
WOSA
(Windows�symbol 228 \f "Symbol" \s 10 \h�� Open Services Architecture)
Extensions for Financial Services
A Client-Server Architecture for �Financial Enterprise Computing under Microsoft® Windows

PIN Keypad Device Class Interface
–––––––––––––––––––––––––––––––––––
Programmer’s Reference

Revision 1.11
February 3, 1995

Developed by the members of the Banking Solutions Vendor Council

�Revision History:
	1.0		May 24, 1993		Initial release of API and SPI specification
	1.01		June 11, 1993		Minor updates to BSVC member contact list
	1.1		April 14, 1994		Major updates and additions
	1.11	February 3, 1995	Separation of specification into separate documents for API/SPI and service class definitions �NOTE: Changes from Revision 1.1 are marked in this document. It is being reviewed by the members of the Banking Solutions Vendor Council, and may be revised again in the near future. Send email to bsvc@microsoft.com for information on the latest available version.

The information in this document was contributed by members of the Banking Solutions Vendor Council and represents its current views on the issues discussed as of the date of publication. It is furnished for informational purposes only and is subject to change without notice. The Banking Solutions Vendor Council makes no warranty, express or implied, with respect to this document.

Microsoft is a registered trademark, and Windows and Windows NT are trademarks of Microsoft Corporation.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

IBM and NetView are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark of UNIX Systems Laboratories.
�Table of Contents
� TOC \o "1-4" �1. Introduction	� GOTOBUTTON _Toc316400934 � PAGEREF _Toc316400934 �1��
1.1 WOSA/XFS Service-Specific Programming	� GOTOBUTTON _Toc316400935 � PAGEREF _Toc316400935 �1��
2. Personal Identification Number (PIN) Keypads	� GOTOBUTTON _Toc316400936 � PAGEREF _Toc316400936 �3��
3. Info Commands	� GOTOBUTTON _Toc316400937 � PAGEREF _Toc316400937 �4��
3.1 WFS_INF_PIN_STATUS	� GOTOBUTTON _Toc316400938 � PAGEREF _Toc316400938 �4��
3.2 WFS_INF_PIN_CAPABILITIES	� GOTOBUTTON _Toc316400939 � PAGEREF _Toc316400939 �5��
3.4 WFS_INF_PIN_KEY_DETAIL	� GOTOBUTTON _Toc316400940 � PAGEREF _Toc316400940 �7��
4. Execute Commands	� GOTOBUTTON _Toc316400941 � PAGEREF _Toc316400941 �9��
4.1 WFS_CMD_PIN_CRYPT	� GOTOBUTTON _Toc316400942 � PAGEREF _Toc316400942 �9��
4.2 WFS_CMD_PIN_GENERATE_KEY	� GOTOBUTTON _Toc316400943 � PAGEREF _Toc316400943 �10��
4.3 WFS_CMD_PIN_IMPORT_KEY	� GOTOBUTTON _Toc316400944 � PAGEREF _Toc316400944 �11��
4.4 WFS_CMD_PIN_GET_PIN	� GOTOBUTTON _Toc316400945 � PAGEREF _Toc316400945 �14��
4.5 WFS_CMD_PIN_VALIDATE	� GOTOBUTTON _Toc316400946 � PAGEREF _Toc316400946 �15��
4.6 WFS_CMD_PIN_GET_PIN BLOCK	� GOTOBUTTON _Toc316400947 � PAGEREF _Toc316400947 �17��
4.7 WFS_CMD_PIN_GET_DATA	� GOTOBUTTON _Toc316400948 � PAGEREF _Toc316400948 �18��
4.8 WFS_CMD_PIN_INITIALIZATION	� GOTOBUTTON _Toc316400949 � PAGEREF _Toc316400949 �19��
4.9 WFS_CMD_PIN_DISPLAY	� GOTOBUTTON _Toc316400950 � PAGEREF _Toc316400950 �20��
5. Messages	� GOTOBUTTON _Toc316400951 � PAGEREF _Toc316400951 �21��
5.1 WFS_EXEE_PIN_DIGIT	� GOTOBUTTON _Toc316400952 � PAGEREF _Toc316400952 �21��
6. Form Description	� GOTOBUTTON _Toc316400953 � PAGEREF _Toc316400953 �22��
��Introduction
This is Revision 1.11 of the service class specifications for personal identification number (PIN) keypads; part of the Windows Open Services Architecture, Extensions for Financial Services (WOSA/XFS).

NOTE: This document is being reviewed by the members of the Banking Solutions Vendor Council, and may be revised again in the near future. Send email to bsvc@microsoft.com for information on the latest available version.

The other relevant specifications are the overall API/SPI specification and the other four service class specifications (banking printers, magnetic stripe readers/writers, cash dispensers and check readers/scanners) that have been defined thus far. These specifications are part of the Software Development Kit (SDK), which supplies the components and tools to allow the implementation of compliant applications and services. These specifications are distributed to the financial services community for continuing review and comment, to allow them to provide input to the ongoing enhancement of WOSA/XFS.

The members of the Banking Solutions Vendor Council encourage banks and other financial services companies world-wide, as well as their technology suppliers, to get updated information on the status of the project, and to submit comments, questions, and requests for the specification and SDK. This may be done via one of the Council members or on CompuServe—see the WOSA/XFS message section and library in the Windows Extensions forum (“GO WINEXT”). Note that the most recent versions of the WOSA/XFS specifications may be downloaded from this library.

The Banking Solutions Vendor Council is accepting applications for affiliate membership; interested parties should contact one of the Council members, post a message in the WOSA/XFS message section on CompuServe, or send email to bsvc@microsoft.com.

WOSA/XFS Service-Specific Programming
The service classes are defined by their service-specific commands and the associated data structures, error codes, messages, etc. These commands are used to request functions that are specific to one or more classes of service providers, but not all of them, and therefore are not in included in the common API for basic or administration functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the command is as similar as possible across all services, since a major objective of the WOSA Extensions for Financial Services is to standardize command codes and structures for the broadest variety of services. For example, using the WFSExecute function, the commands to read data from various services are as similar as possible to each other in their syntax and data structures.

In general, the specific command set for a service class is defined as the union of the specific capabilities likely to be provided by the developers of the services of that class; thus any particular device will normally support only a subset of the defined command set.

There are three cases in which a service provider may receive a service-specific command that it does not support:
�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is not considered to be fundamental to the service. In this case, the service provider returns a successful completion, but does no operation. An example would be a request from an application to turn on a control indicator on a passbook printer; the service provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the service provider does no operation and returns a successful completion to the application.
�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is considered to be fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An example would be a request from an application to a cash dispenser to dispense coins; the service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.
�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is not defined for the class of service providers by the WOSA/XFS specification. In this case, a WFS_ERR_INVALID_COMMAND error is returned to the calling application .

This design allows implementation of applications that can be used with a range of services that provide differing subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error returns to make decisions as to how to use the service.

�Personal Identification Number (PIN) Keypads
This section describes the application program interface for personal identification number keypads (PIN pads) and other encryption/decryption devices. This description includes definitions of the service-specific commands that can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This section describes the general interface for the verification of magnetic stripe card devices, including the following functions:
�\SYMBOL 183 \f "Symbol" \s 10 \h�	Administration of encryption devices
�\SYMBOL 183 \f "Symbol" \s 10 \h�	Loading of encryption keys
�\SYMBOL 183 \f "Symbol" \s 10 \h�	Encryption / decryption
�\SYMBOL 183 \f "Symbol" \s 10 \h�	Entering Personal Identification Numbers (PINs)
�\SYMBOL 183 \f "Symbol" \s 10 \h�	PIN verification
�\SYMBOL 183 \f "Symbol" \s 10 \h�	PIN block generation (encrypted PIN)
�\SYMBOL 183 \f "Symbol" \s 10 \h�	Generation of encryption keys
�\SYMBOL 183 \f "Symbol" \s 10 \h�	Decryption of data
�\SYMBOL 183 \f "Symbol" \s 10 \h�	Clear text data handling

Although current PIN pad encryption and the necessary parameters use the Data Encryption Standard (DES) algorithm from the U.S. National Bureau of Standards (NBS), now known as National Institute of Standards and Technology (NIST), this interface is designed so that other encryption algorithms can be used in the future. Currently only symmetrical keys are used.

Important Notes:
This revision of this specification does not define key management procedures; key management is vendor-specific.
Keyspace management is customer-specific, and is therefore handled by vendor-specific mechanisms.

�Info Commands
WFS_INF_PIN_STATUS
Description	The WFS_INF_PIN_STATUS command returns several kinds of status information.
Input Param	None.
Output Param	LPWFSPINSTATUS	lpStatus;
typedef struct _wfs_pin_status�	{�	WORD			fwDevice;�	WORD			fwEncStat;�	WORD			fwKeyStat;�	LPSTR			lpszExtra;	�	} WFSPINSTATUS, * LPWFSPINSTATUS;
	fwDevice�Specifies the state of the PIN pad device as one of the following flags:
Value	Meaning
WFS_PIN_DEVONLINE	The device is online.
WFS_PIN_DEVOFFLINE	The device is offline.
WFS_PIN_DEVPOWEROFF	The device is powered off.
WFS_PIN_DEVBUSY	The device is busy processing a request.
WFS_PIN_DEVNODEVICE	There is no device connected.
WFS_PIN_DEVHWERROR	The device is inoperable due to a hardware error.
WFS_PIN_DEVUSERERROR	The device is inoperable due to interference by a user.
	fwEncStat�Specifies the state of the PIN pad unit as one of the following flags:
Value	Meaning
WFS_PIN_ENCNOTREADY	The encryption module is not ready
WFS_PIN_ENCNOTINITIALIZED	The encryption module is not initialized (no master key loaded)
WFS_PIN_ENCINITIALIZED	The encryption module is initialized and master key (where required) is loaded; ready to load other keys
WFS_PIN_ENCREADY	The encryption module is initialized and ready (at least one key is loaded into the encryption module)
WFS_PIN_ENCBUSY	The encryption module is busy (implies that the device is busy)
WFS_PIN_ENCUNDEFINED	The encryption module state is undefined
	fwKeyStat�Specifies the state of the key as one of the following flags:
Value	Meaning
WFS_PIN_KEYIMPORTED	key is imported
WFS_PIN_KEYNOVALUE	key has no value
	lpszExtra�Specifies a list of vendor-specific, or any other extended, information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string will be null-terminated, with the final string terminating with two null characters.
Error Codes	None.
Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.
�WFS_INF_PIN_CAPABILITIES
Description	This command is used to retrieve the capabilities of the PIN pad.
Input Param	None.
Output Param	LPWFSPINCAPS	lpCaps;
typedef struct _wfs_pin_caps�	{�	WORD			wClass;�	WORD			fwType;�	BOOL			bCompound;�	USHORT			usKeyNum;�	WORD			wAlgorithms;�	WORD			wPinFormats;�	WORD			wDisplay;�	WORD			wKeyType;�	BOOL			bIDdConnect;�	LPSTR			lpsValidationAlgorithms;�	LPSTR			lpsExtra;	�	} WFSPINCAPS, * LPWFSPINCAPS;
	wClass�Specifies the logical service class, value is:�WFS_SERVICE_CLASS_PIN
	fwType�Specifies the type of the PIN pad security module as a combinationone of the following flags:
Value	Meaning
WFS_PIN_TYPEEPP	electronic PIN pad
WFS_PIN_TYPEEDM	encryption/decryption module
	bCompound�Specifies whether the logical device is part of a compound physical device and is either TRUE or FALSE.
	usKeyNum�Number of the keys which can be stored in the encryption/decryption module.
	wAlgorithms�Supported NBS encryption modes; a combination of the following flags:
Value	Meaning
WFS_PIN_CRYPTDESECB	Electronic Code Book
WFS_PIN_CRYPTDESCBC	Cipher Block Chaining
WFS_PIN_CRYPTDESMAC	MAC calculation using CBC
WFS_PIN_CRYPTDESCFB	Cipher Feed Back
WFS_PIN_CRYPTRSA	RSA Encryption
WFS_PIN_CRYPTECMA	ECMA Encryption
	wPinFormats�Supported NBS encryption modes; a combination of the following flags:
Value	Meaning
WFS_PIN_FORM3624	PIN left justified, filled with padding characters, PIN length 4-16 digits
WFS_PIN_FORMANSI	PIN is preceded by 0x00 and the length of the PIN (0x04 to 0x0C), filled with padding character 0x0F to the right, PIN length 4-12 digits, XORed with PAN (Primary Account Number, minimum 12 digits without check number)
WFS_PIN_FORMISO0	PIN is preceded by 0x00 and the length of the PIN (0x04 to 0x0C), filled with padding character 0x0F to the right, PIN length 4-12 digits, XORed with PAN (Primary Account Number, no minimum length specified, missing digits are filled with 0x00)
WFS_PIN_FORMISO1	PIN is preceded by 0x01 and the length of the PIN (0x04 to 0x0C), padding characters are taken from a transaction field (10 digits)	
WFS_PIN_FORMECI2	(similar to WFS_PIN_FORM3624), PIN only 4 digits
WFS_PIN_FORMECI3	PIN is preceded by the length (digit), PIN length 4-6 digits, padded with 0x00
WFS_PIN_FORMVISA	same as WFS_PIN_FORMECI3
WFS_PIN_FORMDIEBOLD	
WFS_PIN_FORM3624	similar to WFS_PIN_FORMECI2
WFS_PIN_FORMANSI	similar to WFS_PIN_FORMISO0
WFS_PIN_FORMISO0	similar to WFS_PIN_FORMANSI
WFS_PIN_FORMISO1		
WFS_PIN_FORMECI2	similar to WFS_PIN_FORM3624
WFS_PIN_FORMECI3	similar to WFS_PIN_FORMVISA
WFS_PIN_FORMVISA	similar to WFS_PIN_FORMECI3
WFS_PIN_FORMDIEBOLD	
	wDisplay�Specifies the type of the display used in the PIN pad module as one of the following flags:
Value	Meaning
WFS_PIN_DISPNONE	no display unit
WFS_PIN_DISPLEDTHROUGH	lights next to texst guide user
WFS_PIN_DISPDISPLAY	a real display is available (this doesn’t apply for self-service)
	wKeyType�Specifies the type of key returned by the PIN pad module as one of the following flags:
Value	Meaning
WFS_PIN_KEYNUMERIC	PIN pad has only numeric keys
WFS_PIN_KEYALPHANUMERIC	PIN pad can return alphabetic and numeric keys
	bIDdConnect�Specifies whether the PIN pad is directly connected to the ID card unit, eliminating the need to pass stripe information. (The use of this capability is not yet defined.)
	lpsValidationAlgorithms�Points to a list of algorithms for PIN validation supported by the service. The information is returned as a series of strings. Each string is null-terminated, with the final string terminating with two null characters.
	lpsExtra�Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.
Error Codes	None.
Comments	Applications which require or expect specific information to be present in the lpsExtra parameter may not be device or vendor-independent.

�WFS_INF_PIN_KEY_LIST
Description	This command returns a list of available key names.
Input Param	None.
Output Param	LPSTR		lpsKeyNames;
	lpsKeyNames�Points to a list of null-terminated key names, with the final name terminating with two null characters.
Error Codes	None.

WFS_INF_PIN_KEY_DETAIL
Description	This command returnes detailed information about the keys in the encryption module.describes how specific information can be obtained about a key.
Input Param	LPSTR lpsKeyName; name of the key for which detailed information is requested. If NULL, detailed information about all the keys in the encryption module is returned.
Output Param	LPWFSPINKEYDETAIL	lpKeyDetail;
typedef struct _wfs_pin_key_detail�	{�	LPSTR			lpsKeyName;�	WORD			wType;�	WORD			fwUse;�	LPSTR			lpsDevName;�	WORD			wStatus;�	} WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;
	lpsKeyName�Specifies the name of the key.
	wType�Specifies the type of the key used in the PIN pad module as one of the following flags:
Value	Meaning
WFS_PIN_KEYCLEAR	unencrypted key
WFS_PIN_KEYENCRYPTED	active key is encrypted by a key encryption key
WFS_PIN_KEYTRIPLEACTIVE	triple encrypted active key
WFS_PIN_KEYTRIPLEMASTER	triple encrypted master key
WFS_PIN_KEYENCKEY	key used as key encryption key
	fwUse�Specifies the type of access for which the key is used as a combination of the following flags:
Value	Meaning
WFS_PIN_USECRYPT	key can be used for encryptyion/decryption
WFS_PIN_USEFUNCTION	key can be used for PIN functions
WFS_PIN_USEMACING	key can be used for MACing
WFS_PIN_USENOIMPORT	key can not be imported, it can only be generated
WFS_PIN_USEKEYENCKEY	key is used as key encryption key
WFS_PIN_USENODUPLICATE	key can be imported only once
WFS_PIN_USEIMPORT	key can be imported
	lpsDevName�Name of the security module in which the key is stored.
	wStatus�Specifies the state of the key as one of the following flags:
Value	Meaning
WFS_PIN_KEYLOADEDIMPORTED	key is loadedimported
WFS_PIN_KEYNOVALUE	key has no value
Error Codes	The following errors can be returned:
Value	Meaning
WFS_ERR_PIN_KEYNOTFOUND	The specified key name is not found.
�Execute Commands
WFS_CMD_PIN_CRYPT
Description	The input data is either encrypted or decrypted using the specified or selected encryption mode. The available modes are: Electronic Code Book (ECB), Cipher Block Chaining (CBC), and Cipher FeedBack (CFB). These modes use either a "Clear" key (i.e. a key that has been stored in the encryption module in clear text), an Encrypted key (i.e. a key that has been stored in the encryption module in an encrypted form that needs to be decrypted with a "Key Encryption Key" before being used) or an "Indirect" key (i.e. a key that is encrypted with a key stored in the encryption module, in this case the value of the encrypted key is passed at the interface).
This command can also be used for Message Authentication Code generation (i.e. MACing). For this purpose, it is possible to specify how the data is formatted before the encryption.
The input data can be expanded with a fill-character to the necessary length (mandated by the encryption algorithm being used).
Input Param	LPWFSPINCRYPT	lpCrypt;
typedef struct _wfs_pin_crypt�	{�	WORD				wMode;�	LPSTR				lpsKey;�	LPWFSXDATA		lpxKeyEncKey;�	WORD				wType;�	WORD				wAlgorithm;�	LPWFSXDATA		lpxStartValue;�	BYTE				bPadding;�	BOOL				bCompression;�	LPWFSXDATA		lpxCryptData;�	} WFSPINCRYPT, * LPWFSPINCRYPT;
	wMode�Specifies whether to encrypt or decrypt, values are one of the following:
Value	Meaning
WFS_PIN_MODEENCRYPT	encrypt with key
WFS_PIN_MODEDECRYPT	decrypt with key
	lpsKey�Specifies the name of the stored key.
	lpxKeyEncKey�If NULL, lpsKey is used directly for enc/decription. Otherwise, lpsKey is used to decrypt the encrypted key passed in lpxKeyEncKey and the result is used for encryption/decryption.�Value of "indirect" key (for wType == WFS_PIN_KEYENCKEY).
	wType�Specifies the type of key used, values are one of the following:
Value	Meaning
WFS_PIN_KEYCLEAR	unencrypted key
WFS_PIN_KEYENCRYPTED	active key is encrypted by a key encryption key
WFS_PIN_KEYTRIPLEACTIVE	triple encrypted active key
WFS_PIN_KEYTRIPLEMASTER	triple encrypted master key
WFS_PIN_KEYENCKEY	the key to use is passed in encrypted form in lpxKeyEncKey, encrypted with key lpsKey
wAlgorithms�Specifies the encryption algorithm. Possible values are those described in WFS_INF_PIN_CAPABILITIES.
Value	Meaning
WFS_PIN_CRYPTDESECB	Electronic Code Book
WFS_PIN_CRYPTDESCBC	Cipher Block Chaining
WFS_PIN_CRYPTDESCFB	Cipher Feed Back
WFS_PIN_CRYPTRSA	RSA Encryption
WFS_PIN_CRYPTECMA	ECMA Encryption
	lpxStartValue�DES initialization vector for CBC / CFB encryption and MACing. If thiselse parameter is NULL, the default value for CBC / CFB / MAC is 16 hex digits 0x0.
	bPadding�Specifies the padding character for encryption.
	bCompression�Specifies whether data is to be compressed (blanks removed) before building the MAC. If bCompression is 0x00 no compression is selected, otherwise bCompression holds the representation of the blank character in the actual code table.
	lpxData�Pointer to the data to be encrypted, or decrypted, or MACed.
Output Param	LPWFSXDATA	lpxCryptData;
	lpxCryptData�Pointer to the encrypted or decrypted data, or MAC value.
Error Codes	The following errors can be returned:
Value	Meaning
WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.
WFS_ERR_PIN_KEYNOVALUE	The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION	The specified use is not supported by this key.
WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED	The encription module is either not initialized or not ready for any vendor specific reason.
WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.
Comments	The datatype LPWFSXDATA is used to pass hexadecimal data and is defined as follows :
typedef struct _wfs_hex_data�	{�	USHORT		usLength;�	LPBYTE		lpbData;�	} WFSXDATA, *LPWFSXDATA;

WFS_CMD_PIN_GENERATE_KEY
Description	This function can be used to generate aeither a clear text key or an encrypted key. A key can be generated only when the application passes a previously-loaded key-owner identification (see WFS_CMD_PIN_ADMINISTRATION). If the generated key should be returned to the calling application, an additional key encryption key must be specified. When an encrypted key is generated, the "Key Encryption Key" must be one known to the PIN pad and previously stored in the encryption module. The generated key is then returned encrypted with this key. The generated key can then be stored directly in the encryption module for further use. Key values are hex values preceeded by their length (LPWFSXDATA).
Input Param	LPWFSPINGENERATE	lpGenerate;
typedef struct _wfs_pin_generate�	{�	WORD			wMode;�	BOOL			bLoadKey;�	LPSTR			lpsKey;�	LPSTR			lpsEncKey;�	LPWFSXDATA	lpxIdent;�	} WFSPINGENERATE, * LPWFSPINGENERATE;
	wMode�Specifies whether to encrypt or decrypt, values are one of the following:
Value	Meaning
WFS_PIN_MODEENCRYPT	Generate new key using the "Key Encryption Key" passed in lpsKey
WFS_PIN_MODERANDOM	Generate random key
	bLoadKey�Specifies whether the generated key will be stored at location indicated by lpsKey (bLoadKey == TRUE) or is returned in the output parameter of this command (bLoadKey == FALSE).
	lpsKey�Specifies the name where the generated key will be stored. If bLoadKey is set to FALSE this pointer will be ignored.
	lpsEncKey�Specifies the name of "Key Encryption Key" to be used to encrypt the generated key before returning lpxKeyValue. If NULL, lpxKeyValue will also be NULL.
Specifies the name of "Key Encryption Key" to be used to generate encrypted key, when wMode is set to WFS_PIN_MODEENCRYPT.
	lpxIdent�Specifies the previously loaded key owner identification, NULL if device does not have that capability.
Output Param	LPWFSXDATA	lpxKeyValue;
	lpxKeyValue�Points to the encrypted/decrypted data.
Error Codes	The following errors can be returned:
Value	Meaning
WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.
WFS_ERR_PIN_KEYNOVALUE	The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION	The specified use is not supported by this key.
WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED	The encription module is either not initialized or not ready for any vendor specific reason.
WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.

WFS_CMD_PIN_IMPORT_KEY
Description	The key passed by the application is loaded in the encryption module. A key can be loaded only when the application passes a previously-loaded key-owner identification (see WFS_ENC_ADMINISTRATION). The key can be passed in clear text mode or encrypted with an accompanying “key encryption key”. If more than one key is used for encryption a format defining the encryption is specified. The format references an entry in the vendor specific key registration database.
Input Param	LPWFSPINIMPORT	lpImport;
typedef struct _wfs_pin_import�	{�	LPSTR				lpsKey;�	LPSTR				lpsEncKey;�	LPWFSXDATA		lpxIdent;�	LPWFSXDATA		lpxValue;�	} WFSPINIMPORT, * LPWFSPINIMPORT;
	lpsKey�Specifies the name of key being loaded, if NULL then key is not encrypted.
	lpsEncKey�If lpsEncKey is NULL the key is loaded directly into the encryption module. Otherwise, lpsEncKey specifies a key name or a format name which were used to encrypt the key string passed in lpxValue.Specifies the name of “key encryption key”, used to decrypt key being loaded.
	lpxIdent�Specifies the previously loaded key owner identification, NULL if device does not have that capability.
	lpxValue�Specifies the value of key to be loaded.
Output Param	LPWFSXDATA	lpxKVC;
	lpxKVC�pointer to the key that can be used for verification of the loaded key, NULL if device does not have that capability.
Error Codes	The following errors can be returned:
Value	Meaning
WFS_ERR_PIN_KEYNOTFOUND	The specified key encryption key was not foundloaded.
WFS_ERR_PIN_KEYNOVALUE	The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION	The specified use is not supported by this key.
WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED	The encription module is either not initialized or not ready for any vendor specific reason.
WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.
WFS_ERR_PIN_INVALIDID	The ID passed was not valid.
WFS_ERR_PIN_DUPLICATEKEY	A key exists with that name and cannot be overwritten.

WFS_CMD_PIN_TRANSLATE
Description	The input data is either encrypted or decrypted using the specified or selected NBS DES mode. The available modes are: Electronic Code Book (ECB), Cipher Block Chaining (CBC), and Cipher FeedBack (CFB). These modes use either a “direct” key (i.e. a key that has been stored in the encryption module in clear text), an “encrypted” key (i.e. a key that has been stored in the encryption module in an encrypted form that needs to be decrypted with a “key encryption key” before being used) or an “indirect” key (i.e. a key that is encrypted with a key stored in the encryption module, in this case the value of the encrypted key is passed at the interface).
Input Param	LPWFSPINTRANSLATE	lpTranslate;
typedef struct _wfs_pin_translate�	{�	LPSTR				lpsDecKey;�	LPWFSXDATA		lpxDecKeyValue;�	WORD				wDecType;�	WORD				wDecAlgorithm;�	LPWFSXDATA		lpxDecStartValue;�	LPSTR				lpsEncKey;�	LPWFSXDATA		lpxEncKeyValue;�	WORD				wEncType;�	WORD				wEncAlgorithm;�	LPWFSXDATA		lpxEncStartValue;�	LPWFSXDATA		lpxData;�	} WFSPINTRANSLATE, * LPWFSPINTRANSLATE;
	lpsDecKey�Specifies the name of the key being used for decryption.
	lpxDecKeyValue�Value of “indirect” key (only for wDecType == WFS_PIN_KEYENCKEY, else NULL)
	wDecType�Specifies the type of the key used in the decryption as one of the following flags:�(see command WFS_INF_PIN_KEY_DETAIL)
	wDecAlgorithm�Specifies the algorithm used for decryption. Values are:�(see command WFS_INF_PIN_CAPABILITIES)
	lpxDecStartValue�DES initialization vector for CBC / CFB encryption and MACing, else parameter is NULL.
	lpsEncKey�Specifies the name of key being used for encryption.
	lpxEncKeyValue�Value for “indirect” key (only for wEncType == WFS_PIN_KEYENCKEY, else NULL).
	wEncType�Specifies the type of the key used in the encryption as one of the following flags:�(see wDecType)
	wEncAlgorithm�Specifies the algorithm used for encryption. Values are: (see wDecAlgorithm)
	lpxEncStartValue�DES initialization vector for CBC / CFB encryption, else parameter is NULL.
	lpxData�Pointer to the data to be encrypted/decrypted.
Output Param	LPWFSXDATA	lpxTransData;
	lpxTransData�pointer to the encrypted/decrypted data.
Error Codes	The following errors can be returned:
Value	Meaning
WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.
WFS_ERR_PIN_INVALIDKEY	The specified key is invalid.
WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.
WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.
WFS_ERR_PIN_INVALIDID	The ID passed was not valid.
WFS_CMD_PIN_GET_PIN
Description	This function stores the PIN entry via the PIN pad. From the point this function is invoked, all PIN digit entries are retained in the EPP (Electronic PIN pad) device, and not passed to the application. For each PIN digit or the <Correct> key entered an execute notification event is sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display). The application is not informed of the value entered, the execute notification only informs that a key has been depressed.
	When the maximum number of PIN digits is entered, or the <Enter> key is pressed after the minimum number of PIN digits is entered, a WFS_EXEC_COMPLETE event message is sent to the application. Once this notification is received, the output parameters are then returned to the application from this function call. The depression of the <Cancel> key is also passed to the application via the WFS_EXEC_COMPLETE event message.
Input Param	LPWFSPINGETPIN	lpGetPin;
typedef struct _wfs_pin_getpin�	{�	USHORT		usMaxLen;�	USHORT		usMinLen;�	BOOL			bLeadingZero;�	BOOL			bAutoEnd;�	CHAR			cEcho;�	} WFSPINGETPIN, * LPWFSPINGETPIN;
	usMaxLen�Specifies the maximum PIN length.
	usMinLen�Specifies the minimum PIN length.
	bLeadingZero�If set to TRUE leading zeros are permitted.
	bAutoEnd�If set to TRUE the PIN entry is automatically ended when the maximum number of digits are entered. Otherwise, the PIN entry must be terminated by an enter, correct or cancel key, no matter how many digits are entered.
	cEcho�Specifies the character to be echoed on the display.
Output Param	LPWFSPINENTRY	lpEntry;
typedef struct _wfs_pin_entry�	{�	USHORT		usDigits;�	WORD			wCompletion;�	} WFSPINENTRY, * LPWFSPINENTRY;
	usDigits�Specifies the number of digits/characters entered.
	wCompletion�Specifies the reason for completion of the entry. Possible values are:
Value	Meaning
WFS_PIN_COMPAUTO	command terminated automatically, because maximum PIN length was reached.
WFS_PIN_COMPENTER	the enter key was pressed
WFS_PIN_COMPCANCEL	the cancel key was pressed
WFS_PIN_COMPZERO	user entered a leading zero
WFS_PIN_COMPMAXLEN	maximum PIN length was exceeded
WFS_PIN_COMPMINLEN	minimum PIN length was violated
WFS_PIN_COMPCONTINUE	input continues (this value is only used in the execute event WFS_EXEE_PIN_DIGIT)
WFS_PIN_COMPCORRECT	all input was cleared (this value is only used in the execute event WFS_EXEE_PIN_DIGIT)
WFS_PIN_COMPBACKSPACE	last input digit was cleared (this value is only used in the execute event WFS_EXEE_PIN_DIGIT)
Error Codes	None.
Execute Events	WFS_EXEE_PIN_DIGIT

WFS_CMD_PIN_VALIDATE
Description	The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the requisite data specified by the validation algorithm and verified for correctness. The result of the verification is returned to the application. The PIN block algorithm can be designated as direct (the institution PIN key in the encryption module is in clear text mode) or indirect (the institution PIN key must be decrypted by a specified master key), or "double indirect" (the institution PIN key must be decrypted with an encrypted master key which must first be decrypted by a key encryption key or KEK). In case of indirect and double indirect the encrypted key value can be passed at the interface instead of being stored in the encryption module.This command will clear the PIN.
	This command is also used in those cases where a remote PIN validation generates an encrypted authorization code to be verified locally, or where a remote PIN validation does not generate an encrypted authorization code, but the dispenser device requires a signal from the security module for presenting bills.

Input Param	LPWFSPINVALIDATE	lpValidate;
typedef struct _wfs_pin_validate�	{�	LPSTR			lpsValidationData;�	LPSTR			lpsValidationAlgorithm;�	LPSTR			lpsOffsetStr;�	WORD			wDir;�	BYTE			bPadding;�	WORD			wFormat;�	USHORT			usPosition;�	USHORT			usValDigits;�	LPSTR			lpsKey;�	LPSTR			lpsDecTable;�	LPSTR			lpsDecKey;�	LPSTR			lpsEncKey;�	LPWFSXDATA	lpxEncKeyValue;�	LPWFSXDATA	lpxIdent;�	} WFSPINVALIDATE, * LPWFSPINVALIDATE;
	lpsValidationData�Information about the customer (usually from a magnetic card). Alternatively, information from the host when the function is used for verification of remote authorization code (NULL when no authorization code is available).

	lpsValidationAlgorithm�Name of the algorithm that will be used for validation of the PIN. A list of supported algorithms is returned by the WFS_INF_PIN_CAPABILITIES command. See Section 6, Form Description.
	lpsOffsetStr�Offset for the PIN block; if no offset then NULL is required.
	wDir�Specifies from which direction from the offset the PIN is compared, possible values are:
Value	Meaning
WFS_PIN_DIRRIGHT	comparison of the calculated PIN begins from the right
WFS_PIN_DIRLEFT	comparison of the calculated PIN begins from the left
	bPadding�Specifies the padding character.
	wFormat�Specifies the format of the PIN block. Possible values are:�(see command WFS_INF_PIN_CAPABILITIES)
	usPosition�Specifies the offset of the PIN in the encrypted value.
	usValDigits�Number of PIN digits to be used for validation.
	lpsKey�Name of the active key
	lpsDecTable�Specifies the decimalization table to replace values greater than 10 in each 4 bit nibble.
	lpsDecKey�Specifies the key used to decrypt the active key (or the lpxEncKeyValue).
	lpsKeyEncKey�Specifies the key encryption key.
	lpxEncKeyValue�Value for "Indirect" key (only with lpxKeyEncKey != NULL) or "double indirect" key (only with lpxDecKey != NULL and lpxKeyEncKey != N ULL)
	lpxIdent�Specifies the previously loaded key owner identification, NULL if device does not have that capability. This parameter is used for verification of the remote authorization code.
Output Param	LPBOOL	 lpbResult;
	lpbResult�Pointer to a boolean value which sSpecifies whether the PIN is correct or not.
Comments	The decimalization table should be an array of characters. The first byte contains the value to substitute for 10, the second byte for 11 and so on until 16.
Error Codes	The following errors can be returned:
Value	Meaning
WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.
WFS_ERR_PIN_INVALIDKEY	The specified key is invalid.
WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED	The encryption module is either not initialized or not ready for any vendor specific reason.
WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.
WFS_ERR_PIN_INVALIDID	The ID passed was not valid.
WFS_ERR_PIN_NOPIN	PIN has not been entered.

WFS_CMD_PIN_GET_PIN BLOCK
Description	This function takes the account information and a PIN entered by the user to build a formatted PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a magnetic card or sent to a host. The PIN block can be calculated using one of the formats specified in the WFS_INF_PIN_CAPABILITIES command. following standards: 3624-, ANSI-, ECI-2, ECI-3, VISA, ISO-0, or ISO-1. This command clears the PIN.
Input Param	LPWFSPINBLOCK	lpPinBlock;
typedef struct _wfs_pin_block�	{�	UCHAR			uchPVKI;�	LPSTR			lpsCustomerData;�	LPSTR			lpsXORData;�	BYTE			bPadding;�	WORD			wFormat;�	LPSTR			lpsDecTable;�	LPSTR			lpsKey;�	LPSTR			lpsKeyEncKey;�	} WFSPINBLOCK, * LPWFSPINBLOCK;
	uchPVKI�Specifies the character key indicator for the VISA algorithm.
	lpsCustomerData�Used for ANSI, ISO-0 and ISO-1 algorithm to build the formatted PIN., For ANSI and ISO-0 the PAN (Prinary Account Number) is used, for ISO-1 a ten digit transaction field is required. Iif not used a NULL is required.
	lpsXORData�If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to modify the result of the first encryption by an XOR-operation.
	bPadding�Specifies the padding character.
	wFormat�Specifies the format of the PIN block. Possible values are:�(see command WFS_INF_PIN_CAPABILITIES)
	lpsDecTable�Specifies the decimalization table to replace values greater than 10 in each 4 bit nibble.
	lpsKey�Specifies the key used to encrypt the formatted pin for the first time, NULL if no encryption is required.
	lpsEncKey�Specifies the key used to format the once encrypted formatted PIN, NULL if no second encryption required..
Output Param	LPWFSXDATA	lpxPinBlock;
	lpxPinBlock�Pointer to the encrypted/decrypted data.
Error Codes	The following errors can be returned:
Value	Meaning
WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.
WFS_ERR_PIN_KEYNOVALUE	The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION	The specified use is not supported by this key.
WFS_ERR_PIN_INVALIDKEY	The specified key is invalid.
WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED	The encryption module is either not initialized or not ready for any vendor specific reason.
WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.
WFS_ERR_PIN_INVALIDID	The ID passed was not valid.

WFS_CMD_PIN_GET_DATA
Description	This function is used to return keystrokes entered on the PIN pad by the user. It will automatically set the PIN pad to echo characters on the display if there is a display. For each keystroke an execute notification event is sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display). The value of the key depressed is returned to the application.
	When the maximum number of PIN digits is entered, or, the <Enter> key is depressed after the minimum number of PIN digits is entered, a WFS_EXEC_COMPLETE event message is sent to the application. Once this notification is received, the output parameters are then returned to the application from this function call. The depression of the <Cancel> key is also passed to the application via the WFS_EXEC_COMPLETE event message.
Input Param	LPWFSPINGETDATA	lpPinGetData;
typedef struct _wfs_pin_getdata�	{�	USHORT		usMaxLen;�	USHORT		usMinLen;�	BOOL			bNumeric;�	BOOL			bAutoEnd;�	} WFSPINGETDATA, * LPWFSPINGETDATA;
	usMaxLen�Specifies the maximum data length.
	usMinLen�Specifies the minimum data length.
	bNumeric�If set to TRUE, only numeric keys are allowed to be input, otherwise also alpha characters.
	bAutoEnd�If set to TRUE the input is automatically ended when the maximum number of digits are entered. Otherwise, the input must be terminated by an ENTER or CANCEL key, no matter how many digits are entered.
Output Param	LPWFSPINDATA	lpPinData;
typedef struct _wfs_pin_data�	{�	LPSTR			lpsData;�	WORD			wCompletion;�	} WFSPINENTRY, * LPWFSPINENTRY;
	lpsData�Pointer to the data entered by the user.
	wCompletion�Specifies the reason for completion of the entry. Possible values are:�(see command WFS_CMD_PIN_GET_PIN)
Execute Events	WFS_EXEE_PIN_DIGIT
Error Codes	None.
WFS_CMD_PIN_INITIALIZATIONADMINISTRATION
Description	The encryption module must be initialized before working with the encryption module.keys can be entered. Every initialization destroys all keys that have been installed. Usually this command is called by an operator task and not by the application program. During initialization an encrypted ID key is stored in the HW module. The ID key and the corresponding encryption key can be passed as parameters; if not, they are generated automatically by the encryption module. The encrypted ID is returned to the application and serves as authorization for the key import function.During initialization of encryption a clear text identification key must be entered. This ID number is encrypted by the encryption module and is then returned by the application. This identification key serves as authorization of the client to enter keys.
Input Param	LPWFSPINADMIN	lpAdmin;
typedef struct _wfs_pin_admin�	{�	WORD				wAdminMode;�	LPWFSXDATA		lpxIdent;�	LPSTR				lpsKeyName;�	LPWFSXDATA		lpxKey;�	LPWFSXDATA		lpxMaster;�	LPWFSXDATA		lpxCheckSum;�	} WFSPINADMIN, * LPWFSPINADMIN;
	wAdminMode�Specifies the administration mode. Possible values are:
Value	Meaning
WFS_PIN_ADMINTRANSKEY	Only the identificaiton key is transmitted and the encryption module uses an internal key to encrypt it.
WFS_PIN_ADMINCOMPLETE	Both the identification key and a master encryption key are transmitted. The master encryption key is used to encrypt the identification key.
	lpxIdent�Pointer to the value of the ID key.Pointer to an identification.
	lpsKeyName�Specifies the name of the identification key.
	lpxKey�Pointer to the value of the encryption key.Clear text value of the identification key.
	lpxMaster�Optional master key value.
	lpxCheckSum�Specifies a check sum.
Output Param	LPWFSXDATA	lpxIdentification;
	lpxIdentification�Pointer to the value of the ID key encrypted by the encryption key. Can be used as authorization for the WFS_CMD_PIN_IMPORT_KEY command, can be NULL if no authorization required.Pointer to an encrypted identification key for future use.
Error Codes	The following errors can be returned:
Value	Meaning
WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.
WFS_ERR_PIN_KEYNOVALUE	The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION	The specified use is not supported by this key.
WFS_ERR_PIN_INVALIDKEY	The specified key is invalid.
WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED	The encryption module is either not initialized (or not ready for some vendor specific reason).
WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.
WFS_ERR_PIN_INVALIDID	The ID passed was not valid.

WFS_CMD_PIN_DISPLAY
Description	This command displays the requested form. It is modeled on print form.
Input Param	LPWFSPINDISPLAY	lpDisplay;
typedef struct _wfs_pin_display�	{�	LPSTR			lpsForm;�	LPSTR			lpsData;�	} WFSPINDISPLAY, * LPWFSPINDISPLAY;
	lpsForm�Specifies the form name.
	lpsData�Specifies the data associated with form.
Output Param	None.
Comments	In the case where there are LED leadthrough lights, these lights can also be associated with a form name. The light next to the text 'Please enter your PIN' for example would be one 'Form' etc. The forms definition language could be extended to cover this.
Error Codes	The following errors can be returned:
Value	Meaning
WFS_ERR_PIN_INVALIDFORM	The specified form is invalid.
�Messages
The following execute notification event is generated by the commands of the PIN pad service.

WFS_EXEE_PIN_DIGIT
Description	This event specifies that a key has been pressed at the PIN pad. It is used if the device has no internal display unit and the application has to manage the display of the entered digits.
Event Param	LPWFSPINDIGIT	lpDigit;
typedef struct _wfs_pin_digit�	{�	WORD			wCompletion;�	USHORT		usDigit;�	} WFSPINDIGIT, * LPWFSPINDIGIT;
	wCompletion�Specifies the reason for completion of the entry. Possible values are:�(see command WFS_CMD_PIN_GET_PIN)
	usDigit�Specifies the digit entered by the user or the replace character when working in encryption mode (WFS_CMD_PIN_GET_PIN). If no digit but a function key (i.e. <Correct Key>) has been depressed, the keycode is returned in this parameter.
�Form Description
This section describes the forms mechanism used to define the PIN validation algorithms. The forms are contained in a single file, with contains one section for each defined validation algorithm. The name of each section is the validation algorithm name parameter in the WFS_INF_PIN_CAPABILITIES and WFS_CMD_PIN_VALIDATE commands.

The form defines the values of the algorithm data and the rules to extract algorithm data from the lpsValidationData field.

Reserved Keywords/Operands	Meaning
[]	validation algorithm name delimiters
TYPE	algorithm type: DES, VISA, EUROCHEQUE, others.
DES	algorithm type is DES
VISA	algorithm type is VISA
EUROCHEQUE	algorithm type is EUROCHEQUE
OFFSET	PIN offset
DIR	direction for PIN offset comparison: RIGHT, LEFT
RIGHT	compare PIN offset from right
LEFT	compare PIN offset from left
PADDING	padding character
VALDIGITS	number of PIN digits to check
MAXPIN	maximum number of PIN digits
KEYNAME	name of the PIN check key
DECTAB	decimalization table
VALDATA	validation data
PVV	PIN validation value (for VISA and Eurocheque)
PAN	Primary Account Number (for VISA)

Examples
[MYDES1]
TYPE = DES 		/* this is a DES PIN validation */
OFFSET = 075657
DIR = RIGHT
PADDING = 9
VALDIGITS = 5
MAXPIN = 7
KEYNAME = DESPINKEY	/* this must be a valid key name */
DECTAB = 2244661133557890
VALDATA = 0,7		/* extract bytes 0 to 7 of lpsValidationData */

[MYDES2]
TYPE = DES 		/* this is a DES PIN check */
OFFSET = 8,12		/* extract bytes 8 to 12 of lpsValidationData */
DIR = RIGHT
PADDING = F
VALDIGITS = 5
MAXPIN = 5
KEYNAME = DESPINKEY	/* this must be a valid key name */
DECTAB = 3311556743526178
VALDATA = 0,7		/* extract bytes 0 to 7 of lpsValidationData */

[MYVISA1]
TYPE = VISA 		/* this is a VISA PIN validation */
PVV = 0,7		/* extract bytes 0 to 7 of lpsValidationData */
PAN = 8,18		/* extract bytes 8 to 18 of lpsValidationData */
PADDING = 0
KEYNAME = VISAPINKEY	/* this must be a valid key name 						identifying the Visa key couple */

WOSA/XFS PIN Keypad Device Class Specification, Revision 1.11	February 3, 1995	� PAGE �ii�

WOSA/XFS PIN Keypad Device Class Specification, Revision 1.11	February 3, 1995	� PAGE �1�

