	Sky CRM Programme

Middleware Integration Design Standards 
	[image: image2.emf]


[image: image1.emf]
	Sky CRM Programme

Middleware Integration Design Standards 
	[image: image1.emf]



Middleware Integration Design Standards
	Owner:
	Integration Team

	Project:
	BSkyB CRM Programme

	Creation Date:
	09 July 2002

	Last Updated:
	28 August 2002

	Version:
	1.0


Document Contributors

	FD Team
	Role
	Name
	Date
	Signature

	WMQI Build
	Integration Design Lead
	J Rogers
	09/07/2002
	


Sign-Off List
	Name
	Position
	Version
	Signature

	Chun Ng
	Integration Lead
	1.0
	

	Mike Fitch
	Integration Architect
	1.0
	

	Luke Puddy
	Integration Infrastructure Lead
	1.0
	

	
	
	
	


Distribution List

	Name
	Position

	Integration Team Members
	

	
	


Related Documentation

	Ref 
	Title
	Author
	Version

	1. 
	Middleware Layer Error Handling
	J Rogers
	1.0

	2. 
	WMQI Generic Message Flow Design
	J Rogers
	1.0


Intended Document Progression

	Version
	Title

	From 1.0
	Increments to reflect new requirements for phases after 2.1


Amendment History

	Version Number
	Name
	Date
	Description of changes or Other Comments

	1.0
	Justin Rogers
	27/08/02
	Release for Phase 2.1

	
	
	
	


CONTENTS

51
Introduction


51.1
Outstanding Issues


51.2
Document Purpose


51.3
Dependencies


51.4
Assumptions


62
INTERFACE TOPOLOGY


62.1
Routing Technique


62.1.1
Route by RFH2


62.1.2
Route by Message Content


62.1.3
Route by MQMD


62.1.4
Route by Adapter Logic


62.2
Solution Architecture


82.2.1
Adapters


82.2.2
Output Queue


82.2.3
Application Level Message Flows


82.2.4
Message Routing for Processing


82.2.5
Module Flows


82.2.6
Unit Flows


82.2.7
Data Routing


82.2.8
Adding Destination Data


92.2.9
Application Input Queues


92.2.10
Reply Messages


103
Generic Adapters


103.1
Outbound Adapters


103.1.1
Outbound Adapters – Fire and Forget


103.1.2
Outbound Adapters – Request/Reply


103.2
Inbound Adapters


113.3
MQ RFH2 Structure


123.4
MQMD Structure


144
Construction Guidelines


144.1
Environment


144.1.1
Creation and population of Execution Groups


144.2
WMQI Builds


144.2.1
Transactionality and Persistence


144.2.2
Other Build Considerations


155
WMQI Interface Build Folder


155.1
Program Control Checklist


155.2
Interface Function Design


155.3
Interface Technical Design


155.4
Interface Test Conditions


165.5
Test Plan


175.6
Test Data


185.7
Utility Scripts


185.8
Expected Results


185.9
Actual Results


196
Using PVCS


196.1
Logging on to PVCS


206.2
Guidelines for using PVCS with WMQI


206.2.1
Migrating Files to PVCS


206.2.2
Retrieving Flows from PVCS


216.2.3
Importing Flows to PVCS


216.2.4
Example import / export scenarios


227
APPENDIX


227.1
APPENDIX A: Example Message To Chordiant


227.2
APPENDIX B: Other Design Considerations


227.2.1
How to add an exception list and timestamp to a message placed on a queue


247.2.2
A selection of build tips for WMQI




Introduction

This document is intended to detail the design decisions taken with regard to the Integration Layer on the CRM Programme. Documentation of such decisions will give a common understanding throughout the team and the programme that can be used for reference during design, problem solving and construction. It will therefore feed into Functional Design and Technical Design documents for Adapters, WebSphere MQ and WebSphere MQ Integrator.

This document will be used by the development teams of all technologies involved in order to construct the interface, from Application and Adapter to Middleware teams.

1.1 Outstanding Issues

	Reference
	Issue

	1.
	


1.2 Document Purpose

The target audience for this document is:

	Audience
	Rationale



	Integration Team Members
	For use in Middleware Interface and Infrastructure design


1.3 Dependencies

	Reference
	Dependency

	1.
	Functional Design is the key dependency for all parties. Functional Design should be agreed and frozen before any development begins.


1.4 Assumptions

	Reference
	Assumption

	1.
	

	2.
	


INTERFACE TOPOLOGY

1.5 Routing Technique

The method used to route messages from one system to another will affect the overall topology design of the integration Layer. The preference for routing method is as follows:

1.5.1 Route by RFH2

The Adapter adds an MQ RFH2 Header to the beginning of each message.

1.5.2 Route by Message Content

The Adapter places each message directly on a single output queue per application. 

1.5.3 Route by MQMD

The Adapter places details of the message type into the MQMD Header at the beginning of each message. For this to be a valid method then the few variable fields available to developers for persisting data must not be used by the source application Adapter or by the receiving application Adapter. Since this creates uncertainty and dependency on more than one system as well as the fact that if the off-the-shelf Adapter cannot use an RFH2 then it is unlikely that it will be able to handle the MQMD satisfactorily. For this reason it is envisaged that this will not be a viable option very often.

1.5.4 Route by Adapter Logic

The Adapter places each message on a different queue according to the message type. WMQI then has one message flow per queue to deal with each message separately.

1.6 Solution Architecture

This section assumes that the routing technique used is via RFH2 Header, MQMD or by Message Type details in the message body. If alternative methods are used such as multiple queues per Adapter then changes will be required.

A graphical representation of the complete interface architecture follows, outlining the high-level environment, processes and flow.

[image: image2.emf][image: image3.bmp][image: image4.wmf]













1.6.1 Adapters

There is one and only one Adapter per application interfacing with WMQ

1.6.2 Output Queue

There is one and only one WMQ Output Queue per Adapter interfacing with WMQ (This may change if option 4 is chosen in section 4)

1.6.3 Application Level Message Flows

There is one and only one governing Message Flow per Application. Therefore each is called an Application Flow. The Generic standard for Application flow functional design is specified in the WMQI Generic Message Flow Design document.

1.6.4 Message Routing for Processing

Messages will be routed according to the preference stated in section 2.1 (i.e. by using RFH2 if possible)

1.6.5 Module Flows

Each Interface-specific logic in this direction sits in a Message Flow at the next tier down.

1.6.6 Unit Flows

Each re-usable logic block in this direction sits in a Message Flow at the bottom tier. Unit flow functional designs are specified in the WMQI Generic Message Flow Design document.

1.6.7 Data Routing

Different messages may need to be generated for different systems. If so routing will need to be made by data content.

1.6.8 Adding Destination Data

Queues will be named explicitly when specifying the destination. The messages will therefore be placed directly on those queues from within the Module Flow. If a reply is required then the Reply Message Name should be worked out from the Naming Conventions logic (i.e. replace last 3 letters of the name from ‘Rqt’ to ‘Rpy’) and placed in the RFH2.RpyType field.

1.6.9 Application Input Queues

Messages passing into an Application from WMQ will all be placed on one queue per application. This will then be polled by one Adapter. WMQI will place an RFH2 header on the message (if applicable to the application Adapter) which will contain the Message Type and the Reply Message Type if a reply is expected.
1.6.10 Reply Messages

If a reply message is required, the Adapter will hold Dynamic Reply-to-Queue and other persistent variables in memory and place them back in the reply message, using the reply message type from the RFH2 to populate the new message type field. The Adapter will then place that message on the one queue that is set up as the output queue for that specific application. The message will therefore start along a topology configured in the same way as for the request message but for a different source application.
It is worth noting that there may be many adapter instances for performance reasons, but they should be configured in the same way and write from the same single inbound queue and write to the same single outbound queue for any particular application.

2 Generic Adapters

Generic Adapter functionality and design is specified in a separate infrastructure adapter design document, but a few points about their architecture are made here in order to give a common understanding of how they will function.

There will be two types of core structure for the Generic Adapter – those adapters for messages Outbound from an application and those for messages Inbound to an application. In both cases RFH2 Headers will be used where possible to route and label messages.

2.1 Outbound Adapters

Outbound adapters will be configured to be one of two types – either for Fire and Forget Messages or for Request/Reply messages. Both will place messages on a single MQSeries queue for the application the adapter is set up for.

2.1.1 Outbound Adapters – Fire and Forget

The adapter will poll a server or database to pick up any newly created messages by the application. This architecture is used to create a transaction boundary between the application and MQSeries. It will then place these onto MQSeries populating the RFH2 Header with the Message Name and the MQMD.MsgType with Message Type of DataGram (to indicate Fire&Forget).

2.1.2 Outbound Adapters – Request/Reply

The adapter will be called directly by the Application API to create a synchronous communication. When the message is placed onto MQSeries the Adapter will indicate in the MQMD.MsgType field that it is a Request message and also create a dynamic queue upon which it will listen for a reply. This dynamic queue will be a Temporary Dynamic Queue for Read Interfaces and Permanent Dynamic Queues for Interfaces that perform Updates. The name of this dynamic queue will be placed in the MQMD ReplyToQueue field.

The MQMD.Report field will be set in the hub rather than the adapter so as to disassociate the sending adapter from the way a receiving adapter might work. In the hub it will be set to MQRO_PASS_MSG_ID.

2.2 Inbound Adapters

Inbound adapters will note the MQMD.MsgType in the message to know if it is fire and forget or if a reply is needed. It will also look at the MQMD.Report field to note where the MQMD.MsgID should be persisted. In each case the Adapter will use the RFH2.usr.Function value to call the application API. If it is request/reply then the Adapter will hold values of certain fields in memory to persist the data into the reply message when the application has returned some data as follows:

	Reply Message Field
	Request Message Field

	RFH2.mcd.Msd
	RFH2.mcd.Msd

	RFH2.mcd.Set
	RFH2.mcd.Set

	RFH2.mcd.Type
	RFH2.usr.RpyType

	RFH2.mcd.Fmt
	RFH2.mcd.Fmt

	MQMD.ReplyToQueue
	MQMD.ReplyToQueue

	MQMD.CorrelId
	MQMD.MsgId

	MQMD.ApplIdentityData
	MQMD.ApplIdentityData

	MQMD.ApplOriginData
	MQMD.ApplOriginData


The adapter will place reply messages onto a single, constant MQSeries queue that will be set differently for each application according to Adapter configuration.

2.3 MQ RFH2 Structure

The following table shows the structure of the RFH2 Message Header. The repeating NameValue segment contains information particularly useful to WMQI developers.

	Field
	Format
	Description
	Values

	StrucId
	MQCHAR4
	Structure identifier
	The value must be:

MQRFH_STRUC_ID

	Version
	MQLONG
	Structure version number
	The value must be:

MQRFH_VERSION_2

	StrucLength
	MQLONG
	Total length of MQRFH2 in bytes including NameValueData (but not any user data that might follow)
	Must be set to a multiple of four;. The initial value of this field is MQRFH_STRUC_LENGTH_FIXED_2.

	Encoding
	MQLONG
	Numeric encoding of data that follows NameValueData
	The initial value of this field is MQENC_NATIVE

	CodedCharSetId
	MQLONG
	Character set identifier of data that follows NameValueData
	The initial value of this field is MQCCSI_INHERIT (Inherit character-set identifier of current structure)

	Format
	MQCHAR8
	Format name of data that follows NameValueData
	The name should be padded with blanks to the length of the field. Do not specify a name with leading or embedded blanks. The initial value of this field is MQFMT_NONE.

	Flags
	MQLONG
	Flags
	The following value must be specified: MQRFH_NONE

	NameValueCCSID
	MQLONG
	Character set identifier of NameValueData
	Must have one of the following values:

CCSID  Description

1200     UCS-2 open-ended

13488   UCS-2 2.0 subset

17584   UCS-2 2.1 subset (inc. the euro symbol)

1208     UTF-8

The initial value of this field is 1208.

	Start Repeating Segment
	0-4
	
	

	NameValueLength
	MQLONG
	Length of NameValue Segment
	NameValueLength is the length in bytes of NameValueLength +NameValueData and rounded up to be a multiple of four.

	NameValueData
	MQCHARn
	Name/value data.
	Variable-length character string containing data encoded using an XML-like syntax. The string consists of a single “folder” that contains zero or more properties.

<folder>property1 property2 ...</folder>

Characters following the folder end tag, pad spaces up to the length defined by NameValueLength. Within the folder, each property is composed of a name and a value, and optionally a data type:

<name>value</name>

<name dt='datatype'>value</name>

	End Repeating Segment
	
	
	


The following variables should be set in the NameValue segment:

	Folder
	Property
	Variable Description
	Values
	Populated by

	mcd
	Msd
	Message Domain
	mrm, xml, neon, neonmsg, none
	Adapter(per Application)

	
	Set
	Message Set
	<MessageSet>
	Adapter(per Application)

	
	Type
	Message Name
	<MessageName> (if ‘UNKNOWN’ is specified then message type will be determined in WMQI)
	Adapter ( per Function Call)

	
	Fmt
	Message Format
	xml, pdf <cwf identifier>
	Adapter(per Application)

	psc
	
	[N/a]
	
	N/a

	pscr
	
	[N/a]
	
	N/a

	usr
	RpyType
	Reply Message Name (if applicable)
	<ReplyMessageName>
	Adapter ( per Function Call)

	
	Function
	Function Name
	
	Adapter ( per Function Call)

	
	ErrorLocation
	Application where error occurred.
	Use the codes as defined in the naming conventions, e.g. WMQ, MQS, CHD, ARB, etc.
	WMQI (only after error)

	
	ErrorProcess
	Action being performed within the application when an error occurred.
	For WMQI: <MessageFlow>.<Node>
	WMQI / Adapter (only after error)

	
	ErrorCode
	Application specific Error Code
	
	WMQI/Adapter  (only after error)

	
	ErrorMessage
	Error Message
	
	WMQI/Adapter  (only after error)

	
	ErrorDateTime
	Timestamp when error occurred
	Format: YYYYMMDD24MISS
	WMQI/Adapter  (only after error)

	
	ErrorLogId
	MQSeries Message ID
	
	WMQI (only after error)


2.4 MQMD Structure

The following table shows the structure of the MQMD Message Descriptor Header. The repeating NameValue segment contains information particularly useful to WMQI developers.

	Field
	Format
	Description
	Values

	Format
	CHARACTER
	
	MQFMT_RF_HEADER_2

	Version
	INTEGER
	
	

	Report
	INTEGER
	Used to indicate how Reply Message types will be used
	MQRO_PASS_MSG_ID

BLANK

	MsgType
	INTEGER
	Style of interface
	MQMT_REQUEST

MQMT_REPLY

MQMT_DATAGRAM

MQMT_REPORT

	Expiry
	INTEGER/TIMESTAMP
	
	

	Feedback
	INTEGER
	
	

	Encoding
	INTEGER
	
	

	CodedCharSetId
	INTEGER
	
	

	Priority
	INTEGER
	
	

	Persistence
	INTEGER
	
	

	MsgId
	BLOB
	
	Set to MQMI_NONE if the queue manager is to generate a unique

Value, or set as a unique value directly.

	CorrelId
	BLOB
	
	

	BackoutCount
	INTEGER
	
	

	ReplyToQ
	CHARACTER
	
	

	ReplyToQMgr
	CHARACTER
	
	

	UserIdentifier
	CHARACTER
	
	

	AccountingToken
	BLOB
	
	

	ApplIdentityData
	CHARACTER (32)
	Original Function Call in Source Application
	Set in WMQI for Chordiant Messages only.

	PutApplType
	INTEGER
	
	

	PutApplName
	CHARACTER
	
	

	PutDate
	TIMESTAMP/CHARACTER
	
	

	PutTime
	TIMESTAMP/CHARACTER
	
	

	ApplOriginData
	CHARACTER (4)
	Interface Originating Application
	Set in WMQI to Naming Conventions code.

	GroupId
	BLOB
	
	

	MsgSeqNumber
	INTEGER
	
	

	Offset
	INTEGER
	
	

	MsgFlags
	INTEGER
	
	

	OriginalLength
	INTEGER
	
	


3 Construction Guidelines

3.1 Environment

3.1.1 Creation and population of Execution Groups

Each developer will have ownership of an execution group for running their flows

NOTE - There is only one broker on the server, which will need to be used by all testers.  However, each developer will have their own Execution Group within the Broker that will allow them to carry out individual development and testing without impacting any other development.

3.2 WMQI Builds

3.2.1 Transactionality and Persistence

As a rule, all messages that represent an update will be handled as a transaction.  In the Compute, MQInput, and MQOutput nodes transactionality will be set to automatic.  This practice allows the MQSeries message attributes to control the transactionality of the flow; i.e. if a message is read with an attribute of persistent, MQSI will supply the appropriate logging to guarantee the transactionality of the message.

It must be considered that considerable overhead is incurred by making the message transactional.  This is caused by the need to save all of the data necessary to enable a rollback should a failure or backout condition occur during the flow.

So, for non-update messages, some consideration must be given for defining a non-transactional message flow.  Especially in cases of very high volume inquiries, this can greatly reduce the overall system load.

3.2.2 Other Build Considerations

If an error occurs as part of WMQI processing then an exception list will automatically be created. However, in some cases the developer may want to throw their own exception or use the exception list to persist data about an error with the message when the message is rolled back through WMQI processing nodes, so that the details can be used for generic error handling. A description of how this is done is described in Appendix B.

Appendix B also outlines how to obtain a timestamp to place in a message along with a collection of other miscellaneous tips which may prove useful to an WMQI developer.

4 WMQI Interface Build Folder

For each Interface a build folder will be produced containing the following elements:

4.1 Program Control Checklist

Index and sign-off of program folder components

4.2 Interface Function Design

Print-out of the Functional Design of the interface

4.3 Interface Technical Design

Technical design of the interface to be developed before and during construction to capture details about how the interface was built, interface-specific technological problems overcome and build component code lists that follow the WebSphere Naming Conventions. It should also contain an overall graphic representation of how the flow is broken down into sub-flows.

Separate Technical Designs will be needed for each Interface to show the Module-level message flows (1 for fire and forget, 2 for request/reply). Application-level Message Flows and Unit-level Message Flows will be placed in a separate Technical Build Folder that is not interface-specific.

4.4 Interface Test Conditions

A test condition should explain what is meant to happen and under which circumstances.  They address the verification of a program’s operation in more detail.

Test Conditions should be based on logic paths of the program module being tested. The test conditions must exercise all logic paths of the test unit including exception and error handling rules.

Each condition must cross reference test data and expected results and they should be written and QA’d prior to coding.

Below gives a list of basic categories for message flow test conditions.  This list is not exhaustive but should provide a suitable framework for compiling a more detailed list.
· Input Conditions – all possible message types can be handled and that exceptional data is handled correctly

· Output Conditions – messages are displayed in the correct output format for valid messages and error messages

· Alphabetic Fields – test with maximum length fields, blank fields, mixed letters and numbers, special characters

· Numeric Fields – test with maximum numbers for nines, zeros or blanks, mixed letters and numbers.

· Date/Time Fields – test for valid and invalid time and date components, pre and post 2000, boundary values where a range is applicable

· Database Activity – test that any functionality required with a database operates correctly

· Program Logic Paths – test all normal and abnormal paths through the program, testing loop control, conditional logic, exception and error processing, conditions that require multiple logic paths

· Edit/Validation Logic – test all edit and validation logic and that the correct outcome occurs

· Error Handling Routines – all error handling is in place

· Node to Node Interfaces – all interaction with sub flows operate correctly

· Control and Security – all required control and security constraints operate as defined

· Special Condition Testing (e.g. year end testing)

· Restart processing
· Dependency validations (e.g. where validation of one field is dependent on the value of another)
Error Conditions

It is important to identify the types of error handling conditions that are required for capture and processing.  Types of errors that could occur include:

· Input data format errors

· Input data filter condition errors

· Transformation errors

· Database connection errors

· Database lookup errors

· Computation errors

· MQSI terminates it’s session

It is important to recognise that errors can occur, and should be captured, throughout the flow and not just at the end.
4.5 Test Plan

The main objectives of carrying out unit testing are to:

· Verify that each test unit successfully completes the functions outlined in the associated program specifications

· Ensure that the tested units operate when integrated as a component of the system (different Message Flows interact with each other and MQSeries correctly)

· Identify any errors found within the code as early as possible 

Testing should be done in manageable steps, with each step covering a limited number of conditions.  This is achieved by defining limited groupings of test conditions and devising test data and test steps for each of them.  All of these test conditions, data and steps are part of the Unit Test Plan.  This plan contains all the objectives and information needed to carry out unit testing of a flow.

The Test Plan must be sufficiently documented to allow another developer or team leader to conduct the test, step by step.  This is particularly important for QA purposes.

4.6 Test Data

This is the data required to test each condition.  There are a number of points to think about when developing test data.  These are listed below:

· Test Data should be cross referenced to the specific conditions to which it refers

· There should be sufficient test data to cover all scenarios (e.g. zero, one, many)

· Re-use test data – try to develop test data that can be re-used for system testing

· Keep a record of the data used in order to recreate an error in the future and for QA purposes

· Use data that makes verification easy.  Select numbers for easy calculations.

· Use many simple tests and not few complex tests

Test data for Data Manager testing will include:

· Database records, such as existing records to be searched/modified

· Input messages to be sent through the message flows

There are two ways to document Test Data:

· In the Test Plan, add the details of the Test Data to the relevant column, this is more appropriate for single user input items and actions.

· Create a separate Test Data table in a spreadsheet, this is appropriate for database records or lists of data.

4.7 Utility Scripts

Load scripts, test stubs or other scripts necessary to enable testing

4.8 Expected Results

For each test condition define the expected results, the expected results include:

· Output to be generated

· Status of interim data element values such as control values within the database

· Status of data elements such as data created, updated or deleted by the process

The expected results should be documented within the test plan (for simple results) or in a separate expected results document (for complex results).

4.9 Actual Results

Actual Results should be created for each test.  These can be recorded directly in the test plan or in a separate results document depending on their complexity.

5 Using PVCS

After you have unit tested and exported individual message flows(.xml) and message flows(.mrp) into files, these files will need to be checked into PVCS.

The directory structure in PVCS will look like this:

· WMQI Message Flows

· Application Flows

· Module Flows

· Interface Name

· Code Export

· Documentation

· Unit Test Files

· Unit Flows

· WMQI Message Sets

5.1 Logging on to PVCS

· From your laptop, map your P drive to \\gblvpvcs01\pvcs
· If you are asked to "connect as" type sssl\LANid  and your    LAN password.
· Go to P:\pvcstools\networkvminstall\vm\ws_setup and run setup.exe
· From the start menu run programs\pvcs version manager\pvcs version manager
· Right click on my project databases and open project database. browse to P:\CRM_PVCS_PDB and press OK.
· In the Login Dialogue type your LANid as your username. There is no password.
5.2 Guidelines for using PVCS with WMQI

5.2.1 Migrating Files to PVCS

Message Set Export Files
· Open a command line prompt, navigate to Integration\FunctionalStreams\Incrementx.x\Interface Name\Build\Latest Version\Export on the share drive. Type the following command at the prompt:

mqsiimpexpmsgset –e  –n Message repository data source  -u  userid  -p password  -s  Name of messageset –l Level of messageset  -f  Name of export file(named for messageset)

Message set is exported.

Message Flow Export Files

· Application Flow Exports

In the WMQI Control Centre right click on the message flow to be exported. Select ‘Export’ from the drop down list. In the ‘Specify a file to Export…’ dialog navigate to H:\Integration\FunctionalStreams\Incrementx.x\Interface Name\Build\Latest Version\Export and click on the ‘Select’ button.

Message flow(s) exported. A dialog will appear listing all exported resources. N.B. If the  message flow exported contains sub-flows these will also have be exported.

· Module Flow Exports

Each module flow should also be exported, even if it is also contained within application flows. 

· All files in folder Flows can now be added to the PVCS workspace.

Right click on appropriate directory in PVCS and select ‘Add workfiles’. Navigate to H:\Integration\FunctionalStreams\Incrementx.x\Interface Name\Build\Latest Version\Export and select files to be added.

5.2.2 Retrieving Flows from PVCS

· Ensure that import/export directory is empty (H:\Integration\FunctionalStreams\Incrementx.x\Interface Name\Build\Latest Version\Export).

· Check flows out of PVCS to import/export directory.

Right click on files required and select ‘check out’. Select correct revision number is selected and ensure working directory is correct, as above.

· In WMQI open an empty workspace.

· From ‘File’ on toolbar select ‘import’, click browse to select appropriate import file then click import. The component test version of the required flows will now be in your workspace.
5.2.3 Importing Flows to PVCS

· Once updated a new export should be taken of the applicable flows in WMQI. This should over-write the working copy on the shared drive ready for import to PVCS.

· In PVCS, navigate to the correct folder, right click on the appropriate file(s) and select ‘check-in’

· Select the replacement export files(s) and add comments for the revision as applicable, followed by ‘enter’

· The export files will be unlocked in PVCS and the new revision visible.

5.2.4 Example import / export scenarios

· If a module flow requires a change, but is contained within an application flow the application flow should be checked out of PVCS and imported to WMQI. This import will include the module flow required. When re-importing to PVCS the module flow should also be re-imported separately by checking out the PVCS version of the module flow and replacing it with the updated and exported version from WMQI. This will ensure that the latest version is always imported to WMQI
· In the case where multiple module or application flows contain a unit flow all flows affected should be exported / imported to WMQI and vice-versa when the change is completed. In this way the change made will not be over-written when re-imported to WMQI from PVCS.

6 APPENDIX

6.1 APPENDIX A: Example Message To Chordiant
<?xml version='1.0' encoding='UTF-8'?>

<EnableOPPVResponse xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

  <Success>true</Success>

  <Payload xmlns:ns0='http://www.themindelectric.com/collections/' xsi:type='ns0:vector'>

    <item xmlns:ns0='com.chordiant.mq.entities/' xsi:type='ns0:EventPurchaseResponse'>

      <ViewingPrice>350</ViewingPrice>

      <BlackedOutFlag>1</BlackedOutFlag>

      <CaProductID>94556888</CaProductID>

      <Messages xmlns:ns0='http://www.themindelectric.com/collections/' xsi:type='ns0:vector'>

        <item xmlns:ns0='com.chordiant.mq.entities/' xsi:type='ns0:EventResponseMessage'>

          <Code>1234</Code>

          <Message>A Message</Message>

          <PinRequiredFlag>TRUE</PinRequiredFlag>

        </item>

      </Messages>

    </item>

  </Payload>

</EnableOPPVResponse>
6.2 APPENDIX B: Other Design Considerations
6.2.1 How to add an exception list and timestamp to a message placed on a queue

When problems occurs i.e. a database update fails because a column doesn’t exist or a compute node doesn’t complete successfully because the input data doesn’t have a specific field, it would be useful to have some information regarding the failure attached to the fail message. This can be done through the use of an exception list. 

If an input message contained some kind of error that was identified in a compute node, the message would be sent back to the MQInput node and moved to a BackOut queue, as specified in the Input queues properties (if a backout queue is not defined the message is sent to the system DLQ). In this instance error information could not be attached to the failed message. However, if TryCatch nodes are placed before all Compute/Database nodes any failures, which are sent back by these nodes can be caught. Messages are propagated from the TryCatch node to the Compute/Database nodes via the Try terminal, when invalid messages are propagated back from the Compute/Database nodes, the messages are redirected to the TryCatch node’s Catch terminal and propagated forwards to the connecting node. The connecting node needs to be a Compute Node to allow the exception list to be populated. Exception lists are created in the node where the error occurs. When the message is propagated to any other Compute/Database node, the exception list is re-written and since an error hasn’t occurred in this node the list is blank. This is why the Exceptionlist needs to be populated in the very last compute node before the message (with the error information attached) is propagated to a MQOutput FailureQ node. A tree structure diagram and code example of populating an Exception List is shown on pages 117-8 of the MQSI ESQL Reference Manual. The error information for the deepest error (i.e. the innermost child within the root) is required for the exception list, therefore the code needs to loop through all the children of the root to get to the final child and the most detailed information about the error.

-- Declare values from exception list 

DECLARE Path CHARACTER;

DECLARE Error INTEGER;      
-- The error reference number 

DECLARE Line CHARACTER;
-- The line number where the error occured

DECLARE Text CHARACTER;
-- The description of the error

-- Start at first child of list

SET Path = 'InputExceptionList.*[1]';

-- Loop through all children

WHILE EVAL( 'FIELDNAME(' || Path || ') IS NOT NULL' ) DO


--Check if error no is available


IF EVAL( 'FIELDNAME(' || Path || '.Number) IS NOT NULL' ) THEN



-- Get deepest error number



SET Error = EVAL( Path || '.Number' );


END IF;


--Check if label is available


IF EVAL( 'FIELDNAME(' || Path || '.Line) IS NOT NULL' ) THEN



-- Get deepest Line



SET Line = EVAL( Path || '.Line' );


END IF;


--Check if text is available


IF EVAL( 'FIELDNAME(' || Path || '.Text) IS NOT NULL' ) THEN


-- Get deepest text



SET Text = EVAL( Path || '.Text' );


END IF;


--Step to last child of current element (nested listed)


SET Path = Path || '.*[LAST]';

END WHILE;

SET "OutputRoot"."MRM"."ERROR_NUMBER" = Error;

SET "OutputRoot"."MRM"."ERROR_LINE" = Line;

SET "OutputRoot"."MRM"."ERROR_TEXT" = Text;

A new message set is created in MQSI, which is added as an output message tab within the Compute node so that the values can be populated with those extracted from the exception list. With the ‘Copy entire message’ box checked in the compute node, the output from the compute node will contain the original message plus the exception list information.

It is also useful to populate the output message with the date and time of the error. This can be done through the use of the SQL commands CURRENT_TIME,CURRENT_DATE or CURRENT_TIMESTAMP. Unfortunately, elements declared in a message set do not seem to be able to contain a timestamp value, irrespective of the size of the element, because an overflow error always seems to occur. Therefore values (e.g. Month, Day, Hour and Time) are extracted from the SQL time and date commands and inputted into separate elements which are then outputted along with the original message and the exception list values.

SET "OutputRoot"."MRM"."ERROR_D" = EXTRACT(MONTH FROM CURRENT_DATE);

SET "OutputRoot"."MRM"."ERROR_D1" = EXTRACT(DAY FROM CURRENT_DATE);

SET "OutputRoot"."MRM"."ERROR_T" = EXTRACT(HOUR FROM CURRENT_TIME);

SET "OutputRoot"."MRM"."ERROR_T1" = EXTRACT(MINUTE FROM CURRENT_TIME);

The message set containing the exception list elements can have further string elements added to contain text to describe each timestamp value to avoid confusion:-

SET "OutputRoot"."MRM"."ERROR_D_TEXT" = ‘MONTH’;

SET "OutputRoot"."MRM"."ERROR_D1_TEXT " = ‘DAY’;

SET "OutputRoot"."MRM"."ERROR_T_TEXT " = ‘HOUR’;

SET "OutputRoot"."MRM"."ERROR_T1_TEXT " = ‘MINUTE’;

6.2.2 A selection of build tips for WMQI

	Question
	Answer

	How can you map non-existent optional fields from an incoming message into an outgoing message when you cannot test for NULL values – ie the = operator does not work on NULL values.  An

IF (sString = NULL) 

test will cause the reformat to fail and the message will go to the failure/dead letter queue.
	Set a string variable to the input field value, test the Length.  If NULL then UNKNOWN is returned.  Can assign the output field based on this:

  SET sString = “InputBody”.”OptionalElem”;

  IF LENGTH(sString) > 0 THEN

      SET “OutputRoot”.”MandElem”=sString;

  ELSE

      SET “OutputRoot”.”MandElem”=’Default’;

  END IF;

	Why doesn’t my comparison operator work?
	MQSI implicitly CASTs strings to something sensible to process comparisons.  If the CAST is to a Decimal and the compare is against an INTEGER the comparison may not return what you expect.  An IF statement based the following comparison would fail:

    SET sPrice = ’53.25’;    --Casts to Dec

    (sPrice < 100)    --Returns UNKNOWN

	How do I make a quick backup of a DB2 database in Win?
	Open a DB2 command window by entering ‘DB2CMD’ at the DOS command prompt. Use the command “DB2MOVE ‘dbname’ EXPORT” where dbname is the ODBC database name. Restore by using “DB2MOVE ‘dbname’ IMPORT”

	TIP: change SYSTEM.DEF.QUEUE 

To make sure new queues are created with the required standard and any exceptions only need to be done manually.
	

	How do I put a 30 char value into a 20 char field? 
	Use SUBSTRING( “Field name” FROM 1 FOR 20)

	How do I assign a value from a database query to a single field? It keeps giving me “can’t put non-list into list” or “can’t put list into non-list” error?
	A db query might return several values, even if it only returns one value MQSI still fails because it thinks it might need to try and put several values into one field. To eliminate this problem you need to use the ‘THE’ word and use an index ‘[ ]’ behind the table assignment e.g. 

SET Output.Value = THE(SELECT T.KTOPL FROM Database.A1ACTIVE[ ] AS T WHERE T.CODE_TYPE = 'IO').

	How do I see if certain values are present in a database? 
	Use the SELECT COUNT(*) FROM <TABLE> WHERE <COLUMN> = VALUE statement, and see if the count value is > 0.

	
	


4



3













8



2



7



Queue per app



10



9



6



5



Message Flow Topology Outbound from Each Application, regardless of message type



Many Dynamic Queues per app



Dynamic queues



WMQI Application Flow



Adapter per App



Receiving App



Module Flow



Place on relevant output queue(s) by name (one or more of the following:)



Add destin-ation Queue



Route by data



Unit Flow



Queue per app



Adapter per App



Source App



Route by FC



Module Flow



Non-dynamic queues



Receiving App



Adapter per App



1



Module Flow



Receiving App



Adapter per App



Queue per app

























































	Version:
	0.5
	Page 1 of 1

	Date:
	08/10/2002 16:34

	Ref
	Middleware Integration Design Standards v1.0.doc


PAGE  
	Version:
	1.0
	Page 1 of 25

	Date:
	08/10/2002 16:34

	Ref
	Middleware Integration Design Standards v1.0.doc



