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1 Introduction

This document will detail the functional design for the Generic Message Flows that will be used in the WMQI build on the BSkyB Programme.

There are three types of Message Flow employed in the WMQI build architecture. Module Flows are interface-specific and hold interface-specific processing logic. They are each contained within an Application Flow, each of which is specific to the application that generated the message. Within either Module or Application Flows, Unit Flows can be used to build re-usable processing units. Therefore, both Application and Unit flows are not specific to individual interfaces and it is these two types of Message Flow that are described in this document.

Functional Design of interface-specific logic is covered by Interface Functional Design Documents.

A more detailed description of the different Message Flow types and how they relate to each other is described in the Middleware Integration Design Standards Document. Error handling approaches used on the project are also detailed more closely in the Middleware Integration Error Handling Document.

1.1 Outstanding Issues

	Reference
	Issue

	1.
	None

	2.
	


1.2 Document Purpose

The target audience for this document is:

	Audience
	Rationale



	Integration Broker Construction team
	To understand how to build Application and Unit Message Flows


1.3 Dependencies

	Reference
	Dependency

	1.
	

	
	


1.4 Assumptions

	Reference
	Assumption

	1.
	If there is an error within MQSeries or WMQI cannot retrieve a message from the input queue there is no way of processing that error other than detecting it in the ESM tool. This should be extremely rare or near impossible, so the fact that the sending application cannot be informed will hopefully not be an issue.

	2.
	If an error or time-out occurs during the reply part of a request-reply message and an application has been updated by the interface, then alignment of data within the systems involved in the interface will need to occur. It is assumed that the process of maintaining data integrity be will be defined and performed by the ESM Support Team and is therefore outside the scope of this document. 


1.5 Glossary

	Term
	Description

	Error
	Every unexpected or unwanted event in WMQI message processing. This erroneous behaviour will be subject to error handling.

	Unhealthy Messages
	Messages that cause an error to occur themselves. These messages will either be in an incorrect format or will hold incorrect data. Such messages must be altered before retrying to process them.

	Unsuccessful Messages
	Messages that contain correct data in the correct format but fail due to some other error within the interface. This may be caused by system connection problems or faulty applications. Such messages can be reprocessed as they are once the fault that caused the error has been corrected.


2 Application Level Message FlowS

Each Application that sends messages to WMQI will have its own Application Level Message Flow. This means that all messages generated by a particular Application will pass through the same Application Flow.

Each Application Flow will be largely the same but with different default values and perhaps extra processing logic to understand different messages or accommodate different types of error.

Therefore this document will specify the standard design for Application Flows, which will incorporate logic to perform the following:

· Retrieve MQSeries Message from a specific queue

· Add Application-specific Defaults

· Identify if an Error occurred in the sending application

· Process generic messages so that they are sent to the correct module flow.

· Route to a Module Flow for interface-specific processing if there was no error

· Route to Error Handling Unit Flow if there was an Error in the Application or during WMQI processing at any point.

Another principle that must be followed as part of all WMQI Message Flow design is:

· No message should ever be lost within the Message Flow unless EXPLICITLY filtered out by a filter-out node or a no-output trace node. This means that thought is needed to decide if any unattached terminals on nodes in the message flow need to be connected to a throw node.

2.1 Application Flow Generic design

A diagram of the generic Application Flow design is shown on the next page.  The diagram includes two optional parts to the flow: Option 1 checks for the RFH2.usr.ErrorCode field, and Option 2 handles reformatting of messages sent in a generic format.  Any combination of these options can be included in each Application Flow.

Any Errors generated within WMQI (whether generated within an Application or Module Flow) will be caught by the MQInput Node Catch terminal or the Application Flow Try Node (depending on whether control has passed through the Try Node or not) and passed to the Generic Error Handling Unit flow. This means that no Try/Catch Nodes should be used to provide independent Error Handling within the Module Flows.

2.1.1 MQIn Node

Retrieves message from MQSeries queue.

This has a Catch node, which will catch all errors that occur before the later Try/Catch node.

RFH2.mcd field values should NOT be defaulted here as whenever possible these should be set in the Adapter for the sending system.

The Backout Threshold should be set to 0 for the inbound Queue.
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2.1.2 Format Unknown Error Node

If control passes down to this node then an error has occurred in WMQI in either the Input Node or the Set Labels Origin node and an Exception List will have been automatically created. However, this must be added to so that the Message can be used generically for error handling. This is done by the following logic:

- 
Exception List is copied from input to output message tree

- 
If .MQRFH2.usr.ApplIdentityData is BLANK, then set it to the Function Call in the Sending Application (this is used only where a reply or error message needs to know the function to address in the initial sending system, i.e. if the Sending Application does not initiate a Request Message then this is not required.)

- 
If MQRFH2.usr.ApplOriginData is BLANK then set it to Sending Application (see naming conventions for 3-letter Acronyms)

- If MQMD.MsgType = “MQMT_REQUEST” Then set MQMD.Report to 128 (value of MQRO_PASS_MSG_ID). This is optional according to whether this application flow actually deals with request/reply style interfaces or not. This value needs to be set here in case the Error Handling module needs to send a return error message back to the source application, in which case it may need to perform actions on the MQMD which the target connector would otherwise have done.

N.B.: It is highly unlikely that this node will ever be used during runtime, and if it does then it is possible that it will fail for the same reasons that an error was created in the first place. This will result in the message being backed out but is so unlikely and requires such an extreme condition that this result is not inappropriate.

2.1.3 Set Labels and Origin Node

IF MQRFH2.usr.ApplOriginData is BLANK then set it to Sending Application (see naming conventions for 3-letter Acronyms) N.B. Set ONLY if blank (i.e. this is not a reply message)

This node may be called upon to set further routing information in two different ways, dependant upon the message type being passed:

If the message type belongs to a group of messages that are to be routed through one generic module flow then:

SET OutputLocalEnvironment.Destination.RouterList.DestinationData.labelname = <generic labelname constant value>

If the message type is to be routed to an interface specific module flow:

IF  MQRFH2.usr.ApplIdentityData is BLANK, then set it to Function Call in Sending Application (This is used only where a reply or error message needs to know the function to address in the initial sending system.)

The following logic is also needed (optional according to whether this application flow actually deals with request/reply style interfaces or not):

IF MQMD.MsgType = “MQMT_REQUEST” THEN



SET MQMD.Report to 128 (value of MQRO_PASS_MSG_ID)

Set the OutputEnvironment.Destination.RouterList.DestinationData.labelname to route to according to RFH2.mcd.Type.

In exceptional cases where the Adapter for the sending system does not set values in the RFH2.mcd but does send blank tags for these fields, then some extra logic will be needed here to reset those blank fields.

2.1.4 Try/Catch Node

Used to catch an error if it occurs after the setting of Sending Application details in the MQMD.

This will trap exceptions raised both in the module flows and in the remainder of the application flow and route the messages to the Generic Error Handling Unit Flow.

2.1.5 Check Error Node (Option 1)

Identifies if the message is an error message being returned to WMQI or if it is a successful message. To do this the node must look at the RFH2 header to see if the RFH2.<usr>.ErrorCode field has been set. If a system error occurred then it’s error code will be in this field, but if an application error occurred then these details will be placed in the field (overwriting system error details).  Any value other than ‘00000000’ in this field is considered an error.

For values other than ‘00000000’ the node will route messages to the Generic Error Handling Unit Flow via the true terminal.

For ‘00000000’ the node will route messages on for further processing/routing to the module flow via the false terminal.

The unknown terminal of this node is connected to a THROW node that will generate an exception when the ErrorCode is missing.  This will roll the message back to the Try node which will then send the message to the Generic Error Handling.

2.1.6 Throw Error 2230 (Option 1)

Whenever a ‘Check Error’ filter node is used in the Application Flow we need to throw an error in the case that the filter node cannot read the value to filter on.  In such circumstances the message is routed to the filter node’s “Unknown” terminal and so in order not to lose the message a throw node must be attached to this node.

The node will throw an error with an Error Code of 2230 and an Error Message of “Error detected whilst processing message in node: <personalised message>”, where the developer specifies the <personalised message> to give more details according to the situation in which filter node is acting.

For an unknown filter from the “Check Error” Node (i.e. The field RFH2.usr.ErrorCode is missing), the <personalised message> is “MQRFH2.usr.ErrorCode field is missing”

2.1.7 Set Msg Type in RFH2 Node (Option 2)

This is only needed for applications where generic message types can be sent.

The node maps the correct unique message name into the RFH2.mcd.Type field using data from the message body. This may involve parsing the message if there are not enough details in the MQMD.

2.1.8 Re-Fmt Msg Tree Node (Option 2)

A reset content descriptor node is required to re-organise the message tree after the forcible change to the RFH2 message type details in the Set Msg Type in RFH2 Node. This cannot be done as part of the previous compute node.

If the Set Msg Type in RFH2 Node is included then this node will also always be included.

2.1.9 Route To Label Node

Send control to the Module flow for that message type using DestinationList.labelname.

2.1.10 Module Flow

Message Flow containing interface-specific processing and placing the final message on a queue.

NOTE: Another important thing to remember is that if a database is accessed directly from WMQI then no error code will be returned in the event that no rows are returned. This means that the WMQI developer will have to manually code checks on the data returned to ensure that the data returned is that required, in the correct format and the correct quantity and that if this is not the case then the appropriate errors are raised.

2.1.11 Generic Error Handling Node

Unit level Message Flow to handle errors generically. This is described in the next chapter.

2.1.12 Error Handling Out Node

Place a message on a queue according to the value in the destination list of the message. The Transactionality of this node is set to “NO” so that no roll-back processing occurs if a further error subsequently happens.

This will be used by to output both messages to the failure queue and replies to the originating application in the case of an error during a request reply conversation.  The destination for the Queue is set in the Generic Error Handling Unit Flow

3 Compensating Messages Application Flow

When an application sends a request message that updates the receiving system (Request/Reply Update type interface), there is a possibility that the sending application may terminate the processing thread that is listening for the reply, before the reply is received.  This can happen for a number of reasons: the thread may timeout due to network errors, the receiving application may be off-line, or the sending application may unexpectedly terminate.  If any of these scenarios occur the two applications will become out of sync because the receiving application will have performed the required update but the sending application will not know that these changes have been made.

To resolve this discrepancy between the two applications a message will need to be sent to the receiving application to roll back any changes that have been made as a result of the original request message.  This is the compensating message.

The soloution involves four elements: 

· the requesting application

· a script that monitors the ReplyToQueue and resubmits orphaned messages to WMQI*

· an Application Flow in WMQI that routes compensating messages to the appropriate module flow for transformation.

· the receiving application.

*  Orphaned messages are reply messages that remain on the ReplyToQueue as a result of a time out from the listening thread, i.e. they will not get processed by Sending application.

A purpose built script that uses the Error Handling Utility** to manipulate messages will monitor the inbound ReplyToQ, CHD01.0001.WMQ01, and capture any messages that have exceeded the specified timeout interval*** (i.e. orphaned messages).  It will put these reply messages to the input queue of the Compensating Transaction Application Flow, WMQ01.0000.EHU01, where they will then be routed accordingly to the correct module flow and reformatted into a compensating request message, in order to roll back processing in the receiving application.  This compensating message will be structurally the same as a normal request message but the Message Type will be converted into a Datagram before being sent to the target system, this prevents the target system’s connector sending a reply to the compensating message as there is no one listening for it.  The message type will be set to Datagram in the module flow that processes the timed out message, e.g. MF2_CHD_IFC0477_MaintainInitialCardRequestRqt.

**  see DV_FD Infrastructure Exception Handling Utility.doc (latest version) for details

***  the timeout interval is defined as the length of time that Chordaint waits for a Reply

3.1 WMQI Compensating Application Flow Design

A diagram of the Compensating Transaction Application Flow design is shown below.  Any Errors generated within WMQI (either within the Application Flow or a Module Flow) will be caught in one of two places, i) the MQInput Node Catch terminal or ii) the Application Flow Try Node (depending on whether control has passed through the Try Node or not) and passed to the Generic Error Handling Unit flow. This means that no Try/Catch Nodes should be used to provide independent Error Handling within the Module Flows.

Messages passed to the Error Handling Flow will have a CompTransFlag field set in the usr folder which will allow the Error Handling Flow to identify that the message is from a compensating message and subsequently will not send a reply message containing the error details to the sending application.
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3.1.1 MQ_IN (MQInput Node)

This node reads messages from the WMQ01.0000.EHU01 Queue.

3.1.2 Set Routing Destination (Compute Node)

This node performs the following three functions:

· sets a compensating flag in the usr folder (SET CompTransFlag = ‘Y’)

· changes the mcd.Type value from ‘[message name]Response’ to ‘[message name]Request’*

· routes the request message to the appropriate module flow for transformation based on the labelname in the local environment destination list (value mapped from mcd.Type field)

* This assumes that all messages submitted to this queue will have a mcd.Type in the specified format.  Messages that do not have the mcd.Type field set in this format will result in an exception being raised and the message being routed to the Generic Error Handling flow via the catch terminal of the input node.

3.1.3 Format Unknown Error (Compute Node)

If control passes down to this node then an error has occurred in WMQI in either the Input Node or the Set Routing Destination node and an Exception List will have been automatically created.

This node adds to this by setting a compensating flag in the usr folder (SET CompTransFlag = ‘Y’).  This prevents the Generic Error Handling Utility from sending a reply to the sending application when an error is detected.

3.1.4 Try and Catch (TryCatch node).

This node will trap any errors in the module flow and route the message to the Generic Error Handling subflow.

3.1.5 Module Flows (SubFlow)

Message Flow containing interface-specific processing and placing the final message on a queue.

3.1.6 Generic Error Handling Node (SubFlow)

Unit level Message Flow to handle errors generically. This is described in the next chapter.

4 UNIT Level Message FlowS

Where a small block of processing logic can be re-used across different Module or Application Flows then a Unit Level Message Flow should be used to allow standardisation of the logic and re-use.

This section covers those Unit Flows that will be used within the BskyB programme.

4.1 Error Handling Unit Flow

The following section describes the Error Handling Unit Flow that will be built to deal with errors generically within WMQI. Each Application Flow will call it once if an error is identified there.

These errors can have occurred either within WMQI, or outside WMQI (within external systems or Application Connectors) and error reply messages passed to WMQI. In the case of errors generated within WMQI module or application flows the error information will be held within the Exception List of the message. In the case of errors that occurred outside of WMQI the error information will be populated in the usr folder of the message by the application that detected the fault.

The details that are populated by external systems are:

	Property Name
	Property Description

	ErrorLocation
	Application where error occurred.

	ErrorProcess
	Action being performed within the application when an error occurred.

	ErrorCode
	Application specific Error Code

	ErrorMessage
	Error Message

	ErrorDateTime
	Timestamp when error occurred


The Error Handling Unit Flow contains the following logic:

· Write Error details as plain text to an Error Log File.

· Place the Original message on an Error Queue with the details of the error held in the <usr> folder.

· If this is a request/reply message and the initiating system can accept an error message then format and send such an error message with the appropriate information.

Two diagrams showing the Error Handling Unit Flow are shown on the next page, followed by a description of the functionality provided by each node. Both diagrams refer to the same Unit Flow but are split out for clarity. The Output node shown on the two diagrams is the same node, there is one input and one output node for the Unit Flow.

The first diagram covers the functionality required to write the Error to the textual error log and to write the message to the Failure Queue.

The second diagram covers the sending of any reply messages and handling errors within the Unit Flow itself.

Note, the Unit Flow does not include any MQ Output Nodes, all writing to queues is done in the Application flow using the destination lists populated by this flow.
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4.1.1 Input Node

Accepts control of a message from the Application Flow.

4.1.2 Set RFH2.usr, Dest Q, Msg Expiry Node, & Replay Flag

If the message has come from an external source then all the error information required by the Unit Flow will already be populated in the RFH2.usr folder. If the error originated in WMQI then the error information will be extracted from the message’s Exception List by this node.

If the error originates from WMQI (indicated by the ExceptionList.Catalog field being either ‘WMQIv210’ or ‘SQL’) use the message Exception List to populate the Error Properties in the <usr> folder of the RFH2 as follows, for details on the Exception List structure see 5.2:

	Property Name
	Property Description
	Format
	Source
	Exception List Level To Use

	ErrorLocation
	Application where error occurred.
	TEXT
	ExceptionList.Catalog

(either ‘WMQIv210’ or ‘SQL’)
	TOP

	ErrorProcess
	Action being performed within the application when an error occurred.
	TEXT
	ExceptionList.Label
	TOP

	ErrorCode
	Application specific Error Code
	TEXT
	ExceptionList.Number
	LOWEST

	ErrorMessage
	Error Message
	TEXT
	ExceptionList.Text
	ALL (concatenate, separated by “/”)

	ErrorDateTime
	Timestamp when error occurred
	YYYY-MM-DDTHH:MM:SSZ
	Current Date/Time
	N/a

	ReplayableMessage
	Indicates if this message should be replayed
	TEXT (TRUE or FALSE)
	Provided by source application
	N/a

	MaxReplayAttempts
	Indicates the number of times that the message should be replayed in the event of failure.
	TEXT (Integer value)
	Provided by source application
	N/a

	ReplayCount
	A counter associated to the number of replay attempts of a message
	TEXT
	Incremental Counter
	N/a

	ReplayQueue
	Queue to which messages for replay should be routed
	TEXT
	Provided by source application
	N/a


The two <usr> fields below should be populated for all errors regardless of where they originated.

	Property Name
	Property Description
	Format
	Source
	Exception List Level To Use

	ErrorLogId
	MQ Series Message ID
	TEXT
	MQMD.MsgId
	N/a

	ErrorSeverity
	Severity of the Error
	TEXT (1)
	Calculated in WMQI (see below)
	N/a


The Error Severity will conform to that as specified in the ‘Logging Standards for Sky CRM’ document. Errors with a severity of 0,1 or 2 can possibly be the reason why some errors are captured in Middleware, however the severity level will be registered elsewhere before WMQI processes the error message. Therefore the error severity in Middleware is used only to indicate whether a error message has been created which must be followed up (level 3, ERR) or is to be used only for statistical in informational purposes (level4, WARNING).

The value is worked out as follows:

IF  
MQMD.MsgType = MQMT_DATAGRAM OR 

MQMD.ReplyToQ = CHD01.0001.WMQ01 THEN

SET MQRFH2.usr.ErrorSeverity = 3

ELSE

SET MQRFH2.usr.ErrorSeverity = 4

END IF

The compute node will also determine whether the message propagated into the error handling routine is required to be replayed to the application where the message errored, or to be placed onto the WMQI error queue.  A Boolean flag ‘ReplayFlag’ will be set to either ‘true’ or ‘false’ based on conditional processing using data passed from the erroring application in the RFH2.usr folder.  
If the ReplayableMessage field is set to TRUE then the message will be replayed to the ReplayQueue up to MaxReplayAttempts times.  Only datagrams will be replayed.  If the logic indicates that the message should be replayed a boolean flag is set and propogated in the local environment with the message.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	






















Also set the Destination List Queue name according to the type of error.  

· Messages that have been redirected here from the Chordiant Bad Message Queue as part of the Replay Message Implementation, which are not being replayed should be sent to WMQ01.CHD0.FAILURE

· Severity 3 messages that are not being replayed should be sent to WMQ01.0000.FAILURE

· Severity 4 messages that are not being replayed should be sent to WMQ01.0001.FAILURE

Set the message expiry to –1 (unlimited) for all messages to ensure that no errors are lost.

The logic for the destination assignment is shown below.

Note, the actual variable that needs to be set for DestinationQ is OutputDestinationList.Destination.MQDestinationList.DestinationData[1].queueName 



IF bReplayFlag = FALSE THEN

IF Message is a DATAGRAM THEN



IF Error raised by application or connector THEN




SET Destination to Application Failure Queue 




(e.g. WMQ01.ARB0.FAILURE)


ELSE




SET Destination to Broker Failure Queue




(WMQ01.0000.FAILURE)



END IF

END IF

ELSE

IF MQRFH2.usr.ErrorSeverity = '4' THEN



SET DestinationQ = 'WMQ01.0001.FAILURE'


ELSE



SET DestinationQ = 'WMQ01.0000.FAILURE'


END IF

END IF

4.1.3 Filter ReplayReq

The filter node FIL_ReplayReq will route messages based upon the Boolean flag previously set.  If the bReplayFlag is ‘true’ then the message will be propagated to the true terminal for message replay, if bReplayFlag is ‘false’ the message will be propagated to the false terminal for error processing.  All messages evaluating to ‘unknown’ will be propagated through the error handling routine, and will be placed on the failure queue.

4.1.4 Throw Unknown Error

The throw node TRW_UnknownError will catch any messages that evaluate to ‘unknown’ within the previous filter node.  This ensures that no messages will be lost through the filter node.

4.1.5 Try and Catch Node

This node will catch any errors that occur within the Unit Flow during the two put to queue scenarios. If either the WMQ01.0000.FAILURE or Reply To Queue is unavailable then processing will be directed to the Write To Error Log 2 node, via the Reset Destination Label node, where an additional message will be written to the WMQIErrorMsgLog.log detailing this error.

4.1.6 Flow Order Control (x2) Nodes

These two flow control nodes ensure that the Unit Flow processes messages in strict order.  The two nodes ensure that the message is processed as follows:

First the error details are written to the WMQIErrorMsgLog.log.

Then the error message is written to the Failure Queue.

Finally, a response message is generated if required.

4.1.7 Format for Error Log Node

This node should prepare details of the error message to be written to a log file by creating a message structure that will conform to the ‘Logging Standards on Sky CRM’ document. A CWF message is constructed from the information held in the <usr> folder as follows:

	Field Name
	Min - Max Usage
	Format
	Source
	Possible Values or Comment

	Severity
	1-1
	A10
	MQRFH2.usr.Severity
	See 4.1.7.1

	Spacer 1
	1-1
	A1
	Default
	Literal space ‘ ‘

	ErrorCode
	1-1
	A10
	RFH2.usr.ErrorCode
	

	Spacer 2
	1-1
	A1
	Default
	Literal space ‘ ‘

	Date
	1-1
	A10
	
	YYYY-MM-DD format

See 4.1.7.2

	Spacer 3
	1-1
	A1
	Default
	Literal space ‘ ‘

	Time
	1-1
	A8
	
	HH:MM:SS format

See 4.1.7.2

	Spacer 4
	1-1
	A1
	Default
	Literal space ‘ ‘

	Message Name
	1-1
	Ax
	RFH2.mcd.Type
	Read to ‘End of Bitstream’.

	User Folder
	1-1
	Ax
	RFH2.usr
	All RFH2.usr folder contents including tags. Read to ‘End of Bitstream’. This value is of dynamic length based upon the error thrown.


The fields Spacer 1 to 4 are included so that when this message is converted into a bit stream in preparation to writing to file the individual fields are separated correctly.

Writing each record in this fashion will also mean that only normal characters are written to the log file and that each record is on its own line in the log file (separated from others by a newline character).

4.1.7.1 Severity

The Severity conforms to the Logging Standards for Sky CRM document. The level is set earlier in the unit flow, so here only a conversion to the severity description from the code is required as follows:

IF 
MQRFH2.usr.ErrorSeverity = 4 THEN

Set MessageBody.Severity = “WARNING   “

ELSE 

Set MessageBody.Severity = “ERR       “

END IF

4.1.7.2 DateTime

If the ErrorDateTime field in the MQRFH2.usr folder has not been populated a CurrentTimestamp needs to be defaulted.  This value is then used to populate the Date and Time fields for the WMQIErrorMessageLog message.

4.1.8 Stream Error Message Node

This node will bitstream the CWF message created in the previous node. This ensures that all padding will be implemented on all fields before they are sent to the Trace Node for output to a file. The result will be cast as a character and stored in the environment variable CWF before control is passed on to the Write to Error Log 1 node where it will be written to file.

4.1.9 Write to Error Log 1 Node

This node should be set to non-transactional so it is not rolled back, should an error occur later. This node should write the details of the error message to a log file, as prepared by the previous node and stored in the CWF environment variable.

File Name: 
/var/wmqi/log/WMQIErrorMsgLog.log

Note: The filename cannot contain a timestamp as recommended in the Logging Standards document, since WMQI cannot hold the dynamic value of the filename in memory and has no facility to update this filename periodically or each time the log file is written to. Therefore, timestamping will be a function of the archiving process carried out separately.

4.1.10 Output Node

After the error details are written to file, the 1st branch of the 2nd Flow Order Control node is completed. Control will then pass to the 2nd branch which will send the message to this Node. The message is propagated back to the application flow at this point with the Destination List populated with the WMQI Failure Queue. The message will be written to the Queue by an output node in the Application Flow.

4.1.11 Set Destination Label Node

After the message is propagated to the output node the processing of the 2nd Flow Control node will be complete and control will pass down the 2nd path of the first flow control node. This final path will handle sending any reply messages containing the error details that are required by the system that originated the request message that triggered the error.

This node is used to route the erroring message to the appropriate node for further processing. Only errors resulting from a Request/Reply message can generate a Reply containing the error details, and only a subset of the applications that make Requests require the reply to be sent.  If an application requires the reply then it will have a label and Format Reply node as shown at the top of the second diagram showing the Error Handling Unit Flow.

No further action is required if the message that triggered the error is one of the following:

· a Fire & Forget message 

· a Request message from the IVR system

· a compensating transaction message indicated by the presence of the usr.CompTransFlag field

In the case of no further processing being required the message will be routed to a Filter Out label that terminates the processing of the message 

Conditional logic is included to determine if a reply message needs to be sent back to the original application as follows:

IF
MQMD.MsgType = MQMT_DATAGRAM OR

MQRFH2.usr.CompTransFlag = ‘Y’

MQRFH2.usr.ApplOriginData = ‘IVR’ THEN

Set ‘Destination Label’ to ‘FilterOut’

ELSE

Set ‘Destination Label’ to  MQRFH2.usr.ApplOriginData

END IF

4.1.12 Try and Catch Node

This is used to catch any errors that occur as a result of the Route To Label Node not being able to send the message to a Label node. If this occurs the control is passed along the Catch path where the Route to Label will be set to the Routing Error label and the routing tried again.  This will eventually result in an extra line being written to the Error Log.

4.1.13 Reset Destination Label Node

If the Route To Label node does not recognise the label, or if an error occurs when trying to write to the failure queue or the error log, then this node will be called. It will reset DestinationList.labelname to “Routing Error” and then send the message back to the Route To Label Node.

4.1.14 Route To Label Node

Use the destination list label to route the message on to a label node within the same unit flow. There will be one Label for each application requiring a formatted error reply message to be returned. There will also be a Label for the Filter Out of messages when a reply message is not required by the originating system and one for the Message Routing Error case.

4.1.15 Send Message Replay

The compute node COM_SendMessageReplay will remove the RFH2.usr folder from the original message.  The usr.ReplayCount value should be incremented by 1.  The queue to which the message is replayed should be taken from the usr.ReplayQueue field.  The message will then be propagated to the originating application flow and put to the queue specified.

The RFH2.usr folder associated with the message propagated for replay will contain both the ReplayQueue and ReplayCount name/pair values.  It is expected that if the message were required to be replayed again, then the external application would persist these values also and return them with the message.

4.1.16 Label: Application to Reply To Node

Label nodes are included for each system that may initiate a Request/Reply conversation and that require an error message to be returned in case of an error. The Naming Conventions names for applications will be used, e.g. CHD, CIC. Each will be followed by a compute node that will reformat the message and route the reply back to the originating application.

For details of the applications that expect replies and the format of the reply see 5.1.

4.1.17 Format Reply Message & Set Destination Node

There will be one of these compute nodes for each application that requires an error reply. The node creates a reply message specific to the originating application containing details of the error. The destination queue for the message is set and the message passed back up to the application flow where it is written to the queue.

For details of the applications that expect replies and the format of the reply see 5.1.

4.1.18 Label: Filter Out Node

If the Application that initiated the conversation through WMQI does NOT require a reply error message then the message will be routed to this node. The End Processing node will stop processing of all messages that are directed to it by specifying a Trace Node with NO output. The message must be filtered out since message data is persistent in WMQI and will be rolled back to the Message Flow input queue if it is not explicitly dealt with.

4.1.19 Label: Routing Error Node

This node will write details of the Message Routing Error to a log file (the same one as described in the Write to Error Log 1). The Error Severity of this type of Error should always be set to level 3, which may override a previous setting. The message text written to the Error Log File should be a short message explaining the options that can result in the message reaching this point, namely:

1) No valid label was available within the MQRFH2.usr.ApplOriginData field to enable routing of the error message 

2) No valid function value was available within the MQRFH2.usr.ApplIdentityData field with which to create an error reply message 

3) Output queue WMQ01.0000.FAILURE or output queue for error reply message is unavailable

4) The error code passed was of invalid type.

This should then be followed by the entire RFH2 from the message.

The Error Log File used is the same as that written to earlier as part of the Error Handling Unit Flow, namely: /var/wmqi/log/WMQIErrorMsgLog.log

5 APPENDIX

5.1 APPENDIX A: Cross-Application Error Code Mappings

This section describes the mapping that will take place to produce the error replies for all applications that require error replies. For each application requiring a reply the structure of the reply message is given along with the mapping of information to populate the fields.

5.1.1 ARL

The ARL system requires that the error message is returned in a generic CWF format message (MZ_GENERIC_IN_ErrorRpy).  The mapping of the information from that held in the <usr> folder to the reply message is shown in the following table.

	Property Name
	Format
	Source

	ME_COMP_MSGBODY_ErrorNr
	
	

	ME_SIMP_MSGBODY_ErrorNr
	TEXT(4)
	<usr>.<ErrorCode>

	ME_COMP_MSGBODY_ErrorNr
	
	

	ME_COMP_MSGBODY_ErrorMsg
	
	

	ME_SIMP_MSGBODY_ErrorMsg
	TEXT(80)
	First 80 characters of <usr>.<ErrorMessage>

	ME_COMP_MSGBODY_ErrorMsg
	
	

	ME_SIMP_ErrorFiller
	TEXT(1916)
	None, should be all padding using spaces.


The Reply To Queue and Queue Manager details will also be copied form the MQMD folder into the Destination List for the message.

5.1.2 CIC

The CIC system requires that the error message is returned in an XML format message.  The mapping of the information from that held in the <usr> folder to the reply message is shown in the following table.

	Receiving System Field Name
	Min - Max Usage
	For-mat
	Mapped From Sending System Field
	Field Transform Rule or Comment

	<MessageName>
	1-1
	Tag
	<usr>.<AppIdentityData>
	See 5.1.2.1

	<Success>
	1-1
	Text
	
	Indicates that the original message was not processed correctly.

Default value: false

	<ErrorText>
	1-1
	Text
	<XML>
	The body of the message that triggered the error.

	</MessageName>
	1-1
	Tag
	<usr>.<AppIdentityData>
	See 5.1.2.1


5.1.2.1 MessageName

The value inserted in place of MessageName is derived from the original message.  This information is held in <usr>.<AppIdentityData> and will always end with the text “Request”, e.g. “RetrieveRecentTransRequest”. The MessageName tag should be replaced with the “Response” equivalent of the originating message by replacing the last seven characters with “Response”, e.g. “RetrieveRecentTransResponse”.

The Reply To Queue and Queue Manager details will also be copied form the MQMD folder into the Destination List for the message.

5.1.3 Chordiant

The Chordiant system requires that the error message is returned in an XML format message.  The mapping of the information from that held in the <usr> folder to the reply message is shown in the following table.

	Receiving System Field Name
	Min - Max Usage
	Format
	Mapped From Sending System Field
	Field Transform Rule or Comment

	<?xml?>
	1-1
	Header
	
	Version=”1.0” encoding=”UTF-8”

	<MessageName>
	1-1
	Tag
	<usr>.<AppIdentityData>
	Constant attribute value: xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’ xmlns:xsd=’http://www.w3.org/2001/XMLSchema’

See 5.1.3.3

	<Success>
	1-1
	Text
	
	Default value: false

	    <Payload>
	1-1
	Tag
	
	Constant attribute value: xmlns:ns0=”http://www.themindelectric.com/collections/” 

xsi:type=”ns0:vector”

	        <item>
	1-1
	Tag
	
	Constant attribute value: xmlns:ns0=”http://www.themindelectric.com/package/com.bskyb.bd.serviceHelpers.middleware/”

xsi:type=”ns0:BSBMiddlewareError”

	      <TxName>
	1-1
	Text
	<usr>.<AppIdentityData>
	

	      <TxDate>
	1-1
	Date
	<usr>.<ErrorDateTime>
	

	      <Message>
	1-1
	Text
	<usr>.<ErrorMessage>
	

	      <CatCode>
	1-1
	Text
	<usr>.<ErrorCode> and <usr>.<ErrorLocation>
	See 5.1.3.2

	<ApplicationErrorCode>
	1-1
	Text
	<usr>.<ErrorCode>
	TD17088

	      <ErroringSystem>
	1-1
	Text
	<usr>.<ErrorLocation>
	

	      <ErrorLogId>
	1-1
	Text
	<MQMD>.<MsgId>
	

	        </item>
	1-1
	Tag
	Closing Tag
	

	    </Payload>
	1-1
	Tag
	Closing Tag
	

	</MessageName>
	1-1
	Tag
	Closing Tag

<usr>.<AppIdentityData>
	See 5.1.3.3


The Reply To Queue and Queue Manager details will also be copied form the MQMD folder into the Destination List for the message. If the message type is MQMT_REQUEST, then the MQMD.CorrelId should be set to the MQMD.MsgId so that Chordiant can process the reply messages when using a static queue.

5.1.3.1 Generic Transform Rules 

Data will be sent to Chordiant in the generic format below:

	Data
	Comments

	Text (Strings)
	No padding occurs in xml.

	Date
	YYYY-MM-DDTHH:MM:SSZ


5.1.3.2 CatCode

The CatCode field is derived from the following table based on the values held in the <usr>.<ErrorLocation> and <usr>.<ErrorCode> fields.

	ErrorLocation
	ErrorCode
	CatCode

	Starts “WMQI”,
i.e. raised in WMQI
	2620
	2

	
	All other values
	4

	Starts “DMS”
	All values
	<usr>.<ErrorCode>

	Starts “DPS”
	All values
	2

	Starts “ARB”
	-1, -3, 89
	4

	
	All other values
	2

	Starts “FMS”
	Starts with ‘1’, or

300001, 300002, 300090, 300091, 300093, 300094, 300095, 300099, 300103, 300131
	2

	
	300054, 300059, 300062, 300092, 300096, 300097, 300098, 300125, 300128, 300129, 300130, 300133
	3

	
	300028, 300100
	1

	
	All other values starting with ‘3’ or ‘2’ not listed above
	4

	Starts “SCM”
	8, 27, 8014, 8066
	4

	
	6054, 6065, 6317, 6320
	5

	
	All other values
	2

	‘SQL’ or starts ”RDM”
	12150, 12152, 12153, 12225. 12230
	1

	
	All other values
	2

	Starts with ‘BAC’,
i.e. all Application Connectors
	All values 
	2


The meanings of each CatCode value are:

	CatCode
	Description

	0
	User Error

	1
	Recoverable System Error

	2
	Non-Recoverable System Error

	3
	Transaction Failure

	4
	Data Validation Error

	5
	Business Rule Violation

	6
	Resource Error

	7
	Access Violation


5.1.3.3 MessageName

The value inserted in place of MessageName is derived from the original message.  This information is held in <usr>.<AppIdentityData> and will always end with the text “Request”, e.g. “RetrieveRecentTransRequest”.  The MessageName tag should be replaced with the “Response” equivalent of the originating message by replacing the last seven characters with “Response”, e.g. “RetrieveRecentTransResponse”.

5.1.4 IDO

The IDO system requires that the error message is returned in a generic CWF format message (MZ_GENERIC_IN_IDOFMSErrorRpy).  The mapping of the information from that held in the <usr> folder to the reply message is shown in the following table.

	Property Name
	Format
	Source

	ME_GENERIC_FieldsRpy
	
	

	ME_GENERIC_Type
	TEXT(8), Left Justified padded with NUL
	Default value: 12345678

	ME_GENERIC_StatusClass
	TEXT(5), Left Justified padded with NUL
	<usr>.<ErrorLocation> and <usr>.<ErrorCode>

See 5.1.4.1

	ME_GENERIC_StatusCode
	TEXT(5), Left Justified padded with NUL
	<usr>.<ErrorLocation> and <usr>.<ErrorCode>

See 5.1.4.1

	ME_GENERIC_FieldsRpy
	
	

	ME_GENERIC_ErrorText
	NUL terminated variable length string
	<usr>.<ErrorMessage>


The Reply To Queue and Queue Manager details will also be copied form the MQMD folder into the Destination List for the message.

5.1.4.1 ME_GENERIC_StatusClass and ME_GENERIC_StatusCode

The StatusClass and StatusCode fields are mapped based on the place where the error was raised which is held in the <usr>.<ErrorLocation> field.

	Value in <usr>.<ErrorLocation>
	ME_GENERIC_StatusClass
	ME_GENERIC_StatusCode

	Starts with “WMQ”, error originated in WMQI
	00004
	00001

	Starts with “BAC”, error originated in a connector
	00005
	00001

	Starts with “FMS”, error originated in the FMS system.
	First character in <usr>.<ErrorCode>
	Characters 2-5 in <usr>.<ErrorCode>


5.2 APPENDIX B: Exception List Structure

	Field
	Format
	Intended WMQI Use Description
	WMQI Values

	Start Exception
	
	RecoverableException

	File
	String
	C++ source file name
	

	Line
	Integer
	C++ source file line number
	

	Function
	String
	C++ source function name
	

	Type
	String
	Source object type
	<NodeType>

	Name
	String
	Source object name
	

	Label
	String
	Source object label
	<MessageFlow>.<Node>

	Text
	String
	Additional text
	<Error Message>

	Catalog
	String
	NLS message catalog name
	WMQIv210

	Severity
	Integer
	NLS message severity
	1=information

2=warning

3=error

	Number
	Integer
	NLS message number
	<Error Code>

	Start Repeat
	
	

	Insert Type
	Integer
	The data type of the value:
	0=Unknown

1=Boolean

2=Integer

3=Float

4=Decimal

5=Character

6=Time

7=GMT Time

8=Date

9=Timestamp

10=GMT Timestamp

11=Interval

12=BLOB

13=Bit Array

14=Pointer

	Insert Text
	String
	The data value
	

	End Repeat
	
	

	Nested Exception Child
	Containing the above elements
	RecoverableException

ParserException

ConversionException

UserException

DatabaseException

	End Exception
	
	


Notes:

1. The File, Line, Function, and Text elements should not be used for error handling decision making. These elements ensure that information can be written to a log for use by IBM service personnel.

2. The Type, Name, and Label elements define the object (usually a message flow node) that was processing the message when the error condition occurred.

3. The Catalog, Severity, and Number elements define an NLS message: the Insert elements that contain the two name-value elements shown define the inserts into that NLS message.

4. NLS message catalog name and NLS message number refer to a translatable message catalog and message number.
5.3 APPENDIX C: Automatic Exception List Population

If an error occurs in any type of node during WMQI processing then the Exception List will be populated automatically as follows:

	Field
	Format
	WMQI Use Description
	WMQI Values

	Start Exception
	
	RecoverableException

	File
	String
	C++ source file name
	<Source file>

	Line
	Integer
	C++ source file line number
	<Source Line>

	Function
	String
	C++ source function name
	<Source Function>

	Type
	String
	Source object type
	<NodeType>

	Name
	String
	Source object name
	<Coded Object Name>

	Label
	String
	Source object label
	<MessageFlow>.<Node>

	Text
	String
	Additional text
	<Error Message>

	Catalog
	String
	NLS message catalog name
	WMQIv210

	Severity
	Integer
	NLS message severity
	1=information

2=warning

3=error

	Number
	Integer
	NLS message number
	<Error Code>

	Start Repeat
	
	

	Insert Type
	Integer
	The data type of the value:
	Possible values (see appendix B).

	Insert Text
	String
	The data value
	

	End Repeat
	
	

	Nested Exception Child
	Each containing the above elements
	RecoverableException

ParserException

ConversionException

UserException

DatabaseException

	End Exception
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