Brocade Vyatta Network OS Basic System Configuration Guide, 5.2R1 Supporting Brocade 5600 vRouter, VNF Platform, and Distributed Services Platform #### © 2016, Brocade Communications Systems, Inc. All Rights Reserved. Brocade, the B-wing symbol, and MyBrocade are registered trademarks of Brocade Communications Systems, Inc., in the United States and in other countries. Other brands, product names, or service names mentioned of Brocade Communications Systems, Inc. are listed at www.brocade.com/en/legal/brocade-legal-trademarks.html. Other marks may belong to third parties. Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning any equipment, equipment feature, or service offered or to be offered by Brocade. Brocade reserves the right to make changes to this document at any time, without notice, and assumes no responsibility for its use. This informational document describes features that may not be currently available. Contact a Brocade sales office for information on feature and product availability. Export of technical data contained in this document may require an export license from the United States government. The authors and Brocade Communications Systems, Inc. assume no liability or responsibility to any person or entity with respect to the accuracy of this document or any loss, cost, liability, or damages arising from the information contained herein or the computer programs that accompany it. The product described by this document may contain open source software covered by the GNU General Public License or other open source license agreements. To find out which open source software is included in Brocade products, view the licensing terms applicable to the open source software, and obtain a copy of the programming source code, please visit http://www.brocade.com/support/oscd. ## Contents | Preface | 11 | |--|----| | Document conventions | 11 | | Notes, cautions, and warnings | 11 | | Text formatting conventions | 11 | | Command syntax conventions | 12 | | Brocade resources | 12 | | Document feedback | 12 | | Contacting Brocade Technical Support | 13 | | Brocade customers | 13 | | Brocade OEM customers | 13 | | About This Guide | 15 | | Using the CLI | 17 | | CLI features | 17 | | Command modes | 17 | | Vyatta CLI and system shell | 18 | | Accessing the CLI | 18 | | The predefined user account | 19 | | User privilege levels | 19 | | Command prompts | 20 | | Using special characters in commands | 20 | | Command completion | 21 | | Command history | 23 | | Command editing | 23 | | Filtering command output | 24 | | Operational commands | 25 | | Running operational commands | 25 | | Running an operational command in configuration mode | 25 | | Basic commands for using the CLI | | | copy file <from-file> to <to-file></to-file></from-file> | | | delete file <file></file> | 29 | | exit (operational) | 30 | | run | 31 | | show file <file></file> | 32 | | Working with Configuration | | | Configuration basics | | | Terminology | | | Location of configuration information | | | Configuration hierarchy | | | Entering and exiting configuration mode | | | Navigating in configuration mode | | | Viewing configuration | 38 | | Viewing configuration from operational mode | 39 | | Changing configuration information | 39 | | Adding or modifying configuration | 39 | | Deleting configuration | 4C | |--|----| | Committing configuration changes | 40 | | Discarding configuration changes | | | Managing system configuration | 41 | | Saving the running configuration | 41 | | Loading a saved configuration | 42 | | Booting from a saved configuration file | | | Merging saved and running configurations | | | Rolling back to a previous version | 43 | | Archiving configuration versions on commit | | | Comparing configuration versions | 43 | | Cloning configuration across system images | | | Performing file operations on configuration files and directories | 44 | | Configuration Commands | | | clone system config <dest-image-name></dest-image-name> | | | commit | | | compare | 50 | | configure | | | delete | | | discard | | | edit | 54 | | exit (configuration) | | | load | 56 | | merge | | | monitor command <show-command></show-command> | | | rollback | | | Save | 62 | | set | | | show | 65 | | show configuration (operational) | 67 | | show system commit | | | show system commit diff <rev-num></rev-num> | 70 | | show system commit file <rev-num></rev-num> | 71 | | system config-management commit-archive location <location></location> | 73 | | system config-management commit-revisions <revisions></revisions> | 75 | | top | 76 | | up | 77 | | System Management | | | Basic system configuration | | | Configuring host information | | | Configuring DNS | | | Configuring date and time | 84 | | Configuring CPU affinity | | | Configuring CPU affinity on the default data plane | | | Monitoring system information | | | Showing host information | | | Showing the date and time | 87 | | System Management Commands | | | clear console | 91 | | clear interfaces counters | 92 | |---|-----| | delete session-table | 93 | | delete session-table conn-id <conn-id></conn-id> | 94 | | delete session-table destination <destination-ip-address></destination-ip-address> | 95 | | delete session-table destination <destination-ip-address> source <source-ip-address></source-ip-address></destination-ip-address> | 96 | | delete session-table source <source-ip-address></source-ip-address> | 97 | | delete session-table source <source-ip-address> destination <destination-ip-address></destination-ip-address></source-ip-address> | 98 | | monitor interfaces | 99 | | poweroff | 100 | | reboot | 102 | | reset ip arp address <ipv4></ipv4> | 104 | | reset ip arp interface <interface_name></interface_name> | 105 | | set date | 106 | | set terminal | 107 | | show arp | 108 | | show date | 109 | | show hardware cpu | 110 | | show hardware dmi | 111 | | show hardware mem | 112 | | show hardware pci | 113 | | show history | 114 | | show host | 116 | | show ip groups | 118 | | show interfaces | 119 | | show interfaces extensive | 121 | | show license | 123 | | show ntp | 124 | | show ntp packets | 125 | | show ntp status | 126 | | show ntp information | 127 | | show session-table statistics | 128 | | show reboot | 129 | | show system boot-messages | 130 | | show system connections | 131 | | show system kernel-messages | 132 | | show system memory | 133 | | show system power-profile | 135 | | show system processes | 136 | | show system routing-daemons | 139 | | show system storage | 140 | | show system uptime | 141 | | show system usb | 142 | | show tech-support | 143 | | show versionshow version | 145 | | system alg ftp | 147 | | system alg icmp disable | | | system console device <device></device> | | | system console powersave | | | system default dataplane cpu-affinity <cpu-list></cpu-list> | 152 | | system domain-name <domain></domain> | 153 | | system domain-search domain <domain></domain> | 154 | |---|-----| | system host-name <name></name> | 155 | | system name-server <address></address> | 156 | | system ntp server <server-name></server-name> | 157 | | system power-profile policy <thresholds></thresholds> | 159 | | system power-profile custom <parameter> <threshold></threshold></parameter> | 160 | | system ntp server <server-name> address-family</server-name> | 161 | | system options reboot-on-panic <value></value> | 163 | | system session table-size <size></size> | 164 | | system session timeout custom rule rule-number destination | 165 | | system session timeout custom rule rule-number expire | 167 | | system session timeout custom rule rule-number protocol | 168 | | system session timeout custom rule rule-number source | 169 | | system session timeout icmp established | 171 | | system session timeout icmp new | 172 | | system session timeout other established | 173 | | system session timeout other new | 174 | | system session timeout tcp close-wait | 175 | | system session timeout tcp closed | 176 | | system session timeout tcp closing | 177 | | system session timeout tcp established | 178 | | system session timeout tcp fin-received | 179 | | system session timeout tcp fin-sent | 180 | | system session timeout tcp fin-wait | 181 | | system session timeout tcp last-ack | 182 | | system session timeout tcp simsyn-sent | 183 | | system session timeout tcp syn-received | 184 | | system session timeout tcp syn-sent | 185 | | system session timeout tcp time-wait | 186 | | system session timeout udp established | 187 | | system session timeout udp new | 188 | | system static-host-mapping host-name <name></name> | 189 | | system time-zone <zone></zone> | 190 | | Role-based Access Control | 101 | | Overview | | | Path matching | 191 | | Default rule set | | | Configuration examples | | | Example of a rule set in operational mode | | | Rule set in operation | | | Example of a rule set in configuration mode | | | Rule set in operation | | | Example of a rule set to create a security group | | | Rule set in operation for the security group | | | | | | Role-based Access Control Commands | | | system acm create-default | | | system acm delete-default | | | system acm enable | | | system acm exec-default | 207 | | system acm operational-ruleset rule <number></number> | 208 | |--|-----| | system acm read-default | 209 | | system acm ruleset rule <number> action</number> | 210 | | system acm
ruleset rule <number> group <name></name></number> | 211 | | system acm ruleset rule <number> log</number> | 212 | | system acm ruleset rule <number> operation <action></action></number> | 213 | | system acm ruleset rule <number> path <path></path></number> | 215 | | system acm update-default | 216 | | User Management | 217 | | User management configuration | 217 | | User management overview | 217 | | Maintenance of SSH public keys of known hosts | 220 | | Creating a login user account | 221 | | Recovering user passwords | 223 | | Configuring a system for a RADIUS authentication server | 224 | | Configuring a system for a TACACS+ authentication server | 225 | | Configuring a system for SSH access using shared public keys | 226 | | User Management Commands | 229 | | loadkey | 230 | | show login | 232 | | show system login users | 233 | | show system tacplus status | 234 | | system login | 235 | | system login banner post-login <banner></banner> | 236 | | system login banner pre-login <banner></banner> | 237 | | system login group <group-name></group-name> | 238 | | system login radius-server <address></address> | 239 | | system login session-timeout | 241 | | system login tacplus-server <address></address> | 242 | | system login user <user></user> | 244 | | system login user <user> authentication</user> | 245 | | system login auth-chain method | | | system login user <user> authentication public-keys <key-id></key-id></user> | 249 | | system login user <user> full-name <name></name></user> | | | system login user <user> group <group></group></user> | | | system login user <user> home-directory <dir></dir></user> | 253 | | system login user <user> level <level></level></user> | | | system tacplus-options command-accounting | 256 | | Service-user Management | 257 | | Overview | 257 | | Local service user | | | Setting a username and password | | | Granting service access to a user | | | Revoking service access for a user | | | Locking services from a user | | | Unlocking services from a user | | | Granting access service to a group | | | Service-user authentication through LDAP | | | Creating an LDAP authentication profile | 259 | | Setting the base distinguished name | 259 | |---|-----| | Applying the LDAP search filter to an LDAP entry | 259 | | Configuring the bind user and bind password | 260 | | Specifying a trusted CA certificate | 260 | | Gaining authentication from multiple LDAP servers | 260 | | Performing group-based LDAP authorization | 261 | | Setting advanced LDAP options | 261 | | IPv6 | 263 | | IPv6 overview | | | IPv6 configuration | | | - | | | IPv6 System Commands | | | reset ipv6 neighbors address <ipv6></ipv6> | | | reset ipv6 neighbors interface <interface_name></interface_name> | | | show ipv6 neighbors | | | system ipv6 disable | | | system ipv6 disable-forwarding | | | system ipv6 strict-dad | 271 | | Hot-plugging Interfaces | 273 | | Overview | | | How hot-plugging works on the VMware ESX platform | 273 | | How hot-plugging works on the Linux KVM platform | | | Hot-plugging Interfaces on the VMware ESX Platform | | | Hot-plugging interfaces on the KVM platform | | | Creating XML files for hot-plugging interfaces | | | Interface hot-plugging examples (KVM) | | | Commands for attaching and detaching interfaces on the KVM platform | | | Logging | 285 | | Logging configuration | | | Logging overview | | | Logging configuration example | | | Enabling and disabling logging for specific features | | | Overriding the host syslog logging facility for log entries | | | Logging Commands | 200 | | delete loa file | 290 | | show log | | | show log image <image-name></image-name> | | | system syslogsystem syslog | | | system syslog console facility <facility> level <level></level></facility> | | | system syslog file <filename> archive</filename> | | | system syslog file <filename> facility <facility> level <level></level></facility></filename> | | | system syslog global archive | | | system syslog global facility <facility> level <level></level></facility> | | | system syslog host <hostname> facility <facility> level <level></level></facility></hostname> | | | system syslog host <hostname> facility-override <facility></facility></hostname> | | | system syslog user <userid> facility <facility> level <level></level></facility></userid> | | | | | | Loopback and Data Plane Interfaces | | | VRF support | 311 | | List of Acronyms | 317 | |---|-----| | Adding a VRF routing instance to an Operational mode command | 314 | | Adding a VRF routing instance to a Configuration mode command | | | Command support for VRF routing instances | | | VRF support for file transfer client connections | | | VRF support for RADIUS authentication | 311 | ## **Preface** | • | Document conventions | 1 | 11 | |---|--------------------------------------|-----|----| | • | Brocade resources | 1 | 12 | | | Document feedback | 1 | 12 | | | Contacting Brocade Technical Support | _ 1 | 13 | ## **Document conventions** The document conventions describe text formatting conventions, command syntax conventions, and important notice formats used in Brocade technical documentation. ### Notes, cautions, and warnings Notes, cautions, and warning statements may be used in this document. They are listed in the order of increasing severity of potential hazards. #### NOTE A Note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related information. #### **ATTENTION** An Attention statement indicates a stronger note, for example, to alert you when traffic might be interrupted or the device might reboot. ### **CAUTION** A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data. #### **DANGER** A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations. ### Text formatting conventions Text formatting conventions such as boldface, italic, or Courier font may be used to highlight specific words or phrases. | Format | Description | | |------------------|---------------------------------------|--| | bold text | Identifies command names. | | | | Identifies keywords and operands. | | | | Identifies the names of GUI elements. | | | | Identifies text to enter in the GUI. | | | italic text | Identifies emphasis. | | | | Identifies variables. | | | | Identifies document titles. | | | Courier font | Identifies CLI output. | | Format Description Identifies command syntax examples. ## Command syntax conventions Bold and italic text identify command syntax components. Delimiters and operators define groupings of parameters and their logical relationships. | Convention | Description | |------------------|---| | bold text | Identifies command names, keywords, and command options. | | italic text | Identifies a variable. | | value | In Fibre Channel products, a fixed value provided as input to a command option is printed in plain text, for example,show WWN. | | [] | Syntax components displayed within square brackets are optional. | | | Default responses to system prompts are enclosed in square brackets. | | { x y z } | A choice of required parameters is enclosed in curly brackets separated by vertical bars. You must select one of the options. | | | In Fibre Channel products, square brackets may be used instead for this purpose. | | x y | A vertical bar separates mutually exclusive elements. | | <> | Nonprinting characters, for example, passwords, are enclosed in angle brackets. | | | Repeat the previous element, for example, member[member]. | | \ | Indicates a "soft" line break in command examples. If a backslash separates two lines of a command input, enter the entire command at the prompt without the backslash. | ## Brocade resources Visit the Brocade website to locate related documentation for your product and additional Brocade resources. White papers, data sheets, and the most recent versions of Brocade software and hardware manuals are available at www.brocade.com. Product documentation for all supported releases is available to registered users at MyBrocade. Click the **Support** tab and select **Document Library** to access documentation on MyBrocade or www.brocade.com You can locate documentation by product or by operating system. Release notes are bundled with software downloads on MyBrocade. Links to software downloads are available on the MyBrocade landing page and in the Document Library. ## Document feedback Quality is our first concern at Brocade, and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. You can provide feedback in two ways: - Through the online feedback form in the HTML documents posted on www.brocade.com - By sending your feedback to documentation@brocade.com Provide the publication title, part number, and as much detail as possible, including the topic heading and page number if applicable, as well as your suggestions for improvement. ## **Contacting Brocade Technical Support** As a Brocade customer, you can contact Brocade Technical Support 24x7 online, by telephone, or by e-mail. Brocade OEM customers should contact their OEM/solution provider. ### **Brocade customers** For product support information and the latest information on contacting the Technical Assistance Center, go to www.brocade.com and select Support. If you have purchased Brocade product support directly from
Brocade, use one of the following methods to contact the Brocade Technical Assistance Center 24x7. | Online | Telephone | E-mail | |--|--|--| | Preferred method of contact for non-urgent issues: | Required for Sev 1-Critical and Sev 2-High issues: Continental US: 1-800-752-8061 Europe, Middle East, Africa, and Asia Pacific: +800-AT FIBREE (+800 28 34 27 33) Toll-free numbers are available in many countries. For areas unable to access a toll-free number: +1-408-333-6061 | support@brocade.com Please include: Problem summary Serial number Installation details Environment description | ### **Brocade OEM customers** If you have purchased Brocade product support from a Brocade OEM/solution provider, contact your OEM/solution provider for all of your product support needs. - OEM/solution providers are trained and certified by Brocade to support Brocade® products. - · Brocade provides backline support for issues that cannot be resolved by the OEM/solution provider. - Brocade Supplemental Support augments your existing OEM support contract, providing direct access to Brocade expertise. For more information, contact Brocade or your OEM. - For questions regarding service levels and response times, contact your OEM/solution provider. ## **About This Guide** This guide describes the architecture of the Brocade products that run on the Brocade Vyatta Network OS (referred to as a virtual router, vRouter, or router in the guide). It includes basic system concepts and describes how to use the CLI of the router, perform basic system management and monitoring tasks, manage user accounts, access system logs, and hot-plug interfaces. ## Using the CLI | • | CLI features | 1 | _ 7 | |---|----------------------|---|-----| | • | Operational commands | 2 |) [| This chapter provides an overview of the Vyatta command-line interface (CLI), which is the primary user interface to the Brocade vRouter, and the operational mode of the CLI. Note: Configuration by using the CLI is discussed in Working with Configuration on page 35. ## **CLI** features This section presents the following topics: - Command modes on page 17 - Vyatta CLI and system shell on page 18 - Accessing the CLI on page 18 - The predefined user account on page 19 - User privilege levels on page 19 - Command prompts on page 20 - Using special characters in commands on page 20 - Command completion on page 21 - · Command history on page 23 - Command editing on page 23 - Filtering command output on page 24 - Running operational commands on page 25 - Running an operational command in configuration mode on page 25 ### Command modes The Vyatta CLI has two command modes: operational mode and configuration mode. Operational mode provides access to operational commands for showing and clearing information and enabling or disabling debugging, as well as commands for configuring terminal settings, loading and saving configuration, and restarting the system. When you log in to the system, the system is in operational mode. Figure 1 shows Vyatta CLI command modes. #### FIGURE 1 CLI command modes Configuration mode provides access to commands for creating, modifying, deleting, committing and showing configuration information and commands for navigating through the configuration hierarchy. - To enter configuration mode from operational mode, enter the **configure** command. - To return to operational mode from configuration mode, enter the exit command. If uncommitted changes remain, you must either commit the changes, by using the commit command, or discard the changes, by using the discard command (or exit discard), before you can exit to operational mode. If you have not saved the configuration (by using the save command) you are warned that configuration changes have not been saved. When the system is restarted, it loads the last saved configuration. Entering the exit command in operational mode logs you off the system. ### Vyatta CLI and system shell The CLI of the Brocade vRouter includes two kinds of commands: - · Commands for operating and configuring the Brocade vRouter - · Commands provided by the operating system shell in which the Vyatta CLI operates The commands you can execute depend on your user role and its privileges. However, any command for which you have the privileges to execute, including operating system commands, can be executed from within the Vyatta CLI. ### Accessing the CLI To access the CLI, you log in to the Brocade vRouter, either directly through the VGA console, a serial console, or remotely by using a Secure Shell (SSH) or Telnet session. The VGA console also provides nine virtual console sessions. These virtual consoles (tty1 through tty9) can be accessed by using the key combinations ALT-F1 (for tty1) through ALT-F9 (for tty9). tty1 through tty6 provide a login prompt. tty7 through tty9 are not used. Regardless of the access method you choose, after the startup messages are completed, the login prompt appears, as follows: vyatta login: Log in by using the ID and password of a defined user account. ### NOTE You can change user accounts by using operating system commands, but the changes do not persist across reboots. For persistent changes to user account information, use the Vyatta CLI. ### The predefined user account By default, the system has one predefined user account: the vyatta user. The default password for the vyatta account is vyatta. The vyatta user has administrator-level privileges and can execute all Brocade vRouter commands and all operating system commands. Note that, although the user can execute both Brocade vRouter commands and operating system commands, command completion and CLI help show only Brocade vRouter commands for clarity. ### User privilege levels The Brocade vRouter supports two user roles: - Admin users on page 19 - Operator users on page 19 ### Admin users Administrator (admin) users have full access to the Vyatta CLI. Admin users can view, configure, and delete information and execute all Brocade vRouter operational commands. Admin users can also execute all operating system shell commands and constructs. The vyatta default user is an admin user. To create an admin user, enter the following set of commands in configuration mode. ``` vyatta@vyatta# set system login user user-name level admin vyatta@vyatta# set system login user user-name authentication plaintext-password password vyatta@vyatta# commit ``` where user-name is the ID of the user account you want to create and password is the password you are assigning to the user. Although operating system shell commands are always available to admin users, they are not shown when these users employ command completion to query the CLI for available commands. This is because there are several hundred operating system shell commands and constructs available at any time: showing all available operating system shell commands makes it very difficult to distinguish available CLI commands. Admin users can see available commands by entering help at the command prompt. You can remove the restriction on command completion by setting the VYATTA_RESTRICTED_MODE environment variable to none: ``` export VYATTA RESTRICTED MODE=none ``` This setting removes the restriction on command completion for all users, regardless of privilege level. ### Operator users Operator users have read-only access to configuration plus the ability to execute Brocade vRouter operational commands. Operator users can view in operational mode (by using **show** commands), configure their terminal settings (by using the **set terminal** command), and exit from the Vyatta CLI (by using the **exit** command). Operator users cannot enter configuration mode; however, they can display configuration by entering the **show configuration** command in operational mode. Basic commands for displaying information (for example, **show configuration** plus the **pipe** commands, such as **more**, for managing display output) are available. Commands that use control constructs (such as **if**, **for**, and so on), list operators (such as ;, &&, and so on), and redirection are not available to operator users. To create an operator user, enter the following command: ``` vyatta@vyatta# set system login user user-name level operator vyatta@vyatta# set system login user user-name authentication plaintext-password password vyatta@vyatta# commit ``` where user-name is the ID of the user account you are creating and password is the password you are assigning to the user. Operating system shell commands are not available to operator users and, consequently, the list of commands returned by using command completion for operator-level users is restricted to Brocade vRouter commands. You can remove the restriction on command completion by setting the VYATTA_RESTRICTED_MODE environment variable to none, as follows: ``` export VYATTA RESTRICTED MODE=none ``` This setting removes the restriction on command completion for all users, regardless of privilege level. ### Command prompts The command prompt shows you the user account under which you are logged in, the host name of the system you are logged in to, and whether you are in configuration mode or operational mode. The format of the command prompt in configuration mode is as follows: ``` username@hostname# ``` The format of the command prompt in operational mode is as follows: ``` username@hostname:~$ ``` where, in both cases, *username* is the user account under which you are logged in and *hostname* is the host name configured for the
system; see Table 1 for examples. TABLE 1 Command prompts | The prompt shows this | And means this | |-----------------------|----------------------------------| | vyatta@R1:~\$ | User: vyatta | | | Hostname: R1 | | | Command mode: Operational mode | | vyatta@R1# | User: vyatta | | | Hostname: R1 | | | Command mode: Configuration mode | ### Using special characters in commands The Vyatta FusionCLI management interface is based on the GNU Bash shell. When entering a command at the command prompt, keep in mind that some characters have special meaning to the shell. For example, one such special character is the space character, which denotes the end of a token in a command, as shown below. ``` prompt> show interfaces dataplane ``` In this example, the space characters separate the command line into three components: show, interfaces, and dataplane. If you want to enter a string of characters that includes a literal character understood by the shell as a special character, you must enclose the character in double quotation marks ("). For example, if you want to enter a character string that includes a space, you must enclose the string in double quotation marks, as shown below. ``` vyatta@vyatta# set security firewall name TEST description "external inbound" ``` In this example, the space within the character string external inbound is within quotation marks and, therefore, loses its special meaning as a token separator. Another example of a special character is the "pipe" character, also called the vertical bar (|), which separates two commands and means that the output of the command to the left of the pipe should be processed by using the command to the right of the pipe, as shown in the following example. ``` vyatta@vyatta# show interfaces | match dp ``` In this example, the pipe character tells the shell to run the **show interfaces** command and then process the output by using the **match dp** command; as a result, only lines that contain the dp character string are displayed. As for the space character, if you want a literal vertical bar in a command component, you must enclose it in double quotation marks. In addition to the space and vertical bar, the following characters have special meaning for the shell. - ampersand (&) - semicolon (;) - comma (.) - left parenthesis (() - right parenthesis ()) - left angle bracket (<) - right angle bracket (>) - backslash (\) - pound sign (#) In general, if you are unsure which characters are special, a good rule of thumb is to enclose anything that is not alphanumeric within double quotation marks. Note that within a quotation-enclosed string, you can include a literal quotation mark by preceding it with a backslash, as shown in the following example. ``` "some \"quotes\" within quotes" ``` Of course, the rules become more complex if you want a literal backslash (\). As a general rule, try to avoid using quotation marks or backslashes as literal configuration values. ### Command completion To save keystrokes, the system accepts unambiguous command prefixes in place of the full command. For example, typing **sh configu** in operational mode is equivalent to typing **show configuration**. You can also have the system automatically complete a command syntax by entering or pressing any of the following at the command prompt. #### TABLE 2 CLI help keystrokes | Enter or press this: | To display this: | |----------------------|--| | <tab></tab> | Automatic completion of a command. | | | If the command is unambiguous, the system generates the next token in the syntax. | | | If more than one completion is possible, the system displays the
set of possible tokens. Pressing <tab> a second time displays
command help for each possible token.</tab> | | | (Note that the space following a command or keyword counts as a token.) | | ? or <alt>-?</alt> | The set of possible tokens. Pressing ? a second time displays command help for each possible token. | | | NOTE To enter a literal question mark, first enter <ctrl>+v, then the question mark.</ctrl> | The following example shows how to find all available commands. ``` vyatta@R1:~$ <Tab> ``` The following example shows how to request command completion for the **sh** entered character string. In this example, the command to be completed is unambiguous. ``` vyatta@R1~$ sh<Tab> vyatta@R1~$ show ``` The following example shows how to request command completion for the **s** entered character string. In this case, more than one command can complete the entry and the system lists all valid completions. ``` vyatta@R1~$:s<Tab> set show ``` Note that neither the <Tab> key nor the <Alt>+? key combination provides a help function when enclosed in double quotation marks. When used within double quotation marks, the <Tab> key generates a tab character and the <Alt>+? key combination generates a question mark (?) character. In configuration mode, the following symbols are displayed next to nodes in their completion help text to indicate the node type. | Symbol | Node | |--------|-----------------------------| | + | Multinode | | > | Nonleaf node | | +> | Tag node (multiple nonleaf) | The following example shows the node symbols next to possible completions for the interfaces dataplane command. + address + address IP address > bridge-group Add this interface to a bridge group description Description > dhcpv6-options DHCPv6 options disable Disable interface disable-link-detect Ignore link state changes > ipv6 ipv6 IPv6 parameters log_martians Enable the logging of bogus packets mac Media Access Control (MAC) address mtu Maximum Transmission Unit (MTU) policy PBR Options > policy +> vif policy PBR Options qos-policy Qos policy for interface sflow Enable/Disable sflow for interface vif Virtual Interface (VIF) ID > vrrp > vrrp Virtual Router Redundancy Protocol (VRRP) > xconnect Specify the parameters for cross-connect ### Command history The Brocade vRouter shell supports a command history in which the commands that you run are stored in an internal buffer and can be run or edited. Table 3 shows the most important history keystrokes. ### TABLE 3 Command history keystrokes | Type this | To do this | |------------------------|-------------------------------| | <up arrow=""></up> | Move to the previous command. | | <control>-p</control> | | | <down arrow=""></down> | Move to the next command. | | <control>-n</control> | | ### Command editing The Brocade vRouter shell supports Emacs-style command editing. Table 4 shows the most important editing keystrokes. #### TABLE 4 Command-line editing keystrokes | Type this | To do this | |-------------------------------------|---| | <left arrow=""></left> | Move backward in the command line. | | <control>-b</control> | | | <right arrow=""></right> | Move forward in the command line. | | <control>-f</control> | | | <control>-a</control> | Move to the beginning of the command line. | | <control>-e</control> | Move to the end of the command line. | | <control>-d</control> | Delete the character directly under the cursor. | | <control>-t</control> | Toggle (swap) the character under the cursor with the character immediately preceding it. | | <control>-<space></space></control> | Mark the current cursor position. | TABLE 4 Command-line editing keystrokes (continued) | Type this | To do this | |-----------------------|---| | <control>-w</control> | Delete the text between the mark and the current cursor position, copying the deleted text to the cut buffer. | | <control>-k</control> | "Kill" (delete) from the cursor to the end of the line, copying the deleted text into the cut buffer. | | <control>-y</control> | "Yank" (paste) from the cut buffer into the command line, inserting it at the cursor location. | If the information being displayed is too long for your screen, the screen shows the "more" indication where the information breaks. Table 5 shows the keystrokes for controlling the display of information in a "more" screen. TABLE 5 Display options within a "more" screen | Type this | To do this | |------------------------|--| | q | Exit "more." | | Q | | | <space></space> | Scroll down one whole screen. | | f | | | <ctrl>+f</ctrl> | | | b | Scroll up one whole screen. | | <ctrl>+b</ctrl> | | | d | Scroll down one-half screen. | | <ctrl>+d</ctrl> | | | u | Scroll up one-half screen. | | <ctrl>+u</ctrl> | | | <enter></enter> | Scroll down one line. | | е | | | <ctrl>+e</ctrl> | | | <down arrow=""></down> | | | У | Scroll up one line. | | <ctrl>+y</ctrl> | | | <up arrow=""></up> | | | G | Scroll down to the bottom of the output. | | g | Scroll up to the top of the output. | | h | Display detailed help for "more." | ## Filtering command output The Brocade vRouter can pipe the output of commands into selected operating system shell commands to filter what is displayed on the console. Commands are piped into the filters by using the pipe, or vertical bar, operator (|). Table 6 shows the pipe commands implemented for the Brocade vRouter. #### TABLE 6 "pipe" filter commands | Type this: | To do this: | |------------------|---| | count | Count occurrences. | | match pattern | Show only text that matches the specified pattern. | | more | Paginate output. | | no-match pattern | Show only text that does not match the specified pattern. | | no-more | Do not paginate output. | ## Operational commands This section presents the following topics: - Running operational commands on page 25 - Running an operational command in
configuration mode on page 25 ### Running operational commands Operational commands are run in operational mode. The operational commands available to you can be displayed by entering **help** at the command prompt in operational mode. ### Running an operational command in configuration mode You can run an operational command without leaving configuration mode by using the run command, as in the following example. ``` vyatta@R1# run show system processes summary 20:45:46 up 1 day, 10:16, 3 users, load average: 0.00, 0.00, 0.00 vyatta@R1# ``` ## Basic commands for using the CLI | • | copy file <from-file> to <to-file></to-file></from-file> | 27 | |---|--|----| | | delete file <file></file> | | | | exit (operational) | | | | run | | | | show file office | 33 | ## copy file <from-file> to <to-file> Copies a file or directory. ### **Syntax** copy file from-file to to-file ### **Parameters** from-file The source file or directory. to-file The destination file or directory. ### Modes Operational mode. ### **Usage Guidelines** This command is optimized for configuration files and directories in that command completion refers to the /config directory of all known system images. For example, running://config/indicates the /config directory of the currently running system, and test-image1://config/indicates the /config directory of an image called test-image1. If needed, however, any other location within the file system can be specified. A file or directory can be copied on the local machine. Only a file can be copied to and from the remote machine by using FTP, SCP, or TFTP. #### NOTE Use this command with caution because its effects are not reversible. The following table shows how to specify different types of file locations. **TABLE 7** Specifying file locations | Location | Specification | |----------------|---| | FTP server | ftp://user:passwd@host/file where user is the username on the host, passwd is the password associated with the username, host is the host name or IP address of the FTP server, and file is the file, including the path. If you do not specify user and passwd, the system prompts you for them. | | SCP server | scp://user:passwd@host/file where user is the username on the host, passwd is the password associated with the username, host is the host name or IP address of the SCP server, and file is the file, including the path. If you do not specify user and passwd, the system prompts you for them. | | TFTP server | tftp://host/file where host is the host name or IP address of the TFTP server, and file is the file, including the path relative to the TFTP root directory. The running (active) configuration running://path/file where path is the path to the file, and file is the file. | | A binary image | image-name://path/file where image-name is the name of a binary image, path is the path to the file, and file is the file. | ## **Examples** The following example shows how to copy the contents of the /config/x509/ directory on the currently running system to the /config/x509/ directory of the TEST-IMAGE-1 image. ``` \verb|vyatta@vyatta:~\$| copy file running://config/auth/x509/ to TEST-IMAGE-1://config/auth/x509/ | TEST-IM sending incremental file list created directory /live/image/boot/TEST-IMAGE-1/live-rw/config/x509 ./ ca.crt 1265 100% 0.00kB/s 0:00:00 (xfer#1, to-check=5/7) crl.pem 568 100% 554.69kB/s 0:00:00 (xfer#2, to-check=4/7) kev 5626 100% 5.37MB/s 0:00:00 (xfer#3, to-check=3/7) straylight-r1.crt 3632 100% 3.46MB/s 0:00:00 (xfer#4, to-check=2/7) straylight-r1.key 891 100% 870.12kB/s 0:00:00 (xfer#5, to-check=1/7) test.key 401 100% 391.60kB/s 0:00:00 (xfer#6, to-check=0/7) sent 12808 bytes received 129 bytes 25874.00 bytes/sec total size is 12383 speedup is 0.96 vyatta@vyatta:~$ ``` ## delete file <file> Deletes a file or directory. ### **Syntax** delete file file ### **Parameters** file A file or directory to delete, including the path. ### Modes Operational mode. ### **Usage Guidelines** Use this command to delete a file or directory. This command is optimized for configuration files and directories in that command completion refers to the /config directory of all known system images. For example, running://config/indicates the /config directory of the currently running system, and test-image1://config/indicates the /config directory of an image called test-image1. If needed, however, any other location within the file system can be specified. ### NOTE Use this command with caution because its effects are not reversible. ## **Examples** This example shows how to delete the /config/user-data/xxx file from the currently running system. ``` vyatta@vyatta:~$ delete file running://config/user-data/xxx Do you want to erase the running://config/user-data/xxx file? (Y/N): y File erased vyatta@vyatta:~$ ``` ## exit (operational) Exits the system. ## **Syntax** exit ### Modes Operational mode. ## **Usage Guidelines** Use this command in operational mode to exit the system. ### run Runs an operational command without leaving configuration mode. ## **Syntax** run command ### **Parameters** command An operational command to be run. ### Modes Configuration mode. ## Usage Guidelines This example shows how to run the show date command (an operational command) from configuration mode. vyatta@vyatta# run show date Sun Dec 16 23:34:06 GMT 2007 vyatta@vyatta# ## show file <file> Displays information about a file or directory. ### **Syntax** show file file ### **Parameters** file A file or directory about which to display information. ### Modes Operational mode. ### **Usage Guidelines** Use this command to display information about a file or directory. This command is optimized for configuration files and directories in that command completion refers to the <code>/config</code> directory of all known system images. For example, <code>running://config/</code> indicates the <code>/config</code> directory of the currently running system, and <code>test-image1://config/</code> indicates the <code>/config</code> directory of an image called <code>test-image1</code>. If needed, however, any other location within the file system can be specified. Different information is displayed for various file types, as shown in the following table. TABLE 8 Types of information displayed for various file types | File Type | Information Displayed | |------------------------------|--| | Directory | Directory contents | | Text file | Information about the file and file contents | | Packet capture file (*.pcap) | Information about the file and file contents in the form of a packet capture from tshark | | Binary file | Information about the file and file contents in the form of a hexadecimal dump | ## **Examples** The following example shows how to display the contents of the /config directory on the currently running system. ``` vyatta@vyatta:~$ show file running://config ########### DIRECTORY LISTING ########### total 36K drwxrwsr-x 1 root 4.0K Mar 21 17:21 archive/ drwxrwsr-x 1 root 4.0K Mar 21 07:56 auth/ drwxrwsr-x 1 root 4.0K Mar 21 07:56 scripts/ drwxrwsr-x 1 root 4.0K Mar 21 07:56 support/ drwxrwsr-x 1 root 4.0K Mar 21 07:57 url-filtering/ drwxrwsr-x 1 root 4.0K Mar 21 07:56 user-data/ -rwxrwxr-x 1 root 1.9K Mar 21 17:21 config.boot -rwxrwxr-x 1 root 4.2K Mar 20 17:14 webgui2_default_config.boot vyatta@vyatta:~$ ``` ### **Examples** This example shows how to display partial contents of the /tmp/test1.pcap file on the currently running system. ``` vyatta@vyatta:~$ show file running://tmp/test1.pcap ######### FILE INFO ########## Binary File: Permissions: -rw----- Owner: root. Size: 35K Modified: Apr 24 19:41 Description: tcpdump capture file (little-endian) - version 2.4 (dataplane, capture length 65535) ######### FILE DATA ######### 1 0.000000 192.168.56.101 -> 192.168.56.1 SSH Encrypted response packet len=128 2 0.000155 192.168.56.1 -> 192.168.56.101 TCP 54566 > ssh [ACK] Seq=1 Ack=129 Win=1002 Len=0 TSV=186250939 TSER=21591709 0.259966 192.168.56.101 -> 192.168.56.1 SSH Encrypted response packet len=48 4 0.260216 192.168.56.1 -> 192.168.56.101 TCP 54566 > ssh [ACK] Seg=1 Ack=177 Win=1002 Len=0 TSV=186251199 TSER=21591735 ``` ### **Examples** This example shows how to display partial contents of the /config/r1.tar file on the currently running system. ``` vyatta@vyatta:~$ show file running://config/r1.tar File Name: running://config/rl.tar Binary File: Permissions: -rwxrwxr-x v , . 20K Owner: vvatta Modified: Feb 6 23:09 Description: POSIX tar archive (GNU) ######### FILE DATA ########## 00000000 72 31 2f 00 00 00 00 00 00 00 00 00 00 00 00 00 |r1/.... 00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |..... . . . ``` ## Working with Configuration | • | Configuration basics | 3 | Ę | |---|------------------------------------|---|---| | • | Changing configuration information | 3 | Ć | | • | Managing system configuration. | 4 | 1 | This chapter describes utilities for configuration management on the Brocade vRouter. ## **Configuration basics** This section presents the following topics: - Terminology on page 35 - Location of configuration information on page 36 - Configuration hierarchy on page 37 - Entering and exiting configuration mode on page 37 - Navigating in configuration mode on page 37 - Viewing configuration on page 38 - Viewing configuration from operational mode on page 39 ### **Terminology** Several versions of system configuration information exist on the system at a given time. - · Active or "running" configuration. This configuration is the one that is loaded and being used by the
system. - Working configuration. When you enter configuration mode and make configuration changes, changes remain in working configuration until you commit the changes, at which time the configuration becomes active or running. - Saved or "boot" configuration. If you save configuration (by using the save command), it is saved to the config.boot file in the /config directory of the local system. When you reboot, the system reads and loads the configuration from config.boot. Figure 2 shows configuration states possible in the Vyatta CLI. FIGURE 2 CLI configuration states ### Location of configuration information Boot configuration is stored in the config.boot file in the /config directory. In addition to the config.boot file, the /config directory has a number of subdirectories, each with a specific function, as follows: - archive. This directory stores archived versions of configuration. - auth. This directory stores security certificates referenced in the configuration tree; for example, OpenVPN certificates, IPsec certificates, and RSA/IPsec keys. You can add additional structure to this directory—for example, to store X.509 certificates, you can add an /auth/x509 directory. To ensure smooth upgrades, and to preserve this kind of information across upgrades, make certain that any certificate file you reference within a configuration node is stored here. - scripts. This directory stores scripts referenced from within the configuration nodes; for example, VRRP transition scripts. To ensure smooth upgrades, and to preserve this kind of information across upgrades, make certain that any script file you reference within a configuration node is stored here. - support. This directory stores system information generated by the show tech-support save command. - url-filtering. This directory stores the URL-filtering database and files on which web proxy and URL filtering depend. - user-data. This directory stores user-generated scripts and user data. To ensure smooth upgrades, make certain that any user data that needs to be preserved across upgrades is stored here. You can freely use the user-data subdirectory to store any of your own information you want to preserve across system upgrades. The other subdirectories, including auth and scripts, contain information on which system operation relies, and you should make changes to them only with great care. #### Configuration hierarchy Brocade vRouter configuration is organized as a hierarchy of configuration statements, with a hierarchical tree of nodes similar to the directory structure on a UNIX file system. Three kinds of statements exist: - · Configuration nodes. These nodes can be either: - Single nodes (just one instance can be created; for example, the rip protocol node) - Multinodes (more than one instance can be created; for example, address nodes) - · Attribute statements. These statements set the values or characteristics for parameters within a node. From a system perspective, a configuration node is different from a simple configuration attribute statement. A configuration attribute statement takes the form *attribute value*, as in the following example. ``` protocol-version v2 ``` A configuration node always has an enclosing pair of braces, which may be empty, as in the following example, ``` service { https{} } ``` or nonempty, as in the following example. ``` ssh { allow-root } ``` ### Entering and exiting configuration mode To enter configuration mode, use the **configure** command in operational mode. ``` Entering configuration mode vyatta@vyatta:~$ configure vyatta@vyatta# ``` Once in configuration mode, the command prompt changes from this ``` {\tt user@host:} \, {\sim} \, \$ to this: ``` user@host# To exit configuration mode, use the exit command from the top level of configuration. If you have changed configuration, you must either commit changes by using the **commit** command or discard them by using the **exit discard** command. ### Navigating in configuration mode You can tell where you are in the configuration tree by the [edit] prompt, which is context sensitive. At the top of the configuration tree, the [edit] prompt looks like this: ``` [edit] ``` When you are in another location, the edit prompt indicates your location by showing the node hierarchy in order, like this: ``` [edit protocols bgp 65537] ``` Table 9 shows the commands for navigating in configuration mode. TABLE 9 Commands for navigating in configuration mode | Command | Result | |------------------|---| | edit config-node | Navigates to the specified configuration node for editing. | | | The node must already be created the configuration committed. | | exit | Jumps to the top of the configuration tree. | | | If you are already at the top of the configuration tree, exit from configuration mode and return to operational mode. | | top | Jumps to the top of the configuration tree. | | ир | Moves up one node in the configuration tree. | Using the **edit** command lets you navigate to the part of the hierarchy in which you are interested and run commands relative to your location. This navigation saves typing if you need to work on a particular part of the configuration hierarchy. The following example shows how to navigate to the configuration node for the dpOp1p3 data plane interface. After you have navigated to the node, you can show configuration directly without specifying the full path. ``` vyatta@R1# edit interfaces dataplane dp0p1p2 [edit interfaces dataplane dp0p1p2] vyatta@R1# show hw-id 00:13:46:e6:f6:87 [edit interfaces dataplane dp0p1p3] vyatta@R1# ``` ### Viewing configuration Use the **show** command in configuration mode to display configuration. You can restrict the display to a particular node by specifying the path to the node. The following example shows how to display configuration for all configured interfaces. ``` vyatta@R1# show interfaces dataplane dp0p1p1 { address 10.1.0.62/24 hw-id 00:40:63:e2:e4:00 } dataplane dp0p1p2 { address 172.16.234.23/25 hw-id 00:40:63:e2:e3:dd vrrp { virtual-address 172.16.99.99 vrrp-group 20 } } loopback lo { } } ``` The following example shows how to display configuration for only the dp0p1p1 data plane interface. ``` vyatta@R1# show interfaces dataplane dp0p1p1 address 10.1.0.62/24 hw-id 00:40:63:e2:e4:00 ``` When the display is too large for one screen, the display stops after one screen is shown. In this case, press one of the following keys to perform the indicated action. <Enter> to display the next line - Space> to display the next screen - <g> to interrupt the display and return to the command prompt ## Viewing configuration from operational mode You can display configuration information without leaving operational mode by using the **show configuration** command, as in the following example. ``` vyatta@R1:~$ show configuration interfaces { dataplane dp0p1p1 { address 192.168.1.77/24 hw-id 00:0c:29:68:b3:9f } dataplane dp0p1p2 { hw-id 00:0c:29:68:b3:a9 } loopback lo { } } service { ssh { } } ``` # Changing configuration information This section presents the following topics: - Adding or modifying configuration on page 39 - Deleting configuration on page 40 - Committing configuration changes on page 40 - Discarding configuration changes on page 41 ### Adding or modifying configuration Add new configuration by creating a configuration node by using the **set** command in configuration mode. Modify existing configuration by using the **set** command in configuration mode, as in the following example. ``` vyatta@R1# set interfaces dataplane dp0p1p3 address 192.168.1.100/24 vyatta@R1# ``` Then use the **show** command to see the change. ``` vyatta@R1# show interfaces dataplane dp0p1p3 +address 192.168.1.100/24 hw-id 00:13:46:e6:f6:87 vyatta@R1# ``` Notice the plus sign (+) in front of the new statement. This + shows that this statement has been added to the configuration, but the change is not yet committed. The change does not take effect until configuration is committed by using the **commit** command. Another option is to use the compare command to see the change. ``` vyatta@R1# compare [edit interfaces dataplane dp0p1p3] +address 192.168.1.100/24 vyatta@R1# ``` You can change configuration from the root of the configuration tree or use the **edit** command to navigate to the part of the tree where you want to modify or add configuration. The configuration tree is nearly empty when you first start up, except for a few automatically configured nodes. You must create a node for any functionality you want to configure on the system. When a node is created, any default values that exist for its attributes are applied to the node. ### **Deleting configuration** Use the **delete** command to delete a configuration statement or a complete configuration node, as in the following example. ``` vyatta@R1# delete interfaces dataplane dp0p1p2 address 192.168.1.100/24 ``` Then use the **show** command to see the change. ``` vyatta@R1# show interfaces dataplane dp0p1p3 -address 192.168.1.100/24 hw-id 00:13:46:e6:f6:87 vvatta@R1# ``` Notice the minus sign (-) in front of the deleted statement. This - shows that this statement has been deleted from the configuration, but the change is not yet committed. The change does not take effect until configuration is committed by using the **commit** command. Another option is to use the compare command to see the change. ``` vyatta@R1# compare [edit interfaces dataplane dp0p1p3] -address 192.168.1.100/24 vyatta@R1# ``` Some configuration nodes are mandatory; these nodes cannot be deleted. Some configuration nodes are mandatory but have default values; if you delete one of these nodes, the default value is restored. #### Committing configuration changes In the Brocade vRouter, configuration changes do not take effect until you commit them by using the commit command. ``` vyatta@R1#
commit ``` Lines that contain uncommitted changes are flagged as follows: - > to indicate the line has been modified - + to indicate the line has been added - · to indicate the line has been deleted After you commit the changes, the flag disappears, as in the following example. ``` vyatta@R1# show interfaces dataplane dp0p1p3 -address 192.168.1.100/24 hw-id 00:13:46:e6:f6:87 vyatta@R1# commit vyatta@R1# show interfaces dataplane dp0p1p3 hw-id 00:13:46:e6:f6:87 vyatta@R1# ``` #### NOTE When you commit your changes in the configuration mode, there may be daemon-specific start and stop messages that are displayed. These messages are dependent on the configuration being changed. #### **CAUTION** If your login user is not a member of the login user group "secrets" and you save a configuration either through the REST API or use the save command, the encrypted passwords in the configuration file are replaced with the """ placeholder. If you load this configuration, the replaced password fields trigger validation errors because the placeholder does not match the format for an encrypted password. Do not commit this configuration. If you ignore the error message and perform a commit with this invalid configuration, the passwords are deleted. #### Discarding configuration changes You cannot exit from configuration mode with uncommitted configuration changes; you must either commit the changes or discard them. If you do not want to commit the changes, you can discard them by using the **exit discard** command. ``` vyatta@R1# exit Cannot exit: configuration modified. Use 'exit discard' to discard the changes and exit. vyatta@R1# exit discard vyatta@R1:~$ ``` # Managing system configuration This section presents the following topics: - Saving the running configuration on page 41 - Loading a saved configuration on page 42 - Booting from a saved configuration file on page 43 - Merging saved and running configurations on page 43 - Archiving configuration versions on commit on page 43 - Comparing configuration versions on page 43 - Cloning configuration across system images on page 44 - Performing file operations on configuration files and directories on page 44 ### Saving the running configuration Save the running configuration by using the **save** command in configuration mode. By default, configuration is saved to the config boot file in the /config configuration directory. ``` vyatta@R1# save Saving configuration to '/config/config.boot'... Done vyatta@R1# ``` You can save configuration to a different location by specifying a different file name. ``` vyatta#R1 save testconfig Saving configuration to '/config/testconfig'... Done vyatta@R1# ``` You can also save a configuration file to a location path other than the standard configuration directory by specifying a different path. You can save to a hard drive, compact Flash, or USB device. Note that the **save** command writes only committed changes. If you try to save uncommitted changes, the system warns you that it is saving only the committed changes. #### **CAUTION** If your login user is not a member of the login user group "secrets" and you save a configuration either through the REST API or use the save command, the encrypted passwords in the configuration file are replaced with the """ placeholder. If you load this configuration, the replaced password fields trigger validation errors because the placeholder does not match the format for an encrypted password. Do not commit this configuration. If you ignore the error message and perform a commit with this invalid configuration, the passwords are deleted. Table 10 shows how to specify the syntax for files from different file locations when you save files in configuration mode. **TABLE 10** Specifying locations for the configuration file | Location | Specification | |------------------|---| | An absolute path | Use standard UNIX file specification. | | A relative path | Specify the path name relative to the location configured for the config-
directory parameter of the rtrmgr configuration node. | | TFTP server | Use the following syntax for file-name: | | | tftp://ip-address /config-file | | | where <i>ip-address</i> is the IP address of the TFTP server, and <i>config-file</i> is the configuration file, including the path relative to the TFTP root directory. | | FTP server | Use the following syntax for file-name: | | | ftp://ip-address/config-file | | | where <i>ip-address</i> is the IP address of the FTP server, and <i>config-file</i> is the configuration file, including the path. | | | If you use FTP, you are prompted for a user name and password. | | HTTP server | Use the following syntax for file-name: | | | http://ip-address/config-file | | | where <i>ip-address</i> is the IP address of the HTTP server, and <i>config-file</i> is the configuration file, including the path. | ### Loading a saved configuration To load a previously saved configuration, use the **load** command in configuration mode. By default, the system reads the file from the / config configuration directory. ``` vyatta@R1# load testconfig Loading config file /config/testconfig... Load complete. Use 'commit' to make changes active. [edit] vyatta@R1# ``` A loaded configuration then needs to be committed to become the active configuration. #### **CAUTION** If your login user is not a member of the login user group "secrets" and you save a configuration either through the REST API or use the save command, the encrypted passwords in the configuration file are replaced with the """ placeholder. If you load this configuration, the replaced password fields trigger validation errors because the placeholder does not match the format for an encrypted password. Do not commit this configuration. If you ignore the error message and perform a commit with this invalid configuration, the passwords are deleted. ### Booting from a saved configuration file If you want the file to be automatically read the next time the system starts, you must save it as the config.boot file in the default / config directory. # Merging saved and running configurations You can merge a saved configuration with the active (running) configuration by using the **merge** command. An example is provided in merge on page 58. The merger adds new configuration entries and applies any modifications to existing active entries to produce a new working configuration. This merged configuration must be committed before it becomes the active configuration. Configuration can be loaded from a hard disk (including a Flash disk or USB device), a TFTP server, an FTP server, an SCP server, or an HTTP server. Note that you cannot load an empty configuration file; the configuration file must contain at least one configuration node. ### Rolling back to a previous version You can roll back system configuration to any archived version by using the rollback command. To see a list of available configuration file revisions, use the show system commit command in operational mode. ## Archiving configuration versions on commit The system automatically archives the configuration whenever you commit a configuration change. The new, committed configuration version is saved to the config.boot file in the /config directory. The old config.boot file is saved to the /config/archive directory under the name config.boot. timestamp, where timestamp is the time the file was saved in the form of YYYY-MM-DD-hhmmss. By default, the system maintains 20 versions of configuration in the archive. You can change the number of versions maintained in the archive by using the **system config-management commit-revisions** command. You can also direct the system to save configuration versions to a remote location whenever configuration is committed by using the system config-management commit-archive command. FTP, SCP, and TFTP destinations are supported. # Comparing configuration versions You can compare two versions of configuration by using the **show system commit** and **compare** commands. Table 11 summarizes options for comparing configuration versions. TABLE 11 Commands for comparing configuration versions | Use this command | To see the | |------------------------|------------| | Configuration Commands | | TABLE 11 Commands for comparing configuration versions (continued) | Use this command | To see the | | |---|--|--| | compare | Difference between the working and active configuration. | | | compare n | Difference between the working configuration and revision <i>n</i> . | | | compare n m | Difference between revision n and revision m . | | | Operational Commands | | | | show system commit | Summary of commits. | | | show system commit file n | Full configuration at revision <i>n</i> . | | | show system commit file n compare m | Difference between revision n and revision m . | | | show system commit diff n | What changed in a given commit (between revision n and revision $n+1$). This command is equivalent to the show system file n compare $n+1$ command. | | ### Cloning configuration across system images You can copy the /config directory from one image to another by using the clone system config command. This command copies the /config directory from the running configuration (or another specified configuration) to the /config directory of another specified image. You should use this command with caution because it overwrites the entire /config directory of the destination image and its effects are not reversible. ### Performing file operations on configuration files and directories The Brocade vRouter supports several general
file-operation commands that are optimized for working with image and configuration files. They are the **show file**, **copy file**, and **delete file** commands. These commands are documented in Using the CLI on page 17. These commands are optimized for configuration files and directories because command completion refers to the <code>/config</code> directory of all known system images. For example, <code>running://config/</code> indicates the <code>/config</code> directory of the currently running system, and <code>test-image1://config/</code> indicates the <code>/config</code> directory of an image called test-image1. If needed, however, any other location within the file system can be specified. # **Configuration Commands** | • | clone system config <dest-image-name></dest-image-name> | 46 | |---|---|-----| | • | commit | | | • | compare | 50 | | • | configure | | | • | delete | 52 | | • | discard | 53 | | • | edit | 54 | | | exit (configuration) | 55 | | | load | | | | merge | | | | monitor command <show-command></show-command> | | | | rollback | | | | save | | | | set | | | | show | | | | show configuration (operational) | | | | show system commit | | | | show system commit diff <rev-num></rev-num> | | | | show system commit file <rev-num></rev-num> | | | | system config-management commit-archive location < location > | | | | system config-management commit-revisions <revisions></revisions> | | | | top | | | | up | | | 1 | up | / / | The following commands are optimized for working with files across images. | Related Commands Documented Elsewhere | | |--|---| | copy file <from-file> to <to-file></to-file></from-file> | These commands allow you to perform general file management tasks, | | delete file <file></file> | but use image-relative completion to make it easy to work with files in different images. | | show file <file></file> | | | show log image <image-name></image-name> | This command allows you to view log files across multiple images. | # clone system config <dest-image-name> Clones the configuration directory of one image to another image. ### **Syntax** clone system config dest-image-name [from source-image-name] #### Command Default The configuration directory is copied from the running system. #### **Parameters** dest-image-name The name of the image to which the configuration directory is copied. source-image-name Optional. The name of the image from which the configuration directory is copied. #### Modes Operational mode ### **Usage Guidelines** Use this command to copy the configuration (/config) directory from one image to another. By default, the source image is the currently running image. This command is equivalent to the copy file running://config/ to dest-image-name://config/ command. #### NOTE Use this command with caution because it overwrites the entire /config directory of the destination image and its effects are not reversible. Command completion displays all valid system images. It is not possible to clone the directory to the running image or the disk-installation image. ### **Examples** The following example shows how to copy the contents of the /config directory of the currently running system to the /config directory of the TEST-IMAGE-1 image. ``` vyatta@vyatta:~$ clone system config TEST-IMAGE-1 WARNING: This is a destructive copy of the /config directories This will erase all data in the TEST-IMAGE-1://config directory This data severity level of replaced with the data from running:// Do you wish to continue? (Y/N): y config/ config/.vyatta_config ``` The following example shows how to copy the contents of the /config directory of the TEST-IMAGE-2 system to the /config directory of the TEST-IMAGE-1 image. ``` vyatta@vyatta:~\ clone system config TEST-IMAGE-1 from TEST-IMAGE-2 WARNING: This is a destructive copy of the /config directories This will erase all data in the TEST-IMAGE-1://config directory This data severity level of replaced with the data from TEST-IMAGE-2 Do you wish to continue? (Y/N): y sending incremental file list config/ config/.vyatta_config ... ``` ### commit Applies uncommitted configuration changes. ### **Syntax** commit comment comment-text #### **Parameters** comment-text Comment text describes the reason for commit. #### Modes Configuration mode ### **Usage Guidelines** Use this command to apply uncommitted changes to configuration. When you add configuration to the system, modify existing configuration, or delete configuration from the system, the changes you make must be committed before they take effect. To commit changes, use the **commit** command. If you try to exit or quit from configuration mode while there are still uncommitted configuration changes, the system gives you a warning. You cannot exit from configuration mode until you either commit the changes by entering the **commit** command or discard the changes by using the **discard** command. Until a configuration change is committed, the system marks the change when displaying the information. #### CAUTION If your login user is not a member of the login user group "secrets" and you save a configuration either through the REST API or use the save command, the encrypted passwords in the configuration file are replaced with the """ placeholder. If you load this configuration, the replaced password fields trigger validation errors because the placeholder does not match the format for an encrypted password. Do not commit this configuration. If you ignore the error message and perform a commit with this invalid configuration, the passwords are deleted. Committing changes can take time, depending on the complexity of the configuration and how busy the system is. Be prepared to wait for several seconds for the system to complete committing the changes. If two or more users are logged in to the system in configuration mode and one user changes the configuration, the other user or users receive a warning. #### NOTE Commits are logged at logging levels info and debug. # **Examples** The following example shows an uncommitted deletion that is then committed. In the example, notice that the uncommitted deletion is flagged with a minus sign (-), which disappears after the change is committed. vyatta@vyatta# show interfaces dataplane dp0p1p2 -address 192.168.1.100/24 hw-id 00:13:46:e6:f6:87 vyatta@vyatta# commit vyatta@vyatta# show interfaces dataplane dp0p1p3 hw-id 00:13:46:e6:f6:87 # compare Compares two sets of configuration information. ### **Syntax** ``` compare [[rev-num1] rev-num] ``` #### Command Default When used with no option, the working and active (running) configuration are compared. When only one revision number is specified, the system compares the working configuration to the specified revision. #### **Parameters** ``` rev-num ``` A configuration file revision to be compared. rev-num1 Another configuration file revision to be compared. #### Modes Configuration mode ## **Usage Guidelines** Use this command to compare two configurations while in configuration mode. You can see the list of configuration file revisions by using show system commit on page 69 in operational mode (use **run show system commit** in configuration mode). ### **Examples** The following example shows the working and active configurations being compared on R1. ``` vyatta@R1# compare [edit system] +options { + reboot-on-panic true +} [edit] vyatta@R1# ``` # configure Enters configuration mode. ### **Syntax** configure #### Modes Operational mode # **Usage Guidelines** Use this command to enter configuration mode from operational mode. In configuration mode, you can add, delete, and modify configuration information. When you are in configuration mode, the command prompt changes from ~\$ to # to mark the change in command mode. ### **Examples** The following example shows the system response to entering configuration mode. In this example, notice that the command prompt changes from ~\$ to # when configuration mode is entered. vyatta@vyatta:~\$ configure vyatta@vyatta# ### delete Deletes a configuration node. ### **Syntax** delete config-node #### **Parameters** config-node A configuration node to be deleted, including the full path, separated by spaces, through the configuration hierarchy to the node. #### Modes Configuration mode ### **Usage Guidelines** Use this command to delete a part of configuration. To do this, you delete the appropriate subnode of a configuration node. If you show configuration before it is committed, you see the deleted statement flagged with a minus sign (-); the statement disappears after the configuration change is committed. Some configuration nodes and statements are mandatory; these nodes or statements cannot be deleted. Some configuration statements are mandatory but have default values; if you delete one of these statements, the default value is restored. ### **Examples** The following example shows how to delete a DNS server from system configuration. vyatta@vyatta# show system name-server <Tab> 10.0.0.30 10.0.0.31 10.0.0.32 vyatta@vyatta# delete system name-server 10.0.0.32 vyatta@vyatta# show system name-server <Tab> 10.0.0.30 10.0.0.31 ## discard Discards any uncommitted changes to configuration. ### **Syntax** discard #### Modes Configuration mode # **Usage Guidelines** Use this command to discard all uncommitted changes to configuration. ### **Examples** The following example shows an uncommitted deletion and an uncommitted addition that are then discarded. In the example, notice that the uncommitted deletion is flagged with a minus sign "-" and the uncommitted addition is flagged with a plus sign (+), which disappear after the **discard** command is entered. vyatta@vyatta# show interfaces dataplane dp0p1p3 -address 192.168.1.100/24 +address 192.168.1.101/24
hw-id 00:13:46:e6:f6:87 vyatta@vyatta# discard Changes have been discarded vyatta@vyatta# show interfaces dataplane dp0p1p3 address 192.168.1.100/24 hw-id: 00:13:46:e6:f6:87 ### edit Navigates to a subnode in the configuration tree for editing. ### **Syntax** edit path #### **Parameters** path The path to a node of the configuration tree you want to edit. #### Modes Configuration mode ### **Usage Guidelines** Use this command to navigate to a specific configuration subnode for editing. The [edit] prompt changes dynamically to mark your place in the configuration tree. Once at that location, any actions you take such as showing, creating, or deleting configuration are relative to your location in the tree. You can navigate only to a configuration node that has already been created and committed. Configuration nodes are created and modified by using set on page 64 and are committed by using commit on page 48. ### **Examples** In the following example, the user begins at the top of the configuration tree in configuration mode and navigates to the system login configuration node. Once at the system login node, a **show** command displays just the contents of the login node. In the example, notice that the prompt changes to [edit system login] to mark the location in the configuration tree. ``` vyatta@vyatta# edit system login [edit system login] vyatta@vyatta# show user mike { authentication { encrypted-password 1hccJixQo$V6sL5hDl6CUmVZvaHlvTf0 plaintext-password "" } } user vyatta { authentication { encrypted-password $1$$Ht7gBYnxI1xCdO/JOnodh. } } [edit system login] ``` # exit (configuration) Navigates up one level of usage. ### **Syntax** exit [discard] #### **Parameters** discard Exits configuration mode to operational mode and discards all uncommitted changes. #### Modes Configuration mode. Operational mode ### **Usage Guidelines** Use this command from a subnode in the configuration tree to navigate to the top of the configuration tree. Use this command from the top of the configuration tree to exit from configuration mode to operational mode. If you try to exit from configuration mode while there are still uncommitted configuration changes, the system gives you a warning. You cannot exit from configuration mode until you either commit the changes by entering the **commit** command or discard the changes by using the **discard** option. This option applies only to this usage. Use this command in operational mode to exit the system. # load Loads from a file a configuration that was previously saved. ### **Syntax** load file-name #### **Parameters** file-name The name of a configuration file, including the full path to its location. #### Modes Configuration mode ### **Usage Guidelines** Use this command to load from a file a configuration that was previously saved. The loaded configuration becomes the working configuration and must be committed before it becomes the active configuration. #### **CAUTION** If your login user is not a member of the login user group "secrets" and you save a configuration either through the REST API or use the save command, the encrypted passwords in the configuration file are replaced with the """ placeholder. If you load this configuration, the replaced password fields trigger validation errors because the placeholder does not match the format for an encrypted password. Do not commit this configuration. If you ignore the error message and perform a commit with this invalid configuration, the passwords are deleted. Configuration can be loaded from a hard disk (including a Flash disk or USB device), a TFTP server, an FTP server, an SCP server, or an HTTP server. Note that you cannot load an empty configuration file; the configuration file must contain at least one configuration node. In addition, an error is reported if an invalid configuration file is loaded. The default configuration directory is /config. The following table shows how to specify the syntax for files from different file locations. TABLE 12 Specifying locations for the configuration file | Location | Specification | |------------------|--| | An absolute path | Use standard UNIX file specification. | | A relative path | Specify the path name relative to the default configuration directory. | | FTP server | Use the following syntax for file-name: | | | ftp://user:passwd@host /config-file | | | where <i>user</i> is the username on the host, <i>passwd</i> is the password associated with the username, <i>host</i> is the host name or IP address of the FTP server, and <i>config-file</i> is the configuration file, including the path. | TABLE 12 Specifying locations for the configuration file (continued) | Location | Specification | |-------------|--| | | If you do not specify <i>user</i> and <i>passwd</i> , you are prompted for them. | | SCP server | Use the following syntax for file-name: | | | scp://user:passwd@host /config-file | | | where <i>user</i> is the username on the host, <i>passwd</i> is the password associated with the username, <i>host</i> is the host name or IP address of the SCP server, and <i>config-file</i> is the configuration file, including the path. | | | If you do not specify <i>user</i> and <i>passwa</i> , you are prompted for them. | | HTTP server | Use the following syntax for file-name: | | | http://host /config-file | | | where <i>host</i> is the host name or IP address of the HTTP server, and <i>config-file</i> is the configuration file, including the path. | | TFTP server | Use the following syntax for file-name: | | | tftp://host /config-file | | | where <i>host</i> is the host name or IP address of the TFTP server, and <i>config-file</i> is the configuration file, including the path relative to the TFTP root directory. | # **Examples** The following example shows how to load the testconfig file from the default configuration directory. ``` vyatta@vyatta# load testconfig Loading config file /config/testconfig... Load complete. Use 'commit' to make changes active. [edit] vyatta@vyatta# ``` ## merge Merges a saved configuration with the active (running) configuration. ### **Syntax** merge file-name #### **Parameters** file-name The name of a configuration file, including the full path to its location. #### Modes Configuration mode ### **Usage Guidelines** Use this command to load from a file a configuration that was previously saved and merge it with the active (running) configuration. The merger adds new configuration entries and applies any modifications to existing active entries to produce a new working configuration. This configuration must be committed before it becomes the active configuration. Configuration can be loaded from a hard disk (including a Flash disk or USB device), a TFTP server, an FTP server, an SCP server, or an HTTP server. Note that you cannot load an empty configuration file; the configuration file must contain at least one configuration node. The default configuration directory is /config. The following table shows how to specify the syntax for files from different file locations. TABLE 13 Specifying locations for the configuration file | Location | Specification | |------------------|--| | An absolute path | Use standard UNIX file specification. | | A relative path | Specify the path name relative to the default configuration directory. | | FTP server | Use the following syntax for file-name: ftp://user:passwd@host / config-file | | | where <i>user</i> is the username on the host, <i>passwd</i> is the password associated with the username, <i>host</i> is the host name or IP address of the FTP server, and <i>config-file</i> is the configuration file, including the path. | | | If you do not specify <i>user</i> and <i>passwd</i> , you are prompted for them. | | SCP server | Use the following syntax for file-name: | | | scp://user:passwd@host /config-file | | | where <i>user</i> is the username on the host, <i>passwd</i> is the password associated with the username, <i>host</i> is the host name or IP address of the SCP server, and <i>config-file</i> is the configuration file, including the path. | **TABLE 13** Specifying locations for the configuration file (continued) | Location | Specification | |-------------|--| | | If you do not specify <i>user</i> and <i>passwd</i> , you are prompted for them. | | HTTP server | Use the following syntax for file-name: | | | http://host /config-file | | | where <i>host</i> is the host name or IP address of the HTTP server, and <i>config-file</i> is the configuration file, including the path. | | TFTP server | Use the following syntax for file-name: | | | tftp://host /config-file | | | where <i>host</i> is the host name or IP address of the TFTP server, and <i>config-file</i> is the configuration file, including the path relative to the TFTP root directory. | # **Examples** The following example shows how to load the testconfig configuration file from the default configuration directory and merge it with the active configuration. The new working configuration must be committed before it becomes active. After the merger, you must save the new file if you
want to be able to load it again. If you want the system to load the merged configuration when it boots, you must save the file to /config/config.boot. ``` vyatta@vyatta# merge testconfig Loading config file /config/testconfig... Merge complete. Use 'commit' to make changes active. [edit] vyatta@vyatta# ``` # monitor command <show-command> Monitors the command output of a show command. # **Syntax** monitor command show-command run monitor command show-command #### **Parameters** show-command Any **show** command to be monitored. The **show** command must be enclosed in quotation marks. #### Modes Operational mode. Configuration mode # **Usage Guidelines** Use this command to display the output of a **show** command. The session stays open and display information is refreshed every two seconds. Use the **run** version of this command in configuration mode. # rollback Allows you to roll back configuration to a specific revision. ### **Syntax** rollback rev-num comment comment-text #### **Parameters** rev-num The configuration revision to roll back to. comment-text Comment text describes the reason for rollback. #### Modes Configuration mode ### **Usage Guidelines** Use this command to roll back to the configuration revision specified. #### NOTE For the roll back to take effect, the system must be rebooted after the configuration is rolled back. A prompt will ask whether or not to reboot the system once the command completes. You can see the list of configuration file revisions using the **show system commit** operational mode command (use **run show system commit** from configuration mode). ### **Examples** This example allows you to roll back existing configuration to the specified revision of the router configuration. ``` vyatta@vyatta# rollback Possible completions: <N> Rollback to revision N 2016-09-13 17:32:07 vyatta 2016-09-13 17:19:06 vyatta 2016-09-13 17:09:37 vyatta 2016-09-13 17:07:04 configd 3 2016-09-13 16:43:11 configd [edit] vyatta@vyatta# rollback 0 Proceed with reboot? [confirm][y] vyatta@vyatta# save my-config Saving configuration to '/config/my-config'... Done vyatta@vyatta# ``` #### save Saves the running configuration to a file. # **Syntax** save file-name #### **Parameters** file-name The name of a file in which the information is to be saved, including the path to the file. #### Modes Configuration mode # **Usage Guidelines** Use this command to save the running configuration to a file. The resulting file can later be loaded into the running system to replace the previous running configuration by using load on page 56. A nonabsolute path is interpreted relative to the default configuration directory, which is /config. The following table shows how to specify the syntax for files from different file locations. TABLE 14 Specifying locations for the configuration file | Location | Specification | |------------------|--| | An absolute path | Use standard UNIX file specification. | | A relative path | Specify the path name relative to the default configuration directory. | | FTP server | Use the following syntax for file-name: | | | ftp://user:passwd@host /config-file | | | where <i>user</i> is the username on the host, <i>passwd</i> is the password associated with the username, <i>host</i> is the host name or IP address of the FTP server, and <i>config-file</i> is the configuration file, including the path. | | | If you do not specify <i>user</i> and <i>passwa</i> , you are prompted for them. | | SCP server | Use the following syntax for file-name: | | | scp://user:passwd@host /config-file | | | where <i>user</i> is the username on the host, <i>passwd</i> is the password associated with the username, <i>host</i> is the host name or IP address of the SCP server, and <i>config-file</i> is the configuration file, including the path. | | | If you do not specify <i>user</i> and <i>passwa</i> , you are prompted for them. | | TFTP server | Use the following syntax for file-name: | | | tftp://host /config-file | **TABLE 14** Specifying locations for the configuration file (continued) | Location | Specification | |----------|--| | | where <i>host</i> is the host name or IP address of the TFTP server, and <i>config-file</i> is the configuration file, including the path relative to the TFTP root directory. | If you overwrite a configuration file, the system retains one backup, using a *file-name* convention. For example, if you write over my-config.boot, the system moves the previous file to my-config.boot. Note that the **save** command writes only committed changes. If you make configuration changes and try to save them, the system warns you that you have uncommitted changes and then saves only the committed changes. #### **CAUTION** If your login user is not a member of the login user group "secrets" and you save a configuration either through the REST API or use the save command, the encrypted passwords in the configuration file are replaced with the """ placeholder. If you load this configuration, the replaced password fields trigger validation errors because the placeholder does not match the format for an encrypted password. Do not commit this configuration. If you ignore the error message and perform a commit with this invalid configuration, the passwords are deleted. #### **Examples** The following example shows how to save the running configuration to the my-config file in the default configuration directory, exit configuration mode, and display the set of files stored in the configuration directory. ``` vyatta@vyatta# save my-config Saving configuration to '/config/my-config'... Done vyatta@vyatta# exit vyatta@vyatta:~$ show files /config total 24K -rw-rw-r-- 1 vyatta xorp 2.8K Nov 28 10:30 config.boot -rw-rw-r-- 1 vyatta xorp 2.8K Nov 27 14:32 config.boot~ -rw-rw-r-- 1 vyatta xorp 2.8K Nov 28 10:30 my-config -rw-rw-r-- 1 vyatta xorp 2.8K Nov 27 21:50 my-config~ vyatta@vyatta:~$ ``` The following example shows how to save the current running configuration to the my-config file in the root directory of a TFTP server at 10.1.0.35. ``` vyatta@vyatta# save tftp://10.1.0.35/my-config Saving configuration to 'tftp://10.1.0.35/my-config'... Done vyatta@vyatta# ``` ### set Creates a new configuration node or modifies an attribute in an existing configuration node. ### **Syntax** To create a new configuration node, the syntax is as follows: set config-node [identifier] To set an attribute within a configuration node, the syntax is as follows: set config-node [identifier] attribute [value] #### **Parameters** config-node A configuration node to be created or modified, including the full path, separated by spaces, through the configuration hierarchy to the node. identifier The identifier of a configuration node. The identifier is mandatory if the configuration node has an identifier; otherwise, it is not allowed. attribute A configuration attribute to be set. If the attribute statement does not exist, it is created. If the attribute statement already exists, its value is set to the new value. value The new value of the attribute. The value is mandatory if the attribute statement requires a value; otherwise, it is not allowed. #### Modes Configuration mode # **Usage Guidelines** Use this command to add a configuration element to the current configuration—for example, to enable a routing protocol or define an interface. You can also use this command to modify the value of an existing configuration item. When setting configuration values, note that the change does not take effect until the change is committed by using commit on page 48. After a configuration node has been added, you can modify it later by using set or delete it by using delete on page 52. #### **Examples** The following example shows how to add a configuration node for a data plane interface and commit the change. ``` vyatta@vyatta# set interfaces dataplane dp0p1p2 address 192.150.187.108/24 vyatta@vyatta# commit ``` ### show Displays configuration information in configuration mode. ### **Syntax** show [-all] config-node #### **Parameters** config-node A configuration node you want to display, including the path. The node must exist and the created node must have been committed. Specification of the configuration node is interpreted relative to your current position in the configuration tree. -all Includes default information in the displayed information. #### Command Default When used with no configuration node specification, this command displays all existing configuration nodes and subnodes starting from your current location in the configuration tree. When used without the -all keyword, this command does not display default information. #### Modes Configuration mode ### **Usage Guidelines** Use this command in configuration mode to display the configured state of the system. This command displays the specified configuration node and all subnodes. The node specification is interpreted relative to your current location in the configuration tree. Unless the -all keyword is used, default information is not included in displayed information. In addition to this command, a number of **show** commands are available in operational mode. ## **Examples** The following example shows how to display the configuration information of data plane interfaces by using the **show** command in configuration mode. In this case, because the **-all** keyword is not used, the default information is not included in the output. ``` vyatta@vyatta# show interfaces dataplane dataplane dp0s160 { address 10.18.170.205/24 } [edit] ``` The following example shows
how to display the configuration information, including the default information, of data plane interfaces by using the **show** command with the **-all** keyword in configuration mode. The following example shows how to display the configuration information, including the default information, of the SSH service by using the **show** command with the **-all** keyword in configuration mode. # show configuration (operational) Displays system configuration from operational mode. ### **Syntax** show configuration [all | commands | files] #### **Command Default** Displays only the values that have been set explicitly, that is, nondefault values. #### **Parameters** all Displays all configuration, including default values that would not normally be displayed. #### commands Displays the running configuration as a list of **set** commands. These commands generate the configuration from scratch. files Displays a list of configuration files in the /config file. #### Modes Operational mode ### **Usage Guidelines** Use this command to display system configuration information while remaining in operational mode. Using show configuration in operational mode is equivalent to using show in configuration mode. # **Examples** The following example shows how to display the configuration from operational mode. (For brevity, only the first screen of the information is shown.) # show system commit Displays a summary of file revisions for a configuration. # **Syntax** show system commit #### Modes Operational mode # **Usage Guidelines** Use this command to display a summary of file revisions for a configuration. ### **Examples** The following example shows the commit history of system R1. ``` vyatta@R1:~$ show system commit 0 2010-11-15 16:55:17 by vyatta via cli delete firewall 1 2010-11-15 16:54:40 by vyatta via cli 2 2010-11-15 16:54:40 by root via cli baseline vyatta@R1:~$ ``` # show system commit diff <rev-num> Compares adjacent configuration file revisions. ### **Syntax** show system commit diff rev-num #### **Parameters** rev-num A configuration file revision to compare with a subsequent revision; that is: rev-num +1. #### Modes Operational mode ### **Usage Guidelines** Use this command to compare adjacent revisions of the configuration file. The revisions to be compared are *rev-num* and *rev-num*+1. This command is a shortcut for the **show system commit file** *rev-num* **compare** *rev-num*+1 command. You can see the list of configuration file revisions by using show system commit on page 69. ### **Examples** The following example shows configuration file revision 18 on R1. ``` vyatta@R1:~$ show system commit diff 18 [edit routing routing-instance red] -protocols { static { route 20.2.3.0/24 { next-hop 20.1.2.2 route 20.2.4.0/24 { next-hop 20.1.2.2 } route 20.3.2.0/24 { next-hop 20.1.2.2 route 20.3.4.0/24 { next-hop 20.1.2.2 next-hop 20.3.1.2 route 20.4.2.0/24 { next-hop 20.1.2.2 route 20.4.4.0/24 { next-hop 20.1.2.2 vyatta@R1:~$ ``` # show system commit file <rev-num> Displays a specific revision of the configuration file. ### **Syntax** show system commit file rev-num [compare rev-num1] #### **Parameters** rev-num The revision number of the configuration file to display. rev-num1 The revision number of the configuration file with which to compare. #### Modes Operational mode ### **Usage Guidelines** Use this command to display a specific revision of the configuration file. Use the **compare** option to compare two revisions of the configuration file. You can display the list of configuration file revisions by using show system commit on page 69. ### **Examples** The following example shows revision 0 of the configuration file on R1. ``` vyatta@R1:~$ show system commit file 0 interfaces { dataplane dp0plp1 { address dhcp description "bridge to io" duplex auto speed auto } [... the rest of the configuration file] vyatta@R1:~$ ``` The following example shows two configuration file revisions (18 and 19) being compared on R1. ``` vyatta@R1:~$ show system commit file 18 compare 19 [edit routing routing-instance red] -protocols { static { route 20.2.3.0/24 { next-hop 20.1.2.2 route 20.2.4.0/24 { next-hop 20.1.2.2 route 20.3.2.0/24 { next-hop 20.1.2.2 route 20.3.4.0/24 { next-hop 20.1.2.2 next-hop 20.3.1.2 route 20.4.2.0/24 { next-hop 20.1.2.2 route 20.4.4.0/24 { next-hop 20.1.2.2 } -} [edit] vyatta@R1:~$ ``` # system config-management commit-archive location <location> Enables automatic archiving of configuration revisions to a specified location every time a change is committed. ## **Syntax** set system config-management commit-archive location *location* delete system config-management commit-archive location *location* show system config-management commit-archive location ### Command Default When this option is not set, system configuration is archived locally, but is not archived remotely, on commit. ### **Parameters** location Multinode. A location for the configuration archive. Archives are transferred by any of the following file-transfer methods and their general formats: scp:// user: passwd @ host / dir ftp:// user: passwd @ host / dir tftp:// host / dir where *user* is the user name on the host, *passwd* is the password associated with the user name, *host* is the host name or IP address of the remote server, and *dir* is the directory path in which to save the file. The saved file contains the original file name (config.boot) followed by the host name of the local system, date (YYYYMMDD), and time (HHMMSS). For example, config.boot-R1.20110126_193402 is the config.boot file from R1 saved on Jan 26, 2011 at 7:34:02pm. You can define more than one archive location by creating multiple location configuration nodes. ### Modes Configuration mode ## **Configuration Statement** ``` system { config-management { commit-archive { location location } } } ``` ## **Usage Guidelines** Use this command to enable automatic remote archiving of configuration on commit. The system automatically archives configuration on commit. These archives are stored locally in the /config/archive directory and the number of revisions to keep is set by using system config-management commit-revisions <revisions> on page 75. The system config-management commit-archive location <location> allows you to archive an unlimited number of configuration revisions to a remote location by using FTP, SCP, or TFTP as the file transfer method. The archive operation occurs in the foreground. However, for this command to succeed with SCP, the router must have the public key of the SCP host. To provide the public key to the router, log in to the SCP host using SSH (SCP uses SSH as its underlying protocol to copy the file) and say 'yes' to the public key that is presented by the SCP host. Use the set form of this command to enable remote archiving of configuration revisions and specify the location of the archive. Use the delete form of this command to disable remote archiving of configuration revisions. Use the **show** form of this command to view remote archiving of configuration. # system config-management commit-revisions <revisions> Specifies the number of configuration revisions to store locally. ## **Syntax** set system config-management commit-revisions revisions delete system config-management commit-revisions show system config-management commit-revisions ### Command Default By default, 20 configuration revisions are stored. ### **Parameters** revisions The maximum number of configuration revisions to store locally. The default maximum is 20. ### Modes Configuration mode ### **Configuration Statement** ``` system { config-management { commit-revisions revisions } } ``` ## **Usage Guidelines** Use this command to specify the maximum number of configuration revisions to store locally. The system automatically stores revisions of system configuration every time a configuration change is committed. These revisions are stored in the /config/archive directory. This command sets the number of revisions to be stored. A new revision is stored each time the configuration is committed. After the maximum number of revisions has been reached, the oldest revision is removed to make way for a new revision. Note that you can store an unlimited number of configuration revisions to a remote location by using system configmanagement commit-archive location < location > on page 73. Use the set form of this command to specify the number of locally stored configuration revisions. Use the **delete** form of this command to restore the default maximum number of 20 revisions. Use the **show** form of this command to view the maximum number of configuration revisions that are archived locally. # top Navigates quickly to the top level of the configuration hierarchy. ## **Syntax** top ### Modes Configuration mode ## **Usage Guidelines** Use this command to navigate quickly to the top level of the configuration hierarchy. ## **Examples** The following example shows how to navigate down through several nodes of the configuration tree, then use the **top** command to jump directly to the top of the tree. In the example, notice that the [edit] line displays the location in the configuration tree. vyatta@vyatta# edit protocols rip interface dp0p1p1 [edit protocols/rip/interface/dp0p1p1] vyatta@vyatta# top vyatta@vyatta# ## up Navigates up one level in the configuration hierarchy. ## **Syntax** up ### Modes Configuration mode ## **Usage Guidelines** Use this command to navigate up one level in the configuration hierarchy. ## **Examples** The following example shows how to navigate down through several nodes of the configuration tree, then use the **up** command to navigate successively higher in the tree. In the example, notice that the [edit] line displays the location in the configuration tree. vyatta@vyatta# edit protocols rip interface dp0p1p1 [edit protocols/rip/interface/dp0p1p1] vyatta@vyatta# up [edit protocols/rip/interface] vyatta@vyatta# up [edit protocols/rip/] # System
Management | • | Basic system configuration | 79 | |---|-------------------------------|----| | • | Configuring CPU affinity | 86 | | • | Monitoring system information | 8 | This chapter describes Brocade vRouter features for basic system management tasks, such as setting host information, working with the ARP cache, and setting the system date and time. # Basic system configuration The commands in this chapter allow you to change and view basic IP system information. This section presents the following topics: - Configuring host information on page 79 - Configuring DNS on page 82 - Configuring date and time on page 84 ## Configuring host information This section presents the following topics: - Host name on page 80 - Domain on page 80 - IP address on page 80 - Default gateway on page 81 - Aliases on page 81 In this section, sample configurations are presented for the host information of the system. The following figure shows the sample information. ### FIGURE 3 Host information This section includes the following examples: · Setting the host name of the system - Setting the domain name of the system - Mapping the IP address of the system to its hostname - · Setting the default gateway - · Creating an alias for the system ### Host name The name of the Brocade vRouter is set by using the **system host-name** command. A system name can include letters, numbers, and hyphens (-). The following table shows how to set the name of the system to R1. To set the system host name, perform the following steps in configuration mode. TABLE 15 Setting the host name of the system | Step | Command | |--|--| | Set the host name of the system. | vyatta@vyatta# set system host-name
R1 | | Commit the change. The command prompt changes to reflect the change. | vyatta@vyatta# commit | | Show the configuration. | vyatta@R1# show system host-name
host-name R1 | ### Domain The domain name of the system is set by using the **system domain-name** command. A domain name can include letters, numbers, hyphens (-), and periods (.). ### NOTE The **system domain-name** and **system domain-search** commands are mutually exclusive. Only one of the two commands can be configured at any one time. The following table shows how to set the domain name of the system to mydomain.com. To set the domain name of the system, perform the following steps in configuration mode. TABLE 16 Setting the domain name of the system | Step | Command | |-------------------------|---| | Set the domain name. | vyatta@R1# set system domain-name mydomain.com | | Commit the change. | vyatta@R1# commit | | Show the configuration. | vyatta@R1# show system domain-name domain-name mydomain.com | ### IP address The IP address of the system can be statically mapped to its host name for local DNS purposes by using the **system static-host-mapping** command. IP networks are specified in CIDR format—that is, in *ip-address /prefix* notation such as 192.168.12.0/24. For a single address, use dotted quad format, that is, *a.b.c.d.* For a network prefix, enter a decimal number from 1 through 32. A good practice is to map the host name of the system to the loopback address because the loopback interface is the most reliable on the system. In this example, the loopback interface is given the 10.0.0.65 address. This address is configured for the loopback interface in the sample topology used in this guide. The following table shows how to create a static mapping between the R1 host name and 10.0.0.65 IP address. The DNS server uses this IP address to resolve DNS requests for R1.mydomain.com. To map the host name to the IP address, perform the following steps in configuration mode. TABLE 17 Mapping the IP address of the system to its host name | Step | Command | |---|--| | Map the R1 host name to the 10.0.0.65 IP address. | vyatta@R1# set system static-host-mapping host-
name R1 inet 10.0.0.65 | | Commit the change. | vyatta@R1# commit | | Show the configuration. | <pre>vyatta@R1# show system static-host-mapping host-name R1 { inet 10.0.0.65 }</pre> | ### Default gateway The following table shows how to specify a default gateway for the system at 172.16.0.254. To specify the default gateway, perform the following steps in configuration mode. TABLE 18 Setting the default gateway | Step | Command | |------------------------------|--| | Specify the default gateway. | vyatta@R1# set protocols static route 0.0.0.0/0 next-hop 172.16.0.254 | | Commit the change. | vyatta@R1# commit | | Show the configuration. | <pre>vyatta@R1# show protocols static route 0.0.0.0/0 { next-hop 172.16.0.254 }</pre> | ### **Aliases** You can define one or more aliases for the system by mapping the IP address of the system to more than one host name. The following table shows how to create the finance1 alias for the system. To create an alias for the system, perform the following steps in configuration mode. TABLE 19 Creating an alias for the system | Step | Command | |-------------------------|--| | Define an alias. | vyatta@R1# set system static-host-mapping host-
name
R1 alias finance1 | | Commit the change. | vyatta@R1# commit | | Show the configuration. | <pre>vyatta@R1# show system static-host-mapping host-name R1 { alias finance1 inet 10.0.0.65 }</pre> | # **Configuring DNS** This section presents the following topics: - DNS name servers on page 83 - Domain search order on page 83 In this section, sample configurations are presented for DNS information. The following figure shows the sample DNS information. ### FIGURE 4 DNS information ### DNS name servers DNS name servers are specified by using the system name-server command. ### NOTE The order in which the DNS name servers are added to the configuration is the order in which they are accessed. The following table shows how to specify two DNS name servers for the system: one at 172.16.0.34 and the other at 10.10.40.34. To specify DNS name servers, perform the following steps in configuration mode. TABLE 20 Specifying DNS name servers | Step | Command | |-------------------------------------|--| | Specify the first DNS name server. | vyatta@R1# set system name-server 172.16.0.34 | | Specify the second DNS name server. | vyatta@R1# set system name-server 10.10.40.34 | | Commit the change. | vyatta@R1# commit | | Show configuration. | vyatta@R1# show system name-server
name-server 172.16.0.34
name-server 10.10.40.34 | ### Domain search order You can specify a list of domains for the system to use to complete an unqualified host name. To define this list, specify the order in which domains are searched by using the **system domain-search** command. #### NOTE The **system domain-name** and **system domain-search** commands are mutually exclusive. Only one of the two commands can be configured at any one time. The **system domain-search** command requires that you enter each domain name separately, specified in the order you want them searched. A domain name can include letters, numbers, hyphens (-), and periods (.). The following table shows how to direct the system to attempt domain completion in the following order: first, mydomain.com; second, mydomain.net; and last mydomain.org. To specify the domain search order, perform the following steps in configuration mode. TABLE 21 Specifying the search order for domain completion | Step | Command | |---------------------------------|--| | Specify the first domain name. | vyatta@R1# set system domain-search domain mydomain.com | | Specify the second domain name. | vyatta@R1# set system domain-search domain mydomain.net | | Specify the third domain name. | vyatta@R1# set system domain-search domain
mydomain.org | TABLE 21 Specifying the search order for domain completion (continued) | Step | Command | |-------------------------|---| | Commit the change. | vyatta@R1# commit | | Show the configuration. | vyatta@R1# show system domain-search
domain mydomain.com
domain mydomain.net
domain mydomain.org | ## Configuring date and time This section presents the following topics: - Setting the date on page 85 - Manually synchronizing with an NTP server on page 85 - Setting the time zone on page 85 - Using NTP for automatic synchronization on page 86 Date and time can be either set manually or obtained by manually or automatically synchronizing the system with one or more Network Time Protocol (NTP) servers. The time zone must be manually set and may be specified as an offset from Universal Coordinated Time (UTC) or as one of a number of supported literal time zones. In this section, sample configurations are presented for maintaining date and time information. The following figure shows the sample date and time information. ### FIGURE 5 Date and time ### Setting the date The following table shows how to manually set the date to 1:15 PM exactly on April 24, 2007. The format is *MMDDhhmmCCYY*. Alternate formats are *MMDDhhmm*, *MMDDhhmmYY*, and *MMDDhhmmCCYY*.ss. To manually set the date, perform the following steps in operational mode. TABLE 22 Setting the date and time manually | Step | Command | |---|--| | Specify the date. The
format is MMDDhhmmCCYY. | vyatta@R1:~\$ set date 042413152007 Tue Apr 24 13:15:00 GMT 2007 vyatta@R1:~\$ | ### Manually synchronizing with an NTP server The following table shows how to manually synchronize the system clock with the NTP server at 172.16.0.42. Note that this action performs just a one-time synchronization. It does not set up an ongoing association with the NTP server. For information about setting up automatic synchronization, refer to Using NTP for automatic synchronization on page 86. To perform a one-time synchronization with an NTP server, perform the following steps in operational mode. TABLE 23 Manually synchronizing the system with an NTP server | Step | Command | |---|---| | Specify the location of the NTP server. | vyatta@R1:~\$ set date ntp 172.16.0.42 Tue Apr 24 13:15:00 UTC 2007 vyatta@R1:~\$ | ### Setting the time zone The time zone must be set by using the **system time-zone** command. To set the time zone, you specify the region and location (specified as Region/Location) that best defines your time zone. For example, specifying **US/Pacific** sets the time zone to US Pacific time. Command completion (that is, the <Tab> key) can be used to list available time zones. The adjustment for daylight time takes place automatically based on the time of year. The following table shows how to set the time zone to Pacific time. To set the time zone, perform the following steps in configuration mode. TABLE 24 Setting the time zone as a region and a location | Step | Command | |-------------------------|---| | Set the time zone. | vyatta@R1# set system time-zone US/Pacific | | Commit the information. | vyatta@R1# commit | | Show the configuration. | vyatta@R1# show system time-zone time-zone US/Pacific | ### Using NTP for automatic synchronization To use NTP for automatic synchronization, you must create associations with the NTP servers. To create an association with an NTP server, use the **system ntp server** command and specify the IP address of the server. The following table shows how to configure two NTP servers: one at 172.16.0.42 and one at 10.10.40.42. To specify NTP servers, perform the following steps in configuration mode. TABLE 25 Using NTP for automatic synchronization | Step | Command | |---|--| | Specify a server at 172.16.0.42. | vyatta@R1# set system ntp server 172.16.0.42 | | Specify a server at 10.10.40.42. | vyatta@R1# set system ntp server 10.10.40.42 | | Commit the information. | vyatta@R1# commit | | Show the configuration. (Output is abbreviated here.) | <pre>vyatta@Rl# show system host-name R1 domain-search { domain mydomain.com domain mydomain.net domain mydomain.org } name-server 172.16.0.34 name-server 10.10.40.34 time-zone US/Pacific ntp { server 172.16.0.42 server 10.10.40.42 }</pre> | # Configuring CPU affinity By default, the Brocade vRouter control and data planes share the CPUs. The data plane uses threads per CPU to perform forwarding work and additional tasks. Its optimization is automatic and high performance for average use environments. However, many environments are not average, for example: - Extra resources are required for controller or routing protocols. - Data plane threads must be reduced to avoid consuming resources. The Brocade vRouter allows you to configure CPU affinity on the default data plane. CPU affinity allows you to designate a range of CPUs used by the data plane threads. ### NOTE Misconfiguration of CPU affinity may adversely affect the performance of the vRouter. If you define CPU affinity for the data plane, the data plane threads are bound to a range of CPUs and executed only on these CPUs. When the CPUs are bound to the data plane, the system and controller threads do not use these CPUs. For example, if the data plane is on an eight CPU system, and the data plane CPU affinity is set to CPUs 1 through 3, then the control and system threads use CPUs 0, and 4 through 7. #### NOTE The vRouter always allows control threads to run on CPU 0. To display the number of CPUs available for the data plane, use show hardware cpu on page 110. ## Configuring CPU affinity on the default data plane By default, the default data plane use all CPUs. The following example provides the configuration for CPU affinity on the default data plane by using system default dataplane cpu-affinity <cpu-list> on page 152. | Step | Command | |--|---| | Assign the CPUs for affinity on the default data plane. | vyatta@vyatta# set system default dataplane cpu- | | Enter the CPU IDs as a range of numbers separated by a hyphen or a comma-separated list. | affinity 1-3,4 | | Commit the change. | vyatta@vyatta# commit | | Show the configuration. | <pre>vyatta@R1# show system default dataplane default dataplane{ cpu-affinity 1-3,6 }</pre> | The CPU ID does not have to exist in the system where the data plane is running. For example, if you configure **cpu-affinity** with a range of **0-3** and the data plane is running on a two CPU system, then the data plane only uses CPUs 0 and 1 and silently ignores the other CPUs in the affinity. If **cpu-affinity** is out of the range of the available CPUs in the data plane environment, for example, if you configure **cpu-affinity** with a range of **4-7** on a two CPU system, the data plane is not started. # Monitoring system information This section presents the following topics: - Showing host information on page 87 - Showing the date and time on page 87 ## Showing host information To view the configured host name, use the **show host name** command in operational mode, as shown in the following example. ``` vyatta@R1:~$ show host name R1 vyatta@R1:~$ ``` ## Showing the date and time To view the date and time according to the system clock, use the **show host date** command in operational mode, as shown in the following example. ``` vyatta@R1:~$ show host date ``` Monitoring system information Tue Apr 24 22:23:07 GMT+8 2007 vyatta@R1:~\$ # System Management Commands | • | clear console | 91 | |---|---|-----| | • | clear interfaces counters | 92 | | • | delete session-table | 93 | | • | delete session-table conn-id <conn-id></conn-id> | 94 | | • | delete session-table destination <destination-ip-address></destination-ip-address> | 95 | | • | delete session-table destination <destination-ip-address> source <source-ip-address></source-ip-address></destination-ip-address> | 96 | | • | delete session-table source <source-ip-address></source-ip-address> | | | • | delete session-table source <source-ip-address> destination <destination-ip-address></destination-ip-address></source-ip-address> | 98 | | • | monitor interfaces | | | • | poweroff | 100 | | • | reboot | 102 | | • | reset ip arp address <ipv4></ipv4> | 104 | | • | reset ip arp interface <interface_name></interface_name> | 105 | | • | set date | 106 | | • | set terminal | 107 | | • | show arp | 108 | | • | show date | 109 | | • | show hardware cpu | 110 | | • | show hardware dmi | 111 | | • | show hardware mem | 112 | | • | show hardware pci | | | • | show history | 114 | | • | show host | 116 | | • | show ip groups | 118 | | • | show interfaces | 119 | | • | show interfaces extensive | 121 | | • | show license | 123 | | • | show ntp | 124 | | • | show ntp packets | 125 | | • | show ntp status | 126 | | • | show ntp information | 127 | | • | show session-table statistics | 128 | | • | show reboot | 129 | | • | show system boot-messages | 130 | | • | show system connections | 131 | | • | show system kernel-messages | 132 | | • | show system memory | 133 | | • | show system power-profile | 135 | | • | show system processes | | | • | show system routing-daemons | 139 | | • | show system storage | 140 | | • | show system uptime | 141 | | • | show system usb | 142 | | • | show tech-support | 143 | | • | show version | 145 | | • | system alg ftp | 147 | | • | system alg icmp disable | 148 | | • | system console device <device></device> | 149 | | • | system console powersave | 151 | | • | system default dataplane cpu-affinity <cpu-list></cpu-list> | 152 | |---|---|-----| | • | system domain-name <domain></domain> | 153 | | • | system domain-search domain <domain></domain> | 154 | | • | system host-name <name></name> | 155 | | • | system name-server <address></address> | 156 | | • | system ntp server <server-name></server-name> | 157 | | • | system power-profile policy <thresholds></thresholds> | 159 | | • | system power-profile custom <parameter> <threshold></threshold></parameter> | 160 | | • | system ntp server <server-name> address-family</server-name> | 161 | | • | system options reboot-on-panic <value></value> | 163 | | • | system session table-size <size></size> | 164 | | • | system session timeout custom rule rule-number destination | 165 | | • | system session timeout custom rule rule-number expire | 167 | | • | system session timeout custom rule rule-number protocol | 168 | | • | system session timeout custom rule rule-number source | 169 | | • | system session timeout icmp established | 171 | | • | system session timeout icmp new | 172 | | • | system session timeout other established | 173 | | • | system session timeout
other new | | | • | system session timeout tcp close-wait | 175 | | • | system session timeout tcp closed | 176 | | • | system session timeout tcp closing | | | • | system session timeout tcp established | | | • | system session timeout tcp fin-received | | | • | system session timeout tcp fin-sent | 180 | | • | system session timeout tcp fin-wait | 181 | | • | system session timeout tcp last-ack | | | • | system session timeout tcp simsyn-sent | | | • | system session timeout tcp syn-received | | | • | system session timeout tcp syn-sent | | | • | system session timeout tcp time-wait | | | • | system session timeout udp established | 187 | | • | system session timeout udp new | 188 | | • | system static-host-mapping host-name <name></name> | 189 | | | system time-zone (zone) | 190 | Some commands related to certain features of system management are located in other chapters. | Related Commands Documented Elsewhere | | |---------------------------------------|--| | system login | User management commands are described in User Management on page 217. | | system syslog | System logging commands are described in Logging on page 285. | # clear console Clears the screen of the user console. # **Syntax** clear console ### Modes Operational mode # **Usage Guidelines** Use this command to clear the screen of the user console. # clear interfaces counters Clears interface counters for all interfaces. ## **Syntax** clear interfaces counters ### Modes Operational mode ## **Usage Guidelines** Use this command to clear the counters for all interfaces of all types, including bridge, data plane, loopback and tunnel. # delete session-table Deletes all entries from the data plane session table. ## **Syntax** delete session-table ### Modes Operational mode ## **Usage Guidelines** Use this command to delete all entries from the data plane session table. # delete session-table conn-id <conn-id> Deletes all Conntrack entries that match a connection ID from the data plane session table. ## **Syntax** delete session-table conn-id conn-id ### **Parameters** conn-id Conntrack connection ID. The ID ranges from 1 through 4294967296. ### Modes Operational mode ## Usage Guidelines Use this command to delete all Conntrack entries that match a connection ID from the data plane session table. # delete session-table destination <destination-ip-address> Deletes all entries that match the destination IP address of a session from the data plane session table. ## **Syntax** delete session-table destination destination-ip-address ### **Parameters** ip-address Destination IPv4 address. You can specify an IP address (for example, 192.168.1.3) or an IP address and a port (for example, 192.168.1.3:30). ### Modes Operational mode ## **Usage Guidelines** Use this command to delete all entries that match the destination IP address of a session from the data plane session table. # delete session-table destination <destination-ip-address> source <source-ip-address> Deletes all entries that match the destination and source IP addresses of a session from the data plane session table. ### **Syntax** delete session-table destination destination-ip-address source source-ip-address ### **Parameters** destination-ip-address Destination IPv4 address. You can specify an IP address (for example, 192.168.1.3) or an IP address and a port (for example, 192.168.1.3:30). source-ip-address Source IPv4 address. You can specify an IP address (for example, 192.168.1.3) or an IP address and a port (for example, 192.168.1.3:30). ### Modes Operational mode ## **Usage Guidelines** Use this command to delete all entries that match the destination and source IP addresses of a session from the data plane session table. # delete session-table source <source-ip-address> Deletes all entries that match the source IP address of a session from the data plane session table. ## **Syntax** delete session-table source source-ip-address ### **Parameters** source-ip-address Source IPv4 address of of a session. You can specify an IP address (for example, 192.168.1.3) or an IP address and a port (for example, 192.168.1.3:30). ### Modes Operational mode ## **Usage Guidelines** Use this command to delete all entries that match the source IP address of a session from the data plane session table. # delete session-table source <source-ip-address> destination <destination-ip-address> Deletes all entries that match the source and destination IP addresses of a session from the data plane session table. ## **Syntax** delete session-table source source-ip-address destinationdestination-ip-address ### **Parameters** source-ip-address Source IPv4 address of a session. You can specify an IP address (for example, 192.168.1.3) or an IP address and a port (for example, 192.168.1.3:30). destination-ip-address Destination IPv4 address of a session. You can specify an IP address (for example, 192.168.1.3) or an IP address and a port (for example, 192.168.1.3:30). ### Modes Operational mode ## **Usage Guidelines** Use this command to delete all entries that match the source and destination IP addresses of a session from the data plane session table. # monitor interfaces Displays bandwidth utilization statistics for each interface across all interfaces. ## **Syntax** monitor interfaces ### Modes Operational mode # **Usage Guidelines** Use this command to display bandwidth utilization statistics per interface. Press the question mark (?) key to toggle the following quick reference information: - Navigation - · Display settings (for example, graphical or detailed statistics) - Measurement units ## **Examples** The following example shows how to display the bandwidth utilization statistics for each interface on the R1 host. | vyatta@R1:~\$ monitor interfaces | | | | | | |----------------------------------|--------------------|---------|------|---------|------| | # | Interface | RX Rate | RX # | TX Rate | TX # | | vyat | ta (source: local) | | | | | | 0 | dp0p5p1 | 0.00B | 0 | 0.00B | 0 | | 1 | dp0p5p1.10 | 0.00B | 0 | 0.00B | 0 | | 2 | dp0port2 | 0.00B | 0 | 0.00B | 0 | | 3 | dp0p2p1 | 0.00B | 0 | 0.00B | 0 | | 4 | .spathintf | 0.00B | 0 | 0.00B | 0 | | 5 | 10 | 0.00B | 0 | 0.00B | 0 | # poweroff Powers off the system. ## **Syntax** poweroff [at time | cancel | now] ### **Parameters** at time The time at which the system is scheduled to be powered off. Set the date, time, or both directly using one of the following formats: - hh:mm - MMDDYY - "hh:mm MMDDYY" - +mm Note that the hour field (hh) uses the 24-hour clock (for example, 3:00 PM is represented as 15 in the hour field). cancel Cancels a previously scheduled power-off event. now Powers off the system without asking for confirmation. ### Modes Operational mode ## **Usage Guidelines** Use this command to power off the system. Before the system powers off, a message is broadcast to all logged-in users warning them of the power-off event. Only users with administrative (admin)-level permission can run this command. ## **Examples** The following example shows how to power off the system. ``` vyatta@R1:~$ poweroff Proceed with poweroff? (Yes/No) [No] y Broadcast message from root@R1 (tty1) (Mon Dec 17 17:52:37 2012): The system is going DOWN for system halt NOW! ``` The following example shows how to power off the system at the current time on the specific date of December 11, 2012. ``` vyatta@R1:~$ poweroff at 121112 vyatta@R1:~$ ``` The following example shows how to cancel a scheduled power-off event. ``` vyatta@R1:~$ poweroff cancel vyatta@R1:~$ ``` ## reboot Reboots the system. ## **Syntax** reboot [at time | cancel | now] ### **Parameters** at time The time at which the system is scheduled to reboot. Set the date, time, or both directly using one of the following formats: - hh:mm - MMDDYY - "hh:mm MMDDYY" - · midnight - noon Note that the hour field (hh) uses the 24-hour clock (for example, 3:00 PM is represented as 15 in the hour field). cancel Cancels a previously scheduled reboot. now Reboots the system without asking for confirmation. ### Modes Operational mode ## **Usage Guidelines** Use this command to reboot the system. Before the system reboots, a message is broadcast to all logged-in users warning them of the reboot. Only users with administrative (admin)-level permission can run this command. # **Examples** The following example shows how to reboot the system. ``` \label{local_variance} $$\operatorname{Proceed}$ with reboot? (Yes/No) [No] y $$\operatorname{Broadcast}$ message from root@R1 (tty1) (Mon Jan 21 17:52:37 2008): The system is going down for reboot NOW! ``` The following example shows how to reboot the system at the current time on the specific date of December 11, 2009. ``` vyatta@R1:~$ reboot at 121109 Reload scheduled for at Saturday Dec 12 20:18:00 2009 Proceed with reboot schedule? [confirm] y Reload scheduled for at Saturday Dec 12 20:18:00 2009 ``` The following example shows how to cancel a scheduled reboot. vyatta@R1:~\$ reboot cancel Reboot canceled vyatta@R1:~\$ # reset ip arp address <ipv4> Removes entries associated with a specific IP address from the Address Resolution Protocol (ARP) cache. ## **Syntax** reset ip arp address ipv4 ### **Parameters** ipv4 Removes the entry for the specified IP address from the ARP cache. ### Modes Operational mode ## **Usage Guidelines** Use this command to remove the entry associated with a specific IP address from the ARP cache. # reset ip arp interface <interface_name> Removes the entry associated with an Ethernet interface from the Address Resolution Protocol (ADR) cache. ## **Syntax** reset ip arp interface interface_name ### **Parameters** interface_name The identifier of an interface. Supported interface types are: - Data plane - Loopback For more information about these interface types, refer to Loopback and Data Plane Interfaces on page 309. ### Modes Operational mode ## **Usage Guidelines** Use this command to
remove the entry associated with an Ethernet interface from the ARP cache. ## set date Sets the system date and time directly or specifies a Network Time Protocol (NTP) server from which to acquire them. ## **Syntax** set date { datetime | ntp ntpserver } ### **Parameters** #### datetime The date and time in one of the following formats: - MMDDhhmm - MMDDhhmmYY - MMDDhhmmCCYY - MMDDhhmmCCYY.ss Note that the hour field (hh) uses the 24-hour clock (for example, 3:00 PM is represented as 15 in the hour field). #### ntpserver An NTP server from which to acquire the current date and time. You can specify either an IPv4 address or a host name to identify the NTP server. ### Modes Operational mode ## **Usage Guidelines** Use this command to set the system date and time either directly or by specifying an NTP server from which to acquire them. If a time zone has not been configured, then Greenwich mean time (GMT) is assumed. The time zone is set by using system time-zone <zone> on page 190. ### **Examples** The following example shows how to set the system date and time to May 15, 2008 at 10:55 PM (assuming that the time zone is set to Pacific daylight time). ``` vyatta@R1:~$ set date 051522552008 Thu May 15 22:55:00 PDT 2008vyatta@R1:~$ ``` The following example shows how to set the system date and time by using an NTP server at the 69.59.150.135 IP address. ``` vyatta@R1:~$ set date ntp 69.59.150.135 15 May 23:00:00 ntpdate[7038]: step time server 69.59.150.135 offset 425.819267 secvyatta@R1:~$ ``` ## set terminal Sets the behavior of the system terminal. ## **Syntax** set terminal { key query-help { enable | disable } | length | ength | pager [pager] | width width } ### **Parameters** ### key query-help Enables or disables help by using a question mark (?). The default option is enable length The number of rows for the display length on the terminal screen. pager The program to use as the terminal pager. If no pager is specified, the default (less) is used. width The number of columns for the display width on the terminal screen. ### Modes Operational mode ## **Usage Guidelines** Use this command to set the behavior of the system terminal. # show arp Displays the Address Resolution Protocol (ARP) cache of the system. ## **Syntax** show arp [interface] ### **Parameters** interface An interface for which ARP information is displayed. ### Modes Operational mode ## **Usage Guidelines** Use this command to display the ARP cache of the system. The following table shows possible ARP states. ### **TABLE 26** ARP states | State | Description | |---------|--| | Pending | Address resolution is currently being performed on this neighbor entry. | | Valid | The neighbor is reachable. Positive confirmation has been received and the path to this neighbor is operational. | | Static | This state is a pseudo-state, indicating that this entry should not be cleared from the cache. | | Deleted | The arp entry is deleted. | | Local | The arp entry is provided on the data plane only | ## **Examples** The following example shows how to display the ARP cache of the R1 system. ``` vyatta@R1:~$ show arp IP Address HW address Dataplane Controller Device 10.18.170.1 0:1b:ed:9f:de:41 VALID VALID dp0p160p1 10.18.170.172 00:0c:29:c6:89:a6 VALID dp0p160p1 vyatta@R1:~$ ``` # show date Displays the system date and time in either local time or Universal Time Coordinated (UTC). # **Syntax** show date [utc] #### **Parameters** utc Displays the date and time in UTC. #### Modes Operational mode # Usage Guidelines Use this command to display the system date and time in either local time or UTC. # **Examples** The following example shows how to display the system date and time on R1. vyatta@R1:~\$ show date Tue May 20 17:27:07 PDT 2008 vyatta@R1:~\$ # show hardware cpu Displays CPU information used in the system. ## **Syntax** show hardware cpu [summary] #### **Parameters** summary Shows the CPUs on the system. #### Modes Operational mode ## **Usage Guidelines** Use this command to view CPU information used in the system. #### **Examples** The following example shows CPU information on R1. ``` vyatta@R1:~$ show hardware cpu processor : 0 vendor id : GenuineIntel : 6 : 15 cpu family model model name : Intel(R) Xeon(R) CPU stepping : 8 E5310 @ 1.60GHz stepping : 1595.101 cpu MHz cache size : 4096 KB fdiv bug : no hlt bug : no f00f bug : no : no coma_bug : yes fpu_exception : yes could level : 10 cpuid level flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss nx constant tsc up arch perfmon pebs bts pni ds cpl ssse3 dca bogomips : 3213.51 clflush size power management: vyatta@R1:~$ ``` # show hardware dmi Displays information about the desktop management interface (DMI) of the system. ### **Syntax** show hardware dmi #### Modes Operational mode # **Usage Guidelines** Use this command to view information about the DMI of the system. The DMI provides a standard framework for managing resources in the device. ## **Examples** The following example shows DMI information on R1. ``` vyatta@R1:~$ show hardware dmi bios_date: 04/17/2006 bios_vendor: Phoenix Technologies LTD bios_version: 6.00 board_asset_tag: board_name: 440BX Desktop Reference Platform board_vendor: Intel Corporation board_version: None chassis_asset_tag: No Asset Tag chassis_type: 1 chassis_vendor: No Enclosure chassis_version: N/A product_name: VMware Virtual Platform product_version: None sys_vendor: VMware, Inc. vyatta@R1:~$ ``` # show hardware mem Displays information about the system memory. ### **Syntax** show hardware mem #### Modes Operational mode # **Usage Guidelines** Use this command to view information about the system memory. # **Examples** The following example shows memory information on R1. ``` vyatta@R1:~$ show hardware memory MemTotal: 515972 kB 341468 kB MemFree: Buffers: Cached: 28772 kB 116712 kB SwapCached: 0 kB Active: 35912 kB Inactive: 117272 kB HighTotal: 0 kB 0 kB 515972 kB 341468 kB 0 kB HighFree: LowTotal: LowFree: SwapTotal: 0 kB 0 kB SwapFree: 0 kB Dirty: 0 kB Writeback: 7700 kB AnonPages: Mapped: 4048 kB Slab: 14644 kB SReclaimable: 9440 kB SUnreclaim: 5204 kB PageTables: 288 kB NFS_Unstable: 0 kB Rounce: 0 kB Bounce: 0 kB CommitLimit: 257984 kB Committed_AS: 21636 kB VmallocTotal: 507896 kB 3896 kB VmallocUsed: VmallocChunk: 503932 kB vyatta@R1:~$ ``` # show hardware pci Displays information about the system peripheral component interconnect (PCI) bus. ### **Syntax** show hardware pci [detailed] #### **Parameters** detailed Displays detailed information about the PCI bus. #### Modes Operational mode #### **Usage Guidelines** Use this command to view information about the PCI bus. The PCI bus provides communication among the peripheral components and processor of the system. ### **Examples** The following example shows PCI information on R1. ``` vyatta@R1:~$ show hardware pci 00:00.0 Host bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX Host bridge (rev 01) 00:01.0 PCI bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX AGP bridge (rev 01) 00:07.0 ISA bridge: Intel Corporation 82371AB/EB/MB PIIX4 ISA (rev 08) 00:07.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01) 00:07.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08) 00:0f.0 VGA compatible controller: VMware Inc Abstract SVGA II Adapter 00:10.0 SCSI storage controller: LSI Logic / Symbios Logic 53c1030 PCI-X Fusion-MPT Dual Ultra320 SCSI (rev 01) 00:11.0 Ethernet controller: Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE] (rev 10) vyatta@R1:~$ ``` # show history Displays the command history of the system. ### **Syntax** show history [num | brief] #### Command Default The complete command history is displayed. #### **Parameters** num A specific number of recent commands. brief Displays the most recent 20 commands. #### Modes Operational mode # **Usage Guidelines** Use this command to view the command history of the system. If more than one screen of output is available, the: prompt appears. Press the <Space> key to display the next screen, <Enter> key to display the next line, or <q> key to stop the output. #### **Examples** The following example shows history of command execution on R1. ``` vyatta@R1:~$ show history 1 2009-08-05T22:01:33+0000 configure 2 2009-08-05T22:02:03+0000 commit 3 2009-08-05T22:02:09+0000 exit 4 2009-08-05T22:02:09+0000 exit 5 2009-08-05T22:02:12+0000 exit 6 2009-08-05T22:11:51+0000 show version 2009-08-05T22:11:55+0000 configure 8 2009-08-05T22:01:33+0000 configure 9 2009-08-05T22:02:03+0000 commit 10 2009-08-05T22:02:09+0000 exit 11 2009-08-05T22:02:09+0000 exit 2009-08-05T22:02:12+0000 exit 2009-08-05T22:11:51+0000 show version 14 2009-08-05T22:11:55+0000 configure 2009-08-05T22:11:59+0000 show 15 16 2009-08-05T22:12:27+0000 show 2009-08-05T22:13:01+0000 set interfaces dataplane dp0p1p1 address 192.168.1.72/24 17 18 2009-08-05T22:13:12+0000 set service ssh 2009-08-05T22:13:33+0000 set system name-server 192.168.1.254 20 2009-08-05T22:13:58+0000 commit 21 2009-08-06T05:14:15+0000 show vyatta@R1:~$ ``` # show host Displays host information for hosts that can be reached by the system. ### **Syntax** show host { lookup hostname | lookup ipv4 | name | date | os } #### **Parameters** #### lookup hostname Shows the canonical name and IP address plus any configured aliases recorded in the name server for the host with the specified host name. #### lookup ipv4 Shows the canonical name and IP address plus any configured aliases recorded in the name server for the host with the specified IP address. #### date Shows the date and time according to the system clock. #### name Shows the name of this system. os Shows details about the operating system of the system. #### Modes Operational mode ### **Usage Guidelines** Use this command to view information configured for the host.
Examples The following example shows how to display information about the R2 host. The following example shows how to display the name of the R1 host. ``` vyatta@R1:\sim$ show host name R1 vyatta@R1:\sim$ ``` The following example shows how to display the date and time according to the system clock. ``` vyatta@R1:~$ show host date Mon Jan 21 17:28:47 PST 2008 vyatta@R1:~$ ``` The following example shows how to display information about the host operating system. ``` vyatta@R1:~\$ show host os Linux R1 2.6.23-1-486-vyatta #1 SMP Tue Jan 15 02:00:31 PST 2008 i686 GNU/Linux vyatta@R1:~\$ ``` # show ip groups Displays IP groups status. ### **Syntax** show ip groups #### Modes Operational mode # **Usage Guidelines** The following example shows how to display the status of IP forwarding. ## show interfaces Displays information about system interfaces. ### **Syntax** show interfaces [counters | detail | system [enabled]] #### Command Default Displays information for all interfaces configured on the system. #### **Parameters** #### counters Displays summary information about all the interfaces available on your system. #### detail Displays detailed information about all the interfaces available on your system. #### system Displays all the physical interfaces available on your system. #### enabled Displays only enabled system interfaces known to the operating system kernel. #### Modes Operational mode ## **Usage Guidelines** Use this command to view configuration information and operational status for interfaces and virtual interfaces. When used with no option, this command displays information for all interfaces configured on the system. You can see specific information by using other versions of this command. To see all the physical interfaces known to the operating system kernel, use the **system** option. This option differs from the other versions of this command; the other versions show interfaces that have been configured on the system, while the **system** option shows all the physical interfaces available on your system (that is, the physical interfaces known to the operating system kernel). The physical interfaces available to you determine which interfaces you are able to configure and view because you cannot configure or view an interface that does not physically exist on the system. #### **Examples** The following example shows how to display information for interfaces. ``` vyatta@R1:~$ show interfaces Codes: S - State, L - Link, u - Up, D - Down, A - Admin Down IP Address Interface S/L Description u/u dp0p2p1 192.168.122.30/24 u/u dp0p5p1 dp0p5p1.10 10.1.1.1/24 u/u dp0port2 A/D 127.0.0.1/8 10 11/11 ::1/128 ``` The following example shows how to display detailed information for interfaces. ``` vyatta@R1:~$ show interfaces system enabled 1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:\overline{00}:00:00:00 brd 00:00:00:00:00 promiscuity 0 RX: bytes packets errors dropped overrun mcast 70108\overline{3}52 \overline{4}328\overline{5}6 0 0 0 0 0 TX: bytes packets errors dropped carrier collsns 70108352 432856 0 0 0 6: dp0p160p1: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP mode DORMANT group default glen 500 link/ether 00:0c:29:2e:2a:d7 brd ff:ff:ff:ff:ff promiscuity 0 tun RX: bytes packets errors dropped overrun mcast 38258251 588550 0 190834 0 566086 TX: bytes packets errors dropped carrier collsns 982191 11700 0 0 0 0 7: dp0p192p1: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc pfifo fast state UP mode DORMANT group default glen 500 link/ether 00:0c:29:2e:2a:e1 brd ff:ff:ff:ff:ff:ff promiscuity 0 RX: bytes packets errors dropped overrun mcast 120 2 0 3 Ω TX: bytes packets errors dropped carrier collsns 110 0 0 0 1 8: dp0p224p1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo fast state UP mode DORMANT group default qlen 500 link/ether 00:0c:29:2e:2a:eb brd ff:ff:ff:ff:ff promiscuity 0 RX: bytes packets errors dropped overrun mcast 120 0 0 0 TX: bytes packets errors dropped carrier collsns 0 10: .spathintf: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc pfifo fast state UNKNOWN mode DEFAULT group default qlen 500 link/ether 72:09:8f:fd:1e:38 brd ff:ff:ff:ff:ff promiscuity 0 RX: bytes packets errors dropped overrun mcast 0 0 0 0 TX: bytes packets errors dropped carrier collsns 408 4 0 0 0 ``` # show interfaces extensive Displays detailed information about all system interfaces. ### **Syntax** show interfaces extensive #### Modes Operational mode # **Usage Guidelines** Use this command to view detailed configuration information and operational status for all interfaces and virtual interfaces. In the output of this command where an interval is referenced, the average values are 1-minute-, 5-minute-, and 15-minute-weighted rolling average values computed in a manner similar to the values reported by Unix and Linux for load average in the uptime command. #### NOTE For better-formatted output and more complete information about an interface, use the **show interfaces dataplane** *interface-name* command. #### **Examples** The following example shows how to display detailed information about all system interfaces. ``` vyatta@R1:~$ show interfaces extensive dp0p192p1: rx bad address: 0 rx bad vid: 0 rx badcrc: 0 rx badlen: 0 rx bps avg: 62, 82, 83 rx bytes: 132549906 rx bps: 24 rx bridge: 0 rx dropped: 0 rx error: 0 rx dropped: 0 rx errors: 0 rx errors: 0 rx flowmatch: 0 rx flowmiss: 0 rx good bytes: 132549906 rx good packets: 1246364 rx missed: 0 rx multicast: 1225784 rx nobuffer: 0 rx packets: 1246364 rx pps avg: 0, 0, 0 rx q0 bytes: 130658262 rx q0 errors: 0 rx q1 bytes: 1891644 rx q1 packets: 20907 rx error: 0 rx q1 errors: 0 rx error: 0 rx good bytes: 132549906 rx multicast: 1225784 rx pps: 0 rx q0 bytes: 130658262 rx q1 errors: 0 rx q1 packets: 20907 rx vlan: 0 tx bps: 0 tx bytes: 1941172 tx error: 0 tx good bytes: 1941172 tx packets: 18897 tx pps avg: 0, 0, 0 tx q0 packets: 18692 tx q1 packets: 0 tx q2 packets: 205 tx bps avg: 5, 12, 9 tx dropped: 0 tx dropped: 0 tx errors: 0 tx errors: 0 tx good packets: 18897 tx pps: 0 tx q0 bytes: 1928872 tx q1 bytes: 0 tx q2 bytes: 12300 tx q2 packets: 205 tx q3 packets: 0 dp0p224p1: rx bad vid: 0 rx bad address: 0 rx badcrc: 0 rx badlen: 0 rx bps: 0 rx bps avg: 0, 0, 0 rx bridge: 0 rx bytes: 120 rx error: 0 rx flowmatch: 0 rx dropped: 0 rx errors: 0 ``` # show license Displays Vyatta license information. #### **Syntax** show license #### Modes Operational mode ## **Usage Guidelines** Use this command to view Vyatta license information. #### **Examples** The following example shows how to display Vyatta license information. ``` vyatta@R1:~$ show license GNU GENERAL PUBLIC LICENSE Version 2, June 1991 ``` Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. #### Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. # show ntp Shows the status of connections to a configured Network Time Protocol (NTP) server. ### **Syntax** ``` show ntp { host | ipv4 | 0.vyatta.pool.ntp.org } ``` #### **Parameters** host The host name of an NTP server. ipv4 The IPv4 address of an NTP server. #### O.vyatta.pool.ntp.org Specifies the default NTP server. #### Modes Operational mode # **Usage Guidelines** Use this command to view the status of connections to a configured NTP server. A line entry is given for each configured NTP server, showing the IP address of the server and how often the system is polling and updating to the NTP clock. An asterisk (*) next to the IP address indicates successful synchronization with the NTP server. NTP server connections are configured by using system ntp server <server-name> on page 157. #### **Examples** The following example shows how to display the status of connections to all configured NTP servers (in this case, the 69.59.150.135 IP address). The following example shows how to display the status of connections to the configured NTP server at the 69.59.150.135 IP address. ``` vyatta@R1:~$ show ntp 69.59.150.135 server 69.59.150.135, stratum 3, offset 46.614524, delay 0.03207 22 Jan 12:20:36 ntpdate[10192]: step time server 69.59.150.135 offset 46.614524 sec vyatta@R1:~$ ``` # show ntp packets Displays the number of NTP packets sent and received. It also displays counts of packets that caused exceptional conditions. ### **Syntax** show ntp packets #### Modes Operational mode # **Usage Guidelines** Use this command to display the number of NTP packets sent and received and counts of packets that caused various exceptional conditions. ## **Examples** The following example shows how to display the
number of NTP packets sent and received and counts of packets that caused exceptional conditions. ``` vyatta@R1:~$ show ntp packets packets sent: 5 packets not sent: 0 packets received: 5 packets processed: 5 current version: 0 declined: 0 access denied: 0 bad length or format: 0 bad authentication: 0 rate exceeded: 0 ``` # show ntp status Displays an overview of the NTP daemon and the peer to which the NTP server is synchronizing. ### **Syntax** show ntp status #### Modes Operational mode # **Usage Guidelines** Use this command to display an overview of the NTP daemon and the peer to which the NTP server is synchronizing. # **Examples** The following example shows how to display an overview of the NTP daemon. # show ntp information Displays version information for the NTP daemon and indicates if the process is running. ### **Syntax** show ntp information #### Modes Operational mode # **Usage Guidelines** Use this command to display version information for the NTP daemon and to check whether the process is running. # **Examples** The following example shows how to display version information for the NTP daemon and check whether the process is running. vyatta@R1:~\$ show ntp information version 1:4.2.6.p5+dfsg-2+deb7u1+vyatta1+1420850908 NTP daemon is running # show session-table statistics Shows the data plane session table statistics. ### **Syntax** show session-table statistics #### Modes Operational and configuration mode # **Usage Guidelines** Use this command to view information on the data plane session table. ## **Examples** ``` vyatta@vyatta% show session-table statistics Available (percentage): 984064 (93.85%) Used (percentage): 64512 (6.15%) NATed: 64512 Detailed (by state): TCP SYN SENT: 0 SYN RECEIVED: 0 ESTABLISHED: 0 FIN WAIT: 0 CLOSE WAIT: 0 LAST ACK: 0 TIME WAIT: 0 CLOSE: 0 LISTEN: 0 UDP NEW: 0 ESTABLISHED: 64512 CLOSE: 0 Other NEW: 0 ESTABLISHED: 0 CLOSE: 0 ``` # show reboot Shows the next scheduled reboot date and time. ### **Syntax** show reboot #### Modes Operational mode # **Usage Guidelines** Use this command to view the next scheduled reboot date and time. # **Examples** The following example shows how to display the next scheduled reboot date and time. ``` vyatta@R1:~$ show reboot Reboot scheduled for [Sat Dec 12 20:23:00 2009] vyatta@R1:~$ ``` The following example shows that no reboot is scheduled. ``` vyatta@R1:~$ show reboot No reboot currently scheduled vyatta@R1:~$ ``` # show system boot-messages Displays bootup messages generated by the kernel. #### **Syntax** show system boot-messages [all] #### Command Default A subset of the full list of kernel bootup messages is displayed. #### **Parameters** all Displays all kernel bootup messages. #### Modes Operational mode #### **Usage Guidelines** Use this command to see bootup messages that have been generated by the kernel. ## **Examples** The following example shows how to display bootup messages that have been generated by the kernel. ``` vyatta@R1:~$ show system boot-messages Linux version 2.6.23-1-486-vyatta (autobuild@sydney) (gcc version 4.2.3 20071123 (prerelease) (Debian 4.2.2-4)) #1 SMP Fri Jan 18 07:17:50 PST 2008 BIOS-provided physical RAM map: BIOS-e820: 000000000000000000000000000000009f800 (usable) BIOS-e820: 0000000000009f800 - 0000000000000000 (reserved) BIOS-e820: 000000000000000000 - 000000000100000 (reserved) BIOS-e820: 0000000000100000 - 000000001fee0000 (usable) BIOS-e820: 000000001fee0000 - 000000001fee3000 (ACPI NVS) BIOS-e820: 000000001fee3000 - 000000001fef0000 (ACPI data) BIOS-e820: 000000001fef0000 - 000000001ff00000 (reserved) BIOS-e820: 00000000fec00000 - 000000100000000 (reserved) OMB HIGHMEM available. 510MB LOWMEM available. found SMP MP-table at 000f5a20 Entering add_active_range(0, 0, 130784) 0 entries of 256 used Zone PFN ranges: DMA 0 -> 4096 130784 4096 -> Normal 130784 -> HighMem 130784 Movable zone start PFN for each node early_node_map[1] active PFN ranges 0 -> 130784 On node 0 totalpages: 130784 ``` # show system connections Displays active network connections on the system. #### **Syntax** show system connections #### Modes Operational mode ## **Usage Guidelines** Use this command to see which network connections are currently active on the network. #### **Examples** The following example shows how to display active network connections on the system. ``` vyatta@R1:~$ show system connections Active Internet connections (servers and established) Foreign Address Proto Recv-Q Send-Q Local Address State 0 127.0.0.1:5903 0.0.0.0:* LISTEN tcp 0.0.0.0:* 0.0.0.0:* 0.0.0.0:* 0 0 127.0.0.1:5904 LISTEN 0 127.0.0.1:5907 LISTEN tcp 0 0 0.0.0.0:53 LISTEN tcp 0 0.0.0.0:22 0 0.0.0.0:* LISTEN 0 127.0.0.1:5904 tcp 127.0.0.1:42165 ESTABLISHED 127.0.0.1:5904 0 127.0.0.1:42165 0 ESTABLISHED tcp Ω 0 127.0.0.1:48564 127.0.0.1:5903 ESTABLISHED tcp 64 10.1.17.201:22 10.250.1.136:61388 tcp ESTABLISHED 127.0.0.1:48564 0 127.0.0.1:5903 0 ESTABLISHED tcp tcp6 0 0 :::53 :::* LISTEN 0 :::22 :::* LISTEN tcp6 Ω 0 0.0.0.0:53 0.0.0.0:* udp udp 0 0 10.1.17.201:123 0.0.0.0:* udp 0 127.0.0.1:123 0.0.0.0:* 0 0.0.0.0:123 Ω 0.0.0.0.* udp 0 :::53 udp6 0 0 fe80::ff:fe00:1:123 udp6 :::* udp6 0 0 fe80::250:56ff:fea9:123 :::* udp6 Ω 0 ::1:123 0 :::123 Active UNIX domain sockets (servers and established) State Proto RefCnt Flags Type I-Node Path unix 2 [ACC] unix 2 [ACC] STREAM LISTENING /var/run/vplane.socket [ACC] /var/run/vcfgfs.sock 6702 STREAM LISTENING LISTENING /tmp/browser pager unix 2 [ACC] STREAM 14164 unix 2 [ACC] STREAM LISTENING 7765 /tmp/.rip show unix 2 [ACC] 8796 /var/run/vyatta/vplaned.socket LISTENING STREAM [ACC] unix 2 STREAM LISTENING 7772 /tmp/.ripng show unix 2 unix 2 [ACC] /tmp/.ospf_show /tmp/.ospf6_show STREAM LISTENING [ACC] 7786 STREAM LISTENING unix 2 [ACC] STREAM LISTENING 6021 /tmp/.bgp show unix 2 unix 2 /tmp/.imi_show /tmp/.imi line [ACC] STREAM LISTENING 6793 [ACC] 6797 STREAM LISTENING [ACC] unix 2 STREAM LISTENING 6811 /var/run/acpid.socket unix 2 unix 2 [ACC] STREAM LISTENING 8603 /tmp/.nsm show [ACC] /tmp/.nsmserv 8607 STREAM LISTENING <omitted> ``` # show system kernel-messages Displays messages in the kernel ring buffer. ### **Syntax** show system kernel-messages #### Modes Operational mode ## **Usage Guidelines** Use this command to see messages currently residing in the kernel ring buffer. #### **Examples** The following example shows how to display messages in the kernel ring buffer. ``` vyatta@R1:~$ show system kernel-messages Linux version 2.6.16 (autobuild@phuket.vyatta.com) (gcc version 4.1.1) #1 Tue Dec 5 15:56:41 PST 2006 BIOS-provided physical RAM map: BIOS-e820: 000000000000000 - 00000000009f800 (usable) BIOS-e820: 00000000009f800 - 0000000000000000 (reserved) BIOS-e820: 000000000fee0000 - 000000000fee3000 (ACPI NVS) BIOS-e820: 000000000fee3000 - 000000000fef0000 (ACPI data) BIOS-e820: 000000000fef0000 - 00000000ff00000 (reserved) BIOS-e820: 00000000fec00000 - 000000100000000 (reserved) OMB HIGHMEM available. 254MB LOWMEM available. found SMP MP-table at 000f5a20 On node 0 totalpages: 65248 DMA zone: 4096 pages, LIFO batch:0 DMA32 zone: 0 pages, LIFO batch:0 Normal zone: 61152 pages, LIFO batch:15 HighMem zone: 0 pages, LIFO batch:0 DMI 2.3 present. Intel MultiProcessor Specification v1.4 Virtual Wire compatibility mode. OEM ID: OEM00000 Product ID: PROD0000000 APIC at: 0xFEE00000 ``` # show system memory Displays system memory usage. # **Syntax** show system memory [cache | detail] #### **Parameters** cache Displays memory cache details. detail Displays memory usage details. #### Modes Operational mode # **Usage Guidelines** Use this command to see how much memory is currently being used by the system and how much is free. #### **Examples** The following example shows information about memory usage on R1. ``` vyatta@R1:~$ show system memory used shared buffers cached 242836 170796 72040 58844 81748 Mem: Swap: 0 0 0 Total: 242836 170796 72040 vyatta@R1:~$ ``` The following example shows detailed information about memory usage on R1. ``` vyatta@R1:~$ show system memory detail MemTotal: 242836 kB 72040 kB MemFree: Buffers: 58844 kB 81760 kB Cached: SwapCached: 0 kB 75496 kB Active: Inactive: 79252 kB 14344 kB Active(anon): Inactive (anon): 264 kB Active(file): 61152 kB Inactive(file): 78988 kB Unevictable: 0 kB Mlocked: 0 kB HighTotal: 0 kB HighFree: 0 kB 242836 kB LowTotal: 72040 kB LowFree: SwapTotal: 0 kB SwapFree: 0 kB 0 kB Dirtv: Writeback: 0 kB 14172 kB AnonPages: 7464 kB Mapped: ``` The following example shows information about memory cache usage on R1. ``` vyatta@R1:~$ show system memory cache Active / Total Objects (% used) : 99681 / 100958 (98.7%) Active / Total Slabs (% used) : 2690 / 2690 (100.0%) : 61 / 72 (84.7%) : 12081.72K / 12346.32K (97.9%) Active / Total Caches (% used) Active / Total Size (% used) Minimum / Average / Maximum Object : 0.01K / 0.12K / 8.00K OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME 30806 30806 100% 19200 19178 99% 0.05K 422 7.3 1688K buffer head 0.13K 640 30 2560K dentry 424K sysfs dir cache 9010 8954 99% 0.05K 106 85 512 7168 7054 98% 0.01K 14 56K kmalloc-8 4853 99% 2693 95% 4864 0.02K 19 256 76K kmalloc-16 2816 0.03K 22 128 88K kmalloc-32 2640 2640 100% 0.38K 264 1.0 1056K unionfs inode cache 2380 2213 92% 0.02K 170 56K anon vma chain 14 1032K squashfs inode cache 2322 2322 100% 0.44K 258 9 11 85 2255 2248 99% 0.34K 205 820K inode cache 2210 2199 99% 0.05K 26 104K ext3 xattr 46 32 64 1886 1884 99% 0.09K 164K vm area struct 41 208K kmalloc-128 1664 1512 90% 0.12K 52 1536 1470 95% 0.06K 24 96K kmalloc-64 1536 1433 93% 0.02K 6 256 24K anon vma 1313 1308 99% 0.29K 101 13 404K radix tree node ``` # show system power-profile Displays the current power profile settings. # **Syntax** show system power-profile #### Modes Configuration mode # **Usage Guidelines** Use the **show** form of this command to display the power profile settings. # **Examples** #### **Examples** The following example shows how to display the
power profile settings. vyatta@R1# run show system power-profile balanced (100, 10, 250) $\,$ # show system processes Displays information about processes currently running on the system. ### **Syntax** show system processes [extensive | summary | tree] #### Command Default Lists all processes currently running on the system. #### **Parameters** #### extensive Shows all processes and extensive details about each process. #### summary Shows a summary of system usage. tree Shows all processes and how they are related. #### Modes Operational mode ## **Usage Guidelines** Use this command to see information about processes currently running on the system. #### **Examples** The following example shows how to display a list of all processes currently running on the system. ``` vyatta@R1:~$ show system processes PID TTY STAT TIME COMMAND 1 ? 0:03 init [2] Ss 2 ? S 0:00 [kthreadd] 3 ? S 0:00 [ksoftirqd/0] 0:00 [migration/0] S 5 ? S 0:00 [watchdog/0] 0:09 [events/0] S 0:00 [khelper] 7 ? S 12 2 S 0:00 [async/mgr] 13 ? S 0:00 [pm] 99 ? 0:00 [sync_supers] S 101 ? S 0:00 [bdi-default] 102 ? S 0:00 [kintegrityd/0] 104 ? S 0:00 [kblockd/0] 106 ? S 0:00 [kacpid] 0:00 [kacpi_notify] 107 ? S 0:00 [kacpi hotplug] 108 ? S S 0:00 [khubd] 174 ? 177 ? S 0:00 [kseriod] 299 ? 0:00 [khungtaskd] S 300 ? S 0:00 [kswapd0] 353 ? S 0:00 [aio/0] 361 ? S 0:00 [unionfs siod/0] ``` The following example shows how to display extensive information about all processes currently running on the system. ``` vyatta@R1:~$ show system processes extensive top - 08:23:47 up 13:28, 2 users, load average: 0.12, 0.03, 0.01 Tasks: 72 total, 1 running, 71 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 0.2%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st 170488k used, 72348k free, 58752k buffers Mem: 242836k total, Swap: 0k total, 0k used, 0k free, 81440k cached PID USER VIRT RES SHR S %CPU %MEM TIME+ COMMAND PR NI 768 R 1.8 3515 vyatta 20 0 2372 984 0.4 0:00.06 top 20 0 2076 680 584 S 0.0 0.3 0:03.79 init 1 root 0.0 20 0 0 0 0 S 0.0 0:00.00 kthreadd 2 root 3 root 20 0 0 0 0 S 0.0 0.0 0:00.98 ksoftirqd/0 0:00.00 migration/0 4 root RТ 0 0 0 0 S 0.0 0.0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0 5 root RT 0 0.0 6 root 2.0 Ω 0 0 0 S 0.0 0:09.69 events/0 0.0 0 0 0 S 0.0 0:00.00 khelper 7 root 2.0 0 12 root 20 0 Ω 0 0 S 0.0 0.0 0:00.00 async/mgr 0.0 0:00.00 pm 13 root 20 \cap Ω Ω 0 S 0.0 99 root 20 0 0 0 0 S 0.0 0.0 0:00.12 sync supers 101 root 20 0 0 0 S 0.0 0.0 0:00.27 bdi-default 0 0.0 0:00.00 kintegrityd/0 102 root 20 Ω Ω Ω 0 S 0.0 104 root 20 0 0 0 0 S 0.0 0.0 0:00.05 kblockd/0 106 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kacpid 107 root 2.0 0 0 0 0 S 0.0 0.0 0:00.00 kacpi notify ``` The following example shows how to display all processes that are currently running and how they are related. ``` vyatta@R1:~$ show system processes tree PID PGID SID TTY TIME CMD 0 0 ? 00:00:00 kthreadd 3 0 ? 00:00:00 ksoftirgd/0 00:00:00 4 Λ 0 ? migration/0 5 Ω 0 ? 00:00:00 watchdog/0 0 ? 00:00:09 6 0 events/0 0 ? 00:00:00 Ω khelper 12 0 0 ? 00:00:00 async/mgr 00:00:00 mg ``` | 99 | 0 | 0 ? | 00:00:00 | sync supers | |-----|---|-----|----------|----------------| | 101 | 0 | 0 ? | 00:00:00 | bdi-default | | 102 | 0 | 0 ? | 00:00:00 | kintegrityd/0 | | 104 | 0 | 0 ? | 00:00:00 | kblockd/0 | | 106 | 0 | 0 ? | 00:00:00 | kacpid | | 107 | 0 | 0 ? | 00:00:00 | kacpi notify | | 108 | 0 | 0 ? | 00:00:00 | kacpi hotplug | | 174 | 0 | 0 ? | 00:00:00 | khubd | | 177 | 0 | 0 ? | 00:00:00 | kseriod | | 299 | 0 | 0 ? | 00:00:00 | khungtaskd | | 300 | 0 | 0 ? | 00:00:00 | kswapd0 | | 353 | 0 | 0 ? | 00:00:00 | aio/0 | | 361 | 0 | 0 ? | 00:00:00 | unionfs siod/0 | | 363 | 0 | 0 ? | 00:00:00 | crypto/0 | | | | | | | # show system routing-daemons Displays a list of active routing daemons. # **Syntax** show system routing-daemons #### Modes Operational mode # **Usage Guidelines** Use this command to display a list of active routing daemons. ## **Examples** The following example shows how to display a list of active routing daemons. vyatta@R1:~\$ show system routing-daemons zebra ripd ripngd ospfd ospfd bgpd # show system storage Displays system file usage and available storage space. ### **Syntax** show system storage #### Modes Operational mode # **Usage Guidelines** Use this command to see how much storage space is currently being used by the system and how much is free. ## **Examples** The following example shows file system usage information for R1. # show system uptime Displays information on how long the system has been running. ### **Syntax** show system uptime #### Modes Operational mode # **Usage Guidelines** Use this command to see how long the system has been running, the number of users currently logged in, and the average system load. # **Examples** The following example shows file system usage information for R1. ``` vyatta@R1:~$ show system uptime 20:45:59 up 3:04, 2 users, load average: 0.00, 0.00, 0.00 vyatta@R1:~$ ``` # show system usb Displays which peripherals are connected to the USB bus. # **Syntax** show system usb #### Modes Operational mode # **Usage Guidelines** Use this command to see which peripherals are connected to the USB bus. ## **Examples** The following example shows system USB information for R1. vyatta@R1:~\$ show system usb Bus 001 Device 002: ID 0d49:7212 Maxtor Bus 001 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub vyatta@R1:~\$ # show tech-support Displays a consolidated report of system information. #### **Syntax** show tech-support [brief] [save [filename] | save-uncompressed [filename]] #### Command Default Information is sent to the console. #### **Parameters** #### brief Displays a summary of show version, show configuration, show interfaces, show ip route, and show log commands. #### save Saves the support information to a compressed (.gz) file. The file name takes the format *hostname* **tech-support** *timestamp* **gz**, where *hostname* is the host name configured for the Vyatta device and *timestamp* is the time the file was saved in the format *YYYY-MM-DD-hhmmss*. For local files, a rotation mechanism limits the number of output files to 100; that is, creating a file after the first 100 files causes the oldest file to be deleted. #### save-uncompressed Saves the support information to an uncompressed file. The file name takes the format *hostname* **tech-support** *timestamp*, where *hostname* is the host name configured for the Vyatta device and *timestamp* is the time the file was saved in the format *YYYY-MM-DD-hhmmss*. For local files, a rotation mechanism limits the number of output files to 100; that is, creating a file after the first 100 files causes the oldest file to be deleted. #### filename The name of a file to which to save the support information. Refer to "Usage Guidelines" for details. #### Modes Operational mode #### **Usage Guidelines** Use this command to display a technical report that provides consolidated information about system components and configuration. #### NOTE Only administrative (admin)-level users can run the command. This information is valuable for debugging and diagnosing system issues. You should provide the technical report whenever you open a case with Brocade technical support. Technical support information can be saved to a hard disk (including a Flash disk or USB device), an FTP server, or an SCP server The default local technical support directory is /config/support. If a file name is specified, the support information is saved to the **filename**.hostname.tech-support.timestamp file, where hostname is the host name configured for the Vyatta device and timestamp is the time the file was saved. If an absolute path is prefixed to the file name, the file is saved in that location. Otherwise, the file is saved to a location relative to the default path, which is the /config/support directory. An FTP or SCP server can also be specified. The following table shows how to specify the syntax for files from different file locations. TABLE 27 Specifying locations for the file | Location | Specification | | |------------------|--|--| | An absolute path | Use standard UNIX file specification. | | | A relative path | Specify the path name relative to the default directory. | | | FTP server | Use the following syntax for filename: | | | | ftp://user:passwd@host/file | | | | where <i>user</i> is the user name on the host, <i>passwd</i> is the password associated with the user name, <i>host</i> is the host name or IP address of the FTP server, and <i>file</i> is the file name, including the path. | | | SCP server | Use the following syntax for filename: | | | | scp://user:passwd@host/file | | | | where <i>user</i> is the user name on the host, <i>passwd</i> is the password associated with the user name, <i>host</i> is the host name or IP address of the SCP server, and <i>file</i> is the file name, including the path. | | #### **Examples** The following example shows how to display a technical report of consolidated system information. # show version Displays information about the versions of system software. ## **Syntax** show version [all | added | deleted | downgraded | upgraded] ### Command Default A brief version summary is shown. Detailed information about constituent packages is not shown. ### **Parameters** all Displays all software that has been added, deleted, downgraded, or upgraded since the last baseline version upgrade. added Displays all packages that have been added since the last baseline version upgrade. deleted Displays all packages that have been deleted since the last baseline version upgrade. #### downgraded Displays all packages that have been downgraded since the last baseline version upgrade. ### upgraded Displays all packages that have been upgraded since the last baseline
version upgrade. ### Modes Operational mode # **Usage Guidelines** Use this command to see what package changes have occurred since the last time a full version upgrade was performed. The information shown always relates to the last full version upgrade. Therefore, the following conditions apply. - Immediately after a full version upgrade, entering a show version all command displays no changes. - · If a package is added after an upgrade, entering a show version all command displays the added package. - However, if the added package is then deleted again, entering a show version all command displays no change because the system is now in the same state as it is immediately after the full version upgrade. Keep in mind that if you delete a package, packages that depend on the deleted package are also removed. ## **Examples** The following example shows a version summary for a vRouter. vyatta@vyatta:~\$ show version 5.1R1 Description: Brocade vRouter 5600 5.1R1 Standard Built on: Fri Sep 23 04:24:19 UTC 2016 System type: Intel 64bit Boot via: image Hypervisor: KVM HW model: Bochs HW S/N: Not Specified 2DA5E59E-32ED-4B1A-82CB-6B7B1E9D2D1A HW UUID: Uptime: 17:04:15 up 3 min, 1 user, load average: 0.12, 0.19, 0.09 The following example shows a version summary for a VNF platform. vyatta@vyatta:~\$ show version Version: 5.1R1 Description: Brocade vRouter 5600 5.1R1 vCPE Built on: Fri Sep 23 04:28:00 UTC 2016 System type: Intel 64bit Boot via: image KVM Hypervisor: Hypervic HW model: Standard PC (i440FX + PIIX, 1996) Not Specified HW UUID: 97701E2E-817E-11E6-A7BC-B003F4010100 10:13:46 up 4 days, 23:00, 4 users, load average: 1.72, 1.43, 1.46 Uptime: The following example shows version summary for a distributed services platform. vyatta@vyatta:~\$ show version Version: 5.1R1 Description: Brocade vRouter 5600 5.1R1 Control Plane Built on: Fri Sep 23 04:23:17 UTC 2016 System type: Intel 64bit Boot via: image Hypervisor: KVM Standard PC (i440FX + PIIX, 1996) HW model: HW S/N: Not Specified HW UUID: 83EE66A1-84B8-11E6-86C1-B003F4030304 10:12:54 up 20:28, 3 users, load average: 0.01, 0.02, 0.00 Uptime: #### NOTE The naming convention for vRouter images is vyatta-vr-platform-version_amd64.file-type where *vr-platform* = esx, kvm, hyperv, xen, and so forth; *version* = 5.1R1, and so forth; and *file-type* = iso, ova, img, and so forth. # system alg ftp Configures tracking of FTP connections. # **Syntax** ``` set system alg ftp { disable | port port-number } delete system alg ftp port port-number show system alg ftp port port-number ``` ### **Command Default** FTP connection tracking is enabled. ### **Parameters** ``` disable ``` Disables tracking of FTP connections. port port-number Specifies a control port for the tracking of FTP connections. ### Modes Configuration mode # **Configuration Statement** ``` system { alg{ ftp { disable port port-number } } } ``` # **Usage Guidelines** Use the set form of this command to configure tracking of FTP connections. Use the delete form of this command to remove a port from the tracking of FTP connections. Use the **show** form of this command to display the configuration of FTP connection tracking. # system alg icmp disable Disables tracking of ICMP connections. # **Syntax** set system alg icmp disable delete system alg icmp disable show system alg icmp disable ### Command Default ICMP connection tracking is enabled. ### Modes Configuration mode # **Configuration Statement** # **Usage Guidelines** ALGs work as helpers for the NAT system for a specified protocol. ALGs are enabled by default when NAT is enabled. Disabling an ALG may result in NAT not being performed correctly for the specified protocol. Use the set form of this command to disable ICMP connection tracking. Use the **delete** form of this command to reenable ICMP connection tracking. Use the **show** form of this command to display the configuration of ICMP connection tracking. # system console device <device> Defines a specified device as the system console. # **Syntax** ``` set system console device [speed speed] [modem] delete system console device device [speed] [modem] show system console device device ``` ### Command Default The serial port device (ttyS0) is configured with a speed of 9600. ### **Parameters** ``` device ``` Multi-node. The name of a console device. The device name is one of the following: ttySN: Serial device name ttyUSBX: USB serial device name hvc0: Xen consolettyS0: Serial port device speed The speed (baud rate) of the console device. The speed is one of the following: 1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200. The default speed is 9600. modem Indicates that the port is connected to the serial console through a Hayes compatible modem. ### Modes Configuration mode ## **Configuration Statement** ``` system { console { device device { speed speed modem } } } ``` # **Usage Guidelines** Use this command to specify a device as the system console. Changes take effect the next time a user logs in through the device and not when the configuration is committed. Standard VGA consoles (ttyO through tty9) always exist and are not controlled by this configuration. Bootup messages are limited to the serial port device (ttySO). Other consoles can be configured but do not receive these messages. Changing the speed of serial devices does not affect the system BIOS. Use the **set** form of this command to specify a device as the system console. Use the **delete** form of this command to remove a system console device. Use the **show** form of this command to view system console configuration. # system console powersave Saves power when a blank screen appears on the VGA console. # **Syntax** set system console powersave delete system console powersave show system console ### **Command Default** Power is not saved. ### Modes Configuration mode ## **Configuration Statement** ``` system { console { powersave } } ``` # **Usage Guidelines** Use this command to save power when a blank screen appears on the VGA console. After 15 minutes of inactivity the screen goes blank. After 60 minutes, the monitor powers down. Use the **set** form of this command to save power when a blank screen appears on the console. Use the delete form of this command to return the system to its default behavior, that is, power is not saved. Use the **show** form of this command to view console configuration. # system default dataplane cpu-affinity <cpu-list> Assigns a range or list of CPUs to the affinity on the default data plane. # **Syntax** set system default dataplane cpu-affinity cpu-list delete system default dataplane [cpu-affinity [cpu-list]] show system default dataplane [cpu-affinity] ### **Parameters** cpu-list The CPU IDs assigned to the affinity. Enter a range of numbers separated by a hyphen or a comma-separated list. The first CPU is 0. At least two CPUs must be assigned. ### Modes Configuration mode ## **Configuration Statement** ``` system { default dataplane { cpu-affinity cpu-list } } ``` ## **Usage Guidelines** #### NOTE Misconfiguration of CPU affinity may adversely affect the performance of the vRouter. By default, all CPUs are used. To display the number of CPUs available for the data plane, use show hardware cpu on page 110. The CPU ID does not have to exist in the system where the data plane is running. For example, if you configure **cpu-affinity** with a range of **0-3** and the data plane is running on a two CPU system, then the data plane only uses CPUs 0 and 1 and silently ignores the other CPUs in the affinity. If **cpu-affinity** is out of the range of the available CPUs in the data plane environment, for example, if you configure **cpu-affinity** with a range of **4-7** on a two CPU system, then an ERROR priority system message is logged and the data plane is not started. Use the set form of this command to define the CPU affinity list for the default data plane. Use the delete form of this command to remove CPU affinity list for the default data plane. Use the **show** form of this command to view the CPU affinity list for the default data plane. # system domain-name <domain> Establishes a domain name for the system. # **Syntax** set system domain-name domain delete system domain-name show system domain-name ### **Parameters** domain Mandatory. A name for the domain in which the system resides. The format of the name is a character string that contains letters, numbers, hyphens (-), and one period; for example, brocade.com. A domain name can have a maximum of 253 characters. ### Modes Configuration mode # **Configuration Statement** ``` system { domain-name domain } ``` # **Usage Guidelines** Use this command to establish a domain name for the system. Note that both the **system domain-name** and **system domain-search domain** commands cannot be configured simultaneously; they are mutually exclusive. Use the set form of this command to establish the domain name to be used by the system. Use the delete form of this command to remove a domain name. Use the **show** form of this command to display a domain name. # system domain-search domain <domain> Defines a set of domains for domain completion. # **Syntax** set system domain-search domain *domain* delete system domain-search domain *domain* show system domain-search domain ### **Parameters** domain Mandatory. Multi-node. A domain name to be added to or deleted from the list of domains in the search order string. The format of the name is a character string that contains letters, numbers, hyphens (-), and one period; for example, brocade.com. A domain name can have a maximum of 253 characters. You can specify up to six domains by creating up to six domain-search multi-nodes. ### Modes Configuration mode # Configuration Statement ``` system { domain-search { domain domain } } ``` ## **Usage Guidelines** Use this command to list up to 6 domains to be searched in DNS lookup requests. When the system receives an unqualified host name, it attempts
to form a Fully Qualified Domain Name (FQDN) by appending the domains in this list to the host name. The system tries each domain name in turn, in the order in which they were configured. If none of the resulting FQDNs succeeds, the name is not resolved and an error is reported. Note that both the **system domain-name** and **system domain-search domain** commands cannot be configured simultaneously; they are mutually exclusive. Use the **set** form of this command to add a domain name to the search list. Note that you cannot use **set** to change a domain name in the list. To replace an incorrect domain name, delete and replace it with a new name. Use the delete form of this command to remove a name from a list of domain names. Use the **show** form of this command to view a list of domain names. # system host-name <name> Establishes the host name for the system. # **Syntax** set system host-name name delete system host-name show system host-name ### **Command Default** By default, the host name is preconfigured to **vyatta**. If you delete the host name, or if you delete the **system** node, the default name is restored. ### **Parameters** name A name you want to give to the system. The name can contain only letters, numbers, and hyphens (-). The default name is **vyatta**. If you delete the host name, or if you try to delete the **system** node, the host name reverts to the default name of **vyatta**. ### Modes Configuration mode # **Configuration Statement** ``` system { host-name name ``` # **Usage Guidelines** Use this command to establish a host name for the system. When you establish the name, the command prompt changes to reflect the new host name. To see the change in the prompt, you must log out of the system shell and log back in again. Use the **set** form of this command to establish or change the host name. Use the delete form of this command to restore the default host name of vyatta. Use the **show** form of this command to display the host name. # system name-server <address> Specifies a Domain Name System (DNS) name server for the system. # **Syntax** set system name-server address delete system name-server address show system name-server ### **Parameters** address Multi-node. The IPv4 or IPv6 address of a DNS name server to use for local name query requests. You can specify multiple DNS name servers by creating multiple instances of the name-server configuration node. ### Modes Configuration mode ## **Configuration Statement** ``` system { name-server address } ``` # **Usage Guidelines** Use this command to a DNS for the system. Use the **set** form of this command to specify a name server for the system. Note that you cannot modify the entry of a DNS name server by using the **set** command. To replace an entry, delete it and create a new entry. Use the **delete** form of this command to remove a name server. Use the **show** form of this command to view the name servers that have been specified. # system ntp server <server-name> Specifies a Network Time Protocol (NTP) server to use when synchronizing the system clock. # **Syntax** set system ntp server server [address-family | dynamic | keyid | noselect | preempt | prefer] delete system ntp server server [address-family | dynamic | keyid | noselect | preempt | prefer] show system ntp server ### **Command Default** By default, the system uses the NTP server at 0.vyatta.pool.ntp.org. ### **Parameters** server Multi-node. The IP address or host name of an NTP server. The system automatically obtains the system date and time from the specified server or servers. You can specify multiple NTP servers by creating multiple instances of the ntp server configuration node. #### address-family Address family for hostname resolution. dynamic Allows to configure the server even if it is not reachable. key-id NTP aunthentication key ID. noselect Marks the server as unused. preempt Specifies the association as preemptable rather than the default persistent. prefer Marks the server as preferred. ### Modes Configuration mode # Configuration Statement ``` system { ntp { server server { ``` address-family dynamic key-id noselect ``` preempt prefer } ``` # **Usage Guidelines** Use this command to specify an NTP server for the system. Use the **set** form of this command to specify an NTP server for the system. Note that you cannot modify an NTP server entry by using the **set** command. To replace an entry, delete it and create a new entry. Use the **delete** form of this command to remove an NTP server. Use the **show** form of this command to view the NTP servers that have been specified. # **Examples** This example describes mark a NTP server 10.18.191.203 as the preferred server. ``` vyatta@Rn# set system ntp server 10.18.191.203 prefer vyatta@Rn# show system ntp server server 10.18.191.203 { prefer ``` # system power-profile policy <thresholds> Creates the idle, minimum sleep time, and maximum sleep time thresholds for a power profile. # **Syntax** set system power-profile policy [balanced | power-save | low-latency] delete system power-profile policy [balanced | power-save | low-latency] show system power-profile policy [balanced | power-save | low-latency] ### **Command Default** The default setting is balanced. ### **Parameters** ### balanced Provides the best overall performance, but adds latency to the handling of the initial packet in a burst. ### power-save The polling parameters are adjusted to optimize the utilization of the CPU, but adds latency to the initial packet. ### low-latency The polling parameters are adjusted to optimize for low packet latency at the expense of CPU utilization. ### Modes Configuration mode ## **Usage Guidelines** This command allows administrators to adjust the idle threshold, minimum sleep time, and maximum sleep time. The data plane determines how long the CPU core sleeps between polls for packets based on how busy the CPU core has been. When the CPU sees multiple packets when polling a device, it considers itself busy and cuts the sleep time in half. If the CPU has not seen any packets in the given interval, it considers itself idle and increases the sleep interval by one microsecond. Use the set form of this command to create policy settings for a power profile. Use the **delete** form of this command to delete the policy settings for a power profile. Use the **show** form of this command to show the policy settings for a power profile. # system power-profile custom <parameter> <threshold> Creates the thresholds for a custom policy of a power profile. # **Syntax** set system power-profile custom parameter [idle-threshold microseconds | min-sleep microseconds | max-sleep microseconds] delete system power-profile custom parameter [idle-threshold | min-sleep | max-sleep] show system power-profile custom parameter [idle-threshold | min-sleep | max-sleep] ### **Parameters** idle-threshold microseconds Sets the idle threshold in microseconds. min-sleep microseconds Sets the minimum sleep time in microseconds. max-sleep microseconds Sets the maximum sleep time in microseconds. ### Modes Configuration mode # **Usage Guidelines** Use the set form of this command to create thresholds for a custom policy of a power profile. Use the delete form of this command to delete the thresholds for a custom policy of a power profile. Use the **show** form of this command to show the thresholds for a custom policy of a power profile. # system ntp server <server-name> address-family Specifies the address family for a Network Time Protocol (NTP) server. # **Syntax** set system ntp server server address-family [ipv4 | ipv6] delete system ntp server server address-family [ipv4 | ipv6] show system ntp server ### Command Default By default, the system uses the NTP server at O.vyatta.pool.ntp.org. If no address family is specified then the address selection is determined by the resolver. ### **Parameters** server Multi-node. The IP address or host name of an NTP server. The system automatically obtains the system date and time from the specified server or servers. You can specify multiple NTP servers by creating multiple instances of the ntp server configuration node. ### Modes Configuration mode # **Configuration Statement** ``` system { ntp { server server address-family ipv4 address-family ipv6 } } ``` # **Usage Guidelines** Use this command to specify the address family for an NTP server. When specified, the address-family parameter forces the name resolution to choose an IP address within that family. This is useful when both A and AAAA records exist in DNS for the same host name. ### NOTE Time servers in the second address pool, 2.vyatta.pool.ntp.org, have IPv6 connectivity. Use the set form of this command to specify the address family for a NTP server. You cannot modify an NTP server entry by using the set command; to replace an entry, delete it and create a new entry. Use the **delete** form of this command to remove an NTP server. Use the **show** form of this command to view the NTP servers that have been specified. # system options reboot-on-panic <value> Specifies whether to reboot the system if a kernel panic occurs. # **Syntax** set system options reboot-on-panic *value* delete system options reboot-on-panic show system options reboot-on-panic ### Command Default The system reboots (true). ### **Parameters** value Mandatory. Indicates whether the system should automatically reboot if a kernel panic occurs. The value is one of the following: true—Reboots the system false—Does not reboot the system ### Modes Configuration mode # **Configuration Statement** ``` system { options { reboot-on-panic value } } ``` ## **Usage Guidelines** Configuring the system not to reboot on kernel panic allows you to examine information that might help you determine the cause of the panic. Use the set form of this command to specify whether to reboot the system if a kernel panic occurs. Use the delete form of this command to restore
default behavior, that is, the system reboots. Use the **show** form of this command to view configuration for this option. # system session table-size <size> Sets the maximum size of the connection-tracking table. # **Syntax** set system session table-size *number* delete system session table-size show system session table-size ### Command Default 1.048.576 ### **Parameters** number The maximum number of entries allowed in the connection-tracking table. The number ranges from 1 to 10000000. ### Modes Configuration mode ## Configuration Statement ``` system { session { table-size number { } } } ``` ## **Usage Guidelines** Use the **set** form of this command to set the maximum size of the connection-tracking table. Use the delete form of this command to restore the default size of the connection-tracking table. Use the **show** form of this command to display the table size. When you configure connection synchronization on a 5600 vRouter, the maximum number of session entries that you can configure is 200000 when the system memory is 4G, or 100000 entries when the system memory is 2G. # system session timeout custom rule rule-number destination Specifies destination parameters for custom session timeout. # **Syntax** set system session timeout custom rule rule-number destination { address address | port port-number } delete system session timeout custom rule rule-number show system session timeout custom rule rule-number ### **Parameters** rule-number Number to identify the custom rule. The rules are evaluated in numeric order. The first match is used to apply the timeout value. address Destination IP address, subnet, or address group. port Destination port or port group. ### Modes Configuration mode # **Configuration Statement** # **Usage Guidelines** Use this command to specify custom destination parameters for session timeouts. Use the **set** form of this command to specify custom parameters. Use the **delete** form of this command to remove custom settings. system session timeout custom rule rule-number destination Use the ${\bf show}$ form of this command to view the current settings. # system session timeout custom rule rule-number expire Specifies custom session expiration time. # **Syntax** set system session timeout custom rule rule-number expire time delete system session timeout custom rule rule-number show system session timeout custom rule rule-number ### **Parameters** rule-number Number to identify the custom rule. The rules are evaluated in numeric order. The first match is used to apply the timeout value. time Interval after which the session expires (1-21474836 seconds). ### Modes Configuration mode # **Configuration Statement** ## **Usage Guidelines** Use this command to specify custom session expiration time. Use the **set** form of this command to specify custom parameters. Use the **delete** form of this command to remove custom settings. Use the **show** form of this command to view the current settings. # system session timeout custom rule rule-number protocol Specifies the protocol to match for custom session timeout. # **Syntax** set system session timeout custom rule rule-number protocol string delete system session timeout custom rule rule-number show system session timeout custom rule rule-number ### **Parameters** rule-number Number to identify the custom rule. The rules are evaluated in numeric order. The first match is used to apply the timeout value. string Protocol to match (alphanumeric string). ### Modes Configuration mode # **Configuration Statement** # **Usage Guidelines** Use this command to specify a protocol to match for custom session timeout. Use the **set** form of this command to specify custom parameters. Use the **delete** form of this command to remove custom settings. Use the **show** form of this command to view the current settings. # system session timeout custom rule rule-number source Specifies source parameters for custom session timeout. # **Syntax** set system session timeout custom rule *rule-number* source { address address | port port-number } delete system session timeout custom rule *rule-number* show system session timeout custom rule rule-number ### **Parameters** rule-number Number to identify the custom rule. The rules are evaluated in numeric order. The first match is used to apply the timeout value. address Destination IP address, subnet, or address group. port Destination port or port group. ### Modes Configuration mode ## **Configuration Statement** # **Usage Guidelines** Use this command to specify custom source parameters for session timeouts. Use the **set** form of this command to specify custom parameters. Use the **delete** form of this command to remove custom settings. system session timeout custom rule rule-number source Use the ${\bf show}$ form of this command to view the current settings. # system session timeout icmp established Sets the timeout for ICMP connections that are in the "established" state. # **Syntax** set system session timeout icmp established timeout delete system session timeout icmp established show system session timeout icmp established ### **Command Default** 60 seconds ### **Parameters** timeout The amount of time, in seconds, that an ICMP connection waits in the "established" state before timing out. The timeout ranges from 1 through 21474836. ### Modes Configuration mode ## Configuration Statement # **Usage Guidelines** Use the set form of this command to set the timeout for ICMP connections that are in the "established" state. Use the delete form of this command to restore the default timeout. # system session timeout icmp new Sets the timeout for ICMP connections that are in the "new" state. # **Syntax** set system session timeout icmp new timeout delete system session timeout icmp new show system session timeout icmp new ### **Command Default** 30 seconds ### **Parameters** timeout The amount of time, in seconds, that an ICMP connection waits in the "new" state before timing out. The timeout ranges from 1 through 21474836. ### Modes Configuration mode # **Configuration Statement** # **Usage Guidelines** Use the set form of this command to set the timeout for ICMP connections that are in the "new" state. Use the delete form of this command to restore the default timeout. # system session timeout other established Defines the timeout for connections that use protocols other than ICMP, TCP, or UDP and are in the "established" state. # **Syntax** set system session timeout other established timeout delete system session timeout other established show system session timeout other established ### Command Default 60 seconds ### **Parameters** timeout The amount of time, in seconds, that a connection waits in the "established" state before timing out. The timeout ranges from 1 to 21474836. ### Modes Configuration mode # Configuration Statement # **Usage Guidelines** Use the **set** form of this command to set the timeout for connections that use protocols other than ICMP, TCP, and UDP and are in the "established state. Use the delete form of this command to restore the default timeout. # system session timeout other new Sets the timeout for connections that use protocols other than ICMP, TCP, and UDP and are in the "new" state. # **Syntax** set system session timeout other new timeout delete system session timeout other new show system session timeout other new ### Command Default 30 seconds ### **Parameters** timeout The amount of time, in seconds, that a connection waits in the "new" state before timing out. The timeout ranges from 1 through 21474836. ### Modes Configuration mode # **Configuration Statement** # **Usage Guidelines** Use the **set** form of this command to set the timeout for connections that use protocols other than ICMP, TCP, or UDP and are in the "new" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp close-wait Sets the timeout for TCP connections that are in the "close-wait" state. # **Syntax** set system session timeout tcp close-wait timeout delete system session timeout tcp close-wait show system session timeout tcp close-wait ### **Command Default** 21.600 seconds ### **Parameters** timeout The amount of time, in seconds, that a TCP connection waits in the "close-wait" state before timing out. The timeout ranges from 1 through 21474836. ### Modes Configuration mode ## Configuration Statement # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "close-wait" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp closed Sets the timeout for TCP connections that are in the "closed" state. # **Syntax** $\textbf{set system session timeout tcp closed} \ \textit{timeout}$ delete system session timeout tcp closed show system session timeout tcp closed ### **Command Default** 10 seconds ### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "closed" state before timing out. The timeout ranges from 1 to 21474836. ### Modes Configuration mode # **Configuration Statement** # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "closed" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp closing Sets the timeout for TCP connections that are in the "closing" state. # **Syntax** set system session timeout tcp closing timeout delete system session timeout tcp closing show system session timeout tcp closing ### **Command Default** 30 seconds ### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "closing" state before timing out. The timeout ranges from 1 to 21474836. ### Modes Configuration mode # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "closing" state. Use the delete form of this command to restore
the default timeout. # system session timeout tcp established Sets the timeout for TCP connections that are in the "established" state. # **Syntax** set system session timeout tcp established timeout delete system session timeout tcp established show system session timeout tcp established ### **Command Default** 86.400s ### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "established" state before timing out. The timeout ranges from 1 to 21474836. ### Modes Configuration mode ## Configuration Statement # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "established" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp fin-received Sets the timeout for TCP connections that are in the "fin-received" state. # **Syntax** set system session timeout tcp fin-received timeout delete system session timeout tcp fin-received show system session timeout tcp fin-received ### Command Default 240 seconds ### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "fin-received" state before timing out. The timeout ranges from 1 to 21474836. ### Modes Configuration mode ## Configuration Statement ``` system { session { timeout { fin-received timeout { } } } } ``` # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "fin-received" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp fin-sent Sets the timeout for TCP connections that are in the "fin-sent" state. # **Syntax** set system session timeout tcp fin-sent timeout delete system session timeout tcp fin-sent show system session timeout tcp fin-sent ### Command Default 240 seconds ### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "fin-sent" state before timing out. The timeout ranges from 1 to 21474836. ### Modes Configuration mode # **Configuration Statement** ``` system { session { timeout { tcp { fin-sent timeout } } } ``` # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "fin-sent" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp fin-wait Sets the timeout for TCP connections that are in the "fin-wait" state. ## **Syntax** set system session timeout tcp fin-wait timeout delete system session timeout tcp fin-wait show system session timeout tcp fin-wait ### **Command Default** 21600 seconds #### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "fin-wait" state before timing out. The timeout ranges from 1 to 21474836. #### Modes Configuration mode ### Configuration Statement ``` system { session { timeout { tcp { fin-wait timeout } } } ``` # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "fin-wait" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp last-ack Sets the timeout for TCP connections that are in the "last-ack" state. # **Syntax** set system session timeout tcp last-ack timeout delete system session timeout tcp last-ack show system session timeout tcp last-ack ### Command Default 30 seconds #### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "last-ack" state before timing out. The timeout ranges from 1 to 21474836. #### Modes Configuration mode # **Configuration Statement** # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "last-ack" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp simsyn-sent Sets the timeout for TCP connections that are in the "simsyn-sent" state. # **Syntax** set system session timeout tcp simsyn-sent timeout delete system session timeout tcp simsyn-sent show system session timeout tcp simsyn-sent ### Command Default 30 seconds #### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "simsyn-sent" state before timing out. The timeout ranges from 1 to 21474836. #### Modes Configuration mode ### Configuration Statement # **Usage Guidelines** Use the **set** form of this command to set the timeout for TCP connections that are in the "simsyn-sent" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp syn-received Sets the timeout for TCP connections that are in the "syn-received" state. # **Syntax** set system session timeout tcp syn-received timeout delete system session timeout tcp syn-received show system session timeout tcp syn-received ### Command Default 60 seconds #### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "syn-received" state before timing out. The timeout ranges from 1 to 21474836. #### Modes Configuration mode ### Configuration Statement # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "syn-received" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp syn-sent Sets the timeout for TCP connections that are in the "syn-sent" state. # **Syntax** set system session timeout tcp syn-sent timeout delete system session timeout tcp syn-sent show system session timeout tcp syn-sent ### Command Default 30 seconds #### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "syn-sent" state before timing out. The timeout ranges from 1 to 21474836. #### Modes Configuration mode ### Configuration Statement # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "syn-sent" state. Use the delete form of this command to restore the default timeout. # system session timeout tcp time-wait Sets the timeout for TCP connections that are in the "time-wait" state. # **Syntax** set system session timeout tcp time-wait timeout delete system session timeout tcp time-wait show system session timeout tcp time-wait ### **Command Default** 21600 seconds #### **Parameters** timeout The amount of time, in seconds, a TCP connection waits in the "time-wait" state before timing out. The timeout ranges from 1 to 21474836. #### Modes Configuration mode # **Configuration Statement** # **Usage Guidelines** Use the set form of this command to set the timeout for TCP connections that are in the "time-wait" state. Use the delete form of this command to restore the default timeout. # system session timeout udp established Sets the timeout for UDP connections that are in the "established" state. # **Syntax** set system session timeout udp established timeout delete system session timeout udp established show system session timeout udp established ### Command Default 60 seconds #### **Parameters** timeout The amount of time, in seconds, a UDP connection waits in the "established" state before timing out. The timeout ranges from 1 to 21474836. #### Modes Configuration mode ### Configuration Statement # **Usage Guidelines** Use the set form of this command to set the timeout for UDP connections that are in the "established" state. Use the delete form of this command to restore the default timeout. # system session timeout udp new Sets the timeout for UDP connections that are in the "new" state. # **Syntax** set system session timeout udp new timeout delete system session timeout udp new show system session timeout udp new ### **Command Default** 30 seconds #### **Parameters** timeout The amount of time, in seconds, a UDP connection waits in the "new" state before timing out. The timeout ranges from 1 to 21474836. #### Modes Configuration mode # **Configuration Statement** # **Usage Guidelines** Use the set form of this command to set the timeout for UDP connections that are in the "new" state. Use the delete form of this command to restore the default timeout. # system static-host-mapping host-name < name > Statically maps to a host name and an IP address and one or more aliases. # **Syntax** set system static-host-mapping host-name name [inet address | alias alias] delete system static-host-mapping host-name name [inet | alias] show system static-host-mapping host-name name [inet | alias] #### **Parameters** name Multi-node. A Fully Qualified Domain Name (FQDN) name being statically mapped to an IP address; for example, router1@mydomain.com. The name can contain only letters, numbers, periods (.), and hyphens (-). You can define multiple mappings by creating multiple host-name configuration nodes. address Mandatory. The IPv4 address of the interface being statically mapped to the host name. alias Optional. Multi-node. An alias for the interface. The name can contain only letters, numbers, and hyphens (-). You can define multiple aliases for a host name by creating multiple alias configuration nodes. ### Modes Configuration mode ### **Configuration Statement** ``` system { static-host-mapping { host-name name { inet address alias alias { } } } ``` ### **Usage Guidelines** Use this command to statically map a host name to an IP address and one or more aliases. Use the **set** form of this command to map a host name and an IP address, assign an address, or specify an alias. Note that you cannot use **set** to change the host name. To change the host name, delete the mapping entry and create a new entry with the correct host name. Use the delete form of this command to remove a static mapping, an address, or an alias. Use the **show** form of this command to view a static mapping, an address, or an alias. # system time-zone <zone> Sets the time zone for the local system clock. ## **Syntax** set system time-zone zone delete system time-zone show system time-zone ### **Command Default** The default time zone is Greenwich mean
time (GMT). #### **Parameters** zone A time zone in the format of *region/location*; for example, **US/Pacific**Note that both *region* and *location* are case sensitive. Use command completion (that is, the <Tab> key) to display available time zones. #### Modes Configuration mode ### Configuration Statement ``` system { time-zone zone } ``` ## **Usage Guidelines** Use this command to set the time zone for the local system clock. To set the time, you specify a region and location. Use command completion (that is, the <Tab> key) to display time zones that are available. In addition to the wide range of time zones available, backward compatibility is achieved by using Etc/<offset> and SystemV/ <offset> as region/location. Note that Etc/<offset> uses Posix-style offsets. These offsets use plus signs (+) to indicate west of Greenwich rather than east of Greenwich as many systems do. For example, Etc/GMT+8 corresponds to 8 hours behind UTC (that is, west of Greenwich). Use the set form of this command to set the time zone for the first time or to change the time zone setting. Use the **delete** form of this command to remove the time zone setting. This command restores the time zone to the default (GMT). Use the **show** form of this command to view the time zone. # Role-based Access Control | • | Overview | 191 | |---|------------------------|-----| | • | Path matching | 191 | | • | Default rule set | 192 | | | Configuration examples | 193 | This chapter explains role-based access control (RBAC) and how to configure this feature. ### Overview Role-based Access Control (RBAC) is a method of restricting access to part of the configuration to authorized users. RBAC allows an administrator to define the rules for a group of users that restrict which commands users of that group are allowed to run. RBAC is performed by first creating a group assigned to the Access Control Management (ACM) rule set, adding a user to the group, creating a rule set to match the group to the paths in the system, then configuring the system to allow or deny those paths that are applied to the group. Users are allowed to be in one of three class of users with defined privilege levels: - · Operator—Allowed to execute commands that are defined in the Vyatta CLI. Not allowed to into config mode. - Administrator—Allowed to execute arbitrary Linux commands in addition to commands that are defined by the Vyatta CLI and to enter configuration mode. - Superuser—Allowed to execute commands with root privileges through the sudo command in addition to having administrator class privileges. By default, all users that are defined to be in the superuser or the administrator class belong to a common group called vyattacfg. This group allows a rule set to be defined that pertains to both the superuser and administrator classes without defining two group matches. The operator class users belong to the vyattaop group. Brocade vRouter allows a superuser to create new groups based on the requirements. Brocade recommends creating a "security" group. A superuser can set rules so that only members of this new group are allowed to modify the ACM and login information. This prevents administrators from inadvertently compromising the system image or the ACM list. # Path matching System configuration is modeled after a tree structure and enables the user to filter any path of that tree. The system supports only absolute addressing that begins with / as the root and uses the wildcard operator (*) as the path language. Operational mode paths are absolute and do not match their children if a wildcard operator (*) is not included at the end of the path. Therefore, not using the wildcard operator restricts the user to specific commands. In the following example, rule 1 restricts the use of the **show** command to only **show interfaces** and rule 2 denies all other **show** commands. ``` rule 1 { action allow path "/show/interfaces" } rule 2 { action deny ``` ``` path "/show/*" } ``` # Default rule set The Brocade vRouter is preconfigured with a default rule set for RBAC. The following example shows the default rule set in RBAC. ``` super@vyatta# show system acm create-default deny delete-default deny enable exec-default allow operational-ruleset { rule 9988 { action deny command /show/configuration group vyattaop rule 9989 { action allow command "/clear/*" group vyattaop rule 9990 { action allow command "/show/*" group vyattaop rule 9991 { action allow command "/monitor/*" group vyattaop rule 9992 { action allow command "/ping/*" group vyattaop rule 9993 { action allow command "/reset/*" group vyattaop rule 9994 { action allow command "/release/*" group vyattaop rule 9995 { action allow command "/renew/*" group vyattaop rule 9996 { action allow command "/telnet/*" group vyattaop rule 9997 { action allow command "/traceroute/*" group vyattaop rule 9998 { action allow command "/update/*" group vyatta-op ``` ``` rule 9999 { action deny command "*" group vyattaop } read-default allow ruleset { rule 9999 { action allow group vyattacfg operation "*" path "*" } } update-default deny ``` # Configuration examples As an example of RBAC configuration, this section shows how to add to the default rule set and create a new role for users who should be allowed to access information regarding only routing protocols on the system. Essentially, rules are being defined for a group of users that restrict which commands the users of that group are allowed to run. ## Example of a rule set in operational mode Operational mode has a rule set like the configuration mode that allows administrators to specify which operation mode commands a user is allowed to run. For example, as a protocol administrator, the user needs to execute only the **show interfaces** and **show ip** families of commands and, therefore, should not be allowed to run other administrative actions. To define the operation mode rules for the protocol administrator group (protoadmin), perform the following steps in configuration mode. TABLE 28 Defining the operational mode rules for the protocol administrator group | Step | Description | Command | |------|--|--| | 1 | Create a rule allowing all operations on /show/ip for the protoadmin group. | <pre>vyatta@Rl#set system acm operational-ruleset rule 10 action 'allow' vyatta@Rl#set system acm operational-ruleset rule 10 command '/show/ip/*' vyatta@Rl#set system acm operational-ruleset rule 10 group 'protoadmin'</pre> | | 2 | Create a rule allowing all operations on /show/ interfaces for the protoadmin group. | <pre>vyatta@Rl#set system acm operational-ruleset rule 20 action 'allow' vyatta@Rl#set system acm operational-ruleset rule 20 command '/show/interfaces/*' vyatta@Rl#set system acm operational-ruleset rule 20 group 'protoadmin'</pre> | | 3 | Create a rule allowing all operations on / configure for the protoadmin group. | <pre>vyatta@R1#set system acm operational-ruleset rule 30 action 'allow' vyatta@R1#set system acm</pre> | TABLE 28 Defining the operational mode rules for the protocol administrator group (continued) | Step | Description | Command | |------|--|--| | | | operational-ruleset rule 30 command '/configure' vyatta@Rl#set system acm operational-ruleset rule 30 group 'protoadmin' | | 4 | Deny all operations on all other paths for the protoadmin group. | <pre>vyatta@R1#set system acm operational-ruleset rule 40 action 'deny' vyatta@R1#set system acm operational-ruleset rule 40 command '*' vyatta@R1#set system acm operational-ruleset rule 40 group 'protoadmin'</pre> | The following example shows the operational mode rule set that is configured in Table 28. ``` super@vyatta# show system acm operational-ruleset rule 10 { action allow command "/show/ip/*" group protoadmin rule 20 { action allow command "/show/interfaces/*" group protoadmin rule 30 { action allow command /configure group protoadmin rule 40 { action deny command "*" group protoadmin ``` The following example shows system login information regarding the protoadmin group with a user called john as a member of that group. ``` super@vyatta# show system login group protoadmin { } user john { authentication { encrypted-password ****** } group protoadmin level admin } super@vyatta# ``` ### Rule set in operation After logging in as a user, the configuration command options are filtered to allow only what the user can access based on the permissions for the user. Output from the **show** command for the user configuration is also filtered. This section displays the filtered output for a user called john in the protoadmin group. Notice that this user is restricted to the interfaces, policy, and protocols configuration commands as configured in the following example. In the following example, the resources, security, service, and system branches of the tree are missing, which indicates that the configuration command options for these branches are not available to the user called john. ``` john@vyatta# show interfaces { dataplane dp0p2p1 { address dhcp description "foo bar" mt.u 1500 dataplane dp0port2 { address dhcp mtu 1500 loopback lo { policy { route { route-map test { rule 10 { action permit } protocols { static { route 198.18.1.2/32 { next-hop 198.18.2.3 { } [edit] john@vyatta# ``` ### Example of a rule set in configuration mode To manage the routing protocols on the system, the user needs access to only the interface and the
routing protocol subtrees in the configuration. To configure RBAC, you must add the protocol administrator role or group. To add the protocol administrator group and define the rules for this group of users, perform the following steps in configuration mode. TABLE 29 Adding a protocol administrator group and defining the rules for the group | Step | Description | Command | |------|--|--| | 1 | Create a protocol administrator group. | vyatta@R1# set system login group
protoadmin | | 2 | Add a user to the group. | vyatta@R1# set system login user johngroup
protoadmin | TABLE 29 Adding a protocol administrator group and defining the rules for the group (continued) | Step | Description | Command | |------|---|--| | 3 | Create a rule that allows all operations on / protocols. | <pre>vyatta@Rl#set system acm ruleset rule 10 action allow vyatta@Rl#set system acm ruleset rule 10 group protoadmin vyatta@Rl#set system acm ruleset rule 10 operation * vyatta@Rl#set system acm ruleset rule 10 path /protocols</pre> | | 4 | Create a rule that allows all operations on /policy. | vyatta@Rl#set system acm ruleset rule 20 action allow vyatta@Rl#set system acm ruleset rule 20 group protoadmin vyatta@Rl#set system acm ruleset rule 20 operation * vyatta@Rl#set system acm ruleset rule 20 path /policy | | 5 | Create a rule that allows all operations on / interfaces. | vyatta@Rl#set system acm ruleset rule 30 action allow vyatta@Rl#set system acm ruleset rule 30 group protoadmin vyatta@Rl#set system acm ruleset rule 30 operation * vyatta@Rl#set system acm ruleset rule 30 path /interfaces | | 6 | Deny all operations on all other paths for users of the protoadmin group. | vyatta@Rl#set system acm
ruleset rule 40 action deny
vyatta@Rl#set system acm
ruleset rule 40 group protoadmin
vyatta@Rl#set system acm
ruleset rule 40 operation *
vyatta@Rl#set system acm
ruleset rule 40 path * | The following example shows the configuration mode rule set that is configured in Table 29. ``` super@vyatta# show system acm ruleset rule 10 { action allow group protoadmin operation "*" path /protocols rule 20 { action allow group protoadmin operation "*" path /policy rule 30 { action allow group protoadmin operation "*" path /interfaces rule 40 { action deny group protoadmin operation "*" path "*" ``` The following example shows system login information regarding the protoadmin group with a user called john as a member of that group. ``` super@vyatta# show system login group protoadmin { } user john { authentication { encrypted-password ****** } group protoadmin level admin } super@vyatta# ``` # Rule set in operation After logging in as a user, the operational mode command options are filtered to allow only what the user can access based on the permissions for the user. The following example displays the filtered output for a user called john in the protoadmin group. This example shows a subset of operational mode paths to which this user has been given access. The following example shows that the user called john is limited to the specific **show** commands with access to only the **show** interfaces and **show** ip families of commands. ## Example of a rule set to create a security group Consider a Brocade vRouter where a superuser creates a new group called security. The superuser associates a rule set with the new group so that only members of this group can modify the ACM and login information. Additionally, a member called secadmin, who is part of the administrator group, is allowed to be a part of this new group. To create the new group and to associate the rule set, perform the following steps in configuration mode. | Step | Command | |---|--| | Create a group called security. Members of the group are allowed to adjust the security policy and system logins. | vyatta@vyatta# set system login group 'security' | | Promote a member called secadmin from the administrator group to the security group. | <pre>vyatta@vyatta# set system login user secadmin authentication plaintext-password #<enter>; enter password vyatta@vyatta# set system login user secadmin group 'security'</enter></pre> | | Allow the members of the security group access to all the possible vRouter operations. | <pre>vyatta@vyatta# set system acm ruleset rule 1 action 'allow' vyatta@vyatta# set system acm ruleset rule 1 group 'security' vyatta@vyatta# set system acm ruleset rule 1</pre> | | Step | Command | |---|---| | | operation '*' vyatta@vyatta# set system acm ruleset rule 1 path '*' | | Prohibit changes to /system/acm and /system/login unless the changes are made by a member of the group called security. | vyatta@vyatta# set system acm ruleset rule 9991 group 'vyattacfg' | | | vyatta@vyatta# set system acm ruleset rule 9991 operation 'delete' | | | vyatta@vyatta# set system acm ruleset rule 9991
path '/system/acm' | | | vyatta@vyatta# set system acm ruleset rule 9992
group 'vyattacfg' | | | vyatta@vyatta# set system acm ruleset rule 9992 operation 'create' | | | vyatta@vyatta# set system acm ruleset rule 9992
path '/system/acm' | | | vyatta@vyatta# set system acm ruleset rule 9993 group 'vyattacfg' | | | vyatta@vyatta# set system acm ruleset rule 9993 operation 'update' | | | vyatta@vyatta# set system acm ruleset rule 9993
path '/system/acm' | | | vyatta@vyatta# set system acm ruleset rule 9994 group 'vyattacfg' | | | vyatta@vyatta# set system acm ruleset rule 9994 operation 'update' | | | vyatta@vyatta# set system acm ruleset rule 9994 path '/system/login' | | | vyatta@vyatta# set system acm ruleset rule 9995 group 'vyattacfg' | | | vyatta@vyatta# set system acm ruleset rule 9995 operation 'delete' | | | vyatta@vyatta# set system acm ruleset rule 9995
path '/system/login' | | | vyatta@vyatta# set system acm ruleset rule 9996 group 'vyattacfg' | | | vyatta@vyatta# set system acm ruleset rule 9996 operation 'create' | | | vyatta@vyatta# set system acm ruleset rule 9996
path '/system/login' | The following rule set is displayed by entering the **show acm** command in operational mode after you perform the steps in the preceding section. ``` # show system acm acm { enable operational-ruleset { rule 9977 { action allow command /show/tech-support/save group vyattaop } rule 9978 { action deny command "/show/tech-support/save/*" group vyattaop } rule 9979 { action allow ``` ``` command /show/tech-support/save-uncompressed group vyattaop rule 9980 { action deny command "/show/tech-support/save-uncompressed/*" group vyattaop rule 9981 { action allow command /show/tech-support/brief/save group vyattaop rule 9982 { action deny command "/show/tech-support/brief/save/*" group vyattaop rule 9983 { action allow command /show/tech-support/brief/save-uncompressed group vyattaop rule 9984 { action deny command "/show/tech-support/brief/save-uncompressed/*" group vyattaop rule 9985 { action allow command /show/tech-support/brief/ group vyattaop rule 9986 { action deny command /show/tech-support/brief group vyattaop rule 9987 { action deny command /show/tech-support group vyattaop rule 9988 { action deny command /show/configuration group vyattaop rule 9989 { action allow command "/clear/*" group vyattaop rule 9990 { action allow command "/show/*" group vyattaop rule 9991 { action allow command "/monitor/*" group vyattaop rule 9992 { action allow command "/ping/*" group vyattaop rule 9993 { action allow command "/reset/*" group vyattaop ``` ``` rule 9994 { action allow command "/release/*" group vyattaop rule 9995 { action allow command "/renew/*" group vyattaop rule 9996 { action allow command "/telnet/*" group vyattaop rule 9997 { action allow command "/traceroute/*" group vyattaop rule 9998 { action allow command "/update/*" group vyattaop } rule 9999 { action deny command "*" group vyattaop } ruleset { rule 1 { action allow group security operation "*" path "*" rule 9991 { group vyattacfg operation delete path /system/acm rule 9992 { group vyattacfg operation create path /system/acm } rule 9993 { group vyattacfg operation update path /system/acm rule 9994 { group vyattacfg operation update path /system/login rule 9995 { group vyattacfg operation delete path /system/login rule 9996 { group vyattacfg operation create path /system/login rule 9999 { action allow group vyattacfg ``` ``` operation "*" path "*" } } ``` # Rule set in operation for the security group After the security group is created, non members of the group are unable to change the ACM or login information, even if they are members of the administrator group. Consider two users, secadmin and cosadmin, who belong to the administrator group. Secadmin is a member of the security group. Cosadmin is not a member of the security group. As a member of the security group, secadmin can promote himself to a superuser. The following is an example of the login of a user called secadmin who is a member of the security group: ``` secadmin@vyatta:~$ configure secadmin@vyatta# set system login user secadmin@vyatta# commit ``` The following is an example of the login of a user called cosadmin who is not a member of the security group. ```
cosadmin@vyatta# set system login user cosadmin level superuser access denied ``` # Role-based Access Control Commands | • | system acm create-default | 204 | |---|---|-----| | • | system acm delete-default | 205 | | • | system acm enable | 206 | | • | | | | | system acm operational-ruleset rule <number></number> | | | | system acm read-default | 209 | | | system acm ruleset rule <number> action</number> | 210 | | | system acm ruleset rule <number> group <name></name></number> | | | | system acm ruleset rule <number> log</number> | | | | system acm ruleset rule <number> operation <action></action></number> | | | | system acm ruleset rule <number> path <path></path></number> | | | | system acm undate-default | 216 | # system acm create-default Specifies the default action for the create operation. ## **Syntax** ``` set system acm create-default { allow | deny } delete system acm create-default { allow | deny } show system acm create-default ``` ### **Command Default** By default, the create operation is denied. #### **Parameters** allow Allows the operation. deny Denies the operation. ### Modes Configuration mode # **Configuration Statement** ``` acm { create-default { allow deny } } ``` ## **Usage Guidelines** Use the **set** form of this command to specify the default action for the create operation. Use the delete form of this command to delete the specified default action for the create operation. Use the **show** form of this command to display the specified default action for the create operation. # system acm delete-default Specifies the default action for the delete operation. ## **Syntax** ``` set system acm delete-default { allow | deny } delete system acm delete-default { allow | deny } show system acm delete-default ``` ### Command Default By default, the delete operation is denied. #### **Parameters** allow Allows the operation. deny Denies the operation. ### Modes Configuration mode # **Configuration Statement** ``` system { delete-default { allow deny } } ``` ## **Usage Guidelines** Use the set form of this command to specify the default action for the delete operation. Use the **delete** form of this command to delete the specified default action for the delete operation. Use the **show** form of this command to display the specified default action for the delete operation. # system acm enable Enables the ACM rule sets. # **Syntax** set system acm enable delete system acm enable show system acm enable ### Modes Configuration mode # **Configuration Statement** ``` system { acm { enable } } ``` # **Usage Guidelines** Use the set form of this command to enable the ACM rule sets. Use the delete form of this command to disable the ACM rule sets. Use the **show** form of this command to display the ACM rule sets. # system acm exec-default Specifies the default action for the execute operation. ## **Syntax** ``` set system acm exec-default { allow | deny } delete system acm exec-default { allow | deny } show system acm exec-default ``` ### **Command Default** By default, the execute operation is allowed. ### **Parameters** ``` allow Allows the operation. deny Denies the operation. ``` # Modes Configuration mode # **Configuration Statement** ``` system { acm { exec-default allow deny } } ``` # **Usage Guidelines** Use the **set** form of this command to specify the default action for the execute operation. Use the delete form of this command remove the default action for the execute operation. Use the **show** form of this command display default action for the execute operation. # system acm operational-ruleset rule <number> Enables an operational command rule set for ACM. ## **Syntax** ``` set system acm operational-ruleset rule [number] delete system acm operational-ruleset rule [number] show system acm operational-ruleset rule [number] ``` ### **Parameters** number A rule number. The number ranges from 1 through 9999. ### Modes Configuration mode ## **Configuration Statement** ``` system { acm { operational-ruleset { rule number } } } ``` # **Usage Guidelines** Use the **set** form of this command to enable an operational rule for ACM. Use the delete form of this command to disable an operational rule for ACM. Use the **show** form of this command to display an operational rule for ACM. # system acm read-default Specifies the default action for the read operation. # **Syntax** ``` set system acm read-default { allow | deny } delete system acm read-default { allow | deny } show system acm read-default ``` ### **Command Default** By default, the read operation is allowed. ### **Parameters** ``` allow Allows the operation. deny Denies the operation. ``` ### Modes Configuration mode ## **Configuration Statement** # **Usage Guidelines** Use the **set** form of this command to specify the default action for the read operation. Use the delete form of this command to disable the specified default action for the read operation. Use the **show** form of this command to display the specified default action for the read operation. # system acm ruleset rule <number> action Specifies the action to be taken for a specified ACM rule set. ## **Syntax** ``` set system acm ruleset rule number action { allow | deny } delete system acm ruleset rule number action { allow | deny } show system acm ruleset rule number action ``` ### **Parameters** ``` allow Allows the operation. deny Denies the operation. ``` ### Modes Configuration mode ### Configuration Statement ## **Usage Guidelines** Use the set form of this command to specify the action to be taken for a specified rule set. Use the delete form of this command to delete the specified action for an ACM rule set. Use the **show** form of this command to display the actions settings for an ACM rule set. # system acm ruleset rule <number> group <name> Defines a group operation to match for an ACM rule. ## **Syntax** set system acm ruleset rule number group group-name set system acm ruleset rule number group group-name set system acm ruleset rule number group group-name ### **Parameters** number A rule number. The number range from 1 through 9999. group-name A group to match. ### Modes Configuration mode ### Configuration Statement ``` system { acm { rule number group group-name } } ``` ## **Usage Guidelines** Use the set form of this command to define a group operation to match for a ACM rule. Use the delete form of this command to remove a group operation to match. Use the **show** form of this command to display a group operation to match. # system acm ruleset rule <number> log Defines the log operation on a ACM rule. # **Syntax** set system acm ruleset rule *number* log delete system acm ruleset rule *number* log show system acm ruleset rule *number* log ### **Parameters** number A rule set number. The number ranges from 1 through 9999. ### Modes Configuration mode # **Configuration Statement** ``` ruleset { rule number { log } } ``` # **Usage Guidelines** Use this command to define the log operation on a ACM rule. # system acm ruleset rule <number> operation <action> Defines a path operation to match for an ACM rule. ## **Syntax** ``` set system acm ruleset rule number operation { create | delete | read | update | * } delete system acm ruleset rule number operation [create | delete | read | update | *] show system acm ruleset rule number ``` ### **Parameters** ``` number A rule number. The number ranges from 1 through 9999. create Specifies a create path operation to match. read Specifies a read path operation to match. update Specifies an update path operation to match. delete Specifies a delete path operation to match. ``` Specifies all paths operations to match. ### Modes Configuration mode ## Configuration Statement ## **Usage Guidelines** You must have the path configured for the rule to commit this configuration. Use the set form of this command to define a path operation to match for an ACM rule. Use the **delete** form of this command to remove the path operation to match. Use the **show** form of this command to display the path operation to match. # system acm ruleset rule <number> path <path> Defines a path to match for an ACM rule. ## **Syntax** set system acm ruleset rule *number* path *path* delete system acm ruleset rule *number* path [*path*] show system acm ruleset rule *number* path ### **Parameters** ``` number A rule set number. The number ranges from 1 through 9999. path A path to match; for example, /protocols. ``` ### Modes Configuration mode ### Configuration Statement ``` system { acm { ruleset { rule number } path path } } ``` ## **Usage Guidelines** Use the set form of this command to define a path to match for an ACM rule. Use the **delete** form of this command to remove a path for an ACM rule. Use the **show** form of this command to display the path for an ACM rule. # system acm update-default Specifies the default action for the update operation. ## **Syntax** ``` set system acm update-default { allow | deny } delete system acm update-default { allow | deny } show system acm update-default { allow | deny } ``` ### **Command Default** By default, the update operation is denied. #### **Parameters** allow Allows the operation. deny Denies the operation. ### Modes Configuration mode ## **Configuration Statement** ``` system { acm { update-default allow update-default deny } } ``` ## **Usage Guidelines** Use the **set** form of this command to specify the default action for the update operation. Use the **delete** form of this command to delete the specified default action for the update operation. Use the **show** form of this command to display the specified default action for the update operation. ## **User Management** This chapter explains how to set up user accounts and user authentication. ## User management configuration This section presents the following topics: - User management overview on page 217 - Creating a login user account on page 221 - Recovering
user passwords on page 223 - Configuring a system for a RADIUS authentication server on page 224 - Configuring a system for a TACACS+ authentication server on page 225 - Configuring a system for SSH access using shared public keys on page 226 ### User management overview This section presents the following topics: - Login authentication on page 217 - RADIUS authentication on page 218 - TACACS+ authentication on page 218 - SSH access using shared public keys on page 220 The Brocade vRouter supports all the following methods of authentication: - Role-based user account management through a local user database ("login" authentication) - Remote Authentication Dial In User Service (RADIUS) authentication server - Terminal Access Controller Access Control System Plus (TACACS+) authentication server - SSH access using a shared public key for authentication #### Login authentication The system creates a single login user account by default: the **vyatta** user with the **vyatta password**. It is highly recommended that, for security reasons, this password be changed. If no RADIUS or TACACS+ server has been configured, the system authenticates users with the password established by using system login user <user> authentication on page 245. You can change user account information by using lower-level operating system commands, but changes made in this way do not persist across reboots. For persistent changes to user account information, use the Vyatta CLI. Note that in the Brocade vRouter the Linux passwd command can be used only by administrative users. The **login** configuration node is a mandatory node. It is created automatically with default information when the system is first started. If this node is subsequently deleted, the system recreates it with default information when restarted. A login password is supplied in plain text. After configuration is committed, the system encrypts the password and stores the encrypted version internally. When you display user configuration, only the encrypted version of the password is displayed. Note that the login authentication prompt has a total timeout interval of 60 seconds. The sum of all timeout intervals must fall within that limit; otherwise—that is, if cumulative RADIUS and TACACS+ server timeout intervals exceed 60 seconds—the login process times out and must be repeated. #### RADIUS authentication A RADIUS server is used only to authenticate user passwords. Using RADIUS authentication does not affect the privilege level of a user. RADIUS authentication is not supported for IPv6. To configure RADIUS, you specify the location of a RADIUS server and specify the secret to be used to authenticate the user on the RADIUS server. A RADIUS secret is specified in plain text. It is stored in plain text on the system and used as part of a cryptographic operation for transferring authentication information securely over the network. When you view a RADIUS secret, it is displayed in plain text. A RADIUS secret must not contain spaces and is case sensitive. Where RADIUS authentication is used, some delay can be expected; the amount of delay depends on the cumulative timeout values configured for all RADIUS servers. If you are using RADIUS authentication, a user must still be configured in the Vyatta login database; otherwise, the user is not able to access the Brocade vRouter and, therefore, is not able to guery the RADIUS server. #### TACACS+ authentication This section presents the following topics: - Mapping Brocade vRouter user IDs to TACACS+ usernames on page 218 - Specifying authentication level in TACACS+ on page 219 - Restricting access through connection type on page 219 - Troubleshooting TACACS+ authentication issues on page 220 TACACS+ is a distributed access control system for routers that provides authentication, authorization, and accounting. To configure TACACS+, you specify the location of the TACACS+ server and specify the secret to be used to authenticate the user on the server. A TACACS+ secret is specified in plain text and stored in plain text on the system and is used as part of a cryptographic operation for transferring authentication information securely over the network. A TACACS+ secret must not contain spaces and is case sensitive. Where TACACS+ authentication is used, some delay can be expected as the TACACS+ server is queried; the amount of delay depends on the cumulative timeout values configured for all TACACS+ servers. Unlike RADIUS, TACACS+ authentication does not require prior authentication in the login database of the Brocade vRouter. A TACACS+ server can be used either as the only authentication server or as a supplement to the Brocade vRouter, providing password authentication. #### Mapping Brocade vRouter user IDs to TACACS+ usernames You can map a Brocade vRouter local user ID to a different username recorded on a TACACS+ server. The mapping is specified on the TACACS+ server. For example, to map to the **tac-user** username on the TACACS+ server to the **vyatta-user** username on the local Brocade vRouter, the (partial) configuration on the TACACS+ server looks as follows: ``` user = tac-user { default service = permit ``` ``` login = des "aXcnmMELgIKQQ" #vyatta service = vyatta-exec { local-user-name = "vyatta-user" } ``` Logging in to the local Brocade vRouter by using the **tac-user** account ID actually logs the user in to the Brocade vRouter as **vyatta-user** #### Order of authentication If the system is configured for authentication chaining, the order of authentication is based on the authentication chaining. For more information about the authentication chaining method, see system login auth-chain method on page 247. If the system is not configured using the authentication chaining method, then by default, the system looks first for configured TACACS+ servers, then for configured RADIUS servers, and finally in the local user database. If a server configuration is found, the system queries the first configured server of that type by using the configured secret. After the query is validated, the server authenticates the user from information in its database. TACACS+ and RADIUS servers are queried in the order in which they were configured. If a query times out, the next server in the list is queried. If all queries fail, the system attempts to authenticate the user through the local Brocade vRouter authentication database. If local authentication fails, the access attempt is rejected. #### NOTE The login process itself has a 60-second timeout. If a user cannot be authenticated in this time by a configured authentication server, then the login attempt times out. When the system is configured for TACACS+ and a user is configured on it and on the local user database, the login attempt fails if the user fails authentication on TACACS+. The local user database is used only when the user does not exist on the TACACS+ server or that server becomes unavailable. #### Specifying authentication level in TACACS+ By default, TACACS+ authorized users on the Brocade vRouter are given operator-level access. However, you can specify the authentication level for individual TACACS+ authorized users on the local Brocade vRouter. Like the mapping of user IDs, this configuration is specified on the TACACS+ server, as shown in the following example: ``` user = administrator { default service = permit login = cleartext "vyatta" service = vyatta-exec { level = "admin" } } ``` Logging in to the local Brocade vRouter as the **administrator** user in this instance provides administrative-level access. You can also configure an additional level on the TACACS+ server as **superuser** to provide superuser-level access. #### Restricting access through connection type The Brocade vRouter sends different connection-type information through the TACACS+ protocol based on the type of connection by which the user is accessing the Brocade vRouter. This information can be used to restrict how certain types of users are allowed to access the system. For example, it is possible to restrict administrators to only login access through the physical console rather than remotely through SSH or Telnet. TABLE 30 Protocol values sent to TACACS+ based on connection type | Connection type | Protocol value sent to TACACS+ | |-----------------|--------------------------------| | Console | login | | SSH | sshd | | Telnet | telnet | #### Troubleshooting TACACS+ authentication issues Because TACACS+ requires a secret, data is encrypted and, therefore, debugging authentication problems can be difficult. Tools such as **tshark** can be used, provided that the secret is known. For example, to debug a TACACS+ authentication problem by using **tshark**, given a secret of **mysecret** on the well-known TACACS+ port (**tacacs**, which is port 49), you enter either of the following commands: ``` tshark -o tacplus.key:mysecret tcp port tacacs tshark -o tacplus.key:mysecret tcp port 49 ``` #### SSH access using shared public keys Remote access to the Brocade vRouter is typically accomplished through Telnet or SSH. For either of these methods, passwords are authenticated by using the local login user database, a RADIUS server, or a TACACS+ server, as previously described. SSH is typically used when a secure session is required. One potential problem with password authentication, even by using SSH, is that password authentication is susceptible to brute-force password guessing. An alternative to password authentication, which mitigates this risk, is to authenticate SSH users by using shared public keys. With this authentication method, a private and public key pair are generated (typically by using the Linux **ssh-keygen** command) on a remote system. The public key file (typically with a extension) is loaded into the login configuration for the user who is accessing the system with it by using loadkey on page 230. In addition, the Brocade vRouter must be configured to disable password
authentication for SSH (refer to *Brocade Vyatta Network OS Services Configuration Guide*). So, SSH users can be authenticated by using passwords or shared public keys, but not both. ### Maintenance of SSH public keys of known hosts The Brocade vRouter uses the SSH client in various subsystems to allow secure data exchange or file transfer with other trusted systems in the network. The identity of SSH servers can be verified by an SSH public-key which gets checked upon each connection attempt by the SSH client. To prevent Man-in-the-Middle attacks, when a malicious system tries to act as the designated SSH server, the SSH public-key of the server gets verified on each connection attempt by the Brocade vRouter. #### How it works The Brocade vRouter uses a global known hosts database to maintain the public keys of trusted and known SSH hosts. This SSH known hosts database needs to be pre-populated with the trusted SSH public keys of the systems that the Brocade vRouter is likely to interact with by means of SSH. The Brocade vRouter administrator populates the database. On a connection attempt, if the SSH server public key of a known or trusted host is a mismatch, the Brocade vRouter prevents any file or data exchange with the potentially malicious SSH server. #### SSH known-hosts configuration on Brocade vRouter subsystems The following subsystems or functionality of the Brocade vRouter rely on non-interactive SSH authorization where the SSH known-hosts of the target system need to be known: - "system config-management commit-archive location" if configured for a "scp://" target - Usage of the copy operational command with an "scp://" target All calls of SSH tools by Brocade vRouter operators or administrators on the Vyatta shell #### Maintenance of SSH known hosts database The following configuration parameters are used to populate the global SSH known hosts database: - security ssh-known-hosts host [hostname] load-from-file [file] - security ssh-known-hosts host [hostname] key "[key type] [base64 encoded key]" - security ssh-known-hosts host [hostname] fetch-from-server #### Configuration example: public key loaded from a local file A public key can be loaded from a local file using: ``` security ssh-known-hosts host [hostname] load-from-file [file] ``` where the **file** is a plain-text file holding the SSH public-key as generated by the **ssh-keyscan** command. (<server address> <key type> <base64 encoded key>) ``` vyatta@vyatta# set security ssh-known-hosts host 192.168.122.1 load-from-file ~/192.168.122.1.pub Adding key for 192.168.122.1 with fingerprint: 2048 60:9e:25:55:31:ee:c9:e9:73:a2:22:a8:18:b0:80:0e 192.168.122.1 (RSA) ``` #### Public key as base64 encoded key If the key is available as a base64 encoded string, it can be also be imported to the database with the following configuration security parameter: ssh-known-hosts host [hostname] key [key type] [base64 encoded key] #### NOTE The key type and the base64 encoded key need to be one quoted string. ``` vyatta@vyatta# set security ssh-known-hosts host 192.168.122.1 key "ssh-rsa AAAAB3NzaCly..." ``` #### Import of SSH current public key from the server The SSH current public key can be directly imported from the server by means of the network. This method fetches the SSH public key of the server from the target server on the given network. The SSH public key fetch is only done once initially. The SSH public key then gets stored persistently in the SSH known hosts database. #### NOTE We recommend that you use direct import only in a trusted network. This is to guarantee that on the initial fetch, no malicious system on the same network or in between performs a Man-in-the-middle attack. ``` vyatta@vyatta# set security ssh-known-hosts host 192.168.122.1 fetch-from- server Adding key for 192.168.122.1 with fingerprint: 2048 60:9e:25:55:31:ee:c9:e9:73:a2:22:a8:18:b0:80:0e 192.168.122.1 (RSA) ``` ### Creating a login user account This section presents a sample configuration for a user account that is validated by using the local user database. Figure 6 shows the sample configuration. #### FIGURE 6 Login user account User ID: john Full name: John Smith Plaintext password: mypassword Table 31 shows how to create the **John Smith** user account. John has a user ID of **john** and uses a plain text password of **mypassword**. Note that after configuration has been committed, only the encrypted version of the password is displayed when configuration is shown. #### NOTE User information can be changed through the UNIX shell (providing you have sufficient permission). However, any changes to Brocade vRouter user accounts or authentication through the UNIX shell are overwritten the next time you commit Brocade vRouter CLI configuration. #### **CAUTION** If your login user is not a member of the login user group "secrets" and you save a configuration either through the REST API or use the save command, the encrypted passwords in the configuration file are replaced with the """ placeholder. If you load this configuration, the replaced password fields trigger validation errors because the placeholder does not match the format for an encrypted password. Do not commit this configuration. If you ignore the error message and perform a commit with this invalid configuration, the passwords are deleted. To create a login user account, perform the following steps in configuration mode. TABLE 31 Creating a login user account | Step | Command | |---|---| | Create the user configuration node, define the user ID, and give the full name of the user. | vyatta@R1#set system login
user john full-name "John Smith" | | Specify the password for the user in plain text. | vyatta@R1#set system login user john authentication plaintext-password mypassword | | Commit the changes. After a password has been committed, it can be displayed only in encrypted form, as the value of the encrypted-password attribute. | vyatta@R1# commit | | Show the contents of the system login configuration node. | <pre>vyatta@Rl# show system login user vyatta { authentication { encrypted-password \$1\$ \$ZbzUPUD24iyfRwCKIT16q0 } } user john { authentication encrypted-password \$1\$\$Ht7gBYnxI1xCd0/ JOnodh. plaintext-password "" } full-name "John Smith" }</pre> | ### Recovering user passwords You can use the stand-alone user-password recovery tool on a Brocade vRouter at boot time to recover system user configuration and passwords for local system users. #### Recovering system user configuration To recover system user configuration on a Brocade vRouter, perform the following steps from a console window. TABLE 32 Recovering system user configuration #### Recovering a system user password To recover a system user password on a Brocade vRouter, perform the following steps from a console window. TABLE 33 Recovering a system user password ### Configuring a system for a RADIUS authentication server This section provides a sample configuration of a Brocade vRouter for a RADIUS authentication server, as shown in the following figure. FIGURE 7 Configuration of a RADIUS authentication server The example shows how to define a RADIUS authentication server at the 10.10.30.23 IP address. The system is to access the RADIUS server by using a secret of **vX87ssd9Z**. Configuring the server address and the secret are the minimal configuration requirements. The port and timeout values can be changed, if required. #### NOTE Carefully select the shared secret because this secret (string of characters) prevents snooping attacks on passwords. This secret, or key, is used on every packet, so it is important to choose a key that makes brute-force attacks more difficult; this key should be harder to guess than any password on the system. To define this RADIUS authentication server, perform the following steps in configuration mode. TABLE 34 Configuring a system for a RADIUS authentication server | Step | Command | |--|--| | Provide the location of the server and the secret to be used to access it. | vyatta@R1# set system login radius-server 10.10.30.23 secret vX87ssd9Z | | Commit the change. | vyatta@R1# commit | | Save the configuration so that the changes persist after reboot. | <pre>vyatta@R1# save Saving configuration to '/config/config.boot' Done</pre> | | Show the contents of the system radius-server configuration node. | <pre>vyatta@R1# show system radius-server radius-server 10.10.30.23 { secret vX87ssd9Z }</pre> | ### Configuring a system for a TACACS+ authentication server This section provides a sample configuration of a Brocade vRouter for a TACACS+ authentication server, as shown in the following figure. FIGURE 8 Configuration of a TACACS+ authentication server The example shows how to define a TACACS+ authentication server at the 10.10.30.24 IP address. The system is to access the TACACS+ server by using a secret of **vX87ssd9Z**. Configuring the server address and the secret are the minimal configuration requirements. The port and timeout values can be changed, if required. The default port is 49 and the default timeout is 3 seconds. #### NOTE Carefully select the shared secret because this secret (string of characters) prevents snooping attacks on passwords. This secret, or key, is used on every packet, so it is important to choose a key that makes brute-force attacks
more difficult; this key should be harder to guess than any password on the system. To define this TACACS+ authentication server, perform the following steps in configuration mode. Run **\$ configure** to enter the configuration mode. TABLE 35 Configuring a system for a TACACS+ authentication server | Step | Command | |--|---| | Provide the location of the server and the secret to be used to access it. | vyatta@R1# set system login tacplus-server 10.10.30.24 secret vX87ssd9Z | | Commit the change. | vyatta@R1# commit | | Save the configuration so that the changes persist after reboot. | <pre>vyatta@Rl# save Saving configuration to '/config/config.boot' Done</pre> | | Show the contents of the system tacplus-server configuration node. | <pre>vyatta@R1:~\$ show system login tacplus-server tacplus-server 10.10.30.24 { secret "*******" }</pre> | | Show the status of TACACS+. | vyatta@R1:~\$ show system tacplus status Server address: 10.10.30.24 (active) Server port: 49 Authentication requests/replies: 1/1 Authorization requests/replies: 2/2 Accounting requests/replies: 5/5 Failed connects: 0 | ### Configuring a system for SSH access using shared public keys This section provides a sample configuration of a Brocade vRouter for SSH access by using shared public keys, as shown in the following figure. FIGURE 9 Configuration for SSH access by using shared public keys The example shows how to configure a Brocade vRouter for SSH access that uses shared public keys for authentication and to disable password authentication (though disabling password authentication is not a prerequisite to using shared public keys for authentication). In this case, the **John Smith** user (username = **john**) already exists on the system. In addition, the public key (**xxx.pub**) was previously generated (by using the Linux **ssh-keygen** command) and is located in a directory owned by the **j2** user on **xyz.abc.com**. To configure a system for SSH access by using shared public keys, perform the following steps in configuration mode. TABLE 36 Configuring a system for SSH access by using shared public keys | Step | Command | |--|--| | Set the system to disable password authentication for SSH. Note that this step is not strictly necessary but required if users are to use only shared public key authentication. | vyatta@R1# set service ssh disable-password-
authentication | | Commit the change. | vyatta@R1# commit | | Display the changes. | vyatta@R1# show service ssh disable-password-
authentication | | Load the shared public key (xxx.pub) from the system on which it is located and associate it with the user named john. In this case, it is located on xyz.abc.com in a directory owned by the j2 user. | <pre>vyatta@R1# loadkey john scp://j2@xyz.abc.com/home/j2/.ssh/xxx.pub Enter host password for user 'j2': ####################################</pre> | | Commit the change. | vyatta@R1# commit | | Save the configuration so that the changes persist after reboot. | <pre>vyatta@R1# save Saving configuration to '/config/config.boot' Done</pre> | | Display the change. | <pre>vyatta@R1# show system login user vyatta { authentication { encrypted-password \$1\$ \$ZbzUPUD24iyfRwCKIT16q0 } } user john { authentication encrypted-password \$1\$\$Ht7gBYnxI1xCd0/ JOnodh. plaintext-password "" public-keys j2@xyz.abc.com { key AAAAB3NzaC1yc2EAAAABIwAAAIEAqaCtQr8hr6iUEvvQD3hGyry R5k+/UjFRFrHbqHNhjxdlYviXveVXoZrKAKHtANRp5E +j4WZMbSd4oYt9P91FevyZv3xmdZE+ukuPlQBBAUnL29k1FtJ +G7I5tXGun9VR07JzUpEb8/ KP1U4ajYClc3HxpOLpu5AU5u7jvKu/wA0=</pre> | ## **User Management Commands** | • | loadkey | 230 | |---|--|-----| | • | show login | 232 | | • | show system login users | 233 | | • | show system tacplus status | 234 | | • | show system tacplus statussystem login | 235 | | • | system login banner post-login <banner></banner> | 236 | | • | system login banner pre-login <banner></banner> | 237 | | • | system login group <group-name></group-name> | 238 | | • | system login radius-server <address></address> | 239 | | • | system login session-timeout | 241 | | • | system login tacplus-server <address></address> | 242 | | • | system login user <user></user> | 244 | | • | system login user <user> authenticationsystem login auth-chain method</user> | 245 | | • | system login auth-chain method | 247 | | • | system login user <user> authentication public-keys <key-id></key-id></user> | | | • | system login user <user> full-name <name></name></user> | | | • | system login user <user> group <group></group></user> | | | • | system login user <user> home-directory <dir></dir></user> | | | • | system login user <user> level <level></level></user> | | | • | system tacplus-options command-accounting | | ## loadkey Loads a shared public key for a Secure Shell (SSH) user. ### **Syntax** loadkey userfile-name #### **Parameters** user The name of a user with which to associate a public key. The user must already be defined on the Brocade vRouter. file-name The name of a shared public key file, including the full path to its location. A shared public key files is typically generated on the remote system by using the Linux **ssh-keygen** command and has a **.pub** extension. Its contents include the authentication type (for example, **ssh-rsa** or **ssh-dsa**), key, and remote system user ID (for example, name@domain.com). #### Modes Configuration mode ### **Usage Guidelines** Use this command to load a shared public key for SSH from a file into the **public-keys** configuration for a user (refer to the system login user <user> authentication public-keys <key-id> on page 249. Loading a key from a file avoids having to manually enter the shared public key. #### NOTE This command can be run only if there are no uncommitted changes. The shared public key, generated on the remote system, can be loaded from a hard disk (including a Flash disk or USB device), a TFTP server, an FTP server, an SCP server, or an HTTP server. If a public key is loaded that contains a remote system user ID that is the same as an existing **public-keys** name for a user, the existing key is overwritten. The following table shows how to specify the syntax for files from different file locations. TABLE 37 Specifying locations for the shared public key file | Location | Specification | |--------------------------------------|---| | An absolute path on the local system | Use standard UNIX file specification. | | FTP server | Use the following syntax for file-name: | | | ftp://user:passwd@host /key-file | | | where <i>user</i> is the username on the host, <i>passwd</i> is the password associated with the username, <i>host</i> is the host name or IP address of the FTP server, and <i>key-file</i> is the key file, including the path. | | | If you do not specify <i>user</i> and <i>passwd</i> , you are prompted for them. | TABLE 37 Specifying locations for the shared public key file (continued) | Location | Specification | |-------------|---| | SCP server | Use the following syntax for file-name: | | | scp://user:passwd@host /key-file | | | where <i>user</i> is the username on the host, <i>passwd</i> is the password associated with the username, <i>host</i> is the host name or IP address of the SCP server, and <i>key-file</i> is the key file, including the path. | | | If you do not specify <i>user</i> and <i>passwd</i> , you are prompted for them. | | HTTP server | Use the following syntax for file-name: | | | http://host/key-file | | | where <i>host</i> is the host name or IP address of the HTTP server, and <i>key-file</i> is the key file, including the path. | | TFTP server | Use the following syntax for file-name: | | | tftp://host /key-file | | | where <i>host</i> is the host name or IP address of the TFTP server, and <i>key-file</i> is the key file, including the path relative to the TFTP root directory. | ## show login Displays the login credentials of the current user. ### **Syntax** show login [groups | level | user] #### **Command Default** Displays all credentials of the current user. #### **Parameters** groups Displays the groups to which the user belongs. level Displays the login level of the user. user Displays the login ID of the user. #### Modes Operational mode ### **Usage Guidelines** Use this command to display the login credentials of the current user. ### **Examples** The following example shows how to display the login credentials of the current user. ``` vyatta@R1:~$ show login login :
vyatta pts/0 Aug 11 17:19 (192.168.1.150) level : admin user : vyatta groups : users adm disk sudo dip vyattacfg vyatta@R1:~$ ``` ## show system login users Displays information about user accounts. ### **Syntax** show system login users [all | locked | other | vyatta] ### **Command Default** Displays information about Brocade vRouter accounts. #### **Parameters** all Displays information about all accounts. locked Displays information about locked accounts. other Displays information about non-Brocade vRouter accounts. vyatta Displays information about Brocade vRouter accounts. #### Modes Operational mode ### **Usage Guidelines** Use this command to display information about system accounts including information about the last time each user logged in. ### **Examples** The following example shows how to display information about Brocade vRouter user accounts on R1. ``` vyatta@vyatta# show system login user user vyatta { authentication { encrypted-password $1$4XHPj9eT$G3ww9B/pYDLSXC8YVvazPO } level admin } ``` ## show system tacplus status Displays the status of TACACS+. ### **Syntax** show system tacplus status #### Modes Operational mode ### **Usage Guidelines** Use this command to display the status of TACACS+. ### **Examples** The following example shows how to display the status of TACACS+. In this example, the (active) label, which appears next to a server address, has no bearing on the success of the attempted connection. This label identifies the last TACACS+ server to which the vRouter tried to connect. ``` vyatta@vyatta:~$ show system tacplus status Server address: 192.168.122.7 (active) Server port: 49 Authentication requests/replies: 1/1 Authorization requests/replies: 2/2 Accounting requests/replies: 5/5 Failed connects: 0 Server address: 192.168.122.6 Server port: 60 Authentication requests/replies: 0/0 Authorization requests/replies: 0/0 Accounting requests/replies: 0/0 Failed connects: 1 ``` The following example shows the message that is displayed if TACACS+ is not configured. The following example shows that the TACACS+ server at 1.1.1.1 runs in the VRF named red. ## system login Creates the configuration node for user management and authentication. ### **Syntax** set system login delete system login show system login #### Modes Configuration mode ### **Configuration Statement** ``` system { login { } } ``` ### **Usage Guidelines** Use this command to create the configuration node for user management and authentication. The **login** configuration node is a mandatory node. It is created automatically with default information when the system is first started. If this node is subsequently deleted, the system recreates it with default information. Use the **set** form of this command to create the **login** configuration node. Use the delete form of this command to restore default user and authentication information. Use the ${\bf show}$ form of this command to display user and authentication configuration. ## system login banner post-login <banner> Creates the text of the post-login banner. ### **Syntax** set system login banner post-login banner delete system login banner post-login show system login banner post-login #### Command Default The system displays information about the operating system and copyright. #### **Parameters** banner The text (banner) to be displayed during login after a user enters a valid password. The banner must be enclosed in double quotation marks ("). Special characters such as new line (\n) and tab (\t) can also be entered. #### Modes Configuration mode ### Configuration Statement ``` system { login { banner { post-login banner } } } ``` ### **Usage Guidelines** Use this command to create the text (banner) that appears when a user logs in to the system successfully. Use the set form of this command to create the post-login banner. Use the **delete** form of this command to return to the default post-login banner, which is information about the operating system and copyright. Use the **show** form of this command to display the post-login banner. ## system login banner pre-login <banner> Create the text of the pre-login banner. ### **Syntax** set system login banner pre-login banner delete system login banner pre-login show system login banner pre-login #### **Command Default** The system displays a welcome message. #### **Parameters** banner The text (banner) to be displayed during login after a user enters a login ID. The banner must be enclosed in double quotation marks (*). Special characters such as new line (\n) and tab (\t) can also be entered. #### Modes Configuration mode ### Configuration Statement ``` system { login { banner { pre-login banner } } } ``` ### **Usage Guidelines** Use this command to create the text (banner) that appears when a user enters a login ID. Use the **set** form of this command to create the pre-login banner. Use the delete form of this command to return to the default pre-login banner which is a welcome message. Use the **show** form of this command to display the pre-login banner. ## system login group <group-name> Specifies the text of the group name. ### **Syntax** set system login group group-name delete system login group group-name show system login group #### **Command Default** The system displays a welcome message. #### **Parameters** group The group to be named. #### Modes Configuration mode ### Configuration Statement ``` system { login { group group-name } } ``` ### **Usage Guidelines** Use the set form of this command to create the group name. Use the **delete** form of this command to delete the group name. Use the **show** form of this command to display the group name. ## system login radius-server <address> Defines a Remote Authentication Dial-In User Service (RADIUS) server for user authentication. ### **Syntax** set system login radius-server address [port port | secret secret | timeout timeout] delete system login radius-server address [port | secret | timeout] show system login radius-server address [port | secret | timeout] #### **Parameters** address Multinode. The IP address of a remote authentication server running the RADIUS protocol. This server authenticates multiple users. You can define multiple RADIUS servers by creating multiple radius-server configuration nodes. port Optional. A port to be used for RADIUS traffic. The default port is 1812. secret The secret (password) for the RADIUS server. This secret must be the same as that recorded on the RADIUS server. The secret consists of alphanumeric and printable special characters (for example, the space character is not permitted). The secret is case sensitive. timeout Optional. The time-out (interval), in seconds, after which, if the RADIUS server has not responded, the next configured RADIUS server should be queried. The time-out ranges from 1 through 30. The default time-out is 2. #### Modes Configuration mode ### **Configuration Statement** ``` system { login { radius-server address { port port } } } ``` ### **Usage Guidelines** Use this command to define a RADIUS server and specify the information necessary to log in to it. The RADIUS secret is specified and stored in plain text on the system and is used as part of a cryptographic operation for transferring authentication information securely over the network. When you view a RADIUS secret, it is displayed in plain text. #### NOTE RADIUS servers are currently not supported in IPv6. Use the **set** form of this command to define a RADIUS server. Use the **delete** form of this command to remove a RADIUS server. Use the **show** form of this command to display RADIUS server configuration. ## system login session-timeout Defines system idle session timeout value in seconds. ### **Syntax** set system login session-timeout { 0 | 0-4294967295 } delete system login session-timeout [0 | 0-4294967295] show system login session-timeout #### **Command Default** Disabled. #### **Parameters** 0 Disables session time out. 0-4294967295 Session idle duration in seconds before timeout. #### Modes Configuration mode ### **Configuration Statement** ``` system { login { session-timeout value } } ``` ### **Usage Guidelines** Use the set form of this command to define the system idle session timeout value in seconds. Use the delete form of this command to remove the system idle session timeout value and to restore the default configuration. Use the **show** form of this command to display the system idle session timeout value. ## system login tacplus-server <address> Defines a Terminal Access Controller Access Control System Plus (TACACS+) server for user authentication. ### **Syntax** set [routing routing-instance vrf-name] system login tacplus-server address [port port | secret secret | source-address | source-address | timeout timeout] delete [routing routing-instance vrf-name] system login tacplus-server address [port | secret | source-address | timeout] show [routing routing-instance *vrf-name*] show system login tacplus-server address [port | secret | source-address | timeout] #### **Parameters** vrf-name The name of the VRF instance for which this command is configured. address Multinode. The IP address or host name of a remote authentication server running TACACS+. This server authenticates multiple users. You can define multiple TACACS+ servers by creating multiple **tacplus-server** configuration nodes. Multiple servers are prioritized in the order in which they are configured. port A port to be used for TACACS+ traffic. The default port is 49. secret The secret (password) for the TACACS+ server. This secret must be the same as that recorded on the TACACS+ server. The secret consists of alphanumeric and printable special characters (for example, the space character is not permitted). The secret is case sensitive. source-address An IP address to use as the source address when connecting to the TACACS+ server. This address is typically not required. timeout Optional. The time-out (interval), in
seconds, after which, if the TACACS+ server has not responded, the next configured TACACS+ server should be queried. The time-out ranges from 1 through 30. The default time-out is 3. #### Modes Configuration mode ### **Configuration Statement** ``` routing { routing-instance vrf-name { system { login { tacplus-server address { } ``` ``` port port secret secret source-address source-address timeout timeout } } } ``` ### **Usage Guidelines** Use this command to define a TACACS+ server and specify the information necessary to log in to it. The TACACS+ secret is specified in plain text and stored in plain text on the system and is used as part of a cryptographic operation for transferring authentication information securely over the network. When you view a TACACS+ secret, it is displayed in plain text. #### NOTE TACACS+ servers are not supported for IPv6. Users doing packet capture need to see the encrypted TACACS+ traffic. Use the **set** form of this command to define a TACACS+ server. Use the **delete** form of this command to remove a TACACS+ server. Use the **show** form of this command to display TACACS+ server configuration. ## system login user <user> Creates a user account. ### **Syntax** set system login user user delete system login user user show system login user user #### **Parameters** user Multinode. A unique user ID of up to 32 characters, including alphanumeric characters or hyphens (-). You can define multiple user accounts by creating multiple user configuration nodes. #### Modes Configuration mode ### **Configuration Statement** ``` system { login { user user } } ``` ### **Usage Guidelines** Use this command to define a user that is authenticated by using the internal mechanism of the system: "login" authentication. Note that, although user account and authentication information can be changed by using the operating system shell, the system overwrites these changes the next time you commit configuration in the Vyatta shell. For persistent changes to user or authentication information, use Vyatta CLI commands. In addition, a user cannot be added to the local authentication database if the same username already exists in an accessible remote authentication database (for example, TACACS+). Use the **set** form of this command to create a **user** configuration node. Use the **delete** form of this command to remove a **user** configuration node. Note that you cannot delete the account you are currently using. Use the **show** form of this command to display **user** configuration. ## system login user <user> authentication Sets an authentication password for a user. ### **Syntax** set system login user *user* authentication { encrypted-password *epwd* | plaintext-password *ppwd* } delete system login user *user* authentication [encrypted-password | plaintext-password] show system login user *user* authentication [encrypted-password | plaintext-password] #### **Parameters** user A user ID. epwd The encrypted password. This password consists of the encrypted characters of the actual password. You can obtain the encrypted characters of the actual password by using the **mkpasswd** command on the VM. ppwd The password for the user, specified in plain text. Most special characters can be used with the exception of single quotation marks (*), double quotation marks (*), and backslashes (\). #### Modes Configuration mode ### **Configuration Statement** ``` system { login { user user { authentication { encrypted-password epwd plaintext-password ppwd } } } } ``` ### **Usage Guidelines** Use this command to set a password to authenticate a user. When the encrypted password is displayed, the encrypted value is shown. The plain text password appears as double quotation marks in the configuration. #### **CAUTION** If your login user is not a member of the login user group "secrets" and you save a configuration either through the REST API or use the save command, the encrypted passwords in the configuration file are replaced with the """ placeholder. If you load this configuration, the replaced password fields trigger validation errors because the placeholder does not match the format for an encrypted password. Do not commit this configuration. If you ignore the error message and perform a commit with this invalid configuration, the passwords are deleted. To disable a user account without deleting it, you can simply set the value of the encrypted-password option to an asterisk (*). Use the **set** form of this command to set the password for a user. Use the delete form of this command to remove the password for a user. Use the **show** form of this command to display user password configuration. ## system login auth-chain method Sets the order of the authentication. ### **Syntax** ``` set system login auth-chain [method tacplus | method local] delete system login auth-chain [method tacplus | method local] show system login ``` #### Command Default The default order for the authentication method is TACAS+ server followed by local system-user login. auth-chain { method tacplus; method login} #### **Parameters** #### method tacplus Specifies the authentication method as TACACS+ server. method local Specifies the authentication method as local system-user login. #### Modes Configuration mode ### **Configuration Statement** ``` system { login { auth-chain { method tacplus method local } } } ``` ### **Usage Guidelines** Use this command to set the order of authentication by using the authentication chaining method. The system performs authentication in the order of the authentication chain. The scenarios for authentication chaining follow. - If you specify the authentication method as local, the system uses the local system-user login to authenticate. - If you specify the authentication method as TACACS +, the system uses the TACACS + authentication. The authentication chain does not proceed to use the local authentication unless the TACAS+ authentication is configured but not working. If you use both the TACACS + and local authentication methods, the system attempts the first method. If the first method is successful, the chain does not proceed. If the first method fails, the authentication chain proceeds and the system attempts the next method. Use the **set** form of this command to set the order of the authentication chain. Use the **delete** form of this command to remove the order of the authentication chain. Use the **show** form of this command to display the order of the authentication chain. # system login user <user> authentication public-keys <key-id> Specifies parameters for a Secure Shell (SSH) shared public key user authentication. ### **Syntax** set system login user user authentication public-keys key-id [key key-value | options key-options | type key-type] delete system login user user authentication public-keys key-id [key | options | type] show system login user user authentication public-keys key-id [key | options | type] #### **Parameters** user A user ID. key-id A key identifier. This identifier is typically in the form *user@host* and is generated by the **ssh-keygen** command when used to create the private and public key pair. key-value The shared public key. key-options Additional options separated by commas. See the "AUTHORIZED_KEYS FILE FORMAT" section of the **sshd** manual page (**man sshd**) for a detailed description of the available options. key-type The key (authentication) type to be used, which must be specified. They key is either of the following: ssh-dsa—Specifies DSA authentication. ssh-rsa—Specifies RSA authentication. ### Modes Configuration mode ### **Configuration Statement** ``` } ``` ### **Usage Guidelines** Use this command to specify the parameters to be used for shared public key authentication for logins by using SSH. During commit, these values are placed in the **/home/<user>/.ssh/authorized_keys** file. Changes to this file can be made only by using this command. All direct user changes to this file are lost. Rather than specifying these parameters directly by using the **set** form of this command, the recommended method is to use the loadkey on page 230. It populates the *key-id*, *key-value*, *key-options*, and *key-type* arguments for a specified user given a shared public key file generated by the Linux **ssh-keygen** command on the remote system. Shared public key authentication for SSH can be available in addition to password authentication for SSH or it can be used exclusively. If both methods are made available at the same time, then a login prompt appears if a shared public key is not provided at the start of the SSH session. To use only shared public keys for SSH authentication, password authentication for SSH must first be disabled. For information on disabling password authentication for SSH, refer to *Brocade Vyatta Network OS Services Configuration Guide*. Use the **set** form of this command to set the public key parameters. Use the delete form of this command to remove the public key parameters. Use the **show** form of this command to display public key parameters. ## system login user <user> full-name <name> Records the full name of a user. ### **Syntax** set system login user user full-name name delete system login user user full-name show system login user user full-name #### **Parameters** user A user ID. name A character string that represents the name of the user, including alphanumeric characters, space, and hyphens (-). A character string that includes spaces must be enclosed in double quotation marks (*). #### Modes Configuration mode ### Configuration Statement ``` system { login { user user { full-name name } } } ``` ### **Usage Guidelines** Use this command to record the full name of a user. Use the set form of this command to specify the name of a user. Use the **delete** form of this command to remove the name of a user. Use the **show** form of this command to display the name of a user. ## system login user
<user> group <group> Assigns a user to a group. ### **Syntax** set system login user user group group delete system login user user group show system login user user group #### **Parameters** user A user ID. group A character string that represents the group to which the user is to be assigned. Groups are defined in the **/etc/group** directory. #### Modes Configuration mode ### Configuration Statement ``` system { login { user user { group group } } ``` ### **Usage Guidelines** Use this command to assign a user to a group. A user can be a member of multiple groups by running this command once for each group to which the user is to be assigned. Use the set form of this command to make a user a member of a group. Use the delete form of this command to remove a user from a group. Use the **show** form of this command to display the groups to which a user is assigned. # system login user <user> home-directory <dir> Specifies the home directory of a user. # **Syntax** set system login user *user* home-directory *dir* delete system login user *user* home-directory show system login user *user* home-directory ## **Command Default** The home directory is /home/user. ## **Parameters** user A user ID. dir A character string that represents the home directory of the user. The following is an example: /home/vyatta ## Modes Configuration mode ## **Configuration Statement** ``` system { login { user user { home-directory dir } } } ``` ## **Usage Guidelines** Use this command to specify the home directory of a user. Use the set form of this command to specify the home directory of a user. Use the delete form of this command to restore the default home directory of a user, which is /home/user. Use the **show** form of this command to display the home directory of a user. # system login user <user> level <level> Specifies the privilege level and system access of a user. ## **Syntax** set system login user user level level delete system login user user level show system login ## **Command Default** A user is assigned administrative privileges. ### **Parameters** user A user ID. level The privilege level of the user. The level is either of the following: **admin**—Assigns administrative privilege to the user. The user can run any command in the Vyatta CLI or the underlying operating system. **operator**—Assigns restricted privilege to the user. The user can run operational commands in the Vyatta CLI plus restricted forms of the **ping** and **traceroute** commands. The user cannot enter configuration mode or run configuration commands. **superuser**—A superuser has the privilege of an **admin** user. In addition to that, a superuser has access to install or update additional packages, and access or modify internal system files and so on. ## Modes Configuration mode ## Configuration Statement ``` system { login { user user { level level } } } ``` ## **Usage Guidelines** Use this command to assign role-based system access to a user. The system supports two system roles: - Administrator (admin): A user that is assigned a role of admin has full access to all Vyatta-specific commands plus all operating system shell commands. Access to operating system shell commands is direct: the user does not need exit to another shell mode before running these commands. Although admin users can run any command implemented in the system, command completion and CLI help show only Brocade vRouter commands. - Operator: A user that is assigned a role of operator has access to the Brocade vRouter operational command set but no access to configuration commands. An operator also has limited access to operating system commands. At this time, command completion and CLI help show all Brocade vRouter commands for a user with the operator role. Use the **set** form of this command to assign the privilege level to a user. Use the **delete** form of this command to restore the privilege level of a user to the default level, which is administrative level. Use the **show** form of this command to display the privilege level of a user. # system tacplus-options command-accounting Enables logging of accounting records for interactive shell (vbash) commands. # **Syntax** set system tacplus-options command-accounting delete system tacplus-options command-accounting show system tacplus-options ## **Command Default** Accounting records are not logged. ### Modes Configuration mode ## **Configuration Statement** ``` system { tacplus-options { command-accounting } } ``` # **Usage Guidelines** Use this command to enable logging of accounting records for interactive shell commands. Connections to the system for which commands are logged include SSH, Telnet, console, and serial. Command logging is not limited to TACACS+ authenticated users and accounts for interactive shell commands. Accounting records are logged to the TACACS+ server. Use the **set** form of this command to enable logging of accounting records for interactive shell commands. Use the **delete** form of this command to restore the default behavior for command accounting, that is, accounting records are not logged. Use the **show** form of this command to display the configuration of command accounting. # Service-user Management | • | Overview | 257 | |---|--|-----| | • | Local service user | 257 | | • | Service-user authentication through LDAP | 259 | This chapter describes service-user management on the Brocade vRouter. ## Overview Service-user management handles authentication for services and is not intended to be used to access the Brocade vRouter for administrative purposes. The administration of service-user management is done at the system-login configuration level. This chapter describes service-user management, which is controlled at the **resources service-users** configuration level. Configuration is set in a central location within the **resources service-users** configuration section. Other services that require service-user authentication, such as OpenVPN, refer to authentication profiles, or group of users, in the resource service-users section. The Brocade vRouter allows you to connect to existing Lightweight Directory Access Protocol (LDAP) services in your organization for authentication purposes and maintain a local user database that does not require any pre-existing identity service in your environment. All changes for service users do not require any service interruption or service restart. #### NOTE Service-user management includes revoking access or deleting user accounts, which does not terminate an existing serviceuser session of services. All service users are granted access to the Service-User Web Portal, which is available at the following address: URL: https://<IP address of Brocade vRouter>/service To enable this portal, use the following command: vyatta@vyatta# set service https service-users ## Local service user This section covers how to grant and allow access to services to a local service user. A local service user is maintained at the local service-user configuration level under resources service-users. Authentication for a local service user is gained by using a username and password. The password in the CLI is provided as a plain-text password or as an encrypted SHA-512 hash. A plain-text password is stored as an SHA-512 hash after the configuration is committed. ## Setting a username and password You must set a username and an authentication password to create the minimum configuration that is required of a local service user. To create the alice user with the password of secretpw, use the following command: vyatta@vyatta# set resources service-users local user alice auth plaintext-password secretpw ## Granting service access to a user Setting a username and password does not grant the alice user access to service. Users are not granted access to any service by default. To grant access to OpenVPN for alice, you must give alice access to the vtun0 tunnel interface by entering the following command: ``` vyatta@vyatta#set openvpn vtun0 auth local user alice ``` The alice user is now granted access to vtunO and authenticated by the specified username and password. #### NOTE For OpenVPN, additional settings are required to allow authentication by the username and password. For details, see the "SSL-VPN Client Bundler" section in *Brocade Vyatta Network OS OpenVPN Configuration Guide*. In general, granting or revoking access to any service does not require a restart of the service—that is, a service interruption. ## Revoking service access for a user To revoke access to vtunO for the alice user, use the following command: ``` vyatta@vyatta# delete openvpn vtun0 auth local user alice ``` #### NOTE By revoking access to vtun0, the existing service session (for example, an OpenVPN tunnel connection) is not interrupted or terminated—termination must be done manually. ## Locking services from a user Alternatively, a local service user can be temporarily locked from all services on the Brocade vRouter by locking the user. To lock a user, use the following command: ``` vyatta@vyatta# set resources service-users local user alice lock ``` ### NOTE Revoking access to individual services does not interrupt or terminate an existing service session. ## Unlocking services from a user To remove the service-user lock, use the following command: ``` vyatta@vyatta# delete resources service-users local user alice lock ``` # Granting access service to a group To maintain a larger set of local users, you must group the users and reference the service configuration to which the group of users should be granted access. To grant access to an OpenVPN endpoint that is dedicated for use by the sales department to the alice and bob local service users, both of whom work in the sales department, use the following commands: ``` vyatta@vyatta# set resources service-users local group sales-dep vyatta@vyatta# set resources service-users local user alice group
sales-dep vyatta@vyatta# set resources service-users local user bob group sales-dep ``` To grant the sales-dep group access to the OpenVPN vtun1 interface, use the following command: vyatta@vyatta# set interfaces openvpn vtun1 auth local group sales-dep # Service-user authentication through LDAP To create an LDAP profile to allow authentication against an existing LDAP service in your network, the following are required: - Existing network connection or a route to the LDAP server - LDAP server that is configured for Transport Layer Security (TLS) with StartTLS or LDAP over Secure Sockets Layer (SSL) (Idaps://) #### NOTE Encryption is required for the exchange of the authentication token. ## Creating an LDAP authentication profile To create an LDAP authentication profile, configured with minimum settings, the following are required: - Authentication that is granted against the Example corporate LDAP server, which can be reached through the fully qualified domain name (FQDN) of Idap.example.com - Authentication that is configured with TLS and supports StartTLS To configure the LDAP server URL with StartTLS 1dap:// (for LDAP+SSL: Idaps:), use the following command: ``` vyatta@vyatta# set resources service-users ldap example.com url ldap://ldap.example.com ``` If a custom port is required, the port can be specified in the URL by appending the port number to the FQDN; for example: ldap://ldap.example.com:1234. The default FQDN ports, according to a generally accepted standard, are as follows if not otherwise specified. ### TABLE 38 Default ports for FQDN | FQDN | Port Number | |----------|-------------| | ldap:// | 389 | | Idaps:// | 636 | ## Setting the base distinguished name To set the Base Distinguished Name (Base DN) of an LDAP v3 server for an organization that is used for authorization, use the following command: vyatta@vyatta# set resources service-users ldap example.com base-dn ou=People,dc=example,dc=com ## Applying the LDAP search filter to an LDAP entry To apply the LDAP search filter to each LDAP entry that matches the username and LDAP member attribute, use the following command: ``` vyatta@vyatta# set resources service-users ldap example.com search-filter (objectClass=posixAccount) ``` The LDAP search filter also supports more-complex search filters, as described in RFC2254. The following are the minimum required attributes that must be set for the LDAP authentication of service users. - URL - Base-dn - Search-filter ## Configuring the bind user and bind password If the LDAP server does not allow anonymous binding, an LDAP bind user and bind password must be configured by using the following commands: ``` vyatta@vyatta# set resources service-users ldap example.com bind-dn bind-username vyatta@vyatta# set resources service-users ldap example.com password bindpw ``` ## Specifying a trusted CA certificate If the TLS or SSL certificate that is issued by a corporate certificate authority (CA) is not trusted or known to the Brocade vRouter, the required certificate must be explicitly specified. To specify this certificate, use the following command: ``` vyatta@vyatta# set resources service-users ldap example.com tls cacert /config/auth/ldap-ca.pem ``` Alternatively, to reduce the number of checks on the TLS or SSL LDAP server certificate, use the following command: ``` vyatta@vyatta# set resources service-users ldap example.com tls reqcert {never | allow | try | demand} ``` If no option is explicitly specified, the **demand** option is set by default. #### **TABLE 39** Variable definitions | Option | Description | |--|--| | never Performs no request and no checks on the server certificate. | | | allow Requests and checks the certificate, if available. Tolerates bad certificates. | | | try | Requests and checks the certificate, if available. Bad server certificates get rejected. | | demand | Requests a valid server certificate (default). | ## Gaining authentication from multiple LDAP servers To gain authentication for a service from multiple different LDAP servers and LDAP trees, you must create two different LDAP authentication profiles by using the following commands: ``` vyatta@vyatta# set resources auth ldap example.com url ldap://ldap.example.com vyatta@vyatta# set resources auth ldap example.com ... vyatta@vyatta# set resources auth ldap emea.example.com url ldap://ldap.emea.example.com vyatta@vyatta# set resources auth ldap emea.example.com ... ``` To specify both LDAP profiles in the configuration of a service authentication, use the following commands: ``` vyatta@vyatta# set interfaces openvpn vtunX auth ldap example.com vyatta@vyatta# set interfaces openvpn vtunX auth ldap emea.example.com ``` When a service user tries to authenticate the OpenVPN vtunX interface, the provided credentials are authenticated against all the provided LDAP profiles. A single access-granting LDAP profile is sufficient for the service user to successfully establish the OpenVPN connection. Access is not required to be granted by all the configured LDAP profiles. #### NOTE The OpenVPN service authentication could be mixed with LDAP authentication profiles, local service users, or groups of local-service users. To allow SSL-VPN clients to connect without a TLS client certificate that is specific to an end user, you must set the **client-cert-not-required** option. Even if client certificates were created, they are not included in any SSL-VPN client bundles. # set interfaces openvpn vtunX client-cert-not-required ## Performing group-based LDAP authorization If the LDAP search filter is configured to perform a group-based LDAP authorization, you might need to restrict (that is, adapt) the search base to search for groups. To adjust the search base for groups, use the following command: ``` vyatta@vyatta# set resources service-users ldap example.com group base-dn ou=Groups,dc=example,dc=com ``` Depending on the defined LDAP schema (RFC2307 or RFC2307bis), the member attribute is either **memberuid** or **member** for the group-based authentication. If the LDAP schema used by the server requires a third variant that is not covered by either schema standard, use the following command: $\verb|vyatta@vyatta#| set resources service-users ldap example.com group member-attribute memberAttr|$ ## Setting advanced LDAP options LDAP referrals are not used by the LDAP server by default. To configure the server to follow LDAP referrals, use the following command: ``` vyatta@vyatta# set resources service-users ldap example.com follow-referrals ``` LDAP service-user management supports two LDAP schema standards: RFC2307 and RFC2307bis. The main difference between the two standards is how the member attribute of groups is stored. According to RFC2307, the members of a group are stored in the LDAP attribute **memberuid**. According to RFC2307bis, the members of a group are stored in **member**. These settings depend on the LDAP schema that is used on the LDAP server. To set the RFC2307bis schema standard as the default, use the following command: ``` vyatta@vyatta# set resources service-users ldap example.com schema rfc2307bis ``` # IPv6 | • | IPv6 overview | 263 | |---|--------------------|-----| | | IPv6 configuration | 263 | This chapter describes commands for enabling IPv6 functionality on the system. # IPv6 overview The Brocade vRouter includes extensive support of IPv6. An overview of that support is available in *Brocade Vyatta Network OS IPv6* Support Configuration Guide. # IPv6 configuration Examples of configuring basic IPv6 functionality are located in Brocade Vyatta Network OS IPv6 Support Configuration Guide. # **IPv6 System Commands** | | reset ipv6 neighbors address <ipv6></ipv6> | 266 | |---|--|-----| | | reset ipv6 neighbors interface <interface_name></interface_name> | | | | show ipv6 neighbors | | | • | system ipv6 disable | | | • | system ipv6 disable-forwarding | | | | system ipv6 strict-dad. | | # reset ipv6 neighbors address <ipv6> Removes an IPv6 address from the IPv6 Neighbor Discovery (ND) cache. # **Syntax** reset ipv6 neighbors address ipv6 ## **Parameters** ipv6 An IPv6 address. ## Modes Operational mode # **Usage Guidelines** Use this command to remove an IPv6 address from the ND cache. # reset ipv6 neighbors interface <interface_name> Removes an interface from the IPv6 Neighbor Discovery (ND) cache. # **Syntax** reset ipv6 neighbors interface interface_name ## **Parameters** interface_name The identifier of an interface. Supported interface types are: - · Data plane - Loopback For more information about these interface types, refer to Loopback and Data Plane Interfaces on page 309. ## Modes Operational mode # **Usage Guidelines** Use this command to remove an Ethernet interface from the IPv6 ND cache. # show ipv6 neighbors Displays the IPv6 Neighbor Discovery (ND) cache. # **Syntax** show ipv6 neighbors ## Modes Operational mode # **Usage Guidelines** Use this command to display the IPv6 ND cache. Table 40 shows possible ND states. ### TABLE 40 ND states | tate Description | | | |------------------|--|--| | incomplete | Address resolution is currently being performed on this neighbor entry. A neighbor solicitation message has been sent, but a reply has not yet been received. | | | reachable | Address resolution has determined that the neighbor is reachable. Positive confirmation has been received, and the path to this neighbor is operationable. | | | stale | More than the configured elapsed time has passed since reachability confirmation was
received from this neighbor. | | | delay | More than the configured elapsed time has passed since reachability confirmation was received from this neighbor. This state allows TCP to confirm the neighbor. If not, a probe should be sent after the next delay time has elapsed. | | | probe | A solicitation has been sent, and the router is waiting for a response from this neighbor. | | | failed | Neighbor reachability state detection failed. | | | noarp | The neighbor entry is valid. There are no attempts to validate it, but the neighbor can be removed from the cache when its lifetime expires. | | | permanent | The neighbor entry is valid indefinitely and should not be cleared from the cache. | | | none | No state is defined. | | # system ipv6 disable Disables the assignment of IPv6 addresses on all interfaces. ## **Syntax** set system ipv6 disable delete system ipv6 disable show system ipv6 disable ## **Command Default** IPv6 addresses are assigned on all interfaces. ## Modes Configuration mode ## **Configuration Statement** ``` system { ipv6 { disable } ``` # **Usage Guidelines** Use this command to disable the assignment of IPv6 addresses on all interfaces. Use the set form of this command to disable IPv6 address assignment on all interfaces. Use the delete form of this command to enable IPv6 address assignment on all interfaces. Use the **show** form of this command to display IPv6 disabling configuration. # system ipv6 disable-forwarding Disables IPv6 forwarding on all interfaces. # **Syntax** set system ipv6 disable-forwarding delete system ipv6 disable-forwarding show system ipv6 disable-forwarding ## **Command Default** IPv6 packets are forwarded. ### Modes Configuration mode ## **Configuration Statement** ``` system { ipv6 { disable-forwarding } } ``` # **Usage Guidelines** Use this command to disable IPv6 forwarding on all interfaces. IPv6 forwarding can also be disabled for each interface by using the ipv6 disable-forwarding command associated with the interface (for example, interfaces dataplane dp0p1p1 ipv6 disable-forwarding). These commands are documented in the guides that describe the individual interfaces. For example, Ethernet interface commands are described in *Brocade Vyatta Network OS LAN Interfaces Configuration Guide*. Use the set form of this command to disable IPv6 packet forwarding on all interfaces. Use the delete form of this command to enable IPv6 packet forwarding on all interfaces. Use the **show** form of this command to display IPv6 packet forwarding configuration. # system ipv6 strict-dad Disables IPv6 operation on an interface when Duplicate Address Detection (DAD) fails for a link-local address. # **Syntax** set system ipv6 strict-dad delete system ipv6 strict-dad show system ipv6 strict-dad ## **Command Default** IPv6 operation is not disabled on an interface when DAD fails for a link-local address. ### Modes Configuration mode ## **Configuration Statement** ``` system { ipv6 { strict-dad } } ``` # **Usage Guidelines** Use this command to disable IPv6 operation on an interface when DAD fails for a link-local address. Link-local addresses are formed from an interface identifier that is partly derived from the hardware address of a device, which is assumed to be uniquely assigned. By default, the duplicate address is not assigned to the interface, but IPv6 continues to operate. This command disables IPv6 on the interface when a duplicate of the link-local address is detected. Use the set form of this command to disable IPv6 operation on an interface when DAD fails for a link-local address. Use the delete form of this command to leave IPv6 operational on an interface when DAD fails for a link-local address. Use the **show** form of this command to display DAD failure configuration. # Hot-plugging Interfaces | • | Overview | 273 | |---|--|-----| | • | Hot-plugging Interfaces on the VMware ESX Platform | 275 | | • | Hot-plugging interfaces on the KVM platform | 275 | # Overview A Brocade vRouter supports *hot-plugging*, which allows a running Brocade vRouter to automatically discover a PCI network interface that is virtually plugged into the Brocade vRouter, that is, a guest virtual machine (VM), without having to restart the router. After the interface is discovered, you can configure it as a data plane interface as described in *LAN Interfaces Reference Guide*. Brocade vRouter hot-plugging is supported on the VMware ESX and Linux Kernel-based Virtual Machine (KVM) virtualization platforms. #### NOTE Ubuntu 14.04 comes with Linux kernel version 3.13.0, which does not support hot-plugging. To get hot-plugging to work on Ubuntu 14.04, you must upgrade your Ubuntu software to use Linux kernel version 3.13.1. ## How hot-plugging works on the VMware ESX platform Hot-plugging an interface into a Brocade vRouter that runs in a VMware ESX host VM is automatic. When you add a network interface to a running Brocade vRouter by using VMware vSphere Client, the router automatically detects the interface and registers it with the kernel. Similarly, when you delete an interface from a running Brocade vRouter, it unregisters the interface with the kernel. #### NOTE On a VMware ESX platform, as many as 10 interfaces can be hot-plugged into a Brocade vRouter. The following table lists the names that are assigned to hot-plugged interfaces. #### TABLE 41 Interface names | Slot | Interface Name | |------|----------------| | 1 | dpOp16Op1 | | 2 | dpOp192p1 | | 3 | dpOp224p1 | | 4 | dpOp256p1 | | 5 | dpOp161p1 | | 6 | dpOp193p1 | | 7 | dp0p225p1 | | 8 | dpOp257p1 | | 9 | dpOp162p1 | | 10 | dpOp194p1 | ### PCI slot assignment When you hot-plug a network interface into a Brocade vRouter, the router assigns the first virtualized PCI slot that is available to the interface. For example, if the first, second, and third PCI slots are in use, the new interface is hot-plugged into the fourth slot. In this case, the name of the new interface is dpOp256p1. However, if the interface that is associated with the second slot is deleted later, when you hot-plug a new interface, the new interface is plugged into the second slot (dpOp192p1). ### Persistence On the VMware ESX virtualization platform, by default, hot-plugged network interfaces persist through Brocade vRouter restarts. ## How hot-plugging works on the Linux KVM platform On the KVM platform, to create and hot-plug an interface into a Brocade vRouter, you can use the following command on the host KVM system. virsh attach-device <vm-name> [--persistent] <xml-filename> To detach interfaces from a running Brocade vRouter, you can use the following command. virsh detach-device <vm-name> [--persistent] <xml-filename> #### NOTE On a Linux KVM platform, as many as 32 interfaces can be hot-plugged into a Brocade vRouter. #### NOTE The virsh tool is available through the libvirt toolkit. ### PCI slot assignment On the KVM platform, when hot-plugging a network interface into a Brocade vRouter, unless you explicitly specify the PCI slot address, the router plugs the interface into the next available PCI slot with the higher slot number. ### Example If the first and third slots are in use, and a new interface is introduced, the new interface will take the next available PCI slot with the higher slot number. In this case, it will take PCI slot-4 and not PCI slot-2. The reason is that slot-2 is unavailable because it was previously used after the system was booted. ### Persistence On the Linux KVM virtualization platform, by default, hot-plugged network interfaces do not persist through Brocade vRouter restarts. To ensure persistence, you can run the following command on the host KVM system: virsh attach-device <vm-name> --persistent <xml-filename> ### Naming of interfaces During the boot sequence of a Brocade vRouter, the VM assigns PCI slots in the order that interfaces are discovered. To avoid the renaming of interfaces, either ensure that no temporary hot-plugged interfaces exist before the persistent interfaces or use the <address .../> clause in the XML file that is associated with the interface to specify the PCI slot into which to plug the interface. ### Persistence of interface configurations You can detach a network interface from a Brocade vRouter by using the virsh detach-device <vm-name> [--persistent] <xml-filename> command. However, because the router configuration is independent of hot-plugging, when detaching an interface, the configuration that is associated with this interface remains in the config/config.boot file on the router. If you attach an interface into the PCI slot that corresponds to the name of an existing interface in the config/config.boot file, then the router reuses the existing configuration by interface name. #### NOTE When you detach an interface, the router resets all MIB counters. # Hot-plugging Interfaces on the VMware ESX Platform On the VMware ESX platform, perform the following steps to hot-plug a network interface into a Brocade vRouter: - 1. Log in to vSphere Client. - 2. Add an Ethernet network adapter to your router and set the adapter type to VMXNET 3. #### NOTE VMXNET 3 is the only supported network adapter type for hot-plugging on the VMware ESX platform. The router hot-plugs the new interface. # Hot-plugging interfaces on the KVM platform On the KVM virtualization platform, perform the following steps to hot-plug a network interface into a Brocade vRouter: - 1. Add an Ethernet network interface. - 2. On the host KVM system, create an XML file that specifies the following information: - Interface type. - MAC address of the interface. You must ensure that this address is unique. - Label or name of the network device to which your router is connected. - (Optional) Virtualized PCI slot to which the interface is plugged. - Model type. For more information about the contents of the XML file, refer to XML file contents on page 276. 3. Use the virsh attach-device <vm-name>
[--persistent] <xml-filename> command to hot-plug the interface into the router. ### NOTE The **virsh attach-device** command does not check whether a MAC address is already assigned to another network interface. As a result, if you assign the same MAC address to multiple network interfaces and try to configure them, a Brocade vRouter might display error messages. To avoid these error messages, ensure that the MAC addresses you assign to hot-plugged interfaces are unique. # Creating XML files for hot-plugging interfaces On the KVM platform, before hot-plugging an interface into a Brocade vRouter, you must create an XML file on the host VM. This XML file describes the parameter of the network interface. ### XML file contents The following table describes the elements that the XML file for a hot-plugged interface can contain. #### TABLE 42 XML file contents | Element | Description | | |----------------|--|--| | interface type | Interface type. The following values are supported: | | | | • network: Specifies a network interface. | | | | bridge: Specifies a bridge interface. Use this value when hot-plugging an interface that is connected to a Spirent port. | | | | direct: Specifies a management interface. | | | mac address | MAC address of the interface. You must ensure that this address is unique. | | | source network | (Applies to network interfaces only) Label or name of the network to which the interface connects. | | | source bridge | (Applies to bridge interfaces only) Label or name of the bridge device to which the interface connects. | | | model type | Type of the network virtualization model. Currently, the only supported model on the KVM platform is virtio. | | | address type | (Optional) The virtualized PCI slot into which the interface is plugged. You must use the hexadecimal notation to specify the slot number. | | ### XML file examples The following table lists a few Brocade vRouter hot-plugging scenarios. For each scenario, this table shows the contents of the corresponding sample XML file. TABLE 43 Sample hot-plugging XML files | Hot-plugging Scenario | Description | |---|---| | XML file for hot-plugging a network interface and connecting it to the net300 network. A PCI slot is not specified. NOTE The net300 network is created using virtmanager. | <pre><interface type="network"> <mac address="52:54:00:ff:ff:ff"></mac></interface></pre> | | XML file for hot-plugging a network interface into the tenth PCI slot. | <pre><interface type="network"></interface></pre> | | XML file for hot-plugging a network interface and connecting it to a Spirent interface. A PCI slot is not specified. | <pre><interface type="bridge"></interface></pre> | TABLE 43 Sample hot-plugging XML files (continued) | Hot-plugging Scenario | Description | | | |---|--|--|--| | XML file for hot-plugging a management interface. A PCI slot is not specified. | <pre><interface type="direct"></interface></pre> | | | | XML file for hot-plugging a management interface. The interface is to be hot-plugged into the third PCI slot. | <pre><interface type="direct"></interface></pre> | | | ## Naming sequence The following table describes how a Brocade vRouter assigns names to interfaces and whether they persist. TABLE 44 Brocade vRouter interface naming on the KVM platform | Hot-plugging sequence example | Naming Sequence | Naming sequence after restarting the router | Naming sequence after shutting down the router and starting it | |---|---|---|--| | A nonpersistent interface is hotplugged. | The interface is hot-plugged into the next available PCI slot with the higher slot number. For example, dp0s3. | dp0s3 | The dpOs3 interface no longer exists. | | A persistent interface is hot-
plugged. | The interface is hot-plugged into the next available PCI slot with the higher slot number. For example, dp0s3. | dp0s3 | The dp0s3 interface persists. | | A nonpersistent interface is hot-
plugged followed by another
nonpersistent interface. | The interfaces are hot-plugged into the next available and consecutive PCI slots with the higher numbers. For example, dp0s3 followed by dp0s4. | dp0s3
dp0s4 | The dp0s3 and dp0s4 interfaces no longer exist. | | A nonpersistent interface is hot-
plugged followed by a persistent
interface. | The interfaces are hot-plugged into the next available and consecutive PCI slots with the higher numbers. For example, dpOs3 followed by dpOs4. | dp0s3
dp0s4 | The dp0s3 interface is detached and the dp0s4 interface persists, but it is plugged into PCI slot 3 (dp0s3). | | A persistent interface is hot-
plugged followed by a
nonpersistent interface. | The interfaces are hot-plugged into the next available and consecutive PCI slots with the higher numbers. For example, dpOs3 followed by dpOs4. | dp0s3
dp0s4 | The dp0s3 interface persists, but the dp0s4 interface is detached and no longer exists. | | A persistent interface is hot-
plugged into PCI slot 10. | The interface is hot-plugged into PCI slot 10. | dpOs10 | The dp0s10 interface persists. | | A nonpersistent interface is hot-
plugged into PCI slot 10. | The interface is hot-plugged into PCI slot 10. | dpOs10 | The dp0s10 interface is detached and no longer exists. | | A nonpersistent interface is hot-
plugged followed by a persistent
interface that is hot-plugged into
PCI slot 10. | The nonpersistent interface is plugged into the next available slot with the higher number (for example, dp0s3). The persistent interface takes slot 10. | dp0s3
dp0s10 | The dp0s10 interface persists. The dp0s3 interface is detached and no longer exists. | TABLE 44 Brocade vRouter interface naming on the KVM platform (continued) | Hot-plugging sequence example | Naming Sequence | Naming sequence after restarting the router | Naming sequence after shutting down the router and starting it | |---|--|---|---| | A persistent interface is hot-
plugged followed by a
nonpersistent interface that is hot-
plugged into PCI slot 10. | The persistent interface takes the next available higher slot. The nonpersistent interface takes slot 10. | dpOs3
dpOs10 | The dp0s3 interface persists. The dp0s10 interface is detached and no longer exists. | | A persistent interface is hot-
plugged followed by a persistent
interface that is hot-plugged into
PCI slot 10. | The first persistent interface takes the next available higher slot. The second persistent interface takes slot 10. | dp0s3
dp0s10 | The dp0s3 interface persists. The dp0s10 interface persists. | | A nonpersistent interface is hot-
plugged followed by a
nonpersistent interface that is hot-
plugged into PCI slot 10. | The first nonpersistent takes the next available higher slot. The second nonpersistent interface takes slot 10. | dpOs3
dpOs10 | The dp0s3 interface is detached and no longer exists. The dp0s10 interface is detached and no longer exists. | | A persistent interface is hot-
plugged followed by a persistent
interface (dpOs4) and then the
former interface is detached. | The second interface persists. | dp0s4 | The dp0s4 interface persists. | ## Interface hot-plugging examples (KVM) This section provides examples of how to hot-plug network interfaces into Brocade vRouters that are running in a host KVM system. ### Hot-plugging a nonpersistent network interface The following figure shows how to hot-plug a nonpersistent network interface into a Brocade vRouter and connect the interface to the net100 network. FIGURE 10 Hot-plugging a nonpersistent interface To configure hot-plugging for the scenario that is shown in this figure, perform the following steps on the host VM: - 1. Log in to the host VM. - 2. Change the directory to /home/vyatta/. 3. Create the r1.xml file and set its contents to the following: - 4. Save the r1.xml file in the /home/vyatta/ directory. - 5. Hot-plug the interface into the R1 router by entering the following command: ``` # virsh attach-device R1 ./r1.xml ``` The router hot-plugs the interface into the next available PCI slot with the higher number. #### NOTE In this instance, which is the default case, the interface is nonpersistent. This means that the interface is automatically detached during the shutdown sequence of the guest VM. To detach this interface, enter the following command: ``` # virsh detach-device R1 ./r1.xml ``` ### Hot-plugging a persistent network interface To hot-plug the interface that is specified by the r1.xml file (shown in the figure in Hot-plugging a nonpersistent network interface on page 278) in a persistent manner, enter the
following command: ``` # virsh attach-device R1 --persistent ./r1.xml ``` For a persistent interface, to detach the interface in a persistent manner, enter the following command on your VM guest: ``` # virsh detach-device R1 --persistent ./r1.xml ``` ## Hot-plugging two persistent network interfaces to connect two routers The following figure shows how to hot-plug two persistent network interfaces on two routers so that the two routers are connected to the same network. FIGURE 11 Connecting two routers with hot-plugged interfaces To configure hot-plugging for the scenario that is shown in this figure, perform the following steps on the host VM: - 1. Log in to the VM guest. - 2. Change the directory to /home/vyatta/. - 3. Create the r1.xml file and set its contents to the following: - 4. Save the r1.xml file in the /home/vyatta/ directory. - 5. Create the r2.xml file and set its contents to the following: The only difference between r1.xml and r2.xml is the MAC address. Because these two interfaces are on the same network, the MAC addresses must be unique. - 6. Save the r2.xml file in the /home/vyatta/ directory. - 7. Hot-plug an interface into the R1 router by entering the following command: ``` # virsh attach-device R1 --persistent./r1.xml ``` 8. Hot-plug an interface into the R2 router by entering the following command: # virsh attach-device R2 --persistent./r2.xml # Commands for attaching and detaching interfaces on the KVM platform You can use the following KVM commands to attach and detach network interfaces from a Brocade vRouter. These commands are available through the libvirt library on the KVM platform. - virsh attach-device <vm-name> [--persistent] <xml-filename> on page 283 - virsh detach-device <vm-name> [--persistent] <xml-filename> on page 284 ## virsh attach-device <vm-name> [--persistent] <xml-filename> Attaches a network interface to a Brocade vRouter. ### **Syntax** virsh attach-device vm-name [--persistent] xml-filename ### Command Default Nonpersistent. The interface is detached during the router shutdown sequence. ### **Parameters** vm-name The name of the guest VM (the Brocade vRouter). ### persistent Causes the interface to remain attached to the device after the router is powered on after being shut down. xml-filename The name of the XML file that specifies the interface parameters. ### Usage Guidelines Use this command to attach a network interface to a Brocade vRouter. If you do not use the **persistent** keyword, the interface is detached during the router shutdown sequence. To ensure that the interface remains attached, use the **persistent** keyword. ### virsh detach-device <vm-name> [--persistent] <xml-filename> Detaches a network interface from a Brocade vRouter. ### **Syntax** virsh detach-device vm-name [--persistent] xml-filename ### Command Default Nonpersistent. The interface is reattached after VM restarts or is powered on. ### **Parameters** vm-name The name of the guest VM (the Brocade vRouter). ### persistent Causes the interface to remain detached from the device after the router is powered on after being shut down. xml-filename The name of the XML file that specifies the interface parameters. ### Usage Guidelines Use this command to detach a network interface from a Brocade vRouter. If you do not use the **persistent** keyword, the interface remains attached, even after the router is restarted or powered on after being shut down. To ensure that the interface remains detached, use the **persistent** keyword. If you hot-plug two interfaces and give them the same MAC address by mistake, use this command to detach one of these interfaces. In the XML file, specify the PCI slot to which the interface is plugged, as shown in the following example: ``` <interface type='network'> <mac address='52:54:00:dd:dd'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x08' function='0x0'/> <source network='net200'/> <model type='virtio'/> </interface> ``` # Logging This chapter describes the Brocade vRouter logging mechanism. # Logging configuration ## Logging overview Significant system events are captured in log messages (also called syslog messages), which you can view on the console, save to a file, forward to an external server such as a syslog server, or direct to the terminal session of one or more specific users. Depending on the level of message severity you choose to log, system log messages include notices of ordinary and routine operations as well as warnings, failure, and error messages. The logging function of the Brocade vRouter uses the UNIX **syslogd** process. Logging configuration performed within the system CLI is stored in the **/etc/sylogd.conf** file. By default, local logging is enabled and sends messages to the /var/log/messages file. ### Logging facilities The Brocade vRouter supports the following standard syslog facilities. ### TABLE 45 Syslog facilities | Facility | Description | |----------|----------------------------------| | auth | Authentication and authorization | | authpriv | Nonsystem authorization | | cron | Cron daemon | | daemon | System daemons | | kern | Kernel | | lpr | Line printer spooler | | mail | Mail subsystem | | mark | Time stamp | | news | USENET subsystem | | security | Security subsystem | | syslog | System logging | | user | Application processes | | uucp | UUCP subsystem | | localO | Local facility 0 | | local1 | Local facility 1 | | local2 | Local facility 2 | | local3 | Local facility 3 | | local4 | Local facility 4 | ### TABLE 45 Syslog facilities (continued) | Facility | Description | |----------|---------------------------------| | local5 | Local facility 5 | | local6 | Local facility 6 | | local7 | Local facility 7 | | all | All facilities excluding "mark" | In addition, logging can be selectively enabled for some specific routing components. For more information, refer to Enabling and disabling logging for specific features on page 288. ### Log destinations When logging is enabled, system log messages are always written to the **messages** file in the **/var/log** directory of the local file system. In addition, system logs can be sent to the console, a named file in the local file system, a server running the **syslogd** utility (that is, a syslog server), or the terminal session of one or more specific users. - To direct syslog messages to the console, use the system syslog console command. - To direct syslog messages to a named file in the local file system, use the system syslog file command. - · To direct syslog messages to a remote machine running the syslogd utility, use the system syslog host command. - To direct syslog messages to the terminal of a specific user, multiple users, or all users logged in to the routing platform, use the system syslog user command. ### Log file locations and archiving Messages are written either to the main log file (the default) or a file that you specify. User-defined log files are written to the /var/log/user directory under the user-specified file name. The system uses standard UNIX log rotation to prevent the file system from filling with log files. When log messages are written to a file, the system writes up to 250 KB of log messages into the *logfile* file, where *logfile* is either the main log file or a name you have assigned to a user-defined file. When the log file reaches its maximum size, the system closes it and compresses it into an archive file. The archive file is named *logfile*.1.gz. At this point, the logging utility opens a new log file and begins to write system messages to it. When the new log file is full, the first archive file is renamed *logfile*.2.gz and the new archive file is named *logfile*.1.gz. The system archives log files in this way until a maximum number of log files exist. By default, the maximum number of archive files is five (that is, up to *logfile*.5.gz), where *logfile*.1.gz always represents the most recent file. After the fifth file, the oldest archive log file is deleted as it is overwritten by the next oldest file. To change the properties of log file archiving, configure the system syslog archive node with the following parameters. - Use the **size** parameter to specify the maximum size of each archive log file. - Use the files parameter to specify the maximum number of archive files to be maintained. ### Log severities Log messages generated by the Brocade vRouter are associated with one of the following levels of severity. TABLE 46 Syslog message severities | Severity | Meaning | |----------|--| | emerg | Emergency. A general system failure or other serious failure has occurred, such that the system is unusable. | | alert | Alert. Immediate action is required to prevent the system from becoming unusable; for example, because a network link has failed or the database has become compromised. | | crit | Critical. A critical condition exists, such as resource exhaustion—for example, the system is out of memory, CPU processing thresholds are being exceeded, or a hardware failure has occurred. | | err | Error. An error condition has occurred, such as a failed system call.
However, the system is still functioning. | | warning | Warning. An event has occurred that has the potential to cause an error, such as invalid parameters being passed to a function. This situation should be monitored. | | notice | Notice. A normal but significant event has occurred, such as an unexpected event. It is not an error, but could potentially require attention. | | info | Informational. Normal events of interest are being reported as they occur. | | debug | Debugging level. Trace-level information is being provided. | #### CAUTION Risk of service degradation. Debugging severity is resource intensive. Setting logging levels to Debug can affect performance. #
Logging configuration example Table 47 shows how to create a log file that captures kernel-related alerts of critical and higher severity. To create a log file to capture kernel-related critical alerts, perform the following steps in configuration mode. TABLE 47 Creating a log file to capture kernel-related alerts of critical and higher severity | Step | Command | |---|--| | Create a log file called kernel-log and log kernel-related messages of critical and higher severity. | vyatta@R1# set system syslog file kernel-log
facility kern level crit | | Commit the configuration. | <pre>vyatta@R1# commit Restarting system log daemon vyatta@R1#</pre> | | Verify the configuration. | <pre>vyatta@R1# show system syslog file kernel-log facility kern { level crit }</pre> | The show log file kernel-log command can then be used in operational mode to display the contents of the kernel-log log file. ## Enabling and disabling logging for specific features Some features of the Brocade vRouter—for example, BGP, OSPF, and IPsec VPN—produce feature-specific log messages that can be enabled and disabled within the configuration node for that feature. When you enable logging for a system feature, the log messages are sent to whatever destinations are configured for syslog. By default, log messages are sent to the main log file. You can configure syslog to send log messages to a file you specify in the /var/log/user directory. # Overriding the host syslog logging facility for log entries The system syslog configuration on a Brocade vRouter provides the capability to send log entries to a host system. You can designate which log entries are sent by specifying the facility and log level by using the system syslog global facility <facility | level < level > on page 302 command. You can use this command multiple times to specify different facility values for the log entries sent to the specified host. You can also configure a facility override value that replaces the facility fields in all log entries sent to a specified host. For example, you can specify multiple facility values for a set of log entries sent by the Brocade vRouter to a log host. Before sending the entries to the host, the facility values are replaced with the override value. When the host receives these log entries, their facility field value is designated by the facility override value. ### NOTE A facility override only affects log entries sent to a host and does not affect entries set to a user, console, or file A facility override is specific to a host. Different hosts can have different override values. The following example provides a configuration of multiple host syslog logging facilities with a facility overrride. | Step | Command | |--|---| | Specify the facilities messages that are sent to a host. | <pre>vyatta@R1# set system syslog host 10.10.10.10 facility auth level crit vyatta@R1# set system syslog host 10.10.10.10 facility user level err</pre> | | Specify the facility override value that replaces the facility values of the log entries sent to the host. | <pre>vyatta@R1# set system syslog host 10.10.10.10 facility-override local7</pre> | | Commit the configuration. | vyatta@R1# commit | | Verify the configuration. | <pre>vyatta@R1#show system syslog syslog { host 10.10.10.10 { facility auth { level crit } facility user { level err } facility-override local7 } }</pre> | # **Logging Commands** | • | delete log file | 290 | |---|---|-----| , , , , | | | | | | | | system syslog global facility <facility> level <level></level></facility> | | | | system syslog host <hostname> facility <facility> level <level></level></facility></hostname> | | | | | | | • | system syslog user <userid> facility <facility> level <level></level></facility></userid> | | # delete log file Deletes a user-defined log file, including all its archive files. ## **Syntax** delete log file file-name #### **Parameters** file-name A user-defined log file in the /var/log/user directory. #### Modes Operational mode ## **Usage Guidelines** Use this command to delete a user-defined log file. User-defined log files are created in the /var/log/user directory. When you enter this command, the specified file and all associated archive files are deleted from this directory. Note that deleting the user-defined log file does not stop the system from logging events. If you use this command while the system is logging events, old log events are deleted, but events after the delete operation are recorded in the new file. To delete the file altogether, first disable logging to the file by using the system syslog on page 294, and then delete it. # show log Displays the contents of a log file or files. ## **Syntax** show log [all | authorization | directory | file file-name | tail [lines] | component] #### **Parameters** all Displays the contents of all master log files. #### authorization Displays all authorization attempts. #### directory Displays a listing of all user-defined log files. #### file file-name Displays the contents of the specified user-defined log file. #### tail Displays the last 10 lines of the system log. lines The number of lines that tail displays at the end of the system log. #### component A specific system component. The component is any of the following: - dhcp—Displays the log for dhcp - dns—Displays the log for dns - firewall—Displays the log for firewall - https—Displays the log for https - image—Displays the log from an image - nat—Displays the log for nat - openvpn—Displays the log for openvpn - snmp—Displays the log for snmp - vpn—Displays the log for vpn - vrrp—Displays the log for vrrp #### Modes Operational mode # **Usage Guidelines** Use this command to display the contents of a log file or files. When used with no option, this command displays the contents of the main system log, which is the default log to which the system writes syslog messages. When used with the authorization option, this command displays all authorization attempts. When used with the **directory** option, this command displays a list of all user-defined log files. Syslog messages can be written to these or the main system log file. User-specified log files are defined by using the system syslog file <filename> facility <facility> level <level> on page 299. When filefile-name is specified, this command displays the contents of the specified user-defined log file. When used with the **tail** option, this command displays the last 10 lines of the system log file and continues to display log messages as they are added to the log file. This command can be interrupted by using <Ctrl+C>. When lines is specified, the last lines lines of the system log are to be displayed. When component is specified, log messages that relate to that component are displayed. # show log image <image-name> Displays the contents of a log file or files on an image other than the currently active image. ## **Syntax** show log image image-name [all | authorization | directory | file file-name | tail [lines]] #### Command Default When used with no option, this command displays the contents of the main system log. The system writes syslog messages to this default log. #### **Parameters** all Displays the contents of all master log files for the specified image. #### authorization Displays all authorization attempts for the specified image. #### directory Displays a listing of all user-defined log files for the specified image. #### file file-name Displays the contents of the specified user-defined log file for the specified image. tail Displays the last 10 lines of the system log for the specified image. lines The number of lines to be displayed. If not specified, 10 lines are displayed. ## Modes Operational mode ## **Usage Guidelines** Use this command to display the contents of a log file or files on an image other than the currently active image. # system syslog Configures the syslog utility of the system. ## **Syntax** set system syslog delete system syslog show system syslog #### Modes Configuration mode ## **Configuration Statement** ``` system { syslog { } } ``` # **Usage Guidelines** Use this command to configure the syslog utility of the system. Using this command, you can set the destinations for log messages from different routing components (facilities) and specify what severity level of message should be reported for each facility. Log messages generated by the Brocade vRouter are associated with one of the following levels of severity. TABLE 48 Syslog message severities | Severity | Meaning | |----------|--| | emerg | Emergency. A general system failure or other serious failure has occurred, such that the system is unusable. | | alert | Alert. Immediate action is required to prevent the system from becoming unusable; for example, because a network link has failed or the database has become compromised. | | crit | Critical. A critical condition exists, such as resource exhaustion—for example, the system is out of memory, CPU processing thresholds are being exceeded, or a hardware failure has occurred. | | err | Error. An error condition has occurred, such as a failed system call. However,
the system is still functioning. | | warning | Warning. An event has occurred that has the potential to cause an error, such as invalid parameters being passed to a function. This situation should be monitored. | | notice | Notice. A normal but significant event has occurred, such as an unexpected event. It is not an error, but could potentially require attention. | | info | Informational. Normal events of interest are being reported as they occur. | TABLE 48 Syslog message severities (continued) | Severity | Meaning | |----------|---| | debug | Debugging level. Trace-level information is being provided. | The Brocade vRouter supports the following standard syslog facilities. **TABLE 49** Syslog facilities | Facility | Description | |----------|----------------------------------| | auth | Authentication and authorization | | authpriv | Nonsystem authorization | | cron | Cron daemon | | daemon | System daemons | | kern | Kernel | | lpr | Line printer spooler | | mail | Mail subsystem | | mark | Time stamp | | news | USENET subsystem | | security | Security subsystem | | syslog | System logging | | user | Application processes | | uucp | UUCP subsystem | | localO | Local facility 0 | | local1 | Local facility 1 | | local2 | Local facility 2 | | local3 | Local facility 3 | | local4 | Local facility 4 | | local5 | Local facility 5 | | local6 | Local facility 6 | | local7 | Local facility 7 | | all | All facilities excluding "mark" | Messages are written either to the main log file (the default) or a file that you specify. User-defined log files are written to the /var/log/user directory under the user-specified file name. The system uses standard UNIX log rotation to prevent the file system from filling with log files. When log messages are written to a file, the system writes up to 250 KB of log messages into the *logfile* file, where *logfile* is either the main log file or a name you have assigned to a user-defined file. When the log file reaches its maximum size, the system closes it and compresses it into an archive file. The archive file is named *logfile*.1.gz. At this point, the logging utility opens a new log file and begins to write system messages to it. When the new log file is full, the first archive file is renamed *logfile*.2.gz and the new archive file is named *logfile*.1.gz. The system archives log files in this way until a maximum number of log files exist. By default, the maximum number of archive files is 5 (that is, up to *logfile*.5.gz), where *logfile*.1.gz always represents the most recent file. After the fifth file, the oldest archive log file is deleted as it is overwritten by the next oldest file. To change the properties of log file archiving, configure the **system syslog archive** node with the following parameters. - Use the **size** parameter to specify the maximum size of each archive log file. - Use the **files** parameter to specify the maximum number of archive files to be maintained. Use the **set** form of this command to create the syslog configuration. Use the delete form of this command to remove the syslog configuration. Use the **show** form of this command to view the syslog configuration. # system syslog console facility <facility> level <level> Specifies which messages are sent to the console. ## **Syntax** set system syslog console facility facility level level delete system syslog console facility [facility [level]] show system syslog console facility [facility [level]] #### **Parameters** facility Multi-node. The kinds of messages that are sent to the console. Refer to "Usage Guidelines" for the system syslog command for supported facilities. You can send the log messages of multiple facilities to the console by creating multiple facility configuration nodes within the **console** node. level The minimum severity level of log message that are reported to the console. The level is any of emerg, alert, crit, err, warning, notice, info, or debug. Refer to "Usage Guidelines" for the system syslog command for the meanings of these levels. By default, messages of err severity are logged to the console. #### Modes Configuration mode #### **Configuration Statement** ## **Usage Guidelines** Use this command to specify which messages are sent to the console. Use the set form of this command to specify which messages are sent to the console. Use the delete form of this command to restore the default console message configuration. Use the **show** form of this command to display the configuration of console messages. # system syslog file <filename> archive Specifies the settings for log file archiving of a user-defined log file. ## **Syntax** ``` set system syslog file filename archive { files files | size size } delete system syslog file filename archive { files | size } show system syslog file filename archive { files | size } ``` #### **Parameters** filename Multi-node. A file to which the specified log messages are written. A file name can include numbers, letters, and hyphens (-). Full path specifications are not accepted. You can send log messages to multiple files by creating multiple file configuration nodes. files The maximum number of archive files that are maintained for this log file. After the maximum number has been reached, logs are rotated with the oldest file being overwritten. The default maximum number is 10. size The maximum size in bytes of archive files for this log file. After the maximum has been reached, the file is closed and archived in compressed format. The default maximum size is 1 MB. #### Modes Configuration mode ## **Configuration Statement** ``` system { syslog { file filename{ archive { files files size size } } } ``` #### **Usage Guidelines** Use this command to specify settings for log file archiving of a user-defined log file. Use the set form of this command to specify settings for log file archiving of a user-defined log file. Use the delete form of this command to restore the default archiving configuration for a user-defined log file. Use the **show** form of this command to display the configuration of the user-defined log file archiving. # system syslog file <filename> facility <facility> level <level> Specifies which messages are sent to a user-defined log file. ## **Syntax** set system syslog file filename facility facility level level delete system syslog file filename facility [facility [level]] show system syslog file filename facility [facility [level]] #### **Parameters** filename Multi-node. A file to which the specified log messages are written. A file name can include numbers, letters, and hyphens (-). Full path specifications are not accepted. You can send log messages to multiple files by creating multiple file configuration nodes. facility Multi-node. The kinds of messages that are sent to the user-defined log file. Please see the Usage Guidelines in system syslog command for supported logging facilities. You can send the log messages of multiple facilities to this log file by creating multiple facility configuration nodes within the file configuration node. level The minimum severity level of log message that are reported. The level is any of emerg, alert, crit, err, warning, notice, info, or debug. Refer to "Usage Guidelines" for the system syslog command for the meanings of these levels. By default, messages of warning severity are logged to the file. The Brocade vRouter supports the sending of log messages to the main system log file, the console, a remote host, a user-specified file, or a user account. #### Modes Configuration mode #### **Configuration Statement** # **Usage Guidelines** Use this command to specify which messages are sent to a user-defined log file. Use the set form of this command to specify which messages are sent to a user-defined log file. Use the delete form of this command to restore the default message configuration for a user-defined log file. Use the **show** form of this command to display the configuration for user-defined log file messages. # system syslog global archive Specifies the settings for log file archiving of the main system log file. ## **Syntax** ``` set system syslog global archive { files files | size size } delete system syslog global archive { files | size } show system syslog global archive { files | size } ``` #### **Parameters** files The maximum number of archive files that are maintained for the main system log file. After the maximum has been reached, logs are rotated with the oldest file being overwritten. The default maximum number is 10. size The maximum size in bytes of archive files for the main system log file. After the maximum has been reached, the file is closed and archived in compressed format. The default maximum size is 1 MB. #### Modes Configuration mode ## **Configuration Statement** ``` system { syslog { global { archive { files files size size } } } ``` ## **Usage Guidelines** Use this command to specify the settings for log file archiving of the main system log file. Use the set form of this command to specify the settings for log file archiving of the main system log file. Use the delete form of this command to restore the default configuration for log file archiving. Use the **show** form of this command to display the configuration for log file archiving. # system syslog global facility <facility > level <level> Specifies which messages are sent to the main system log file. ## **Syntax** set system syslog global facility facility level level delete system syslog global facility [facility [level]] show system syslog global facility [facility [level]] #### **Parameters** facility Multi-node. The kinds of messages that are sent to the main system log file. Refer to "Usage Guidelines" for the system syslog command for supported facilities. You can send the log messages of multiple facilities to the main system log file by creating multiple facility configuration nodes
within the **global** node. level The minimum severity level of log message that are reported. The level is any of **emerg**, **alert**, **crit**, **err**, **warning**, **notice**, **info**, or **debug**. Refer to "Usage Guidelines" for the system syslog command for the meanings of these levels. By default, messages of **warning** severity are logged to the main system log file. #### Modes Configuration mode #### **Configuration Statement** ## **Usage Guidelines** Use this command to specify which messages are sent to the main system log file. Use the set form of this command to specify which messages are sent to the main system log file. Use the delete form of this command to restore the default configuration for the main system log file. Use the show form of this command to display the configuration for the main system log file. # system syslog host <hostname> facility <facility> level <level> Specifies which messages are sent to the remote syslog server. #### **Syntax** set system syslog host hostname facility facility level level delete system syslog host hostname facility [facility [level]] show system syslog host hostname facility [facility [level]] #### **Parameters** hostname Leaf-list. An IP address or a host name. The host must be running the syslog protocol. A host name can include numbers, letters, hyphens (-), and such other commonly used characters. The IP address must follow one of the addressing standards: X.X.X.X or [x:x:x:x:x:x:x]. All host formats may have a :port suffix. The IPv6 address must be enclosed in square brackets ([]) to delimit the address and port. You can send log messages to multiple hosts by creating multiple host configuration nodes. facility Leaf-list. The kinds of messages that are sent to the host. Refer to "Usage Guidelines" on page 294 for the **system** syslog command for supported logging facilities. You can send the log messages of multiple facilities to a host by creating multiple facility configuration nodes within the **host** configuration node. level The minimum severity level of log message that are reported. The level is any of emerg, alert, crit, err, warning, notice, info, or debug. Refer to "Usage Guidelines" for the system syslog command for the meanings of these levels. By default, messages of err severity are logged to hosts. #### Modes Configuration mode #### **Configuration Statement** # **Usage Guidelines** Use this command to specify which messages are sent to the remote syslog server. Use the **set** form of this command to specify which messages are sent to the remote syslog server. Use the delete form of this command to restore the default file message configuration for the remote syslog server log. Use the **show** form of this command to display the configuration for the remote syslog server. # system syslog host <hostname> facility-override <facility> Defines the facility override value that replaces the facility fields for all log entries sent to the specified host. #### **Syntax** set system syslog host hostname facility-override facility delete system syslog host hostname facility-override show system syslog [host hostname facility-override [facility]] #### **Parameters** hostname An IP address or a host name configured with system syslog host <hostname> facility <facility> level <level> on page 303. facility The overrride facility value that replaces the facility fields for all log entries to the specified host messages. "Usage Guidelines" on page 294 for the **system syslog** command lists the supported logging facilities. #### Modes Configuration mode #### **Configuration Statement** ``` system { syslog { host hostname { facility-override facility } } } ``` #### **Usage Guidelines** A facility override only affects log entries sent to a host and does not affect entries set to a user, console, or file. A facility override is specific to a host. Different hosts can have different override values. Use the set form of this command to define the facility override value for all log entries sent to the specified host. Use the delete form of this command to restore the default facility values for the log entries sent to the specified host. Use the **show** form of this command to display the configuration for the facility override configuation. # system syslog user <userid> facility <facility> level <level> Specifies which messages are sent to the terminal of a user. #### **Syntax** ``` set system syslog user userid facility facility level level delete system syslog user userid facility [facility [level]] show system syslog user userid facility [facility [level]] ``` #### **Parameters** userid Multi-node. A user ID. You can send log messages to multiple users by creating multiple user configuration nodes. facility Multi-node. The kinds of messages that are sent to the user. Refer to "Usage Guidelines" for the system syslog command for supported logging facilities. You can send the log messages of multiple facilities to a user account by creating multiple facility configuration nodes within the **user** configuration node. level The minimum severity level of log message that are reported to the user. The level is any of emerg, alert, crit, err, warning, notice, info, or debug. Refer to "Usage Guidelines" for the system syslog command for the meanings of these levels. By default, messages of err severity are logged to the terminal of the user. #### Modes Configuration mode #### **Configuration Statement** ## **Usage Guidelines** Use this command to specify which messages are sent to the terminal of a user. Use the **set** form of this command to specify which messages are sent to the terminal of a user. Use the **delete** form of this command to restore the default configuration of terminal messages for a user. Use the **show** form of this command to display the configuration of terminal messages for a user. # Loopback and Data Plane Interfaces Following are the supported formats of the interface name: - lo or lonThe name of a loopback interface, where n ranges from 1 through 99999. - dpxpypz—The name of a data plane interface, where - dpx specifies the data plane identifier (ID). Currently, only dpO is supported. - py specifies a physical or virtual PCI slot index (for example, p129). - pz specifies a port index (for example, p1). For example, dp0p1p2, dp0p160p1, and dp0p192p1. - **dp**xemy—The name of a data plane interface on a LAN-on-motherboard (LOM) device that does not have a PCI slot, where **em**y specifies an embedded network interface number (typically, a small number). For example, dpOem3. - **dp**xsy—The name of a data plane interface in a system in which the BIOS identifies the network interface card to reside in a particular physical or virtual slot y, where y is typically a small number. For example, for the dpOs2 interface, the BIOS identifies slot 2 in the system to contain this interface. - **dpxPnpypz**—The name of a data plane interface on a device that is installed on a secondary PCI bus, where **Pn** specifies the bus number. You can use this format to name data plane interfaces on large physical devices with multiple PCI buses. For these devices, it is possible to have network interface cards installed on different buses with these cards having the same slot ID. The value of *n* must be an integer greater than 0. For example, dp0P1p162p1 and dp0P2p162p1. # VRF support | • | VRF support for RADIUS authentication | . 3: | 11 | |---|--|------|----| | • | VRF support for file transfer client connections | .31 | 12 | | | Command support for VRF routing instances | .31 | 12 | # VRF support for RADIUS authentication RADIUS must run on a single routing instance. If you configure a RADIUS server without specifying the routing instance, the RADIUS server starts in the default routing instance. If you specify a nondefault routing instance, you must verify that all servers configured for AAA with the RADIUS server are accessible by way of the same routing instance. The following examples show excerpts of RADIUS configurations that use these values: - routing instance = BLUE - radius-server-address = 42.42.42.42 - secret-code = secured - port-no = 1820 - timeout = 2 The following example shows how to configure RADIUS for the default routing instance. The following example shows the same configuration sequence for the BLUE routing instance. For more information about RADIUS and configuring RADIUS, see Brocade Vyatta Network OS Basic System Configuration Guide. # VRF support for file transfer client connections The Brocade 5600 vRouter uses FTP that contains several commands. If the network configuration supports VRF, the syntax for each command includes optional VRF parameters. The optional VRF parameters specify the non-default VRF that is used when running the command. FTPs used in commands that support non-default VRFs must access servers on non-default VRFs. Therefore, commands that support non-default VRF also must also be aware of the VRF parameter that is used in the configuration. For example, a customer may have vRouter images stored on a server in the non-default VRF; so, the add system image command must be able to download from that server. The add system image command sytax consists of the routing instance parameter that specifies the non-default VRF that is used. The command follows: ``` vyatta@R1# add system image { iso-filename | [routing-instance <ri-name>] iso-URL [username username password password] } ``` An example of a routing instance follows: vyatta@R1# add system image routing-instance red http://1.2.3.4/images/vrouter.iso # Command support for VRF routing instances VRF allows a Brocade 5600 vRouter to support multiple routing tables, one for each VRF routing instance. Some commands in this guide support VRF and can be applied to particular routing instances. Use the guidelines in this section to determine correct syntax when adding VRF
routing instances to commands. For more information about VRF, refer to *Brocade Vyatta Network OS Basic Routing Configuration Guide*. This guide includes an overview of VRF, VRF configuration examples, information about VRF-specific features, and a list of commands that support VRF routing instances. ## Adding a VRF routing instance to a Configuration mode command For most Configuration mode commands, specify the VRF routing instance at the beginning of a command. Add the appropriate VRF keywords and variable to follow the initial action (set, show, or delete) and before the other keywords and variables in the command. #### Configuration mode example: syslog The following command configures the syslog logging level for the specified syslog host. The command does not include a VRF routing instance, so the command applies to the default routing instance. The following example shows the same command with the VRF routing instance (GREEN) added. Notice that **routing routing-instance GREEN** has been inserted between the basic action (**set** in the example) and the rest of the command. Most Configuration mode commands follow this convention. ## Configuration mode example: SNMP Some features, such as SNMP, are not available on a per-routing instance basis but can be bound to a specific routing instance. For these features, the command syntax is an exception to the convention of specifying the routing instance at the beginning of Configuration mode commands. The following example shows how to configure the SNMPv1 or SNMPv2c community and context for the RED and BLUE routing instances. The first two commands specify the RED routing instance as the context for community A and BLUE routing instance as the context for community B. The subsequent commands complete the configuration. For more information about configuring SNMP, refer to Brocade Vyatta Network OS Remote Management Configuration Guide. #### Adding a VRF routing instance to an Operational mode command The syntax for adding a VRF routing instance to an Operational mode command varies according to the type of command parameters: - · If the command does not have optional parameters, specify the routing instance at the end of the command. - If the command has optional parameters, specify the routing instance after the required parameters and before the optional parameters. #### Operational mode examples without optional parameters The following command displays dynamic DNS information for the default routing instance. ``` vyatta@vyatta:~$ show dns dynamic status ``` The following command displays the same information for the specified routing instance (GREEN). The command does not have any optional parameters, so the routing instance is specified at the end of the command. vyatta@vyatta:~\$ show dns dynamic status routing-instance GREEN #### Operational mode example with optional parameters The following command obtains multicast path information for the specified host (10.33.2.5). A routing instance is not specified, so the command applies to the default routing instance. ``` vyatta@vyatta:~$ mtrace 10.33.2.5 detail ``` The following command obtains multicast path information for the specified host (10.33.2.5) and routing instance (GREEN). Notice that the routing instance is specified before the optional **detail** keyword. vyatta@vyatta:~\$ mtrace 10.33.2.5 routing-instance GREEN detail ## Operational mode example output: SNMP The following SNMP **show** commands display output for routing instances. ``` vyatta@vyatta:~$ show snmp routing-instance Routing Instance SNMP Agent is Listening on for Incoming Requests: Routing-Instance RDID vyatta@vyatta:~$ show snmp community-mapping SNMPv1/v2c Community/Context Mapping: Community Context commA 'RED' 'BLUE' commB 'default' deva vyatta@vyatta:~$ show snmp trap-target SNMPv1/v2c Trap-targets: Port Routing-Instance Community Trap-target 'RED' 'test' 1.1.1.1 vyatta@vyatta:~$ show snmp v3 trap-target SNMPv3 Trap-targets: Port Protocol Auth Priv Type EngineID Routing-Instance User Trap-target '162' 'udp' 'md5 'infor 2.2.2.2 'BLUE' 'test' ``` # List of Acronyms | Acronym | Description | |---------|---| | ACL | access control list | | ADSL | Asymmetric Digital Subscriber Line | | AH | Authentication Header | | AMI | Amazon Machine Image | | API | Application Programming Interface | | AS | autonomous system | | ARP | Address Resolution Protocol | | AWS | Amazon Web Services | | BGP | Border Gateway Protocol | | BIOS | Basic Input Output System | | BPDU | Bridge Protocol Data Unit | | CA | certificate authority | | CCMP | AES in counter mode with CBC-MAC | | CHAP | Challenge Handshake Authentication Protocol | | CLI | command-line interface | | DDNS | dynamic DNS | | DHCP | Dynamic Host Configuration Protocol | | DHCPv6 | Dynamic Host Configuration Protocol version 6 | | DLCI | data-link connection identifier | | DMI | desktop management interface | | DMVPN | dynamic multipoint VPN | | DMZ | demilitarized zone | | DN | distinguished name | | DNS | Domain Name System | | DSCP | Differentiated Services Code Point | | DSL | Digital Subscriber Line | | eBGP | external BGP | | EBS | Amazon Elastic Block Storage | | EC2 | Amazon Elastic Compute Cloud | | EGP | Exterior Gateway Protocol | | ECMP | equal-cost multipath | | ESP | Encapsulating Security Payload | | FIB | Forwarding Information Base | | FTP | File Transfer Protocol | | GRE | Generic Routing Encapsulation | | HDLC | High-Level Data Link Control | | 1/0 | Input/Output | | ICMP | Internet Control Message Protocol | | Acronym | Description | |---------|---| | IDS | Intrusion Detection System | | IEEE | Institute of Electrical and Electronics Engineers | | IGMP | Internet Group Management Protocol | | IGP | Interior Gateway Protocol | | IPS | Intrusion Protection System | | IKE | Internet Key Exchange | | IP | Internet Protocol | | IPOA | IP over ATM | | IPsec | IP Security | | IPv4 | IP Version 4 | | IPv6 | IP Version 6 | | ISAKMP | Internet Security Association and Key Management Protocol | | ISM | Internet Standard Multicast | | ISP | Internet Service Provider | | KVM | Kernel-Based Virtual Machine | | L2TP | Layer 2 Tunneling Protocol | | LACP | Link Aggregation Control Protocol | | LAN | local area network | | LDAP | Lightweight Directory Access Protocol | | LLDP | Link Layer Discovery Protocol | | MAC | medium access control | | mGRE | multipoint GRE | | MIB | Management Information Base | | MLD | Multicast Listener Discovery | | MLPPP | multilink PPP | | MRRU | maximum received reconstructed unit | | MTU | maximum transmission unit | | NAT | Network Address Translation | | NBMA | Non-Broadcast Multi-Access | | ND | Neighbor Discovery | | NHRP | Next Hop Resolution Protocol | | NIC | network interface card | | NTP | Network Time Protocol | | OSPF | Open Shortest Path First | | OSPFv2 | OSPF Version 2 | | OSPFv3 | OSPF Version 3 | | PAM | Pluggable Authentication Module | | PAP | Password Authentication Protocol | | PAT | Port Address Translation | | PCI | peripheral component interconnect | | PIM | Protocol Independent Multicast | | PIM-DM | PIM Dense Mode | | Acronym | Description | |---------|---| | PIM-SM | PIM Sparse Mode | | PKI | Public Key Infrastructure | | PPP | Point-to-Point Protocol | | PPPoA | PPP over ATM | | PPPoE | PPP over Ethernet | | PPTP | Point-to-Point Tunneling Protocol | | PTMU | Path Maximum Transfer Unit | | PVC | permanent virtual circuit | | QoS | quality of service | | RADIUS | Remote Authentication Dial-In User Service | | RHEL | Red Hat Enterprise Linux | | RIB | Routing Information Base | | RIP | Routing Information Protocol | | RIPng | RIP next generation | | RP | Rendezvous Point | | RPF | Reverse Path Forwarding | | RSA | Rivest, Shamir, and Adleman | | Rx | receive | | S3 | Amazon Simple Storage Service | | SLAAC | Stateless Address Auto-Configuration | | SNMP | Simple Network Management Protocol | | SMTP | Simple Mail Transfer Protocol | | SONET | Synchronous Optical Network | | SPT | Shortest Path Tree | | SSH | Secure Shell | | SSID | Service Set Identifier | | SSM | Source-Specific Multicast | | STP | Spanning Tree Protocol | | TACACS+ | Terminal Access Controller Access Control System Plus | | TBF | Token Bucket Filter | | TCP | Transmission Control Protocol | | TKIP | Temporal Key Integrity Protocol | | ToS | Type of Service | | TSS | TCP Maximum Segment Size | | Tx | transmit | | UDP | User Datagram Protocol | | VHD | virtual hard disk | | vif | virtual interface | | VLAN | virtual LAN | | VPC | Amazon virtual private cloud | | VPN | virtual private network | | VRRP | Virtual Router Redundancy Protocol | | Acronym | Description | |---------|------------------------| | WAN | wide area network | | WAP | wireless access point | | WPA | Wired Protected Access |