

4777 Magnetic Stripe Unit and
4778 PIN-Pad Magnetic Stripe Reader IBM

OS/2 Programming Guide

 SA34-2205-00

4777 Magnetic Stripe Unit and
4778 PIN-Pad Magnetic Stripe Reader IBM
OS/2 Programming Guide

 SA34-2205-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

First Edition (September 1994)

Changes are made periodically to the information herein; before using this publication in connection with the operation of IBM
systems, consult your IBM representative to be sure you have the latest edition and any Technical Newsletters.

IBM does not stock publications at the address given below; requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed, comments may be
addressed to IBM Corporation, Department 78C, 1001 W. T. Harris Boulevard West, Charlotte, NC 28262-8563, U.S.A. IBM may
use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
License . ix
Trademarks . ix

About This Book . xi
Who Should Read This Book . xi
How This Book Is Organized . xi
Related Publications . xii

Chapter 1. Introducing the 4777 Magnetic Stripe Unit and the 4778
PIN-Pad Magnetic Stripe Reader . 1-1

The 4777 Magnetic Stripe Unit . 1-1
The 4778 PIN-Pad Magnetic Stripe Reader . 1-2

Chapter 2. Loading and Initializing the Device Driver 2-1
Prerequisites . 2-1
Automatically Loading the Device Driver . 2-1
Manually Loading the Device Driver . 2-2
Loading the Dynamic Link Libraries . 2-3

Loading the 4777 Dynamic Link Library . 2-3
Loading the 4778 Dynamic Link Library . 2-3

Loading the Message Files . 2-4

Chapter 3. Understanding the 4777 Application Program Interface 3-1
Using the 4777 Device-Support Code . 3-2
Opening the 4777 (MagOpen) . 3-2
Closing the 4777 (MagClose) . 3-3
Loading the Device Parameters (MagLoadDevParms) 3-4
Setting the Multitrack-Read Operation Mode (MagSetOperationMode) . . . 3-7
Encoding Magnetic Data (MagEncodeData) 3-8
Resetting the 4777 (MagResetDevice) . 3-9
Stopping an I/O Operation (MagAbort) . 3-9
Reading the Device Parameters (MagReadDevParms) 3-10
Reading the Error Statistics (MagReadErrorStats) 3-11
Reading the Configuration Status (MagReadConfigStatus) 3-12
Reading Magnetic Data (MagReadData) . 3-13

Chapter 4. Understanding the 4778 Application Program Interface 4-1
Opening the Device . 4-3

PinOpen . 4-3
PinMagOpen . 4-4

Closing the Device . 4-5
PinClose . 4-5
PinMagClose . 4-6

Stopping an I/O Operation . 4-7
PinAbort . 4-7
PinMagAbort . 4-8

Reading the Configuration Status . 4-9
PinReadConfigStatus . 4-9
PinMagReadConfigStatus . 4-11

 Copyright IBM Corp. 1994 iii

Magnetic-Stripe Functions . 4-13
Loading the Device Parameters (PinMagLoadDevParms) 4-13
Setting the Multitrack-Read Operation Mode (PinMagSetOperationMode) 4-16
Resetting the 4778 (PinMagResetDevice) 4-17
Reading the Device Parameters (PinMagReadDevParms) 4-18
Reading the Error Statistics (PinMagReadErrorStats) 4-19
Reading Magnetic Data (PinMagReadData) 4-20

4778 PIN Keypad Function Calls . 4-22
Setting the Nonencrypted Mode (PinSetModeClr) 4-22
Setting the Encrypted Mode (PinSetModeEnc) 4-23
Entering the Master Key Manually (PinEnterMasterKey) 4-24
Loading the Master Encryption Key (PinLoadMasterKey) 4-26
Loading the Encryption Key (PinLoadKey) 4-28
Loading the Initial-Chaining Value (PinLoadICV) 4-29
Loading the PIN Verification Parameters (PinLoadVerifParms) 4-30
Creating the 4704 PIN Block (PinReadPin4704) 4-31
Creating the 3624 PIN Block (PinReadPin3624) 4-32
Creating the ANSI X9.8 PIN Block (PinReadPinAnsi98) 4-34
Verifying the PIN Block (PinVerifyPin) . 4-36
Creating the Offset Data (PinCreateOffsetData) 4-38
Generating the Message Authentication Code (PinGenerateMac) 4-40
Verifying the Message Authentication Code (PinVerifyMac) 4-43
Running the Device Diagnostic Test (PinExecDevDiag) 4-45
Reading the Device Serial Number (PinReadSN) 4-47
Reading the Nonencrypted Data (PinReadClearData) 4-48
Writing to the Display (PinWriteDisplay) . 4-49

Chapter 5. Data Formats . 5-1
Magnetic-Stripe Data Format . 5-1

Read Format . 5-1
Reading Data . 5-3

PIN Data Formats . 5-4
Nonencrypted PIN Data Format . 5-4
Encrypted PIN Data Format . 5-5
4704 EPP Format . 5-5
ANSI X9.8 Format . 5-6
3624 PIN Format . 5-7
Verifying the 3624 PINs . 5-7

Managing the Cryptographic Keys . 5-9
Loading Keys . 5-9
Using Key Variants . 5-10
Converting a Master Key to the Keypad-Entry Format 5-12

Using Message Authentication Codes . 5-14

Chapter 6. 4777 Multiple-Virtual-DOS-Machine I/O System 6-1
4777 MVDM I/O System . 6-1
Loading the 4777 MVDM Device Driver . 6-2

Automatic Installation . 6-2
Manual Installation . 6-2

Using the 4777 MVDM Device Driver . 6-3
DOS Application Program Interface . 6-4
OS/2 Protected-Mode Operation . 6-4
Avoiding Unwanted Initialization Error Messages 6-5

iv 4777 and 4778 OS/2 Programming Guide

Chapter 7. 4778 Multiple-Virtual-DOS-Machine I/O System 7-1
4778 MVDM I/O System . 7-1
Loading the 4778 MVDM Device Driver . 7-2

Automatic Installation . 7-2
Manual Installation . 7-2

Using the 4778 MVDM Device Driver . 7-3
DOS Application Program Interface . 7-4
OS/2 Protected Mode . 7-4
Avoiding Unwanted Initialization Error Messages 7-5

Chapter 8. Messages and Status Codes . 8-1
Installation Messages . 8-1
Application Program Status Codes . 8-5

PIN Keypad Status Codes . 8-5
Magnetic-Stripe Operation Status Codes . 8-7

Index . X-1

 Contents v

vi 4777 and 4778 OS/2 Programming Guide

 Figures

1-1. 4777 Magnetic Stripe Unit . 1-1
1-2. 4778 PIN-Pad Magnetic Stripe Reader 1-3
3-1. Default Values for the MagLoadDevParms Track Parameters 3-6
4-1. Default Values for the PinMagLoadDevParms Track Parameters . . 4-15
5-1. Single-Track Read-Data Format . 5-1
5-2. Double-Track Read-Data Format . 5-1
5-3. Translations for Nonencrypted PIN Keypad Data 5-4
5-4. 4704 EPP PIN Format . 5-5
5-5. ANSI X9.8 PIN Format . 5-6
5-6. 3624 PIN Format . 5-7
5-7. Verifying the 3624 PINs . 5-8
5-8. Key Variants . 5-11
5-9. Variant Descriptor Bytes for the 4778 Commands 5-11

5-10. Example of a Master Key Conversion 5-12
5-11. Hexadecimal-to-Keystroke Conversion Table 5-13
5-12. Using Message Authentication Codes 5-15

6-1. 4777 MVDM I/O System . 6-1
7-1. 4778 MVDM I/O System . 7-1

 Copyright IBM Corp. 1994 vii

viii 4777 and 4778 OS/2 Programming Guide

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
programs, or services, except those expressly designated by IBM, are the user’s
responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, Connecticut 06904-2501,
U.S.A.

 License
You may use the files which make up Feature Code 3921 (Programs) with the IBM
4777 or 4778 only in accordance with the IBM Systems License Agreement that
accompanies the Programs.

 Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

IBM Personal Computer AT
Operating System/2 Personal System/2
OS/2 PS/2
PC/XT PS/ValuePoint
Personal Computer XT TopView

 Copyright IBM Corp. 1994 ix

x 4777 and 4778 OS/2 Programming Guide

About This Book

This book tells you how to control the IBM* 4777 Magnetic Stripe Unit and the IBM*

4778 PIN-Pad Magnetic Stripe Reader in an Operating System/2* (OS/2*)
environment. It explains how to customize, load, and use the device driver. This
guide also helps you write application programs that access the device driver.

Who Should Read This Book
The information in this book is intended for people who write, or maintain, system
and application programs that work with the 4777 and the 4778.

How This Book Is Organized
This book contains the following sections:

Chapter 1, “Introducing the 4777 Magnetic Stripe Unit and the 4778 PIN-Pad
Magnetic Stripe Reader,” describes the 4777 Magnetic Stripe Unit and 4778
PIN-Pad Magnetic Stripe Reader devices.

Chapter 2, “Loading and Initializing the Device Driver,” tells you how to load and
initialize the device driver in an OS/2 environment.

Chapter 3, “Understanding the 4777 Application Program Interface,” lists function
calls that are available when you use the 4777 device driver.

Chapter 4, “Understanding the 4778 Application Program Interface,” lists function
calls that are available when you use the 4778 device driver.

Chapter 5, “Data Formats,” describes the data stream formats used by the 4778
PIN-Pad Magnetic Stripe Reader, including the use of cryptographic keys, personal
identification number (PIN) formats, and message authentication codes.

Chapter 6, “4777 Multiple-Virtual-DOS-Machine I/O System,” tells you how to load
and use the 4777 multiple-virtual-DOS-machine (MVDM) I/O system.

Chapter 7, “4778 Multiple-Virtual-DOS-Machine I/O System,” tells you how to load
and use the 4778 multiple-virtual-DOS-machine (MVDM) I/O system.

Chapter 8, “Messages and Status Codes,” lists the installation messages for the
4777 and 4778 devices and provides an explanation of each message. It also
includes a list of the application program status codes and an explanation for each
code.

* Trademark of IBM

 Copyright IBM Corp. 1994 xi

 Related Publications
You might need additional information from one or more of the following
publications:

 OS/2 Programming Guide, SA34-2194

4777 Magnetic Stripe Unit and 4778 PIN-Pad Magnetic Stripe Reader DOS
Programming Guide, SA34-2206

4700 Finance Communication System: System Summary, GC31-2016

4700 Finance Communication System, Controller Programming Library;
Volume 5: Cryptographic Programming, GC31-2070

4700 Financial I/O Planning Guide, GC31-3762

4777 Magnetic Stripe Unit Installation Guide

xii 4777 and 4778 OS/2 Programming Guide

Chapter 1. Introducing the 4777 Magnetic Stripe Unit and the
4778 PIN-Pad Magnetic Stripe Reader

This chapter describes the IBM 4777 Magnetic Stripe Unit and the IBM 4778
PIN-Pad Magnetic Stripe Reader.

The 4777 and 4778 are compatible with the IBM 4700 Finance Communication
System family of programs and products. For more information about the 4700
Finance Communication System, see the 4700 Finance Communication System:
System Summary.

The 4777 Magnetic Stripe Unit
The 4777 Magnetic Stripe Unit, available in four models, is a countertop
magnetic-stripe unit (see Figure 1-1). The 4777 reads and encodes
magnetic-stripe documents that are manually passed through the device.

The 4777 is based on the IBM 4717 Magnetic Stripe Unit. You can attach the 4777
to the serial port or the auxiliary port of an IBM Personal System/2* (PS/2*)
workstation or a PS/ValuePoint* workstation. You can also attach both the 4777
and the 4778 PIN-Pad Magnetic Stripe Reader to your workstation with a special
connector. For more information about installing both devices on the same
workstation, see the 4777 Magnetic Stripe Unit Installation Guide.

Note: For serial port attachment the 4777 cannot be installed on the same system
with a 4717 device. Although they are similar in operation, the device drivers for
the 4717 devices are not compatible with the 4777 device.

Warning: The 4777 does not differentiate one medium from another. If you try to
encode a previously encoded medium, the previously data can be destroyed.
Because of this and other operations that require encoding expertise, only
authorized banking personnel should use the 4777 to encode data.

Figure 1-1. 4777 Magnetic Stripe Unit

* Trademark of IBM

 Copyright IBM Corp. 1994 1-1

Model 001 Reads, on a single pass, tracks 1 and 2 on credit cards and
identification cards. This model reads track 1 and track 2 at 75 or
210 bits per inch (bpi), in accordance with American National
Standards Institute (ANSI) standards X4.16-1983 and the International
Standards Organization (ISO) standards 7810 and 7811/2-5.

Model 002 Reads tracks 2 and 3 on credit cards and identification cards. It also
reads and encodes passbooks. This model reads tracks 2 and 3 of
credit cards and identification cards at 75 or 210 bpi. It encodes
passbooks using the 4700 specifications or in accordance with the
ISO standard 8484. It reads passbooks that are encoded by the
IBM 3604 Keyboard Display, by the IBM 4704 Keyboard Display, or in
accordance with the ISO standard 8484.

Model 003 Reads and encodes tracks 1 and 2 on credit cards and identification
cards in accordance with the ISO and the ANSI specifications. This
model reads tracks 1 and 2 at 75 or 210 bpi, and encodes track 1 at
210 bpi and track 2 at 75 bpi. The 4777 Model 003 is useful in an
administrative work area of a financial institution that creates the
identification cards for personal banking machines when a customer
opens an account.

Model 004 Reads tracks 2 and 3 on credit cards and identification cards and reads
passbooks. This model reads tracks 2 and 3 at 75 or 210 bpi. It
reads passbooks that are encoded by the IBM 3604 Keyboard Display,
by the IBM 4704 Keyboard Display, or in accordance with the
ISO Standard 8484.

Note: This model is available only in Europe, the Middle East, and
Asia.

The 4778 PIN-Pad Magnetic Stripe Reader
The 4778 PIN-Pad Magnetic Stripe Reader, available in three models, is a
countertop keypad with or without a magnetic-stripe reader (MSR) (see Figure 1-2
on page 1-3). The three models of the 4778 are described below:

Model 001 Reads tracks 1 and 2 on credit and ID cards on a single pass.
Supports application programs requiring a 12-key PIN pad.

Model 002 Supports application programs requiring a 12-key PIN pad.

Model 003 Reads tracks 1, 2, and 3 on credit and ID cards. Supports application
programs requiring a 12-key PIN pad.

The keypad is used to enter a personal identification number (PIN) for validating
financial transactions. The 4778 keypad accepts and encrypts PINs with enhanced
security. The keypad has 10 numeric keys, 2 special keys, and a 16-character
display. The magnetic-stripe reader lets your applications read data from magnetic
stripes on credit cards or ID cards.

1-2 4777 and 4778 OS/2 Programming Guide

Figure 1-2. 4778 PIN-Pad Magnetic Stripe Reader

You can attach both the 4778 PIN-Pad Magnetic Stripe Reader and the 4777
Magnetic Stripe Unit to your workstation with a special connector. For more
information about installing both devices on the same workstation, see the 4778
PIN-Pad Magnetic Stripe Reader Installation Guide. The magnetic-stripe reader in
the 4778 provides the same function as the IBM 4777 Model 001 Magnetic Stripe
Unit.

The 4778 PIN keypad is based on the IBM 4718 PIN Keypad. You can attach the
4778 to the serial port or to the auxiliary port of an IBM Personal System/2 (PS/2)
workstation or a PS/ValuePoint workstation.

Note: For serial port attachment the 4778 cannot be installed on the same system
with a 4718 device. Although they are similar in operation, the device drivers for
the devices are not compatible.

Operations available with the 4778 PIN-Pad Magnetic Stripe Reader:

Reads data encoded in formats of either the American National Standards
Institute (ANSI) X4.16-1983 or the International Organization for
Standardization (ISO) 7810 and 7811/2-5.

Operates in clear or encrypted mode

Uses the Data Encryption Standard (DES) algorithm

Uses a master key that can be a single-length key or a double-length key

Encrypts PINs using the American National Standards Institute (ANSI) X9.8,
IBM 3624 Keyboard Display, or IBM 4704 Keyboard Display formats within the
keypad

Lets you download master keys or enter them using the keypad

Generates or verifies a message authentication code (MAC)

Verifies a PIN or creates PIN offset data using the IBM 3624 Consumer
Transaction Facility algorithm

 Chapter 1. Introducing the 4777 Magnetic Stripe Unit and the 4778 PIN-Pad Magnetic Stripe Reader 1-3

1-4 4777 and 4778 OS/2 Programming Guide

Chapter 2. Loading and Initializing the Device Driver

This chapter describes how to load and initialize the 4777 and 4778 device drivers
and how to configure your operating environment. It includes the following
sections:

Automatically loading and initializing the device driver
Manually loading and initializing the device driver
Loading the dynamic link libraries
Loading the message files

For more information about using the 4777 and 4778 in a
multiple-virtual-DOS-machine (MVDM) environment, see Chapter 6, “4777
Multiple-Virtual-DOS-Machine I/O System” and Chapter 7, “4778
Multiple-Virtual-DOS-Machine I/O System.”

Installation Notes:

If you installed the OS/2 device driver for a 4777, do not install the device
driver for a 4778. One device driver supports both the 4777 and 4778; install
the device driver only once for either the 4777 or the 4778.

If you are using a virtual-machine-boot (VMB) Disk Operating System (DOS)
session, you must add the device-driver statements to the CONFIG.SYS file
that is used to start the DOS session.

 Prerequisites
The 4777, 4778, and device-driver software can be used on the following systems:

 Personal System/2

 PS/ValuePoint

OS/2 Version 1.3 (or higher) operating system

If you use the multiple-virtual-DOS-machine (MVDM) I/O system, you need the
OS/2 Version 2.0 (or higher) operating system.

Automatically Loading the Device Driver
To load and initialize the device driver automatically, do the following:

1. Insert the OS/2 device-drivers diskette in the A: drive.
2. Type A: FINSTALL at the system prompt.

Select the configuration you want on the series of panels that the installation
program displays. Existing device support specified in the CONFIG.SYS file for the
4777 and 4778 is remarked out in the CONFIG.SYS file. The program updates the
files that contain the device-support code and copies them to the target drive that
you specify.

 Copyright IBM Corp. 1994 2-1

Manually Loading the Device Driver
To manually load and initialize the 4777 and 4778 device driver, copy the
FIOSERDD.SYS or FIOAUXDD.SYS file from the OS/2 device-drivers diskette to
your target drive. Include the following DEVICE statement in your CONFIG.SYS
file:

DEVICE = [d: [path]] namedd.SYS
[/Cx/M/P/I/W/S]

Note: The brackets [] indicate optional parameters.

The device statement parameters are:

d:path
The identifier for the disk drive or the diskette drive (d:) and the
directory-search sequence to locate the FIOSERDD.SYS or FIOAUXDD.SYS
file.

namedd.SYS
The name of the device-driver data set, either FIOSERDD.SYS for serial port
attach or FIOAUXDD.SYS for auxiliary port attach. Copy this file to the
directory specified in the path parameter.

[/Cx/M/P/I/W/S]
The optional parameters define the following:

A serial port other than the default value (COM1)
Devices attached to the auxiliary or serial port
Use of delay operations when an error occurs
Use of a 4778 for magnetic-stripe functions

At least one blank must precede the options list. You can specify the optional
parameters in any combination and sequence: /Cx/M/P/I/W/S .

/Cx (Serial only) Indicates the COM (serial) port to which the devices are
attached, where x can be 1, 2, 3, or 4. If you do not specify this option,
the default value is to use the COM1 port.

/M Indicates that a 4777 is attached. The device driver tests for a 4777. If
the device driver does not find a 4777, it displays an error message. If it
finds a 4777 and it passes the self-test, the application program can
access the device driver.

If the device driver finds a 4777 and you do not specify the
/M parameter, the device driver displays a specification error and the
device driver is installed.

Parameters M and S are mutually exclusive.

/P Indicates that a 4718 or 4778 model 2 is attached. The device driver
tests for a PIN pad. If the device driver does not find a PIN pad, it
displays an error message. If it finds a 4778 or 4718 and the device
passes the self-test, the application program can access the device
driver.

If the device driver finds a 4718 or 4778 PIN pad and you do not specify
the /P parameter, the device driver displays a specification error and the
device driver is installed.

Parameters P and I are mutually exclusive.

2-2 4777 and 4778 OS/2 Programming Guide

/I This parameter is only applicable to the FIOAUXDD.SYS driver used for
attaching a 4778 model 1 or model 3 to the mouse port (auxiliary port).
The device driver tests for a 4778. If the device driver does not find a
4778, it displays an error message. If it finds a 4778 or a 4718 and the
device passes the self-test, the application program can access the
device driver.

Parameters P and I are mutually exclusive.

If the device driver finds a 4778 and you do not specify the /I parameter,
the device driver displays a specification error and the device driver is
installed.

/S This option lets you attach a 4778 device and use it as though it was a
4777 Model 001 device. This lets you change a system configured with
a 4717 Model 001 and a 4718 keypad so that it can use a single
4778 device.

This parameter is ignored if either a 4717 or 4777 is attached or a 4778
MSR is not attached. In either case, an error message is displayed.

Parameters S and M are mutually exclusive.

/W Using this option causes the device-driver operation to pause after
displaying installation messages. The device driver waits indefinitely;
you must press Enter to continue. The device driver displays installation
messages when it detects an error in the operational environment (such
as an error in the device or an error in the options that are specified).

Note: If the device driver detects a critical error during initialization, the
device driver might not load into storage or it might not establish
communication with the application program.

Loading the Dynamic Link Libraries

Loading the 4777 Dynamic Link Library
To load the 4777 dynamic link library (DLL), copy the MAGCALLS.DLL
dynamic-link-library file to the root directory or to a user-defined library directory.
Identify this library directory to the operating system by modifying the LIBPATH
statement in the CONFIG.SYS file as follows:

SET LIBPATH = d: PATH ;

The parameters for the SET LIBPATH statement are:

d: The identifier for the disk drive or the diskette drive

PATH The directory-search sequence for the disk or the diskette that
contains the MAGCALLS.DLL file

Loading the 4778 Dynamic Link Library
To load the 4778 dynamic link libraries, copy the PINCALLS.DLL and PINMSR.DLL
files to the root directory or to a user-defined library directory. Identify this library
directory to the operating system by modifying the LIBPATH statement in the
CONFIG.SYS file as follows:

SET LIBPATH = d: PATH ;

 Chapter 2. Loading and Initializing the Device Driver 2-3

The descriptions of the parameters for the SET LIBPATH statement are as follows:

d: This parameter specifies the identifier for the disk drive or the
diskette drive.

PATH This parameter specifies the directory-search sequence for the
disk or the diskette that contains the PINCALLS.DLL and
PINMSR.DLL files.

Loading the Message Files
The OS/2 device-support code uses the FIO.MSG and FIOH.MSG message files to
generate the installation messages. If you loaded the message files when you
installed another device, do not load them again. If you did not load the message
files, copy the FIO.MSG and FIOH.MSG message files to the root directory or to a
user-defined library directory. Identify this library directory to the device-support
code by modifying the DPATH statement in the CONFIG.SYS file as follows:

SET DPATH = d: PATH ;

The descriptions of the SET DPATH statement parameters are as follows:

d: This parameter specifies the identifier for the disk drive or the
diskette drive.

PATH This parameter specifies the directory-search sequence for the
disk or the diskette that contains the FIO.MSG and FIOH.MSG
message files.

2-4 4777 and 4778 OS/2 Programming Guide

Chapter 3. Understanding the 4777 Application Program
Interface

This chapter describes the application program interface (API) for the
4777 device-support code. The device-support code supplies the API to the
OS/2 operating system and supports the attachment of all four models of the 4777
Magnetic Stripe Unit.

Your application program can use the function calls of the 4777 device-support
code to pass data to and from the 4777. The 4777 device-support code enables
your application program to do the following:

Select which tracks the 4777 reads or encodes
Specify the track parameters for a read or an encode operation
Read or encode the magnetic-stripe data
Check the validity of the data that is read or encoded

The 4777 OS/2 device-support code includes the following components and data
files:

File Name Description

FIOSERDD.SYS This file contains the device driver that supports serial
attachment of both the 4777 and the 4778.

FIOAUXDD.SYS This file contains the device driver that supports mouse port
(auxiliary) attachment of both the 4777 and the 4778.

MAGCALLS.DLL This file contains the 4777 device-support code that the
dynamic link library (DLL) function calls implement for the
API.

FIO.MSG This file contains the object file for the error messages.

FIOH.MSG This file contains the object file for the help messages.

 Copyright IBM Corp. 1994 3-1

Using the 4777 Device-Support Code
This section describes the function calls for the 4777 device-support code. The
dynamic-link-library name for the 4777 I/O DLL file is MAGCALLS.DLL. This
section describes the following function calls:

Programming Note: This section describes the 4777 function calls in mixed case
for readability, but they are only recognized as uppercase character strings. When
you use a compiler that generates mixed-case external names, code the function
calls in uppercase letters. For example, the function call MagOpen is actually the
external name MAGOPEN.

Function Call Used For

MagOpen Opening the 4777, see page 3-2

MagClose Closing the 4777, see page 3-3

MagLoadDevParms Loading the device parameters, see page 3-4

MagSetOperationMode Setting the multitrack-read operation mode, see page 3-7

MagEncodeData Encoding magnetic data, see page 3-8

MagResetDevice Resetting the 4777, see page 3-9

MagAbort Stopping an I/O operation, see page 3-9

MagReadDevParms Reading the device parameters, see page 3-10

MagReadErrorStats Reading the error statistics, see page 3-11

MagReadConfigStatus Reading the configuration status, see page 3-12

MagReadData Reading magnetic data, see page 3-13

Opening the 4777 (MagOpen)
The MagOpen function call opens the 4777 for the current session. When the
application program issues subsequent function calls, the function calls use the
4777 device-driver handle that they receive from this MagOpen function call.

MagOpen (MagHandle, rc)

 Parameters
The parameters for the MagOpen call are:

MagHandle
This parameter is a long pointer to a word value where the 4777 device-support
code returns a value that represents the 4777 device-driver handle to the
application program. Your application program uses the 4777 device-driver
handle as the controlling identifier for all subsequent function calls to the 4777
device-support code.

rc This parameter is a word value that represents the return code from the
MagOpen function call. The valid return codes are:

0 No error.
110 The 4777 device driver failed to open.
1551 The 4777 device-support code ended the operation.

3-2 4777 and 4778 OS/2 Programming Guide

 Remarks
To request services from the 4777 device-support code, the application program
issues the MagOpen function call to generate a 4777 device-driver handle. The
handle is a 16-bit binary value that the 4777 device-support code returns to the
application program after the MagOpen function call completes.

Following a successful MagOpen function call, the 4777 device-support code
parameters and operating modes are set to their default values. For more
information about the default values, see “Loading the Device Parameters
(MagLoadDevParms)” on page 3-4 and “Setting the Multitrack-Read Operation
Mode (MagSetOperationMode)” on page 3-7. To establish the correct operational
environment, the application program issues additional function calls.

This function call opens the 4777 device driver for the following functions:

Read and write operations
 Deny-all-sharing mode

Errors not reported to the system critical-error handler

When the application program issues subsequent function calls, the function calls
use the MagHandle value that they receive from this MagOpen function call. If your
application program issues a function call with a different MagHandle value, the
function call fails.

Only one application program at a time can use the 4777 device-support code. A
second application program cannot use the 4777 until the controlling application
program issues a MagClose function call.

Closing the 4777 (MagClose)
The MagClose function call closes the 4777 for the current session.

MagClose (MagHandle, rc)

 Parameters
The parameters for the MagClose call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

rc This parameter is a word value that represents the return code from the
MagClose function call. The valid return codes are:

0 No error.
1540 The 4777 MagHandle parameter is not valid.

 Remarks
When the 4777 device-support code is closed, it is available to other application
programs. When the application program issues a MagClose function call, the
4777 device-support code closes the parameters for the 4777 device-support code,
the 4777 is disabled, and all the indicators are switched off.

 Chapter 3. Understanding the 4777 Application Program Interface 3-3

Loading the Device Parameters (MagLoadDevParms)
The MagLoadDevParms function call loads the operating parameters of the 4777.

MagLoadDevParms (MagHandle, TrackParms, rc)

 Parameters
The parameters for the MagLoadDevParms call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

TrackParms
This parameter is a long pointer to a 24-byte buffer that contains the track
parameters. Bytes 1 through 8 contain the track-1 parameters,
bytes 9 through 16 contain the track-2 parameters, and bytes 17 through 24
contain the track-3 parameters.

Byte 1 - Data and longitudinal redundancy check (LRC) parity definition
This parameter defines the magnetic-character parity definition for both the
data characters and the LRC character as follows:

Value Meaning
00H Odd data parity and odd LRC parity
01H Even data parity and even LRC parity
02H Odd data parity and even LRC parity
03H Even data parity and odd LRC parity

During the MagReadData function call, this parameter verifies that the
parity definition is correct for each magnetic character read from the stripe.
During the MagEncodeData function call, this parameter adds the parity
definition for each magnetic character that is received. This parameter also
assigns parity to the LRC value that is generated for the encode data
stream.

Byte 2 - Character definition
This parameter indicates the size of the magnetic character in bits. The
fields for this parameter are as follows:

Value Meaning
05H 5 bits per character
06H 6 bits per character
07H 7 bits per character

The size value includes the magnetic character and its parity bit. For
example, a character definition of 5 bits per character correlates to a 4-bit
character with one parity bit to form a complete magnetic character.

The read-data or encode-data characters that pass between the application
program and the 4777 device-support code are always in an 8-bit byte and
do not include the parity bit. The 4777 device-support code adds and
checks the parity of the characters.

3-4 4777 and 4778 OS/2 Programming Guide

Byte 3 - Primary start-of-message (PSOM) character
When the application program issues a MagReadData function call, this
parameter specifies the character that indicates the beginning of a
magnetic record. When the application program issues a MagEncodeData
function call, this parameter specifies the start-of-message (SOM) character
that it adds to the encode data stream.

Byte 4 - Alternate start-of-message (ASOM) character
When the application program issues a MagReadData function call, this
parameter specifies the alternate character that indicates the beginning of a
magnetic record. When the 4777 device-support code looks for the
beginning of a magnetic record, it accepts either the PSOM or the ASOM
character.

The MagEncodeData function call does not use this parameter.

Byte 5 - Primary end-of-message (PEOM) character
When the application program issues a MagReadData function call,
this parameter specifies the character that indicates the end of a magnetic
record. When the application program issues a MagEncodeData function
call, this parameter specifies the EOM character that the 4777
device-support code adds to the encode data stream.

Byte 6 - Alternate end-of-message (AEOM) character
When the application program issues a MagReadData function call, this
parameter specifies the alternate character that indicates the end of a
magnetic record. When the 4777 device-support code looks for the end of
a magnetic record, it accepts either the PEOM or the AEOM character.

The MagEncodeData function call does not use this parameter.

Byte 7 - Encode format control definition
When the application program issues a MagEncodeData function call, this
parameter defines whether the 4777 device-support code encodes on the
magnetic medium one copy or two copies of the encode data stream.
If this parameter requests two copies of the data stream, it also
specifies the number of interrecord zero (IRZ) characters that the
4777 device-support code encodes onto the medium between the two
records.

Encoding two copies of the record usually results in a more reliable reading
of the magnetic medium. When requesting the double-encode option,
ensure that the medium is long enough to contain the two records,
including the leading zeros and the interrecord zeros.

Note: If bit 7 is equal to zero, byte 7 indicates a single record. If bit 7 is
equal to one, byte 7 indicates a double record. Bits 0 through 6 indicate
the number of IRZ characters between the two records.

The MagReadData function call does not use this parameter.

Byte 8 - Number of leading zero characters
This parameter specifies the number of leading zero characters that the
4777 device-support code encodes on the medium before it encodes the
first record.

The MagReadData function call does not use this parameter.

 Chapter 3. Understanding the 4777 Application Program Interface 3-5

For more information about the default values of the track-1 parameters, see
Figure 3-1.

Bytes 9 through 16
These 8 bytes contain the track-2 parameters. Their definitions are
identical to the track-1 parameters except that they apply to track 2. For
more information about the default values of the track-2 parameters, see
Figure 3-1.

Bytes 17 through 24
These 8 bytes contain the track-3 parameters. Their definitions are
identical to the track-1 parameters except that they apply to track 3. For
more information about the default values of the track-3 parameters, see
Figure 3-1.

rc This parameter is a word value that represents the return code from the
MagLoadDevParms function call. The valid return codes are:

0 No error.
1540 The 4777 MagHandle parameter is not valid.
1541 The 4777 is not available.
1545 The track-1 parameter is not valid.
1546 The track-2 parameter is not valid.
1547 The track-3 parameter is not valid.

Figure 3-1. Default Values for the MagLoadDevParms Track Parameters

Track Byte Description Default

Track 1 Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

Data/LRC parity definition
Character definition
Primary SOM
Alternate SOM
Primary EOM
Alternate EOM
Format control
Leading zero characters

02H
07H
05H
05H
1FH
1FH
00H (single record)
0AH

Track 2 Byte 9
Byte 10
Byte 11
Byte 12
Byte 13
Byte 14
Byte 15

Byte 16

Data/LRC parity definition
Character definition
Primary SOM
Alternate SOM
Primary EOM
Alternate EOM
Format control

Leading zero characters

02H
05H
0BH
0DH
0FH
0CH
85H (Model 2 only)
00H (Model 3 only)
3CH (Model 2 only)
05H (Model 3 only)

Track 3 Byte 17
Byte 18
Byte 19
Byte 20
Byte 21
Byte 22
Byte 23
Byte 24

Data/LRC parity definition
Character definition
Primary SOM
Alternate SOM
Primary EOM
Alternate EOM
Format control
Leading zero characters

02H
05H
0BH
0DH
0FH
0CH
85H
3CH

3-6 4777 and 4778 OS/2 Programming Guide

 Remarks
When the application program issues a MagOpen function call, the parameters are
set to the default values defined in Figure 3-1 on page 3-6. The application
program then issues a MagReadDevParms function call (see “Reading the Device
Parameters (MagReadDevParms)” on page 3-10) to determine the current
operational characteristics. The application program issues this function call to
change any of the parameters to match the requirements of the application
program.

If a parameter is not valid, the MagReadDevParms function call fails. The function
call performs the following checks:

The data and LRC parity is 00, 01, 02, or 03.
The character definition is 05, 06, or 07.
The SOM value does not equal 00.
The alternate SOM value does not equal 00.
The EOM value does not equal 00.
The alternate EOM value does not equal 00.
The IRZ value of the encode control does not equal 00 if it is a double record.
The encode leading zeros do not equal 00.

Setting the Multitrack-Read Operation Mode (MagSetOperationMode)
The MagSetOperationMode function call sets the multitrack-read operation mode of
the 4777.

MagSetOperationMode (MagHandle, OperationMode, rc)

 Parameters
The parameters for the MagSetOperationMode call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

OperationMode
This parameter is a word value that defines how the 4777 device-support code
performs a multitrack-read operation. This parameter specifies the fields as
follows:

Bit Description

15–1 These bits are reserved and must be set to zero.

0 If this bit is set to zero, the data returns only if all the requested
track data is valid. If this bit is set to one, the data returns if the
data for at least one of the requested tracks is valid.

rc This parameter is a word value that represents the return code from the
MagSetOperationMode function call. The valid return codes are:

0 No error.
1540 The 4777 MagHandle parameter is not valid.
1541 The 4777 is not available.

 Chapter 3. Understanding the 4777 Application Program Interface 3-7

 Remarks
This function call sets the operational mode for multitrack-read operations. If all the
data that is read from the requested tracks is valid, one mode returns the data to
the application program. If the data from at least one of the requested tracks is
valid, the other mode returns data to the application program (this is the default).

For more information about the read-data format, see Chapter 5, “Data Formats.”

Encoding Magnetic Data (MagEncodeData)
The MagEncodeData function call encodes data on the magnetic media.

MagEncodeData (MagHandle, DataLength, Data, rc)

 Parameters
The parameters for the MagEncodeData call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

DataLength
This parameter is a word value that specifies the length of the encode data
stream that is input in the data buffer. The minimum data length is 2 bytes,
which includes the length byte and the TRK byte for encoding a track with only
an SOM value and an EOM value and no data bytes.

Data
This parameter is a long pointer to the data buffer that contains the data that
will be encoded.

rc This parameter is a word value that represents the return code from the
MagEncodeData function call. The valid return codes are:

0 No error.
1538 The 4777 is not attached.
1539 A hardware error occurred in the 4777.
1540 The 4777 MagHandle parameter is not valid.
1541 The 4777 is not available.
1543 The 4777 does not support encoding for the requested track.
1544 An error occurred in the encode data stream.
1548 An error occurred in the buffer size.
1550 The application program ended the operation.
1551 The 4777 device-support code ended the operation.

 Remarks
This function call encodes the data onto the track that is specified in the TRK
identification field of the encode data stream. For more information about the
encode data stream, see Chapter 5, “Data Formats.”

Until the operator performs a successful operation or the application program
issues a MagAbort function call to end this MagEncodeData function call, the

3-8 4777 and 4778 OS/2 Programming Guide

4777 device-support code blocks the thread for this function call. For more
information about how the application program can end this operation, see
“Stopping an I/O Operation (MagAbort)” on page 3-9.

Resetting the 4777 (MagResetDevice)
The MagResetDevice function call resets the 4777.

MagResetDevice (MagHandle, rc)

 Parameters
The parameters for the MagResetDevice call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

rc This parameter is a word value that represents the return code from the
MagResetDevice function call. The valid return codes are:

0 No error.
1538 The 4777 is not attached.
1540 The 4777 MagHandle parameter is not valid.
1541 The 4777 is not available.
1549 Errors occurred in the 4777 self-test.
1551 The 4777 device-support code ended the operation.

 Remarks
The device self-tests run as a result of this function call. The return code indicates
the completion status of the device self-tests.

Stopping an I/O Operation (MagAbort)
The MagAbort function call cancels a previous MagReadData or MagEncodeData
function call that left the 4777 in the active state.

MagAbort (MagHandle, rc)

 Parameters
The parameters for the MagAbort call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

rc This parameter is a word value that represents the return code from the
MagAbort function call. The valid return codes are:

0 No error.
1540 The 4777 MagHandle parameter is not valid.
1551 The 4777 device-support code ended the operation.

 Chapter 3. Understanding the 4777 Application Program Interface 3-9

 Remarks
This function call disables the 4777 and turns off the device indicators. Before your
application program issues a MagReadData or a MagEncodeData function call, it
must start another thread to support this MagAbort function call. Until the operator
passes the medium through the 4777, the thread for the MagReadData or the
MagEncodeData function call is blocked. You can cancel this blocked thread with
the MagAbort function call.

Reading the Device Parameters (MagReadDevParms)
The MagReadDevParms function call reads the operational parameters of
the 4777.

MagReadDevParms (MagHandle, StatusBuffer, TransferCount, rc)

 Parameters
The parameters for the MagReadDevParms call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

StatusBuffer
This parameter is a long pointer to a 24-byte buffer where the device parameter
status returns. The device parameter status is 8 bytes for the track-1, track-2,
and track-3 parameters.

TransferCount
This parameter is a long pointer to a word value that indicates the size of the
StatusBuffer when the application program issues the function call. When this
parameter returns, it is modified to indicate the actual number of bytes that
were transferred to the StatusBuffer. The maximum transfer count is 24 bytes.

rc This parameter is a word value that represents the return code from the
MagReadDevParms function call. The valid return codes are:

0 No error.
1540 The 4777 MagHandle parameter is not valid.
1548 The data buffer size is too small for the requested data.

 Remarks
This function call returns the device parameter information to the application
program. If the MagReadDevParms function call requests the parameters for all
three tracks, the application program must ensure that the buffer is at least
24 bytes in length. For more information about the parameters that this function
call returns, see “Loading the Device Parameters (MagLoadDevParms)” on
page 3-4.

3-10 4777 and 4778 OS/2 Programming Guide

Reading the Error Statistics (MagReadErrorStats)
The MagReadErrorStats function call reads the error statistics for the 4777.

MagReadErrorStats (MagHandle, StatBuffer, TransferCount, rc)

 Parameters
The parameters for the MagReadErrorStats call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

StatBuffer
This parameter is a long pointer to a 6-byte buffer where the device error
statistics are returned. The format for the error statistics is as follows:

Error Statistic Number of Bytes
Track-1 read error count 1 byte
Track-2 read error count 1 byte
Track-3 read error count 1 byte
Track-1 encode error count 1 byte
Track-2 encode error count 1 byte
Track-3 encode error count 1 byte

TransferCount
This parameter is a long pointer to a word value that indicates the size of the
StatBuffer when the application program issues the function call. When this
parameter returns, it is modified to indicate the actual number of bytes that
were transferred to the StatBuffer. The maximum transfer count is 6 bytes.

rc This parameter is a word value that represents the return code from the
MagReadErrorStats function call. The valid return codes are:

0 No error.
1540 The 4777 MagHandle parameter is not valid.
1548 The data buffer size is too small for the requested data.

 Remarks
This function call reads the 6-byte error statistics for the 4777. Each error count
can have a maximum value of decimal 255. To receive all the error statistics, the
StatBuffer parameter must be at least 6 bytes in length.

The 4777 device-support code maintains the error statistics while it is active (that
is, during the time period between the MagOpen and MagClose function calls).
When the application program issues a MagOpen function call, the error statistics
are set to zero. If you want to maintain the error statistics over a longer period of
time, the application program must read the values before it issues a MagClose
function call and must save the values within the application program data area.

 Chapter 3. Understanding the 4777 Application Program Interface 3-11

 Reading the
Configuration Status (MagReadConfigStatus)

The MagReadConfigStatus function call reads the device read and encode
capabilities of the attached 4777, and it reads the results of the power-on test for
the 4777 device driver.

MagReadConfigStatus (MagHandle, ConfigStatusBuff, rc)

 Parameters
The parameters for the MagReadConfigStatus call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

ConfigStatusBuff
This parameter is a long pointer to the 16-bit word buffer where the
configuration status returns. The format for the configuration status is as
follows:

Bit Description

15 If this bit is set, there is a specification error in an optional
parameter in the CONFIG.SYS file.

14 If this bit is set, a 4777 is not attached.

13 If this bit is set, there are power-on errors in the 4777.

12 If this bit is set, there is a load error or an installation error for the
4777 device driver.

11–7 Reserved; do not use.

6 This bit indicates whether the function call can read track 1.

Value Meaning
0 The function call cannot read track 1.
1 The function call can read track 1.

5 This bit indicates whether the function call can read track 2.

Value Meaning
0 The function call cannot read track 2.
1 The function call can read track 2.

4 This bit indicates whether the function call can read track 3.

Value Meaning
0 The function call cannot read track 3.
1 The function call can read track 3.

3 Reserved; do not use.

2 This bit indicates whether the function call can encode track 1.

Value Meaning
0 The function call cannot encode track 1.
1 The function call can encode track 1.

3-12 4777 and 4778 OS/2 Programming Guide

1 This bit indicates whether the function call can encode track 2.

Value Meaning
0 The function call cannot encode track 2.
1 The function call can encode track 2.

0 This bit indicates whether the function call can encode track 3.

Value Meaning
0 The function call cannot encode track 3.
1 The function call can encode track 3.

rc This parameter is a word value that represents the return code from the
MagReadConfigStatus function call. The valid return codes are:

0 No error.
1540 The 4777 MagHandle parameter is not valid.

 Remarks
The application program uses this function call to determine the capabilities of the
4777 and to detect errors when the device is powered on.

Reading Magnetic Data (MagReadData)
The MagReadData function call reads the magnetic-stripe data from the magnetic
media.

MagReadData (MagHandle, ReadTracks, DataBuffer, TransferCount, rc)

 Parameters
The parameters for the MagReadData call are:

MagHandle
This parameter is the word value 4777 device-driver handle that was obtained
from the MagOpen function call.

ReadTracks
This parameter specifies a 16-bit word value that identifies the tracks that the
function call will read. The format for the ReadTracks parameter is as follows:

Bit Description
15 Setting this bit returns control to the application program after a

magnetic stripe read error; otherwise the device is reset for another
read try.

14–3 Reserved. These bits must be set to zero.
2 The function call reads track 1.
1 The function call reads track 2.
0 The function call reads track 3.

DataBuffer
This parameter is a long pointer to the data buffer where the magnetic read
data returns.

TransferCount
This parameter is a long pointer to a word value that indicates the size of the
DataBuffer when the application program issues the function call. When this

 Chapter 3. Understanding the 4777 Application Program Interface 3-13

parameter returns, it is modified to indicate the actual number of bytes that
were transferred to the DataBuffer. If an error occurs and the read data is not
processed, this parameter returns with a value of zero.

rc This parameter is a word value that represents the return code from the
MagReadData function call. The valid return codes are:

0 No error.
1538 The 4777 is not attached.
1539 An error occurred in the 4777 hardware.
1540 The 4777 MagHandle parameter is not valid.
1541 The 4777 is not available.
1542 The 4777 does not support the track that is requested for the read

operation.
1548 The data buffer size is too small for the requested data.
1550 The application program ended the operation.
1551 The 4777 device-support code ended the operation.
1552 The 4777 experienced a magnetic stripe read error.

 Remarks
This function call reads the magnetic-stripe data from the magnetic media. Until
the operator performs a successful operation or the application program issues a
MagAbort function call to end this MagReadData function call, the thread for this
function call is blocked. For more information about how the application program
can end this function call, see “Stopping an I/O Operation (MagAbort)” on
page 3-9.

The ReadTracks parameter must reflect the actual read capabilities of the 4777 or
an error returns. For more information about how the read capabilities are
determined, see “Reading the Configuration Status (MagReadConfigStatus)” on
page 3-12.

If the ReadTracks parameter indicates a multitrack-read operation, the current state
of the multitrack-read operation mode determines how the read data returns to the
application program. For more information about how the read data returns to the
application program, see “Setting the Multitrack-Read Operation Mode
(MagSetOperationMode)” on page 3-7.

3-14 4777 and 4778 OS/2 Programming Guide

Chapter 4. Understanding the 4778 Application Program
Interface

This chapter describes the application program interface (API) for the
4778 device-support code. The 4778 device-support code supplies the application
program interface to the OS/2 system. This interface is supported only in the
OS/2 environment.

Your application program can use the function calls of the 4778 device-support
code to pass data to and from the 4778. The 4778 device-support code enables
your application program to do the following:

Read magnetic-stripe data
Write information to the keypad display
Read nonencrypted data
Read encrypted data
Read and set device information
Send control data to the 4778
Receive data from the 4778

Note: The 4778 MSR and PIN keypad devices cannot be enabled concurrently.

Programming Note: This chapter describes the 4778 function calls in mixed case
for readability, but they are only recognized as uppercase character strings. For
example, the function call PinOpen is actually the external name PINOPEN. When
you use a compiler that generates mixed-case external names, code the function
calls in uppercase letters.

The 4778 PIN keypad API (PINCALLS.DLL) provides the following function calls:

Function Call Used For

PinOpen Opening the 4778 PIN keypad. See page 4-3.

PinClose Closing the 4778 PIN keypad. See page 4-5.

PinAbort Stopping an I/O operation. See page 4-7.

PinReadConfigStatus Reading the configuration status. See page 4-9.

PinSetModeClr Setting the nonencrypted mode. See page 4-22.

PinSetModeEnc Setting the encrypted mode. See page 4-23.

PinEnterMasterKey Entering the master key manually. See page 4-24.

PinLoadMasterKey Loading the master encryption key. See page 4-26.

PinLoadKey Loading the encryption key. See page 4-28.

PinLoadICV Loading the initial-chaining value. See page 4-29.

PinLoadVerifParms Loading the PIN verification parameters. See page 4-30.

PinReadPin4704 Creating the 4704 PIN block. See page 4-31.

PinReadPin3624 Creating the 3624 PIN block. See page 4-32.

PinReadPinAnsi98 Creating the ANSI X9.8 PIN block. See page 4-34.

PinVerifyPin Verifying the PIN block. See page 4-36.

PinCreateOffsetData Creating the offset data. See page 4-38.

PinGenerateMac Generating the message authentication code. See page 4-40.

 Copyright IBM Corp. 1994 4-1

The name for the 4778 magnetic-stripe reader API dynamic-link-library (DLL) file is
PINMSR. DLL. This API provides the following function calls:

To request services from the 4778 device-support code, the application program
must issue the PinOpen or PinMagOpen function call. This function call opens the
device driver and, when the function call completes successfully, it identifies a
device-driver handle. The parameters for the 4778 and the operating modes are
set to their default values. To establish the correct operational environment, the
application program issues additional function calls.

Note: The 4778 and the 4777 share the same set of device-support codes.

The 4778 device-support code includes the following components and data files:

File Name Description

FIOSERDD.SYS This file contains the device driver that supports serial
attachment of both the 4777 and the 4778.

FIOAUXDD.SYS This file contains the device driver that supports auxiliary
attachment of both the 4777 and the 4778.

PINCALLS.DLL This file contains the 4778 device-support code that the DLL
function calls implement for the PIN keypad API.

PINMSR.DLL This file contains the 4778 device-support code that the DLL
function calls implement for the magnetic-stripe-reader API.

FIO.MSG This file contains the object file for the error messages.

FIOH.MSG This file contains the object file for the help messages.

Function Call Used For

PinVerifyMac Verifying the message authentication code. See page 4-43.

PinExecDevDiag Running the device diagnostic test. See page 4-45.

PinReadSN Reading the device serial number. See page 4-47.

PinReadClearData Reading the nonencrypted data. See page 4-48.

PinWriteDisplay Writing data to the PIN keypad display. See page 4-49.

Function Call Used For

PinMagOpen Opening the 4778 magnetic-stripe reader. See page 4-4.

PinMagClose Closing the 4778 magnetic-stripe reader. See page 4-6.

PinMagLoadDevParms Loading the magnetic-stripe device parameters. See page
4-13.

PinMagSetOperationMode Setting the multitrack-read operation mode. See page 4-16.

PinMagResetDevice Resetting the 4778 magnetic-stripe reader. See page 4-17.

PinMagAbort Stopping an I/O operation. See page 4-8.

PinMagReadDevParms Reading the magnetic-stripe device parameters. See page
4-18.

PinMagReadErrorStats Reading the magnetic-stripe error statistics. See page 4-19.

PinMagReadConfigStatus Reading the magnetic-stripe-reader configuration status. See
page 4-11.

PinMagReadData Reading magnetic data. See page 4-20.

4-2 4777 and 4778 OS/2 Programming Guide

Opening the Device
These function calls open the 4778 device. If you are using the
4778 magnetic-stripe reader, use the PinMagOpen call to access the
magnetic-stripe functions.

 PinOpen
The PinOpen function call opens the 4778 PIN keypad for the current session.
When the application program issues subsequent function calls, the function calls
use the device-driver handle that they receive from this PinOpen function call.

PinOpen (PinHandle, rc)

 Parameters
The PinOpen function call uses the following parameters:

PinHandle
This parameter is a long pointer to a word value where the 4778 device-support
code returns a value that represents the 4778 device-driver handle to the
application program. Your application program uses the 4778 device-driver
handle as the controlling identifier for all subsequent function calls to the
4778 device-support code.

rc This parameter is a word value that represents the return code from the
PinOpen function call. The valid return codes are:

0 No error.
110 The 4778 device driver failed to open.
1798 An error occurred in the PINCALLS.DLL file.

 Remarks
To request services from the 4778 PIN keypad device-support code, the application
program issues the PinOpen function call to generate a 4778 device-driver handle.

This function call opens the 4778 device driver for the following functions:

Read and write operations
 Deny-all-sharing mode

Errors are not reported to the system critical-error handler

When the application program issues subsequent function calls, the function calls
use the PinHandle value that they receive from this PinOpen function call. If your
application program issues a function call with a different PinHandle value, the
function call fails.

Only one application program at a time can use the 4778 PIN-Pad Magnetic Stripe
Reader device-support code. A second application program cannot use the 4778
until the controlling application program issues a PinClose function call.

 Chapter 4. Understanding the 4778 Application Program Interface 4-3

 PinMagOpen
The Open function call opens the 4778 magnetic-stripe reader (MSR) for the
current session. When the application program issues subsequent function calls,
the function calls use the 4778 device-driver handle that they receive from this
PinMagOpen function call.

PinMagOpen (MagHandle, rc)

 Parameters
The PinMagOpen function call uses the following parameters:

MagHandle
This parameter is a long pointer to a word value where the 4778 device-support
code returns a value that represents the 4778 device-driver handle to the
application program. Your application program uses the 4778 device-driver
handle as the controlling identifier for all subsequent function calls to the
4778 device-support code.

rc This parameter is a word value that represents the return code from the
PinMagOpen function. The valid return codes are:

0 No error.
110 The 4778 device driver failed to open.
1551 The 4778 device-support code ended the operation.

 Remarks
To request services from the 4778 MSR device-support code, the application
program issues the PinMagOpen function call to generate a 4778 device-driver
handle. The handle is a 16-bit binary value that the 4778 device-support code
returns to the application program after the PinMagOpen function call completes.

The 4778 device-support code parameters and operating modes are set to their
default values. For more information about the default values, see “Loading the
Device Parameters (MagLoadDevParms)” on page 3-4 and “Setting the
Multitrack-Read Operation Mode (MagSetOperationMode)” on page 3-7. To
establish the correct operational environment, the application program issues
additional function calls.

This function call opens the 4778 device driver for the following functions:

 Read operations
 Deny-all-sharing mode

Errors not reported to the system critical-error handler

When the application program issues subsequent function calls, the function calls
use the MagHandle value that they receive from this PinMagOpen function call. If
your application program issues a function call with a different MagHandle value,
the function call fails.

Only one application program can use the 4778 MSR device-support code at a
time. A second application program cannot use the 4778 until the controlling
application program issues a PinMagClose function call.

4-4 4777 and 4778 OS/2 Programming Guide

Closing the Device
These function calls close the device after an operation is complete. If you are
using the 4778 magnetic-stripe functions, use the PinMagClose call to end the
operation.

 PinClose
The PinClose function call closes the 4778 PIN keypad for the current session.

PinClose (PinHandle, rc)

 Parameters
The PinClose function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

rc This parameter is a word value that represents the return code from the
PinClose function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1798 An error occurred in the PINCALLS.DLL file.
1801 The 4778 device driver is not open.

 Remarks
When the 4778 PIN keypad device-support code is closed, it is available to other
application programs. When the application program issues a PinClose function
call, the 4778 device-support code closes the parameters for the 4778 PIN keypad
device-support code, disables the 4778 PIN keypad, and switches off all the
indicators.

 Chapter 4. Understanding the 4778 Application Program Interface 4-5

 PinMagClose
The PinMagClose function call closes the 4778 MSR for the current session.

PinMagClose (MagHandle, rc)

 Parameters
The PinMagClose function call uses the following parameters:

MagHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinMagOpen function call.

rc This parameter is a word value that represents the return code from the
PinMagClose function call. The valid return codes are:

0 No error.
1540 The 4778 MagHandle parameter is not valid.

 Remarks
When the 4778 MSR device-support code is closed, it is available to other
application programs. When the application program issues a PinMagClose
function call, the 4778 MSR device-support code closes the parameters for the
4778 MSR device-support code, the 4778 MSR is disabled, and all the indicators
are switched off.

4-6 4777 and 4778 OS/2 Programming Guide

Stopping an I/O Operation
These function calls stop any I/O operations that are processing or are waiting to
process. For the 4778 magnetic-stripe functions, use the PinMagAbort call to stop
I/O processing.

 PinAbort
The PinAbort function call ends a PIN keypad I/O operation that is currently
processing or a pending I/O operation.

PinAbort (PinHandle, rc)

 Parameters
The PinAbort function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

rc This parameter is a word value that represents the return code from the
PinAbort function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1801 The 4778 device driver is not open.

 Remarks
This function call disables the 4778 PIN keypad and turns off the device indicators.
Before your application program issues a PIN function call, it must start another
thread to support the PinAbort function call. Until the operator completes the PIN
keypad operation, the thread for the PIN function call is blocked. You can cancel
the blocked thread with the PinAbort function call.

 Chapter 4. Understanding the 4778 Application Program Interface 4-7

 PinMagAbort
The PinMagAbort function call ends a previous PinMagReadData function call that
left the 4778 MSR in the active state.

PinMagAbort (MagHandle, rc)

 Parameters
The PinMagAbort function call uses the following parameters:

MagHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinMagOpen function call.

rc This parameter is a word value that represents the return code from the
PinMagAbort function call. The valid return codes are:

0 No error.
1540 The 4778 MagHandle parameter is not valid.
1551 The 4778 device-support code ended the operation.

 Remarks
This function call disables the 4778 MSR and turns off the device indicators.
Before your application program issues a PinMagReadData, it must start another
thread to support this PinMagAbort function call. Until the operator passes the
medium through the 4778 MSR, the thread for the PinMagReadData function call is
blocked. You can cancel this blocked thread with the PinMagAbort function call.

4-8 4777 and 4778 OS/2 Programming Guide

Reading the Configuration Status
The PinReadConfigStatus and the PinMagReadConfigStatus function calls let your
application determine the configuration status of the 4778.

 PinReadConfigStatus
The PinReadConfigStatus function call reads the configuration status of the
4778 PIN keypad and the configuration status of the device driver for the
application program.

PinReadConfigStatus (PinHandle, StatusBuffer, rc)

 Parameters
The PinReadConfigStatus function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

StatusBuffer
This parameter is a long pointer to a word buffer where the configuration status
returns. The format for the configuration status is as follows:

Bit Description

15 This bit indicates whether the optional parameters in the
CONFIG.SYS file are correct.

Value Meaning
0 The specification of the optional parameters in the

CONFIG.SYS file is correct.
1 There is an error in the specification of an optional

parameter in the CONFIG.SYS file.

14 This bit indicates whether the 4778 is attached.

Value Meaning
0 A 4778 device is attached.
1 A 4778 device is not attached.

13 This bit indicates whether the 4778 PIN keypad passed the device
self-test.

Value Meaning
0 The 4778 PIN keypad device passed the device self-test.
1 The 4778 PIN keypad device failed the device self-test.

12 This bit indicates whether the 4778 device driver was initialized.

Value Meaning
0 The 4778 device driver initialized successfully.
1 The 4778 device driver failed to initialize.

11–1 These bits are reserved.

 Chapter 4. Understanding the 4778 Application Program Interface 4-9

0 This bit indicates whether the 4778 device driver is in the
nonencrypted mode.

Value Meaning
0 The 4778 device driver is in the nonencrypted mode.
1 The 4778 device driver is in the encrypted mode.

Note: If any of the bits 15 through 11 are on, bit 0 is unpredictable.

rc This parameter is a word value that represents the return code from the
PinReadConfigStatus function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1801 The 4778 device driver is not open.
1802 The 4778 is not available.

 Remarks
The application program uses this function call to determine the capabilities of the
4778 PIN keypad and to detect errors when the device is powered on.

4-10 4777 and 4778 OS/2 Programming Guide

 PinMagReadConfigStatus
The PinMagReadConfigStatus function call reads the status of the read capabilities
of the attached 4778 magnetic-stripe reader and reads the results of the power-on
test for the 4778 device driver.

PinMagReadConfigStatus (MagHandle, ConfigStatusBuff, rc)

 Parameters
The PinMagReadConfigStatus function call uses the following parameters:

MagHandle
This word value parameter is the 4778 device-driver handle obtained from the
PinMagOpen function call.

ConfigStatusBuff
This parameter is a long pointer to the 16-bit word buffer where the
configuration status returns. The format for the configuration status is as
follows:

Bit Description

15 This bit indicates whether there is a specification error in an optional
parameter in the CONFIG.SYS file.

Value Meaning
0 The specification of the optional parameters in the

CONFIG.SYS file is correct.
1 There is an error in the specification of an optional

parameter in the CONFIG.SYS file.

14 This bit indicates whether the 4778 is attached.

Value Meaning
0 A 4778 device is attached.
1 A 4778 device is not attached.

13 This bit indicates whether there are power-on errors in the
4778 MSR.

Value Meaning
0 There are no power-on errors in the 4778 MSR.
1 There are power-on errors in the 4778 MSR.

12 This bit indicates whether there is a load error or an installation error
for the 4778 device driver.

Value Meaning
0 There are no load errors or installation errors in the

4778 device driver.
1 There is a load error or an installation error in the

4778 device driver.

11–7 These bits are reserved; do not use these bits.

 Chapter 4. Understanding the 4778 Application Program Interface 4-11

6 This bit indicates whether the function call can read track 1.

Value Meaning
0 The function call cannot read track 1.
1 The function call can read track 1.

5 This bit indicates whether the function call can read track 2.

Value Meaning
0 The function call cannot read track 2.
1 The function call can read track 2.

4–0 These bits are reserved; do not use these bits.

rc This parameter is a word value that represents the return code from the
PinMagReadConfigStatus function call. The valid return codes are:

0 No error.
1540 The 4778 MagHandle parameter is not valid.

 Remarks
The application program uses this function call to determine the capabilities of the
4778 MSR and to detect errors when the device is powered on.

4-12 4777 and 4778 OS/2 Programming Guide

 Magnetic-Stripe Functions
The following function calls are valid for magnetic-stripe functions of the 4778.

Loading the Device Parameters (PinMagLoadDevParms)
The PinMagLoadDevParms function call loads the operating parameters of the
4778 MSR.

PinMagLoadDevParms (MagHandle, TrackParms, rc)

 Parameters
The PinMagLoadDevParms function call uses the following parameters:

MagHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinMagOpen function call.

TrackParms
This parameter is a long pointer to a 24-byte buffer that contains the track
parameters. Bytes 1 through 8 contain the track-1 parameters.
Bytes 9 through 16 contain the track-2 parameters. The individual track
parameters are defined as follows:

Byte 1 - Data and longitudinal redundancy check (LRC) parity definition
This parameter defines the magnetic-character parity definition for both the
data characters and the LRC character as follows:

Value Meaning
00H Odd data parity and odd LRC parity
01H Even data parity and even LRC parity
02H Odd data parity and even LRC parity
03H Even data parity and odd LRC parity

During the PinMagReadData function call, this parameter verifies that the
parity definition is correct for each magnetic character that is read from the
stripe.

Byte 2 - Character definition
This parameter indicates the size of the magnetic character in bits. The
fields for this parameter are as follows:

Value Meaning
05H 5 bits per character
06H 6 bits per character
07H 7 bits per character

The size value includes the magnetic character and its parity bit. For
example, a character definition of 5 bits per character correlates to a 4-bit
character with one parity bit to form a complete magnetic character.

The read-data characters that pass between the application program and
the 4778 MSR device-support code are always in an 8-bit byte and do not
include the parity bit. The 4778 device-support code adds and checks the
parity of the characters.

 Chapter 4. Understanding the 4778 Application Program Interface 4-13

Byte 3 - Primary start-of-message (PSOM) character
When the application program issues a PinMagReadData function call, this
parameter specifies the character that indicates the beginning of a
magnetic record.

Byte 4 - Alternate start-of-message (ASOM) character
When the application program issues a PinMagReadData function call, this
parameter specifies the alternate character that indicates the beginning of a
magnetic record. When the 4778 MSR device-support code looks for the
beginning of a magnetic record, it accepts either the PSOM or the ASOM
character.

Byte 5 - Primary end-of-message (PEOM) character
When the application program issues a PinMagReadData function call, this
parameter specifies the character that indicates the end of a magnetic
record.

Byte 6 - Alternate end-of-message (AEOM) character
When the application program issues a PinMagReadData function call, this
parameter specifies the alternate character that indicates the end of a
magnetic record. When the 4778 MSR device-support code looks for the
end of a magnetic record, it accepts either the PEOM or the AEOM
character.

Byte 7
The PinMagReadData function call does not use this parameter.

Byte 8
The PinMagReadData function call does not use this parameter.

For more information about the default values of the track-1 parameters, see
Figure 4-1 on page 4-15.

Bytes 9 through 16
These 8 bytes contain the track-2 parameters. Their definitions are
identical to the track-1 parameters except that they apply to track 2. For
more information about the default values of the track-2 parameters, see
Figure 4-1 on page 4-15.

rc This parameter is a word value that represents the return code from the
PinMagLoadDevParms function call. The valid return codes are:

0 No error.
1540 The 4778 MagHandle parameter is not valid.
1541 The 4778 is not available.
1545 The track-1 parameter is not valid.
1546 The track-2 parameter is not valid.

4-14 4777 and 4778 OS/2 Programming Guide

Figure 4-1. Default Values for the PinMagLoadDevParms Track Parameters

Track Byte Description Default

Track 1 Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

Data/LRC parity definition
Character definition
Primary SOM
Alternate SOM
Primary EOM
Alternate EOM
Not used
Not used

02H
07H
05H
05H
1FH
1FH

Track 2 Byte 9
Byte 10
Byte 11
Byte 12
Byte 13
Byte 14
Byte 15
Byte 16

Data/LRC parity definition
Character definition
Primary SOM
Alternate SOM
Primary EOM
Alternate EOM
Not used
Not used

02H
05H
0BH
0DH
0FH
0CH

 Remarks
When the application program issues a PinMagOpen function call, the parameters
are set to the default values defined in Figure 4-1. The application program then
issues a PinMagReadDevParms function call (see “Reading the Device Parameters
(MagReadDevParms)” on page 3-10) to determine the current operational
characteristics. The application program issues this function call to change any of
the parameters to match the requirements of the application program.

If a parameter is not valid, the PinMagReadDevParms function call fails. The
function call performs the following checks:

The data and LRC parity is 00, 01, 02, or 03.
The character definition is 05, 06, or 07.
The SOM value does not equal 00.
The alternate SOM value does not equal 00.
The EOM value does not equal 00.
The alternate EOM value does not equal 00.

 Chapter 4. Understanding the 4778 Application Program Interface 4-15

 Setting the
Multitrack-Read Operation Mode (PinMagSetOperationMode)

The PinMagSetOperationMode function call sets the multitrack read-operation mode
of the 4778 MSR.

PinMagSetOperationMode (MagHandle, OperationMode, rc)

 Parameters
The PinMagSetOperationMode function call uses the following parameters:

MagHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinMagOpen function call.

OperationMode
This word value parameter specifies a field that defines how the 4778 MSR
device-support code performs a multitrack-read operation. This parameter
specifies the fields as follows:

Bit Description

15–1 These bits are reserved and must be set to zero.

0 If this bit is set to zero, the data returns only if all the requested
track data is valid. If this bit is set to one, the data returns if the
data for at least one of the requested tracks is valid.

rc This parameter is a word value that represents the return code from the
PinMagSetOperationMode function call. The valid return codes are:

0 No error.
1540 The 4778 MagHandle parameter is not valid.
1541 The 4778 is not available.

 Remarks
This function call sets the operational mode for multitrack-read operations. If all the
data that is read from the requested tracks is valid, one mode returns the data to
the application program. If the data from at least one of the requested tracks is
valid, the other mode returns data to the application program (this is the default).

For more information about the read-data format, see Chapter 5, “Data Formats.”

4-16 4777 and 4778 OS/2 Programming Guide

Resetting the 4778 (PinMagResetDevice)
The PinMagResetDevice function call resets the 4778 MSR.

PinMagResetDevice (MagHandle, rc)

 Parameters
The PinMagResetDevice function call uses the following parameters:

MagHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinMagOpen function call.

rc This word value parameter represents the return code from the
PinMagResetDevice function call. The valid return codes are:

0 No error.
1538 The 4778 is not attached.
1540 The 4778 MagHandle parameter is not valid.
1541 The 4778 MSR is not available.
1549 Errors occurred in the 4778 MSR self-test.
1551 The 4778 MSR device-support code ended the operation.

 Remarks
The device self-tests run as a result of this function call. The return code indicates
the completion status of the device self-tests.

 Chapter 4. Understanding the 4778 Application Program Interface 4-17

Reading the Device Parameters (PinMagReadDevParms)
The PinMagReadDevParms function call reads the operational parameters of the
4778 MSR.

PinMagReadDevParms (MagHandle, StatusBuffer, TransferCount, rc)

 Parameters
The PinMagReadDevParms function call uses the following parameters:

MagHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinMagOpen function call.

StatusBuffer
This parameter is a long pointer to a 16-byte buffer where the device parameter
status returns. The device parameter status is 8 bytes for the track-1 and
track-2 parameters.

TransferCount
This parameter is a long pointer to a word value that indicates the size of the
StatusBuffer when the application program issues the function call. When this
parameter returns, it is modified to indicate the actual number of bytes that
were transferred to the StatusBuffer. The maximum transfer count is 16 bytes.

rc This parameter is a word value that represents the return code from the
PinMagReadDevParms function call. The valid return codes are:

0 No error.
1540 The 4778 MagHandle parameter is not valid.
1548 Data buffer size is too small for the amount of data requested.

 Remarks
This function call returns the 4778 MSR device parameter information to the
application program. If the PinMagReadDevParms function call requests the
parameters for two tracks, the application program must ensure that the buffer is at
least 16 bytes in length. For more information about the parameters that this
function call returns, see “Loading the Device Parameters (MagLoadDevParms)” on
page 3-4.

4-18 4777 and 4778 OS/2 Programming Guide

Reading the Error Statistics (PinMagReadErrorStats)
The PinMagReadErrorStats function call reads the error statistics for the
4778 MSR.

PinMagReadErrorStats (MagHandle, StatBuffer, TransferCount, rc)

 Parameters
The PinMagReadErrorStats function call uses the following parameters:

MagHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinMagOpen function call.

StatBuffer
This parameter is a long pointer to a 2-byte buffer where the device error
statistics are returned. The format for the error statistics is as follows:

Error Statistic Number of Bytes
Track-1 read error count 1 byte
Track-2 read error count 1 byte

TransferCount
This parameter is a long pointer to a word value that indicates the size of the
StatBuffer when the application program issues the function call. When this
parameter returns, it is modified to indicate the actual number of bytes that
were transferred to the StatBuffer. The maximum transfer count is 2 bytes.

rc This parameter is a word value that represents the return code from the
PinMagReadErrorStats function call. The valid return codes are:

0 No error.
1540 The 4778 MagHandle parameter is not valid.
1548 Data buffer size is too small for the amount of data requested.

 Remarks
This function call reads the 2-byte error statistics for the 4778 MSR. Each error
count can have a maximum value of decimal 255. To receive all of the error
statistics, the StatBuffer parameter must be at least 2 bytes in length.

The 4778 MSR device-support code maintains the error statistics while it is active
(that is, during the time period between the PinMagOpen and PinMagClose function
calls). When the application program issues a PinMagOpen function call, the error
statistics are set to zero. If you want to maintain the error statistics over a longer
period of time, the application program must read the values before it issues a
PinMagClose function call and must save the values within the application program
data area.

 Chapter 4. Understanding the 4778 Application Program Interface 4-19

Reading Magnetic Data (PinMagReadData)
The PinMagReadData function call reads the magnetic-stripe data from the
magnetic media.

PinMagReadData (MagHandle, ReadTracks, DataBuffer, TransferCount, rc)

 Parameters
The PinMagReadData function call uses the following parameters:

MagHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinMagOpen function call.

ReadTracks
This parameter specifies a 16-bit word value that identifies the tracks that the
function call reads. The ReadTracks parameter specifies the fields as follows:

Bit Description
15–3 Reserved. These bits must be set to zero.
2 The function call reads track 1.
1 The function call reads track 2.
0 Not used.

DataBuffer
This parameter is a long pointer to the data buffer where the magnetic read
data returns.

TransferCount
This parameter is a long pointer to a word value that indicates the size of the
DataBuffer parameter when the application program issues the function call.
When this parameter returns, it is modified to indicate the actual number of
bytes transferred to the DataBuffer parameter. If an error occurs, the magnetic
read data is not processed and the parameter returns with a value of zero.

rc This parameter is a word value that represents the return code from the
PinMagReadData function call. The valid return codes are:

0 No error.
1538 The 4778 is not attached.
1539 An error occurred in the 4778 MSR hardware.
1540 The 4778 MagHandle parameter is not valid.
1541 The 4778 MSR is not available.
1542 The 4778 MSR does not support the track that is requested for the

read operation.
1548 The data buffer size is too small for the amount of data requested.
1550 The application program ended the operation.
1551 The 4778 MSR device-support code ended the operation.

4-20 4777 and 4778 OS/2 Programming Guide

 Remarks
This function call reads the magnetic-stripe data from the magnetic media. Until
the operator performs a successful operation or the application program issues a
PinMagAbort function call to end this PinMagReadData function call, the thread for
this function call is blocked. For more information about how the application
program can end this function call, see “PinMagAbort” on page 4-8.

The ReadTracks parameter must reflect the actual read capabilities of the 4778 or
an error returns. For more information about how the read capabilities are
determined, see “Reading the Configuration Status (MagReadConfigStatus)” on
page 3-12.

If the ReadTracks parameter indicates a multitrack-read operation, the current state
of the multitrack-read operation mode determines how the read data returns to the
application program. For more information about how the read data returns to the
application program, see “Setting the Multitrack-Read Operation Mode
(MagSetOperationMode)” on page 3-7.

 Chapter 4. Understanding the 4778 Application Program Interface 4-21

4778 PIN Keypad Function Calls
The following function calls are used for 4778 PIN keypad functions.

Setting the Nonencrypted Mode (PinSetModeClr)
The PinSetModeClr function call sets the 4778 PIN keypad device-support code in
the nonencrypted mode.

PinSetModeClr (PinHandle, rc)

 Parameters
The PinSetModeClr function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

rc This parameter is a word value that represents the return code from the
PinSetModeClr function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
The PinSetModeClr function call sets the 4778 PIN keypad device-support code in
nonencrypted mode. When the 4778 PIN keypad device-support code is in the
nonencrypted mode, it denies requests to create PIN blocks and returns an error
code to the application program. When the 4778 PIN keypad device-support code
is in the encrypted mode, it denies requests for nonencrypted data and returns an
error code to the application program. If valid encryption keys are loaded in
the 4778, all other cryptographic operations work in both the nonencrypted and the
encrypted mode of the 4778.

4-22 4777 and 4778 OS/2 Programming Guide

Setting the Encrypted Mode (PinSetModeEnc)
The PinSetModeEnc function call sets the 4778 PIN keypad device-support code in
the encrypted mode.

Warning: This function call invalidates all previously-loaded encryption keys.
When this function call sets the device-support code in the encrypted mode, you
must reload all the Data Encryption Standard (DES) encryption keys.

PinSetModeEnc (PinHandle, rc)

 Parameters
The PinSetModeEnc function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

rc This parameter is the word value that represents the return code from the
PinSetModeEnc function call. The valid return calls are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
When the 4778 PIN keypad device-support code is in the encrypted mode, it denies
requests for nonencrypted data and returns an error code to the application
program. When the 4778 device-support code is in the nonencrypted mode, it
denies requests to create PIN blocks and returns an error code to the application
program. If valid encryption keys are loaded in the 4778, all other cryptographic
operations work in both the nonencrypted and the encrypted mode of the 4778.

 Chapter 4. Understanding the 4778 Application Program Interface 4-23

Entering the Master Key Manually (PinEnterMasterKey)
The PinEnterMasterKey function call sets the 4778 PIN keypad for the manual
entry of the master key.

PinEnterMasterKey (PinHandle, KeyType, SNBuffer, rc)

 Parameters
The PinEnterMasterKey function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

KeyType
This word value parameter specifies the type of master key to enter manually.
The fields for this parameter are as follows:

Bit Description

15–5 These bits are reserved and must be set to zero.

4 This bit indicates the size of the master key.

Value Meaning
0 This value indicates that the master key is a 16-byte key.
1 This value indicates that the master key is an 8-byte key.

3–1 These bits are reserved and must be set to zero.

0 This bit indicates whether the master key is a single-entry or a
dual-entry key.

Value Meaning

0 This value indicates that the master key is a single-entry
key.

1 This value indicates that the master key is a dual-entry key.

SNBuffer
This parameter is a long pointer to an 8-byte buffer where the triple-encrypted
device serial number is returned. The device serial number is encrypted using
the entered master key.

Note: The keypad keystrokes used to manually enter the master key are in
3-3-2 format. The valid keystrokes are mmn where:

m has a range of 0 through 7.
n has a range of 0 through 2.

For more information about manually entering the master key through the PIN
keypad, see “Converting a Master Key to the Keypad-Entry Format” on
page 5-12.

4-24 4777 and 4778 OS/2 Programming Guide

rc This word value parameter represents the return code from the
PinEnterMasterKey function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1796 A key was pressed that is not valid.
1798 An error occurred in the PINCALLS.DLL file.
1799 The application program ended the operation.
1800 A parameter error occurred.
1801 The 4778 PIN keypad device driver is not open.
1802 The 4778 is not available.
1804 The key parity is not valid for the requested function call.
1805 An error occurred for the PinOpen function call.

 Remarks
The PinEnterMasterKey function call reads the keystrokes from the PIN keypad,
converts the keystrokes to hexadecimal, and stores the results as the master key in
the 4778. If you enter an 8-byte master key, this function call duplicates the key as
the second 8 bytes of the double-length master key.

 Chapter 4. Understanding the 4778 Application Program Interface 4-25

Loading the Master Encryption Key (PinLoadMasterKey)
The PinLoadMasterKey function call uses the PS/2 communication interface to load
a master encryption key into the 4778 PIN keypad.

PinLoadMasterKey (PinHandle, KeyType, KeyBuffer, SNBuffer, rc)

 Parameters
The PinLoadMasterKey function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

KeyType
This word value parameter specifies the type of master key that the device
driver loads into the 4778 PIN keypad. The fields for this parameter are as
follows:

Bit Description
15–5 These bits are reserved and must be set to zero.
4 This bit indicates the size of the master key.

Value Meaning
0 This value indicates that the master key is a 16-byte key.
1 This value indicates that the master key is an 8-byte key.

3–1 These bits are reserved and must be set to zero.
0 This bit indicates whether the master-key buffer contains a

nonencrypted key.
Value Meaning
0 This value indicates that the master-key buffer contains a

nonencrypted key.
1 This value indicates that the master-key buffer contains an

encrypted key.

KeyBuffer
This parameter is a long pointer to the buffer that contains the master key.

SNBuffer
This parameter is a long pointer to an 8-byte buffer where the triple-encrypted
device serial number is returned. The device serial number is encrypted under
the loaded key.

rc This parameter is a word value that represents the return code from the
PinLoadMasterKey function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1804 The key parity is not valid for the requested function call.
1805 An error occurred for the PinOpen function call.

4-26 4777 and 4778 OS/2 Programming Guide

 Remarks
The master-key buffer contains either an 8-byte or a 16-byte encryption key — the
KeyType parameter specifies the value. If you load the master key in encrypted
form, set the bit in the KeyType parameter to indicate that the 4778 PIN keypad
device-support code must decrypt the key before it places the key in storage. (If
the key is encrypted, the key is always encrypted under the resident master key in
the 4778.) If you load an 8-byte key, this function call duplicates the master key as
the second 8 bytes of the double-length master key.

 Chapter 4. Understanding the 4778 Application Program Interface 4-27

Loading the Encryption Key (PinLoadKey)
The PinLoadKey function call uses the PS/2 communication interface to load an
8-byte encryption key into the 4778 PIN keypad.

PinLoadKey (PinHandle, KeyIdentifier, VariantDescriptor, KeyBuffer,
 SNBuffer, rc)

 Parameters
The PinLoadKey function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

KeyIdentifier
This parameter is a word value that specifies the destination index of the key in
the range of 00H to FFH.

VariantDescriptor
This parameter is a word value that specifies the master-key variant used to
decrypt the key. The fields for this parameter are as follows:

Value Meaning
00H Variants are not used.
03H–06H The function determines whether the master-key variant is 03H,

04H, 05H, or 06H.

KeyBuffer
This parameter is a long pointer to the buffer that contains the 8-byte
encryption key to be loaded.

SNBuffer
This parameter is a long pointer to an 8-byte buffer where the triple-encrypted
device serial number is returned. The device serial number is encrypted under
the loaded key.

rc This parameter is a word value that represents the return code from the
PinLoadKey function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1804 The key parity is not valid for the requested function call.
1805 An error occurred for the PinOpen function call.

4-28 4777 and 4778 OS/2 Programming Guide

 Remarks
The 4778 can store 256 encryption keys. When the keys pass to the 4778, they
are triple-encrypted under a variant of the master key. The 4778 PIN keypad
decrypts the master keys and checks the keys for valid parity. If the parity is valid,
the key (in encrypted form) is placed in nonvolatile storage.

Loading the Initial-Chaining Value (PinLoadICV)
The PinLoadICV function call uses the PS/2 communication interface to load the
initial-chaining value (ICV) into the 4778 PIN keypad.

PinLoadICV (PinHandle, VariantDescriptor, ICVBuffer, rc)

 Parameters
The PinLoadICV function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

VariantDescriptor
This word value parameter specifies the master-key variant used to decrypt the
ICV. The fields for this parameter are as follows:

Value Meaning
00H Do not use a variant.
02H Use the master-key variant 2.

ICVBuffer
This parameter is a long pointer to a 16-byte buffer that contains the
initial-chaining value.

rc This parameter is a word value that represents the return code from the
PinLoadKey function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
The ICV is used to generate and verify the message-authentication-code functions.
The ICV is encrypted under a variant of the master key.

 Chapter 4. Understanding the 4778 Application Program Interface 4-29

Loading the PIN Verification Parameters (PinLoadVerifParms)
The PinLoadVerifParms function call loads the verification parameters that the
4778 PIN keypad requires to verify the PIN blocks and to generate the PIN offset
data.

PinLoadVerifParms (PinHandle, PinLength, DecTblBuffer, rc)

 Parameters
The PinLoadVerifParms function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

PinLength
This parameter is a word value that specifies the PIN length. When the
4778 PIN keypad verifies the PIN blocks and generates the PIN offset data, it
checks the PIN length.

DecTblBuffer
This parameter is a long pointer to the 16-byte table that the 4778 uses to
translate hexadecimal digits to decimal digits. Translation occurs at the same
time that the 4778 verifies the PIN blocks and generates the offset data.

rc This parameter is a word value that represents the return code from the
PinLoadVerifParms function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected a function call error.
1798 An error occurred in the PINCALLS.DLL file.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
This function call loads the verification parameters in nonvolatile storage. The 4778
uses these parameters to verify PIN blocks and generate offset data until the
application program specifies new parameters.

4-30 4777 and 4778 OS/2 Programming Guide

Creating the 4704 PIN Block (PinReadPin4704)
The PinReadPin4704 function call reads a 4704-formatted PIN block from the
4778 PIN keypad and returns it to the application program.

PinReadPin4704 (PinHandle, PinBuffer, rc)

 Parameters
The PinReadPin4704 function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

PinBuffer
This parameter is a long pointer to an 8-byte buffer where the encrypted PIN
block returns.

rc This parameter is a word value that represents the return code from the
PinReadPin4704 function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1799 The application program ended the operation.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
The 4704 PIN block is always encrypted under the resident master key. If the
4778 PIN keypad is currently operating in a nonencrypted mode, this function call
results in an error. The pad character is hexadecimal F.

 Chapter 4. Understanding the 4778 Application Program Interface 4-31

Creating the 3624 PIN Block (PinReadPin3624)
The PinReadPin3624 function call reads a 3624-formatted PIN block from the
4778 PIN keypad and returns it to the application program.

PinReadPin3624 (PinHandle, PinKeyInfo, PadCharacter, VariantDescriptor,
PinKey, PinBuffer, rc)

 Parameters
The PinReadPin3624 function call parameters are as follows:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

PinKeyInfo
This word value parameter describes the encryption key format used to create
the PIN block. The fields for this parameter are as follows:

Bit Description

15–2 These bits are reserved and must be set to zero.

1–0 These bits indicate the format of the encryption key.

Value Meaning
00 Use the master key.
01 The encryption-key field is a 1-byte offset-key pointer.
10 This value is reserved.
11 Use the 8-byte encryption-key field.

PadCharacter
This parameter is a hexadecimal word value with a valid range of
hexadecimal 0 through hexadecimal F.

Variant Descriptor
This word value parameter specifies the master-key variant used to decrypt the
key. The fields for this parameter are as follows:

Value Meaning
00H Do not use a variant.
03H Use the master-key variant 3.

PinKey
This parameter is a long pointer to a 1-byte or an 8-byte buffer. The buffer
contains either a 1-byte key offset or an 8-byte encryption key (also called the
session key) that is used to generate the PIN block.

Notes:

1. An encryption key that passes to the 4778 for a PIN block function must be
encrypted under a variant of the master key.

2. A PIN block that is to be encrypted under the resident master key requires
a PinKey parameter (used as a dummy pointer). The parameter must be
on the stack as a place holder.

4-32 4777 and 4778 OS/2 Programming Guide

PinBuffer
This parameter is a long pointer to an 8-byte buffer where the encrypted PIN
block returns.

rc This parameter is a word value that represents the return code from
PinReadPin3624. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1799 The application program ended the operation.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
The PinReadPin3624 function call encrypts the formatted PIN block that returns to
the application. To do this, the function call uses one of the following keys:

The master key
An internal 8-byte encryption key
An 8-byte session key

When the PinReadPin3624 function call uses an internal 8-byte encryption key, the
PinKey parameter points to the 1-byte buffer that indicates the offset of the key in
the 4778. When it uses an 8-byte session key, it passes the session key to the
4778 only for the requested PIN block. If the 4778 PIN keypad is currently
operating in the nonencrypted mode, this function call results in an error.

 Chapter 4. Understanding the 4778 Application Program Interface 4-33

Creating the ANSI X9.8 PIN Block (PinReadPinAnsi98)
The PinReadPinAnsi98 function call reads an ANSI X9.8-formatted PIN block from
the 4778 PIN keypad and returns it to the application program.

PinReadPinAnsi98 (PinHandle, PinKeyInfo, VariantDescriptor, PinKey,
PanBuffer, PinBuffer, rc)

 Parameters
The PinReadPinAnsi98 function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

PinKeyInfo
This parameter is a word value that describes the encryption key format used
to create the PIN block. The fields for this parameter are as follows:

Bit Description

15–2 These bits are reserved and must be set to zero.

1–0 These bits indicate the format of the encryption key.

Value Meaning
00 Use the master key.
01 The encryption-key field is a 1-byte offset-key pointer.
10 This value is reserved.
11 Use the 8-byte encryption-key field.

VariantDescriptor
This parameter is a word value that specifies the master-key variant used to
decrypt the key. The fields for this parameter are as follows:

Value Meaning
00H Do not use a variant.
03H Use the master-key variant 3.

PinKey
This parameter is a long pointer to a 1-byte buffer or an 8-byte buffer. The
buffer contains either a 1-byte key offset or an 8-byte encryption key (session
key) that is used to generate the PIN block.

Notes:

1. An encryption key that passes to the 4778 for a PIN block function must be
encrypted under a variant of the master key.

2. If the PIN block is encrypted under the resident master key, the PinKey
parameter is a dummy pointer and must be present on the stack as a place
holder.

PanBuffer
This parameter is a long pointer to a 6-byte buffer that contains the personal
account number.

4-34 4777 and 4778 OS/2 Programming Guide

PinBuffer
This parameter is a long pointer to an 8-byte buffer where the encrypted PIN
block returns.

rc This parameter is a word value that represents the return code from
PinReadPinAnsi98. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1799 The application program ended the operation.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
The PinReadPinAnsi98 function call uses one of the following to encrypt the
formatted PIN block that is returned to the application.

The master key
An internal 8-byte encryption key
An 8-byte session key

When the PinReadPinAnsi98 function call uses an internal 8-byte encryption key,
the PinKey parameter points to the 1-byte buffer. The 1-byte buffer indicates the
offset of the key in the 4778.

The pad character is hexadecimal F.

When the PinReadPinAnsi98 function call uses an 8-byte session key, it passes the
session key to the 4778 only for the requested PIN block. If the 4778 PIN keypad
is currently operating in nonencrypted mode, the function call results in an error.

 Chapter 4. Understanding the 4778 Application Program Interface 4-35

Verifying the PIN Block (PinVerifyPin)
The PinVerifyPin function call verifies a PIN entered from the 4778 PIN keypad. To
perform the verification, the function call uses the offset data and verification data
that is read from the customer’s magnetic card.

PinVerifyPin (PinHandle, VerifyInfo, VariantDescriptor,
PinKey, VerifData, OffsetData, rc)

 Parameters
The PinVerifyPin function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

VerifyInfo
This parameter is a word value that specifies the encryption key format used to
verify the PIN block and specifies whether to use offset data in the verification
process. The fields for this parameter are as follows:

Bit Description

15–5 These bits are reserved and must be set to zero.

4 This bit indicates whether the offset data should be used.

Value Meaning
0 Do not use offset data in the verification process.
1 The encryption key is a 1-byte offset-key pointer.

3–2 These bits are reserved and must be set to zero.

1–0 These bits indicate the format of the encryption key.

Value Meaning
00 Use the master key.
01 The encryption-key field is a 1-byte offset-key pointer.
10 Reserved.
11 Use the 8-byte encryption-key field.

VariantDescriptor
This parameter is a word value that specifies the master-key variant used to
decrypt the key. The fields for this parameter are as follows:

Value Meaning
00H Do not use a variant.
04H Use the master-key variant 4.

PinKey
This parameter is a long pointer to a 1-byte or an 8-byte buffer. The buffer
contains either a 1-byte key offset or an 8-byte encryption key (session key)
that is used to generate the PIN block.

4-36 4777 and 4778 OS/2 Programming Guide

Notes:

1. An encryption key that passes to the 4778 for a PIN block function must be
encrypted under a variant of the master key.

2. If the PIN block is encrypted under the resident master key, the PinKey
parameter is a dummy pointer and must be present on the stack as a place
holder.

VerifData
This parameter is a long pointer to an 8-byte buffer that contains the verification
data.

OffsetData
This parameter is a long pointer to an 8-byte buffer that contains the offset
data.

rc This parameter is a word value that represents a return code from the
PinVerifyPin function call. The valid values are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1795 An error occurred in the data length.
1798 An error occurred in the PINCALLS.DLL file.
1799 The application program ended the operation.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1803 The PIN entry was not verified.
1805 A PinOpen function call error occurred.

 Remarks
The PinVerifyPin function call verifies the PIN entries at the 4778 using the offset
and verification data read from the customer’s magnetic card. The 4778 uses the
3624 algorithm to verify the PIN block. This function call uses one of the following
key formats in the verification process:

The master key
An internal 8-byte encryption key
An 8-byte session key

When this function call uses an internal 8-byte encryption key, the PinKey
parameter points to the 1-byte buffer that indicates the offset of the key in the 4778.
When it uses an 8-byte session key, it passes the session key to the 4778 only for
the requested PIN block. If the 4778 is currently operating in a nonencrypted
mode, this function call results in an error.

 Chapter 4. Understanding the 4778 Application Program Interface 4-37

Creating the Offset Data (PinCreateOffsetData)
The PinCreateOffsetData function call generates PIN offset data for an entered
PIN.

PinCreateOffsetData (PinHandle, PinKeyInfo, VariantDescriptor, PinKey,
VerifData, OffsetData, rc)

 Parameters
The PinCreateOffsetData function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

PinKeyInfo
This parameter is a word value that describes the encryption key format used
to create the PIN block. The fields for this parameter are as follows:

Bit Description

15–2 These bits are reserved and must be set to zero.

1–0 These bits indicate the format of the encryption key.

Value Meaning
00 Use the master key.
01 The encryption-key field is a 1-byte offset-key pointer.
10 Reserved.
11 Use the 8-byte encryption-key field.

VariantDescriptor
This parameter is a word value that specifies the master-key variant used to
decrypt the key. The fields for this parameter are as follows:

Value Meaning
00H Do not use a variant.
04H Use the master-key variant 4.

PinKey
This parameter is a long pointer to a 1-byte or an 8-byte buffer. The buffer
contains a 1-byte key offset or an 8-byte encryption key (session key) used to
generate the PIN block.

Notes:

1. An encryption key that passes to the 4778 for a PIN block function must be
encrypted under a variant of the master key.

2. If the PIN block is encrypted under the resident master key, the PinKey
parameter is a dummy pointer and must be present on the stack as a place
holder.

VerifData
This parameter is a long pointer to an 8-byte buffer that contains the verification
data.

4-38 4777 and 4778 OS/2 Programming Guide

OffsetData
This parameter is a long pointer to an 8-byte buffer that contains the offset
data.

rc This parameter is a word value that represents the return code from the
PinCreateOffsetData function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1795 An error occurred in the data length.
1797 The requested PIN mode is not valid.
1798 An error occurred in the PINCALLS.DLL file.
1799 The application program ended the operation.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
The PinCreateOffsetData function call generates PIN offset data. The 4778, using
the 3624 algorithm, uses the PIN offset data to verify the PIN blocks. This function
call creates the offset data by cryptographically combining the verification data with
an entered PIN. It uses one of the following to encrypt the formatted PIN block:

The master key
An internal 8-byte encryption key
An 8-byte session key

When this function call uses an internal 8-byte encryption key, the PinKey
parameter points to the 1-byte buffer, which indicates the offset of the key. If the
offset data is less than 16 bytes long, the offset data that is returned is padded with
FH characters.

When the function call uses an 8-byte session key, it passes the session key to the
4778 only for the requested PIN block. If the 4778 PIN keypad is currently
operating in the nonencrypted mode, this function call results in an error.

 Chapter 4. Understanding the 4778 Application Program Interface 4-39

Generating the Message Authentication Code (PinGenerateMac)
The PinGenerateMac function call generates a message authentication code from
the input data string.

PinGenerateMac (PinHandle, MacInfo, KeyVariantDescriptor,
IcvVariantDescriptor, MacKey, MacIcv, MacData,
DataLen, Mac, rc)

 Parameters
The PinGenerateMac function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

MacInfo
This parameter is a word value that describes the encryption key format and
the ICV format that are used to generate the message authentication code.
The fields for this parameter are as follows:

Bit Description

15–8 These bits are reserved and must be set to zero.

7–4 These bits indicate the ICV used to generate the message
authentication code.

Value Meaning
0100 Use the resident ICV.
0110 Use the ICV that is in the MacIcv buffer.
xxxx All other values are reserved.

3–2 These bits are reserved and must be set to zero.

1–0 These bits indicate the encryption key format used to generate the
message authentication code.

Value Meaning
00 Use the master key.
01 The encryption key is a 1-byte offset-key pointer.
10 Reserved.
11 Use the 8-byte encryption-key field.

KeyVariantDescriptor
This parameter is a word value that specifies the master-key variant used to
decrypt the key. The fields for this parameter are as follows:

Value Meaning
00H Do not use a variant.
05H Use the master-key variant 5.

4-40 4777 and 4778 OS/2 Programming Guide

IcvVariantDescriptor
This parameter is a word value that specifies the master-key variant used to
decrypt the ICV. The fields for this parameter are as follows:

Value Meaning
00H Do not use a variant.
02H Use the master-key variant 2.

MacKey
This parameter is a long pointer to either a 1-byte or an 8-byte buffer. The
buffer contains a 1-byte key offset or an 8-byte encryption key (session key)
that is used to generate the message authentication code.

Notes:

1. An encryption key that passes to the 4778 for a
message-authentication-code function must be encrypted under a variant of
the master key.

2. If the message authentication code is generated using the master key, the
MacKey parameter is a dummy parameter and must be present on the
stack as a place holder.

MacIcv
This parameter is a long pointer to an 8-byte buffer that contains an 8-byte ICV
(session ICV). The 8-byte ICV is used to generate the message authentication
code (MAC).

Note: If a session ICV passes to the 4778 for a MAC function, the ICV must
be encrypted under a variant of the master key. If the MAC function uses the
resident ICV, this parameter must be on the stack as a place holder.

MacData
This parameter is a long pointer to the input data buffer that contains the data
to be used to generate the message authentication code.

DataLen
This parameter is a word value that specifies the length of the input data buffer.
The input buffer length must be a multiple of eight.

Mac
This parameter is a long pointer to an 8-byte buffer where the message
authentication code returns.

rc This parameter is a word value that represents the return code from the
PinGenerateMac function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Chapter 4. Understanding the 4778 Application Program Interface 4-41

 Remarks
The PinGenerateMac function call generates a message authentication code from a
data string that is up to 65 528 bytes (FFF8H) long, in multiples of 8 bytes. The
function call uses one of the following key formats in the
message-authentication-code generation process:

The master key
An internal 8-byte encryption key
An 8-byte session key

When this function call uses an internal 8-byte encryption key, the MacKey
parameter points to the 1-byte buffer that indicates the offset of the key in the 4778.
When it uses an 8-byte session key, it passes the session key to the 4778 to
generate the message authentication code.

4-42 4777 and 4778 OS/2 Programming Guide

Verifying the Message Authentication Code (PinVerifyMac)
The PinVerifyMac function call verifies a MAC from an input data string.

PinVerifyMac (PinHandle, MacInfo, KeyVariantDescriptor,
IcvVariantDescriptor, MacKey, MacIcv, MacData, DataLen, rc)

 Parameters
The PinVerifyMac function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

MacInfo
This word value parameter describes the encryption key format and the ICV
used to verify the message authentication code. The fields for this parameter
are as follows:

Bit Description

15–8 These bits are reserved and must be set to zero.

7–4 These bits indicate the ICV used to verify the message
authentication code.

Value Meaning
0100 Use the resident ICV.
0110 Use the ICV that is in the MacIcv buffer.
xxxx All other values are reserved.

3–2 These bits are reserved and must be set to zero.

1–0 These bits indicate the encryption key used to verify the message
authentication code.

Value Meaning
00 Use the master key.
01 The encryption key field is a 1-byte offset-key pointer.
10 Reserved.
11 Use the 8-byte encryption-key field.

KeyVariantDescriptor
This parameter is a word value that specifies the master-key variant used to
decrypt the key. The fields for this parameter are as follows:

Value Meaning
00H Do not use a variant.
05H Use the master-key variant 5.

IcvVariantDescriptor
This parameter is a word value that specifies the master-key variant used to
decrypt the ICV. The fields for this parameter are as follows:

Value Meaning
00H Do not use a variant.
02H Use the master-key variant 2.

 Chapter 4. Understanding the 4778 Application Program Interface 4-43

MacKey
This parameter is a long pointer to a 1-byte or an 8-byte buffer. The buffer
contains either a 1-byte key offset or an 8-byte encryption key (session key)
used to verify the message authentication code.

Notes:

1. An encryption key that passes to the 4778 for a MAC function must be
encrypted under a variant of the master key.

2. If the message-authentication-code function is encrypted using the master
key, the MacIcv parameter is a dummy pointer and must be present on the
stack as a place holder.

MacIcv
This parameter is a pointer to an 8-byte buffer. The buffer contains an 8-byte
ICV (which is also called a session ICV) that is used to generate the message
authentication code.

Note: If a session ICV passes to the 4778 for a MAC function, the ICV must
be encrypted under a variant of the master key. If the
message-authentication-code function uses the resident ICV, this parameter
must be on the stack as a place holder.

MacData
This parameter is a long pointer to the input data buffer that contains the data
used to verify the MAC.

DataLen
This parameter is a word value that specifies the input data buffer length. The
input data buffer length must be a multiple of four.

rc This parameter is a word value that represents the return code from the
PinVerifyMac function. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1803 The PIN entry was not verified.
1805 An error occurred for the PinOpen function call.

 Remarks
The PinVerifyMac function call verifies a message authentication code that was
generated elsewhere (such as at a different system node). The message
authentication code is the last 4- or 8-bytes of the data that is pointed to by the
MacData pointer. The data must be a multiple of four and a maximum of
65 532 bytes (FFFCH). This function call uses one of the following key formats in
the message-authentication-code verification process to verify the data string:

The master key
An internal 8-byte encryption key
An 8-byte session key

4-44 4777 and 4778 OS/2 Programming Guide

When this function call uses an internal 8-byte encryption key, the MacKey
parameter points to the 1-byte buffer that indicates the offset of the key in the 4778.
When it uses an 8-byte session key, it passes the session key to the 4778 device
to verify the message authentication code.

Running the Device Diagnostic Test (PinExecDevDiag)
The PinExecDevDiag function call runs the 4778 PIN keypad diagnostic tests. The
results of the 4778 PIN keypad diagnostic tests are returned in the status buffer.

PinExecDevDiag (PinHandle, DiagTest, StatusBuffer, rc)

 Parameters
The PinExecDevDiag function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

DiagTest
This parameter is a word value that identifies the 4778 diagnostic test to be
performed. The fields for this parameter are as follows:

Value Meaning
00H Return the power-on diagnostic test status.
01H Run and return the power-on diagnostic test status.
02H Run and return the PIN keypad test status.
03H Return the 4778 device-support code version information.
04H–FFFFH These values are reserved.

StatusBuffer
This parameter is a long pointer to the status buffer that the diagnostic test
returns. The DiagTest parameters return the following status fields:

DiagTest Values Status Fields
00H and 01H 1 byte
02H 8 byte
03H 14 byte

 Chapter 4. Understanding the 4778 Application Program Interface 4-45

The information in the status buffer has the following format:

rc This parameter is a word value that represents the return code from the
PinExecDevDiag function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1799 The application program ended the operation.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

DiagTest Command
Byte

Returned Status
Byte

Description

00H/01H Bit 0 This bit is set to 1 if any of the keys on the
keyboard are closed.

 Bit 1 This bit is set to 1 if the EEPROM code test
failed.

 Bit 2 This bit is set to 1 if the RAM test failed.

 Bits 3–6 These bits are reserved.

 Bit 7 This bit is set to 0 if the 4778 device driver
is in the nonencrypted mode. This bit is set
to 1 if the 4778 device driver is in the
encrypted mode.

02H 8 bytes FEB7B9253F35EB D if the PIN keypad test is
correct.

03H 14 bytes ASCII string (v.vv,mm/dd/yy) where
v.vv=version, mm/dd/yy=month/day/year.

 Remarks
The PinExecDevDiag function call runs the device diagnostic tests. Each time the
workstation power is switched on or the workstation is reset, the 4778 device driver
uses this function call to force the application program to run the power-on
diagnostic tests. The host diagnostics also use this function call to run the
diagnostic tests, to run the keyboard test, and to read the device-support code
information for field problem determination.

4-46 4777 and 4778 OS/2 Programming Guide

Reading the Device Serial Number (PinReadSN)
The PinReadSN function call reads the serial number of the 4778 PIN keypad.

PinReadSN (PinHandle, SNBuffer, rc)

 Parameters
The PinReadSN function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

SNBuffer
This parameter is a long pointer to an 8-byte buffer where the serial number for
the 4778 returns. The serial number format is as follows:

 477841 sssssssFFH

The values for the serial number are as follows:

Value Meaning
4778H The machine type
41H The location of the physical plant of control for the device
0sssssssH The serial number that is unique to the device
FFH The flag byte

rc This parameter is a word value that represents the return code from the
PinReadSN function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1798 An error occurred in the PINCALLS.DLL file.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
All encryption-key management functions return the serial number of the device
encrypted under the loaded (or entered) key; this function call lets the application
program verify that the key was loaded correctly.

 Chapter 4. Understanding the 4778 Application Program Interface 4-47

Reading the Nonencrypted Data (PinReadClearData)
The PinReadClearData function call reads nonencrypted data from the 4778.

PinReadClearData (PinHandle, DataLength, TransferCount, DataBuffer, rc)

 Parameters
The PinReadClearData function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

DataLength
This parameter is a word value that indicates the amount of data to be read
from the 4778 PIN keypad.

TransferCount
This parameter is a long pointer to a word buffer where the actual transfer
count (the number of data bytes read from the device) returns.

DataBuffer
This parameter is a long pointer to the buffer where the nonencrypted data
returns. The buffer can be a maximum of 32 digits; therefore, the data buffer
should be large enough to hold all data that is entered on the 4778 (up to
32 bytes). If the data buffer is smaller than the actual amount of data that the
4778 returns, the device driver returns only the amount of data that the
application program requests and then returns an error code.

rc This parameter is a word value that represents the return code from the
PinReadClearData function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1795 An error occurred in the data length.
1797 The requested PIN mode is not valid.
1798 An error occurred in the PINCALLS.DLL file.
1799 The application program ended the operation.
1800 A parameter error occurred.
1801 The 4778 device driver is not open.
1802 The 4778 PIN keypad is not available.
1805 An error occurred for the PinOpen function call.

 Remarks
The PinReadClearData function call reads the nonencrypted data from the
4778 PIN keypad. If the 4778 is currently operating in the encrypted mode, the
function call results in an error.

4-48 4777 and 4778 OS/2 Programming Guide

Writing to the Display (PinWriteDisplay)
The PinWriteDisplay function call writes data to the display on the 4778 PIN
keypad.

PinWriteDisplay (PinHandle, DisplayData, DataLength, rc)

 Parameters
The PinWriteDisplay function call uses the following parameters:

PinHandle
This word value parameter is the 4778 device-driver handle that was obtained
from the PinOpen function call.

DisplayData
This parameter is a long pointer to a buffer that contains the data to be
displayed on the 4778.

DataLength
This parameter is a word value that indicates the number of bytes in the
DisplayData buffer.

rc This parameter is a word value that represents the return code from the
PinWriteDisplay function call. The valid return codes are:

0 No error.
1793 The 4778 PinHandle parameter is not valid.
1794 The 4778 PIN keypad detected an error in the requested function call.
1795 A data length error occurred.
1798 An error occurred in the PINCALLS.DLL file.
1799 The application program ended the operation.
1800 A parameter error occurred.
1806 The display data string was truncated.

 Remarks
The 4778 has a 16-character, single-line display. If the DataLength parameter
value is less than 16, the data is padded with ASCII blank (20H) characters to a
length of 16. If the length is greater than 16, only the first 16 bytes are displayed
and an error code is returned to the application.

 Chapter 4. Understanding the 4778 Application Program Interface 4-49

4-50 4777 and 4778 OS/2 Programming Guide

 Chapter 5. Data Formats

This chapter describes the data stream formats for:

 Magnetic-stripe data
Nonencrypted PIN data
Encrypted PIN data
Personal identification numbers using 4704, 3624, and ANSI X9.8 formats

This chapter also includes information about managing cryptographic keys and
using message authentication codes.

Magnetic-Stripe Data Format
This section describes the data formats that are used by the 4778 PIN-Pad
Magnetic Stripe Reader magnetic-stripe-reader (MSR) feature.

 Read Format
The 4778 PIN-Pad Magnetic Stripe Reader MSR device-support code reads the
data for a single-track request or a double-track request and passes the data to the
application program in the data buffer. Figure 5-1 shows the format of the
single-track data and Figure 5-2 shows the format of the double-track data.

 Lx Sx DATAx

Figure 5-1. Single-Track Read-Data Format

 Lx Sx DATAx Ly Sy DATAy

Figure 5-2. Double-Track Read-Data Format

The descriptions of the fields for the single-track and the double-track read-data
formats are as follows:

Field Description

L Each L field represents a 1-byte field that defines the length of the
respective S and DATA fields.

When the 4778 MSR device-support code reads valid data from the
magnetic stripe, the value in the L field is 03 or greater; at a minimum,
it includes the SOM, the EOM, and the S field values. If the value in the
L field is 01, the corresponding S field contains the status that indicates
why the track was not read.

 Copyright IBM Corp. 1994 5-1

S Each S field represents a 1-byte status field that indicates the track
associated with the respective DATA field. If the track did not contain a
valid record, this field also contains the error status. The definitions of the
bits in the S field are as follows:

Bit Description

7 This bit indicates that an SOM value was not found and the
4778 device-support code interprets the track as a blank.

6 This bit indicates that an SOM value was found and an error
was detected in the parity, the LRC, or the EOM value.

5–3 These bits are reserved.

2 This bit indicates that the data is from track 1.

1 This bit indicates that the data is from track 2.

0 Not used.

DATA Each DATA field represents the magnetic data that is read, including the
SOM and EOM characters; the LRC value is excluded and is not returned
to the application program. Each magnetic character read from the stripe
returns as a single hexadecimal byte. If the L field is 01, the DATA field is
not present; this indicates that valid data was not found.

If different PSOM and ASOM characters are defined in the parameter table, the
4778 device-support code accepts either character as the start-of-message
character. If different PEOM and AEOM characters are defined, the
4778 device-support code accepts either character as the end-of-message
character. For more information about the PSOM, ASOM, PEOM, and AEOM
parameters, see “Loading the Device Parameters (MagLoadDevParms)” on
page 3-4.

 Single-Track Format
The 4778 device-support code checks the read data for validity. If the validity
check is successful, the data returns to the application program in the data buffer.
If the validity check fails, the Up arrow (↑) on the liquid crystal display (LCD) comes
on. The operator can continue making read attempts until one succeeds, or the
application program can issue the PinMagAbort function call to cancel the
PinMagReadData function call.

The 4778 device-support code accumulates the number of read failures. To read
this number, the application program issues the PinMagReadErrorStats function
call. For more information about reading the error statistics for the 4778 MSR, see
“Reading the Error Statistics (MagReadErrorStats)” on page 3-11.

 Multiple-Track Format
When more than one track is specified in the ReadTracks parameter of the
PinMagReadData function call, the OperationMode parameter of the
PinMagSetOperation function call determines how the 4778 MSR device-support
code processes a PinMagReadData function call. One or more tracks must contain
valid data before the data can return to the application program. For more
information about setting the parameters for the multitrack mode, see “Setting the
Multitrack-Read Operation Mode (MagSetOperationMode)” on page 3-7.

5-2 4777 and 4778 OS/2 Programming Guide

If the PinMagSetOperation function call specifies that all tracks must have valid
data, the 4778 MSR device-support code checks the data of each requested track
for validity. If the validity check succeeds, the 4778 MSR device-support code
returns the data to the application program in the data buffer. If one or more tracks
fail the validity check, the read operation fails and the Up arrow indicator on the
LCD is switched on. The operator can continue making read attempts until one
succeeds, or the application program can issue the PinMagAbort function call to
cancel the PinMagReadData function call.

If the PinMagSetOperation function call specifies that any one track must have valid
data, control passes to the application program after the validity check completes
and at least one of the requested tracks contains valid data. The 4778 MSR
device-support code returns the data in the data buffer; the data includes an error
status that indicates why the validity check of one or more of the tracks failed.

 Reading Data
This section describes the default device-track parameters for a read operation and
the device indicators that indicate the operating condition of the 4778 MSR. The
4778 device-support code automatically sets the default device-track parameters for
a read operation when the application program issues a PinMagOpen function call.
This enables the 4778 MSR to read any of the supported tracks. However, the
4778 MSR device-support code enables the application program to issue the
PinMagLoadDevParms function call. This function call then loads user-specified
parameters.

For the 4778 device driver, the defaults for the PinMagReadData function call and
their corresponding tracks are as follows:

 Track-1 Read

SOM = 05H
EOM = 1FH
Bits per character = 07H
Odd data parity
Even LRC parity

 Track-2 Read

SOM = 0BH or 0DH
EOM = 0FH or 0CH
Bits per character = 05H
Odd data parity
Even LRC parity

 User-Specified Operation
Your application program can override the default parameters and set new
parameters in the 4778 MSR device-support code. To load the 4778 MSR
parameters, the application program issues the PinMagLoadDevParms function call.
This function call sets the operational parameters of the 4778 MSR and determines
how the data passes from each track. For more information about the
PinMagLoadDevParms function call, see “Loading the Device Parameters
(MagLoadDevParms)” on page 3-4.

 Chapter 5. Data Formats 5-3

Indicators for Read Operations
On the 4778, the Up arrow indicator on the liquid crystal display (LCD) indicates the
operating condition of the device.

For single-track read requests, the Up Arrow indicator display comes on (1) when
the 4778 MSR initially prepares for a read operation and (2) when the validity check
fails.

For multiple-track read requests, the PinMagSetOperation specifies one of the
following options:

All tracks must contain valid data.
At least one track must contain valid data.

The Up arrow indicator comes on to indicate a read operation failure based on the
option that was selected.

The Up arrow indicator remains on until:

A subsequent, successful read occurs.
The application program issues a PinMagAbort function call to cancel the
operation.

PIN Data Formats
This section describes the PIN formats that the 4778 PIN keypad supports. It
includes the following topics:

Nonencrypted PIN format
Encrypted PIN format
4704 encrypting-PIN-pad (EPP) PIN format
3624 PIN format
Verifying the 3624 PINs
ANSI X9.8 format

Nonencrypted PIN Data Format
For nonencrypted data, the maximum data length that the 4778 PIN keypad can
store in a buffer and return is 32 digits. The 4778 device driver stores the ASCII
data, along with the 7FH header and trailer bytes, in the data buffer of the
application program. The 4778 device driver translates digits 0 through 9 into
ASCII codes as follows:

PIN Output to
Keypad Key Application
0 30H
1 31H
2 32H
3 33H
4 34H
5 35H
6 36H
7 37H
8 38H
9 39H

Figure 5-3. Translations for Nonencrypted PIN Keypad Data

5-4 4777 and 4778 OS/2 Programming Guide

Encrypted PIN Data Format
For encrypted data, the application program issues the Create PIN Block command
to allow you to enter an encrypted PIN at the PIN keypad. The 4778 PIN keypad
transfers the data to the 4778 device driver. When the customer presses the End
key on the 4778 PIN keypad, the data is transferred to the 4778 PIN keypad
device-support code. If the customer presses the Erase key, the 4778 PIN keypad
purges the keyed data and restarts the 4778 PIN keypad entry.

The 4778 PIN keypad returns 8 bytes of encrypted data to the 4778 device driver,
unless the customer presses the End key without entering PIN data. Encrypted
data returns to the application program in the application-supplied buffer.

The 4778 supports three different formats of encrypted PINs:

 4704 EPP
 ANSI X9.8
 3624

The following sections describe these formats in detail.

4704 EPP Format
The format for the 4704 EPP PIN is as follows:

 8 bytes

 LEN PINPAD SEQ

A 123456789 FFF

encipher using KP

Figure 5-4. 4704 EPP PIN Format

LEN Number of PIN characters entered; a 4-bit value from 1H to DH

PIN From 1 to 13 PIN characters; each is a 4-bit value from 0H to 9H

PAD From 0 to 12 pad characters (13 minus the number of PIN characters); each
is a 4-bit value, always FH

SEQ A 1-byte sequence number, from 00H to FFH

 Chapter 5. Data Formats 5-5

ANSI X9.8 Format
The format for the ANSI X9.8 is as follows:

 8 bytes

 LEN PIN.........PAD Plain text PIN

 PAN............ Primary Account Number

encipher using Kp

 Example:

6 12 34 56 FF FF FF FF (Customer PIN: 123456)

 22 23 33 44 45 55 (PAN: 111 222 333 444 555)

6 12 16 75 CC BB BA AA Formatted PIN (PIN XOR PAN)

Figure 5-5. ANSI X9.8 PIN Format

0 A 4-bit control field; always 0H.

LEN Number of PIN characters entered; a 4-bit value from 4H to CH.

PIN From 4 to 12 PIN characters; each is a 4-bit value from 0H to 9H.

PAD From 2 to 10 keypad characters (14 minus the number of PIN characters).
Each 4-bit character must be set to FH.

0000 A 2-byte field; always 0000H.

PAN Twelve 4-bit digits representing the rightmost 12 digits of the primary
account number (PAN).

XOR An exclusive-OR of the plain text PIN and the PAN yields the formatted
PIN.

5-6 4777 and 4778 OS/2 Programming Guide

3624 PIN Format
The format for the 3624 PIN is as follows:

 8 bytes

 PINPAD

1 23 45 6E EE EE EE EE

††encipher using Kp†† |

Figure 5-6. 3624 PIN Format

PIN From 1 to 16 PIN characters; each is a 4-bit value from 0H to 9H.

PAD From 0 to 15 pad characters (16 minus the number of PIN characters).
Each is a 4-bit value, always 0H to FH; all values must be the same.

Verifying the 3624 PINs
The PIN verification process compares the PIN that the customer enters with
the validation data encrypted on the customer’s identification card. This determines
whether the customer entered the correct PIN. The 4778 PIN keypad uses a
verification algorithm that is identical to the algorithm used in the
IBM 3624 Consumer Transaction Facility and other IBM products.

To verify PINs, the 4778 PIN keypad requires the following information:

Item Description

Validation Data The data on the customer’s card that the 4778 PIN keypad
compares to the PIN that the customer enters.

EPINKEY The key that the 4778 PIN keypad uses to encrypt the
validation data.

Offset Data The optional data that the 4778 PIN keypad requires if random
or customer-selected PINs are used.

DECTAB The decimalization table that the 4778 PIN keypad uses to
translate hexadecimal numbers to decimal numbers. The
DECTAB is used to compare the PIN digits.

PINMINL The number of PIN digits that the EPP is to check.

The method that the 4778 PIN keypad uses to verify PINs is shown in Figure 5-7
on page 5-8 and works as follows:

1. The application, using the 4778 MSR device-support code, reads the validation
data from the identification card, pads the data to 8 bytes (16 digits) if required,
and passes it to the EPP along with the EPINKEY location (or encrypted key)
and the PINMINL.

2. The 4778 PIN keypad encrypts the validation data with the EPINKEY and
converts the data to decimal using the DECTAB.

3. The 4778 PIN keypad reads the customer’s PIN input.

 Chapter 5. Data Formats 5-7

4. The n leftmost characters (n is the length of the entered PIN) of the
decimalized validation data form the intermediate PIN.

5. To form the PIN check number, the m rightmost digits (m is PINMINL) of the
intermediate PIN are added to the offset data, modulo 10 (without carry).

6. The 4778 PIN keypad compares the m rightmost digits of the entered PIN with
the PIN check number and returns the results of the comparison to the
application.

 Validation Data Pad Characters

EPINKEY Encrypt

 Convert

 to Decimal

Decimalized dddddddddddddddd
Validation Data

Intermediate PIN dddddd

Offset Data ooooo
(Length PINMINL)

Add Modulo 1

PIN Check Number ccccc

 Compare

Entered PIN pppppp

Figure 5-7. Verifying the 3624 PINs

When you create the PIN offset data for the magnetic stripe of a new customer or
when a consumer changes a PIN, you use the same algorithm. The only difference
is that, instead of adding the offset data modulo 10 to the intermediate PIN to
compute the PIN check number, the entered PIN subtracts modulo 10 from the
intermediate PIN to compute the offset data to place on the customer’s card.

5-8 4777 and 4778 OS/2 Programming Guide

Managing the Cryptographic Keys
This section describes the cryptographic functions that the 4778 PIN keypad
supports and how you use them. It includes the following topics:

 Loading keys
Using key variants
Converting a master key to the keypad-entry format

To use cryptography with a 4700 Finance Communication System, you should be
familiar with the IBM 4700 Finance Communication System, Controller
Programming Library; Volume 5: Cryptographic Programming.

Because the data-encryption algorithm (DEA) is in the public domain, the security
of the functions of the 4778 PIN keypad that use the DEA depends on the security
of the key that is used in processing the algorithm. Therefore, after you load or
enter cryptographic keys into the 4778 PIN keypad, the keys cannot be read. They
are placed in nonvolatile EEPROM storage that resides in a tamper-resistant
security processor.

You can design a secure method for handling your keys when you are isolated
from the PIN keypad, using the provisions for loading the keys. Randomly
generate your keys, and store and distribute your keys in a secure, controlled
manner that you can audit.

 Loading Keys
The first key that you load into the keypad is the master key. You must load (or
enter) the master key into the keypad before you can use any cryptographic
operations. This is the only key that is loaded into the keypad in a nonencrypted
form. For protection, this key should be 128 bits (16 bytes) long. However, for
compatibility with the existing 4704 encrypting-PIN-pad feature, you can load a
64-bit (8-byte) master key. When you load an 8-byte master key, the 8 bytes are
duplicated. This ensures that a full 16 bytes are available for the key management
functions. These functions can then use your master key.

Verifying a DES key
After the successful entry or the loading of a DES key, the triple-encrypted serial
number is returned to the application. You should decrypt the serial number to
verify that the key was loaded correctly. The encrypted result of the serial number
remains displayed until you press a key on the PS/2 keyboard.

Warning: Placing the 4778 PIN keypad into the encrypted mode destroys all the
loaded DES keys. Following the PinSetModeEncrypt request, you must reload all
the DES keys into the 4778 PIN keypad.

 Chapter 5. Data Formats 5-9

 Triple-Encrypted Keys
After you load the master key, you can load additional 8-byte keys into the keypad
(if you desire). You load these keys after they are triple-encrypted, under the
master key or the variant of the master key (for an explanation of variants, see
“Using Key Variants”). Triple encryption is a cryptographic process in which you do
the following:

1. Encrypt the 8 bytes of data with the first 8 bytes of a double-length key.
2. Decrypt the result with the second 8 bytes of the double-length key.
3. Encrypt the result again, using the first 8 bytes of the double-length key.

If you use the same 8 bytes for the encryption and the decryption steps (for an
8-byte master key), the final result is the same as if a single encryption step is
performed with a single-length (8-byte) key.

The 4778 can store 256 keys (in addition to the master key). These keys are
placed in the nonvolatile EEPROM storage and triple encrypted under the
appropriate master-key variant until they are used.

Using Key Variants
A variant of a cryptographic key is a new key that is formed by combining the
original key with a nonsecret quantity. In the 4778 PIN keypad, the nonsecret
quantity is called a variant descriptor byte (VDB). To produce the new key, each
byte of the original key is combined in an exclusive-OR operation with the VDB.

For example:

Original key: 1 23 45 67 89 AB CD EF (hexadecimal)
 VDB: 55

Perform an exclusive - OR operation with the VDB with each byte
of the original key to obtain the variant key as follows:

1 23 45 67 89 AB CD EF
XOR 55 55 55 55 55 55 55 55

Variant key: 54 76 1 32 DC FE 98 BA

5-10 4777 and 4778 OS/2 Programming Guide

The 4778 PIN keypad contains a fixed table (Figure 5-8) of variant-descriptor
bytes. The table is organized as 16 sets of four VDBs. Only six variant bytes are
defined, corresponding to the six PIN commands that require them. Whenever you
use a variant with a command, you must specify a variant descriptor that
designates which of the VDB sets to use.

Note: ' 00H' is a special case. It indicates that variants are not to be used at all.
This is equivalent to using a variant of 00H.

Each command can include only certain variants as shown in Figure 5-9.

Variants ensure that a key can only be used for its intended function. For example,
a security problem could result if a MAC verification key could also be used for the
MAC generation function. To prevent this problem, each key is stored in encrypted
form (encrypted under a variant of the master key by using one of the variant
descriptor bytes). The VDB is specified with the Load Key command. When you
use the VDB for the intended function, the key is decrypted using the correct
variant of the master key (and is successfully recovered). If you use the VDB for a
different function, the wrong variant of the master key is used, resulting in an
incorrect key.

Figure 5-8. Key Variants

Index Variant a Variant b Variant c Variant d

1 12H xxH xxH xxH

2 90H xxH xxH xxH

3 06H xxH xxH xxH

4 2EH xxH xxH xxH

5 44H xxH xxH xxH

6 82H xxH xxH xxH

7–16 xxH xxH xxH xxH

Figure 5-9. Variant Descriptor Bytes for the 4778 Commands

Command Variant use

Load Key Use variant a3, a4, a5, or a6 to decrypt the
key that is being loaded.

Load ICV Use variant a2 to decrypt the ICV that is
being loaded.

Create PIN Block Use variant a3 to decrypt the PIN key.

Verify PIN Use variant a4 to decrypt the PIN verification
key.

Generate MAC Use variant a5 to decrypt the MAC key.

Verify MAC Use variant a6 to decrypt the MAC key.

 Chapter 5. Data Formats 5-11

Converting a Master Key to the Keypad-Entry Format
Master keys are generated as either 8-byte or 16-byte values. To enter the key
into the 4778 PIN keypad with the Enter Master Key command, first convert the key
to a format that contains only digits 0 through 9. In this process, convert each byte
of the key into three keystrokes. For example, convert an 8-byte key to
24 keystrokes and a 16-byte key to 48 keystrokes.

To express the key in the form of keystrokes, write the key in hexadecimal, then
use the tables in Figure 5-11 on page 5-13 to convert each pair of hexadecimal
digits to 3-keystroke values.

For example:

73 A 11 C3 8 6F CE 22 Key

Convert each pair,
using the hexadecimal
to keystroke tables.

3 4 3
5 1

 4
6 2

4
3 3 2

6 3 2
1 3

Enter this sequence on the
keypad 3 4 3 5 1 4 6 2 4 3 3 2 6 3 2 1 3

Figure 5-10. Example of a Master Key Conversion

When you generate keys by a random process, any hexadecimal character is
possible. Because the keypad has only decimal characters, you must translate the
Enter Master Key command bytes (which appear as two hexadecimal characters)
into the 3-3-2 decimal format. To translate these bytes, use the table in
Figure 5-11 on page 5-13.

When you read the table, notice that multiple hexadecimal bytes result in identical
decimal input (00H and 01H both result in 001D). This is because each byte is
required to have odd parity (the parity bit is the least-significant bit). This means
that if you entered a byte such as 000D, a parity error occurs. If keys are
generated by an automatic process, the process corrects the parity. This ensures
that identical keys of the correct parity reside at all the nodes.

Note: Do not use this table for routine data conversions to and from the
3-3-2 format, because the parity is accounted for in the table. Use this table only to
encrypt and generate the key and the keystroke.

5-12 4777 and 4778 OS/2 Programming Guide

1H 1 21H 1 41H 2 61H 3 1
2H 2 22H 1 3 42H 2 3 62H 3 2
3H 2 23H 1 3 43H 2 3 63H 3 2
4H 1 24H 1 1 1 44H 2 1 1 64H 3 1
5H 1 25H 1 1 1 45H 2 1 1 65H 3 1
6H 1 3 26H 1 1 2 46H 2 1 2 66H 3 1 3
7H 1 3 27H 1 1 2 47H 2 1 2 67H 3 1 3
8H 2 28H 1 2 1 48H 2 2 1 68H 3 2
9H 2 29H 1 2 1 49H 2 2 1 69H 3 2
AH 2 3 2AH 1 2 2 4AH 2 2 2 6AH 3 2 3
BH 2 3 2BH 1 2 2 4BH 2 2 2 6BH 3 2 3
CH 3 1 2CH 1 3 4CH 2 3 6CH 3 3 1
DH 3 1 2DH 1 3 4DH 2 3 6DH 3 3 1
EH 3 2 2EH 1 3 3 4EH 2 3 3 6EH 3 3 2
FH 3 2 2FH 1 3 3 4FH 2 3 3 6FH 3 3 2

1 H 4 3 H 1 4 1 5 H 2 4 1 7 H 3 4
11H 4 31H 1 4 1 51H 2 4 1 71H 3 4
12H 4 3 32H 1 4 2 52H 2 4 2 72H 3 4 3
13H 4 3 33H 1 4 2 53H 2 4 2 73H 3 4 3
14H 5 1 34H 1 5 54H 2 5 74H 3 5 1
15H 5 1 35H 1 5 55H 2 5 75H 3 5 1
16H 5 2 36H 1 5 3 56H 2 5 3 76H 3 5 2
17H 5 2 37H 1 5 3 57H 2 5 3 77H 3 5 2
18H 6 1 38H 1 6 58H 2 6 78H 3 6 1
19H 6 1 39H 1 6 59H 2 6 79H 3 6 1
1AH 6 2 3AH 1 6 3 5AH 2 6 3 7AH 3 6 2
1BH 6 2 3BH 1 6 3 5BH 2 6 3 7BH 3 6 2
1CH 7 3CH 1 7 1 5CH 2 7 1 7CH 3 7
1DH 7 3DH 1 7 1 5DH 2 7 1 7DH 3 7
1EH 7 3 3EH 1 7 2 5EH 2 7 2 7EH 3 7 3
1FH 7 3 3FH 1 7 2 5FH 2 7 2 7FH 3 7 3

Figure 5-11 (Part 1 of 2). Hexadecimal-to-Keystroke Conversion Table

 Chapter 5. Data Formats 5-13

8 H 4 A H 5 1 C H 6 1 E H 7
81H 4 A1H 5 1 C1H 6 1 E1H 7
82H 4 3 A2H 5 2 C2H 6 2 E2H 7 3
83H 4 3 A3H 5 2 C3H 6 2 E3H 7 3
84H 4 1 1 A4H 5 1 C4H 6 1 E4H 7 1 1
85H 4 1 1 A5H 5 1 C5H 6 1 E5H 7 1 1
86H 4 1 2 A6H 5 1 3 C6H 6 1 3 E6H 7 1 2
87H 4 1 2 A7H 5 1 3 C7H 6 1 3 E7H 7 1 2
88H 4 2 1 A8H 5 2 C8H 6 2 E8H 7 2 1
89H 4 2 1 A9H 5 2 C9H 6 2 E9H 7 2 1
8AH 4 2 2 AAH 5 2 3 CAH 6 2 3 EAH 7 2 2
8BH 4 2 2 ABH 5 2 3 CBH 6 2 3 EBH 7 2 2
8CH 4 3 ACH 5 3 1 CCH 6 3 1 ECH 7 3
8DH 4 3 ADH 5 3 1 CDH 6 3 1 EDH 7 3
8EH 4 3 3 AEH 5 3 2 CEH 6 3 2 EEH 7 3 3
8FH 4 3 3 AFH 5 3 2 CFH 6 3 2 EFH 7 3 3

9 H 4 4 1 B H 5 4 D H 6 4 F H 7 4 1
91H 4 4 1 B1H 5 4 D1H 6 4 F1H 7 4 1
92H 4 4 2 B2H 5 4 3 D2H 6 4 3 F2H 7 4 2
93H 4 4 2 B3H 5 4 3 D3H 6 4 3 F3H 7 4 2
94H 4 5 B4H 5 5 1 D4H 6 5 1 F4H 7 5
95H 4 5 B5H 5 5 1 D5H 6 5 1 F5H 7 5
96H 4 5 3 B6H 5 5 2 D6H 6 5 2 F6H 7 5 3
97H 4 5 3 B7H 5 5 2 D7H 6 5 2 F7H 7 5 3
98H 4 6 B8H 5 6 1 D8H 6 6 1 F8H 7 6
99H 4 6 B9H 5 6 1 D9H 6 6 1 F9H 7 6
9AH 4 6 3 BAH 5 6 2 DAH 6 6 2 FAH 7 6 3
9BH 4 6 3 BBH 5 6 2 DBH 6 6 2 FBH 7 6 3
9CH 4 7 1 BCH 5 7 DCH 6 7 FCH 7 7 1
9DH 4 7 1 BDH 5 7 DDH 6 7 FDH 7 7 1
9EH 4 7 2 BEH 5 7 3 DEH 6 7 3 FEH 7 7 2
9FH 4 7 2 BFH 5 7 3 DFH 6 7 3 FFH 7 7 2

Figure 5-11 (Part 2 of 2). Hexadecimal-to-Keystroke Conversion Table

Using Message Authentication Codes
The 4778 produces a message authentication code (MAC) using the conventions
that are defined in ANSI X9.9. A MAC ensures data integrity when an unprotected
communication link transmits a message from one node to another node. The
MAC is generated at the sending node and is sent with the message to the other
node.

When the other node receives the message authentication code, the code is
verified to ensure that it is the same as the code that was transmitted by the
sending node. If the MAC is not the same, you can assume that some of the data
was either intentionally or unintentionally changed. The algorithm that is shown in
Figure 5-12 on page 5-15 is applied either to the entire message or to specific
authentication elements that are presented to the 4778 PIN keypad by the
workstation. The data must be a multiple of 8 bytes (no padding or element
extraction is provided by either the 4778 PIN keypad or the device driver). The
algorithm uses the cipher-block-chaining mode of the data encryption standard
(DES).

5-14 4777 and 4778 OS/2 Programming Guide

Time 1 Time 2 / / Time n

 D1

ICV XOR

 / / In
 I1 I2

Km DEA
Km DEA Km DEA

 On
 O1 O2
 MAC

 XOR XOR

 D2 D2

Figure 5-12. Using Message Authentication Codes

The following list defines the terms in Figure 5-12:

ICV Initial Chaining Vector (8 bytes, preloaded or included with the command
request)

D1 – Dn 8-byte data blocks

In 8-byte intermediate value

Km MAC key

On 8-byte message authentication code (leftmost 4 bytes are used as MAC
in ANSI X9.9)

 Chapter 5. Data Formats 5-15

5-16 4777 and 4778 OS/2 Programming Guide

Chapter 6. 4777 Multiple-Virtual-DOS-Machine I/O System

This chapter describes the application program interface (API) for the
multiple-virtual-DOS-machine (MVDM) support code 4777 Magnetic Stripe Unit.
This API lets you operate the 4777 device on an OS/2 Release 2.0 or higher
system using the MVDM environment.

4777 MVDM I/O System
The 4777 MVDM I/O system consists of the following:

4777 DOS emulation device driver (4777DD.SYS)
4777 virtual device driver (4777VDD.SYS)
4777 support application (4777SAP.EXE)
4777 dynamic link library (MAGCALLS.DLL)
4777/4778 physical device driver (FIOSERDD.SYS or FIOAUXDD.SYS)

Figure 6-1 shows the relationship of the 4777 MVDM I/O system components.

DOS
Application

4777 DOS
Emulation
Device Driver
(4777DD.SYS)

4777 Virtual
Device Driver
(4777VDD.SYS)

4777 Support
Application
(4777SAP.EXE)

4777 Dynamic
Link Library
(MAGCALLS.DLL)

4777/4778
Physical
Device Driver
(FIOSERDD.SYS
or
FIOAUXDD.SYS)

MVDM Environment OS/2 Protected Environment

Figure 6-1. 4777 MVDM I/O System

 Copyright IBM Corp. 1994 6-1

Loading the 4777 MVDM Device Driver
You can load the MVDM device driver using the FINSTALL program or you can
install it manually. The automatic and manual procedures are described in the
following sections.

Note: For serial port attachment do not attach a 4717 or 4718 to the same
workstation used for the 4777. The device driver for the 4777 is not compatible
with the 4700 devices.

 Automatic Installation
To load and install the 4777 MVDM I/O system using FINSTALL:

1. Insert the OS/2 device-driver diskette into the A: drive.

2. Enter A:FINSTALL at the command prompt and press Enter .

3. Follow the instructions on the panels displayed by the installation program.

Note: If you use a virtual machine boot (VMB) DOS session, you must add
the device-driver statements to the CONFIG.SYS file that is used to start the
DOS session.

When you are finished, the program (FINSTALL) updates the files that contain the
device-specific code and copies them to the drive you specified.

 Manual Installation
This procedure loads and initializes the 4777 MVDM I/O system without using the
FINSTALL program. In the CONFIG.SYS syntax, the disk-drive identifier and
directory path are defined as:

d: The disk-drive identifier
path The directory path

Brackets [] indicate optional parameters.

1. Copy the following files from the device-driver diskette to your workstation hard
disk:

 4777DD.SYS
 4777VDD.SYS
 4777SAP.EXE

2. Add the following statements to your CONFIG.SYS file. The device-driver
statements must be in the CONFIG.SYS file in the root directory of the hard
disk used to start your OS/2 session.

a. For the 4777 DOS emulation device driver:

DEVICE=[d: [path]] 4777DD.SYS [/X/Y/K/Z: ;val]

The 4777DD device statement parameters are:

/X Suppresses the messages that are displayed if 4777DD.SYS detects
any error conditions. Normally, all messages are displayed and
processing stops until you press a key. When using this option, the
application program must handle all error messages.

6-2 4777 and 4778 OS/2 Programming Guide

/Y Prevents setting the error bit and returning error codes to DOS. All
error status information is blocked. The application program must issue
a Read Status request to verify the results of any operations.

/K:val
Assigns the Cancel operation to a key that you select, where val is a
3-digit decimal value. Use the format /K:val , when val is the standard
ASCII code for the selected key. If the key represents an extended
ASCII code, use the format: /K: ;val .

The default setting assigns Cancel to the Esc key (ASCII code 27).
This key assignment is valid only during synchronous operation.

/Z Postpones any DOS OPEN error codes if the 4777 device is currently
controlled by another MVDM session or by an OS/2 session. This lets
you see the pop-up message, then go to the owning session and issue
a Close function to release the 4777 device. Otherwise, the Open error
is passed to the application.

b. For the 4777 virtual device driver:

DEVICE=[d: [path]] 4777VDD.SYS

c. For the 4777 support application:

RUN=[d: [path]] 4777SAP.EXE

3. Load and initialize the 4777 dynamic link library.

For information about loading the dynamic link library for the 4777 device, see
“Loading the 4777 Dynamic Link Library” on page 2-3.

4. Load and initialize the FIOSERDD.SYS device driver if serial attached or the
FIOAUXDD.SYS device driver if auxiliary port attached.

5. Load and initialize the message files.

Using the 4777 MVDM Device Driver
The 4777 device driver for OS/2 MVDM sessions provides:

DOS-defined functions for the MVDM and VMB environments under the
OS/2 operating system.

Serial and interleaved sharing of the 4777 hardware between
OS/2 protected-mode applications and DOS applications in the MVDM
environment.

Use of the 4777 MVDM I/O system in a single MVDM session. All subsequent
MVDM sessions are prevented from using the 4777 MVDM I/O system.

 Chapter 6. 4777 Multiple-Virtual-DOS-Machine I/O System 6-3

DOS Application Program Interface
The 4777 MVDM I/O system uses the DOS interrupt 21H application program
interface. The interrupt 21H interface is described in the 4777 Magnetic Stripe Unit
DOS Programming Guide. The interface is compatible with the DOS device driver,
MSRE2DD.SYS, with the following exceptions:

The IOCTL Write subfunctions for reading and writing data in the TopView*

environment are not supported.

A pop-up message is displayed when the MVDM application tries to use the
4777 device and it is currently in use by an OS/2 session.

You can clear this condition by switching to the OS/2 session and issuing a
Close request. Then you can request a retry of the Open request or return the
error to the application program.

Note: The pop-up message is not visible during a DOS full-screen session
although the workstation sounds a beep when the message is issued. You can
view the message by bringing a windowed session to the foreground or by
running the application in a DOS window.

If the application issues a DOS Close request to the MVDM I/O interface when
the device is set to read or encode data, the 4777 device indicators are turned
off and the device is disabled. This ensures that the 4777 is available in a
reset state for any OS/2 protected-mode session application.

If the application issues multiple Open requests without corresponding Close
requests in between, a DOS Open error is returned to the DOS application.

If another MVDM session is already using the 4777 device, a DOS Open error
is returned to the application program. This error causes the FIO0573 error
message to appear.

The DOS emulation device driver (4777DD.SYS) processes all 21H interrupts with
the MAGDEV handle name.

OS/2 Protected-Mode Operation
The 4777 MVDM I/O system shares a common interface with the
4777 OS/2 protected-mode support programming (see Figure 6-1 on page 6-1).
The OS/2 physical device driver determines which mode is in control of the device.
When the MVDM environment is in control, Open requests from protected-mode
applications receive an ERROR_NOT_READY return code from the OS/2 session.

Although the MVDM and OS/2 protected-mode applications can run concurrently,
only one session can own the device at any time. The ownership is on a first-use
basis. That is, the first application requesting the device is given control and this
determines which API is used. After an application releases control of the device,
the I/O system is available to the first application that requests control.

The 4777 MVDM support programs use MAGCALLS.DLL and FIOSERDD.SYS or
FIOAUXDD.SYS to perform the actual I/O operations requested by the DOS
application.

* Trademark of IBM

6-4 4777 and 4778 OS/2 Programming Guide

Avoiding Unwanted Initialization Error Messages
The 4777 DOS emulation device driver will install by default in each DOS session
when the session is started. The device driver will attempt to communicate with the
4777 using the other I/O system components during initialization. If this is not
possible, the device driver displays a message. This message could be considered
a nuisance, especially if you want to use the I/O system only in the first DOS
session to be started and also want to start additional DOS sessions that do not
use the I/O system.

To avoid this condition and maintain other DOS sessions that do not use the
MVDM I/O system, you can:

Use the /X option on the DEVICE statement. Use caution with this solution
because all error messages are suppressed. This can result in other error
conditions being hidden from the user.

Create separate command prompts in the Command Prompts–Icon View to
start DOS sessions with, and without, the device driver in the device-driver
DOS settings. There can be a single with-device-driver DOS session started
using the appropriate prompt icon.

 Chapter 6. 4777 Multiple-Virtual-DOS-Machine I/O System 6-5

6-6 4777 and 4778 OS/2 Programming Guide

Chapter 7. 4778 Multiple-Virtual-DOS-Machine I/O System

This chapter describes the application program interface (API) for the
multiple-virtual-DOS-machine (MVDM) I/O system for the 4778 PIN-Pad Magnetic
Stripe Reader. This API lets you operate the 4778 on an OS/2 Release 2.0 (or
higher) system using the MVDM environment.

4778 MVDM I/O System
The 4778 MVDM system consists of the following:

4778 PIN DOS emulation device driver (4778DDP.SYS)
4778 MSR DOS emulation device driver (4778DDM.SYS)
4778 PIN virtual device driver (4778VDDP.SYS)
4778 MSR virtual device driver (4778VDDM.SYS)
4778 PIN support application (4778SAPP.EXE)
4778 MSR support application (4778SAPM.EXE)
4778 PIN dynamic link library (PINCALLS.DLL)
4778 MSR dynamic link library (PINMSR.DLL)
4778 physical device driver (FIOSERDD.SYS) or (FIOAUXDD.SYS).

Figure 7-1 shows the relationship of the 4778 MVDM I/O system components.

DOS
Application

4778 PIN DOS
Emulation
Device Driver
(4778DDP.SYS)

4778 MSR DOS
Emulation
Device Driver
(4778DDM.SYS)

4778 MSR
Virtual
Device Driver
(4778VDDM.SYS)

4778 PIN
Virtual
Device Driver
(4778VDDP.SYS)

4778 PIN
Support
Application
(4778SAPP.EXE)

4778 MSR
Support
Application
(4778SAPM.EXE)

4778 PIN
Dynamic
Link Library
(PINCALLS.DLL)

4778 MSR
Dynamic
Link Library
(PINMSR.DLL)

4777/4778
Physical
Device Driver
(FIOSERDD.SYS
or
FIOAUXDD.SYS)

MVDM Environment OS/2 Protected Environment

Figure 7-1. 4778 MVDM I/O System

 Copyright IBM Corp. 1994 7-1

Loading the 4778 MVDM Device Driver
You can load the MVDM device drivers using the FINSTALL program or you can
install them manually. The automatic and manual procedures are described in the
following sections.

 Automatic Installation
To load and install the 4778 MVDM I/O system using FINSTALL:

1. Insert the OS/2 device-driver diskette into the A: drive.

2. Enter A:FINSTALL at the command prompt and press ENTER.

3. Follow the instructions on the panels displayed by the installation program.

Note: If you use a virtual machine boot (VMB) DOS session, you must add
the device-driver statements to the CONFIG.SYS file that is used to start the
DOS session.

When you are finished, the program (FINSTALL) updates the files that contain the
device-specific code and copies them to the drive you specified.

 Manual Installation
This procedure loads and initializes the 4778 MVDM I/O system without using the
FINSTALL program. In the CONFIG.SYS syntax, the disk-drive identifier and
directory path are defined as:

d: The disk-drive identifier

path The directory path

Brackets [] indicate optional parameters.

1. Copy the following files from the device-driver diskette to your workstation hard
disk:

 4778DDP.SYS
 4778DDM.SYS
 4778VDDP.SYS
 4778VDDM.SYS
 4778SAPP.EXE
 4778SAPM.EXE

2. Add the following statements to your CONFIG.SYS file. The device-driver
statements must be in the CONFIG.SYS file in the root directory of the hard
disk used to start the OS/2 session.

a. For the 4778 DOS emulation device drivers:

DEVICE=[d:][path] 4778DDP.SYS [/X/Y/K:val/Z]

DEVICE=[d:][path] 4778DDM.SYS [/X/Y/K:val/Z]

The DOS emulation device statement parameters are defined as follows:

/X Suppresses the messages that are displayed if the 4778DDP or
4778DDM device driver detects any error conditions. Normally, the
messages are displayed and the processing stops until you press any
key. When using this option, the application program must handle all
error messages.

7-2 4777 and 4778 OS/2 Programming Guide

/Y Prevents setting the error bit and returning error codes to DOS. All
error status information is blocked. The application program must issue
a READ STATUS request to verify the results of any operations.

/K:val
Assigns the Cancel operation to a key you select, where val is a 3-digit
decimal value. Use the format /K:val , when val is the standard ASCII
code for the selected key. If the key represents an extended ASCII
code, use the format: /K: ;val .

The default setting assigns Cancel to the Esc key (ASCII code 27).
This key assignment is valid only during synchronous operation.

/Z This option postpones any DOS OPEN error codes if the 4778 device
is currently controlled by another MVDM session or by an
OS/2 session. This lets you see the pop-up message, then go to the
owning session and issue a Close function to release the 4778 device.
Otherwise, the Open error is passed to the application.

b. For the 4778 virtual device drivers:

DEVICE=[d:][path] 4778VDDP.SYS
DEVICE=[d:][path] 4778VDDM.SYS

c. For the 4778 support applications:

RUN=[d:][path] 4778SAPP.EXE
RUN=[d:][path] 4778SAPM.EXE

3. Load and initialize the 4778 dynamic link library. For information about using
the dynamic link library for the 4778 device, see “Loading the 4778 Dynamic
Link Library” on page 2-3.

4. Load and initialize the 4778 physical device driver. For information about using
the physical device driver for the 4778 device, see Chapter 2, “Loading and
Initializing the Device Driver.”

5. Load the message files. For information about loading the message files, see
“Loading the Message Files” on page 2-4.

Using the 4778 MVDM Device Driver
The 4778 device driver for OS/2 MVDM sessions provides:

DOS-defined functions for the MVDM and VMB environments under the
OS/2 operating system.

Serial and interleaved sharing of the 4778 hardware between
OS/2 protected-mode applications and DOS applications in the
MVDM environment.

Use of the 4778 MVDM I/O system by a single MVDM session. All subsequent
MVDM sessions are prevented from using the 4778 MVDM I/O system.

 Chapter 7. 4778 Multiple-Virtual-DOS-Machine I/O System 7-3

DOS Application Program Interface
The 4778 MVDM I/O system uses the DOS interrupt 21H application program
interface. The interrupt 21H interface is described in the 4778 DOS Programming
Guide. The interface is compatible with the DOS device driver, PIN2DD.SYS, with
the following exceptions:

The IOCTL Write subfunctions for reading and writing data in the TopView*

environment are not supported.

A pop-up message is displayed when the MVDM application tries to use the
4778 device and it is currently in use by an OS/2 session.

You can clear this condition by switching to the OS/2 session and issuing a
Close request. Then you can request a retry of the Open request or return the
error to the application program.

Note: The pop-up message is not visible during a DOS full-screen session
although the workstation sounds a beep when the message is issued. You can
view the message by bringing a windowed session to the foreground or by
running the application in a DOS window.

If the DOS application issues a DOS Close request to the 4778 MVDM
interface when the 4778 device is enabled, the 4778 device indicator is turned
off and the unit is disabled.

This ensures that the 4778 is available in a reset state for any
OS/2 protected-mode session application.

If the application issues multiple open requests without corresponding closes in
between, a DOS Open error is returned to the DOS application.

If another MVDM session is already using the 4778 device, a DOS Open error
is returned to the application program. This error causes either the FIO0593 or
FIO0598 error message to appear.

The DOS emulation device driver (4778DDP.SYS) processes all 21H interrupts with
the PINDEV handle name. The 4778DDM.SYS device driver processes all
21H interrupts with the PINMSR$ handle name.

OS/2 Protected Mode
The 4778 MVDM I/O system shares a common interface with the
4778 OS/2 protected-mode support programming (see Figure 7-1 on page 7-1).
The OS/2 physical device driver determines which mode is in control of the device.
When the MVDM environment is in control, Open requests from protected-mode
applications receive an ERROR_NOT_READY return code from the OS/2 session.

Although the MVDM and OS/2 protected-mode applications can all run
concurrently, only one session can own the device at any time. The ownership is
on a first-use basis. That is, the first application that requests the device is given
control and this determines which API is used. After an application releases control
of the device, the I/O system is available to the first application that requests
control.

* Trademark of IBM

7-4 4777 and 4778 OS/2 Programming Guide

The 4778 MVDM support programs use the dynamic link libraries to perform the
actual I/O operations requested by the DOS application.

Avoiding Unwanted Initialization Error Messages
The 4778 DOS emulation device drivers will install by default in each DOS session
when the session is started. The device drivers will attempt to communicate with
the 4778 using the other I/O system components during initialization. If this is not
possible, the device drivers will display a message. This message could be
considered a nuisance, especially if you want to use the I/O system only in the first
DOS session to be started up and you also want to start additional DOS sessions
that do not use the I/O system.

To avoid this condition and maintain other DOS sessions that do not use the
MVDM I/O system, you can:

Use the /X option on the DEVICE statement. Use caution with this solution
because all error messages are suppressed. This can result in other error
conditions being hidden from the user.

Create separate command prompts in the Command Prompts-Icon View to start
DOS sessions with, and without, the device driver in the device-driver DOS
settings. There can be a single with-device-driver DOS session started using
the appropriate icon prompt.

 Chapter 7. 4778 Multiple-Virtual-DOS-Machine I/O System 7-5

7-6 4777 and 4778 OS/2 Programming Guide

Chapter 8. Messages and Status Codes

This chapter lists and describes the installation messages and program status
codes for the 4777 and 4778.

 Installation Messages
FIO0550 4777/4778 Device Interrupt Denied

Explanation: The device driver could not install the device interrupt
handler. This is a critical error. The driver is installed but any I/O
requests are denied.

User Response: Ensure that no other device driver is installed that
might own the serial port exclusively.

FIO0551 4777/4778 CONFIG.SYS Specification Error

Explanation: The device driver detected an error in the optional
parameters that are specified in the CONFIG.SYS file on the
DEVICE=FIOSERDD.SYS or the DEVICE=FIOAUXDD.SYS command
line. This error is not critical; the device driver installs in storage if this
is the only error detected.

User Response: Correct the command line in the CONFIG.SYS file
that loads the device driver. The valid parameters are /Cx (serial only),
/P, /M, /W, and /S.

FIO0552 4777/4778 System Unit Model Not Supported

Explanation: The device driver attempted to install into an
unsupported system unit. The 4777 and the 4778 will not install into a
Personal Computer AT*, Personal Computer XT* (PC/XT*) 286,
PS/2 Model 30, or PC Convertible system. This is a critical error; the
device driver is installed but any I/O requests are denied.

User Response: Do not attempt to install the device driver into an
unsupported system unit. See Chapter 2, “Loading and Initializing the
Device Driver,” for a list of supported systems.

FIO0553 4777/4778 Timer Request Failure

Explanation: The device driver was not given access to the timer
interrupt. This is a critical error. The driver is installed but any I/O
requests are denied.

User Response: Reduce the number of active timers installed on your
system.

* Trademark of IBM

 Copyright IBM Corp. 1994 8-1

FIO0555 Device driver denied access to serial port

Explanation: The device driver was not given access to the requested
serial port. The serial port is in use or not installed.

User Response: Either change the COM port specification in
CONFIG.SYS or run setup to add the specified COM port.

FIO0560 4777 Device Not Attached

Explanation: The device driver could not communicate with the device.
Either a device is not attached or the device failed. This error is critical
only when no device is attached. In this case the device driver is
removed from storage.

User Response: Ensure that a device is attached. If a device is
attached, either replace the unit or test the device with the customer
diagnostic tests.

FIO0561 4777 Diagnostic Test Failure

Explanation: The device driver detected an error with the device; at
least one of the power-on diagnostic tests in the device failed. This is a
critical error; the device driver is installed but any I/O requests are
denied.

User Response: Either replace the unit or test the device with the
customer diagnostic tests.

FIO0562 4777 Communication Failure

Explanation: The device driver established initial communication with
the device. However, a subsequent communication sequence with the
device failed. This is a critical error; the device driver might not install in
storage.

User Response: Test the device with the customer diagnostic tests.
Replace the device if the communication errors continue.

FIO0570 4777 Device Is Currently Not Available

Explanation: The Open request from the MVDM session cannot be
completed because an OS/2 protected-mode application is using the
device.

User Response: Close or cancel the device operation in the
OS/2 session.

FIO0571 CONFIG.SYS Specification Error

Explanation: One of the optional parameters for the
DEVICE=4777DD.SYS or the DEVICE=FIOSERDD.SYS or the
DEVICE=FIOAUXDD.SYS statement is not specified correctly.

User Response: Check the statement in the CONFIG.SYS file and
correct the error.

8-2 4777 and 4778 OS/2 Programming Guide

FIO0572 4777 MVDM System Component Not Installed

Explanation: The 4777 DOS emulation device driver detected that one
or more required system components are not installed or could not be
located during startup.

User Response: Ensure that the required files were correctly loaded
and that they are on a directory path that is accessible during startup.

FIO0573 4777 MVDM System Unusable

Explanation: The 4777 MVDM system is currently in use.
The 4777 MVDM support allows only one session at a time.

User Response: Use the 4777 MVDM system to close the session.

FIO0580 4778 PIN Device Not Attached

Explanation: The device driver could not communicate with the device.
Either a device is not attached or the device failed. This error is critical
only when no device is attached.

User Response: Ensure that a device is attached. If a device is
attached, either replace the unit or test the device with the customer
diagnostic tests.

FIO0581 4778 PIN Diagnostic Test Failure

Explanation: The device driver detected an error with the device; at
least one of the power-on diagnostic tests in the device failed. This is a
critical error; the device driver is installed but any I/O requests are
denied.

User Response: Either replace the unit or test the device with the
customer diagnostic tests.

FIO0582 4778 PIN Communication Failure

Explanation: The device driver established initial communication with
the device. However, a subsequent communication sequence with the
device failed. This is a critical error; the device driver might not install in
storage.

User Response: Test the device with the customer diagnostic tests.
Replace the device if the communication errors continue.

FIO0583 4778 MSR Device Not Attached

Explanation: The device driver could not communicate with the
4778 magnetic-stripe reader (MSR) component. Either the device is not
attached or it has failed. This is a critical error only when no device is
attached to the serial port. When no device is attached, the device
driver is removed from storage.

User Response: Ensure that a 4778 unit is attached. If the device is
attached, either replace the unit or test the device by using the customer
diagnostic tests.

 Chapter 8. Messages and Status Codes 8-3

FIO0584 4778 MSR Diagnostic Test Failure

Explanation: The device driver detected an error with the device; at
least one of the power-on diagnostic tests in the device failed. This is a
critical error; the device driver is installed but any I/O requests are
denied.

User Response: Test the unit with the customer diagnostic tests. If
power-on diagnostic errors continue, replace the unit.

FIO0585 4778 MSR Communication Failure

Explanation: The device driver established initial communication with
the device. However, a subsequent communication sequence with the
MSR component failed. This is a critical error; the device driver is
installed but any I/O requests are denied.

User Response: Test the device with the customer diagnostic tests.
Replace the device if the communication errors continue.

FIO0590 4778 PIN Device Is Currently Not Available

Explanation: The Open request from the MVDM session cannot be
completed because an OS/2 protected-mode application is using the
4778 PIN keypad device.

User Response: Close or cancel the device operation in the
OS/2 session.

FIO0591 CONFIG.SYS Specification Error

Explanation: One of the optional parameters for the
DEVICE=4778DDP.SYS or the DEVICE=FIOSERDD.SYS or the
DEVICE=FIOAUXDD.SYS statement is not specified correctly.

User Response: Check the statement in the CONFIG.SYS file and
correct the error.

FIO0592 4778 PIN MVDM System Component Not Installed

Explanation: The 4778 PIN DOS emulation device driver detected that
one or more required system components are not installed or could not
be located during the initial program load (IPL).

User Response: Ensure that the required files are correctly loaded
and that they are on a directory path that is accessible during IPL.

FIO0593 4778 PIN MVDM System Unusable

Explanation: The 4778 PIN MVDM system is currently in use. The
4778 PIN MVDM support allows only one session at a time.

User Response: Use the 4778 MVDM system to close the session.

FIO0595 4778 MSR Device Is Currently Not Available

Explanation: The Open request from the MVDM session cannot be
completed because an OS/2 protected-mode application is using the
4778 MSR device.

User Response: Close or cancel the device operation in the
OS/2 session.

8-4 4777 and 4778 OS/2 Programming Guide

FIO0596 CONFIG.SYS Specification Error

Explanation: One of the optional parameters for the
DEVICE=4778DDM.SYS or the DEVICE=FIOSERDD.SYS or the
DEVICE=FIOAUXDD.SYS statement is not specified correctly.

User Response: Check the statement in the CONFIG.SYS file and
correct the error.

FIO0597 4778 MSR MVDM System Component Not Installed

Explanation: The 4778 MSR DOS emulation device driver detected
that one or more required system components are not installed or could
not be located during the IPL.

User Response: Ensure that the required files were correctly loaded
and that they are on a directory path that is accessible during IPL.

FIO0598 4778 MSR MVDM System Unusable

Explanation: The 4778 MSR MVDM system is currently in use. The
4778 MSR MVDM support allows only one session at a time.

User Response: Use the 4778 MVDM system to close the session.

Application Program Status Codes
This section describes the application program status codes for the 4778 PIN-Pad
Magnetic Stripe Reader. When the requested function call completes, the
OS/2 system returns the status codes to the application program in register AX.

For information about the standard OS/2 return codes that are not described here,
use the OS/2 on-line help facility.

PIN Keypad Status Codes
The application program status codes for keypad functions are in decimal form as
follows:

0 Pin_No_Error

Explanation: The function call completed successfully; the 4778 PIN
keypad device-support code did not detect an error.

110 Device driver failed to open

Explanation: The device driver did not open; the function call did not
complete.

1793 Pin_Invalid_Handle

Explanation: The PinHandle that was obtained from the last function
call does not match the PinHandle that was returned from the PinOpen
function call.

 Chapter 8. Messages and Status Codes 8-5

1794 Pin_Device_Errors

Explanation: The 4778 detected an error in the requested operation.
This message results when one of the following occurs:

A check-sum error
Incorrect parity for the resident encryption key
A communication error
An EEPROM write error

1795 Pin_Incorrect_Data_Length

Explanation: The size allocation for the requested data does not
match the size of the data that the application program received. This
error message also appears when the data length is zero.

1796 Pin_Invalid_Key_Pressed

Explanation: During the PinEnterMasterKey function call, a key was
pressed that is not valid.

1797 Pin_Invalid_Mode

Explanation: The PIN mode is not valid. The 4778 is in the
nonencrypted mode and a PinCreateOffsetData function call was
requested or the 4778 is in the encrypted mode and a
PinReadClearData function call was requested.

1798 Pin_Dll_Error

Explanation: The 4778 device-support code detected an
unrecoverable error and ended the current function call.

1799 Pin_Operation_Aborted

Explanation: The application program issued the PinAbort function call
and ended the current I/O operation.

1800 Pin_Data_Error

Explanation: The application program detected an error in the
parameters that are specified for the current function call, such as the
following:

A variant is not valid.
The parity for a variant is not valid.
The data is not valid.
The data length is not valid.

1801 Pin_Driver_Not_Open

Explanation: An operation was requested and the 4778 device driver
was not open.

1802 Pin_Busy

Explanation: The application program issued a function call but the
4778 is not available (another PinHandle owns the device).

8-6 4777 and 4778 OS/2 Programming Guide

1803 Pin_Not_Verified

Explanation: The PIN entry was not verified for a PinVerifyPin or a
PinVerifyMac function call.

1804 Pin_Incorrect_Key_Parity

Explanation: The 4778 device-support code detected a key parity that
is not valid for the requested function call.

1805 Pin_Not_Usable

Explanation: For a PinOpen function call, this message can result
when one of the following conditions occurs:

An error occurred in the CONFIG.SYS file.
The 4778 is not attached.
The 4778 failed the device self-test.

1806 Pin_LED_Data_Truncated

Explanation: The data string to be written to the 4778 display exceeds
the 16-character maximum. The application program truncated the data
string to 16 characters.

Magnetic-Stripe Operation Status Codes
This section describes the application program status codes that can be returned
by magnetic-stripe function calls when you are using a 4778 Model 001. The
status codes are in decimal form as follows:

0 MAG OK

Explanation: The function call completed successfully; the
4778 device-support code did not detect an error.

110 Device driver failed to open

Explanation: The device driver did not open; the function call did not
complete.

1538 Request rejected, no 4778 device attached

Explanation: The 4778 is not attached; the device-support code
rejected the function call.

1539 Request rejected, 4778 MSR device hardware problems

Explanation: An error occurred in the 4778 hardware; the
4778 device-support code rejected the function call.

1540 MagHandle not valid for current session

Explanation: The MagHandle that was used in the last function call
does not match the MagHandle that was returned from the PinMagOpen
function call.

 Chapter 8. Messages and Status Codes 8-7

1541 Device armed, cannot accept request

Explanation: The 4778 is enabled for a read operation; the
4778 device-support code cannot process the function call. The 4778
device-support code permits a function call only when the
4778 is disabled and all the indicators are switched off.

1542 Requested read capability does not exist

Explanation: The 4778 does not support the track that is specified in
the ReadTracks parameter of the PinMagReadData function call.

1545 Track-1 parameter invalid

Explanation: The 4778 device-support code rejected the
PinMagLoadDevParms function call when it detected a
track-1 parameter that is not valid.

1546 Track-2 parameter invalid

Explanation: The 4778 device-support code rejected the
PinMagLoadDevParms function call when it detected a
track-2 parameter that is not valid.

1548 Application data buffer size too small for requested data

Explanation: To transfer the requested data, the buffer allocation is
insufficient. A function call with a zero-length buffer size generates this
message.

1549 Device self-test failed

Explanation: The application program issued a PinMagResetDevice
function call and the 4778 reported errors when it performed the
self-test.

1550 Operation aborted at request of application

Explanation: The application program issued a PinMagAbort function
call and ended a PinMagReadData function call.

1551 Operation aborted by 4778 support code

Explanation: The 4778 MSR device-support code detected an
unrecoverable error and ended the current function call.

1552 Magnetic stripe read error

Explanation: The application program requested the device not to be
re-armed following a read error from the magnetic stripe. ended the
current function call.

8-8 4777 and 4778 OS/2 Programming Guide

 Index

Numerics
3604 Keyboard Display 1-2
3624 PINs, verifying 5-7
3624-formatted PIN block 5-7
3624-formatted PIN block, creating 4-32
4700 Finance Communication System 1-1
4700 Financial I/O devices 1-1
4704 EPP data format 5-5
4704 Keyboard Display 1-2
4704-formatted PIN block, creating 4-31
4777

function calls
MagAbort 3-9
MagClose 3-3
MagEncodeData 3-8
MagLoadDevParms 3-4
MagOpen 3-2
MagReadConfigStatus 3-12
MagReadData 3-13
MagReadDevParms 3-10
MagReadErrorStats 3-11
MagResetDevice 3-9
MagSetOperationMode 3-7

hardware and software requirements 2-1
hardware description 1-1
installation messages 8-1
physical device driver 2-1
status messages 8-7

4777 DLL (dynamic link library) 2-3
4777 dynamic link library (DLL), loading 2-3
4778

API functions 4-1
cryptographic keys 5-9
diagnostic test 4-45
encrypted mode 4-23
hardware and software requirements 2-1
input data formats 5-1
installation messages 8-1
magnetic-stripe reader API 4-2
multiple-virtual-DOS-machine (MVDM) API 7-1
MVDM device driver 7-2
nonencrypted mode 4-22
physical device driver 2-1
PIN keypad API 4-1
self-test 4-17
status messages 8-5
user-specified operation 5-3
using the device-support code 4-1

4778 DLL (dynamic link library) 2-3
4778 dynamic link library (DLL) 2-3

4778 PIN keypad
ending I/O operation 4-7
master key 4-24
PIN verification 4-36

4778DDM.SYS 7-1
4778DDP.SYS 7-1
4778SAPM.EXE 7-1
4778SAPP.EXE 7-1
4778VDDM.SYS 7-1
4778VDDP.SYS 7-1

A
AEOM (alternate end-of-message) character 3-5, 4-14
alternate end-of-message (AEOM) character 3-5, 4-14
alternate start-of-message (ASOM) character 3-5, 4-14
American National Standards Institute (ANSI) 1-2
ANSI (American National Standards Institute) 1-2
ANSI X9.8 data format 5-6
ANSI X9.8-formatted PIN block, creating 4-34
API

See application program interface (API)
application program interface (API)

4777 3-1, 3-2
4778 4-1
DOS interrupt 21H 7-4
multiple-virtual-DOS-machine I/O system 6-1, 7-1

application program status messages
4778 Model 001 8-7
4778 PIN keypad 8-5

ASCII translation table (nonencrypted PIN data) 5-4
ASOM (alternate start-of-message) character 3-5, 4-14

C
closing the 4777 3-3
closing the MSR device 4-6
closing the PIN-pad device 4-5
commands, 4778

Create PIN Block 5-11
Enter Master Key 5-12
Generate MAC 5-11
Load ICV 5-11
Load Key 5-11
Verify MAC 5-11
Verify PIN 5-11

CONFIG.SYS
4777 6-2
determining 4778 configuration status 4-9
determining MSR configuration status 4-11
loading the MDVM device driver 7-2

 Copyright IBM Corp. 1994 X-1

CONFIG.SYS file, device statements for
4778 2-2

configuration data
reading status 3-12

conversion (hexadecimal-to-keystroke) table 5-13
Create PIN Block command 5-5, 5-11
cryptographic key management

describing 5-9
key variants 5-10
loading keys 5-9
triple-encrypted keys 5-10

D
data formats

3624 PIN 5-7
4704 EPP 5-5
ANSI X9.8 5-6
converting the master key 5-12
describing 5-1
encrypted PIN data 5-5
keypad-entry 5-12
magnetic-stripe data 5-1
multitrack read operation 5-2
nonencrypted PIN data 5-4
single-track read operation 5-2

determining MSR configuration status 4-11
determining PIN-pad configuration status 4-9
device drivers

4778 MSR DOS emulation 7-1
4778 MSR virtual 7-1
4778 physical 2-1, 7-1
4778 PIN DOS emulation 7-1
4778 PIN virtual 7-1
4778 virtual 7-3
loading manually 2-2, 7-2
loading with the FINSTALL program 2-1, 7-2
magnetic-stripe data 5-1
MVDM

automatic installation 6-2
manual installation 6-2

device serial numbers, reading 4-47
device-support code

4777 3-1
using 3-2

device-track parameters
loading 3-4
reading 3-10

device-track parameters, read operation 5-3
diagnostic test 4-45
displaying data 4-49
DOS application program interface 7-4
double-track read-data format 5-1

E
encoding magnetic data 3-8
encrypted mode (PIN keypad) 4-23
encrypted PIN data format 5-5
encryption key, loading the 4-28
end-of-message (EOM) character 3-5
ending a PIN-pad I/O operation 4-7
ending an MSR active state 4-8
Enter Master Key command 5-12
entering the PIN-keypad master key manually 4-24
EOM (end-of-message) character 3-5
error statistics 3-11
error statistics, reading 4-19

F
files

CONFIG.SYS 7-2
message 2-4

FIOSERDD.SYS 7-1
function calls

MagAbort 3-9
MagClose 3-3
MagEncodeData 3-8
MagLoadDevParms 3-4
MagOpen 3-2
MagReadConfigStatus 3-12
MagReadData 3-13
MagReadDevParms 3-10
MagReadErrorStats 3-11
MagResetDevice 3-9
MagSetOperationMode 3-7
MVDM I/O system 7-1
PinAbort 4-7
PinClose 4-5
PinCreateOffsetData 4-38
PinEnterMasterKey 4-24
PinExecDevDiag 4-45
PinGenerateMac 4-40
PinLoadICV 4-29
PinLoadKey 4-28
PinLoadMasterKey 4-26
PinLoadVerifParms 4-30
PinMagAbort 4-8
PinMagClose 4-6
PinMagLoadDevParms 4-13
PinMagOpen 4-4
PinMagReadConfigStatus 4-11
PinMagReadData 4-20
PinMagReadDevParms 4-18
PinMagReadErrorStats 4-19
PinMagResetDevice 4-17
PinMagSetOperationMode 4-16
PinOpen 4-3
PinReadClearData 4-48

X-2 4777 and 4778 OS/2 Programming Guide

function calls (continued)
PinReadConfigStatus 4-9
PinReadPin3624 4-32
PinReadPin4704 4-31
PinReadPinAnsi98 4-34
PinReadSN 4-47
PinSetModeClr 4-22
PinSetModeEnc 4-23
PinVerifyMac 4-43
PinVerifyPin 4-36
PinWriteDisplay 4-49

G
Generate MAC command 5-11

H
hardware requirements 2-1
hexadecimal-to-keystroke conversion table 5-13

I
initial-chaining value (ICV), loading 4-29
installation

4777/78 physical device driver 2-1
4778 MVDM Device Driver 7-2
CONFIG.SYS file 7-2
messages, generating 2-4

installation messages
4777 and 4778 8-1
generating 2-4

International Standards Organization (ISO) 1-2
interrecord zero (IRZ) characters 3-5
IRZ (interrecord zero) characters 3-5
ISO (International Standards Organization) 1-2

K
key variant, definition 5-10
keypad-entry data format 5-12
keys

master type parameter 4-24
master, manual entry 4-24
requirement to reload 4-23, 5-9
triple-encrypted 5-10

L
Load ICV command 5-11
Load Key command 5-11
loading the device drivers

4777 MVDM I/O system
automatically 6-2
manually 6-2

4778 2-1
automatically 2-1

loading the device drivers (continued)
manually 2-2

loading the device parameters 3-4
loading the MSR device parameters 4-13
loading the PIN keypad master key 4-26
longitudinal redundancy check (LRC) 3-4, 4-13
LRC (longitudinal redundancy check) 3-4, 4-13

M
MAC (message authentication code)

generating 4-40
using 5-14
verifying 4-43

MagAbort call 3-9
MagClose call 3-3
MagEncodeData call 3-8
MagLoadDevParms call 3-4
magnetic-stripe data, reading 4-20
magnetic-stripe reader (MSR)

closing 4-6
ending active state 4-8
error statistics 4-19
magnetic-stripe data 4-20
opening 4-4
operational mode 4-16
read capabilities 4-11

magnetic-stripe reader API 4-2
magnetic-stripe unit

hardware description 1-1
models 1-2

magnetic-stripe-reader function calls
PinAbort 4-7
PinClose 4-5
PinCreateOffsetData 4-38
PinEnterMasterKey 4-24
PinGenerateMac 4-40
PinLoadICV 4-29
PinLoadKey 4-28
PinLoadMasterKey 4-26
PinLoadVerifParms 4-30
PinOpen 4-3
PinReadClearData 4-48
PinReadConfigStatus 4-9
PinReadPin3624 4-32
PinReadPin4704 4-31
PinReadPinAnsi98 4-34
PinReadSN 4-47
PinSetModeClr 4-22
PinSetModeEnc 4-23
PinVerifyMac 4-43
PinVerifyPin 4-36
PinWriteDisplay 4-49

MagOpen 3-4
MagOpen call 3-2

 Index X-3

MagReadConfigStatus call 3-12
MagReadData call 3-13
MagReadDevParms call 3-10
MagReadErrorStats call 3-11
MagResetDevice call 3-9
MagSetOperationMode call 3-7
master key

converting to keystrokes 5-12
loading 4-26, 5-9
manual entry 4-24

message authentication code (MAC)
generating 4-40
using 5-14
verifying 4-43

message files 2-4
multiple-virtual-DOS-machine I/O system

4777 device drivers 6-1
4778 device drivers 7-1
description 6-1
DOS application program interface 7-4
list of system components 7-1

multitrack read-data format 5-2
multitrack-read operation 3-7
MVDM (multiple virtual DOS machine)

See multiple-virtual-DOS-machine I/O system

N
nonencrypted data 4-48
nonencrypted mode (PIN Keypad) 4-22
nonencrypted PIN data format 5-4
nonvolatile storage 4-29

O
offset data, creating 4-38
opening the 4777 3-2
opening the 4778 MSR device 4-4
opening the 4778 PIN-pad device 4-3
override for device-track default parameters 5-3

P
parameters

device-track (read operation) 5-3
overriding device-track defaults 5-3
PIN block verification 4-30

PEOM (primary end-of-message) character 3-5, 4-14
Personal System/2 (PS/2) workstation 1-1
PIN block

3624-formatted 4-32, 5-7
4704-formatted 4-31
ANSI X9.8-formatted 4-34, 5-6

PIN block verification parameters 4-30
PIN formats, verifying 5-7

PIN keypad API 4-1
PIN keypad function calls

PinMagAbort 4-8
PinMagClose 4-6
PinMagLoadDevParms 4-13
PinMagOpen 4-4
PinMagReadConfigStatus 4-11
PinMagReadData 4-20
PinMagReadDevParms 4-18
PinMagReadErrorStats 4-19
PinMagResetDevice 4-17
PinMagSetOperationMode 4-16

PinAbort call 4-7
PINCALLS.DLL 7-1
PinClose call 4-5
PinCreateOffsetData call 4-38
PinEnterMasterKey call 4-24
PinExecDevDiag 4-45
PinGenerateMac call 4-40
PinLoadICV call 4-29
PinLoadKey call 4-28
PinLoadMasterKey call 4-26
PinLoadVerifParms call 4-30
PinMagAbort call 4-8
PinMagClose call 4-6
PinMagLoadDevParms call 4-13
PinMagOpen 4-4
PinMagReadConfigStatus call 4-11
PinMagReadData call 4-20
PinMagReadDevParms 4-18
PinMagReadErrorStats call 4-19
PinMagResetDevice call 4-17
PinMagSetOperationMode call 4-16
PINMSR.DLL 7-1
PinOpen call 4-3
PinReadClearData call 4-48
PinReadConfigStatus call 4-9
PinReadPin3624 call 4-32
PinReadPin4704 call 4-31
PinReadPinAnsi98 call 4-34
PinReadSN call 4-47
PinSetModeClr call 4-22
PinSetModeEnc call 4-23
PinVerifyMac call 4-43
PinVerifyPin call 4-36
PinWriteDisplay call 4-49
primary end-of-message (PEOM) character 3-5, 4-14
primary start-of-message (PSOM) character 3-5, 4-13
PS/2 (Personal System/2) workstation 1-1
PSOM (primary start-of-message) character 3-5, 4-13

R
read operation 5-3
reading

device parameters 3-10

X-4 4777 and 4778 OS/2 Programming Guide

reading (continued)
error statistics 3-11
magnetic data 3-13

reading the MSR device parameters 4-18
resetting the 4777 3-9
resetting the MSR device 4-17

S
self-test 4-17
setting the multitrack-read operation mode 4-16
single-track read-data format 5-1
software requirements 2-1
SOM (start-of-message) character 5-2
start-of-message (SOM) character 5-2
status codes

magnetic-stripe reader 8-7
PIN keypad 8-5

stopping an I/O operation 3-9
storage 4-29

T
tables

ASCII translation (nonencrypted PIN data) 5-4
hexadecimal-to-keystroke conversion 5-13
variant descriptor bytes 5-11

triple-encrypted keys 5-10

U
Up arrow indicator, read operation 5-4
user-specified operation 5-3

V
variant-definition bytes (VDB) 5-10
VDB (variant-definition bytes) 5-10
verification algorithm 5-7
verification, PIN blocks 4-30
Verify MAC command 5-11
Verify PIN command 5-11
verifying the PIN block 4-36
virtual-machine-boot DOS session 7-2

W
workstation 1-1

 Index X-5

Communicating Your Comments to IBM

4777 Magnetic Stripe Unit and
4778 PIN-Pad Magnetic Stripe Reader
OS/2 Programming Guide

Publication No. SA34-2205-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

If you prefer to send comments by mail, use the RCF at the back of this book.

If you prefer to send comments by FAX, use this number:

United States & Canada: 1-800-955-5259

Make sure to include the following in your note:

Title and publication number of this book
Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

4777 Magnetic Stripe Unit and
4778 PIN-Pad Magnetic Stripe Reader
OS/2 Programming Guide

Publication No. SA34-2205-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Yes No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate
Complete
Easy to find
Easy to understand
Well organized
Applicable to your tasks

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SA34-2205-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RDS Solutions Development
Department 56I
8501 IBM Drive
Charlotte NC 28262-8563

Fold and Tape Please do not staple Fold and Tape

SA34-2205-00

IBM

Part Number: 07H5084

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

7
H

5
8

4

SA34-22 5-

