	Sky CRM Programme

Interface Functional Design
	[image: image2.emf]

[image: image1.emf]
	Sky CRM Programme

Interface Functional Design
	[image: image1.emf]

Interface Functional Design
IFC1311_IVR_PPVMessages
	Owner:
	BSkyB

	Project:
	BSkyB CRM Programme

	Sending System:
	IVR

	Receiving System(s):
	Chordiant

	Creation Date:
	03 July 2003

	Last Updated:
	08 October 2003

	Version:
	3.2

Document Contributors

	FD Team
	Role
	Name

	WMQI Design
	WMQI Design Team
	Justin Rogers

	MQSeries
	MQ Series
	Luke Puddy

	MQSeries
	Connectors
	Louise Lahiff

	IVR
	IVR Lead
	Jim Swift

	Chordiant
	CHD Design and Development Team
	Paul McCrady, Malcolm Jarvis

Sign-Off List
	Name
	Position
	Version
	Date
	Signature

	Chun Ng
	Integration Team Lead
	3.0
	
	

	Luke Puddy
	Integration Infrastructure Team Lead
	3.0
	
	

	Justin Rogers
	Integration Design Team Lead
	3.0
	
	

	Jim Swift
	IVR Lead
	3.0
	
	

	Paul McCrady
	Chordiant Design and Build.
	3.0
	
	

	Malcolm Jarvis
	Chordiant Design and Build
	3.0
	
	

Distribution List

	Name
	Position

	Chun Ng
	Integration Lead

	Jim Swift
	IVR Lead

	Martin Bleyenburg
	Chordiant Lead

Related Documentation

	Ref
	Title
	Author
	Version

	1.
	Master Interface Catalogue
	Mike Fitch
	1.27

	2.
	Functional Design BSkyB API Connector
	Tim Robinson
	2.3

	3.
	Integration Layer Error Handling
	Justin Rogers
	3.2

	4.
	IVR Design
	Paul McCrady / Malcolm Jarvis
	0.2

	5.
	DEF_Inc2.3_Interaction Management_Use Case Create OPPV Event Purchase Over IVR.doc
	Mark Logan
	3.0

	6.
	DEF_Inc2.3_Interaction Management_Use Case Create OPPV Season Ticket Purchase Order Over IVR.doc
	Mark Logan
	3.0

	7.
	DEF_Inc2.3_Interaction Management_Use Case IVR Account Identification.doc
	Mark Logan
	3.0

	8.
	DEF_Inc2.3_Interaction Management_Use Case Retrieve OPPV Purchase Price Over IVR.doc
	Mark Logan
	3.0

Intended Document Progression

	Version
	Title

	Up to 1.0
	Drafts before initial release

	1.0-1.99
	Signed-off release for phase 2.1 go-live and subsequent increments to reflect change requests for Phase 2.1

	2.0-2.99
	Signed-off release for phase 2.2 go-live and subsequent increments to reflect change requests for Phase 2.2

	3.0-3.99
	Signed-off release for phase 2.3 go-live and subsequent increments to reflect change requests for Phase 2.3

	4.0+
	Further future releases

Amendment History

	Version Number
	Name
	Date
	Description of changes or Other Comments

	0.2
	Justin Rogers
	16/07/2003
	Initial Draft

	1.0
	Justin Rogers
	24/07/2003
	Updated for review

	3.0
	Justin Rogers
	31/07/2003
	Updated with review comments, ready for sign-off

	3.1
	Justin Rogers
	21/08/2003
	TD4292: Updated to show send area is null padded and standardised specification of attributes

	3.2
	Justin Rogers
	02/10/2003
	CR1727: Header persistence standardised.

CONTENTS

41
Introduction

41.1
Outstanding Issues

41.2
Document Purpose

41.3
Dependencies

41.4
Assumptions

52
INTERFACE DEFINITION

52.1
Background and Overview

62.2
Solution Architecture

72.3
WebSphere MQ Requirements

83
SENDING SYSTEM TO INTEGRATION LAYER

83.1
Sending System Outbound Message - IVR (via ARU Responder and EntireX)

83.1.1
Sending System Pre-processing

83.1.2
Information To Be Transmitted

83.1.3
General Process Flow

83.1.4
Connector processing

93.1.5
Sending System – Outbound Message Body Structure

93.1.6
Control Mechanisms

93.1.7
Security and Authorisation

103.2
Sending System Inbound Message – IVR (via ARU Responder and EntireX)

103.2.1
Routing and Filter Rules

103.2.2
Reply-To System - Inbound Message Body Structure

103.2.3
Reply-To System - Inbound Message Header Structure

113.2.4
Connector Processing

113.2.5
Control Mechanisms

113.2.6
Security and Authorisation

113.2.7
Reply-To System Events Triggered

124
INTEGRATION LAYER TO RECEIVING SYSTEM

124.1
Receiving System Inbound Message – Chordiant.

124.1.1
Routing and Filter Rules

124.1.2
Receiving System - Inbound Message Body Structure

144.1.3
Receiving System - Inbound Message Header Structure

144.1.4
MQ/CHD Connector Processing

144.1.5
Control Mechanisms

144.1.6
Security and Authorisation

144.1.7
Receiving System Events Triggered

144.1.8
Receiving System Outbound Message (Reply Message)

165
APPENDIX

165.1
APPENDIX A: IVR message structures

165.1.1
Example Sending System Request

165.1.2
Example Sending System Reply

165.2
APPENDIX B: Chordiant message structures.

165.2.1
Example Receiving System Request

175.2.2
Example Receiving System Reply

1 Introduction

This functional design document is intended to detail the solution required for the specified interface, from the generation of data in the sending systems to the receipt of that information in all relevant receiving systems.

This document will be used by the development teams of all technologies involved in order to construct the interface, from Application and Connector to Middleware teams.

1.1 Outstanding Issues

	Reference
	Issue

	1.
	

	2.
	

1.2 Document Purpose

The target audience for this document is:

	Audience
	Rationale

	Integration Development Team
	Development of the interface

	CHD Development Team
	Development of the interface

	IVR Development Team
	Development of the interface

	Interaction Management Define Team
	Increment deliverable

1.3 Dependencies

	Reference
	Dependency

	1.
	Functional Design is the key dependency for all parties. Functional Design should be agreed and frozen before any development begins.

	2.
	Validation testing of the interface will require all developments to be complete, unit tested and signed off by the appropriate sub-team lead or authority as a pre-requisite.

	3.
	The complete interface is dependent on all components (Chordiant JX platform, WMQI, IVR and all connectors) being fully tested and delivered

	4.
	

1.4 Assumptions

	Reference
	Assumption

	1.
	It is assumed that the conversation type in the message received at WMQI from IVR, is at position 21 as shown in the example messages in the appendix. This position affects the build of the EntrieX/MQ connector

	2.
	

	3.
	

2 INTERFACE DEFINITION

2.1 Background and Overview

This interface handles several messages that are used in the PPV ordering process from the IVR. It handles 4 message types that are sent from the IVR via the ARU Responder, then EntireX, then MQ to Chordiant.

The PPV processes that are covered, in each case by one message format, are as follows:
· Identify and validate customer and event

· Supply PIN

· Supply payment details

· Opt in for paper statement

In all of these cases, the style of the interface will be request / reply and the IVR process thread will wait synchronously for the reply (up to a certain time limit) before proceeding with the next part of the process.

Due to re-use of a part of the previous design in order to save development effort, the data part of the message from IVR will actually be passed unchanged into Chordiant in a particular field of the message. Chordiant will then parse the message data in this field to obtain each piece of data, rather than this functionality being performed in Middleware as would normally be the case.
This interface will also be used for Season Tickets (purchased through STB). The ARU will generate the same messages to be passed through the Middleware to Chordiant and so will be interpreted in the same way.
2.2 Solution Architecture

[image: image2.emf]A graphical representation of the complete interface architecture follows, outlining the high-level environment, processes and flow.

[image: image3.bmp]
[image: image4.wmf]

1 – 2) IVR (via ARU Responder) sends a request message via EntireX to the EntireX/MQ Connector. The EntireX/MQ Connector extracts the message body from the EntireX message, adds necessary headers and places the message on a dedicated system outbound MQSeries queue. It will then persist the connection with the associated message id and await the reply.
3 – 4) WMQI picks up the message from the system outbound queue, transforms the custom wire format message into an XML message that is of the correct format required by the MQ/CHD Connector and places the result on the Chordiant inbound queue.
5 – 6) The MQ/CHD Connector picks up the message from the queue and passes it to Chordiant. It does not wait for a reply.

6 – 7) Chordiant generates the appropriate reply message. The CHD/MQ connector adds the necessary headers and places it on the Chordiant outbound MQSeries queue.

8- 10) WMQI application picks up this message from the queue and transforms the CHD XML into an CWF message that can be understood by IVR, that is then placed on the awaiting static reply to queue.
11-12) The message placed on the static queue is picked up, verified and processed by the EntireX/MQ Connector, which finds the appropriate connection by matching the correlation id of the reply message to the message id stored in the connector table. It then passes the message back to IVR via EntireX and the ARU Responder and closes the connection.

It is important to distinguish between interfaces based on the operation they perform in the receiving system as this has an impact on the architectural design. This interface performs an UPDATE in the target system. However, the sending system (IVR) does not hold state, so that a transaction is not complete until the final message in the whole sequential IVR booking process is sent to Chordiant. Therefore it has been decided that this interface can be treated as a READ interface, since if one of these sequential messages is lost then the two systems will not become out of sychronisation in a damaging way (since both will lose the data after a timeout period). The EntireX/MQ connector will therefore set the ‘expiry interval’ field in the MQMD message header to a value just larger than the time-out period set in the IVR front-end (this will be about 10 seconds). The message is also set to be non-persistent. This equates to Interface Configuration B as defined in the Middleware Interface Configurations document.
2.3 WebSphere MQ Requirements

	Application
	Message Direction
	Type
	Queue Name

	EntireX/MQ Connector
	Outbound
	Static, non-persistent
	WMQ01.0000.IVR01

	MQ/CHD Connector
	Inbound
	Static
	CHD01.0002.WMQ01

	CHD/MQ Connector
	Outbound
	Static
	WMQ01.0002.CHD01 (target queue WMQ01.0000.CHD01)

	EntireX/MQ Connector
	Inbound
	Static
	IVR01.0000.WMQ01

In WMQI, RFH2 headers populated by the Connectors will be used to route messages through the application flow to the appropriate module flow.

Different Chd outbound queues have been used to allow the separation of this process from other interfaces in Middleware in the future, should there be a requirement to improve performance. However, for now this new outbound queue is mapped to the same target queue that the standard build of WMQI takes its messages from.

3 SENDING SYSTEM TO INTEGRATION LAYER

The following section outlines the design specifications for the interface that relate to the sending system. This includes the way messages will be sent out of the sending system to the Integration Layer and also how the same system will receive messages if a reply is required.

3.1 Sending System Outbound Message - IVR (via ARU Responder and EntireX)
This section describes the message sent out from the sending system to the integration layer and the initiation of the interface process.

3.1.1 Sending System Pre-processing

IVR is the sending application (or STB for Season Tickets).
3.1.2 Information To Be Transmitted

A number of different PPV messages will be sent via this interface (4 formats) which are all needed in the PPV booking process for IVR. However, WMQI will pass the message body on as-is and Chordiant will interpret this itself. Whatever the message type, only 1 record/transaction will be present in each message.
3.1.3 General Process Flow

	Interface Statistics
	Description

	Peak Message Size
	2Kb

	Timing
	The interface should be processed in near real time (<2 seconds).

	Average Volumes
	129,000 IVR calls per day

	Peak Volumes
	480 per minute (given current capacity of 7 IVR’s, each with 120 incoming lines, with season ticket having a single connection, giving 8/second max)

	Trigger
	This interface is triggered manually by the IVR user

	Sequence of Process
	A customer will call the IVR to perform one of several options. If they wish to purchase a PPV event then the messages will need to follow the following sequence:

1. Identify and validate customer and event
2. Supply PIN (optional depending on whether PIN set on the account)
3. Supply payment details
Alternatively, as a separate process the customer can choose to:

1. Opt in for paper statement

3.1.4 Connector processing

The EntireX/MQ Connector is used to pass messages from EnireX to MQ and vise-versa. On receiving a message from EntireX, it will store certain details in memory for dealing with the reply and then place the send block of the message body (without trailing spaces removed) on an MQSeries queue with an MQMD (Message Descriptor specific to WMQI messages that contains the ‘Chordiant Msg Id’, ‘ReplyToQueue’ details) and an RFH2 header. The details in these two headers will be defaulted by WMQI with the following exceptions:
	Reply Message Field Name
	Min - Max Usage
	Format
	Field Transform Rule or Comment

	MQMD
	1-1
	
	Message descriptor contains message control information.

	ReplyToQ
	1-1
	MQChar 48
	As shown in section 2.3

	MQRFH2.mcd
	1-1
	
	The mcd folder contains properties that describe the 'shape' or 'format' of the message. The mcd fields are of variable length XML format. The Format values given here are expected maximums, based upon BskyB build requirements.

	Msd
	1-1
	A3
	Default ‘MRM’.

	Set
	1-1
	A15
	Set during development

	Type
	1-1
	A50
	Default message name to ‘MZ_GENERIC_OT_IVRRqt’.

	Fmt
	1-1
	A3
	Default ‘CWF’

	
	
	
	

3.1.5 Sending System – Outbound Message Body Structure

Message Name:
MZ_IFC1311_OT_PPVMessagesRqt

Field Delimiters:
Fixed Length
Scope of Message:
All Normal Processing.

	Field Name
	Min - Max Usage
	Format
	Possible Values or Comment

	Message Body Start
	
	
	

	PPV Message
	1-1
	AN2000
	Entire CWF PPV message body.
This is Alphanumeric text, with trailing spaces included. These trailing spaces are part of the message body, but are variable in number according to the message type and data content. They will make up the message body to a total maximum of about 300 or so characters in length. The remaining area of the field will be padded with Null characters up to 2000.

	Message Body End
	
	
	

3.1.6 Control Mechanisms

Any Errors that occur during the processing of the interface will be handled in a standardised way as outlined in the Middleware Integration Layer Error Handling Document.
3.1.7 Security and Authorisation

Security information will adhere to the requirements outlined in the Sky CRM Non-Functional Requirements document.
3.2 Sending System Inbound Message – IVR (via ARU Responder and EntireX)
This section describes the reply message received as part of this interface and how it is sent back to the original sending system (here also referred to as the Reply-To system in this context).

3.2.1 Routing and Filter Rules

Under normal conditions the request message will be placed onto a single static queue by the EntireX/MQ Connector and routed towards the appropriate message flow (module flow) using the RFH2 header within WMQI. Details on this process can be found within the Integration Design Standards document.

If an error occurs within WMQI, then this will be handled and routed in a generic way, so that a standard error message will be returned to the sending system in the format detailed in the Integration Layer Error Handling document. The message structure below relates to normal processing.

3.2.2 Reply-To System - Inbound Message Body Structure

Message Name:
MZ_IFC1311_IN_PPVMessagesRpy

Field Delimiters:
None
Scope of Message:
All Normal Processing
	Reply-To System Field Name
	Min - Max Usage
	Format
	Mapped From Replying System Field
	Field Transform Rule or Comment

	Message Body Start
	
	
	
	

	PPV Message
	1-1
	AN2000
	<fieldData>
	Entire CWF PPV message body. This is Alphanumeric text that should be passed unaltered into the inbound message and the field then padded with spaces to 2000 characters in length.

	Message Body End
	
	
	
	

Note – the content of this message could indicate success or failure in the receiving system, but either way WMQI does not parse the message and passes the details back for IVR to interpret directly.
3.2.3 Reply-To System - Inbound Message Header Structure

The MQRFH2 and MQMD are persisted from the outbound reply message.
3.2.4 Connector Processing

When a message is received on the static reply queue the Message Correlation Ids are used to match with the outbound request that was already sent. This enables the connector to correctly assemble the reply message and pass it back to IVR via EntireX, using the message content passed back to populate the receive block of the EntireX message.
3.2.5 Control Mechanisms

Any Errors that occur during the processing of the interface will be handled in a standardised way as outlined in the Middleware Integration Layer Error Handling Document.

3.2.6 Security and Authorisation

Security information will adhere to the requirements outlined in the Sky CRM Non-Functional Requirements document.
3.2.7 Reply-To System Events Triggered

On receipt of a response, IVR processing continues. The system does not store data in a static way, but the information is then used in the next part of the PPV process or a message is played back to the user.
4 INTEGRATION LAYER TO RECEIVING SYSTEM

4.1 Receiving System Inbound Message – Chordiant.

This section describes the message received by the receiving system from the integration layer and any reply message that is generated.

4.1.1 Routing and Filter Rules

Under normal conditions the request message will be placed onto a single static queue by the EntireX/MQ Connector and routed towards the appropriate message flow (module flow) using the RFH2 header within WMQI. Details on this process can be found within the Integration Design Standards document.

If an error occurs within WMQI, then this will be handled and routed in a generic way, so that a standard error message will be returned to the sending system in the format detailed in the Integration Layer Error Handling document. The message structure below relates to normal processing.

4.1.2 Receiving System - Inbound Message Body Structure

Message Name:
MZ_IFC1311_IN_PPVMessagesRqt

Field Delimiters:
XML

Scope of Message:
All Normal Processing
	Reply-To System Field Name
	Min - Max Usage
	For-mat
	Mapped From Field
	Field Transform Rule or Comment

	<?xml?>
	1-1
	Hea-der
	Default
	Constant attributes:

version=’1.0’ encoding=’UTF-8’

	<root>
	1-1
	Tag
	Default
	Constant attributes:

xmlns:xsi=‘http://www.w3.org/2001/XMLSchema-instance’ xmlns:xsd=‘http://www.w3.org/2001/XMLSchema’

	<payload>
	1-1
	Tag
	Default
	Constant attributes:
xmlns:ns0=http://www.themindelectric.com/package/com.chordiant.service/
xsi:type=‘ns0:PayloadData’

	<fieldData>
	1-1
	Tag
	Default
	Constant attributes:

xmlns:ns0=‘http://www.themindelectric.com/collections/’ xsi:type=‘ns0:vector’

	<item>
	1-1
	Tag
	Default
	Constant attributes:

xmlns:ns0=‘http://www.themindelectric.com/package/com.chordiant.service/’
xsi:type=‘ns0:ParameterPair’

	<fieldName>
	1-1
	Text
	Default
	Default to ‘p_functionName’

	<fieldData>
	1-1
	Text
	Default
	Constant attribute: xsi:type=‘xsd:string’, default to ‘IVR’

	</item>
	1-1
	Tag
	
	Closing tag

	<item>
	1-1
	Tag
	Default
	Constant attributes:

xmlns:ns0=‘http://www.themindelectric.com/package/com.chordiant.service/’
xsi:type=‘ns0:ParameterPair’

	<fieldName>
	1-1
	Text
	Default
	Default to ‘p_data’

	<fieldData>
	1-1
	
	Default
	Constant attributes: xmlns:ns0=‘http://xml.apache.org/xml-soap’ xsi:type=‘ns0:Map’

	<item>
	1-1
	Tag
	
	

	<key>
	1-1
	Text
	Default
	Constant attribute: xsi:type=‘xsd:string’
Default to ‘IVRMessage’

	<value>
	1-1
	Text
	PPV Message
	Constant attribute: xsi:type=‘xsd:string’
Direct mapping (including any trailing spaces but excluding any Null characters following that).

	</fieldData>
	1-1
	Tag
	
	Closing tag

	</item>
	1-1
	Tag
	
	Closing tag

	<item>
	1-1
	Tag
	Default
	Constant attributes:

xmlns:ns0=http://www.themindelectric.com/package/com.chordiant.service/
xsi:type=‘ns0:ParameterPair’

	<fieldName>
	1-1
	Text
	Default
	Default to ‘userName’

	<fieldData>
	1-1
	Text
	Default
	Constant attribute: xsi:type=‘xsd:string’, default to ‘middleware’

	</item>
	1-1
	Tag
	
	Closing tag

	<item>
	1-1
	Tag
	Default
	Constant attributes:

xmlns:ns0=http://www.themindelectric.com/package/com.chordiant.service/
xsi:type=‘ns0:ParameterPair’

	<fieldName>
	1-1
	Text
	Default
	Default to ‘authenticationToken’

	<fieldData>
	1-1
	Text
	Default
	Constant attribute: xsi:type=‘xsd:string’, default to ‘middleware’

	</item>
	1-1
	Tag
	
	Closing tag

	<item>
	1-1
	Tag
	Default
	Constant attributes:

xmlns:ns0=‘http://www.themindelectric.com/package/com.chordiant.service/’
xsi:type=‘ns0:ParameterPair’

	<fieldName>
	1-1
	Text
	Default
	Default to ‘serviceName’

	<fieldData>
	1-1
	Text
	Default
	Constant attribute: xsi:type=‘xsd:string’,
default to ‘BSkyBChannelsService’

	</item>
	1-1
	Tag
	
	Closing tag

	<item>
	1-1
	Tag
	Default
	Constant attributes:

xmlns:ns0=‘http://www.themindelectric.com/package/com.chordiant.service/’
xsi:type=‘ns0:ParameterPair’

	<fieldName>
	1-1
	Text
	Default
	Default to ‘functionName’

	<fieldData>
	1-1
	Text
	Default
	Constant attribute: xsi:type=‘xsd:string’,
default to ‘processChannelRequest’

	</item>
	1-1
	Tag
	
	Closing tag

	</fieldData>
	1-1
	Tag
	
	Closing tag

	</payload>
	1-1
	Tag
	
	Closing tag

	</root>
	1-1
	Tag
	
	Closing tag

Please refer to Appendix B for an example message structure.

Key

	
	Container Tag

	
	Element Tag

4.1.2.1 Generic Transform Rules

Data will be sent to the system following the generic format below:

	Data Format
	Comments

	Text
	There is no padding of text values within XML.

4.1.3 Receiving System - Inbound Message Header Structure

The MQRFH2 and MQMD are extracted and persisted from the source message as-is,
except for the following fields that require extra processing: -

	Reply Message Field Name
	Min - Max Usage
	Format
	Field Transform Rule or Comment

	MQRFH2.usr
	1-1
	
	The usr folder contains fields defined by the developer.

	RpyType
	1-1
	A50
	‘PPVMessagesResponse’ to be set in WMQI module flow.

4.1.4 MQ/CHD Connector Processing

The MQ/CHD Connector processes the message details into chordiant and does not wait for a reply.

4.1.5 Control Mechanisms

Any Errors that occur during the processing of the interface will be handled in a standardised way as outlined in the Middleware Integration Layer Error Handling Document.

4.1.6 Security and Authorisation

Security information will adhere to the requirements outlined in the Sky CRM Non-Functional Requirements document.
4.1.7 Receiving System Events Triggered

The receiving system will process the inbound message, parse and interpret it and then generate a reply message indicating success or failure from the relevant Corporate Business Objects (CBOs). The message is formatted into XML and transported to an MQSeries queue by the CHD/MQ connector.
4.1.8 Receiving System Outbound Message (Reply Message)

Chordiant is responsible for holding all the meta-data and logic required to build XML messages from business objects.

The framework for the data format that will be implemented for the interface will be supported on the Chordiant JX platform. The decision was taken to use the less verbose version of the XML schema provided by GLUE. GLUE code is currently licensed and distributed with the Chordiant foundation code for version 5 since GLUE encoding is used for transferring messages between the client and server components. GLUE provides a generic standard for the format of XML messages.

4.1.8.1 Information to Be Transmitted and General Process Flow

Chordiant will issue a response to the inbound message in order to confirm whether the action succeeded or failed. However, the reply in either case has the same message format and can be treated as the same in Middleware.
4.1.8.2 CHD/MQ Connector processing

When the reply message is received, the CHD/MQ Connector will place the new message on the reply queue having created new RFH2 and MQMD headers and mapping any required values persisted from the source message as follows:.

	Reply Message Field Name
	Min - Max Usage
	Format
	Mapped From Request Message Field
	Field Transform Rule or Comment

	MQMD
	1-1
	
	
	Message descriptor contains message control information

	MsgType
	1-1
	Integer
	n/a
	Default to ‘MQMT_REPLY’

	Expiry
	1-1
	Integer
	Expiry
	

	Persistence
	1-1
	Integer
	Persistence
	

	MsgId
	1-1
	MQByte 24
	n/a
	Defaulted by MQ

	CorrelId
	1-1
	MQByte 24
	MsgId
	The message Id is used to correlate the reply to its corresponding request message.

	ReplyToQ
	1-1
	MQChar 48
	ReplyToQ
	

	ReplyToQMgr
	1-1
	MQChar 48
	ReplyToQMgr
	

	MQRFH2.mcd
	1-1
	
	
	The mcd folder contains properties that describe the 'shape' or 'format' of the message. The mcd fields are of variable length XML format. The Format values given here are expected maximums, based upon BskyB build requirements.

	Msd
	1-1
	A3
	Msd
	

	Set
	1-1
	A15
	Set
	

	Type
	1-1
	A50
	RFH2.usr.RpyType
	

	Fmt
	1-1
	A3
	Fmt
	

	MQRFH2.usr
	1-1
	
	
	

	ApplOriginData
	1-1
	AN
	ApplOriginData
	

	ApplIdentityData
	1-1
	AN
	ApplIdentityData
	

	
	
	
	
	

4.1.8.3 Replying System – Outbound Message Body Structure

Message Name:
MZ_IFC1311_OT_PPVMessageRpy

Field Delimiters:
XML

Scope of Message:
All Normal Processing.

	Field Name
	Min - Max Usage
	Format
	Possible Values or Comment

	<?xml?>
	1-1
	Header
	Constant attributes: version='1.0' encoding='UTF-8'

	<root>
	1-1
	Tag
	Constant attributes:
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

	<payload>
	1-1
	Tag
	Constant attributes:
xmlns:ns0="http://www.themindelectric.com/package/com.chordiant.service/" xsi:type="ns0:PayloadData"

	<item>
	1-1
	Tag
	Constant attributes:

xmlns:ns0="http://www.themindelectric.com/package/com.chordiant.service/" xsi:type="ns0:ParameterPair"

	<fieldName>
	1-1
	Text
	Constant value: ‘PPVMessagesResponse’

	<fieldData>
	1-1
	Text
	IVR message data

	<item>
	1-1
	Tag
	Closing Tag

	</payload>
	1-1
	Tag
	Closing Tag

	</root>
	1-1
	Tag
	Closing Tag

Please refer to Appendix B for an example message structure.

Key

	
	Container Tag

	
	Element Tag

Generic Formatting Rules are detailed in section 4.1.2.1
5 APPENDIX

5.1 APPENDIX A: IVR message structures

5.1.1 Example Sending System Request

AOP01 A0004121ARU 21460089<1963spaces>

5.1.2 Example Sending System Reply

1006 H000412000000460089 0058750 08/14/03<1933spaces>
5.2 APPENDIX B: Chordiant message structures.

5.2.1 Example Receiving System Request

<?xml version='1.0' encoding='UTF-8'?>

<root xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

 <payload xmlns:ns0='http://www.themindelectric.com/package/com.chordiant.service/' xsi:type='ns0:PayloadData'>

 <fieldData xmlns:ns0='http://www.themindelectric.com/collections/' xsi:type='ns0:vector'>

 <item xmlns:ns0='http://www.themindelectric.com/package/com.chordiant.service/' xsi:type='ns0:ParameterPair'>

 <fieldName>p_functionName</fieldName>

 <fieldData xsi:type='xsd:string'>IVR</fieldData>

 </item>

 <item xmlns:ns0='http://www.themindelectric.com/package/com.chordiant.service/' xsi:type='ns0:ParameterPair'>

 <fieldName>p_data</fieldName>

 <fieldData xmlns:ns0='http://xml.apache.org/xml-soap' xsi:type='ns0:Map'>

 <item>

 <key xsi:type='xsd:string'>IVRMessage</key>

 <value xsi:type='xsd:string'>AOP01 A0004121ARU 21460089</value>

 </item>

 </fieldData>

 </item>

 <item xmlns:ns0='http://www.themindelectric.com/package/com.chordiant.service/' xsi:type='ns0:ParameterPair'>

 <fieldName>userName</fieldName>

 <fieldData xsi:type='xsd:string'>middleware</fieldData>

 </item>

 <item xmlns:ns0='http://www.themindelectric.com/package/com.chordiant.service/' xsi:type='ns0:ParameterPair'>

 <fieldName>authenticationToken</fieldName>

 <fieldData xsi:type='xsd:string'>middleware</fieldData>

 </item>

 <item xmlns:ns0='http://www.themindelectric.com/package/com.chordiant.service/' xsi:type='ns0:ParameterPair'>

 <fieldName>serviceName</fieldName>

 <fieldData xsi:type='xsd:string'>BSkyBChannelsService</fieldData>

 </item>

 <item xmlns:ns0='http://www.themindelectric.com/package/com.chordiant.service/' xsi:type='ns0:ParameterPair'>

 <fieldName>functionName</fieldName>

 <fieldData xsi:type='xsd:string'>processChannelRequest</fieldData>

 </item>

 </fieldData>

 </payload>

</root>
5.2.2 Example Receiving System Reply

<?xml version="1.0" encoding="UTF-8" ?>

<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<payload xmlns:ns0="http://www.themindelectric.com/package/com.chordiant.service/" xsi:type="ns0:PayloadData">

<item xmlns:ns0="http://www.themindelectric.com/package/com.chordiant.service/" xsi:type="ns0:ParameterPair">

<fieldName>IVROutboundMessage</fieldName>

<fieldData xsi:type="xsd:string">1006 H000412000000460089 0058750 08/14/03</fieldData>

</item>

</payload>

</root>

IFC1311_IVR_PPVMessages

(Increment 2.3 Architecture)

Websphere MQ Integrator

EntireX/MQ Connector

IVR (or STB)

CHD/MQ Connector

messages

messages

MQSeries

			

 Queue

Queue

MQ/CHD Connector

1

2

3

4

5

6

7

EntireX Broker

8

9

10

11

12

ARU Responder

Chordiant

	Version:
	3.0
	Page 1 of 1

	Date:
	08-10-03 2:35 PM

	Ref
	DV_FD_IFC1311_IVR_PPVMessages_v3.0.doc

PAGE
	Version:
	3.2
	Page 17 of 18

	Date:
	08-10-03 2:35 PM

	Ref
	DV_FD_IFC1311_IVR_PPVMessages_v3.2.doc

