[image: image3.jpg]

<INSERT CLIENT LOGO>

[image: image2.wmf]

[image: image2.wmf]

BSKYB CRM PROGRAMME

Integration Infrastructure Design

	Client:
	BSkyB

	Project:
	BskyB CRM Project

	Release:
	2.3

	
	

	Authors:
	Luke Puddy

	Creation Date:
	11/07/2002

	Last Updated:
	08/11/2002

	Version:
	1.1

Amendment History

	Name
	Date
	Comment

	Luke Puddy
	08/11/02
	First Draft

	Luke Puddy
	27/11/02
	Incorporating review comments from Mike Fitch

Sign-Off List
	Name
	Position
	Sign-off Status

	Tim Robinson
	Integration Infrastructure Design Authority
	

	Chun Ng
	Integration Team Lead
	

	Mike Fitch
	Integration Architect
	

Reviewers
	Name
	Position
	Review Status

	Andy Waddell
	Technical Architect Team Lead
	

	
	
	

Distribution List

	Name
	Position

	Norman MacLeod
	CRM Development Lead

	Sean Strain
	CRM SAT Integration Design Authority

	Chun Ng
	Integration Team Lead

	Mike Fitch
	Integration Architect

	Tim Robinson
	Integration Infrastructure Design Authority

	Andy Waddell
	Technical Architect Team Lead

Related Documentation

	Ref
	Title
	Author
	Version

	1.
	Middleware Integration Layer Error Handling
	Justin Rogers
	Current

	2.
	Middleware ESM Functional Design
	Luke Puddy
	0.1

	3.
	BSkyB MQSeries Design
	Alex Wilkins
	1.0

	4.
	BSkyB Generic API Connector for MQSeries Functional Design
	Tim Robinson
	1.0

CONTENTS

41
Introduction

1.1
Document Purpose
4
2
Availability
4
2.1
Introduction
4
2.2
Providing High Availability
5
2.3
Requirements and Recommendations
7
3
Scalability
9
3.1
Vertical Scaling
9
3.2
Horizontal Scaling
10
3.3
Recommendation Summary
12
4
Error and Exception Handling
14
4.1
Introduction
14
4.2
Logging
14
4.3
Error Types and Recovery Actions
17
4.4
Requirements and Recommendations
22
5
Enterprise Systems Management
23
5.1
Event monitoring and Error Management:
24
6
Security
26
6.1
Physical security:
26
6.2
Operating System Security
26
6.3
Security on the Wire
26
6.4
Application Security
27

1 Introduction

This document will cover the technical architecture considerations around the middleware infrastructure. These high level designs set the general approach and guidelines to be used for the BSkyB middleware environment and will be the basis for the detailed design when all the exact scope and the requirements, systems and interfaces are known. The detailed design will be covered in separate individual detailed design documents for each middleware component.

1.1 Document Purpose

This document will provide recommendations and requirements for the implementation, operational management and ongoing maintenance of the middleware components but it will not be able to assign responsibility for these individual areas until SLAs are agreed.

The key technical architecture considerations that this document will cover are as follows, each one of these will be addressed in detail within individual sections:

· Availability

· Scalability

· Error and Exception Handling

· Enterprise Systems Management

· Audit Control

· Security

· Backup and Recovery

The integration architecture design will not cover any of the aspects of the middleware development process or standards. These will be covered separately by the Middleware Development team deliverables.

	Audience
	Rationale

	Technical Architects
	To describe the Non-Functional Requirements of the middleware in order that it be considered when acquiring and configuring the technical infrastructure

	Development Stream Lead
	To describe the principles upon which the Infrastructure Design Decisions are to be based

	
	

	
	

2 Availability

2.1 Introduction

For any IT system, a certain level of availability will be required that will vary depending on the system’s function. Whilst highly available systems are clearly desirable, high availability can be expensive and difficult to implement and maintain and so should be provided according to the business need rather than simply as a matter of course.

Once the required level of availability for a system has been determined, a Service Level Agreement (SLA) should be drawn up between the users of the system and the group or organisation responsible for supporting and maintaining that system. The SLA should include details of the level of availability that the system should be providing and also the response times for resolving problems. Such an SLA should exist for each system in the landscape.

The WMQI broker will be a potential single point of failure for many of the CRM programme interfaces and as such needs to be highly available. Although the interfaces will use asynchronous communication, with store and forward of persistent messages in cases of network or server failures, it is still recommended that the WMQI broker be made highly available to ensure that the business requirements are met for near-real time, event-driven processing.

2.2 Providing High Availability

A mechanism for providing a highly available solution is through redundancy of components, which can be provided at several levels:

· Disk redundancy: The standards for RAID (redundant array of inexpensive disks) are well established. RAID is used to provide different levels of disk availability A disk system with RAID capability can protect its data and provide on-line, immediate access to its data, despite failure of one or more disks (the degree of tolerance is dependant on the level of RAID capability that has been implemented).

· Network redundancy: High availability in the network can allow distributed systems to continue operation without awareness that failure has occurred. Protocols relevant to network high availability include IEEE 802.3ad (covers link aggregation) and RFC 2338 Virtual Router Redundancy Protocol.

The middleware implementation for the CRM programme will make use of the existing BSkyB network. It will not recommend the implementation of new network infrastructure unless there is a clear business requirement that cannot be met by the current infrastructure.

· Server redundancy: Implementing redundancy at the server level will ensure business continuity in the event that the server running the application fails. This is especially important for systems that are mission critical or are a potential single point of failure within a solution e.g. the WMQI message broker.

Server redundancy is usually implemented either through the Operating System if it has the capability or through a specialist application and can be configured in several different ways including:

Active-Active server redundancy enables load distribution as well as eliminating single points of failure within a business critical system. Automatic fail over to a cloned server occurs. in the event of a hardware or software failure, client access is transparently shifted to a functioning server. A cluster of servers configured in this way appear as a single logical server to its clients, addressed by a single virtual IP address.

Active-Passive, contrary to an active-active solution, an active-passive solution serves purely to provide high-availability in the form of fail-over and does not perform any load balancing. Such a solution ensures that a dormant system is always available for service and that control is switched to that server in the event of a failure on the primary server.

Availability can also be improved by implementing some form of Enterprise Systems Management (ESM) including the following functions to improve availability by minimising downtime: Event Management; Application Management; Network Management and Capacity Planning. One of the key attributes of ESM that will be used to improve systems availability is the ability to monitor processes and take (informative or corrective) action in response to system or application level events.

Some application systems offer configuration options that can help improve the availability at an application level – e.g. run two identical processes such that if one fails, the application is still able to function whilst it attempts to restart the failed process. There are certain forms of redundancy or application configuration that can be implemented in order to increase availability that may have undesirable effects on some interfaces and consequently the solution as a whole. In particular, any affinity or sequencing requirements need to be carefully considered. Affinity requires that the relationship between a group of messages be maintained as the messages are processed. Similarly, sequencing requires that all the messages in a group follow the same logical and physical path through the middleware to ensure that the same first-in, first-out (FIFO) order is maintained – the distinction being that with affinity, messages are processed as a group (e.g. together form a complete transaction) but in no particular order whereas with sequencing, the order of the messages must be maintained.

For interfaces that have specific FIFO sequencing requirements, it is likely that any server redundancy incorporated into the design will need to be configured as a fail-over rather than a load-balancing scenario because if there is a possibility that messages may travel via different routes between the sending system and receiving system then the original message sequence may not be guaranteed. Similarly, these considerations must input into the middleware components configuration design. However, it is not desirable to support FIFO sequencing requirements within the middleware and will only be supported where there is a strong business case to do so that can’t be handled by other means.

The key middleware products to be implemented within the CRM programme do provide configuration options and methods that can be implemented in order to improve the application’s availability:

MQSeries High Availability Options:

MQSeries provides functionality for grouping multiple queue managers into a logical group called a cluster. Any queue manager in the cluster can put messages on a cluster queue, however only the queue manager physically hosting the cluster queue can read messages. A cluster queue is a remote queue definition that is created and maintained automatically by the queue managers in the cluster.

The workload distribution achieved by clustering yields increased availability of queues and applications. The standard built-in MQSeries cluster workload algorithm contains basic built-in recovery mechanisms to accommodate situations where messages cannot be routed to a specific target cluster queue. The default mechanism will successively attempt to route the message to any available target queue based on channel priority and status.

Whilst MQSeries clustering ensures that messages can still be processed when a queue manager within the cluster fails, any messages that are held on queues owned by the failed queue manager and are waiting to be processed when it fails will remain on those queues until the failed queue manager is successfully restarted. Messages that are sent after the queue manager has failed will be re-routed via another node in the cluster and should therefore successfully reach their destination. Clearly this raises potential issues for interfaces that have affinity or sequence requirements. However, there are options for implementing MQSeries clustering and still enabling message sequencing for those interfaces that require it. There are also certain security implications relating to the implementation of MQSeries clustering that need to be considered. Further details of MQSeries clustering, its advantages, disadvantages and implications for message affinity and sequencing will be discussed in greater detail in the MQSeries detailed design document.

WMQI High Availability Options:

There are several techniques that can be considered when configuring WMQI to operate a highly available message broker:

· Multiple brokers: An effective method of increasing the availability is by running multiple active instances of the broker itself. This could be done with or without configuring MQSeries clustering on the broker’s queue manager and queues.

If MQSeries clustering were not configured then the routing of interfaces through the middleware would be static and in the event that one of the brokers failed, the interfaces that made use of that broker would not function until the broker were brought back online. However the interfaces routed through any of the remaining active brokers would not be affected.

Alternatively, if the MQSeries queue managers hosting the brokers were configured as an MQSeries cluster, then the routing of interfaces through the middleware could be dynamic and so provide a higher level of availability within the message broking environment (although messages waiting to be processed on an inactive broker’s input queues would remain there until the broker was back online - please refer to the overview of MQSeries clustering above and the detailed description provided in the MQSeries detailed design document for a description of MQSeries clustering). Running multiple brokers in this fashion effectively provides redundancy at the application level.
As mentioned in the MQSeries section above, making use of MQSeries clustering has additional implications that need to be carefully considered if such a solution is to be implemented.

· Multiple execution groups: WMQI brokers can manage multiple execution groups, the optimum number of which should be determined through performance testing – it is expected that the optimum number will equate to one execution group per processor on the broker’s host machine.

An execution group provides the operating environment for deployed message flows and each execution group runs as a single process. Therefore, running multiple execution groups on a broker provides redundancy at the level of the operating system process. Whilst message flows can be distributed amongst a broker’s execution groups, therefore for a high availability message broker, each message flow should exist in at least two execution groups.

The potential disadvantage of deploying message flows to multiple execution groups in this manner is that, once again, message sequence cannot be guaranteed. For interfaces that require messages to be received in the order that they were sent, the message flow(s) used by those interfaces must only be deployed to a single execution group (in order to preserve message sequence, there must only be one instance of the message flow running). A high degree of redundancy can be achieved at the process level, whilst maintaining message sequence requirements by configuring multiple execution groups for the broker(s), deploying message flows with no sequence requirements to at least two execution groups and deploying those message flows with sequence requirements to only one execution group.

2.3 Requirements and Recommendations

So, it can be seen that several mechanisms for improving the availability of the middleware components exist, none of these mechanisms are mutually exclusive and so can all be configured as appropriate to provide the optimum solution for the CRM programme. It should be remembered that the optimum solution must take into account other design factors addressed in the remaining sections of this document. Preliminary high-level recommendations are provided below and the detailed designs for each component will address the configuration of that component in greater detail and will recommend a solution based on all of the factors discussed in this document and any information on e.g. message sequence requirements that will be provided in the interface Functional Designs.

MQSeries:

The availability requirements for MQSeries and any connectors for the CRM programme are primarily dependant upon the application that they are serving. However, it is recommended that all of these components are monitored by an ESM tool that is configured to provide notification of errors and also to take action where appropriate to the error type.

	Requirement
	Development
	Test
	Pre-production
	Production

	% Availability
	As appropriate for the application which it is serving and the platform on which it is running

	Availability period
	

	Mean time between failure
	

	Maximum period of downtime in a single outage
	

	Maximum number of outages in a given period
	

	Maximum amount of downtime in a given period
	

	Disk redundancy
	

	Server redundancy
	

	Application configuration options
	

WMQI:

As previously discussed, the WMQI message broker represents not only a mission critical application but a potential single point of failure, therefore, this application should be highly available and it is recommended that high availability for WMQI be provided at multiple levels:

· Disk redundancy

· Server redundancy

· ESM event monitoring

· Application configuration options

	Requirement
	Development
	Test
	Pre-production
	Production

	% Availability
	TBD
	TBD
	TBD
	TBD

	Availability period
	Working day
	Working day
	Working day
	00:00 – 24:00

	Mean time between failure
	TBD
	TBD
	TBD
	TBD

	Maximum period of downtime in a single outage
	TBD
	TBD
	TBD
	TBD

	Maximum number of outages in a given period
	TBD
	TBD
	TBD
	TBD

	Maximum amount of downtime in a given period
	TBD
	TBD
	TBD
	TBD

	Disk redundancy
	Not required
	Yes
	Yes
	Yes

	Server redundancy
	Not required
	Not required
	Yes (active-passive)
	Yes (active-passive)

	Application configuration options
	Details provided in the WMQI detailed design

3 Scalability

Scalability is the ability of a system to continue to function well and to take full advantage of an increase in power or capacity that is required to meet a user need. This growth is usually achieved by adding either hardware or software components at one or more levels, or by changing the context of the system. The scaling should be transparent, hiding implementation details (e.g. partitioning, cloning, load-balancing, clustering) from the clients.

The CRM programme integration infrastructure design should be flexible and scalable to meet future requirements, the details of which are not currently known as well as for best practice reasons:

· MQSeries and WMQI middleware are initially being implemented for CRM purposes, but in the future they may be used as a common integration infrastructure for the BSkyB enterprise.

· Accurate quantitative sizing with respect to message volumes will be difficult until detailed volumetrics become available – it is expected that this information will be captured in the functional design for an interface.

· The solution must be capable of scaling to meet performance requirements and eliminate any bottlenecks identified by CRM or future performance testing.

· A monolithically designed integration broker is both a potential single point of failure and a potential bottleneck that can inhibit growth and performance. Instead, the core broker services should be designed from the outset to be redundant and able to be spread across multiple machines or across processes within a machine (the latter is the recommended (by the programme and the vendor) approach for WMQI).

There are different ways and levels at which scalability can be achieved in the design, but they can generally be divided into horizontal or vertical options. Horizontal scaling achieves growth by scaling out, where extra servers or extra instances of software components are added, possibly in clusters. Vertical scaling achieves growth through scaling up, where existing servers are replaced by larger more powerful servers, or existing servers are upgraded by adding more devices, CPUs, memory, disks, and NICs.

The business requirements, the architecture design, and the physical limits of the servers will determine what is possible and most appropriate in each case.

3.1 Vertical Scaling

The main middleware component where vertical scaling should be considered is the WMQI broker server. Vertical scaling is tied to hardware capacity specifications and upgrades, and the WMQI broker (Solaris) and configuration management (Windows 2000) servers will be the only middleware-specific hosts in the to-be landscape. The other main middleware components of connectors and MQSeries will be implemented on machines that are hosting the application that MQSeries is serving. In general, these middleware applications have a small memory footprint and should not unduly stress the existing systems unless they are already highly loaded. Systems hosting connectors and MQSeries should be monitored and possibly profiled during performance testing to ascertain if an upgrade is appropriate or necessary.

It is recommended that the vertical scaling requirements for the WMQI broker server be in line with the BSkyB CRM scaling requirements where they have been defined.

Regardless of the hardware selected, at some point the capacity limit for a single server will be reached. For the solution to be able to scale beyond this limit, horizontal scaling must also be considered.

3.2 Horizontal Scaling

Horizontal scaling can be achieved at a number of levels:

· Process: Parallel processing within a single process and across multiple processes on a single server.

· Component: Parallel instances of a component on a single server.

· Application: Replication or partitioning of the application across multiple servers.

· Server: A cluster of servers visible as single logical entity to clients.

WMQI in particular has a highly scalable architecture - multi- threaded, multi- process, and multi- broker domain design, with many options available. The following diagram shows some of these options, which will be described in more detail in the following sections along with scaling options for the other middleware components.

[image: image1.wmf]Scalability- WMQI Scaling Concepts

Broker

Ÿ

Add Execution Processes

Ÿ

Multi-thread/Multi-process

Execution Process

Ÿ

Multiple copies of Message Flow

Ÿ

Multi-thread within 1 process

Machine

Ÿ

Run Multiple Brokers

Ÿ

Run Multiple Queue Managers

Ÿ

Distribute Workload via MQSeries Clustering

Message Flow

Ÿ

Service/

Subflow

 Interface Layer (SIL) Distribution

Hardware and Clustering

Ÿ

Run Multiple brokers on multiple machines

Ÿ

Run Multiple Queue Managers

Ÿ

Distribute Workload via MQSeries Clustering

SIL

SubFlows

There are multiple levels and

dimensions where WMQIv2.x can

scale in order to handle increased

workload or to compensate for

throughput constraints.

•

Hardware upgrades such as

adding machines and deploying

additional WMQIv2.x Brokers.

•

Multiple Brokers deployed on

single machines to take advantage

of multi

-

processors.

•

Multiple processes running within

one broker

-

multi

-

processing.

•

Multiple copies of message flow

-

multi

-

threading.

Service Interface Layer (SIL).

•

Figure 1- WMQI Scaling Concepts

Parallel Processing

Parallel processing can be achieved within a single process through multithreading, and by spreading multiple processes across multiple processors.

For an application to scale within a process, the run time has to be multithreaded or at least thread safe. This is dependent on how the application has been coded, and also on whether the platform it will run on supports multithreading.

To achieve benefits from scaling across processes requires that the host system has multiple processors and that the OS supports parallel processing.

3.2.1 WMQI

WMQI has been designed to take advantage of multithreading through its message flows on UNIX, Windows NT and Windows 2000. Each message flow can be configured in the WMQI Control Centre to spawn up to a maximum of 256 threads within a given execution group to increase performance and scaling.

WMQI also scales across processes through the use of its execution groups, each of which equates to an individual process. A rough guide to the number of execution groups that should be configured for optimal scaling is one execution group per processor of the host server.

3.2.2 MQSeries

The more recent versions of MQSeries have also been designed to have the option of multithreading. In MQSeries, the thread is considered to be the lowest level of parallel execution available on an operating system platform.

Examples include the Message Channel Agents (MCA) that can transfer messages using multiple threads to improve channel performance. The MQSeries listeners that detect attempts at opening connections also have the option of being defined as threads.

3.2.3 Connectors

At the least, an MQSeries application should be designed to be thread safe. As the MQI libraries are available on most platforms in both a single or multithreaded form, most MQSeries applications can be designed to take advantage of either option. The connector detailed design will cover multithreading design in more detail.

Parallel Instances of Components

The modularity of the design of the integration components allows for multiple instances of components at various points to be used to provide scalability. At the extreme, redundant end-to-end routes through MQSeries can be configured to meet requirements.

3.2.4 WMQI

A single implementation of WMQI can support multiple brokers, all of which can be deployed on the same server. However, in practice it is simpler and equally beneficial in terms of scalability to configure multiple execution groups instead, to maximise the use of a multiprocessor server. Another alternative is to deploy brokers onto different servers, which would be a more effective multi-broker configuration. Consideration should be given when deploying message flows to brokers on remote servers where the message flows include database nodes, as this will result in less efficient and potentially more error-prone remote connections to the databases. Also, the introduction of multiple brokers across multiple machines introduces additional complexity into the environment and so should be avoided where possible.

3.2.5 MQSeries

MQSeries can have redundant components at several levels, which can provide options for scaling, redundancy and static load balancing through partitioning of interface data flows between logical routes. Possibilities include:

· Multiple queue managers per node, although in practice this doesn’t often show a significant performance increase.

· Complete redundant logical routes from remote queue definition through channels to a local queue, typically for providing different qualities of service such as catering for different transport protocol or different message sizes. An example might be where a specialised route is configured for infrequent large batch messages, and another specialised route configured for small frequent event-driven messages (although this can possibly be addressed in other ways such as through message prioritisation).

· Multiple channels between nodes, serving one or more queues, again related to different qualities of service, e.g. through the use of channel-specific user exits (such as encryption).

3.2.6 Connectors

Multiple instances of the business application connectors can be configured to read and write to the same queues, or read and write to multiple queues, depending on requirements.

Application.

Replicate or partition the application across multiple servers.

Clients / Server- scale by adding clients to existing servers

3.2.7 WMQI

Multiple installations of WMQI could be used across the enterprise in a distributed hub architecture.

3.2.8 MQSeries

MQSeries allows scalability at the application level by using MQSeries clients to connect to existing MQSeries servers. An alternative to this would be the use of MQSeries clustering, which was covered briefly in section 2.2 on Availability, and will examined in more detail in the MQSeries detailed design. Without the use of MQSeries client or clustering, only one instance of an application (or multiple instances on the same physical server) would be able to retrieve messages from a particular queue. However, using MQSeries client, multiple application instances running on multiple servers could connect to a single Queue Manager and any queues owned by that Queue Manager.

Clustering

As server clustering was dealt with in some detail in section 2.2 on Availability, it will only be mentioned briefly here. Server clusters offer one of the most promising means for providing easy scalability while presenting a single-system image to the user. However, due to the relatively high cost (as extra servers and design planning would be required) for achieving scalability through clustering, it is recommended that where possible the scaling of the middleware infrastructure should be considered at some of the other less expensive points mentioned above. MQSeries clustering is discussed in greater detail in the MQSeries Detailed Design.

3.3 Recommendation Summary

All the above options will be considered when details are available of the interface functional requirements, the business applications to be included and the predicted volumes and sizes of messages. Scaling should also be considered once the results of performance and volume testing have been analysed. Any bottlenecks in throughput should be identified prior to considering which of these measures to implement.

As an initial starting point, the recommended design for each component is:

WMQI

· No server clustering should be implemented in the Development environment.

· Server clustering should be implemented in the Pre-Production and Production environments using clustering software compatible with WMQI and MQSeries e.g. Veritas Cluster Server. This is to provide high availability not load-balancing.

· One installation of WMQI.

· One broker.

· One execution group per processor of the host server.

· Message flows should be deployed to at least two execution groups. The exception will be those cases where there are different qualities of service required for some message flows, in which case they could be grouped into execution groups with message flows with similar requirements.

· Multiple instances or threads (for message processing) for each message flow – production figure to be determined using volumetric input and performance test.

MQSeries

· Initial design of one queue manager per node unless there are good reasons for partitioning into separate queue managers.

· Use of distributed queuing instead of MQSeries clustering, although this decision to be reviewed in the MQSeries Detailed Design.

· Limited use of MQSeries clients if / where appropriate based on interface requirements.

· Single logical route through the whole middleware infrastructure from any given sending application to the WMQI hub, and a single logical route through the whole middleware infrastructure from the WMQI hub to any given receiving application, until there is a business requirement supporting additional routes.

· Direct connections from any business application MQSeries node to the hub, and vice versa. No multi-node routing (multi-node in this case refers to multiple MQSeries nodes, not network nodes).

· Single channel to connect any given queue manager to the hub, and vice versa. Additional channels may be added for providing different qualities of service as requirements for these become known.

· MQSeries queue managers will be hosted in clustered servers where the legacy applications that they service require it. The WMQI server should be clustered in the Pre-Production and Production environments using clustering software compatible with WMQI and MQSeries e.g. Veritas Cluster Server. This is to provide high availability not load-balancing.

Connectors

· The BSkyB Generic API Connector is multi-threaded

· One instance of a connector per application instance unless there are firm business requirements for additional connectors e.g. different levels of service.

4 Error and Exception Handling

4.1 Introduction

The large number of components within the planned CRM architecture means that there will be numerous transactional boundaries. This means the error handling must be carefully considered at an infrastructure level. Given the high number and distributed nature of these potential points of failure, some form of exception monitoring and reporting to a centralised management console is recommended.

As well as reporting of exceptions, there should be monitoring and reporting around system administration actions / events within the CRM middleware architecture (e.g. starting and stopping of components), conversely, there will be no reporting on ‘normal’ activity and reporting on interface operation and reconciliation should be performed at an application level and will not originate from the middleware infrastructure. Any required exceptions to this must be clearly stated in the Interface Functional Design.

Any CRM interface that makes use of the middleware infrastructure will encounter the following components (although, there may be certain, exceptional, interfaces that utilise the MQSeries infrastructure but that do not make use of WMQI – to be confirmed as all interface Functional Designs are completed):

[image: image3.jpg][image: image4.wmf]

For each of these components and the hand-off points between them, the following needs to be determined:

· What are the potential errors that may occur?

· How should each type of error be handled?

· Where does the responsibility for identification of each error type lie?

· Where does the responsibility for resolution of each error type lie?

This document will detail the types of error that may occur for each middleware infrastructure component and the action that should be taken to resolve each error type. There will be a need to assign responsibility for identifying and resolving errors in the production environment. The Middleware Integration Layer Error Handling document should be referred to for details of how the middleware will automatically detect errors and attempt to handle them. The ESM Functional Design document should be referred to for details of the specific events that are to be monitored by the ESM tool and what actions should be taken when specific events occur.

4.2 Logging

There are multiple sources of useful information to assist in resolving problems for each component in the middleware infrastructure. Typically, the different sources are written to under different circumstances so it is useful to describe the purpose of each information source.

MQSeries

	Source of error data:
	Information Provided

	Error log
	The error logs capture details of any errors or exceptions with MQSeries objects. The error files have names of the format AMQERR99.log where 99 is a number starting at 01. Error logs fall into two broad categories: general MQSeries errors, and errors specific to a queue manager or its managed objects. The error log files reside in two different locations, depending on which category they are (the locations also differ between platforms):

UNIX:

· /var/mqm/errors/..

· /var/mqm/qmgrs/<queue mgr name>/errors/..

NT / W2K:

· :\Program Files\IBM\MQSeries\Errors\..

· :\Program Files\IBM\MQSeries\Qmgrs\<queue mgr name>\errors\..

	FDC files
	Whenever a major error occurs, MQSeries will also create FDC files of the format AMQ00001.0.FDC, containing additional information to be passed on to IBM representatives if a call is raised. The FDC files reside in the same location as the standard error logs and as with the standard error logs, exist for general and queue manager specific errors.

	Windows 2000 / NT Event Viewer
	Any MQSeries components running in a Windows NT or 2000 environment will provide error information and details of significant events (e.g. start / stop queue manager) to the Windows Event Viewer.

	ESM Tool
	An ESM tool could be configured to monitor the status of MQSeries queue managers and objects and to raise alerts as soon as any problems are identified. It could also be configured to take remedial action where appropriate.

	MQSeries Explorer / Microsoft Management Console (MMC)
	MQSeries Explorer / Microsoft Management Console can be configured to display all active MQSeries queue managers and objects within the environment. In the absence of an ESM tool, this view will enable an operator to monitor the status of active queue managers and can therefore be useful in early problem identification.

Note: MQSeries Explorer should not be used for administration, it should be used for monitoring only, in conjunction with log file checks.

	Transaction log
	The transaction logs are created per queue manager rather than per MQSeries installation. The number and size of the log files is determined according to the message volumes and sizes that will be put on queues managed by the queue manager. These logs do not contain readable error information, they capture information about all MQSeries transactions and can be used to restore MQSeries queue managers to the last consistent state.

WMQI

Whilst, by default, WMQI produces no log files in the conventional sense, there are several sources that will provide information in the event of a WMQI error, different types of errors will log information to one or more of the following locations:

	Source of error data:
	Information Provided

	Windows 2000 / NT Event Viewer
	The WMQI Configuration Manager will record significant events in the application log of the Windows Event Viewer e.g. stopping / starting of the Configuration Manager. Failed database interactions are also recorded. This is the primary source for error information relating to the Configuration Manager.

	Solaris
	The WMQI Broker running on Solaris will record significant events in the system log - /var/adm/user.log e.g. stopping / starting of the Broker and Execution Groups. Failed database interactions are also recorded and other errors. This is the primary source for error information relating to the Broker.

Abend files are written to /var/wmqi/errors/

	Trace nodes
	Trace nodes can be implemented within a message flow and can be configured to capture information such as the destination list and exception list of a message. Trace nodes are a useful source of information for determining the reason for a particular message failing and should be incorporated into the WMQI message flows such that they will capture exception information whenever a message is written to a failure queue.

	ESM tool
	An ESM tool could be configured to capture event and exception information relating to the major WMQI components (Configuration Manager, Broker and Execution Group). This information could then be sent to an operator via e.g. email or SMS and /or to a centralised console.

	Control Centre Operations tab
	The Operations tab of the Control Centre provides a view of the overall WMQI environment using a traffic light system to depict the health of all brokers, execution groups and message flows. In the absence of an ESM tool, this will be a useful console window to gauge the health of the WMQI environment.

	Control Centre log tab
	Details of configuration deployment – i.e. this will only record log information when a configuration change (e.g. message flow structure, number of execution groups, number of brokers) is made and deployed, it does not record run-time error information and will be used infrequently in production.

	User trace
	Detailed information on the progress of each message through the message flow (information relating to processing by each node is provided). User traces will be used during development to assist developers but under normal circumstances will not be running in production (due to performance impact). They will be used when an error has been detected, if the source of the error can’t be determined using any of the other logs available. In order to generate a trace, the situation will need to be recreated with logging set to debug (under normal circumstances it will be set to ‘none’).

	System trace
	Provides more comprehensive broker trace and also provides trace of configuration manager. It is recommended that a system trace is only used when directed by IBM Support Centre (its principal function is to identify bugs within the core WMQI functionality).

	Message flow debugger
	As with the user trace, the message flow debug utility can be used by WMQI message flow developers to determine the cause of problems during development.

	MQSeries logs
	If a WMQI failure is the result of a problem with MQSeries, then the root cause should be determined from the MQSeries logs – see MQSeries error handling section (0).

Connectors

4.2.1 Generic API Connector

Please refer to the Generic API Connector Functional Design

4.3 Error Types and Recovery Actions

MQSeries

The types of error that may occur in each of the basic MQSeries components can be generically defined and will be applicable to each instance of that component type within the CRM middleware infrastructure. However, the specific error handling requirements (e.g. threshold values) for each component instance may vary.

This section will describe the types of error that may occur for each of the MQSeries components. Details of threshold values and specific parameters to be monitored and measured will be documented in the MQSeries detailed design once the required input data (e.g. volumetric data, interface specific requirements) has been made available in the Interface Functional Specifications.

A Dead Letter Queue (DLQ) will be configured for each queue manager. A DLQ is a special queue for holding messages that cannot be delivered to their destination queues. Queue managers, message channel agents and MQSeries applications can put messages to a DLQ.

The main benefit of configuring a DLQ is to avoid potential ‘poison message’ problems however, the use of DLQs means that message affinity cannot be maintained. It has been determined that for CRM, it is safer to configure DLQs for catching unexpected errors and it is recommended that no interfaces within the CRM project will require message affinity. The default Dead Letter Queue Handler will be configured to handle messages put to a DLQ.

4.3.1 Queue Manager Problems

	Types of error:
	Action to be taken

	Queue manager unavailable for connection
	· Check that the correct queue manager was specified

· Check that named queue manager exists

· Check queue manager is running correctly; start queue manager if necessary

· Check that queue manager is local

· Check that the Command Server is running; start Command Server if necessary

	Insufficient authorisation to connect to queue manager
	· Check that the correct queue manager was specified

· Check that the UserID is part of the mqm group

· Check that appropriate authorisation exists to allow connection

· Add appropriate authorisation if necessary

	Incorrect queue manager set as default
	· Check that the correct queue manager was specified

· Check that the correct queue manager is configured as the default

· Set the correct queue manager as default if necessary

	Too many open connections to queue manager, no more allowed
	· Check how many MQSeries-enabled applications are currently running on the local server that have open connections to the queue manager

· If appropriate, either increase the size of the appropriate install parameter value, or reduce the number of concurrent connections

	Insufficient queue manager log file space remaining, transaction rolled back
	· Verify the queue manager log file settings, and the volume of data on the queue causing the error

· Increase the number of primary log files appropriately if the messages size and volume will be the norm

· Increase the number of secondary log files appropriately if the message sizes and volume is exceptional

	Message exceeds MaxMessageLength of queue manager
	· Check the amount of data being trying to be put on the queue, and, check the MaxMsgLength parameter of the queue manager

· Increase the value of the queue manager’s MaxMsgLength attribute if appropriate

4.3.2 Queue Problems

	Types of error:
	Action to be taken

	Cannot open queue
	· Check that the correct queue was specified

· Check that queue exists; If queue does not exist, create it

· Check that appropriate authority exists

· Check authorisation parameters of the queue

	Cannot PUT or GET from a queue
	· Check the queue definition to ensure that it is PUT or GET enabled as appropriate

· Check that appropriate authority exists

· Check authorisation parameters of the queue

	Message exceeds MaxMessageLength of queue
	· Check the amount of data being put on the queue, and, check the MaxMsgLength parameter of the queue manager

· Increase the value of the queue’s MaxMsgLength attribute if appropriate

	Message on Dead Letter Queue (DLQ)
	· The message was not deliverable. Possibilities include:

· message was sent to the correct queue manager, but that the queue specified did not exist

· the destination queue was full

· it is a poison message

· Needs to be monitored and alerts raised

· Implement a dead-letter queue handler to periodically process messages on the DLQ

	Queue depth threshold exceeded

	· High and Max depth thresholds need to be defined, monitored and alerts raised when exceeded

· If exceeded, need to take actions to determine whether there is an “upstream” problem causing messages to back up, or increase the MaxQueueDepth

4.3.3 Channel Problems

	Types of error:
	Action to be taken

	Sending or Receiving Channel stopped
	· The listener on the remote platform may not be running - needs to be monitored

· Log-on to the remote machine and check, restarting if necessary

· Ensure that listener is configured to start automatically

· Channel Initiator may not be present or running on remote queue manager. Needs to be monitored

· Log-on to the remote machine and check, restarting if necessary

· Ensure that channel initiator is configured to start automatically

· Restart the sender the channel

	Channel in doubt
	· The sending channel is in doubt as to whether or not the messages were received

· Any outstanding units of work need to be resolved by being backed out or committed

	Sending and Receiving channels out of synch
	· Stop the sender channel and use the ‘reset’ function to resynchronise the channels. Restart the sender channel once this is completed

	Message exceeds MaxMessageLength
	· Check whether the BufferLength parameter is specified correctly; if it is, do one of the following:

· Increase the value of the queue-manager's MaxMsgLength attribute; the queue's MaxMsgLength attribute might also need increasing

· Break the message into several smaller messages

WMQI

It is outside the scope of this document to describe all the potential, interface related, functional errors that may occur within the WMQI broker. This document is aimed at covering the potential errors that may occur within the WMQI infrastructure (i.e. Configuration Manager, Broker and Execution Group). Therefore, the specific actions required to handle a message put to a WMQI failure queue will not be documented here, where appropriate, they will be documented in the Interface Technical Specifications but in most cases will require analysis by a business user rather than automatic processing.

The generic strategy for error handling within WMQI is described in the document entitled ‘Middleware Integration Layer Error Handling’

4.3.4 Configuration Manager Problems

	Types of error:
	Action to be taken

	Configuration Manager process fails
	· Investigate cause (using Windows Event Viewer) and resolve

· Restart

· If the error is a persistent ‘internal’ or ‘unexpected’ error then IBM may need to be contacted

	Cannot connect to Queue Manager
	· Investigate cause (using Windows Event Viewer and MQSeries log files) and resolve, restarting queue manager if necessary

	Cannot connect to database
	· Investigate cause (using Windows Event Viewer and DB2 log files) and resolve, restarting database manager if necessary

	User Authorisation errors
	· Investigate cause (using Windows Event Viewer) and resolve, changing or resetting password if appropriate

4.3.5 Broker Problems

	Types of error:
	Action to be taken

	Broker process fails
	· Investigate cause (using the syslog) and resolve

· Restart

· If the error is a persistent ‘internal’ or ‘unexpected’ error then IBM may need to be contacted

	Cannot connect to Queue Manager
	· Investigate cause (using the syslog and MQSeries log files) and resolve, restarting queue manager if necessary

	Cannot connect to database
	· Investigate cause (using the syslog and Oracle logs) and resolve, restarting database manager if necessary

	User Authorisation Errors
	· Investigate cause (using the syslog) and resolve, changing or resetting password if appropriate

	Unable to process internal configuration messages
	· Investigate cause (using the syslog) and resolve (likely to be related to MQSeries channel communication between configuration manager and broker queue managers)

	Message put on a WMQI Failure queue
	· Flag error to the WMQI support team/administrator

4.3.6 Execution Group Problems

	Types of error:
	Action to be taken

	Execution Group process fails
	· Investigate cause (using the syslog) and resolve – may require increase in RAM or virtual memory

· When the root cause has been resolved, the broker should restart the execution group

Connectors

4.3.7 Java API Connector

Please refer to the Generic API Connector Functional Design

4.4 Requirements and Recommendations

MQSeries

· Monitoring: ESM (or MQSeries Explorer / MMC if necessary)

· Set queue low, high and max depth event thresholds

· Make use of Dead Letter Queues

· Configure default Dead Letter Queue Handler

WMQI

· Monitoring: ESM / Control Centre

· Log level (user trace on in development, not in production)

· Implement trace nodes in message flows

· Enrich failed messages with exception information

· The generic strategy for failure queues is described in the document ‘Middleware Integration Layer Error Handling’

· WMQI failure queue should only be written to in the event of an unexpected failure, messages that are simply ‘not wanted’ should be put to a separate ‘filter’ queue or should be discarded by the message flow (depending upon requirements to store this information even when unwanted by the interface / receiving system).

Connectors

Please refer to the Generic API Connector Functional Design

5 Enterprise Systems Management

The complexity of managing distributed computing architectures along with legacy environments introduces a new set of challenges into the systems management arena. Effective systems management is required in such environments to avoid compromising the reliability, maintainability, and availability of critical systems.

It is no longer sufficient to have isolated systems management silos whereby processes and tools are implemented to cater for the needs of an individual component system within a distributed architecture. To reduce costs and increase effectiveness of systems management, a more holistic view should be taken.

In order to maximise the benefits of a distributed solution, an Enterprise Systems Management (ESM) strategy should be defined. ESM activities should encompass all the technical functions needed to control a complex, distributed enterprise infrastructure. The functions within ESM activities commonly include: Service Level Management, Capacity Management, Problem Management, Change Management, Configuration Management, Help Desk and Software Control and Distribution. Commercially available systems exist that provide a framework for implementing an ESM solution and obtaining a single logical view of the management environment.

BMC Patrol is the ESM tool that has been selected for use by BSkyB and is to be implemented within the CRM programme.

This section will identify the processes that the CRM ESM solution should monitor:

Service Level Management

The process defined for the rest of the Enterprise and the CRM programme should include the middleware infrastructure.
Change Management

The process defined for the rest of the Enterprise and the CRM programme should include the middleware infrastructure.
Configuration Management

The process defined for the rest of the Enterprise and the CRM programme should include the middleware infrastructure.
Software Control and Distribution

The process defined for the rest of the Enterprise and the CRM programme should include the middleware infrastructure.
Capacity Management

The process defined for the rest of the Enterprise and the CRM programme should include the middleware infrastructure.

Problem Management

An issue log should be maintained in which all problems that occur within the middleware environment. The date, nature and resolution to the problem should be recorded.

5.1 Event monitoring and Error Management:

Details of the Middleware’s requirements of the CRM ESM tool have been provided to the ESM team in the document ‘Middleware ESM Functional Design’.

The ESM tool should be configured in accordance with those requirements and the central ESM console should then be used for monitoring and management of the CRM Middleware implementation.

As a high-level summary, the following core components / processes will be monitored by the ESM tool:

5.1.1 MQSeries

Processes / events to be monitored:

· Queue manager’s constituent processes

· Queue manager(s) listener process

· Channels active and not in doubt

· Queue depth low

· Queue depth high

· Queue depth full

· Disk space

· Depth of Dead Letter Queues – should not be greater than 0

5.1.2 WMQI

Processes / events to be monitored:

· Configuration manager process

· Broker(s) process

· Execution group processes (dataflowengine)

· Database manager process

· Disk space

· Available system memory / virtual memory

· Depth of failure queues – should not be greater than 0

5.1.3 Connectors

Processes / events to be monitored:

· Connector process

· Connector log files

· Disk Space

6 Security

BSkyB data and systems must be safeguarded to protect against disclosure, modification, or destruction of data. Threats to security are numerous and varied, including viruses, unauthorized users from outside the enterprise, violations by trusted personnel, human negligence such as forgetting to update an ID/password list, and environment threats.

The achieved level of security results from the balance between administrative costs and system performance. The decision of how much risk is tolerable, and what are acceptable requirements for security of the middleware must be made by the business. The guidelines laid out in NFR 06 – Security should be complied with.
The following considerations extend existing BSkyB computing security policies to cover the additional issues that arise in a networked messaging environment. This should be taken within the context of the whole security architecture of the CRM Programme.

6.1 Physical security:

Unauthorized physical access to computing hardware and equipment, master and backup storage media, and system documentation must be prevented.

6.2 Operating System Security

The management of user IDs and groups for identification and authentication purposes at an operating system level is not considered to be in the scope of this document.
6.3 Security on the Wire

In addition to the physical security of the network and telecommunications hardware, the security of the data traveling down the wires must also be considered. It is necessary to ensure that an unauthorised party cannot gain access to applications by sending a message that mimes or mimics a genuine message, nor intercept messages.
The principal mechanism for ensuring non-repudiation and for securing data confidentiality and integrity is to use encryption. The current CRM programme involves communications only across the BSkyB trusted network. It is assumed that appropriate security is already utilized in accordance with the BSkyB corporate security policy for data and that there is currently no requirement for additional encryption to secure the message traffic.

This must be re-examined when future projects implement interfaces to exchange messages with parties external to the BSkyB network. MQSeries Channel Security Exits should be considered if it is merited by the value of the message data. Security exits allow for the incorporation of third party encryption software that encrypts message data at the sending end of the channels, and decrypts it at the receiving end of the channels.

A variation on this is end-to-end security, also known as application-to-application security, which is used to secure the message throughout its entire route. Only the application programs have access to the unencrypted message contents. Authentication, signature, and authorization functions can be implemented at the application level as needed. This security implementation is highly secure, and usually requires fairly invasive access to the application program code. It is recommended that end-to-end security not be used at BSkyB, as there is no known current requirement for this level of security and it is highly invasive and expensive.

6.4 Application Security

The Integration Infrastructure design will be concerned with the security procedures and mechanisms to prevent unauthorized access to application code, configuration and developments, as well as message data. The mechanisms for this include access control, identification and authentication, and authorisation. These authorisations should be set in accordance with an overall cohesive application security design based on a policy-based and role-based security methodology.
It is recommended that the CRM Programme and any ongoing Integration competency centre within BSkyB IS establish roles and responsibilities for the monitoring, maintenance, administration and development of the middleware components as soon as possible.

Based on current analysis, there are at least three distinct roles that will require differing levels of access to the middleware. This should be periodically reviewed, but currently includes:

· Middleware Developers (Middleware Configuration and Middleware Infrastructure Consultant)

· Middleware Administrator

· Systems Administrators / Transition Team

6.4.1 Middleware Developers

Responsible principally for the development of new integration components, developing fixes and applying changes to the WMQI message flows, the MQSeries scripts, Generic API Connector instances and framework, and the configuration of any Off-The-Shelf Connectors in use within the programme. All development work must be based on a set of strict change management, version management and path-to-production procedures – ideally those currently in place for the CRM programme. For this reason, the middleware developers will carry out their work in the Development environment only, with minimal access to later test environments to support testing, and no access to the Pre-production or Production environments.

Each WMQI Developer will have full access to their own set of generic local development queues on the central shared WMQI broker queue manager. They will also have full access to the set of specific queues supporting any interfaces they are responsible for developing. During the testing phases, the middleware developers may be granted Browse, PUT and GET access to the queues which they support.

Each Connector Developer will have full access to their own set of generic local development queues on the central shared queue manager on each development server. They will also have full access to the set of specific queues supporting any interface connector they are responsible for developing, in addition to the generic connector configuration and transaction queues.

It is recommended that each developer have full access to a personal home directory on each development server they work on to hold unit test and documentation files.

6.4.2 Middleware Administrator

The Middleware Administrator will be the central design authority for all middleware components. It will be their responsibility to help design new interfaces, maintain the high-level middleware architecture, and analyse and resolve any problems or issues with the middleware. The Administrator will also be responsible for overseeing the path-to-production process, advising the systems administrators on the importing and application of developments and fixes into the Test, Pre-production and Production environments.

The Middleware Administrator will require full access to MQSeries on all Development environment servers. In their testing support role, they will require read access to MQSeries on the Test environment servers, and should have no access to MQSeries on Pre-production or Production servers.

It is recommended that the Administrator have full access to a personal home directory on each development server with MQSeries to hold MQSeries scripts, unit test and documentation files.

6.4.3 Systems Administrators / Transition Team

The systems administrators will be responsible for carrying out all hands-on administration of the middleware components that reside on all servers in the environments after the Development environment.

By default, a user with O/S systems administration rights has full access to the MQSeries and WMQI applications installed on that server, including objects, files and datasets. As such, no further authorisation profiles need to be configured for the systems administrators. However, it must be stressed that due to the comprehensive access that any systems administrator will possess, it is essential that they carry out any configuration or imports strictly as laid down in the Release Notes, or with the assistance of the Middleware Administrator. It is expected at the current time that Systems Administrators / Transition Team will be responsible for the import and application of any developments or configuration in the Test, Pre-production and Production Environments.

It is assumed that processes are already in place to ensure that systems administrators only have access to the servers for which they are personally responsible. If the middleware administration is centralised at a later date, additional changes should be made depending on the platform. On Windows, it is recommended that a global group ‘Domain mqm’ be created on the primary domain controller, and that any global MQSeries administrators be added to this global group. ‘Domain mqm’ should then be added to the local mqm group of any servers that will be administered centrally. However, it is expected that an ESM tool (BMC Patrol) will be used to centrally manage and administer the MQSeries landscape.

6.4.4 Security Access Matrix

There follows a summary of the access rights required by all middleware practitioners:

	Role
	Component
	Development Environment
	Test Environments
	Pre-production / Production Environments

	Middleware Developer- WMQI
	WMQI
	Full
	Read
	None

	
	WMQI Logging directories
	Full
	Read
	None

	
	MQSeries
	Full access to their own queues.

No access to any other MQSeries objects.
	Browse, PUT and GET access to the queues for interfaces that they support during Testing phases only.
	None

	
	MQSeries configuration and log files and directories.
	None
	None
	None

	
	Connector configuration and log files and directories.
	None
	None
	None

	
	Home Directory (Own).
	Full
	N/A
	N/A

	
	
	
	
	

	Middleware Developer- Connectors
	Connector source code and framework.
	Full
	N/A
	N/A

	
	Connector configuration and log files and directories
	Full
	Read
	None

	
	Connector log and trace files and directories
	Full
	Read
	None

	
	MQSeries

	Full access to their own queues and the generic configuration and transaction queues.

No access to any other MQSeries objects.
	Browse, PUT and GET access to the queues for interfaces that they support during Testing phases only.

	None

	
	MQSeries configuration and log files and directories
	None
	None
	None

	
	Home Directory (Own).
	Full
	N/A
	N/A

	
	
	
	
	

	Middleware Administrator
	WMQI
	Full
	Read
	None

	
	WMQI Logging directories
	Full
	Read

	None

	
	MQSeries
	Full
	Full access during Testing phases only.
	None

	
	MQSeries Configuration and Logging directories.
	Full
	Read
	None

	
	Connector configuration and log files and directories.
	Full
	Full access during Testing phases only.
	None

	
	Home Directories (all)
	Full
	N/A
	N/A

	
	
	
	
	

	Systems Administrator
	WMQI
	Full
	Full
	Full

	
	MQSeries.
	Full
	Full
	Full

	
	MQSeries configuration and log files and directories
	Full
	Full
	Full

	
	Connector configuration and log files and directories.
	Full
	Full
	Full

	
	Home Directories (on servers that they administer).
	Full
	N/A
	N/A

6.4.5 MQSeries Application Security

6.4.6 MQSeries Administration and User Interface Security

MQSeries queue managers, objects and messages can be manipulated or administered in a variety of ways. It is recommended that access be limited to reduce security risk as follows:

	User Interface
	Control Recommendation

	Direct manipulation of the MQSeries system, data and log files.

	Limit access to the files at the file system level to systems administrators or MQSeries administrators (see roles above).
Scope: Local.

	Running MQSeries administration commands from the system command line.
These commands are typically used to create, start, stop and delete queue managers and clusters.

	Limit access to the MQSeries administration executables through user IDs and groups. File access rights should also be correctly set. Only systems administrators or MQSeries administrators (see roles above) should have access.

Scope: Local.
NB- this is one of the recommended default methods for administering MQSeries.

	Running MQSeries script commands (MQSC) through the MQSeries command processor.
These commands are typically used to create, update and delete queue manager objects such as queues, channels and processes.

	Limit access to MQSeries objects themselves through MQSeries own configurable authorisation mechanism using setmqaut.
NB- this is one of the recommended default methods for administering MQSeries.
The MQSeries command processor can also be set up to permit remote administration of queue managers, but this is not recommended as systems administrators will be responsible only for all local MQSeries administration on the servers they manage.
Scope: Local (/Remote).

	Through the Microsoft Management Console based MQSeries Explorer and MQSeries Services (only on Windows NT and Windows 2000).

	Limit access to the MQSeries Explorer and MQSeries Services through the user IDs and groups, which must either be a member of a group with sufficient MQSeries access rights or be a systems administrator.
It is recommended that remote administration through the MQSeries Explorer be prevented by not creating server connection channels on queue managers. Alternatively, to prevent all means of native MQSeries remote administration do not explicitly start the queue manager’s command server.
Scope: Local, Remote.

	Through the Web-based MQSeries Administration server (if configured).

	Access to specific MQSeries resources through the Web Administration Server is again controlled through user IDs and groups, which should reflect the roles and responsibilities (see above).
Scope: Local, Remote.

	Through third party systems management tools and applications such as BMC Patrol for MQSeries

	Systems management tools typically make use of agent processes running on the MQSeries hosts. Limit the agents access through use of appropriate user IDs group membership (see next section) that these process run under.
Scope: Local, Remote.

	Through custom built applications making use of the standard MQSeries administration interface (MQAI) or (PCF).

	Access can be controlled through the userid that is used to run the application, which must be a member of an MQSeries group or the systems administration group.
Scope: Local, Remote.

6.4.7 MQSeries Identification, Authentication and Authorisation

MQSeries does not come with identification and authentication functionality of its own, instead relying on the operating system to provide these services. User IDs may be up to 20 characters on MQSeries for Windows NT and Windows 2000, but other MQSeries platforms, which may connect for remote administration, are limited to 12 characters.

MQSeries v5.1 and higher on Windows NT, Windows 2000, OpenVMS and UNIX make use of an authorisation service that comes included with MQSeries, called the Object Authority Manager (OAM). The user interfaces for accessing MQSeries listed in the previous section all check the current user ID to see if it is a member of a group with sufficient access rights. If the check fails, an error message is displayed, and the application will not start properly or allow access.

MQSeries installation automatically creates the default local group mqm. User IDs which belong to this group have authority to administer MQSeries queue managers. As already noted, user IDs which are members of the Administrators group also have this authority. It is recommended that to reflect the middleware roles for the CRM programme that two additional MQSeries groups be created: mqmdev (middleware developers) and mqmadm (MQSeries administrators).

 These groups should have authorisations and access right set for individual MQSeries resources as outlined in the security access matrix in section (section 6.4.4 above), through the use of the setmqaut command. In addition, a separate group should be created for running the MQSeries adapters and connectors called mqmapp that has sufficient access to open connections to queue managers, and to read and manipulate messages on interface-specific and generic adapter queues as appropriate. The full details of the MQSeries authorisation settings will be given in the MQSeries detailed design.

BMC agents should run under service user IDs that are either members of the mqm group (if the agents will be used for configuration) or an additional group called mqs (MQSeries services) with read access to MQSeries resources (if the agents will only be used for monitoring).
The MQSeries services run under the internal MQSeries Administration user ID MUSR_MQADMIN or MQM (depending on the platform), which is created automatically during installation with its own password and is a member of the mqm group. This user ID should only to be used for internal application purposes.

6.4.8 WMQI Application Security

WMQI application security is enforced through user membership of authorisation groups in a similar manner to MQSeries. The identification and authentication functionality is provided by operating system (Windows or UNIX), and WMQI concerns itself solely with authorisation.

6.4.9 WMQI Control Centre Access Security

The major WMQI components (i.e. configuration manager, broker and user name server) all run as services under a user ID that is specified during the creation of the component, and this user ID must have access to any databases required by the component.
A user ID with sufficient access rights is required in order to log into the WMQI Control Centre which uses Windows NT access control. WMQI Control Centre user IDs are assigned to one or more of the user groups described below according to the role performed by the user:
	Group
	Permitted Tasks

	Mqbrkrs
	Authorised service user ids for the configuration manager, the brokers and the user name server

	Mqbrasgn
	Within the control centre:
· manage execution groups within brokers
· view message sets and message flows
· assign message flows to execution groups
· assign message sets to brokers

	Mqbrdevt
	Within the control centre:
· develop message sets and message flows

	Mqbrops
	Within the control centre:
· create brokers
· deploy, start and stop message flows
· start and stop message flow trace activity
· manage and deploy broker domain topology
· view the whole deployed system
· deploy topics
· view deployment logs

	Mqbrtpic
	Within the control centre, this group handles publish / subscribe related tasks which are currently out of scope for the CRM programme.

6.4.10 Access to WMQI database Tables

The WMQI application requires databases (DB2 for the Configuration Manager, running on Windows 2000; Oracle for the Broker, running on Solaris) to store configuration and custom development data. Access to the databases, tablespaces and tables is controlled through the databases’ own authority security mechanisms, and will not be covered in any more detail in this document.
Under normal processing conditions, user access to the databases is generally only required at the time of WMQI installation / database creation (although it may be necessary to e.g. extend the tablespace at some point), so it is recommended that only the Systems Administrators have access to the databases in all environments as they will be responsible for maintenance. The WMQI components requiring access to the database will require continual, ongoing access to the database.
6.4.11 Connectors

6.4.12 Config Files

· Need to secure the connector configuration files using O/S file access permissions.
MQSeries

WMQI

Application

MQSeries

Connector

Connector

Application

<INSERT PROJECT LOGO>

PAGE
	Integration Infrastructure Design v1.1.doc
	Version 1.1
	Page 1 of 33

_1084261776.ppt

Scalability- WMQI Scaling Concepts

There are multiple levels and

dimensions where WMQIv2.x can

scale in order to handle increased

workload or to compensate for

throughput constraints.

•

Hardware upgrades such as

adding machines and deploying

additional WMQIv2.x Brokers.

•

Multiple Brokers deployed on

single machines to take advantage

of multi

-

processors.

•

Multiple processes running within

one broker

-

multi

-

processing.

•

Multiple copies of message flow

-

multi

-

threading.

Service Interface Layer (SIL).

•

Broker

Ÿ

Add Execution Processes

Ÿ

Multi-thread/Multi-process

Execution Process

Ÿ

Multiple copies of Message Flow

Ÿ

Multi-thread within 1 process

Machine

Ÿ

Run Multiple Brokers

Ÿ

Run Multiple Queue Managers

Ÿ

Distribute Workload via MQSeries Clustering

Message Flow

Ÿ

Service/Subflow Interface Layer (SIL) Distribution

Hardware and Clustering

Ÿ

Run Multiple brokers on multiple machines

Ÿ

Run Multiple Queue Managers

Ÿ

Distribute Workload via MQSeries Clustering

SIL

SubFlows

