An IBM Proof of Technology

Getting started with Big SQL on
Hadoop

Creating tables, loading data, and issuing queries with
Big SQL 3.0 on InfoSphere Biglnsights

Last updated: Nov. 3, 2014

An IBM Proof of Technology

Catalog Number

© Copyright IBM Corporation, 2014

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

LAB 1 OVERVIEW........c oottt sss st se s s se s ssssss s s s ss s s s s s s s s s s e e s s s s s a s a s s s s s amsasmssmamSRSEERERRRRREERREERRREenneenneenenannennnnnnnnnns
1.1. PRE-REQUISITESciiieiiteie e et e oottt ettt ettt ettt ettt s s st sae s e s s se e s e seae e e e eeeeeeeeeeeaeeaeeeaeeeaens
1.2. WHAT YOU'LL LEARN
1.3. GETTING STARTED WITH YOUR VIMWARE IMAGEcceiiiiiieiee e ettt ettt snsesnnnes 7
LAB 2 USING THE BIG SQL COMMAND LINE INTERFACE (JSQSH)......cccccmiiiiirmrnnninsscseere s ssssssses s s sssssnssnssnnes 1
2.1. LAUNCHING THE WEB CONSOLE TO VERIFY BIGINSIGHTS SERVICES ARE UP AND RUNNING...........ccceeeeeeeennn.... 1
2.2. UNDERSTANDING JSQSH CONNECTIONSuuuiiiuninunutatasausssasssasssssesssssssseseseeeserereeeeeeeeeeaareraeaeaaseaaeaeaeeees
2.3. OPTIONAL: CREATING YOUR OWN DATABASE CONNECTION
24. GETTING HELP FORJSQSH....coiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee,
2.5. ISSUING JSQSH COMMANDS AND BIG SQL QUERIESceiiiiiiiiiiieieeeeeeee e
LAB 3 L LS 1L 0] = N
3.1. LAUNCHING THE WEB CONSOLE TO VERIFY BIGINSIGHTS SERVICES ARE UP AND RUNNING...........ccceeveeeeennnn... 27
3.2 CREATING A BIG SQL CONNECTION IN ECLIPSEccoiiiiiii e eenees 28
3.3. CREATING A PROJECT AND A SQL SCRIPT FILE
3.4. CREATING AND ISSUING QUERIES......cciitiieiieeeeeeeeeeee e e ee e e e e e e et et et et e et et e e e e e et et e e ssasasassssssssssnsesnsesenaennnees
LAB 4 QUERYING STRUCTURED DATA WITH BIG SQL.......cuuueueeeemceeeceneerererreenreseesessressssesssesssssesssssssssssssssnsesnns
4.1. CREATING SAMPLE TABLES AND LOADING SAMPLE DATAcccceennnnnn.
4.2, QUERYING THE DATAWITH BIG SQL......
4.3. CREATING AND WORKING WITH VIEWS
4.4, POPULATING A TABLE WITH INSERT INTO ... SELECT’
4.5. OPTIONAL: STORING DATA IN AN ALTERNATE FILE FORMAT (PARQUET)....ccoiutiiiiitiiieeiieeeiiiee e ee e
4.6. OPTIONAL: USING BIG SQL FROM A JDBC CLIENT APPLICATION (ECLIPSE) ...ccoitviieiiiieeiiiee e
LAB 5 ANALYZING SOCIAL MEDIA DATA IN BIGSHEETS WITH BIG SQLccccoecmmeuennueeeeeneenereeereeeeresesensesesenes
5.1. CREATING AND CUSTOMIZING A BIGSHEETS WORKBOOKccceeieeiieieieeeeeeeeaeesnsesnsnsssssssssssssssssssssssssesssnennes
5.2. CREATING A BIG SQL TABLE DIRECTLY FROM A WORKBOOK
5.3. EXPORTING YOUR WORKBOOK........cciiiiieiieiieeieeeee e e eaasasasaasssssassssssssssesssnsesesaseeeeeeeeeeeseeaaeeaens
54. OPTIONAL: USING BIG SQL TO WORK WITH DATA EXPORTED FROM BIGSHEETS
LAB 6 WORKING WITH NON-TRADITIONAL DATA
6.1. REGISTERING A SERDEottt e e e e e e e e eeeaaeeaaeeaeas
6.2. CREATING, POPULATING, AND QUERYING A TABLE THAT USES A SERDE
LAB 7 USING ADVANCED BIG SQL FEATUREScoooieeereeeeeeerreeeeresereeeseeesreeseresessessnnsenas
71. UNDERSTANDING YOUR DATA ACCESS PLAN (EXPLAIN) — FROM THE COMMAND LINE
7.2. COLLECTING STATISTICS WITH THE ANALYZE TABLE COMMAND......ccooiiiieeicies
7.3. ENHANCING SQL SECURITY WITH FINE-GRAINED ACCESS CONTROL .vvvvvvivrrrrereeeeeeereeeeeeeeeeeeeaeeeaaseaaseaaeaaaeees
LAB 8 DEVELOPING AND EXECUTING SQL USER-DEFINED FUNCTIONS.ccoovreerrrrrrrrcrerr s s snmnnnnnas 91
8.1. UNDERSTANDING UDF S ... et e e e e e e e e e e e et e e e e e e e eeeateeeeeaeeenaas 91
8.2. PREPARE JSQSH TO CREATE AND EXECUTE UDFS.....cuiiiitiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeee e e e e eeeaeeeaaeaeaaaeaaeaaaeeeas 92
8.3. CREATING AND EXECUTING ASCALAR UDF ... e aee e nenees 93
8.4. OPTIONAL: INVOKING UDFS WITHOUT PROVIDING FULLY-QUALIFIED NAMEuuuuuurnrerenrereenssesssssesesesesereeeeeees
8.5. INCORPORATING IF/ELSE STATEMENTS
8.6. INCORPORATING WHILE LooPS
8.7. INCORPORATING FOR LOOPS
8.8. CREATING ATABLE UDF ..o e
8.9. OPTIONAL: OVERLOADING UDFS AND DROPPING UDFScoiiiiiiiiiiiii e
LAB 9 EXPLORING BIG SQL LOAD AND HADOOP COMMANDSccooiieiirerereeerrererrseerereesessrsssessssnssssssssssssnsnnns
9.1. LOADING DATA INTO BIG SQL TABLES FROM A LOCAL FILEuuuuuuuruuernuurrnrrssssresssssseseseseeesesereeeseeeeeeeeeeees
9.2. TRACKING REJECTED RECORDS.....ccuutuueeeeeeeiiitiieeeeeeeeeeeanneeeeeaees
9.3. PREPARING TO LOAD DATA DIRECTLY FROM A RELATIONAL DBMS ...
94. LOADING DATA DIRECTLY FROM A RELATIONAL DBIMS TABLEuvuuvieereiieeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeees
9.5. LOADING DATA DIRECTLY FROM A RELATIONAL DBMS WITH SELECTovvviiiiiiiieieieeeeeeeeeeeeeee e 111
9.6. EXPLORING ADDITIONAL LOAD SCENARIOSiiiieee e e eteaseaasasasesssesesesssssseaeseseeeeeeeeeeeeeeeeeaeeeees 112
9.7. USING HADOOP COMMANDS TO MOVE DATA INTO ATABLE .. .ceiiiiiiieieeeeee et eee e e e e ettt e e e e e eeeee e e eeeeeeens 114
9.8. DROPPING TABLES YOU CREATED IN THIS LABuiiiiiieii i utatnsasausasssasssssssssssssssssssssssssnsesssesseeseeeseseeeeeess 117
LAB 10 SUMMARY ..oiiiiiiiiiiiit et irr e s e s s ss s s sesss s s ss s e s s e s e ss s s s ss s s s e s s s s s ssssssssssssassssnssamssmmmammmEmsmEammEEennEanneennennnnannnanenennnnns 118
Contents Page 3

IBM Software

Page 4 Introduction to Big SQL

Lab 1 Overview

In this hands-on lab, you'll learn how to work with Big SQL, a component of InfoSphere Biglnsights,
IBM’s big data platform based on Apache Hadoop. In particular, you'll use Big SQL to query traditional
structured data as well as data derived from social media sites.

Big SQL enables IT professionals to create tables and query data in Biglnsights using familiar SQL
statements. To do so, programmers use standard SQL syntax and, in some cases, SQL extensions
created by IBM to make it easy to exploit certain Hadoop-based technologies. Big SQL shares query
compiler technology with DB2 (a relational DBMS) and, as such, offers a wide breadth of SQL
capabilities.

Organizations interested in Big SQL often have considerable SQL skills in-house, as well as a suite of
SQL-based business intelligence applications and query/reporting tools. The idea of being able to
leverage existing skills and tools — and perhaps reuse portions of existing applications — can be quite
appealing to organizations new to Hadoop. Indeed, some companies with large data warehouses built on
relational DBMS systems are looking to Hadoop-based platforms as a potential target for offloading
"cold" or infrequently used data in a manner that still allows for query access. In other cases,
organizations turn to Hadoop to analyze and filter non-traditional data (such as logs, sensor data, social
media posts, etc.), ultimately feeding subsets or aggregations of this information to their relational
warehouses to extend their view of products, customers, or services.

Hands On Lab Page 5

IBM Software

1.1. Pre-requisites

Before beginning this lab, you should have a working Biglnsights environment launched with a Big SQL
3.0 server active. You must be able to log into your system with an account that has administrative
privileges. Prior knowledge of industry-standard SQL is useful.

This lab was developed for the InfoSphere Biglnsights 3.0 Quick Start Edition VMware image. As such,
its lab exercises are based on the following information:

User Password

VM Image root account root password
VM Image lab user account biadmin biadmin
Biglnsights Administrator biadmin biadmin
Big SQL Administrator bigsql bigsql
Lab user biadmin biadmin

Property Value
Host name bivm.ibm.com
Biglnsights Web Console URL http://bivm.ibm.com:8080
Big SQL database name bigsql
Big SQL port number 51000

About the screen captures, sample code, and environment configuration

Screen captures in this lab depict examples and results that may vary from
what you see when you complete the exercises. In addition, some code
examples may need to be customized to match your environment. For
example, you may need to alter directory path information or user ID
information.

Furthermore, some exercises presume you have access to a Biglnsights
administrative ID (e.g., biadmin) and/or a Big SQL administrative ID with
SECADM authority (e.g., bigsql). If you don't have access to IDs with
appropriate privileges, you may not be able to complete some exercises, or the
results you see may differ from those depicted in this lab guide.

Page 6

Introduction to Big SQL

1.2. What you'll learn

After completing all exercises in this lab guide, you'll know how to

Create a connection to your Big SQL 3.0 server

Execute Big SQL statements and commands from a command line environment (JSqgsh) and an
Eclipse-based environment

Create Big SQL tables

Load data into Big SQL tables

Query big data using Big SQL

Develop and launch a JDBC client application for Big SQL

Use a spreadsheet-style tool (BigSheets) to work with Big SQL data

Explore enhanced SQL security features

Work with non-traditional data formats using serializers / deserializers (SerDes)
Explore the data access plan selected for your queries

Collect statistical data useful for query optimization

Allow 6 - 7 hours to complete all sections of this lab.

1.3.

Getting started with your VMware image

This section summarizes the steps you need to obtain a Biglnsights 3.0 Quick Start Edition VMware
image, install it, and launch it. If you or your instructor have already installed the VMware image and
launched it, or if you will be using a different Biglnsights environment for this lab, you may skip this
section.

1.

If necessary, obtain a copy of the Biglnsights 3.0 Quick Start Edition VMware image from your
instructor or from |BM's external download site (http://www-
01.ibm.com/software/data/infosphere/biginsights/quick-start/downloads.html). Use the image for
the single-node cluster.

Follow the instructions provided to decompress (unzip) the file and install the image on your
laptop. Note that there is a README file with additional information.

If necessary, install VMware player or other required software to run VMware images. Details
are in the README file provided with the Biglnsights VMware image.

Hands On Lab Page 7

IBM Software

4. Launch the VMware image. When logging in for the first time, use the root ID (with a password

of password). Follow the instructions to configure your environment, accept the licensing
agreement, and enter the passwords for the root and biadmin IDs (root/password and

biadmin/biadmin) when prompted. This is a one-time only requirement.

r . B
| IBM InfoSphere B File v Virtual Machine ¥ Help v - O X
Mount CIFS File 3ystems unused
Loading console font latJu-16.psfu -m trivial GO:loadable done
Loading keymap assuming iso-8859-15 euro
Loading ~usrrshareskbdskeynaps~idBb-quertysus.nap.gz done
Loading compose table latinl.add done
Jtart Unicode mode done

done
done

Insights ...

Setting up (remotefs) network interfaces:

Setting up service (remotefs) network done
Starting 88H daemon done
3tarting Name Service Cache Daemon done
Starting mail service (Postfix) done
Starting CRON daemon done
Starting smartd unused
Master Resource Control: runlevel 3 has been reached
Skipped services in runlevel 3: nfs smbfs splash smartd

Welcome to SUSE Linux Enterprise Server 11 3PZ (xB6_64) - Kernel 3.0.101-0.5-de
fault (ttyld.

biun login: root
Passuword: _

iTo direct input to this virtual machine, press Cirl+G.

| IBM InfoSphere BigInsights ... File ¥ Virtual Machine ¥ Help v - 0O X

Languages

Primary Language Settings—————————H—H—H—"4"-—"—-"—"—""-+—""————-——"————
Primary Language

econdary Languages—————
1 Afrikaans
1 Arabic
1 Bengali
1 Bosmian
1 Bulgarian

[Cancell

{To direct input to this virtual machine, press Ctri+G.

log in screen. Log in as biadmin/biadmin.

5. When the one-time configuration process is completed, you will be presented with a SUSE Linux

Page 8

Introduction to Big SQL

SUSE Linux Enterprise Server 11 (x86_64)
bivm

Username: [|

l £ Restart ‘ ‘ [8]shut Down ‘ ‘ @ cancer

T —

[|

) eors s |~ | o (w1 || (owomr |] B i ||

To direct input to this virtual machine, press Ctr+G EL] =1 vmware

__ 6. Verify that your screen appears similar to this:

wed Jun 18, 642 Py - djo (5 I3 I

lTo direct input to this virtual machine, press Ciri+G_

Your VMware image is now ready to use for this lab.

Ask your instructor for help if have any questions or need assistance getting your VMware
image up and running. Or consult the README file and documentation provided for the
VMWare image.

Hands On Lab Page 9

IBM Software

Detailed information about Big SQL and Biglnsights is available online through the product
documentation. Questions about Big SQL or Biglnsights may be posted to the HadoopDev forum
(https://developer.ibm.com/answers?community=hadoop).

This lab was developed by Cynthia M. Saracco (saracco@us.ibm.com), Carlos Renteria
(crrenter@us.ibm.com), Raanon Reutlinger (reutlinger@il.ibm.com), and Uttam Jain
(uttam@us.ibm.com).

Page 10 Introduction to Big SQL

Lab 2 Using the Big SQL command line interface (JSqsh)

Biglnsights supports a command-line interface for Big SQL through the Java SQL Shell (JSgsh,
pronounced "jay-skwish"). JSqgsh is an open source project for querying JDBC databases. You may find
it handy to become familiar with basic JSgsh capabilities, particularly if you don't expect to have access
to an Eclipse environment at all times for your work.
In this section, you will learn how to

o Verify that the Biginsights services are running from the Web Console.

e Launch JSgsh.

e Issue Big SQL queries.

e Issue popular JSgsh commands to get help, retrieve your query history, and perform other
functions.

If you prefer to only use an Eclipse-based environment to develop and execute your Big SQL queries,
you can sKip this section and continue to the next lab.

Allow 30 minutes to complete this section.

2.1. Launching the Web Console to verify Biglnsights services are up
and running

In this exercise, you will start all required Biglnsights services and launch the Web console.

__ 1. Select the Start Biglnsights icon to start all services. (Alternatively, you can open a terminal
window and issue this command: $BIGINSIGHTS_HOME/bin/start-all.sh)

@Zﬁ

start Biginsights

Wait until the operation completes. This may take several minutes, depending on your
machine's resources.

__ 2. Verify that all required Biglnsights services are up and running, including Big SQL.

_a. Launch the Biglnsights Web console. (Direct your browser to
http://bivm.ibm.com:8080 or select the Web Console icon on your desktop.)

5

an Szl

Hands On Lab Page 11

IBM Software

2.2,

Understanding JSgsh connections

Log in with your user name and password.

IBM® InfoSphere® Biginsights™
Quickstart Edition

Please enter your information

User name:
biadmin

Password:
sesssee o|

| Login || Cancel

IBM Corporation. IBM, InfoSphere and Biginsights are trademarks
of IBM Corporation, registered in many jurisdictions worldwide.

Licensed Materialz - Property of IBM Corp. @ Copyright 2010, 2014.

Click on the Cluster Status tab to inspect the running services. Monitoring and

Alert services do not need to be active for this lab.

Welcome Dashboard Cluster Status E

Monitor Services Manage Alerts Log Setting:
Nodes Q@3
Map/Reduce & Running
HDFS @ Running
Alert & Running
Big SQL @ Running
Catalog @ Running
HBase @ Running
Hive @ Running
HitpFS @ Running
Monitoring @ Unavailable
QOozie & Running
Zookeeper @ Running

To issue Big SQL commands from JSgsh, you need to define a connection to a Big SQL server. The

Biglnsights VMware image has some predefined for you. Let's examine them.

1.

Open a terminal window. If desired, used the desktop icons. First, open the Biglnsights Shell

folder.

Page 12

Introduction to Big SQL

Bit

Then, click on Terminal icon.

Terminal

__ 2. Launch the JSgsh shell.
$JSQSH_HOME/bin/jsgsh

_ 3. If this is the first time you launched JSqgsh, a welcome screen will display. When prompted, enter
¢ to launch the connection wizard.

JSQSH SETUP WIZARD

Welcome to the jsgsh setup wizard! This wizard provides a (crude) menu
driven interface for managing several jsqsh configuration files. These
files are all located in $HOME/.jsgsh, and the name of the file being
edited by a given screen will be indicated on the title of the screen

Note that many wizard screens require a relative large console screen
size, So you may want to resize your screen now.

(Clonnection management wizard
The connection management wizard allows you to define named connections
using any JDBC driver that jsgsh recognizes. Once defined, jsgsh only
needs the connection name in order to establish a JDBC connection

(D)river management wizard
The driver management wizard allows you to introduce new JDBC drivers
to jsgsh, or to edit the definition of an existing driver. The most
common activity here i1s to provide the classpath for a given JDBC driver

Choose (QJuit, (Clonnection wizard, or (D)river wizard:

In the future, you can enter \setup connections in the JSgsh shell to invoke this wizard.
__4. Inspect any existing connections in your environment.

\setup connections

Hands On Lab Page 13

IBM Software

JSQSH CONNECTIOM WIZARD - (edits $HOME/.]sqgsh/connections.xml
The following connections are currently defined:

Name Driver Host Port
1 bigsqgl dbz bivm.1bm.com 51000
2 bigsgll bigsql biwvm.1bm.com 7052

Enter a connection number above to edit the connection, or:
(Black, (Qluit, or (A)dd connection:

Throughout this lab, you will work with the bigsql database at port 51000, which is accessible through
the DB2 JDBC driver provided with Biglnsights.

__ 5. Examine the connection details for bigsql. Provide the connection number displayed by the
wizard (in this case, 1) and hit Enter.

JSQSH CONNECTION WIZARD - (edits $HOME/.]sqgsh/connections.xml)
The following cenfiguration properties are supported by this driver.
Connection name : bigsqgl
Driver : IBM Data Server (DB2, Informix, Big SOQL)
JDBC URL : jdbc:db2://${server}:${port}/$idb}

Connection URL Variables

1 db : BIGSQL

2 port @ 51000

3 server : bivm.ibm.com
4 user : biadmin

5 password :

[Autoconnect : false

JDBC Driver Properties

Enter a number to change a given configuration property, or
(T)est, (D)elete, (Black, (Quit, Add (P)roperty, or (S)ave: |

About the database name

Note that the Big SQL database name is a constant; it was defined during the
installation of BigInsights.

__6. Enter t to test your configuration.
__7. When prompted for a password enter biadmin.

__ 8. Verify that the test succeeded, and hit Enter.

Page 14 Introduction to Big SQL

File Edit “iew Terminal Help

Connection URL Variables

1 db : BIGSQL

2 port : 51000

3 server : bivm.ibm.com
4 user : biadmin

5 password :

6 Autoconnect : false

JDBC Driver Properties
Enter a number to change a given configuration property, or

(Tlest, (Dlelete, (B)lack, (Q)uit, Add (P)roperty, or (Slave: t

Attempting connection...
Password: sskeksok

WARN [State: l[code: 0]: Statement processing was successful.. SQLCODE=0, S|
QLSTATE= ,» DRIVER=3.67.33
Succeeded!

Hit enter to continue: -

9. Exit this current session. Enter q and then quit.

2.3. Optional: Creating your own database connection
The Biglnsights Quick Start Edition VMware image is pre-configured with a connection to your Big SQL
server with access for the biadmin account. However, you can also create your own JSgsh connections
to Big SQL. This can be handy if you want to test capabilities available to different user accounts on your
platform.

In this exercise, you'll learn how to create a Big SQL database connection in JSgsh. This section is
optional — you can skip to the next module in this lab if you'd like.

__ 1. If necessary, open a terminal window and launch the JSqsh shell.
$JSQSH_HOME/bin/jsqgsh
2. Invoke the setup wizard by entering the \setup connections command.

\setup connections

3. When prompted, enter a to add a connection.

JSQSH CONNECTIOM WIZARD - (edits $HOME/.]sqgsh/connections.xml
The following connections are currently defined:

Name Driver Host Port
1 bigsqgl dbz bivm.1bm.com 51000
2 bigsgll bigsql biwvm.1bm.com 7052

Enter a connection number above to edit the connection, or:
(Black, (Qluit, or (A)dd connection:

4. Inspect the list of drivers displayed by the wizard, and note the number for the db2 driver (not
the db2zos driver). Depending on the size of your command window, you may need to scroll up
to see the full list of drivers. In the screen capture below, the correct DB2 driver is 2. The order
of your drivers may differ, as pre-installed drivers are listed first.

Hands On Lab Page 15

IBM Software

*db2zos

*hive

*hivez

*1dbcodbe

derby

derbyembed
g firebird
10 informix
11 mssql

12 mssql-jtds
13 mssqlzks
14 mysql

15 oracle

16 oracleocl
17 pgsql

18 sybase

19 sybase-asa

20 sybase-jtds

[N TV L Y R VE N T

JSQSH CONMNECTIOMN WIZARD -

IEM Big SQL vl

IBM Data Server (DB2
IEM DB2 z/0S

Apache Hive

Apache Hive

JDBC ODBC Bridge
Apache Derby Server
Apache Derby Embedde
Firebird JayBird

IBM Informix

MS SQL Server

MS SQL Server jTDS
MS SQL Server 2005+
MySQL

Oracle

Oracle OCI
PostgresqL

Sybase ASE

Sybase asa

Sybase ASE jTDS

Choose a driver for use by your new connection

org

net

(edits $HOME/.]sgsh/connections.xml)

.i1bm.biginsights.bigsql.jdbc.BigSQLDriver
.1bm.dbZ.jcc.DBZ2Driver
.1bm.dbZ.jcc.DBZ2Driver
.apache.hadoop.hive.jdbc.HiveDriver

org.
sun.
org.
org.
org.
com.
com.

apache.hive.jdbc.HiveDriver

jdbe.odbe. JdbeOdbeDriver
apache.derby.jdbc.ClientDriver
apache.derby.jdbc.EmbeddedDriver
firebirdsgl.jdbc.FEDriver
informix.jdbc.IfxDriver
microsoft.jdbc.sglserver.SQLServerDriver

.sourceforge.jtds.jdbc.Driver
com.
com.

microsoft.sglserver.jdbc.SQLServerDriver
mysql.jdbc.Driver

oracle.jdbc.OracleDriver
oracle.jdbc.driver.OracleDriver

org.
com.
com.
net.

postgresql.Driver

sybase. jdbe3. jdbc. SybDriver
sybase.jdbez. jdbc.SybDriver
sourceforge.jtds. jdbc.Driver

* = Driver 1s avallabe. If a driver 1s unavailable you may choose (D) below
to jump to the driver wizard to provide a classpath

Enter the driver number, (D)river wizard, (Black or (Qluit: D

5.

_ 6.

About the driver selection

You may be wondering why this lab uses the DB2 driver rather than the Big
SQL driver. In 2014, IBM released a common SQL query engine as part of its
DB2 and Biglnsights offerings. Doing so provides for greater SQL commonality
across its relational DBMS and Hadoop-based offerings. It also brings a
greater breadth of SQL function to Hadoop (Biglnsights) users. This common
query engine is accessible through the "DB2" driver listed. The Big SQL driver
remains operational and offers connectivity to an earlier, BigInsights-specific
SQL query engine. This lab focuses on using the common SQL query engine.

At the prompt line, enter the number of the DB2 driver.

The connection wizard displays some default values for the connection properties and prompts
you to change them. (Your default values may differ from those shown below.)

Page 16

Introduction to Big SQL

JSQSH CONMECTION WIZARD - (edits $HOME/.jsgsh/connections.xml)
The folleowing configuration properties are supported by this driver.
Connectlon name : _temp_
Driver : IBM Data Server (DB2, Informix, Big SQL)
JDBC URL : jdbc:db2://%{server}:${port}/${db}

Connection URL Variables

1 db : changeme
2 port @ SO000

3 server : localhost
4 user : biadmin

5 password :

& Autoconnect : false

JDBC Driver Properties

Enter a number to change a given configuration property, or
(T)est, (Black, (Qluit, Add (P)roperty, or (S)ave: []

__7. Change each variable as needed, one at a time. To do so, enter the variable number and
specify a new value when prompted. For example, to change the value of the password
variable (which is null by default)

(1) Specify variable number 5 and hit Enter.

(2) Enter the password value and hit Enter.

Enter a number to change a given configuration property, or
(Tlest, (Black, (Qluit, Add (P)roperty, or (S)ave: 5

Please enter a new value:
passwo rd: :+::+::+::§::+::+::+I

(3) Inspect the variable settings that are displayed again to verify your change.

Repeat this process as needed for each variable that needs to be changed. In particular, you
may need to change the values for the db (database), port, and server variables.

After making all necessary changes, the variables should reflect values that are accurate for your
environment. Here is an example of a connection created for the bigsqgl user account (password
bigsql) that will connect to the database named “bigsql” at port 51000 on the localhost server.

Connectlon name : _temp_
Driver : IBM Data Server (DB2, Informix, Big SQL)
JDBC URL : jdbc:db2://%{server}:${port}/$idb}

Connection URL Variables

1 db : bigsgl

2 port : 51000

3 server : localhost
4 user : bigsqgl

=] password : ekskk

65 Autoconnect : false

Hands On Lab Page 17

IBM Software

- The Big SQL database is defined during the installation of Biglnsights. The
default is bigsqgl. In addition, a Big SQL database administrator account is also
defined at installation. This account has SECADM (security administration)
authority for Big SQL. By default, that user account is bigsql.

__ 8. Enter t to test your configuration.

9. Verify that the test succeeded, and hit Enter.

Enter a number to change a given configuration property, or
(Tlest, (Black, (Qluit, Add (P)roperty, or (S)ave: t

Attempting connection...
ARN [State:

l[cCode: 0]: Statement processing was successful.. SQLCODE=0, SOLSTATE=
Succeeded!

, DRIVER=3.67.33

Hit enter to continue:|]

__10. Save your connection. Enter s, provide a name for your connection (such as bigsqgl-admin), and
hit Enter.

Enter a number to change a given configuration property, or
(Tlest, (Black, (Q)uit, add (P)roperty, or (S)ave: s

Please provide a connection name: bigsgl-admin

__11. Finally, quit the connection wizard when prompted. (Enter q.)

2.4. Getting Help for JSqsh

Now that you’re familiar with JSqsh connections, you're ready to work further with the shell.
__ 1. Launch the JSgsh shell from a terminal without any parameters

$JSQSH_HOME/bin/jsgsh

__ 2. Verify that the JSqsh command prompt of 1> appears.

File Edit “iew Terminal Help
biadmin@bivm:~= $ISQSH HOME/bin/jsgsh

JSgsh Release 2.1.0-SNAPSHOT, Copyright (C) 2007-2014, Scott C. Gray
Type “help for available help topics. Using Jline.
1=

3. Type \help to display a list of available help categories.

Page 18 Introduction to Big SQL

1= \help

Available help categories. Use "\help <category=" to display topics within that
category

e e e +
| Category | Description |
e e e +
| commands | Help on all avaiable commands |
| wvars | Help on all avaiable configuration variables

| topics | General help topics for jsgsh |
e e e e e e e +
1:-.

4. Optionally, type \help commands to display help for supported commands. A partial list of
supported commands is displayed on the initial screen.

1= ‘help commands

Available commands. Use "\help <command=" to display detailed help for a given c
ommand

[EredstrensLes R R R R R R B +
| Command | Description |
B I — 8O +
| valias | Creates an alias

“buf-appen	Appends the contents of one SQL buffer into another
d	
wbuf-copy	Copies the contents of one SQL buffer into another
wbuf-edit	Edits a sQL buffer

vbuf-load	Loads an external file into a SQL buffer
“call	Call a prepared statement
‘\connect	Establishes a connection to a database.
\create	Generates a CREATE TABLE using table definitions
wdatabases	Displays set of available databases (catalogs)
wdebug	(Internal) Used to enable debugging
swdescribe	Displays a description of a database object
wdiff	Compares results from multiple sessions
sdrivers	Displays a list of JDBC drivers known by jsgsh.
wecho	Displays a line of text.
vend	Ends the current session
weval	Read and execute an input file full of sQL
I| ywglobals | Displays all global variables |
IIHHEEII I+

Press the space bar to display the next page or q to quit the display of help information.

__ 5. Enter quit to exit the JSgsh shell.

2.5. Issuing JSgsh commands and Big SQL queries

In this section, you will execute some simple JSgsh commands and Big SQL queries so that you can
become familiar with the JSgsh shell.

_ 1. Launch the JSgsh shell and connect to your Big SQL server by specifying the connection name
on the command line. When prompted, enter your password.

$JSQSH HOME/bin/jsgsh bigsql

Hands On Lab Page 19

IBM Software

File Edit ‘“iew Terminal Help

biadmin@bivm: ~> $3SQSH_HOME/bin/jsqsh bigsql
Password ; skl

WARN [State:
QLSTATE=

[bivm.ibm.com] [biadmin] 1= i

’

llcode: @]:

DRIVER=3.67.33
J5gqsh Release 2.1.0-SNAPSHOT, Copyright (C) 2007-2014, Scott C. Gray
Type ‘help for available help topics. Using Jline.

Statement processing was successful.. SQLCODE=0, S

2. Type \show tables -e | more to display essential information about all available tables one

page at a time. The structure of your output will be similar to the results shown below, although
the specific information will vary depending on the tables available in your environment. Press
space bar to continue scrolling or q to stop scrolling.

File Edit ‘iew Terminal Help
[bivm.ibm.com] [biadmin] 1= \show tables -e | more
e o e Ty e s e e s s e e e s s e s e e e
| TABLE CAT | TABLE SCHEM | TABLE_NAME
Hraanmnmnm i T S ivin i S i S i S i s
| [NULL] | SYSPUBLIC | DUAL
| [WULL] | SYSIEM | SYSATTRIBUTES
| [NULL] | SYSIBM | SYSAUDITEXCEPTIONS
| [WULL] | SYSIEM | SYSAUDITPOLICIES
| [NULL] | SYSIBM | SYSAUDITUSE
| [MULL] | SYSIEM | SYSBUFFERPOOLMODES
| [NULL] | SYSIBM | SYSBUFFERPOCLS
| [NULL] | SYSIEM | SYSCHECKS
| [NULL] | sYSIBM | SYSCODEPROPERTIES
| [mULL] | SYSIEM | SYSCOLAUTH
| [NULL] | SYSIBM | SYSCOLCHECKS
| [NULL] | SYSIBM | SYSCOLDEPENDEMCIES
| [NULL] | SYSIBM | SYsSCOLDIST
| [NULL] | sYsIBM | SYSCOLGROUPDIST
| [MULL] | SYSIEM | SYSCOLGROUPDISTCOUNTS
| [NuLL] | sYsIBM | SYSCOLGROUPS
| [NULL] | sYSIBM | SYSCOLGROUPSCOLS
| [NULL] | SYSIBM | SYSCOLLATIONS
| [NULL] | SYSIBM | SYSCOLOPTIONS
| [NULL] | SYSIBM | SYSCOLPROPERTIES
| [NULL] | SYSIBM | SYSCOLUMNS
| [NuLL] | SYSIBM | SYSCOLUSE
| [NULL] | SYSIBM | SYSCOMMENTS
| [NULL] | SYSIBM | SYSCONSTDEP
| [NULL] | SYSIBM | SYSCONTEXTATTRIBUTES
| [NULL] | SYSIBM | SYSCONTEXTS
_ -More- -

create hadoop table testl (coll int, col2 varchar(5));

——— e+ — %

TAELE
TABLE
TAELE
TABLE
TAELE
TABLE
TABLE
TABLE
TABELE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

3. Next, cut and paste the following command into JSgsh to create a simple Hadoop table:

Because you didn't specify a schema name for the table it was created in your default schema,

which is your user name. This is equivalent to

create hadoop table yourID.testl (coll int, col2 varchar(5));

where yourID is your user name.

Page 20

Introduction to Big SQL

We've intentionally created a very simple Hadoop table for this exercise so that
you can concentrate on working with JSgsh. In later modules, you'll learn more
about CREATE TABLE options supported by Big SQL. For example, you'll learn
about the LOCATION clause of CREATE TABLE. In these examples, where
LOCATION is omitted, the default Hadoop directory path for these tables are at
/biginsights/hive/warehouse/<schema>.db/<table>.

Big SQL 3.0 enables users with appropriate authority to create their own
schemas by issuing a command such as

create schema if not exists testschema;
Authorized users can then create tables in that schema as desired. Furthermore,

users can also create a table in a different schema, and if it doesn't already exist
it will be implicitly created.

4. Display all user tables (avoiding views and system tables) with the \tables user command.
Note that with this command you may also see tables defined by other users, but you won't have
the privileges to query them.

\tables user

[bivm.i1bm.com] [biadmin] 1= ‘tables user

e s oo +

| TABLE_SCHEM | TABLE_MAME | TABLE _TYPE |

s . oo +

| BIADMIN | TEST1 | TABLE |

| sYsTOOLS | HMON_ATM_INFO | TABLE |

| sYsTOOLS | HMON_COLLECTION | TABLE |

| sYsTOOLS | POLICY | TABLE |

s s . +

[bivm.ibm.com] [biadmin] 1=] =

5. If your output contains too many user tables from other users, you can narrow your results by
specifying a schema with the command \tables -s BIADMIN. The schema name should be
provided in upper case since it will be used directly to filter the list of tables.

\tables -s BIADMIN

[bivm.ibm.com] [biadmin] 1= ‘tables -s BIADMIN

S e S +
| TABLE_SCHEM | TABLE_MAME | TABLE_TYPE |
S e S +
| BIADMIN | TEST1 | TABLE |
S e S +

[bivm.1bm.com] [biadmin] 1= =

__6. Tryinserting a row into your table.

insert into testl values (1, 'one');

Hands On Lab Page 21

IBM Software

This form of the INSERT statement (INSERT INTO ... VALUES ...) should be
= used for test purposes only because the operation will not be parallelized on your
cluster. To populate a table with data in a manner that exploits parallel
processing, use the Big SQL LOAD command, INSERT INTO ... SELECT FROM
statement, or CREATE TABLE AS ... SELECT statement. You'll learn more
about these commands later.

__7. Toview the meta data about a table, use the \describe command with the fully qualified table
name in upper case.

[bivm.ibm.com] [biadmin] 1= ‘describe BIADMIN.TEST1

R oo S F R F R +
| TABLE_SCHE | COLUMN_MAM | TYPE_NAME | COLUMN_SIZE | DECIMAL_DIGITS | IS_NULLABL |
[M | E | | | | E

R oo S F R F R +
| BIADMIN | coL1 | INTEGER | 10 | 0| YES |
| BIADMIM | coLz | VARCHAR | 5 | [NULL] | YES |
R oo S F R F R +

[bivm.ibm.com] [biadmin] 1> | =

__ 8. Optionally, you can query the system for metadata about this table:

select tabschema, colname, colno, typename, length
from syscat.columns
where tabschema = USER and tabname= 'TEST1';

You can split the query across multiple lines in the JSgsh shell if you'd like. Whenever you press
Enter, the shell will provide another line for you to continue your command or SQL statement. A
semi-colon or go command causes your SQL statement to execute.

[bivm.ibm.com] [biadmin] 1= select tabschema, colname, colno, typename, length
[bivm.ibm.com] [biadmin] 2= from syscat.columns
[bivm.ibm.com] [biadmin] 3= where tabschema = USER and tabname = 'TEST1';

Bttt e SRR e s et et e SRR +
| TABSCHEMA | COLNAME | COLNO | TYPENAME | LENGTH
BT - Foeeeee oo oo +
| BIADMIN | coLl | O | INTEGER | 4
| BIADMIN | coLz | 1 | VARCHAR | 5
e o oy o s +

2 rows in results(first row: 0.7s; total: 0.8s)
[bivm.ibm.com] [biadmin] 1> [5

In case you're wondering, syscat.columns is one of a number of views supplied over system
catalog data automatically maintained for you by the Big SQL service.

o Once again, notice that we used the table name in upper case in these queries
and \describe command. This is because table and column names are folded to
upper case in the system catalog tables.

__ 9. Issue a query that restricts the number of rows returned to 5. For example, select the first 5 rows
from syscat.tables:

Page 22 Introduction to Big SQL

select tabschema, tabname from syscat.tables fetch first 5 rows only;

[bivm.1bm.com] [biadmin] 1= select.tabschema, tabname
[bivm.ibm.com] [biadmin] 2= from syscat.tables
[bivm.ibm.com] [biadmin] 3= fetch first 5 rows only;

R —— oo +
| TABSCHEMA | TABNAME |
R —— oo +
BIADMIN	TEST1
srscar	ATTRIBUTES
syscat	AUDITPOLICIES
srscar	AUDITUSE
syscat	BUFFERPOCLDBPARTITIONS

R —— oo +

S rows in results(first row: 0.8s; total: 0.8s)
[bivm.1bm.com] [biadmin] 1= =

Restricting the number of rows returned by a query is a useful development technique when
working with large volumes of data.

__10. Review the history of commands you recently executed in the JSgsh shell. Type \history and
Enter. Note that previously run statements are prefixed with a number in parentheses. You can
reference this number in the JSqsh shell to recall that query.

__11. Enter !! (two exclamation points, without spaces) to recall the previously run statement. In the
example below, the previous statement selects the first 5 rows from syscat.tables. To run the
statement, type a semi-colon on the following line.

[bivm.i1bm.com] [biadmin] 1= ‘history
(1) create hadoop table testl (coll int, col2 varchar
(2) create hadoop table testl (coll int, col2 varchar(s))
(3) create schema 1f not exists testschema
(4) insert into testl values (1, 'one')
(5) select tabschema, colname, colno, typename, length
from syscat.columns
where tabschema = USER and tabname = 'TEST1'
(8) select tabschema, tabname
from syscat.tables
fetch first 5 rows only
[bivm.ibm.com] [biadmin] 1= !!
[bivm.ibm.com] [biadmin] 1> select tabschema, tabname
[bivm.i1bm.com] [biadmin] 2= from syscat.tables
[bivm.ibm.com] [biadmin] 3= fetch first S rows only
[bivm.i1bm.com] [biadmin] 4= ;

R, o e +
| TABSCHEMA | TABNAME |
e, oo +
BIADMIN	TEST1
syscar	ATTRIBUTES
syscar	AUDITPOLICIES
syscar	AUDITUSE
syscar	BUFFERPOOLDBPARTITIONS

e, oo +

5 rows in results(first row: 0.2s; total: 0.2s)
[bivm.ibm.com] [biadmin] 1> =

__12. Recall a previous SQL statement by referencing the number reported via the \history
command. For example, if you wanted to recall the 4th statement, you would enter !4. After the
statement is recalled, add a semi-column to the final line to run the statement.

__13. Experiment with JSqgsh’s ability to support piping of output to an external program. Enter the
following two lines on the command shell:

Hands On Lab Page 23

IBM Software

14,

15,

select tabschema, tabname from syscat.tables
go | more

The go statement in the second line causes the query on the first line to be executed. (Note that
there is no semi-colon at the end of the SQL query on the first line. The semi-colon is a Big SQL
short cut for the JSqsh go command.) The | more clause causes the output that results from
running the query to be piped through the Unix/Linux more command to display one screen of
content at a time. Your results should look similar to this:

[bivm.ibm.com] [biadmin] 1= select tabschema, tabname A
[bivm.ibm.com] [biadmin] 2= from syscat.tables
[bivm.ibm.com] [biadmin] 3> go | more

HES SRR e +
| TABSCHEMA | TAENAME |
s e +
BIADMIN	TEST1
SYSCAT	ATTRIBUTES
SYSCAT	AUDITPOLICIES
SYSCAT	AUDITUSE
syscat	BUFFERPOOLDEPARTITIONS
SYSCAT	BUFFERPOOLEXCEPTICONS
sYSCAT	BUFFERPOOLMNODES
SYSCAT	BUFFERPOOLS
SYSCAT	CASTFUNCTIONS
SYSCAT	CHECKS
sYSCAT	COLAUTH
SYSCAT	COLCHECKS
SYSCAT	CoOLDIST
SYSCAT	COLGROUPCOLS
SYSCAT	COLGROUPDIST
SYSCAT	COLGROUPDISTCOUNTS
SYSCAT	COLGROUPS
SYSCAT	COLIDENTATTRIEUTES
syscaT	COLLATIONS
SYSCAT	COLOPTIONS
SYSCAT	COLUMNS
SYSCAT	COLUSE
SYSCAT	CONDITIONS
SYSCAT	CONSTDEP
SYSCAT	CONTEXTATTRIBUTES
SYSCAT	CONTEXTS

Since there are more than 400 rows to display in this example, enter q to quit displaying further
results and return to the JSqsh shell.

Experiment with JSqsh’s ability to redirect output to a local file rather than the console display.
Enter the following two lines on the command shell, adjusting the path information on the second
line as needed for your environment:

select tabschema, colname, colno, typename, length
from syscat.columns

where tabschema = USER and tabname= 'TEST1'

go > $HOME/testl.out

This example directs the output of the query shown on the first line to the output file test1.out in
your user's home directory.

Exit the shell and view the output file:

cat $HOME/testl.out

Page 24 Introduction to Big SQL

[bivm.ibm.com] [biadmin] 1> select tabschema, colname, colno, typename, length
[bivm.ibm.com] [biadmin] 2> from syscat.columns

[bivm.ibm.com] [biadmin] 3> where tabschema = USER and tabname = 'TEST1'
[bivm.1bm.com] [biadmin] 4= go = $HOME/testl.out

2 rows in results(first row: 0.6s; total: 0.6s)

[bivm.ibm.com] [biadmin] 1= quit

biadmin@ivm:~> clear

biadmin@bivm:~> cat FHOME/testl.out

oo L~ oo oo - oo +
| TABSCHEMA | COLNAME | COLMO | TYPENAME | LENGTH |
oo L~ oo oo - oo +
| BIADMIN | coLl | 0 | INTEGER | 4 |
| BIADMIN | COLZ2 | 1 | VARCHAR | 5 |
----------- T

¥
biadmin@bivm:~> ||

__16. Invoke JSgsh using an input file containing Big SQL commands to be executed. Maintaining
SQL script files can be quite handy for repeatedly executing various queries.

a.

From the Unix/Linux command line, use any available editor to create a new file
in your local directory named test.sql. For example, type

vi test.sql

Add the following 2 queries into your file
select tabschema, tabname from syscat.tables fetch first 5 rows only;

select tabschema, colname, colno, typename, length
from syscat.columns
fetch first 10 rows only;

File Edit ‘“iew Terminal Help
tabschema, tabname from syscat.tables fetch first 5 rows only;

tabschema, colname, colno, typename, length

from syscat.columns
fetch first 10 rows only;l

Save your file (hit ‘esc’ to exit INSERT mode then type :wq) and return to the
command line.

Invoke JSQSH, instructing it to connect to your bigsql database and execute the
contents of the script you just created:

$JSQSH_HOME/bin/jsqsh bigsql -P biadmin < test.sql

Inspect the output. As you will see, JSQSH executes each instruction and
displays its output. (Partial results are shown below.)

Hands On Lab

Page 25

IBM Software

A7

Consult

File Edit “iew Terminal Help
biadmin@bivm:~= $ISQSH HOME/bin/jsqsh bigsql -P biadmin = test.sql
WARN [State: l[Code: 0]: Statement processing was successful.. SQLCODE=0, SOLST
ATE= , DRIVER=3.67.33
JSgsh Release 2.1.0-SNAPSHOT, Copyright (C) 2007-2014, Scott C. Gray
Type \help for available help topics. Using JLine.
[bivm.ibm.com] [biadmin] 1> select tabschema, tabname from syscat.tables fetch first
5 rows only;

EESS R +
| TABSCHEMA | TABNAME |
e e +
BIADMIN	TEST1
SYSCAT	ATTRIBUTES
SYSCAT	AUDITPOLICIES
SYSCAT	AUDITUSE
SYSCAT	BUFFERPOCLDBPARTITIONS
st gt b R +
5 rows in results(first row: 0.3s; total: 0.3s)

[bivm.ibm.com] [biadmin] 1=

[bivm.ibm.com] [biadmin] 2> select tabschema, colname, colno, typename, length
[bivm.1bm.com] [biadmin] 3= from syscat.columns

[bivm.ibm.com] [biadmin] 4= fetch first 10 rows only;

[s e RS R R RS S RS +
| TABSCHEMA | COLNAME | COLND | TYPEMAME | LENGTH |
el TR G PR SRR R R SAS +
| SYSIEM | NAME | 0 | VARCHAR | 128 |
| sYsiBm | CREATOR | 1 | VARCHAR | 128 |
| SYSIEM | TYPE | 2 | CHARACTER | L]
sYsSIBM	CTIME	3	TIMESTAMP	10
SYSIEM	REMARKS	4	VARCHAR	254
sYsIBm	PACKED DESC	5	BLOB	133180152

Finally, clean up the your database:
$JSQSH_HOME/bin/jsqsh bigsql
drop table testil;

[Bivm;ibm:com][biadmin] 1= dfop table testi;
0 rows affected (total: 3.19s)
[bivm.ibm.com] [biadmin] 1= [

the JSgsh documentation

-

(http://sourceforge.net/apps/mediawiki/jsgsh/index.php?title=Main Page) for more information about

using this command line tool.

Page 26

Introduction to Big SQL

Lab 3 Using Eclipse

You can develop and execute Big SQL queries using an appropriate version of Eclipse (4.2.2) and some
additional software. Some people prefer to use Eclipse over JSgsh, as query result sets are formatted in
an easy-to-read fashion and queries are typically organized in scripts within projects.

In this section, you will learn how to:
¢ Configure Eclipse to work with Big SQL.
e Create a connection to your Big SQL 3.0 server.
e Create projects and Big SQL scripts.
e Issue Big SQL queries.

If you prefer to only use JSgsh to develop and execute your Big SQL queries, you can skip this section
and continue to the next lab.

Allow 30 - 45 minutes to complete the configuration and query exercises in this lab. Allow additional time
to install an appropriate Eclipse shell if you don’t have one already available. You must have access to a
running Biglnsights 3.0 cluster before beginning this lab.

3.1. Launching the Web Console to verify Biglnsights services are up
and running

In this section, you'll launch all required Biglnsights services and use the Web console to verify that all
required Biglnsights services are up and running. You can skip this section if you have already
completed this work as part of an earlier lab or if your instructor tells you that this work has been done for
you.

__ 1. Select the Start Biglnsights icon to start all services. (Alternatively, you can open a terminal
window and issue this command: $BIGINSIGHTS_HOME/bin/start-all.sh)

@Zﬁ

start Biginsights

Wait until the operation completes. This make take several minutes, depending on your
machine resources.

__ 2. Verify that all required Biglnsights services are up and running, including Big SQL.

_a. Launch the Biglnsights Web console. (Direct your browser to
http://bivm.ibm.com:8080 or select the Web Console icon on your desktop.)

Hands On Lab Page 27

IBM Software

3.2. Creating a Big SQL Connection in Eclipse

Log in with your user name and password.

IBM®@ InfoSphere® Biginsights™
Quickstart Edition

Please enter your information

User name:
| biadmin

Password:
(ITTITY] .|

Loan

Licensed Materials - Property of IBM Corp. @ Copyright 2010, 2014.

IBM Corporation. IBM, InfoSphere and Biginsights are trademarks
of IBM Corporation, registered in many jurisdictions worldwide.

Click on the Cluster Status tab to inspect the running services. Monitoring and

Alert services do not need to be active for this lab.

Welcome Dashboard Cluster Status E

Monitor Services Manage Alerts Log Setting:
Nodes Q@3
Map/Reduce & Running
HDFS @ Running
Alert & Running
Big sQL @ Running
Catalog @ Running
HBase @ Running
Hive @ Running
HitpFS @ Running
Monitoring @ Unavailable
QOozie & Running
Zookeeper @ Running

Certain tasks require a live connection to a Big SQL server within the Biglnsights cluster. This section

explains how you can define a JDBC connection to your Big SQL server.

Page 28

Introduction to Big SQL

If you're working with the Quick Start Edition VMware image, this section is optional. (The image is pre-
configured with a Big SQL connection.)

__ 1. Launch Eclipse using this icon on your Desktop.

E=EEE

2. Accept the default workspace name when prompted.

3. Verify that your workspace appears similar to this:

[+ Biginsights - Task Launcher - Eclipse — AT
File Edit Mavigate Search Project Run Window Help
S R R T O T R O N R T T L
% Quick Access ‘.| By | %2 Java EE | & Biginsights
f Y
5 Projec & Packag ask Launcher for Big Data
5 Profect 82 [Pack = Task Launcher for Big Data 3 | = @
sl | I]
| Design | Develop | Publish andrun Preferences
First Steps Tasks
@ Learn about Biginsights Accelerate
¢ Interactively explore a graphic to ’_\ Leverage sample applications, —
’ lean how InfoSphere Biginsights " toolkits and other assets and
enables you to accomplish goals. resources to jump-start your
Drill down on roles and tasks to development. Customizable source
discover how to use the tools most code and customization assistance
effectively for your needs provided
=TS Create a Biglnsights server . Design
L =_| connection L,Id Learn More resources describe
- “ou must connect to a Biginsights considerations and provide
2 : = " server before you can upload data to resources to help you design the
£ Biginsights Servers 18 a cluster. use the Biginsights right programs and applications for L
E} - L console or nublish and run an wour analvtics tasks Eutd|
& Biginsights Servers [E¢ Problems 2 = Console TR H
0 items
Description Resource Fath Location Type

4. Open the Database Development perspective. Window > Open Perspective > Other >
Database Development.

5. Inthe Data Source Explorer pane, right click on Database Connections > Add Repository

|8 Data Source Explorer £ | = = |
BG ¥Esm |

Add Repository...

¥ [ODA Data S|
(= Flat File

Refresh FS

Hands On Lab Page 29

IBM Software

_ 6.

In the New Connection Profile menu, select Big SQL JDBC Driver and enter a name for your

new driver (e.g., My Big SQL Connection). Click Next.

'| Connection Profile

Create a Big SQL JDEC connection profile.

Connection Profile Types:

:.type filter text
£ Big SqQL1 JDBC '
Q DB2 for Linux, UNIX, and Windows

EdDB2for i

£ DB2 for z/0S

Q Derby

E4 Generic JDBC

Ei Hsqlpe

E4 Hive JDBC

Q Infarmix

MName:
.My Big SQL Connection

Description (optional):

Ed Inares || |

@ < Back | MNext > l Cancel | Einish |

Enter the appropriate connection information for your environment, including the host name, port
number (51000, by default) user ID, and password. Verify that you have selected the correct
JDBC driver at the top. The information shown below contains information for the Biglnsights

Quick Start Edition VMware image (V3.0).

Page 30

Introduction to Big SQL

Specify a Driver and Connection Details —

Select a driver from the drop-down and provide login details for the

connection.
&
Drivers: IBM Big SQL JDBC Driver v3.0.0 Default o
A
Properties
General | Optional
Schema: bigsql
Host: bivm.ibm. com
Fort number: 51000
User name: hiadmin
Fassword: sssnsse
Save password
Connection URL: fjdbc: db2://hivm.ibm. com:51000/higsql [<]

=l Connect when the wizard completes _'_'_I'est Connectiori_

Connect every time the workbench is started

g < Back MNext > Cancel Einish

8. Click the Optional tab under the Properties heading to expose another menu that allows you to
add more properties to the connection.

9. Inthe Property field, enter retrieveMessagesFromServerOnGetMessage, Inthe Value field,
enter true.

Hands On Lab Page 31

IBM Software

¥ Properies for Big SQL 3.0 x

|ty|:-e filter text ;ﬂ
Common

Default Bidi Settings
Default Schema Filter
Default Stored Procedure
Default Table Filter

“ersion

Big SQL JDEC Connection Properties - A 4
&
Drivers: IBEM Big SQL JDEC Driver v3.0.0 Default |V|
A
rBroperti
Genera gptional|
Enter a property and its associated value.
Froperty |retrieveMessagesFromSeNerOnGetMessage |
| Add

Walue |Erue|

Up
Down

Femaove

HHEE

Clear All

Test Connection

@

I

__10. Click Add. Verify that your screen appears similar to this:

Page 32

Introduction to Big SQL

¥ Properies for Big SQL 3.0 x

|typ-'= filter text ‘5| Big SQL JDEC Connection Properties - - -
Common &
Drivers: IBM Big SQL JDBC Driver v2.0.0 Default |V|
Default Bidi Settings
Default Schema Filter 5
‘Eroperties
Default Stored Procedure 2
General 9Ptl0ﬂa||
Default Table Filter
Enter a property and its associated value.
‘ersion
Property fetrieveMessagesFromSenerOnGetiessage |
Add
Walue |true |
retrieveMessagesFromSenverOnGethMessage=true
Remaove |
Clear All
Test Connection
[[»]

@ Cancel

]

__11. Click the General tab again.

SQL server.

__13. Click the Save password box and Finish.

12. Click the Test connection button and verify that you can successfully connect to your target Big

Hands On Lab

Page 33

IBM Software

Specify a Driver and Connection Details

Select a driver from the drop-down and provide login details for the

connection.
&
Drivers: 1BM Big SQL JDBC Driver v3.0.0 Default hd
A
Properties
General Optional |
Schema: bigsg|
Host: bivm.ibm.com
Fort number: 51000
User name: hiadmin
Fassword: sssssss
Save password
L c:db2://bivm.ibm.com:51000/bigsgl =

Connect when the wizard completes

Connect every time the workbench is started

(?jl < Back Mext = Cancel Einish

__14. Inthe Data Source Explorer, expand the list of data sources and verify that your Big SQL

connection appears.

8 Data Source Explorer 22 =]
55 E[ESul 7
¥ (= Database Connections
b [bigsql

— T AR Pl Ceeea e

__15. Return to the Biglnsights perspective.

You're now ready to create and query Big SQL tables.

3.3. Creating a project and a SQL script file

To begin, create a Biglnsights project and Big SQL script.

Page 34

Introduction to Big SQL

__ 1. Create a Biglnsights project for your work. From the Eclipse menu bar, click File > New > Other.
Expand the Biglnsights folder, and select Biglinsights Project, and then click Next .

2. Type myBigSQL in the Project name field, and then click Finish.

Biginsights Project
Create a new Biglnsights project.

Eroject name: |\ myBigSQL

1 Use default location
Location: |/home/biadmin/BigSQL_Lab/myBEigSOL Browse..

Choose file system: | default [¥

3. Ifyou are not already in the Biglnsights perspective, a Switch to the Biglnsights perspective
window opens. Click Yes to switch to the Biglnsights perspective.

4. Create a new SQL script file. From the Eclipse menu bar, click File > New > Other. Expand the
Biglnsights folder, and select SQL script, and then click Next.

5. Inthe New SQL File window, in the Enter or select the parent folder field, select myBigSQL.
Your new SQL file is stored in this project folder.

6. Inthe File name field, type aFirstFile. The .sqgl extension is added automatically. Click Finish.

New SQL File
Create a new SQL file

Enter or select the parent folder,
myBigsQL

=
= RemoteSystemsTempFiles

File name: |aFirstFile]

Advanced >>

P
@ < Back Mext = Cancel

7. Inthe Select Connection Profile window, select the Big SQL connection. The properties of the
selected connection display in the Properties field. When you select the Big SQL connection, the
Big SQL database-specific context assistant and syntax checks are activated in the editor that is
used to edit your SQL file.

Hands On Lab Page 35

IBM Software

Verify that the connection uses the JDBC driver and database name shown in the Properties
pane here.

Select Connection Profile

Select a connection profile from the list below or click the Mew... button to create a new connection profile.

Connections

=

Mew. ..

Edit...
Delete

~ Properties

Property Value =

MName My Big SQL Connection

Description

Category Database Connections

Database bigsgl

JDBC Driver Class com.ibm.db2. jcc. DB2Driver

Class Location /home/biadmin/eclipse/plugins/com.ibm.biginsights. bigsgl.lib_1.0.4.v20140523_1315/lik

-

About the driver selection

You may be wondering why you are using a connection that employs the
com.ibm.com.db2.jcc.DB2 driver class. In 2014, IBM released a common SQL
o query engine as part of its DB2 and Biglnsights offerings. Doing so provides

for greater SQL commonality across its relational DBMS and Hadoop-based
offerings. It also brings a greater breadth of SQL function to Hadoop
(Biglnsights) users. This common query engine is accessible through the DB2
driver. The Big SQL driver remains operational and offers connectivity to an
earlier, Biglnsights-specific SQL query engine. This lab focuses on using the
common SQL query engine.

__8. Click Finish.

3.4. Creating and issuing queries

Now you're ready to add some Big SQL statements to the empty script file that you just created. Once
you've added some statements, you will execute them and inspect the results.

Page 36 Introduction to Big SQL

- In some cases, the Eclipse SQL editor may flag certain Big SQL statements as
i containing syntax errors. Ignore these false warnings and continue with your lab

exercises.

__ 1. Copy the following statement into the SQL script you created earlier:

create hadoop table testl (coll int, col2 varchar(5));

Because you didn't specify a schema name for the table it was created in your default schema,

which is your user name. This is equivalent to:
create hadoop table biadmin.testl (coll int, col2 varchar(5));
where biadmin is the current user name.

__ 2. Save your file (press Ctrl + S or click File > Save).

3. Right mouse click anywhere in the script to display a menu of options.

< Undo Typing
Revert File
E] save

Open With
Show In

Cut

Capy

Paste

Bun As
Debug As
Erofile As
Walidate
Team
Compare With
Replace With

Freferences...

o

« Content Assist
0] Format SQL
;' -- Toggle Comment
i Validate Statement Syntax

| o Use Database Connection...
] Run sQL
|_| Set Statement Terminator
‘alidate Database Object References

Remove from Context

Input Methods

Ctr+2

Ctr+s

14
ShifttAlW P

Crl+x
Ctr+C

Ctr+v

Ctri+5Space
Ctrl+Shift+F
Ctrl+/

B3

Shift+Ctri+Alt-Down

4

__ 4. Select Run SQL or press F5. This causes all statements in your script to be executed.

Hands On Lab

Page 37

IBM Software

5. Inspect the SQL Results pane that appears towards the bottom of your display. (If desired,
double click on the SQL Results tab to enlarge this pane. Then double click on the tab again to
return the pane to its normal size.) Verify that the statement executed successfully. Your Big
SQL database now contains a new table named BIADMIN.TEST1 where BIADMIN is the name
of the current user. Note that your schema and table name were folded into upper case.

Problems El Console E SQL Results 53 X% 2B =0
| Type query expression here Status
Status Operation Date Connection Profile | create hadoop table testl (coll int. col2 varchar(s)) =

Query execution time => 354 ms

- For the remainder of this lab, to execute each SQL statement individually
highlight the statement and press F5. When you’re developing a SQL script with
multiple statements, it's generally a good idea to test each statement one at a
time to verify that each is working as expected.

6. From your Eclipse project, query the system for meta data about your test1 table:

select tabschema, colname, colno, typename, length

from syscat.columns where tabschema = USER and tabname= 'TEST1';

In case you're wondering, syscat.columns is one of a number of views supplied over system
catalog data automatically maintained for you by the Big SQL service.

__7. Inspect the SQL Results to verify that the query executed successfully, and click on the Result1
tab to view its output.
[£ Problems Bl Console | = SQL Results 52 X BB/ Y=0
IType query expression here Status | Result?
.Siatus .Operat\un Date Connection Profile TABSCHEMA COLNAME COLNO TYFEMAME |LENGTH
v Succez. Create haduc. 6/1314 4.56. My Big SQL Connection _

8. Finally, clean up the object you created in the database.
drop table testil;

9. Save your file. If desired, leave it open to execute statements for subsequent exercises.

Now that you’ve set up your Eclipse environment and know how to create SQL scripts and execute
queries, you're ready to develop more sophisticated scenarios using Big SQL. In the next lab, you will
create a number of tables in your schema and use Eclipse to query them.

Page 38 Introduction to Big SQL

Lab4 Querying structured data with Big SQL

In this lab, you will execute Big SQL queries to investigate data stored in Hadoop. Big SQL provides
broad SQL support based on the ISO SQL standard. You can issue queries using JDBC or ODBC
drivers to access data that is stored in InfoSphere Biglnsights in the same way that you access relational
databases from your enterprise applications. Multiple queries can be executed concurrently. The SQL
query engine supports joins, unions, grouping, common table expressions, windowing functions, and
other familiar SQL expressions.

This tutorial uses sales data from a fictional company that sells and distributes outdoor products to third-
party retailer stores as well as directly to consumers through its online store. It maintains its data in a
series of FACT and DIMENSION tables, as is common in relational data warehouse environments. In
this lab, you will explore how to create, populate, and query a subset of the star schema database to
investigate the company’s performance and offerings. Note that Biglnsights provides scripts to create
and populate the more than 60 tables that comprise the sample GOSALESDW database. You will use
fewer than 10 of these tables in this lab.

Prior to starting this lab, you must have completed at least one of the two previous labs on JSgsh or
Eclipse. In particular, you must be familiar with how to execute queries in your target development
platform (JSqsh or Eclipse), and you must have established a connection to your Big SQL 3.0 database.
Screen captures shown in this lab are based on Eclipse, as query result sets are generally easier to
read.

After you complete the lessons in this module, you will understand how to:

e Create Big SQL tables that use Hadoop text file and Parquet file formats.

e Populate Big SQL tables from local files and from the results of queries.

e Query Big SQL tables using projections, restrictions, joins, aggregations, and other popular
expressions.

e Create and query a view based on multiple Big SQL tables.

e Create and run a JDBC client application for Big SQL using Eclipse.

Allow 1.5 hours to complete this lab.

4.1. Creating sample tables and loading sample data
In this lesson, you will create several sample tables and load data into these tables from local files.

__ 1. Determine the location of the sample data in your local file system and make a note of it. If
necessary, ask your instructor for the location of the sample GOSALESDW data used in this lab.
You will need to use this path specification when issuing LOAD commands later in this lab.

- Subsequent examples in this section presume your sample data is in the
Jopt/ibm/biginsights/bigsql/samples/data directory. This is the location
of the data on the Biglnsights VMware image, and it is the default location in
typical Biglnsights installations.

Hands On Lab Page 39

IBM Software

__ 2. Create several tables in this schema. Issue each of the following CREATE TABLE statements
one at a time, and verify that each completed successfully:

-- dimension table for region info

CREATE HADOOP TABLE IF NOT EXISTS go_region_dim

(country_key INT NOT NULL
, country_code INT NOT NULL
, flag _image VARCHAR (45)

, iso_three_letter_code

, iso_two_letter_code

, iso_three_digit_code

, region_key
, region_code
, region_en

, country_en

VARCHAR(9) NOT NULL

VARCHAR(6) NOT NULL

INT
INT

NOT NULL
NOT NULL

VARCHAR(9) NOT NULL

VARCHAR(90) NOT NULL
VARCHAR(90) NOT NULL

, region_de VARCHAR(90), country_de VARCHAR(90), region_fr VARCHAR(99)
, country_ fr VARCHAR(90), region_ja VARCHAR(90), country_ja VARCHAR(99)
, region_cs VARCHAR(90), country_cs VARCHAR(90), region_da VARCHAR(99)
, country_da VARCHAR(90), region_el VARCHAR(90), country_el VARCHAR(90)
, region_es VARCHAR(90), country_es VARCHAR(90), region_fi VARCHAR(99)
, country fi VARCHAR(90), region_hu VARCHAR(90), country_hu VARCHAR(90)
, region_id VARCHAR(90), country_id VARCHAR(90), region_it VARCHAR(99)
, country_it VARCHAR(90), region_ko VARCHAR(90), country_ko VARCHAR(90)
, region_ms VARCHAR(90), country_ms VARCHAR(90), region_nl VARCHAR(99)
, country_nl VARCHAR(90), region_no VARCHAR(90), country_no VARCHAR(90)
, region_pl VARCHAR(90), country_pl VARCHAR(90), region_pt VARCHAR(99)
, country pt VARCHAR(90), region_ru VARCHAR(90), country_ru VARCHAR(99)
, region_sc VARCHAR(90), country_sc VARCHAR(90), region_sv VARCHAR(99)
, country_sv VARCHAR(90), region_tc VARCHAR(90), country_tc VARCHAR(90)
, region_th VARCHAR(90), country_th VARCHAR(99)

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

LINES TERMINATED BY ‘\n’

STORED AS TEXTFILE

B

-- dimension table tracking method of order for the sale (e.g., Web, fax)

CREATE HADOOP TABLE IF NOT EXISTS sls_order_method_dim

(order_method_key
, order_method_code
, order_method_en

INT NOT NULL
INT NOT NULL

VARCHAR(90) NOT NULL

, order_method_de VARCHAR(90), order_method_fr VARCHAR(99)
, order_method_ja VARCHAR(90), order_method_cs VARCHAR(99)
, order_method_da VARCHAR(90), order_method_el VARCHAR(90)
, order_method_es VARCHAR(90), order_method_fi VARCHAR(99)
, order_method_hu VARCHAR(90), order_method_id VARCHAR(90)
, order_method_it VARCHAR(90), order_method_ko VARCHAR(90)
, order_method_ms VARCHAR(90), order_method_nl VARCHAR(90)
, order_method_no VARCHAR(90), order_method_pl VARCHAR(90)
, order_method_pt VARCHAR(90), order_method_ru VARCHAR(90)
, order_method_sc VARCHAR(90), order_method_sv VARCHAR(99)

Page 40

Introduction to Big SQL

)

)

ROW FORMAT DELIMITED

order_method_tc

VARCHAR(90),

FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE

B

order_method_th

VARCHAR (90)

-- look up table with product brand info in various languages

CREATE HADOOP TABLE IF NOT EXISTS sls_product_brand_lookup
product_brand_code INT NOT NULL
VARCHAR(90) NOT NULL

ROW FORMAT DELIMITED

product_brand_en
product_brand_de
product_brand_ja
product_brand_da
product_brand_es
product_brand_hu
product_brand_it
product_brand_ms
product_brand_no
product_brand_pt
product_brand_sc
product_brand_tc

VARCHAR(90),
VARCHAR(90),
VARCHAR(90),
VARCHAR(90),
VARCHAR(90),
VARCHAR(90),
VARCHAR(90),
VARCHAR(90),
VARCHAR(90),
VARCHAR(90),
VARCHAR(90),

FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE

B

-- product dimension table

product_brand_fr
product_brand_cs
product_brand_el
product_brand_fi
product_brand_id
product_brand_ko
product_brand_nl
product_brand_pl
product_brand_ru
product_brand_sv
product_brand_th

CREATE HADOOP TABLE IF NOT EXISTS sls_product_dim
INT NOT NULL

ROW FORMAT DELIMITED

product_key
product_line_code
product_type_key
product_type_code
product_number
base_product_key

base_product_number
product_color_code

product_size_code
product_brand_key

product_brand_code

product_image
introduction_date
discontinued_date

INT NOT NULL
INT NOT NULL
INT NOT NULL
INT NOT NULL
INT NOT NULL

INT NOT NULL

INT
INT
INT NOT NULL
INT NOT NULL

VARCHAR (60)

TIMESTAMP
TIMESTAMP

FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE

B

VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)

Hands On Lab

Page 41

IBM Software

-- look up table with product line info in various languages

CREATE HADOOP TABLE IF NOT EXISTS sls_product_line_lookup

(product_line_code INT NOT NULL

, product_line_en VARCHAR(90) NOT NULL

, product_line_de VARCHAR(90), product_line fr
, product_line_ja VARCHAR(90), product_line_cs
, product_line_da VARCHAR(90), product_line_el
, product_line_es VARCHAR(90), product_line_ fi
, product_line_hu VARCHAR(90), product_line_id
, product_line_it VARCHAR(90), product_line_ko
, product_line_ms VARCHAR(90), product_line_nl
, product_line_no VARCHAR(90), product_line_pl
, product_line_pt VARCHAR(90), product_line_ru
, product_line_sc VARCHAR(90), product_line_sv
, product_line_tc VARCHAR(90), product_line_th

ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;

-- look up table for products

CREATE HADOOP TABLE IF NOT EXISTS sls_product_lookup

(product_number INT NOT NULL

, product_language VARCHAR(30) NOT NULL

, product_name VARCHAR(150) NOT NULL
, product_descriptionVARCHAR(765)

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

LINES TERMINATED BY ‘\n’

STORED AS TEXTFILE;

-- fact table for sales
CREATE HADOOP TABLE IF NOT EXISTS sls_sales_fact

(order_day_key INT NOT NULL
, organization_key INT NOT NULL
, employee_key INT NOT NULL
, retailer_key INT NOT NULL
, retailer_site_key INT NOT NULL
, product_key INT NOT NULL
, promotion_key INT NOT NULL

, order_method_key INT NOT NULL
, sales_order_key INT NOT NULL

VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)
VARCHAR (90)

, ship_day_key INT NOT NULL
, close_day_key INT NOT NULL

, quantity INT

, unit_cost DOUBLE

, unit_price DOUBLE

, unit_sale_price DOUBLE

, gross_margin DOUBLE

, sale_total DOUBLE

, gross_profit DOUBLE

Page 42

Introduction to Big SQL

)
ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE

B

-- fact table for marketing promotions
CREATE HADOOP TABLE IF NOT EXISTS mrk_promotion_fact
(organization_key INT NOT NULL

, order_day_key INT NOT NULL

, rtl_country_key INT NOT NULL

, employee_key INT NOT NULL
, retailer_key INT NOT NULL
, product_key INT NOT NULL
, promotion_key INT NOT NULL

, sales_order_key INT NOT NULL

, quantity SMALLINT

, unit_cost DOUBLE

, unit_price DOUBLE

, unit_sale_price DOUBLE

, gross_margin DOUBLE

, sale_total DOUBLE

, gross_profit DOUBLE

)
ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;

Let’s briefly explore some aspects of the CREATE TABLE statements shown here. If
you have a SQL background, the majority of these statements should be familiar to
- you. However, after the column specification, there are some additional clauses
unique to Big SQL — clauses that enable it to exploit Hadoop storage mechanisms (in

this case, Hive). The ROW FORMAT clause specifies that fields are to be terminated
by tabs (“\t”) and lines are to be terminated by new line characters (\n”). The table
will be stored in a TEXTFILE format, making it easy for a wide range of applications to
work with. For details on these clauses, refer to the Apache Hive documentation.

3. Load data into each of these tables using sample data provided in files. One at a time, issue
each of the following LOAD statements and verify that each completed successfully. Remember
to change the SFTP and file path specifications (if needed) to match your environment. The
statements will return a warning message providing details on the number of rows loaded, etc.

load hadoop using file url
'sftp://biadmin:biadmin@bivm:22/opt/ibm/biginsights/bigsql/samples/data/GOSALESDW.GO_REGION_
DIM.txt' with SOURCE PROPERTIES ('field.delimiter'="\t') INTO TABLE GO_REGION_DIM overwrite;

Hands On Lab Page 43

IBM Software

load hadoop using file url
'sftp://biadmin:biadmin@bivm:22/opt/ibm/biginsights/bigsql/samples/data/GOSALESDW.SLS_ ORDER_
METHOD_DIM.txt' with SOURCE PROPERTIES ('field.delimiter'='\t') INTO TABLE
SLS_ORDER_METHOD_DIM overwrite;

load hadoop using file url
'sftp://biadmin:biadmin@bivm:22/opt/ibm/biginsights/bigsql/samples/data/GOSALESDW.SLS_PRODUC
T_BRAND_LOOKUP.txt"' with SOURCE PROPERTIES ('field.delimiter'='\t') INTO TABLE
SLS_PRODUCT_BRAND_LOOKUP overwrite;

load hadoop using file url
'sftp://biadmin:biadmin@bivm:22/0opt/ibm/biginsights/bigsql/samples/data/GOSALESDW.SLS_PRODUC
T _DIM.txt' with SOURCE PROPERTIES ('field.delimiter'='\t') INTO TABLE SLS_PRODUCT_DIM
overwrite;

load hadoop using file url
'sftp://biadmin:biadmin@bivm:22/opt/ibm/biginsights/bigsql/samples/data/GOSALESDW.SLS_PRODUC
T_LINE_LOOKUP.txt' with SOURCE PROPERTIES ('field.delimiter'='\t') INTO TABLE
SLS_PRODUCT_LINE_LOOKUP overwrite;

load hadoop using file url
'sftp://biadmin:biadmin@bivm:22/0opt/ibm/biginsights/bigsql/samples/data/GOSALESDW.SLS_PRODUC
T_LOOKUP.txt' with SOURCE PROPERTIES ('field.delimiter'="\t') INTO TABLE SLS_PRODUCT_LOOKUP
overwrite;

load hadoop using file url
'sftp://biadmin:biadmin@bivm:22/opt/ibm/biginsights/bigsql/samples/data/GOSALESDW.SLS_ SALES
FACT.txt' with SOURCE PROPERTIES ('field.delimiter'='\t') INTO TABLE SLS_SALES_FACT
overwrite;

load hadoop using file url
'sftp://biadmin:biadmin@bivm:22/0opt/ibm/biginsights/bigsql/samples/data/GOSALESDW.MRK_PROMOT
ION_FACT.txt' with SOURCE PROPERTIES ('field.delimiter'='\t') INTO TABLE MRK_PROMOTION_FACT
overwrite;

Page 44 Introduction to Big SQL

Let’s explore the LOAD syntax shown in these examples briefly. Each example loads
data into a table using a file URL specification that relies on SFTP to locate the source
file (in this case, in a file on your local VM). In particular, the SFTP specification includes
a valid user ID and password (biadmin/biadmin), the target host server and port
(bivm:22), and the full path of the data file on that system. Note that the path is local to
the Big SQL server (not your Eclispe client). The WITH SOURCE PROPERTIES clause
specifies that fields in the source data are delimited by tabs (“\t”). The INTO TABLE
clause identifies the target table for the LOAD operation. The OVERWRITE keyword
indicates that any existing data in the table will be replaced by data contained in the
source file. (If you wanted to simply add rows to the table’s content, you could specify
APPEND instead.)

Using SFTP (or FTP) is one way in which you can invoke the LOAD command. If your
target data already resides in your distributed file system, you can provide the DFS
directory information in your file URL specification. Indeed, for optimal runtime
performance, you may prefer to take that approach. See the Biglnsights Knowledge
Center (product documentation) for details. In addition, you can load data directly from a
remote relational DBMS via a JDBC connection, will be discussed in a future lab.

4. Query the tables to verify that the expected number of rows was loaded into each table. Execute
each query that follows individually and compare the results with the number of rows specified in

the comment line preceding each query.

-- total rows in GO_REGION_DIM = 21
select count(*) from GO_REGION_DIM;

-- total rows in sls_order_method_dim = 7
select count(*) from sls_order_method_dim;

-- total rows in SLS_PRODUCT_BRAND_LOOKUP = 28
select count(*) from SLS_PRODUCT_BRAND_LOOKUP;

-- total rows in SLS_PRODUCT_DIM = 274
select count(*) from SLS_PRODUCT_DIM;

-- total rows in SLS_PRODUCT_LINE_LOOKUP = 5
select count(*) from SLS_PRODUCT_LINE_LOOKUP;

-- total rows in SLS_PRODUCT_LOOKUP = 6302
select count(*) from SLS_PRODUCT_LOOKUP;

-- total rows in SLS_SALES_FACT = 446023
select count(*) from SLS_SALES_FACT;

-- total rows gosalesdw.MRK_PROMOTION_FACT = 11034
select count(*) from MRK_PROMOTION_FACT;

4.2. Querying the data with Big SQL

Now you're ready to query your tables. Based on earlier exercises, you've already seen that you can
perform basic SQL operations, including projections (to extract specific columns from your tables) and

Hands On Lab

Page 45

IBM Software

restrictions (to extract specific rows meeting certain conditions you specified). Let's explore a few
examples that are a bit more sophisticated.

In this lesson, you will create and run Big SQL queries that join data from multiple tables as well as
perform aggregations and other SQL operations. Note that the queries included in this section are based
on queries shipped with Biglnsights as samples.

You may find it easiest to use Eclipse to issue the following Big SQL statements. You can also execute
them from the JSqgsh shell, but some return hundreds of thousands of rows. The Eclipse SQL Results
page limits output to only 500 rows. (You can change that value in the Data Management preferences.)

1.

Join data from multiple tables to return the product name, quantity and order method of goods
that have been sold. To do so, execute the following query.

-- Fetch the product name, quantity, and order method
-- of products sold.

-- Query 1

SELECT pnumb.product_name, sales.quantity,
meth.order_method_en

FROM

sls _sales fact sales,

sls_product_dim prod,

sls_product_lookup pnumb,

sls_order_method_dim meth

WHERE

pnumb.product_language='EN'

AND sales.product_key=prod.product_key

AND prod.product_number=pnumb.product_number

AND meth.order_method_key=sales.order_method key;

Let’s review a few aspects of this query briefly:

Data from four tables will be used to drive the results of this query (see the tables referenced in
the FROM clause). Relationships between these tables are resolved through 3 join predicates
specified as part of the WHERE clause. The query relies on 3 equi-joins to filter data from the
referenced tables. (Predicates such as prod.product_number=pnumb.product_number help to
narrow the results to product numbers that match in two tables.)

For improved readability, this query uses aliases in the SELECT and FROM clauses when
referencing tables. For example, pnumb.product_name refers to “pnumb,” which is the alias for
the gosalesdw.sls_product_lookup table. Once defined in the FROM clause, an alias can be used
in the WHERE clause so that you do not need to repeat the complete table name.

The use of the predicate and pnumb.product_language="EN’ helps to further narrow the result
to only English output. This database contains thousands of rows of data in various languages, so
restricting the language provides some optimization.

Page 46 Introduction to Big SQL

Status Resultl_

PRODUCT_NAME QUANTITY ORDER_METHOD_EN

i Compact Relief Kit 313 Sales visit
2 Course Pro Putter 587 Telephone
3 Blue Steel Max Putter 214 Telephone
4 Course Pro Gloves 576 Telephone
5 Glacier Deluxe 129 Sales visit
6 BugShield Natural 1776 Sales visit
7 Sun Shelter 15 1822 Sales visit
8 Compact Relief Kit 412 Sales visit
9 Hailstorm Titanium Woods... 67 Sales visit
10 Canyon Mule Extreme Back... 97 E-mail

11 TrailChef Canteen 1172 Telephone
12 TrailChef Cook Set 591 Telephone
13 TrailChef Deluxe Cook Set 338 Telephone
14 Star Gazer 3 97 Telephone
15 Hibernator 364 Telephone
16 Hibernator Camp Cot 234 Telephone
17 Canyon Mule Cooler 603 Telephone
18 Firefly 4 232 Telephone
19 EBverGlow Single 450 Telephone
20 EverGlow Kerosene 257 Telephone

Total 500 records shown

Y -

__2. Modify the query to restrict the order method to one type — those involving a Sales visit. To

do so, add the following query predicate just before the semi-colon:

AND order_method_en='Sales visit'

3. Inspect the results, a subset of which is shown below:

Hands On Lab

Page 47

IBM Software

Status |Resultl

PRODUCT_NAME QUANTITY ORDER_METHOD_EN
1 Canyon Mule Extrem... 97 Sales visit
2 Glacier Deluxe 129 Sales visit
&) BugShield Natural 1776 Sales visit
4 Sun Shelter 15 1822 Sales visit
5 Compact Relief Kit 412 Sales visit
6 Hailstorm Titanium ... 67 Sales visit
7 TrailChef Double Fla... 205 Sales visit
8 TrailChef Utensils 950 Sales visit
9 Star Lite 334 Sales visit
10 Star Gazer 2 205 Sales visit
11 Hibernator Lite 459 Sales visit
12 Firefly Extreme 128 Sales visit
13 EverGlow Double 36 Sales visit
14 Mountain Man Deluxe 129 Sales visit
15 Polar Extreme 23 Sales visit
16 Edge Extreme 286 Sales visit
17 Bear Edge 246 Sales visit
18 Seeker 50 154 Sales visit
19 Glacier GPS Extreme 123 Sales visit
20 BuaShield Sorav 1266 Sales visit

4. Tofind out which sales method of all the methods has the greatest quantity of orders, add a
GROUP BY clause (group by pll.product_line_en, md.order_method_en). In addition,
invoke the SUM aggregate function (sum(sf.quantity)) to total the orders by product and
method. Finally, this query cleans up the output a bit by using aliases (e.g., as Product) to
substitute a more readable column header.

-- Query 3

SELECT pll.product_line_en AS Product,
md.order_method_en AS Order_method,
sum(sf.QUANTITY) AS total

FROM

sls_order_method_dim AS md,

sls_product_dim AS pd,

sls _product_line_lookup AS pll,
sls_product_brand_lookup AS pbl,

sls_sales_fact AS sf

WHERE

pd.product_key = sf.product_key

AND md.order_method_key = sf.order_method key
AND pll.product_line_code = pd.product_line_code
AND pbl.product_brand_code = pd.product_brand_code
GROUP BY pll.product_line_en, md.order_method_en;

Page 48 Introduction to Big SQL

__ 5. Inspect the results, which should contain 35 rows

Status Resultl.

PRODUCT ORDER_METHOD

1 Camping Equipment E-mail

2 Camping Equipment Fax

3 Camping Equipment Mail

4 Camping Equipment Sales visit
5 Camping Equipment Special

6 Camping Equipment Telephone
7 Camping Equipment Web

8 Golf Equipment E-mail

9 Golf Equipment Fax

10 Golf Equipment Mail

11 Golf Equipment Sales visit
12 Golf Equipment Special
13 Golf Equipment Telephone
14 Golf Equipment Web

4.3. Creating and working with views

. A portion is shown below.

TOTAL
1413084
413958
348058
2899754
203528
2792588
19230179
333300
102651
80432
263788
38585
601506
3693439

Big SQL supports views (virtual tables) based on one or more physical tables. In this section, you will
create a view that spans multiple tables. Then you'll query this view using a simple SELECT statement.
In doing so, you'll see that you can work with views in Big SQL much as you can work with views in a
relational DBMS.

__ 1. Create a view named MYVIEW that extracts information about product sales featured in
marketing promotions. By the way, since the schema name is omitted in both the CREATE and
FROM object names, the current schema (your user name), is assumed.

create view myview as

select product_name, sales.product_key, mkt.quantity,
sales.order_day_key, sales.sales_order_key, order_method_en

from

where

mrk_promotion_fact mkt,

sls_sales_fact sales,

sls_product_dim prod,

sls _product_lookup pnumb,
sls_order_method_dim meth
mkt.order_day_key=sales.order_day key

and sales.product_key=prod.product_key

and prod.product_number=pnumb.product_number
and pnumb.product_language="EN'

and meth.order_method_key=sales.order_method_key;

__ 2. Now query the view:

Hands On Lab

Page 49

IBM Software

order by product_key asc, order_day_key asc
fetch first 20 rows only;

_ 3.

select * from myview

Inspect the results:

Status |Result1

W 0 N O ;s W N

e e e e o e T R e
L N AW N RO

20

PRODUCT NAME
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...
TrailChef Water ...

PRODUCT KEY QUANTITY ORDER DAY KEY SALES ORDER KEY

30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001
30001

Total 20 records shown

44.

Populating a table with ‘INSERT INTO ... SELECT’

482
1172
575
605
853
856
813
1062
678
990
1035
965
1260
495
663
766
1107
2053
1631
1472

20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112
20040112

195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305
195305

ORDER_METHOD _EN

Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit
Sales visit

Sales visit

With Big SQL v3.0 you can populate a table with data based on the results of a query. In this exercise,
you will use an INSERT INTO . . . SELECT statement to retrieve data from multiple tables and insert that
data into another table. Executing an INSERT INTO . .. SELECT exploits the machine resources of your
cluster because Big SQL can parallelize both read (SELECT) and write (INSERT) operations.

1.

-- create a sample sales_report table

Execute the following statement to create a sample table named sales_report:

CREATE HADOOP TABLE sales_report

(

product_key
product_name

quantity

order_method_en

)

INT NOT NULL,
VARCHAR(150),

INT,

VARCHAR (90)

ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'

LINES TERMINATED BY '\n'

STORED AS TEXTFILE;

Page 50

Introduction to Big SQL

2. Now populate the newly created table with results from a query that joins data from multiple
tables.

-- populate the sales_report data with results from a query
INSERT INTO sales_report

SELECT sales.product_key, pnumb.product name, sales.quantity,
meth.order_method_en

FROM

sls _sales fact sales,

sls_product_dim prod,

sls_product_lookup pnumb,

sls_order_method_dim meth

WHERE

pnumb.product_language="EN'

AND sales.product_key=prod.product_key

AND prod.product_number=pnumb.product_number

AND meth.order_method_key=sales.order_method_key

and sales.quantity > 1000;

3. Verify that the previous query was successful by executing the following query:

-- total number of rows should be 14441
select count(*) from sales_report;

4.5. Optional: Storing data in an alternate file format (Parquet)

Until now, you've instructed Big SQL to use the TEXTFILE format for storing data in the tables you've
created. This format is easy to read (both by people and most applications), as data is stored in a
delimited form with one record per line and new lines separating individual records. It's also the default
format for Big SQL tables.

However, if you'd prefer to use a different file format for data in your tables, Big SQL supports several
formats popular in the Hadoop environment, including Avro, sequence files, RC (record columnar) and
Parquet. While it's beyond the scope of this lab to explore these file formats, you'll learn how you can
easily override the default Big SQL file format to use another format -- in this case, Parquet. Parquetis a
columnar storage format for Hadoop that's popular because of its support for efficient compression and
encoding schemes. For more information on Parquet, visit http://parquet.io/.

1. Create a table named big_sales_parquet.
CREATE HADOOP TABLE IF NOT EXISTS big_sales_parquet

(product_key INT NOT NULL,
product_name VARCHAR(150),
quantity INT,
order_method_en VARCHAR (90)

)

STORED AS parquetfile;

With the exception of the final line (which specifies the PARQUETFILE format), all aspects of this
statement should be familiar to you by now.

Hands On Lab Page 51

IBM Software

2. Populate this table with data based on the results of a query. Note that this query joins data from

4 tables you previously defined in Big SQL using a TEXTFILE format. Big SQL will automatically

reformat the result set of this query into a Parquet format for storage.

insert into big_sales_parquet

SELECT sales.product_key, pnumb.product_name, sales.quantity,
meth.order_method_en

FROM

sls_sales_fact sales,
sls_product_dim prod,

sls_product_lookup pnumb,
sls_order_method_dim meth

WHERE

pnumb.product_language="EN'

AND sales.product_key=prod.product_key
AND prod.product_number=pnumb.product_number

AND meth.order_method_key=sales.order_method_key
and sales.quantity > 5500;

3. Query the table. Note that your SELECT statement does not need to be modified in any way

because of the underlying file format.

select * from big sales_parquet;

__4. Inspect the results. A subset are shown in the screen capture below. The query should return

471 rows.

PRODUCT_KEY

FPRODUCT_NAME

QUANTITY

ORDER_METHOD_EN

=

(=R« B N« R R L

30107
30107
30107
30107
30030
30107
30107
30107
30107
300380
30107
30107
30107
30107
30030
30107
30001
30001
30001

BugShield Extreme
BugShield Extreme
BugShield Extreme
BugShield Extreme
Single Edge

BugShield Extreme
BugShield Extreme
BugShield Extreme
BugShield Extreme
Single Edge

BugShield Extreme
BugShield Extreme
BugShield Extreme
BugShield Extreme
Single Edge

BugShield Extreme
TrailChef Water Bag
TrailChef Water Bag
TrailChef Water Bag

6282
6121
7300
8772
6613
5855
5523
5658
6948
5928
5654
8303
5970
5645
6190
8188
6137
6658
6829

E-mail
ail
Sales visit
Web
Special
Sales visit
Web

Web
Sales visit
Web

Web

Web

Mail
Telephone
Web

Web
Telephone
Telephone

Web

__ 5. Optionally, open the Files tab of the Web console, and navigate to the directory containing your
table (e.g., /biginsights/hive/warehouse/biadmin.db/big_sales_parquet). Note that

the contents appears in a format that cannot be read as plain text.

Page 52

Introduction to Big SQL

DFS Files Catalog Tables

o+] & % B &

v (= hdfs://bivm.ibm.com:9000/
v (= biginsights
+ (& hive
v (= warehouse

v [= biadmin.db

(= big_sales_parquet
[5] i_1402942983637_4_201

() go_region_dim
7 mrk_promotion_fact

sales_report
1 sls_order_method_dim
(23 sls_product_brand_lookup
) sls_product_dim

) sls_product_line_lookup

cle nrndiet Innlam

Path: | /biginsights/hive/warehouse/biadmin.db/big_sales_parquet/i_1402942983637_4_201406160317204_0 ‘ b ‘ Go
Name Size Block Size Permission Owner Gre
i1402942983637_4_2014061603172._. 31KB 1.0GB TW-T—— bigsql biac
4 (L} »
Edit Viewing Size:| 10KB | ~ (@ Text (7) Sheet

PAR1@ELOU@UIUOUINIUOUDbUO P, €O €0 O3

5195 QIHRQOOHO V51931959 55195 59\0009s1"7
QO<cOODYOKOOOVOCO.9.]9.-0U-9.909K009.) 059 001000 000y0' 00000
290900009000 0<0100921<VVLBugShield ExtremeSingle EdgeTrailChef Water
BagSun Shelter 30TrailChef KettleTrailChef CupCourse Pro GlovesGranite Carabiner@€
,09190c 05

SI95 QIHROOOHE V5IQsIVs@ 55195 50\ 0900517
QOcOODYOKOOOVOCO.9.]90.-0U=0.990K009.) 0359 00V1000<000y0'00000
299N0009 70009010090 21<909, 001009D"09095(c R.95OLI PO FOVOQ
Q09)30006r' 95000905902k 019 (0109000 1L5:n VOEQ V] - 00000V 00VOTO
5@ygsQQI"]1x@ [0)pOP1ILiVi000!00)0030009)0-00-00-00uB(t0/000 @
VGO PP OO/ 000 | 0OVOV+*OOROVVONI] 5020"00010:90<9501'31200500
0498V V92050159~

AL ALAL AACAA AL AA AAAAA A AAAAAAAAAAAAA A AA LR AR A wS

6. Optionally, click on the Catalog Tables tab (next to the DFS Files tab), expand the folder

associated with your user ID (biadmin), and click on big_sales_parquet entry. Note that the

data is displayed as a draft BigSheets workbook. BigSheets' HCatalog Reader can process the
Big SQL table stored in Parquet. In a later lab, you'll learn more about BigSheets, a
spreadsheet-style tool for Biginsights that enables analysts to explore and manipulate data

without writing code.

DFS Files Catalog Tables

=]

| big_sales_parquet

|=| go_region_dim

D mrk_promotion_fact

D sales_report

| sheetsout

D sls_order_method_dim

D sls_product_brand_locokup
| sls_product_dim

Table:

biadmin.big_sales_parquet
HCatalog Reader & Save as Master Workbook =

& Ready = Refresh E Fit column(s)
product_key product_name quantity order_method_en
1 30107 BugShield Extreme 5937 Sales visit
2 30107 BugShield Extreme 6282 E-mail
3 30107 BugShield Extreme 6121 Mail
i 4 30107 BugShield Extreme 7300 Sales visit
5 30107 BugShield Extreme 8772 Web
30080 Sinale Edae 6619 Snecial

biadmin big_sales_parquet - Go

4.6. Optional: Using Big SQL from a JDBC client application (Eclipse)

You can write a JDBC client application that uses Big SQL to open a database connection, execute
queries, and process the results. In this optional exercise, you'll see how writing a client JDBC
application for Big SQL is like writing a client application for any relational DBMS that supports JDBC

access.

__1. Inthe IBM InfoSphere Biglnsights Eclipse environment, create a Java project by clicking File >
New >Project. From the New Project window, select Java Project. Click Next.

Hands On Lab

Page 53

IBM Software

= New Project
Select a wizard

Create a Java project [

Wizards

£ Java Project

4 Java Project from Existing Ant Buildfile

%% Plug-in Project
P = General
b (= Biginsights
b & cvs

b & Eclipse Modeling Framework

b = Java I
=]
® [tz J[_conee]|
__2. Type a name for the project in the Project Name field, such as MyJavaProject. Click Next.
3.

Open the Libraries tab and click Add External Jars. Add the DB2 JDBC driver for Biglnsights,
located at /opt/ibm/biginsights/database/db2/java/db2jcc4. jar.

¥ New Java Project

x
Java Settings

E_il.
Define the Java build settings.

LFSource |1.r_-EErn_|acts miLibraries | “;Order and E:purt|
JARs and class folders on the build path:

+ & db2jccd jar - Joptibm/biginsights/database/db2/java Add JARS
b = JRE System Library [JavaSE-1.7]

Add External JARSs. ..

Add Variable...

Add Librany. ..

__4. Click Finish. Click Yes when you are asked if you want to open the Java perspective.
__ 5. Right-click the MyJavaProject project, and click New > Package. In the Name field, in the New
Java Package window, type a name for the package, such as aJavaPackage4me. Click Finish.
Page 54

Introduction to Big SQL

= New Java Package

x|

Java Package

Create a new Java package £

Creates folders corresponding to packages.

Source folder: lMyjavaPmJECUsrc | [Browse l

Name IajavaFackageilme\ l

@ [Cancel] [Einish J

__ 6. Right-click the aJavaPackage4me package, and click New > Class.

__7. Inthe New Java Class window, in the Name field, type SampApp. Select the public static void
main(String[] args) check box. Click Finish.
Java Class ==
Create a new |ava class @
Source folder: [MyjavaPmJchsrc H Browse.. l
Package [ajauaPackagedme] [Browse l
[] Enclosing type
Name: [SampApp]
Modifiers @ public () default
[] abstract [] final
Superclass: []ava.lang.onject] [Browse.. l
Interfaces: Add
Which method stubs would
‘public static void main{String[] args_}D
[] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[] Generate comments
_ 8.

Replace the default code for this class and copy or type the following code into the
SampApp.java file (you'll find the file in

/opt/ibm/biginsights/bigsql/samples/data/SampApp.java):

package aJdavaPackagedme;

//a. Import required package (s)
import java.sqgl.*;

public class SampApp {

Hands On Lab Page 55

IBM Software

/**
* @param args
*/

//b. set JDBC & database info
//change these as needed for your environment

static final String db = "jdbc:db2://YOUR HOST NAME:51000/bigsql";
static final String user = "YOUR USER ID";

static final String pwd = "YOUR PASSWORD";

public static void main(String[] args) {

Connection conn = null;

Statement stmt = null;
System.out.println ("Started sample JDBC application.");

try{
//c. Register JDBC driver -- not needed for DB2 JDBC type 4 connection
// Class.forName ("com.ibm.db2.jcc.DB2Driver") ;

//d. Get a connection
conn = DriverManager.getConnection (db, user, pwd):;
System.out.println ("Connected to the database.");

//e. Execute a query

stmt = conn.createStatement ()
System.out.println("Created a statement.");
String sqgl;

sql = "select product color code, product number from sls product dim " +
"where product key=30001";
ResultSet rs = stmt.executeQuery(sqgl);

System.out.println ("Executed a query.");

//f. Obtain results

System.out.println ("Result set: ");

while(rs.next ()) {

//Retrieve by column name

int product color = rs.getInt ("PRODUCT COLOR CODE");

int product number = rs.getInt ("PRODUCT NUMBER") ;

//Display values

System.out.print ("* Product Color: " + product color + "\n");
System.out.print ("* Product Number: " + product number + "\n");

}

//g. Close open resources
rs.close();

stmt.close();
conn.close();

}catch (SQLException sglE) {
// Process SQL errors
sqlE.printStackTrace () ;
}catch (Exception e) {

// Process other errors
e.printStackTrace () ;

}

Page 56 Introduction to Big SQL

finally{

// Ensure resources are closed before exiting
try{

if (stmt!=null)

stmt.close() ;

}catch (SQLException sqgle?2) {

} // nothing we can do

try{

if (conn!=null)

conn.close();

}

catch (SQLException sqglE) {
sglE.printStackTrace () ;

}// end finally block

}// end try block

System.out.println ("Application complete");
b}

__a. After the package declaration, ensure that you include the packages that contain
the JDBC classes that are needed for database programming (import java.sql.*;).

__b. Set up the database information so that you can refer to it. Be sure to change
the user ID, password, and connection information as needed for your environment.

__C. Optionally, register the JDBC driver. The class name is provided here for your
reference. When using the DB2 Type 4.0 JDBC driver, it's not necessary to specify the
class name.

_d. Open the connection.

_e. Run a query by submitting an SQL statement to the database.

_f Extract data from result set.

_g. Clean up the environment by closing all of the database resources.

9. Save the file and right-click the Java file and click Run > Run as > Java Application.

__10. The results show in the Console view of Eclipse:

Started sample JDBC application.
Connected to the database.
Created a statement.

Executed a query.

Result set:

* Product Color: 908

* Product Number: 1110
Application complete

Hands On Lab Page 57

IBM Software

4.7. Optional: Creating and querying the full sample database

Biglnsights ships with sample SQL scripts for creating, populating, and querying more than 60 tables.
These tables are part of the GOSALESDW schema -- a schema that differs from the one used in this lab.
(You created tables in the default schema, which is your user ID's schema. In this lab, you logged in as
biadmin, so all SQL statements defaulted to the biadmin schema.)

If desired, use standard Linux operation system facilities to inspect the SQL scripts and sample data for
the GOSALESDW schema in the samples directory of $BIGSQL_HOME. By default, this location is
/opt/ibm/biginsights/bigsql/samples. Within this directory, you'll find subdirectories containing
(1) the full sample data for the GOSALESDW tables and (2) a collection of SQL scripts for creating,
loading, and querying these tables. Feel free to use the supplied scripts to create the full set of
GOSALESDW tables, load data into these tables, and query these tables. Depending on your machine
resources, it may take 20 minutes or more to create and populate all the tables. Note that when you
query tables in the GOSALESDW schema, you will need to reference the full table name -- e.g.,
GOSALESDW.GO_REGION_DIM.

Page 58 Introduction to Big SQL

Lab 5 Analyzing social media data in BigSheets with Big SQL

In this lesson, you will use a BigSheets workbook as input to Big SQL tables. Unlike previous lessons,
the sample data used here isn't typical of data you'd find in a data warehouse. Instead, the sample data
for this lesson uses social media data collected from the public domain.

Biglnsights provides several sample applications to collect social media data, including a basic
application for accessing Boardreader services. However, because a separate license key is required for
using third party data collection services (such as Boardreader), you will use some sample social media
data from this application that is available in the public domain. Indeed, a developerWorks article on
Analyzing Social Media and Structured Data with InfoSphere Biginsights includes social media postings
about "IBM Watson" collected by the Biglnsights sample Boardreader application for a specific period of
time. (The URL for this is http://www.ibm.com/developerworks/data/library/techarticle/dm-
1206socialmedia/index.html?ca=dat) This data is in a JSON format, and you will use this data to create
a simple BigSheets workbook for exploratory analysis. Quite often, such exploratory work leads to a
desire for deeper exploration using a query language such as Big SQL. You'll see how you can
accomplish that in this lab exercise.

It's helpful, though not required, to have some knowledge of BigSheets before attempting this lab. A
detailed BigSheets lab is available separately.

After you complete the lessons in this module, you will understand how to:

e Create Big SQL tables directly from BigSheets workbooks and query these tables using Big SQL.
e Export data in BigSheets workbooks into one of several common file formats.
e Create a Big SQL table for data you exported from BigSheets.

Allow %2 to 1 hour to complete this lab.

5.1. Creating and customizing a BigSheets workbook

In this exercise, you will download sample social media data, create a BigSheets workbook from one of
its files, and customize the workbook (in this case, by deleting information that isn't of interest). If your
instructor has provided you with a USB drive containing the sample data, you can skip the first step.

1. Download the .zip file containing the sample data from the bottom half of the article referenced in
the introduction. Unzip the file into a directory on your local file system, such as
/home/biadmin. You will be working with the blogs-data.txt file.

2. From the Files tab of the Web console, navigate to the /user/biadmin directory of your
distributed file system. Use the create directory button to create a subdirectory named
sampleData.

Hands On Lab Page 59

IBM Software

Welcome Dashboard Cluster Status

DFS File Catalog Table
I REEE R E

* = hdfs://bivm.ibm.com:2000/
v [0 biginsights
v [hadoop
b [hbase
P tmp
- [= user
v [0 applications

b [hive

3. Within the /user/biadmin/sampleData directory, repeat the process to create another
subdirectory for IBMWatson.

4. Highlight the IBMWatson subdirectory and use the upload button to upload the blogs-data.txt file

from your local file system. (When prompted, Browse through your local file system to locate the
file. Then click OK.)

Welcome Dashboard Cluster Status Files

DFS File Catalog Table

B ob|ele x 6| me

+ = hdfs://bivm.ibm.com:2000/
F [biginsights
v 3 hadoop
» 3 hbase
y OO tmp
= user
» [applications
* [= biadmin
» [.staging
¥ [0 ConsocleLab

L]

b [oozie-oozi P
¥ [output_WC
= sample Data
» [DBMS
r

4

Page 60 Introduction to Big SQL

Upload Files

The size limit for uploading files is 2 GB. If you attempt to upload a file larger than 2 GB, the web browser will end the upload process without warning.

Learn more...
Files to Upload:
blogs-data.txt X

K Cance|

__ 5. Use the file system navigator in the Web console to verify that the file was successfully uploaded

into your target DFS directory.

Welcome

Dashboard Cluster Status

Application Status BigSheets

DFS File

B |

Catalog Table

E,I_,CQE

» = hdfs://bivm.ibm.com:2000/
¥ [biginsights
» [0 hadoop
b [hbase
P] tmp
w [= user
v [0 applications
* = bhiadmin

.3

3

4

[0 .staging

77 Consolelab
[0 oozie-oozi

2 output_WC
= sampleData

» O DBMS

- [= |IBMWatson

& X B | @ 2

Path: | /userbiadmin/sample Data/IBMWatson/blogs-data bt

|
Hame Size Block Size
blogs-datatxt 14 ME 1280 MB

Edit | ViewingSize:| 10KB | +| @ Text (O)Sheet

[{"IsAdult":0, "PostSize" 10118, "Crawled": "2012-02-15 08:33:27
for <Keyword=IBM Watson<\/Keyword=?","Language": "English","In
08:36: 58", "Tags":"", "Type":"blog", "FeedInfo" : " {\"Title\":\"Fe
AT\ 1BB131TAN", V" ExtKey\" 1\ " e67d93756d1 fobShS056bbadbGa7
YWiN"http: //fbhalper . wordpress.com/\"}", "Published": "2012-02-
14:02: 57", "Url": "http: //fbhalper . wordpress.com/2012/02/13/are
{"IsAdult":0, "PostSize":10628, "Crawled": "2012-03-24 02:14:18"
Watson<\/Keyword= ‘w2013 what better use of analytics than fi
2", "Language": "English", "Inserted":"2012-03-24 02:18:02", "Tag
WUNRY VTN N 27788180,V ExtKey " " 2fe 4441 caBB258772333
WN"http: /fandvijaysays.wordpress. com/\"}", "Published" : "2012
19:31:31", "Url": "http: //andvijaysays.wordpress. com/2012/03/22
than-fighting-cancer/"}

{"IsAdult":0, "PostSize": 15625, "Crawled": "2012-03-07 02:47: 36"
Watson<\/Keyword= Going to Work At Citigroup on Wall Streetiu
Tool (Hadoop Framework) When They Had Their Chance‘\u2026For C
Algorithms\u201l3Chapter 22", "Language":"English”,"Inserted":"
02:54:03", "Tags":"", "Type":"blog", "FeedInfo" : "{\"Title\" :\"Me

A Ak e T AR e el AT AT e A =T Al AT £t 0 A T 1 Y N hedde § fadeads

With the file uploaded into your DFS, you can now begin exploring its contents in BigSheets.

Welcome

Dashboard

6. Click on the BigSheets tab of your Web console.

Applications Application Status BigSheets

7. Click New Workbook.

Workbooks

New Wiorkbook Furge

8. Inthe Name field, type WatsonBlogData.

Hands On Lab

Page 61

IBM Software

__9. Inthe File field, expand the Distributed File System directory, browse to and select the blogs-
data-txt file.

New Workbook

Name: WatsonEBlogData

De scription:

DFS File Catalog Table

¥ 7 hadoop "‘
¥ 7 hbase
F [tmp
v [user
v [applications
* [biadmin
» [.staging
» [Consolelab

» [oozie-cozi

» [output_WGC

» = sampleData
» 2 DEMS
~ = IBMWatson
|_E bogsdalat |

__10. Inthe Preview area of the screen, select a new reader to map the data to the spreadsheet
format. Click the edit icon that looks like a pencil.

/user/biadmjipsz
Line Reade

pleData/IBMV

__11. The data in the blogs-data.txt is formatted in a JSON Array structure. Select the JSON Array
reader from the list, and click the check mark inside the Select a reader box to apply the reader.

Sekcta mader

JESOM Array |+

Reads data in JSOM array format

Page 62 Introduction to Big SQL

__12. Since the data columns exceed the viewing space, click Fit column(s). The first eight columns
display in the Preview area. Click the check mark to save the workbook.

& Refrash & Fitcolumn(s)

FeedInfo

{'Title":"Fern Halper's data make s thid
{*Title*: *Id":"27788189" 'ExtKey":"
{'Title ":"Medical Quack®,"ld":'23369
{'Title":"Flying like a banana blog","l
['Title "iMasters -"'ld""3230361 3",
{*Title""Rudiu2019s ruk Blog' "ld":"¢
{'Title ":"Medical Quack®,Id":'233696
[Title R EAEWIBREHATHESL
['Title ""Inside System Storage - by |
{'Title ":"Software v dobé Saal""ld""
['Title "*scaryideas.com: Advertising
['Title"answerengine’ ld":*391718
{'Title :"BlogCentral.is - Nyjar ferslu
{'Title":"answerengine”"ld":'391718
["Title ""nustude ntlife” "ld*" 40961 22¢

I'Titlattlneida Sietam Starsms il

[>

EE

__13. Click Build new workbook. Rename the workbook by clicking the edit icon, entering the new
name of WatsonBlogDataRevised, and clicking the green check mark.

Wokbooks = View Results

WatsonBlogData &
3 Dekte 5 Addohart =~ | WatsonBlogData 1| Buid new workbook i

WntsonBlogDntaH]
B save = [

Name:| WatsonBlogDataRevised ||Qﬁ‘ b 4

__14. To more easily see the columns, click Fit column(s). Now columns A through H fit within the
width of the sheet.

There are several columns that you do not need to use in your Big SQL table. Remove multiple columns
by following these steps:

__15. Click the down arrow in any column heading and select Organize columns.

A E

Country B Crawled

Fzﬂ Renames []
B Inser Right 4
21 Insertleft 3
18 sert 3
DE B Hide
ug Remove

| I %5 Organize Columns... I

Hands On Lab Page 63

IBM Software

__16. Click the X next to the following columns to mark them for removal:

_a. Crawled

__b. Inserted

_GC. IsAdult
d. PostSize

__17. Click the green check mark to remove the marked columns.

Organize Columns

Add Columns:

- %
Add All| [Remove Al
G {} Country b4
{'} Crawled |E|
1, {} Feedinfo ®

(¢ 4L Inserted ..v.;
X

__18. Click Save and Exit, and then Run the workbook. . In the Save workbook dialog, click Save.
Click Exit to start the run process. Click Run to run the workbook.

ataRevised &]

X Exit 5 Add sl

1] save

Lr..—_! Sawve & Exit

{"Title™:

Customizing BigSheets workbooks

BigSheets enables you to customize your workbooks in much more sophisticated ways
than shown here. For example, you can aggregate data, apply formulas to transform

your data, join or union data across multiple workbooks, filter data, sort data, analyze
data in text-based fields, and so on. Business analysts often use BigSheets to explore
potential information of interest, manipulating data in workbooks in various ways
before sharing their results with colleagues or downstream applications. A separate
lab is available that delves into many popular BigSheets functions.

Page 64 Introduction to Big SQL

5.2. Creating a Big SQL table directly from a workbook

BigSheets provides streamlined integration with Big SQL. In this exercise, you will use that feature to
create a Big SQL table with data from your workbook and query that data.

1. If necessary, open the WatsonBlogDataRevised workbook you just created. (In the BigSheets
tab of the Web console, double click on the workbook’s name to open it.)

2. Click the Create Table button. When prompted, enter WatsonBlogsAnalysis as the Target Table
and click Confirm. (Leave “sheets” as the Target Schema.)

[Fit column(s) ‘| Create Table ~ 1 Export data = B Run | | Sto

La
English Target Schema: | sheets
English Target Table: WatsonBlogsAnalysis|
English
English Confirm Cancel
Portuguese 2012-01-18 11:52:06
German 2012-03-06 16:12:31
English 2012-03-23 00:33:00
Chinese - Simple 2012-03-11 13:13:00
English 2011-02-19 01:21:57

3. Verify that the table is present in the catalog. In the Files tab of the Web console, click the
Catalog Table tab in the DFS navigator and expand the schema folder for sheets. If desired,
click on the watsonblogsanalysis table to display a subset of its contents.

Welcome Dashboard Cluster Status Files Applications Application Status BigSheets

BESRle Catalog Table Table:| sheets watsonblogsanalysis i Go
i
<

sheets.watsonblogsanalysis

» ([default HCatalog Reader | Save as Master Waorkbook
v [sheets 3
= & Ready « Refresh 3 Fit column(s) i
D watsonblogsanalysis :
country feedinio language published subjecthiml tags type url
1 {"Title™"Fern Hz English 2012-02-13 14 Are you ready blog hitp:/fohalpery A
2 {"Title":","ld":"2 English 2012-03-22 19: <Keyword>IBM blog nitp://anavijaysi =
A 3 {'Title" "Medical English 2012-03-07 02: <Keyword>IBM blog hitp://ducknetw
4 {"Title" "Flying li English 2012-02-02 20: <Keyword>IBM blog hitp/flikeabana
5

{"Title" "iMaster Portuguese 2012-01-18 11: Processamento blog hitp-//imasters.c

__ 4. Optionally, execute the following query from JSgsh or Eclipse:
select subjecthtml, url from sheets.watsonblogsanalysis
fetch first 4 rows only;

Verify that 4 rows are returned.

Hands On Lab Page 65

IBM Software

SUBJECTHTML

1
2
3
4

5.3. Exporting your workbook

Are you ready for <Keyword=IBM Watson</Keyword=?
<Keyword=IBM Watson</Keyword> — what better use of analytics
<Keyword=IBM Watson</Keyword> Going to Work At Citigroup on
<Keyword=1BM Watson</Keyword>, does it have a future?

http:/ffbhalper.wordpress. com/2012/02/13/are-you-ready-for-i
http://andvijaysays. wordpress. com/2012/03/22/ibm-watson-what
http:#/ducknetweb. blogspot. com/2012/03/ibm-watson-going-to-w
http:/likeabanana.wordpress. com/2012/02/02/ibm-watson-does-

Let's explore how you can export the contents of your workbook into one of several common formats so
the data can be easily shared with other applications. BigSheets includes an export function that
supports a variety of data formats to suit various application needs. In this exercise, you will export your

workbook to a location in your DFS in a tab-separated values (TSV) file format.

1. Inthe Files tab of the Web console, create a new subdirectory named SheetsExport under the

sampleData directory for your user account.

DFS Files Catalog Tables

+llcs|lie @ &

* [hdfs://bivm.ibm.com:9000/

» [biginsights

» [hadoop
» [hbase
» [tmp
v (= user
v (= biadmin
» [.staging
» O credstore

X & &

+ [~ sampleData

R =1 1t

Page 66

Introduction to Big SQL

Create Directory

Name: SheetsExport

OK Cancel

2. Return to BigSheets (click the BigSheets tab) and open the WatsonBlogDataRevised workbook
you created earlier.

3. Inthe menu bar of the WatsonBlogDataRevised workbook, click Export as.

) =¥ Create Table ~ | % Exportda@m ~ = Run

4. In the drop-down window, select TSV in the Format Type field and click the radio button to
Export to File.

Format Typg: Tsv s
Exportto: | —
(@ File | () Browsar Tab

Include Headsrs: [

OK Cancal

5. Click Browse to select a destination directory. Select your path (
/user/biadmin/sampleData/SheetsExport) and type a name for the new file, such as
WatsonBlogs. Click OK.

Hands On Lab Page 67

IBM Software

Select Path

¥ [hdfs://bivm.ibm.com:9000/ =
» [biginsights

» () hadoop
» [hbase
» [tmp
v (= user 1
(= biadmin -
» [.staging
» [credstore

~ [sampleData
» [IBMWatson
I » [SheetsExport I

[hiva

4 118 4

| WatsonBlogs ‘

OK | | Cancel

Remove the check mark from the Include Headers box, as you only want to export the data.

Click OK.

7 Export data = = Run stop | [N

| it
Format Type! gy o
| i
{ Exporttor _ . i
i @ File () Browser Tab
|l v
| [luser/biadmin/sampleData/\Vat | : Browse. : '
| Include Headers: [3
1)
Cancel i
s SR R AR TAFeAn = 1

A message dialog shows that the workbook is successfully exported. Click OK to close that

dialog.

Page 68

Introduction to Big SQL

Finished

Workbook has been successfully exported.

efare TN AT T AT EAITART AT TR TR AW s HAarnisnses

__ 8. Optionally, use the DFS navigator in the Files tab of the Web console to verify that your
WatsonBlogs.tsv file was exported to your target directory.

Catalog Tables

R & X B 2

+ [~ hdfs://bivm.ibm.com:9000/

» [biginsights
» [hadoop
» [hbase

» (O tmp

v [user

v [biadmin
» [.staging
» [credstore
+ [sampleData
» [IBMWatson
v [~ SheetsExport
|| WatsonBlogs.tsv

5.4. Optional: Using Big SQL to work with data exported from BigSheets

In some cases, you may want to share data from BigSheets workbooks with a variety of applications,
including Big SQL applications. Rather than creating a Big SQL table directly (as you did in a previous
exercise), you may find it convenient to work directly with an exported file, such as the TSV file you
created earlier. This optional section explores how you can do so.

As a reminder, the BigSheets workbook that you exported earlier into a TSV file with these fields:

e Country - a two-letter country identifier.

Hands On Lab Page 69

IBM Software

FeedInfo - information from web feeds, with varying lengths.

Language - string that identifies the language of the feed.

Published — date and time of publication.

SubjectHtml — a string-based subject of varying length.

Tags - a string of varying length that provides categories.

Type — a string identifying the source of the web feed, e.g., blog or news feed.

URL - the web address of the feed, with varying length.

In this section, you will create a Big SQL table for this data that points to the DFS directory where you
exported your workbook. In effect, you will be layering a Big SQL schema definition over all files in the
directory and creating a table that is managed externally from the Hive warehouse. Later, if you were to
drop the Big SQL table, this directory and its contents would remain.

1.

Issue the following CREATE TABLE statement:

-- Create an external table based on BigSheets data exported to your DFS.
-- Before running this statement,
-- update the location info as needed for your system
create hadoop table sheetsOut
(country varchar(2),
FeedInfo varchar(300),
countrylLang varchar(25),
published varchar(25),
subject varchar(300),
mediatype varchar(20),
tags varchar(1e0),
url varchar(100))
row format delimited fields terminated by '\t'
location '/user/biadmin/sampleData/SheetsExport’;

2.

Query the table.
select countrylang, subject, url from sheetsOut fetch first 5 rows only;

Inspect the results.

Status | Result!

| COUNTRYLANG SUBJECT URL
2 English <Keyword=IBM Watson</Keywaord> — \u http:/fandvijaysays. wordpress. com/2012/03/22/ibm-watson-what
%l English <Keyword>BM Watson</K eyword> Gc http:/fducknetweb. blogspot. com/2012/03/ibm-watson-going-to-w
4 English <Keyword>|BM Watson</Keyword=>, d(http:#/likeabanana.wordpress.com/2012/02/02/ibm-watson-does-
5 Fortuguese Frocessamento de linguagem natural u http://imasters.com. br.feedsportal. com/c/33212/4/546640/5/1h

Page 70 Introduction to Big SQL

Lab 6 Working with Non-Traditional Data

While data structured in CSV and TSV columns are often stored in Biglnsights and loaded into Big SQL
tables, you may also need to work with other types of data — data that might require the use of a

serializer / deserializer (SerDe). SerDes are common in the Hadoop environment. You'll find a number
of SerDes available in the public domain, or you can write your own following typical Hadoop practices.

Using a SerDe with Big SQL is pretty straightforward. Once you develop or locate the SerDe you need,
just add its JAR file to the appropriate Biglnsights subdirectories. Then stop and restart the Big SQL
service, and specify the SerDe class hame when you create your table. (Note: If needed, look in your
JAR file to determine the class name of the SerDe you'll be using. The CREATE TABLE statement
requires the class name, not the JAR file name.)

In this lab exercise, you will use a SerDe to define a table for blog data collected in a JSON (JavaScript
Object Notation) format. JSON files have a nested, varied structure defined by the user or application
that created them. The JSON-based blog file for this exercise is the same blog file you used as input to
BigSheets in a prior lab. As you’ll recall, this data was generated by a Biglnsights sample application
that collects social media data from various public Web sites. The sample data is available for free
download as part of a developerWorks article on Analyzing Social Media and Structured Data with
InfoSphere Biginsights. (The URL for this article is
http://www.ibm.com/developerworks/data/library/techarticle/dm-1206socialmedia/index.html?ca=dat)
Before beginning this lab, be sure that you have a copy of the blogs-data.txt file stored in your local file
system.

After you complete the lessons in this module, you will understand how to:

e Register a SerDe with Big SQL and Hive

e Create a Big SQL table that uses a SerDe for processing JSON data
e Populate a Big SQL table with JSON data

e Query this Big SQL table

Allow 4 - ¥2 hour to complete this lab.

6.1. Registering a SerDe

In this exercise, you will provide a JSON-based SerDe to Big SQL and Hive so that you can later create
a table that relies on this SerDe.

1. Download the hive-json-serde-0.2.jar into a directory of your choice on your local file system,
such as /home/biadmin/sampleData. (As of this writing, the full URL for this SerDe is
https://code.google.com/p/hive-json-serde/downloads/detail ?name=hive-json-serde-0.2.jar)

2. Register the SerDe with Biglnsights.

a. Stop the Big SQL server. (You can do this from a terminal window with the
command $BIGINSIGHTS_HOME/bin/stop.sh bigsql or you can use the Cluster
Status tab of the Biglnsights Web console.)

b. Copy the SerDe .jar file to the $BIGSQL_HOME /userlib and $HIVE_HOME/1lib
directories.

Hands On Lab Page 71

IBM Software

C. Restart the Big SQL server. (You can do this from a terminal window with the
command $BIGINSIGHTS_HOME/bin/start.sh bigsql or you can use the Cluster
Status tab of the Web console.)

6.2. Creating, populating, and querying a table that uses a SerDe

Now that you’ve registered your SerDe, you're ready to use it. In this section, you will create a table that
relies on the SerDe you just registered. For simplicity, this will be an externally managed table —i.e., a
table created over a user directory that resides outside of the Hive warehouse. This user directory will
contain all the table's data in files. As part of this exercise, you will upload the sample blogs-data.txt file
into the target DFS directory.

Creating a Big SQL table over an existing DFS directory has the effect of populating this table with all the
data in the directory. To satisfy queries, Big SQL will look in the user directory specified when you
created the table and consider all files in that directory to be the table’s contents. This is consistent with
the Hive concept of an externally managed table.

Once the table is created, you'll query that table. In doing so, you'll note that the presence of a SerDe is
transparent to your queries.

1. If necessary, download the .zip file containing the sample data from the bottom half of the article
referenced in the introduction. Unzip the file into a directory on your local file system, such as
/home/biadmin. You will be working with the blogs-data.txt file.

From the Files tab of the Web console, navigate to the /user/biadmin/sampleData directory
of your distributed file system. Use the create directory button to create a subdirectory named

SerDe-Test.
DFS Files Catalog Tables
$ S R & X B =

v = hdfs://bivm.ibm.com:9000/

» [biginsights

» () hadoop
» [hbase
» O tmp

v [= user

* = biadmin

» [staging
» [credStore
~ (= sampleData

v [IBMWatson

» [SerDe-Test

__ 2. Upload the blogs-data.txt file into /user/biadmin/sampleData/SerDe-Test.

Page 72 Introduction to Big SQL

DFSFiles Catalog Tables
) 4 @] X 5 >

+ (= hdfs://bivm.ibm.com:9000/
» [biginsights

» [hadoop
» [hbase
» [tmp
* (= user
* (= biadmin
» [.staging
» [credStore

« (= sampleData
» ([IBMWatson
v (= SerDe-Test
|- blogs-data.txt
» [bigsal

3. Return to the Big SQL execution environment of your choice (JSgsh or Eclipse).

4. Execute the following statement, which creates a TESTBLOGS table that includes a LOCATION
clause that specifies the DFS directory containing your sample blogs-data.txt file:

create hadoop table if not exists testblogs (
Country String,

Crawled String,

FeedInfo String,

Inserted String,

IsAdult int,

Language String,

Postsize int,

Published String,

SubjectHtml String,

Tags String,

Type String,

Url String)

row format serde ‘org.apache.hadoop.hive.contrib.serde2.JsonSerde’

location '/user/biadmin/sampleData/SerDe-Test';

Hands On Lab Page 73

IBM Software

About this code

The CREATE HADOOP TABLE statement specifies the class in the SerDe jar file that
is responsible for processing the input record into a "row" that Big SQL (and Hive) can
understand. Because you copied the SerDe .jar file into the appropriate Big SQL and
Hive directories earlier, the runtime engine will be able to locate this class in the .jar file
(4

and successfully execute the CREATE HADOOP TABLE statement.

Quite commonly, new users will specify the .jar file in the CREATE HADOOP TABLE
statement instead of the class file. Doing so will result in a runtime error.

You will also notice the LOCATION clause as used in the previous lab. If you do not
have the input file already in your DFS at this path, you will have to manually move or
copy the file to this location.

Finally, query the table using the following statement.

select * from testblogs

where subjecthtml is not null

fetch first 5 rows only;

Note that the SELECT syntax does not reference the SerDe in any way.

6. Inspect the results.
COUNTRY CRAWLED FEEDINFO|INSERTED | ISADULT | LANGUAGE | POSTSIZE | PUBLISHED | SUBJECTHTML | TAGS | TYPE | URL
2 20120307, {'Title":"Me; 2012-03-07; 0 CEnglish 15625 | 2012:03-07 ¢ <Keyword>IBM “blog http:/ducknetweb. blogspot. com/2
3 2012:02:02] {'Title":"Fly; 2012:02-02; 0 {Engiish | 3227 2012:02:02 2 <Keyword>IBM | I blog | http://likeabanana.wordpress.com
4 2012:01-18; {"Title"."iMz 2012:01-18; 0 : Portuguese | 9892 £ 2012:01-18 1; Processamento; i blog hitp./fimasters.com.br.feedsportal
5 iDE 2012-03-06} {'Title" "Ruj 2012-03-06} 0 {German 13036 | 2012-03-06 1! Citi Bank praft E Cblog | Nitp:/Amaw ruk-publishing com/inie
Page 74 Introduction to Big SQL

Lab 7 Using advanced Big SQL features

This lab explores some of the advanced features that are new to Big SQL 3.0. Big SQL employs a
powerful database optimization engine to execute your queries. You will need to do previous labs to
load data in your schema before attempting this lab.

In the first exercise, you will examine the data access plan Big SQL will use to retrieve your data using a
feature called EXPLAIN. There are many ways to organize your data, such as partitioning and indexing,
which will speed up your queries. Some of the details about your data are maintained automatically
during runtime any time you query it, but in order to give the optimizer a more complete picture you'l
want to collect meta data statistics using the ANALYZE TABLE command. This is highly recommended
when dealing with large volumes of data (but less critical for this sample lab).

A later exercise enables you to explore fine-grained access control mechanisms in Big SQL. These
mechanisms, implemented through the definition of ROLES and use of GRANT/REVOKE statements,
enable an administrator to define specific column- and row-based access restrictions. For example, only
managers might be permitted to see information in the PROFIT column of a table. Similarly, brokers
might be permitted to see only portfolio information for their clients.

Before starting this lab, you should be familiar with how to execute commands from JSgsh or Eclipse.
Earlier labs provided information on these topics.

Allow 1 — 1.5 hours to complete this lab.

7.1. Understanding your data access plan (EXPLAIN) — from the
command line

The EXPLAIN feature enables you to inspect the data access plan selected by the Big SQL optimizer for
your query. Such information is highly useful for performance tuning. This exercise introduces you to
EXPLAIN, a Big SQL feature that stores meta data in a set of EXPLAIN tables.

1. Launch the JSqgsh shell from a command window for your Biglnsights instance.
$JSQSH HOME/bin/jsqgsh

__ 2. Connect to your Big SQL 3.0 database. For example, if you created a connection named
“bigsql” earlier, you would issue this command:

\connect bigsgl -P biadmin

3. You need to create the EXPLAIN tables, call the SYSINSTALLOBJECTS procedure. In this
invocation, the tables will be created only for your user account. By casting a NULL in the last
parameter, a single set of EXPLAIN tables can be created in schema SYSTOOLS, which can be
used for all users.

CALL SYSPROC.SYSINSTALLOBJECTS ('EXPLAIN', 'C', CAST (NULL AS VARCHAR(128)), CAST
(NULL AS VARCHAR(128)));

Hands On Lab Page 75

IBM Software

4. Now, let's capture the EXPLAIN access plan for a query. One way to do this is by prefixing the
query with the command EXPLAIN PLAN WITH SNAPSHOT FOR. In this way, the query isn't
executed, but the access plan is saved in the EXPLAIN tables. Copy paste the following
command and run it:

explain plan with snapshot for
select distinct product key, introduction date
from sls product dim;

Information about the data access strategy for this query is stored in the EXPLAIN tables, which you'’ll
explore shortly. There are various tools to view the "explained" access plan. For example, you could use
the Data Studio, IBM Query Tuning perspective and Query Tuner Project. In this lab, we will use a DB2
utility called db2exfmt, executed from the bash shell. Exit the JSgsh shell (enter quit on the command
line).

__ 5. Invoke db2exfmt with the -1 option, which is a handy way to retrieve the plan from the LAST
statement which was "explained" by the current user.

~bigsqgl/sgllib/db2profile
db2exfmt -d bigsgl -1 -o queryl.exp

[bivm.ibm.com] [biadmin] 1= quit

biadmin@bivm:~= . ~bigsql/sqllib/dbZprofile

bradmin@ivm:~= db2exfmt -d bigsql -1 -o queryl.sql

DB2 Universal Database Version 10.6, 5622-044 (c) Copyright IBM Corp. 1891, 2013
Licensed Material - Program Property of IBM

IEM DATABASE 2 Explain Table Format Tool

Connecting to the Database.

Connect to Database Successful.

Using SYSTOOLS schema for Explain tables.

Output 1s 1n queryl.exp.

Executing Connect Reset -- Connect Reset was Successful.

__ 6. Investigate the contents of the query1.exp file. For example, type
more queryl.exp

on the command line. Press the space bar to scroll forward through the output one page at a time, and
enter b to page backward.

__7. Original Statement vs. Optimized Statement. Sometimes, the optimizer may decide to rewrite
the query in a more efficient manner. For example, replacing IN lists with JOINS. In this lab, the
optimized Statement show that no further optimization has been done.

File Edit ‘iew Terminal Help
original Statement:

select distinct product_key, introduction_date
from sls_product_dim

Optimized Statement:
SELECT
DISTINCT Q1l.PRODUCT_KEY AS "PRODUCT_KEY",
Q1.INTRODUCTION_DATE AS "INTRODUCTIOM DATE"
FROM
BIADMIN.SLS PRODUCT_DIM AS Q1

Page 76 Introduction to Big SQL

__8. Notice the SORT operation and the total number of operations for this explained Access Plan.

File Edit ‘iew Terminal Help
Original Statement:

select distinct product_key, introduction_date
from sls_product_dim

Optimized Statement:
SELECT
DISTINCT Q1.PRODUCT_KEY AS "PRODUCT_KEY",
Q1.INTRODUCTION_DATE AS "INTRODUCTION_DATE"
FROM
BIADMIN.SLS_PRODUCT_DIM AS QL

Access Plan:

Total Cost: S0.1294
Query Degree: 4
Rows
RETURN
(1
Cost
I/0
|
41
MOTQ
(2
90.1254
1
|
39.7188
LMTQ

(3
50.1
1

|

39.7188
TBSCAN
(a4
80.0672

205
TESCAN
(8
90.0468
1
I =

_ 9. Next we will alter the table. Again launch the JSQSH shell:
$JSQSH HOME/bin/jsgsh bigsgl -P biadmin

__10. Execute the following alter command:

alter table sls product dim
add constraint newPK primary key (product key) not enforced;

This will alter the table to have a non-enforced PK constraint.

__11. Now lets do another explain command on the altered table:
explain plan with snapshot for

select distinct product key, introduction date

from sls product dim;

__12. Again quit the JSQSH shell by entering quit and invoke the following command:
db2exfmt -d bigsgl -1 -o query2.exp

Hands On Lab Page 77

IBM Software

[bivm.i1bm.com] [biadmin] 1= quit

biadmin@bivm: ~= dbZexfmt -d bigsql -1 -o gueryZ.exp

DB2 Universal Database Version 10.6, 5622-044 (c) Copyright IBM Corp. 1991, 2013
Licensed Material - Program Property of IBM

IBM DATABASE 2 Explain Table Format Tool

Connecting to the Database.

Connect to Database Successful.

Using SYSTOOLS schema for Explain tables.

Output 1s 1n query2.exp.

Executing Connect Reset -- Connect Reset was Successful.
biadmin@bivm: ~=

__13. Investigate the contents of the query2.exp file. For example, type
more query2.exp

on the command line. Press the space bar to scroll forward through the output one page at a time, and
enter b to page backward.

__14. Again you will see an Original Statement vs Optimized Statement they will not differ, but take a
look at the new Access Plan. The SORT operation is no longer used and there are fewer
operations in total.

File Edit ‘“iew Terminal Help
Original Statement:

select distinct product_key, introduction_date
from sls_product_dim

Optimized Statement:
SELECT
QLl.PRODUCT_KEY AS "PRODUCT_KEY",
QL.INTRODUCTION _DATE AS "INTRODUCTION_DATE"
FROM
BIADMIN.SLS_PRODUCT_DIM AS Q1

Access Plan:
Total Cost: 90.1561
Query Degree: 4

Rows
RETURN
{1

Cost

I/0

I

205
oTQ

LTq

90.0956
1
|
205
TBSCAN
{ a)
90.0488
1
|
205
HTABLE: BIADMIN
SLS_PRODUCT_DIM
s}

Page 78 Introduction to Big SQL

7.2. Collecting statistics with the ANALYZE TABLE command

The ANALYZE TABLE command collects statistics about your Big SQL data. These statistics influence

query optimization, enabling the Big SQL query engine to select an efficient data access path to satisfy
your query.

__ 1. Providing a list of columns to the ANALYZE TABLE command is optional but gives valuable
information to the optimizer.

ANALYZE TABLE sls_sales_fact COMPUTE STATISTICS
FOR COLUMNS product_key, order_method_key

J
ANALYZE TABLE sls_product_dim COMPUTE STATISTICS
FOR COLUMNS product_key, product_number, product_line_code, product_brand_code

J
ANALYZE TABLE sls_product_lookup COMPUTE STATISTICS
FOR COLUMNS product_number, product_language

J
ANALYZE TABLE sls_order_method_dim COMPUTE STATISTICS
FOR COLUMNS order_method_key, order_method_en

J
ANALYZE TABLE sls_product_line_lookup COMPUTE STATISTICS
FOR COLUMNS product_line_code, product_line_en

J
ANALYZE TABLE sls_product_brand_lookup COMPUTE STATISTICS
FOR COLUMNS product_brand_code

3

ANALYZE TABLE syntax

- It is recommended to include FOR COLUMNS and a list of columns to the ANALYZE
TABLE command. Choose those columns found in your WHERE, ORDER BY,
GROUP BY and DISTINCT clauses.

__ 2. Copy and paste the previous ANALYZE TABLE commands into your Eclipse editor.

Hands On Lab Page 79

IBM Software

------------------- Analyze Table-------cmoomocnaaoon

AMALYZE TABLE sls_sales_fact COMPUTE STATISTICS
FOR COLUMNS product_key, order_method_key;

AMALYZE TABLE sls_product_dim COMPUTE STATISTICS
FOR COLUMNS product_key, product_number, product_line_code, product_brand_code;

=
B

AMALYZE TABLE sls_product lookup COMPUTE STATISTICS |

FOR COLUMNS product_number, product_language;

ANALYZE TABLE sls_order_method_dim COMPUTE STATISTICS

FOR COLUMNS order_method_key, order_method_en;

AMALYZE TABLE sls_product line_lookup COMPUTE STATISTICS

FOR COLUMNS product_line_code, product_line_en;

ANALYZE TABLE sls_product_brand_lookup COMPUTE STATISTICS

FOR COLUMNS product_brand_code;

4 »
Prohlems El Console = SQL Results 52 X% BRI V=0
Je query expression here Status |
i Operation | Date AT ETE ~| ANALYZE TABLE sls_product_dim COMPUTE STATISTICS -

FOR COLUMNS product_key, product_number, product_line_code, product_br |
v Succee select count 6/16/14 1:24 New Big SQL JDBC | ANALYZE TABLE sis_product_lookup COMPUTE STATISTICS
g : : : FOR COLUMNS product_number, product_language

5 1 6/16/14 1:25 Mew Big SQL JDEC - =
v-Sucear s vien #wBig SQ ANALYZE TABLE sls_order_methad_dim COMPUTE STATISTICS
v Succee select * rom 6/16/14 1:26 Mew Big SQL JDBC FOR COLUMMNS order_method_key, order_method_en

; ; : ANALYZE TABLE sls_product_line_lookup COMPUTE STATISTICS
¥’ Succee select produ 6/16/14 1:50 Mew Big SQL JDBC FOR COLUMNS product_line_code, product._line_en
¥ Succee ANALYZE T# 6/16/14 3:14 Mew Big SQL JDBC AMNALYZE TABLE sls_product_brand_lookup COMPUTE STATISTICS =

~| [4 v

This may take a few minutes to run. Verify that each command succeeded.

7.3. Enhancing SQL security with fine-grained access control

Big SQL offers administrators additional SQL security control mechanisms for row and column access
through the definition of ROLES and GRANT/REVOKE statements. In this exercise, you will mask
information about gross profits for sales from all users who are not a MANAGER. That is, all users with
SELECT privileges will be able to query the SLS_SALES_FACT table, but information in the
GROSS_PROFIT column will display as 0.0 unless the user was granted the role of a MANAGER. Any
user who is a MANAGER will be able to see the underlying data values for GROSS_PROFIT.

To complete this lab, you must have access to multiple user accounts. Examples in this lab are based
on the following user IDs (in addition to biadmin):

e bigsql, which has SECADM authority for your database environment.

e userl and user2, which have USER privileges for Biglnsights.
These accounts are part of the default configuration for the Biglnsights 3.0 VMware image. The bigsql
account has a password of bigsql, while the userl and user2 accounts both have passwords of

password. If you're using an environment with a different configuration and different accounts, you will
need to adjust the Big SQL examples in this section to match your environment.

Page 80 Introduction to Big SQL

In addition, prior to starting this lab, you must have created the SLS_SALES_FACT table and populated
it with data, as described in an earlier lab.

As background, the fine-grained access control supported by Biglnsights is based on row and column
access control mechanisms that first became available in DB2. These mechanisms involve row
permissions and column masks. Once activated, no database user is automatically exempt (including
the table owner). Details about row and column access control (RCAC) are beyond the scope of this lab.
However, very briefly,

e A row permission captures a row access control rule for a specific table. It's basically a search
condition that describes which rows a user can access. An example of such a rule may be that
managers can only see rows for their employees.

e A column mask is a column access control rule for a specific column in a specific table. When
defining a mask, you use a CASE expression to describe what a user sees when accessing the
column. For example, a mask could be defined so that a teller can see only the last 4 digits of a
credit card number.

Row permissions and column masks require no SQL application changes; row and column access
control is based on specific rules that are transparent to existing SQL applications.

With that backdrop, you're ready to get started. You can use either JSqgsh or Eclipse for most of the work
in this lab. Most of the screen captures included here are based on an Eclipse environment.

Initially, you’ll implement a column-based access control scenario.

1. If you haven't already done so, create a Big SQL database connection in JSgsh or Eclipse that
logs in as the bigsql user. (The bigsql user ID has specific privileges required to execute
certain commands that follow.) If necessary, review earlier lab exercises that described how to
create a new database connection in JSgsh or Eclipse.

2. Create two new roles: one for MANAGER and one for STAFF.

-- column based access control example
-- allow only managers to see gross profit for sales

-- commands must be executed from bigsql user ID (or ID with equivalent authority)
-- valid IDs must exist for userl and user 2 accounts
-- in this lab, userl is a manager and user2 is a staff member

-- first, create the roles
CREATE ROLE manager;

CREATE ROLE staff;

3. Grant SELECT (read) access to the table to users:

-- grant read access to appropriate users

GRANT SELECT ON biadmin.sls_sales_fact TO USER userl;
GRANT SELECT ON biadmin.sls_sales_fact to USER user2;
grant select on biadmin.sls_sales_fact to user biadmin;

Hands On Lab Page 81

IBM Software

__ 4. Issue GRANT statements that assign appropriate roles to desired users.

-- assign users appropriate roles
GRANT ROLE MANAGER TO USER userl;
GRANT ROLE STAFF TO USER user2;
GRANT ROLE MANAGER TO USER biadmin;

5. Create a column access control rule. Specifically, create a mask called PROFIT_MASK for the
GROSS_PROFIT column of the BIADMIN.SLS_SALES_FACT table that will display a value of
0.0 to any user who queries this column that is not a MANAGER.

-- create a mask for the gross profit column that allows only managers to see values
for this column

CREATE MASK PROFIT_MASK ON

biadmin.sls sales fact

FOR COLUMN gross_profit

RETURN

CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER, 'MANAGER') = 1
THEN gross_profit

ELSE 0.0

END

ENABLE;

__ 6. Grant SECADM authority to the biadmin user ID.
grant secadm on database to user biadmin

7. Change your database connection so that you are connected to your bigsqgl database as
biadmin.

8. While connected to the bigsqgl database as biadmin, issue the following ALTER TABLE
statement to activate the column based access control restriction.

-- Activate column access control.

-- (Prior to executing this statement, biadmin must have SECADM authority.)
-- Connect to database as biadmin and activate access control.

ALTER TABLE sls_sales_fact ACTIVATE COLUMN ACCESS CONTROL;

9. Now you're ready to test the results of your work by querying the biadmin.sls_sales_fact table
using different user accounts. It's easy to do this through the Web console. First, log into the
Web console as user1 (password = passwOrd).

__10. On the Welcome page, click the Run Big SQL queries link in the Quick Links pane.

Page 82 Introduction to Big SQL

Quick Links

Download client library and development software

Q— Enable your Eclipse development environment for Biginsights application development

= Run Big SOL queries

A new tab will appear.

__11. Enter the following query into interface, verify that the Big SQL button at left is on, and click Run.

select product_key, gross profit
from biadmin.sls _sales_ fact
where quantity > 5000 fetch first 5 rows only;

IBM InfoSphere Biginsights Enterprise Edition — Big SQL

-- Select a BigSCL Query from History --
select product_key, gross_profit

from bizdmin.sls_sales_fact

where guantity = 5000
fetch first 5 rows only:|

® BigSOL () Big SOL W1

Run

Status

__12. Inspect the results, and note that various data values appear in the GROSS_PROFIT column.
This is what you should expect, because USER1 is a MANAGER, and your column mask rule
allows MANAGERSs to see the data values for this column.

Hands On Lab Page 83

IBM Software

IBM InfoSphere Biginsights Enterprise Edition — Big SQL Welcome user1 | About

select product_key, gross_profit from biadmin sis_sales_fact where quantity > 5000 fefch _.. f = 2

select product_key, gross_profit
from piadmin.sls sales fact
where quantity > 5000 fetch first 5 rows only;

m

@ BigsaL () Big saQL V1

Run -

Status Result

» Number of results retumed: 5

PRODUCT_KEY GROSS_PROFIT
30107 20458.18
30107 2428233
30107 26693.38
30107 25034.89 E

30107 20777.2

__13. Close the Big SQL query tab.
__14. Log off of the Web console as user1, and log in again as user2 (password = passwOrd).
__15. Click on the Run Big SQL query link in the Welcome page.

__16. Issue the same query.

select product_key, gross profit
from biadmin.sls_sales_fact
where quantity > 5000 fetch first 5 rows only;

__17. Inspect the results. Note that the GROSS_PROFIT values are masked (appearing as 0.0).
Again, this is what you should expect, because USER2 has a STAFF role. Any users who aren't
MANAGERSs are not allowed to see values for this column.

IBM InfoSphere Biglnsights Enterprise Edition — Big SQL Welcome user2 | About

select product_key, gross_profit from biadmin.sls_sales_fact where quantity > 5000 fefch ... t A

select product_key, gross_profit
from biadmin.sls sales fact
vhere quantity > 5000 fetch first 5 rows onlys

m

@ BigsaL () Big sQL V4

Run

Status Result

+ Number of results returned: 5

PRODUCT_KEY GROSS_PROFIT
30107 0o
30107 0o
30107 00
30107 0o =
30107 0o

Page 84 Introduction to Big SQL

__18. Optionally, while connected with the USER2 account, see what happens when you apply a
function or calculation to the GROSS_PROFIT column in a query, such as one or both of these:

select product_key, gross profit+10 as new from biadmin.sls_sales_fact where
quantity > 5000 fetch first 5 rows only;

select avg(gross_profit) as avg_gp from biadmin.sls_sales_fact where quantity >
5000;

As you might expect, the underlying results for values based on GROSS_PROFIT are masked
from you. The first query results a value of 10 for the second column in the result set, as this is
the result of adding 0.0 (the masked value for GROSS_PROFIT) with 10. The second query
returns O (the average of 0 across all qualifying rows).

__19. Optionally, return to JSgsh or Eclipse. Connect to your bigsqgl database as biadmin, and
deactivate the column access restriction.

ALTER TABLE sls_sales_fact DEACTIVATE COLUMN ACCESS CONTROL;

The effort required to implement row-based access control rules is similar. Let's explore a row-based
scenario now using the biadmin.mrk_promotion_fact table you created and populated in an earlier
lab. After implementing this example, you'll see that SELECT statements issued by user1 will only
return rows related to a specific retailer key.

__20. Create a new role named CONSULT.

-- row based access control example
-- restrict consultants (CONSULT role users) to accessing only rows
-- for retailer key 7166

-- commands must be executed from bigsql user ID (or ID with equivalent authority)
-- a valid ID must exist for userl
-- in this lab, userl is a consultant

-- first, create the roles
CREATE ROLE CONSULT;
__21. Grant SELECT (read) access to the table to user1 and user2:

-- grant read access to appropriate user(s)
GRANT SELECT ON biadmin.mrk_promotion_fact TO USER useril;
GRANT SELECT ON biadmin.mrk_promotion_fact TO USER user2;

_22. Issue GRANT statements that assign appropriate roles to desired users. In this case, assign
user1! CONSULT role. Do not assign any role to user2.

-- assign CONSULT role to userl

Hands On Lab Page 85

IBM Software

GRANT ROLE CONSULT TO USER useril;

_23. Create a row access control rule. Specifically, restrict read operations on
biadmin.mrk_promotion_fact to users with the CONSULT role. Furthermore, allow such
users to only see rows in which RETAILER_KEY column values are 7166.

-- create persmission for accessing data related to specific retailer
CREATE PERMISSION RETAILER_7166

ON biadmin.mrk_promotion_fact

FOR ROWS WHERE(VERIFY_ROLE_FOR_USER(SESSION_USER, 'CONSULT') = 1

AND

retailer_key = 7166)

ENFORCED FOR ALL ACCESS

ENABLE;

__ 24, Grant SECADM authority to the biadmin user ID.

-- This statement is redundant because you already granted

-- SECADM authority to biadmin in the column-based access control exercise.
-- However, it is included here for clarity.

-- Reissuing the statement will not cause an error.

grant secadm on database to user biadmin;

__25. Change your database connection so that you are connected to your bigsql database as
biadmin.

__26. lIssue the following query:
select retailer_key, sale total
from biadmin.mrk_promotion_fact
where rtl_country_key = 90010
fetch first 100 rows only;

__27. Note that the results include rows for with RETAILER_KEY values other than 7166.

Page 86 Introduction to Big SQL

| RETAILER_KEY | SALE_ToTAL

2 7166 16407 .72
3 16848 2837856
4 17162 24440 22
5 7164 3977958
6 6846 2953472
7 17164 10459.54
8 7164 11805.48
9 7E8 22671.87
10 : 6841 0.0

11 684 0.0

12 6841 6315.84
13 ;6844 0.0

14 ;6844 0.0

15 ;6844 631584
16 : 6846 2447815
17 ;6846 11271.73
18 | 6841 17551.8

__28. While connected to the bigsql database as biadmin, issue the following ALTER TABLE
statement to activate the row based access control restriction.

-- activate row access control while logged in as biadmin.

-- prior to executing this statement, biadmin must have been granted SECADM
-- authority for the database

ALTER TABLE mrk_promotion_fact ACTIVATE ROW ACCESS CONTROL;

__29. Now you're ready to test the results of your work by querying the table. It's easy to do this
through the Web console. First, log into the Web console as user1 (password = passwOrd).

__30. On the Welcome page, click the Run Big SQL queries link in the Quick Links pane.

Quick Links

Download client library and development software

._,- Enable your Eclipse development environment for Biginsights application development

B Run Big SOL queries

A new tab will appear.

__31. Enter the same query you just entered as biadmin before you activated row access control on
the table. Verify that the Big SQL button at left is on, and click Run.

select retailer_key, sale total

Hands On Lab Page 87

IBM Software

from biadmin.mrk_promotion_fact
where rtl_country_key = 90010

fetch first 100 rows only;

IBM InfoSphere Biglnsights Enterprise Edition — Big SQL Welcome user! | About

select retailer_key, sale_total from biadmin.mrk_promotion_fact where rtl_country_key = 8... T
select retailer_key, sale_total
from biadmin.mrk promotion_fact

where rtl country_key = 20010
fetch first 100 rows only;

@ BigSaL () Big SQL V1

__32. Inspect the results, and note that only rows for retailer 7166 appear. This is what you should
expect, because USER1 is associated with the CONSULT row.

Status Result

b Mumber of results returned: 14

RETAILER_KEY SALE_TOTAL
7166 9076 .95
7166 1640772
7166 2267187
7166 97347
7166 3923378
7166 546189
7166 00
7166 2003911
7166 355215
7166 00
7166 46864.08
7166 136290
7166 276696
7166 31680

Page 88 Introduction to Big SQL

__33. Close the Big SQL query tab.

__34. Log off of the Web console as user1, and log in again as user2 (password = passwO0rd) or as
biadmin.

__35. Click on the Run Big SQL query link in the Welcome page.
__36. Issue the same query.

select retailer_key, sale total

from biadmin.mrk_promotion_fact

where rtl _country key = 90010

fetch first 100 rows only;

__37. Inspect the results. Note that the query runs successfully but returns no rows. Why? The row
access control mechanism you implemented specified that only users of the CONSULT row are
permitted to see data from the data and that data would be restricted to rows related to a specific

RETAILER_KEY value.

Welcome user2 | About

IBM InfoSphere Biglnsights Enterprise Edition — Big SQL

select retailer_key, sale_total from biadmin. mrk_premetion_fact where rtl_country_key = 9.

select retailer_key, sale_total
from biadmin.mrk_promotion_fact
where rtl_country_key = 90010
fetch first 100 rows only;

& BigsaL () Big SQL V1

Status Result

+ Number of results returned: 0

RETAILER_KEY SALE_TOTAL

__38. Optionally, return to JSgsh or Eclipse. Connect to your bigsqgl database as biadmin, and
deactivate the column access restriction.

ALTER TABLE mrk_promotion_fact DEACTIVATE ROW ACCESS CONTROL;

Hands On Lab Page 89

IBM Software

__39. Optionally, log into the Web console again with any valid user ID (biadmin, user1, or user2).
Issue the same query again, and note that the results contain rows related to a number of
different RETAILER_KEY values.

Page 90 Introduction to Big SQL

Lab 8 Developing and executing SQL user-defined functions

Big SQL enables users to create their own SQL functions that can be invoked in queries. User-defined
functions (UDFs) promote code re-use and reduce query complexity. They can be written to return a
single (scalar) value or a result set (table). Programmers can write UDFs in SQL or any supported
programming languages (such as Java and C). For simplicity, this lab focuses on SQL UDFs.

After you complete this lab, you will understand how to:

e Create scalar and table UDFs written in SQL
e Incorporate procedural logic in your UDFs
¢ Invoke UDFs in Big SQL queries

Allow 1 - 1.5 hours to complete this lab.

Please note that this lab discusses only some of the capabilities of Big SQL scalar and table UDFs. For
an exhaustive list of all the capabilities, please see the Biglnsights 3.0 knowledge center (http://www-
01.ibm.com/support/knowledgecenter/SSPT3X 3.0.0/com.ibm.swg.im.infosphere.biginsights.welcome.d
oc/doc/welcome.html).

Prior to starting this lab, you must be familiar with how to use the Big SQL command line (JSqgsh), and
you must have created the sample GOSALESDW tables. If necessary, work through earlier lab
exercises on these topics. For example, the JSgsh lab is available at:
https://developer.ibm.com/hadoop/docs/tutorials/big-sql-hadoop-tutorial/big-sql-hadoop-lab-2-big-sql-
command-line-interface/

Furthermore, creating and populating the GOSALESDW tables is covered in this lab:
https://developer.ibm.com/hadoop/docs/tutorials/big-sql-hadoop-tutorial/big-sgl-hadoop-lab-4-querying-
structured-data/

This UDF lab was developed by Uttam Jain (uttam@us.ibm.com) with contributions from Cynthia M.
Saracco. Please post questions or comments to the forum on Hadoop Dev at
https://developer.ibm.com/hadoop/support/.

8.1. Understanding UDFs

Big SQL provides many built-in functions to perform common computations. An example is dayname(),
which takes a date/timestamp and returns the corresponding day name, such as Friday.

Often, organizations need to perform some customized or complex operation on their data that's beyond
the scope of any built-in-function. Big SQL allows users to embed their customized business logic inside
a user-defined function (UDF) and write queries that call these UDFs.

As mentioned earlier, Big SQL supports two types of UDFs:

1. Scalar UDF: These functions take one or more values as input and return a single value as
output. For example, a scalar UDF can take three values (price of an item, percent discount on
that item, and percent sales tax) to compute the final price of that item.

Hands On Lab Page 91

IBM Software

2. Table UDF: These functions take one or more values as input and return a whole table as output.
For example, a table UDF can take single value (department-id) as input and return a table of
employees who work in that department. This result set could have multiple columns, such as
employee-id, employee-first-name, employee-last-name.

Once created, UDFs can be incorporated into queries in a variety of ways, as you’ll soon see.

In this lab, you will first set up your environment for UDF development and then explore how to create
and invoke UDFs through various exercises.

Ready to get started?

8.2. Prepare JSqgsh to create and execute UDFs
In this section, you will set up your JSqgsh environment for UDF development.

1. If necessary, launch JSgsh using the connection to your bigsqgl database. (This was covered in
an earlier lab.)

$JSQSH_HOME/bin/jsqsh bigsql
2. Reset the default SQL terminator character to “@”:

\set terminator = @;
Because some of the UDFs you will be developing involve multiple SQL statements, you must reset the
JSqgsh default termination character so that the semi-colon following each SQL statement in your UDF is
not interpreted as the end of the CREATE FUNCTION statement for your UDF.

__3. Validate that the terminator was effectively reset:

\set @

__ 4. Inspect the output from the command (a subset of which is shown below), and verify that the
terminator property is set to @.

You're now ready to create your first Big SQL UDF.

Page 92 Introduction to Big SQL

8.3. Creating and executing a scalar UDF

In this section, you will create a scalar SQL UDF to compute final price of a particular item that was sold.
Your UDF will require several input parameters:

e unit sale price: Price of one item

e quantity: Number of units of this item being sold in this transaction
e % discount: Discount on the item (computed before tax)

e % sales-tax: Sales tax (computed after discount)

As you might expect, your UDF will return a single value — the final price of the item.

After creating and registering the UDF, you will invoke it using some test values to ensure that it behaves
correctly. Afterwards, you will invoke it in a query, passing in values from columns in a table as input to
your function.

__ 1. Set your environment to use a schema that’s different from your user ID. In this case, you want
to create your UDFs in the GOSALESDW schema, so issue this command:

use gosalesdw@

Although you can create UDFs in your default schema (which is your user ID), it's quite common for
programmers to create UDFs in a different schema, which is what you will do in this lab.

__ 2. Create a UDF named new_final_price:

CREATE OR REPLACE FUNCTION new_final_price

(
quantity INTEGER,

unit_sale_price DOUBLE,
discount_in_percent DOUBLE,
sales_tax_in_percent DOUBLE

)
RETURNS DOUBLE

LANGUAGE SQL
RETURN (quantity * unit_sale price) * DOUBLE(1 - discount_in_percent / 100.0) * DOUBLE(1 +
sales_tax_in_percent / 100.0) @

3. Review the logic of this function briefly. This first line creates the function, which is defined to
take four input parameters. The RETURNS clause indicates that a single (scalar) value of type
DOUBLE will be returned. The function’s language is as SQL. Finally, the last two lines include
the function’s logic, which simply performs the necessary arithmetic operations to calculate the
final sales price of an item.

4. After creating the function, test it using some sample values. A simple way to do this is with the
VALUES clause shown here:

VALUES gosalesdw.new_final_price (1, 10, 20, 8.75)@

5. Verify that result returned by your test case is

8.70000

Hands On Lab Page 93

IBM Software

6. Next, use the UDF in a query to compute the final price for items listed in sales transactions in
the SLS_SALES_FACT table. Note that this query uses values from two columns in the table as
input for the quantity and unit price and two user-supplied values as input for the discount rate
and sales tax rate.

SELECT sales_order_key, quantity, unit_sale_price, gosalesdw.new_final_price(quantity,
unit_sale_price, 20, 8.75) as final_price

FROM sls_sales_fact

ORDER BY sales_order_key

FETCH FIRST 10 ROWS ONLY@

__T7. Inspect the results.

UNIT

10
1
1
1
10
1
1
10
10
1

8. Now invoke your UDF in the WHERE clause of a query. (Scalar UDFs can be included
anywhere in a SQL statement that a scalar value is expected.) This query is similar to your
previous query expect that it includes a WHERE clause to restrict the result set to items with a
file price of greater than 7000.

-- scalar UDF can be used wherever a scalar value is expected,

-- for example in WHERE clause

SELECT sales_order_key, quantity, unit_sale_price,

gosalesdw.new_final price(quantity, unit_sale_price, 20, 8.75) as final_price
FROM sls_sales_fact

WHERE gosalesdw.new_final_price(quantity, unit_sale price, 20, 8.75) > 7000
ORDER BY sales_order_key

FETCH FIRST 10 ROWS ONLY@

__ 9. Note that your results no longer include rows with items priced at 7000 or below.

Page 94 Introduction to Big SQL

UNIT

8.4. Optional: Invoking UDFs without providing fully-qualified name

In the previous lab, you used the fully-qualified UDF name (GOSALESDW.NEW_FINAL_PRICE) in your
VALUES or SELECT statements. (GOSALESDW is the schema name and NEW_FINAL_PRICE is the
function name.)

A UDF with the same name and input parameters can be specified in more than one schema, so
providing Big SQL with the fully qualified function name identifies the function you want to execute. With
Big SQL, you can also specify a list of schemas in a special register called “CURRENT PATH” (also
called “CURRENT FUNCTION PATH”). When Big SQL encounters an unqualified UDF (in which no
schema name specified), it will look for the UDF in the schemas specified in CURRENT PATH.

In this lab, you'll learn how to set the CURRENT PATH and invoke your function without specifying a
schema name.

__ 1. Tobegin, determine the values of your current function path by issuing either of these two
statements:

VALUES CURRENT PATH@

VALUES CURRENT FUNCTION PATH@

__ 2. Verify that the results are similar to this:
"SYSIBM","SYSFUN","SYSPROC", "SYSIBMADM", "BIADMIN"

__ 3. Addthe GOSALESDW schema to the current path:
SET CURRENT FUNCTION PATH = CURRENT FUNCTION PATH, "GOSALESDW"@

__ 4. Inspect your function path setting again:
VALUES CURRENT FUNCTION PATH@

__ 5. Verify that the GOSALESDW schema is now in the path:

"SYSIBM", "SYSFUN", "SYSPROC", "SYSIBMADM", "BIADMIN", "GOSALESDW"

Hands On Lab Page 95

IBM Software

6. Re-run the query you executed earlier, but this time remove the GOSALESDW schema from the
function name with you invoke it:

SELECT sales_order_key, quantity, unit_sale_price,
new_final_price(quantity, unit_sale_price, 20, 8.75) as final_price
FROM sls_sales_fact

ORDER BY sales_order_key

FETCH FIRST 10 ROWS ONLY@

Note that Big SQL will automatically locate your UDF and successfully execute your query.

__7. Inspect the results.

8.5. Incorporating IF/ELSE statements

Quite often, you may find it useful to incorporate conditional logic in your UDFs. In this section, you will
learn how to include IF/ELSE statements to calculate the final price of an item based on a varying
discount rate. To keep your work simple, you will create a modified version of the previous UDF that
includes the following logic:

e If the unit price is 0 to 10, use a discount rate of X%
e If the unit price is 10 to 100, use a discount rate of Y%
e If the unit price is greater than 100, use a discount rate of Z%

The three different discount rates (X, Y, and Z) are based on input parameters.

__ 8. Create a UDF named new_final_price_v2:

CREATE OR REPLACE FUNCTION new_final_price_v2

(
quantity INTEGER,
unit_sale_price DOUBLE,
discount_in_percent_if_price_0_t0_10 DOUBLE,
discount_in_percent_if price_10_to_100 DOUBLE,
discount_in_percent_if_price_greater_than_100 DOUBLE,
sales_tax_in_percent DOUBLE

)
RETURNS DOUBLE

Page 96 Introduction to Big SQL

LANGUAGE SQL
BEGIN ATOMIC

DECLARE final_price DOUBLE;

SET final_price = -1;

IF unit_sale _price <= 10
THEN

SET final_price = (quantity * unit_sale_price) * DOUBLE(1 -

discount_in_percent_if_price_0 t0 10 / 100.0) * DOUBLE(1 + sales_tax_in_percent / 100.0) ;

ELSEIF unit_sale_price <= 100

THEN

SET final_price = (quantity * unit_sale_price) * DOUBLE(1 -

discount_in_percent_if_price_10 to 100 / 100.0) * DOUBLE(1 + sales_tax_in_percent / 100.0) ;

ELSE

SET final_price = (quantity * unit_sale_price) * DOUBLE(1 -

discount_in_percent_if_price_greater_than_100 / 100.0) * DOUBLE(1 + sales_tax_in_percent /

100.0) ;
END IF;

RETURN final_price;
END @

9. Review the logic of this function briefly. As shown on lines 3 — 8, the function requires 6 input

parameters. The first two represent the quantity ordered and the base unit price of each. The
next three parameters specify different discount rates. The final input parameter represents the
sales tax. The body of this function uses various conditional logic clauses (IF, THEN, ELSEIF,
and ELSE) to calculate the final price of an item based on the appropriate discount rate and

sales tax. Note that the unit price of the item determines the discount rate applied.

__10. Test you function’s logic using sample data values:
VALUES gosalesdw.new_final price_v2 (1, 100, 10, 20, 30, 8.75)@

__11. Verify that the result is

87.00000

If desired, review the function’s logic to confirm that this is the correct value based on the input

parameters. Note that 1 item was ordered at a price of $100, qualifying it for a 20% discount (to $80).

Sales tax of 8.75% on $80 is $7, which results in a final item price of $87.

__12. Now invoke your UDF in a query to report the final sales prices for various items recorded in

your SLS_SALES_FACT table:

SELECT sales_order_key, quantity, unit_sale_price,
gosalesdw.new_final price_v2(quantity, unit_sale_price, 10,20,30, 8.75) as final_price

FROM shared.sls_sales_fact
ORDER BY sales_order_key
FETCH FIRST 10 ROWS ONLY @

__13. Inspect the results.

Hands On Lab

Page 97

IBM Software

8.6. Incorporating WHILE loops

Big SQL enables you to include loops in your scalar UDFs. In this section, you’ll use a WHILE loop to
create a mathematical function for factorials. As a reminder, the factorial of a non-negative integer N is
the product of all positive integers less than or equal to N. In other words,

factorial(N) = N * (N-1) * (N-2)* 1
As an example,
factorial(5)=5*4*3*2*1=120

__ 1. Create a scalar UDF named factorial that uses a WHILE loop to perform the necessary
multiplication operations.

-- WHILE-DO loop in scalar UDF
-- This example is independent of gosalesdw tables
-- Given a number n (n >= 1), returns its factorial
-- as long as it is in INTEGER range.
-- Create scalar UDF with WHILE-DO loop
CREATE OR REPLACE FUNCTION factorial(n INTEGER)
RETURNS INTEGER
LANGUAGE SQL
BEGIN ATOMIC

DECLARE n2 INTEGER;

DECLARE res INTEGER;

SET res = n;

SET n2 = n;
loop1l:

WHILE (n2 >= 2)
DO

SET n2 = n2 - 1;
SET res = res * n2;
END WHILE loopl;

RETURN res;

Page 98 Introduction to Big SQL

END @

2. Review the logic of this function. Note that two variables are declared and set to the value of the
input parameter. The first variable (res) holds the result of the computation. lts value changes
as the body of the WHILE loop is executed. The second variable (n2) controls the loop’s
execution and serves as part of the calculation of the factorial.

__ 3. Test your function supplying different input parameters:

-- The output of factorial(5) should be 120

VALUES gosalesdw.factorial(5)@

-- The output of factorial(7) should be 5040

VALUES gosalesdw.factorial(7)@

__ 4. Optionally, drop your function.
drop function gosalesdw.factorial@
Note that if you try to invoke your function again, you will receive an error message similar to this:

No authorized routine named "FACTORIAL" of type "FUNCTION" having compatible
arguments was found.. SQLCODE=-440, SQLSTATE=42884, DRIVER=3.68.61

[State: 56098][Code: -727]: An error occurred during implicit system action type
"2". Information returned for the error includes SQLCODE "-440", SQLSTATE "42884"
and message tokens "FACTORIAL|FUNCTION".. SQLCODE=-727, SQLSTATE=56098,
DRIVER=3.68.61

8.7. Incorporating FOR loops

As you might expect, Big SQL also supports FOR-DO loops in SQL-bodied UDFs. In this exercise, you'll
create a function to calculate the sum of the top 5 sales for a given day.

1. Create a scalar UDF named sum_sale_total_top_5. Note that this UDF references the
SLS_SALES_FACT table that you created in an earlier lab in the biadmin schema because you were
logged in as biadmin. If you created this table in a different schema, modify the table reference in the
FROM clause of the FOR block as needed to match your environment.

-- FOR-DO loop and a SELECT statement inside scalar UDF
-- Given order_day_key, returns sum of sale_total for first 5 sales with given
order_day_key. Order by sale_total

Hands On Lab Page 99

IBM Software

-- Create UDF with FOR-DO loop and a SELECT statement inside
CREATE OR REPLACE FUNCTION sum_sale_total_top_5(input_order_day_key INTEGER)
RETURNS DOUBLE
LANGUAGE SQL
READS SQL DATA
BEGIN ATOMIC
DECLARE result DOUBLE;
DECLARE counter INTEGER;
SET result = 0;
SET counter = 5;

FOR v1 AS
SELECT sale_total
FROM biadmin.sls_sales_fact
WHERE order_day_key = input_order_day_key
ORDER BY sale_total DESC

DO
IF counter > ©
THEN
SET result = result + sale_total;
SET counter = counter - 1;
END IF;

END FOR;

RETURN result;
END @

2. Review the logic of this function. Note that the FOR loop begins by retrieving SALE_TOTAL
values from the SLS_SALES_ FACT table based on the order key day provided as input. These
results are ordered, and the DO block uses a counter to control the number of times it will add a
SALE_TOTAL value to the result. In this example, that will occur 5 times.

3. Finally, use this UDF to compute the sum of the top 5 sales on a specific order day key
(20040112).

-- The output of this function call should be 925973.09000
VALUES (gosalesdw.sum_sale_total_ top_5(20040112)) @

8.8. Creating a table UDF

Now that you’ve created several scalar UDFs, it's time to explore how you can create a simple UDF that
will return a result set. Such UDFs are called table UDFs because they can return multiple columns and
multiple rows.

In this lab, you will create a table UDF that returns information about the items sold on a given day input
by the user. The result set will include information about the sales order, the quantity of items, the pre-
discounted sales price, and the final sales price (including tax and a discount). In doing so, your table
UDF will call a scalar UDF you created previously: new_final_price_v2.

Page 100 Introduction to Big SQL

1. Create a table UDF named sales_summary. Note that this UDF references the
SLS_SALES_FACT table that you created in an earlier lab in the biadmin schema because you
were logged in as biadmin. If you created this table in a different schema, modify the table
reference in this UDF to match your environment.

-- Table UDF
-- given an order_day_key, returns some desired fields and
-- new_final_price for that order_day_key

-- Create a simple table UDF
CREATE OR REPLACE FUNCTION sales_summary(input_order_day_key INTEGER)
RETURNS TABLE(sales_order_key INTEGER, quantity INTEGER, sale_total DOUBLE, new_final_price
DOUBLE)
LANGUAGE SQL
READS SQL DATA
RETURN
SELECT sales_order_key, quantity, sale_total, gosalesdw.new_final_price_v2(quantity,
unit_sale_price, 10,20,30, 8.75)
FROM sls_sales_fact
WHERE order_day_key = input_order_day_key

@

2. Inspect the logic in this function. Note that it includes a READS SQL DATA clause (because the
function SELECTSs data from a table) and that the RETURNS clause specifies a TABLE with
columns and data types. Towards the end of the function is the query that drives the result set
that is returned. As mentioned earlier, this query invokes a scalar UDF that you created earlier.

3. Invoke your table UDF in the FROM clause of a query, supplying an input parameter of 20040112
to your function for the order day key.

-- use it in the FROM clause

SELECT t1.*

FROM TABLE (gosalesdw.sales_summary(20040112)) AS t1
ORDER BY sales_order_key

FETCH FIRST 10 ROWS ONLY

@

__4. Inspect your output.

Hands On Lab Page 101

IBM Software

As you might imagine, the bodies of table UDFs aren’t limited to queries. Indeed, you can write table
UDFs that contain IF/ELSE, WHILE/DO, FOR-DO, and many more constructs. Consult the Biglnsights
Knowledge Center for details.

8.9. Optional: Overloading UDFs and dropping UDFs

As you saw in an earlier exercise, you can drop UDFs with the DROP FUNCTION statement. In
addition, you can create multiple UDFs with the same name (even in the same schema) if their input
parameters differ enough so that Big SQL can identify which should be called during a query. Such
UDFs are said to be “overloaded”. When working with overloaded UDFs, you must use the DROP
SPECIFIC FUNCTION statement to properly identify which UDF bearing the same name should be
dropped.

In this lab, you'll explore the concepts of overloading functions and dropping a specific function. To keep
things simple and focused on the topics at hand, the UDFs will be trivial — they will simply increment a
supplied INTEGER or DOUBLE value by 1.

__ 1. Create a scalar UDF that increments an INTEGER value.

-- Create a scalar UDF

CREATE FUNCTION increment_by one(pl INT)
RETURNS INT

LANGUAGE SQL

SPECIFIC increment_by one_int

RETURN p1 + 1 @

Note that the SPECIFIC clause provides a unique name for the function that we can later reference it
when we need to drop this function.

__ 2. Create a scalar UDF that increments a DOUBLE value.

-- Create another scalar UDF with same name (but different specific name)
CREATE FUNCTION increment_by_one(pl DOUBLE)

RETURNS DOUBLE

LANGUAGE SQL

SPECIFIC increment_by_one_double

RETURN p1 + 1 @

__ 3. Attempt to drop the increment_by_one function without referencing the specific name you
included in each function.

-- If we try to drop the function using DROP FUNCTION statement,

-- Big SQL will throw Error : SQLCODE=-476, SQLSTATE=42725, because
-- Big SQL needs to know which function should be dropped

DROP FUNCTION increment_by one@

Note that this statement will fail because Big SQL isn’t certain which of the two increment_by_one
functions you intended to drop.

Page 102 Introduction to Big SQL

__4. Drop the function that requires an INTEGER as its input parameter. Reference the function’s
specific name in a DROP SPECIFIC FUNCTION statement.

-- User must drop using specific name
DROP SPECIFIC FUNCTION increment_by_one_int@

__ 5. Now drop the remaining increment_by_one function. Since we only have 1 function by this
name in this schema, we can issue a simple DROP FUNCTION statement:

-- Now we have only one function with this name, so we can use
-- simple DROP FUNCTION statement.
DROP FUNCTION increment_by_one@

What if you didn’t include a SPECIFIC clause (i.e., a specific name) in your UDF definition? Big SQL will
explicitly provide one, and you can query the system catalog tables to identify it. Let’'s explore that
scenario.

__ 6. Create a simple scalar UDF again.

-- Create a UDF

CREATE FUNCTION increment_by one(pl INT)
RETURNS INT

LANGUAGE SQL

RETURN p1 + 1 @

__7. Create another scalar UDF with the same name (but different input parameter)

-- Create another scalar UDF with same name (but different input parm)
CREATE FUNCTION increment_by_one(pl DOUBLE)

RETURNS DOUBLE

LANGUAGE SQL

RETURN p1 + 1 @

__ 8. Query the Big SQL catalog for specific names for these functions:

-- Query catalog for specific name:

SELECT ROUTINENAME, SPECIFICNAME, PARM_COUNT, RETURN_TYPENAME

FROM SYSCAT.ROUTINES

WHERE ROUTINESCHEMA = 'GOSALESDW' AND ROUTINENAME = 'INCREMENT_BY_ONE' @

__ 9. Inspect the output, noting the different names assigned to your functions. (Your output may vary
from that shown below.)

__10. If desired, drop each of these UDFs. Remember that you will need to reference the specific
name of the first UDF that you drop when you execute the DROP SPECIFIC FUNCTION
statement.

Hands On Lab Page 103

IBM Software

Lab9 Exploring Big SQL LOAD and Hadoop Commands

Biglnsights offers a LOAD command for populating Big SQL tables with data. The LOAD command can
read data from files or directly from specific relational DBMSs and import this data into a previously-
defined Big SQL table.

This lab introduces you to the LOAD command and explores several aspects of its syntax. Examples that
rely on RDBMS access are based on IBM DB2 for Linux, Unix, and Windows (LUW). You will need
access to a DB2 server to complete those exercises. If necessary, download and install a free copy of
DB2 Express-C. (The full URL is http://www-01.ibm.com/software/data/db2/express-c/index.html).
Alternatively, consult with your instructor to determine if a DB2 server has been made available for your
use with this lab.

An alternative approach to LOAD is to copy a data file directly to the Hadoop filesystem directory defined
as the LOCATION for a Big SQL table.

You should be familiar with Biglnsights V3.0 and Big SQL before beginning this lab. In particular, you
should be able to create Big SQL tables, issue Big SQL commands and queries, and inspect the results
of your work.

After completing this hands-on lab, you’ll be able to:

* Load data into a Big SQL table from a comma-delimited file stored in your local file system.

* Load data into a Big SQL table directly from an RDBMS server (in our examples, a DB2 LUW
server).

* Track records rejected by a LOAD operation.

+ Use Hadoop commands to copy data to a table's Hadoop path and explore the contents of that
directory, using Hadoop commands and from the Web Console.

Prior to starting this lab, you must have completed at least one of the prior labs on JSgsh or Eclipse. In
particular, you must be familiar with how to execute queries in your target development platform (JSgsh
or Eclipse), and you must have established a connection to your Big SQL 3.0 database. Most screen
captures shown in this lab are based on Eclipse.

In addition, to complete the lab exercises that involve direct RDBMS connectivity, you will need access to
a DB2 LUW server.

Allow 1 to 1.5 hours to complete this lab.

9.1. LOADing data into Big SQL Tables from a local file

In this section, you'll learn how to load data from a delimited file into a Big SQL table that uses Hadoop
as its underlying storage mechanism. Verify that you have access to the sample file named
db2export_media.del before completing this section. Examples in this lab presume that you have
uploaded this file to the /opt/ibm/biginsights/bigsql/samples/data/db2export directory.

As background, this file was created by running the DB2 EXPORT facility using default values. You'll be
loading data from this file into a Big SQL table.

Page 104 Introduction to Big SQL

__ 1. Execute the following statement to create an appropriate Big SQL table for the sample data:

create hadoop table media_del
(id integer not null,

name varchar(50),

url varchar(590),

contactdate string)

row format delimited

fields terminated by ',
stored as textfile;

About this CREATE TABLE statement

- The NOT NULL clause for the ID column is advisory only — it is not enforced by
Big SQL or LOAD. In addition, the CONTACTDATE column is defined here as a
String type because the input values aren’t in ISO-compliant TIMESTAMP
format. The final 3 lines of this statement reflect the fact that our input file is in a
comma-delimited text format.

__ 2. Verify that the operation completed successfully.

i@ Help I SQL Results 22

|Type query expression here Status

create table media_del
(id integer not null,

v Succe create sche 7/16/13 4:0 New Big SQL JDBC name varchar(50),

url varchar{50),
contactdate string)

v Succe load using j 7/16/13 4:0 New Big SQL JDBC row format delimited

I . fields terminated by ',
v Succe load using j 7/16/13 4:0 New Big SQL |DBC stared as taxtfila

Status Operation Date Connection Profile
v Succe create table 7/16/13 4:0 New Big SQL |DBC
v Succe load using j 7/16/13 4:0 New Big SQL JDBC

v Succe load using j 7/16/13 4:1 New Big SQL JDBC
v’ Succe select * froi 7/16/13 4:1 New Big SQL |DBEC Query execution time == 21s: 237 ms

« Succe create table 7/18/13 1:3 New Big SQL |DBC

__ 3. Load data from the db2export_media.del file into the table. Adjust the file path specification to
match where you have the db2export_media.del file stored in your local file system.

load hadoop
using file url 'sftp://biadmin:biadmin@bivm:22/path/to/file/db2export_media.del’
INTO TABLE MEDIA DEL overwrite;

4. Verify that the operation completed successfully.

5. Finally, execute the following SELECT statement and inspect the results:

select * from media_del;

Hands On Lab Page 105

IBM Software

Status | Resultl

D MNAME URL CONTACTDATE
1 111 The Business Journals www.bizjournals.com 2012-01-05
2 222 CMM WWW.CNN.Com 2012-01-15
3 333 CI0 Today www.cio-today.com 2012-02-12
4 444 Forbes www.forbes.com 2012-01-15
5 355 Reuters www.reuters.com 2012-01-16
6 654 Wall Street Journal online.wsj.com 2012-01-16
7 777 BEC bbc.com 2012-01-16
8 765 Healthcare IT News www.healthcareitnews.com 2012-02-20
9 875 Mew York Times www.nytimes.com 2012-02-20
10 987 Technology Marketing Corp. www.tmenet.com 2012-02-02

9.2. Tracking rejected records

The LOAD command enables you to direct any rejected records into a directory in your DFS, if desired.
Doing so enables you to assess and correct any problems with the records. In this section, you will
explore how to set and use the rejected.records.dir property to capture rejected records.

lines of the file. Your file’'s contents should look like this:

1. Copy the db2_export.del file into a new file named db2export_media_error.del.

2. Edit the new file using an editor of your choice. Delete the ID fields from the first and fourth

File Edit “iew Terminal

Help

HThe Business Journals","www.blzjournals.com",20120105
222, "CNN" , "www.cnn.com" , 20120115

333,"CIO0 Today","www.clo-today.com", 20120212

"Forbes", "www.forbes.com", 20120115

555, "Reuters", "www.reuters.com" , 20120116
654, "Wall Street Journal","online.wsj.com",20120116
777,"BBC", "bbc.com", 20120116
765, "Healthcare IT Mews","www.healthcareiltnews.com", 20120220

876, "New York Timas","www.nytimes.com",20120220

987, "Technology Marketing Corp.","www.tmcnet.com", 20120202

Note that the records for The Business Journals (line 1) and Forbes (line 4). Because they lack ID
field values, these rows will be rejected by the LOAD operation.

3. Save the file and return to your SQL execution environment (e.g., JSgsh or Eclispe).

4. Execute the following LOAD command so that the rejected records will be stored in an

appropriate directory of your DFS. If needed, alter the path specifications to match your
environment. For example, if you stored the source file (db2export_media_error.del) in a

different directory, adjust the file url specification. If you are using a different Biglnsights user ID
than biadmin, change the DFS directory path in the final line of the statement below to match
your user ID.

Page 106 Introduction to Big SQL

load hadoop
using file url

'sftp://biadmin:biadmin@bivm:22/0opt/ibm/biginsights/bigsql/samples/data/db2export_medi
a_error.del’

into table media_del overwrite
with load properties
('rejected.records.dir' = '/user/biadmin/rejected_records');

Run the Load statement.

Open the Biglnsights Web Console. From the Files tab, navigate to the directory you specified in
the load statement. You will see the rejected records.

IBM InfoSphere Biglnsights Quick Start Edition (for Non-Production Environment)

Welcome Dashboard Cluster Status Applications Application Status BigSheets
DFS Filex Gatlog Tables Path: /userbiadminirejected_ Isi/rejected ds-task_2014081912
= | IR e xR | 2 Hame Size Block Siz
+ [= hdfs:/bivm.ibm.com:@000/ rejected-records-task_201406191257_ 90 B 128.0 ME
» O biginsights Edt | ViewingSize:| 10KB | ~| @ Text () Sheet
¥ [0 hadoop
» [hbase "The Business Journals", "www.bizjournals.com", 20120105
vy 03 tmp "Forbes", "www.forbes.com",20120115
- [= user
» [biadmin
v [.staging !
* [= rejected_records
[E] rejected-records-task_2014061912

Preparing to load data directly from a relational DBMS

The LOAD command can dynamically read data from a table or view in a supported relational DBMS.
Behind the scenes, LOAD uses JDBC to establish a DBMS connection and invokes open source Sqoop
technology (included with Biglnsights) to complete the data transfer.

This exercise, and several that follow, help you understand how you can use the LOAD command to
dynamically retrieve data from a DB2 LUW database server. In addition to DB2 LUW, Biglnsights
supports loading data directly from Netezza, Teradata, Oracle, and other RDBMS sources into Big SQL

You must have access to a DB2 server before attempting this lab. Furthermore, the server must contain
a MEDIA table populated with data from the db2export_media.del file.

To begin, add the appropriate JDBC driver file(s) to Sqoop on Biglnsights:

Copy the DB2 JDBC jar file (db2jcc4.jar) to the $BIGINSIGHTS_HOME/sqoop/1lib directory. This
can be found in the .. /java directory where your DB2 server is installed.

Hands On Lab Page 107

IBM Software

About the DB2 JDBC driver file

If you downloaded the current version of DB2 Express-C for this use with this
exercise or have access to a DB2 LUW 10.5 server or later version, you can
copy the db2jcc4.jar file from the $BIGINSIGHTS_HOME/database/db2/java
directory into your Sqoop library.

__2. If Biglnsights is running, stop and restart the Big SQL service. (From a terminal window, issue
these commands:

a. $BIGINSIGHTS_HOME/bin/stop.sh -bigsql

b. $BIGINSIGHTS_HOME/bin/start.sh -bigsql

Next, ensure your DB2 server has a MEDIA table defined and that the table contains data loaded from
the db2export_media.del file required by this lab.

__ 3. Locate the db2export_media.del sample file and copy it to a location accessible to your DB2
server. Optionally, open the file using a text editor or operating system facility to inspect its
contents, and close the file when you're done.

File Edit Format View Help

111,"The Business Journals"”,"www.bizjournals.com",20120105 g
222,"CNN", "www.cnn.com" ,20120115

333,"CIO Today","www.cio-today.com",20120212

444 "Forbes", "www. forbes.com",20120115

555, "Reuters”, "www.reuters.com",20120116

654,"wall Street Journal”,"online.wsj.com",20120116

777 ,"BBC","bbc.com",20120116

765,"Healthcare IT News","www.healthcareitnews.com",20120220
876,"New York Times","www.nytimes.com",20120220

987,"Technology Marketing Corp.", "www.tmcnet.com",20120202

4. From a DB2 command window, issue SQL statements to create a MEDIA table and populate it
with data contained in the db2export_media.del file supplied with this lab. Alter the file
specifications in the IMPORT statement as needed to match your environment.

CREATE TABLE MEDIA (
ID INTEGER,

NAME VARCHAR(580),
URL VARCHAR(50),
CONTACTDATE DATE);

Page 108 Introduction to Big SQL

IMPORT FROM "C:\Downloads\big data labs\LOAD\db2export_media.del" OF DEL
METHOD P (1, 2, 3, 4) MESSAGES "C:\Downloads\big data labs\LOAD\db2import-
msgs.txt" INSERT INTO TEST.MEDIA (ID, NAME, URL, CONTACTDATE);

5. Verify that 10 rows were imported successfully into DB2.

SELECT * FROM MEDIA;

9.4. LOADing data directly from a relational DBMS table
Now you're ready to LOAD data directly from your relational DBMS table into a Big SQL table.

1. Inyour Big SQL execution environment (JSqsh or Eclipse), create a table for the DB2 data.

create hadoop table media_db2table (
id integer not null,

name varchar(50),

url varchar(50),

contactdate varchar(39))

row format delimited

fields terminated by ',’

stored as textfile;

About this CREATE TABLE statement

- The NOT NULL clause for the ID column is advisory only — it is not enforced by
Big SQL or LOAD. In addition, the CONTACTDATE column is defined here as a
String type because the input values aren’t in ISO-compliant TIMESTAMP
format. The final 3 lines of this statement reflect the fact that our input file is in a
comma-delimited text format.

__ 2. Run the following LOAD statement to your script.

load hadoop

using jdbc connection url 'jdbc:db2://your.server.com:portNum/sampledb’
with parameters (user='shared', password='shared123')

from table MEDIA

into table media_db2table overwrite

with load properties ('num.map.tasks' = 1);

Hands On Lab Page 109

IBM Software

About this LOAD USING JDBC connection ... command

This form of the LOAD command establishes a live connection to a DB2 server and
dynamically retrieves the contents of the specified table or view. Because we did not
o specify a "split column" property in this example, we must set the number of Map tasks
for this LOAD operation to 1. Identifying a split column (such as ID) helps ensure that
the LOAD operation is parallelized. You'll see an example of this shortly.

The LOAD command treats DB2 object names in a case-sensitive manner. Since DB2

folds names into upper case, the from table clause of this command must reference
the DB2 table name in upper case.

__ 3. Verify that the operation completed successfully.
__ 4. Query the table:
select * from media_db2table;
__ 5. Inspect the results. Note that the name and URL values are not surrounded by double quotes.

Because this form of the LOAD command uses Sqoop technology, VARCHAR and CHAR data
are loaded without double quotes.

Status |Resultl

id name url contactdate
2 222 CNN WWW.Cnn.com 2012-01-15
3 333 ClO Today www.cio-today.com 2012-02-12
4 444 Forbes www.forbes.com 2012-01-15
5 555 Reuters www.reuters.com 2012-01-16
6 654 Wall Street Journal online.wsj.com 2012-01-16
1) 777 BBC bbc.com 2012-01-16
8 765 Healthcare IT News www healthcareitnews.com 2012-02-20
9 876 MNew York Times www.nytimes.com 2012-02-20
10 987 Technology Marketing Corp. www.tmenet.com 2012-02-02

6. Optionally, perform an equivalent LOAD operation using the default number of Map tasks (which
is 4). For example, run the following LOAD command:

load hadoop

using jdbc connection url 'jdbc:db2:// your.server.com:portNum/sampledb’
with parameters (user='shared', password='shared123')

from table MEDIA

split column ID

into table media_db2table overwrite;

Note that this command uses the ID column of the DB2 table for splitting work across Map tasks.

Page 110 Introduction to Big SQL

9.5. LOADing data directly from a relational DBMS with SELECT

In some cases, it's more practical to issue a SELECT statement to identify the relational data you'd like to
dynamically load into your Big SQL table. Big SQL's LOAD command supports such syntax. This
exercise introduces you to using a relational query specification as part of your Big SQL LOAD
command. In doing so, you can project and restrict data returned from your relational source table as
well as join data from multiple tables.

You'll begin by performing a query-based load operation that's logically equivalent to the table-based
load operation that you performed in the previous section.

1. Run the CREATE TABLE statement and verify that the operation completes successfully.

create hadoop table media_db2select (
id integer not null,

name varchar(590),

url varchar(590),

contactdate varchar(390))

row format delimited

fields terminated by ','
stored as textfile;

2. Execute the following LOAD statement:

load hadoop

using jdbc connection url 'jdbc:db2:// your.server.com:portNum/sampledb’
with parameters (user='shared', password='shared123')

from sql query

'select id, name, url, contactdate from media

where $CONDITIONS'

split column ID

into table media_db2select overwrite;

About this LOAD command

When using a SQL query as part of the LOAD command, you must include a WHERE
clause that contains a $CONDITIONS marker as shown here. At runtime, this marker is
replaced with a unique condition expression for each Map task.

3. Verify that the operation completed successfully.
4. Run the following SELECT statement.
select * from media_db2select;

__ 5. Inspect the results.

Hands On Lab Page 111

IBM Software

Status | Resultl

id name url contactdate
2 222 CNN WWW.CNN.com 2012-01-15
3 333 ClO Today www.cio-today.com 2012-02-12
4 444 Forbes www forbes.com 2012-01-15
5 555 Reuters www.reuters.com 2012-01-16
4] 654 Wall Street Journal online.wsj.com 2012-01-16
i 777 BBC bbc.com 2012-01-16
8 765 Healthcare IT News www.healthcareitnews.com 2012-02-20
9 876 New York Times www.nytimes.com 2012-02-20
10 987 Technology Marketing Corp. www.tmcnet.com 2012-02-02

9.6. Exploring additional LOAD scenarios

You're now familiar with the basics of Big SQL's LOAD command. In this exercise, you'll explore a few
additional scenarios that involve certain syntax variations.

You've already seen how to load data directly from a remote relational table. Let's refine that work a bit
more by incorporating projection and restriction operations as part of your LOAD operation. Specifically,
you will create a Big SQL table with columns for the ID and name of each media company contacted in
January 2012.

__ 1. Run the following CREATE TABLE statement:

create hadoop table media_db2table jan (
id integer not null,
name varchar(50)

)

row format delimited

fields terminated by ',
stored as textfile;

2. Execute this LOAD statement:

load hadoop

using jdbc connection url 'jdbc:db2:// your.server.com:portNum/sampledb’
with parameters (user='shared', password='shared123')

from table MEDIA columns (ID, NAME)

where 'CONTACTDATE < ''2012-02-01'"'

into table media_db2table_jan overwrite

with load properties ('num.map.tasks' = 1);

__ 3. Verify that the operation completed successfully.
__ 4. Run the following SELECT statement:

select * from media_db2table_jan;

Page 112 Introduction to Big SQL

5.

Inspect the results and verify that the following 6 rows are present.

] Status |Resultl

id name
1 The Business Journals
2 222 CNN
3 444 Forbes
4 555 Reuters
5 654 Wall Street Journal
6 777 BBC

Next, you'll execute a similar LOAD command using query-based syntax. In this example, you'll change
the ordering of the ID and name columns so that the name column is defined first in the Big SQL table.

_ 6.

9.

Run the CREATE TABLE statement and verify that the operation completes successfully.

create hadoop table media_db2select jan (
name varchar(50),

id integer not null

)

row format delimited

fields terminated by ‘',
stored as textfile;

Run the following LOAD statement:

load hadoop

using jdbc connection url 'jdbc:db2:// your.server.com:portNum/sampledb’
with parameters (user='shared', password='shared123")

from sql query

'select name, id from media

where $CONDITIONS and CONTACTDATE < ''2012-02-01'" '

split column ID

into table media_db2select_jan overwrite;

Execute the following SELECT statement:
select * from media_db2select_jan;

Inspect the results and verify that the following 6 rows are present.

] Status | Resuiltl |

name id
1 . The Business Journals . 111
2 CNN 222
3 Forbes 444
4 Reuters 555
5 Wall Street Journal 654

Hands On Lab Page 113

IBM Software

9.7. Using Hadoop commands to move data into a table

Since the data for Big SQL tables reside on the Hadoop Distributed File System (HDFS), it's possible to
simply overlay the table definition onto an existing file or files, or likewise, copy a file into the path
designated for the table. If you have a file which is already in the format designated by the CREATE
TABLE statement, then this approach can save the time and processing of the LOAD command.
(Examples of table features which would make LOAD a simpler approach are partitioning or Parquet
format, which are beyond the scope of this document.)

__1. Inthe first exercise of this lab you created a table called media_del. Let's create the same table,
but called media_external, and designate its location (path) to be different from the default.

The default Hadoop directory path (LOCATION) for Big SQL tables is at
/biginsights/hive/warehouse/<schema>.db/<table>. In this beta release of the
- Technology Preview environment, this path is managed strictly by Big SQL (and Hive),
meaning that its contents cannot be viewed and files cannot be copied there.

Many code examples in this section use userN as part of the directory path
specification. Replace this sample user with your user ID before executing the
statements shown.

Page 114 Introduction to Big SQL

You can execute this CREATE TABLE statement in your Data Studio session.

create hadoop table media_external

(id integer not null,

name varchar(50),

url varchar(590),

contactdate string)

row format delimited fields terminated by ',’
location '/user/biadmin/media_external’;

__ 2. Use the Hadoop -Is command from the shell prompt to find the HDFS directory which has been
created for this table. Note that the owner of the directory is bigsqgl and that it is currently empty.

hadoop fs -1s /user/biadmin
hadoop fs -1s /user/biadmin/media_external

File Edit “iew Terminal Help

biadmin@bivm:~= hadoop fs -ls fuser/biadmin
Found 2 1tems

drwx------ - biadmin biadmin 0 2014-06-14 15:45 fuser/biadmin/.staging
drwxr-xr-x - bigsgl biadmin 0 2014-06-19 15:52 fuser/biadmin/media_external
drwx--x--x - bigsql biadmin 0 2014-06-19 13:58 fuser/biadmin/rejected_recards

biadmin@bivm:~= hadoop fs -ls fuser/biadmin/media_external
biadmin@bivm:~> |

__3. Instead of LOADing data from the export file as we did before, use the Hadoop -copyFromLocal
command to copy the file to the table's location (here, we are also giving the copied file a new
name). Then verify that the directory is no longer empty and use the Hadoop -cat command to
display the file contents. (Be aware that some commands below have wrapped onto two lines.
Each hadoop command should be typed on a single line, and don't forget to replace userN.)

hadoop fs -copyFromLocal /path/to/file/db2export_media.del
/user/biadmin/media_external/data-part-00001

hadoop fs -1s /user/biadmin/media_external

hadoop fs -cat /user/biadmin/media_external/data-part-00001

File Edit ‘iew Terminal Help
biadmin@bivm:~= hadoop fs -copyFromLocal shome/biadmin/db2Zexport_media.del suser/biadmin/medis_external/data-par|=
t-00001
biadmin@bivm:~= hadoop fs -ls fuser/biadmin/media_external
Found 1 items
-rW-r--r-- 1 biadmin biadmin 468 2014-06-19 15:58 /user/biadmin/media_external/data-part-0000l
bi1admin@ivm:~= hadoop fs -cat suser/biadmin/media_external/data-part-00001
"The Business Journals","www.bizjournals.com",20120105
222, "CNN", "www.cnn.com", 20120115
333,"CIC Today","www.clo-today.com",20120212
"Forbes", "www.forbes.com", 20120115
555, "Reuters", "www.reuters.com", 20120116
654, "Wall Street Journal","online.wsj.com",20120116
777,"BBC", "bbec.com", 20120116
765, "Healthcare IT News","www.healthcareitnews.com", 20120220
876, "New York Times","www.nytimes.com", 20120220
987, "Technology Marketing Corp.","www.tmcnet.com",20120202
biadmin@bivm:~> []

__ 4. You can also use the Biginsights Web Console to view this file. Click on Files on the horizontal
menu and in the DFS File tab open the path to your file.

Hands On Lab Page 115

IBM Software

AF e Caimbg Tablz Path: | /userbiadmin/media_sxts rmalidata-pant-00001

4 A % E= 5)

* | 1 E £ X = | o e Hame Size Block Size
* (= hdfs://bivim.ibm.com:9000/ data-part-00001 468 B 128.0 ME

» (3 biginsights Edit =~ ViewingSize:| 10KB |~ | @ Text () Sheet

¥ [hadoop

b [3 hbase "The Business Journals","www.bizjournals.com", 20120105

b O3 tmp 222, "CNN", "www . cnn.com", 20120115

—_

333, "CIO Today", "www.clo-today.com”, 20120212
- [user "Forbes", "www. forbes. com", 20120115

- & biadmin 555, "Reuters”, "www. reuters.con”, 20120116

654, "Wall Street Journal®,'online.wsj.com",20120116

» [.staging F77,"BBC", "bbc.com", 20120116
765, "Healthcare IT News","www healthcareltnews.com", 20120220
876, "New York Times", "www.nytimes.com", 20120220
987, "Technology Marketing Corp."."www.tmcnet.com", 20120202

v (= media_sxternal

5. Now you can already query the data from the Big SQL interface, as well.

select * from media_external;

Status | Resultl

1D MNAME URL COMTACTDATE

1 111 "The Business Jou... "www.bizjourn... 2012-01-05
2 222 "CMNM" "www.cnn.com” 2012-01-15
3 333 "CIO Today" "www.cio-toda... 2012-02-12
4 444 "Forbes" "www.forbes.c.. 2012-01-15
5 555 "Reuters” "www.reuters.c... 2012-01-16
6 654 "Wall Street Journ... "onlinewsj.com” 2012-01-16
7 77 "BBLC" "bbc.com” 2012-01-16
8 765 "Healthcare IT Me... "www.healthca... 2012-02-20
9 876 "Mew York Times" "www.nytimes.... 2012-02-20
10 987 "Technology Mar... "www.tmcnet... 2012-02-02
4 : rr'|"

Total 10 records shown

Any file which matches the data types for these four columns and are separated by the terminator
'), and is placed in this Hadoop path, will be available to a Big SQL query.

6. Copy the data file again, with a different file name, into the table's directory. (This command
should be typed from the bash shell on one line. Don't forget to change userN.)
hadoop fs -copyFromLocal /path/to/file/db2export_media.del
/user/biadmin/media_external/data-part-00002

__7. Query the table again and confirm that now 20 rows were retrieved. If only 10 rows were
retrieved, execute the next exercise and then repeat your query.

Page 116 Introduction to Big SQL

Status | Resultl

MO 0D o= Oh b B g kg

=
L=}

11
Fl

D MAME
111 "The Busin
222 "CHNN"
333 "CIO Today
444 "Forbes"
555 "Reuters”
654 "Wall Stree
77 "BBC"

765 "Healthcan
876 "Mew York
987 "Technaolaog
111 "The Rusin

Total 20 records shown

8. Caches are maintained at various levels within the software stack in order to speed up your

queries. Although caches are flushed periodically, since the last query was probably executed
very recently, you may not see your new data yet. Since we know that new data has arrived at
the HDFS level, we will call a Big SQL procedure from JSgsh in order to flush the Big SQL cache
for this table. (Note yet another method for executing a (single) command in JSgsh.)

echo "call syshadoop.hcat_cache sync(USER, 'media_external');" |
/opt/ibm/biginsights/jsqsh/bin/jsqsh bigsql -P bigsql

The first parameter of this procedure is the table's schema name, so we are using the contents of
the USER registry variable. The second parameter is the table name. (Don't forget the semi-
colon at the end of the statement.)

*biadmin@bivm: ~> echo "call syshadoop.hcat_cache_sync(USER, 'media_external');" | /opt/ibms/biginsights/jsqsh/b1
/isqsh bigsql -P biadmin
WARN [State: 1[Code: 0]: Statement processing was successful.. SQLCODE=0, SQLSTATE= , DRIVER=3.57.33

JsSgsh Release 2.1.2, Copyright (C) 2007-2014, Scott C. Gray
Type \help for available help topics. Using JLine.
[bivm.ibm.com] [biadmin] 1= call syshadoop.hcat_cache_sync(USER, 'media_external');

ok .

(total: 0.18s)

[bivm.ibm.com] [biadmin] 1= biadmin@bivm:~=

9.8. Dropping tables you created in this lab

If you'd like to drop the tables you created in this lab, execute these statements:

drop table
drop table
drop table
drop table
drop table
drop table
drop table

media_del;
media_new;
media_db2table;
media_db2select;
media_db2table_jan;
media_db2select_jan;
media_external;

Hands On Lab Page 117

IBM Software

Lab10 Summary

Congratulations! You’ve just learned many important aspects of Big SQL, IBM’s query interface for big
data. To expand your skills and learn more, enroll in free online courses offered by Big Data University
(http://www.bigdatauniversity.com/) or work through free tutorials included in the Biglnsights product

documentation. The HadoopDev web site (https://developer.ibm.com/hadoop/) contains links to these and

other resources.

Page 118 Introduction to Big SQL

NOTES

NOTES

IBM Software

© Copyright IBM Corporation 2014.

The information contained in these materials is provided for
informational purposes only, and is provided AS IS without warranty
of any kind, express or implied. IBM shall not be responsible for any
damages arising out of the use of, or otherwise related to, these
materials. Nothing contained in these materials is intended to, nor
shall have the effect of, creating any warranties or representations
from IBM or its suppliers or licensors, or altering the terms and
conditions of the applicable license agreement governing the use of
IBM software. References in these materials to IBM products,
programs, or services do not imply that they will be available in all
countries in which IBM operates. This information is based on
current IBM product plans and strategy, which are subject to change
by IBM without notice. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole
discretion based on market opportunities or other factors, and are not
intended to be a commitment to future product or feature availability

in any way.

IBM, the IBM logo and ibm.com are trademarks of International
Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

@ Please Recycle

