	Sky CRM Programme

CRM Integration Strategy
	[image: image5.emf]

Sky CRM Programme

CRM Integration Strategy
Version <2.0>
AMENDMENT HISTORY

	Version
	Date
	Remarks

	0.7
	21/05/2002
	Initial draft version

	1.0
	27/05/2002
	Draft for review

	2.0
	12/06/2002
	First Release

	
	
	

	
	
	

DOCUMENT IDENTIFICATION

AUTHORS
	Name
	Position

	Justin Rogers
	Lead Designer, Sky CRM Middleware Team

DISTRIBUTION AND SIGN-OFF
	Name
	Position
	Signature and Date

	Norman MacLeod
	Development Manager
	

	James Loader
	Development Manager
	

	Robert Craig
	Enterprise Architecture Lead
	

	Jason Campbell
	Development-Chordiant Lead
	

	Gardner Little
	Development-Billing Lead
	

	Andy Thorn
	Development-Legacy Lead
	

	David Grant
	Development-Warehousing Lead
	

	Nicola Ingram
	Development-Channels Lead
	

	Sean Strain
	Development-Integration Lead
	

	Nicola Kilpatrick
	Application Architecture. Lead
	

	Andy Waddell
	Technical Architecture Lead
	

	David Page
	Data Architecture Lead
	

	
	
	

REFERENCED DOCUMENTS
	Name
	Owner

	CRM Programme Application Architecture
	Nicola Kilpatrick, CRM Programme Application Architecture Lead

FORECAST LIFECYCLE:
	Version
	Owner
	Anticipated movement

	2+
	Integration Architect
	Periodic updates

 CONTENTS

41
Introduction

1.1
Management Overview
4
1.2
Purpose
4
1.3
Glossary
5
1.4
Scope
5
1.5
Integration Challenges
6
2
Decision Approach and Framework
7
2.1
Applicability to the BSkyB CRM Programme
7
2.2
Decision Tree
9
2.3
Considerations
11
2.3.1
Existence of current interface solutions
11
2.3.2
Data volumes
11
2.3.3
Speed of data transfer
11
2.3.4
Data transfer frequency
12
2.3.5
Complexity of data transformation
12
2.3.6
Criticality of Data
13
2.3.7
Application standard programs
13
2.3.8
Commonality of data transfer (Number of receiving applications)
13
2.3.9
Overall cost of integration
13
2.3.10
Susceptibility to change
13
2.3.11
Inter-Enterprise communications
14
3
Integration Solution Alternatives
15
3.1
Direct Point-to-Point Integration
15
3.2
ETL (Extract, Transformation, Load)
15
3.3
Manual Solutions
16
3.4
Message Orientated Middleware and Message Brokers
17
3.5
Directory Services
18
3.6
Web Services
18
4
Appendices
21
4.1
Appendix A: Integration Challenges
21
4.1.1
Scope and Complexity
21
4.1.2
Requirements for speed
22
4.1.3
Use of Message Orientated Middleware and Message Brokers
22
4.1.4
Key Message Orientated Middleware Implementation Principles
24
4.2
Appendix B: Interface Communication styles
26
4.3
Appendix C: IBM WebSphere MQ Functionality
28
4.4
Appendix D: IBM WebSphere MQ Integrator v2.1
29
4.5
Appendix E: Informatica PowerCenter v5
30

1 Introduction

1.1 Management Overview

There are many complex and varied business requirements in today’s larger companies and in order to meet them a wide variety of software applications are needed. This variety also comes from a desire to select applications solutions on a best of breed approach to gain competitive advantages and to reduce costs by selectively improving or preserving separate applications. This has led to large companies implementing many separate and diverse applications across many different platforms and in many various locations. Application integration therefore is an absolutely essential aspect of the application systems topology. It is the method through which businesses, through applications, will share and use business critical data and co-ordinate their actions with each other. As such it needs to be considered as an integral part of the business and technology solution, being essential to the business and in constant use.

To effectively implement an integrated applications architecture that meets the above requirements, a comprehensive understanding of the integration requirements and a sound decision framework is needed with regard to the methods of integration available to the programme and how to choose an integration method which will best suit each integration situation.

1.2 Purpose

This document is intended for, amongst others, Project Management, architects and Development teams on the BSkyB CRM Programme. In the absence of such a document in BSkyB, it may be considered for use beyond the scope of the Programme.

The document is structured into 3 sections that will:

· Provide a decision framework for how to compile an end-to-end integration solution from those alterative solutions for each interface that is required.

· Outline the alternative methods of integration that the CRM Programme has available to design each integration solution.

· Supply some background information on some of the concepts and technologies involved.

There is a particular focus on explaining the role, advantages and some of the design decisions surrounding Message Orientated Middleware and Message Brokering. This is partly due to the fact that this area is new to the CRM Programme and as such least understood, but also follows from the main integration design decisions on the CRM Programme, which are:

· Integration Logic should be centralised in an Integration Layer between applications.

· Connectors connecting applications to the Integration Layer should not contain business or data transformation logic unless absolutely necessary.

· Business Logic should reside in the business applications rather than the Integration Layer.

· Message Orientated Middleware is the preferred method of integration for near real time integration.

· Extract/Transformation/Load tools are the preferred method for bulk, periodic data integration.

· The best solution for the integration architecture will use an optimised mixture of the integration methods available.

Defining a commonly followed integration strategy is intended to improve common understanding and goals that will enhance the collaboration of the various disparate systems in BSkyB. Similarly, this document and the strategy it represents will need to be developed as the CRM Programme progresses, circumstances change and comments and feedback are received from stakeholder parties.

The Integration Strategy is expected to have significant input into technical Integration Standards between applications on the CRM programme, the SI process, Integration Architecture (i.e. Interface Catalogue), the Functional Definitions of interfaces and the related documents that are developed from those definitions. In particular it is intended to help architects explain their decision making process when defining how the required information flows prescribed in the outline solution will be achieved using the integration methods available, justifying each integration solution on the basis of criteria such as performance, availability, security, resilience, cost and supportability.

1.3 Glossary

A brief glossary follows to ensure common understanding upon reading this document.

· API – An Application Programming Interface is a component of an application, included as standard or as an add-on, which provides a programmable tool for passing data into and out of that application.

· BPA – Business Process Automation describes the management of the flow of a business process, performed by using various applications to work together to perform a particular business process. An example of a BPA tool is IBM’s WebSphere Workflow.

· ETL – Extract Transformation Load. Tool or group of tools used to exchange bulk data between applications. The tool provides for speed in processing complex transformations of large volumes of data. An example of an ETL tool/suite is Informatica’s flagship product suite, PowerCenter® and PowerMart®.

· Interface – The complete end-to-end communication structure set up between two applications to enable them to exchange data to perform a single specified business process. This will also include any functionality within the applications that is used to communicate outside of the application programs sitting between the applications.

· Message Broker – A data transformation and message routing tool that sits on a message transport system. An example of a Message Broker is IBM’s WebSphere MQ Integrator.

· Message Transport System – An architecture for moving data between applications in messages in a secure and reliable way. An example of a Message Transport System is IBM’s WebSphere MQ.

· Queue - Queues are named objects in a Message Transport System on which applications can place messages and from which applications can retrieve messages.

1.4 Scope

The many software applications involved in the BSkyB CRM Programme are very varied in architecture and large in number, however the integration solution undertaken will need to define how each of these applications will interface with one another in a reliable way and satisfy the data transfer speed and other emergent Technical Architecture requirements driven by the Non-Functional Requirements (NFRs). The applications most involved in interface requirements will include, but not be limited to, the following:

Chordiant

MIDAS

Arbor

Callidus (Commission Component)

Peoplesoft

EntireX Middleware (To SCMS)

ARM

FMS

Reference Data Manager

DIM

Macro4

JDEdwards

Retail Logic

Document Imaging

Marketing Director

Davox/Lyrical

Communication Channels (Email, Telephone, Fax, Web, WAP, Handheld, Traditional)

The actual applications used in BSkyB and their interaction within the CRM Programme are described in detail in the CRM Programme Application Architecture document.

Whilst a selection of solutions may be needed to integrate various applications, the overall number of different integration solutions should be reduced to help provide a comprehensive and consistent interface strategy, leading to a maintainable and operable solution, prescribing one particular solution for similar situations.

1.5 Integration Challenges

The above breadth of scope provides one of the many difficult integration challenges facing the BSkyB CRM Programme. Others include the complexity involved in co-ordinating those interfaces and the issue about integrating the various systems at appropriate speeds for today’s business. These integration challenges and some background to the Message Oriented Middleware concept and approach are outlined in more detail in Appendix A. In order to meet these challenges a structured approach to the appropriate solutions available is required and the remainder of this document is intended to provide the guidelines for such an approach.

The technological solutions that are practically available for these integration challenges are:

· Direct Point-To-Point Integration – joining two applications directly and closely

· Extract/Transformation/Load Integration – using batch tools to move large quantities of data

· Manual Solutions – using human resource to perform small quantities of data transfer

· Message Orientated Middleware and Message Brokering – passing data out of the application in messages and using intelligent hub-based routing and data transformation

· Directory Services – providing structural hierarchies for data access over TCP/IP

· Web Services – integrating web-based applications using open standards (such as XML) over an internet protocol

2 Decision Approach and Framework

2.1 Applicability to the BSkyB CRM Programme

This section poses the questions that need to be answered when deciding on what approach to take for any one interface, although it is important to realise that there is no single method that will fit all of the interfaces that need to be employed. The final decision on the overall integration architecture will specify a combination of point-to-point and layered approaches for different situations. When deciding on an interface approach for each situation there is no exact linear decision process to follow, as different criteria will have different weighting in different situations. Furthermore it may be that two solutions work equally well in one particular situation, at which point how the solution fits into the overall architecture standards should be considered.

Solutions should be designed with flexibility and manageability in mind and this is where Message Orientated Middleware and Message Brokering and ETL can give a real advantage. However, it is also very important to realise that these concepts and tools will also need to be very carefully designed if they are to provide as much flexibility and manageability as possible and they will not necessarily provide all the advantages proposed if they are not implemented correctly. This underlines the importance of the fact that the overall management of interface design will need to run across and between architects, application teams and the business to achieve an efficient, manageable and understandable solution. This makes the choice of interface design for any one particular interface very complex and difficult, as the implications of the choice on other interfaces will also need to be considered.

As such some general design principles around the approach to integration on the CRM Programme should run across all interfaces, regardless of interface method used. The general principles are:

· Routing rules and data transformation should be centralised in the integration layer.

· Connectors should be as functionally thin as possible, again encouraging central translation and transformation within the integration layer. This may require additional levels of abstraction / APIs to be written for some applications.

· Dependency and coupling should be reduced which also implies that alternatives to the request/reply style interface should be used where possible. See Note 1, below.

· The role of the integration layer at BSkyB is one purely of data-level integration. The business process functionality held within this layer should be kept to a minimum and managed within the applications themselves. See Note 2, below.

· Commercial integration tools should be used where sufficient and available rather than custom developments.

· Where benefits of different integration solutions are equal, Message Orientated Middleware and Brokers are the preferred technology used to implement near-real time interfaces.
· The Near-Real-Time environment supported by Message Orientated Middleware and various other products should be extended as far into the integration as possible and practical for each interface. This will improve data speed and enable changes to be made to the system architecture more readily in the future.
· Master data for any one business object should only be held in one application which either provides a point of reference for that data or feeds that data into other applications when it is changed. This could include feeding the data into a central data store for the purposes of logging changes and providing easier access to the data in an online environment, if the requirements are not sufficiently supported within the application.

· Whenever application data is accessed a level of abstraction should be provided from the underlying data and its structure. This should be achieved using APIs where possible.

· Coded data should have common values across different applications. Where common coding of data values is not possible, cross-referencing between data values should be performed in the Integration Layer and should use distinctive logic for data translation in each direction that is used.

· The data that is transferred between applications should be formatted using agreed standards. A standardised approach will enhance the understanding and quality of design as well as ease of future development. These can equally be in a proprietary format or an Industry Standard (e.g. XML – see Note 3, below) so long as they are recognised and understood by the programme.

· Error Handling and System Management should be approached in a standardized, high-level way. A comprehensive strategy is required in order to ensure that all errors are captured and can be dealt with. See Note 4, below.
· A standardized approach to Backup and Recovery should be defined
· The Future Phase Rollout Strategy should be in place, as this will also affect the integration architecture chosen. For example, it will be important to know if a particular application will be replaced in the future or if there are plans to implement additional applications of a similar kind to some of those in current use.
· Security issues should be addressed across the whole integration layer. This may involve restricting access to data to only certain users or using encryption where data is passed to external parties.
Note 1:

There are a number of choices of interface communication style that can be used when integrating applications (for example the “request/reply type” as mentioned in one of the above principles) and these are described in Appendix B. It is generally desirable to reduce the number of request/reply style communications used since the implications of the replying system being down or busy have an impact on the requesting system’s actions, as will other network delays on the route. Furthermore such coupling between applications means that if one of them is replaced or their processing altered in a relevant area then this whole interface will need to be changed to work in the new environment. However, if the orientation of the interface can be changed so that the communication style used is “fire and forget” or “publish/subscribe” then a change in one of the applications will only require redevelopment on the part of the interface relating to that interface - the other applications using the interface need not necessarily be involved. This can be further enhanced by the use of a Message Brokering hub to mean that in the case of many applications interfacing to the changed application the number of alterations required are significantly reduced compare with point-to-point interfaces.

Note 2:

As already mentioned, the best solution for the integration architecture will use an optimised mixture of alternatives. However it is also important to realise that whilst some Middleware tools do indeed incorporate some Business Process Automation, their use at BSkyB is not intended to be as a process automation tool. Message Brokers should be used first and foremost as a data integration tool, keeping any business process automation in the integrating applications as much as possible.

Note 3:

The best-supported technology for providing a language for describing data is the Extensible Markup Language (XML). XML is a human-readable, machine-understandable, general syntax for describing hierarchical data, applicable to a wide range of applications (databases, e-commerce, Java, web development, searching, etc.) in today’s environment and can be used to interface more effectively, cheaply, and quickly from internal systems to suppliers and trading partners. Although it is acknowledged that XML DTD and Schema standards are still in the process of maturing, if XML is used to transport then wherever possible, existing published XML DTD’s and Schemas (such as ebXML, Biztalk or OAG XML) should be adopted (and adapted where necessary) rather than developing internal proprietary schemas. As the standards coalesce and mature this will make the task of moving to an industry standard schema somewhat easier. In any case DTDs or XML schemas should always be used to describe an XML message where used.

Note 4:

It is very important to view the overall picture of System Management to ensure that the complete integration solution is secure, resilient, available, high performing, cost effective and supportable. This will involve collaboration through all stages of development and also in production with a shared understanding of responsibility. One example of this will be that when a message fails to be delivered through the integration solution due to data problems then the source system will need to be responsible for correcting and resending the data. The type of error may not be identifiable without investigation meaning that a simple, automatic notification back to the sender may not be possible or appropriate and so close communication will be needed to notify the application team of an issue and to discuss a solution.

2.2 Decision Tree

The diagram on the following page is a guide to how decisions about interface method should be approached. However, this is not intended to be a strict policy system as there may often be other unmentioned factors that will affect the final decision made. In the cases of ETL, Message Orientated Middleware and Direct Integration - if an interface does not meet the criteria laid out, consideration of the criteria for each discrete part of the integration should be made, as an interface solution using a mixture of more than one method may be appropriate. One example might be the use of a current interface to send messages out to a Message Orientated Middleware and Message Broker system which could then be developed to forward that message on to other applications.

It is intended that one of the most important uses of the decision tree will be as a tool for helping designers explain in functional designs why a particular architecture was chosen as explanations can describe which guidelines were followed and reasons for any deviations.

The decision tree criteria are described and quantified in the section following it.

Decision Tree for each Interface

[image: image1.wmf]

·

Does an interface already exist?

·

Does the interface fulfil future requirements?

·

Are the data volumes low?

·

Is it acceptable for the speed of the inter

face to be relatively slow?

·

Are there just one or two receiving applications?

·

Are there at most only very simple routing, filtering and transformation

rules?

·

Are data transfers infrequent?

·

If it is very critical for the data to contain no errors, is the us

e of the extra

resources required for Q&A still economical?

·

Is it acceptable for the interface speed to not be instantaneous

–

 is near

real time good enough?

·

It is more appropriate for the interface dat

a not to be passed infrequently

and in large batches? (Note: this can also be accommodated well up to a

certain level by using lower priority messages in Message Orientated

Middleware).

The use of

Message Orientated Middleware and Brokers

 may be

appropriate. Also consider:

·

Interfaces that will make fuller use of Messaging and Broking

techn

ology will use fire and forget message types, have many

receiving systems and require complex routing and transformation.

The use of

Manual Processes

 may be appropriate

Start

NO (also consider criteria for each section)

The use of

Current Interface Solutions

 may be appropriate. Also consider:

·

If data passed is required by other systems in the future and new

Message Orientated Middleware development is required there, then it

may be appropriate here too.

·

Use of current interfaces may help spread the development load, but in

the long run the increased capabilities and reduced cost of maintaining

a hub

-

based system may make the replacement cost effective and lead

to a more homoge

neous solution.

YES

YES

YES

·

Is there a requirement for sharing of a hierarchy of independent data

elements?

·

Will access be 99% read only?

·

Are ACID properties NOT r

equired?

·

Do applications that need to share data (e.g. user ids and passwords) have

LDAP support?

·

Is highly distributed data storage required?

The use of a

Directory Service (LDAP)

 may be appropriate

YES

·

Are reliable messaging, transactions and security NOT required?

·

Is this a service that is also going to be available to external users via the

web?

·

Is H

TTP acceptable as a transport protocol?

The use of a

Web Service

 may be appropriate

YES

NO

NO

NO

·

Will the application always be online whilst the interface is in use?

·

Is a fast speed

 interface absolutely critical?

·

Are the required standard extract, loading or interfacing programming or

APIs easily available? If not can they be easily built?

·

Is there only one receiving application? (Two receiving applications

would mean 2 separate proc

esses but may still be viable)

·

Are complex transformations required? If so can the APIs handle the

requirements?

·

Is the data transfer speed required relatively slow and transfers relatively

infrequent (preferably should also be schedule based)

·

I

s there only one receiving application? (Two receiving applications

would mean 2 separate processes but may still be viable)

·

Is the receiving application schedule based?

The use of

End

-

to

-

End Batch Interfaces

 may be appropriate (preferably an

ETL tool, but may be custom batch programs and ftp scripts). Also consider:

·

Batch processing will be more appropriate if the sending ap

plication

has just completed a batch process and the receiving application is also

batch

-

orientated

The use of Custom

-

built,

direct inter

faces

, possibly using APIs, may be

appropriate

YES

YES

NO (also consider criteria for each section)

NO (also consider criteria for each section)

NO (also consider criteria for each section)

A hybrid solution with some concessions is required.

2.3 Considerations

When assessing the alternative methods to address the requirement for a future interface, there are a number of different factors that must be considered, the more significant of which are included below.

2.3.1 Existence of current interface solutions

Where an existing interface exists a decision will need to be made whether to continue to use that interface or whether to replace it with an alternative solution. Obviously using the current interface will save on development costs, but any changes in requirements and an assessment of whether the current interface will fulfil future requirements needs to be considered. Furthermore it may be worth considering whether replacing the interface with a better solution may actually save money in the long term.

If the whole interface is not appropriate for the future solution, it must also be considered whether it would be appropriate and economical to re-use just part of the current interface. This is often a very viable possibility since there are often several distinct parts to an interface that can be re-used without change.

If the interface is to be replaced (either partly or completely), it will however have an established design, which can be used to help minimise development activities and will help point towards the likely interface process – batch or messaging.

2.3.2 Data volumes

The volume of data passed between the relevant applications will affect the choice of integration approach. A very low volume of data (for example a hundred or so records per year) might point towards a manual solution whilst a very high volume (hundreds per second) might point towards an ETL(especially where data transfer frequency is relatively low) or direct integration solution and data volumes in-between this might suit a Message Orientated Middleware solution. Of course, the choice will also very much depend on other requirements such as the requisite speed, complexity of data transformation and transfer frequency.

2.3.3 Speed of data transfer

The greater the need for fast or immediate transfer of data then the more the design will be heavily influenced by which technique can best support the fastest transfer method in most stable/reliable way.

· Near-Immediate transfer would suggest a tightly coupled, highly integrated solution. This could be achieved through the use of APIs where available or through the development of a real-time custom development. This would typically require a data transfer time of only a fraction of a second.

· Fast but not Near-Immediate transfer would require a complete transaction time of up to 1 or 2 seconds and suggest a near real-time Message Orientated Middleware approach.

· Medium time-critical transfer: Periodic processing, occurring once or more per day and with less of a restriction on data speed than Fast transfer would suggest a Message Orientated Middleware batch processing option in order to smooth out peaked processing collectives or an ETL solution.

· Low time-critical transfer: Infrequent processing (e.g. weekly or monthly) would suggest an ETL option where data transfer volumes are high (see 2.3.2), however a Message Orientated Middleware batch processing method may still be appropriate. Consider the number of senders and receivers of the common set of data as well as data transformation complexity and frequency.

Where a messaging integration solution is used, there are two styles that can be employed. Synchronous messaging requires an online communication between applications and so can only operate at near-immediate and fast data transfer speeds whereas asynchronous messaging decouples the communicating systems and will occur at fast, periodic or infrequent speeds. These Styles are described in Appendix B.

If data is required in either near-immediate or fast speeds then there are other requirements on the applications involved and their integration architecture. These might include maintaining system (and therefore data) availability, high system performance and data scalability. Concerns about these requirements, for example if data is required in near real time from a batch application, might mean that an Online Data Store solution would be beneficial. Using a mixture of Message Orientated Middleware and ETL Tools to collect and provide data to other applications via an Online Data Store will also have reflected benefits on the applications that hold the master data required including a reduced requirement in terms of availability, speed, throughput and licensing.

2.3.4 Data transfer frequency

The data transfer frequency required will be dependent on the nature of the sending and receiving systems and the data volumes. If the sending and receiving systems are batch-orientated and the transfer frequency is low (for example once per day) then an ETL method might be more appropriate, whereas if the sending system and receiving systems are both event based and the data transfer frequency required will be high (for example at least several times per hour) then a Message Orientated Middleware or Direct Integration solution might be more appropriate. If the sending and receiving systems are of contrasting styles (event vs. batch orientated), then careful consideration will be required to investigate which solution will offer the speediest data transfer without inappropriate use of resources. Furthermore, if data transfer frequency is very high despite the communicating applications both being batch-orientated then it may be appropriate to use a Message Orientated Middleware solution here as well, so long as both applications run their batch processes frequently or in a co-ordinated way.

Another possibility to consider when data volumes are high and data transfer frequency is low, is that by increasing the frequency of the data transfer then the load on the system can be smoothed out over time. Message Orientated Middleware might be particularly useful for this as messages distribute the load even further and can be used with low priority to prevent delay of more time-critical data.

2.3.5 Complexity of data transformation

If complex data transformation is required in an interface, then clearly certain functionality is required in the tools used in the interface to perform that transformation. Clearly a manual solution would not be very appropriate since the transformations would take time and the probability of the introduction of errors would be greatly increased. Direct integration tools often do not contain the required functionality to perform complex transformations. Even where they do, there is great advantage to be gained by performing any such transformations in an independent integration layer to reduce the coupling of applications and re-use components between transformations. Therefore Message Orientated Middleware and ETL methods offer the best solutions for complex data transformations.

2.3.6 Criticality of Data

If the data is particularly critical to the business, it may affect the choice of integration solution as the data will need to be resilient and accurate. For example, in this case a manual solution may not be appropriate as this introduces the possibility of accidental data entry errors unless verification methods are used, which may increase the cost of the solution. Furthermore, the error management around some other alternatives may not be sufficient to deal with errors encountered robustly enough or raise attention to them quickly enough. A Message Orientated Middleware solution can deal with these concerns when correctly designed.

2.3.7 Application standard programs

As a general rule, if an application has a standard commercially available integration tool that can be appropriately used as part of the integration solution for that application then it should be seriously considered as an option. Such tools might include APIs, connectors, upload or extract programs or other support software. The use of such tools will provide a tested and supported product that will provide a standardised way of accessing data and should result in a reduced development effort.

2.3.8 Commonality of data transfer (Number of receiving applications)

Where many receiving applications require similar data then the use of Message Orientated Middleware and Message Brokers for mapping and routing has a greater benefit for the organisation. This is especially the case as the routing rules required become more complex. Use of point-to-point interfaces such as Direct Integration and ETL would be less appropriate here and the preferred approach would indicate a Message Orientated Middleware interface solution. Timing of the transfer will determine whether this is a Middleware Near-Real time or Middleware-Batch process.

2.3.9 Overall cost of integration

As with any commercial business there is a requirement for cost to be minimised without a reduction in quality. Cost may therefore play an important role in deciding upon an integration solution between two applications. For example, an API or similar tool may be available for an application but the cost will outweigh the advantages it provides. Similarly, if related parts of an interface are being amended to a Message Orientated Middleware Solution then it may be more economical to use this solution for the remaining related parts. A Message Orientated Middleware solution may also introduce cost savings through decreased effort involved with development, maintenance, future expansion or change (See Appendix A for more details).

2.3.10 Susceptibility to change

The more likely an application is to be periodically changed or continuously replaced, the more benefit in terms of flexibility and reduced future maintenance and development will be gained from using Message Orientated Middleware and Brokers to integrate it with other applications compared with other methods which would require increased new development.

Another scenario would exist if it were known that a new, long-term application covering the area in question is to move into production in the very near future. In such a case an interim solution involving an enhancement of the current solution or a manual process may be suitable. The complexity of the integration and the criticality of the data involved will affect how long this interim period can be for such and interim solution to still be appropriate, but in any case it should not be more than a few months.

2.3.11 Inter-Enterprise communications

If an internal BSkyB application needs to communicate with an application in a body outside of the company (for example financial systems in a bank), then this will have an impact on the architecture of the integration solution. In this case security of both data and control of internal applications will be of high importance. Further mediating tools may be required in the integration layer, but Message Orientated Middleware can provide some of the decoupling of integrations and security of data that may be needed.

3 Integration Solution Alternatives

3.1 Direct Point-to-Point Integration

[image: image5.emf]

Some Commercial software applications include, or have separately available for them, a programming tool which can be used to integrate the application directly to other applications or systems. The use of these APIs (Application Programming Interfaces) to connect to applications can lead to a solution with very fast transfer rates. However, this is not always the best solution as the applications are linked with a point-to-point interface that does not allow other applications to view the data passed, implies tight coupling of applications leading to lower flexibility and lower expandability, requires more specialised knowledge to maintain and might not provide the required functionality such as complex data transformations or certain audit trails. Interfaces implemented by direct integration through APIs are typically event-driven, which makes use of the close integration. Although the interface may be schedule driven, it would not be making best use of the environment.

3.2 ETL (Extract, Transformation, Load)

The concept of an ETL interface is to use a connector to extract data from an application, use another process to perform transformation and then a further connector to load the data into a separate application. Today’s ETL technologies offer a broad complement of connectors and incorporate the extract via the connector, transport and transform, and load via a connector.

ETL interfaces are usually characterized by grouping sets of data from a source into batches, and then passing those batches to a job stream that effects their posting in the target system. By their nature, ETL interfaces are generally schedule-driven rather than event-driven.

Therefore the advantages of using an ETL solution include fast processing of large, “infrequent” collections of data between applications. They are less appropriate where the frequency rate of transfer is increased or the receiving system requires the information in real- or near-real-time.

The current industry standard, and CRM Programme tool, for ETL is Informatica. It can connect to the source, perform the extract, incorporates the transport, performs complex transformations, and connects to the receiving system, potentially invoking APIs in either source or target as appropriate. An overview of Informatica is given in Appendix E.
Careful consideration needs to be paid to the control of data flow using ETL, since ETL is essentially a schedule driven tool. If data needs to be collected about all data changes rather than just most recent value (for example when using a data warehouse for tracking purposes) then the ETL cannot just retrieve the data at periodic intervals from the application that is the master for that data. Instead, the application can send out the data whenever it is changed so that it can be stored in some staging area and the ETL tool can capture all these events when it is run. Message Orientated Middleware can provide a very suitable medium for making the transport of data from the original application to the staging area.

3.3 Manual Solutions

The possibility of using a manual solution should never be forgotten. Where data volumes are low, speeds are not critical and transfers infrequent the use of manual processes can be the most cost effective solution. For example, if a process requires the transferral of say 50 small, non-critical data records a few times a year, it would be inappropriate to spend significant time developing and maintaining a costly technical interface solution whereas as manual solution might only use 20 man-hours per year. Such interfaces might be event or schedule driven.

However it is also important to remember that a manual solution has an increased occurrence of errors that are introduced through re-keying and misinterpretation. This can be combated through the use of standards and QA, the inclusion of which will make a manual solution less cost effective, but maybe still be the least expensive method for an appropriate situation.

3.4 Message Orientated Middleware and Message Brokers

Messaging is a concept whereby one atomic data unit is sent in an encapsulated package via a secure and reliable medium to enable the communication between disparate applications. This medium is known as the Message Transport Layer.

By using a Message Broker with the Message Transport Layer, data can be transformed from the format provided by one application into that required by another. The Message broker can also act as a common integration hub to which all applications can pass data to and which itself can then route messages and reduce the huge number of interfaces and repetition of functionality compared with point-to-point connections.

This provides a number of different benefits or possibilities over other integration methods:

· The complexities of data transports and communication protocols are hidden from applications enabling transparent integration of diverse technologies.

· Enables applications to be integrated in an independent, loosely coupled manner.

· An incremental migration strategy can be used to simplify the daunting task of implementing integration solutions in a large enterprise.

· A centralized integration layer hub performs all data translation, transformation and cross-referencing tasks.

· Data delivery is assured and routing can be optimised.

· Error monitoring and recovery can be centralized.

· Data security can be enhanced for data as it moves between applications

· Reduction in the replication of similar data being sent across separate interfaces with an accompanying improvement in data consistency and concurrency.

· More efficient use of network resources.

· A greater freedom to choose the “best-in-class” business applications.

These benefits and further details about messaging are explained in more detail in Appendix A.

Another point to note is that data passing from applications onto and from a message queuing architecture will need to be placed on or removed from the queues using connectors. Some applications may include these connectors themselves in order to interface with messaging systems, but others may need to be developed as very simple and small amounts of code.

With the exception of some custom built connectors, the collection of the above EAI products are available off-the-shelf, but they must be custom-configured to fit each given interface in the organisation.

3.5 Directory Services

The Role of a Directory Service is to provide a mechanism for locating resources in the network.
A resource could be a file, printer, user, service, queue, channel or some other network device.
Lightweight Directory Access Protocol (LDAP) is a set of open protocols for accessing directory services, which means that applications need not worry about the type of server hosting the directory. LDAP has the potential to replace existing application-specific lists and consolidate information. This means that changes made on an LDAP server will take effect for every directory-enabled application that uses this information.

A directory contains information that is often searched but rarely modified. Host names or user names, for example, are assigned once and then looked up thousands of times. LDAP servers are tuned for this type of usage, and current directory servers with a million or more entries can respond to hundreds of search requests per second from a single server. Replication is also possible, which makes LDAP very scalable.

The key characteristics of a directory are:

· It can be provided in a highly distributed manner.

· Objects are essentially independent in the directory, and linked into a hierarchy. It is this independence which enables straightforward distributed provision.

· There is a fixed core schema for naming basic types of objects and managing them in a hierarchy.

· The schema for separate objects in the directory is highly flexible and extensible.

· Very high performance querying

Part of LDAP's "lightness" is that it doesn't model transactions, concurrency management and the other elements of the ACID (atomic, consistent, isolated, and durable) criterion.

An example of how LDAP might be used is to share information on skills stored in Peoplesoft with other applications. It is currently envisaged that this particular example may be utilised on the CRM Programme.

3.6 Web Services

The Web Services platform is a set of standards that applications follow to achieve interoperability via the Web. This is currently most often and more beneficially used for intranet purposes rather than inter- or extra-net where security is less of an issue and more of the profits can be exploited. Web services are written in any language and on any platform, as long as those Web services can be viewed and accessed according to the Web services standards.
To enable interoperability, the Web services platform must provide:

· A standard type system that bridges differences between type systems of different platforms, programming languages, and component models

· A means for describing a Web service and providing the information others need to invoke this Web service.

· A mechanism for invoking Web services remotely, similar to a Remote Procedure Call (RPC) protocol.
· A mechanism for locating a Web Service
The Simple Object Access Protocol (SOAP) is a lightweight, extensible, XML-based protocol for information exchange in a decentralized, distributed environment.
Primarily, SOAP defines a framework for message structure and a message-processing model. SOAP also defines a set of encoding rules for serializing data and a convention for making remote procedure calls.

SOAP has been designed to be simple and extensible.

SOAP messages may be sent using HTTP, SMTP, TCP, and others (but typically using HTTP).
SOAP defines a framework for message structure, but with the exception of SOAP faults, does not define messages types; WSDL may be used to describe the message types a Web service can send and receive.
The Web Service Description Language (WSDL) is an XML-based grammar for describing Web services, their functions, parameters, and return values.
Some modern development tools can generate a WSDL document describing your Web service as well as consume a WSDL document and generate the necessary code to invoke the Web service.

The Universal Description, Discovery, and Integration (UDDI) specification defines a SOAP-based Web service for locating WSDL-formatted protocol descriptions of Web services.
UDDI provides a foundation for developers and administrators to share information about internal Web services across the enterprise and public Web services across the Internet (White and Yellow Pages…)

[image: image2.png]
As the business requirements that drive XML Web services become more complex, developers require additional capabilities that are not addressed by current XML Web services standards, which makes Web Services less of a viable option, especially for integration with external parties. These unfulfilled capabilities include the following:

· Security: This is the most common concern for companies implementing XML Web services solutions today. Developers need an end-to-end security architecture (implementing Authentication, Encryption and Access Control) that is straightforward to implement across companies and trust boundaries, but current standards do not cover this.

· Routing: Companies using Web services are concerned about the scalability and fault-tolerance of the solutions they are building. Developers need a way of specifying messaging paths and the ability to configure those message paths dynamically.

· Reliable Messaging: This is a key requirement for mission-critical applications. Developers need an end-to-end guarantee of message delivery across a range of semantics such as: at-least-once, at-most-once, and exactly once.

· Transactions: Solutions require the ability to transact across applications/companies. As a result, developers need flexible process and compensation-based transaction schemes.

Because there are no broadly-adopted specifications for Web Services security, routing, reliable messaging and transactions, developers today either have to go without these capabilities or they develop ad-hoc solutions that they must resolve separately with each partner or customer.

This means that Web services have several limitations and implications and require significant modification when implemented, so that their use is not widespread and should only be used in its current evolutionary state after careful consideration.

4 Appendices

The following appendices are intended to give some background information on the integration solution challenges and products in a wider context than just the BSkyB CRM Programme.

4.1 Appendix A: Integration Challenges

Since the advent of the client-server computer model, businesses have been acquiring and deploying a variety of software solutions at remote locations running on vastly different computer platforms. One of the great challenges facing the global businesses of today is the development of ways for these disparate applications to communicate with one another with the kind of speed and efficiency required in the current network-centric business environment.

4.1.1 Scope and Complexity

The typical Global 2000 enterprise deploys an average of 49 applications. An integration scenario that has each of these applications communicating with one other would require 2,352 (49 x 48) integration points, creating a complex web of interfaces.

[image: image3.png]
Whilst a more realistic scenario involves not all applications needing connections to all others, the above model is still in fact understating the problem as each application that is integrated with another is likely to have multiple integration points from within each application.

Because applications are also often deployed at remote locations and are under the supervision and control of external IT departments, efforts involved in successfully managing, coordinating, and adapting these applications to today’s dynamic business environment has become extremely difficult to manage.

A further problem is that with the complex structure of disparate systems it is often difficult to decide which system should be driving its integration with others or maintain an overall view of an economic and productive approach. This can also lead to problems of insularity between application teams such that an interface can become part defined from one perspective and part designed from another. The resulting lack of overall system management can lead to misunderstandings and mismatched solutions. One example is that without an overall view, the need for one application to display a financial balance might be seen as needing that application to request the balance from the finance application and wait for a reply. This, however, is not necessarily the best use of resources or the speediest solution, as it may be that if such details are required frequently then the update of such financial balances might be best placed locally to the requesting application so that it can retrieve the balances without waiting for another system or network to reply and also using up their resources.

4.1.2 Requirements for speed

Scope is not the only EAI problem facing today’s enterprise managers. In addition moving ever-increasing amounts of data between rapidly increasing numbers of remote applications, there is a corresponding requirement to move that data more quickly.

This increase in the timely movement of data through the enterprise is likely to increase for the foreseeable future. Business processes are often dependent on certain events occurring first and if details of those events are delayed in reaching receiving applications then the cumulative effect can result in a loss of competitive advantage.

Of course, on the other hand, much data does not precede additional processing, or where it does other factors such as timescales of other business processes (such as time taken to install equipment) might mean that the speed of that data is less critical.

4.1.3 Use of Message Orientated Middleware and Message Brokers

Middleware is a general term for a collection of programming that serves to mediate between two separate applications.

It has been estimated that up to 80% of development time in developing distributed systems from scratch is involved in developing the code required for the distributed systems to communicate and exchange data. Middleware products grew from the ability to encapsulate the communication and interface layers and provide a simple black box solution to interfaces and data exchange allowing any development tasks to focus on business functionality.

One common technique that is used to enable the communication between disparate applications is messaging – this is a concept whereby one atomic data unit is sent in an encapsulated package via a secure, reliable and auditable medium.

The Messaging and Queuing software that will be used on the CRM Programme is IBM WebSphere MQ, which is a mature, reliable, scalable and the leading product in this field. A more detailed breakdown of IBM WebSphere MQ capabilities is explained in Appendix C.

Once a reliable medium for communication has been established a problem still remains as to how to translate data and how to reduce the huge number of interfaces and repetition of functionality that would be involved in point-to-point connections. Message Brokers have been developed to deal effectively with the problems of both scope and velocity so that this complexity is simplified conceptually by pushing all of the integration issues to a central integration layer. Each application, rather than communicating in a point-to-point fashion with related applications, instead passes data to a common, central integration layer.

[image: image4.png]
The capability of this hub-like integration layer should include:

· Hiding the complexities of data transports and communication protocols between various application platforms.

· Performing all data translation, transformation and data manipulation tasks.

· Assuring the delivery of all data to its intended recipients in an intelligent and efficient manner.

· Providing centralized error handling and recovery.

· Providing enhanced data security for data as it moves between applications

Why Message Orientated Middleware and Brokers?

· Message Orientated Middleware and Brokers provide all the desired features described above as well as the following:

· Event-driven, asynchronous communications between systems that enable applications to be integrated in an independent, loosely coupled manner.

· An incremental migration strategy that simplifies the daunting task of implementing integration solutions in a large enterprise.

· The transparent integration of diverse technologies

· The consolidation of redundant processes with an accompanying improvement in data consistency and concurrency.

· More efficient use of network resources.

· A greater freedom to choose the “best-in-class” business applications.

When these capabilities are combined, they form a flexible, reusable, reliable, and maintainable infrastructure for application integration efforts throughout the enterprise. With the middleware layer abstracting many of the technical details of inter-process communication, the application developer is freed to concentrate on the requirements of his application. This results in faster changes being made with a significantly reduced risk of error.

Furthermore, a good Middleware solution of this kind will give a good return on investment through an overall reduction in costs, including:

· Training Costs;

· Implementation Development Costs;

· Future Development Costs;

· Support Costs.

The initial staff training costs depend on the number of staff required to develop, administer and support the middleware application.

The Gartner Group provides research that the return on investment in the first year after implementing a middleware solution is achieved by a reduction in development costs. This reduction in costs is achieved by the reduced effort in developing interfaces between components allowed by using the middleware functionality. Not only are the number of interfaces and their diversity reduced, but also other examples include the re-use of distributed objects and intelligent development tools. Further development costs are also reduced through the smaller number of changes that are required when new connections are added or removed in the future.

The costs associated with support are likely to be broadly similar when comparing implementations of different middleware solutions, each requiring Administrative and Support staff. This is likely to show a significant improvement over the support of in-house developed interfaces requiring specialised development staff able to find and repair faults.

The Message Brokering application that will be used on the CRM Programme is IBM WebSphere MQ Integrator v2.1. This is described in more detail in Appendix D.

Another point to note is that data passing from applications onto and from a message queuing architecture will need to be placed on or removed from the queues using connectors. Some applications may include these connectors themselves in order to interface with messaging systems, but others may require connectors to be developed as very simple and small amounts of code.

4.1.4 Key Message Orientated Middleware Implementation Principles

If it is decided that a Message Orientated Middleware solution is to be used to integrate two applications or support a particular area of that integration, certain guiding principles should be used when approaching the integration.

· Application connectors should allow applications to continue working whilst target applications are unavailable, except where a reply is required.

· Interface errors should be visible from a single point within a region.

· Applications should not need any knowledge of the underlying IBM WebSphere MQ or network infrastructure technology.

· Applications should not know of other applications i.e. routing rules are housed in centralised message Brokers - and the Brokers maintain the single repository of routing rules between applications.

· The message Brokers should be hosted such as to allow for vertical and horizontal scaling.

· There can be many target applications for a single transaction but there cannot be many source applications I.e. no merging of transactions from the same or multiple applications.

· A transaction type has a common set of tags which should be identified, e.g. source system, audit info e.g. source user id, date/time, routing rules, transactional / master data, logical target system

· Where a Message and Broker system is used, as a general rule all data enrichment and cross reference/look up tables should be built into the middleware. However if the process team/designers provide a valid reason why their application should control this functionality then this can be evaluated and a decision made.

Even when these principles are followed there will still be areas where design decisions will also need to be discussed depending on the systems involved, for illustration purposes these might include:

· What data formats are appropriate? E.g. XML or standardised proprietary? Use of XML may be more appropriate when communicating with external partners, but introduce an overhead in terms of complexity and bulk.
· How should transactionality be handled within message Broker and to what extent?

· Is the sequence of messages important for each interface? If so, how will it be ensured that the correct sequence is maintained so that no errors or data corruption occur at the receiving system?

Even with the many advantages of Message Orientated Middleware, its use will not always be appropriate for the complete integration solution. In many cases a hybrid solution will be most appropriate. The following is an example of a hybrid integration solution using IBM WebSphere:

4.2 Appendix B: Interface Communication styles

Message-based interfaces differ significantly from batch interfaces. Whereas batch interfaces collect data for later processing, message-based interfaces typically moves the data near real time. Whereas batch interfaces are typically schedule driven, message-based interfaces are typically event-driven. Where batch interfaces typically compress resource requirements into small processing windows; message-based interfaces tend to disperse requirements over larger periods.

Events signal the change in the state of an object. Messages are the data that encapsulate the context of those changes. Message-oriented interfaces typically capture data changes after they happen, and route the data associated with that change to interested parties.

There are basically two different ways for message-based communication from an application point of view:

Synchronous Messaging

Synchronous messaging can be best described as being like a real-time conversational communication. This means that only the request/reply model is applicable and the sending application must wait for a reply from the receiving application before continuing with processing. This waiting period can be timed-out, but equally it can be infinite. There is therefore a requirement that both applications are available for participation in the conversation implying a direct coupling and dependency between the two applications. So whilst this style of messaging may be required in certain circumstances where a certain piece of data must be obtained or certain processing performed strictly in order, this technique should be avoided wherever possible to reduce waiting times and problems arising from delays. Where it is absolutely required then steps should be taken to reduce the limitations it imposes.

The possibility exists to simulate synchronous messaging where it is required utilizing asynchronous communication tools, like message queues, to complete a conversation between parties. These Pseudo-synchronous interfaces appear to be operating in real-time and are generally simpler to develop and maintain, but there are a few key points to consider:

1. Generally speaking, pseudo-synchronous interfaces should be used to implement query rather than update transactions. This is because, in the event of communication failure, the status of an update may not be clear. This uncertainty may lead to transactions being reprocessed. In those cases where this reprocessing causes a data redundancy or data integrity problem, a pseudo-synchronous interface should be avoided.

2. Message queues are ideal for implementing pseudo-synchronous interfaces. One possible way message queues might be used is where the initiating partner will issue a query using a static message queue, and expect the response to be returned via a dynamic queue created solely for the purpose of the current conversation.

3. Both parties must be able to effectively deal with the failure of the interface. The initiator should wait for a reply for a given period before assuming some type of communication failure. This assumption should then be reported back to the user. The intended recipient of the initiating message should correctly handle and report its inability to reply successfully to the initial message.

Synchronous interfaces, whether they are synchronous or pseudo-synchronous, should be implemented only when asynchronous techniques do not meet the requirements of the interface. Pseudo-synchronous techniques should be implemented only after careful analysis determines that its implementation is satisfactory using asynchronous, message-based tools.

Asynchronous Messaging

Asynchronous messaging occurs when the message initiator sends a particular type of message to a recipient and continues processing. The message recipient may or may not reply to the message at some later time where the initiator or another process (application) may or may not need to complete some further processing. Near real time messaging can be achieved by asynchronous messaging. The following types of asynchronous messaging will be supported within the project:

· Request Reply

The Request Reply type of communication consists of two particular messages, a Request and a Reply. The message initiator sends a request message to a particular named object and continues processing. The request message recipient may or may not reply to the message at some later time.

· Fire and forget

In this case the message initiator sends a fire and forget type of message - often called datagram - to a particular named object and continues processing. The message initiator is neither interested nor involved in the further processing of the message. It is very similar to batch processing, except that the entity of information is a message instead of a file and it is typically event rather than schedule driven.

· Publish Subscribe

Publish subscribe may be thought of as informational messages of the fire and forget type, except that the publisher or message initiator does not know anything about the message recipient or recipients. The publisher needs only know that once it has published a message each message subscriber is assured to receive the message.

4.3 Appendix C: IBM WebSphere MQ Functionality

This section provides some background information on the IBM WebSphere MQ tool, which will be used as the Message Transport System on the BSkyB CRM Programme:

The core functionality of the IBM WebSphere MQ product family (now at version 5.3 and previously known as IBM MQSeries) is designed to meet all of the messaging needs of the enterprise as a whole. It provides assured, once-only delivery of messages between IT systems.

Comparing IBM WebSphere MQ against the basic technical attributes of a middleware product, it provides:

Reliability

WebSphere MQ is a mature and well proven product, it is:

· The most widely used message-queuing software, with more than 66% of the market;

· Used by more that 7,000 customers to solve their business integration issues;

· Used in over two thirds of the top 100 North American and European banks.

Scalability
IBM reports a US organisation using WebSphere MQ to transmit over 250 Million messages per day!

Horizontal expandability
Allows clients to be added without reconfiguration of the messaging layer.

Platform Support
WebSphere MQ provides support for more than 35 platforms

Performance
WebSphere MQ provides performance through asynchronous messaging.

Ease of development and maintenance of distributed business objects
WebSphere MQ provides simple and comprehensive family of API’s to allow rapid easy client development. All major programming languages are supported, including C, C++ and Java. Two options are available for Java development, a simple set of Java classes providing the core WebSphere MQ functionality or a set of classes implementing SUN’s Java Message Service.

4.4 Appendix D: IBM WebSphere MQ Integrator v2.1

This section provides some background information on the IBM WebSphere MQ Integrator tool, which will be used as the Message Brokering tool on the BSkyB CRM Programme:

A Message transport mechanism like IBM WebSphere MQ passes messages from queue to queue (and thus application to application), but the role of the message-brokering hub is to cater for the need to process and transform the message data before passing the message on to the next WebSphere MQ application. Thus a Message Broker provides both the WebSphere MQ messaging layer and the Message Brokering hub for processing, transformation and distribution of messages.

Message Brokers act as a way station, or a hub, for messages passing between applications. Once messages have reached the Message Broker, they can then be processed, depending on the configuration of the Message Broker and on the contents of the message. Within the Message Broker the individual functions are assigned to a collection of interconnected Nodes, where the processing and transformation activities can take place as required. A key component of version 2.0 onwards is the provision of a framework to allow third party vendors and customers to write their own processing nodes (configurable components within the broker which perform the transformation and other functionality). Other components include in this release includes a Publish/Subscribe facility, message dictionaries and message warehousing.

IBM WebSphere MQ Integrator works with IBM WebSphere MQ messaging, extending its basic connectivity and transport capabilities to provide a powerful message broker solution driven by business rules. Messages are formed, routed, and transformed according to the rules defined by an easy-to-use graphical user interface.

For a more detailed look at the additional functionality of the IBM WebSphere MQ Integrator v2.1 tool, the reader is referred to the IBM WebSphere MQ Integrator v2.1 Technical White Paper, found on the IBM website.

4.5 Appendix E: Informatica PowerCenter v5

The ETL tool used on the BSkyB CRM Programme is Informatica PowerCenter. It will be used for various data migration routines as well as an interface between the new solution and the main data warehouse.

The next section of information has been taken from the findings over the course of the project to date of the Data Warehousing Team on the CRM Programme.

PowerMart and PowerCenter are Informatica’s integrated software suites for data warehouse and analytic application development. Both PowerMart and PowerCenter combine the technology for reliably managing data repositories and delivering information resources in a timely usable manner.

Informatica PowerMart and PowerCenter are based around a metadata repository that coordinates and drives a variety of core functions including extraction, transformation, loading and management. Informatica Power Server can source large volumes of data from multiple platforms, handle complex transformations and support high-speed loads.

There is no programming, no code is generated and consequently there is no code to maintain. This saves considerable development time and even more maintenance time. Instead, a graphical representation of the processing is created using a standard Windows GUI. These representations are known as mappings. In these mappings, information is read from source tables (or flat files), processed by various transformation objects and written to target tables (or flat files). Mappings are stored in the Informatica repository.

The Informatica repository is stored in an open relational database structure. Since, there is nothing proprietary about it can share data with other tools (front end, design etc.). This metadata orientation allows PowerMart/PowerCenter to be self-documenting, as well as being a useful platform for metadata integration.

In summary, Informatica PowerCenter is a powerful and user-friendly ETL tool based around an open metadata repository. The ETL process is driven by mappings stored in the repository and interpreted at runtime.

Pros

· Speed of implementation and rapid prototyping

· Metadata integration

· Self-documenting

· No code and as a consequence lower maintenance costs

Cons

· Poor versioning capabilities

· Migration between repositories is difficult

· Lacks a debugger before version 5.0

· Initial purchase expensive

API

Application

API

Batch environment

Near real time environment

file

Conn-ector

Queue

 Queue

messages

messages

Event-driven Application

Schedule-driven Application

Batch Upload and Extract Program

Conn-ector

WebSphere

MQ

Websphere MQ Integrator*

Application

Connector

Message Broker

messages

messages

Queue

Queue

Message

Transport

Layer

Connector

Schedule or Event-driven Application

Schedule or Event-driven Application

Manually Keyed Entry

Report produced where required

Application

Application

Application

Upload Connector

Data

Transformation

Program

Extract Connector

Application

	Version:
	<2.0>
	Page 30 of 30

	Date:
	11/07/2002 10:27
	
	

	Ref
	CRM Integration Strategy v2.0.doc

_1003681952

_1087640204.doc

The use of Current Interface Solutions may be appropriate. Also consider:

If data passed is required by other systems in the future and new Message Orientated Middleware development is required there, then it may be appropriate here too.

Use of current interfaces may help spread the development load, but in the long run the increased capabilities and reduced cost of maintaining a hub-based system may make the replacement cost effective and lead to a more homogeneous solution.

NO

NO (also consider criteria for each section)

NO

NO

NO (also consider criteria for each section)

Is there a requirement for sharing of a hierarchy of independent data elements?

Will access be 99% read only?

Are ACID properties NOT required?

Do applications that need to share data (e.g. user ids and passwords) have LDAP support?

Is highly distributed data storage required?

YES

YES

YES

YES

Start

The use of Manual Processes may be appropriate

The use of Custom-built, direct interfaces, possibly using APIs, may be appropriate

The use of End-to-End Batch Interfaces may be appropriate (preferably an ETL tool, but may be custom batch programs and ftp scripts). Also consider:

Batch processing will be more appropriate if the sending application has just completed a batch process and the receiving application is also batch-orientated

The use of Message Orientated Middleware and Brokers may be appropriate. Also consider:

Interfaces that will make fuller use of Messaging and Broking technology will use fire and forget message types, have many receiving systems and require complex routing and transformation.

Is the data transfer speed required relatively slow and transfers relatively infrequent (preferably should also be schedule based)

Is there only one receiving application? (Two receiving applications would mean 2 separate processes but may still be viable)

Is the receiving application schedule based?

Will the application always be online whilst the interface is in use?

Is a fast speed interface absolutely critical?

Are the required standard extract, loading or interfacing programming or APIs easily available? If not can they be easily built?

Is there only one receiving application? (Two receiving applications would mean 2 separate processes but may still be viable)

Are complex transformations required? If so can the APIs handle the requirements?

Is it acceptable for the interface speed to not be instantaneous – is near real time good enough?

It is more appropriate for the interface data not to be passed infrequently and in large batches? (Note: this can also be accommodated well up to a certain level by using lower priority messages in Message Orientated Middleware).

Are the data volumes low?

Is it acceptable for the speed of the interface to be relatively slow?

Are there just one or two receiving applications?

Are there at most only very simple routing, filtering and transformation rules?

Are data transfers infrequent?

If it is very critical for the data to contain no errors, is the use of the extra resources required for Q&A still economical?

Does an interface already exist?

Does the interface fulfil future requirements?

YES

NO (also consider criteria for each section)

YES

The use of a Directory Service (LDAP) may be appropriate

YES

The use of a Web Service may be appropriate

A hybrid solution with some concessions is required.

Are reliable messaging, transactions and security NOT required?

Is this a service that is also going to be available to external users via the web?

Is HTTP acceptable as a transport protocol?

NO (also consider criteria for each section)

_1002524488

