	Sky CRM Programme

Middleware Integration Layer Error Handling
	[image: image2.emf]

[image: image1.emf]
	Sky CRM Programme

Middleware Integration Layer Error Handling
	[image: image1.emf]

Middleware Integration Layer Error Handling
	Owner:
	J Rogers

	Project:
	BSkyB CRM Programme

	Creation Date:
	08 July 2002

	Last Updated:
	03 August 2004

	Version:
	3.10

Document Contributors

	Team
	Role
	Name

	Integration
	Design Lead
	J Rogers

	Integration
	Construction Lead
	G Gordon

Sign-Off List
	Name
	Position
	Version
	Signature

	Mike Fitch
	Integration Architect
	3.0
	

	David Cloudsdale
	Chordiant OPPV Representative
	3.0
	

	Bob Cane
	FMS Representative
	3.0
	

	Ian Jones
	FMS Representative
	3.0
	

	Paul Conway
	SCMS Representative
	3.0
	

	Sam Roddick
	RDM Architect
	3.0
	

	Miles Bernie
	Document Management System
	3.1
	

Distribution List

	Name
	Position

	Rob Craig
	EA Manager

	Rob Hornby
	Transition Manager

	Andy Waddell
	Technical Architecture Lead

	Rob Hughes
	Testing Team

	Chun Ng
	Integration Lead

	Jason Campbell
	Chordiant Lead

	Sam Roddick
	RDM Architect

	Jim Swift
	ESM Architect

Related Documentation

	Ref
	Title
	Author
	Version

	1.
	Middleware Integration Design Standards
	J Rogers
	3.1 or later

	2.
	DV_Middleware Interface Configurations
	J Rogers
	0.3 or later

	3.
	DV_WMQI Generic Message Flow Design
	J Rogers
	3.4 or later

	4.
	GenericErrorHandlingFlow_Technical_Specification
	G Gordon
	3.0 or later

Intended Document Progression

	Version
	Title

	Up to 1.0
	Drafts before initial release

	1.0-1.99
	Signed-off release for phase 2.1 go-live and subsequent increments to reflect change requests for Phase 2.1

	2.0-2.99
	Signed-off release for phase 2.2 go-live and subsequent increments to reflect change requests for Phase 2.2

	3.0-3.99
	Signed-off release for phase 2.3 go-live and subsequent increments to reflect change requests for Phase 2.3

	4.0+
	Further future releases

Amendment History

	Version Number
	Name
	Date
	Description of changes or Other Comments

	0.9
	Justin Rogers
	14/08/2002
	Initial Draft for comment. Working document

	1.0
	Justin Rogers
	20/09/2002
	First Release for Phase 2.1

	1.1
	Gillian Gordon
	30/10/2002
	Sections added for IDO-FMS automation

	1.2
	Justin Rogers
	08/11/2002
	QA and Update for Phase 2.2

	3.0
	Justin Rogers
	25/02/2003
	Updated for Phase 2.3: Order Fulfilment – Book Physical Fulfilment. New FMS requirements.

	3.01
	Justin Rogers
	14/03/2003
	Updated for 2.3 Order Creation – New Arbor Requirements.

	3.1
	Justin Rogers
	07/05/2003
	Updated for 2.3 Release 3: Added Doc MS (and draft CiC).

	3.2
	Justin Rogers
	20/06/2003
	Updated for 2.3 Release 4.0: Added CiC and Debt PS

	3.3
	Justin Rogers
	24/07/2003
	Updated for 2.3 Release 6: Added IDO, ARL, IVR.

Updated for CR1727. This change request has been raised to map ApplOriginData and ApplIdentityData values to the MQRFH2 header as opposed to the MQMD header

	3.4
	Justin Rogers
	01/10/2003
	Updated for new CIC release.

TD4425: Updated to show new logic split across environment.

	3.5
	Justin Rogers
	13/11/2003
	TD6265: Changed Chordiant inbound error message to receive actual error text.

	3.6
	Peter McGrath
	25/03/2004
	TD12966: Updated to include error handling for IFC0401_DPS_DebtReinstateApplication and IFC2118_DPS_RetrieveDebtBalances.

	3.7
	Jules Douch
	02/04/2004
	TD13597: Update to DPS error response message format

Update to Chordiant response message format – amended xsi: type reference.

	3.8
	Jules Douch
	29/05/2005
	SCR16606, New functionality enabling automated message replay

	3.9
	Peter McGrath
	16/06/2004
	TD17088: Change to add ApplicationErrorCode to the error message structure sent to Chordiant.

	3.10
	Peter McGrath
	03/08/2004
	SCR19139 – Updated with change to copy Message Id to the Correlation Id.

CONTENTS

61
Introduction

71.1
Outstanding Issues

71.2
Document Purpose

71.3
Dependencies

71.4
Assumptions

71.5
Glossary

82
USE OF THE ESM

93
GENEral Error handling standards

93.1
Error Processing according to Interface Progression

103.1.1
Error processes for Request/Reply style interfaces

123.1.2
Error processes for Fire and Forget style interfaces

133.1.3
Implications for message standards

133.2
Timing Out

133.3
Sequencing

143.4
Error Log Files

154
STANDARD ERROR REPLY PROCEDURE

154.1
Types of Connector

154.2
Error Type Definitions

164.3
Generation Of Reply Error Messages

175
error DETAILS produced by receiving systems

185.1
Arbor (Generic Connector)

185.1.1
Type 1 Error Reply To Connector

185.1.2
Type 1 Error Internal Error Codes

195.1.3
Type 2 and 3 Error Codes

205.2
Chordiant (Non-Generic Connector)

205.2.1
Type 1 Error Reply To Connector

205.2.2
Type 1 Error Internal Error Codes

205.2.3
Type 2 and 3 Error Codes

215.3
Debt Processing System (Generic Connector)

215.3.1
Type 1 Error Reply To Connector

215.3.2
Type 1 Error Internal Error Codes

215.3.3
Type 2 and 3 Error Codes

225.4
Document Management System (Non-Generic Connector)

225.4.1
Type 1 Error Reply To Connector

225.4.2
Type 1 Error Internal Error Codes

225.4.3
Type 2 and 3 Error Codes

235.5
FMS (Generic Connector)

235.5.1
Type 1 Error Reply To Connector

235.5.2
Type 1 Error Internal Error Codes

245.5.3
Type 2 and 3 Error Codes

255.6
SCMS via EntireX (Generic Connector)

255.6.1
Type 1 Error Reply To Connector

255.6.2
Type 1 Internal Error Codes

255.6.3
Type 2 and 3 Error Codes

266
error messages EXPECTED by sending systems

276.1
Chordiant

276.1.1
Function

276.1.2
Txdate

286.1.3
Category Code

306.2
CiC

306.3
DPS

326.4
Document Scanning System (ARL)

326.4.1
Error Details

336.5
IDO

336.5.1
Status Class

336.5.2
Status Code

346.6
IVR

357
ERROR HANDLING IN WMQI

357.1
Errors encountered during WMQI Translation, Transformation or Routing

357.2
Errors encountered whilst accessing databases

357.2.1
Oracle Databases

387.3
Errors sent back from receiving systems or their Connectors

387.4
WMQI Message Flows

397.5
WMQI Error Messages

397.6
Error Codes Produced Within WMQI

408
APPENDIX

408.1
APPENDIX A: Oracle Error Codes and Chordiant Category Code

418.2
APPENDIX B: FMS Status Class and Status Codes

448.3
APPENDIX C: Exception List Structure

1 Introduction

This design document is intended to detail the approach that will be taken in the Middleware Integration Layer for handling errors that occur at any point on an interface between one Application and another. By using one reference document a standard can be referred to in Interface Functional Designs and details can be given to create a common understanding for both designers and developers.

Each application will expect the Integration Layer to behave in different ways as a result of errors and will themselves behave in different ways in the event that an error occurs during their own processing. Therefore, this document will detail the following:

· Where an error can occur during runtime on Middleware interfaces

· What actions should be taken by the Integration Layer in each of these cases

· The error message formats and codes produced by applications involved in Middleware interfaces

· The error message formats and codes of messages to be passed back to interface-initiating applications that expect a reply error message if an error occurs

· How WMQI will capture and process errors that occur during WMQI Message Flow processing.

This document will not cover how to interpret individual errors that occur, how to correct errors, how to reprocess data or how to re-align data in different systems after an error has occurred. These details will be covered in a separate document on Middleware Error Processing in relation to the ESM (Enterprise System Management Tool).

This document also does not cover details of Error Handling in other Integration Layer Technologies outside of Message-Orientated Middleware. However, common themes and standards are intended to be present with documents that do cover these areas such as Error Handling in the ETL (Informatica) Integration Layer.

This document currently covers error handling for the Middleware environment that is applicable to the following:

· CRM Phase 2.1 and 2.2
· CRM Phase 2.3 Release1 for Account Management
· CRM Phase 2.3 Release2 for Order Fulfilment (Book Physical Fulfilment only) and Order Creation (Arbor integration)
· CRM Phase 2.3 Release3 for Interaction Management (DocMS)
· CRM Phase 2.3 Release4 for Generate Financial Correspondence (CiC, only outbound FF) and Order Creation (Debt PS)

· CRM Phase 2.3 Release6 for: ARL, IDO, IVR.

· CRM Phase 2.3 Release6.1 for CIC.

This means that this document will need to be progressed and updated as new applications or technologies are connected to Middleware.

1.1 Outstanding Issues

	Reference
	Issue

	
	

	
	

1.2 Document Purpose

The target audience for this document is:

	Audience
	Rationale

	Application development teams
	To understand how their applications should behave and what to expect

	Integration team
	To understand how the Integration Layer will generate errors itself and how it should react to those created by other applications

1.3 Dependencies

	Reference
	Dependency

	1.
	

	
	

	
	

1.4 Assumptions

	Reference
	Assumption

	1.
	If there is an error within MQSeries or WMQI cannot retrieve a message from the input queue there is no way of processing that error other than detecting it in the ESM tool. This should be extremely rare or near impossible, so the fact that the sending application cannot be informed will hopefully not be an issue.

	2.
	If an error or time-out occurs during the reply part of a request-reply message and an application has been updated by the interface, then alignment of data within the systems involved in the interface will need to occur. It is assumed that the process of maintaining data integrity be will be defined and performed by the ESM Support Team and is therefore outside the scope of this document.

1.5 Glossary

	Term
	Description

	Error
	Every unexpected or unwanted event in WMQI message processing. This erroneous behaviour will be subject to error handling.

	Unhealthy Messages
	Messages that cause an error to occur themselves. These messages will either be in an incorrect format or will hold incorrect data. Such messages must be altered before retrying to process them.

	Unsuccessful Messages
	Messages that contain correct data in the correct format but fail due to some other error within the interface. This may be caused by system connection problems or faulty applications. Such messages can be reprocessed as they are once the fault that caused the error has been corrected.

2 USE OF THE ESM

For the purposes of Integration Layer Error Handling it is assumed that the ESM tool will be able to detect certain activities in different applications, which will alert support to error processes as soon as they occur.

In particular, the ESM should detect when a message is sent to the Error queue in MQSeries. This error queue will contain messages with a standard formatted RFH2 header with Error details populated in the <usr> folder, but since the ESM may not be able to read message content an Error log file will be written to a server containing the RFH2 details for each message. The ESM could then extract the relevant details for a report.

The error report structure and the processes which the ESM links to will be defined in the Functional Design documents specific to the ESM (It is currently believed that the ESM tool to be used on the project will be BMC Patrol).

It is assumed that the ESM will be able to detect an error severity at the following levels, which are taken from the NFR document:

	Severity Level
	Description

	0
	Emergency: system is unusable

	1
	Alert: action must be taken immediately

	2
	Critical: critical conditions

	3
	Error: error conditions

	4
	Warning: warning conditions

	5
	Notice: normal but significant condition

	6
	Informational: informational messages

	7
	Debug: debug-level messages

However, for the purposes of this document, only levels 0-4 will attempt to be identified for Integration Layer Error Handling, along with the mention of some at level 5 where these can be recognized.

3 GENEral Error handling standards

3.1 Error Processing according to Interface Progression

A simplified MQSeries / WMQI environment for a request/reply style interface might look like this (for a fire and forget type message only processes 1-8 apply):

[image: image2.emf]
[image: image3.wmf]

3.1.1 Error processes for Request/Reply style interfaces

Errors should be handled differently according to where they occur as follows (time-outs are a separate subject which are described later):

	Stage/ Type
	Error Reason
	Action

	1a
	Connector cannot load API libraries (where loaded at runtime)
	Connector should report write details to an error log file. The ESM should detect this action as an Error.

	1b
	Application cannot reach Connector
	The application should handle this error internally. The ESM should detect this action as an Error.

	2
	Connector cannot place message on MQSeries Queue
	Connector should return an error code to the function it was called by (this may be the application or a separate interface scheduler). Connector should report write details to an error log file. The ESM should detect this action as an Error.

	3
	There is an error within MQSeries or WMQI cannot retrieve a message from the input queue
	MQSeries or WQMI should write to an error log file. The ESM should detect this action as a Critical. This should be extremely rare or near impossible, so the fact that the sending application cannot be informed will hopefully not be an issue. The MQMD.CorrelId should be set to the MQMD.MsgId so that the sending system can process the reply messages when using a static queue.

	4
	An error occurs whilst WMQI is processing the request message
	If the sending system is able to receive an error message, then such an error message should be sent back to the sending system in the format the sending system is expecting.

The original message should be placed on an Error queue with Error details populated in the RFH2 Header. The RFH2 details should be written to an error log file. The ESM should detect this action as a Warning (since the returned error message may prompt the user to change details and try again).

	5
	WMQI cannot place a message on a MQSeries Queue
	Errors should be handled as in stage 4, except that the ESM should detect this action as an Error.

	6
	Connector cannot retrieve a message from a queue
	The Connector should write details to an error log file. The ESM should detect this action as an Error.

	7
	The Connector cannot work with or process a message before passing it to the receiving system, or the Connector cannot contact a receiving application whilst processing a Request message (may attempt some retries first)
	The Connector should place the original message on the application outbound queue with Error Properties of the RFH2 filled. The RFH2 details should also be written to an error log file. The ESM should detect this action as an Error. WMQI should recognise this returned message as an error message and then process it as in stage 4.

	8a
	The receiving system does not take full control of the message and cannot process the request message for technical reasons and returns just an error code.
	The Connector will behave as in Stage 7, but will use error details from the application to populate the RFH2 rather than details generated by itself.

	8b
	The receiving system accepts full control of the message but then cannot process the request message and returns a valid reply message with a error code.
	The Connector will behave as in Stage 7, but will use error details from the application to populate the RFH2 rather than details generated by itself.

	9
	Connector cannot place the reply message on the MQSeries queue
	The following actions should be attempted in order:

1. Attempt technical recovery measures (e.g. write to outbound transaction queue). The ESM should detect this action as a Notice.

2. If possible rollback operation in receiving system and back out to inbound system queue. Write details to an error log file. The ESM should detect this action as a Warning.

3. The Connector should attempt to place the reply message on an Error queue. If successful the ESM should detect this action as an Error and RFH2 details written to an error log file.
4. Otherwise details should be written to an error log file. The ESM should detect this action as an Alert.

For actions 3 or 4: If an update was performed in the receiving system then the ESM support team will need to co-ordinate a rollback or other process to re-align the two systems.

	10
	There is an error within MQSeries or WMQI cannot retrieve a message from the input queue
	Errors should be handled as in stage 3.

	11
	An error occurs whilst WMQI is processing the reply message
	Errors should be handled as in stage 4. If an update was performed in the receiving system then the ESM support team will need to co-ordinate a rollback or other process to re-align the systems involved.

	12a
	WMQI cannot place a message on a MQSeries Queue
	1. WMQI should place the reply message on an Error queue and then write to an error log file. The ESM should detect this action as an Error.

2. If this is not possible then WMQI processing should be rolled back and the message backed out to the receiving application outbound queue. Details should be written to an error log file. The ESM should detect this action as an Error. Backout limit should be set to 0 so that processing stops.

If an update was performed in the receiving system then the ESM support team will need to co-ordinate a rollback or other process to re-align the systems involved.

	12b
	If WMQI placed a message on the MQSeries queue but then MQSeries cannot transfer this message to the dynamic system inbound queue
	The message will be sent to the Dead Letter Queue (on the sending application server). Details should be written to an error log file. The ESM should detect this action as an Information Notice (as most likely scenario is that the sending system timed out).

	13
	Connector cannot retrieve a message from a queue
	Details should be written to an error log file. The ESM should detect this action as an Error.

	14a
	The Connector cannot work with or process a reply message before passing it to the sending system
	The Connector should place the original reply message on the Error queue with Error Properties of the RFH2 filled. The RFH2 details should also be written to an error log file. The ESM should detect this action as an Error.

	14b
	The Connector cannot contact a sending system whilst processing a Reply message (may attempt some retries first)
	The Connector should place the original Reply message back on the system inbound queue with RFH2 Error Properties filled. Details should be written to an error log file. The ESM should detect this action as an Error. The Connector should stop.

3.1.2 Error processes for Fire and Forget style interfaces

Errors should be handled differently according to where they occur as follows (only steps 1-8 are relevant and time-outs are not applicable in this case):

	Stage/ Type
	Error Reason
	Action

	1
	Connector cannot receive a message from a sending system (retrieval process due to transaction boundary for F&F messages)
	The ESM should detect this action as an Error.

	2
	Connector cannot place message on MQSeries Queue
	1. Attempt technical recovery measures (e.g. write to outbound transaction queue). The ESM should detect this action as a Warning.

2. Else rollback any processing and back out to original state. The ESM should detect this action as an Error.

	3
	There is an error within MQSeries or WMQI cannot retrieve a message from the input queue
	Same as for Request/Reply.

	4
	An error occurs whilst WMQI is processing the fire and forget message
	For this error location and message type:

IF Backout Count <3

THEN Backout message. ESM to detect as a Warning.

ELSE

Send original message to Error queue with Error details populated in the RFH2 Header. Write RFH2 details to error log file. ESM to detect as an Error.

[Error nodes set as non-transactional]

	5
	WMQI cannot place a message on a MQSeries Queue
	Errors should be handled as in stage 4.

	6
	Connector cannot retrieve a message from a queue
	Same as for Request/Reply.

	7a
	The Connector cannot work with or process a fire and forget message before passing it to the receiving system
	The original message should be placed on the Error queue with Error Properties of the RFH2 filled. Write RFH2 details to error log file. The ESM should detect this action as an Error.

	7b
	Connector cannot contact a receiving application whilst processing a fire and forget message
	The original message should be backed out to the application inbound queue with Error Properties of the RFH2 filled. RFH2 details should be written to an error log file. The ESM should detect this action as an Error and the Connector processing should stop.

	8
	An error occurs during the processing of a fire and forget message in the receiving system and sends back an error code
	The original message should be placed on the Error queue with Error Properties of the RFH2 filled. RFH2 details should be written to an error log file. The ESM should detect this action as an Error.

3.1.3 Implications for message standards

This approach indicates that standards will be required for:

· Error messages produced by receiving applications

· Error messages expected by sending applications

· Error messages placed on an Error Log queue

These standards are the basis for later sections in this document.

3.2 Timing Out

In a fire and forget type interface the message should succeed or if it fails then a report will be sent to ESM which will need to be corrected before the interface (or at least that piece of data) can continue.

However, if the interface is a request/reply style then there may be a requirement for the sending system to finish processing in a certain time period that is acceptable to the user. This is particularly applicable to Chordiant processes where a CSR is performing an action for a customer. If an error occurs then every effort should be made to return an error message to the sending system, which will end the process. This is not always possible according to where the message fails or if a system processing the data crashes. Furthermore a slowdown in the network or an application may delay the process to an unacceptable level. In this case it is possible to set time-out switches in the initiating process. This should be done as follows:

· If the interface performs an update then no timeout should be set or systems could become out of synchronisation with each other and will not know.

· If the interface only reads data (or can be treated as such) then a timeout can be set in the initiating application but only after investigating business requirements and the speed capabilities of the interface.

If timeouts must be set at any other point within the interface, they should be set to their maximum to allow the initiating system to control the process and to wait for as long as possible so that an error message can be captured rather than the message disappearing altogether. One example of this might be the value set in WMQI for messages passing into EntireX.

The setting of time-outs is related to the interface configuration type as discussed in the Middleware Interface Configurations document.

3.3 Sequencing

Sequencing of messages is not within the current default scope of the Integration Layer, but could be considered on an interface-specific basis. The integration layer will however provide limited functionality in providing automated replay of defined messages that have failed due to an incorrect processing sequence (see section 3.5). Please see the Middleware Integration Design Standards document for a more detailed discussion of sequencing.

3.4 Error Log Files

There will be a number of Error Log Files produced for various systems involved on the project and the format of the texts present in each will vary between files. They are as follows:

	System
	Type of file produced
	Error File Population

	Data-holding Applications
	Trace File
	Populated as specified in specific Application Functional Designs

	Generic Connector
	Trace File
	As specified in the Generic Connector Functional Design

	MQSeries
	Trace File
	Populated automatically. See MQSeries documentation

	WMQI
	Trace File
	Populated automatically. See MQSeries documentation

	
	Error Log File
	Populated according to build.

The second WMQI file that is produced is intended to hold details about the message that caused an error rather than just the details that an error has occurred as reported in the automatically populated WMQI Trace file. It is populated by the Error Handling Unit Flow in the WMQI build (see the WMQI Generic Message Flow Design document for a description).

3.5 Automated Replay of Messages

As stated previously sequencing is not directly supported by the middleware; however functionality to support the replay of messages which have failed for a sequencing related problem will be.

 Any message failing in the target application will be returned to the middleware broker. A message which is required to be replayed will be flagged and then handled accordingly within the WMQI Generic Error Handling module (see the WMQI Generic Message Flow Design document for a description).

A count of the replay attempts will be appended to the message being replayed. The message will be continuously replayed until successfully processed by the target application, or the replay count exceeds the maximum number of attempts defined for the process. If the count is exceeded then the message will be treated as an error and handled accordingly (see the WMQI Generic Message Flow Design document for a description).

4 STANDARD ERROR REPLY PROCEDURE

The following section outlines the standards for how applications and their connectors will respond to errors and generate error reply messages for MQ.

4.1 Types of Connector

There are two types of Connector that exist in the CRM environment – those which are built upon the generic Connector code and those which have been developed independently. Where-ever possible the generic Connector code has been used, but off-the-shelf tools and other factors have led to the use of others that are not based on this Generic code. However, as a programme standard, all the connectors conform to the generic Connector standards so that they all behave in the same way with MQ in the case of an error within the application.

The current MOM Connectors in use are as follows:

	Application
	Follows Generic Standard
	Initiates a R/R interface
	Accepts a R/R interface

	Arbor
	Y
	N
	Y

	ARL
	Y
	Y
	N

	Chordiant
	N
	Y
	Y

	CIC
	N
	Y
	N

	DebtPS
	Y
	Y
	Y

	DMS
	N
	N
	Y

	FMS
	Y
	N
	Y

	IDO
	N
	Y
	N

	ISR
	Y
	n/a
	n/a

	IVR
	Y
	Y
	N

	Midas
	Y
	N
	N

	RDM
	N
	N
	N

	SCMS
	Y
	N
	Y

	TCM
	Y
	N
	N

Note: Some interfaces do view the RDM for cross-reference mapping, but in these cases WMQI will look at a view on the RDM in the same way as if it were looking at a WMQI mapping table, so again only normal WMQI errors will occur)

4.2 Error Type Definitions

Where a Standardised Connector is used to connect MQSeries to an application there can be four possible types of cause of error:

	Error Type
	Scenario
	Action (where a reply is expected)

	Type 1
	The Connector passes the data to the receiving application, which receives and accepts the request message but encounters a problem when processing the data in it.

A valid reply message is returned to the Connector by the application and the error code can be extracted from this message
	The Connector returns the original request message to MQ and interprets the error details sent back from the application to populate the Error properties in the <usr> folder of the RFH2.

	Type 2
	The Connector passes the data to the receiving application, but the application encounters a problem when processing the data in it.

An invalid reply message is returned to the Connector by the application and the error code cannot be extracted from this message
	The Connector will return the original request message to MQ and populate the Error properties in the <usr> folder of the RFH2. However, the Connector will need to generate it’s own error code in these instances.

	Type 3
	The connector has detected that the request data is invalid (e.g. incorrect length)
	The Connector will return the original request message to MQ and populate the Error properties in the <usr> folder of the RFH2. However, the Connector will need to generate it’s own error code and error message in these instances.

	Type 4
	The interface encounters a connection problem between the Connector and the receiving application
	The connector will retry the connection as specified in the connector configuration. No reply will be placed on the output queue for connectivity errors and an internal error will be raised. The request message will be re-processed once connectivity is restored.

The connector will never write an error message to an error queue for inbound request messages.. However, an Error Message may later be sent to the Error Queue by WMQI when this Error reply is processed there.

Please also see the Generic Connector Design document.

4.3 Generation Of Reply Error Messages

For Type 1, 2 or 3 errors as defined above, the Connector will populate the RFH2 as follows:

	MQRFH2 Folder
	Property
	Value

	usr
	ErrorLocation
	If the error code was generated by the application then this should be “XXX”, where XXX conforms to the Application Acronyms in the WMQ Naming Conventions document.

If the error code was generated by the connector, then this should be “BACXXX”, where BAC stands for BSkyB API Connector.

The Application ID ‘XXX’ as specified in the connector configuration file.

	
	ErrorProcess
	Specified by developer as an aid to diagnostics (e.g. ‘Connection’, ‘JDBC’, etc)

	
	ErrorCode
	Exception Code passed back from application or generated by the connector. ErrorLocation indicates which of these is the case.

	
	ErrorMessage
	Specified by Developer if not passed back from application.

	
	ErrorDateTime
	System Time, format: “YYYY-MM-DDT24:mm:ssZ”

The specific Error Codes and Messages that are used to populate this structure are outlined in the following sections.

5 error DETAILS produced by receiving systems

The following section outlines the error details that each application and its connector would generate in response to the occurrence of an error in the instances where MQSeries passes a message to the application via a Connector and WMQI expects a reply message.

Each section for a particular application details the following:

· The error message generated within an application and passed back to the connector when a Type 1 error occurs (To be used in the connector processing).

· The specific Error Codes from that Type 1 Error message that will be used to populate the RFH2 by the connector (To be used in WMQI Error Handling).

· The possible other Error Codes that could populate the RFH2, either by the connector itself or another connecting application – i.e. Type 2 and 3 Errors(To be used in WMQI Error Handling).

If an application is not included in this section then this means that there are currently no instances where MQSeries initiates a Request/Reply connection with that application for a Middleware interface (see section 4.1 for a full list of connectors in the CRM Middleware environment)

5.1 Arbor (Generic Connector)

5.1.1 Type 1 Error Reply To Connector

A Type 1 Error when connecting to Arbor will result in a specifically formatted error message being generated to returned to the connector. The “Success” tag determines whether the reply message is the normal processing message or the generic error reply message that is shown below:

Message Name:
MZ_GENERIC_OT_ArborErrorRpy

Field Delimiters:
XML

Scope of Message:
All Arbor Error Processing

	Field Name
	Min - Max Usage
	Format
	Possible Values or Comment

	Opening Tag
	1-1
	Tag
	E.g. <RetrieveBillingAccDebtResponse>

	<Success>
	1-1
	Text
	Constant value assigned by Arbor: false
Left aligned and no padding.

	<ErrorCode>
	1-1
	Num
	Arbor Error Code, e.g.: -2

Format: No thousand separator, but decimal points and negative numbers are possible. See 5.1.2.

	<ErrorText>
	1-1
	Text
	Arbor-generated Description of error, e.g.: ‘Error 243: Billing Account ‘10795668159401234567801’ does not exist’

Left aligned and no padding.

	Closing tag
	1-1
	Tag
	E.g. </RetrieveBillingAccDebtResponse>

5.1.2 Type 1 Error Internal Error Codes

The following codes have been identified as values that could occur during MOM interface processing:

	Error Code (no zero padding)
	Description

	-1
	(ABP_DBERR) A database error occurred — for example, a trigger error or an invalid field value. This result is typical of invalid data in object fields or function arguments.

	-2
	(ABP_SYSERR) An operating system error such as a memory allocation failure occurred.

	-3
	(ABP_ARGERR) An input argument is supposed to be of the object type but is of an incorrect type. This result is frequently caused by incorrectly initialized variables, missing parentheses in accessor functions, or a database channel (dbhandle) that is not properly connected to the database.

	-4
	(ABP_MISC_ERR) An internal Arbor/BP error occurred. This result generally indicates an error in the application logic — that is, a function called with arguments that don’t conform to the Arbor/BP data model.

	85
	EXIT_ENVIRONMENT_ERROR

	89
	EXIT_DATA_ERROR

	92
	EXIT_SQL_ERROR

	95
	EXIT_PROPS_ERROR

	96
	EXIT_ARGS_ERROR

	97
	EXIT_FILE_ERROR

	98
	EXIT_DB_ERROR

	Other
	Other

5.1.3 Type 2 and 3 Error Codes

These Errors will be treated collectively within WMQI as Connector Errors for the purposes of mapping to error codes in other systems, therefore no breakdown of codes is currently required here.

The Arbor adaptor uses Arbor Classes to connect to the Arbor application. The Error Codes returned would therefore either be returned as specified in the Arbor Classes or as specified in the Connector build specification.

5.2 Chordiant (Non-Generic Connector)

5.2.1 Type 1 Error Reply To Connector

The Chordiant connector is not based on the Generic Connector code, however it does adhere to the generic Connector standards. It has been developed within the Chordiant team, so the message structure that is passed back to the connector in the case of an error does not need to be specified here (please refer to the Chordiant Connector Design document instead).

5.2.2 Type 1 Error Internal Error Codes

MQSeries only initiates a request/reply connection to Chordiant for two interfaces so far:

IFC1311 (IVR Messages) will handle messages from the IVR to Chordiant. For some data errors that occur within Chordiant, error details will be passed back within the message body within the specific error fields designed for this interface. In these cases the error codes will not be interpreted by WMQI, so do not need to be specified here. However, for other errors that would cause a failure result back to the connector a different approach has been adopted - Since these are low priority, Read messages where Middleware will not be used to parse the message body, then it has been agreed that in the occurrence of such an error then a reply will not be sent back to Middleware from Chordiant and the IVR will be left to time out independently.

IFC1392 (Check Duplicate Address) is used to let ARL know of any duplicate addresses, as on Chordiant. When an error occurs within Chordiant on this interface, the exception can be passed back to the inbound connector and this will return the inbound request message with error details in the RFH2 in exactly the same way as is specified in the standardised Connectors. However, these error codes are not translated or interpreted by either WMQI or ARL (the initiating system for this interface), so they do not need to be specified here.

5.2.3 Type 2 and 3 Error Codes

These Errors will be treated collectively within WMQI as Connector Errors for the purposes of mapping to error codes in other systems, therefore no breakdown of codes is currently required here.

5.3 Debt Processing System (Generic Connector)

5.3.1 Type 1 Error Reply To Connector

A Type 1 Error when connecting to DebtPS will result in a specifically formatted error message being generated to returned to the connector. The “Success” tag determines whether the reply message is the normal processing message or the generic error reply message that is shown below:

Message Name:
MZ_GENERIC_OT_DebtPSErrorRpy

Field Delimiters:
XML

Scope of Message:
All DebtPS Error Processing

	Field Name
	Min - Max Usage
	Format
	Possible Values or Comment

	Opening Tag
	1-1
	Tag
	E.g. <RetrieveDebtServGrpDebtResponse>

	<Success>
	1-1
	Text
	Constant value assigned by DebtPS: false

No padding or alignment.

	<ErrorCode>
	1-1
	Num
	DebtPS Error Code, e.g.: 1.

Format: No thousand separator, but decimal points and negative numbers are possible.

	<ErrorText>
	1-1
	Text
	DebtPS-generated Description of error, e.g.: ‘Error 243: Billing Account ‘10795668159401234567801’
No padding or alignment.

	Closing tag
	1-1
	Tag
	E.g. </RetrieveDebtServGrpDebtResponse>

5.3.2 Type 1 Error Internal Error Codes

Currently DebtPS is set up such that only one error code is used, but the field is included in the message so that it might be used for greater functionality in the future:

	Error Code (no zero padding)
	Description

	1
	Default Error Code populated by DebtPS for all errors that occur

5.3.3 Type 2 and 3 Error Codes

These Errors will be treated collectively within WMQI as Connector Errors for the purposes of mapping to error codes in other systems, therefore no breakdown of codes is currently required here.

5.4 Document Management System (Non-Generic Connector)

5.4.1 Type 1 Error Reply To Connector

The DMS connector is not based on the Generic Connector code, however it does adhere to the generic Connector standards. . It has been developed within the DMS team, so the message structure that is passed back to the connector in the case of an error does not need to be specified here (please refer to the DMS Connector Design document instead).

5.4.2 Type 1 Error Internal Error Codes

The following codes have been identified as values that could occur during MOM interface processing:

	Category Code
	Message Description

	0
	User Error

	1
	Recoverable System Error

	2
	Non- Recoverable System Error

	3
	Transaction Failure

	4
	Data Validation Error

	5
	Business Rule Violation

	6
	Resource Error

	7
	Access Violation

5.4.3 Type 2 and 3 Error Codes

These Errors will be treated collectively within WMQI as Connector Errors for the purposes of mapping to error codes in other systems, therefore no breakdown of codes is currently required here.

5.5 FMS (Generic Connector)

5.5.1 Type 1 Error Reply To Connector

A Type 1 Error when connecting to FMS will result in a specifically formatted error message being generated to returned to the Connector. The Status Class and Status Code are used to indicate a success or the failure message shown below:

Message Name:
MZ_GENERIC_OT_FMSErrorRpy

Field Delimiters:
Fixed length. No delimiters.

Scope of Message:
All Error Processing from FMS.

	Field Name
	Min - Max Usage
	Format
	Possible Values or Comment

	Start Message Body
	1-1
	
	

	Type
	1-1
	A8
	Message Type. Possible values are listed below.

	Status Class
	1-1
	N5
	A valid non- zero FMS class code. Right aligned, zero padded 5-digit only number.

	Status Code
	1-1
	N5
	A valid non- zero FMS code. Right aligned, zero padded 5-digit only number.

	Link ID
	1-1
	N10
	Will contain Visit ID in the case of Update interfaces (right aligned and zero padded), but spaces in the case of a Read interface.

	Error Text
	1-1
	AN

1972
	Returned if FMS cannot process request message. Details of the error. Left aligned and space padded.

	End Message Body
	
	
	

5.5.1.1 Message Type

The Type field is used to refer to the processing path that has been attempted by the message. Example values for this interface-dependant constant are as follows:

	Message Type
	Description
	Direction with respect to FMS

	IDO-0001
	CheckFMSAvailability
	Request

	IDO-0002
	CheckFMSAvailability
	Response

	IDO-0007
	CheckDiaryAvailability
	Request

	IDO-0008
	CheckDiaryAvailability
	Response

	IDO-0009
	MakeTentativeBooking
	Request

	IDO-0010
	MakeTentativeBooking
	Response

	CHD-0001
	RetrieveAvailableDates
	Request

	CHD-0002
	RetrieveAvailableDates
	Response

5.5.2 Type 1 Error Internal Error Codes

The internal FMS error code consists of an Error Class and an Error Code which will be concatenated in that order to give the overall RFH2.usr.ErrorCode.

For error processing, the value of each will always be a valid, non-zero FMS code as shown in section 7.2 Appendix B.

5.5.3 Type 2 and 3 Error Codes

These Errors will be treated collectively within WMQI as Connector Errors for the purposes of mapping to error codes in other systems, therefore no breakdown of codes is currently required here.

The FMS adaptor uses JDBC to connect to the FMS application and therefore all errors encountered will be raised as Java exceptions. These errors are well documented in the JDBC/Informix technical reference.
5.6 SCMS via EntireX (Generic Connector)

5.6.1 Type 1 Error Reply To Connector

After a request message has been accepted successfully into EntireX from the MQ/EntireX connector, there are two possible types of error that can occur. In both cases the error details will be passed back to the connector within the message body of a normally-formatted reply message:

If a Type 1 Error occurs within SCMS then Error details will be returned in the RECEIVE-AREA fields of the returned message. See 5.6.2.

If an Error occurs within EntireX, then Error Details will be returned in the ERROR- AREA fields of the returned message. This will signify a connection error. In such cases the MQ/EntireX Connector will not return a message to MQ.

5.6.2 Type 1 Internal Error Codes

The following is a description of the Most Common Errors returned by the SCMS API (and therefore placed in the RECEIVE-AREA of the reply message):

	Return Code
	Description

	0008
	Invalid data in a field

	0027
	Required Template does not exist

	6054
	Service not authorised for this data (CMS not permitted to sell event)

	6065
	Required data not supplied / Service not authorised for this data

	6317
	Service not authorised for this data (Event cannot be sold as OPPV)

	6320
	Service not authorised for this data (Event not ready for sale)

	8014
	Matching data record not found

	8066
	Matching data not found on file

Note: these codes are Not related to the validation of OPPV events in relation to Spend/Rating restrictions or Blackout.

5.6.3 Type 2 and 3 Error Codes

If a non-connection error occurs and the connector needs to return an error message to MQ but does not have a suitable error code, it will generate it’s own default value as specified in the Generic Connector Design document.

These Errors will be treated collectively within WMQI as Connector Errors for the purposes of mapping to error codes in other systems, therefore no breakdown of codes is currently required here.

6 error messages EXPECTED by sending systems

The following section outlines the error message that an application that initiated a request/reply style interface would expect to receive in the instances where that application passes a message to MQSeries and an error occurs outside the application and the initiating application is capable of receiving an error reply message.

NOTE: In many instances, the receiving application will pass back the context of the data it was working with when the error occurred (e.g. Document ID). This does not necessarily need to be passed back to the sending system since when WMQI processes an error, it writes it’s own error message to an error queue for tracking which contains the response message from the receiving application. Therefore, if the error message going back to the sending system errors again, then this can be tied back to the message on the error queue (using message id) to provide the context.

If an application is not included in this section then this means that there are currently no instances where that application initiates a Request/Reply connection with MQSeries for a Middleware interface. (see section 4.1 for a full list of connectors in the CRM Middleware environment)

6.1 Chordiant

If an error occurs outside the application, Chordiant expects MQSeries to pass back a message in a standardised format with a ‘Success’ value of ‘false’ and error details as follows:

Message Name:
<Same as Normal Processing Reply Name>

Field Delimiters:
XML

Scope of Message:
All Error Processing.
	Field Name
	Min - Max Usage
	Format
	Description
	Possible Values or Comment

	<?xml?>
	1-1
	Tag
	XML format
	version='1.0' encoding='UTF-8'

	<Function>
	1-1
	Tag
	
	See 6.1.1

	Success
	1-1
	XML,AN
	Success Flag
	Constant: ‘false’

	<Payload>
	0-many
	Tag
	
	xmlns:ns0='http://www.themindelectric.com/collections/'
xsi:type='ns0:vector'>

	<Item>
	1-1
	Tag
	
	xmlns:ns0=’http://www.themindelectric.com/package/com.bskyb.bd.serviceHelpers.middleware/' xsi:type=ns0:BSBMiddlewareError'

	<Txname>
	1-1
	XML,AN
	Name of initiating function call
	From: MQRFH2.usr.ApplIdentityData

	<Txdate>
	1-1
	XML,AN
	Time of Error
	Format: YYYY-MM-DDTHH:MN:SSZS99:99

From: RFH2.usr.ErrorDateTime.

See 6.1.2

	<Message>
	1-1
	XML,AN
	Error Message description
	Map from ExceptionList.Text (Lowest Level).

	<CatCode>
	1-1
	XML,N1
	Category Code of Error.
	Map from ExceptionList.Number (Lowest Level). See 6.1.3

	<ApplicationErrorCode>
	1-1
	XML, AN
	Original Application Code
	TD17088:

Directly mapped from ExceptionList.ErrorCode

	<ErroringSystem>
	1-1
	XML,AN
	System where the Error occurred
	From: ExceptionList.Catalog

	<ErrorLogId>
	1-1
	XML,AN
	Message ID of the corresponding log on the MQSeries Error Queue.
	From MQMD.MsgId

	</Item>
	1-1
	Tag
	
	

	</Payload>
	1-1
	Tag
	
	

	</Function>
	1-1
	Tag
	
	

	</Header>
	1-1
	Tag
	
	

6.1.1 Function

This tag will hold the value: “<[Function]Response xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'>”

Where [Function] is obtained by trimming the Literal “Request” off the end of the value in MQRFH2.usr.ApplIdentityData

6.1.2 Txdate

This field will retrieve the timestamp value in RFH2.usr.ErrorDateTime and convert it to the format: YYYY-MM-DDTHH:MN:SSZS99:99

Where:

“-“, ”T”, “:” and “Z” are all actual constant values

and S99:99 is the time-offset with preceding +/- sign where applicable. For BSkyB this offset is not required and therefore the value of the offset (i.e. all of S99:99) will be left blank (i.e. the timestamp will always have the Z as the last character).

6.1.3 Category Code

The decoding of error messages within Chordiant will be based upon the category code “<CatCode>” value. The following table lists valid category types.

	Category Code
	Category Description

	0
	User Error

	1
	Recoverable System Error

	2
	Non- Recoverable System Error

	3
	Transaction Failure

	4
	Data Validation Error

	5
	Business Rule Violation

	6
	Resource Error

	7
	Access Violation

These will need to be mapped from error message codes received from other systems or generated within the Integration Layer. A cross-reference mapping table is needed to perform this and this is placed in the WMQI Generic Message Flow Design Document, since it is a particular design requirement of the Error Handling Unit Level Message Flow.

According to the NFR Document, there can be 8 severity levels of an error as follows:

	Severity Level
	Description

	0
	Emergency: system is unusable

	1
	Alert: action must be taken immediately

	2
	Critical: critical conditions

	3
	Error: error conditions

	4
	Warning: warning conditions

	5
	Notice: normal but significant condition

	6
	Informational: informational messages

	7
	Debug: debug-level messages

As far as Chordiant are concerned, the Category Codes will be mapped on a one-to-one basis with a severity level that will influence how Chordiant behaves when it receives different error codes, which is currently intended to be as follows:

	Category Code
	Category Description
	Severity Level
	Actions

	
	
	
	Log
	Display
	Retry
	Resubmit
	Rollback

	0
	User Error
	5
	
	Y
	
	Y
	

	1
	Recoverable System Error
	3
	Y
	Y
	Y
	
	

	2
	Non- Recoverable System Error
	0
	Y
	Y
	
	
	

	3
	Transaction Failure
	3
	Y
	Y
	
	
	Y

	4
	Data Validation Error
	5
	
	Y
	
	Y
	

	5
	Business Rule Violation
	5
	
	Y
	
	Y
	

	6
	Resource Error
	3
	Y
	Y
	
	
	

	7
	Access Violation
	3
	Y
	Y
	
	
	

All the above actions occur within Chordiant and have no impact on the completion of an interface message. [Expected translation: Log on file, Display on screen, CSR restarts interface, CSR alters data then restarts, changes rolled back].

6.2 CiC

If an error occurs outside the application, CiC expects MQSeries to pass back a message in a standardised format with the <Success> set to indicate an error as follows:

Message Name:
<Same as Normal Processing Reply Name>

Field Delimiters:
XML

Scope of Message:
All Error Processing.
	Field Name
	Min - Max Usage
	Format
	Description
	Possible Values or Comment

	Opening Tag
	1-1
	Tag
	Normal reply tag
	E.g. <RetrieveRecentTransResponse>

	<Success>
	1-1
	Text
	Indicates failure
	Constant value: false

	<ErrorText>
	1-1
	Text
	Error Description
	Mapped directly from source message with no padding.

	Closing tag
	1-1
	Tag
	Normal reply tag
	E.g. </RetrieveRecentTransResponse>

CIC will display a standard error message to the user in the case of a failure, so no ErrorCode is required to be returned to the application.

6.3 DPS

If an error occurs outside the application, DPS expects MQSeries to pass back a message in a standardised format with the <Success> set to indicate an error as follows:

Message Name:
<Same as Normal Processing Reply Name>

Field Delimiters:
XML

Scope of Message:
All Error Processing.

	Field Name
	Min - Max Usage
	Format
	Description
	Possible Values or Comment

	<?xml?>
	1-1
	Tag
	XML format
	version='1.0' encoding='UTF-8'

	<Function>
	1-1
	Tag
	
	E.g. <RetrieveDebtBalancesResponse>

See 6.1.1

	Success
	1-1
	XML,AN
	Success Flag
	Constant: ‘false’

	<Payload>
	0-many
	Tag
	
	xmlns:ns0='http://www.themindelectric.com/collections/'
xsi:type='ns0:vector'>

	<Item>
	1-1
	Tag
	
	xmlns:ns0=’http://www.themindelectric.com/package/com.bskyb.bd.serviceHelpers.middleware/' xsi:type=ns0:BSBMiddlewareError'>

	<Txname>
	1-1
	XML,AN
	Name of initiating function call
	From: MQRFH2.usr.ApplIdentityData

	<Txdate>
	1-1
	XML,AN
	ErrorDateTime
	From: RFH2.usr.ErrorDateTime.

Format: YYYY-MM-DDTHH:MN:SSZS99:99

See 6.1.2

	<Message>
	1-1
	XML,AN
	Error Message
	From: RFH2.usr folder

	<CatCode>
	1-1
	XML,N1
	Error Code
	From: RFH2.usr folder

	<ErroringSystem>
	1-1
	XML,AN
	ErrorLocation
	From: RFH2.usr folder

	<ErrorLogId>
	1-1
	XML,AN
	Message ID of the corresponding log on the MQSeries Error Queue.
	From MQMD.MsgId

	</Item>
	1-1
	Tag
	
	

	</Payload>
	1-1
	Tag
	
	

	</Function>
	1-1
	Tag
	
	

	</Header>
	1-1
	Tag
	
	

6.3.1 Function

This tag will hold the value: “<[Function]Response xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'>”

Where [Function] is obtained by trimming the Literal “Request” off the end of the value in MQRFH2.usr.ApplIdentityData

6.3.2 Txdate

This field will retrieve the timestamp value in RFH2.usr.ErrorDateTime and convert it to the format: YYYY-MM-DDTHH:MN:SSZS99:99

Where:

“-“, ”T”, “:” and “Z” are all actual constant values

and S99:99 is the time-offset with preceding +/- sign where applicable. For BSkyB this offset is not required and therefore the value of the offset (i.e. all of S99:99) will be left blank (i.e. the timestamp will always have the Z as the last character).

6.4 Document Scanning System (ARL)

If an error occurs outside the application, ARL (via EntireX) expects MQSeries to pass back a message in a standardised format with the Error Number set to non-zero to as follows:

Message Name:
<Same as Normal Processing Reply Name>

Field Delimiters:
Fixed Length

Scope of Message:
All Error Processing.
	Field Name
	Min - Max Usage
	Format
	Description
	Possible Values or Comment

	RECEIVE BLOCK Start
	1-1
	Tag
	
	

	ERROR-NR
	1-1
	N4
	Error Number
	Non-zeros for error. Populate from RFH2.usr.<ErrorCode. See 6.4.1

	ERROR-MSG
	1-1
	A80
	Error Message
	Populate from RFH2.usr.<ErrorMessage>

See 6.4.1

	FILLER
	1-1
	A1916
	Filler
	Irrelevant content or padding up to 2000.

	RECEIVE BLOCK End
	1-1
	Tag
	
	

6.4.1 Error Details

The error codes are not translated since there is no requirement for specific error codes to be passed back to ARL.

6.5 IDO

If an error occurs outside the application, IDO expects MQSeries to pass back a message in the following format:

Message Name:
MZ_GENERIC_IN_IDOFMSErrorRpy

Field Delimiters:
Fixed Length, no delimiters

Scope of Message:
All Error Processing.
	Field Name
	Min - Max Usage
	Format
	Description
	Possible Values or Comment

	Message Body
	1-1
	
	
	

	Type
	1-1
	A8
	Interface ID
	Mapped directly from <FMS Message>.Type

	Status Class
	1-1
	N5
	Status Class
	See 5.4.1

	Status Code
	1-1
	N5
	Status Code
	See 5.4.2

	Error Text
	1-1
	Up to

A1982
	Details the error
	Mapped from MQRFH2.usr.ErrorMessage

	End Message Body
	
	
	
	

6.5.1 Status Class

For error processing this value will always be a valid, non-zero code. IDO will check this field, in conjunction with the Status Code field, to ascertain if an error has occurred and to determine if this error is of a recoverable or non-recoverable type. In the case of a recoverable error, e.g. if an address has been incorrectly entered, IDO will display a message to the user prompting them to rectify the problem. In the case of a non-recoverable error or time-out IDO will display an error to the user advising them to contact Sky via alternative means to complete their order.

If the Error Occurred within FMS then a direct mapping of the value is used (taken from RFH2.usr.ErrorCode). However if the error occurred outside of FMS (identified by looking at the RFH2.usr.ErrorLocation field) then the Status Class will be populated as follows:

	Value in RFH2.usr.ErrorLocation
	Location of Error
	Value to use for Status Class

	‘FMS’
	FMS
	Map from RFH2.usr.ErrorCode, chars 1-5.

	‘WMQIv210’
	WMQI
	‘00004’

	Any other value
	Connector
	‘00005’

IDO will treat all errors that occur outside FMS as non-recoverable.

6.5.2 Status Code

For error processing this value will always be a valid non-zero code.

If the Error Occurred within FMS then a direct mapping of the value is used (taken from RFH2.usr.ErrorCode). However if the error occurred outside of FMS (identified by looking at the RFH2.usr.ErrorLocation field) then the Status Code will be populated as follows:

	Value in RFH2.usr.ErrorLocation
	Location of Error
	Value to use for Status Code

	‘FMS’
	FMS
	Map from RFH2.usr.ErrorCode, chars 6-10.

	‘WMQIv210’
	WMQI
	‘00001’

	Any other value
	Connector
	‘00001’

It is not necessary to return any specific WMQI or JDBC (adaptor) error code to IDO.

6.6 IVR

Whilst IVR does initiate a request/reply interface, WMQI does not parse the reply message, so will not know if an error has occurred within the receiving system. In this case the Error Message is sent directly back to IVR as if it were a success message and the IVR will interpret the message itself.

However, if an error occurs within the processing of WMQI (either on the request or reply message) then the message which created the error will be written to the error queue (severity level 4 since the message is non-persistent), but NO reply message is sent back to the IVR. This design is made because the IDO will time-out after a while and assume failure and if WMQI failed to process the message then it is unlikely it will be able to parse the inbound data message in order to produce the required error reply that IVR could understand.

7 ERROR HANDLING IN WMQI

This section describes the approach that will be taken to error handling within the WMQI build. It describes how WebSphere MQ Integrator will capture errors produced during processing within the tool and how it will deal with errors produced by receiving systems or their Connectors.

In each WMQI Message Flow build there will be a number of generic principles to follow and there will also be a specific Error-Handling Unit Flow that will be incorporated into every Application Flow as part of an interface build so that errors are handled in standardised way.

The WMQI / MQSeries environment will have the following characteristics with respect to Error Handling:

· There will be only one Error Queue for all applications on which Error messages will be placed

· Error messages placed on the Error Queue are designed so that they can easily be re-processed if required, but the Error Properties populated in the RFH2.usr folder will need to be removed first

· The Back-out count for messages will always be set to 0 unless otherwise stated

· A Dead Letter Queue will always be specified

7.1 Errors encountered during WMQI Translation, Transformation or Routing

If WMQI produces an error whilst processing a node performing transformation, translation or routing logic then rollback of processing should occur as far as possible, an error message should be written to an error queue, an error log to an error log file and for a request/reply interface an error message should be returned to the sending system where the sending system expects an error message to be returned.

7.2 Errors encountered whilst accessing databases

If WMQI needs to access a cross-reference database or other database directly then the same error handling should take place as if it were accessing any other WMQI node. The difference would be that, if the database was updated then the database transaction should be rolled back and that the error codes produced by the database would differ according to the database type. The rollback of the database transaction should happen automatically if the database is accessed as part of a normal WMQI Message Flow.

7.2.1 Oracle Databases

If WMQI accesses an Oracle database directly by ODBC then Error Handling should be treated in the same way, regardless of the database use.

It is currently envisaged that WMQI will only access Oracle databases directly in the following circumstances:

- WMQI can use Oracle databases to hold cross-reference mapping tables that it uses during runtime. For the purposes of error messages returned, the reading of these databases will be treated just as if a separate Oracle database were being read (However, there are currently no cross-mapping tables needed for Phase 2.1).

- Phase 2.1 OPPV Interfaces that perform Read-Only functions will access the Reference Data Manager directly from WMQI (Updates will be performed via the RDM API).

To work directly with an Oracle database, WMQI can use the specific Database nodes (e.g. the DatabaseREAD node) or a Compute node. It will either succeed and control will pass onto the success terminal of the node or the database read will fail and control will pass to the error terminal. If this happens an Exception List will be automatically populated containing the following relevant Error Codes and Descriptions:

	Error Code

(ORA-XXXXX)
	Oracle Description
	Description

	Specific Error Codes
	
	

	00000
	Success
	OK

	00001
	Unique Constraint Violated
	Duplicate Insert

	01017
	Invalid username/password
	Incorrect Username/Password specified

	12150
	Unable to send data
	Connectivity to DB lost (transient?)

	12152
	Unable to send break message
	Connectivity to DB lost (transient?)

	12153
	Not connected
	Connectivity to DB lost (transient?)

	12154
	Could not resolve service name
	Incorrect SID/Service Name specified

	12225
	Destination host unreachable
	Connectivity to DB lost (transient?)

	12230
	Severe Network error occurred in making this connection
	Connectivity to DB lost (transient?)

	12317
	Logon to database (link name) denied
	Incorrect Username/Password specified

	Grouped Error Codes
	
	

	00000-00100
	Oracle Server
	Requires DBA intervention

	00101-00149
	Multi-threaded Server
	Requires DBA intervention

	00150-00159
	Oracle *XA
	Requires DBA intervention

	00160-00199
	[Unspecified]
	Requires DBA intervention

	00200-00249
	Control Files
	Requires DBA intervention

	00250-00299
	Archiving and Recovery
	Requires DBA intervention

	00300-00369
	Redo Log Files
	Requires DBA intervention

	00370-00389
	KCB Errors
	Requires DBA intervention

	00390-00399
	Redo Log Files
	Requires DBA intervention

	00400-00420
	Oracle Compatibility
	Requires DBA intervention

	00436-00437
	Licensing
	Requires DBA intervention

	00440-00460
	Detached Process Startup
	Requires DBA intervention

	00470-00485
	Detached Process Death
	Requires DBA intervention

	00486-00569
	Interrupt Handlers
	Requires DBA intervention

	00600-00639
	Oracle Exceptions
	Requires DBA intervention

	00640-00699
	SQL*Connect
	Requires DBA intervention

	00816-00816
	Message Translation
	Requires DBA intervention

	00900-00999
	SQL Parsing
	Error in SQL command or Database Schema error

	01000-01099
	User Program Interface
	Error in SQL command, Database Schema error or DBA intervention

	01100-01250
	Oracle Files
	Requires DBA intervention

	01400-01489
	SQL Exception
	Error in SQL command or Database Schema error

	01490-01499
	Miscellaneous, ANALYZE, SQL Parsing, Execution
	Error in SQL command or Database Schema error

	01500-01699
	Oracle Commands
	Requires DBA intervention

	01700-01799
	SQL Parsing
	Error in SQL command or Database Schema error

	01800-01899
	The Date Function
	Error in SQL command

	01900-02039
	SQL Parsing
	Error in SQL command

	02040-02099
	Distributed Transactions
	Requires DBA intervention

	02140-02299
	SQL Parsing
	Error in SQL command

	02300-02350
	[Unspecified]
	Error in SQL command

	02351-02375
	SQL*Loader in Direct Path Mode
	Requires DBA intervention

	02376-02399
	Oracle Resources
	Requires DBA intervention

	02400-02419
	EXPLAIN PLAN Command
	Requires DBA intervention

	02420-02429
	Schemas
	Requires DBA intervention

	02430-02449
	Constraint Enabling & Disabling
	Requires DBA intervention

	02450-02475
	Hash Cluster Commands
	Requires DBA intervention

	02476-02479
	Parallel Direct Loader
	Requires DBA intervention

	02480-02489
	Trace Facility
	Requires DBA intervention

	02490-02499
	Resizeable Datafiles
	Requires DBA intervention

	03000-03099
	Features Not Implemented
	Error in SQL command

	03100-03199
	Two-Task Interface
	Requires DBA intervention

	03200-03289
	Extent Allocation and Other Space Management Errors
	Requires DBA intervention

	03290-03295
	TRUNCATE Command
	Requires DBA intervention

	03296-03299
	Resizeable Datafiles
	Requires DBA intervention

	04000-04019
	Command Parameters
	Requires DBA intervention

	04020-04029
	Library Object Locks
	Requires DBA intervention

	04030-04039
	System Memory
	Requires DBA intervention

	04040-04069
	Stored Procedures
	Error in SQL command or Database Schema error

	04070-04099
	Triggers
	Error in SQL command or Database Schema error

	06000-06429
	SQL*Net
	Requires DBA intervention

	06430-06499
	NCR System 3000
	Requires DBA intervention

	06500-06599
	PL/SQL
	Error in SQL command or Database Schema error

	07200-07499
	UNIX
	Requires DBA intervention

	08000-08174
	Accessing Data
	Requires DBA intervention

	08175-08190
	Discrete Transactions
	Requires DBA intervention

	08401-08499
	PL/SQL Utility Packages for Procedural Gateway
	Requires DBA intervention

	09100-09199
	Oracle Gateways
	Requires DBA intervention

	09200-09499
	DOS, OS/2 and Novell
	Requires DBA intervention

	09700-09999
	UNIX
	Requires DBA intervention

	10000-10999
	Internal
	Requires DBA intervention

	12000-12019
	Table Snapshots
	Requires DBA intervention

	12020-12100
	[Unspecified]
	Requires DBA intervention

	12100-12299
	SQL*Net
	Requires DBA intervention

	12300-12399
	Multiple Mount
	Requires DBA intervention

	12400-12499
	Trusted Oracle
	Requires DBA intervention

	12500-12699
	SQL*Net
	Requires DBA intervention

	12700-12799
	National Language Support
	Requires DBA intervention

	12800-12849
	Parallel Query/Index Creation
	Requires DBA intervention

	13000-13199
	Spatial Data Option
	Requires DBA intervention

	14000-14099
	Partitioned Objects - Parsing
	Requires DBA intervention

	14100-14399
	[Unspecified]
	Error in SQL command or Database Schema error

	14400-14499
	Partitioned Objects - Execution
	Requires DBA intervention

	14500-14999
	Partitioned Objects - Analyse
	Requires DBA intervention

	14999-19998
	[Unspecified]
	Requires DBA intervention

	19999-21000
	Stored Procedures
	Requires DBA intervention

	21001-21099
	[Unspecified]
	Requires DBA intervention

	21300-23299
	Internal Messages
	Requires DBA intervention

	23300-24299
	DBMS PL/SQL Packages
	Requires DBA intervention

	24300-24999
	UPI/OCI Messages
	Requires DBA intervention

	25000-25099
	Trigger Errors
	Requires DBA intervention

	25100-25199
	Parse Errors
	Requires DBA intervention

	25200-25699
	Advanced Queuing
	Requires DBA intervention

	25699-29702
	[Unspecified]
	Requires DBA intervention

	Other number
	[Unspecified]
	Requires DBA intervention

Note that if custom PL/SQL is being directly or indirectly (e.g. via a trigger) called then custom error numbers could be used. In these cases a separate mapping table for each ‘database with custom code’ should be produced, as it is not possible to generically decide on the severity of any custom error codes.

NOTE: Another important thing to remember is that if Oracle is accessed directly from WMQI then no error code will be returned in the event that no rows are returned. This means that the WMQI developer will have to manually code checks on the data returned to ensure that the data returned is that required, in the correct format and the correct quantity and that if this is not the case then the appropriate errors are raised.

Error Handling will then occur as described in the “Error Handling in WMQI” section, with Oracle Error codes and descriptions returned by the database being used to populate an Error log and Error Message back to the Sending System if required.

An indication of how these Oracle error codes might be used if a message is sent back to Chordiant is described in Appendix A. For more details see section 6.1.3
7.3 Errors sent back from receiving systems or their Connectors

Where error messages are passed back into WMQI, WMQI will identify these messages as errors and produce the same outputs as if the error had occurred within WMQI. The difference arises in the fact that WMQI will need to extract error details from the RFH2 rather than the exception list of the message.

7.4 WMQI Message Flows

The Application Flows that will be built to accept all messages from each Application will conform to the generic design that is specified in the WMQI Generic Message Flow Design Document. The differences between each Application Flow will be that Error messages will be interpreted differently and used in different ways to obtain error details.

Each Application Flow will call an Error Handling Unit Flow if an error is identified. This is also specified in the WMQI Generic Message Flow Design Document.

7.5 WMQI Error Messages

If an Error is identified within WMQI then the original message will be placed on an Error queue with the Error Properties in the RFH2 filled.

WMQI will populate the Error Properties in the <usr> folder of the RFH2 as follows, regardless of whether the error occurred within WMQI or not:

	Property Name
	Property Description
	Format

	ErrorLocation
	Application where error occurred.
	

	ErrorProcess
	Action being performed within the application when an error occurred.
	

	ErrorCode
	Application specific Error Code
	

	ErrorMessage
	Error Message
	

	ErrorDateTime
	Timestamp when error occurred
	YYYYMMDD24MISS

	ErrorLogId
	MQSeries Message ID
	

7.6 Error Codes Produced Within WMQI

When an error occurs within WMQI, error details are automatically populated in a message exception list. The error code used to populate the RFH2 Error Properties will be placed in the exception list ‘Number’ field and its format is as follows:

Format: XXX9999L

Components:

· XXX -The characters ‘BIP’ which identify the message as being from WebSphere MQ Integrator

· 9999 - A four-digit decimal code as follows:

	Code Range
	Use

	0000-0999
	Control Center

	1000-1999
	Configuration Manager

	2000-2999
	Broker

Particular codes to note here:

2230 – User-thrown error

2620 – Cannot write to Queue

	3000-3999
	IBM Primitives

	4000-4999
	IBM Primitives

	5000-5999
	Parsers

	6000-6999
	MQSeries and NNSY Parsers

	7000-7999
	Publish Subscribe

	8000-8999
	Commands

	9000-9999
	z/OS

· L - A letter indicating the severity of the message. The letter will be one of the following:

	Letter
	Description

	I
	This is an information message

	W
	This is a warning message

	E
	This is an error message

	S
	This is a severe error message

8 APPENDIX

8.1 APPENDIX A: Oracle Error Codes and Chordiant Category Code

It is anticipated that the following mapping will be used between the Oracle Error descriptions and the Chordiant Error Category. However it is recognised that a minor error in the lookup of cross-reference data within an interface may result in a higher-level error for the interface as a whole.

	Description
	Oracle Return Code
	Chordiant Error Category

	OK
	00000
	NONE

	Duplicate Insert
	00001
	2

	Incorrect Username/Password specified
	01017, 12317
	2

	Connectivity to DB lost (transient?)
	12150, 12152, 12153, 12225, 12230
	1

	Incorrect SID/Service Name specified
	12154
	2

	Error in SQL command or Database Schema error
	00900-00999, 01000-01099, 01490-01499, 01700-01799, 04040-04069, 04070-04099, 06500-06599, 14100-14399
	2

	Requires DBA intervention
	All Others
	2

	Error in SQL command
	01800-01899, 01900-02039, 02140-02299, 02300-02350, 03000-03099
	2

8.2 APPENDIX B: FMS Status Class and Status Codes

FMS has the following Status Classes set up:

	Status Class
	Description

	00000
	Successful Operation

	00001
	Database/Program Error

	00002
	Validation Error

	00003
	Processing Error

Values of Status Codes are continually being added as a result of development. Therefore only the current list of values can be shown and all other un-specified errors will be collectively treated as unknown. Any significant changes to severe errors (shown in bold) that take place as FMS development advances will need to be reflected in the following table and this will necessitate an updated mapping in Middleware at that time. The current understanding of values is as follows (non-bold values are shown for example purpose only):

	Status Class
	Status Code
	Error Text

	00000
	00000
	Successful

	00001
	00661
	Number of variables does not match number of values returned

	
	11054
	Base Table Not Found

	00002
	
	<None specified Yet>

	00003
	00001
	Invalid Argument 'XXX'.

	
	00002
	Unknown Interface Type 'XXX'

	
	00003
	ContCode Not Supplied.

	
	00004
	ServCode Not Supplied.

	
	00005
	ProdCode Not Supplied.

	
	00006
	PostCode Not Supplied.

	
	00007
	Invalid SIT Flag Value 'X'.

	
	00008
	NumDays Must Be Between X And Y.

	
	00009
	Diary Area Code Not Supplied.

	
	00010
	Diary Date Not Supplied.

	
	00011
	Area Code Does Not Exist.

	
	00012
	ServType Not Supplied.

	
	00013
	Invalid CheckAvail Arg.

	
	00014
	Invalid Product Code.

	
	00015
	Invalid Service Code.

	
	00016
	Invalid Contract Code.

	
	00017
	Invalid Contract/Service/Product.

	
	00018
	Diary Area Not Found.

	
	00019
	Could Not Get Max Diary Days To Search.

	
	00020
	Missing 'XXX' Params Record.

	
	00021
	Invalid PostCode Format 'XXX'.

	
	00022
	Campaign Not Supplied.

	
	00023
	Source Not Supplied.

	
	00024
	Installation Option Not Supplied.

	
	00025
	Visit Date Not Supplied.

	
	00026
	Invalid BIB Flag Value 'X'.

	
	00027
	Invalid BT Flag Value 'X'.

	
	00028
	Diary Space Not Available.

	
	00029
	Invalid Campaign/Source/Contract.

	
	00030
	Invalid Contract/Service For First Contact Booking.

	
	00031
	Invalid Installation Option 'XX'.

	
	00032
	BIB Required By Service.

	
	00033
	Invalid BIB/BT Flags.

	
	00034
	Invalid Installation Option/Service Code Combination.

	
	00035
	Visit Date Out Of Range.

	
	00036
	Invalid Sky Contract Number Length.

	
	00037
	Invalid Sky Contract Number.

	
	00038
	Tentative Booking Already Confirmed.

	
	00039
	Tentative Booking ID Not Supplied.

	
	00040
	Invalid Slottage Value 'X.X'.

	
	00041
	Invalid Confirmed Value 'X'.

	
	00042
	Title Not Supplied.

	
	00043
	Last Name Not Supplied.

	
	00044
	Street Not Supplied.

	
	00045
	City Not Supplied.

	
	00046
	Home Telephone Number Not Supplied.

	
	00047
	Invalid Remove STB Flag Value 'X'.

	
	00048
	ASA Number Not Supplied.

	
	00049
	Invalid ASA Number Length.

	
	00050
	Invalid ASA Number Value 'XXX'.

	
	00051
	Invalid Title.

	
	00052
	Invalid Validate Input Value 'X'.

	
	00053
	Branch Code Not Supplied.

	
	00054
	Could Not Create Tentative Record.

	
	00055
	Invalid Telephone Number 'XXXXXX'.

	
	00056
	Telephone Number Not Supplied.

	
	00057
	Invalid VIP Flag Value 'X'.

	
	00058
	More Than One Customer For Sky Contract Number.

	
	00059
	Could Not Create Customer Record.

	
	00060
	Customer Number Not Supplied.

	
	00061
	Could Not Get Next Customer Number.

	
	00062
	Could Not Create Call5 Record.

	
	00063
	Status Code Not Supplied.

	
	00064
	Proposed Fault Code Not Supplied.

	
	00065
	Engineer Code Not Supplied.

	
	00066
	Invalid Contract And Service Combination.

	
	00067
	Create Type Not Supplied.

	
	00068
	Invalid Fast Track Value 'X'.

	
	00069
	Invalid Equipment Paid Value 'X'.

	
	00070
	Invalid Call Type Value 'X'.

	
	00071
	Detail Number Not Supplied.

	
	00072
	Job Number Not Supplied.

	
	00073
	Capacity Override Not Supplied.

	
	00074
	Invalid Capacity Override Value 'X'.

	
	00075
	Chordiant Visit ID Not Supplied.

	
	00076
	Start Date Out Of Range.

	
	00077
	NDS and Serial Number Not Supplied.

	
	00078
	NDS Number Not Correct Length.

	
	00079
	Customer Number Not Found.

	
	00080
	Invalid Job Number Value 'X'.

	
	00081
	Open job outside new diary area found.

	
	00082
	Invalid Part Number Value 'X'.

	
	00083
	Invalid Fault Code Value 'X'.

	
	00084
	Fault Code Not Supplied.

	
	00085
	Invalid Customer Number Value 'X'.

	
	00086
	Invalid SearchForCustomer Flag Value 'X'.

	
	00087
	Call Already Booked Under Job No. 'X'.

	
	00088
	Fault Type Not Supplied.

	
	00089
	Invalid Fault Type Value 'X'.

	
	00090
	Invalid Message Type Value 'X'.

	
	00091
	Invalid Wait Time Value 'X'.

	
	00092
	Error Updating Table 'X', Incorrect No. Of Rows Updated.

	
	00093
	Message ID must be numeric.

	
	00094
	Message ID cannot be null.

	
	00095
	Invalid Success Flag Value 'X'.

	
	00096
	Error Updating Table 'X', Incorrect No. Of Rows Deleted.

	
	00097
	Could Not Update Call5 Record.

	
	00098
	Could Not Update Detail Record.

	
	00099
	Unknown Business Error.

	
	00100
	Time Out.

	
	00101
	Serial Number Not Supplied.

	
	00102
	Invalid Good or Faulty Indicator "X".

	
	00103
	Success Flag cannot be null.

	
	00104
	Could not determine unique stock part no.

	
	00105
	NDS Number Not Supplied.

	
	00106
	Invalid Format NDS Number 'X'

	
	00107
	Invalid Update Type Value 'X'.

	
	00108
	EngineerType Not Found.

	
	00109
	Haysbox Not Found.

	
	00110
	Stockpart number not valid for 'STB'.

	
	00111
	Stockpart Number Not Supplied.

	
	00112
	StatusDate Not Supplied.

	
	00113
	AuditDate Not Supplied.

	
	00114
	Item Number Not Supplied.

	
	00115
	Invalid Location 'X'.

	
	00116
	Invalid Staus 'X'.

	
	00117
	Invalid Audit Who 'X'.

	
	00118
	Invalid Carrier Code 'X'.

	
	00119
	Update Type Not Supplied.

	
	00120
	Could not retrieve EngineerID for Job Number 'X'.

	
	00121
	Could not retrieve CustomerID for Job Number 'X'.

	
	00122
	Completion Code Not Supplied.

	
	00123
	Completion Date Not Supplied.

	
	00124
	Completion Who ID Not Supplied.

	
	00125
	Could Not Insert Historyb Record.

	
	00126
	Comments2 Not Supplied.

	
	00127
	Good Faulty indicator Not Supplied.

	
	00128
	Could not create Serial Stock Record.

	
	00129
	Could not Update Serial Stock Record.

	
	00130
	Could Not Create Serial Movement Record.

	
	00131
	IFControl Inbound ID Not Supplied.

	
	00132
	Could Not Update Schedule Record.

	
	00133
	Could Not Delete Call5 Record.

	
	00134
	Customer No. Or Job No. Not Supplied.

The mapping of Status Classes and Codes to Chordiant Category Code is shown in the WMQI Generic Message Flow Design document.

8.3 APPENDIX C: Exception List Structure

	Field
	Format
	Intended WMQI Use Description
	WMQI Values

	Start Exception
	
	RecoverableException

	File
	String
	C++ source file name
	

	Line
	Integer
	C++ source file line number
	

	Function
	String
	C++ source function name
	

	Type
	String
	Source object type
	<NodeType>

	Name
	String
	Source object name
	

	Label
	String
	Source object label
	<MessageFlow>.<Node>

	Text
	String
	Additional text
	<Error Message>

	Catalog
	String
	NLS message catalog name
	WMQIv210

	Severity
	Integer
	NLS message severity
	1=information

2=warning

3=error

	Number
	Integer
	NLS message number
	<Error Code>

	Start Repeat
	
	

	Insert Type
	Integer
	The data type of the value:
	0=Unknown

1=Boolean

2=Integer

3=Float

4=Decimal

5=Character

6=Time

7=GMT Time

8=Date

9=Timestamp

10=GMT Timestamp

11=Interval

12=BLOB

13=Bit Array

14=Pointer

	Insert Text
	String
	The data value
	

	End Repeat
	
	

	Nested Exception Child
	Containing the above elements
	RecoverableException

ParserException

ConversionException

UserException

DatabaseException

	End Exception
	
	

Notes:

1. The File, Line, Function, and Text elements should not be used for error handling decision making. These elements ensure that information can be written to a log for use by IBM service personnel.

2. The Type, Name, and Label elements define the object (usually a message flow node) that was processing the message when the error condition occurred.

3. The Catalog, Severity, and Number elements define an NLS message: the Insert elements that contain the two name-value elements shown define the inserts into that NLS message.

4. NLS message catalog name and NLS message number refer to a translatable message catalog and message number.

11

System Inbound Queue

System Outbound Queue

Receiving App (with API)

Sending App (with API)

14

8

7

1

Websphere MQ Integrator

Adapter

Adapter

messages

messages

4

3

5

6

2

MQSeries

9

13

System Inbound Queue

System Outbound Queue

12

10

Websphere MQ Integrator

Error Queue

	Version:
	3.10
	Page 1 of 1

	Date:
	03/08/2004 3:08 PM

	Ref
	DV_Middleware Integration Layer Error Handling v3.10_wip.doc

PAGE
	Version:
	3.10
	Page 1 of 44

	Date:
	03/08/2004 3:08 PM

	Ref
	DV_Middleware Integration Layer Error Handling v3.10_wip.doc

