	Sky CRM Programme

Connector Functional Design
	[image: image13.emf]

[image: image12.emf]
	Sky CRM Programme

Connector Functional Design
	[image: image12.emf]

BSkyB Generic API Connector for MQSeries Functional Design
	Owner:
	BSkyB

	Project:
	BSkyB CRM Programme

	Creation Date:
	10 July 2002

	Last Updated:
	25 September 2003

	Version:
	3.1

Document Contributors

	FD Team
	Role
	Name
	Date
	Signature

	MQSeries
	MQ Series Build
	Michael McGinley
	11/04/2003
	

	WMQI & MQ Design
	Integration Architect
	Mike Fitch
	11/04/2003
	

	MQSeries
	Integration Infrastructure Lead
	Luke Puddy
	08/04/2003
	

	WMQI Build
	WMQI Development Team Lead

	Stuart Baldwin
	22/07/2002
	

Sign-Off List
	Name
	Position
	Date
	Signature

	Sean Strain

	Development Test Lead
	
	

	Chun Ng

	Integration Lead
	
	

	Luke Puddy
	Integration Infrastructure Lead
	
	

	Mike Fitch

	Integration Architect
	
	

	Michael McGinley
	Integration Infrastructure Application Design
	
	

Distribution List

	Name
	Position

	Andrew Thorn
	Legacy Systems

	Chun Ng
	Integration Lead

	Martin Bleyenberg
	Chordiant Development Lead

	Michael McGinley
	Integration Infrastructure Application Designer

	Luke Puddy
	Integration Infrastructure Lead

	Mike Fitch
	Integration Architect

	Sean Strain
	Development Lead

	Elliot Young
	Technical Architect

	Sam Roddick
	Design Authority

Related Documentation

	Ref
	Title
	Author
	Version

	1.
	Sky Generic Adapter High Level Design
	Tim Robinson/Jamie O’Neill
	1.0

	2.
	CRM Integration Strategy
	Justin Rogers
	2.0

	3.
	Interface Catalogue
	Mike Fitch/Tim Robinson
	1.0

	4.
	SKY CRM Non-Functional Requirements 1.0.doc
	Geoff Northcott
	1.0

	5.
	MQ Integrator Programming Guide
	IBM
	2.1

	6.
	WebSphere MQ Naming Conventions v3.3.doc
	Justin Rogers
	3.3

	7.
	Middleware Integration Layer Error Handling v3.01.doc
	Justin Rogers
	3.01

	8.
	BSkyB Generic Connector Technical Operating Procedures
	Louise Lahiff
	1.0

	9.
	BSkyB MQSeries Design v1.3.doc
	Tim Robinson
	1.3

	10.
	CRM Logging Standards
	Ken Cook
	1.0

Intended Document Progression

	Version
	Title

	Up to 1.0
	Drafts before initial release

Amendment History

	Version Number
	Name
	Date
	Description of changes or Other Comments

	0.1
	Tim Robinson
	10/07/2002
	Initial Draft.

	0.2
	Tim Robinson
	24/07/2002
	Update with comments from internal review

	1.0
	Tim Robinson
	21/08/2002
	Initial Version.

	1.1
	Louise Lahiff
	10/02/2003
	Update document with Bad Message Queue Specifications

	2.0
	Louise Lahiff
	02/04/2003
	Update Document with New Design of Generic Connector

	2.1
	Luke Puddy
	09/05/2003
	QA of version 2.0

	2.2
	Louise Lahiff
	21/05/2003
	Incorporation of Luke Puddy QA points

	2.3
	Luke Puddy
	29/05/2003
	QA of version 2.2

	3.0
	Louise Lahiff
	30/07/2003
	Update document with changes as a result of the introduction of the following :

· Reconnection functionality

· Bidirectional functionality (introduction of request/reply outbound from an application)

· Transaction queue functionality outbound from an application.

· Further Control Queue functionality: multiple message types for various actions on the queue.

	3.1
	Mike Fitch
	25/09/2003
	Changes to separate ops control functionality from main/restart functionality to allow the connector to respond to commands whilst waiting for threads to complete.

CONTENTS

61
Introduction

62
Document Purpose

62.1
Dependencies

72.2
Assumptions

83
OUTLINE FUNCTIONAL DEFINITION

83.1
Terminology

83.1.1
MQSeries terms

83.1.2
Connector/Adapter

83.1.3
Inbound/Outbound

83.2
Background and Overview

93.3
Solution Architecture

113.4
Connector Requirements

133.5
Connector Architecture

133.5.1
Supported Configurations

154
DETAIL FUNCTIONAL DEFINITION

154.1
Connector Set up

154.1.1
Connector User ID

154.1.2
Machine Configuration

154.1.3
Directory Structures

164.2
Naming Conventions

164.3
Start-up and Shutdown

174.4
Initialisation / Configuration

174.4.1
ConnectorControl.ini

174.4.2
<SendingPlugin>.ini / <ReceivingPlugin>.ini

174.4.3
Use of Initialisation Files for Bidirectional Connectors

174.5
Scalability

184.6
Serialisation and Message Affinity

184.7
Generic Connector Message Handling

184.7.1
Operation of the Connector Generic Layer

184.7.2
Classes in the Generic Layer

214.7.3
MQPlugin

234.8
Exception Handling and Logging

234.8.1
Exception Types

234.8.2
Reporting

264.9
Enterprise System Management (ESM)

274.10
Transaction Control

274.10.1
Inbound

284.10.2
Outbound

304.11
Main Control Method

314.12
Control Thread Flow

324.12.1
Persisting information between Request and Reply

334.12.2
Object Architecture

344.13
Process Messages

354.14
Component Thread Processing

374.15
Reconnect Functionality

374.15.1
Connection Failure

404.15.2
Re-connect Attempts Generic Algorithm

404.16
Connector Utilities

404.16.1
BACStopConnector

404.16.2
Control Messages

425
APPENDIX

425.1
Appendix A - Initialisation Parameters – ConnectorControl.ini

445.2
Appendix B - MQPlugin<In/Out> Initialisation File

465.3
Appendix C - Application Specific Initialisation File

475.4
Appendix D - MQMD Message Header Properties set in MQMessage

495.5
Appendix E - Files required in the classpath for running of the (generic) Connector.

505.6
Appendix F - Environment Level Indicators

515.7
Appendix G - Control Queue Actions

1 Introduction

This functional design document is intended to detail the functionality of the BSkyB Generic API Connector for MQSeries (BAC).

This document will be used by the development teams of all technologies involved in order to construct interfaces between Applications utilising IBM Websphere MQ message oriented middleware.

2 Document Purpose

The target audience for this document is:

	Audience
	Rationale

	Integration Development Team
	Development of the all interfaces

	Application Teams
	Increment deliverable

2.1 Dependencies

	Reference
	Dependency

	1.
	Functional Design is the key dependency for all parties.

	2.
	Functional Design will be agreed and frozen before any development begins.

	3.
	Validation testing of interface will require all developments to be complete, unit tested and signed off by the appropriate sub-team lead or authority as a prerequisite.

Assumptions

	Reference
	Assumption

	1.
	An implementation of a Business Application API will be available for either the C or Java programming languages

	2.
	Any session connections required will be handled internally within the Business Application API. The management of the connection will be invisible to the connector. Database connections are managed by the connector in the case of JDBC access.

	3.
	A Business Application API will consist of a single function / method / stored procedure representing a complete business event (i.e. to create a customer will require one synchronous API function call be, say CreateCustomer(), passing all relevant data required to create that customer). There will always be a reply from this function / method / stored procedure, to indicate success or failure. A null reply is deemed to mean the action has failed. If the return code from the application indicates success, it is then the applications responsibility to ensure that the message data is successfully processed within the application and the connector will instruct MQSeries to delete the message from the queue.

	4.
	A Business API may contain several methods or functions one for each business event (i.e. CreateCustomer(), UpdateCustomer(), GetPinNumber())

	5.
	Any initialisation information required by the Plug-in API (MQPlugin / Business Plug-in) will be made available via a single API initialisation file, the name of the file is specified by a parameter on the command line.

OUTLINE FUNCTIONAL DEFINITION

2.2 Terminology

2.2.1 MQSeries terms

For a definition of MQSeries terms refer to Appendix A the following documents :
For detailed information on the MQ Series definitions, please see the following manuals which are packaged with the product:

Getting Started with MQ Series

MQSeries System Administration

Other documentation which may be of use:

BSkyB MQSeries Design v1.3.doc

2.2.2 Connector/Adapter

The term Connector is used in this document to refer to an application that provides connectivity between two applications. At the moment, the current scope of a connector in the BSkyB environment requires that one of the two applications be IBM Websphere MQ and the other a Business Application. The terms ‘Adapter’ and ‘Connector’ can and are used interchangeably by individuals working in the field of middleware integration. In this document we use the term Connector.

2.2.3 Inbound/Outbound

The use of the terms inbound and outbound will be used to describe the direction of a message with respect to the Business Application. Thus an inbound connector receives data from an MQSeries queue to a Business Application; it will also handle the reply in the case of synchronous communication. Conversely an outbound connector receives data from a Business Application to an MQSeries queue.

2.3 Background and Overview

The MQSeries Connectors are responsible for interfacing the business application to the MQSeries Transport system which is used to transport messages to / from the Websphere MQSeries Integrator (WMQI) message broker.

There are 3 types of connector that will be used within the BSkyB environment:

· A standard off the shelf connectors from IBM or Application vendors (such as Siebel/SAP/JDEdwards)

· MQ enabled Business Applications

· Custom built generic API connector with plug-in modules for specific Business Application connectivity

This document deals only with the functionality of the custom built generic API connector (BAC).

Each business application potentially has two connectors – one to deliver messages to the application (inbound) and one to take messages from the application (outbound).

With the exception of MQ enabled applications, both the inbound and outbound connector solution will consist of the following components:

	Component
	Description

	Sending Application
	Source of data*

	Receiving Application
	Target of data*

	Connector
	Application providing connectivity between Sending and Receiving Applications*

* Note that at the moment, the scope of the connector requirements means that either the sending or the receiving application is always IBM Websphere MQ.

2.4 Solution Architecture

A graphical representation of the complete interface architecture follows, outlining the high-level environment, processes and flow.

[image: image13.emf]
[image: image14.emf]Recovery

Mode?

MQSP - reconnectGetNo

Remove Connection

If reply and persist

Put Connection to

Receiving Application

Not under transaction

Retrieve Connection if

reply and persist

Data

Exception?

Create Bad Message

(Optional)

Sending App. put to Tx

Queue not under

transaction

SendingApp.Get from Tx

Queue

Yes

No

Sending App. get Next Tx

Message (with reconnect

attempts)

Sending App. get from

Input queue using

MessageID

SdgMsg = FF or

Reply or

AsyncRequest?

SyncRequest

Reply contains

Data Exception

Put Bad Message

MQ Commit

Yes

No

MQ to Application Flow

[image: image15.emf]Recovery

Mode?

MQSP - reconnectGetNo

Remove Connection

If reply and persist

Put Connection to

Receiving Application

Not under transaction

Retrieve Connection if

reply and persist

Data

Exception?

Create Bad Message

(Optional)

Sending App. put to Tx

Queue not under

transaction

SendingApp.Get from Tx

Queue

Yes

No

Sending App. get Next Tx

Message (with reconnect

attempts)

Sending App. get from

Input queue using

MessageID

SdgMsg = FF or

Reply or

AsyncRequest?

SyncRequest

Reply contains

Data Exception

Put Bad Message

MQ Commit

Yes

No

MQ to Application Flow

[image: image16.wmf]

* WebSphere MQ Integrator (WMQI) version 2.1 converts message formats and data between the source and target applications.

1 – 2) The outbound connector polls the source application, if data is retrieved a message containing the data is put on the connector outbound queue. In addition the connector places an RFH2 header on the message data. The RFH2 header contains information to assist WMQI to perform transformation and routing. If the interface is request-reply a queue may either be dynamically created to receive the reply message, or a static queue may be in place. The name of the reply queue is included in the message data sent to WMQI.

3 – 5, 9) WMQI transforms the inbound message into a message that is of the correct format required by the connector. It also transforms the message data to a format that the target application can utilise. E.g. XML to CWF transformation.
6 – 8) The connector picks up the message from the inbound queue and makes a single, synchronous API call passing the relevant business data. The return values from this call must contain all the data necessary to form a reply message (if a reply message is required). If the interface is request-reply the connector forms a new reply message from the data returned from the API call, adds an RFH2 header and puts the message on the outbound queue.

10) WMQI uses the reply queue information stored in the message data to route the message to the specified queue

11-13) The connector picks up the message from the reply queue and makes a single, synchronous API call passing the relevant business data from the message.
2.5 Connector Requirements

The general requirements for the BSkyB API connectors for MQSeries are based on the general Interface and subsequent design meetings, and currently understood to include:

· Both inbound and outbound connectors.

· Use standard MQSeries APIs to interact with queue managers and queues for the MQPlugin

· Call application APIs implemented in variety of languages including Java and C, as well as database SQL stored procedures using JDBC.

· Application API calls should encompass one atomic business transaction. Note that this might require some additional wrapping of low-level APIs within the business application.

· APIs should be treated as ‘black box’ by connector.

· Any persistent data or session information that needs to be stored from one call to the next will be managed by the application, e.g. database connection handles.

· WMQI should hold business intelligence for routing, parsing, transformation and formatting as much as possible.

· Application logic should not be duplicated in the middleware.

· Connectors should be functionally ‘thin’, focusing principally on managing the MQSeries interactions, and making API calls. The connectors will not persist any data, or perform any data transformation beyond the casting or encapsulation of data (e.g. from a string to an integer)

· Generic functionality to reduce additional coding effort for every new interface and support the standardisation of the middleware across the solution.

· Flexible enough to be used with a variety of applications.

· Configurable by means of initialisation files read at start-up

· Modular so that core functionality is re-usable.

· Portable code that can be used on a variety of platforms, with primary focus on Windows NT/2K and Solaris.

· Configurable to reduce hard-coding or incorporating application-specific details.

· Executable from the command line, by other processes, by the O/S (e.g. as services) and by Enterprise Systems Management tools.

· Create a log file of errors with return codes – logging is part of the core connector functionality and so is standardised for all applications using the connector.

· Send messages in error to error queue(s).

· Use best efforts to provide a single transaction across a logical unit of work and will detect any errors where transactional API’s are not available for the Business Application.

· All bespoke Application logic will be performed in program module based on a module template delivered as part of the generic connector.

· Design for high performance. Any specific end-to-end requirements for interface performance will be covered in the Interface Catalogue.

· Support for Request/ Reply and for Fire/ Forget transaction modes (MQSeries message types of Request, Reply and Datagram), both inbound to an application and outbound from an application.

· Scalable to handle high volumes of messages and transactions. Volumetric information will be provided in the Interface Functional Designs where available from the business.

· Resilient to temporary loss of availability in the connected applications

The MQSeries queues used by the connector are outlined below.

	Inbound/Outbound
	Queue Name
	MQPut / MQGet
	Type
	Description

	Inbound
	Input
	MQGET
	Static

	Inbound data to the application

	Inbound
	Output
	MQPUT
	Static
	Outbound replies to WMQI (only used in request-reply interfaces)

	Inbound
	Bad Message
	MQPUT
	Static
	Use for fire/forget messages which error in the connector or return a data error from the application API.

	Inbound
	Transaction
	MQPUT/MQGET
	Static
	Used by the connector to hold if-flight transaction data.
Each connector flow needs its own transaction queue

	Inbound
	Control
	MQPUT
	Static

	Used by the connector to control the stopping of the connector

	Outbound
	Output
	MQPUT
	Static
	Outbound data to WMQI

	Outbound
	Input
	MQGET
	Static
	Inbound data to the application (only used in request-reply)

	Outbound
	Bad Message
	MQPUT
	Static
	Use for message which cannot be processed by the connector as the type of message (ie. Fire/forget or Request/Reply) cannot be determined.

	Outbound
	Transaction
	MQPUT/MQGET
	Static
	Used by the connector to hold in-flight transaction data

Each connector flow needs its own transaction queue

	Outbound
	Control
	MQPUT
	Static

	Used by the connector to control the stopping of the connector

*Note there is only one control queue per JVM. If multiple flows are run within the same JVM, they will share the same control queue.
Connector Architecture

A simple overview of the internal connector architecture is shown in the diagram below.

[image: image1.emf]JVM

Sending

Plugin

Receiving

Plugin

Generic Connector

Functionality

Control

Plugin

Uni-directional

(Inbound OR Outbound)

JVM

Sending_1

Plugin

Receiving_1

Plugin

Generic Connector Functionality

Control

Plugin

Bi-directional

(Inbound AND Outbound)

Receiving_2

Plugin

Sending_2

Plugin

A uni-directional connector for a specific application consists of the core connector module, and two plug-ins: One for the MQSeries API (MQPlugin) and a bespoke API Plugin for each Application API.

A bi-directional connector contains a flow for taking requests and fire/forget messages outbound from an application and for bringing the messages back to the application.
The core connector module handles the bulk of the connector logic and processing, managing the control of all child threads of the parent connector process.

The API wrapper hides the specifics of a particular API implementation from the core connector module. Thus the generic connector is independent of the transport mechanism and is independent to each business application which uses it to connect to the middleware.

Sending and Receiving plugins can be written to support any application or transport without modifications to the Generic Connector functionality.

The Generic Connector code support both the uni-directional and bi-directional paradigms (the design itself actually supports running any number of flows (inbound or outbound) controlled and run within the same JVM)
2.5.1 Supported Configurations

There are various modes of connector and of message which are processed in CRM. The modes which are supported by either unidirectional or bidirectional are outlined in the tables below.
Uni-directional configuration will support the following modes:

	Mode
	Comments

	FF
	All Fire and Forget Scenarios (S-R)

	Synchronous RR
	RR where ultimate request target Application is invoked directly by a synchronous API call in the Receiving Plugin.

	Asynchronous Request (reply does not need to be processed by same JVM)
	Request from S-R where the ultimate request target application in invoked in an asynchronous manner, and where the reply can be processed by a different JVM than the originating message (e.g. the reply is not required to use the request messages connection/conversation object).

	Asynchronous Reply (reply does not need to be processed by same JVM)
	Reply from S-R where the reply to a request is coming back in an asynchronous manner, and where the reply can be processed by a different JVM than the originating message (e.g. the reply is not required to use the request messages connection/conversation object).

Bi-directional configuration will support the following modes:

	Mode
	Comments

	FF
	All Fire and Forget Scenarios (S-R)

	Synchronous RR
	RR where ultimate request target Application is invoked directly by a synchronous API call in the Receiving Plugin.

	Asynchronous Request
	Request from S-R where the ultimate request target application in invoked in an asynchronous manner, and where the reply can be processed by a different JVM than the originating message (e.g. the reply is not required to use the request messages connection/conversation object).

	Asynchronous Reply
	Reply from S-R where the reply to a request is coming back in an asynchronous manner, and where the reply can be processed by a different JVM than the originating message (e.g. the reply is not required to use the request messages connection/conversation object).

	Asynchronous Request (reply MUST be processed by same JVM)
	Request from S-R where the ultimate request target application in invoked in an asynchronous manner, and where the reply must be processed by the same JVM as the original request (e.g. where the reply must be sent back using the originating request object and the originating request object holds a connection open and is responsible for the “conversation”)

	Asynchronous Reply (reply MUST be processed by same JVM)
	Request from S-R where the ultimate request target application in invoked in an asynchronous manner, and where the reply must be processed by the same JVM as the original request (e.g. where the reply must be sent back using the originating request object and the originating request object holds a connection open and is responsible for the “conversation”)

DETAIL FUNCTIONAL DEFINITION
The following section outlines the detailed design specifications for the core functions of the connector, both inbound and outbound.

2.6 Connector Set up

2.6.1 Connector User ID

The connector configuration should be set up and run as the user ‘mqmapp1’. This user is a member of the ‘mqmapp’ group and is used for running applications that access MQ Series.

To run the connector, the user must be logged into the machine under this name. This user id will have the permissions to put to and get from queues.

Individual logon/password combinations are also required to log on to each application API. This information will be contained within each plugin’s initialisation file. This file will be accessible only to the user running the connector.

2.6.2 Machine Configuration

A server can have a number of connectors running on it at any given time. These can include connectors for the various testing levels, as well as inbound and outbound connectors and the possibility that more than one application is running on the server (e.g. Arbor / DPS on the same server). The directory structure and naming convention for the connector and any wrapper scripts have been designed to ensure that this can be simply achieved.

2.6.3 Directory Structures

The generic connector and the MQPlugin of the connector will (in the current scope) be included in every connector which is running. These files will be contained in a jar file and included in the classpath on each server which requires a connector. Also included in the classpath are the IBM MQ Series base Java class files (In the form of the com.ibm.mq.jar) and some classes which are required for xml parsing (These files are listed in section 5.5 below).

The recommended directory structure for the connector is as follows, we recommend this directory is read-only and that only root and the connector itself have any access to the files.:

$HOME/ Q<Test/Production Level Indicator><AppNameTLA>Connector* /In
e.g. $HOME/QCARLConnector/Out/

* The Promotional Environment Level indicators can be found in Section 5.6.

The connectors have wrapper scripts named runMQConn_$QMGR_$APPTLA_$DIR where $QMGR is the queue manager for which the connector is connected to, $APPTLA is the programme-defined three letter acronym representing the connecting application (see WMQI Naming Conventions document) and $DIR is the direction of the connector.
e.g. $HOME/QCFMSConnector/In/ runMQConn_QCLIVSAL21_FMS_In
(This command will run the FMS Inbound connector in the String Test environment).
There will also be a dedicated directory to hold the log files, this will need write access. This directory is indicated in the ConnectorControl.ini initialisation file using the LOG_DIRECTORY property.

We recommend that the log files should be contained in the following directory:

e.g. $HOME/QCARLConnector/Out/logFiles

There will also be a dedicated directory to hold the transaction message files, should these need to be created. This will also need write access. This directory is indicated in the <Sending/ReceivingApp>.ini initialisation file using the TX_MSG_FILES_DIR property. The name of the file is fixed and set by the connector

We recommend that the transaction files should be contained in the following directory:

e.g. $HOME/QCARLConnector/Out/TxMsgFilesOut
More in depth details for the running of the connector and the associated directory layouts is contained within the Connector Technical Operating Procedures.

2.7 Naming Conventions

The configuration of the connectors follows the standard WMQI Naming conventions document v 3.3. The main property from this document used in the connector configuration is the Promotional Environment Level indicators. These have thus also been included in this document in Section 5.6 below. For further information on the naming standards, please reference the above document.

2.8 Start-up and Shutdown

The connector (both inbound and outbound) is started by running a program at the command line.

The program accepts compulsory command line parameters. The first must be the main connector initialisation file (ConnectorControl.ini). The command line then must contain 2 parameters for each connector flow instance, the name of the sending plugin initialisation file and the name of the receiving plugin initialisation file.

In the case of a unidirectional connector (e.g. a standard inbound connector), this will be two files, where the sending plugin is MQ. In the case of a bidirectional connector, this will be four files, where one flow has MQ as the sending plugin, and one has it as the receiving plugin.
Scripts will be available the command for running the connector.

The connector is stopped by placing a special control message, containing the message ‘STOP_CONNECTOR’ on the connectors control queue. A utility has been written in order to do this (BACStopConnector).

java com.bskyb.mq.BACStopConnector ConnectorControl.ini

This places a messages on the CONTROL_QUEUE indicated in the ConnectorControl.ini file. This is the input queue for operations – i.e. the control queue for the connector. Once a stop message is received on this control queue, the connector will stop all threads and exit the connector safely.
The connector contains functionality to automatically restart in the event of a disconnect from either of its applications (i.e. MQ Series or the CRM application to which a connection is being made). The reconnect options are configurable by the initialisation files. Further information on how to set up the connectors to reconnect on failure are included in section 0

 REF _Ref49066317 \r \h
4.14.
2.9 Initialisation / Configuration

The connector will read it’s configuration from three initialisation files: one which contains the details required for the generic part of the connector, one which contains the details of the sending plugin, one which contains the details of the receiving plugin.

The files are read only on start-up of the connector. Any changes made to the initialisation files whilst the connector is running will not take effect until the connector is restarted. A control message can be used to perform this restart. The names of the initialisation files are specified in the command line when starting the connector.

2.9.1 ConnectorControl.ini

The main initialisation file for the connector is held in ConnectorControl.ini. This file contains each of the fields shown in section 5.1. This file contains the configuration for multithreading, reconnection, bidirectional and control queue options. All of these options should be set for the connector to work correctly and as effectively and efficiently as possible.
2.9.2 <SendingPlugin>.ini / <ReceivingPlugin>.ini

The sending and receiving plugin initialisation files as a minimum must contain the name of the class that is plugging into to the generic connector. Each must contain enough information to connect to the application, and any associated url or service information on that application to which the connection is being made.

 More detailed specifications for the parameters that each connecting business application must provide will be contained in the technical specifications for each application plug-in.

2.9.2.1 MQPluginIn/Out initialisation files

In the current scope of CRM, one of either the sending or the receiving plugin will always be MQ Series. For the MQ Plugin initialisation file, there are mandatory fields, which must be defined in order for the connector to run. These are outlined in Section 5.2 below.

For the instances where MQ is the receiving plugin (i.e. for outbound connectors), the MQPlugin plugin file must also contain the values which are to be set in the RFH2 header of the messages.

2.9.3 Use of Initialisation Files for Bidirectional Connectors

A bidirectional connector is one that is used for request/reply outbound from an application. It is essentially two connector ‘flows’ in one, one taking messages from the source application, and one returning the replies to the source application.
The outbound flow takes two initialisation files - <sendingplugin>.ini <receivingplugin>.ini, where the receiving application is MQ. The inbound flow will also take two initialisation files - <sendingplugin>.ini <receivingplugin>.ini where the sending application is MQ.

The main ConnectorControl.ini file contains all the standard fields, but the key field for the bidirectional connector is the INSTANCE_COUNT. This must have a count which equals the number of flows which are running for the instance of the connector (i.e. within one JVM).
2.10 Scalability

Primary scalability is provided by means of a multithreaded architecture, each component thread will maintain it’s own client connection to the sending application and it’s own connection to the receiving application. This allows multiple messages to be processed in parallel. Each message will be processed as a single unit of work within a thread.

Where an application API does not support multithreading the connector will be configured to run single threaded. In this instance scalability is achievable by running multiple instances of the connector

The connector performs the management and control of the number of running threads based on optional configuration parameters in the main connector initialisation file.

One instance of a connector will connect to one instance of a Business Application, where connectivity to multiple instances of a Business Application is required this will be provided by multiple instances of the connector.

2.11 Serialisation and Message Affinity

The primary design principle is high message throughput, for this reason the order of message processing is not explicitly maintained. The MQ Series transport layer is configurable to deliver messages on first-in first-out basis (FIFO). However, since the connector is designed to process messages in parallel it is possible that some threads will process messages faster than others and thus the order that replies are sent out may differ from the order of incoming requests.
Where serialisation or message affinity is a hard requirement the connector must be run as a single instance and single threaded.

An exception to the above is the case of a batch connector, with only one currently in the scope of the system. This receives a series of messages in the form of a header message, detailed messages, and a trailer message, and prepares them into a single message which is then passed onto MQ. (In this case, the message order of the header, detailed and trailer message is explicitly maintained by the sending application and so there are no infrastructure message ordering requirements).
2.12 Generic Connector Message Handling

2.12.1 Operation of the Connector Generic Layer

The connector generic layer is responsible for the routing of messages in an appropriate manner from the source application (‘sending’ plugin) to the target application (‘receiving’ plugin). It has a generic message type (note: this is not MQ specific). It dictates the actions of a running thread. Each of these running threads controls the routing of the messages which are passing through it. It has a centralised main class which controls the number of threads which are running at any given time, and manages the thread numbers based on the traffic passing through the connector.

2.12.2 Classes in the Generic Layer

The generic connector layer has four main classes: -

· ConnectorControl

· Message

· WorkerThread

· Plugin

2.12.2.1 ConnectorControl

The controlling class (ConnectorControl) is responsible for thread control and for the creation of objects representing each of the applications for the connector to work with.

It also maintains static variables representing the various levels at which thread increments/reductions are required which it reads from the sending applications properties file. This table shows the configurable parameters which are used by the connector to determine how many threads need to be running any given time.

	Variable Name
	Description
	Default Value

	CHECK_STATS_PERIOD
	This is the time period (in seconds) after which the ConnectorControl class will do a check to see if more threads need to be created or if some need to be destroyed.
	10

	CREATE_THREAD_1_THRESHOLD
	This is the threshold for the creation of a single thread (if the ratio goes over this value).
	60

	CREATE_THREAD_5_THRESDHOLD
	This is the threshold for the creation of five threads (if the ratio goes over this value).
	75

	CREATE_THREAD_10_THRESHOLD
	This is the threshold for the creation of ten threads (if the ratio goes over this value).
	90

	DESTROY_THREAD_1_THRESHOLD
	This is the threshold for the destruction of a single thread (if the ratio goes below this value).
	40

	MIN_WORKER_THREADS
	This is the minimum number of worker threads which the connector wants to keep in a running state at any given time.
	3

	MAX_WORKER_THREADS
	This is the maximum number of worker threads which the connector wants to keep in a running state at any given time.
	10

The algorithm which is then used to decide when more threads are created/destroyed is as follows:

if (localProcessingTriedCount%CHECK_STATS_PERIOD == 0)

 {
 percentage = (messageProcessedCount*100)/processingTriedCount;

 }

 if (percentage >= CREATE_THREAD_10_THRESHOLD)

 {

 createThreads(10);

 }

 else if (percentage >= CREATE_THREAD_5_THRESHOLD)

 {

 createThreads(5);

 }

 else if (percentage >= CREATE_THREAD_1_THRESHOLD)

 {

 createThreads(1);

 }

 else if (percentage < DESTROY_THREAD_1_THRESHOLD)

 {

 destroyThreads(1);

 }
2.12.2.2 Message

In order to keep the connector application independent, it defines its own message class (This keeps it independent of the MOM software being used, as well as eliminating the requirement to pass elements of an MQMessage to the business applications). The Message class holds all of the properties of the object being transferred which are required.

This message object will be defined by the sending application(/plugin) and contain all of the information which the receiving application(/plugin) requires to process the message. In the case where the receiving application is a business application, this will involve, for example, making a call to a stored procedure or a plug-in Java class. In the case where the receiving application is MQSeries, this will involve converting the generic message type to an MQMessage and taking the appropriate action with regard to placing it on a transportation queue.

The types of properties which a Message contains are as follows: -

	Property
	Description

	MessageId
	Unique identifier for each message passing through the connector.

	CorrelationId
	The correlationId is to allow the reply to be associated (‘correlated’) with the appropriate request.

	InvocationType
	The invocation type of the message indicates whether it is a Fire/Forget (Datagram) message, a Request message, or a Reply message.

	MessageType
	The MessageType is an identifier of the message format and is used by the WMQI broker to route the message.

	MessageData
	The message data is the actual message content which is being passed from one business application to another.

	ApplicationOriginData
	This is a three character field which represents the original source application of the data.

2.12.2.3 WorkerThread

The WorkerThread class of the connector is responsible for the actual processing of messages.

It performs the appropriate action based on the source, the target and the invocation type of the message. Other considerations of the worker thread are whether the sending application supports transactionality and whether the transportation is synchronous or asynchronous.

The difference between a synchronous and an asynchronous connector is relevant only for Request messages :

For asynchronous, the request is treated as a fire/forget (datagram) message would be. Thus the request is passed to the business application as a fire/forget message would be. If the application indicates that there has been a problem with the data, the exception information which the application replies with is inserted into the message header, concatenated to the original message data, and placed to the bad message queue.

For synchronous, the reply message is not parsed for error information, it is simply placed on the output queue for delivery to the requesting application.

2.12.2.4 Plugin

2.12.2.4.1 Generic Plugin

The Plugin class is an abstract class which defines a list of methods which can be included in any of the extension classes (but don’t necessarily have to be). None of the plug-ins have any reliance on MQ Series, except the specific MQ sending and MQ receiving plug-ins themselves.

2.12.2.4.2 Application Specific Plugins

Each application will have a specific plug-in with the methods which it needs. Because the methods which are required are defined as abstract, the plug-in will not compile unless each of these is defined. The application specific development (such as individual logon methods, how the poll for data is made, etc, is in these application specific plug-ins).

The messages processed by each plug-in application will adhere to the following :-

· Inbound Requst/Reply Messages
- A synchronous request message is sent to an application and a reply message is received. (This action is performed by the plugin)
- If a data exception is detected in a message, the RFH2.usr folder is populated with the appropriate error folders, the original message data is included as the payload and the message is returned to WMQI as the reply. (This action is performed by the generic portion of the connector)
· Inbound Fire/Forget Message
- If a message put to the application is successful, it will return a message indicating same to the connector. (This action is performed by the plugin)
- If the message is fire/forget, the connector will then deem the message as having been dealt with. (This action is performed by the generic portion of the connector)
- If a message put to the application is unsuccessful, it will return a message indicating same to the connector. If the message is fire/forget, then the connector will create a ‘bad message’ which is made up of the error message indicated by the application and the original request pay load. (This action is performed by the generic portion of the connector)
· Outbound Request/Reply Message
A message is classified outbound by an identifier which will allow the connector to recognise it as either a request or a datagram. This information must be included in the initialisation file. (This action is performed by the plugin)
If there is a problem classifying an outbound request/reply message, it will be put to a bad message queue in the format of a bad message. (This action is performed by the generic portion of the connector)
· Outbound Fire/Forget Message
A message is classified outbound by an identifier which will allow the connector to recognise it as either a request or a datagram. This information must be included in the initialisation file. (This action is performed by the plugin)
If there is a problem classifying an outbound request/reply message, it will be put to a bad message queue in the format of a bad message. (This action is performed by the generic portion of the connector)
2.12.3 MQPlugin

The MQPlugin to the generic connector delivers any MQ functionality required for sending or receiving messages from the MQSeries transport layer to the generic connector.

The MQPlugin provides the following functionality (essentially acting as a wrapper to MQ Series): -

· The conversion of a connector generic ‘Message’ type to an MQMessage, and for the conversion of an MQMessage into a generic ‘Message’ type.

· Removing messages from and placing messages to MQSeries queues.

· Connecting and disconnecting to and from MQSeries objects

· Commit and rollback functionality

· Addition and removal of RFH2 headers (required by WMQI) to/from an MQMessage

· Setting of MQMD properties of an MQMessage

· Methods for use of the transaction queue. (see Section 4.10).
2.12.3.1 RFH2 Header

The MQRFH2 header functionality will be added to the MQPlugin as an inner class, MQRFH2. This keeps the RFH2 functionality separate to the MQ Series functionality, whilst at the same time ensuring that it is visible only to the MQPlugin. The inner class will offer the following functionality: -

· Parse the xml portion of the RFH2 header and return the name/value data in a properties object

· Add an RFH2 header to an MQMessage

· Remove an RFH2 header from an MQMessage

· Add a Usr folder with the appropriate Message Content Descriptor (mcd) properties.

In the case of Inbound connectors, the RFH2 information in the Reply is populated by persisting the information from the Request message, with the exception of the mcd.type value, which is populated using the usr.RpyType value from the Request.

In the case of Outbound connectors, the values for the RFH2 header is retrieved from the initialisation file – see section 5.2 below.

It is important to note that visibility of the RFH2 header data and use of the MQRFH2 class functionality is NOT available to the corresponding sending/receiving application.
2.12.3.2 MQMD Header

The MQMD header information is set and read during the conversion between the two message types – MQMessage and Message (the generic connector message type). There are a series of values which must be set in the MQMD header, these can be viewed in Section 5.4 below.

Only the application origin id of an MQMessage is visible to the application plugin.

The MQMD header is used for routing and describing message properties (e.g. priority, persistence). Business applications should not require any information from this header at any time.

2.13 Exception Handling and Logging

2.13.1 Exception Types

There are two main types of Exception which can occur when a connector is running – either a connectivity exception or a data exception.

2.13.1.1 Connectivity Exceptions

A connectivity exception indicates that the connector was unable to connect to either the sending or the receiving application, or that a previously existing connection has been lost.
Connectivity exceptions include instances such as a database not available, a queue manager not available, or a failed logon.

This exception is raised in the form of a PluginConnectivityException. When a PluginConnectivityException occurs, the connector realises that the thread which has thrown the exception no longer has the connections it requires to perform its task. The connector will attempt to cleanly disconnect from the application for that thread, and then should attempt to reconnect and restart the connector (see section4.14).
In depth information regarding which connectivity errors the business applications throw are contained within the Technical Specifications for each connector.

2.13.1.2 Data Exceptions

A data exception occurs when the data which is passed to the receiving application is not understood. When this error is raised, as a PluginDataException, this is passed to the generic part of the connector.

WorkerThread decides what actions to perform on a message when a data exception has occurred, depending on the message type and on whether the connector is running synchronously or asynchronously.

In the case where the message type is either a fire/forget message or a reply message, or an asynchronous request, if a data exception is thrown, the connector will formulate a ‘bad message’ which will be made up of an RFH2 header containing the data exception thrown by the application, with the original message data which it will have persisted from the original message.

In the case where the message type is a request and the receiving application is operating in a synchronous manner, the connector will create a reply message which is made up of an RFH2 header containing the data exception thrown by the application, with the original message data which it will have persisted from the original message, and pass this back to the WMQI broker as the reply message (ie. the bad message queue is not used in this case).

When the WorkerThread determines that the message has failed due to bad data, it retrieves the original message data from the request message. It takes the headers from the reply message (as these will contain the error information in the RFH2 header) and concatenates the two to form a ‘bad message’. This message is placed on the bad message queue.

* Note that if an error in the ‘Data’ in either a sending or receiving application’s initialisation file causes the connection to fail (e.g. an incorrect user name or database URL), this is classified as a Connectivity exception.
2.13.2 Reporting

The reporting of connector actions will be performed in the following ways:

· Text output to a log file

Regardless of the type of error, details as to what error/exception occurred, when and where in the connector it took place, will be written to a log file.

Each log entry is made as a single line entry to the log file. In the event that an exception is written to the file, the carriage returns are replaced with a ^ character and a count of replace carriage returns written at the end of the line indicating [Replaced X new lines]

· Text output to the stdout stream of the terminal that initiated the connector (in the event that a log file cannot be written to)

· Messages output to an MQSeries queue (the ‘bad message queue’).

When an exception is thrown by the receiving application indicating that it could not process the message due to bad data, an exception is thrown indicating this. A message is then formulated as per section 4.8.1.2 above and placed on the ‘Bad Message’ queue.

2.13.2.1 Error Log Files

The level of error logging which is output to the log files will be a configurable. There are four categories of information output by the connector to the log files:

· Debug Information

· General Information

· Warnings

· Errors

Whether this information is actually output is configurable by means of a log level parameter. The highest level of logging will output all information the lowest level of logging will output no information, not even errors. The logging levels are defined as follows:
	Level
	Name
	Name

	0
	No Logging
	The connector will output no information

	1
	Errors
	The connector will output only error information. Errors are logged when an exception which is deemed to be fatal is thrown. Action is required to correct the error. Warnings, Information and Debug information will be ignored. An error log where a PluginException has been thrown will contain the details of the exception as a string in the message section of the log.

	2
	Warnings
	The connector will output warning information and Errors. A warning is logged when an event which is deemed to be important for monitoring to note has occurred e.g the connector is about to shut down. Information and Debug information will be ignored

	3
	Information
	The connector will output informational messages, Warnings and Errors. Informational messages are printed when important events have occurred during the connectors running e.g. the percentage usage of a connector in the last measuring period. Debug information will be ignored.

	4
	Debug
	The connector will output detailed debug tracing information in addition to Information, Warnings and Errors. This information is purely as a diagnostic aid to the developer / tester of the connector.

The log level to which a log file is set can be viewed by placing a message on the control queue with the text GET_LOG_LEVEL as its data. This will result in the log level being written to the log file.

It is possible to change the log level whilst the connector is running by placing a message on the control queue with the text SET_LOG_LEVEL <number> as its message body, where <number> is the integer representing the log level which the user is requesting be set (as in the table before).

2.13.2.1.1 Log File Formats

In order to adhere to the logging standards indicated in the document CRM Logging Standards document, we have configured the log file content as shown in the table below.
The name of the log file is as follows : <ConnectorName>+VMID JVM Identifier+ Initial Start Time + log file count (number of logs created for this run) .log. This naming convention adheres to the standards required by the CRM Logging Standards document and ensures each log file name is unique.

In all cases the format of output information will consist of the following fixed length fields separated by a pipe ‘|’

	Position
	Field Name
	Format
	Description
	Fixed Width

	1
	Type
	Alphanumeric
	Debug/Info/Warning/Error
	10

	2
	Error Code
	Numeric
	An error code, if one exists, otherwise 000
	10

	3
	Date/Time Stamp
	yyyy-MM-dd HH:mm:ss
	Date/Time of the event
	21

	4
	Thread Name
	Alphanumeric
	Thread Name
	10

	5
	Message Class
	Alphanumeric
	Name of the class
	50

	6
	Message Method
	Alphanumeric
	Name of the method or function
	30

	7
	Information Text
	Alphanumeric
	Descriptive text of the event
	Unlimited

It is recommended that these log files are archived on a weekly basis for a month. After a month, it is recommended they be deleted, as it is unlikely any traceability of the connector would be required beyond this time. These are purely recommendations – this is an operations/ESM issue.

Examples:

Log error message :

Error 000 |2003-08-04 11:23:12|main |com.bskyb.mq.ConnectorControl |main |com.bskyb.mq.PluginConnectivityException^<errorLocation>BACARLS</errorLocation><errorProcess>Connector (com.bskyb.mq.ConnectorControl.main)</errorProcess><errorCode>-999</errorCode><errorMessage>DO_NOT_RESTART_DIR (./DoNotRestart) is not a directory</errorMessage><errorDateTime>2003-08-04T11:23:12Z</errorDateTime>^ at com.bskyb.mq.ConnectorControl.main(ConnectorControl.java:298)^[Replaced 3 new lines]
Log warning message :

Warn 000 |2003-08-04 11:25:41|AR2MQ_1 |com.bskyb.mq.ConnectorControl |shutdown |Shutdown has been requested
Log information message :

Info 000 |2003-08-04 11:25:12|AR2MQ_1 |com.bskyb.mq.MQPlugin |getTxMessageFiles |Checking ./errorFiles for TxMsg files
Log debug message :

 Debug 000 |2003-08-04 11:56:06|AR2MQ_1 |com.bskyb.mq.ARLBatchPlugin |getMessage |Processing batch with CONV_TYPE=SB
2.14 Enterprise System Management (ESM)

ESM tools may gather information about the running of the connector by monitoring the OS process and monitoring the configured output medium. The connector may be controlled directly by means of control messages if the ESM tool can interface to the MQSeries transport layer or by means of the connector utility programs.

We recommend that the connectors which are running in CRM have a minimum log level of 2. This will ensure that all Error and Warning messages are printed to the file. We would recommend that these two error types are picked up by ESM. Because the log files are fixed, parsing of the position in the log line where ‘error’ or ‘warn’ will occur will be set.

In the event that an error occurs, we strongly recommend immediate action as this indicates that there is an issue that has caused the connector to fail and needs immediate attention in order to ensure that the connector continues to run successfully. In the event that a warning has been issued, we recommend action is taken as soon as possible to investigate the reason for this error. In both instances, the first point of investigation should be the connector log files which will give more in depth information as to the reasons for the error/warning.

ESM should at all time be monitoring all running production connectors on any given machine. A listing of the connectors running on a machine can be viewed by doing a search for the script names being used to run the connectors (runMQConn* is that which is recommended by this document).

More indepth recommendations and procedures are outlined in the Connector Technical Operating Procedures.
Transaction Control

Transaction control is built into all connectors on the Sky CRM programme which extend the generic API connector. The connector uses the concept of a transaction queue in order to maintain transaction integrity between MQ Series and a transactional or non-transactional application API.
Use of the transaction queue is configurable and can be turned on/off . This is done using the parameters shown in the table below. These parameters are to be set in each MQ Plugin initialisation file indicating whether or not transactionality is in place :

	Property Name
	Default Value*
	Description

	USE_TX_Q
	true
	Determines if transaction Q will be used

	TX_QUEUE
	N/A
	This is the transaction queue which is used to enhance transactionality on the messages.

(Only used if USE_TX_Q is true)

	TX_MSG_FILES_DIR
	N/A
	This is the path to the directory where the TxMsg_*.MQMsg files are to be created in the event that it is not possible to write to the transaction Q.

(Only used if USE_TX_Q is true)

In this case, the connector will use a local ‘transaction queue’ to provide a single transaction across a logical unit of work. The definition of the unit of work is different for the inbound and outbound connector and will be dealt with separately.

2.14.1 Inbound

For the inbound connector the logical unit of work consists of the GET of an MQ Series message from the input queue, the action on the business API and the PUT of the reply message (if request-reply). If a connectivity exception occurs at any stage in this process the MQ Series message is returned to either the input queue (if it has not yet reached the business API) or the transaction queue (if it has reached the business API) and the exception will cause the connector to stop and restart when the connectivity issue has been resolved.

To prevent duplicate processing of data to the Business Application a message is written to the transaction queue immediately following the call to the API. The correlation Id of this message will be set to the value of the inbound message. If it is not possible to write to the transaction queue then a file, TxMsg_*.MQMsg, is written to the operating system containing the MQMessage as a stream of data.

The movement of messages (for the inbound connector) across the inbound, outbound and transaction queues is shown in the following diagram.

[image: image2.wmf]Input

Queue

Output

Queue

Transaction

Queue

MQ Get under Syncpoint

(Request)

MQ Put no Syncpoint

(Reply)

MQ Get under Syncpoint

(Reply)

MQ Put under Syncpoint

(Reply)

Make API Call

Queue Data Movement

1

2

3

4

5

Operations 1,4 & 5 are performed under sync-point and constitute a unit of work (UOW) for MQSeries. Operations 2 & 3 are non-transactional and do not form part of the MQSeries UOW. The MQSeries UOW is committed only if operation 5 is performed successfully. The ‘put’ to the transaction queue is performed outside the UOW so that in the event of an error there is a record of the in-flight transaction. Entries on the transaction queue indicate that the API call has been made but that the data has not been put to the output queue. The messages on the transaction queue ensure that an input message is not processed twice.
On start-up of the connector the file system is read looking for a TxMsg_*.MQMsg file. If any files of this type are found the connector attempts to recreate a serializedMessage from the information therein, and this is then converted to an MQMessage and put on the transaction queue.

The transaction queue is then opened and read before any messages are processed from the input queue. If messages are found on the transaction queue then they are processed one at a time on a first-in first-out (FIFO) basis – even when the connector is running with multiple threads?. The corresponding message is taken from the input queue using a destructive, selective get with the correlationID of the Tx message (which will be the messageID of the message on the input queue). This ensures that messages are not processed twice.

This then continues with step 5 as usual. This is repeated for all Tx Messages. The connector then starts processing as normal from the input queue.

2.14.2 Outbound

For the outbound connector the logical unit of work consists of the call to the business API and the PUT of the request or fire/forget message to MQ Series.

To add transactionality to this process, once a message has been received from the business API, it is written to the transaction queue not under sync-point. (If the connector cannot write to the queue (due to inaccessibility of MQ), the message is instead written to a file and the threads are killed and restarted when a reconnection to MQ can be established.) A commit is then made to the business application. It is then taken from the queue using the correlation Id of the message, and a put to the output queue is performed.

[image: image3.wmf]Business

API

Output

Queue

Transaction

Queue

Get data from Application

MQ Put no Syncpoint

MQ Get under Syncpoint

MQ Put under Syncpoint

Queue Data Movement

1

2

3

4

5

Confirm

Operations 4 & 5 are performed under sync-point and constitute a unit of work (UOW) for MQSeries. Operation 2 is non-transactional and does not form part of the MQSeries UOW. Operation 3 confirms to the business application that the information it has sent out has been received by CRM and persisted to an MQSeries queue. The ‘put’ to the transaction queue is performed outside the UOW so that in the event of an error there is a record of the in-flight transaction. Entries on the transaction queue indicate that the API call has been made but that the data has not been put to the output queue. The messages on the transaction queue ensure that an input message is not processed twice.
In the case of the commit to the sending application failing (operation 3), then the message on the transaction queue is removed and discarded. In the case that connectivity to the transaction queue is lost, and the messages cannot be removed, a DoNotRestart file is created together with a log entry indicating that corrective action is necessary to manually correct this situation and the connector shuts down. Note that the connector will not start whilst this file exists.
The likelihood of a situation being reached where transactionality is required is very low. The only instance where it could occur would be in the case where an application (e.g. MQ Series) fails in the minute (milli-second) instance between the time the message has been taken from the sending application, but not yet persisted to the receiving application.
Main Control Method

The main control method of the connector is responsible for validating the command line and the initialisation files, creating the initial objects, performing the actual functionality to wait for threads to stop, and restarting the connector as appropriate.

[image: image4.wmf]START

Validate Instance Count

Read and Validate CC

parameters

Create Control Plugin and

start separate thread

Main Control Method Flow

Connector

Shutting

Down?

No

Restart after

shutdown?

Yes

Optionally Wait for

threads to stop

System.exit

Create Flows

Do Not

Restart?

Create ConnectionList

Wait 20

seconds

No

Wait to

Restart

Yes

2.15 Control Thread Flow
The run method of the connector is responsible for monitoring the command queue and initiating the requested actions.

[image: image5.wmf]START

Control Thread Flow

Message to

Process?

Yes

!(ShutdownComplete

AND

!RestartAfterShutdown)

No

Get Message from Control

Queue (if available)

Process

Control

Command

No

Yes

END

Do we have a

connection to

Control Queue?

Connect to

Control

Queue

No

2.15.1 Persisting information between Request and Reply

[image: image6.emf]JVM

Sending

Plugin

Receiving

Plugin

Generic Connector

Functionality

Control

Plugin

Uni-directional

(Outbound)

JVM

Sending_1

Plugin

Receiving_1

Plugin

Generic Connector Functionality

Control

Plugin

Bi-directional

(Inbound AND Outbound)

Receiving_2

Plugin

Sending_2

Plugin

JVM

Receiving

Plugin

Sending

Plugin

Generic Connector

Functionality

Control

Plugin

Uni-directional

(Inbound)

For RR, if the receiving plugin requires additional information from the original request that is not present in the reply message then this information must be persisted by the sending plugin (Sending_1 Plugin) and retrieved (and deleted) by the receiving plugin (Receiving_2 Plugin).

Typically the Bi-directional approach would be used when:

· the information required by to process the reply is the Java connection object of the request. In this case the object cannot be written to disk or DB as it contains JVM specific connection information and would not function if loaded into another JVM.

· A higher throughput without additional disk IO(e.g. writing info to DB/file) was required

Note that in all these cases if the JVM is stopped before the reply is received, then the reply will not be able to be processed by the target app and will be recorded as a bad message. The connector delays shutdown to allow for processing replies in an attempt to minimise this occurrence.

Typically the Uni-directional approach would be used when:

· No additional information other than that in the reply message is required to process the required message

Information is persisted against the Message Id of the Request and retrieved using the Correlation Id of the reply. This assumes that the concept of the Reply having a Correlation Id equal to the Message Id of the request is honoured by all components from the originating application through to the ultimate target application and back again.

The connections in the connection list will expire after a configurable amount of time. If a reply is returned after its connection has expired, it will be put to the bad message queue.

NOTE: For a request, the generic framework checks the configuration of Sending_1 Plugin and if appropriate persists the connection information immediately after the getMessage method is called. For a reply, the generic framework checks the configuration of the Receiving2_plugin and if appropriate destructively retrieves the connection from the connection list and uses it to process the reply.
2.15.2 Object Architecture

The following shows the relationships between the objects and classes and shows the flow of data between them.

[image: image7.emf]JVM

Control

Plugin

Name

Name

Class

Object

Connector

Control

Connection

List

Conn

List

Outbound Flow Instance

Worker

Thread

Sending

Plugin

Receiving

Plugin

Worker

Thread

Sending

Plugin

Receiving

Plugin

Worker

Thread

Sending

Plugin

(AppA)

Receiving

Plugin

(AppB)

Connector

Control

Inbound Flow Instance

Worker

Thread

Sending

Plugin

Receiving

Plugin

Worker

Thread

Sending

Plugin

Receiving

Plugin

Worker

Thread

Sending

Plugin

(AppB)

Receiving

Plugin

(AppA)

Connector

Control

The responsibilities of each of the identified components are shown below:

	Component/Class
	Responsibilities

	ConnectorControl Class
	Responsible for instantiating a ConnectorControl object per “flow instance”, for logging, and for controlling shutdown of connector in a controlled manner.

	ConnectorControl Object
	Responsible for managing threading for a specific “flow instance”.

	ConnectionList Class
	Provide a JVM accessible way of persisting connection information between Outbound and Inbound Flow Instances. Contains a specific instance implementing ConnectionListInterface to provide the actual persistence mechanism (class is configurable)

	Outbound Component
	Comprised of multiple instances of a trio of objects (WorkerThread, Sending Plugin, Receiving Plugin) with each trio running in its own thread and responsible for managing the message from the sending to the receiving application.

Generic functionality within WorkerThread manages the process, with application specific Sending Plugin and Receiving Plugins managing the connectivity.

For flow of messages from App A to App B

2.16 Process Messages

The ProcessMessages method is called by the run method of the WorkerThread and is responsible for maintaining the number of threads which are in existence at any given time.

[image: image8.wmf]No

Process Messages

Message

Processed?

(Synchronized)

Increase ProcessingTried

Count by 1

Increase MsgProcessed

Count by 1

Yes

Time to check

Thread Stats?

Create / Destroy

Threads as appropriate

No

Yes

Reset Stats to 0

Component Thread Processing

The following diagrams outline the process flow for each component thread of the connector, for each flow direction i.e from the business application to MQ, or from MQ to the business application. The component threads are the same for both the inbound and outbound connectors.

[image: image9.emf]Recovery

Mode?

Sening App -

 reconnect Get Message

No

(optional)

put to transaction queue

(not under transaction)

Request & uses

persisted

connection?

Commit to Application

(Optional)

SendingApp.Get from Tx

Queue

No

Yes

(Optional)

get Next Tx Message (with

reconnect attempts)

Message contains

Data Exception?

Request & Use

Persisted

Connection?

Put Bad Message

Put to Output Queue

MQ Commit

Yes

No

Application to MQ Flow

Persist Connection to

Connection List

Yes

No

2.17 Reconnect Functionality

2.17.1 Connection Failure

A connection failure during the running of the connector is deemed to be a point at which access to one of either the sending or the receiving plug-in is cut off. Depending on which point during the processing of the message the connector is, the connector should make various attempts to reconnect and take appropriate action in order to complete the processing of the message.

All reconnect attempts involve disconnecting cleanly (or at least attempting to do so) and then reconnecting to the application, and trying to process the message again.
Depending at which stage of application processing connection to an application is lost it may or may not be appropriate to reconnect to the application at that point in time. In the case of where a get has been performed on the application and a put or commit fails to the same application, reconnecting and performing that specific transactional element again will not give the desired effect (as all previous transactional elements would have been rolled back). Instead in these situations the connector will automatically restart so that processing can restart at a transactional point for the message (as described in section 4.10).

[image: image10.emf]“Application”

MQ Queue Manager

MQ Plugin

App Plugin

Generic Connector Functionality

MQ to App

reconnectGetMessage

()

InOutBadMessageTx

putTxMessageNonTx

()

getTxMessage

()

putBadMessage

()

putMessage

()

commit()

reconnectPutXXMessageNonTx

()

1

2

3

4

5A

5B

6

[image: image11.emf]“Application”

MQ Queue Manager

App Plugin

MQ Plugin

Generic Connector Functionality

App to MQ

reconnectGetMessage

()

OutBadMessageTx

putTxMessageNonTx

()

reconnectGetTxMessage

()

putBadMessage

()

putXXMessage

()

commit()

1

2

3

5

6B

7

commit()

6A

getTxMessageNonTx

()

4

These two diagrams show the flow of a message through both the inbound connector, for an instance where a message is being sent from MQ to an application, or from an application to MQ.

Each point of failure identified in the diagrams by a number is deemed to be a point at which an application failure could occur resulting in a connectivity exception to the connector. Each of these points is dealt with in an appropriate manner by the connector to ensure there is no duplicate processing and no data loss at any point.

These diagrams are also included in the technical specifications of the connector with greater detail on the action taken by the connector at each point.

2.17.2 Re-connect Attempts Generic Algorithm

A standard algorithm is used in the connector to determine whether or not an attempt should be made to reconnect.

The algorithm uses a number of values which are set in the configuration file in order to determine how often/how many times, to reconnect.

The three available options are used to determine the amount of reconnection attempts:

· Using a maximum number of reconnection attempts

· Using an initial wait time, with a wait time multiplier, to reconnect at increasing intervals

· Using a maximum length of time during which it is to attempt reconnects, before stopping.

By setting the multiplier to 1, the algorithm will attempt to reconnect at regular intervals. Setting the multiplier to a value greater than 1 or more will cause an exponential increase in the intervals during which it is rechecked.
2.18 Connector Utilities

In addition to the core connector products several utilities for management and control of the connectors will also be developed:

2.18.1 BACStopConnector

This utility will place a message on a specified control queue. It reads its information from the same initialisation file as the running connector – ConnectorControl.ini. The BACStopConnector utility places a STOP_CONNECTOR message on the queue and the connector stops safely, allowing the threads to complete their work before stopping them.
2.18.2 Control Messages

The control queue can be used to force the connector to perform certain actions whilst it is running. The action is invoked by putting messages with the data as stated below, onto the control queue. Any available MQ put utility can be used to put the message. The connector reads the message and invokes the action outlined.
STOP_CONNECTOR : The connector will be stopped, by first stopping all of its thread and then the main controlling thread. It will wait for all of the threads to stop after completing their current work.

FORCED_STOP_CONNECTOR : The connector will be stopped immediately and all the threads killed with immediate effect and the connector stopped. Use of this command means that any request/reply messages which were currently being processed awaiting a reply will never be processed and the reply messages will be put to the bad message queue.
RESTART_CONNECTOR : This will cause all of the connector threads to finish safely and it will then restart the connector, recreating a controlling thread and the required worker threads.

GET_LOG_LEVEL : The log level is printed to the log file as a debug log note.

SET_LOG_LEVEL <Number> : The log level can be adjusted by sending a message as shown to the control queue.

LOG_THREAD_INFO <No. of seconds> : Sending this message to the control queue causes a listing of all the currently running threads to be printed to the log file. These will be printed as ‘Info’ logs, regardless of the log level at which the connector is running. This is done using a ‘forced’ logging method which causes everything to be logged for a given period of time.
APPENDIX

2.19 Appendix A - Initialisation Parameters – ConnectorControl.ini

	Property Name
	Default Value*
	Description

	CHECK_STATS_FREQUENCY
	N/A
	After how many attempts to process messages a check will be done to see if more or less threads are required (this is when the ratio will be calculated and a judgement made on how many threads to create/destroy).

	CREATE_THREAD_1_THRESHOLD
	N/A
	The percentage threshold at which an extra thread will be created.

	CREATE_THREAD_5_THRESHOLD
	N/A
	The percentage threshold at which five extra threads will be created.

	CREATE_THREAD_10_THRESHOLD
	N/A
	The percentage threshold at which ten extra threads will be created.

	DESTROY_THREAD_1_THRESHOLD
	N/A
	The percentage threshold at which one thread is stopped.

	MIN_WORKER_THREADS
	N/A
	The minimum number of worker threads which will be running at any given time.

	MAX_WORKER_THREADS
	N/A
	The maximum number of worker threads which will be running at any given time.

	CONNECTOR_NAME
	N/A
	This is the name of the connector which is made up of “BAC” (BSkyB API Connector) and the three-letter acronym representing the receiving or sending application (whichever is not MQSeries).

	LOG_LEVEL
	N/A
	The log level which is selected by the connector (i.e. one of debug, warning, information, error). These are represented by integers (see section 4.8.1),

	FORCED_SHUTDOWN_WAIT_PERIOD
	10
	Amount of time the connector will wait for the threads to shut down before killing them using a more effective method on the assumption that they have become inactive. Specified in seconds.

	QUEUE_MANAGER
	N/A
	The QueueManager on which operations will be issuing control commands

	CONTROL_QUEUE
	N/A
	The input queue on which operations will be putting control messages. This queue must be on the queue manager indicated above. This ‘input queue’ is the CONTROL QUEUE, i.e. it is the input queue for operations to control the stopping of the connector.

	CONTROL_QUEUE_WAITTIME
	N/A
	This is the amount of time which a get on the input (control) queue will wait to receive a message before timing out and re-performing the next get to again wait for a message.

	CONN_LIST_EXPIRY_PERIOD
	N/A
	This is the period after which the connections in the connection list will expire and not wait for a reply any longer. Specified in seconds.

	CONNECTION_LIST_PERSISTENCE_CLASS
	N/A
	The class to be used to persist (store) messages if the connector is to operate in a bidirectional manner.

	USE_TX_Q
	False
	Indicator to request transactional queue usage. In the case of the control queue, no transactional queue will be required – the message is written string to the control queue.

	
	
	

	LOG_MAX_SIZE
	100000
	Maximum number of characters to write to log file before switching to new file

	LOG_DIRECTORY
	N/A
	This is the path to the directory where the log file is to be created.

	MAX_RECONNECT_COUNT
	0
	The maximum number of times that the thread is to attempt to reconnect, before stopping.

	MAX_PROCESSING_ELAPSED_TIME
	0
	The maximum amount of time that the thread is to attempt to reconnect, before stopping.

This value is measured in seconds.

	INITIAL_WAIT_TIME
	5000
	This is the amount of time the thread will wait before attempting to reconnect on discovery of the first failure to connect.

This value is measured in milliseconds.

	WAIT_TIME_MULTIPLIER
	1
	This is the multiplier by which the last wait time will be multiplied in order to determine the amount of time the thread should wait before performing another reconnection attempt. Setting this value to 1 will result in regular attempts to reconnect. Setting this value to 2 will result in exponential time increases between reconnection attempts. Value is a double.

	RESTART_WAIT_PERIOD
	10
	Number of seconds to wait before automatically restarting the connector after all of the threads have shut down after a connectivity exception.

* Default values have not been set at this time

2.20 Appendix B - MQPlugin<In/Out> Initialisation File

	Property Name
	Default Value*
	Description

	PLUGIN_CLASS
	N/A
	com.bskyb.mq.MQPlugin

This is the name of the plug-in class which will be instantiated. This is standard for both inbound and outbound connectors.

	REQUEST_REPLYTO_QUEUE_MANAGER
	N/A
	This is the default value that the ReplyTo Queue Manager value will be set to in the MQMD in the event that it is not set by the connector based on the value in the request message in the case of Request/Reply.

	REQUEST_REPLYTO_QUEUE
	N/A
	This is the default value that the ReplyToQueue value will be set to in the MQMD in the event that it is not set by the connector based on the value in the request message in the case of Request/Reply.

	QUEUE_MANAGER
	N/A
	This is the QueueManager which is being connected to by the connector in order to get messages / put messages.

	INPUT_QUEUE
	N/A
	This is the input queue from which the connector will pick up messages.

	OUTPUT_QUEUE
	N/A
	This is the output queue to which the connector will put outbound messages / put replies to requests.

	BAD_MESSAGE_QUEUE
	N/A
	This is the bad message / error queue. Messages will be put to this queue in the event that they are F/F, but an exception is thrown during processing (These messages will contain the original message data, with the error information in the header).

	
	
	

	INPUT_QUEUE_WAITTIME
	N/A
	This is the amount of time which a get on the input queue will wait to receive a message before timing out and re-performing the next get to again wait for a message.

	MQMESSAGE_EXPIRY
	-1
	OUTBOUND ONLY

The message can be set to expire after a set amount of time. This is the value in 10ths of a second. Setting the amount to -1 means the message will be set to unlimited expiry. This is the default value. If the property is not included in the file, the message will be set to unlimited expiry.

	MCD_MSG_MSD
	N/A
	OUTBOUND ONLY

This is the value to be set in the MCD.MSD (Message Set Descriptor) field of the RFH2 header. This is used by the WMQI broker to route the message.

	MCD_MSG_SET
	N/A
	OUTBOUND ONLY

This is the value to be set in the MCD.SET (Message Set Descriptor) field of the RFH2 header. This is used by the WMQI broker to route the message.

	MCD_MSG_TYPE
	N/A
	OUTBOUND ONLY

This is the value to be set in the MCD.TYPE (Message Set Descriptor) field of the RFH2 header. This is used by the WMQI broker to route the message.

	MCD_MSG_FMT
	N/A
	OUTBOUND ONLY

This is the value to be set in the MCD.FMT (Message Set Descriptor) field of the RFH2 header. This is used by the WMQI broker to route the message.

	USE_TX_Q
	True
	Determines if transaction Q will be used

	TX_QUEUE
	N/A
	This is the transaction queue which is used to enhance transactionality on the messages. Section 4.10 should be referenced for more information on the transactional processes.

(Only required if USE_TX_Q = true)

	TX_MSG_FILES_DIR
	N/A
	This is the path to the directory where the TxMsg_*.MQMsg files are to be created in the event that it is not possible to write to the transaction Q.

(Only required if USE_TX_Q = true)

	
	
	

	MAX_RECONNECT_COUNT
	0
	The maximum number of times that the thread is to attempt to reconnect, before stopping.

	MAX_PROCESSING_ELAPSED_TIME
	0
	The maximum amount of time that the thread is to attempt to reconnect, before stopping.

This value is measured in seconds.

	INITIAL_WAIT_TIME
	5000
	This is the amount of time the thread will wait before attempting to reconnect on discovery of the first failure to connect.

This value is measured in milliseconds.

	WAIT_TIME_MULTIPLIER
	1
	This is the multiplier by which the last wait time will be multiplied in order to determine the amount of time the thread should wait before performing another reconnection attempt. Setting this value to 1 will result in regular attempts to reconnect. Setting this value to 2 will result in exponential time increases between reconnection attempts. Value is a double.

	
	
	

* Default values have not been set at this time
2.21 Appendix C - Application Specific Initialisation File

	Property Name
	Default Value*
	Description

	PLUGIN_CLASS
	N/A
	com.bskyb.mq.<appname>Plugin

This is the name of the plug-in class which will be instantiated.

	MAX_RECONNECT_COUNT
	0
	The maximum number of times that the thread is to attempt to reconnect, before stopping.

	MAX_PROCESSING_ELAPSED_TIME
	0
	The maximum amount of time that the thread is to attempt to reconnect, before stopping.

This value is measured in seconds.

	INITIAL_WAIT_TIME
	5000
	This is the amount of time the thread will wait before attempting to reconnect on discovery of the first failure to connect.

This value is measured in milliseconds.

	WAIT_TIME_MULTIPLIER
	1
	This is the multiplier by which the last wait time will be multiplied in order to determine the amount of time the thread should wait before performing another reconnection attempt. Setting this value to 1 will result in regular attempts to reconnect. Setting this value to 2 will result in exponential time increases between reconnection attempts. Value is a double.

In addition to all of the above, the initialisation file must contain the details required to logon to the application, the URL / the logon / the password / the service being logged onto, etc. The specific requirements for each one are included in the technical specifications for each plugin.

2.22 Appendix D - MQMD Message Header Properties set in MQMessage

	Type
	Property
	Description

	byte[]
	MessageId
	This field specifies the message identifier of the message.

	byte[]
	CorrelationId
	The correlation identifier of the message to match with the equivalent request, if one exists.

	String
	UserId
	Part of the identity context of the message; it identifies the user that originated this message.

	byte[]
	AccountingToken
	Part of the identity context of the message; it allows an application to cause work done as a result of the message to be appropriately charged. This is not used by the connector and automatically sets to the default. MQACT_NONE

	Int
	Report
	The report value is set to the following to ensure the message id/correlation id are passed and to ensure the dead letter queue is used in the event of failure where no other instructions are given. MQC.MQRO_PASS_MSG_ID |MQC.MQRO_PASS_CORREL_ID| MQC.MQRO_DEAD_LETTER_Q

	Int
	MessageType
	Indicates the type of the message. The following values are currently defined by the system: DATAGRAM / REQUEST / REPLY / REPORT

	Int
	Expiry
	The expiry indicates the lifetime of a message in milliseconds. The default value is MQC.MQEI_UNLIMITED, meaning that the message never expires.

	Int
	Feedback
	This is used with a message of type MQC.MQMT_REPORT to indicate the nature of the report. The default value of this field is MQC.MQFB_NONE.

	Int
	Encoding
	This member variable specifies the representation used for numeric values in the application message data. All connector messages are set to native encoding value MQENC_NATIVE

	Int
	CharacterSet
	This specifies the coded character set identifier of character data in the application message data. It is set to UTF-8.The MQSeries constant for this is the value 1208.

	String
	Format
	A format name used by the sender of the message to indicate the nature of the data in the message to the receiver. The format is set to MQFMT_NONE.

	Int
	Priority
	The message priority. The default value is MQC.MQPRI_PRIORITY_AS_Q_DEF (as per queue definition).

	Int
	Persistence
	Message persistence. The default value is MQC.MQPER_PERSISTENCE_AS_Q_DEF, which indicates that the persistence for the message should be taken from the default persistence attribute of the destination queue.

	Int
	BackoutCount
	A count of the number of times the message has previously been returned by a get call as part of a unit of work, and subsequently backed out. The connector sets the backout count to 0 when an MQMessage is created.

	String
	ReplyToQueueName
	The name of the message queue to which the application that issued the get request for the message should send reply or report messages. In the event of dynamic queues being used, the name of the dynamic reply-to queue is maintained in this header.

	String
	ReplyToQueueManagerName
	The name of the queue manager to which reply or report messages should be sent. In the event of dynamic queues being used, the name of the dynamic reply-to queue manager is maintained in this header.

	String
	ApplicationIdData
	Part of the identity context of the message; it is information that is defined by the application suite, and can be used to provide additional information about the message or its originator. This is not used by the connector and is filled with 32 spaces (i.e. Is a blank character)

	Int
	PutApplicationType
	The type of application that put the message. This is set to MQC.MQAT_JAVA for the connector, indicating that it is a Java application which has put the message.

	String
	PutApplicationName
	The name of the application that put the message. The String value ‘BSkyB Generic API Connector’ is populated in this field when the connector is putting the message.

	Gregorian
Calendar
	PutDateTime
	The time and date that the message was put. This is taken from the system date. This is usually set to GMT.

	String
	ApplicationOriginData
	Information defined by the application that can be used to provide additional information about the origin of the message. This value is persisted from the request through to the reply. The value is retained in the Message class is the originatingApp attribute. It is a three character string representing the originating application (e.g. CHD).

	byte[]
	GroupId
	A byte string that identifies the message group to which the physical message belongs. This is not used by the connector and automatically sets to the default: MQGI_NONE

	Int
	MessageSequenceNumber
	The sequence number of a logical message within a group. This is not used by the connector and automatically sets to the default : 1

	Int
	Offset
	In a segmented message, the offset of data in a physical message from the start of a logical message. This is not used by the connector and automatically sets to the default: 0

	Int
	MessageFlags
	Flags controlling the segmentation and status of a message. This is not used by the connector and automatically sets to the default : MQMF_NONE

	Int
	OriginalLength
	The original length of a segmented message. This is not used by the connector and automatically sets to the default : MQOL_UNDEFINED

2.23 Appendix E - Files required in the classpath for running of the (generic) Connector.

	File Name
	Recommended Location
	Description

	com.ibm.mq.jar
	/opt/mqm/java/lib
	This jar contains the IBM java files for manipulation and routing of MQSeries messages.

	dom.jar
	$HOME/Q*TLAConnector/jars
	This jar contains some of the classes required for manipulation of the xml in the RFH2 header.

	sax.jar
	$HOME/Q*TLAConnector/jars
	This jar contains some of the classes required for manipulation of the xml in the RFH2 header.

	jaxp-api.jar
	$HOME/Q*TLAConnector/jars
	This jar contains some of the classes required for manipulation of the xml in the RFH2 header.

	xercesImpl.jar
	$HOME/Q*TLAConnector/jars
	This jar contains some of the classes required for manipulation of the xml in the RFH2 header.

	xsltc.jar
	$HOME /Q*TLAConnector/jars
	This jar contains some of the classes required for manipulation of the xml in the RFH2 header.

	com.bskyb.mq.jar
	$HOME/Q*TLAConnector/jars
	This jar contains the generic connector core and MQ classes. It must be included in the class path of an of the generic connector extensions to run.

2.24 Appendix F - Environment Level Indicators

These character indicators are part of the WMQI naming conventions and are used in configuring the directory structure for the running of the connectors.

	Indicator
	Promotional Environment Level

	C
	TPOC / String / System

	D
	Development

	L
	Link Test

	I
	System Integration

	A
	Test Automation

	T
	Training

	J
	Data Provisioning

	W
	Warehouse

	U
	UAT

	X
	Pre-production

	P
	Production

2.25 Appendix G - Control Queue Actions

The commands below are commands which can be issued on the control queue of a connector to perform actions on the connector whilst it is running

	Message Content
	Action Performed on Receipt of Message
	Reference Section for further information

	STOP_CONNECTOR
	The connector will be stopped, by first stopping all of its thread and then the main controlling thread. It will wait for all of the threads to stop after completing their current work.
	4.15.2

	FORCED_STOP_CONNECTOR
	The connector will be stopped immediately and all the threads killed with immediate effect and the connector stopped.
	4.15.2

	RESTART_CONNECTOR
	This will cause all of the connector threads to finish safely and it will then restart the connector, recreating a controlling thread and the required worker threads.
	4.15.2

	GET_LOG_LEVEL
	The log level is printed to the log file as a debug log note.
	4.15.2

	SET_LOG_LEVEL <Number>
	The log level can be adjusted by sending a message as shown to the control queue.
	4.15.2

	LOG_THREAD_INFO <No. of seconds>
	Sending this message to the control queue causes a listing of all the currently running threads to be printed to the log file.
	4.15.2

3

2

1

Inbound

Connector

Queue

 Queue

MQSeries

			

messages

messages

Source Application

Target Application

Outbound

Connector

Websphere MQ Integrator*

� EMBED Visio.Drawing.6 ���

12

11

10

9

8

7

6

5

4

	Version:
	1.0
	Page 1 of 49

	Date:
	03-09-03 12:25 PM

	Ref
	FD BSkyB API Connector v2.4 QA.doc

PAGE
	Version:
	2.4
	Page 1 of 51

	Date:
	03-09-03 12:25 PM

	Ref
	FD BSkyB API Connector v2.4 QA.doc

_1123051574.vsd

_1125986301.vsd

_1125989207.vsd

_1123488815.vsd

_1124095867.vsd

_1124096061.vsd

_1123058901.vsd

_1115798852.ppt

 JVM

Class

Object

Control

Plugin

Name

Name

Connector

 Control

Connection

List

Conn

List

Worker

Thread

Sending

Plugin

Receiving

Plugin

Worker

Thread

Sending

Plugin

Receiving

Plugin

Worker

Thread

Sending

Plugin

(AppA)

Receiving

Plugin

(AppB)

Connector

Control

Outbound Flow Instance

Worker

Thread

Sending

Plugin

Receiving

Plugin

Worker

Thread

Sending

Plugin

Receiving

Plugin

Worker

Thread

Sending

Plugin

(AppB)

Receiving

Plugin

(AppA)

Connector

Control

Inbound Flow Instance

_1120453972.ppt

“Application”

MQ Queue Manager

App Plugin

MQ Plugin

Generic Connector Functionality

App to MQ

reconnectGetMessage()

Out

BadMessage

Tx

putTxMessageNonTx()

reconnectGetTxMessage()

putBadMessage()

putXXMessage()

commit()

1

2

3

5

6B

7

commit()

6A

getTxMessageNonTx()

4

_1122367192.ppt

“Application”

MQ Queue Manager

MQ Plugin

App Plugin

Generic Connector Functionality

MQ to App

reconnectGetMessage()

In

Out

BadMessage

Tx

putTxMessageNonTx()

getTxMessage()

putBadMessage()

putMessage()

commit()

reconnectPutXXMessageNonTx()

1

2

3

4

5A

5B

6

_1120140518.ppt

 JVM

Sending Plugin

Receiving Plugin

Generic Connector Functionality

ControlPlugin

Uni-directional

(Outbound)

 JVM

Sending_1 Plugin

Receiving_1 Plugin

Generic Connector Functionality

ControlPlugin

Bi-directional

(Inbound AND Outbound)

Receiving_2 Plugin

Sending_2 Plugin

 JVM

Receiving Plugin

Sending Plugin

Generic Connector Functionality

ControlPlugin

Uni-directional

(Inbound)

_1115203458.ppt

 JVM

Sending Plugin

Receiving Plugin

Generic Connector Functionality

ControlPlugin

Uni-directional

(Inbound OR Outbound)

 JVM

Sending_1 Plugin

Receiving_1 Plugin

Generic Connector Functionality

ControlPlugin

Bi-directional

(Inbound AND Outbound)

Receiving_2 Plugin

Sending_2 Plugin

