	Sky CRM Programme

WebSphere MQ Naming Conventions
	[image: image1.emf]

Sky CRM Programme

WebSphere MQ Naming Conventions
Version <1.0>
AMENDMENT HISTORY

	Version
	Date
	
	Remarks

	0.1
	01/05/2002
	Stuart Baldwin, Gillian Gordon
	Initial draft version

	0.4
	01/07/2002
	Justin Rogers
	Draft for review

	0.7
	10/07/2002
	Justin Rogers
	All WMQI section names updated except for Nodes where only the trace node name was changed.

	0.8
	10/07/2002
	Luke Puddy
	MQSeries and WMQI infrastructure naming conventions updated

	0.9
	18/07/2002
	Justin Rogers
	WMQI section updated with generic message types and elements and other details for exports.

	0.91
	13/08/2002
	Justin Rogers
	Updated Messages to allow a generic application flow name.

	1.0
	14/08/2002
	Justin Rogers, Luke Puddy
	Updated with QA points from Mike Fitch

	1.1
	13/11/2002
	Luke Puddy
	IDO included into the list of abbreviations

DOCUMENT IDENTIFICATION

AUTHORS
	Name
	Position

	Justin Rogers
	Lead Designer, Sky CRM Middleware Team

	Luke Puddy
	Infrastructure Lead, Sky CRM Middleware Team

	Gillian Gordon
	Sky CRM Middleware Team

	Stuart Baldwin
	Sky CRM Middleware Team

SIGN OFF LIST
	Name
	Position
	Sign-off Date
	Signature

	Chun-Teng Ng
	Integration Team Lead
	
	

	Luke Puddy
	Integration Infrastructure Team Lead
	
	

	Mike Fitch
	Integration Architect
	
	

DISTRIBUTION
	Name
	Position
	Reason for Distribution

	Integration Team Members
	Integration Team Members
	First Release

	Integration Infrastructure Team Members
	Integration Infrastructure Team Members
	First Release

REFERENCED DOCUMENTS
	Name
	Owner

	WMQI 2.1 Using The Control Center.pdf
	IBM WMQI 2.1 Support Documentation

FORECAST LIFECYCLE:
	Version
	Owner
	Anticipated movement

	1.0
	Integration Design Lead
	Periodic updates

CONTENTS
41
Introduction

1.1
Document Purpose and Scope
4
1.2
Assumptions
4
2
Common Abbreviations And Standards
5
2.1
Text Notation
5
2.2
Application Acronyms
5
3
MQSeries Naming Conventions
6
3.1
Usage Standards
6
3.2
Queue Manager Names
8
3.3
Queue Names
9
3.3.1
Application Queues
9
3.3.2
Transmission Queues
9
3.3.3
Alias Queue
10
3.3.4
Dead Letter Queue
10
3.3.5
Initiation Queue
10
3.4
Message Channels
11
3.4.1
Primary Sender Channels
11
3.4.2
Receiver Channels
12
3.4.3
Server Connection Channel
12
3.4.4
Supplementary Channel Naming Conventions
12
3.5
MQSeries Processes
14
4
Other MQSeries Objects
15
4.1
Dead Letter Queue
15
4.2
MQSeries System and Default Objects
16
4.3
MQSeries Adapters
16
4.3.1
BSKYB Generic API Connector
17
5
WMQI Infrastructure
18
5.1
WMQI Broker
18
5.2
Execution Group
18
5.3
WMQI Databases
18
5.4
Cross-Reference Databases
19
5.4.1
Databases
19
5.4.2
Tables
19
5.4.3
Columns
19
6
WMQI
20
6.1
WMQI Naming Standards
20
6.2
WMQI Components Names
20
6.2.1
Interface
20
6.2.2
Message Sets
21
6.2.3
Messages
21
6.2.4
Message Flows
23
6.2.5
Nodes
25
6.2.6
Imports/Exports
27

1 Introduction

This document provides a system of naming conventions for WebSphere MQ and WebSphere MQ Integrator components within the SKY CRM programme.

1.1 Document Purpose and Scope

The intent of this document is to ensure that all SKY WMQI / WMQ components will be developed using rational and consistent naming standards. Driving factors for these standards include simplicity, extensibility, and maintainability.

In principle names are designed to allow for uniqueness and abstraction across:

Promotional Environments e.g. development, production

Released software version

Instances where is it possible and acceptable to have more than one instance of the same component within the above criteria e.g. broker

Instances where names are fixed without reverting to software code changes e.g. queue names

To develop a naming convention that encompasses all possible situations, however, would be a major undertaking. For this reason a pragmatic approach has been taken to the formulation or the conventions detailed hereafter. This document may undergo various iterations as analysis/development work continues at BSKYB.

The scope of these naming conventions is primarily for the BSKYB CRM Programme, but must be flexible and potentially extensible enough to allow for future requirements.

It is intended that these naming conventions should follow as closely as possible any existing Project Glossary of Terms.

1.2 Assumptions

	Reference
	Assumption Description

	1. NNSY
	NNSY (NEON) components will not be used at SKY. For this reason they have not been included in this naming conventions document. Should this situation change amendments must be made to update the document with the relevant information.

	
	

2 Common Abbreviations And Standards

2.1 Text Notation

Acronyms and codes should be in upper case. Descriptions should be in Hungarian Notation.

2.2 Application Acronyms

The acronyms used in this document for all applications on the BSKYB CRM Programme are outlined below. It is intended that these acronyms be consistent with others used by other teams in the programme.

	Acronym
	Application
	Function

	ACC
	Authorisation Control Computer
	Authorisation Control Computer

	AFS
	Automated File Server
	Automated File Server

	ARB
	Arbor/BP
	Billing Engine

	ARL
	ManTech Advanced Recognition Ltd (Suite of Software)
	Suite of Software for Document Imaging and forms processing.

	ARM
	Accounts Receivable Manager
	Arbor Debt Management System

	BSS
	Broadcast Support System
	Broadcast Support System

	CAL
	Callidus
	Commission and compensation management software

	CFS
	Customer Field Services
	Customer Field Services

	CHD
	Chordiant
	Customer management software

	CMS
	Customer management system
	Legacy Customer management system

	DIM
	Document Interchange Manager
	Document Interchange Manager

	DMS
	Debt Management System
	Legacy Debt Management Software

	ETK
	E-Talk
	Call recording and performance monitoring software

	FMS
	Field management system
	Field management system

	IDO
	Internet Digital Ordering
	Internet Orders

	JDE
	J D Edwards
	ERP Software

	KNA
	Kana
	Knowledge Management

	MA4
	Macro4
	Document Management Software

	MID
	Midas
	Data Warehouse

	MQS
	MQ Series
	Middleware Transport Software

	PPS
	Peoplesoft
	Human Resources software

	QAS
	Quick Address
	Address management software

	RDM
	Reference Data Manager
	Data administration software

	RTL
	Retail Logic
	Credit Card Verification (External)

	SCM
	SCMS
	Subscriber Card Management System

	SVP
	SERVICE Power
	Scheduling software

	WMQ
	WebSphere MQ Integrator
	Middleware MQ Integrator

3 MQSeries Naming Conventions

Names should be meaningful, make use of hierarchies to help structure them, and the conventions must ensure uniqueness. Strict observance of these naming conventions will insure that message traffic will be isolated and controlled within the appropriate environment, i.e. development, testing, and production. The conventions described within are sufficient to support the known middleware requirements for the CRM programme, and are extensible should additional requirements arise now or for future BSkyB projects. These naming conventions should be reviewed prior to the implementation of any new project utilising MQSeries so that any possible discrepancies can be identified and resolved prior to conflicts arising.

The conventions should consider factors such as the location of a queue manager, the usage of a queue, and the destination of an MQSeries channel. In general, the naming of the MQSeries objects should be based on the naming conventions of the system, application, and environment where it resides, and the functionality that it is providing.

3.1 Usage Standards

MQSeries queue, process, namelist, channel, and storage class objects exist in separate object name spaces, and so objects from each type can all have the same name. However, an object cannot have the same name as any other object in the same name space. For example, a local queue cannot have the same name as a model queue, but it could have the same name as a process.

The characters that can be used for naming MQSeries objects within the BSkyB middleware environment are limited to the following specifications:

Uppercase A-Z

Period (.)

Numeric 0-9

Underscore (_)

The following characters will not be used:

Leading or embedded blanks are not allowed to differentiate queues, because the queue manager always pads names to the right with blanks.

Lowercase a-z are supported by MQSeries but should not be used because there are restrictions on the use of lowercase letters for MVS console support, lower case characters not contained within quotation marks are automatically folded to uppercase, and systems using EBCDIC Katakana do not support lowercase characters.

Percent sign (%). The percent sign (%) is a special character to RACF, which can be used as the external security manager for MQSeries for MVS/ESA. Also, % is a special control character on AS/400 systems.

The following length limitations exist for MQSeries object names:

	Object
	Maximum Length in NT/UNIX

	Queue Manager
	24

	Local Queue
	48

	Remote Queue
	48

	Transmission Queue
	48

	Alias Queue
	48

	Channels (Send and Receive)
	20

	Process Definition
	48

In the context of the CRM programme, all MQSeries objects will be named using only uppercase letters. The full stop (or period) mark '.' will be used to separate components of the name. In general, the components will go from high-level descriptions on the left (e.g. system ID) to more specific descriptions to the right (e.g. description of the specific functionality of the object).

Queue Manager Names

The queue manager name will be based upon the hostname of the machine on which it is running. The queue manager name will not exceed 13 characters- this has significance for the channel naming conventions (see below in section 2.4 Message Channels).

The queue manager name is composed as follows:

	Convention
	Max Length
	Possible Values or Examples
	Description

	QEmmmmmmmmmmN
	13
	QCSSLWMQI011 WMQI TPOC configuration manager’s queue manager
	Queue Manager name

	
	
	
	

	Q
	1
	
	A fixed literal value of 'Q'

	E
	1
	P = Production

X = Pre-production

U = UAT

T = Training

A = Test Automation

I = System Integration Test

D = Development

C = TPOC

	Indicates the promotional environment of the queue manager.

	mmmmmmmmmm
	10
	
	A variable string based upon the hostname on which the queue manager is running. The rightmost 10 characters will be used with the assumption that a unique number within a site is located to the right and the most generic part of the server ID is to the left.

	N
	1
	
	A numeric character to allow for more than one queue manager per machine. The default value = 1, i.e. the first queue manager per machine will have an N value of 1, the second queue manager on the same machine will have an N value of 2, and so on. This is compatible with the design decision of fewer queue managers that are each functionally richer in order to keep the number of queue managers to a minimum.

Queue Names

There are two types of queues that will be defined within a queue manager configuration in the current BSkyB context: Application queues and Transmission queues.

3.1.1 Application Queues

Application queues are local queues that are used by applications. Note that for remote queue definitions, the name of the remote queue object is equal to the name of the local queue for which it is targeted. Therefore, the RNAME attribute is always equal to the name of the remote queue itself.

 Application queue names will conform to the following structure:

	Convention
	Max Length
	Possible Values or Examples
	Description

	APP99.IFID.FUNCTION
	
	SCM01.0000.WMQ01
	Application Queue names

	
	
	
	

	APP99
	5
	SCM01
	Optional three characters, two digits identifier of the application instance that is the consumer of the message data on the queue.

The application ID will be omitted for those queues that are used by more than one application (e.g. deadletter queues) and should only be tied by name to a specific queue manager, not an application instance.

	IFID
	4
	The identifier ‘0000’ is used to denote an application queue utilised by multiple interfaces, but should requirements alter going forward, this identifier will mean that local queues used by specific interfaces will be easily identifiable
	Optional Interface Identifier of the interface for which the queue is being used. The IFID will be four digits long, starting from 0001.

This is added to the queue name so that the appropriate interface documentation for the queue can be selected if there are any operational issues or questions.

As future projects may use completely different naming conventions for identifying interfaces, it is recommended that the various project-specific naming conventions be mapped to the 4-digit convention used here.

Again, exceptions are those queues that are used by more than one interface (e.g. generic error, filtering or deadletter queues, and the input queues to the message type-based WMQI message flows) which will omit the IFID.

	FFFFFF
	
	Interface specific data queues:

Applications queues: FAILURE, NOHIT

Interface or Message flow-specific: FILTEROUT, ARCHIVE.

	A string of variable length, but typically for application queues up to 8 characters used to represent the function or use of the queue.

For interface specific data queues it will be the atomic business object type or message type that the queue will hold.

For other queues required by WMQI, adapters or MQ-enabled applications, FFFFFF is derived from the standard name of the function that the queue provides. e.g. FILTEROUT, ARCHIVE, TRANSIN, TRANSOUT

3.1.2 Transmission Queues

In the middleware infrastructure, transmission queues are named with the same name as the queue manager to which their contents are directed (see above for queue manger conventions).

3.1.2.1 Primary MQSeries Network

	Convention
	Max Length
	Possible Values or Examples
	Description

	QEmmmmmmmmmmN
	13
	QCSSLWMQI011 will be a transmission queue associated with a sender channel directed to a queue manager known as QCSSLWMQI011.

	Transmission Queue name.

	
	
	
	

	QEmmmmmmmmmmN
	13
	
	Name of the queue manager that is the target for transmission. Use the same naming convention as queue managers (see above).

3.1.2.2 Supplemental MQSeries Network

In certain cases, it may be necessary to define channels and transmission queues that follow a variation of the convention above, in order to supplement the primary communication paths. The reasons for this are discussed fully in the following sections on message channels.

In those cases, the following convention will be used:

	Convention
	Max Length
	Possible Values or Examples
	Description

	ChannelName.XMITQ

	26
	See section below on channel naming conventions.
	Supplementary Transmission Queue name.

	
	
	
	

	ChannelName
	20
	
	Name of the channel associated with this transmission queue (see section below).

	XMITQ
	5
	
	A fixed literal value of 'XMITQ'

3.1.3 Alias Queue

Where used, the alias queue names will follow similar naming conventions to the application queues (see above), i.e. APP99.IFID.FUNCTION.

3.1.4 Dead Letter Queue

Each queue manager will use a default dead queue known as DEAD.LETTER.QUEUE.

3.1.5 Initiation Queue

If needed, each queue manager will use the default initiation queue known as SYSTEM.DEFAULT.INITIATION.QUEUE, except for channel initiation, which will use SYSTEM.CHANNEL.INITQ.

Message Channels

The channel naming convention has the following objectives:

- Provide meaningful names that clearly denote the purpose of the various channel objects across the network.

- Keep channel administration as simple as possible.

- Eliminate the definition of channel objects that are not absolutely necessary.

- Maximise the flexibility available to the MQSeries administrators as the Middleware Infrastructure environment adapts to changing requirements over time.

To accommodate these requirements, a naming convention has been conceived as follows. The fundamental MQSeries network for the CRM programme will use the definitions as noted 'Primary' in the sections below. The primary naming conventions will accommodate all currently known requirements of the CRM programme environment.

In addition to the primary conventions below, a supplementary naming convention has also been provided. Although this convention will not be required for the current middleware infrastructure deployment, it is offered here in accordance with the specific objectives above as well as to meet the general extensibility objective as noted earlier in this document. Guidelines for the usage of the supplementary convention are described in the appropriate sections that follow.

If should be noted that the primary convention has been established to simplify the administration of the MQSeries network. This convention is a departure from the most common convention used in MQSeries environments. The common convention uses channel names that are composed of a compound of both queue manager names that are connected with the channel. However, by compounding the names it results in a logarithmic expansion of channels as the MQSeries network is expanded. The convention described below, however, minimises the number of required channels.

There are no performance differences between networks implemented using either convention. Both conventions also have a maximum channel name length of 20 characters.

3.1.6 Primary Sender Channels

Sender channels will be named for the queue manager to which they deliver messages. Each queue manager will have one sender channel for each queue manager to which they need to send messages.

The naming convention for a sender channel is the same as the naming convention for the target queue manager:

	Convention
	Max Length
	Possible Values or Examples
	Description

	QEmmmmmmmmmmN
	13
	QCSSLWMQI011
Sender Channel to the WMQI TPOC configuration manager’s queue manager.
	Sending Channel name, same as target queue manager (see queue manager naming section above).

Note that the promotional environment (e.g. E) will always be equal to the E value of the queue manager on which the channel template resides. It is never acceptable to set up a sender on a production queue manager that points to a development or acceptance queue manager, or any other mixed combination.

3.1.7 Receiver Channels

Receiver channels will be named for the queue manager to which they belong. Each queue manager will have one receiver channel. (Cluster receivers must have a name that is unique across the cluster).

The naming convention for a receiver channel is to name it the same as the queue manager on which resides:

	Convention
	Max Length
	Possible Values or Examples
	Description

	QemmmmmmmmmmN
	13
	QCSSLWMQI011
Receiver Channel on the WMQI TPOC configuration manager’s queue manager.
	Receiver Channel name, same as queue manager name to which it belongs (see queue manager naming section above).

3.1.8 Server Connection Channel

If needed (for remote administration), each queue manager will use the default server connection channel known as SYSTEM.DEFAULT.SVRCONN.

3.1.9 Supplementary Channel Naming Conventions

In certain cases, it may be desirable to supplement the primary channel naming convention as described above, with an enhanced naming convention. A supplementary naming convention may be used in the following situations:

- In the event that an external connection needs to be made to a queue manager outside of BSkyB. In this case, BSkyB conventions may not be applicable.

- In cases where dedicated channels are provided to provide enhanced or reduced service levels particular to a given application.

- In the event that different channel protocols are available between platforms, and it is desirable to provide MQSeries channels across more than one protocol.

For the first case listed above, the channel pair names must be negotiated with the external partner. Per MQSeries requirements, the sender and receiver at either end of the channel must use the same name.

For the other two cases, the following naming convention will apply:

	Convention
	Max Length
	Possible Values or Examples
	Description

	Qmmmmmmmmmm.COS.P.N
	
	See section below on channel naming conventions.
	Supplementary Transmission Queue name.

	
	
	
	

	Q
	1
	
	A fixed value literal of 'Q'.

	mmmmmmmmmm
	10
	
	A variable length string based upon the hostname on which the channel is defined. Only a maximum of the rightmost 10 characters of the target hostname are used.

	COS
	
	R = Real-time

B = Batch

D = Default
	Denotes the class of service.

 Real-time is used for relatively high service levels, i.e. channels that do not process batch information and are not intended to back up due to workload requirements.

Batch is used for relatively low service levels, such as channels that process batched information received via flat file transfer processes.

Default is used when no particular class of service applies for a given channel.

	P
	1
	T = TCP/IP

S = SNA

	Denotes the protocol, which is typically TCP/IP.

	N
	1
	
	A numeric character to accommodate multiple instances of supplementary channels with identical properties.

MQSeries Processes

MQSeries process definitions are objects used to associate a local queue with a process or application that is to be started in response to a trigger event on the queue. The process definition attributes include the application ID, the application type, and data specific to the application.

Process definitions may be used to support connector or script triggering on queues inbound to applications.

The process definitions will adopt the following naming convention:
	Convention
	Max Length
	Possible Values or Examples
	Description

	PR_ProcessName
	48
	PR_QCSSLWMQI011 = Process Definition to start the channel to the QCSSLWMQI011 queue manager

	Process Definition names

	
	
	
	

	PR_
	3
	PR_
	Fixed literal value of ‘PR_’

	ProcessName
	45
	
	Variable length string that is the name of process, application or script to be triggered.

Other MQSeries Objects

3.2 Dead Letter Queue

Background:

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message queue, is a special queue within MQSeries for holding messages that cannot be delivered to their destination queues. The DLQ can have messages added to it by queue managers, message channel agents and MQSeries applications.

By default, a queue manager is created with no DLQ defined, but it is normally recommended to define a DLQ and have it monitored either by the IBM provided DLQ monitor program (runmqdlq) or by a third party system management tool.

The main reason for configuring a DLQ is to avoid potential ‘poison message’ problems. This can occur, for example, if an application attempts to put a message on a queue on a remote queue manager, but the specified queue name does not exist. The channel is stopped, and the message remains on the transmission queue, and attempts to restart the channel will result in it stopping again until the offending message is removed from the transmission queue. If a DLQ is configured on the receiving queue manager, the message will be transferred to the remote queue manager and placed in its DLQ because its ‘target’ queue is unknown.

A similar situation can occur when a system is transferring a message to a remote system and the remote queue is full. If a DLQ is not configured, then the channel will be stopped, even though this channel could be serving multiple queues, many of which have plenty of available space. If a DLQ is configured and messages cannot be written to a full target queue, they will continue to be written to the DLQ until space becomes available on the ‘target’ queue. This situation highlights a potential problem of configuring a DLQ where message affinity (sequence) is required. If a queue becomes temporary full, messages will be written to the DLQ until the required queue is able to accept more messages, but the messages written to the DLQ will not be moved back to the target queue – therefore message affinity is lost.

On balance, it is probably safer to configure a DLQ because it is a well-known location to catch unexpected errors, but within the context of the BSkyB environment message affinity is potentially very important and must not be compromised by destination queues filling up. To avoid these potential issues, system management tools should be deployed that monitor queue depths and initiate a controlled shutdown sequence when thresholds are exceeded.

Given all the above, the recommendation for the CRM programme is to configure a DLQ on each queue manager only if enterprise system management tools are capable of controlling a shutdown of channels when thresholds are exceeded. The default dead letter queue (SYSTEM.DEAD.LETTER.QUEUE) will be used.

If the enterprise system management tools cannot do this then the DLQ should NOT be configured.

3.3 MQSeries System and Default Objects

At the time a queue manager is created a number of default MQSeries Objects and Queues are generated. Typically these begin with the word SYSTEM and should NOT be deleted. These default MQSeries Objects are used as templates when additional MQSeries objects are created, so for example the SYSTEM.DEFAULT.LOCAL.QUEUE defines the default settings for all new queues that are created within the queue manager. It is possible to modify the SYSTEM default objects, thus altering the default properties of objects created from them.

For example, the SYSTEM.DEFAULT.LOCAL.QUEUE is the template used when local queues are created and within the CRM programme context this queue will be modified to set:

DEFPSIST to YES to ensure persistent messages. The persistent of the message will also be set in the connectors for insurance.

MAXDEPTH to indicate the maximum depth the queue can grow to.

MAXMSGL to define the maximum message size supported by the Queue.

However, care is be needed when re-setting these defaults to ensure they are consistent with other configuration. For example, the MAXMSGL attributed is also defined in the Queue Manager configuration, and the local queue length cannot be greater than that defined for the Queue Manager.

3.4 MQSeries Adapters

Adapters are used to convert from application-specific data formats into MQSeries messages, and vice versa. They include commercial off-the-shelf (COTS) adapters and custom developed adapters.

With the adapters, the naming convention will apply principally to the adapter configuration files for the COTS adapters, or to the executable instances of the custom adaptors.

	Convention
	Max Length
	Possible Values or Examples
	Description

	XXX_(INSTANCE)_Y_FFFFFFFF_[IN, OUT]
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Details:

XXX is the application identification that the adapter is serving e.g.WMQI

(INSTANCE) is an optional identifier of a specific instance of the adapter.

Y identifies the type of adapter possible values include:

A
- Generic API connector
FFFFFFFF is a string of variable length up to 8 characters that consists of a concise description, and is always derived from the application that the adapter services. It should be used to denote the kind of data or business entitie(s) that the adapter processes.

[IN, OUT] indicates the direction of data flow through the adapter in relation to the application it is serving. Possible values are either

IN for inbound to the application from the queue.

OUT for outbound from the application to the queue.

3.4.1 BSKYB Generic API Connector

All source code modules, and associated classes of will be members of the package com.bskyb.mq. Any general purpose MQSeries utility modules and classes will be members of the package com.bskyb.mq.util. Code modules encapsulating bespoke Business Application API functions will be named in accordance with the following convention:

	Convention
	Max Length
	Possible Values or Examples
	Description

	BACAPI<Application Name><In/Out>
	N/A
	e.g. BACAPIEntirexOut, BACAPIArborIn
	

Details:

Application Name is the name of the Business Application e.g. EntireX, Arbor

In/Out] indicates the direction of data flow through the adapter in relation to the application it is serving. Possible values are either

In for inbound to the application from the queue.

Out for outbound from the application to the queue.

WMQI Infrastructure

To ensure an easier to manager middleware infrastructure, and avoid re-work when additional components are added, it is important to establish clear naming conventions for the WMQI infrastructure.

A component name will be made up of one or more identifiers, separated by underscores where necessary to minimise confusion, all upper case (except where the name incorporates e.g. a literal hostname that explicitly contains lowercase characters). This document will not cover the naming conventions for WMQI Message Sets, Message Flows or Message Flow Nodes, it will focus on the infrastructure elements detailed in the table below (NB there can be only one configuration manager and it is not possible to assign a name to it):

3.5 WMQI Broker

	Convention
	Max Length
	Possible Values or Examples
	Description

	BEmmmmmmmmmmN
	
	
	Broker Name

	
	
	
	

	B
	1
	
	Is a fixed literal value of 'B' to denote Broker

	E
	1
	P = Production

X = Pre-production

U = UAT

T = Training

A = Test Automation

I = System Integration Test

D = Development

C = TpoC

	Indicates the promotional environment of the Broker.

	mmmmmmmmmm
	10
	
	Variable string based upon the hostname on which the broker is running. The rightmost 10 characters will be used with the assumption that a unique number within a site is located to the right and the most generic part of the server ID is to the left

	N
	1
	
	Unique qualifier to allow for more than one broker per machine, starting with 1 and increasing in sequence by 1

3.6 Execution Group

	Convention
	Max Length
	Possible Values or Examples
	Description

	EGNbbbbbbbbbbb
	
	
	Execution Group Name

	
	
	
	

	EG
	2
	EG
	fixed literal value of ‘EG’ to denote Execution Group

	N
	1
	
	Unique qualifier to allow for more than one Execution Group per Brokre, starting with 1 and increasing in sequence by 1

	bbbbbbbbbbb
	11
	
	Is the ‘mmmmmmmmmN’ component of the Broker’s name (see Broker naming convention above for details).

3.7 WMQI Databases

	Convention
	Max Length
	Possible Values or Examples
	Description

	WMQIXXDB
	
	
	Database Name

	
	
	
	

	WMQI
	4
	WMQI
	Fixed literal value of ‘WMQI’ to denote WMQI

	XX
	2
	Config Mgr = CM

Broker = BK

Message Repository = MR

	Denotes the usage of the database

	DB
	2
	DB
	Fixed literal value of ‘DB’ to denote WMQI

3.8 Cross-Reference Databases

3.8.1 Databases

	Convention
	Max Length
	Possible Values or Examples
	Description

	WMQIXRFN
	
	
	Database Name

	
	
	
	

	WMQI
	4
	WMQI
	Fixed literal value of ‘WMQI’ to denote WMQI

	XRF
	3
	XRF

	Index number, starting with 1 and increasing in sequence by 1

	N
	1
	
	Fixed literal value of ‘DB’ to denote WMQI

3.8.2 Tables

Tables within the Cross-Reference Database should have a meaningful description describing the content of the table e.g. COUNTRY_CODE

3.8.3 Columns

Columns within the Cross-Reference Database tables should have a meaningful name describing the content of the column and the system from which the data originated.

4 WMQI

4.1 WMQI Naming Standards

In general, the naming conventions of the WMQI objects has been driven by name of the interface being developed which in turn can be broken down into references towards the application(s) being processed and the functionality provided. The conventions formulated for this section take into consideration factors such as Java compatibility, periods, for example, are not to be used, as these are the Java standard for naming packages.

In the context of the CRM programme all WMQI objects will be named using proper casing/Initial Caps Notation with discrete units of the name separated by an underscore. The rationale behind this is ease of reading especially in the case of descriptive component name elements. Dashes and hyphens will not be used within any WMQI component names in order to avoid portability implications.

All WMQI component names must be less than 48 alphanumeric characters in length.

4.2 WMQI Components Names

4.2.1 Interface

For the purposes of this document and the Integration team involvement with the project, an interface consists of a number of Middleware components that facilitate one complete transaction within the business. Within WMQI this may contain 1 or many message flows.

	WMQI Object Classification
	Convention

	Interface
	IFCNUMB_SRC_Description

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	IFC
	A3
	IFC
	Object Type, always IFC for Interface Detailed Description

	NUMB
	N4
	0001

0002
	Unique Interface ID - Unique identifier for the interface as identified in the Interface Catalogue, starting from 0001

	SRC
	A3
	ARB – Arbor, CHD – Chordiant, etc

See Appendix A
	Source system (acronym)

	Description
	AN1-36
	
	Description of the functionality of the interface with regard to the transaction it performs. If this is a TPOC or other Prototype this should be mentioned in the name. This description should be in Hungarian notation and must not include dashes, hyphens or any other separator characters.

Example: IFC0001_CHD_GetCardInfo

4.2.2 Message Sets

Each Message set will hold messages relating to one single application. The messages can be inbound or outbound to the application and of any format, although we are only likely to use Custom Wire Format and perhaps Tag Delimited Format (Chordiant XML messages are likely to be self-defining).

	WMQI Object Classification
	Convention

	Message Set
	MS_APP_VRN

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	MS
	A2
	MS
	Object Identifier - this is always ‘MS’ for message set.

	APP
	A3
	ARB – Arbor, CHD – Chordiant, etc

See Appendix A
	Application the messages in the message set relate to.

	VRN
	N3
	001

002
	Component version number, used to identify current and previous versions. Start with the digits 001 and increment by one e.g. 002, 003, 004,etc

Example: MS_CHD_001

4.2.3 Messages

Messages define a format or template of the data messages to be received from or sent to an application. They are formed from Message Elements, which may be grouped into Message Types.

	WMQI Object Classification
	Convention

	Message
	MZ_IFCNUMB_IO_Description

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	MZ
	A2
	MZ
	Object identifier. This will always be ‘MZ’.

	IFCNUMB
	A7
	APPFLOW

IFC0001

IFC0002
	This can either be “APPFLOW” for a message used for pre-parsing in an application flow, or it can be the name of the interface made up from:

 - A3 - Object Type, always IFC for Interface Detailed Description

 - N4 - Unique Interface ID - Unique identifier for the interface as identified in the Interface Catalogue, starting from 0001

	IO
	A2
	IN

OT
	Direction the message is sent with respect to the application it relates to. Application is not mentioned, as this message will sit in an application-specific message set.

	Description
	AN1-34
	
	Description - a concise, clear functional definition of the message. This description should be in Hungarian notation and must not include dashes, hyphens or any other separator characters. The last 3 letters of the description should describe the message type as a Request/Reply/Fire and Forget using the labels “Rqt”, “Rpy” or “Fgt” respectively.

Example: MZ_IFC0001_IN_GetCardInfoRqt

	WMQI Object Classification
	Convention

	Message Type
	MT_IDENTFY_Description

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	MT
	A2
	MT
	Object identifier. This will always be ‘MT’. Message types are specific to a Message Set, so the name of the application is not required here.

	IDENTFY
	A7
	IFCNUMB

GENERIC
	This can be a fixed literal of “GENERIC” if the type is used in many interfaces for a given application or the appropriate value of <IFCNUMB> where the type is interface specific (where IFC=literal IFC and NUMB=Unique interface ID)

	Description
	AN1-37
	
	Description - a concise, clear definition of the contents of the message type. This description should be in Hungarian notation and must not include dashes, hyphens or any other separator characters. If more than one format is used in a message, then the format should be indicated here.

Example: MT_GENERIC_SCMSControlBlock

	WMQI Object Classification
	Convention

	Message Element
	ME_IDENTFY_Description

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	ME
	A2
	ME
	Object identifier. This will always be ‘ME’. Message elements are specific to a Message Set, so the name of the application is not required here.

	IDENTFY
	A7
	IFCNUMB

CONTROL

TRAILER
	This can be the appropriate value of <IFCNUMB> where the element is interface specific (where IFC=literal IFC and NUMB=Unique interface ID), OR it can be a label for use in a generic message type spanning many interfaces (e.g. CONTROL).

	Description
	AN1-37
	
	Description - a concise, clear definition of the contents of the message element. This description should be in Hungarian notation and must not include dashes, hyphens or any other separator characters. If more than one format is used in a message, then the format should be indicated here.

Example: ME_CONTROL_MessageType

4.2.4 Message Flows
The preference for routing messages is as follows:

1: Connector places an RFH2 on the message and WMQI uses this to route the message

2: The message is routed in WMQI according to a field in the message body

3: The message is routed in the connector by placing it on different queues for different message flows.

It is hoped that only options 1 and 2 will be used, in which case all the following conventions can be followed (if option 3 is used then the Application Flow level will be omitted).

Current understanding of the possible message flow architecture supports this as follows:

- For Phase 2.3 and OPPV: Messages from Chordiant (using MQConnector on JX) and other connectors will place an RFH2 header on the message and WMQI will use this name to route the message to the relevant message flow.

- For Phase 2.2: If any WMQI interfaces are commissioned then any messages from Chordiant will use MQPDM (on Forte), which cannot place an RFH2 header on the message. Instead WMQI will use the name of the first tag (which is the function call) to route the message to the relevant message flow (parsing this as very simple CWF will reduce parsing time). For other connectors an RFH2 header will be placed on the message and used for routing.

At the application level, the Message Flow will purely be used to route the message to the relevant message flow

	WMQI Object Classification
	Convention

	Message Flow:
Application Level
	MF1_SRC_Description

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	MF1
	A3
	MF1
	Object identifier. This will always be ‘MF1’.

	SRC
	A3
	ARB – Arbor, CHD – Chordiant, etc

See Section 2.2
	Source system (acronym)

	Description
	AN1-40
	
	Description - a concise, clear definition of the function of the message flow. If this is a TPOC or other Prototype this should be mentioned in the name. This description should be in Hungarian notation and must not include dashes, hyphens or any other separator characters.

Example: MF1_CHD_RouteChordiantMessage

At the module level, the Message Flow will relate to the interface its functionality supports

	WMQI Object Classification
	Convention

	Message Flow:
Module Level
	MF2_SRC_IFCNUMB_Description

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	MF2
	A3
	MF2
	Object identifier. This will always be ‘MF2’.

	SRC
	A3
	ARB – Arbor, CHD – Chordiant, etc

See Section 2.2
	Source system (acronym)

	IFC
	A3
	IFC
	Object Type, always IFC for Interface Detailed Description

	NUMB
	N4
	0001

0002
	Unique Interface ID - Unique identifier for the interface as identified in the Interface Catalogue, starting from 0001

	Description
	AN1-32
	
	Description - a concise, clear definition of the function of the message flow. This description should be in Hungarian notation and must not include dashes, hyphens or any other separator characters.

Example: MF2_CHD_IFC0002_GetCardInfo

At the unit level, the Message Flow will comprise functionality that can be used across different interfaces.

	WMQI Object Classification
	Convention

	Message Flow:
Unit Level
	MF3_Description

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	MF3
	A3
	MF3
	Object identifier. This will always be ‘MF3’.

	Description
	AN1-44
	
	Description - a concise, clear definition of the function of the message flow. This description should be in Hungarian notation and must not include dashes, hyphens or any other separator characters.

Example: MF3_GenericErrorHandling

4.2.5 Nodes

At this stage, this table contains naming conventions for selected IBM Primitive Nodes only. If other Primitive Nodes are used during construction, then a naming convention for them should be devised in this document first. Furthermore, Custom Nodes may be built within the scope of the project and conventions for these are also to be added as and when is necessary.

For details about the functionality of different Primitive Nodes and When to use them, please refer to the WMQI support documentation. A copy of the relevant information can be found on the shared drive, in Appendix A of the following document:

\\dun_office4\finc\share\data\skycrm\integration\standards\WMQI 2.1 Using The Control Center.pdf
4.2.5.1 Primitive Nodes

	WMQI Object Classification
	Convention

	MQInput Node
	IN_APP

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	IN
	A2
	IN
	Node Type Identifier. This is always ‘IN’.

	APP
	A3
	ARB – Arbor, CHD – Chordiant, etc

See Section 2.2
	Application the messages in the message set relate to.

Example: IN_ARB

	WMQI Object Classification
	Convention

	MQOutput Node
	OUT_APP_1

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	OUT
	A3
	OUT
	Node Type Identifier. This is always ‘OUT’.

	APP
	A3-4
	ARB – Arbor, CHD – Chordiant, etc

See Section 2.2
Or errors – FAIL, NHIT
	Application the messages in the message set relate to. This can also refer to WMQI error queues when an error has occurred during processing, the options being:

FAIL – WMQI Failure Queue

NHIT – WMQI No Hit Queue

	I
	N1
	1

2
	InstanceID is optional. It is used when more than one instance of a target output node of type DEST (i.e. more than output queue for the message). It is used to allow for more than one queue manager per machine. It is a one digit number with a default value of 1 which is incremented by 1 for each instance of the flow i.e. 2, 3, 4

Example: OUT_ARB_1, OUT_FAIL_2

	WMQI Object Classification
	Convention

	Trace Node
	TRC_IFCNUMB_Descritption (Note: This will also be the name of the file produced by the Trace Node)

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	TRC
	A3
	TRC
	Node Type Identifier. This is always ‘TRC’.

	IFC
	A3
	IFC
	Object Type, always IFC for Interface Detailed Description

	NUMB
	N4
	0001

0002
	Unique Interface ID - Unique identifier for the interface as identified in the Interface Catalogue, starting from 0001

	Description
	A1-36
	
	Description of the functionality performed by the Trace node. This description should be in Hungarian notation and must not include dashes, hyphens or any other separator characters.

Example: TRC_IFC0001_AfterWriteToDb

All other Primitive Nodes described in this document will follow the same format, but with a different object identifier as follows:

	WMQI Object Classification
	Convention

	Primitive Nodes of types specified in Possible Values.
	IDF_Description

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	IDF
	A3
	All possible values so far defined:

COM – Compute

DAB – Database

DBD – DataDelete

DBI – DataInsert

DBU - DataUpdate

FIL – Filter

LBL – Label

RCD - Reset Content Descriptor

RTL - Route To Label

TRW – Throw

TRY – TryCatch

	Node Type Identifier. This is always one of the 3-character unique identifier as specified. Examples are:

COM_DetermineMedianAge

DAB_UpdateMedianAge

DBD_DeleteOrder

DBI_InsertOrder

DBU_UpdateOrder
FIL_SelectType1Only

LBL_SendCHDErrrorMessage
RCD_ResetAgeValue
RTL_RouteByMessageType

TRW_InvalidAgeValue

TRY_WriteToDatabase

	Description
	A1-44
	
	Description of the functionality performed by the primitive node. This description should be in Hungarian notation and must not include dashes, hyphens or any other separator characters.

For subflow nodes see Unit level Message Flows.

Other Primitive Nodes not defined here:

- AggregateControl

- AggregateReply

- AggregateRequest

- Check

- Extract

- FlowOrder

- Input Terminal

- MQeInput

- MQeOutput

- MQReply
- (All NEON Nodes)

- Output Terminal

- Publication

- SCADAInput

- SCADAOutput

- Warehouse

4.2.5.2 Custom Nodes

None defined yet.

4.2.6 Imports/Exports

NOTE: Imports and Exports should saved in a separate dedicated directory and periodically backed up to the shared drive. This is because the default save area allocated by WMQI can be lost with the machine or overwritten by a new installation.

	WMQI Object Classification
	Convention

	Local WMQI Workspace
	WMQIWORKSPACE_inl.xml

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	WMQIWORKSPACE
	A13
	WMQIWORKSPACE
	Constant used to indicate the object type. Always ‘WMQIWORKSPACE’ for Workspace.

	inl
	A3
	jjr, cng
	Developer’s initials in lower case

	xml
	A3
	xml
	Constant used to indicate the file type. Always ‘xml’.

Example: WMQIWORKSPACE_jjr.xml

	WMQI Object Classification
	Convention

	Exported Message Flow
	MessageFlow_DATEOFEX_VRN.xml

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	MessageFlow
	A10
	e.g. MF1_CHD_GetCardInfo
	Name of the main flow you are exporting. The export should also include any sub-flows used by this main flow. Note: The export function creates a file consisting of all of the flows in the entire broker. Individual flows can be extracted when needed out of this file using the WMQIFilter versioning utility.

	DATEOFEX
	N8
	20020701
	The year, month and day the flow was exported. Format YYYYMMDD

	VRN
	N3
	001

002
	Mandatory Component version number, used to identify current and previous versions. Start with the digits 001 and increment by one e.g. 002, 003, 004,etc

	xml
	A3
	xml
	Constant used to indicate the file type. Always ‘xml’.

Example: MF1_CHD_GetCardInfo_20020701_001.xml

	WMQI Object Classification
	Convention

	Exported Message Sets
	MessageSet_DATEOFEX_VRN.mrp

	Components

	Convention
	Length
	Possible Values or Examples
	Description

	MessageSet
	A10
	e.g. MS_CHD_001
	Name of the message set you are exporting.

	DATEOFEX
	N8
	20020701
	The year, month and day the flow was exported. Format YYYYMMDD

	VRN
	N3
	001

002
	Mandatory Component version number, used to identify current and previous versions. Start with the digits 001 and increment by one e.g. 002, 003, 004,etc

	mrp
	A3
	mrp
	Constant used to indicate the file type. Always ‘mrp’.

Example: MS_CHD_001_20020701_001.mrp

	Version:
	<1.0>
	Page 5 of 28

	Date:
	19/08/2002 17:31
	
	

	Ref
	WebSphere MQ Naming Conventions v1.0.doc

[image: image1.emf]