	Sky CRM Programme

Interface Functional Design Overview
	[image: image3.emf]

[image: image2.emf]
	Sky CRM Programme

Interface Functional Design Overview
	[image: image2.emf]

Interface Functional Design Overview
SCMS Notifications Generic Functional Design

	Owner:
	BSkyB

	Project:
	BSkyB CRM Programme

	Sending System:
	SCMS

	Receiving System(s):
	Chordiant

MIDAS

	Creation Date:
	01 May 2003

	Last Updated:
	17 June 2003

	Version:
	3.2

Document Contributors

	FD Team
	Role
	Name

	WMQI Build
	WMQI Design Team
	Ken Cook

	MQ Series
	MQ Series
	Luke Puddy

	MQ Series
	Connectors
	Louise Lahiff / Mike McGinley

	Chordiant
	CHD Design and Development Team
	Theo Gough

	SCMS
	SCMS Developer
	Julie Lindsay / Peter Gage

	MIDAS
	MIDAS Designer
	Phil Humphries

Sign-Off List
	Name
	Position
	Version
	Date
	Signature

	Chun Ng
	Integration Team Lead
	3.0
	
	

	Luke Puddy
	Integration Infrastructure Team Lead
	3.0
	
	

	Justin Rogers
	Integration Design Team Lead
	3.0
	
	

	Theo Gough
	CHD Design and Development
	3.0
	
	

	Karen Elliot
	Conditional Access
	3.0
	
	

	Martin Gow
	MIDAS Lead
	3.0
	
	

Distribution List

	Name
	Position

	Chun Ng
	Integration Lead

	Luke Puddy
	Integration Infrastructure Team Lead

	Justin Rogers
	Integration Design Team Lead

	Mike Fitch
	Integration Architect

	Paul Conway
	SCMS Team Lead

	Karen Elliot
	Conditional Access

	Julie Lindsay
	SCMS Design and Development

	Phil Humphries
	MIDAS Designer

Related Documentation

	Ref
	Title
	Author
	Version

	1.
	Middleware Integration Layer Error Handling
	Justin Rogers
	1.1

	2.
	Middleware Integration Design Standards
	Justin Rogers
	1.0

	3.
	Sky CRM Non-Functional Requirements
	Robert Craig
	1.0

	4.
	Subscriber Management Architecture CMS-SCMS interface specification and additional information document.

TP2728B – CMS – SCMS API Additional Info
	Network Services
	2.2

	5.
	BSkyB Generic Adapter for MQSeries Functional Design
	Tim Robinson
	1.0

	6.
	BSkyB Generic API Connector for MQ Series Technical Specification
	Tim Robinson
	1.0

	7.
	BSkyB MQSeries-EntireX Outbound Class Technical Specification
	Tim Robinson
	1.0

	8.
	DEF_Inc2.3_Order Fulfilment_Local NFR Interact with SCMS
	Betsy Ogden
	3.0

	9.
	WMQI Generic Message Flow Design
	Justin Rogers
	1.0

	10.
	JMS-MQ Integration
	Kasrul Islam
	0.2

	11.
	SCMS Application Flow Technical Specification
	Gillian Gordon
	1.0

	12.
	BSkyB MQSeries-MIDAS Inbound Class Technical Specification
	Tim Robinson
	1.0

	13.
	Master Interface Catalogue
	Mike Fitch
	1.21

Intended Document Progression

	Version
	Title

	Up to 1.0
	Drafts before initial release

	1.0-1.99
	Signed-off release for phase 2.1 go-live and subsequent increments to reflect change requests for Phase 2.1

	2.0-2.99
	Signed-off release for phase 2.2 go-live and subsequent increments to reflect change requests for Phase 2.2

	3.0-3.99
	Signed-off release for phase 2.3 go-live and subsequent increments to reflect change requests for Phase 2.3

	4.0+
	Further future releases

Amendment History

	Version Number
	Name
	Date
	Description of changes or Other Comments

	0.1
	Ken Cook
	20/03/03
	Initial draft

	0.2
	Ken Cook
	28/03/03
	Updates after initial review

	0.3
	Ken Cook
	07/03/03
	First Release Candidate

	3.0
	Ken Cook
	23/04/03
	Released Version

	3.2
	John Pryse Lloyd
	17/06/2003
	CR1419: Updated to include a PayloadData object with a nested fieldData vector. Also updated field name values for mandatory fields to have a lowercase first letter.
TD2675: Updated mappings for Special Delivery Indicator

CONTENTS

51
Introduction

51.1
Outstanding Issues

51.2
Document Purpose

51.3
Dependencies

51.4
Assumptions

62
INTERFACE DEFINITION

62.1
Background and Overview

62.1.1
Scope

72.2
Solution Architecture

92.3
WebSphere MQ Requirements

92.3.1
Message Routing

103
SENDING SYSTEM TO INTEGRATION LAYER

103.1
Sending System Outbound Message - SCMS

103.1.1
Sending System Pre-processing

103.1.2
Information To Be Transmitted

103.1.3
General Process Flow

103.1.4
MQ / EntireX Connector Processing

103.1.5
Sending System – Outbound Message Body Structure

123.1.6
Control Mechanisms

133.1.7
Security and Authorisation

144
INTEGRATION LAYER TO RECEIVING SYSTEM

144.1
Receiving System Inbound Message - Chordiant

144.1.1
Routing and Filter Rules

144.1.2
Receiving System - Inbound Message Body Structure

174.1.3
Domain Value Mappings

174.1.4
Unit Transformations

194.1.5
Receiving System - Inbound Message Header Structure

194.1.6
Connector Processing

194.1.7
Control Mechanisms

204.1.8
Security and Authorisation

204.1.9
Receiving System Pre-processing

204.1.10
Receiving System Events Triggered

204.1.11
Receiving System Outbound Message (Reply Message)

214.2
Receiving System Inbound Message - MIDAS

214.2.1
Routing and Filter Rules

214.2.2
Receiving System - Inbound Message Body Structure

224.2.3
Domain Value Mappings

224.2.4
Receiving System - Inbound Message Header Structure

224.2.5
Connector Processing

234.2.6
Control Mechanisms

234.2.7
Security and Authorisation

234.2.8
Receiving System Pre-processing

234.2.9
Receiving System Events Triggered

234.2.10
Receiving System Outbound Message (Reply Message)

245
APPENDICES

245.1
APPENDIX A: SCMS Message Headers and Standard Fields

245.2
APPENDIX B: Chordiant XML Headers and Standard Fields

245.3
APPENDIX C: MIDAS XML Headers and Standard Fields

245.4
APPENDIX D: Key Decisions

1
Introduction

This functional design document details the solution for fire and forget interfaces from SCMS. This document describes the generic solution. The individual interface functional designs describe the specific details for each interface.

This document will be used by all relevant development teams.

1.1 Outstanding Issues

	Reference
	Issue

	None
	

1.2 Document Purpose

The target audience for this document is:

	Audience
	Rationale

	Integration Development Team
	Development of SCMS notification interfaces

	Chordiant Development Team
	Development of Chordiant services and methods

1.3 Dependencies

	Reference
	Dependency

	1.
	Functional Design is the key dependency for all parties.

	2.
	Functional Design will be agreed and frozen before any development begins.

	3.
	Validation testing of interface will require all developments to be complete, unit tested and signed off by the appropriate sub-team lead or authority as a prerequisite.

	4.
	The complete interface is dependent on all components (Chordiant JX platform, WMQI, MQ/EntireX Connector, SCMS) being fully tested and delivered.

1.4 Assumptions

	Reference
	Assumption

	1. MQ / Chordiant Connector
	Application level exceptions occurring in Chordiant processing will be handled as any other Chordiant application exception. The message will be removed from the queue. No corresponding exception message is passed back to the middleware.

Infrastructure level exceptions (e.g. hardware or software crash) will cause the message to be rolled back to the Chordiant inbound queue.

	2. MQ / Chordiant Connector
	It is assumed that Chordiant is not passed the SMA-SCMS-NOTIF-KEY SCMS field, as it is not required for effective error investigation.

2 INTERFACE DEFINITION

2.1 Background and Overview

The SCMS system produces several notifications that are of interest to other systems in the CRM architecture. Most of these are interfaces into Chordiant, with two going to both Chordiant and MIDAS. These interfaces are fire-and-forget, with no reply sent to the SCMS system from the target system.

This document contains the functional design details that are generic across all SCMS notification interfaces. The specific design details for an interface are contained in the Functional Design for that interface. The high level headings across the 2 documents are aligned to allow for ease of cross reference.

Where possible, this document will refer to other design documents, where these are the master reference on a particular area. However, some information from other documents is summarised at a high level, where this helps in describing the end-to-end interface processing.

2.1.1 Scope

This document covers the following interface Functional Designs.

	Interface Number
	Interface
	Target System

	IFC0502
	Notify Callback
	Chordiant

MIDAS

	IFC0517
	Notify New Address
	MIDAS

	IFC0504
	Notify Initial Card
	Chordiant

	IFC0508
	Notify Replacement Card Request
	Chordiant

	IFC0506
	Notify Replacement Card
	Chordiant

	IFC0512
	Notify Re-issue of Returned Card
	Chordiant

	IFC0514
	Notify New Callback Day
	Chordiant

	IFC0518
	Notify New Parent
	Chordiant

	IFC0510
	Notify Returned Card
	Chordiant

2.2 Solution Architecture

A graphical representation of the complete interface architecture follows, outlining the high-level environment, processes and flow.

[image: image1.wmf]Chordiant

SCMS API

EntireX

/ MQ

Connector

EntireX

Broker

SCMS_Notifications

(Increment 2.3 Architecture)

SCMS

Websphere

MQ

Integrator*

MQ / CHD

Connector

MQ Series

Queue

Queue

1

2

3

4

5

6

7

MIDAS

MQ / MIDAS

Connector

6

7

Queue

* Websphere MQ Integrator (WMQI) version 2.1 converts Custom Wire Format messages (based on the message received from the SCMS API) to the format required by the target system.

The components are described briefly below.

	Component
	Description

	SCMS
	The existing SCMS application.

	SCMS API
	The existing EntireX based API used for communicating with the SCMS system.

	EntireX Broker
	The existing middleware solution for communication between a CMS and the SCMS. The EntireX broker provides a distributed transport mechanism, and a conversation based platform that hosts the SCMS API.

	EntireX / MQ Connector
	The EntireX / MQ Connector receives notifications from the SCMS, via the EntireX Broker. The connector acts as a proxy for the CMS system. To the SCMS and EntireX, the connector “looks like” the existing CMS system. The existing SMA technical architecture is not being altered as part of this integration.

	MQ Series
	A queue based transport layer for distributed communication, providing assured message delivery.

	Websphere MQ Integrator
	Provides message routing and transformation.

	MQ / CHD MQ Connector
	The MQ / Chordiant connector is an out of the box solution that can retrieve messages from an MQ Series queue. The Sky generic adapter is not being used for inbound Chordiant integration.

	Chordiant
	The Chordiant CRM application.

	MQ / MIDAS Connector
	The MQ / MIDAS connector retrieves messages from the inbound MIDAS MQ Series queue and updates the MIDAS database. This connector does use the Sky generic connector architecture.

	MIDAS
	The MIDAS Data Warehouse application.

Note - The technical details of connector processing are not discussed in detail here. This document describes the logical function of connectors, but not their implementation. For implementation details of the connectors, refer to the following:

· BSkyB Generic Adapter for MQSeries Functional Design [5];

· BSkyB Generic API Connector for MQ Series Technical Specifications [6];

· BSkyB MQSeries-EntireX Outbound Class Technical Specifications [7];

· BSkyB MQSeries-MIDAS Inbound Class Technical Specification [12].

The main processing steps through the interface are described below. The steps below describe the logical processing at a high level. Technical implementation details are described later. The numbers match the numbers shown on the diagram above.

1. The EntireX / MQ Connector receives a notification, via the EntireX broker, from the SCMS system.

2. An MQ Series message is constructed from the information in the notification, and this is persisted to the static SCMS outbound MQ Series queue. After the message is persisted to the queue and committed, the connector immediately sends a positive acknowledgement back to SCMS through the EntireX broker. This prevents SCMS re-sending the notification.

3. The message is retrieved from the queue by the WMQI broker.

4. The message is routed in WMQI to a specific interface (module) flow, based on the type of the notification. The message is then transformed in the WMQI broker into the format required by the target application.

5. The transformed message is then put to the static application inbound MQ Series queue and the transaction committed.

6. The application connector retrieves the inbound message from its static inbound queue.

7. The message is parsed by the connector, and the appropriate business logic is called in the target application.

Notes

· The diagram shows messages going to both Chordiant and MIDAS. This varies for each specific interface, as described in the Scope section above. The updates are both numbered 6 and 7, as they happen (logically at least) at the same time. WMQI does not enforce any order on writing the messages to the application inbound queues. The order is arbitrary and unpredictable.

· The messages are written to separate queues, depending on the application they are destined for.

2.3 WebSphere MQ Requirements

The MQ Series queues used are as follows.

	Application
	Message Direction
	Type
	Queue Name

	SCMS
	Outbound
	Static
	WMQ01.0000.SCM01

	Chordiant
	Inbound
	Static
	CHD01.0000.WMQ01

	MIDAS
	Inbound
	Static
	MID01.0000.WMQ01

All messages will be persistent. All messages will never expire. These properties are set in the MQMD header by the EntireX / MQ Series connector.

2.3.1 Message Routing

There are several steps involved in routing a message to the correct interface (module) flow (and hence the correct target application), and then to the correct business processing in the target application. This section describes the end-to-end processing up to and including any generic WMQI routing logic. Specific target application routing logic is described in the system specific section(s) later in this document. See

· SCMS Application Flow Technical Specification [11] and

· BSkyB MQSeries-EntireX Outbound Class Technical Specification [7] for details.

1. WMQI sets the message type in the MQRFH2 header based on the type of the SCMS notification. The SMA-CONV-TYPE field in the SCMS notification message is read and mapped to the specific interface flow. In fact, the MQRFH2.mcd.Type field is set to the name of the WMQI message for the interface concerned. This mapping is hard coded in ESQL. This is done in the SCMS Application flow.

2. WMQI routes the message to the correct interface level message flow (module flow). This is done based on the message type in the MQRFH2 header set above. A RouteToLabel node is used to route to the specific module flow by matching the value in MQRFH2.mcd.Type to the label at the start of the module flow. This is done in the SCMS Application flow.

3. See the receiving system sections for details of inbound routing and filtering.

The specific interface Functional Designs detail the actual values used in the dynamic routing. The generic field mapping is described below.

	Receiving System Field Name
	Min - Max Usage
	Format
	Mapped From Sending System Field
	Field Transform Rule or Comment

	mcd.Type field in MQRFH2 header
	1-1
	Text
	SMA_CONV_TYPE field in SCMS message body
	The mcd.Type field in the MQRFH2 header is set by WMQI, based on the value of the SMA_CONV_TYPE field, to allow routing to the correct interface (module) flow.

This is done in the SCMS application flow. The 2 character SCMS code is mapped to the WMQI message name for the specific interface (module) flow. The mapping is hard coded in ESQL.

See [9] and [11] for details.

3 SENDING SYSTEM TO INTEGRATION LAYER

The following section outlines the generic design specifications that relate to the sending system.

3.1 Sending System Outbound Message - SCMS

This section describes the message sent out from the sending system to the integration layer and the initiation of the interface process.

3.1.1 Sending System Pre-processing

As the SCMS system is not being altered as part of the CRM programme, then all SCMS system pre-processing is unchanged. Subscriber Management Architecture CMS-SCMS interface specification and additional information [4] provides a detailed background on the existing SMA architecture.
3.1.2 Information To Be Transmitted

See the individual interface functional designs.
3.1.3 General Process Flow

See the individual interface functional designs.
3.1.4 MQ / EntireX Connector Processing

A detailed description of MQ / EntireX connector can be found in the following 3 documents:

· BSkyB Generic Adapter for MQSeries Functional Design [5];

· BSkyB Generic API Connector for MQ Series Technical Specifications [6];

· BSkyB MQSeries-EntireX Outbound Class Technical Specifications [7].

The above documents are the definitive reference for this connector.

3.1.5 Sending System – Outbound Message Body Structure

Message Name: N/A

Field Delimiters: Fixed length – no delimiters.
Scope of Message: N/A

Note 1 – The message formats correspond to the format of the data buffer used to communicate with the EntireX broker. The message definitions correspond to the Send Areas, described for each notification in Subscriber Management Architecture CMS-SCMS interface specification and additional information [4] - p.90 onwards. For fire-and-forget notifications received from EntireX, the fields of the Control Block, Send Area and Error Block are not relevant. They are not passed to WMQI. WMQI receives a fixed width format containing the fields sent from SCMS in the Send area.

Note 2 – [4] describes the CMS API with respect to the API the CMS exposes to EntireX. In the new architecture the CMS is replaced with the EntireX / MQ Series connector. Whilst [4] describes the data structures in the SEND Area, these are received in the connector in the RECEIVE area. The EntireX broker places what was in the SEND area of the SCMS SEND call, into the RECEIVE area of the CMS’s (or connector’s) RECEIVE call. This logically makes sense as WMQI is receiving notifications. [4] will be confusing until this point is understood.

The following fields are generic to all notifications covered by this document. The field order is always as follows, and these fields always appear at the start of the message body.

Most of these fields are of no interest to WMQI or target application processing, except for SMA-CONV-TYPE and CARD-SUBSCRIBER-ID. The non-relevant fields are generally related to the mechanics of the EntireX / SCMS SMA architecture, and do not represent business data. See [4] for background if required. An example is included as Appendix A.

	Field Name
	Min - Max Usage
	Format
	Possible Values or Comments

	SMA-CONV-ID
	1-1
	A5
	Container for the next three fields.

Not used in WMQI processing. See [4].

	SMA-CONV-CLASS
	1-1
	A1
	Not used in WMQI processing. See [4].

	SMA-CONV-TYPE
	1-1
	A2
	2 character code representing the SCMS conversation type. This maps one-to-one to an interface (module) flow. Used in WMQI routing as described earlier.
See specific interface Functional Designs for values.

	SMA-CONV-VERSION
	1-1
	A2
	Not used in WMQI processing. See [4].

	SMA-SCMS-NOTIF-KEY
	1-1
	A40
	Uniquely identifies the notification in the SCMS database. This can be used in the “AS Inform Notification Error” conversation to inform SCMS that an error occurred in processing the notification. This will not be used in the 2.3 architecture.

Not used in WMQI processing. See [4].

	SMA-RESERVED
	1-1
	A8
	Not used in WMQI processing. See [4].

	CMS-ID
	1-1
	N5
	Identifies the CMS to which the notification is destined.

Not used in WMQI processing. See [4].

	CARD-SUBSCRIBER-ID
	1-1
	N8
	Identifies a Card Subscriber. See [4].

	… specific interface fields
	
	
	

3.1.5.1 Generic Formatting Rules

This section describes the generic formatting of data received from the SCMS.

All data will be passed from SCMS in plain text.

Data will be sent from the system following the generic formats below:

	Data Format
	Comments

	Boolean
	Values : passed as a single character field with possible values Y and N.

	A (Text)
	Left aligned in their fields and padded with spaces.

	DateTime
	YYYYMMDD[HHMM[SS[T]]]

T = Tenths

Format can be YYYYMMDD, YYYYMMDDHHMM, YYYYMMDDHHMMSS or YYYYMMDDHHMMSST. Field size (8, 12, 14 or 15) respectively.

	N (Numbers)
	Passed in character format. Right aligned and padded with leading zeros. SCMS holds decimal numbers as integers, with related fields giving the number of digits after the ‘virtual’ decimal point. A decimal point will therefore never appear in a number field from SCMS. Any such decimal numbers will be described in the specific interface document.

	Optional Fields
	Field is padded with blank spaces where there is no data.

3.1.6 Control Mechanisms

Note – This section covers the approach to exception handling and data integrity from the sending system through to the end of WMQI processing. The equivalent for the receiving systems is described in Section 4.

Any errors that occur during the processing of the interface will be handled in a standardised way as outlined in:

· Middleware Integration Layer Error Handling Document [1];

· WMQI Generic Message Flow Design [9];

· SCMS Application Flow Technical Specification [11].

3.1.6.1 SCMS Outbound Error Handling

The EntireX / MQ Series connector sends a positive response to SCMS as soon as the message is persisted to MQ Series. This is done to ease the performance strain on the SCMS system of having many outstanding notifications that haven’t been acknowledged yet.

The SCMS API supports an API (conversation AS Inform Notification Error) to inform SCMS of exceptions in processing notifications in the CMS. This will not be used in the 2.3 architecture. The reasoning for this is that this API is used to merely log the exception and transaction key to file. This file can then be used as the basis for manual investigation. No automated processing is done based on the notification error. The procedures for investigation of such errors will remain the same, but will happen in the target application, where the exception will be logged.

3.1.6.2 WMQI Error Handling

If a processing error occurs in the middleware, the exception will be logged as described in Middleware Integration Layer Error Handling Document [1]. The error will then be investigated and resolved manually.

3.1.6.3 Data Integrity

Data integrity is maintained across the end-to-end processing through the use of separate transaction boundaries and commit points. The end-to-end design ensures a high degree of transactional integrity without the need for a transaction processing monitor.

The following describes the transaction boundaries, and the states the message can be in.

1. A notification is RECEIVED from the EntireX broker and written to a static MQ Series outbound queue. The transaction is committed at this point. If the MQ commit fails the outbound connector shuts down, without sending the positive acknowledgement to SCMS. See BSkyB MQ Series-EntireX Outbound Class Technical Specifications [7] for details. SCMS will resend the notification at a later time. This ensures that notifications can never be lost, as they will be resent if the positive acknowledgement is not sent. There is a mathematical possibility of receiving the same notification twice if the connector crashes after the write to MQ, but before the positive acknowledgement can be sent. This circumstance is considered so rare that the integration architecture will not provide a solution. It is assumed that target system processing will be able to deal with receiving duplicate notifications at the business level, in the rare event of such an occurrence.

2. The message is removed from the SCMS outbound application queue, processed by WMQI, and written to the target application inbound queue. All of this is done as a single transaction, with full transactional control from start to finish. The message cannot be lost during WQMI processing, as everything is done as a single co-ordinated transaction.

3. See section 4 for target systems approach.

In summary, the message moves between the following states:

· In SCMS

· Persisted to the SCMS outbound queue

· Persisted to the target application inbound queue

· Processed by the target application (either persisted to the database or to an error log on an exception)

The solution provides a high level of transactional integrity without the need for XA control.

3.1.7 Security and Authorisation

Security information will adhere to the requirements outlined in the Sky CRM Non-Functional Requirements [3] document.

See the relevant connector Technical Specification for details of how connectors login to the application concerned, and how usernames and passwords are managed:

· BSkyB Generic API Connector for MQ Series Technical Specification [6];

· BSkyB MQSeries-EntireX Outbound Class Technical Specification [7].

Some general points are made below:

1. The applications are considered as trusted. Messages appearing on an applications inbound queue will be assumed to be trusted. Nothing in the message data will be used for authentication or authorisation (although the data could be used for auditing or exception investigation).

2. The applications are not directly connected, and WMQI does not connect to any applications.

3. A connector will generally login to an application using a single username and password, and have full rights to undertake all business transactions required.

4. There will be no individual user level login to applications.

4 INTEGRATION LAYER TO RECEIVING SYSTEM

The following section(s) outlines the generic design specifications for the interface that relate to the receiving system(s).

4.1 Receiving System Inbound Message - Chordiant

This section describes the messages received by the Chordiant system from the integration layer. No replies are generated from Chordiant for these interfaces.

4.1.1 Routing and Filter Rules

This continues from the steps described in section 2.3.1.

1. The target Chordiant service and function are set in the interface (module) flow. These are hard coded in WMQI – each module flow maps to a single Chordiant function. This is a straight one-to-one mapping of the WMQI message name to the Chordiant API to be called.

All messages will be routed to Chordiant, unless an error occurs during WMQI processing.

4.1.2 Receiving System - Inbound Message Body Structure

Message Name: N/A

Field Delimiters: N/A - XML Message

Scope of Message: N/A

4.1.2.1 Generic Schema

The table below describes the generic XML schema used for all Chordiant inbound fire and forget interfaces. Inbound XML messages must conform exactly to this format, including being encoded in UTF-8.

	Standard XML Declaration

	<?xml version='1.0' encoding='UTF-8'?>

	Receiving System Field Name (XML tag)
	Min - Max Usage
	Format
	Field Transform Rule or Comment

(including XML attributes and types)

	<root>
	1-1
	Tag
	xmlns='http://www.w3.org/2001/XMLSchema-instance'

xmlns:xsd='http://www.w3.org/2001/XMLSchema'

xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'

xmlns:bsb='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/'

xmlns:ccs='http://www.themindelectric.com/package/com.chordiant.service/'

xmlns:tme='http://www.themindelectric.com/collections/'

	<payload>
	1-1
	Tag
	
type=’ccs:PayloadData’

	 <fieldData>
	1-1
	Tag
	type=’tme:vector’

	<item>
	4-14
	Tag
	The minimum of 4 represents the set of mandatory fields – username, authenticationToken, serviceName, functionName, which the Chordiant connector requires.

The maximum of 14 results from a maximum of 10 parameters that can be passed to a Chordiant service (10 + 4 = 14)

type='ccs:ParameterPair'

	<fieldName>
	1-1
	Text
	

	</fieldName>
	
	End tag
	

	<fieldData>
	1-1
	Various
	The type of fieldData varies depending on the business data represented. This is shown in the specific functional designs.

	</fieldData>
	
	End tag
	

	</item>
	
	End tag
	

	 </fieldData>
	
	End tag
	

	</payload>
	
	End tag
	

	</root>
	
	End tag
	

Notes

1. All data objects are represented as <item> pairs, within which there is a fieldName / fieldData parameter pair. The fieldName value names a parameter to a Chordiant business method. The name represents the business object, and the value represents the instance value of the business object. Therefore, in XML technical speak, both the field name and value are represented as data elements. Logically however, it is the value of the fieldName that determines what business object the fieldData represents. This is clarified in the specific examples for each interface.

2. The Format column describes the WMQI format (i.e. Tag, Text, Number). The XML datatypes are shown in the Field Transform Rule or Comment column. Any XML types and namespace definitions shown need to appear as shown in the XML message.

Namespaces

Note the following namespaces and their abbreviations. These abbreviations have been agreed and will never change, as they must be hard-coded in WMQI.

	Abbreviation
	Full Namespace
	Description

	None (default namespace)
	'http://www.w3.org/2001/XMLSchema-instance'
	Default namespace - often known by the 'xsi' prefix

	xsd
	'http://www.w3.org/2001/XMLSchema'
	Schema definition (probably always redundant)

	soapenc
	http://schemas.xmlsoap.org/soap/encoding/'
	Soap encoding schema (again, probably redundant)

	bsb
	'http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/'
	Contain’s BSkyB's CBO model classes, i.e. the business data classes

	ccs
	'http://www.themindelectric.com/package/com.chordiant.service/'
	Conatins Chordiant's ParameterPair class (and a few other utility classes)

	tme
	'http://www.themindelectric.com/collections/'
	Contains The Mind Electric's collection classes.

Note – Whilst the WMQI broker does not make use of XML namespaces and types, the Chordiant JMS connector does. As far as the WMQI broker is concerned, this is just string data that has to be hard-coded in to make the connector work.

4.1.2.2 Generic Data Fields

This section describes the fields that are generic across all of the interfaces. There are 3 levels to be considered:

1. Fields where the fieldName and fieldData are generic. These are basically constants, required by the Chordiant connector, which need to be hard-coded into the message in WMQI. These are described in this document.

2. Fields where the fieldName is generic, but the value is interface specific. These are fields that appear in all messages, but the data is variable. These are described in the specific Functional Design documents.

3. Business data fields that are interface specific. These are described in the specific Functional Design documents.

The table below contains fields that are generic in both fieldname and fieldData (level 1 as described), as well as the standard XML declaration that will always appear as shown. It is assumed that the reader understands XML. An example of how this will appear as XML is included as Appendix B.

	Standard XML Declaration

	<?xml version='1.0' encoding='UTF-8'?>

	Receiving System Field Name (XML tag)
	Min - Max Usage
	Format
	Field Transform Rule or Comment

(including XML attributes)

	<root>
	1-1
	Tag
	xmlns='http://www.w3.org/2001/XMLSchema-instance'

xmlns:xsd='http://www.w3.org/2001/XMLSchema'

xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'

xmlns:bsb='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/'

xmlns:ccs='http://www.themindelectric.com/package/com.chordiant.service/'

xmlns:tme='http://www.themindelectric.com/collections/'

	<payload>
	1-1
	Tag
	type=’ccs:PayloadData’

	 <fieldData>
	1-1
	Tag
	type=’tme:vector’

	<item>
	1-1
	Tag
	type='ccs:ParameterPair'

	<fieldName>
	1-1
	Text
	Value
‘userName’

	<fieldData>
	1-1
	Text
	Value
‘middleware’

type='xsd:string'

WMQI is a non-connected, trusted system, and hence no authentication token will be used or required by Chordiant. The field is required by the Chordiant connector, although no authentication logic is done. The field will be defaulted in WMQI.

	</item>
	
	End tag
	

	<item>
	1-1
	Tag
	type='ccs:ParameterPair'

	<fieldName>
	1-1
	Text
	Value
‘authenticationToken’

	<fieldData>
	1-1
	Text
	Value
‘wibble’

type='xsd:string'
WMQI is a non-connected, trusted system, and hence no authentication token will be used or required by Chordiant. The field is required by the Chordiant connector, although no authentication logic is done. The field will be defaulted in WMQI.

	</item>
	
	End tag
	

	Other fieldname / fieldData data fields
	
	
	

	 </fieldData>
	
	End tag
	

	</payload>
	
	End tag
	

	</root>
	
	End tag
	

4.1.2.3 Generic Transform Rules

Data will be sent to the system following the generic format below:

	Data Format
	Comments

	Boolean
	Values: converted from a single character field (Y, N) to possible values ‘true’ and ‘false’

	Date
	YYYY-MM-DDTHH:MM:SSZ format

e.g. 2003-03-27T18:01:58Z+00:00

where the middle ‘T’ is a literal and the data after the final ‘Z’ gives the timezone offset from GMT (this will always be included)

All of the 8, 12, 14 and 15 character SCMS date formats will be converted to this standard format. An 8 character date will have the time section as zeros. A 12 character date will have zero seconds. A 15 character date will lose the tenths by default (unless this rule is overridden by a specific field level rule).

	Text
	Trailing spaces will be trimmed from text fields.

Where a numeric field from the source system is mapped to a text field in the target, leading zeros will not be stripped. The field is passed on unchanged.

	Tag
	XML Tag. The tag will appear exactly as shown and include any XML type and namespace definitions as detailed.

	Num
	Numbers will be passed in character format. This format contains no separator (i.e. 1000 instead of 1,000) and uses a period (.) as a decimal separator. Negative numbers are not expected.

XML neither aligns nor pads number fields.

	Optional
	Where no data is passed in a field, the XML field will be empty, e.g. <tag></tag>

4.1.3 Domain Value Mappings

The table below contains the value mappings for all in scope interfaces. These are described in this document as they are system-to-system mappings, which will be the same across specific interfaces, if they appear in multiple interfaces. These transformations are done by the WMQI broker. If an unexpected code value is received in WQMI, an exception will be raised.

	SCMS parameter
	SCMS value
	CHD Value
	SCMS Description

	JOIN-IND
	J
	true
	Join

	JOIN-IND
	Blank
	false
	No joining

	VIEWED-IND
	Y
	true
	Viewed

	VIEWED-IND
	N
	false
	Not viewed

	PARENT-IND
	Blank
	true
	Sky CMS gaining parent status

	PARENT-IND
	N
	false
	Sky CMS losing parent status

	SPECIAL DELIVERY IND
	Y
	true
	Courier

	SPECIAL DELIVERY IND
	N
	false
	Mail

	SPECIAL DELIVERY IND
	Blank
	false
	Mail

4.1.4 Unit Transformations

The table below contains fields where the code value across SCMS and Chordiant will be the same. The maintenance of the mapping between the code and description will be maintained in the Reference Data Manager (RDM) and passed to Chordiant. These attributes constitute enumeration types on the Chordiant data model. The value provided by SCMS is therefore mapped directly with no transformation performed by WMQI. It is assumed that these codes will always mean the same across SCMS and Chordiant.

As a result, no validation of the code is done in WMQI. An invalid code from SCMS will be passed through to Chordiant, where the code lookup would then fail. The following table displays the code and description values that are held on the RDM (and passed to Chordiant). This is included for information and has no relevance to the build of the WMQI solution.

	SCMS parameter
	SCMS possible values
	RDM (Chordiant) Values
	RDM (Chordiant) Description

	QUERY-RSN-CDE
	A1
	A1
	Previous subscriber deceased

	QUERY-RSN-CDE
	A2
	A2
	New tenant

	QUERY-RSN-CDE
	A3
	A3
	Different relative

	QUERY-RSN-CDE
	A4
	A4
	Business and residential user

	QUERY-RSN-CDE
	A5
	A5
	Landlord/Property agent

	QUERY-RSN-CDE
	A6
	A6
	Block of flats

	QUERY-RSN-CDE
	A7
	A7
	Duplicate ROI/CI/IOM/BFPO

	QUERY-RSN-CDE
	A8
	A8
	Additional Set top box

	QUERY-RSN-CDE
	A9
	A9
	Cable/Commercial customer

	QUERY-RSN-CDE
	J1
	J1
	Shared Set top box

	QUERY-RSN-CDE
	R1
	R1
	Pack no longer required

	QUERY-RSN-CDE
	R2
	R2
	Change in viewing entitlement

	QUERY-RSN-CDE
	R3
	R3
	Card Faulty/Destroyed/Lost

	QUERY-RSN-CDE
	R4
	R4
	Existing account reinstated

	QUERY-RSN-CDE
	R5
	R5
	Replacement on existing account

	QUERY-RSN-CDE
	R6
	R6
	Data entry duplicate – contract pulled

	QUERY-RSN-CDE
	Blank
	Blank
	

	REPLACE-REASON-CODE
	A1
	A1
	Faulty

	REPLACE-REASON-CODE
	A2
	A2
	Faulty on Arrival

	REPLACE-REASON-CODE
	A3
	A3
	Reserved

	REPLACE-REASON-CODE
	A4
	A4
	Reserved

	REPLACE-REASON-CODE
	A5
	A5
	Press select – Unable to Clear

	REPLACE-REASON-CODE
	A6
	A6
	Damaged on receipt

	REPLACE-REASON-CODE
	B1
	B1
	Damaged through misuse

	REPLACE-REASON-CODE
	B2
	B2
	No current period card

	REPLACE-REASON-CODE
	B4
	B4
	Lost Card

	REPLACE-REASON-CODE
	B5
	B5
	Stolen Card

	REPLACE-REASON-CODE
	C1
	C1
	Card Not Received

	REPLACE-REASON-CODE
	CC
	CC
	Changeover Replaced

	REPLACE-REASON-CODE
	D1
	D1
	Staff / VIP replacement

	REPLACE-REASON-CODE
	E1
	E1
	Reissue Undelivered Card Request

	REPLACE-REASON-CODE
	R1
	R1
	Lost Retailer card

	REPLACE-REASON-CODE
	R2
	R2
	Stolen Retailer card

	REPLACE-REASON-CODE
	O1
	O1
	Found missing card (Cancellation Code)

	REPLACE-REASON-CODE
	O2
	O2
	Card now working (Cancellation Code)

	REPLACE-REASON-CODE
	X1
	X1
	WAP re-instatement

	REPLACE-REASON-CODE
	X2
	X2
	IVR re-instatement

	CALLBACK-REASON-CODES
	A
	A
	Special Event

	CALLBACK-REASON-CODES
	B
	B
	Threshold

	CALLBACK-REASON-CODES
	C
	C
	Monthly

	CALLBACK-REASON-CODES
	D
	D
	Power Up

	CALLBACK-REASON-CODES
	E
	E
	ACC/SMS

	CALLBACK-REASON-CODES
	F
	F
	Purchase/Cancel Immediate

	CALLBACK-REASON-CODES
	G
	G
	Purchase 4hr

	CALLBACK-REASON-CODES
	H
	H
	Over-air chaining

	CALLBACK-REASON-CODES
	J1
	J1
	Interactive Type 1

	CALLBACK-REASON-CODES
	J2
	J2
	Interactive Type 1

	CALLBACK-REASON-CODES
	N
	N
	Not specified

	CALLBACK-REASON-CODES
	R
	R
	IPPV Retrieval

	CALLBACK-REASON-CODES
	M
	M
	Manual Initialisation

	REPLACE-METHOD
	A
	A
	Auto. Forwarded to manufacturer

	REPLACE-METHOD
	M
	M
	Manual. Issued by SCMS operator

	TRX-TYPE
	VCDUND
	VCDUND
	Returned undelivered

	TRX-TYPE
	VCDUNW
	VCDUNW
	Returned unwanted – customer doesn’t want

	TRX-TYPE
	VCDSTK
	VCDSTK
	Returned to stock

	TRX-TYPE
	VCDRRQ
	VCDRRQ
	Return request

	TRX-TYPE
	VCDRAS
	VCDRAS
	Retailer returned

	TRX-TYPE
	VCDRET
	VCDRET
	Return faulty

	CARD-STATUS
	A
	A
	Active

	CARD-STATUS
	B
	B
	Changeover Transit

	CARD-STATUS
	C
	C
	Changeover Replaced

	CARD-STATUS
	D
	D
	Dead

	CARD-STATUS
	P
	P
	RETURNED

	CARD-STATUS
	R
	R
	Replaced

	CARD-STATUS
	T
	T
	Transit

	CARD-STATUS
	U
	U
	Undelivered Active

	CARD-STATUS
	V
	V
	Undelivered Changeover

4.1.5 Receiving System - Inbound Message Header Structure

The Chordiant connector is not MQRFH2 header aware. The WMQI broker will remove the MQRFH2 header before putting the message to the Chordiant inbound queue. This will be done in each interface module flow.

The MQMD header is passed through unchanged.

4.1.6 Connector Processing

The technical details of the Chordiant inbound connector are described in JMS-MQ Integration [10], and are not repeated here. The Control Mechanisms section highlights those functions relevant to data integrity and exception handling.

This continues from the steps described in section 4.1.1.

1. The Chordiant MQ Series connector uses the serviceName and functionName fields in the XML data to call the correct Chordiant business service.

4.1.7 Control Mechanisms

Any Errors that occur during the processing of the interface will be handled in a standardised way as outlined in the Middleware Integration Layer Error Handling Document [1].

4.1.7.1 Error Handling

If a processing error occurs in Chordiant, it will be recorded and investigated from there. This is not in line with the standard approach of returning the exception details to WMQI for logging and investigation. The reason for this is that the Chordiant inbound connector removes messages from the inbound queue itself, rather than the generic connector calling an API. Therefore, there is no convenient mechanism to pass exception details back to WMQI, other than to have a separate outbound interface to WMQI. The development effort of such a solution is not justified. Business level exceptions on processing SCMS notifications will be handled as any other Chordiant exception.

4.1.7.2 Data Integrity

This section picks up from the data integrity discussion from Section 3.

The message is removed from the Chordiant inbound queue and processed by the Chordiant application. If an infrastructure level exception occurs, the message will be rolled back to the Chordiant inbound queue, hence the message will not be lost. On processing, the message will either be persisted to the Chordiant application, or to the Chordiant error log if an application level error occurs. See JMS-MQ Integration [10] and the Chordiant documentation for details.

4.1.8 Security and Authorisation

Security information will adhere to the requirements outlined in the Sky CRM Non-Functional Requirements document.

See general comments in Section 3.1.7.

The Chordiant built-in MQ connector requires the userName and authenticationToken fields be populated. However, there is no functionality behind these fields and any string could be passed, including the empty string.

See the Chordiant product documentation for details of how the Chordiant MQ connector handles security. The Chordiant connector runs as a trusted part of the Chordiant application.

4.1.9 Receiving System Pre-processing

After the connector reads the message from the inbound queue, it extracts the serviceName and functionName, and makes a call, passing the remaining parameter pairs, to the corresponding ServiceObject(serviceName) and Method (functionName). See JMS-MQ Integration [10] for details.

4.1.10 Receiving System Events Triggered

See the specific interface Functional Designs for the Chordiant method called for each notification type.

4.1.11 Receiving System Outbound Message (Reply Message)

N/A – Fire and Forget interfaces.

4.2 Receiving System Inbound Message - MIDAS

This section describes the messages received by the MIDAS system from the integration layer. No reply is generated from MIDAS for these interfaces.

4.2.1 Routing and Filter Rules

All messages will be routed to MIDAS, unless an error occurs during WMQI processing.

The message is logically routed in MIDAS to the correct processing, based on the Type field in the MQRFH2 header (see 4.2.4). This field gets passed to the generic MIDAS stored procedure for handling inbound XML messages by the connector.

4.2.2 Receiving System - Inbound Message Body Structure

Message Name: N/A

Field Delimiters: N/A - XML Message

Scope of Message: N/A

The general format of the inbound to MIDAS message is as shown below.

	Standard XML Header

	<?xml version='1.0' encoding='UTF-8'?>

	Receiving System Field Name
	Min - Max Usage
	For-mat
	Mapped From Sending System Field
	Field Transform Rule or Comment

	<Interface_Indentifier>
	1-1
	Tag
	N/A
	Contains no data or attributes itself. Container for other fields.

	<SCMS-FIELD1>
	X-X
	Text
	<SCMS-FIELD1>
	Direct mapping from corresponding SCMS field

	<SCMS-FIELD2>
	X-X
	Text
	<SCMS-FIELD2>
	Direct mapping from corresponding SCMS field

	…
	
	
	
	

	<SCMS-FIELDN>
	X-X
	Text
	<SCMS-FIELDN>
	Direct mapping from corresponding SCMS field

	</Interface_Indentifier>
	1-1
	End tag
	N/A
	

Notes
1. The field names (XML tags) are those from the originating SCMS message.

2. Reserved fields and / or fields with no business or technical use are not passed to MIDAS, e.g. the SMA-RESERVED field.

3. The root tag is a string representing the logical interface.

4. Where the SCMS field contains multiple data instances, these are contained in a single XML field (as per the SCMS message). To put it another way, the data is structured as XML, but only to the first level. For example, the SMA-CONV-ID field appears containing 5 characters. The sub-fields are not split into separate XML elements.

4.2.2.1 Generic Transform Rules

Data will be left as formatted in the SCMS outbound message, see Section 3.1.5.1, except for the following additions.

	Data Format
	Comments

	Null Values
	Where No value is provided for an attribute tag, empty tags will be passed e.g.

<EFFECTIVE-END-DATE></EFFECTIVE-END-DATE>

	Text
	Text strings from SCMS are left aligned and padded with white space. White space will be stripped from the right, except for multiple instance fields. For XML fields containing multiple fields from SCMS, each field will not have spaces stripped, as the space is required to identify the individual fields. Space will be stripped from the last field.

Other than these exceptions, the actual data will be as received from SCMS.

4.2.3 Domain Value Mappings

It is assumed that no domain value mappings will be done in the WMQI middleware.

4.2.4 Receiving System - Inbound Message Header Structure

As the MQ / MIDAS connector does not read fields in the MQMD header, WMQI must set the following fields in the MQRFH2 header, based on fields in the MQRFH2 header. These are then passed as the first 3 fields to a MIDAS stored procedure. See BSkyB MQSeries-MIDAS Inbound Class Technical Specification [12] for details.

	Receiving System Field Name
	Min - Max Usage
	For-mat
	Mapped From Sending System Field
	Field Transform Rule or Comment

	MQRFH2.usr.ApplOriginData
	1-1
	
	MQMD.ApplOriginData
	Field should be mapped from MQMD to ApplOriginData field in the RFH2 Usr folder.

	MQRFH2.usr.MsgId
	1-1
	
	MQMD.MsgId
	Field should be mapped from MQMD to MsgId field in the RFH2 Usr folder.

	MQRFH2.mcd.Type
	1-1
	
	N/A
	Contains the WMQI message name – identifying the notification. Refer to section 2.3.1 for details.

4.2.5 Connector Processing

The technical details of the MIDAS inbound connector are described in,

· BSkyB Generic Adapter for MQSeries Functional Design [5];

· BSkyB Generic API Connector for MQ Series Technical Specification [6];

· BSkyB MQSeries-MIDAS Inbound Class Technical Specification [12].

A brief summary is given below. When the MIDAS connector receives a message, it will call a Stored Procedure within the MIDAS XML staging area using an Oracle API call and passing the following as parameters:
· The contents of the ApplOriginData field, defined in the Usr folder of the RFH2 header

· The contents of the MsgId field, also defined in the Usr folder of the RFH2 header

· The message type (copied from the RFH2.mcd.Type field). This identifies the message type, and hence the processing required in MIDAS.

· The Chordiant XML message received from WMQI in the message body

As the interface is of type ‘fire and forget’ there is no requirement to receive a reply message from MIDAS.

The Control Mechanisms section highlights those functions relevant to data integrity and exception handling.

4.2.6 Control Mechanisms

Any Errors that occur during the processing of the interface will be handled in a standardised way as outlined in the Middleware Integration Layer Error Handling Document [1].

If any message fails to be written to the MIDAS staging area, the original message along with error code information should be written to the MQ / MIDAS Connector error queue. Details of this connector error handling can be found in references [5][6] and [7].

4.2.7 Security and Authorisation

Security information will adhere to the requirements outlined in the Sky CRM Non-Functional Requirements document.

See general comments in Section 3.1.7.

4.2.8 Receiving System Pre-processing

There is no receiving system pre-processing

4.2.9 Receiving System Events Triggered

The receiving system (MIDAS) will batch up the received XML messages in the appropriate staging table as raw XML. Potentially these tables will be partitioned such that when a threshold is reached the entire batch of messages will be extracted in to a secondary staging table for processing to the Warehouse. The MsgId field, passed to the MIDAS table with the message, will be used for synchronisation checking.

No triggers will be required, as the receiving system will be triggered on a volume/time basis.

4.2.10 Receiving System Outbound Message (Reply Message)

N/A – Fire and Forget interfaces.

5 APPENDICES

5.1 APPENDIX A: SCMS Message Headers and Standard Fields

An example of the common SCMS fields are shown below. This is included merely to clarify the physical message structure. The data in specific fields is not necessarily representative of the business data. Alternate fields are in bold to show field boundaries.

The following represents fields up to and including CARD-SUBSCRIBER-ID.

CCA01ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNAAAAAAAA0000112345678

5.2 APPENDIX B: Chordiant XML Headers and Standard Fields

<?xml version='1.0' encoding='UTF-8'?>
<root xmlns='http://www.w3.org/2001/XMLSchema-instance'
xmlns:xsd='http://www.w3.org/2001/XMLSchema'
xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'
xmlns:bsb='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/'
xmlns:ccs='http://www.themindelectric.com/package/com.chordiant.service/'
xmlns:tme='http://www.themindelectric.com/collections/'>
 <payload type=ccs:PayloadData>
 <fieldData type='tme:vector'>
 <item type='ccs:ParameterPair'>
 <fieldName>userName</fieldName>
 <fieldData type='xsd:string'>middleware</fieldData>
 </item>
 <item type='ccs:ParameterPair'>
 <fieldName>authenticationToken</fieldName>
 <fieldData type='xsd:string'>wibble</fieldData>
 </item>

 .. Other <item></item> fields ..
 </fieldData>
 </payload>
</root>

5.3 APPENDIX C: MIDAS XML Headers and Standard Fields

<?xml version='1.0' encoding='UTF-8'?>
<interface_identifier>

 .. Fields from SCMS notification

</interface_identifier>
5.4 APPENDIX D: Key Decisions

This appendix captures the key decisions made in producing this functional design. These are recorded to provide an audit trail and to provide rationale for the solution designed.

	Ref
	Decision
	Rationale
	References

	1
	The Chordiant out of the box MQ Series connector will be used for inbound fire and forget interfaces.
	Although this implies a non-standard approach to error logging, the advantages of using a vendor supplied, supported and tested component outweigh this.
	

	2
	The SMA-SCMS-NOTIF-KEY will not be passed to Chordiant.
	No clear business or operational requirement for this field has been stated. It is understood that the CardSubscriberID field is sufficient in tracking a log message back to the original notification in SCMS.
	

	Version:
	3.1
	Page 1 of 25

	Date:
	17-06-03 9:51 PM

	Ref
	DV_FD_SCM_ Notifications Generic Functional Design 3.1.doc

PAGE
	Version:
	3.2
	Page 3 of 25

	Date:
	17-06-03 9:51 PM

	Ref
	DV_FD_SCMS Notifications Generic Functional Design 3.2.doc

[image: image3.emf][image: image4.wmf]_1110694481.ppt

Chordiant

SCMS API

EntireX / MQ

Connector

EntireX Broker

SCMS_Notifications

(Increment 2.3 Architecture)

SCMS

Websphere

MQ

Integrator*

MQ / CHD

Connector

1

2

3

4

5

6

7

MIDAS

MQ / MIDAS

Connector

6

7

Queue

Queue

MQ Series

Queue

