[image: image4.jpg]

<INSERT CLIENT LOGO>

[image: image3.wmf]

 [image: image3.wmf]

SKY CRM PROGRAMME

WMQI Infrastructure Design

	Client:
	BSkyB

	Project:
	BskyB CRM Project

	Release:
	N/A

	
	

	Authors:
	Luke Puddy

	Creation Date:
	09/07/2002

	Last Updated:
	04/09/2003

	Version:
	1.2

Amendment History

	Name
	Date
	Comment

	Luke Puddy
	19/07/2002
	First Draft for review

	Luke Puddy
	18/06/2003
	Updated to reflect requirements for HA environments and updated logging details

	Luke Puddy
	04/09/2003
	Updated to reflect review comments by Mike Fitch

Sign-Off List
	Name
	Position
	Sign-off Status

	Chun Ng
	Integration Team Lead
	

	Justin Rogers
	Integration Design Lead
	

	Stuart Baldwin
	Integration Construction Lead
	

	Mike Fitch
	Integration Architect
	

Related Documentation

	Ref
	Title
	Author
	Version

	1.
	DV_WebSphere MQ Naming Conventions.doc
	Integration Team (various)
	

	2.
	DV_Integration Infrastructure Design.doc
	Luke Puddy
	

	3.
	DV_Middleware Error Handling.doc
	Justin Rogers
	

	4.
	CRM Logging Standards 1.0.doc
	Ken Cook
	

	5.
	DV_MQSeries Design.doc
	Alex Wilkins
	

CONTENTS

41
Document Purpose

2
Scope
4
3
Number of environments
4
4
Environment Definitions
5
4.1
Key WMQI v2.1 Components:
5
4.2
User / Cross-Reference Database
6
4.3
Topology
7
5
Development Standards and Infrastructure Testing
11
6
Logging
11
7
Transactional integrity
12
8
Security
12
9
Performance Tuning
14

Document Purpose

The purpose of this document is to describe the make up of the Sky CRM WMQI environment – both in terms of what components are required to form an environment and how those components are configured.

It also describes purpose of each of the WMQI v2.1 environments in use by the CRM project.

	Audience
	Rationale

	WMQI developers
	Information on development environment topology

	Technical Delivery
	Configuration details for WMQI across environments

	Release Management
	Assistance in understanding and building environments

1 Scope

The scope of the document is primarily to ensure that sufficient detail is provided to be able to construct the Development environment and to understand what differences will exist between the Development and later environments.
2 Number of environments

The table below summarises the different WMQI hub environments that will exist within the CRM project:
	Environment
	WMQI Config Mgr Host
	WMQI Broker Host
	Purpose
	Comments

	TPOC
	SSLWMQI01
	LIVMQ1
	
	

	Development
	SSLWMQI01
	LIVMQ1
	· Initial development

· Unit Test

· String Test
	Broker BCLIVMQ11 to be used for Unit Test with no network connectivity.

Broker BDLIVMQ11 to be used for String Test and will connect via MQSeries to other nodes in the landscape

	Link Test
	These environments are owned by the various environment owners and are to be created and managed by Release Management.

	SIT
	

	Test Automation
	

	performance / load test
	

	uat
	

	training
	

	pre-production
	TBD
	LIVHA4 / DUNHA4

HA environment(s)
	Pre-production and then production
	2 identical servers for the application using shared disk and accessing a remote instance of Oracle

	Production
	
	
	
	

3 Environment Definitions

3.1 Key WMQI v2.1 Components:

3.1.1 Configuration Manager

The Configuration Manager is the central component of the WMQI environment. The components and resources that it manages are known as the ‘broker domain’. The Configuration Manager serves three main functions:

1. Maintain configuration details in the configuration repository (a set of database tables that provide a central record of the broker domain components)

2. Manage the initialisation and deployment of brokers and message processing operations in response to actions initiated through the Control Centre (which is the development and configuration GUI provided with WMQI). It communicates with other components in the broker domain using MQSeries transport services (i.e. transmission queues and channels)

3. Check the authority of defined user Ids to initiate those actions

The Configuration Manager provides a service to the other components in the broker domain, providing them with configuration updates in response to actions taken from the Control Centre. The Configuration Manager validates that the user requesting each action from the Control Centre is authorised to perform that action

There should only be one Configuration Manager managing a broker domain and it can only be created on a Windows NT or 2000 platform (it runs in the background and when created is automatically included within the Windows 2000 services).

When the Configuration Manager is created, the following resources are also created automatically:

· Tables in the configuration repository database (e.g. WMQICMDB) which the Configuration Manager connects to using JDBC.

· Tables in the message repository database (e.g. WMQIMRDB) which the Configuration Manager connects to using ODBC.

· A set of fixed name Queues, defined to the Queue Manager that hosts the Configuration Manager. This Queue Manager must be identified when the Configuration Manager is created and must exist on the same physical system as the Configuration Manager.

· A server connection which is defined to the Queue Manager hosting the Configuration Manager and which is used by all instances of the Control Centre to connect to the Configuration Manager.

The databases used by the Configuration Manager needn’t be local to the Configuration Manager but they must be DB2 databases.

NB – Windows Terminal Services should not be used to remotely administer / manage the WMQI Configuration Manager (or in fact any MQSeries, DB2 or WMQI component) running on Windows as it causes problems with the application.

3.1.2 Broker

The broker hosts and controls the message flows created using the control centre. It uses MQSeries queues and connections in order to be able to receive and send messages.

Any number of brokers can be running within a broker domain.

A unique queue manager must be specified for each broker, one broker can share the same queue manager as the configuration manager, but more than one broker cannot exist on a queue manager. Where the configuration manager and broker(s) are not using the same queue manager, the queue manager of each broker must be connected to the configuration manager’s queue manager via MQSeries channels and transmission queues.

When a broker is created, the following resources are also created automatically:

· Tables in the database used to hold the broker’s local data (e.g. WMQIBKDB) the broker connects to this database via an ODBC connection. Multiple brokers can use the same database, Oracle, DB2 and Sybase are supported databases for the Broker database (for CRM, Oracle is the database that will be used for the Broker).

· A set of fixed-name queues, defined to the queue manager that hosts the broker. The queue manager must be identified when the broker is created and it must exist on the same physical system as the broker.

Unlike the Configuration Manager, a Broker is supplied on multiple platforms and for the CRM project, will run on Solaris (mostly v2.8).

When a broker is created, it is not automatically associated with the configuration manager. To record the broker’s configuration information in the configuration repository, a reference must be created using the control centre (within the ‘Topology’ tab) – the same name must be used at this stage as was used when the broker was created.

Creating this reference stores the broker information in the configuration manager’s configuration repository and defines a default execution group for the broker (additional execution groups can be defined using the control centre).

Once the broker reference has been created, changes that are made in the broker domain (e.g. message flows created), must be ‘deployed’ in order to take effect. The act of deploying configuration changes initiates communications between the configuration manager and the broker (over MQSeries) and initialises the broker so that it is ready to execute message flows.

3.1.3 User Name Server

The user name server is required for topic-based security when providing publish / subscribe services and therefore is not required within the current scope of the CRM project.

3.2 User / Cross-Reference Database

For some CRM interfaces, there will be a requirement to translate a value(s) from that sent out by the source system to a different value that has the same meaning for the recipient system e.g. open item IDs need to be translated into NRC type IDs between Chordiant and Arbor.

This will be achieved through message flows accessing cross-reference database tables that accurately match up these values. The cross-reference tables will exist in a dedicated schema (called RDMINTEGRATION) within the Broker’s database and will need to be maintained such that when new values become available to a system or when existing values change or are deleted, the cross-reference tables are updated to ensure that corresponding values are added or modified for any systems that receive data from the updated system.

This maintenance will be implemented in a manner consistent with the use of the specific data type across the solution – e.g. if a data type that is used in the Broker’s cross-reference database is updated in other systems using ETL then it should be updated in the Broker’s cross-reference database through ETL. Similarly, if it is updated manually in other systems then it is acceptable for it to be updated manually (via a BSkyB approved mechanism) in the Broker’s cross-reference database.
3.3 Topology

3.3.1 Development Environment

3.3.1.1 Configuration Manager

The development environment will consist of one configuration manager, running on Windows 2000 with DB2 databases.

· Each WMQI developer will access the server via their local control center installation on their workstation. Connection details are:

	Parameter
	Value

	Hostname
	SSLWMQI01

	Port
	1414

	Queue Manager Name
	QCSSLWMQI011

· The unit test and string test brokers will be configured with one execution group per developer (this is to facilitate the reading of the user trace output)

· Each developer will assign only their message flows to their execution group and will manage the starting, stopping and resetting of the user trace for their message flows and execution group. In the Development environment, the execution groups will be named EnDLIVMQ11 where n is a number assigned to a specific developer.
3.3.1.2 Broker

The development environment will consist of two brokers running on Solaris with an Oracle database.

One of the brokers will be configured to enable the interface developers to carry out unit testing and will have local input queues to and local output queues from the broker – there will be no remote queue definitions or channels. The interface developers will use utilities provided to put messages to and get messages from the queues.

The second broker will be configured for string testing and will be connected via MQSeries to the other development systems in the landscape (e.g. Chordiant, Arbor, EntireX).

The queue names used by each environment will be the same and will be those that will be promoted through to production – the environment will be differentiated by the Queue Manager name (see the appropriate naming conventions in REF 1).

· Developers can log onto the Development server LIVMQ1 using the user ID mqmdev1

· Each developer will have their own directory within the home directory of mqmdev1 where they can store their shell scripts, MQGetPut configuration files, test data files, results files, trace output etc.

Developers will have the choice of using the vi editor on the Solaris machine to manipulate their configuration files or they can manipulate files on their workstations (using a text editor such as Textpad) and use FTP to transfer files between their workstation and the Development server

[image: image4.jpg][image: image5.wmf]
[image: image1.wmf]Chordiant

SKYCRMDEVA01

RQ

e.g. SCMS /

EntireX

BACKDSMS

LQ

LQ

Inbound Queue to Application

Broker

–

BDLIVMQ11

LQ

Message Flow

RQ

QM

–

QDLIVMQ11

WMQI

LIVMQ1

LQ

Inbound Queue to Application

Broker

–

BCLIVMQ11

LQ

Message Flow

LQ

QM

–

QCLIVMQ11

MQGetPut

Utility

Test

Data

MQGetPut

Utility

Actual

Results

String Test Environment

Unit Test Environment

1. Message put

to Remote

Queue Def

by Chordiant

2. Message transported

to Broker via MQSeries

3. Message processed by message flow

4. Message put

to Remote

Queue Def

by Broker

5. Message transported

to Broker via MQSeries

6. Message received

by

EntireX

/ SCMS

2. Developer uses

MQGetPut

utility to

put file data to

local input queue

as MQSeries message

3. Message processed by message flow

4. Developer uses

MQGetPut

utility to

get message from

local output queue

and write data to file

[image: image2.wmf]WMQI Developer

W2K Workstation with Control Centre

Development W2K

Config Manager

(SSLWMQI01)

WMQI Developer

W2K Workstation with Control Centre

Figure 2: Topology of the Development environment

3.3.2 Test Environments
The various test environments will be created and managed by Release Management essentially the same as the String Test environment, with following exceptions:

· There will be one execution group for each processor on the server and the message flows will be deployed to all execution groups.
· As there can only be one Configuration Manager on a Windows server, the following options exist for managing the deployment of message sets and message flows to different environments – it is for Release Management to decide which of these options is most appropriate:

1. 1 W2K server / environment (or at least a set of environments where the configuration is expected to be consistently the same) - this has the highest cost but the lowest risk.

2. 1 W2K server with multiple partitions – each partition serving 1 environment (or set of environments where the configuration is expected to be consistently the same) – this has a lower cost and low operational risk but is less convenient when switching between environments.
3. 1 W2K server / environment with multiple sets of (configuration and message repository) DBs – (1 pair per environment) and manage the different environments by deleting and recreating the Configuration Manager with the appropriate set of databases (a task that can easily be scripted and the switch should take less than 2 minutes) - this has reduced cost but introduces operational risk.
4. 1 W2K server with 1 set of DBs serving multiple environments and manage the different environments by deleting the information in the configuration repository and importing the files required by the environment to be managed each time an environment requires maintenance – this has the same cost as option 3 but is more complex and introduces further operational risk.
3.3.3 Pre-Production / Production Environments

· There will be one execution group per processor on the Broker server and each message flow will be deployed to at least 2 execution groups except where a message flow must preserve FIFO message sequence (see REF 2).

The message flows should (where possible within the context of the application flow concept) be deployed to execution groups such that each (pair of) execution groups is running messages with similar performance requirements i.e. one (pair of) execution groups may be running message flows that have low performance requirements, are processing potentially large fire and forget messages and another (pair) are running message flows that have high performance requirements and are processing small request reply messages where e.g. a user is waiting for an on-screen response.
· The Broker will be made highly available through a hardware cluster solution – hot standby server (managed by VCS) with duplicate components. There must be a virtual IP and corresponding DNS name that will be assigned to which-ever server is active at a given point in time (this will be managed by VCS). In order to implement high availability for WMQI, the MQSeries Queue Managers and WMQI Brokers will need to be created in a slightly different manner:
Creating a Highly Available Queue Manager:

· Log onto the primary server as mqm
· Create a Queue Manager as usual using the createQM.sh script
· Create the system specific objects as usual using the defmqobj.sh script

· Move the appropriate elements of the Queue Manager file structure to the designated location on shared storage and create symbolic links from the local directories the following table shows which elements need to exits on shared and local storage:

	Directories / Files in red with shaded background are on shared storage

	Directories / Files in blue are on local storage

	var
	
	
	
	
	

	
	mqm
	
	
	
	

	
	
	log
	
	
	

	
	
	
	<QM Name>
	
	

	
	
	qmgrs
	
	
	

	
	
	
	<QM Name>
	
	

	
	
	
	
	isem
	

	
	
	
	
	esem
	

	
	
	
	
	@ipcc
	

	
	
	
	
	
	AMQCLCHL.TAB

	
	
	
	
	
	AMQRFCDA.DAT

	
	
	
	
	
	AMQRSYNA.DAT

	
	
	
	
	
	esem

	
	
	
	
	
	isem

	
	
	
	
	
	msem

	
	
	
	
	
	shmem

	
	
	
	
	
	ssem

· Log onto the fail-over server as mqm and create the directory structure and symbolic links as shown in the table above.
· Implement Veritas Cluster Server to manage the fail-over of the Queue Manager

Creating a Highly Available WMQI Broker:

· Log on to the primary server as wmqiuser

· Create the Broker in the normal manner using the mqsicreatebroker command

· Move the appropriate directories to the appropriate location on shared storage and create symbolic links from the local directories – the following directories and all of their subdirectories need to be moved:

· /var/mqsi/brokers/<broker name>
· /var/mqsi/registry/<broker name>
· Log on to the fail-over server as wmqiuser and create symbolic links to the directories that have been moved to the shared storage
· Implement Veritas Cluster Server to manage the fail-over of the Broker

4 Development Standards and Infrastructure Testing

Due to the non-transportable nature of the WMQI core components, the Release Notes will be used to ensure consistency between environments. Once the WMQI infrastructure has been created for an environment, it should be tested to ensure that all components exist and are functioning as expected.

The level of infrastructure testing carried out in the Development environment will be different to that carried out in the later environments. This is due to the fact that when the Development environment is implemented, no interfaces will have been developed.

Testing the infrastructure in the Development environment will simply consist of verifying that the appropriate components are visible through the Control Center and that the Windows Event Viewer shows no errors. Also, a dummy message flow (consisting of 1 MQInput node, 1 Compute node and 1 MQOutput node) will be used to test that the components are all functioning as expected.
For later environments, it is recommended that a test pack be developed, which will use a script to place one valid message on the input queue to each message flow. The MQSeries channels between the broker and other systems will not be running, so once all output messages have been verified on the expected output queues, they can be deleted to avoid polluting the environment.

Once a developer has successfully completed a unit test of their interface, they should include the following from their primary valid test scenario into the environment test pack:

· Message set

· Message flow

· Test data file

· MQGetPut.ini file
· Any batch file used for that test run

5 Logging

As described in the Integration Infrastructure Design (REF 1), WMQI logs error details and details of significant events in the Windows Event Viewer on Windows NT / 2000 and to the syslog on Solaris.

The message flow trace functionality will be enabled in the development environment but will be disabled in later environments (although may be temporarily turned on in the String or Link Test environments when there is a good reason to do so). Message flow tracing can be turned off and on using the control center or a shell command. Where possible, it is recommended that the shell command, rather than the control center be used, with the following syntax:

mqsichangetrace <brokername> -u –e <executiongroupname> -f <messageflowname> -l <level e.g. ‘debug’> -r

The ‘-r’ flag is optional – it causes the log to be reset, an action that can’t be achieved through the control center. Whilst individual message flows can be specified, it should be remembered that all message flows that have the user trace function activated will write to the same log.

In order to read the trace log, the following commands must be executed from a shell command window:

mqsireadlog <brokername> -u –e <executiongropname> -o <outputfilename>

The mqsireadlog command, generates an xml file containing the log details, this is not easy to read and needs to be formatted using the mqsiformatlog command:

mqsiformatlog -i <inputfilename> -o <outputfilename>
The input to the mqsiformatlog command must be the output from the mqsireadlog command.

For convenience, it is recommended that developers use batch files to execute these commands.

Additionally, trace nodes are to be configured within message flows to provide additional logging information. These nodes will be a permanent part of the message flow and so will exist in the same form in each promotional environment. The trace nodes will be used to write the message specific (REF 3) information to a file.
Further information may be included for specific interfaces where it is seen to be necessary or particularly useful. Such details will be documented within the technical design for that interface.

The files should be written to the following file and should conform as closely as the tool permits to the CRM Logging Standards (REF 4):

/var/wmqi/log/WMQIErrorMsgLog.log
Given that a WMQI trace node can only write to a single named log-file, it is not possible for the application itself to manage the switching or archiving of log-files. Therefore, a script will be developed to archive the above file on a daily basis to an archive directory (/var/wmqi/log/archive/) and will add a date-time stamp to the file name at that point.
6 Transactional integrity

Within the context of the CRM project, any messages that are put onto the input queue to the WMQI Broker should either be processed successfully by an entire message flow or they should not be processed by it at all (i.e. if there is a failure during the message flow, the message should be restored to its original state and should not be left in a partially processed condition – also see Error Handling section within the Integration Infrastructure Design REF 1).

If the WMQI Broker successfully processes a message and puts it to an MQSeries output Queue, then that constitutes a completed transaction – if the message later fails in the destination application, the processing performed by the message flow will not be rolled back and it will be the responsibility of the receiving application to manage the error.

In some cases, the receiving application will send a reply message containing details of the error back to the sending application so that the sending application can take appropriate action, in other situations, the receiving application will log the error such that it can be registered with the ESM implementation and an operator can take appropriate action and similarly, in other situations, the message will be put to a Bad Message Queue by the application’s connector where it will similarly be registered with the ESM solution and an operator will take appropriate action.
7 Security

7.1.1 Access to the Broker and Configuration Manager

In order to be able to access either the Broker or Configuration Manager, the user attempting access needs to be authorised to connect to the appropriate MQSeries Queue Manager (see REF5 for details).
Access rights to both the Brokers and Configuration Manager will be controlled by the operating system. The Broker’s User ID will need to be in the mqm and mqbrkrs groups and the Configuration Manager needs to be in the mqm, mqbrkrs and local administrator groups. In order to simplify MQSeries authority requirements, both the Configuration Manager and the Broker should operate under the same user ID of ‘wmqiuser’.
7.1.2 Accessing the system and user databases

7.1.2.1 System Databases

The Broker (which connects to Oracle) will need to have the following privileges on its database:

· Connect

· Resource

· Create table.

The Configuration Manager (which connects to DB2) will need to have the following privileges on its database:

· Connect database

· Create tables

· Create packages

· Register functions to execute in database manager’s process
7.1.2.2 User Databases

The user database / schema accessed by the Broker to look up cross-reference data will not be owned or maintained by the Broker’s user ID but the Broker will require access to the database. Currently, there are no anticipated requirements to be able to write to the database, simply to be able to select. The Broker will not need to create, update or delete within this database / schema. The Broker will require the following privileges on the User database:
· Connect

· Select from tables

7.1.3 Control Centre Roles

When WMQI is installed on windows, the following groups are defined. The actions that can be taken by a user are determined by which groups the user ID belongs to.
mqbrkrs
This group is for the service user IDs of the WMQI components: Configuration Manager; Broker and User Name Server (UNS – not used at BSkyB as it relates to publish and subscribe messaging).
mqbrasgn
Membership of this group will enable a user to:

· Manage Execution Groups within a Broker

· View Messages and Message Flows

· Assign Message Flows to Execution Groups

· Assign Message Sets to Brokers

Administrators will need to belong to this group.
mqbrdevt
Membership of this group will enable a user to:

· Design Messages
· Design Message Sets
· Design Message Flows
Developers will need to belong to this group.
mqbrops
Membership of this group will enable a user to:

· Create Brokers
· Deploy, start and stop message flows
· Start and stop traces
· View the deployed system
· Deploy topics (not required at BSkyB CRM)
· View logs
Operators and Administrators will need to belong to this group.
mqbrtpic
This group relates to publish and subscribe messaging and so is not relevant to BSkyB CRM
8 Performance Tuning

As a general principle, message flows should be as concise as possible – using the minimum number of nodes required to perform the message processing required without compromising design and architectural principles. WMQI supportpac IP04 should be consulted for guidance in designing and building message flows for performance.

Message Flows should have transaction mode (Input Node property) set to Automatic to ensure that they process persistent messages and non-persistent messages as appropriate for the message type (persistent messages are handled transactionally, non-persistent messages are not).

The Commit Count (number of messages processed from input queue before MQCMIT is issued) and Commit Interval (elapsed time before MQCMIT is issued) values should be set to maximise performance – the appropriate value for these parameters should be determined during performance testing.
Where there are no sequencing requirements on a message flow, the Additional Instances property of the message flow should be increased to enable the message flow to run multi-threaded and process messages concurrently.

Deploy

Deploy

FTP

1. Developer transfers test data to broker host

5. Developer transfers test data from broker host

FTP

<INSERT PROJECT LOGO>

PAGE
	WMQI Infrastructure Design v1.2.doc
	Version 1.2
	Page 1 of 15

_1124207645.ppt

Chordiant

SKYCRMDEVA01

e.g. SCMS / EntireX

BACKDSMS

WMQI

LIVMQ1

MQGetPut

Utility

MQGetPut

Utility

String Test Environment

Unit Test Environment

1. Message put

to Remote

Queue Def

by Chordiant

2. Message transported

to Broker via MQSeries

3. Message processed by message flow

4. Message put

to Remote

Queue Def

by Broker

5. Message transported

to Broker via MQSeries

6. Message received

by EntireX / SCMS

2. Developer uses

MQGetPut utility to

put file data to

local input queue

as MQSeries message

3. Message processed by message flow

4. Developer uses

MQGetPut utility to

get message from

local output queue

and write data to file

 RQ

 LQ

LQ

Inbound Queue to Application

 LQ

Message Flow

 RQ

Broker – BDLIVMQ11

QM – QDLIVMQ11

LQ

Inbound Queue to Application

 LQ

Message Flow

 LQ

Broker – BCLIVMQ11

QM – QCLIVMQ11

Actual

Results

Test

Data

_1087907278.vsd

