	Sky CRM Programme

BSkyB MQSeries Design
	[image: image2.emf]

BSKYB CRM PROGRAMME

MQSeries Detailed Design

	Client:
	BSkyB

	Project:
	BskyB CRM Project

	Release:
	2.3

	
	

	Authors:
	A. Wilkins

	Creation Date:
	11/07/2002

	Last Updated:
	08/11/2002

	Version:
	1.3

Document Contributors

	Team
	Role
	Name
	Date
	Signature

	Integration
	MQSeries Designer
	A Wilkins
	05/08/02
	

	Integration
	MQSeries Design Authority
	T Robinson
	
	

	Integration
	Integration Infrastructure Team Lead
	L Puddy
	
	

Sign-Off List
	Name
	Position
	Sign-off Date
	Signature

	Tim Robinson
	MQSeries Design Authority
	
	

	Luke Puddy
	Integration Infrastructure Team Lead
	
	

	Mike Fitch
	Integration Architect
	
	

	Chun Ng
	Integration Team Lead
	
	

Distribution List

	Name
	Position

	Tim Robinson
	MQSeries Design Authority

	Luke Puddy
	Integration Infrastructure Team Lead

	Mike Fitch
	Integration Architect

	Chun Ng
	Integration Team Lead

	Alex Wilkins
	MQSeries Designer

	Louise Lahiff
	MQSeries Developer

	Justin Rogers
	WMQI Design Lead

	Sean Strain
	SAT Team Lead

	Norman MacLeod
	Development Stream Lead

Related Documentation

	Ref
	Title
	Author
	Version

	1.
	MQSeries Volumetrics Spreadsheet
	Alex Wlikins
	Current version

	2.
	Integration Infrastructure Design
	Luke Puddy
	0.1

	3.
	BSkyB Generic API Connector Functional Design
	Tim Robinson
	1.0

Amendment History

	Version Number
	Name
	Date
	Description of changes or Other Comments

	0.1
	Alex Wilkins
	
	Initial Draft

	0.2
	Tim Robinson
	
	QA Changes

	0.3
	Luke Puddy
	
	QA Changes

	1.0
	Luke Puddy
	
	Incorporating QA changes from Mike Fitch

	1.1
	Tim Robinson
	17/01/03
	Added DLQ handler configuration

	1.2
	Tim Robinson
	20/01/03
	Added channel security recommendation

	1.3
	Luke Puddy
	18/03/03
	QA Changes

CONTENTS

61
Introduction and Background

61.1
Purpose

61.2
Scope

72
MQSeries Object Design

72.1
MQSeries Objects Design Principles

72.1.1
Use Object Definition and Update Scripts

82.1.2
Define BSkyB MQSeries Object Templates

82.1.3
Accept the MQSeries Default Values

82.1.4
Object Descriptions

82.1.5
Always Use Network Machine Hostname

92.1.6
Configure all Queue Managers With Dead Letter Queues

92.1.7
Configuring a Dead Letter Queue Handler

102.1.8
Configure ‘Spoke’ Queue Managers With Default Transmission Queues

102.1.9
Make Triggering Standard for all Sender Channels

102.2
Queue Managers

112.2.1
Queue Manager Design Decisions

112.2.2
Queue Manager Default Properties

112.2.3
Queue Manager Definition Interface Specific Attributes

112.3
Local Queues

122.3.1
Local Queue Design Decisions

122.3.2
Local Queue Default Properties

122.3.3
Local Queue Interface-Specific Properties

132.4
Remote Queues

132.4.1
Remote Queue Definition Default Properties

132.4.2
Remote Queue Definition Interface Specific Properties

132.5
Alias Queues

142.6
Channels

142.6.1
Channel Design decisions

152.6.2
Channel Definition Default Properties

152.6.3
Channel Definition Interface-Specific Properties

152.6.4
Server Connection Channels and MQSeriesClients

162.7
Process Definitions

162.7.1
Process Definition Design decisions

162.7.2
Process Definition Default Properties

162.7.3
Process Definition Interface-Specific Properties

163
MQSeries Message Design

173.1
Message Types

173.2
The MQSeries Message Descriptor Header (MQMD)

183.2.1
Message Persistence.

183.2.2
Request/Reply Messaging

183.2.3
Message Expiry

183.2.4
Dynamic Queues

193.2.5
Message Priority

193.2.6
Message ID and Correlation ID Fields

203.2.7
All other MQMD Fields

203.3
Other Message Headers

203.3.1
MQRFH and MQRFH2

203.3.2
Other Headers

213.4
Message Payload - the Application Data

213.5
Message Affinities and Dependencies

213.5.1
Intra-Interface Message Dependencies

223.5.2
Inter-Interface Dependency of Messages

234
MQSeries Application Design

234.1
Default All API calls to default to Queue definition values

234.1.1
Persistence

234.1.2
Priority

234.2
Applying and Preserving Message Identifiers

244.3
MQRFH2

244.4
MQSeries Triggering

244.4.1
Configure Local Queue for Triggering

264.5
No MQSeries Trusted Applications

275
MQSeries Logging

286
MQSeries Sizing

286.1
Disk space considerations

286.2
Sizing Message Queues

286.3
Sizing Log files

306.4
BSkyB Log File Sizing Recommendations

317
MQSeries Performance Tuning

317.1
Log Buffer Size

317.2
Pipelining

317.3
Fastpath Channels

327.4
Queue Buffer Size

327.5
Queue File Size

328
MQSeries Clustering

339
MQSeries Clients and MQSeries Servers

3310
MQSeries Security

3310.1
Identification and Authentication

3410.2
Authorisation

3410.3
Define Appropriate Access To MQSeries Objects and API Calls On All MQSeries Host Platforms

3610.4
Securing the MQSeries Dataset

3610.5
Securing the MQSeries User Interfaces

3610.6
Define Appropriate Access to MQSeries Objects and API Calls on MQSeries Host Platforms

3710.7
MQSeries Queue Manager Processes

3710.7.1
Manual

3710.7.2
Automated

3710.8
Monitoring MQSeries Objects

3710.8.1
Queues

3810.8.2
Channel Status

3910.9
MQSeries Error Log Files

3910.9.1
Monitoring Error Logs

4011
Roles & Responsibilities

40Appendix A – MQ Series Definitions

42Appendix B – Sample MQSeries Object Definition Script

44Appendix C – Standard MQSeries Queues

45Appendix D – Structure of the MQSeries Message Descriptor (MQMD)

47Appendix E – Configuration of the runmqdlq utility

1 Introduction and Background

This document is concerned with the low level design of the MQSeries architecture. It is an extension of the design and approach outlined in the Integration Infrastructure Design document and will focus on the details of the MQSeries core middleware transport system.

The same design principles apply with the overriding focus being on ‘keeping things simple’.

The innate flexibility of the middleware infrastructure software also requires strict adherence to naming conventions and other design standards to minimise administrative overhead and provide a manageable, reliable and scalable middleware environment.

1.1 Purpose

This document contains the design decisions that should be used to guide the development and implementation of the MQSeries infrastructure by the Middleware Infrastructure group. It should also be used as a reference by the Technical Architecture (TA) team and application development teams that will interface to MQSeries.

1.2 Scope

The Middleware Infrastructure design is being driven by the needs of the BSkyB CRM Programme. The design of the middleware infrastructure must first and foremost meet project requirements, but it is also anticipated that it may form a common integration platform for future BSkyB projects.

The scope will include four physical environments in line with those defined by the TA team comprising:

· Development

· Systems Integration

· Pre - production

· Production

These physical environments will be used to host multiple logical environments.

For the purposes of this document we are making the following assumptions about the software versions:
· MQSeries version 5.2.1 for Windows NT / Windows 2000

· MQSeries version 5.2 for Sun Solaris

This low level design should not be considered to be all encompassing because many of the specific business requirements for interfaces within the current scope of the Middleware Infrastructure project are not known at this stage. This design sets the general approach and guidelines to be used for the BSkyB environment and it is expected that it will be amended and expanded with additional detailed design when all the requirements, systems and networks are known for all environments through to Production.

2 MQSeries Object Design

The IBM MQSeries Message Oriented Middleware consists of the following components:

· Queue Manager

· Queues, which cover:

· Local Queues

· Remote Queues

· Special Queues, such as transmission, event and initiation queues

· Alias Queues

· Processes

· Triggers

· Channels

A full definition of all these components appears in Appendix A – MQ Series Definitions

This design is concerned with the specific configuration and deployment of these components to provide a cohesive, scalable and robust transport layer.

2.1 MQSeries Objects Design Principles

2.1.1 Use Object Definition and Update Scripts

All MQSeries objects will be created exclusively through use of object definition scripts. These text files are designed to be used with the standard MQSeries MQSC command line interface (‘runmqsc’). Each script will contain the object definitions of all objects belonging to an individual queue manager. The REPLACE option will be used so that the scripts can be run multiple times and any existing object definitions on the queue manager are replaced by the definitions in the script. If queues definitions are replaced, any messages on the queue are still retained. If the object definition does not already exist, it is created.

As a further step, the MQSC will not be called directly for object creation or update, but will be encapsulated into platform-specific executable scripts that will append information to log files every time that they are called. This will provide BSkyB with a basic level of logging of all user interventions with MQSeries object creation or updates.

If any of the customisable features of a queue manager are changed from the MQSeries default values, the ALTER QMGR command with appropriate parameters should be added to the queue manager’s definition script to ensure that the queue manager can be returned to a known state.

The scripts will be modularised so that the objects particular to each application that makes use of the queue manager will be grouped together. This will make it easier to separate the objects and migrate them to different queue managers if an application is migrated to a different host.

Scripts will be used:

1. To ease the process of migrating objects through the promote-to-production model.

2. To enable the queue manager object to be built quickly to a known state.

3. To assist in recovery/re-build of a queue manager.

2.1.2 Define BSkyB MQSeries Object Templates

At the time a queue manager is created a number of default MQSeries objects and queues are generated. Typically these begin with the word SYSTEM and are used by MQSeries as a template whenever a new object is created, so for example the SYSTEM.DEFAULT.LOCAL.QUEUE defines the default settings for all new queues that are created within the queue manager. It is possible to modify the SYSTEM default objects, thus altering the default properties of objects created from them. Alternatively, it is possible to specify an alternate set of template objects specific to BSkyB.

An alternate set of template objects will be defined in a script, which will have the convention of replacing SYSTEM with CRM, e.g. SYSTEM.DEFAULT.LOCAL.QUEUE will become CRM.DEFAULT.LOCAL.QUEUE. The description of the default properties of each objects template definition will be specified in the following sections by object type. Note that because of the use of BSkyB template objects, the system default objects should never be changed.

Any variations from the MQSeries default values must be commented in the script.

See Appendix B for an example of the BSkyB default object definition script and for a list of the standard MQSeries system queues created.

2.1.3 Accept the MQSeries Default Values

Accept the MQSeries default values, and only change them if there is a good business requirement to do so.

2.1.4 Object Descriptions

All object definitions have a DESCR attribute to hold a description of the purpose of the object. MQSeries takes no action on the value, but allows it to be viewed. The description field for all objects should be completed with a meaningful description. This will assist MQSeries administrators and support teams during object administration and error handling. For this attribute either upper or lower case may be used, but for consistency sake it is recommended that only upper case should be used.
2.1.5 Always Use Network Machine Hostname

Many of the MQSeries queues will need to exchange messages between machines, and for this the configuration requires the remote network machine hostname to be known. This network node name can be:

· A short node name (LIVMQ1)

· A fully qualified node name (LIVMQ1.bskyb.com)

· An IP Address

· An Alias to any of the above.

For convenience and ease of network management, it is recommended that IP addresses are not configured directly into the MQSeries configuration, and that the node name (preferably the short node name) should be used instead.

2.1.6 Configure all Queue Managers With Dead Letter Queues

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message queue, is a special queue within MQSeries for holding messages that cannot be delivered to their destination queues. The DLQ can have messages added to it by queue managers, message channel agents and MQSeries applications.

By default, a queue manager is created with no DLQ defined, but it is normally recommended to define a DLQ and have it monitored either by the IBM provided DLQ monitor program (runmqdlq) or by a third party system management tool.

The main reason for configuring a DLQ is to avoid potential ‘poison message’ problems. This can occur, for example, if an application attempts to put a message on a queue on a remote queue manager, but the specified queue name does not exist. The channel is stopped, and the message remains on the transmission queue, and attempts to restart the channel will result in it stopping again until the offending message is removed from the transmission queue. This means that a ‘poison’ message can potentially stop all message traffic that would normally use these channels. If a DLQ is configured on the receiving queue manager, the message will be transferred to the remote queue manager and placed in its DLQ because its ‘target’ queue is unknown, and the channel remains running.

A similar situation can occur when a system is transferring a message to a remote system and the remote queue is full. If a DLQ is not configured, then the channel will be stopped, even though this channel could be serving multiple queues, many of which have plenty of available space. If a DLQ is configured and messages cannot be written to a full target queue, they will continue to be written to the DLQ until space becomes available on the ‘target’ queue. This situation highlights a potential problem of configuring a DLQ where message affinity (sequence) is required. If a queue becomes temporarily full, messages will be written to the DLQ until the required queue is able to accept more messages, but the messages written to the DLQ will not be moved back to the target queue – therefore message affinity is lost.

On balance, it is safer to configure a DLQ because it is a well-known location to catch unexpected errors, and BSkyB has no currently known requirements for message affinity (i.e. where all messages need to be received for a logical unit of work to be completed). In order for the WMQI Infrastructure to support sequencing of messages, the message flows must be configured appropriately (input node parameter). Message sequencing and message affinity is discussed in detail in the section Message Affinities and Dependencies. To avoid the potential issue of destination queues filling up, queue depths need to be monitored and remedial actions taken or a controlled shutdown sequence initiated when thresholds are exceeded. This is one area where ESM is expected to play an important role.

2.1.7 Configuring a Dead Letter Queue Handler

In all MQSeries environments, there should be a routine that runs regularly to process messages on the DLQ. MQSeries supplies a default routine, called the dead-letter queue handler (the DLQ handler), which is invoked using the runmqdlq command. Instructions for processing messages on the DLQ are supplied to the DLQ handler by means of a user-written rules table. That is, the DLQ handler matches messages on the DLQ against entries in the rules table; when a DLQ message matches an entry in the rules table, the DLQ handler performs the action associated with that entry.

The logic for the BSkyB DLQ queue handler is as follows. When a message arrives on the dead letter queue five attempts are made to retry the MQSeries operation. The interval between retry operations is 15 seconds. After the fifth failure the message is put to an ‘unrecoverable bad message queue’ for manual processing. An example configuration file for the runmqdlq program is provided in appendix E.

The command that should be used to run the dead letter queue handler is:

‘nohup runmqdlq CRM.DEAD.LETTER.QUEUE QueueManager <CRM.DLQ.RULES &’

2.1.8 Configure ‘Spoke’ Queue Managers With Default Transmission Queues

In accordance with the hub and spoke architecture, all application queue managers should be configured so that the primary transmission queue to the WMQI broker is set as the default transmission queue. The WMQI broker queue manager should never be configured with a default transmission queue.

The configuration that must be avoided is a loop of default transmission queues. MQSeries does not detect this situation, and will continue to forward the messages as directed.

2.1.9 Make Triggering Standard for all Sender Channels

A queue manager defines certain conditions as constituting ‘trigger events’. If triggering is enabled for a queue and a trigger event occurs, the queue manager sends a trigger message to a queue called an initiation queue. The presence of the trigger message on the initiation queue indicates that a trigger event has occurred.

All transmission queues in the BSkyB environment should be configured to trigger Sender channels using the parameters TRIGTYPE (FIRST) and TRIGMPRI(0).

This combination means that a trigger message is written to the initiation queue whenever the first message of priority equal to or greater than that specified by the TRIGMPRI parameter of the queue arrives on the queue. TRIGMPRI is the message priority number that will actually trigger the queue. The integer that defines message priority ranges in value from 0 – the lowest (and default) priority – to 9, which in the BSkyB environment is being used solely for the BAC Connector stop messages.

On Version 5 platforms, the corresponding channel name is specified as Trigger Data. Use the supplied Initiation Queue name, 'SYSTEM.CHANNEL.INITQ', and a Channel Initiator.

· For more information, see the section on MQSeries Triggering.
2.2 Queue Managers

Queue managers provide queuing services to applications, and manage the queues that belong to them. They ensure that:

· Object attributes are changed according to the commands received.

· Special events such as trigger events or instrumentation events are generated when the appropriate conditions are met.

· Messages are put on the correct queue, as requested by the application making the MQPUT call. The application is informed if this cannot be done, and an appropriate reason code is given.

· Messages are retrieved from the correct queue, as requested by the application making the MQGET call. The application is informed if this cannot be done, and an appropriate reason code is given.

MQSeries supports multiple queue managers on the same machine, but it is recommended that BSkyB use one queue manager per machine where possible to minimise maintenance and maximise performance. Multiple queue managers on one machine should only be used where there is a good functional reason for it, such as each queue manager belongs to a different promotional environment.

2.2.1 Queue Manager Design Decisions

· There will be one Queue Manager per ‘node’ in the landscape. However, a Queue Manager will never serve more than one promotional environment.

· In cases where more than one queue manager does exist on a node, generally the first queue manager will be set to being the default queue manager where there are requirements for this being so (e.g. through the presence of an application / adapter which requires that a default Queue Manager be designated). This will be inappropriate if there is a mix of queue managers from different promotional environments on the same node, in which case it must be considered on a case-by-case basis.

· The type of logging used (circular or linear) will be covered in the logging section of this document.

· The Start-up Type should be set to automatic for all queue managers on Windows platforms - currently only the WMQI configuration manager. Note however that this also applies to the channel initiator, the command server and the listener (where used).

2.2.2 Queue Manager Default Properties

The following default values and properties will be used for the BSkyB queue manager definitions:

· DEADLETTERQUEUE = ‘CRM.DEAD.LETTER.QUEUE’. This will hold messages that have been sent to the right queue manager but the queue does not exist or is full. The name of this queue will be identical on all queue managers (REF Configure all Queue Managers With Dead Letter Queues).

· All other attributes set to the same value as the default values except where noted.

2.2.3 Queue Manager Definition Interface Specific Attributes

The following attributes will initially have default values, but are the most likely to change based on interface-specific requirements:

· The MAXMSGL attribute defines the maximum message length allowed for all queues managed by the queue manager. This attribute will be set individually once the detailed results of sizing are complete. Initially it will take the default value, which is platform specific but is generally 4Mb.

· The logging details of the number of primary and secondary files, and the number of log file pages, will also be set individually once the results of the detailed sizing of all the interfaces is complete. The default values are 3 primary and 2 secondary files of either 256 (NT, W2K) or 1024 (UNIX) 4Kb log file pages.

2.3 Local Queues

A queue is an MQSeries object that can store messages. Each queue has queue attributes that determine what happens when applications reference the queue in MQI calls.

See Appendix B for an example set of queue definitions in the MQSeries object definition script.

2.3.1 Local Queue Design Decisions

· The transmission queues will be named the same as their destination queue manager. This leads to MQSeries defaulting to sending messages to the correct queue manager in the absence of other information.

· On all queue managers, it is recommended that the DLQ be called CRM.DEAD.LETTER.QUEUE with the final dead letter queue that the dead letter will put a message to if unable to reprocess a message from the CRM.DEAD.LETTER QUEUE being SYSTEM.DEAD.LETTER.QUEUE.

· On all queue managers, there will be one general initiation queue for application-specific triggering that will be created called SYSTEM.DEFAULT.INITIATION.QUEUE. Only one such queue is necessary per queue manager for setting triggering on multiple application queues as the queue manager places all relevant information for each trigger in the trigger messages. One queue called SYSTEM.CHANNEL.INITQ will also be configured per queue manager to be used for all channel triggering by transmission queues.

2.3.2 Local Queue Default Properties

The following default values will be used for the BSkyB template queue definitions:
· REPLACE set to enable the queue definition to be updated easily with any attribute changes.

· DEFPSIST = YES. Specifies the message persistence to be used when applications specify the MQPER_PERSISTENCE_AS_Q_DEF option. It ensures that persistent messages will result where no message attribute is specified, or where the message takes its persistence setting from the queue. The persistence attribute of the message should be set accordingly in the Chordiant MQPDM / JX connector and other connectors when initiating a unit of work (as detailed in the Interface Functional Designs) and the WMQI message flow output nodes as detailed in the WMQI Functional Specification.
· LIKE = (appropriate BSkyB template queue definition). This will ensure that default attributes are standardised across BSkyB.

· DESCR set to an appropriate description for the object. For application queues this will be set to ‘<BUSINESS OBJECT> TO <DESTINATION APPLICATION>’, where the business object should be the atomic unit of business transaction data that is in the messages on the queue (should be related to the message type). Other queues should have appropriately meaningful names based on function.

· INITQ on transmission queues will be set to SYSTEM.CHANNEL.INITQ, and on all other local queues will be set to SYSTEM.DEFAULT.INITIATION.QUEUE, as mentioned above.

· TRIGGERING will be turned on for all transmission queues, with TRIGTYPE set to ‘First’ and the INITIATIONQUEUENAME set to ‘DEFAULT.CHANNEL.INITQ’. On NT, W2K and UNIX the PROCESSNAME will be set to the name of the channel to be triggered.

· All other attributes should be left as the MQSeries defaults, which is the starting point for the BSkyB local queue definition default values, except where noted.

2.3.3 Local Queue Interface-Specific Properties

The following attributes will initially have default values, but are the most likely to change based on interface-specific requirements:

· The MAXQDEPTH and MAXMSGLENGTH attributes will be set individually once the detailed results of sizing are complete. Initially they will both be set to the same value as the BSkyB template queue default values, which are platform specific but generally are 5000 and 4Mb respectively. Care should be taken to ensure that the MAXMSGLENGTH attribute for all queues is less than or equal to the MAXMSGL attribute for the queue manager.

The BOTHRESH will be defaulted to ‘0’, although it is possible that this value will be increased where messages are due to be processed by applications that may have external dependencies that may make them unreliable, such as database connections across the network. BOQNAME will then also have to be set appropriately. The queue attributes BOTHRESH and BOQNAME are maintained for the use of MQSeries applications, the queue manager takes no action based on the value of these attributes.

· TRIGGERING may need to be turned on to start a process or call a script to drain a queue once messages arrive on it. The triggering parameters of TRIGTYPE, TRIGDPTH, TRIGDATA and TRIGMPRI on the queues will all need to addressed on an individual interface basis, and be consistent with the configuration of the queue manager TRIGINT.

2.4 Remote Queues

The remote queue definitions are pointers to local queues on remote queue managers. See appendix for an example set of remote queue definitions in the object definition script.

2.4.1 Remote Queue Definition Default Properties

· DEFPSIST = YES. This will ensure persistent messages where no message attribute is specified, or where the message takes its persistence setting from the queue. The persistence of the message should be set accordingly in the connector, as detailed in the API Generic Connector Functional Design document and the WMQI message flow output nodes as detailed in the WMQI Functional Specifications.

· REPLACE set to enable the queue definition to be updated easily with any attribute changes.

· LIKE = this will ensure that default attributes are standardised across the BSkyB CRM Programme. The appropriate CRM Programme template queue prefix is ‘CRM’.

· DESCR set to an appropriate description for the object. For remote queues for specific interfaces this will be set to ‘<BUSINESS OBJECT> TO <DESTINATION APPLICATION>’, where the business object should be the atomic unit of business transaction data that is in the messages on the queue (should be related to the message type). Otherwise, a meaningful name will be used that describes the function of the queue.

· All other attributes should be left as the MQSeries defaults, which is the starting point for the BSkyB remote queue definition default values, except where noted.

2.4.2 Remote Queue Definition Interface Specific Properties

· XMITQ will be set to the appropriate transmission queue for the destination queue manager, which should both have the same value.

· RQMNAME will be set to the name of the appropriate remote queue manager.

· RNAME will be set to the name of the appropriate local queue on the remote queue manager. RNAME should always have the same value as the name of the remote queue definition.

The DEFPRTY attribute specifies the default priority of messages put to the queue with message priority set to the special value of MQPRI_PRIORITY_AS_Q_DEF. This attribute may be changed in the future where there are multiple interfaces that need to send messages of varying priorities along the same logical path through the infrastructure, where precedence must be given to one set of messages over another. A typical example involves very large infrequent batch messages slowing down the throughput of very small and very frequent messages that must be processed quickly, where the smaller messages have a higher priority.

2.5 Alias Queues

Alias queues are similar to remote queue definitions in that they are pointers to actual queues. They are principally used for applying different default properties or qualities to messages that are sent from a variety of sources that all share a common target queue, such as authorisations or priorities (see DEFPRTY above in remote queue definitions). They can also serve as an extra level of abstraction between the queuing infrastructure and MQSeries applications that use it, helping to decouple the two and reduce the effects that any changes to one would have on the other.

Implementing alias queues increases the complexity of the queuing infrastructure, so in the interests of simplicity it is recommended that alias queues not be implemented until there is a clear requirement for them. Alias queues will be used (e.g. with Chordiant) to enable the customisation of message attributes (e.g. priority) according to message type. Using Alias queues in this way allows the control of these attributes to be retained by the middleware and allows them to be altered without modifying application code.

2.6 Channels

A message channel provides a communication path between two queue managers on the same, or different, platforms. The message channel is used for the transmission of messages from one queue manager to another, and shields the application programs from the complexities of the underlying networking protocols. It involves a synchronous communication session between Message Channel Agent (MCA) processes on each the sender and receiver queue managers.

A queue manager needs to have a listener process of some type (either O/S or MQSeries) running on a specific port when receiving messages over a channel. The two most used types of channels are Sender and Receiver, which are typically used for interface data transmission.

A message channel can transmit messages in one direction only. If two-way communication is required between two queue managers, two message channels are required.

The arrival of a message on the transmission queue triggers the channel initiator to start the relevant sender channel. The channel runs for a set period, sending whatever messages arrive on the transmission queue, until the disconnect interval expires. This period re-commences every time a new message is passed across the channel. If no messages are passed before the time period expires the channel closes.

2.6.1 Channel Design decisions

· The default transportation protocol used at BSkyB is TCP/IP.

· The choice of listener will depend on the platform, but it is preferred that the O/S services for listening at ports be used instead of the MQSeries listeners (e.g. etc/inetd.conf on Sun Solaris), with the exception of NT/W2K.

· Unless specific requirements dictate otherwise, each Queue Manager will have one Receiver Channel – multiple Sender Channels will be able to connect to this receiver channel.

All server connection channels used for remote administration of queue managers will take the name SYSTEM.ADMIN.SVRCONN as a default. In the Development environment, they may be used with MCAUSER=mqm as a temporary measure while consistent security and authorisations are defined on the various platforms.

The MCAUSER parameter defines the security and authorisation level for all MQSeries operations performed by the MCA. For Sender and Receiver channels this parameter should be set to blank. The value of the MCAUSER parameter for Server Connection channels is discussed in the section Server Connection Channels and MQSeriesClients.

2.6.2 Channel Definition Default Properties

· DESCR set to an appropriate description for the object. For Sender channels it will be set to ‘TO <DESTINATION QUEUEMANAGER>’. For Receiver channels it will also be set to ‘TO <DESTINATION QUEUEMANAGER>’.

· REPLACE set to enable the channel definition to be updated easily with any attribute changes.

· LIKE = (appropriate BSkyB template channel definition). This will ensure that default attributes are standardised across the CRM Programme.

· MCATYPE = THREAD to specify that the message channel agent should run as a separate thread.

· CHLTYPE will be set to the appropriate type of channel: SDR (Sender), RCVR (Receiver) or SVRCONN (Server Connection).

· All other attributes should be left as the MQSeries defaults, which are the starting point for the BSkyB channel definition default values, except where noted.

2.6.3 Channel Definition Interface-Specific Properties

· CONNAME should always be set with the hostname, not the IP address

· XMITQ will be set on sender channels to the appropriate transmission queue for the channels destination queue manager.

· The MAXMSGL attribute will be set individually once the detailed results of sizing are complete. Initially it will be take the default channel value, which is platform specific but generally is 4Mb. Note that the channel MAXMSGL value should always be set to the same value (or less) as that specified in a Queue Manager’s MAXMSGL field.

2.6.4 Server Connection Channels and MQSeriesClients

Applications connecting to an MQSeries queue manager via an MQSeries client require a Server Connection channel (channel type SVRCONN) to be defined on the queue manager. When a queue manager is initially created (using the crtmqm command) it has the following Server Connection Channels defined:

	Channel Name
	Description

	SYSTEM.DEF.SVRCONN
	Default Server Connection Channel

	SYSTEM.AUTO.SVRCONN
	Dynamic Server Connection Channel

The standard MQSeries scripts used on all queue managers created for the CRM programme also defines the following Server Connection channels:

	Channel Name
	Description

	CRM.DEF.SVRCONN
	Default CRM Server Connection Channel

	CRM.AUTO.SVRCONN
	Dynamic CRM Server Connection Channel

An MQSeries client application specifies the name of the Server Connection channel to be used when making the connection. Since the above channel names are well know it is important to protect these channels and prevent unauthorised access to the queue manager.

As mentioned previously, the MCAUSER parameter defines the security and authorisation level for all MQSeries operations performed by the MCA. For these well known channels it is important to set the MCAUSER parameter to a user with NO authorisation to MQSeries objects, preferably a user Id that is not defined on the host machine at all. This prevents any access to the queue manager via these default channels.

If an MQSeries client application requires access to a queue manager a Server Connection channel should be created specifically for that application/interface (e.g. IDO.0000.SVRCONN). The MCAUSER parameter should be set in accordance with the guidance in section 9 ‘Security’.

2.7 Process Definitions

A process definition object defines an application that is to be started in response to an event on an MQSeries queue manager, for example the number of messages on a queue reaches a predefined level. This event causes the trigger monitor program to start the application or process that was specified in the process definition.

2.7.1 Process Definition Design decisions
· The initiation queue to be used will be the SYSTEM.DEFAULT.INITIATION.QUEUE.

2.7.2 Process Definition Default Properties

· REPLACE set to enable the process definition to be updated easily with any attribute changes.

· DESCR set to an appropriate description for the object. For Process definitions will be set to “STARTS PROCESS <PROCESS TO BE STARTED>”.

· LIKE = (appropriate BSkyB template process definition). This will ensure that default attributes are standardised across the CRM Programme.

· All other attributes set to the same value as the BSkyB default process definition default values except where noted.

2.7.3 Process Definition Interface-Specific Properties

· USERDATA will be used to pass user parameters to the process started.

· ENVRDATA is used to pass environmental parameters to the application started

· APPLTYPE will be set appropriate to the platform. The values that will be used at BSkyB for the CRM Programme include: UNIX and WINDOWSNT.

· APPLICID will be set to the fully qualified file name (i.e. including path) of the executable object to be started.

· For more information, see the triggering section (REF MQSeries Triggering).

3 MQSeries Message Design

MQSeries uses messages to move data between applications. For the purposes of the CRM Programme, an MQSeries message is taken to be an atomic unit of business data that supports a given transaction. This unit can be a business object, such as a request for a subscriber PIN number, or a collection of business objects, such as a batch of goods issues for a given day.

MQSeries messages, at the lowest level, consist of a sequence of bytes composed of at least two logical components: the MQSeries message descriptor (MQMD), and the application data. The MQMD always comes first, as it contains control information about the message that queue managers and applications need in order to be able to process the message correctly i.e. the total length of the message and the structure of the message body. Following the MQMD is the message body. The message body also contains logical structures which are one or more additional optional headers, which can provide additional information about the particular use of a message, followed by the application data.

[image: image1.wmf]

MQMD

MQSeries Message

Header 1

Header 2

Application Data

Message Body

fig 3.0 MQSeries Message Structure

3.1 Message Types

There are four types of MQSeries messages: datagram, request, reply, and report.

The current BSkyB project interface requirements are met by the use of datagram and request/reply messages. The former are also known as ‘fire-and-forget’ messages, which do not require a reply from the application that received the message. This has implications on which MQMD fields need to be populated.

3.2 The MQSeries Message Descriptor Header (MQMD)

The MQMD consists of fields that identify the message, its origins and destination, and additional details concerning how the message should be processed and interpreted, such as security and format settings.

There are two versions of the MQMD header structure, version 1 and version 2. The version 2 header is an extension of the version 1 header with extra fields appended to the version 1 structure. These extra fields are for the processing of segmented messages. Message segmentation will not be used in the BSkyB CRM programme, therefore all messages will use version 1 of the MQMD header.

Control information in the character-string fields of the message descriptor must be in the character set used by the queue manager. The CodedCharSetId (CCSID) attribute of the queue manager object defines this character set. Control information must be in this character set because when applications pass messages from one queue manager to another, message channel agents that transmit the messages use the value of this attribute to determine what automatic data conversion they must perform.

For the use of MQMD field by the CRM Programme and BSkyB, the following design decisions are recommended:

3.2.1 Message Persistence.

The decision to use persistent or non-persistent messages is typically governed by business requirements. On the CRM Programme a pragmatic decision to use both persistent and non-persistent message types has been taken. It is important to note that persistent messages will survive a system re-start or crash. Non-persistent message will not survive a system re-start or crash. To explain the difference, persistent messages are logged (i.e. written to disk) whereas non-persistent messages are not. Logging reduces the performance of MQSeries messages, and because their handling does not incur any disk i/o (for persistence), non persistent messages can be processed more quickly by an MQSeries queue manager. It is therefore generally considered that persistent messages should be used for essential data, such as database updates, only.

Due to there being no i/o requirement - and as they do not carry a processing overhead - the throughput benefits to using non persistent messages are significant.
In the case of MQSeries request/reply query interfaces from Chordiant, non-persistent data messages will be used. This is because the nature of the query dictates that if the queue manager stops or fails, no critical data will be lost and a request to a legacy system such as SCMS can easily be re-initiated by a Customer Service Representative (CSR). If a request/reply interface from Chordiant involves an update to another system, the use of persistent or non-persistent messages will need to be evaluated against the interface requirements and the sending and receiving systems abilities to recover from such a situation, it is expected however that persistent messages will be used for all update interfaces within the CRM solution.
3.2.2 Request/Reply Messaging

The Request/Reply pattern involves sending a request message and waiting for a reply. Within the BSkyB CRM Programme a common usage example would be a status request, such as a request for a customer account balance. In a typical Request/Reply example non-persistent messaging is employed, as if a reply has not been received within a given amount of time; an exception path is taken by the application, resubmitting the request or advising the CSR of a failure to process the request. However, in the case of sending a customer registration details or a master data update, it is likely that the request will be in the form of a persistent message, for reasons discussed in the section above.
The overriding factor in the case of request/reply messages is time (that is, the time required for a reply to arrive) and it should be remembered that request/reply messaging is in essence a synchronous interaction over an asynchronous transport layer. However, the failure of a message to arrive within a stipulated time frame does not imply that the message will not arrive at all.
3.2.3 Message Expiry

All messages should have an unlimited expiry date unless there are specific requirements otherwise, as in a Request/Reply example.

The expiry of Request/Reply query messages has been set such that if a reply is not retrieved within a given time frame, determined by the sending application, the MQSeries queue manager discards it. In the case of request/reply messages to and from Chordiant, a number of replicas will share the same remote queue for the sending of requests, while having a unique Dynamic Queue on which to poll for replies.
3.2.4 Dynamic Queues

Dynamic queues are created from a template known as a model queue, together with the MQOPEN call. They are used in situations where the queue is no longer needed after an application ends. In the case of the BSkyB CRM Programme, dynamic queues are being used as ‘reply-to’ queues, most notably in Request/Reply interfaces to and from Chordiant. A Dynamic Queue can be Permanent or Temporary. If the Dynamic Queue is created as a Temporary Dynamic Queue, once the application that issued the MQOPEN call either closes the queue or terminates, the queue manager deletes the queue automatically. A Temporary Dynamic Queue cannot hold a Persistent Message and will not be recoverable after a system failure / restart. A Permanent Dynamic Queue can receive Persistent Messages and they are recoverable after a system restart. A Permanent Dynamic Queue, once created, needs to be explicitly deleted when it is no longer required. It is anticipated that either all or the majority of Dynamic Queues used within the CRM Programme will be Temporary Dynamic Queues.

There are three ways to specify the name of a dynamic queue:

· Give the full name in the DynamicQName field of the MQOD structure.

· Specify a prefix (fewer than 33 characters) for the name, and allow the queue manager to generate the rest of the name. This means that the queue manager generates a unique name, but the developer still has some control (for example, a certain prefix may be required, or a special security classification needed for queues with a certain prefix in their name). To use this method, specify an asterisk (*) for the last non-blank character of the DynamicQName field.

· Allow the queue manager to generate the full name. To use this method, specify an asterisk (*) in the first character position of the DynamicQName field.

3.2.5 Message Priority

As a starting point, all messages should be assigned the same priority for transportation and processing by queue managers. The range of Message Priorities for MQSeries is from 0 – 9 with 0 being the lowest and 9 the hightest. Message priority 9 is reserved for the Generic API Connector’s ‘stop’ messages. The default ‘normal’ priority of all queues (and therefore all messages) will be set to 4 (by setting the value in the BSkyB template scripts accordingly) to allow for messages to be assigned priorities that are below normal as well as above. Message priority requirements will be considered on a case-by-case basis. One general case for higher priority messages is for Request / Reply message types, particularly where a user is physically waiting for an update. Initially (i.e. until any further requirements come to light that will affect message priorities), these messages will be assigned a priority of 6.
3.2.6 Message ID and Correlation ID Fields

A unique message identifier, the message ID, will be assigned to each message to enhance the tracing the origins of messages and, in the case of request/reply messages initiated from Chordiant, to allow message correlation. This default functionality will be useful for tracing errors across systems and identifying the sources of an error.

In the case of request/reply messages initiated from Chordiant, it has been specified that the message ID of the original message is to be copied into the CorrelId field of the reply message by the BSkyB API generic connector. A new message ID is then generated for the reply message, and when the message arrives on a dynamic queue on the Chordiant queue manager, the Chordiant MQPDM polls each message by its CorrelId field in order to match it with the original request.

Note that this example may differ in interfaces which are developed during later project phases, but that it is anticipated that the MsgID and CorrelID fields will be continue to be manipulated based on the report options specified in the MQMD.

The MsgID field is populated with the message ID as it is the most logical field to use based on function, and it will allow selective MQGET of individual messages from queues. However, it is declared as type MQBYTE24, meaning that it is interpreted as a set of bytes that are not cast as any datatype, so that the string representation of this field is not converted when sent between platforms. This means that on other platforms other than the originating platform, this value will not be in a legible or meaningful form for humans.

In order to aid easy determination of origin, the ApplicationIDData field will also be populated with the message identifier. This field is declared as MQCHAR28, and will be converted between platforms, so it will be in a readable form.

3.2.7 All other MQMD Fields

All other MQMD fields will be set to their default values by the MQSeries applications or automatically populated by queue managers as appropriate. Exceptions (where there are requirements otherwise) will be covered in the interface functional specifications and the connector technical specifications.

A complete list of fields within the MQMD can be found in Appendix D.

3.3 Other Message Headers

MQSeries makes use of other types of headers apart from the MQMD to provide additional information to support MQSeries or MQSeries application functionality.

3.3.1 MQRFH and MQRFH2

Older versions of WMQI (/MQSI) required that an MQRFH header be part of the message to hold two required name/value pairs in the NameValueString field: MessageType and ApplicationGroup. These fields were used by the MQSI rules engine to determine how to interpret, parse, transform and route the message application data to its intended recipients. This was necessary to differentiate between messages as all messages were sent to a single input queue to the rules engine.

In WMQI with the advent of message flows, each of which can have its own individual input queue, the MQRFH header is no longer as essential.

The MQRFH2 header contains information about the structure and intended consumers of a message that allows a WMQI v2.x broker to process, deliver or publish it to those consumers. NameValueData is the main field used for this purpose. It holds a variable-length character string containing data encoded using an XML-like syntax organized by ‘folders’. The ‘mcd’ folder is the standard folder used to describe the message data in a datagram message, consisting of strings for Message service domain (<Msd>), Message set (<Set>), Message type (<Type>) and Message format (<Fmt>).

A design decision has been taken to use an application level message flow (this will receive all messages sent by one particular application) that will read the MQRFH2 and then determine which sub-flow should be used to process that message. This has the effect of simplifying the MQSeries infrastructure by only having one output queue per application.

3.3.2 Other Headers

MQSeries makes use of other headers for its own purposes, such as transmission headers and dead-letter message headers. The default MQSeries functionality should be used to create and populate these headers.

3.4 Message Payload - the Application Data

The structure and content of the application data section is entirely dependent on the participating applications.

The content and semantics of the application data component of messages is not changed by MQSeries. It is possible that the character set or encoding of the data will need to be changed when messages are transmitted between platforms. In this case, MQSeries carries out appropriate data conversion depending on the format of the application data set in the MQMD CCSID field. In order to convert the character set of the character data, MQSeries products support the coded character sets that are provided by the underlying operating system, and on some platforms MQSeries supplies its own libraries of built-in formats. The sending queue manager should carry out all character set conversions except where its platform does not support it and the platform of the receiving queue manager does, in which case the conversions should be carried out at the receiving queue manager.

The application data out of Chordiant will be XML.
3.5 Message Affinities and Dependencies

There are several causes of message affinity and dependencies between messages. It is recommended that inter-message dependencies or affinities be avoided if possible, as they usually require extra design and development work. They also tend to complicate error handling and limit the flexibility of the options such as clustering and load-balancing (see later section on MQSeries clustering) as well as potentially reducing message throughput.

3.5.1 Intra-Interface Message Dependencies

3.5.1.1 Message Batch

A message batch is composed of separate physical messages that need to be processed as a logical batch, e.g. in a situation where records in a file are being converted to MQSeries messages, all messages created from one file might need to be treated as a single batch.

Where it is required that messages be processed together in this way, it is usually much easier to send all their application data in a single ‘batch’ message, such as in the example above for legacy messages.

There may be requirements to send complete files using MQSeries as the transport layer. These messages might possibly go point-to-point, but it is recommended that for consistency that they get routed via the WMQI hub. This can also provide the benefits of centralised functionality such as audit trails and message warehouse in addition to reducing complexity. These benefits will need to be weighed against any potential performance impact of handling large files in this manner, which is less to do with performance relating to the file itself (which is more likely to have a longer processing window) but more to do with the impact it may have on event-driven near-real time messages for other interfaces that share a common physical path through the infrastructure. Where entire files are sent as messages, it may be advantageous to route the messages based purely on the MQSeries header information to avoid having to carry out resource and time-intensive parsing of the message body.

An alternative solution to batching of message is to put special ‘start-of-batch’ and ‘end-of-batch’ messages on the same queue as the messages containing application data, and route them through the same physical infrastructure path. These marker messages can be used by an MQSeries application to delimit and identify a batch of messages for processing – however, it should be noted that this technique would require message sequence to be preserved.

A particular case of message batches occurs with segmented messages. Unless there is a strong requirement for segmentation, e.g. that the application data payload exceeds the maximum message size limit (unlikely, as it is 100Mb), it is recommended that segmentation is not used.

In general, message batches should only be used where there are strong business requirements, and then the preferred solution should be to send the batch as a single message. However, it is unlikely that this issue will arise as for the CRM programme, as most batch interfaces are likely to be candidates for ETL rather than MOM integration.

3.5.1.2 Message Sequence

A series of messages might need to be sent and received in a particular order that must be preserved through the infrastructure, e.g. transactions of credits and debits, where each message represents a separate transaction, but all must be processed in the correct order.

Message prioritisation has implications for message sequence. When messages are put to queues they can be stored in FIFO order, or they can be stored in FIFO within priority sequence (which is how they will be configured for CRM), where messages of equal priority are stored on the queue in order of arrival. If an application puts a sequence of messages on a queue, another application can retrieve those messages in the same order that they were put, provided:

· The messages all have the same priority.

· The messages were all put within the same unit of work, or all put outside a unit of work.

If these conditions are not met, and the applications depend on the messages being retrieved in a certain order, the applications must either include sequencing information in the message data, or establish a means of acknowledging receipt of a message before the next one is sent.

One solution for preserving message sequence during normal processing is to ensure that all messages are sent along the same logical route through the infrastructure via the same queues and channels, which all make use of First In First Out (FIFO) algorithms as standard. All this is achieved through the configuration of MQSeries and the connectors.

In general, message sequence still cannot be guaranteed, as error situations will typically result in messages being put to error queues, failure queues, back-out queues or dead-letter queues. An alternative solution is to batch the messages into a single message as mentioned in the above section (REF Message Batch), which then also provides an ‘all or nothing’ transactional integrity to the sequence.

It is recommended that the use of message sequences be avoided as much as possible. Where there is a requirement, the preservation of message sequence should be handled by the sending and receiving applications. Where there is a very strong business case, FIFO down single physical routes may be an option for preserving sequence.

3.5.2 Inter-Interface Dependency of Messages

Up until this point each interface flow has been regarded as an isolated system. However, this is a simplification as the data being transferred may be related to data in other interface flows. If the interface is asynchronous and messages are processed in parallel, there is a possibility that data may arrive at the target application before another required message has been applied to the target system.

An example situation exists for the relationship between an interface for creating orders and another for updating orders. The situation where messages arrive out of sequence will be referred to as a ‘race condition’. A race condition can occur when one update process is much faster than another. In most circumstances this will not occur as operator response times will be far slower than the interface processes. However when the target system is down for an extended period, and there is a backlog of data to pass across the interface, the ‘race condition’ situation could occur.

One solution to this scenario is to develop procedures to process the contents of the queues in a pre-determined order to reduce the chance of race conditions occurring. This would involve stopping all the queue channels when the target is unavailable, and then bringing them up in the ‘correct’ order i.e. process the new order creation message queue to make sure they all orders are in the database before processing the updating orders and order lines queues. The problem with this approach is that it assumes that the interface processes can be stopped before the system comes back on-line, it assumes that separate queues are used for the different message types (which is not in keeping with the CRM design) and it also adds complexity to the middleware solution.

Another possible solution is to have a single path through the system for messages with dependencies. This approach is not considered an effective solution for a scalable, high volume environment as it reduces the interfaces to a single thread of communication at any points within the architecture where FIFO sequence order is not guaranteed across multiple threads.
A further alternative is to incorporate a work-flow or business process automation tool into the solution.
The proposed solution for handling the dependencies is to require that the applications manage this themselves and have adequate error handling. This may require that additional queries or two step processes be put into place to ensure that race conditions do not exist.

4 MQSeries Application Design

This section will detail some of the design decisions for MQSeries applications that are implied or will result from the MQSeries design.

4.1 Default All API calls to default to Queue definition values

4.1.1 Persistence

The persistence of the messages should be set to persistent or non-persistent by the putting application connector and the WMQI message flow output node to MQPER_PERSISTENCE_AS_Q_DEF. This will ensure appropriate and consistent use of persistence across the enterprise, regulated by the infrastructure definitions that can be controlled through a central design authority.

4.1.2 Priority

The priority of the messages should be set in the application connectors to take the value assigned to the queue to which the message is being put to ensure appropriate and consistent use of priority across the enterprise, regulated by the infrastructure definitions that can be controlled through a central design authority. Also, unless there is a specific reason to do otherwise, in a Request / Reply scenario, the Reply message should have the same value as the Request message. This will ensure appropriate and consistent use of priority across the enterprise, regulated by the infrastructure definitions that can be controlled through a central design authority.

4.2 Applying and Preserving Message Identifiers

The message ID will be assigned to the MQMD fields of MsgID and CorrellD by either the BSkyB API generic connectors or the Chordiant MQPDM / JX connector. For messages originating from legacy applications that use the API generic connectors, it will be the connectors that populate these fields with unique values. For messages originating from Chordiant, it will be the MQPDM / JX connector that completes the same function.

In the case of request/reply messages initiated from Chordiant, the MsgId of the request message is copied into the CorrelId field of the reply message by the BSkyB API generic connectors. A new MsgId is then generated for the reply message, and when the message arrives on a dynamic queue on the Chordiant queue manager, the Chordiant MQPDM / JX connector polls each message by its CorrelId field in order to match it with the original request.

Any other MQSeries utilities or applications that are used to move messages between queues, or that get the application data from a message on one queue, possibly transform it, then put it onto another queue will also be required to preserve the identity context.

To save the context information from the original message when the message is retrieved by an MQSeries application such as WMQI or a connector, the MQOO_SAVE_ALL_CONTEXT option must be used to open the queue for getting the message in addition to any other options used with the MQOPEN call. Note, however, that context information cannot be saved if the message is only browsed.

The message ID populated by the connector should be preserved by the WMQI Output Nodes as long as the output queue is opened with the option MQOO_PASS_ALL_CONTEXT and a new Message ID is not specifically requested as part of the PUT options (i.e. MQPMO_NEW_MSG_ID, MQMI_NONE).

4.3 MQRFH2

This structure provides a degree of flexibility for meeting future business and technical requirements in that it allows WMQI to differentiate easily between messages and process them appropriately by only having to parse the headers. It may also provide performance improvements, as message application data will not have to be parsed in order to determine actions for the message.

Where an MQRFH2 structure is received by a BSkyB API generic connector it will create an MQRFH2 structure by default for all reply messages.

4.4 MQSeries Triggering

The queue manager defines certain conditions as constituting "trigger events". If triggering is enabled for a queue and a trigger event occurs, the queue manager sends a trigger message to the initiation queue (REF initiation queue), which is monitored by a trigger-monitor application. The trigger monitor uses an MQSeries process definition to start an executable to process the queue that caused the trigger message to be generated in the first place based on the information contained in the trigger message. Each queue can specify a different process definition, or several queues can share the same process definition. Triggering will be used by transmission queues to start channels in a slightly different way, and potentially by application queues to start applications. Configuring MQSeries for triggering is covered in the following sections.

4.4.1 Configure Local Queue for Triggering

A local queue (or transmission queue) needs to have the following properties set for triggering.

· TriggerControl. Set this attribute to ‘On’ to enable triggering for an application queue.

· TriggerType. In addition to the trigger type None (which disables triggering just like setting the TriggerControl to Off), you can use the following trigger types to set the sensitivity of a queue to trigger events:

· Every- a trigger event occurs every time a message arrives on the application queue. Use this type of trigger if you want a serving program to process only one message, and then end.

· First- a trigger event occurs only when the number of messages on the application queue changes from zero to one. Use this type of trigger if you want a serving program to start when the first message arrives on a queue, continue until there are no more messages to process, then end. Note-the queue manager creates another trigger message if another message arrives on the application queue, but only if a predefined time interval has elapsed since the queue manager created the last trigger message for that queue. This time interval is defined in the queue manager attribute TriggerInterval. Its default value is 999999999 milliseconds. Note that this is the recommended option unless there is good justification and business requirements to change it.

· TriggerMsgPriority. The minimum priority that a message must have for it to count toward a trigger event. If a message of priority less than TriggerMsgPriority arrives on the application queue, the queue manager ignores the message when it determines whether to create a trigger message. If TriggerMsgPriority is set to zero (the CRM Programme default standard), all messages count toward a trigger event.

· TriggerDepth = 1 (mandatory non-zero).

· TriggerData. The data that is inserted in the trigger message (64 bytes max). NB- for transmission queues, this field holds the name of the channel to be started

· InitiationQueue. The name of the initiation queue- only one needed per queue manager, by default SYSTEM.DEFAULT.INITIATION.QUEUE or SYSTEM.CHANNEL.INITQ.

· Process. The name of the MQSeries process that will start application
4.4.1.1 Define a Process

A process definition needs to be created to start the executable (REF Process Definition Interface-Specific Properties).

· UserData is used to pass user specific parameters to the process started.

· EnvrData is used to pass environmental parameters to the application started. It can be set to ‘&’ on UNIX systems so that the process, typically the connector, will run in the background.

· ApplicID is set to the fully qualified file name (i.e. including path) of the executable object to be started. On NT if parameter is of format ‘START <executable>’ it will start the executable in a separate command interpreter, otherwise the executable will run on the trigger monitor command interpreter, which will block until the executable terminates as triggering is serial in MQSeries. Note that using the ‘START /b’ option does not mean run in the background. On W2K it means that START does not create a new window. CTRL+C handling is ignored unless the application enables CTRL+C processing, but CTRL+BREAK can be used to interrupt the application.

4.4.1.2 Start the Trigger Monitor

A trigger monitor needs to be started to monitor the initiation queue. MQSeries comes with a default trigger monitor program that is started with the runmqtrm command.

The MQ Series standard trigger monitor program uses the system function to execute triggered applications. The system function takes a single string as a parameter, and the OS attempts to treat the string like a shell command. The command string passed by the trigger monitor to the operating system is built by concatenating the fields in the Process Definition structure in this order:

APPLICID + USERDATA + Trigger Message Header (MQTMC2 structure, enclosed in quotation marks) + ENVRDATA

The MQSeries supplied trigger monitor on Windows starts the triggered application using the system() call, which is inherently synchronous, i.e. control is not returned to the trigger monitor until the triggered application finished.

It is recommended that the trigger monitor not be started from the MQSeries Services GUI on the Windows platform, as this can be temperamental. Instead, the standard ‘runmqtrm’ can be run as a Windows service. In addition, there are two IBM Supportpacs that are available for running the trigger monitor as a long-running background daemon on NT (MA7K) and UNIX (MS64) so that this process does not have to be continually running in the foreground. The MS64 SupportPac provides a sample program which demonstrates how any long running MQSeries process which is normally started from the command line and produces output to the screen can run even if it does not have a terminal to output to. This would, for example, allow the programs to be started from a script at machine startup

The wrapper executable takes the name of the MQSeries program to run as a daemon as its arguments. This does include any arguments that need to be passed to the MQSeries program as well. For example, to run the trigger monitor on Solaris: -

 /opt/mqm/bin/runmqtrm [-m QMgrName] [-q InitQ]

Note that to run MA7K as a local program, instead of as an MQSeries client, edit the setup.ini file, changing the following keyword in the "Global" stanza:

MQSeriesDLL=mqm.dll

If there is only one trigger monitor running, performance on triggered queues may suffer if messages arrive at different triggered queues in quick succession. Start a trigger monitor for every such queue to solve this problem.

4.4.1.3 Create Executable Script

Enclose the application invocation in a batch file or shell script and trigger it instead of directly triggering the application. For example, a Windows batch file might include:

@echo off

set USERDATA=%1%

set MQTCM2=%2%

set ENVDATA=%3%

START <application> %USERDATA% %ENVDATA%

EXIT

The use of parameters in the script can be a convenient way for not having to deal with the MQTCM2 for called applications that are not designed to recognise or use this structure. The last line is important, because otherwise a DOS command window will be left open for each triggered instance of the batch file. This will ultimately lead to exhausted system resources. The executable script should also include appropriate error handling for application return codes.

4.5 No MQSeries Trusted Applications

MQSeries applications can run as trusted applications, i.e. they access the same shared memory as MQSeries to boost performance. This also carries the risk of corrupting the shared memory and impairing MQSeries recovery capabilities. For this reason, it is recommended that no applications should run as trusted MQSeries applications in the BSkyB environment, including the WMQI broker.

5 MQSeries Logging

The basic premise of a messaging system is that messages entered into the system are assured of once only delivery to the destination. One of the mechanisms that helps to ensure this is the logging of the queue manager’s activities (receipt, transmission, and delivery of messages). The logs keep a record of all queue manager activities including the puts and gets of persistent messages to and from queues, changes to any MQSeries object attributes, and channel activity.

Each MQSeries log consists of a log control file, together with one or more log files for the storage of data.

MQSeries has two approaches to logging:

· Circular logging

· Linear logging

Each type of logging stores the recorded data in a set of files. The main differences between the two types of logging are that linear logging supports media recovery while circular does not, and the files are linked together differently. See Chapter 15 of the MQSeries Systems Administration manual for more details on these two types of logging.

The recommendation for the BSkyB middleware environments is to use circular logging in all environments, but only on the assumption that the data and log files are on highly available mirrored disks and all file systems have been accurately sized for maximum volumes. These steps are necessary to ensure full recovery integrity. This will cover the following problems/failures:

· Power outages- persistent messages written to disk under syncpoint will ensure that all data is recoverable when the power returns.

· Server hardware failure- again, persistent messages written to disk under syncpoint are recoverable.

· Damage to storage media- a damaged disk can be restored from the mirror disk.

· Damage to MQSeries object definitions- the MQSeries object definition scripts can be run to recreate all objects on the queue manager.

· Damage to the queue files- if a queue file is interfered with, the relevant queue object will show as damaged. This means that all the messages that resided on the queue will be lost. With linear logging media recovery can be used to recover damaged objects, however the overheads of increased disk consumption and administrative overhead of archiving old inactive log files tend to outweigh this benefit, especially in light of the use of mirrored disks. By restricting access and authorisation to the MQSeries files and file system, and by avoiding running any applications as trusted MQSeries applications, the risk of queue file damage is minimised.

· Damage to log files- will cause queue manager restart to fail, however replacing the log files & log control file with a back up of the queue manager when initially built should rectify this and allow the queues to be accessed with all messages intact. MQSeries does not currently allow for dual logging.

· Queue manager crash- again, persistent messages written to disk under syncpoint are recoverable.

As noted above, media recovery is not possible so mqm group privileges should be very tightly controlled to reduce the chances of accidental or malicious damage to log files.

All MQSeries file systems (data and log) should be on high speed mirrored disks. For optimal performance it is recommended to spread the file systems over as many ‘spindles’ (disks) as possible. But as a minimum the data and log files should be on separate mirrored disks.

6 MQSeries Sizing

6.1 Disk space considerations

The MQSeries Server will be installed in the standard directories specified by the product. All executables and online documentation should be installed.

The disk space requirements for the base MQSeries install by platform are as follows:

· V5.2.1 on W2K: 80Mb

· V5.2 on Sun Solaris v5.2: 60Mb

However, the main considerations for disk sizing are:

· Size of the Message queues configured for the node

· Size of the log files required for the configuration

6.2 Sizing Message Queues

In order to estimate the total amount of storage that will be needed for queues, the following must be known:

· The number of queues that are operating within the queue manager.

· The maximum number of messages there will be on each of the queues at any one time.

· The average size of messages on each of the queues. The amount of storage required for one message varies. It is based on the size of the message data plus the size of the message header (456 bytes), rounded up the nearest 512-byte block.

The queues should be capable of holding the maximum number of messages expected during a standard operational day (or longer in specific cases where a business need is identified). This assumes that sufficient service level agreements (SLAs) are in place to ensure that any unavailable downstream components will be handled or rectified within 24 hours to ensure that the queues do not overflow. An extra 50% contingency will be added to the daily maximum message volumes specified in the interface functional specifications to ensure that the infrastructure can cope with abnormal peak volumes. The sizing of queues requires high quality input from the functional and development teams involved with the interfaces. This input is required from both a message volume and message size perspective. This is especially important when complex nested repeating message formats like XML are employed. The details of the volumetric data captured by the functional and development teams will be entered into the ‘MQSeries Volumetrics’ spreadsheet and used to determine the appropriate size for all of the queues and log-files in the MQSeries landscape.

6.3 Sizing Log files

The total size of a queue manager’s log is determined by the following log configuration parameters:

· LogFilePages

The size of each primary and secondary log file in units of 4 KB pages. NT/ W2K default value is 1024, and the UNIX default value is 4096.

· LogPrimaryFiles

The number of preallocated primary log files. Default on both NT/ W2K and Unix platforms is for 3 primary log files.

· LogSecondaryFiles

The number of secondary log files that can be created for use when the primary log files are full. It does this dynamically, and removes them when the demand for log space reduces. Default on both platforms is for 2 secondary log files.

The following points apply to sizing logs:

· The log file size cannot be changed and needs to be determined before the queue manager is created.

· All the log files within one log are the same size.

· The number of primary log files and the log file size determine the amount of log space that is pre-allocated when the queue manager is created.

· The maximum number of primary and secondary log files combined is 63 files. The number of primary and secondary log files can be changed each time the queue manager is started.

· The number of files that are required for logging depends on the file size, the number of messages received, and the length of the messages.

As a minimum, the capacity of the log files should be sufficient to record the volume of data of the largest possible transaction. This is a performance consideration that allows for the processing of the transaction to be done in memory, minimising I/O.

To estimate the size of the log that the queue manager will need, the amount of data written to the logs for various operations needs to be considered and, in the case of circular logging, how much of this data must be logged before any given checkpoint. A checkpoint occurs every 1000 operations, and everything up to that checkpoint represents the active log files necessary for recovering the queue manager. Primary log files are made available for reuse during checkpoint.

Most operations performed by the queue manager require a minimal amount of log space, however, when a persistent message is put to a queue, all of the message data must be written to the log to make recovery of the message possible. Therefore, the size of the log depends, typically, upon the number and size of the persistent messages the queue manager needs to handle. Typical values for various MQSeries operations are shown below (all values are approximate):

	Operation
	Size

	Put persistent message
	750 bytes + message length

If the message is large, it is divided into segments of 15700 bytes, each with a 300-byte overhead.

	Get message
	260 bytes

	Syncpoint, commit
	750 bytes

	Syncpoint, roll-back
	1000 bytes + 12 bytes for each get or put to be rolled back

	Create object
	1500 bytes

	Delete object
	300 bytes

	Alter attributes
	1024 bytes

	Record media image
	800 bytes + image

The image is divided into segments of 15700 bytes, each having a 300-byte overhead.

	Checkpoint
	750 bytes + 200 bytes for each active unit of work.

Additional data may be logged for any uncommitted puts or gets that have been buffered for performance reasons.

6.4 BSkyB Log File Sizing Recommendations

The size and number of the log files need to be decided based on the following assumptions.

Considerations

· Errors in setting log sizes too low will prevent queue managers from being able to commit transactions. Hence it is much better to overestimate the size of the logs than to underestimate them.

· Disk space is relatively inexpensive.

· Future BSkyB requirements are unknown, but log file sizes must be set at queue manager creation, hence overestimation of log file sizes is appropriate for contingency.

Where no information is provided on frequency or peak times for near-real time interfaces, maximum and average number of messages will be evenly spread out over the duration of the operational day of the interface in question.

Operations

· Almost all operations in Production will be MQGETS, MQPUTS and commits – there will be very little object manipulation (e.g. create, alter, or delete).

· For WMQI, it is assumed that each MQGET and MQPUT will have a commit. For the connectors, it is assumed that multiple MQGETs and MQPUTs can have one commit.

· The active files must be enough to hold at least 1000 operations worth of data.

File Size

· It is preferable to be able to fit any individual transaction into one log file to minimise the amount of I/O overhead.

· Better to have a smaller number of large log files than a larger number of smaller log files.

· There are negligible other performance implications related to the size and number of log files.

The sizing of the log files will therefore be based on the most extreme possible situation that would require the largest size of log. The theoretical maximum for any queue manager would be 1000 MQPUT to queue of the largest messages.

This will also depend on the size of the logical unit of work (LUW) of the connector or process doing the MQPUT. For the inbound generic API connector a LUW consists of two MQGETs one MQPUT and an MQCOMMIT, there is also an MQPUT performed outside the LUW. For the outbound generic API connector a LUW consists of one MQPUT and an MQCOMMIT or one MQGET and an MQCOMMIT. For WMQI, the LUW encompasses the put of one message, so the checkpoint could occur after 500 MQPUTS and 500 MQCOMMITS.

The details of the CRM Programme interface volumetrics and figures that are the basis for sizing are not yet available – but once the sizing exercise has been completed it can be assumed that it will cover the sizing calculations and recommendations for MQSeries on each of the CRM Programme systems.

7 MQSeries Tuning - Performance and Limits
The following features of MQSeries can be employed to enhance the performance of the MQSeries system, the actual values that will need to be set for these features can’t be defined at this point as they will be dependent upon the volumetric requirements being placed upon the system as well as the specification of the hardware that the system is running on.

An initial benchmarking exercise will be carried out during the Development process and this will then be used to help drive the final values that will be refined during performance testing.
7.1 Disk Usage

To reduce the possibility of I/O becoming a limiting factor for message throughput, it is recommended that the Queue Manager’s be configured on high speed mirrored disk, that the Queue Managers' file system is spread over as may spindles as possible and that at a minimum, logs and data be kept on separate, dedicated file systems.

It is recommended that the log especially is located on the fastest disks available e.g. with fast write non-volatile cache capability or solid state disk.

7.2 Log Buffer Size

The LogBufferPages parameter in the qm.ini file can be increased / tuned up to a maximum of 512 pages. The default is 17 pages, the appropriate value for BSkyB will be determined through performance / technical testing.
7.3 Pipelining

It is possible to improve Channel performance through implementing the pipelining feature which involves using 2 threads of execution within the Channel to ensure that the end of batch confirmation from the receiver channel does not prevent further messages from being processed until it has completed (which is the case when the channel is configured to utilise a single thread of execution – single thread is the default setting).
This involves creating a PipeLineLength parameter with a value of 2 (anything higher will be treated as 2) within the Channels stanza of the qm.ini file.
7.4 Fastpath Channels

Channels that are configured to run as Fastpath Channels connect directly to the Queue Manager and do not go via an agent. They can significantly improve processing speed for both persistent and non-persistent messages.

It is not recommended that any other application (including the WMQI Broker) bind to the Queue Manager as a Fastpath application as it opens up the possibility that, if it crashes, the application may corrupt memory that is in use by the Queue Manager.
7.5 Queue Buffer Size

The DefaultQBufferSize parameter in the qm.ini file (TuningParameters stanza) determines the amount of shared memory (per queue) used to hold non-persistent messages. Its default value is 64KB and can be increased up to 1MB.
If this buffer fills, then non-persistent messages will be written to disk (although will not be recoverable in the event of a Queue Manager failure) so the effect of increasing this value is enhanced performance as it will reduce the likelihood of non-persistent messages being written to disk. However, this needs to be considered in relation to the rest of the system as increasing this value will reduce the amount of shared memory available to other applications. It is undesirable to increase the value to the extent that the system begins to page as page faults are more costly than having MQSeries manage disk I/O for non-persistent messages.

7.6 Queue File Size

The DefaultQFileSize parameter in the TuningParameters stanza of the qm.ini file which defines the number of bytes that a queue can consume on disk. The default maximum size of each queue is 320MB, however, it can be set to values up to 1GB for an individual queue where necessary.
8 MQSeries Clustering

MQSeries allows the creation of queue manager clusters. A cluster is a network of queue managers that are logically associated in some way. The queue managers in a cluster may well be physically remote. A cluster queue is a queue that is hosted by a cluster queue manager and advertised and made available to other queue managers in the cluster. The other queue managers in the cluster can put messages to a cluster queue without needing a corresponding remote-queue definition.

Clustering can provide a form of workload distribution and balancing, redundancy, increased availability and reduced system administration where many distributed queue managers would have been created. However for a number of reasons it is recommended that MQSeries clustering should not be used at BSkyB:

· MQSeries is unlikely to become a performance bottleneck. The business applications, connectors and potentially the message broker should all reach their performance ceilings before MQSeries, so load balancing is unlikely to be required (although it is possible to configure multiple WMQI Brokers within and MQSeries cluster which could be used to alleviate any performance bottlenecks occurring in the Broker).

· High availability and redundancy is to be provided through duplicate servers and failover software. It should be stressed that the MQSeries clustering only provides increased availability over non-clustered MQSeries and not ‘high availability’ as generally understood by IT professionals.

· BSkyB architecture is to be kept simple. Using clustering may require configuring queue managers as bridges or routers so that non-clustered queue managers can communicate with clustered queue managers, presenting additional complexity.

· Increased difficulty of debugging message distribution-related problems, making diagnosing MQ problems a more difficult job. Having the option of preserving message sequence is preferred, even if it is not currently a requirement.

· A fundamental part of the MQSeries clustering solution is the transfer and replication of data between queue managers via MQSeries channels and queues. These channels and queues are created and maintained automatically by the MQSeries queue managers and are created with default names. This automatic creation of channels represents a small but significant security risk since any MQSeries application could issue commands to queue managers in the cluster, such as redefining a remote queue definition to re-route message data. The only way to prevent this is to employ a security exit on the cluster receiver channel (CLUSRCVR)

9 MQSeries Clients and MQSeries Servers

It is recommended that for the current CRM Programme, MQSeries server generally be used in preference to MQSeries client. This is for a number of reasons.

· The MQSeries client software does not have the capability to manage queues and messages locally. The MQSeries client requires a connection to an MQSeries server and then reads and writes messages to the queues of the MQSeries server via a channel. This means that there is a dependency on the availability of the remote MQSeries server across the BSkyB network.

· The BSkyB Generic API connector has been designed to use the MQSeries server product, and would need to be re-compiled and re-tested with the MQSeries client to ensure that it still functioned as required.

· The Generic API Connector has not been designed with the additional error handling that would be required to recognise and deal with issues arising from the network, the server node or the client/server channel being unavailable.

· The current CRM Programme environment will involve a fairly small number of queue managers, so there would be little benefit in complexity reduction or reduced license cost through use of clients.

· Potential for slower performance of MQSeries applications running on MQSeries clients due to the added overheads of increased handshaking.

The primary use of MQSeries clients is to extend MQSeries connectivity to a platform or environment where a version of MQSeries server is not available or where an environment does not have sufficient resources (memory or disk space) to host an MQSeries server. MQSeries clients can also be used to provide multiple applications (or multiple instances of the same application) shared read/write access to queue data. The decision to use MQSeries clients should be driven by firm business requirements.

However, a situation where MQSeries Clients will be of benefit and will therefore be used within the CRM solution is to enable a load balanced application to receive inbound Fire and Forget messages. Therefore MQSeries Client will be required for use with Chordiant and IDO applications.

To mitigate any risk to the Chordiant application in this case, it is recommended that the Queue Manager for Chordiant is configured on the HA Chordiant database server which is accessed by all Chordiant application servers.
10 MQSeries Security

10.1 Identification and Authentication

Before an application connects to an MQSeries queue manager, it will have undergone some form of identification and authentication (I&A) procedure. At BSkyB this is the provision of a user ID and password, whether on Sun Solaris or Windows NT/W2K.

Because the I&A procedure takes place before the application connects to the queue manager, it is the responsibility of components other than MQSeries to provide the I&A service. MQSeries is responsible only for capturing the user identifier (which occurs when the application connects to the queue manager) for use in providing other security services, such as authorisation.

Depending on the architecture and the platforms, MQSeries supports user IDs of varying lengths. If MQSeries for Windows NT, has access to the domain on which the client user ID is defined, MQSeries supports user IDs of up to 20 characters.

On all other platforms and configurations, the maximum length for user IDs is 12 characters.

10.2 Authorisation

In the case of MQSeries for UNIX systems and MQSeries for Windows NT, authorisation for using MQI calls, commands and access to objects is provided by the Object Authority Manager (OAM), which by default is set to enabled. Access to MQSeries entities is controlled through MQSeries user groups and the OAM. A command line interface is provided to enable the MQSeries Administrator the right to grant or revoke authorisations as required.

10.3 Define Appropriate Access To MQSeries Objects and API Calls On All MQSeries Host Platforms
The principal form of security that will be enforced in the middleware at BSkyB will be through MQSeries object authorisations.

It is recommended that two new groups be set up on all Development MQSeries hosts:

· mqmdev for Middleware Developers, including WMQI and connector developers

· mqmapp for MQSeries applications

It is recommended that only one new group be set up on all QA and Production MQSeries hosts:

· mqmapp for MQSeries applications

The middleware infrastructure configuration specialists will belong to the default MQSeries group mqm, with full systems administration privileges for MQSeries.

It should be noted that on UNIX, MQSeries access control lists are based upon groups only, the groups that a particular user ID belongs to are queried to see if they have access to the required resource (only one of the user ID’s groups needs to have permission). When an individual user ID is granted access to a particular resource, that users primary group is included in the MQSeries access control list and not the user ID itself.

Therefore, to avoid the risk of inadvertently granting access to a user IDs primary group which may indirectly grant access to user IDs that should not be granted access to MQSeries resources, MQSeries administrators at BSkyB should only grant access to groups and not user IDs (as described above).

Based on these groups, the following specific authorisations are recommended for MQSeries objects across the four promotional environments.

	Group
	Members
	Object
	Development
	System Integration Test
	Pre-Production
	Production

	
	
	
	
	
	
	

	MQM
	AW, LP, TR in development and test environments, BSkyB sys-admin for pre-production and production environments
	Queue Manager
	Full
	Full
	Full
	Full

	
	
	Queues
	Full
	Full
	Full
	Full

	
	
	Channel
	Full
	Full
	Full
	Full

	
	
	Process
	Full
	Full
	Full
	Full

	
	
	
	
	
	
	

	MQMDEV
	Developers
	Queue Manager
	+connect

+dsp

	N/A
	N/A
	N/A

	
	
	Queues
	For the developers queues:

+all

+alladm

+allmqi

For the infrastructure queues:

+get

+put

+browse

+dsp

+inq

+passid

+passall

+setid

+setall

	N/A
	N/A
	N/A

	
	
	Process
	N/A
	N/A
	N/A
	N/A

	
	
	
	
	
	
	

	MQMAPP
	Connectors and MQ Enabled applications
	Queue Manager
	+connect

+inq

+setid

+setall

	+connect

+dsp

+setid

+setall

	+connect

+dsp

+setid

+setall

	+connect

+dsp

+setid

+setall

	
	
	Queues
	+get

+put

+browse

+inq

+passid

+passall

+setid

	+get

+put

+browse

+inq

+passid

+passall

+setid

	+get

+put

+browse

+inq

+passid

+passall

+setid

	+get

+put

+browse

+inq

+passid

+passall

+setid

As previously noted, any user with Systems Administrator authorisation on a host server will have full MQSeries system administration authority as well.

All developers should have access to all interface-specific queues on the WMQI server to allow for contingency and to allow the assignment of developments to different developers to support TPRs and production fixes.

10.4 Securing the MQSeries Dataset

Access to the MQSeries dataset must be properly restricted at the file system level. Only members of the mqm group should have full access to the MQSeries dataset. It will be the responsibility of the MQSeries Administrator to ensure that inadvertent or malicious damage to files does not occur.

10.5 Securing the MQSeries User Interfaces

The MQSeries Explorer should only be used for local administration, as configuring it for remote administration requires a Server Connection channel to be created. Use of a Server Connection channel introduces a possible security issue as in situations where the MCAUSER is set to blank (this is the default but it can be changed) and the server on which the queue manager is running allows unauthorised network connections, unauthorised clients might be able to connect to the Queue Manager on that server.

NB in situations where a Server Connection Channel is required in order to enable MQSeries Client connections, then a Server Connection Channel will be configured and the MCAUSER id will be set such that only clients authorised for that specific Queue Manager can connect and will only have access to the specific objects that they need to access.

10.6 Define Appropriate Access to MQSeries Objects and API Calls on MQSeries Host Platforms
When implementing MQSeries, there are a number of objects that should be monitored on a continuous or regular basis:

· MQSeries processes: queue managers, listeners, channel initiators

· MQSeries objects: queues and channels.

· MQSeries files: error logs, First Failure Data Capture (FFDC) files

This is obviously not critical for the Development environment. However, procedures and software should be in place for the Pre Production environment, which should be the first environment to exactly match what will be in Production.

BSkyB have an implementation of BMC Patrol – an enterprise systems management (ESM) tool - that is destined to receive all errors from all error sources. BMC Patrol is a requirement which will align the CRM solution to the existing architecture and a separate document will discuss its functionality and the events it will monitor.

10.7 MQSeries Queue Manager Processes

The following processes should be running on any machine with a queue manager installed and started:

amqhasmx

logger

amqzllp0

checkpoint processor

amqzlaa0

queue manager agents

amqzxma0

processing controller

10.7.1 Manual

This can be checked manually on Solaris machines by using a command of form:

$ ps –ef | fgrep <Queue Manager> | grep –v grep

It may be preferable to set up scheduled CRON jobs to carry out this monitoring at regular intervals that raise an alert if queue managers fail.

On W2K and NT, this can be determined by viewing the Task Manager.

10.7.2 Automated

Where BMC Patrol MQSeries agents are implemented, they should ensure that the queue managers are running and available.

10.8 Monitoring MQSeries Objects

10.8.1 Queues

All queues, both system and user defined, should be monitored by BMC Patrol.

10.8.1.1 Queue Depth

All queues will be sized to manage projected peak load, thus if a queue starts to become full it is likely that the normal message flow is being restricted. Other middleware system metrics should be reviewed to identify the location and cause of the bottleneck.

Depth threshold events should be monitored at the following levels:

· Low Depth (set to 20% full) to raise a warning alert.

· High Depth (set to 80% full) to raise an error alert.

· Maximum Depth Event (100% full) to raise an error alert.

This will be very difficult to monitor manually, and will mainly be applicable to automated monitoring by BMC Patrol.

10.8.1.2 Messages PUT to Error, Failure and Deadletter Queues

Any messages in these queues constitute a serious error in the middleware environment. These need to be monitored by BMC Patrol and an error alert raised whenever a message is put to one of these queues.

All error, failure and Dead Letter queues must be monitored regularly in QA and Production, and as the monitoring is expected to be automated, the arrival of a single message on one of these queues should raise an error alert immediately.

10.8.2 Channel Status

The status of every channel should be monitored. The channels will not be in a ‘running’ state constantly, as they will be triggered by the putting of messages to the transmission queues, and will stay running for the default Disconnect Interval (unless otherwise noted). Monitoring channels simply to check if they are running is not appropriate; instead they should be monitored to ensure that they have not entered a stopped or inactive state.

Queue manager agents generally have the capability of monitoring the health of channels, and can usually take some actions to resolve and restore failed channels.

Without the assistance of a monitoring agent there are only crude manual mechanisms for monitoring channels. The MQSeries system command PING CHL to ‘ping’ a channel is only of limited use and often returns misleading or irrelevant results. Similarly the system command DISPLAY CHSTATUS can used to display channel status but must be executed at both ends of the channel to give meaningful information on the status of the channel. Other information about the status of channels can be obtained by reviewing the queue manager logs. Error codes providing information relating to channels are named AMQ9nnn, three messages are of particular interest.

10.8.2.1 AMQ9507
Channel is currently in-doubt

This occurs when channel communication is interrupted whilst transferring messages. It is possible that one or more messages have been duplicated across the channel. This does not cause data duplication issues since the messages cannot be processed until the status of the channel is resolved. To resolve a channel the current batch of messages must either be committed or backed-out. If messages are committed they are removed from the sending channel and processed by the receiving channel. If messages are backed-out they are removed from the receiving channel and placed on the sending transmission queue. This process ensures no messages are lost or duplicated.

10.8.2.2 AMQ9526
Message sequence number error for channel

This could be caused by damage to the channel synchronisation file, check the MQSeries filesystems for damage. The sequence number can be manually reset at the sending end of the channel by using the RESET CHANNEL command. Note that when resetting channel sequence numbers, it must be remembered that based on the design it is likely that each queue manager has one principal receiving channel that will be shared by all sender channels. Receiver channel sequence numbers should not be reset, but if they must then all sending channel sequence numbers that connect to the receiver must also be reset appropriately.

10.8.2.3 AMQ999
Channel program ended abnormally

This is a general channel failure message, review previous log messages to determine the cause of the failure.

10.9 MQSeries Error Log Files

MQSeries error logs contain entries for all information, warnings and errors within MQSeries.
10.9.1 Monitoring Error Logs

On all platforms with MQSeries queue managers implemented, the error logs should be checked whenever an error is suspected, or reported by BMC Patrol.

FFDC files are intended for use by IBM in determining the cause of errors, and contain low level traces and information concerning the stack. If an error creates an FFDC, it will also produce an entry in the error logs.

Note that on W2K and NT machines, information that is written to the error logs will also be written to the Event Viewer under the Application Log, and can be viewed there.

Some monitoring tools have the capability to parse log files, and can be configured to raise an alert if particular error codes are detected. This is typically carried out by a specialised configurable log agent.

10.9.1.1 Log Agent

Log Name:
AMQERR0X.LOG where X is a number

Description:
Main error log for MQSeries

Action:

If category A create a critical alert. If category B raise a warning alert.

The following are some sample error codes that could be checked for. MQSeries can produce hundreds or return codes, not all of which are caused by errors. MQSeries user return codes are numbered AMQ4000 through AMQ9999, although not all numbers have been used, and therefore, the list is not continuous.

	Error Code
	Description
	Category

	AMQ6118
	An internal MQSeries error has occurred
	A

	AMQ5009
	MQSeries agent process <pid> has terminated unexpectedly.
	A

	AMQ6709
	The log for the Queue Manager is full.
	A

11 Roles & Responsibilities

The Integration Infrastructure team will be responsible for all MQSeries administration until after the completion of Systems Integration testing, whereupon it will transition to the BSkyB support organisation.

Appendix A – MQ Series Definitions

Queue Manager

A queue manager provides queuing services to applications, and manages the queues that belong to it. It ensures that:

· Object attributes are changed according to the commands received.

· Special events such as trigger events or instrumentation events are generated when the appropriate conditions are met.

· Messages are put on the correct queue, as requested by the application making the MQPUT call. The application is informed if this cannot be done, and an appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to that queue manager. The queue manager to which an application is connected is said to be the local queue manager for that application. For the application, the queues that belong to its local queue manager are local queues. A remote queue is simply a queue that belongs to another queue manager. A remote queue manager is any queue manager other than the local queue manager. A remote queue manager may exist on a remote machine across the network or it may exist on the same machine as the local queue manager. MQSeries supports multiple queue managers on the same machine.

Queues

A queue is a data structure that stores messages. The messages may be put on the queue by applications or by a queue manager as part of its normal operation.

Queues exist independently of the applications that use them. A queue can exist in main storage (if it is temporary), on disk or similar auxiliary storage (if it must be kept in case of recovery), or in both places (if it is currently being used, and must also be kept for recovery). Each queue belongs to a queue manager, which is responsible for maintaining it. The queue manager puts the messages it receives onto the appropriate queue.

Queues can exist either in your local system, in which case they are called local queues, or at another queue manager, in which case they are called remote queues.

Applications send and receive messages using MQI (MQSeries API) calls. For example, one application can put a message on a queue, and another application can retrieve the message from the same queue.

Each queue has queue attributes that determine what happens when applications reference the queue in MQI calls. The attributes indicate:

· Whether applications can retrieve messages from the queue (get enabled)

· Whether applications can put messages onto the queue (put enabled)

· Whether access to the queue is exclusive to one application or shared between applications

· The maximum number of messages that can be stored on the queue at the same time (maximum queue depth)

· The maximum size of messages that can be put on the queue (maximum message size)

· Whether the queue is a ‘special’ type of queue – for example a local queue could be defined as a transmission queue, in which case it is used to temporarily store messages destined for a remote queue.

Channels

A channel provides a communication path. There are two types of channel: message channels and MQI channels.

A message channel provides a communication path between two queue managers on the same, or different, platforms. The message channel is used for the transmission of messages from one queue manager to another, and shields the application programs from the complexities of the underlying networking protocols.

A message channel can transmit messages in one direction only. If two-way communication is required between two queue managers, two message channels are required.

An MQI channel connects an MQSeries client to a queue manager on a server machine. It is for the transfer of MQI calls (for example, MQPUT) and responses only and is bidirectional. A channel definition exists for each end of the link. On some platforms, some types of MQI channel can be defined automatically.

Appendix B – Sample MQSeries Object Definition Script

***/

* MQSeries Object Definition Script */

* */

*
Queue Manager: QIBACKDSMS1 */

*
Environment: SI Test
 */

*
Description: This input member will define the
 */

*
MQSeries objects for the SI Test QM QIBACKDSMS1
 */

*

 */

* */

* */

* Date Version Developer Description */

*-- */

* 17/07/02 1.0 AW CREATED */

* */

* */

* Scope: This script deals with the following interfaces: */

*

 */

*
IFC0153_CHD_ValidateOPPVEvent */

*

IFC0154_CHD_AuthoriseCancelEvent

 */

*

IFC0150_CHD_GetCardInfo

 */

*

IFC0149_SCM_SendScheduleDetails */

*
 */

*
 */

***/

***/

*** Environmental Variables ***/

***/

* $CFGMGRQMGR Name of the WMQI Config Manager queue manager

* $CFGMGRQMGR_CONN WMQI Config Manager queue manager connection and port

* $QMGR Name of the queue manager

***/

*** Shared Objects ***/

***/

*** Generic Queue Manager Queues ***/

DEFINE QLOCAL ('SYSTEM.DEAD.LETTER.QUEUE') +

 LIKE('CRM.DEAD.LETTER.QUEUE') +

 DESCR('DEAD LETTER QUEUE') +

 DEFPSIST(YES) +

 REPLACE

*** Developer Local Queues ***/

DEFINE QLOCAL ('SCM01.0000.WMQ01') +

 LIKE('CRM.DEFAULT.LOCAL.QUEUE') +

 DESCR('INBOUND MESSAGES FROM WMQ') +

 DEFPSIST(YES) +

 REPLACE

*** Transmission Queues ***/

DEFINE QLOCAL ('QILIVMQTEST1') +

 SHARE +

 LIKE('CRM.DEFAULT.LOCAL.QUEUE') +

 USAGE(XMITQ) +

 DESCR('XMITQ TO WMQ') +

 TRIGGER +

 TRIGDATA('QILIVMQTEST1') +

 INITQ(SYSTEM.CHANNEL.INITQ) +

 DEFPSIST(YES) +

 REPLACE

*** Remote Queues ***/

DEFINE QREMOTE ('WMQ01.0000.SCM01') +

 LIKE('CRM.DEFAULT.REMOTE.QUEUE') +

 DESCR('OUTBOUND MESSAGES TO WMQ') +

 XMITQ('QILIVMQTEST1') +

 RNAME('WMQ01.0000.SCM01') +

 RQMNAME('QILIVMQTEST1') +

 DEFPSIST(YES) +

 REPLACE

*** Sender Channels ***/

DEFINE CHANNEL('QILIVMQTEST1') +

 CHLTYPE(SDR) +

 LIKE('CRM.DEF.SENDER') +

 TRPTYPE(TCP) +

 CONNAME('LIVMQTEST(1414)') +

 XMITQ('QILIVMQTEST1') +

 DESCR(' ') +

 REPLACE

*** Receiver Channels ***/

DEFINE CHANNEL('QIBACKDSMS1') +

 CHLTYPE(RCVR) +

 LIKE('CRM.DEF.RECEIVER') +

 DESCR(' ') +

 REPLACE

*** Server Connection Channels ***/

DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) +

 CHLTYPE(SVRCONN) +

 LIKE('CRM.DEF.SVRCONN') +

 TRPTYPE(TCP) +

 MCAUSER('mqm') +

 REPLACE

Appendix C – Standard MQSeries Queues

	SYSTEM.DEFAULT.ALIAS.QUEUE
	Default alias queue definition

	SYSTEM.DEFAULT.LOCAL.QUEUE
	Default local queue definition

	SYSTEM.DEFAULT.MODEL.QUEUE
	Default model queue definition

	SYSTEM.DEFAULT.REMOTE.QUEUE
	Default remote queue definition

	SYSTEM.DEFAULT.PROCESS
	Default process definition.

	SYSTEM.DEFAULT.INITIATION.QUEUE
	Default initiation queue definition

	SYSTEM.DEFAULT.NAMELIST
	Default namelist definition

	SYSTEM.DEAD.LETTER.QUEUE
	Dead-letter (undelivered-message) queue

	SYSTEM.DEF.SENDER
	Default sender channel definition

	SYSTEM.DEF.SERVER
	Default server channel definition

	SYSTEM.DEF.RECEIVER
	Default receiver channel definition

	SYSTEM.DEF.REQUESTER
	Default requester channel definition

	SYSTEM.DEF.SVRCONN
	Default server-connection channel definition

	SYSTEM.DEF.CLNTCONN
	Default client-connection channel definition

	SYSTEM.DEF.CLUSRCVR
	Default Cluster receiver channel definition

	SYSTEM.DEF.CLUSSDR
	Default Cluster sender channel definition

	SYSTEM.CLUSTER.COMMAND.QUEUE
	This is used to carry messages to the cluster repository

	SYSTEM.CLUSTER.REPOSITORY.QUEUE
	This is used to store all repository messages for all queue managers in a cluster

	SYSTEM.CLUSTER.TRANSMIT.QUEUE
	This is the default transmission queue for messages to queues and queue managers within the cluster

	SYSTEM.AUTO.RECEIVER
	Default receiver channel for auto definition

	SYSTEM.AUTO.SVRCONN
	Default server-connection channel for auto definition

	SYSTEM.CHANNEL.INITQ
	Channel initiation queue for distributed queuing

	SYSTEM.CHANNEL.SYNCQ
	Default for synchronising communication between distributed queue managers

	SYSTEM.CICS.INITIATION.QUEUE
	Default CICS (trigger) initiation queue

	SYSTEM.MQSC.REPLY.QUEUE
	MQSC reply-to queue. This is a model queue that creates a temporary dynamic queue for replies to remote MQSC commands

	SYSTEM.ADMIN.QMGR.EVENT
	Event queue for queue manager events.

	SYSTEM.ADMIN.PERFM.EVENT
	Event queue for performance events.

	SYSTEM.ADMIN.CHANNEL.EVENT
	Event queue for channel events.

	SYSTEM.ADMIN.COMMAND.QUEUE
	Queue to which PCF command messages are sent

Appendix D – Structure of the MQSeries Message Descriptor (MQMD)

The MQMD structure contains the control information that accompanies the application data when a message travels between the sending and receiving applications. It is comprised of the fields listed below:
	Field
	Description

	StrucId
	Structure identifier

	Version
	Structure version number

	Report
	Options for report messages

	MsgType
	Message type

	Expiry
	Message lifetime

	Feedback
	Feedback or reason code

	Encoding
	Data encoding

	CodedCharSetId
	Coded character set identifier

	Format
	Format name

	Priority
	Message priority

	Persistence
	Message persistence

	MsgId
	Message identifier

	CorrelId
	Correlation identifier

	BackoutCount
	Backout counter

	ReplyToQ
	Name of reply queue

	ReplyToQMgr
	Name of reply queue manager

	UserIdentifier
	User identifier

	AccountingToken
	Accounting token

	ApplIdentityData
	Application data relating to identity

	PutApplType
	Type of application that put the message

	PutApplName
	Name of application that put the message

	PutDate
	Date when message was put

	PutTime
	Time when message was put

	ApplOriginData
	Application data relating to origin

	Note: The remaining fields are not present if Version is less than MQMD_VERSION_2

	GroupId
	Group identifier

	MsgSeqNumber
	Sequence number of logical message within group

	Offset
	Offset of data in physical message from start of logical message

	MsgFlags
	Message flags

	OriginalLength
	Length of original message

Appendix E – Configuration of the runmqdlq utility

The following is an example configuration file for the dead letter queue handler program ‘runmqdlq’ provided with IBM MQSeries v5.2.1

* rules table for the runmqdlq command *

* Control data entry

* ------------------

* The Input Queue to the dead letter handler and the retry interval should * be set for CRM DLQ handlers. The Queue Manager name should not be held
* in the rules table but should be specified as an input parameter when

* runmqdlq is invoked – this allows the rules table to be generic and also

* will allow system process checks to provide information on which QMs

* runmqdlq is running against.

*

INPUTQ(CRM.DEAD.LETTER.QUEUE) RETRYINT(15)
* Rules

* -----

* We include rules with ACTION (RETRY) first to try to

* deliver the message to the intended destination.

* If a message is placed on the DLQ for any reason,

* attempt to forward the message to its original

* destination queue. Make 5 attempts at approximately

* 15-second intervals (the specified value for RETRYINT).
REASON(*) ACTION(RETRY) RETRY(5)

* If after the specified number of retry attempts, it is

* still not possible to put the message to the original

* desintation queue, put it to the final dead letter queue

* where its presence should be identified by the ESM tool

* and an operator alerted to take appropriate action.
ACTION(FWD) FWDQ(SYSTEM.DEAD.LETTER.QUEUE)
	BSkyB MQSeries Design v1.3.doc
	Version 1.3
	Page 19 of 48

[image: image2.emf]_1094470054.doc

Message Body

Application Data

Header 2

Header 1

MQMD

MQSeries Message

