
Initial AIX Java Data Collection Procedures

Table 2 (Data Collection Instructions) below identifies the minimum data collection procedures for the most common AIX Java problem

areas. The commands shown will collect the minimum data required by support specialists to help understand the environment and more

quickly identify the root cause of the issue. Once the data has been collected, please package the data, then send the packaged data to the

AIX upload site (see AIX Data Upload section at the end of this document). In some situations, support specialists may request and require

more information to further diagnose the reported issue.

The instructions in Table 2 make references to generic terms that will need to be replaced with information specific to support call and the

environment. It is very important that consistent and accurate references to be used when collecting the data to ensure prompt and correct

delivery of the data when uploaded.

Table 1. Terms and Definitions

Generic Term / Reference Actions / Details
/PATH Replace: The full path to a directory that has adequate free space to save and package the requested data.

JAVA_PID Replace: The process id (e.g., from "ps" command) for the Java process being diagnosed.

PMR# Replace: The PMR # assigned to your case in the format AAAAAA.BBB.CCC (e.g., 123456.789.012)

MM-DD-HH Replace: Is the current month (MM), day (DD), and hour (HH) (e.g., 12-18-10).

JAVA_EXE Replace: The full path to the Java executable (e.g., /usr/java6_64/jre/bin/java)

JAVA_HOME Replace: The parent directory of Java executable (e.g., /usr/java6_64)

CORE_PATH Replace: The full path [including file name] to the AIX core file (e.g., /tmp/core or /tmp/core.###.###.###.dmp).

Java core or javacore file A text containing thread dumps generated by the JVM using "kill -3" command or automatically during exceptions

AIX core or system core file A binary representation of the process stored to a file.

Heap dump or PHD file A Java generated file that contains Java memory information about objects and classes

pdump.sh A shell script provided by IBM that runs the AIX kernel debug (kdb) to obtain kernel level information

perfpmr.sh A collection of scripts provided by IBM that runs most of AIX performance collection commands

GC or garbage collection A component of the Java processes that manages or release memory of unused objects and classes

Table 2. Data Collection Instructions
Problem Area Actions Comments
Java application hang

High CPU utilization due
to Java application

Slow performance while
running Java application

Java filename format are:
javacore.*.txt

The default file location is
the directory that the Java
process was started from.
The '*' in the filename will
be a timestamp and
process id

Download and install 'pdump.sh' tool:

Download from:
ftp://ftp.software.ibm.com/aix/tools/debug/pdump.sh

 Install as:
 /opt/pdump/pdump.sh
 # chmod 755 /opt/pdump/pdump.sh

Download and install 'perfpmr' tool:

 Download perfpmr for the release of AIX being used from:
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/

 Install using:
 # mkdir -p /opt/perfpmr
 # cd /opt/perfpmr
 # gzip -c < perf##.tar.Z | tar -xvf -
 # ./Install

Enable Java verbose garbage collection (GC):

{ add this JVM option to your java command line or startup
profile/script }

-verbose:gc

This will require the process to be restarted.

Save stderr (standard error or 2>file) for the process:

Save the standard error (stderr) for the Java process to a file if not
already captured by the application.
This will require the process to be restarted. This is required to
capture the verbose GC data.

Collect data during hang, high CPU, slow performance:
{ as “root” user while issue occurs }

mkdir -p /PATH/PMR#/MM-DD-HH/data1
mkdir -p /PATH/PMR#/MM-DD-HH/perfpmr

cd /PATH/PMR#/MM-DD-HH/data1

1. The "pdump.sh" script runs the AIX kernel
debugger (kdb) to obtain kernel level data about the
process. For a process when several hundreds
threads, it may take a few minutes for the script to
complete the inspection of all the threads. Because
pdump.sh scans active threads, do not run this script
for high CPU situations unless instructed to do so by
the support specialist.

2. The "perfpmr" data to help us understand and
identify the hot spots with AIX, networking, locking,
JVM, application, etc. It will collect configuration
data as well as run the majority of the AIX
performance tools for the duration specified.

3. The AIX core (gencore and snapcore) is used to
obtain application information about the active
process. In order to inspect the AIX core, it can not
be truncated. If the AIX core file is truncated, the
following commands will have to be executed as the
root user:

chuser fsize=-1 data=-1 core=-1 user_id
chdev -l sys0 -a fullcore=true

Then Relogin as user and restart all processes, then
recollect and upload the data. For J2EE Application
Servers, the node agent / manager will also need to
be restarted prior to restarting the application server
instance.

4. If users are unable or unsure how to redirect
standard error for the verbose GC data, enable the
JVM option:

-Xverbosegclog:/PATH/PMR#/MM-DD-HH/gc/gc.log

Setting this option will require the process to be
restarted.

5. The javacore files are used to obtain JVM and
Java application level details. Multiple files are
required to understand how/if the Java process is
changing over a short period of time.

{ ** DO NOT RUN pdump.sh for high CPU utilization situations }
/opt/pdump/pdump.sh JAVA_PID

cd /PATH/PMR#/MM-DD-HH/perfpmr
perfpmr.sh 240

cd /PATH/PMR#/MM-DD-HH/data1
gencore JAVA_PID ../core.dmp

kill -3 JAVA_PID
sleep 5
kill -3 JAVA_PID
sleep 5
kill -3 JAVA_PID

{ copy the javacore.*.txt files to data1 directory }
{ copy application log files to data1 directory }
{ copy stderr/stdout files to data1 directory }

{ identify full path to java executable }
snapcore -d . ../core.dmp JAVA_EXE

{ capture the following minimum configuration information }
prtconf > prtconf.out 2>&1
lslpp -hac > lslpp-hac.out 2>&1
instfix -i > instfix-i.out 2>&1
emgr -lv3 > emgr-lv3.out 2>&1
JAVA_EXE -version > java-version.out 2>&1

Package data:

cd /PATH/PMR#/MM-DD-HH
tar -cf - data1 perfpmr | gzip -c > PMR#.MM-DD-HH.tgz

Check List (data to be captured and uploaded):

1. pdump.sh output (except for high CPU situations)
2. perfpmr data
3. snapcore data (which contains the AIX core and libraries)
4. 3 javacore files
5. Minimum configuration information
6. Application log files which contain verbose:gc entries

Java core dump

Java filename format are:
javacore.*.txt
Snap.*.trc
heapdump.*.phd

The default file location is
the directory that the Java
process was started from.
The '*' in the filename will
be a timestamp and
process id.

Collect data:

mkdir -p /PATH/PMR#/MM-DD-HH/data1

{ capture the following minimum configuration information }
cd /PATH/PMR#/MM-DD-HH/data1
prtconf > prtconf.out 2>&1
lslpp -hac > lslpp-hac.out 2>&1
instfix -i > instfix-i.out 2>&1
emgr -lv3 > emgr-lv3.out 2>&1
svmon -O segment=category -P > svmon-p.out 2>&1
ipcs -saPrX > ipcs.out 2>&1
errpt -a > errpt-a.out 2>&1
JAVA_EXE -version > java-version.out 2>&1

{ copy the javacore.*.txt files to data1 directory }
{ copy any heapdump.*.phd files to data1 directory }
{ copy any Snap.*.trc files to the data1 directory }
{ copy application log files to data1 directory }

Package data:

cd /PATH/PMR#/MM-DD-HH
tar -cf - data1 | gzip -c > PMR#.MM-DD-HH.tgz

Check List (data to be captured and uploaded):

1. All javacore files
2. Any heapdump.*.phd or Snap.*.trc files
3. Minimum configuration information
4. Application log files

1. Once the data was generated/collected, look for
the line at the top with 1TISIGINFO. It will be similar
to:

1TISIGINFO Dump Event "user" (00004000)
received

2. Identify the source of the exception as being "user
generated" (e.g., from kill -3 command), "gpf" (AIX
core / process dump), or "Out Of Memory", then
collect the additional data for that scenario.

3. If segmentation violation/abort/gpf, then collect
data for AIX core file, validate AIX core is not
truncated, and collect snapcore.

4. If OutOfMemory, follow out of memory instructions

5. Look for CORE_DUMP labels in the error log
(errpt -a output) to identify if an AIX
(process/system) core has been generated for the
process, the time of the process core, and the
location of the process core. If an AIX
(process/system) core has been generated, also
follow the data collection procedures for the section
"AIX core dump" below.

AIX core dump

(a.k.a. process dump /
system dump)

Java filename format are:
core.*.dmp
javacore.*.txt
heapdump.*.phd
Snap.*.trc

The default file location is
the directory that the Java
process was started from.
The '*' in the filename will
be a timestamp and
process id.

Look for CORE_DUMP
labels in the error log (errpt
-a output) to identify if an
AIX (process) core has
been generated for the
process, the time of the
process core, and the
location of the process
core.

Collect data:

mkdir -p /PATH/PMR#/MM-DD-HH/data1

{ capture the following minimum configuration information }
cd /PATH/PMR#/MM-DD-HH/data1
prtconf > prtconf.out 2>&1
lslpp -hac > lslpp-hac.out 2>&1
instfix -i > instfix-i.out 2>&1
emgr -lv3 > emgr-lv3.out 2>&1
svmon -O segment=category -P > svmon-p.out 2>&1
ipcs -saPrX > ipcs.out 2>&1
errpt -a > errpt-a.out 2>&1
JAVA_EXE -version > java-version.out 2>&1

{ copy the javacore.*.txt files to data1 directory }
{ copy any Snap.*.trc files to data1 directory }
{ copy any heapdump.*.phd files to data1 directory }
{ copy application log files to data1 directory }

snapcore -d . CORE_PATH JAVA_EXE

Package data:

cd /PATH/PMR#/MM-DD-HH
tar -cf - data1 | gzip -c > PMR#.MM-DD-HH.tgz

Check List (data to be captured and uploaded):

1. snapcore data (which contains the AIX core and libraries)
2. All javacore files
3. Any heapdump.*.phd or Snap.*.trc files
4. Minimum configuration information
5. Application log files

1. The AIX core (gencore and snapcore) is used to
obtain application information about the active
process. In order to inspect the AIX core, it can not
be truncated. If the AIX core file is truncated, the
following commands will have to be executed as the
root user:

chuser fsize=-1 data=-1 core=-1 user_id
chdev -l sys0 -a fullcore=true

Then Relogin as user and restart all processes, then
recollect and upload the data. For J2EE Application
Servers, the node agent / manager will also need to
be restarted prior to restarting the application server
instance.

2. For POWER7 systems have minimum required
Java versions depending on if POWER6 or
POWER7 mode is used. If an unsupported (old)
version of Java is used, the JVM will crash, usually
on startup. To confirm, visit the web page:

http://www.ibm.com/developerworks/java/jdk/power7
/index.html

to view the minimum Java versions for each
POWER mode. Then compare that information with
the information provided in the prtconf.out (POWER
mode) and java-version.out (Java version). If the
level of Java is not at the minimum level, the JVM
must be upgraded to a more recent version.

Java download

Java installation

Java security alerts

Java version support

Primary download page:
http://www.ibm.com/developerworks/java/jdk/aix/service.html

Power7 compatibility page:
http://www.ibm.com/developerworks/java/jdk/power7/index.html

Power8 feature support page:
http://www.ibm.com/developerworks/java/jdk/power8/index.html

Jave security alerts:
http://www.ibm.com/developerworks/java/jdk/alerts/
http://www-01.ibm.com/support/docview.wss?uid=swg21687173

Jave 1.4.x end of service/support statement:
http://www.ibm.com/developerworks/java/jdk/aix/outofservice.html

All of the java downloads are available from the
main download page.

Customers can download the latest version or
install the base version + a specific SR to install a
specific level.

If customer is running Power7 and/or Power8, the
JVM may have to be at minimum levels otherwise
the processes may crash.

Java 1.4.x is out of support and there is no extended
support. If the customer is entitled another product
that includes 1.4.x, please forward PMR to that
team.

Security Issue

Enable Java Security Debug Parameters

{ add these JVM options to your application startup profile/script }

-Djavax.net.debug=all
-Dcom.ibm.security.jgss.debug=all
-Dcom.ibm.security.krb5.Krb5Debug=all

This will require the process to be restarted.

Save stderr (standard error or 2>file) for the process:

Save the standard error (stderr) for the Java process to a file if not
already captured by the application.
This will require the process to be restarted. This is required to
capture the debug Java security information.

Collect data:

mkdir -p /PATH/PMR#/MM-DD-HH/data1

{ capture the following minimum configuration information }
cd /PATH/PMR#/MM-DD-HH/data1
prtconf > prtconf.out 2>&1
lslpp -hac > lslpp-hac.out 2>&1

Java security issues can be complex, difficult, and
time consuming. To expedite the resolution of your
Java security issue, it is recommended that
customers provide a complete and standalone
sample program (including execution instructions)
that demonstrates the issue.

In some situations, customers may be provided an
IBM JVM for another platform (such as Linux or
Microsoft Windows) to confirm if the issue applies
across all IBM JVM implementations or is specific to
the IBM AIX JVM.

Additional data collection procedures are available
on the web page:

http://www.ibm.com/support/docview.wss?uid=swg2
1162961

instfix -i > instfix-i.out 2>&1
emgr -lv3 > emgr-lv3.out 2>&1
errpt -a > errpt-a.out 2>&1
JAVA_EXE -version > java-version.out 2>&1
cd JAVA_HOME/jre/lib/security
tar –cvf /PATH/PMR#/MM-DD-HH/data1/secfiles.tar ./

Package data:

cd /PATH/PMR#/MM-DD-HH
tar -cf - data1 | gzip -c > PMR#.MM-DD-HH.tgz

Check List (data to be captured and uploaded):

1. Minimum configuration information
2. Application log files which contain debug Java entries

Memory Issue

Out Of Memory

System paging

High system memory
usage

Java filename format are:
heapdump.*.phd
javacore.*.txt

The default file location is
the directory that the Java
process was started from.
The '*' in the filename will
be a timestamp and
process id.

Enable Java verbose garbage collection:

{ add these JVM options to your application startup profile/script }

-verbose:gc
-Xdump:heap:events=systhrow,filter=java/lang/OutOfMemoryError

This will require the process to be restarted.

Save stderr (standard error or 2>file) for the process:

Save the standard error (stderr) for the Java process to a file if not
already captured by the application.
This will require the process to be restarted. This is required to
capture the verbose GC data.

Collect data:

mkdir -p /PATH/PMR#/MM-DD-HH/data1

cd /PATH/PMR#/MM-DD-HH/data1

{ if process is still active or run prior to out of memory }

vmstat -It 1 20 > vmstat.out 2>&1 &
svmon -O segment=category -P > svmon-p.out 2>&1
ipcs -saPrX > ipcs.out 2>&1
ps avwwwg > ps-avwwwg.out 2>&1

gencore JAVA_PID ../core.dmp

{ copy the javacore.*.txt files to data1 directory }
{ copy the java headdump.*.phd files to data1 directory }
{ copy the Snap.*.trc files to data1 directory }
{ copy application log files to data1 directory }

{ identify full path to java executable }

snapcore -d . ../core.dmp JAVA_EXE

{ capture the following minimum configuration information }
prtconf > prtconf.out 2>&1
lslpp -hac > lslpp-hac.out 2>&1
instfix -i > instfix-i.out 2>&1
emgr -lv3 > emgr-lv3.out 2>&1
JAVA_EXE -version > java-version.out 2>&1

Package data:

cd /PATH/PMR#/MM-DD-HH
tar -cf - data1 | gzip -c > PMR#.MM-DD-HH.tgz

Check List (data to be captured and uploaded):

1. snapcore data (which contains the AIX core and libraries)
2. performance data (e.g., vmstat, svmon, etc)
3. All javacore files
4. Any heapdump.*.phd or Snap.*.trc files
5. Minimum configuration information
6. Application log files which contain verbose:gc entries

The primary types of memory issues are:

1. Running out of Java heap
2. Running out of Native heap
3. Overcommitted on system memory

1. The AIX core (gencore and snapcore) is used to
obtain application information about the active
process. In order to inspect the AIX core, it can not
be truncated. If the AIX core file is truncated, the
following commands will have to be executed as the
root user:

chuser fsize=-1 data=-1 core=-1 user_id
chdev -l sys0 -a fullcore=true

Then Relogin as user and restart all processes, then
recollect and upload the data. For J2EE Application
Servers, the node agent / manager will also need to
be restarted prior to restarting the application server
instance.

2. The Xdump option enables the JVM to generate
a heapdump file that can be analyzed using the IBM
Health Center tool.

3. In the javacore file (a text file), look for:

The amount of used Java heap, JIT code cache, JIT
data cache, and Shared Class cache.

4. If its a 32bit process and there is svmon data,
check the "working storage" segments. There is a
high probably that LDR_CNTRL may need to be
changed to something similar to:

LDR_CTRNL=MAXDATA=0xB0000000@DSA

5. If there is potential native memory issue, do:

a. Add JVM option:

{the following is one option, no spaces}
-Xdump:system:events=systhrow,

filter=java/lang/OutOfMemoryError,

request=exclusive+prepwalk

b. AIX environment:
MALLOCDEBUG=log:extended,stack_depth:12

c. When OutOfMemory (OOM) occurs, collect AIX
core, snapcore, etc.

5. If customer is unable or unsure how to redirect
standard error for the verbose GC data, enable the
JVM option:

-Xverbosegclog:/PATH/PMR#/MM-DD-HH/gc/gc.log

Setting this option will require the process to be
restarted.

More detailed information on AIX procedures is available by accessing these web pages:

IBM Support Handbook

ftp://ftp.software.ibm.com/software/server/handbook/webhndbk.pdf

AIX MustGather

http://www-01.ibm.com/support/docview.wss?uid=aixtools-5041a981

AIX Support Center Tools

http://www.ibm.com/support/aixtools

AIX Support and Service Page

http://www-03.ibm.com/systems/power/software/aix/service.html

AIX Data Upload Instructions and Sites

HTTP (Secure) Sites

http://www.ecurep.ibm.com/app/upload

 http://testcase.boulder.ibm.com

FTP Sites

 http://www-05.ibm.com/de/support/ecurep/send_ftp.html

 ftp://testcase.boulder.ibm.com

Testcase files can manually be uploaded using the FTP command by following these instructions. Replace FILE_TO_UPLOAD with the

name of the file to be uploaded. The full PMR# must be included in the filename (e.g., 12345.567.000.data.tar).

 ftp testcase.boulder.ibm.com

 login: ftp

 password: ftp
 cd /toibm/aix

 bin

 put FILE_TO_UPLOAD
 quit

If you experience issues uploading data using one method, please try one of the other available methods. Also, here is a reference

document for troubleshooting connection issues to ftp://testcase.boulder.ibm.com (/toibm/aix):

http://techsupport.services.ibm.com/390/ftp_pdpsi_ext.html

Last Change: 03-31-2015

