	Sky CRM Programme

IFC0900_CHD_BB_AvailabilityCheck
	[image: image3.emf]

[image: image2.jpg]
	BSkyB - Sky Broadband
IFC0906_CHD_SBB_CloseTicket
	[image: image2.jpg]

Interface Functional Design

S6020 Project Sky Broadband
IFC0906_CHD_SBB_CloseTicket
	Owner:
	BSkyB

	Project:
	BSkyB - Sky Broadband

	Sending System:
	CHD

	Receiving System(s):
	SBB

	Creation Date:
	19 May 2006

	Last Updated:
	19 June 2006

	Version:
	0.2

Document Contributors

	FD Team
	Role
	Name

	WMQI Build
	MQ/WMQI Design and Development
	Graham Webb

	
	
	

Sign-Off List
	Name
	Position
	Version
	Date
	Signature

	Richard Wilcock
	Project Manager
	1.0
	
	

	
	D&D Stage Manager
	1.0
	
	

	
	E&T Stage Manager
	1.0
	
	

	Michael McGinley
	Integration Team Lead
	1.0
	
	

	
	
	
	
	

Distribution List

	Name
	Position

	Mike McGinley
	Integration Development Team Lead

	Francois Bothma
	Senior Application Designer Integration

Related Documentation

	Ref
	Title
	Author
	Version

	1.
	Middleware Integration Error Message Processing v0.1.doc
	Justin Rogers
	0.1

	2.
	Middleware Integration Layer Error Handling
	Justin Rogers
	3.10

	3.
	Middleware Integration Design Standards v3.0.doc
	Justin Rogers
	3.0

	4.
	Easynet ‘COREDEV-460-20060527-11_22_55.pdf’
	Sarah Winsor
	

	5.
	Formal ‘Chordiant Technical Enquiry Interface Design’ to be provided by Andrew McKenzie.
	Andrew McKenzie
	tdb

Intended Document Progression

	Version
	Title

	Up to 1.0
	Drafts before initial release

	1.0-1.99
	Signed-off release for phase 1 go-live and subsequent increments to reflect change requests for Phase 1

	2.0-2.99
	Signed-off release for phase 2 go-live and subsequent increments to reflect change requests for Phase 2

	3.0-3.99
	Signed-off release for phase 3 go-live and subsequent increments to reflect change requests for Phase 3

	4.0+
	Further future releases

Amendment History

	Version Number
	Name
	Date
	Description of changes or Other Comments

	0.1
	Graham Webb
	19/05/2006
	Initial Draft

	0.2
	Graham Webb
	05/06/2006
	WMQI_2.3.11.08.00 - Revised to adhere to the latest Chordiant and Sky Broadband Easynet XML message formats.

	
	
	
	

	
	
	
	

CONTENTS

41
Introduction

41.1
Outstanding Issues

41.2
Document Purpose

41.3
Dependencies

41.4
Assumptions

52
INTERFACE DEFINITION

52.1
Background and Overview

62.2
Solution Architecture

82.3
WebSphere MQ Requirements

93
SENDING SYSTEM TO INTEGRATION LAYER

93.1
Sending System Outbound Message

93.1.1
Sending System Pre-processing

93.1.2
Information To Be Transmitted

93.1.3
General Process Flow

93.1.4
Connector processing

103.1.5
Sending System – Outbound Message Body Structure

113.1.6
Sending System - Outbound Message Header Structure

113.1.7
Control Mechanisms

123.1.8
Security and Authorisation

123.2
Sending System Inbound Message

123.2.1
Routing and Filter Rules

123.2.2
Sending System – Inbound Message Body Structure (Reply)

143.2.3
Sending System - Inbound Message Header Structure

154
INTEGRATION LAYER TO RECEIVING SYSTEM

154.1
Receiving System Inbound Message

154.1.1
Routing and Filter Rules

154.1.2
Receiving System - Inbound Message Body Structure

164.1.3
Receiving System - Inbound Message Header Structure

164.1.4
Connector Processing

164.1.5
Control Mechanisms

164.1.6
Security and Authorisation

164.1.7
Receiving System Pre-processing

164.1.8
Receiving System Events Triggered

174.2
Receiving System Outbound Message

174.2.1
Receiving System - Outbound Message Body Structure (Reply)

184.2.2
Receiving System - Outbound Message Header Structure

195
EXCEPTION AND ERROR PROCESSING

206
Appendix

206.1
Example CHD Sending System Outbound Request Message

206.2
Example CHD Sending System Inbound Successful Reply Message

216.3
Example CHD Sending System Inbound Failure Reply Message

216.4
Example SBB Receiving System Inbound Request Message

216.5
Example SBB Receiving System Outbound Successful Reply Message

216.6
Example SBB Receiving System Outbound Failure Reply Message

Introduction

This functional design document is intended to detail the solution required for the specified interfaces, from the generation of data in the sending systems to the receipt of that information in all relevant receiving systems.

This document will be used by the development teams of all technologies involved in order to construct the interfaces, from Application and Connector to Middleware teams for Phase 1 – Close Ticket of the Broadband Technical Enquiry Service.
1.1 Outstanding Issues

	Reference
	Issue

	
	

1.2 Document Purpose

The target audience for this document is:

	Audience
	Rationale

	Integration Development Team
	Development of interfaces.

	CHD Development Team
	Development of CHD – Middleware Interfaces

1.3 Dependencies

	Reference
	Dependency

	1.
	Functional Design is the key dependency for all parties. Functional Design should be agreed and frozen before any development begins.

	2.
	Validation testing of interface will require all development to be complete, unit tested and signed off by the appropriate sub-team lead or authority as a prerequisite.

1.4 Assumptions

	Reference
	Assumption

	1.
	Where an existing interface to in-house systems exists that can be used to fulfil a requirement in this design, such an interface will not be documented here but reference to such interfaces will be made.

	2.
	Before designing and developing a new message path it will be necessary to determine whether and existing path can fulfil such a requirement.

INTERFACE DEFINITION

1.5 Background and Overview

This functional design defines the distribution of information between the various CSR helpdesk or customer Web interface systems and Broadband service validation systems.

This document describes the distribution of information for the interface called ‘Close Ticket of the Broadband Technical Enquiry Service’. Any updates will be distributed between the various systems via the middleware interface.

This interface will be using the request/reply paradigm to distribute the request and reply information on availability of broadband services at the customer’s address. The sending system passes a message containing the required information to the receiving system via the middleware broker. The middleware broker will identify and validate the message. The message is then transformed to the receiving system’s format and delivered to the receiving system. Replies are expected from the receiving system and will be paired to the original request. The reply will be transformed to the original system’s format where needed.

The solution will consist of the following components
	Component
	Description

	CHD
	BSkyB in-house system: Contains and manages all customer related information. An application connector manages the messages flowing between Chordiant and other in-house systems.

	Easynet LLUStreamPlus (SBB) XML Ticketing Interface
	In order to empower LSO’s to support their end-users effectively Easynet provides a tool set. One such tool is the escalation of faults using the XML ticketing interface. Raising a fault ticket via the XML is the mandatory method for escalating end-user faults to the Easynet 3rd line support. The LSO must perform the 1st and 2nd line fault diagnosis. When a fault is being escalated to Easynet the diagnosis results must be included in the fault ticket to assist the LLUStream Support Team to pinpoint the fault and react accordingly.
Functions supported include:
· Open Ticket

· Show Ticket

· Add Ticket Comment

· Close Ticket

Ticketing requests are submitted using HTTP POST over an SSL connection (HTTPS). Each request will generate one response, which will be delivered across the same session. The SSL connection requires an X509 client certificate to gain access. This client certificate is the same one used to gain access to the other LLUStream functions. It will be issued once LSOs have signed a contract to use the LLUStream service. Certificates use public internet standards and are supported in all major programming languages.

	Java Application Connectors
	Custom built application to provide connectivity between the MQSeries transport layer and the in-house systems.

	MQSeries
	The transportation layer between application systems and WMQI.

	WebSphere MQ Integrator (WMQI)
	The Broker transformation layer that transforms and routes messages between the systems.

Solution Architecture

A graphical representation of the complete interface architecture follows, outlining the high-level environment, processes and flow:

	
[image: image1]

This interface utilises Request/Reply type message architecture.
Request:

1. A message initiated in CHD, i.e. the request message is passed to the CHD/MQ Connector and transported to an MQSeries message queue.

2. The request message is picked up from the sending application outbound queue and processed through the WMQI Message broker, which routes the message correctly.

3. The message is passed out of WMQI to an MQSeries message queue.

4. The request message is taken from the MQSeries queue by the SBB/MQ Connector and is passed to the SBB API which is an https. SBB will process the https request message and returns an https reply to the SBB/MQ Connector.

When messages flowing through this interface generate an Update (or delivery) response by the receiving system, the response message will be returned to the sending system and will contain key information to relate the reply to the original request. Reference data may be carried within the response message body to allow the sending system to pair the response to the original request in the event of it not being able to interpret the Header information. This way transactional integrity can be maintained. All messages will be handled as non-persistent by setting the necessary properties in the message headers. Orphaned replies (i.e. replies to a thread that is no longer connected) should auto expire after 24 hours.

Reply:

5. The SBB reply message is passed to an MQSeries application outbound queue by the SBB/MQ Connector from the SBB API.

6. The reply message is picked up from the application outbound queue and processed through the WMQI Message broker, which routes the message correctly.

7. The reply message is passed out of WMQI to an MQSeries message queue.

8. The CHD/MQ Connector picks up the reply message from the reply queue and passes it to CHD.

Inbound Connectors

Inbound connectors will note the MQMD.MsgType in the message to know if it is fire and forget or if a reply is needed. It will also look at the MQMD.Report field to note where the MQMD.MsgID should be persisted. If it is request/reply then the connector will hold values of certain fields in memory to persist the data into the reply message when the application has returned some data as follows:

	Reply Message Field
	Request Message Field

	RFH2.mcd.Msd
	RFH2.mcd.Msd

	RFH2.mcd.Set
	RFH2.mcd.Set

	RFH2.mcd.Type
	RFH2.usr.RpyType

	RFH2.mcd.Fmt
	RFH2.mcd.Fmt

	MQMD.ReplyToQueue
	MQMD.ReplyToQueue

	MQMD.CorrelId
	MQMD.MsgId

	MQMD.ApplIdentityData
	MQMD.ApplIdentityData

	MQMD.ApplOriginData
	MQMD.ApplOriginData

The connector will place reply messages onto a single, permanent MQSeries queue that will be set differently for each application according to connector configuration.
A dedicated instance of the SBB/MQ Connector will be required to process the Close Ticket requests that make HTTPS requests to relevant Easynet (SBB) URL. The SBB/MQ Connector should be configured for the different environments as follows.
	Envirionment
	Request Type Processed
	Connector Inbound Queue
	Easynet LLUStream (SBB) Ticketing URL

	Test
	Close Ticket
	SBB01.0006.WMQ01
	https://212.135.11.82:9443/troll/llustream/orders

	Production
	Close Ticket
	SBB01.0006.WMQ01
	tba

1.6 WebSphere MQ Requirements

The table below shows all relevant queues that must be set up for two-way communication. This is the perspective from the WMQI Hub.

	Application
	Message Direction
	Type
	Queue Name from Sky’s perspective
	Queue Name from Remote end perspective

	CHD
	Inbound
	Static (Local)
	WMQ01.0000.CHD01
	WMQ01.0001.CHD01

	CHD
	Outbound
	Static (Remote)
	Supplied ReplyToQueue
	CHD01.0004.WMQ01

	SBB
	Inbound
	Static (Local)
	WMQ01.0000.SBB01
	WMQ01.0000.SBB01

	SBB
	Outbound
	Static (Remote)
	SBB01.0006.WMQ01
	SBB01.0006.WMQ01

MQRFH2 message headers will be used for routing outbound application messages to WMQI module flows from CHD.
2 SENDING SYSTEM TO INTEGRATION LAYER

The following section outlines the design specifications for the interface that relate to the sending system. This includes the way messages will be sent out of the sending system to the Integration Layer and also how the same system will receive messages when a reply is required.

2.1 Sending System Outbound Message

This section describes the messages sent out from the sending system to the integration layer and the initiation of the interface process.

2.1.1 Sending System Pre-processing

The interface will be triggered if there is new data to be delivered to the receiving application. This status change has to be deployed to the receiving system.

2.1.2 Information To Be Transmitted

The primary information to be transmitted incorporates the following for all scenarios detailed previously:

· Message Type identifier

· Message body containing all required fields

· Correlation ID’s for the Request/Reply message pairs.
2.1.3 General Process Flow

General flow information from the sending system can be extracted from the table below.

	Interface Statistics
	Description

	Frequency
	Once for each message

	Timing
	Near real time function that will send one or more reformatted messages for each received message.

	Average Volumes
	500 per day

	Peak Volumes
	1000 per day

	Peak Message Body Size
	3 Kb

	Trigger
	Triggered in source applications by internal logic

	Sequence of Process
	Messages will be processed in a first in first out order, which is the MQ default. If required messages may be prioritised by setting of the message priority in the message header.

2.1.4 Connector processing

The MQ Connector is used to extract data from applications and send it to an MQSeries queue. Before a message is placed onto a queue, the connector attaches an MQMD (Message Descriptor specific to WMQI messages) and a MQRFH2 header. The WMQI Broker polls this queue and when a message arrives, the WMQI message flow is triggered and the built in XML Parser, parses the message. The message flow then does the transformation to the receiving application’s format before passing it to the outbound queue.

2.1.5 Sending System – Outbound Message Body Structure

Message Name:

MZ_IFC0906_OT_CHD_CloseTicketRqt
Field Delimiters:

XML
Scope of Message:
All Normal Processing

Note that only those fields are shown that are used in this interface. The individual Chordiant Business Objects that are used to create the message might contain other fields as well, however, they are not relevant (neither parsed nor populated) in this interface.
	Field Name
	Min - Max Usage
	For-mat
	Possible Values or Comment

	<?xml?>
	1-1
	Tag
	version="1.0" encoding="UTF-8"

	<BroadbandCloseTicketRequest>
	1-1
	Tag
	xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'

	<Payload>
	1-1
	Tag
	xmlns:ns0='http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans/' xsi:type='ns0:BroadbandCloseTicketRequestMWBean'

	<status>
	1-1
	Boolean
	This is not interrogated nor mapped to the receiving system inbound request message

	<message>
	1-1
	Text
	This is not interrogated nor mapped to the receiving system inbound request message

	<errorCode>
	1-1
	Text
	This is not interrogated nor mapped to the receiving system inbound request message

	<broadbandTicket>
	1-1
	Tag
	xmlns:ns0='http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans.types/' xsi:type='ns0:BroadbandTicketType'

	<ticketAttributes>
	1-1
	Tag
	xmlns:ns0='http://xml.apache.org/xml-soap' xsi:type='ns0:Map'

	<item>
	1-1
	Tag
	

	<key>
	1-1
	Text
	xsi:type='xsd:string'

Always set as ‘ticket.id’

	<value>
	1-1
	Text
	xsi:type='xsd:string'

Easynet ticket identifier.

	</item>
	1-1
	Tag
	Closing tag

	<item>
	0-1
	Tag
	

	<key>
	1-1
	Text
	xsi:type='xsd:string'

Always set as ‘ticket.closeReason’.

	<value>
	1-1
	Text
	xsi:type='xsd:string'

Reason for ticket closure.

	</item>
	0-1
	Tag
	Closing tag

	</ticketAttributes>
	1-1
	Tag
	Closing tag

	</broadbandTicket>
	1-1
	Tag
	Closing tag

	</Payload>
	1-1
	Tag
	Closing tag

	</BroadbandCloseTicketRequest>
	1-1
	Tag
	Closing tag

2.1.5.1 Generic Formatting Rules

Data will be sent from the system following the generic format below:

	Data
	Comments

	Text
	No padding occurs with XML format

	DateTime
	Yyyy-mm-ddThh:mm:ss e.g. 2004-11-01T14:01:56

	Num
	Passed in character format. This format contains no thousand separators (i.e. 1000 instead of 1,000) and uses a period (.) as a decimal separator. Negative numbers will have a prefixed ‘-‘ sign.

2.1.6 Sending System - Outbound Message Header Structure

The MQMD and MQRFH2 headers will be populated as described in the following table. All other mandatory fields within the MQMD and MQRFH2 will be set to the MQSeries default values as described in the IBM WebSphere MQ Application Programming Reference manual.

	Field Name
	Min - Max Usage
	Format
	Field Transform Rule or Comment

	MQMD
	1-1
	
	Message descriptor contains message control information.

	MsgId
	1-1
	MQByte 24
	Defaulted by MQ

	MsgType
	1-1
	MQLong
	Default to ‘MQMT_REQUEST’

	Expiry
	1-1
	MQLong
	This is a period of time expressed in tenths of a second, set by the application that puts the message. The message becomes eligible to be discarded if it has not been removed from the destination queue before this period of time elapses Refer to IBM WebSphere MQ Application Programming Reference version 5.3 for possible values

	Format
	1-1
	MQChar 8
	Set to ‘MQFMT_RF_HEADER_2’

	Persistence
	1-1
	MQLong
	Set to ‘MQPER_NOT_PERSISTENT’.

	Priority
	1-1
	MQLong
	Refer to IBM WebSphere MQ Application Programming Reference version 5.3 for possible values. At Sky this will range from 0 – 9..

	ReplyToQ
	1-1
	MQChar 48
	Refer to IBM WebSphere MQ Application Programming Reference version 5.3 for possible values.

	ReplyToQMgr
	1-1
	MQChar 48
	Refer to IBM WebSphere MQ Application Programming Reference version 5.3 for possible values.

	MQRFH2.mcd
	1-1
	
	The mcd folder contains properties that describe the 'shape' or 'format' of the message. The mcd fields are of variable length XML format. The Format values given here are expected maximums, based upon BskyB build requirements. For details refer to the IBM WebSphere MQ Integrator Programming Guide version 2.1.

	<Msd>
	1-1
	MQChar
	Set to ‘XML’.

	<Type>
	1-1
	MQChar
	The ‘Type’ field holds the Message Type identifier.

Set to “BroadbandCloseTicketRequest”

	<Fmt>
	1-1
	MQChar
	Set to ‘XML’.

	
	
	
	

2.1.7 Control Mechanisms

Any errors that occur during the processing of the interface will be handled in the in a standardised way as outlined in section 5 Exception and Error Processing and the Middleware Integration Layer Error Handling Document.

The error processing has to be considered with regards to the two ways of data flow.

If an error occurs during generating or processing the reply message by the receiving system or the connector, the error message structure generated by either SBB or the generic error handling module flow has to be in line with the error message structure expected by sending system, CHD (refer to section 6.3 Example CHD Sending System Inbound Error Reply Message). Therefore the error handling module flow and application flows involved might have to be adjusted accordingly.

2.1.8 Security and Authorisation

Security information will adhere to the requirements outlined in the Sky Easynet Broadband Services Non-Functional Requirements document.

2.2 Sending System Inbound Message

This section describes the two types of reply messages received as part of this interface and how they are sent back to the original sending system. The first message type is for a successful response, and the second is for an error/failure response.
2.2.1 Routing and Filter Rules

All messages of the type ‘MZ_IFC0906_IN_CHD_CloseTicketRpy’ will be routed to CHD. Any errors occurring during the routing of the request message to CHD will be propagated towards the generic error handling unit flow for processing. Further details of this process may be found within the Integration Layer Error Handling.

2.2.2 Sending System – Inbound Message Body Structure (Reply)
Message Name:

MZ_IFC0906_IN_CHD_CloseTicketRpy
Field Delimiters:

XML

Scope of Message:
All Normal Processing.

For a successful response the following format is returned to CHD.
	Reply-To System Field Name
	Min - Max Usage
	For-mat
	Mapped From Replying System Field
	Field Transform Rule or Comment

	<?xml?>
	1-1
	Tag
	
	version=’1.0’ encoding=’UTF-8’

	<BroadbandCloseTicketResponse>
	1-1
	Tag
	
	xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'

	<Success>
	1-1
	Boolean
	
	Always set to ‘true’ if processing has been successful.

	<Payload>
	1-1
	Tag
	
	xmlns:ns0="http://www.themindelectric.com/collections/" xsi:type="ns0:vector"

	<item>
	1-1
	Tag
	
	xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans/" xsi:type="ns0:BroadbandCloseTicketRequestMWBean"

	<status>
	1-1
	Boolean
	
	Always set to ‘true’.

	<message>
	1-1
	Text
	
	Always set to blank/nil.

	<errorCode>
	1-1
	Text
	
	Always set to ‘0’.

	<broadbandTicket>
	1-1
	Tag
	
	xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans.types/" xsi:type="ns0:BroadbandTicketType">

	<ticketAttributes>
	1-1
	Tag
	
	xmlns:ns0="http://xml.apache.org/xml-soap" xsi:type="ns0:Map"

	<item>
	1-1
	Tag
	
	

	<key>
	1-1
	Text
	
	xsi:type="xsd:string"
Always set to ‘ticket.id’

	<value>
	1-1
	Text
	Set to ticketId attribute of <ez:CloseTicket>
	xsi:type="xsd:string"

	</item>
	1-1
	Tag
	
	Closing tag

	</ticketAttributes>
	1-1
	Tag
	
	Closing tag

	</broadbandTicket>
	1-1
	Tag
	
	Closing tag

	</item>
	1-1
	Tag
	
	Closing tag

	</Payload>
	1-1
	Tag
	
	Closing tag

	</BroadbandCloseTicketResponse>
	1-1
	Tag
	
	Closing tag

For a failure response the following format is returned to CHD.
	Reply-To System Field Name
	Min - Max Usage
	For-mat
	Mapped From Replying System Field
	Field Transform Rule or Comment

	<?xml?>
	1-1
	Tag
	
	version=’1.0’ encoding=’UTF-8’

	<BroadbandCloseTicketResponse>
	1-1
	Tag
	
	xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'

	<Success>
	1-1
	Boolean
	
	Always set to ‘true’ if processing has been successful.

	<Payload>
	1-1
	Tag
	
	xmlns:ns0="http://www.themindelectric.com/collections/" xsi:type="ns0:vector"

	<item>
	1-1
	Tag
	
	xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans/" xsi:type="ns0:BroadbandCloseTicketRequestMWBean"

	<status>
	1-1
	Boolean
	
	Always set to ‘false’.

	<message>
	1-1
	Text
	<ez:Message>
	

	<errorCode>
	1-1
	Text
	Set to code attribute of <ez:Message>
	

	<broadbandTicket>
	1-1
	Tag
	
	xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans.types/" xsi:type="ns0:BroadbandTicketType">

	<ticketAttributes>
	1-1
	Tag
	
	xmlns:ns0="http://xml.apache.org/xml-soap" xsi:type="ns0:Map"

	<item>
	1-1
	Tag
	
	

	<key>
	1-1
	Text
	
	xsi:type="xsd:string"
Always set to ‘ticket.id’

	<value>
	1-1
	Text
	Set to ticketId attribute of <ez:CloseTicket>
	xsi:type="xsd:string"

	</item>
	1-1
	Tag
	
	Closing tag

	</ticketAttributes>
	1-1
	Tag
	
	Closing tag

	</broadbandTicket>
	1-1
	Tag
	
	Closing tag

	</item>
	1-1
	Tag
	
	Closing tag

	</Payload>
	1-1
	Tag
	
	Closing tag

	</BroadbandCloseTicketResponse>
	1-1
	Tag
	
	Closing tag

2.2.2.1 Generic Formatting Rules

Data will be sent from the system following the generic format below:

	Data
	Comments

	Text
	No padding occurs with XML format

	DateTime
	Yyyy-mm-ddThh:mm:ss e.g. 2004-11-01T14:01:56

	Num
	Passed in character format. This format contains no thousand separators (i.e. 1000 instead of 1,000) and uses a period (.) as a decimal separator. Negative numbers will have a prefixed ‘-‘ sign.

2.2.3 Sending System - Inbound Message Header Structure

The MQMD and MQRFH2 are persisted from the SBB reply message except for the following fields that require extra processing:

	Field Name
	Min - Max Usage
	Format
	Field Transform Rule or Comment

	MQRFH2.mcd
	1-1
	
	The mcd folder contains properties that describe the 'shape' or 'format' of the message. The mcd fields are of variable length XML format. The Format values given here are expected maximums, based upon BskyB build requirements. For details refer to the IBM WebSphere MQ Integrator Programming Guide version 2.1.

	<Fmt>
	1-1
	MQChar
	Completely remove <Fmt> from structure by setting it to NULL.

	MQRFH2.usr
	1-1
	
	The usr folder contains general purpose data. The usr fields are of variable length XML format. The Format values given here are expected maximums, based upon BSkyB build requirements.

	<WMQI_Rpy_ReceivedAt>
	1-1
	MQChar
	Holds the date timestamp when the reply message is received by the WMQI message flow, set in format ‘YYYY-MM-DD HH:MM:SS.mmmmmm’.

	<WMQI_Rpy_CompletedAt>
	1-1
	MQChar
	Holds the date timestamp when the replyt message completed processing by the WMQI message flow, set in format ‘YYYY-MM-DD HH:MM:SS.mmmmmm’.

	
	
	
	

INTEGRATION LAYER TO RECEIVING SYSTEM

This section describes the message received by the receiving system from the integration layer and any reply message that is generated.
2.3 Receiving System Inbound Message

This section describes the message received by the receiving system SBB (Easynet) from the integration layer.
2.3.1 Routing and Filter Rules

All messages of the type ‘MZ_IFC0906_IN_SBB_CloseTicketRqt’ are sent to SBB.
Any errors that occur during the processing of the interface will be handled in the in a standardised way as outlined in section 5 Exception and Error Processing and the Middleware Integration Layer Error Handling Document.

If an error occurs during generating or processing the request message by the receiving system or the connector, the error message structure generated by either SBB or the generic error handling module flow has to be in line with the error message structure expected by sending system, CHD (refer to section 6.3 Example CHD Sending System Inbound Error Reply Message).
2.3.2 Receiving System - Inbound Message Body Structure

Message Name:

MZ_IFC0906_IN_SBB_CloseTicketRqt
Field Delimiters:

XML

Scope of Message:
All Normal Processing.

	Receiving System Field Name
	Min - Max Usage
	For-mat
	Mapped From Sending System Field
	Possible Values or Comment

	<?xml>
	1-1
	Tag
	
	version="1.0" encoding="UTF-8"

	<ez:BusinessTransaction>
	1-1
	Tag
	
	Xmlns:ez="http://www.easynet.net/">

	<ez:BusinessTransactionHeader/>
	1-1
	Tag
	
	Attributes set as follows:

operatorId=”4982532”
operatorTransactionId="SKY0001"

operatorIssuedDate= DateTime from WMQI Broker e.g. "2006-03-01T00:00:01"

	<ez:BusinessTransactionBody>
	1-1
	Tag
	
	

	<ez:CloseTicket/>
	1-1
	Tag
	Attribute ticketId set to <value> of <item> where <key> equals "ticket.id"
	Example of attribute settings:

ticketId="123456"

	<ez:Property>
	1-1
	Tag
	Attribute name always set as "ticket.closeReason", and attribute value set to <value> of <item> where <key> equals "ticket.closeReason"
	Example of attribute settings:

name="ticket.closeReason" value="Resolved by third party"

	</ez:BusinessTransactionBody>
	1-1
	Tag
	
	Closing tag

	</ez:BusinessTransaction>
	1-1
	Tag
	
	Closing tag

2.3.2.1 Generic Transform Rules
Data will be sent to the receiving system following the generic format below:

	Data
	Comments

	Text
	No padding occurs with XML format

	DateTime
	Yyyy-mm-ddThh:mm:ss e.g. 2004-11-01T14:01:56

	Num
	Passed in character format. This format contains no thousand separators (i.e. 1000 instead of 1,000) and uses a period (.) as a decimal separator. Negative numbers will have a prefixed ‘-‘ sign.

2.3.3 Receiving System - Inbound Message Header Structure

The MQMD and MQRFH2 are persisted from the source message except for the following fields that require extra processing:

	Field Name
	Min - Max Usage
	Format
	Field Transform Rule or Comment

	MQRFH2.usr
	1-1
	
	The usr folder contains general purpose data. The usr fields are of variable length XML format. The Format values given here are expected maximums, based upon BSkyB build requirements.

	<RpyType>
	1-1
	MQChar
	Set to “BroadbandCloseTicketResponse”

	<ApplOriginData>
	1-1
	MQChar
	ApplOriginData field holds the Source Application identifier.

Set to ‘CHD’.

	<ApplIdentityData>
	1-1
	MQChar
	ApplIdentityData field holds the Source Application request type.

For Sky possible example values “BroadbandCloseTicketRequest”

	<WMQI_Rqt_ReceivedAt>
	1-1
	MQChar
	Holds the date timestamp when the request message is received by the WMQI message flow, set in format ‘YYYY-MM-DD HH:MM:SS.mmmmmm’.

	<WMQI_Rqt_CompletedAt>
	1-1
	MQChar
	Holds the date timestamp when the request message completed processing by the WMQI message flow, set in format ‘YYYY-MM-DD HH:MM:SS.mmmmmm’.

	
	
	
	

2.3.4 Connector Processing

The SBB/MQ Connector is used to receive the request message from the inbound queue, make an ‘https’ request to the configured Easynet LLUStreamPlus Close Ticket URL, and waits for a response. Upon receiving the ‘https’ response it finally puts the response to the outbound message queue. Before a message is placed onto the outbound queue, the connector attaches an MQMD (Message Descriptor specific to WMQI messages) and a MQRFH2 header.
2.3.5 Control Mechanisms

Any errors that occur during the processing of the interface will be handled in the in a standardised way as outlined in section 5 Exception and Error Processing and the Middleware Integration Layer Error Handling Document.

If an error occurs in the SBB application, the message in error will be handled by Easynet accordingly.

2.3.6 Security and Authorisation

Security information will adhere to the requirements outlined in the Easynet Non-Functional Requirements document. BSkyB’s security responsibility ends at delivery within the Easynet network.

2.3.7 Receiving System Pre-processing

N/A.

2.3.8 Receiving System Events Triggered

Easynet will check the inbound data and retrieve the relevant ticket information from the Easynet LLUStreamPlus (SBB) XML Ticketing system.
2.4 Receiving System Outbound Message

This section describes the two types of messages returned by the receiving system SBB to the integration layer. The first type of message is for a successful response to a Close Ticket request and the second type of message is for an error/failure response to a Close Ticket request.
2.4.1 Receiving System - Outbound Message Body Structure (Reply)
Message Name:

MZ_IFC0906_OT_SBB_CloseTicketRpy
Field Delimiters:

XML
Scope of Message:
All Normal Processing
Close Ticket – Successful Response

	Field Name
	Min - Max Usage
	For-mat
	Possible Values or Comment

	<?xml>
	1-1
	Tag
	version="1.0" encoding="UTF-8"

	<ez:BusinessTransaction>
	1-1
	Tag
	xmlns:ez="http://www.easynet.net/">

	<ez:BusinessTransactionHeader/>
	1-1
	Tag
	Attributes operatorId, operatorTransactionId and operatorIssuedDate are set as per request.

Additional attributes are set as follows:

transactionId= Easynet transaction Id e.g."1125"
transactionReceivedDate= DateTime Easynet received transaction e.g. "2006-03-01T00:00:02"
transactionCompletedDate= DateTime Easynet completed transaction e.g. "2006-03-01T00:00:02"

	<ez:BusinessTransactionBody>
	1-1
	Tag
	

	<ez:CloseTicket/>
	1-1
	Tag
	Attribute ticketId is set as per request.

	</ez:BusinessTransactionBody>
	1-1
	Tag
	Closing tag

	</ez:BusinessTransaction>
	1-1
	Tag
	Closing tag

Close Ticket – Error/Failure Response
	Field Name
	Min - Max Usage
	For-mat
	Possible Values or Comment

	<?xml>
	1-1
	Tag
	version="1.0" encoding="UTF-8"

	<ez:BusinessTransaction>
	1-1
	Tag
	xmlns:ez="http://www.easynet.net/">

	<ez:BusinessTransactionHeader/>
	1-1
	Tag
	Attributes operatorId, operatorTransactionId and operatorIssuedDate are set as per request.

Additional attributes are set as follows:

transactionId= Easynet transaction Id e.g."1125"
transactionReceivedDate= DateTime Easynet received transaction e.g. "2006-03-01T00:00:02"
transactionCompletedDate= DateTime Easynet completed transaction e.g. "2006-03-01T00:00:02"

	<ez:BusinessTransactionBody>
	1-1
	Tag
	

	<ez:CloseTicket/>
	1-1
	Tag
	Attribute ticketId is set as per request.

	<ez:Messages>
	1-1
	Tag
	

	<ez:Message>
	1-1
	Text
	Description of order rejection together with attribute code that described rejection category e.g. code="ticket.notFound"

	</ez:Messages>
	1-1
	Tag
	Closing tag

	</ez:BusinessTransactionBody>
	1-1
	Tag
	Closing tag

	</ez:BusinessTransaction>
	1-1
	Tag
	Closing tag

2.4.1.1 Generic Formatting Rules

Data will be sent from the system following the generic format below:

	Data
	Comments

	Text
	No padding occurs with XML format

	DateTime
	Yyyy-mm-ddThh:mm:ss e.g. 2004-11-01T14:01:56

	Num
	Passed in character format. This format contains no thousand separators (i.e. 1000 instead of 1,000) and uses a period (.) as a decimal separator. Negative numbers will have a prefixed ‘-‘ sign.

2.4.2 Receiving System - Outbound Message Header Structure

The MQMD and MQRFH2 are persisted from the request message except for the following fields that require extra processing:

	Field Name
	Min - Max Usage
	Format
	Field Transform Rule or Comment

	MQMD
	1-1
	
	Message descriptor contains message control information.

	CorrelId
	1-1
	MQByte 24
	CorrelId field holds the Message Correlation Type identifier.

Set to be the MsgId of the Request message

	MsgType
	1-1
	MQLong
	Default to ‘MQMT_REPLY’

	MQRFH2.mcd
	1-1
	
	The mcd folder contains properties that describe the 'shape' or 'format' of the message. The mcd fields are of variable length XML format. The Format values given here are expected maximums, based upon BSkyB build requirements.

	MQRFH2.mcd
	1-1
	
	The mcd folder contains properties that describe the 'shape' or 'format' of the message. The mcd fields are of variable length XML format. The Format values given here are expected maximums, based upon BSkyB build requirements.

	Type
	1-1
	A50
	The ‘Type’ field holds the Message Type identifier.

Set to MQRFH2.mcd.RpyType of the request message which in this case is “BroadbandCloseTicketResponse”

3 EXCEPTION AND ERROR PROCESSING
The following table describes the main types of failures that can be expected in the life of a messages and the action the error handling logic in WMQI will take in response.

	Type of Failure
	Generate a Return Message
	Log Message in ESM
	Discard Message

	Content
	Yes
	Yes
	No

	Poison Message
	No
	Yes
	Yes

	Badly Formed message
	Yes
	Yes
	No

	WMQI or MQ Failure
	Yes
	Yes
	No

	Stub failure at Source
	N/a
	N/a
	N/a

	Stub failure at Destination
	Yes
	Yes
	No

	Orphaned replies
	No
	No
	Yes

	Destination Application failure
	Yes
	Yes
	No

The existing ESM functionality and tools can be used without change to log, record and examine the exceptions and failures.
Exception and error reply messages should contain some indication of where the error occurred, the severity of the exception or error, an error code and textual description.

4 Appendix

4.1 Example CHD Sending System Outbound Request Message

<BroadbandCloseTicketRequest xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

 <UserId xsi:type='xsd:string'>amc90</UserId>

 <SourceSystem xsi:type='xsd:string'>00001</SourceSystem>

 <Version xsi:type='xsd:string'>1.0</Version>

 <Payload xmlns:ns0='http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans/' xsi:type='ns0:BroadbandCloseTicketRequestMWBean'>

 <status>false</status>

 <message></message>

 <errorCode>0</errorCode>

 <broadbandTicket xmlns:ns0='http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans.types/' xsi:type='ns0:BroadbandTicketType'>

 <ticketAttributes xmlns:ns0='http://xml.apache.org/xml-soap' xsi:type='ns0:Map'>

 <item>

 <key xsi:type='xsd:string'>ticket.id</key>

 <value xsi:type='xsd:string'>123456</value>

 </item>

<item>

 <key xsi:type='xsd:string'>ticket.closeReason</key>

 <value xsi:type='xsd:string'>Resolved by third party</value>

 </item>

 </ticketAttributes>

 </broadbandTicket>

 </Payload>

</BroadbandCloseTicketRequest>
4.2 Example CHD Sending System Inbound Successful Reply Message

<BroadbandCloseTicketResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Success>true</Success>

 <Payload xmlns:ns0="http://www.themindelectric.com/collections/" xsi:type="ns0:vector">

 <item xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans/" xsi:type="ns0:BroadbandCloseTicketRequestMWBean">

 <status>true</status>

 <message/>

 <errorCode>0</errorCode>

 <broadbandTicket xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans.types/" xsi:type="ns0:BroadbandTicketType">

 <ticketAttributes xmlns:ns0="http://xml.apache.org/xml-soap" xsi:type="ns0:Map">

 <item>

 <key xsi:type="xsd:string">ticket.id</key>

 <value xsi:type="xsd:string">123456</value>

 </item>

 </ticketAttributes>

 </broadbandTicket>

 </item>

 </Payload>

</BroadbandCloseTicketResponse>
4.3 Example CHD Sending System Inbound Failure Reply Message

<BroadbandCloseTicketResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Success>true</Success>

 <Payload xmlns:ns0="http://www.themindelectric.com/collections/" xsi:type="ns0:vector">

 <item xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans/" xsi:type="ns0:BroadbandCloseTicketRequestMWBean">

 <status>false</status>

 <message>The ticket number 123456 is not found</message>

 <errorCode>ticket.notfound</errorCode>

 <broadbandTicket xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.bd.mwinteraction.beans.types/" xsi:type="ns0:BroadbandTicketType">

 <ticketAttributes xmlns:ns0="http://xml.apache.org/xml-soap" xsi:type="ns0:Map">

 <item>

 <key xsi:type="xsd:string">ticket.id</key>

 <value xsi:type="xsd:string">123456</value>

 </item>

 </ticketAttributes>

 </broadbandTicket>

 </item>

 </Payload>

</BroadbandCloseTicketResponse>
4.4 Example SBB Receiving System Inbound Request Message

<ez:BusinessTransaction xmlns:ez="http://www.easynet.net">

 <ez:BusinessTransactionHeader operatorId="4982532" operatorTransactionId="SKY0001" operatorIssuedDate="2006-05-30T14:01:38"/>

 <ez:BusinessTransactionBody>

 <ez:CloseTicket ticketId="123456">

 <ez:Property name="ticket.closeReason" value="Resolved by third party"/>

 </ez:CloseTicket>

 </ez:BusinessTransactionBody>

</ez:BusinessTransaction>
4.5 Example SBB Receiving System Outbound Successful Reply Message

<ez:BusinessTransaction xmlns:ez="http://www.easynet.net">

 <ez:BusinessTransactionHeader operatorId="4982532" operatorTransactionId="SKY0001" operatorIssuedDate="2006-05-03T15:43:42" transactionId="48484" transactionReceivedDate="2006-05-03T15:42:51" transactionCompletedDate="2006-05-03T15:42:52" />

 <ez:BusinessTransactionBody>

 <ez:CloseTicket ticketId="123456"/>

 </ez:BusinessTransactionBody>

</ez:BusinessTransaction>
4.6 Example SBB Receiving System Outbound Failure Reply Message

<ez:BusinessTransaction xmlns:ez="http://www.easynet.net">

 <ez:BusinessTransactionHeader operatorId="4982532" operatorTransactionId="SKY0001" operatorIssuedDate="2006-05-03T15:43:42" transactionId="48484" transactionReceivedDate="2006-05-03T15:42:51" transactionCompletedDate="2006-05-03T15:42:52" />

 <ez:BusinessTransactionBody>

 <ez:CloseTicket ticketId="123456"/>

 <ez:Messages>

 <ez:Message code="ticket.notfound">The ticket number 123456 is not found</ez:Message>

 </ez:Messages>

 </ez:BusinessTransactionBody>

</ez:BusinessTransaction>>

8

7

6

5

4

3

2

1

Queue

Queue

LLUStream

(SBB)

SBB/MQ Connector

WebSphere MQ Integrator

WebSphere MQ

Queue			Queue

CHD/MQ

Connector

Chordiant (CHD)

IFC0906_CHD_SBB_CloseTicket

	Version:
	0.1
	Page 1 of 28

	Date:
	19/06/2006 3:21 PM

	Ref
	DV_FD_IFC0900_CHD_BB_AvailabilityCheck.doc

PAGE
	Version:
	0.1
	Page 13 of 21

	Date:
	19/06/2006 3:21 PM

	Ref
	DV_FD_IFC0906_CHD_SBB_CloseTicket v0.2.doc

[image: image3.emf][image: image4.bmp][image: image5.wmf]