��
�
�
Microsoft Corporation

One Microsoft Way

Redmond, WA 98052-6399

(206) 882-8080

Microsoft OLE Controls

Specification Overview

January 1994

Part No. 098-56458

�

Table of Contents

�toc \o "1-3" �Controls and Control Containers	2

What is a Control?	2

What is a Control Container?	3

How "OLE Controls" Meet the Needs	3

Controls	3

Basic Interaction: Controls and Compound Document Interfaces	4

Compound Document Interfaces for Controls and their Uses	5

IOleObject	5

IViewObject	6

IDataObject	6

IPersistStorage	7

IOleInPlaceObject, IOleInPlaceActiveObject	7

Summary of Differences: Controls vs. Compound Documents	8

Dedicated Automation Interfaces	8

IDispatch Interfaces for the Control Container	8

IDispatch for Ambient Properties	9

Events	9

IDispatch Interface for the Control	10

New Control and Container Interfaces	10

Mnemonic Handling	11

Ambient Property Changes	11

Container Loading	12

The Events IDispatch	12

Events, Methods, and Properties: A Typical Interaction	12

A Sample Button Control	13

Design-Time Interaction	14

Control Creation	14

Run Time Interaction	14

Summary of OLE Controls Architecture	15

��

OLE Controls Architecture

OLE Controls is a set of extensions that turn OLE 2 containers and objects into more powerful “Control Containers” and “Controls.” These extensions use existing and additional interfaces that both control container and control can access besides the standard compound document interfaces, as shown in Figure 1.1. The control container implements a ‘site’ object for each contained object or control. The interfaces, control-specific or not, are on the same object. The QueryInterface function of any interface can access the other interfaces on that object, with a few minor exceptions.

�

Figure 1.1 OLE Control extensions are implemented alongside standard compound document interfaces

This chapter discusses all of these interfaces and how they interact between the control and its container. The chapter starts with a discussion of the responsibilities of the control and the control container, so you can see how the compound document interfaces and the control-specific interfaces meet these responsibilities. This chapter then examines the differences between a typical compound document implementation and a control/control container implementation. Finally, the chapter covers the interaction of a typical control and a control container.

In order to fully support OLE controls a control container must first be a full embedding container — linking support is not necessary — that also supports in-place activation. In the same manner a control must first be an embeddable object, implemented in an in-process server dynamic link library (DLL), that also supports in-place activation as an inside-out object. Controls are also considered self-registering (that is, they export the new function DllRegisterServer).

Because both control and control container must be prepared to support OLE Automation, most of the extensions for OLE controls come in the form of dedicated IDispatch interfaces.

Controls and Control Containers

Let's first examine the structure and responsibilities of each agent in turn. This enables us to see exactly how compound documents, automation, and the control extensions meet these requirements.

What is a Control?

A control is fairly independent as to where it actually resides at any given time. A button in one window appears and behaves like a button in any other window. There are three sets of attributes that define the control’s capabilities and features:

w	Properties: Named characteristics or values of the control such as color, text, number, font, etc. Properties may also include a variety of behavioral characteristics such as whether a pushbutton is momentary or push-on/push-off.

w	Events: Actions triggered by the control when in response to some other external actions on the control, such as clicking a mouse button, pressing a key, or having another piece of code change one of the control’s properties. A control is an object that transforms external events into different events that have more meaning for a control container.

w	Methods: A function implemented in the control that allows external code to manipulate its appearance, behavior, or properties. For example, an edit or other text-oriented control would support methods to allow the control container to retrieve or modify the current text, perhaps performing operations like copy and paste with that control. Calls to methods are always generated by other code, and those calls are often made in response to events from other controls. Calling a control method may also trigger an event.

Combining these capabilities with compound document requirements yields five specific mechanisms that each control is responsible to provide:

	1.	A mechanism through which the control container can retrieve and modify properties as well as call methods. The control must expose the names of properties as well as the names and parameters or its methods.

	2.	A mechanism through which the control notifies the control container of events that occur in the control.

	3.	A mechanism through which the control draws itself but gives the container the responsibility to manage the control’s position and dimensions.

	4.	A mechanism through which the control can specify and process its keyboard mnemonics and accelerators, such as Alt key combinations and arrow keys.

	5.	A mechanism through which the control container can ask the control to save its current information into a storage or stream object.

Note that the control itself does not define its position or dimensions. Instead, the container manages such information for all controls as it does for any other compound document object in that container. Before looking at how each of the mechanisms above is addressed with OLE Controls, let’s look at the control container side of the picture.

What is a Control Container?

Most of the necessary attributes for a control container are expressed through the standard compound document interfaces required for an in-place capable embedding container. A control container, in addition, must supply two other sets of information and functionality to each control:

w	Ambient Properties: Named characteristics or values of the container itself that generally apply to all controls in the container unless otherwise specified. Some examples of ambient properties are default colors, font, and whether the container is in ‘design mode’ or ‘run mode.’

w	Events: A control is a transforming device that converts external events from the user or another program into events meaningful to the container. The container in this respect must provide entry points to the control for each event the control might trigger. When these event functions are called, the container might execute specific code which may call methods in any other control.

Overall, the capabilities of a container are very similar to those of a control, and in some cases a container may be useful as a control itself. This topic is, however, beyond the scope of this chapter. Note that a control container does not supply its own specific methods.

Combining the capabilities described above with the behavior of a compound document container and the requirements of a control, you have four necessary mechanisms for a control container:

	1.	A mechanism to create, place, size, save, and create the run-time program that manages and interacts with controls.

	2.	A mechanism to expose ambient properties to all controls.

	3.	A mechanism to provide and expose event entry points to each specific control.

	4.	A mechanism to inform controls of accelerator and other keyboard events.

How "OLE Controls" Meet the Needs

The OLE 2 standard for compound documents meets many of the requirements of both control and control container, but not all of them. Writing a control involves some other interfaces, primarily those dealing with OLE Automation.

Controls

A control is an embedded object with in-place activation capabilities. It must implement at least the following interfaces: IOleObject, IDataObject, IPersistStorage, IViewObject, IOleInPlaceObject, and IOleInPlaceActiveObject. Note that IOleCache may not always be necessary for a control since the control’s in-process server DLL is generally present at all times when the control is used, and therefore OLE and the container will not generally cache a presentation of the control. These interfaces meet the requirements for saving the control’s information (IPersistStorage), handling keyboard accelerators (IOleInPlaceActiveObject), and drawing the control (IViewObject). Other interfaces (IOleObject, IOleInPlaceObject) allow the control container to manage the placement and activation of the control.

But these interfaces alone are not quite sufficient to satisfy a control’s requirement, so an OLE control must also implement additional interfaces. First, it must implement a single IDispatch interface, also called the “incoming” interface, through which the container may access control properties or request the control to execute methods. Along with this interface the control must provide a type library resource in its DLL (see Figure 1.1) that lets the container know what the control’s methods, events, and properties are at design time. Note that the control doesn’t implement its own events. Instead, the container requests the control what events it will generate and implements the appropriate set of functions for the control to call when necessary. The mechanisms to establish communication regarding events is done through two new control interfaces: IConnectionPointContainer and IConnectionPoint.

The accelerator capabilities of the IOleInPlaceActiveObject interface (the member function TranslateAccelerator) are not sufficient to describe a control’s mnemonic character. This character is usually an underlined character in the control’s text that, when pressed with the Alt key, will cause a certain user event to occur in the control. The IOleInPlaceActiveObject::TranslateAccelerator function deals only with one object at a time, the current “UI Active” object (the one with the focus). Mnemonics, on the other hand, usually affect controls that don’t have the focus. To handle control mnemonics the control must also implement the new interface, IOleControl, whose purpose it is to deal with such keystrokes.

The control container might need to serialize the current text or value in a control but only to a stream. The presence of IPersistStorage on a control means that a container can request the control to save all its persistent information to a storage object in the container’s file. However, this is often expensive as far as storage is concerned, because usually controls have very little persistent information. For that reason, OLE controls must be able to serialize all persistent information into a single stream through the IPersistStream interface. This allows the container to optimize storage usage where many controls are involved.

Basic Interaction:�Controls and Compound Document Interfaces

Any typical OLE 2 container application will still be able to embed and activate a compound document object with control extensions because those extensions are additional interfaces on the object, and can be ignored unless asked for through QueryInterface. The same holds true for a control container–it is still capable of embedding and activating any given embeddable object, not just controls. A control container is, at the very least, a compound document container and a control is, at least, a standard embeddable object implemented in an in-process server DLL, as shown in Figure 1.1.

This section reviews the uses of the basic compound document interfaces that are required for both control and control container. This section also examines some cases in which the required support for compound documents is greater than the needs of a control.

Compound Document Interfaces for Controls�and their Uses

Because a control is an embeddable compound document object that supports in-place activation it must implement its part of the OLE specifications. The control is the object that is implemented inside an in-process server DLL, where that DLL must also provide the class factory to create those objects. The control/object must implement the IOleObject, IDataObject, IViewObject, and IPersistStorage interfaces along with IOleInPlaceObject and IOleInPlace-ActiveObject to support in-place activation. These interfaces are shown in Figure 1.2.

�

Figure 1.2 Standard compound document interfaces for controls as in-place embedded objects

Some portions of the compound document specification are not necessary to implement depending on the features of the control. In many cases a control is such a highly specialized object that some of the generalized member functions of these interfaces need no implementation.

IOleObject

The IOleObject interface is the heart of any compound document object. It is the catch-all for object capabilities and contains a total of 21 member functions dealing with interaction with the container, object names, initialization, verb activation, updating, object dimensions, and notification.

Since a control is always embedded, activated in-place, and concentrates its user interface in its own visible space, many member functions in this interface need no implementation: SetHostNames, SetMoniker, GetMoniker, InitFromData, GetClipboardData, Update, IsUpToDate, GetUserClassID, GetUserType, Advise, Unadvise, and EnumAdvise. Compound document objects in DLLs usually delegate EnumVerbs and GetMiscStatus to the default handler.

What’s left is SetClientSite and GetClientSite, which are easy to implement, but must be implemented for the sake of the container. In addition, Close must be implemented according to the standard specifications in order to generate the right calls to the container’s IOleClientSite::SaveObject before the object is destroyed.

The functions SetExtent and GetExtent are used to let the object know how large its site is so that it can prepare for later calls to IViewObject::Draw. The container ultimately determines the object’s size and position, so if the control has no need to know its dimensions prior to IViewObject::Draw, it needs only to implement these functions enough to remember whatever dimensions are given to SetExtent, so they can be later returned from GetExtent.

The final two functions, DoVerb and SetColorScheme, may or may not need much implementation. In general, DoVerb needs at least a partial implementation so it can handle the standard verbs that tell it to show, hide, in-place activate, or in-place deactivate itself. Most simple controls will generally need no custom verbs, since they will have their own window in the container to detect user events like mouse clicks. Typical custom verbs like “edit” have no meaning for a control. In addition, the control could allow a container without control extensions to get at its properties with new control verbs that are sent to DoVerb.

SetColorScheme depends on the picture control. A picture control that may display a 256-color bitmap will want to implement this function in order to obtain the container’s palette for use in displaying such graphics. If the control has no use for anything other than the standard color palette, it doesn’t need to implement this function. The same recommendation goes for any standard compound document object.

IViewObject

The IViewObject is either very important, or next to worthless, depending on the control. If the control is something static, like static text or a picture, it may not require any sort of window of its own in the container, since all it would do in that window is draw something pretty. Such drawing is the purpose of the IViewObject interface and its Draw member function, which the container will call whenever it needs to repaint the control. If, however, the control uses in-place activation to place its own window in the container, it will not receive any calls to IViewObject::Draw and will go unused.

If you have a control of the picture type, IViewObject::Draw is where you place all code to create the graphical representation of your control. You can trust the container to call this function when necessary. The control must also implement the member functions SetAdvise and GetAdvise so the container can pass the control and IAdviseSink interface, which the control must notify if the visuals of the control change. On such an event the control calls IAdviseSink::OnViewChange, which causes the container to repaint the control with another call to Draw.

GetColorSet is important, like IOleObject::SetColorScheme, for controls that use more than the standard color palette. If the control has some graphics that requires a special color palette, the container will ask the control for that palette through this function.

For any type of control, regardless of whether they use a window, the Freeze and Unfreeze member functions should be implemented to know when the container doesn’t want the control to change its appearance. A general compound document object will usually implement these relatively simple functions and a control should as well. Note that freezing a control is not necessarily the same as disabling a control. Disabling implies ignoring mouse actions and changing the actual display of the control to a ‘grayed’ state. Freezing the display means to keep it as it currently is, so the control should not change its visuals on Freeze or Unfreeze.

As far as aspects are concerned, an object will almost always be displayed in DVASPECT_CONTENT. It’s possible that a preview mode in a container may request DVASPECT_THUMBNAIL, but only controls that display complex graphics need to make any differentiation between content and thumbnail aspects. Controls do not need to concern themselves with the DVASPECT_ICON and DVASPECT_DOCPRINT options.

IDataObject

The normal use of the IDataObject interface isn’t really necessary for any control, although it provides a simple and efficient way for a container to attempt to retrieve data from a control. In its role as an embedded object, a control has to implement stubs for all the functions in this interface and usually implements the GetDataHere function for the CF_EMBEDSOURCE format so the container can easily make a copy of the control. But since a control is usually activated in-place and draws itself directly to the screen or to its own window, there is limited use for implementing a function like GetData for graphical formats.

However, GetData and SetData are highly useful for exchanging graphical and non-graphical formats between the control and container. This data is managed inside the control but is not necessarily related to the control’s presentation. For example, an edit control would generally implement these functions to provide a standard way, through which the container could copy or paste CF_TEXT formats into the control without having to go through a custom set of control methods.

The most important use for GetData and SetData is bulk property exchanges: instead of manipulating properties one at a time through the control’s IDispatch interface, a container could manipulate them in batches through IDataObject.

Finally, a control can implement the three notification functions of DAdvise, DUnadvise, and EnumDAdvise, if the control has data that a container might want to establish links with. Say, for example, the control manages a DDE conversation for the container, which then requires the time the data involved in the conversation changes. This type of control would then implement these functions and the container would provide an IAdviseSink that has implemented the OnDataChanged function.

IPersistStorage

The IPersistStorage interface is used for persistent storage for whatever object implements it. Persistent storage is data that the object needs across instantiations, that is, data that the object needs to be saved even when the object is not running or loaded. A typical compound document object will maintain its private data structures (like its text, drawing commands, numerical data, current user options, etc.) as its persistent storage, and OLE persistently stores cached presentations for such objects.

Many simple controls don’t have any use for persistent data except to store properties. Controls generally do not save their current ‘contents,’ so a list box will not save its items nor will a check box save its current state.

Even if the control does implement IPersistStorage itself it must always pass the same function calls to the data cache in order to let the cache save the information it needs.

IOleInPlaceObject, IOleInPlaceActiveObject

The final two standard interfaces required for a control’s part in the compound document picture are the two in-place activation interfaces IOleInPlaceObject and IOleInPlaceActiveObject. Both of these interfaces need complete implementations, as is required for any in-place capable embedded object. Both interfaces have GetWindow and ContextSensitiveHelp, which both require minimal implementations in order to operate correctly with any control container.

Through the IOleInPlaceObject interface the control knows when it is deactivated (InPlaceDeactivate) or when only its user interface is deactivated (UIDeactivate), which means that its no longer the active object with the focus. These functions tell the control to release various pointers it maintains and to call various functions in the container’s IOleInPlaceSite.

IOleInPlaceObject::SetObjectRects is the most important function in this interface. This function tells the control its current position and clipping rectangles, and the control must comply with these rectangles when it repaints itself or manages its window. This is standard behavior for any in-place object and needs no special modifications for a control.

The last function in IOleInPlaceObject, ReactivateAndUndo, is not implemented because controls generally don’t have an undo capacity. However, a control should follow the guidelines for any in-place object, and reactivate itself in-place as if it were executing the OLEIVERB_INPLACE-ACTIVATE verb inside IOleObject::DoVerb.

The IOleInPlaceActiveObject is only used when this particular control has the focus in the container. Note that when the control is the “UI active” object and has the focus, it’s implementation of IViewObject::Draw, or whatever code is uses to draw in its own window, must reflect that focus state. When IOleInPlaceObject-::UIDeactivate is called then the control is losing the focus and can then repaint accordingly.

The functions in this interface deal either with accelerators or with additional tools that the control needs when UI active. The TranslateAccelerator function is only of use to a control that wants the arrow keys or other such keystrokes; in this function the control must detect those keystrokes as if it received a WM_KEYDOWN or WM_CHAR message. Note that any Alt key mnemonics are handled through the new IOleControl interface described later.

If the control needs extra tools, such as popup windows or toolbars, it needs to implement the OnFrameWindowActivate, OnDocWindowActivate, ResizeBorder, and EnableModeless functions as a standard compound document object would. Without any such tools, the control can leave these functions unimplemented, with the exception of OnDocWindowActivate, which must have some minimal implementation to call the container’s IOleInPlaceFrame::SetActiveObject and IOleInPlaceFrame::SetMenu functions to fulfill the object’s in-place activation specifications.

Summary of Differences: Controls vs. Compound Documents

Simple user interface controls generally have less need for a lot of UI components like toolbars and menus than the average compound document object. However, they do have additional needs for focus and keystrokes. In addition, the IOleCache interface is usually required for an in-process object, but has limited use for a control. Finally, a control may want to provide an extra service by implementing the IPersistStream interface which the container can use to save the control’s text.

Dedicated Automation Interfaces

The control extensions to OLE require the use of a number of IDispatch interfaces–OLE Automation–to fulfill some of the requirements: a control must expose its events, methods, and properties to a control container and a control container must expose ambient properties and its own events to controls. Overall there are three implementations of IDispatch in the container-control picture. The control container separates its ambient properties and events into two separate interfaces; the control combines all its features into one interface.

IDispatch Interfaces for the Control Container

A control container has two sets of information that it must expose to a control: ambient properties and events. As mentioned earlier, ambient properties are values such as default colors and fonts that generally apply to all controls in the same container document–thus the word ‘ambient’ because they define the control’s environment that’s around when the control is created. Events on the container are functions called from the control when specific things happen to it. This chapter previously described a control as a transformer between user events like keystrokes and mouse click into container-understood events like a call to an OnDoubleClick function.

The IDispatch interfaces for ambient properties and events usually exist on the same site object in the container as shown in Figure 1.3 but only the ambient properties are truly part of the site. Therefore, if you have a pointer to the site’s IOleClientSite interface and you call IOleClientSite::QueryInterface(IID_-IDispatch) it will return the IDispatch for the control container’s properties.

�

Figure 1.3 New and additional interfaces for a control container. The following sections describe each addition

IDispatch for Ambient Properties

When a control is initially created, it needs to know some information about its container; specifically, the ambient properties that the control will use to initialize itself to defaults. After the control is created, it will have a pointer to the container’s IOleClientSite interface, through which it can then query for IDispatch. As mentioned above, the IDispatch returned through this operation is the one for ambient properties.

A control container may support any set of ambient properties, or none at all. Standard dispatch IDs have been assigned to the most common ambient properties. To access one of these standard ambient properties, a control passes the appropriate dispatch ID to IDispatch::Invoke. If the container does not support the requested property, this call fails. To access a non-standard property, a control must first call IDispatch::GetIDsOfNames to obtain the dispatch ID for the property. If this call fails, then the container does not support the requested property. Otherwise, the returned dispatch ID is then passed to IDispatch::Invoke, to obtain the ambient property's value.

Events

The container’s IDispatch for events, which is also called the “outgoing” IDispatch, must have events that match those generated in the control contained in that specific site. This means that each event IDispatch will recognize different names and IDs of functions from site to site, depending on the object in that site.

How does this work? Each control defines its own events that it will trigger when things happen to the control; each event is a function with parameters. When the control wants to fire an event, it invokes this IDispatch::Invoke with its own dispatch ID and appropriate parameters. By default, the container will do nothing with these events unless it has been specifically programmed with knowledge of those events and has something to do with them.

IDispatch Interface for the Control

While the container site for a control has two IDispatch interfaces, the control itself only has one control to handle all methods and properties. Note that control events, while defined by the control and described in its type library, are handled through the events IDispatch in the container. The control itself does not implement any events in its own IDispatch interface.

There is nothing special about the IDispatch interface on the control. It is implemented directly on the control with all other control interfaces (old and new) as shown in Figure 1.4, and is obtained by calling QueryInterface through any other interface. When the container calls Invoke for a method, the control simply executes it. When the container modifies or retrieves a property, the control obliges like any other automation object.

�

Figure 1.4 New and additional interfaces for a control

The control is responsible for describing its event, properties, and methods in its type library.

New Control and Container Interfaces

The existing compound document interfaces and the use of OLE Automation is almost sufficient to meet all the requirements for controls and control containers. However, there are several requirements that are not addressed through these standard mechanisms:

w	Mnemonic (ALT key) handling and special accelerator processing for the control.

w	Notifications of changes in ambient property values.

w	Notification that the container has loaded all of its controls.

w	A mechanism through which the control obtains the container’s events IDispatch interface.

The first three requirements are addressed through two new interfaces IOleControlSite and IOleControl, where the container implements the former on the site object and the control implements the latter. The last requirement is addressed through two additional control-related interfaces called IConnectionPointContainer and IConnectionPoint.

Mnemonic Handling

As shown in Figure 1.4, the control implements a few interfaces other than the existing compound document set.

The IOleControl interface has two member functions for describing and handling mnemonic keystrokes: GetControlInfo and OnMnemonic.

GetControlInfo fills a structure called CONTROLINFO which contains a table of the control’s accelerators, the number of accelerators in that table, and some flags. The container calls this function once when the control is first loaded.

The accelerator table contains those keystrokes that affect the control when it is not UI active: that is, these accelerators are in effect when those sent to IOleInPlace-ActiveObject::TranslateAccelerator are not.

With a number of in-place active objects in its document, a container will first let the UI active object process accelerators by calling OleTranslateAccelerator. If the UI active object doesn’t use the keystroke, the container can then check the tables of all other controls in their respective CONTROLINFO structures, looking for a matching key. When it finds one, it calls that control’s IOleControl::On-Mnemonic function. In this manner a button can have a label like “&Options” such that an Alt-O key press will press that button even when it’s not UI active.

The control’s CONTROLINFO flags describe additional keystrokes that it will consume; primarily, ENTER and ESC. The flag CTRLINFO_EATS_RETURN means that the control uses the ENTER key for its own purposes. A multi-line edit control, for example, will use such a key to create a new line in the control. The only other flag defined at this time is CTRLINFO_EATS_ESCAPE which a control might use to exit a special mode that it entered with some other keystroke. ENTER and ESC are singled out in this way because usually a container makes other assumptions about these two keys: ENTER normally means “press the default button” (usually OK) and ESC means “press Cancel.” Obviously, this is not good behavior when the control also does something with that same keystroke.

What happens if the control decides to change it’s mnemonics? In that case the control queries the site object for its IControlSite interface (see ‹below›‹Figure 1.5) and calls that interface’s OnControlInfoChanged function. In response, the container will call IOleControl::GetControlInfo again through which the control provides its new accelerator table.

Ambient Property Changes

When the value of an ambient property changes, the control container needs some way to inform the control. Calling IOleControl::OnAmbientPropertyChange on the control informs the control of the change. A parameter to this function indicates the dispatch ID of the affected property. This dispatch ID may be the special value DISPID_UNKNOWN, which indicates that the identity of the affected property is not known, or that more than one ambient property has changed. In this situation, a control has no choice but to check each of the ambient properties it is using to determine which ones have changed.

Container Loading

A control may want to know when its container has finished loading all of all of its controls. Such a control might want to communicate with its siblings, but only when all of its siblings have been instantiated in memory. Calling IOleControl::OnContainerFullyLoaded on the control informs it when this state has been reached.

The Events IDispatch

You are in a position to see how the control and control container set up the connection between the control and the container’s IDispatch for events. Each control will describe a set of events specific to that control, and will assign that set an interface identifier (IID) in its type library. The container must give the object an appropriate IDispatch interface for that set of events. It does this through the IConnectionPointContainer and IConnectionPoint interfaces.

First, the container queries any other control interface for IConnectionPoint-Container, and if successful, calls the function FindConnectionPoint in that interface, passing the IID of the events set. In return, the control returns a pointer to this IConnectionPoint interface. This interface is generally implemented on the control, but is not available through QueryInterface on any other control interface, much like IOleInPlaceActiveObject.

IConnectionPoint has one member function called Advise. To this function the container passes the IDispatch interface that handles the control’s events. The control now has the IDispatch interface to which it sends events as they happen, and all of the requirements for both control and control container have been met.

Events, Methods, and Properties: A Typical Interaction

You can now bring all the objects and interfaces together to examine how controls and control containers interact in a simple scenario. This example will not exhaust all possibilities or questions you might have about controls and control containers, as it is only intended to clarify the roles of the various objects and their respective interfaces.

For this exercise, you will create a document in a control container that has two buttons, labeled “Button &1” and “Button &2” as shown in Figure 1.5. Note that each button has a single mnemonic character (“1” or “2”). Button 1 is a momentary button, while Button 2 is a push-on/push-off button.

�

Figure 1.5 A simple document in a control container with two button controls

For this example, you want to display a message box when either button is pressed; the message for Button 2 can also reflect the current state (up or down) of that button. This section will first look at the various characteristics of a sample button control after which you can see how it works during the design-time and run-time phases of development.

A Sample Button Control

In this example, the buttons are of CLSID_Button, with MYBUTTON.DLL being the in-process server DLL. This DLL implements a class factory object to create buttons, the button control itself, and contains a type library describing the button's properties, events, and methods.

For this example, the button has the following properties: text, face color, shadow color, highlight color, text color, and a flag indicating if the button is momentary (like a typical button) or of the push-on/push-off variety. We'll just assume that the button always uses the ambient font defined in the container for simplification.

his button only has one method, called Check(BOOL fCheck), which would either push a momentary button or toggle the state of an on/off button. The button has two events. Let's call the first ButtonClicked(int iState) which notifies the container that the button was clicked with the mouse with the new state of the button (up, down, or irrelevant for momentary buttons) in iState. The second event is ButtonDoubleClicked() which is generally necessary for design-time interaction.

To describe these properties, methods, and events, the control DLL must provide a type library that contains two custom “dispinterface” records which the MKTYPLIB.EXE tool creates from the following scripts:

dispinterface IButton

 {

 properties:

 [id(1)] BSTR Text;

 [id(2)] COLOR FaceColor;

 [id(3)] COLOR ShadowColor;

 [id(4)] COLOR HighlightColor;

 [id(5)] COLOR TextColor;

 [id(6)] int ButtonType;

 methods:

 [id(7)] BOOL Check(BOOL fCheck);

 }

dispinterface IButtonEvents

 {

 properties:

 //Event interfaces have no properties

 methods

 [id(1)] void ButtonClicked(int iState);

 [id(2)] void ButtonDoubleClicked(void);

 }

These two entries define two custom interfaces for this control, IButton and IButtonEvents, which are each assigned a unique IID such as IID_IButton and IID_IButtonEvents. Both interfaces are derived from IDispatch as are all such “dispinterface” entries.

Design-Time Interaction

You'll now place two button controls in a new Test Container document. This control container allows the user to select the type of control to place using the Insert OLE Control dialog box. When the user selects the type of control to place, the control is automatically placed and sized in the document. To create the document with two buttons as shown in Figure 1.5, you would do this same process twice.

Control Creation

When that rectangle is set, the container then calls the standard OLE 2 function OleCreate with the CLSID of the control in question. In this case you’re using CLSID_Button. As for any other compound document object, OLE looks up CLSID_Button in the registration database, finds BUTTON.DLL listed as the InProcServer for that CLSID, and loads that DLL, obtains its IClassFactory pointer, and asks that class factory to create a new instance of the button object. In return, the container gets an IOleObject interface pointer back. Before returning, however, OLE will query the object for its IPersistStorage interface and call IPersistStorage::InitNew to tell the control to initialize itself. OLE will also pass the container's IOleClientSite pointer to the control through IOleObject::SetClientSite.

Note that if you were reloading the object instead of creating it new, the same process occurs, except the container calls OleLoad instead of OleCreate and OLE calls IPersistStorage::Load or IPersistStream::Load instead of InitNew.

In either case, the container now has its first interface pointer to the control. It will tell the control of its extents through IOleObject::SetExtents, and will check if the object wants to be immediately activated in-place by calling IOleObject::Get-MiscStatus looking for the OLEMISC_ACTIVATEWHENVISIBLE flag. If this is set, the container activates the control by calling IOleObject::DoVerb with the standard verb OLEIVERB_INPLACEACTIVATE. This allows the control to become in-place active but not UI active, but means that the control's window is present in the container, if it wants a window at all.

If the control uses an in-place window, it will immediately draw itself with its loaded or default state. By default, this button always uses the font defined in the container's ambient properties. This ambient property has the dispatch ID DISPID_AMBIENT_FONT. The control will have the container's IOleClientSite interface on hand from a previous call to IOleObject::SetClientSite during the creation phase. In order to access the container's font property, the control now calls IOleClientSite::QueryInterface(IID_IDispatch...) which returns the container's ambient properties IDispatch according to the specifications. The control then calls IDispatch::Invoke with DISPID_AMBIENT_FONT which returns the necessary font information. The control can now draw itself with the correct font. If it wanted other information, such as default colors, it would call Invoke again with different IDs for those other ambient properties.

If the control is not using an in-place window it may still ask for the same properties from the container–it needs those properties to draw itself regardless of all other considerations. In this case, in absence of a control window, the container will call OleDraw, which eventually calls the control's IViewObject::Draw with the container's hDC and the control's rectangle in that hDC. Either way, the control is now visible to the end user.

Run Time Interaction

You've created a document with two buttons, labeled "Button &1" and "Button &2," respectively, where pressing either button will display an appropriate message for the event. At this point, the container is already connected to the control in every regard except for the IOleControl interface. Everything else: properties, methods, and the events IDispatch are already in place, and the control is already activated in-place as it needs to be.

The last interesting piece of this example are the mnemonics, "1" and "2," for the controls. When the container first enters run-time mode, it will query all controls for their IOleControl interfaces and call IOleControl::GetControlInfo to obtain each control's accelerators and keyboard flags. Now whenever a key is pressed, the container calls OleTranslateAccelerator first, which allows the control with the focus access to any keyboard messages before other controls. In this case, pressing the spacebar would press the button with the focus, which in turn changes the control's visuals and fires a ButtonClicked event. (Note that if the control does not use an in-place window, it would call the container's IAdviseSink::OnViewChanged, which would cause a repaint).

However, if you pressed ALT+2, OleTranslateAccelerator would say that the active control didn't use the keystroke, which normally means the container can do what it wants now. A control container, however, will now check through each control's accelerator table that it obtained from IOleControl::GetControlInfo. If it finds a match, as it will for Button 2 in this example, it calls that control's IOleControl::OnMnemonic, which again lets the control change state, repaint, and fire events as appropriate.

You have used OLE controls to successfully create a small example application that is indistinguishable from an application written using raw Windows function calls.

Summary of OLE Controls Architecture

“OLE Controls” is a set of extensions to the existing OLE 2 compound document specifications. It builds on the concepts of embedded objects, in-place activation, and OLE Automation to meet the specific interaction needs between controls and control container. Controls are more than just editable embedded objects. They transform end user events, like mouse clicks and keystrokes, into programmatic notifications to the container which can use those transformed events to execute other code.

A control is a standard in-place capable embedded object with several interfaces implemented in an in-process server DLL. In addition to the standard interfaces IOleObject, IDataObject, IViewObject, IPersistStorage, and IOleInPlaceActiveObject (IOleCache is optional), the control also implements IPersistStream, and IDispatch interface to handle its properties and methods, and the new interfaces IOleControl, IConnectionPointContainer, and IConnectionPoint, which handle control mnemonics and events. All of these interfaces combined meet all the needs of any control, even those that currently exist in Windows as simple window classes.

A control container is a standard in-place capable embedded object container with the IOleClientSite, IOleInPlaceSite, and IAdviseSink interfaces on its site objects, IOleInPlaceUIWindow on its document objects, and IOleInPlaceFrame on its frame object. To work properly with controls, the container also implements an IDispatch for ambient properties and an IDispatch for control events on its sites, along with the new IControlSite interface that serves as a notification sink for changes in a control's mnemonics.

All of these interfaces create the necessary standard mechanisms through which an arbitrary control container can use any arbitrary control to create any type of Windows application. Obviously, there is a lot of work involved in implementing all these interfaces, so Microsoft's Foundation Classes includes a Control Wizard to simplify the process of writing a control, by automatically giving you all the compound document code you need. All you have to do is add a few customizations where necessary, and you have a great new control that will serve you now and well into the future.

�
OLE Backgrounders, Technical Summaries, and Technology Comparisons

The following documents (as well as additional documents) can be ordered by contacting the Microsoft Developer Solutions Team at (800) 227-4679.

Strategic Whitepapers							Primary Audience

The Microsoft Object Technology Strategy (098-55163)			MIS, ISVs, System Consultants

	

Management Backgrounders 						Primary Audience

OLE Corporate Backgrounder (098-56457)					Users, MIS, ISVs, System Consultants

The Benefits of Component Software (098-56459)				Users, MIS, ISVs, System Consultants

OLE Documents (098-56352)						Users, MIS, ISVs, System Consultants

OLE Controls (098-55315)							MIS, ISVs, System Consultants

Open Systems: Technology Leadership and Collaboration (098-55058)		MIS, ISVs, System Consultants

	

Technology Comparisons							Primary Audience

OLE and OpenDoc: Information for Customers (098-56353)			MIS, ISVs, System Consultants

Object Strategies: How They Compare (098-55636)				MIS, ISVs, System Consultants

		

Technical Documents 							Primary Audience

OLE Documents Technical Backgrounder	(098-56453)			Developers

Microsoft OLE: Today and Tomorrow 	(098-56454)			Developers

What is an OLE 2 Application?		(098-56455)			Developers

Developing Applications with OLE 2	(098-56456)			Developers

OLE Control Specification Overview	(098-56458)			Developers

The Microsoft Foundation Classes (MFC) Whitepaper 			Developers

The OLE 2.0 Programmer’s Reference (ISBN 1-55615-628-6 and -629-4)	Developers

Inside OLE 2.0 (ISBN 1-55615-618-9)					Developers

<DO NOT DELETE THIS PARAGRAPH! NECESSARY FOR STYLES>

#########

Microsoft and the Microsoft logo, and Visual Basic are registered trademarks and Windows , Windows NT and Visual C++ are trademarks of Microsoft Corporation.

This document is furnished for informational purposes only and is subject to change without notice.

MICROSOFT MAKES NO WARRANTY, EXPRESS OR IMPLY WITH RESPECT TO THIS DOCUMENT.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to represent a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

Copyright �symbol 211 \f "Symbol"�� 1994 Microsoft Corporation. All rights reserved.

- more -

Microsoft OLE Controls - Preliminary Specification and Overview	Page �page �2�

- more -

- more -

