	Sky CRM Programme

IFC0692_CHD_RetrieveTransactionDistribution 
	[image: image2.emf]


[image: image1.emf]
	Sky CRM Programme

IFC0692_CHD_RetrieveTransactionDistribution 
	[image: image1.emf]



Interface Functional Design 

IFC0692_CHD_RetrieveTransactionDistribution
	Owner:
	BSkyB

	Project:
	BSkyB CRM Programme

	Sending System:
	Chordiant

	Receiving System(s):
	Arbor

	Creation Date:
	12 June 2003

	Last Updated:
	22 April 2005

	Version:
	3.8


Document Contributors

	FD Team
	Role
	Name

	WMQI Design
	WMQI Design Team
	Clair Tucker

	MQSeries
	MQ Series
	Luke Puddy

	MQSeries
	Connector Design and Development Team
	Louise Lahiff

	Chordiant
	CHD Design and Development Team
	Mark Lucas

	Arbor
	Arbor Design and Development Team
	Gardner Little, Dougie Robertson


Sign-Off List
	Name
	Position
	Version
	Date
	Signature

	Chun Ng
	Integration Team Lead
	3.0
	
	

	Luke Puddy
	Integration Infrastructure Team Lead
	3.0
	
	

	Justin Rogers
	Integration Design Team Lead
	3.0
	
	

	Mark Lucas
	Chordiant Customer Finance 
	3.0
	
	

	Gardner Little
	Arbor Team Lead
	3.0
	
	


Distribution List

	Name
	Position

	Douglas Robertson
	Arbor Development

	Chun Ng
	Integration Development

	Louise Lahiff
	WMQ Development


Related Documentation

	Ref 
	Title
	Author
	Version

	1. 
	Integration Layer Error Handling
	Justin Rogers
	3.2

	2. 
	Master Interface Catalogue
	Mike Fitch
	1.27

	3. 
	DEF_Inc2.3_Customer Finance_Use Case Retrieve Transaction Distribution
	Rupert Darbyshire
	3.2

	4. 
	DEF_Inc2.3_Customer Finance_Use Case Process Transaction Reallocation
	Rupert Darbyshire
	3.0

	5. 
	Sky CRM Non Functional Requirements
	Program Office
	1.0

	6. 
	Middleware Integration Design Standards
	Justin Rogers
	3.0

	7. 
	Customer Finance Middleware Interface
	Mark Lucas
	1.0

	8. 
	DEF_Inc2.3_Customer Finance_Managed Back Office NFRs
	Define Team
	3.0


Intended Document Progression

	Version
	Title

	Up to 1.0
	Drafts before initial release

	1.0-1.99
	Signed-off release for phase 2.1 go-live and subsequent increments to reflect change requests for Phase 2.1

	2.0-2.99
	Signed-off release for phase 2.2 go-live and subsequent increments to reflect change requests for Phase 2.2

	3.0-3.99
	Signed-off release for phase 2.3 go-live and subsequent increments to reflect change requests for Phase 2.3

	4.0+
	Further future releases


Amendment History

	Version Number
	Name
	Date
	Description of changes or Other Comments

	0.1
	Clair Tucker
	21/03/03
	Initial Draft

	0.2
	Clair Tucker
	11/4/03
	Updated post internal review

	0.3
	Clair Tucker
	17/4/03
	Updated post external review

	3.0
	Clair Tucker
	17/4/03
	Updated for sign off

	3.1
	Clair Tucker
	06/5/03
	Updated with CR1150 change to Arbor transaction id.  No change to interface function.

	3.2
	Clair Tucker
	15/5/03
	Updated with correct Arbor Transaction Id TPR9

	3.3
	Clair Tucker
	12/6/03
	Updated with CR1400 to include vector and collection tags

	3.4
	Justin Rogers
	02/07/2003
	CR1452: Corrected typo from payload to Payload

	3.5
	Justin Rogers
	30/07/2003
	TD3691: Updated to show correct message name

	3.6
	Patricia Jones
	07/08/03
	CR1660: xmlns attribute values altered to reflect that com.chordiant.mq.entities will no longer be used. Also replaced ‘base’ attributes with xsi:type attributes.

	3.7
	Justin Rogers
	05/11/2003
	TD6569: Clarified use of negative currency amounts.

	3.8
	Sarju Mistry
	22/04/2005
	SCR28839: Removed the removal of the RFH2 Header to allow logging info to be maintained


CONTENTS

51
Introduction


51.1
Outstanding Issues


51.2
Document Purpose


51.3
Dependencies


51.4
Assumptions


62
INTERFACE DEFINITION


62.1
Background and Overview


72.2
Solution Architecture


82.3
WebSphere MQ Requirements


93
SENDING SYSTEM TO INTEGRATION LAYER


93.1
Sending System Outbound Message (Chordiant)


93.1.1
Sending System Pre-processing


93.1.2
Information To Be Transmitted


103.1.3
General Process Flow


103.1.4
CHD/MQ Connector processing


103.1.5
Sending System Outbound Message Structure


113.1.6
Control Mechanisms


113.1.7
Security and Authorisation


123.2
Sending System Inbound Message (Chordiant)


123.2.1
Filter Rules and Processing Logic


123.2.2
Reply-To System Message Structure


133.2.3
CHD/MQ Connector Processing


133.2.4
Control Mechanisms


133.2.5
Security and Authorisation


133.2.6
Receiving System Events Triggered


144
INTEGRATION LAYER TO RECEIVING SYSTEM


144.1
Receiving System Inbound Message (Arbor)


144.1.1
Routing and Filter Rules


144.1.2
Receiving System Inbound Message Structure


154.1.3
Receiving System - Inbound Message Header Structure


154.1.4
MQ/ARB Connector Processing


154.1.5
Control Mechanisms


164.1.6
Security and Authorisation


164.1.7
Receiving System Pre-processing


164.1.8
Receiving System Events Triggered


164.1.9
Receiving System Outbound Message (Arbor)


185
APPENDIX


185.1
APPENDIX A: CHD XML Request Message Example Structure


185.2
APPENDIX B: CHD XML Response Message Example Structure


185.3
APPENDIX C: Arbor XML Request Message Example Structure


185.4
APPENDIX D: Arbor XML Reply Message Example Structure




1 Introduction

This functional design document is intended to detail the solution required for the specified interface, from the generation of data in the sending systems to the receipt of that information in all relevant receiving systems.

This document will be used by the development teams of all technologies involved in order to construct the interface, from Application and Connector to Middleware teams.

1.1 Outstanding Issues

	Reference
	Issue

	
	

	
	

	
	


1.2 Document Purpose

This document details the functional design for the IFC0692_CHD_Retrieve Transaction Distribution interface.

The target audience for this document is:

	Audience
	Rationale



	Integration Development Team
	Development of the interface

	Customer Finance Define Team
	Increment deliverable


1.3 Dependencies

	Reference
	Dependency

	1.
	Functional Design is the key dependency for all parties. Functional Design should be agreed and frozen before any development begins.

	2.
	Validation testing of the interface will require all developments to be complete, unit tested and signed off by the appropriate sub-team lead or authority as a pre-requisite.

	3.
	The complete interface is dependent on all components (Chordiant JX platform, WMQI, MQ/Arbor Connector, Arbor) being fully tested and delivered


1.4 Assumptions

	Reference
	Assumption

	
	

	1.
	It is assumed that details will only be requested for payment type transactions and therefore that the ArborTransactionID field will be available and will contain both the tracking_id and the tracking_serv_id.

	2.
	It is assumed that all payments have one or more allocations associated to them in Arbor.


2 INTERFACE DEFINITION

2.1 Background and Overview

This is a request/reply type interface that will be triggered when a CSR requests the distribution of a transaction across the services of a single account.  The use cases are detailed in Customer Finance_Use Case Retrieve Transaction Distribution (ref. 3) and Customer Finance_Use Case Process Transaction Reallocation (ref. 4).  

A CSR will select the billing account that contains the incorrect payment allocation and request the transactions that are required by filtering on date, type etc.  On selection of a payment transaction the details of its distribution across different services within an account will be returned by this interface.  Service types can then be selected and their open balances retrieved.  The CSR is then able to raise Adjustments to manipulate the balances against each service.
The sending system, Chordiant, will populate the Payment Business Object and pass the information onto WMQI, which will transform and route the information to the receiving system, Arbor.  Arbor will query its databases and return the relevant information that can be passed back into Chordiant as a Payment Allocation Business Object by WMQI.  Business Objects are detailed in Customer Finance Middleware Interface Specification (ref. 7)

There is no requirement to perform sequencing for this interface, however it does form part of the process transaction reallocation process and therefore the order of usage of the invoked interfaces must be in line with this flow.

The solution will consist of the following components:

	Component
	Description

	Chordiant
	Sending System : GUI application sending the request. 

Development effort will be required to implement the interface using Chordiant’s JX platform.

	MQSeries
	Transportation layer between Chordiant Adapter, WMQI and the Arbor Adapter.

	WebSphere MQ Integrator (WMQI)
	Broker transformation layer that performs the mapping between Sending System and Receiving System XML structures and vice versa. Given the request reply nature of the event, the solution will consist of two message flows.

	Arbor MQ Connector
	Custom built application to provide connectivity between the MQSeries transport layer and the Arbor ACI layer

	Arbor
	Public repository for financial information. Accessed through Arbor Application Call Interface (ACI) calls only. 


2.2 Solution Architecture

A graphical representation of the complete interface architecture follows, outlining the high-level environment, processes and flow. A graphical representation of the complete interface architecture follows, outlining the high-level environment, processes and flow.

A simplified MQSeries / WMQI environment for a request/reply style interface:

[image: image2.emf]
[image: image3.wmf]













1. A message, initiated in Chordiant, is passed to the CHD/MQ Connector and transported using MQ Series to a message queue.
2. The message is picked up from the system outbound queue and processed through WMQI, mapping and transforming fields where necessary.

3. The message is passed out of WMQI to a message queue.

4. The message is taken from the MQ series queue by the MQ/Arbor Connector and passed to Arbor. Arbor then processes the message and prepares a reply.

5. The MQ/Arbor Connector passes the Arbor reply message from MQ/Arbor Connector to a MQ Series system outbound message queue.

6. WMQI takes the message from the system outbound queue mapping and transforming fields.

7. The message is placed on the Chordiant reply to queue.

8. The CHD/MQ Connector picks up the message from the queue and Chordiant displays the information.

It is also important to make a distinction between interfaces based on the nature of operation in which they result in the receiving system as this has an impact on the architectural design. The IFC0692_CHD_RetrieveTransactionDistribution interface is a Read interface (as opposed to an Update interface). These interfaces result only in a Read operation, so no update has to be performed in the receiving system, Arbor. In this case it will not be an issue if messages get lost after the connector fails to recover in case of Chordiant re-start. These messages can be treated as non-persistent. This is done by the Connector setting the ‘expiry interval’ field in the MQMD message header to the time-out value.

2.3 WebSphere MQ Requirements

The queue names between applications are outlined below.

	Sending Application
	Message Direction
	Type
	Queue Name

	Chordiant


	Outbound
	Static and Remote
	WMQ01.0000. CHD01

	Arbor
	Inbound
	Static and Local
	ARB01.0000.WMQ01 

	Arbor
	Outbound
	Static and Remote
	WMQ01.0000. ARB01

	Chordiant
	Inbound
	Static and Local
	CHD01.0004.WMQ01


RFH2 Message Headers will be used for routing inbound and outbound application messages to WMQI for both Chordiant and Arbor.

3 SENDING SYSTEM TO INTEGRATION LAYER

The following section outlines the design specifications for the interface that relate to the sending system. This includes the way messages will be sent out of the sending system to the Integration Layer and also how the same system will receive messages if a reply is required.

3.1 Sending System Outbound Message (Chordiant)

This section describes the message sent out from the sending system to the integration layer and the initiation of the interface process.
3.1.1 Sending System Pre-processing

Chordiant is responsible for holding all the meta-data and logic required to build business objects from XML messages.

The framework for the data format that will be implemented for the interface will be supported on the Chordiant JX platform. The decision has been taken to use the less verbose version of the XML schema provided by GLUE.  GLUE code is currently licensed and distributed with the Chordiant foundation code for version 5 since GLUE encoding is used for transferring messages between the client and server components. GLUE provides a generic standard for the format of XML messages.

3.1.2 Information To Be Transmitted

Chordiant will send the ArborTransactionID from which the payment id will be extracted.

Chordiant will provide data to ensure that a valid request message can be built by WMQI and passed to Arbor.

3.1.3 General Process Flow

General flow information from the sending system can be extracted from the table below.  Information from Master Interface Catalogue document (ref. 2) and Manage Back Office NFRs (ref. 8).

	Interface Statistics
	Description

	Message size
	Medium (up to 10k)

	Timing
	At most 2 seconds

	Mean Frequency
	1/min 

	Peak Frequency
	1/min 

	Example Triggers
	Click of ‘Next’ button after CSR has selected transaction to view.

	Sequence of Process
	After selecting billing account and filtering transactions

Precedes selection of service type and retrieval of open transitions on that service.


3.1.4 CHD/MQ Connector processing

The CHD/MQ Connector is built into the Chordiant topology and used for data both extracted from and sent to Chordiant via MQSeries queues. When a message is placed onto a queue the CHD/MQ Connector attaches an MQMD (Message Descriptor specific to WMQI messages) that contains the Chordiant Message Id, CorrelId, and ReplyToQueue queue details. See Middleware Integration Standards (ref. 6) for defaulted values and the table below for specifics to this interface.
	Field Name
	Min - Max Usage
	Format
	Possible Values or Comment

	<MQMD>
	1-1
	
	

	<MsgType>
	1-1
	INT
	Value indicates that reply required - MQMT_REPLY

	<MsgId>
	1-1
	BLOB
	Message Id that will be used to correlate the reply.

	<ReplyToQ>
	1-1
	CHAR
	Name of static queue reply should be sent to.

	</MQMD>
	
	
	


When a message is received on the static queue the Chordiant Correlation Ids are matched to confirm that it is the request’s corresponding response message.

3.1.5 Sending System Outbound Message Structure

Message Name:
MZ_IFC0692_OT_RetrieveTransactionDistributionRqt

Field Delimiters:
XML

Scope of Message:
All Normal Processing

	Field Name
	Min - Max Usage
	Format
	Possible Values or Comment

	<?xml?>
	1-1
	Tag
	version="1.0" encoding="UTF-8"

	<RetrieveTransactionDistributionRequest>
	1-1
	Tag
	xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'

	<Payload>
	1-1
	Tag
	xmlns:ns0='http://www.themindelectric.com/collections/' 
xsi:type='ns0:vector'

	<item>
	1-1
	Tag
	xmlns:ns0='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/' 
xsi:type='ns0:BSBPayment

	<ArborTransactionID>
	1-1
	Text
	Arbor Transaction ID e.g. ‘BilledUsage_________123454334___335..’etc

	</item>
	1-1
	Tag
	Closing tag

	</Payload>
	1-1
	Tag
	Closing tag

	</RetrieveTransactionDistributionRequest>
	1-1
	Tag
	Closing tag


     Please refer to Appendix A for example message structures.
Key: 
	
	Container Tag

	
	Element Tag


3.1.5.1 Generic Formatting Rules

Data will be sent from the system following the generic format below:

	Data Format
	Comments

	Text
	XML neither aligns nor pads text fields. 

	Tag
	XML Tag.  Chordiant uses the Glue encoder to generate XML messages.  The Glue encoder will include generic namespace information in the tags, which can be ignored when transforming messages to different formats.  The appendix details and example of the XML structure to be expected.


3.1.6 Control Mechanisms

Any Errors that occur during the processing of the interface will be handled in a standardised way as outlined in the Integration Layer Error Handling Document (ref. 1).

As this is a read interface the request can be resent in case of errors therefore a time out will be set on the dynamic reply queue.

3.1.7 Security and Authorisation

Security information will adhere to the requirements outlined in the document Sky CRM Non-Functional Requirements (ref. 5).

3.2 Sending System Inbound Message (Chordiant)

This section describes the reply message received as part of this interface and how it is sent back to the original sending system.

3.2.1 Filter Rules and Processing Logic

All messages of the type MZ_IFC0692_IN_RetrieveTransactionDistributionRpy will be routed to CHD.

Any errors occurring during the routing of the request message to CHD will be propagated towards the generic error handling unit flow for processing. Further details of this process may be found within the Integration Layer Error Handling Document (ref. 1).

3.2.2 Reply-To System Message Structure

Message Name:
MZ_IFC0692_IN_RetrieveTransactionDistributionRpy

Field Delimiters:
XML

Scope of Message:
All Normal Processing

	Reply-To System Field Name
	Min - Max Usage
	For-mat
	Mapped From Replying System Field
	Field Transform Rule or Comment

	<RetrieveTransactionDistributionResponse>
	1-1
	Tag
	Defaulted
	Constant attribute value: xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'

	<Success>
	1-1
	Text
	ERROR-CODE
	Possible value: ‘true’. See note 3.2.2.2.

	<Payload>
	1-1
	Tag
	Defaulted
	Constant attribute value: xmlns:ns0='http://www.themindelectric.com/collections/' 
xsi:type='ns0:vector’

	<item>
	1-1
	Tag
	
	Constant attribute value: xmlns:ns0='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/’ 
xsi:type='ns0:BSBPaymentAllocationVector'

	<collection>
	1-1
	Tag
	
	Constant attribute value:

xmlns:ns0=’http://www.themindelectric.com/collections/’ 
xsi:type="ns0:vector"

	<item>
	1-n
	Tag
	Defaulted
	Constant attribute value: xmlns:ns0='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/’ 
xsi:type='ns0:BSBPaymentAllocation’

	<Amount>
	1-1
	Curr
	<Amount>
	Holds amount allocated to this service type in pounds.pence. Data type ‘xs:double’.

	<OpenBalance>
	1-1
	Tag
	Defaulted
	Constant attribute value: xmlns:ns0='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/’ 
xsi:type='ns0:BSBOpenBalance’

	<ServiceType>
	1-1
	Text
	<OpenItem>
	Data Type ‘xs:string’

	</OpenBalance>
	1-1
	Tag
	Defaulted
	Closing Tag

	</item>
	1-1
	Tag
	Defaulted
	Closing Tag

	</collection>
	1-1
	Tag
	Default
	Closing Tag

	</item>
	1-1
	Tag
	Default
	Closing Tag

	</Payload>
	1-1
	Tag
	Defaulted
	Closing Tag

	<RetrieveTransactionDistributionResponse>
	1-1
	Tag
	Defaulted
	Closing Tag


Key:

	
	Container Tag

	
	Element Tag


3.2.2.1 Generic Formatting Rules

Data will be sent from the system following the generic format below:

	Data Format
	Comments

	Text
	XML neither aligns nor pads text fields.

	Curr
	Currency value in Pounds and Pence (or Euros and Cents), with a decimal point, e.g. 12.34. This means that the value from Arbor must be divided by 100. This value can be negative, as shown by a preceding ‘-‘.


3.2.2.2 Success

This field will be set to ‘true’ for a successful Retrieval. Error processing will create an alternative message if the Retrieval failed.

3.2.3 CHD/MQ Connector Processing

As mentioned in section 3.1.4 the CHD/MQ Connector polls a static queue once the request message has been sent. When a message is received on this queue the CHD/MQ Connector will verify that this reply message relates to the request message that was sent earlier. This is done by comparing the Chordiant Correlation Id’s found within the MQMD.

3.2.4 Control Mechanisms

Messages that are returned to WMQI from the receiving system may have encountered errors within the Arbor system itself. This error information will be mapped to a standardised XML Error Message after being routed to the Error Sub-Message Flow. 

As this is a read interface a time out will be set on the static queue listener. 

3.2.5 Security and Authorisation

Security information will adhere to the requirements outlined in the document Sky CRM Non-Functional Requirements (ref. 5). 

3.2.6 Receiving System Events Triggered

A successful response will allow Chordiant to display the requested information on the distribution of the transaction.

4 INTEGRATION LAYER TO RECEIVING SYSTEM

4.1 Receiving System Inbound Message (Arbor)

4.1.1 Routing and Filter Rules

All messages of the type MZ_IFC0692_IN_RetrieveTransactionDistributionRqt are sent to Arbor.

Any errors occurring during the routing of the request message to Arbor will be propagated towards the generic error handling unit flow for processing. Further details of this process may be found within the Integration Layer Error Handling Document (ref. 1).

4.1.2 Receiving System Inbound Message Structure

Message Name:
MZ_IFC0692_IN_RetrieveTransactionDistributionRqt

Field Delimiters:
XML.

Scope of Message:
All Normal Processing.

	Receiving System Filed Name
	Min - Max Usage
	For-mat
	Mapped From Sending System Field
	Possible Values or Comment

	<RetrieveTransactionDistribtionRequest>
	1-1
	
	
	

	<tracking_id>
	1-1
	Text
	<ArborTransactionId>
	Possition 281 in the Arbor TransactionId. See 4.1.2.2

	<tracking_id_serv>
	1-1
	Text
	<ArborTransactionId>
	Possition 291 in the Arbor TransactionId. See 4.1.2.2

	</RetrieveTransactionDistribtionRequest>
	
	
	
	


     Please refer to Appendix C for example messages

     Key

	
	Container Tag

	
	Element Tag


4.1.2.1 Generic Transform Rules 

Data will be sent to the system following the generic format below:

	Data Format
	Comments

	Text
	XML neither aligns nor pads text fields. 

	Tag
	XML Tag.  Chordiant uses the Glue encoder to generate XML messages.  The Glue encoder will include generic namespace information in the tags, which can be ignored when transforming messages to different formats.  The appendix details and example of the XML structure to be expected.

	Num
	Numbers passed in character format. This format contains no separator (i.e. 1000 instead of 1,000) and uses a period (.) as a decimal separator. Negative numbers are not expected.

XML neither aligns nor pads number fields


4.1.2.2 Tracking_id and Tracking_id_serv

These fields make up the combination key that is used to uniquely identify a payment in Arbor, they are passed in as part of the ArborTransactionId, and must be extracted before they are passed in to Arbor.  The following table lists the maximum length of each incoming field and the order in which they are mapped to the generic ArborTransactionID string. The string will always be of length 315 characters; the tracking_id should be at position 302 and the tracking_id_serv at position 312.  The padding (‘_’) should be removed from the fields before it is build up into XML to be passed on to Arbor.

	Field Name
	Start
	Length
	Comment

	<ArborTransactionID>
	1
	20
	Tag name to be mapped in with all spaces removed, eg: ‘BilledUsage_________’

	<external_subscr_no>
	21
	10
	Map exact value received between <external_subscr_no> tags and padded with underscore (‘_’) characters to length 10.

	<external_subscr_no_type>
	31
	6
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<bill_ref_no>
	37
	10
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<bill_ref_resets>
	47
	3
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<msg_id >
	50
	10
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<msg_id2>
	60
	3
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<msg_id_serv>
	63
	3
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<split_row_num>
	66
	3
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<language_code>
	69
	6
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<bill_invoice_row>
	75
	10
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<external_id>
	85
	144
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<external_id_type>
	229
	6
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<type_id_nrc>
	235
	10
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<effective_date>
	245
	14
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<amount>
	259
	18
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<bill_order_num>
	277
	25
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<tracking_id>
	302
	10
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<tracking_id_serv>
	312
	3
	Map exact value, left-aligned and pad with underscore (‘_’) characters

	<trans_type_code>
	315
	1
	Map exact value, left-aligned and pad with underscore (‘_’) characters


4.1.3 Receiving System - Inbound Message Header Structure

The MQRFH2 and MQMD are persisted from the source message except for the following fields that require extra processing:

	Reply Message Field Name
	Min - Max Usage
	Format
	Field Transform Rule or Comment

	MQRFH2.usr
	1-1
	
	The usr folder contains fields defined by the developer. 

	RpyType
	1-1
	A50
	‘RetrieveTransactionDistributionResponse’- to be set in WMQI module flow


4.1.4 MQ/ARB Connector Processing

The current solution (CMS to Arbor) uses a list of API calls. The MQ/ARB Connector will call the API in the same way, as specified in the connector configuration file, and pass the message body details as parameters (i.e. without the RFH2 or MQMD headers). It will hold the entire message in dynamic memory during this time.

4.1.5 Control Mechanisms

Errors are handled as specified in the Middleware Integration Layer Error Handling Document (ref. 1).  

4.1.6 Security and Authorisation

Security information will adhere to the requirements outlined in the document Sky CRM Non-Functional Requirements (ref. 4). 

4.1.7 Receiving System Pre-processing

None.

4.1.8 Receiving System Events Triggered

The receiving system will poll its internal database and return the necessary information. There is no further processing.

4.1.9 Receiving System Outbound Message (Arbor)

4.1.9.1 Information To Be Transmitted and General Process Flow

A reply message will always be sent back from Arbor. In the instance of normal processing this will be carried out as described below. Error processing will be handled as outlined in the generic Integration Layer Error Handling document (ref. 1)

4.1.9.2 MQ/Arbor Connector processing

When the reply message is received the MQ/Arbor Connector will pass the message onto the generic Arbor outbound queue. 

When the reply message is retrieved the MQ/Arbor Connector will place the new message on the unique return queue and create new RFH2 and MQMD headers by placing the extracted values back into specified fields.  Fields are persisted from the request message other than those specified below.  It is essential that this information be returned on the reply message to allow the sending system, Chordiant to verify the response and for the WMQI integration layer to locate the static queue on which to place it.

	Reply Message Field
	Min - Max Usage
	Format
	Request Message Field
	Field Transform Rule or Comment

	<MQMD>
	1-1
	
	
	

	<CorrelId>
	1-1
	BLOB
	<MsgId>
	Message Id is used to correlate reply

	</MQMD>
	
	
	
	

	<RFH2>
	1-1
	
	
	

	<mcd.Type>
	1-1
	CHAR
	<usr.RpyType>
	Indicates message type ‘RetrieveTransactionDistributionResponse’

	</RFH2>
	1-1
	
	
	


4.1.9.3 Receiving System Outbound Message Structure

Message Name:
MZ_IFC0692_OT_RetrieveTransactionDistributionRpy

Field Delimiters:
XML

Scope of Message:
All Normal Processing.

	Field Name
	Min - Max Usage
	Format
	Possible Values or Comment

	<RetrieveTransactionDistributionResponse>
	1-1
	Tag
	

	<Success>
	1-1
	Boolean
	Constant value: true

	<PaymentAllocation>
	1-n
	Tag
	One repetition of this tag per Open Item that this Payment Transaction has and amount allocated to.

	<OpenItem>
	1-1
	Text
	Open Item ID, e.g. ‘1’

	<Amount>
	1-1
	Curr
	Amount allocated to the associated Open Item in pence, e.g. ‘1430’

	</PaymentAllocation>
	1-1
	Tag
	Closing tag

	</RetrieveTransactionDistributionResponse>
	1-1
	Tag
	Closing tag


     Please refer to Appendix D for example messages

     Key: 

	
	Container Tag

	
	Element Tag


4.1.9.4 Generic Formatting Rules

Data will be sent from the system following the generic format below:

	Data Format
	Comments

	Boolean
	Values: passed as ‘true’ or ‘false’.

	Text
	XML neither aligns nor pads text fields. 

	Tag
	XML Tag.  Chordiant uses the Glue encoder to generate XML messages.  The Glue encoder will include generic namespace information in the tags, which can be ignored when transforming messages to different formats.  The appendix details and example of the XML structure to be expected.

	Curr
	Currency value in the lowest units (e.g. pence or cents), so no decimal point is used. This value can be negative, as shown by a preceding ‘-‘.


5 APPENDIX

5.1 APPENDIX A: CHD XML Request Message Example Structure

<?xml version='1.0' encoding='UTF-8'?>
<RetrieveTransactionDistributionRequest xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' 

xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

  <UserId xsi:type='xsd:string'>BWA01</UserId>

  <SourceSystem xsi:type='xsd:string'>00001</SourceSystem>

  <Version xsi:type='xsd:string'>1.0</Version>

  <Payload xmlns:ns0='http://www.themindelectric.com/collections/' xsi:type='ns0:vector'>
 <item mlns:ns0='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/' xsi:type='ns0:BSBPayment>



      <ArborTransactionId>BilledUsage___23456__789012345</ArborTransactionId >


    </item>

  </Payload>
</RetrieveTransactionDistributionRequest>
5.2 APPENDIX B: CHD XML Response Message Example Structure

<?xml version="1.0" encoding="UTF-8"?>
< RetrieveTransactionDistributionResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<Success xsi:type="xsd:boolean">true</Success>


  <Payload xmlns:ns0='http://www.themindelectric.com/collections/' xsi:type='ns0:vector'>
 <item mlns:ns0='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/' xsi:type='ns0:BSBPaymentAllocationVector>

   <collection>

mlns:ns0='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/' xsi:type='ns0:BSBPaymentAllocation>



      <Amount>10.00</ Amount>

<item mlns:ns0='http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/' xsi:type='ns0:BSBOpenBalance>



<ServiceType>3</ ServiceType>

      </item>

          </item>

      </collection>


    </item>

  </Payload>
</ RetrieveTransactionDistributionResponse >
5.3 APPENDIX C: Arbor XML Request Message Example Structure

<?xml version='1.0' encoding='UTF-8'?>
<RetrieveTransactionDistributionRequest > 


 <Tracking_Id>9012</Tracking_Id>

       <Tracking_Id_serv>345</Tracking_Id_serv>
</RetrieveTransactionDistributionRequest>
5.4 APPENDIX D: Arbor XML Reply Message Example Structure

<?xml version='1.0' encoding='UTF-8'?>
<RetrieveTransactionDistributionResponse> 


 <sucess>true</sucess>


<PaymentAllocation>

       
<OpenItem>3</OpenItem>

       
<Amount>1000</Amount>

      </PaymentAllocation>

</RetrieveTransactionDistributionResponse>






























Stored procedure(s)








STAGING POST





STAGING POST





MIDAS





Websphere MQ Integrator








6





7





System Outbound Queue





8





5





System Inbound Queue











System Outbound Queue





System Inbound Queue








MQSeries





1





4





3





2





messages





messages








CHD/MQ Connector





Websphere MQ Integrator





MQ/Arbor Connector











Chordiant





Arbor








	Version:
	3.1
	Page 1 of 1

	Date:
	22/04/2005 10:49 AM

	Ref
	DV_FD_IFC0692_CHD_Retrieve Transaction Distribution v3.2 Tracking On.doc


PAGE  
	Version:
	3.8
	Page 3 of 18

	Date:
	22/04/2005 10:49

	Ref
	DV_FD_IFC0692_CHD_Retrieve Transaction Distribution v3.8wip.doc



