -i | -f FILE | -- SCRIPT OPTIONS }
-i interactive modeless shell
-s SID configuration session id if not provided uses PID
-c COMMAND one shot command
-f FILE file to run
NOTES:
'-f FILE' is treated as a delimiter for SCRIPT OPTIONS as well
vcli will read a full script from standard in if no options are provided

Specifying a session ID

When invoking vcli, you can use the -s option to specify the session ID to use. By default, if this option is not provided, vcli uses its
process ID (PID). The -s option is useful for connecting to an existing session, such as invoking a script from an existing configuration
session or for debugging a NETCONF transaction.

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

Establishing a persistent configuration session

Establishing a persistent configuration session

If you are not connecting vcli to an existing session between vcli and a vRouter, then, to establish a persistent configuration session with
the vRouter to manipulate candidate configuration, you must use the configure command in the script before entering the configuration
commands. The configure command lets your script enter the Configuration mode on the vRouter.

Because the session is persistent, if you do not perform session cleanup before exiting the vcli script, the session persists until the
vRouter is restarted. To prevent persistence until vRouter restart, perform session cleanup by using the end_configure command at the
end of the configuration section of your script.

The following example shows how to use the configure and end_configure commands to establish a persistent configuration session
and then perform session cleanup before exiting the script.

#!/bin/vcli -£

configure

Add configuration commands here

end configure

Configuration manipulation

The following CLI commands are available in vcli and work exactly as they do in the Viyatta CLI.
commit
delete
edit
load
save
set
show
top

up
validate

NOTE
All vcli commands require full configuration paths. The shortest unambiguous-match abbreviations do not work because vcli
scripts are run noninteractively.

Convenience commands

In addition to the standard CLI commands, vcli provides the following convenience commands.
« list path

Takes a path and returns its elements in a space-separated list. This command allows you to programmatically traverse the
configuration tree. Following are examples.

vyatta@vyatta# vcli -c 'list interfaces'
bridge dataplane loopback

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
64 53-1004756-01

VCLI scripting examples

vyatta@vyatta# vcli -c 'list interfaces dataplane'
dpOp0s20£0

vyatta@vyatta# vcli -c 'list interfaces dataplane dpOp0s20£f0’'
address ip ipv6é mtu

. interactive and noninteractive

These commands control the way operational commands prompt a user. When you enter the noninteractive command, any
subsequent operational mode commands do not prompt for input, but they do accept all default values. The interactive
command reverts to the normal mode of operation and prompts for input.

Entering operational commands

To invoke operational commands on a vRouter by using vcli, enter the run command, as shown in the following example.

vyatta@vyatta# vcli -c 'run show interfaces'
Codes: S - State, L - Link, u - Up, D - Down, A - Admin Down

Interface IP Address S/L Description
bro0 192.168.1.1/24 u/u
dpOp0s20£0 172.22.20.142/24 u/u
dpOp0s20f1l - A/D
dpOp0s20£f2 - A/D
dpOp0s20£3 - A/D
dpOvhost0 - u/u
dpOvhostl - u/u

Using control structures

You can use control structures, such as conditionals and loops, by using the normal bash syntax. The vcli shell simply provides some of
the required wrappers to enable the CLI commands on the vRouter to be scriptable. For more information about bash scripting, refer to
http://wiki.bash-hackers.org/doku.php.

VCLI scripting examples

The following sample script, create-bridge.vcli, creates a bridge interface on a vRouter.

#!/bin/vcli -f

configure

trap "{ end configure; }" EXIT HUP

set interfaces bridge brl description "bridge to nowhere"
set interfaces bridge brl address 1.1.1.1/32

if ! validate; then

exit 1

fi

if ! commit; then
exit 1

fi

run show interfaces bridge brl
run show bridge brl

The following example shows how to run the create-bridge.vcli script on a vRouter and shows the output of the script.

vyatta@vyatta# ./create-bridge.vcli

brl1@NONE: <NO-CARRIER, BROADCAST,MULTICAST,UP> mtu 1500 gdisc noqueue state LOWERLAYERDOWN group default
link/ether e2:4d:d8:13:¢c9:38 brd ff:ff:ff:ff:ff:ff
inet 1.1.1.1/32 scope global brl

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01 65

VCLI scripting examples

The

valid 1ft forever preferred 1ft forever
inet6 fe80::e04d:d8ff:fel3:c938/64 scope link

valid 1ft forever preferred 1ft forever
Description: bridge to nowhere

RX: Dbytes packets errors ignored overrun mcast
0 0 0 0 0 0
TX: Dbytes packets errors dropped carrier collisions
188 2 0 0 0 0
bridge name bridge id STP enabled interfaces
brl 0000.000000000000 no
[edit]

following sample script (show-dataplane-IP-addresses.vcli) shows the IP addresses of the configured data plane interfaces on a

Brocade vRouter.

The

66

#!/bin/vcli -f

configure

echo

echo "List of configured data plane interfaces and their corresponding $
echo "—————————-- - $

for i in $(list interfaces dataplane); do
echo -n "$i:"
addr=($ (list interfaces dataplane $i address))
echo ${addr[@]}

if [-z ${addr[@]}]; then
show interfaces dataplane $i address
fi
done
echo

end configure

following example shows how to run the show-dataplane-IP-addresses.vcli script on a vRouter and shows the output of the script.
vyatta@vyatta:~$ vcli -f show-dataplane-IP-addresses.vcli

List of configured data plane interfaces and their corresponding IP addresses:

dp0s160:10.18.170.205/24

Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
53-1004756-01

	Brocade Vyatta Network OS Scripting Reference Guide, 5.2R1
	Preface
	Document conventions
	Notes, cautions, and warnings
	Text formatting conventions
	Command syntax conventions

	Brocade resources
	Document feedback
	Contacting Brocade Technical Support
	Brocade customers
	Brocade OEM customers

	About This Guide
	Overview
	The vRouter Scripting API
	Supported languages
	Path formats
	Database names

	Using the vRouter Scripting API
	Setting up a connection to configd
	Setting up a configuration session
	Manipulating the configuration data on the vRouter
	Running commands in operational mode
	Using RPCs to run operational commands
	The command RPC
	RPC Calls

	Scripting examples
	Setting data plane interface addresses
	Perl scripting
	Python scripting
	Ruby scripting

	Monitoring the host

	Language-specific conventions
	Perl
	Python
	Ruby

	configd API Methods
	Types
	Database
	Declaration

	NodeStatus
	Declaration

	NodeType
	Declaration

	Methods
	call_rpc
	call_rpc_xml
	commit
	delete
	discard
	get_features
	get_help
	load
	node_is_default
	node_exists
	node_get
	node_get_status
	save
	session_attach
	session_changed
	session_exists
	session_lock
	session_locked
	session_saved
	session_setup
	session_teardown
	session_unlock
	set
	template_get_allowed
	template_get_children
	template_validate_path
	template_validate_values
	tree_get
	tree_get_encoding
	tree_get_full
	tree_get_full_encoding
	tree_get_full_internal
	tree_get_full_xml
	tree_get_internal
	tree_get_xml
	validate
	validate_path

	Automatically running scripts on startup
	Using vcli
	vcli shell scripting interface
	Invoking vcli
	Specifying a session ID
	Establishing a persistent configuration session
	Configuration manipulation
	Convenience commands
	Entering operational commands
	Using control structures
	VCLI scripting examples

