	Sky CRM Programme

IFC0542_CHD_CheckForDuplicateAddress
	[image: image2.emf]

[image: image1.emf]
	Sky CRM Programme

IFC0542_CHD_CheckForDuplicateAddress
	[image: image1.emf]

Interface Functional Design
IFC0542_CHD_CheckForDuplicateAddress

	Owner:
	BSkyB

	Project:
	BSkyB CRM Programme

	Sending System:
	Chordiant

	Receiving System(s):
	SCMS

	Creation Date:
	28 April 2003

	Last Updated:
	27 April 2005

	Version:
	3.13

Document Contributors

	FD Team
	Role
	Name

	WMQI Design
	WMQI Design Team
	John Pryse Lloyd

	MQSeries
	MQ Series
	Luke Puddy

	MQSeries
	Connectors
	Tim Robinson / Louise Lahiff

	Chordiant
	CHD Design and Development Team
	Theo Gough / Ben Waite

	SCMS
	SCMS Developer
	Julie Lindsay

Sign-Off List
	Name
	Position
	Version
	Date
	Signature

	Chun Ng
	Integration Team Lead
	3.0
	
	

	Luke Puddy
	Integration Infrastructure Team Lead
	3.0
	
	

	Justin Rogers
	Integration Design Team Lead
	3.0
	
	

	Mike Fitch
	Integration Architect
	3.0
	
	

	Abhijit Saha
	CHD Technical Project Manager and Technical Architect
	3.0
	
	

	Karen Elliot
	Conditional Access.
	3.0
	
	

Distribution List

	Name
	Position

	Chun Ng
	Integration Lead

	Luke Puddy
	Integration Infrastructure Team Lead

	Justin Rogers
	Integration Design Team Lead

	Mike Fitch
	Integration Architect

	Abhijit Saha
	CHD Technical Project Manager and Technical Architect

	Theo Gough
	CHD Design and Development.

	Paul Conway
	SCMS Team Lead

	Karen Elliot
	Conditional Access

	Julie Lindsay
	SCMS Design and Development

Related Documentation

	Ref
	Title
	Author
	Version

	1.
	Subscriber Management Architecture CMS-SCMS interface specification and additional information document.

TP2728B – CMS – SCMS API Additional Info
	Network Services
	2.2

	2.
	Functional Design BSkyB API Connector
	Tim Robinson
	2.3

	3.
	Integration Layer Error Handling
	Justin Rogers
	3.2

	4.
	Master Interface Catalogue
	Mike Fitch
	1.16

	5.
	DEF_Inc2.3_Order Fulfilment_Outline Solution Overview (Interact with SCMS)
	John Pryse Lloyd
	3.0

	6.
	Order Fulfilment – Middleware Interface Specification
	Theo Gough, Ben Waite
	0.6

	7.
	DEF_Inc2.3_Order Fulfilment_Management Information
	Diane Mclaughlan
	3.5

	8.
	DEF_Inc2.3_Order Fulfilment_Local NFR Interact with SCMS
	Betsy Ogden
	3.0

	9.
	DEF_Inc2.3_Order Fulfilment_Use Case Validate Join Viewing Card.
	Steven Dewsbery
	3.0

Intended Document Progression

	Version
	Title

	Up to 1.0
	Drafts before initial release

	1.0-1.99
	Signed-off release for phase 2.1 go-live and subsequent increments to reflect change requests for Phase 2.1

	2.0-2.99
	Signed-off release for phase 2.2 go-live and subsequent increments to reflect change requests for Phase 2.2

	3.0-3.99
	Signed-off release for phase 2.3 go-live and subsequent increments to reflect change requests for Phase 2.3

	4.0+
	Further future releases

Amendment History

	Version Number
	Name
	Date
	Description of changes or Other Comments

	0.1
	John Pryse Lloyd
	15/02/2002
	Initial Draft

	0.2
	John Pryse Lloyd
	07/03/2003
	Updated for Internal Review

	0.3
	John Pryse Lloyd
	12/03/2003
	Updated post Internal Review

	3.0
	John Pryse Lloyd
	19/03/2003
	Updated for sign off.

	3.01
	John Pryse Lloyd
	09/04/2003
	1. Removed paragraph in section 4.1.3. since the connector does not use the ‘usr’ folder to call the SCMS API.

2. Mapping tables included for clarity.

	3.02
	John Pryse Lloyd
	14/04/2003
	Updated message details in line with Chordiant’s base lined functional specification

	3.1
	John Pryse Lloyd
	17/04/2003
	Re-released post rework.

	3.2
	John Pryse Lloyd
	20/06/2003
	CR1453 : Updated BROKER_ID value to be configured by the MQ/SCMS connector.

CR1508: Updated for new logic to format SCMS.Postcode

	3.3
	Justin Rogers
	01/08/2003
	TD3787: Updated to show Chd.CountryCode field as it is used in postcode logic. Documentation update only.

	3.4
	Patricia Jones
	08/08/03
	CR1653: Change to the mapping relationship of address fields between Chordiant and SCMS

	3.5
	Patricia Jones
	22/08/03
	TD4071: Updated to explicitly show trimming of directly mapped strings into fixed length fields.

TD4493: Clarified wording of Address fields mapping.

	3.6
	Justin Rogers
	25/09/2003
	TD4847: PostCode made optional

	3.7
	Justin Rogers
	14/10/2003
	TD4901: Clarified Chd attributes.

TD6271: Changed currency code mappings

	3.9
	Istvan Durko
	17/12/2003
	SCR8582 Replacing ‘ns0:xsd’ to ‘xsd’ in XML tag attributes. Note that this version of the FD is based on the latest version which did not have CR1876 in it. V3.8 does have CR1876.

	3.10
	Peter McGrath
	20/04/2004
	CR1876: Updated for new address fields structure.

	3.11
	Jules Douch
	21/10/2004
	TD22637: Added BusinessContactorCBO to Chordiant Request message

	3.12
	Sarju Mistry
	31/03/2005
	SCR28041: Mapping of SourceSystem to CMS-ID

	3.13
	Angus Cooke
	26/04/2005
	SCR28839: Added looging information to the usr folder in the RFH2 header

CONTENTS

51
Introduction

51.1
Outstanding Issues

51.2
Document Purpose

51.3
Dependencies

51.4
Assumptions

72
INTERFACE DEFINITION

72.1
Background and Overview

82.2
Solution Architecture

92.3
WebSphere MQ Requirements

103
SENDING SYSTEM TO INTEGRATION LAYER

103.1
Sending System Outbound Message – (Chordiant)

103.1.1
Sending System Pre-processing

103.1.2
Information To Be Transmitted

103.1.3
General Process Flow

113.1.4
CHD/MQ Connector processing

113.1.5
Sending System – Outbound Message Body Structure

123.1.6
Control Mechanisms

123.1.7
Security and Authorisation

133.2
Sending System Inbound Message (Chordiant)

133.2.1
Filter and Routing Rules

133.2.2
Reply-To System Message Structure

173.2.3
CHD/MQ Connector Processing

173.2.4
Control Mechanisms

173.2.5
Security and Authorisation

173.2.6
Sending System Events Triggered

184
INTEGRATION LAYER TO RECEIVING SYSTEM

184.1
Receiving System Inbound Message (SCMS via EntireX)

184.1.1
Filter and Routing Rules

184.1.2
Receiving System Inbound Message Structure

254.1.3
MQ/EntireX Connector Processing

254.1.4
Control Mechanisms

264.1.5
Security and Authorisation

264.1.6
Receiving System Post-processing

264.1.7
Receiving System Events Triggered

264.1.8
Reply Message Sent

335
APPENDIX

335.1
APPENDIX A: CHD XML Request Message Example Structure

345.2
APPENDIX B: CHD XML Response Message Example Structure

355.3
APPENDIX C: SCMS Message Inbound Send Area Example Data

365.4
APPENDIX D: SCMS Message Outbound Receive Area Example Data

375.5
APPENDIX E: Volumetrics

375.5.1
Average Volume

1 Introduction

This functional design document is intended to detail the solution required for the specified interface, from the generation of data in the sending systems to the receipt of that information in all relevant receiving systems.

This document will be used by the development teams of all technologies involved in order to construct the interface, from Application and Connector to Middleware teams.

1.1 Outstanding Issues

	Reference
	Issue

	
	

1.2 Document Purpose

The target audience for this document is:

	Audience
	Rationale

	Integration Development Team
	Development of the interface

	Order Fulfilment Define Team
	Increment deliverable

1.3 Dependencies

	Reference
	Dependency

	1.
	Functional Design is the key dependency for all parties.

	2.
	Functional Design will be agreed and frozen before any development begins.

	3.
	Validation testing of interface will require all developments to be complete, unit tested and signed off by the appropriate sub-team lead or authority as a prerequisite.

	4.
	The complete interface is dependent on all components (Chordiant JX platform, WMQI, MQ/EntireX Connector, SCMS) being fully tested and delivered.

1.4 Assumptions

	Reference
	Assumption

	1. MQ/EntireX Connector
	It is assumed that the MQ/EntireX Connector will accept a string of fixed length and pre-defined format to match the current CMS-SCMS API call definitions. The current AK Check For Duplicate Address send message will be used as a format (including control block information).

	2 MQ/EntireX Connector
	It is assumed that the MQ/EntireX Connector will capture and hold the ReplyToQueue and Chordiant Correlation ID and append it to the returning reply message from the SCMS into WMQI. The MQ/EntireX Connector will attach the Chordiant Correlation ID (msgId field) and ReplyToQueue values back to the MQMD header.

	3. Message Version Type
	Version Type indicates the message structure that SCMS expects. The functional design document is interested in the version type indicated by the SMA-Conv-Version field of the request message.

The WMQI build is designed to cope with the message version detailed in the current version of the SCMS API document. Future upgrades to other message types will require changes to the WMQI build.

	4. Control Block
	It is assumed that the control block is standard across the SCMS API, with the exception of the SERVICE name, which details the name of the specific conversation and the BROKER ID, which is environment specific and defines the instance of the broker to be used by the conversation.

If the configuration detailed in the control block were to change, either the WMQI build would need to be amended or the values will need to be set by the MQ/EntireX configuration file.

	5. Response Message
	The conversation is used to validate that one duplicate address exists for a join to occur to an existing card.

The SCMS returns details of the duplicate address should one (and one only) exist. There is no business requirement for this information to be returned to Chordiant, therefore Chordiant will receive only details of the number of duplicates found. This will avoid the complex mapping of address details.

2 INTERFACE DEFINITION

2.1 Background and Overview

This Functional Design defines the interface required to check for duplicate addresses.

This interface is used when validating a join to an existing card. When a request is made to join a service, the service must already exist on the SCMS. This interface is therefore used to identify that a duplicate address exists on the SCMS and returns details of that address.

The interface also indicates whether no duplicate addresses exist or multiple duplicate addresses exist. In these instances, the join is invalid and the business process fails.

Information will be returned in near real-time to the Chordiant system.

2.2 Solution Architecture

[image: image2.emf]A graphical representation of the complete interface architecture follows, outlining the high-level environment, processes and flow.

* Websphere MQ Integrator (WMQI) version 2.1 converts XML messages to Custom Wire Format from Chordiant and back to XML when the reply message is returned.

1 –2) Chordiant sends a request message via the CHD/MQ Connector to a dedicated system outbound MQSeries queue. The CHD/MQ Connector changes the Chordiant message into XML format whilst adding necessary headers.
3 – 5) WMQI transforms the XML message into a message that is of the correct format required by the MQ/EntireX Connector. This is a fixed length string, which is then placed on a static queue.

6 – 8) The MQ/EntireX Connector picks up the message from the queue and passes it to the EntireX Broker that subsequently routes the message through SCMS using values in the ‘Control Block’. A reply from the SCMS system is passed back to the MQ/EntireX Connector.

9- 11) This message is then placed onto a static MQSeries queue with the required headers by the MQ/EntireX Connector. WMQI application picks up this message from the queue and transforms the necessary values into an XML message that is then placed on the awaiting reply queue.

12-13) The message placed on the reply queue is verified and processed by the CHD/MQ Connector.

It is important to distinguish between interfaces based on the operation they perform in the receiving system as this has an impact on the architectural design. This interface is a Read interface (as opposed to an Update interface). It is not an issue if messages get lost after the connector fails to recover as the result of a Chordiant re-start. These messages can time out after a certain period of time. The connector achieves this by setting the ‘expiry interval’ field in the MQMD message header to the time-out value.

2.3 WebSphere MQ Requirements

The queue names between applications are outlined below.

	Sending Application
	Message Direction
	Type
	Queue Name

	Chordiant
	Outbound
	Static (remote)
	WMQ01.0000.CHD01

	MQ/EntireX Connector
	Inbound
	Static
	SCM01.0000.WMQ01

	MQ/EntireX Connector
	Outbound
	Static

	WMQ01.0000.SCM01

	Chordiant
	Inbound
	Static

	CHD01.0004.WMQ01

RFH2 Message Headers will be used for routing messages from both Chordiant and SCMS via EntireX to WMQI module flows.

3 SENDING SYSTEM TO INTEGRATION LAYER

The following section outlines the design specifications for the interface that relate to the sending system. This includes the way messages will be sent out of the sending system to the Integration Layer and also how the same system will receive messages if a reply is required.

3.1 Sending System Outbound Message – (Chordiant)

This section describes the message sent out from the sending system to the integration layer and the initiation of the interface process.

3.1.1 Sending System Pre-processing

Chordiant is the sending application. The interface will be initiated when a join request is received. When triggered Chordiant creates a request message from the relevant SCMS Interaction Message CBO’s. This is formatted into XML by the CHD/MQ connector and transported to an MQSeries queue.

When the reply message is received by the sending application, the received XML message containing the requested data will be returned to the appropriate business objects.

Chordiant is responsible for holding all the meta-data and logic required to build business objects from XML messages.

The framework for the data format that will be implemented for the interface will be supported on the Chordiant JX platform. The decision has been taken to use the less verbose version of the XML schema provided by GLUE. GLUE code is currently licensed and distributed with the Chordiant foundation code for version 5 since GLUE encoding is used for transferring messages between the client and server components. GLUE provides a generic standard for the format of XML messages.

3.1.2 Information To Be Transmitted

The SCMS API, documented within the Subscriber Management Architecture CMS – SCMS interface specification details explicitly the data it requires to perform its published actions. Chordiant will provide data to ensure that a valid request message can be built by WMQI and passed to SCMS.

This interface requires address details to be passed.

3.1.3 General Process Flow

General flow information from the sending system can be extracted from the table below.

	Interface Statistics
	Description

	Message Size
	Medium (up to 4.5K)

	Timing
	Near real time request / reply. On request.

	Mean Frequency
	46 per min

	Peak Frequency
	388 per min

	Trigger
	Manually by the CSR when a join to an existing card is required.

	Sequence of Process
	The process for validating and executing a join enquiry requires three conversations in the following order: -

1. AC Check for Duplicate Address.

2. AL Get Card Subscriber ID

3. AA Maintain Initial Card Request (Pack Request Type 4)

The CHD/MQ Connector also generates a Chordiant specific Correlation ID and a ReplyToQueue name, which must be retained and returned throughout the process in the MQMD. Chordiant will expect to receive the reply message on this queue using the Chordiant specific Correlation ID to verify that the message returned is matched correctly to its corresponding request.

3.1.4 CHD/MQ Connector processing

The CHD/MQ Connector is used for data both extracted from and sent to Chordiant via MQSeries queues. When a message is placed onto a queue the CHD/MQ Connector attaches an MQMD (Message Descriptor specific to WMQI messages) that contains the ‘Chordiant Correlation Id’ and ‘ReplyToQueue’ queue details, and an RFH2 header. The CHD/MQ Connector then polls this queue for the returning reply message.

When a message is received on this queue the Chordiant Correlation Ids are matched to confirm that it is the request’s corresponding response message.

3.1.5 Sending System – Outbound Message Body Structure

Message Name:
MZ_IFC0542_OT_CheckForDuplicateAddressRqt

Field Delimiters:
XML Message (no delimiters)

Scope of Message:
All Normal Processing.

	Field Name
	Min – Max Usage
	Format
	Possible Values or Comment

	<?xml?>
	1-1
	Header
	version="1.0" encoding="UTF-8"

	<ValidateAddressRequest>
	1-1
	Tag
	

	<SourceSystem>
	1-1
	Text
	xsi:type=”xsd:string”

	<Payload>
	1-1
	Tag
	Data type: xsi:type=‘ns0:vector’

	<item>
	1-1
	Tag
	Defines the CBO where the attributes have come from.

xsi:type=‘ns0:BSBContactorCBO’ OR xsi:type=‘ns0:BSBBusinessContactorCBO’

(TD22637)

	<FamilyName>
	1-1
	Text
	Generic Format see note 3.1.5.1

	</item>
	1-1
	Tag
	Closing

	<item>
	1-1
	Tag
	Defines the CBO where the attributes have come from.

xsi:type=‘ns0:BSBAddressCBO’

	<AddressLine1>
	1-1
	Text
	CR1876

Generic Format see note 3.1.5.2

	<AddressLine2>
	0-1
	Text
	CR1876

Generic Format see note 3.1.5.2

	<AddressLine3>
	0-1
	Text
	CR1876

Generic Format see note 3.1.5.2

	<AddressLine4>
	0-1
	Text
	CR1876

Generic Format see note 3.1.5.2

	<Town>
	1-1
	Text
	Generic Format see note 3.1.5.2

	
	
	
	

	<County>
	0-1
	Text
	Generic Format see note 3.1.5.2

	<Postcode>
	0-1
	Text
	Generic Format see note 3.1.5.2

	<CountryCode>
	1-1
	Text
	Generic Format see note 3.1.5.2

	</item>
	1-1
	Tag
	Closing

	</Payload>
	1-1
	Tag
	Closing

	</ValidateAddressRequest>
	1-1
	Tag
	Closing

Please refer to Appendix A for example message structures.
 Key:
	
	Container Tag

	
	Element Tag

3.1.5.1 Generic Formatting Rules

Data will be sent from the system following the generic format below:

	Data Format
	Comments

	Text
	Left aligned in their fields without trailing spaces.

	Tag
	XML Tag. Chordiant uses the Glue encoder to generate XML messages. The Glue encoder will include generic namespace information in the tags, which can be ignored when transforming messages to different formats. The appendix details an example of the XML structure to be expected.

	Num
	Numbers passed in character format. This format contains no thousand separator (i.e. 1000 instead of 1,000) and does not use a period (.) as a decimal separator. Negative numbers are not expected. XML neither aligns nor pads number fields

3.1.5.2 Address Details

The Address object in Chordiant has been set up to include fields for internal use: HouseName, HouseNumber, Street and Locality, and fields for external use: Address Lines (1–4).

For every address, a call is made to QAS (Quick Address Search), which returns all the required information to correctly populate the address object in Chordiant*. The address will be displayed and persisted correctly to the four internal fields, plus AddressLines (1-4).

The AddressLines (1-4) will then be sent to other systems instead of HouseNumber, HouseName, Street and Locality and effectively represent the way in which the address lines should be displayed for external use.

* In the case that an address has not been validated by QAS, all the address fields will be modifiable and client validation rules will be enforced on all fields. In this case the Address lines 1-4 will be populated automatically via Chordiant logic based on what is entered into the GUI fields.
3.1.6 Control Mechanisms

Any Errors that occur during the processing of the interface will be handled in a standardised way as outlined in the Integration Layer Error Handling Document.

3.1.7 Security and Authorisation

Security information will adhere to the requirements outlined in the document SKY CRM Non-Functional Requirements document. Details of these can be obtained from the Project Office.

3.2 Sending System Inbound Message (Chordiant)

This section describes the reply message received as part of this interface and how it is sent back to the original sending system

3.2.1 Filter and Routing Rules

Filter rules define the business logic associated with messages from system to system and should be implemented within the message flow.

Messages will be placed onto a single queue and routed towards the appropriate messages flows (module flows) using the RFH2 header. Details on this process can be found within the Integration Design Standards document.
	Action
	Replying System Field References
	Comments and Logic

	Filter
	ERROR – CODE

(Control Block)
	If this value does not equal ‘00000000’ then the message will be processed through the error sub-message flow.

3.2.2 Reply-To System Message Structure

Message Name:
MZ_IFC0542_IN_CheckForDuplicateAddressRpy

Field Delimiters:
XML Message

Scope of Message:
All Normal Processing.

	Reply-To System Field Name
	Min - Max Usage
	For-mat
	Mapped From Replying System Field
	Field Transform Rule or Comment

	<?xml?>
	1-1
	Headr
	Default
	version="1.0" encoding="UTF-8"

	<ValidateAddressResponse>
	1-1
	Tag
	Default Value
	See note 3.2.2.2

	<Success>
	1-1
	Boolean
	Default Value
	This field indicates success or failure to the Chordiant application. See note 3.2.2.3

true

Data type: xsi:type=‘xsd:string’

	<Payload>
	1-1
	Tag
	Default Value
	See note 3.2.2.2

	<item>
	1-1
	Text
	DUPLICATE-ADDRESS-IND
	Data type xsi:type=’xsd:string’
See note 3.2.2.4

	<item>
	0-1
	Tag
	Default Value
	Defines the CBO where the attributes map.

See Note 3.2.2.2.

xsi:type=‘ns0:BSBDTVServiceInstance’

	<CardSubscriberId>
	0-1
	Text
	CARD-SUBSCRIBER-ID
	Converted from an Integer to a String. Generic transformation rules apply.

	</item>
	0-1
	Tag
	Closing
	

	<item>
	0-1
	Tag
	Default Value
	Defines the CBO where the attributes map.

See Note 3.2.2.2.

xsi:type=‘ns0:BSBCustomerViewingCardProductElement’

	<Status>
	0-1
	Text
	CARD-STATUS
	Direct Mapping. Generic transformation rules apply.
See Note 3.2.2.5

	<CardNumber>
	0-1
	Num
	CARD-ID
	Direct Mapping. Generic transformation rules apply.

	<CardHolderType>
	0-1
	Text
	CUSTOMER-TYPE
	Direct Mapping. Generic transformation rules apply.
See note 3.2.2.5

	</item>
	0-1
	Tag
	Closing
	

	<item>
	0-1
	Tag
	Default Value
	Defines the CBO where the attributes map.

See Note 3.2.2.2.
xsi:type=‘ns0:BSBCurrency’

	<CurrencyCode>
	0-1
	Text
	CURRENCY-CODE
	See note 3.2.2.6

	</item>
	0-1
	Tag
	Closing
	

	<\Payload>
	1-1
	Tag
	N/a
	Closing

	<\ValidateAddressResponse>
	1-1
	Tag
	N/a
	Closing

Please refer to Appendix B for example messages

 Key:
	
	Container Tag

	
	Element Tag

3.2.2.1 Generic Transform Rules

Data will be sent to the system following the generic format below:

	Data
	Comments

	Boolean
	Values: converted from a single character field (Y, N) to possible values ‘true’ and ‘false’

	Text
	Left aligned in their fields without trailing spaces.

	Num
	Passed in character format. This format contains no separator (i.e. 1000 instead of 1,000) and does not use a period (.) as a decimal separator. Negative numbers will not be passed. Do not strip leading zeros.

3.2.2.2 Namespace Declarations.

Chordiant uses a Glue decoder to generate business objects from XML messages. The Glue decoder will need generic namespace information in the relevant tags, in order to build the objects.

The following XML defines the constant namespaces that will need to be included in XML messages to be passed to Chordiant.

The ****REQUEST NAME**** value represents the name of the request and the ****CBO NAME**** value represents the name of the CBO, these are the only variable values in the namespaces, and are detailed in section 3.2.2

An example message structure showing how this is applied is included in Appendix B.

[image: image3.bmp]
<?xml version="1.0" encoding="UTF-8"?>
<****REQUEST NAME**** xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd=’http://www.w3.org/2001/XMLSchema’ >

<Payload xmlns:ns0=’http://www.themindelectric.com/collections/’ xsi:type
’ns0:vector’>

<item xmlns:ns0=’http://www.themindelectric.com/package/com.bskyb.businessSevices.corporateBusinessClasses/’ xsi:type=’ns0:****CBO NAME****’>

</item>

</Payload>

</****REQUEST NAME****>

3.2.2.3 Success
This tag is included to indicate whether the message is a normal successful response or a standard error response. If the interface has thrown an error the reply message sent will be of a generic format as detailed in the Middleware Integration Layer Error Handling v3.0 document, and will include a success tag of value ‘false’. A reply message that has been successful will be of the format prescribed in section 3.2.2 and will include a success tag of value ‘true’.

3.2.2.4 Value

The value flag indicates whether any duplicate addresses were found by the SCMS. There are three alternatives: -

· A value of 1 indicates that one duplicate was found. Details of the address and service instance will be returned when one duplicate is found. This indicates that validation has been passed.

· A value of 0 indicates that no duplicates were found. No more detail will be returned to Chordiant. This indicates that validation has failed.

· A value of M indicates that many duplicates have been found. No more detail will be returned to Chordiant. This indicates that validation has failed.

The following table describes the customer type value mappings that must be handled by the WMQI broker.

	SCMS parameter
	SCMS value
	CHD Value
	SCMS Description

	DUPLICATE-ADDRESS-IND
	0
	false
	No Duplicates found

	DUPLICATE-ADDRESS-IND
	1
	true
	One Duplicate found

	DUPLICATE-ADDRESS-IND
	M
	Multiple
	Multiple Duplicates found.

3.2.2.5 Card Holder Type, Status.

These attributes constitute enumeration types on the Chordiant data model. As a result the Reference Data Manager (RDM) maintains both the code and description values for the attributes. WMQI will therefore pass the code values supplied by the SCMS, which are the same as the code values that are maintained by the RDM. The value provided by SCMS is therefore mapped directly with no transformation performed.

For information only, the following table displays the code and description values that are held on the RDM and SCMS.

	SCMS parameter
	SCMS Values
	RDM Code Value
	RDM Description
	SCMS Description

	CUSTOMER-TYPE
	COM
	COM
	Commercial
	Commercial Customer

	CUSTOMER-TYPE
	DTH
	DTH
	Direct To Home
	Domestic Customer

	CUSTOMER-TYPE
	RET
	RET
	Retailer
	Retail Customer

	CUSTOMER-TYPE
	CAB
	CAB
	Cable
	Cable Customer.

	CARD-STATUS
	A
	A
	Enabled
	Active

	CARD-STATUS
	B
	B
	ChangeoverEnabled
	Changeover Transit

	CARD-STATUS
	C
	C
	ChangeoverReplaced
	Changeover Replaced

	CARD-STATUS
	D
	D
	Cancelled
	Dead

	CARD-STATUS
	P
	P
	Returned
	RETURNED

	CARD-STATUS
	R
	R
	Replaced
	Replaced

	CARD-STATUS
	T
	T
	InTransit
	Transit

	CARD-STATUS
	U
	U
	ReturnedToSCMS
	Undelivered Active

	CARD-STATUS
	V
	V
	ChangeoverReturnedToSCMS
	Undelivered Changeover

If a join is requested for a customer that is not of the same type, the SCMS will return an error. Generic Error processing will handle the return of any error messages as a result.

The currency Code is returned so that the Chordiant can check that there is no conflict between the currency assigned to the duplicate card and the currency of the customer on the SCMS.

The following table details Status codes valid in SCMS but not in Chordiant. The SCMS should never use these status values, if Chordiant receives them an exception will need to be raised and the SCMS notified. Since no transformation occurs in the middleware, Chordiant will need to raise the data validation since the interface will not fail.

	SCMS parameter
	SCMS Values
	RDM Code Value
	RDM Description
	SCMS Description

	CARD-STATUS
	M
	N/a
	N/a
	Manufactured

	CARD-STATUS
	Q
	N/a
	N/a
	Retail Stock

	CARD-STATUS
	L
	N/a
	N/a
	Limbo

	CARD-STATUS
	S
	N/a
	N/a
	Shipped

3.2.2.6 Currency Code

The following transformation is required:

	SCMS Value
	Chordiant Value
	Description

	GBP
	GBP
	Sterling

	EUR
	EURO
	Euros

Note: If an appropriate mapping is not found then an error should be thrown.

3.2.3 CHD/MQ Connector Processing

As mentioned in section 3.1.4 the CHD/MQ Connector polls a reply queue once the request message has been sent. When a message is received on this queue the CHD/MQ Connector will verify that this reply message relates to the request message that was sent earlier. This is done by comparing the Chordiant Correlation Id’s found within the MQMD.

3.2.4 Control Mechanisms

Messages that are returned to WMQI from the receiving system may have encountered errors within the EntireX and/or SCMS systems themselves. This error information will be mapped to a standardised XML Error Message after being routed to the Error Sub-Message Flow.

In the case that processing is delayed or an error message cannot be sent back to the sending system, then the Sending application will have a time-out set on the interface. This time-out will be set at a value specified by the Chordiant application team. If this time-out is reached then the MQ Connector will roll back any processing and issue a message back to the user screen to explain that the interface has timed out and the user should try again. No other action should be taken in Chordiant.

The sending system will handle errors as outlined within the document SKY CRM Non-Functional Requirements document. Details of these can be obtained from the Project Office.

3.2.5 Security and Authorisation

Security information will adhere to the requirements outlined in the document SKY CRM Non-Functional Requirements document. Details of these can be obtained from the Project Office.

3.2.6 Sending System Events Triggered

A successful response will allow Chordiant to process the returned details.

4 INTEGRATION LAYER TO RECEIVING SYSTEM

4.1 Receiving System Inbound Message (SCMS via EntireX)

This section describes the message received by the receiving system from the integration layer and any reply message that is generated.

4.1.1 Filter and Routing Rules

Messages will be placed onto a single queue and routed towards the appropriate messages flows (module flows) using the RFH2 header. Details on this process can be found within the Integration Design Standards document.
4.1.2 Receiving System Inbound Message Structure

Message Name:
MZ_IFC0542_IN_CheckForDuplicateAddressRqt

Field Delimiters:
Fixed Length

Scope of Message:
All Normal Processing.

	Receiving System Field Name
	Min - Max Usage
	For-mat
	Mapped From Sending System Field
	Field Transform Rule or Comment

	Start CONTROL BLOCK

	API-TYPE
	1-1
	A1
	Default Value
	Required for all ACI functions. Value is always "1".

	API-VERSION
	1-1
	A1
	Default Value
	Relates to the conversation version being used. This indicates to the SCMS the conversation version to be used.

Value for increment 2.3 is “2”.

	FUNCTION
	1-1
	A1
	Default Value
	The EntireX Broker function to be performed. SEND (1) Send requests, messages or replies to the partner

Value is always “1”

	OPTION
	1-1
	A1
	Default Value
	Provides additional information that modifies the behaviour of the EntireX Broker functions. Each option applies to some functions but not necessarily to all functions

Value is always “0”

	RESERVED
	1-1
	A16
	Not Used

Default Value
	This field is not yet supported.

BLANK SPACE.

	SEND-LENGTH
	1-1
	A4
	Default Value
	Specifies the length of data being sent. An explicit send buffer of at least this length must be provided.

Value is always “2000”

	RECEIVE-LENGTH
	1-1
	A4
	Default Value
	Specifies the maximum length of data the caller can receive. The receive length is required with the RECEIVE function and with SEND functions that wait for a reply. An explicit receive buffer of at least this length must be provided.

Value is always “2000”

	RETURN-LENGTH
	1-1
	A4
	Populated by Broker

Not used
	The length of the data being returned. Return length is returned to RECEIVE functions and SEND functions that wait for a reply. The RETURN-LENGTH field contains the length of the data actually returned. The RECEIVE-LENGTH field contains the length of the entire message.

BLANK SPACE.

	ERRTXT-LENGTH
	1-1
	A4
	Default Value
	Length of the error text buffer in bytes. If fewer than 40 bytes, error text may be truncated. A value of 0 (zero) means no error text.

Value is always “40”

	BROKER-ID
	1-1
	A32
	Default Value
	Required for all ACI functions except VERSION. In order to communicate, applications must specify the same BROKER-ID. ETBnnn where nnn is the broker used by partners in a particular environment e.g. Development ETB203. Defaulted to “EBT203”

This value is overridden by the MQ/EntireX connector configuration file with the environment specific BROKER ID

	SERVER-CLASS
	1-1
	A32
	Default Value
	The calling application uses SERVER-CLASS, SERVER-NAME & SERVICE to identify the service that it requires. Using all three fields allows you to organise servers, making them easier to identify, monitor, and maintain. Servers can be organised into server-classes, with each server providing a number of different services. Each service must be defined in the Attribute File

Value is always “SCMS”

	SERVER-NAME
	1-1
	A32
	Default Value
	See above

Value is always “SCMS-API-SERVER”

	SERVICE
	1-1
	A32
	Default Value
	See above

Value is always “CHECK-FOR-DUPLICATE-ADDRESS”

	USER-ID
	1-1
	A32
	Default Value
	USER-ID identifies the caller and is required for all functions except VERSION. The USER-ID is combined with an internal ID or a token if one is supplied in the TOKEN field. The USER-ID and TOKEN combination allows the Broker to identify different sessions as belonging to the same user.

Value is always “MYNAME”

	PASSWORD
	1-1
	A32
	Default Value
	Specifies a password to be transmitted to the EntireX Broker security exits, if available, to check the authentication of the application. The password field is defined as A32, but it can be filled with any binary data

Value is always “ WIBBLE”

	TOKEN
	1-1
	A32
	Default Value

Not used
	If a TOKEN is supplied, it and the USER-ID are used to identify the user. Otherwise, the USER-ID and an internal ID are used. Using a token allows the application to reconnect at a different terminal without losing the existing conversation. When a new call under the same USER-ID is issued from a different location but with the same token, the caller is reconnected to the previous environment

BLANK SPACES.

	SECURITY-TOKEN
	1-1
	A32
	Default Value

Not used
	The initial value is transmitted to the security exit as a credential that is used to calculate the actual security token. After an application's authenticity has been verified by the security exits, the SECURITY-TOKEN can be used to avoid additional authentication checks.

BLANK SPACES.

	CONV-ID
	1-1
	A16
	Broker then populates with Internally generated number.

Default Value
	A unique ID assigned to each conversation by EntireX Broker. Partners must include the CONV-ID in their communications. Messages for the conversation are taken from the queue on a first-in first-out basis. We use this number in the subsequent Receive or EOC functions. See calling conventions

Value is always “NEW”

	WAIT
	1-1
	A8
	Default Value
	When a WAIT value is specified on a SEND or RECEIVE function, it means that the caller will wait for a reply until the specified time limit is reached or until a notification event occurs. If WAIT=YES, the caller will wait until the reply is received or a notification event occurs. If WAIT=NO, the caller will not wait. "10S = 10 Seconds"

Value is always “10S”

	ERROR-CODE
	1-1
	A8
	Populated by Broker

Used
	Returns an error code to the caller. The application should check the contents of this field at the completion of every Broker function.

BLANK SPACES.

	ENVIRONMENT
	1-1
	A32
	Default Value

Not used
	Provides information used by a translation routine, such as the type of translation or the environment of the caller. The contents of the field are purely the responsibility of the application and its associated translation routine.

For example, assume a certain service has a translation routine called ABCTRAN that can perform several types of data conversion, such as EBCDIC-ASCII translation, byte swapping, and mixed data types. The routine needs to know the data formats used by both partners. The ENVIRONMENT field is used to pass this type of information.

BLANK SPACES.

	ADCOUNTER
	1-1
	A4
	Default Value

Not used
	A count of the number of times an attempt was made to deliver a UOW. The count is incremented if a UOW is backed out or timed out

BLANK SPACES.

	USER-DATA
	1-1
	A16
	Default Value.

Not used
	USER-DATA includes information such as a pointer to internal context structures or indices to internal state tables in association with a particular conversation. The USER-DATA field is transmitted on a SEND function and is returned with the message to the receiving application. USER-DATA can be overwritten with each SEND function in the conversation.

The data in this field is binary and is totally untouched by EntireX Broker. It is never transmitted from one application to another. Both sides of a conversation can store different USER-DATA, and both sides always receive their own data.

BLANK SPACES.

	MSG-ID
	1-1
	A32
	Default Value

Not used
	Available only when using either the Version 2 or 3 API and the MQI interface.

BLANK SPACES.

	MSG-TYPE
	1-1
	A16
	Default Value

Not used
	Available only when using either the Version 2 or 3 API and the MQI interface.

BLANK SPACES.

	PTIME
	1-1
	A8
	Default Value

Not used
	Reserved for future use

BLANK SPACES.

	NEWPASSWORD
	1-1
	A32
	Default Value

Not used
	Used to specify a new password to be transmitted to the EntireX Broker security exits, if available, to change the current password

BLANK SPACES.

	ADAPTER-ERROR
	1-1
	A8
	Default Value

Not used
	Available only when using the Version 2 or 3 API.

A detailed error code returned from the low level interface when the ERROR CODE 02159404 is returned. May contain SNA sense codes or MQI error reasons based on the actual protocol used for the server (the DRIVER= keyword of the directory entry).

BLANK SPACES.

	CLIENT-UID
	1-1
	A32
	Populated by Broker

Not used
	When a server issues a RECEIVE function, the USER-ID of the client can be returned to the server in the CLIENT-UID field, enabling the client's authorisation to be checked.

BLANK SPACES.

	CONV-STAT
	1-1
	A1
	Populated by Broker

Not used
	Conversation status. Returned to the receiving application

BLANK SPACES.

	STORE
	1-1
	A1
	Default Value

Not used
	Used with the first SEND function for a UOW to specify whether the UOW is persistent or not. Once established, the persistence of a UOW cannot be altered.

BLANK SPACES.

	STATUS
	1-1
	A1
	Default Value

Not used
	Reserved for future use.

BLANK SPACES.

	End CONTROL BLOCK

	Start SEND BLOCK

	SMA-CONV-ID
	1-1
	A5
	As Below
	Container for the next three fields.

See note 4.1.2.2.

	SMA-CONV-CLASS
	1-1
	A1
	Default Value
	See note 4.1.2.3.

Value is always “S”

	SMA-CONV-TYPE
	1-1
	A2
	Default Value
	See note 4.1.2.4.

Value is always “AC”

	SMA-CONV-VERSION
	1-1
	A2
	Default Value
	See note 4.1.2.5.

Value is always “01”

	SMA-RESERVED
	1-1
	A8
	Default Value
	See note 4.1.2.6.

BLANK SPACES.

	CMS-ID
	1-1
	N5
	<SourceSystem>
	Converted from a Text String to an Integer. Generic transformation rules apply. (SCR28041).

	CARD-TYPE
	1-1
	A2
	Default
	SCMS only supports one card type therefore value always = ‘VI’

	SURNAME
	1-1
	A35
	<FamilyName>
	Direct Mapping. Generic Transformation rules apply.

	ADDRESS-LINE-1
	1-1
	A35
	<AddressLine1>
	CR1876

See note 4.1.2.7

	ADDRESS-LINE-2
	1-1
	A35
	See note 4.1.2.7
	CR1876

See note 4.1.2.7

	ADDRESS-LINE-3
	1-1
	A35
	See note 4.1.2.7
	CR1876

See note 4.1.2.7

	ADDRESS-LINE-4
	1-1
	A35
	See note 4.1.2.7
	CR1876

See note 4.1.2.7

	ADDRESS-LINE-5
	1-1
	A35
	See note 4.1.2.7
	CR1876

See note 4.1.2.7

	POSTCODE
	1-1
	A9
	<Postcode>
	See note 4.1.2.8

	SEND BLOCK WHITE SPACE
	1-1
	A1761
	Blank Spaces up to the fixed limit of 2000.
	The EntireX broker will overwrite this area.

(2000 – 239)

	End SEND BLOCK

	Start RECEIVE BLOCK

	RECEIVE BLOCK
	1-1
	A2000
	Blank Spaces up to the fixed limit of 2000.
	The EntireX broker will overwrite this area.

	End RECEIVE BLOCK

	Start ERROR BLOCK

	ERROR BLOCK
	1-1
	A40
	Blank Spaces up to the fixed limit of 40.
	The EntireX broker will overwrite this area.

	End ERROR BLOCK

Please refer to Appendix C for example messages.

Key:
	
	Control Block Elements

	
	Send Block Elements

	
	Receive Block Elements

	
	Error Block Elements

4.1.2.1 Generic Transform Rules

Data will be sent to and from the SCMS following the given generic format.

	Data Format
	Comments

	Boolean
	Values : passed as a single character field with possible values Y and N.

	A (Text)
	Left aligned in their fields and padded with spaces. If the value is taken directly from the source message and is not a numerical identifier, then data should only be taken from the source field up to the length of the target message field before space padding. This is not required where mapping tables are used or defaults, as length considerations should already be in place.

	DateTime
	YYYYMMDDHHMMSST

	N (Numbers)
	Right aligned and padded with leading zeros.

	Optional Fields
	Where optional fields are not supplied pad with blank spaces.

4.1.2.2 SMA-Conv-Id

The value held in this field denotes the class to which the SCMS API conversation class belongs. It is a composite, default value made up of Class, Type and Version field values.

4.1.2.3 SMA-Conv-Class

This is the first component of the SMA-Conv-Id field. It is to be filled with a default value. All SCMS API conversation types belong to the same class i.e. ‘S’.

4.1.2.4 SMA-Conv-Type

This is the second component of the SMA-Conv-Id field. It identifies the specific conversation type within the conversation class via a unique two-character code. It is to be filled with the value representing the conversation type for Check for Duplicate Address that is ‘AC’.

4.1.2.5 SMA-Conv-Version

This is the third component of the SMA-Conv-Id field. The value held in this field designates whether the message being sent is of Version 1 or Version 2 format. The interface will be built to deal with Version 1 type messages only. This being the case, this field must be populated with a default constant value of ‘01’.

As a result of changeover actions (replacing period 1 cards with period 2 cards), version 2 type messages will need to be incorporated where they exist in the SCMS API. Both period 1 and period 2 cards support version 2 type messages, but period 2 cards will not support version 1 type messages.

4.1.2.6 SMA-Reserved

Blank header space reserved for future use.

4.1.2.7 Address Lines

The SCMS ADDRESS-LINEs should be populated from the Chordiant message as follows:

(note:
p=padded with trailing spaces up to 35 characters (or default to spaces if not present in source message), all resulting fields would be trimmed to 35 char)

SCMS.ADDRESS-LINE-1 = Chd.AddressLine1(p)

[image: image4.wmf]IF Chd.AddressLine2 exists THEN

SCMS.ADDRESS-LINE-2 = Chd.AddressLine2(p)

IF Chd.AddressLine3 exists THEN

SCMS.ADDRESS-LINE-3 = Chd.AddressLine3 (p)

IF Chd.AddressLine4 exists THEN

SCMS.ADDRESS-LINE-4 = Chd.AddressLine4(p)

IF Chd.County exists THEN

SCMS.ADDRESS-LINE-5 = Chd.Town AND Chd.County

ELSE

SCMS.ADDRESS-LINE-5 = Chd.Town(p)

END-IF

ELSE

SCMS.ADDRESS-LINE-4 = Chd.Town(p)

SCMS.ADDRESS-LINE-5 = Chd.County(p)

END-IF

ELSE

SCMS.ADDRESS-LINE-3 = Chd.Town(p)

SCMS.ADDRESS-LINE-4 = Chd.County(p)

SCMS.ADDRESS-LINE-5 = (p)

END-IF

ELSE

SCMS.ADDRESS-LINE-2 = Chd.Town(p)

SCMS.ADDRESS-LINE-3 = Chd.County(p)

SCMS.ADDRESS-LINE-4 = (p)

SCMS.ADDRESS-LINE-5 = (p)

END IF

4.1.2.8 Postcode

The SCMS.Postcode needs to be constructed from the Chd message as follows:

IF Chd.CountryCode = 'IRL'

THEN set SCMS.Postcode = 'ROI ' <i.e. padded with spaces to length 9>

ELSE

IF Chd.Postcode begins 'BFPO'

THEN Take Chd.Postcode chars 1-4, Insert 1 space, add remaining chars from Chd.Postcode and pad to length 9 with spaces.

ELSE

Take off the last 3 non-blank characters from Chd.Postcode. Pad the reminder of Chd.Postcode with spaces to 5 characters, then add back the 3 end characters of Chd.Postcode and pad to overall length 9

END-IF

END-IF

4.1.3 MQ/EntireX Connector Processing

The current solution (CMS to SCMS) uses a list of API calls. The format of the calls and structure of the messages cannot be altered since the SCMS is public to external broadcasters. The MQ/EntireX Connector will fulfill the responsibility of connecting to EntireX (the Broker transportation layer) and pass the messages from the WMQI middleware in the format expected.

Return messages will be passed back to the connector following a similar API call process.

The data passed to EntireX and SCMS is made up of five components, amalgamated together by the MQ/EntireX Connector. These sections include:

· The Broker Stub (wrapper added by the connector)

· Control Block (Used by the EntireX Broker to route the message to the correct SCMS module – highlighted as white in the Inbound message definition). Where control block values may change e.g. BROKER ID, the connector configuration file has been used to override the values defaulted in the WMQI broker.
· Send Data Block (the information from the sending application)
· Receive Data Block (the information requested from SCMS)
· Error Block (containing success and failure codes and messages). This can be found within the receive message on some instances.
Please refer to the ‘Subscriber Management Architecture CMS-SCMS interface specification’ and additional information document version 2.2.
The MQ/EntireX Connector will store the ‘Chordiant Correlation Id’ and the ReplyToQueue (MQMD) values required for the reply message to be processed. Once inside EntireX, the values in the control block will define the routing and processing that occurs.

When the reply message is retrieved the MQ/EntireX Connector will place the new message on the return queue (this queue is unique to the application is part of its configuration - also see section 2.3), and create new RFH2 and MQMD headers by placing the extracted values back into specified fields. It is essential that this information be returned on the reply message to allow the sending system, Chordiant to verify the response and for the WMQI integration layer to locate the reply queue on which to place it.

The sending and receiving of data from EntireX is performed by a single synchronous API call.
4.1.4 Control Mechanisms

As this is a request/reply style interface then in the case of an error between WMQI accepting the request message from the sending system outbound queue until a message has been placed back on the sending system inbound queue, then a standardised error message should be sent back to the sending system where possible. The details about when and how this should be done are outlined in the Integration Layer Error Handling Document.

If a mandatory field does not exist and a default value is not specified for this mapping then the message will be routed through an Error -Sub-Message Flow and returned to the Chordiant application as outlined in the document above.

4.1.5 Security and Authorisation

Security information will adhere to the requirements outlined in the document SKY CRM Non-Functional Requirements document. Details of these can be obtained from the Project Office.

4.1.6 Receiving System Post-processing

There is no Receiving system post-processing requirement for this interface.

4.1.7 Receiving System Events Triggered

The Receiving system will poll its internal ADABAS database as required and return the necessary information. No further events are anticipated or triggered.

4.1.8 Reply Message Sent

A reply message (a response to the request message) is returned to the MQ/EntireX Connector in the format specified in section 4.1.8.3.

4.1.8.1 Information To Be Transmitted and General Process Flow

A reply will always be triggered. The data transmitted will consist of a duplicate address indicator and if appropriate, duplicate address details. Error Handling will be processed as outlined in the Integration Layer Error Handling document.

4.1.8.2 MQ/EntireX Connector processing

When the reply message is received the MQ/EntireX Connector will pass the string (of fixed length) onto an MQSeries queue. Please see section 2.3 for the queue name.

The reply message will also have the RFH2 and MQMD headers appended to it. The ReplyToQueue value is extracted and held by the MQ/EntireX Connector from the inbound message and placed back into the same field of the new MQMD. The message id of the request message is also held and placed into the correlation id field of the reply message.

4.1.8.3 Receiving System Outbound Message Structure (SCMS Via EntireX)

Message Name:
MZ_IFC0542_OT_CheckForDuplicateAddressRpy

Field Delimiters:
The message is of fixed length and contains no delimiters.

Scope of Message:
All Normal Processing.

	Receiving System Field Name
	Min - Max Usage
	Format
	Field Transform Rule or Comment

	Start CONTROL BLOCK

	API-TYPE
	1-1
	A1
	Required for all ACI functions. Value is always "1".

	API-VERSION
	1-1
	A1
	Relates to the conversation version being used. This indicates to the SCMS the conversation version to be used.

Value for increment 2.3 is “2”.

	FUNCTION
	1-1
	A1
	The EntireX Broker function to be performed. SEND (1) Send requests, messages or replies to the partner

Value is always “1”

	OPTION
	1-1
	A1
	Provides additional information that modifies the behaviour of the EntireX Broker functions. Each option applies to some functions but not necessarily to all functions

Value is always “0”

	RESERVED
	1-1
	A16
	This field is not yet supported.

BLANK SPACE.

	SEND-LENGTH
	1-1
	A4
	Specifies the length of data being sent. An explicit send buffer of at least this length must be provided.

Value is always “2000”

	RECEIVE-LENGTH
	1-1
	A4
	Specifies the maximum length of data the caller can receive. The receive length is required with the RECEIVE function and with SEND functions that wait for a reply. An explicit receive buffer of at least this length must be provided.

Value is always “2000”

	RETURN-LENGTH
	1-1
	A4
	The length of the data being returned. Return length is returned to RECEIVE functions and SEND functions that wait for a reply. The RETURN-LENGTH field contains the length of the data actually returned. The RECEIVE-LENGTH field contains the length of the entire message.
BLANK SPACE.

	ERRTXT-LENGTH
	1-1
	A4
	Length of the error text buffer in bytes. If fewer than 40 bytes, error text may be truncated. A value of 0 (zero) means no error text.

Value is always “40”

	BROKER-ID
	1-1
	A32
	Required for all ACI functions except VERSION. In order to communicate, applications must specify the same BROKER-ID. ETBnnn where nnn is the broker used by partners in a particular environment e.g. Development ETB203.

Defaulted to “EBT203”

	SERVER-CLASS
	1-1
	A32
	The calling application uses SERVER-CLASS, SERVER-NAME & SERVICE to identify the service that it requires. Using all three fields allows you to organise servers, making them easier to identify, monitor, and maintain. Servers can be organised into server-classes, with each server providing a number of different services. Each service must be defined in the Attribute File

Value is always “SCMS”

	SERVER-NAME
	1-1
	A32
	See above

Value is always “SCMS-API-SERVER”

	SERVICE
	1-1
	A32
	See above

Value is always “CHECK-FOR-DUPLICATE-ADDRESS”

	USER-ID
	1-1
	A32
	USER-ID identifies the caller and is required for all functions except VERSION. The USER-ID is combined with an internal ID or a token if one is supplied in the TOKEN field. The USER-ID and TOKEN combination allows the Broker to identify different sessions as belonging to the same user.

Value is always “MYNAME”

	PASSWORD
	1-1
	A32
	Specifies a password to be transmitted to the EntireX Broker security exits, if available, to check the authentication of the application. The password field is defined as A32, but it can be filled with any binary data

Value is always “ WIBBLE”

	TOKEN
	1-1
	A32
	If a TOKEN is supplied, it and the USER-ID are used to identify the user. Otherwise, the USER-ID and an internal ID are used. Using a token allows the application to reconnect at a different terminal without losing the existing conversation. When a new call under the same USER-ID is issued from a different location but with the same token, the caller is reconnected to the previous environment

BLANK SPACES.

	SECURITY-TOKEN
	1-1
	A32
	The initial value is transmitted to the security exit as a credential that is used to calculate the actual security token. After an application's authenticity has been verified by the security exits, the SECURITY-TOKEN can be used to avoid additional authentication checks.

BLANK SPACES.

	CONV-ID
	1-1
	A16
	A unique ID assigned to each conversation by EntireX Broker. Partners must include the CONV-ID in their communications. Messages for the conversation are taken from the queue on a first-in first-out basis. We use this number in the subsequent Receive or EOC functions. See calling conventions

	WAIT
	1-1
	A8
	When a WAIT value is specified on a SEND or RECEIVE function, it means that the caller will wait for a reply until the specified time limit is reached or until a notification event occurs. If WAIT=YES, the caller will wait until the reply is received or a notification event occurs. If WAIT=NO, the caller will not wait. "10S = 10 Seconds"

Value is always “10S”

	ERROR-CODE
	1-1
	A8
	Returns an error code to the caller. The application should check the contents of this field at the completion of every Broker function.

BLANK SPACES.

	ENVIRONMENT
	1-1
	A32
	Provides information used by a translation routine, such as the type of translation or the environment of the caller. The contents of the field are purely the responsibility of the application and its associated translation routine.

For example, assume a certain service has a translation routine called ABCTRAN that can perform several types of data conversion, such as EBCDIC-ASCII translation, byte swapping, and mixed data types. The routine needs to know the data formats used by both partners. The ENVIRONMENT field is used to pass this type of information.

BLANK SPACES.

	ADCOUNTER
	1-1
	A4
	A count of the number of times an attempt was made to deliver a UOW. The count is incremented if a UOW is backed out or timed out

BLANK SPACES.

	USER-DATA
	1-1
	A16
	USER-DATA includes information such as a pointer to internal context structures or indices to internal state tables in association with a particular conversation. The USER-DATA field is transmitted on a SEND function and is returned with the message to the receiving application. USER-DATA can be overwritten with each SEND function in the conversation.

The data in this field is binary and is totally untouched by EntireX Broker. It is never transmitted from one application to another. Both sides of a conversation can store different USER-DATA, and both sides always receive their own data.

BLANK SPACES.

	MSG-ID
	1-1
	A32
	Available only when using either the Version 2 or 3 API and the MQI interface.

BLANK SPACES.

	MSG-TYPE
	1-1
	A16
	Available only when using either the Version 2 or 3 API and the MQI interface.

BLANK SPACES.

	PTIME
	1-1
	A8
	Reserved for future use

BLANK SPACES.

	NEWPASSWORD
	1-1
	A32
	Used to specify a new password to be transmitted to the EntireX Broker security exits, if available, to change the current password

BLANK SPACES.

	ADAPTER-ERROR
	1-1
	A8
	Available only when using the Version 2 or 3 API.

A detailed error code returned from the low level interface when the ERROR CODE 02159404 is returned. May contain SNA sense codes or MQI error reasons based on the actual protocol used for the server (the DRIVER= keyword of the directory entry).

BLANK SPACES.

	CLIENT-UID
	1-1
	A32
	When a server issues a RECEIVE function, the USER-ID of the client can be returned to the server in the CLIENT-UID field, enabling the client's authorisation to be checked.

	CONV-STAT
	1-1
	A1
	Conversation status. Returned to the receiving application

	STORE
	1-1
	A1
	Used with the first SEND function for a UOW to specify whether the UOW is persistent or not. Once established, the persistence of a UOW cannot be altered.

BLANK SPACES.

	STATUS
	1-1
	A1
	Reserved for future use.

BLANK SPACES.

	End CONTROL BLOCK

	Start SEND BLOCK

	SMA-CONV-ID
	1-1
	A5
	Container for the next three fields.

See note 4.1.2.2.

	SMA-CONV-CLASS
	1-1
	A1
	See note 4.1.2.3.

Value is always “S”

	SMA-CONV-TYPE
	1-1
	A2
	See note 4.1.2.4.

Value is always “AC”

	SMA-CONV-VERSION
	1-1
	A2
	See note 4.1.2.5.

Value is always “01”

	SMA-RESERVED
	1-1
	A8
	See note 4.1.2.6.

BLANK SPACES.

	CMS-ID
	1-1
	A5
	CMS Identifier. 5 digit numeric code. 00001

	CARD-TYPE
	1-1
	A2
	Copy of Request Message Send Area

	SURNAME
	1-1
	A35
	Copy of Request Message Send Area

	ADDRESS-LINE-1
	1-1
	A35
	Copy of Request Message Send Area

	ADDRESS-LINE-2
	1-1
	A35
	Copy of Request Message Send Area

	ADDRESS-LINE-3
	1-1
	A35
	Copy of Request Message Send Area

	ADDRESS-LINE-4
	1-1
	A35
	Copy of Request Message Send Area

	ADDRESS-LINE-5
	1-1
	A35
	Copy of Request Message Send Area

	POSTCODE
	1-1
	A9
	Copy of Request Message Send Area

	SEND BLOCK WHITE SPACE
	1-1
	A1962
	The EntireX broker will overwrite this area.

	End SEND BLOCK

	Start RECEIVE BLOCK

	ERROR-DATA
	1-1
	A116
	N/a. This is a container name.

	ERROR-NR
	1-1
	A4
	SCMS Error Number

	ERROR-MSG
	1-1
	A80
	SCMS Error Message

	ERROR-RESERVED
	1-1
	A32
	SCMS Error Reserved Field

	DUPLICATE-ADDRESS-IND
	1-1
	A1
	Indicates: -
No Duplicates
0
One Duplicate
1
Many Duplicates
M

Mandatory field

If 0 then no further fields are returned.
If 1 then name and address details are returned.
If M then no further fields are returned.

	TITLE
	1-1
	A5
	E.g. MRS

	INITIALS
	1-1
	A3
	Initial of forename. E.g. S

	SURNAME
	1-1
	A35
	E.g. ANYONE

	ADDRESS-LINE-1
	1-1
	A35
	E.g. SSSL

	ADDRESS-LINE-2
	1-1
	A35
	E.g. 1 MACKINTOSH ROAD

	ADDRESS-LINE-3
	1-1
	A35
	E.g. KIRKTON CAMPUS

	ADDRESS-LINE-4
	1-1
	A35
	E.g. LIVINGSTON

	ADDRESS-LINE-5
	1-1
	A35
	Eg. WEST LOTHIAN

	POSTCODE
	1-1
	A9
	E.g. EH54 7BW

	COUNTRY-CODE
	1-1
	A3
	Great Britain
GBR
Ireland

IRL

	CARD-SUBSCRIBER-ID
	1-1
	N8
	Subscriber Identification Number

	CARD-TYPE
	1-1
	A2
	VI – Only type VI (Video) is supported by the SCMS

	CARD-STATUS
	1-1
	A1
	Active

A
Changeover Transit
B
Changeover Replaced
C
Dead

D
Limbo

L
Manufactured

M
RETURNED

P
Retail Stock

Q
Replaced

R
Shipped

S
Transit

T
Undelivered Active

U
Undelivered Changeover
V

	CURRENCY-CODE
	1-1
	A4
	Sterling
GBP
Irish
EUR

	CARD-ID
	1-1
	N12
	Card Identification Number.

	CUSTOMER-TYPE
	1-1
	A3
	Direct to Home / Domestic Customer
DTH
Commercial

COM
Retailer

RET
Cable

CAB

	RECEIVE AREA WHITE SPACE
	1-1
	A1633
	White space to fill up to total of A2000 (2000 – 377)

	End RECEIVE BLOCK

	Start ERROR BLOCK

	ERROR BLOCK
	1-1
	A40
	If a system error has occurred this field will contain the error text message.

	End ERROR BLOCK

Please refer to Appendix D for example messages.

Key:
	
	Control Block Elements

	
	Send Block Elements

	
	Receive Block Elements

	
	Error Block Elements

4.1.8.3.1 Generic Formatting Rules

Data will be sent to and from the SCMS following the given generic format.

	Data Format
	Comments

	Boolean
	Values: passed as a single character field with possible values Y and N.

	Text Strings
	Padding with spaces required. Left aligned.

	DateTime
	YYYYMMDDHHMMSST (T=Tenth)

	Units
	Fixed units and conversions are specified for any fields for which this is relevant.

	Numbers
	Passed in character format. This format contains no separator (i.e. 1000 instead of 1,000) and uses a period (.) as a decimal separator. Negative numbers are not expected.

Numbers are right aligned and padded with leading zeros.

5 APPENDIX

5.1 APPENDIX A: CHD XML Request Message Example Structure

<?xml version="1.0" encoding="UTF-8"?>
<ValidateAddressRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<UserId xsi:type="xsd:string">BWA01</UserId>

<SourceSystem xsi:type="xsd:string">00001</SourceSystem>

<Version xsi:type="xsd:string">1.0</Version>

<Payload xmlns:ns0="http://www.themindelectric.com/collections/" xsi:type="ns0:vector">

<item xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/" xsi:type="ns0:BSBContactorCBO">

<FamilyName>...</FamilyName>

</item>

<item xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/" xsi:type="ns0:BSBAddressCBO">

<AddressLine1>1</AddressLine1>

<AddressLine2>1 MACKINTOSH ROAD</AddressLine2>

<AddressLine3> KIRKTON CAMPUS</AddressLine3>

<AddressLine4></AddressLine4>

<Postcode>EH549BW</Postcode>

<Town>LIVINGSTON</Town>

<County>WEST LOTHIAN</County>

<CountryCode>GBR</CountryCode>

</item>

</Payload>
</ValidateAddressRequest>
5.2 APPENDIX B: CHD XML Response Message Example Structure

<?xml version="1.0" encoding="UTF-8"?>
<ValidateAddressResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<Success xsi:type="xsd:boolean">true</Success>

<Payload xmlns:ns0="http://www.themindelectric.com/collections/" xsi:type="ns0:vector">

<item xsi:type="xsd:string">...</item>

<item xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/" xsi:type="ns0:BSBDTVServiceInstance">

<CardSubscriberId>...</CardSubscriberId>

</item>

<item xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/" xsi:type="ns0:BSBCustomerViewingCardProductElement">

<CardStatus>...</CardStatus>

<CardNumber>...</CardNumber>

<CardHolderType>...</CardHolderType>

</item>

<item xmlns:ns0="http://www.themindelectric.com/package/com.bskyb.businessServices.corporateBusinessClasses/" xsi:type="ns0:BSBCurrency">

<CurrencyCode>...</CurrencyCode>

</item>

</Payload>
</ValidateAddressResponse>
5.3 APPENDIX C: SCMS Message Inbound Send Area Example Data

SAC01^^^^^^^^00001VIANYONE^^^^^^^^^^^^^^^^^^^^^^^^^^^^^SSSL^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^1^MACKINTOSH^ROAD^^^^^^^^^^^^^KIRKTON^CAMPUS^^^^^^^^^^^^^^^^^^^^^LIVINGSTON^^^^^^^^^^^^^^^^^^^^^^^^^WEST^LOTHIAN^^ EH54^9BW^

	1
	S

	2
	AC

	3
	01

	4
	^^^^^^^^

	5
	00001

	6
	VI

	7
	ANYONE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

	8
	SSSL^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

	9
	1^MACKINTOSH^ROAD^^^^^^^^^^^^^^^^^^

	10
	KIRKTON^CAMPUS ^^^^^^^^^^^^^^^^^^^^^

	11
	LIVINGSTON^^^^^^^^^^^^^^^^^^^^^^^^^

	12
	WEST^LOTHIAN ^^^^^^^^^^^^^^^^^^^^^^^

	13
	EH54^9BW ^

^ = Whitespace.

5.4 APPENDIX D: SCMS Message Outbound Receive Area Example Data

0000^^1MRS^^S^^ANYONE^^^^^^^^^^^^^^^^^^^^^^^^^^^^^SSSL^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^1^MACKINTOSH^ROAD^^^^^^^^^^^^^KIRKTON^CAMPUS^^^^^^^^^^^^^^^^^^^^^LIVINGSTON^^^^^^^^^^^^^^^^^^^^^^^^^WEST^LOTHIAN^^EH54^9BW^GBR00005678VIAGBP000012348765DTH

	1
	0000

	2
	^^^^… (80 Spaces)

	3
	^^^^… (32 Spaces)

	4
	1

	5
	MRS^^

	6
	S^^

	7
	ANYONE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

	8
	SSSL^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

	9
	1^MACKINTOSH^ROAD^^^^^^^^^^^^^^^^^^

	10
	KIRKTON^CAMPUS ^^^^^^^^^^^^^^^^^^^^^

	11
	LIVINGSTON^^^^^^^^^^^^^^^^^^^^^^^^^

	12
	WEST^LOTHIAN ^^^^^^^^^^^^^^^^^^^^^^^

	13
	EH54^9BW ^

	14
	GBR

	15
	00005678

	16
	VI

	17
	A

	18
	GBP

	19
	000012348765

	20
	DTH

^ = Whitespace.

5.5 APPENDIX E: Volumetrics

5.5.1 Average Volume

Analysis performed by the Order Fulfillment define team in conjunction with conditional access, provides the following call volumes for this conversation.

	Conversation Type
	Av/min
	Peak/min

	Check For Duplicate Address
	46
	388

Ref. “Local NFR Order Fulfillment - Interact with SCMS”

Of the two values proposed we will take the higher: 388.

4

3

2

1

MQ/EntireX Connector

Queue

 Queue

MQSeries

			

messages

messages

Chordiant

EntireX Broker

CHD/MQ Connector

Websphere MQ Integrator*

IFC0542_CHD_Check for Duplicate Address

(Increment 2.3 Architecture)

C

5

6

8

7

9

10

11

12

13

SCMS API

SCMS

	Version:
	3.10
	Page 1 of 1

	Date:
	27/04/2005 10:06 AM

	Ref
	DV_FD_IFC0542_CHD_Check For Duplicate Address v3.10_wip.doc

PAGE
	Version:
	3.13
	Page 1 of 38

	Date:
	27/04/2005 10:06

	Ref
	DV_FD_IFC0542_CHD_Check For Duplicate Address v3.12wip.doc

