
WOSA
(Windows�symbol 228 \f "Symbol" \s 10 \h�� Open Services Architecture)
Extensions for Financial Services
A Client-Server Architecture for �Financial Enterprise Computing under Microsoft® Windows

Printer Device Class Interface
–––––––––––––––––––––––––––––––––––
Programmer’s Reference

Revision 1.11
February 3, 1995

Developed by the members of the Banking Solutions Vendor Council

�Revision History:
	1.0		May 24, 1993		Initial release of API and SPI specification
	1.01		June 11, 1993		Minor updates to BSVC member contact list
	1.1		April 14, 1994		Major updates and additions
	1.11		February 3, 1995		Separation of specification into separate documents�						for API/SPI and service class definitions; with updates�						NOTE: Changes from Revision 1.1 are marked.

The information in this document was contributed by members of the Banking Solutions Vendor Council and represents its current views on the issues discussed as of the date of publication. It is furnished for informational purposes only and is subject to change without notice. The Banking Solutions Vendor Council makes no warranty, express or implied, with respect to this document.

Microsoft is a registered trademark, and Windows and Windows NT are trademarks of Microsoft Corporation.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

IBM and NetView are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark of UNIX Systems Laboratories.
�Table of Contents
� TOC \o �1. Introduction	� GOTOBUTTON _Toc316391536 � PAGEREF _Toc316391536 �
1
��
1.1 WOSA/XFS Service-Specific Programming	� GOTOBUTTON _Toc316391537 � PAGEREF _Toc316391537 �
1
��
2. Banking Printers	� GOTOBUTTON _Toc316391538 � PAGEREF _Toc316391538 �
2
��
3. Banking Printer Types	� GOTOBUTTON _Toc316391539 � PAGEREF _Toc316391539 �
3
��
4. Forms Model	� GOTOBUTTON _Toc316391540 � PAGEREF _Toc316391540 �
4
��
5. Command Overview	� GOTOBUTTON _Toc316391541 � PAGEREF _Toc316391541 �
5
��
6. Info Commands	� GOTOBUTTON _Toc316391542 � PAGEREF _Toc316391542 �
6
��
6.1 WFS_INF_PTR_STATUS	� GOTOBUTTON _Toc316391543 � PAGEREF _Toc316391543 �
6
��
6.2 WFS_INF_PTR_CAPABILITIES	� GOTOBUTTON _Toc316391544 � PAGEREF _Toc316391544 �
7
��
6.3 WFS_INF_PTR_FORM_LIST	� GOTOBUTTON _Toc316391545 � PAGEREF _Toc316391545 �
9
��
6.4 WFS_INF_PTR_MEDIA_LIST	� GOTOBUTTON _Toc316391546 � PAGEREF _Toc316391546 �
9
��
6.5 WFS_INF_PTR_QUERY_FORM	� GOTOBUTTON _Toc316391547 � PAGEREF _Toc316391547 �
9
��
6.6 WFS_INF_PTR_QUERY_MEDIA	� GOTOBUTTON _Toc316391548 � PAGEREF _Toc316391548 �
11
��
6.7 WFS_INF_PTR_QUERY_FIELD	� GOTOBUTTON _Toc316391549 � PAGEREF _Toc316391549 �
12
��
7. Execute Commands	� GOTOBUTTON _Toc316391550 � PAGEREF _Toc316391550 �
14
��
7.1 WFS_CMD_PTR_CONTROL_MEDIA	� GOTOBUTTON _Toc316391551 � PAGEREF _Toc316391551 �
14
��
7.2 WFS_CMD_PTR_PRINT_FORM	� GOTOBUTTON _Toc316391552 � PAGEREF _Toc316391552 �
14
��
7.3 WFS_CMD_PTR_READ_FORM	� GOTOBUTTON _Toc316391553 � PAGEREF _Toc316391553 �
16
��
7.4 WFS_CMD_PTR_RAW_DATA	� GOTOBUTTON _Toc316391554 � PAGEREF _Toc316391554 �
17
��
7.5 WFS_CMD_PTR_MEDIA_EXTENTS	� GOTOBUTTON _Toc316391555 � PAGEREF _Toc316391555 �
18
��
7.6 WFS_CMD_PTR_RESET_COUNT	� GOTOBUTTON _Toc316391556 � PAGEREF _Toc316391556 �
19
��
8. Events	� GOTOBUTTON _Toc316391557 � PAGEREF _Toc316391557 �
20
��
8.1 WFS_EXEE_PTR_NOMEDIA	� GOTOBUTTON _Toc316391558 � PAGEREF _Toc316391558 �
20
��
8.2 WFS_EXEE_PTR_MEDIAINSERTED	� GOTOBUTTON _Toc316391559 � PAGEREF _Toc316391559 �
20
��
8.3 WFS_EXEE_PTR_FIELDERROR	� GOTOBUTTON _Toc316391560 � PAGEREF _Toc316391560 �
20
��
8.4 WFS_EXEE_PTR_FIELDWARNING	� GOTOBUTTON _Toc316391561 � PAGEREF _Toc316391561 �
21
��
8.5 WFS_USRE_PTR_RETRACTBINFULL	� GOTOBUTTON _Toc316391562 � PAGEREF _Toc316391562 �
21
��

8.6 WFS_SRV
E_PTR_MEDIATAKEN	� GOTOBUTTON _Toc316391563 � PAGEREF _Toc316391563 �
21
��
9. Form, Field and Media Definitions	� GOTOBUTTON _Toc316391564 � PAGEREF _Toc316391564 �
22
��
9.1 Definition Syntax	� GOTOBUTTON _Toc316391565 � PAGEREF _Toc316391565 �
22
��
9.2 Form and Media Measurements	� GOTOBUTTON _Toc316391566 � PAGEREF _Toc316391566 �
22
��
9.3 Form Definition	� GOTOBUTTON _Toc316391567 � PAGEREF _Toc316391567 �
23
��
9.4 Field Definition	� GOTOBUTTON _Toc316391568 � PAGEREF _Toc316391568 �
24
��
9.5 Media Definition	� GOTOBUTTON _Toc316391569 � PAGEREF _Toc316391569 �
27
��
��Introduction
This is Revision 1.11 of the service class specifications for banking printers; part of the Windows Open Services Architecture, Extensions for Financial Services (WOSA/XFS). The other relevant specifications are the overall API/SPI specification and the other four service class specifications (magnetic stripe readers/writers, PIN pads, cash dispensers and check readers/scanners) that have been defined thus far. These specifications are part of the Software Development Kit (SDK), which supplies the components and tools to allow the implementation of compliant applications and services. These specifications are distributed to the financial services community for continuing review and comment, to allow them to provide input to the ongoing enhancement of WOSA/XFS.

The members of the Banking Solutions Vendor Council encourage banks and other financial services companies world-wide, as well as their technology suppliers, to get updated information on the status of the project, and to submit comments, questions, and requests for the specification and SDK. This may be done via one of the Council members or on CompuServe—see the WOSA/XFS message section and library in the Windows Extensions forum (“GO WINEXT”). Note that the most recent versions of the WOSA/XFS specifications may be downloaded from this library.

The Banking Solutions Vendor Council is accepting applications for affiliate membership; interested parties should contact one of the Council members, post a message in the WOSA/XFS message section on CompuServe, or send email to bsvc@microsoft.com.

WOSA/XFS Service-Specific Programming
The service classes are defined by their service-specific commands and the associated data structures, error codes, messages, etc. These commands are used to request functions that are specific to one or more classes of service providers, but not all of them, and therefore are not in included in the common API for basic or administration functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the command is as similar as possible across all services, since a major objective of the WOSA Extensions for Financial Services is to standardize command codes and structures for the broadest variety of services. For example, using the WFSExecute function, the commands to read data from various services are as similar as possible to each other in their syntax and data structures.

In general, the specific command set for a service class is defined as the union of the sets of specific capabilities likely to be provided by the developers of the services of that class; thus any particular device will normally support only a subset of the command set defined for the class.

There are three cases in which a service provider may receive a service-specific command that it does not support:
�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is not considered to be fundamental to the service. In this case, the service provider returns a successful completion, but does no operation. An example would be a request from an application to turn on a control indicator on a passbook printer; the service provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the service provider does no operation and returns a successful completion to the application.
�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is considered to be fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An example would be a request from an application to a cash dispenser to dispense coins; the service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.
�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is not defined for the class of service providers by the WOSA/XFS specification. In this case, a WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error returns to make decisions as to how to use the service.

Banking Printers
This specification describes the functionality of the services provided by banking printers under WOSA/XFS, focusing on three areas:
�SYMBOL 183 \f "Symbol" \s 10 \h�	application programming for printing
�SYMBOL 183 \f "Symbol" \s 10 \h�	print document definition
�SYMBOL 183 \f "Symbol" \s 10 \h�	integration with the Windows architecture
These descriptions include definitions of the service-specific commands that can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.
The requirements for printing in banking applications are significantly different from those of the conventional PC environment, and the WOSA/XFS support delivers the foundation for financial application printing, including:
�SYMBOL 183 \f "Symbol" \s 10 \h�	Controlled access to shared printers
The banking printers can be shared between workstations, and the WOSA/XFS layer provides the ability for the application to manage ownership of a print device. This allows an application to identify the operator granted control of the printer, and to insure that a teller printing multiple documents is not interrupted by work for other applications.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Application controlled printing
In the banking environment, it is necessary for the application to receive positive feedback on the availability of print devices, and the success or failure of individual print operations. The WOSA/XFS printer support provides a standard mechanism for application retrieval of this status information.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Management of printing peripherals
Distributed banking networks require the ability to track the availability and failure of printing peripherals on a branch and system-wide basis. Through the WOSA/XFS WFSRegister function, monitoring programs can collect error alerts from the banking printers.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Vendor independent API and document definition
All of the WOSA/XFS peripheral implementations are designed around a standardized family of APIs to allow application code portability across vendor hardware platforms. With printers, it is also recognized that banks invest a significant amount of resource in the authoring of print documents. The WOSA/XFS printer service class is implemented around a forms model which also standardizes the basic document definition. This extends the investment protection provided by WOSA/XFS compliant systems to include this additional part of the application development.
��SYMBOL 183 \f "Symbol" \s 10 \h�	Windows printing integration
It is possible for a banking printer to offer printing capabilities that can be accessed by non-banking specific applications, such as general office productivity packages. This would not, for example, be true for a receipt printer, but it could be the case for a device with document printing capabilities. A vendor may choose an XFS implementation that allows both types of applications (WOSA/XFS and Windows applications using the Windows printing subsystem) to share the printing devices. The vendor should specify any impact this approach has on XFS subsystem operation, such as error reporting.
Full implementation of the above features depends on the individual vendor-supplied service providers. This specification outlines the functionality and requirements for applications using the WOSA/XFS printer services, and for the development of those services.

Banking Printer Types
The WOSA/XFS printer service defines and supports four types of banking printers through a common interface:
�SYMBOL 183 \f "Symbol" \s 10 \h�	Receipt Printer
The receipt printer is used to print cut sheet documents. It may or may not require insert or eject operations, and often includes an operator identification device, e.g., Teller A and Teller B lights, for shared operation.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Journal Printer
The journal is a continuous form device used to record a hardcopy audit trail of transactions, and for certain report printing requirements.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Passbook Printer
The passbook device is physically and functionally the most complex printer. The WOSA/XFS definition supports automatic positioning of the book, as well as read/write capability for an optional integrated magnetic stripe. The implementation also manages the book geometry - i.e. the margins and centerfolds - presenting the simplest possible application interface while delivering the full range of functionality.
�SYMBOL 183 \f "Symbol" \s 10 \h�	Document Printer
Document printing is similar to receipt printing -- a set of fields are positioned on an inserted sheet of paper -- but the focus is on full-size forms. It should be noted that the WOSA/XFS environment only implements the printing of text fields from the application. The electronic printing of the form image itself is not supported; but can be delivered as an added-value extension by the vendor.

�Forms Model
The WOSA/XFS printing class functionality is based on a “forms” model for printing. Banking documents are represented as a series of text fields output from the application, and positioned on the document by the WOSA/XFS printing system.

The form is an object which includes the positioning and presentation information for each of the fields in the document. The application selects a form, and supplies only the field data and the control parameters to fully define the print document.

The form objects are owned and managed by the WOSA/XFS printing service. To optimize maintainability of the system, the application can query the service for the list of fields required to print a given form. Through this mechanism, it is not necessary to duplicate the field contents of forms in application authoring data. The figure below outlines the printing process from the application's view.

�EMBED MSDraw * mergeformat���

As indicated, the WOSA/XFS definition of forms is restricted to text fields and assumes that any form image is pre-printed. Electronic form generation can, however, be provided as a vendor specific value-added enhancement to the WOSA/XFS services. The form name passed to the service can identify the name of a form image object to be merged with the WOSA/XFS defined fields.

The WOSA/XFS implementation recognizes that the form object must be supported by job-specific data to fully address printing requirements. As an example, a form defining a passbook print line will need to have its origin defined externally in order to be reused for different passbook lines. These job specific parameters are supplied on the call to the WFSExecute:WFS_CMD_PTR__PRINT_FORM command.

In some cases, the application wants to print a block of data without considering it as a series of separate fields. One example is a line of journal data, fully formatted by the application. This can be handled by defining a one field form, or by use of the WFSExecute:WFS_CMD_PTR_RAW_DATA command.

The document definition under WOSA/XFS printing is standardized to provide portability across vendor implementations. The standard has been defined at the source language level for the document definition, allowing vendor differences at the runtime level to manage implementation specific dependencies, providing several areas where vendors can provide value-added extensions. As an example, a vendor providing a graphical form definition tool can produce the field definition object format directly. The WOSA/XFS requirements for portability are:
�SYMBOL 183 \f "Symbol" \s 10 \h�	A vendor must be able to export print format in the standardized field definition source format for portability to other systems.
�SYMBOL 183 \f "Symbol" \s 10 \h�	A vendor must be able to import document formats produced on other systems in the standardized field definition source format.
�SYMBOL 183 \f "Symbol" \s 10 \h�	A vendor can extend the field definition source language, but any verbs included in the standard must be implemented strictly as defined by the standard. Import and export facilities must be tolerant of source language extensions, reporting but ignoring the exceptions.

The document definition also recognizes that unique hardware restrictions may require tuning of field positioning from one vendor's platform to another. To enhance portability, the WOSA/XFS document format has specifically been defined to allow a single reference adjustment for all fields to avoid forcing the customer to reposition each field.

Command Overview
The basic operation of the print devices is managed using the WFSGetInfo/WFSAsyncGetInfo and WFSExecute/WFSAsyncExecute functions, with two primary commands:
WFS_INF_PTR_QUERY_FORM	�This command retrieves the form header information, and the list of fields. It is performed using WFSGetInfo, which means that it can be performed even when the service is locked by another user.
WFS_CMD_PTR_PRINT_FORM	�This command is performed using WFSExecute, and includes as parameter data the name of the form to select and the required field data values.

This approach combines in the most efficient manner the four logical steps required to print a form:
�SYMBOL 183 \f "Symbol" \s 10 \h�	Selecting a document form object
�SYMBOL 183 \f "Symbol" \s 10 \h�	Querying the service for the list of fields
�SYMBOL 183 \f "Symbol" \s 10 \h�	Supplying the data for each field
�SYMBOL 183 \f "Symbol" \s 10 \h�	Issuing the print command

By using a WFSGetInfo command for retrieval of the list of field names, rather than WFSExecute (which is blocked when the service is locked by another application), it is possible for an application to assemble the required set of fields for a form before locking the service. This minimizes the time that each application request ties up the service. Using WFSGetInfo, it is also possible to query the attributes of a particular field. This command is generally not required for most applications.

The combination of form selection, field value presentation, and the print action into an atomic command -- the WFSExecute:WFS_CMD_PTR_PRINT_FORM command -- makes it possible to express a complete print operation with one API call. This implementation allows an application to perform a print operation without locking and subsequently unlocking the service (although locking may still be desirable for other reasons). To do multiple print operations without allowing other applications to intersperse their print requests, it is still necessary to use the lock functions. Where these multiple print functions represent a series of passbook lines (using the INDEX capability in the field definition), the WFSExecute:WFS_CMD_PTR_PRINT_FORM command provides support for management of the print line number. Note that if a form contains a tabular field (i.e., one with a non-zero INDEX value), and data is not supplied for some of the lines in the “table,” then those lines are left blank. Thus the number of lines specified by the INDEX is always printed, even if some (or all) of them are blank.

Finally, for printers with the capability to read from a passbook (OCR, MICR and/or magnetic stripe), the data is read with the WFSExecute:WFS_CMD_PTR_READ_FORM command. The data is written using the WFSExecute:WFS_CMD_PTR_PRINT_FORM command. Since these devices are usable only for passbook operations, they are not defined as separate logical devices.

�Info Commands
WFS_INF_PTR_STATUS
Description	This command is used to request status information for the device.
Input Param	None.
Output Param	LPWFSPTRSTATUS
typedef struct _wfs_ptr_status�	{�	WORD		fwDevice;�	WORD		fwMedia;�	WORD		fwPaper;�	WORD		fwToner;�	WORD		fwRetractBin;�	USHORT		usRetractCount;�	LPSTR		lpszExtra;	�	} WFSPTRSTATUS, * LPWFSPTRSTATUS;
	fwDevice�Specifies the state of the print device as one of the following flags:
Value	Meaning
WFS_PTR_DEVONLINE	The device is online.
WFS_PTR_DEVOFFLINE	The device is offline.
WFS_PTR_DEVPOWEROFF	The device is powered off.
WFS_PTR_DEVBUSY	The device is busy processing a request.
WFS_PTR_DEVNODEVICE	There is no device connected.
WFS_PTR_DEVUSERERROR	The device is present but a person is preventing proper device operation. The application should suspend the device
from service until the service provider generates a device state change event indicating the condition of the device has changed, e.g., the error is removed (WFS_PTR_DEVONLINE) or a permanent error condition has occurred (WFS_PTR_DEVHWERROR).
WFS_PTR_DEVHWERROR	The device is inoperable due to a hardware error.
	fwMedia�Specifies the state of the print media (i.e., the paper: passbook, single sheet, roll, etc.) as one of the following flags:
Value	Meaning
WFS_PTR_MEDIAPRESENT	Media is inserted in the device.
WFS_PTR_MEDIANOTPRESENT	Media is not inserted in the device.
WFS_PTR_MEDIAJAMMED	Media is jammed in the device.
WFS_PTR_MEDIAUNKNOWN	Capability The state of the print media cannot be determined with the device in its current state.
WFS_PTR_MEDIANOTSUPP	CThe capability to report the state of the print media is not supported by the device.
WFS_PTR_MEDIAENTERING	Media is at the entry/exit slot of the device.
	fwPaper�Specifies the state of the paper supply as one of the following flags:
Value	Meaning
WFS_PTR_PAPERFULL	The paper supply is full.
WFS_PTR_PAPERLOW	The paper supply is low.
WFS_PTR_PAPEROUT	The paper supply is empty.
WFS_PTR_PAPERNOTSUPP	Capability not supported by device.
WFS_PTR_PAPERUNKNOWN	Capability cannot be determined with device in its current state.

	fwToner�Specifies the state of the print device as one of the following flags:
Value	Meaning
WFS_PTR_TONERFULL	The toner supply is full.
WFS_PTR_TONERLOW	The toner supply is low.
WFS_PTR_TONEROUT	The toner supply is empty.
WFS_PTR_TONERNOTSUPP	Capability not supported by device.
WFS_PTR_TONERUNKNOWN	Capability cannot be determined with device in its current state.
fwRetractBin�Specifies the state of the printer retract bin as one of the following flags:
Value	Meaning
WFS_PTR_RETRACTBINOK	The retract bin of the printer is not full.
WFS_PTR_RETRACTBINFULL	The retract bin of the printer is full.
WFS_PTR_RETRACTNOTSUPP	The printer does not support retract capability.
usRetractCount�The number of media retracted; applicable only to printers with retract capability. This value is persistent: it is reset to zero by the WFS_CMD_PTR_RESET_COUNT command.
	lpszExtra�Pointer to a list of vendor-specific, or any other extended, information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.
Error Codes	There are no additional error codes generated by this command.None.
Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

WFS_INF_PTR_CAPABILITIES
Description	This command is used to request device capability information.
Input Param	None.
Output Param	LPWFSPTRCAPS
typedef struct _wfs_ptr_caps�	{�	WORD		wClass;�	WORD		fwType;�	BOOL		bCompound;�	WORD		wResolution;�	WORD		fwReadForm;�	WORD		fwExtents;�	WORD		fwControlEject;�	USHORT		usMaxRetract;�LPSTR		lpszExtra;	�	} WFSPTRCAPS, * LPWFSPTRCAPS;
	wClass�Specifies the logical service class, value is:�WFS_SERVICE_CLASS_PTR
	fwType�Specifies the type(s) of the physical device driven by the logical service, as a combination of the following flags:
Value	Meaning
WFS_PTR_TYPERECEIPT	Device is a receipt printer.
WFS_PTR_TYPEPASSBOOK	Device is a passbook printer.
WFS_PTR_TYPEJOURNAL	Device is a journal printer.
WFS_PTR_TYPEDOCUMENT	Device is a document printer.
	bCompound�Specifies whether the logical device is part of a compound physical device and is either TRUE or FALSE.
	wResolution�Specifies at which resolution(s) the physical device can print. Used by the application to select the level of print quality desired (e.g., as in Word for Windows); does not imply any absolute level of resolution, only relative. Specified as a combination of the following flags:
Value	Meaning
WFS_PTR_RESLOW	Can print with low resolution.
WFS_PTR_RESMED	Can print with medium resolution.
WFS_PTR_RESHIGH	Can print with high resolution.
WFS_PTR_RESVERYHIGH	Can print with very high resolution.
	fwReadForm�Specifies whether the device can read data from media, as a combination of the following flags:
Value	Meaning
WFS_PTR_READOCR	Device has OCR capability.
WFS_PTR_READMICR	Device has MICR capability.
WFS_PTR_READMSF	Device has MSF capability.
	fwExtents�Specifies whether the device is able to measure the inserted media, as a combination of the following flags:
Value	Meaning
WFS_PTR_EXTHORIZONTAL	Device has horizontal size detection capability.
WFS_PTR_EXTVERTICAL	Device has vertical size detection capability.
	fwControlEject�Specifies the manner in which media can be controlledejected, as a combination of the following bit flags:
Value	Meaning
WFS_PTR_CTRLEJECT	Device can eject media.
WFS_PTR_CTRLPERFORATE	Device can perforate media.
WFS_PTR_CTRLCUT	Device can cut media.
WFS_PTR_CTRLSKIP	Device can skip to mark.
WFS_PTR_CTRLFLUSH	Device can be sent data that is buffered internally, and flushed to the printer on request.
WFS_PTR_CTRLRETRACT	Device can retract media
usMaxRetract�Specifies the maximum number of media items that the retract bin can hold (zero if not available).

	lpszExtra�Points to a list of vendor-specific, or any other extended, information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.
Error Codes	There are no additional error codes generated by this command.None.
Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

WFS_INF_PTR_FORM_LIST
Description	This command is used to retrieve the list of forms available on the device.
Input Param	None.
Output Param	LPSTR		lpszFormList;
	lpszFormList�Pointer to a list of null-terminated form names, with the final name terminating with two null characters.
Error Codes	There are no additional error codes generated by this command.None.

WFS_INF_PTR_MEDIA_LIST
Description	This command is used to retrieve the list of media definitions available on the device.
Input Param	None.
Output Param	LPSTR		lpszMediaList;
	lpszMediaList�Pointer to a list of null-terminated media names, with the final name terminating with two null characters.
Error Codes	There are no additional error codes generated by this command.None.

WFS_INF_PTR_QUERY_FORM
Description	This command is used to retrieve details of the definition of a specified form.
Input Param	LPSTR		lpszFormName;
	lpszFormName�Points to the null-terminated form name on which to retrieve details.
Output Param	LPWFSFRMHEADER
typedef struct _wfs_frm_header�	{�	LPSTR	lpszFormName;�	WORD	wBase;�	WORD	wUnitX;�	WORD	wUnitY;�	WORD	wWidth;�	WORD	wHeight;�	WORD	wAlignment;�	WORD	wOffsetX;�	WORD	wOffsetY;�	WORD	wVersionMajor;�	WORD	wVersionMinor;�	LPSTR	lpszUserPrompt;�	LPSTR	lpszFields;�	} WFSFRMHEADER, * LPWFSFRMHEADER;
	lpszFormName�Specifies the null-terminated name of the form.
	wBase�Specifies the base unit of measurement of the form and can be one of the following:
Value	Meaning
WFS_FRM_INCH	The base unit is inches.
WFS_FRM_MM	The base unit is millimeters.
WFS_FRM_ROWCOLUMN	The base unit is rows and columns.
	wUnitX�Specifies the horizontal resolution of the base units as a fraction of the wBase value. For example, a value of 16 applied to the global unit WFS_FRM_INCH means that the base horizontal resolution is 1/16".
	wUnitY�Specifies the vertical resolution of the base units as a fraction of the wBase value. For example, a value of 10 applied to the global unit WFS_FRM_MM means that the base vertical resolution is .1 mm.
	wWidth�Specifies the width of the form in terms of the base horizontal resolution.
	wHeight�Specifies the height of the form in terms of the base vertical resolution.
	wAlignment�Specifies the relative alignment of the form on the media and can be one of the following:
Value	Meaning
WFS_FRM_TOPLEFT	The form is aligned relative to the top and left edges of the media.
WFS_FRM_TOPRIGHT	The form is aligned relative to the top and right edges of the media.
WFS_FRM_BOTTOMLEFT	The form is aligned relative to the bottom and left edges of the media.
WFS_FRM_BOTTOMRIGHT	The form is aligned relative to the bottom and right edges of the media.
	wOffsetX�Specifies the horizontal offset of the position of the top-left corner of the form, relative to the left or right edge specified by wAlignment. This value is specified in terms of the base horizontal resolution and is always positive.
	wOffsetY�Specifies the vertical offset of the position of the top-left corner of the form, relative to the top or bottom edge specified by wAlignment. This value is specified in terms of the base vertical resolution and is always positive.
	wVersionMajor�Specifies the major version of the form.
	wVersionMinor�Specifies the minor version of the form.
	lpszUserPrompt�Pointer to a null-terminated user prompt string.
	lpszFields�Pointer to a list of null-terminated field names, with the final name terminating with two null characters.
Error Codes	The following additional error codes can be generated by this command:
Value	Meaning
WFS_ERR_PTR_FORMNOTFOUND	The specified form cannot be found.
WFS_ERR_PTR_FORMINVALID	The specified form is invalid.
WFS_ERR_PTR_MEDIADEFNOTFOUND	The specified media definition cannot be found.

WFS_INF_PTR_QUERY_MEDIA
Description	This command is used to retrieve details of the definition of a specified media.
Input Param	LPSTR		lpszMediaName;
	lpszMediaName�Pointer to the null-terminated media name about which to retrieve details.
Output Param	LPWFSFRMMEDIA	lpMedia;
typedef struct _wfs_frm_media�	{�	WORD		fwMediaType;�	WORD		wBase;�	WORD		wUnitX;�	WORD		wUnitY;�	WORD		wWidth;�	WORD		wHeight;�	WORD		wPageCount;�	WORD		wLineCount;�	} WFSFRMMEDIA, * LPWFSFRMMEDIA;
	fwMediaType�Specifies the type of media as one of the following flags:
Value	Meaning
WFS_FRM_MEDIAGENERICUNDEFINED	Generic Mmedia, i.e., single sheet. not defined.
WFS_FRM_MEDIAMULTIPART	Multipart media.
WFS_FRM_MEDIAPASSBOOK	Passbook media.
	wBase�Specifies the base unit of measurement of the form and can be one of the following:
Value	Meaning
WFS_FRM_INCH	The base unit is inches.
WFS_FRM_MM	The base unit is millimeters.
WFS_FRM_ROWCOLUMN	The base unit is rows and columns.
	wUnitX�Specifies the horizontal resolution of the base units as a fraction of the wBase value. For example, a value of 16 applied to the global unit WFS_FRM_INCH means that the base horizontal resolution is 1/16".
	wUnitY�Specifies the vertical resolution of the base units as a fraction of the wBase value. For example, a value of 10 applied to the global unit WFS_FRM_MM means that the base vertical resolution is .1 mm.
	wWidth�Specifies the width of the media in terms of the base horizontal resolution.
	wHeight�Specifies the height of the media in terms of the base vertical resolution.
	wPageCount�Specifies the number of pages in a media of type WFS_FRM_MEDIAPASSBOOK.
	wLineCount�Specifies the number of lines on a page for a media of type WFS_FRM_MEDIAPASSBOOK.
Error Codes	The following additional error codes can be generated by this command:
Value	Meaning
WFS_ERR_PTR_MEDIADEFNOTFOUND	The specified media definition cannot be found.
WFS_ERR_PTR_MEDIAINVALID	The specified media definition is invalid.

WFS_INF_PTR_QUERY_FIELD
Description	This command is used to retrieve details of the definition of a single or all fields on a specified form.
Input Param	LPWFSPTRQUERYFIELD, as defined below.
typedef struct _wfs_ptr_query_field�	{�	LPSTR				lpszFormName;�	LPSTR				lpszFieldName;�	} WFSPTRQUERYFIELD, * LPWFSPTRQUERYFIELD;
	lpszFormName�Pointer to the null-terminated form name.
	lpszFieldName�Pointer to the null-terminated name of the field about which to retrieve details. If this value is NULL, then retrieve details for all fields on the form.
Output Param	LPWFSFRMFIELD *	lppFields;
	lppFields�Pointer to a null-terminated array of pointers to field definition structures:LPWFSFRMFIELDs, as defined below. Each entry in the array points to a WFSFRMFIELD.
typedef struct _wfs_frm_field�	{�	LPSTR		lpszFieldName;�	WORD		wIndexCount;�	WORD		fwType;�	WORD		fwClass;�	WORD		fwAccess;�	WORD		fwOverflow;�	LPSTR		lpszFormat;�	} WFSFRMFIELD, * LPWFSFRMFIELD;
	lpszFieldName�Pointer to the null-terminated field name.
	wIndexCount�Specifies the number of entries for an index field. A value of zero indicates that this field is not an index field. Index fields are typically used to present information in a tabular fashion.
	fwType�Specifies the type of field and can be one of the following:
Value	Meaning
WFS_FRM_FIELDTEXT	A text field.
WFS_FRM_FIELDMICR	A Magnetic Ink Character Recognition field.
WFS_FRM_FIELDOCR	An Optical Character Recognition field.
WFS_FRM_FIELDMSF	A Magnetic Stripe Facility field.
WFS_FRM_FIELDBARCODE	A Barcode field.
	fwClass�Specifies the class of the field and can be one of the following:
Value	Meaning
WFS_FRM_CLASSSTATIC	The field data cannot be set by the application.
WFS_FRM_CLASSOPTIONAL	The field data can be set by the application.
WFS_FRM_CLASSREQUIRED	The field data must be set by the application.
	fwAccess�Specifies whether the field is to be used for input, output, or both and can be a combination of the following bit-flags:
Value	Meaning
WFS_FRM_ACCESSREAD	The field is used for input.
WFS_FRM_ACCESSWRITE	The field is used for ouput.
	fwOverflow�Specifies how an overflow of field data should be handled and can be one of the following:
Value	Meaning
WFS_FRM_OVFTERMINATE	Return an error and terminate printing of the form.
WFS_FRM_OVFTRUNCATE	Truncate the field data to fit in the field.
WFS_FRM_OVFBESTFIT	Fit the text in the field.
WFS_FRM_OVFOVERWRITE	Print the field data beyond the extents of the field boundary.
WFS_FRM_OVFWORDWRAP	If the field can hold more than one line the text is wrapped around.
lpszFormat�Format string as defined in the form for this field.

Error Codes	The following additional error codes can be generated by this command:
Value	Meaning
WFS_ERR_PTR_FORMNOTFOUND	The specified form cannot be found.
WFS_ERR_PTR_FORMINVALID	The specified form is invalid.
WFS_ERR_PTR_FIELDNOTFOUND	The specified field cannot be found.
WFS_ERR_PTR_FIELDINVALID	The specified field is invalid.

Comments	None.

�Execute Commands
WFS_CMD_PTR_CONTROL_MEDIA
Description	This command is used to control a form drawn in by the device (e.g. after reading or in case of termination of an application request).
	If an eject operation is specified, it completes when the media is moved to the exit slot. A service event is generated when the media has been taken by the user.
Input Param	LPDWORD		lpdwMediaControl;
	lpdwMediaControl�Pointer to a value which Sspecifies the manner in which the media should be handled, as a combination of the following bit-flags:
Value	Meaning
WFS_PTR_CTRLFLUSH	Flush any data to the printer that has not yet been printed from previous WFS_CMD_PTR_PRINT_FORM commands.
WFS_PTR_CTRLEJECT	Flush data as above, then Eeject the media.
WFS_PTR_CTRLPERFORATE	Flush data as above, then Pperforate the media.
WFS_PTR_CTRLCUT	Flush data as above, then Ccut the media. For printers which have the ability to stack multiple cut sheets and deliver them as a single bundle to the customer, cut causes the media to be stacked and eject causes the bundle to be moved to the exit slot.
WFS_PTR_CTRLSKIP	Flush data as above, then Sskip the media to mark.
WFS_PTR�_RETRACT	Flush data as above, then retract the media.

Output Param	None.
Error Codes	The following additional error codes can be generated by this command:
Value	Meaning
WFS_ERR_PTR_NOMEDIAPRESENT	No form is present in the device.
WFS_ERR_PTR_FLUSHFAIL	The device was not able to flush data.
WFS_ERR_PTR_RETRACTBINFULL	The retract bin is full. No more media can be retracted. The current media is still in the device.

Comments	None.
Events	The following events can be generated by this command:
WFS_USRE_PTR_RETRACTBINFULL	The retract bin is full; operator intervention is required. Note that this event is sent only once, at the point at which the bin becomes full.
WFS_S
RV
E_PTR_MEDIATAKEN	The media has been taken by the user.

WFS_CMD_PTR_PRINT_FORM
Description	This command is used to print a form by merging the supplied variable field data with the defined form and field data specified in the form. If no media is present, the device waits for the period of time specified by the dwTimeOut parameter in the WFSExecute call for media to be inserted.
Input Param	LPWFSPTRPRINTFORM
typedef struct _wfs_ptr_print_form�	{�	LPSTR		lpszFormName;�	LPSTR		lpszMediaName;�	WORD		wAlignment�	WORD		wOffsetX;�	WORD		wOffsetY;�	WORD		wResolution;�	DWORD		dwMediaControl;�	LPSTR		lpszFields;�	} WFSPTRPRINTFORM, * LPWFSPTRPRINTFORM;
	lpszFormName�Pointer to the null-terminated form name.
	lpszMediaName�Pointer to the null-terminated media name.
	wAlignment�Specifies the alignment of the form on the physical medium, as one of these. Possible values are:
Value	Meaning
WFS_PTR_ALNUSEFORMDEFN	Use the alignment specified in the form definition.
WFS_PTR_ALNTOPLEFT	Align form to top left of physical medium.
WFS_PTR_ALNTOPRIGHT	Align form to top right of physical medium.
WFS_PTR_ALNBOTTOMLEFT	Align form to bottom left of physical medium.
WFS_PTR_ALNBOTTOM RIGHT	Align form to bottom right of physical medium.
	wOffsetX�Specifies the horizontal offset of the form, relative to the horizontal alignment specified in wAlignment, in horizontal resolution units (from form definition); always a positive number (i.e., if aligned to the right side of the medium, means offset the form to the left). A value of WFS_PTR_OFFSETUSEFORMDEFN indicates that the xoffset value from the form definition should be used.
	wOffsetY�Specifies the vertical offset of the form, relative to the vertical alignment specified in wAlignment, in vertical resolution units (from form definition); always a positive number �(i.e., if aligned to the bottom of the medium, means offset the form upward). A value of WFS_PTR_OFFSETUSEFORMDEFN indicates that the yoffset value from the form definition should be used.
	wResolution�Specifies the resolution in which to print the form. Possible values are:
Value	Meaning
WFS_PTR_RESLOW	Print form with low resolution.
WFS_PTR_RESMED	Print form with medium resolution.
WFS_PTR_RESHIGH	Print form with high resolution.
WFS_PTR_RESVERYHIGH	Print form with very high resolution.
	dwMediaControl�Specifies the manner in which the media should be handled, as a combination of the flags described under WFS_CMD_PTR_CONTROL_MEDIA. A NULL value of this parameter means to do none of these actions, as when printing multiple forms on a single page.
	lpszFields�Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated with the final string terminating with two null characters. If the field is an index field, then the syntax of the string is instead "<FieldName>[<index>]=<FieldValue>", where <index> specifies the zero-based element of the index field.
Output Param	None.
Error Codes	The following additional error codes can be generated by this command:
Value	Meaning
WFS_ERR_PTR_NOMEDIAPRESENT	No form is present in the device.
WFS_ERR_PTR_FORMNOTFOUND	The specified form definition cannot be found.
WFS_ERR_PTR_FORMINVALID	The specified form definition is invalid.
WFS_ERR_PTR_MEDIANOTFOUND	The specified media definition cannot be found.
WFS_ERR_PTR_MEDIAINVALID	The specified media definition is invalid.
WFS_ERR_PTR_MEDIASKEWED	The media skew exceeded the limit in the form definition.
WFS_ERR_PTR_FLUSHFAIL	The form was not successfully sent to the device.
WFS_ERR_PTR_MEDIAOVERFLOW	The form overflowed the media.
WFS_ERR_PTR_FIELDSPECFAILURE	The syntax of the lpszFields member is invalid.
WFS_ERR_PTR_FIELDERROR	An error occurred while processing a field, causing termination of the print request. A WFS_EXECUTE_EVENT with an ID of WFS_EXEE_PTR_FIELDERROR is posted with the details.
WFS_ERR_PTR_RETRACTBINFULL	The retract bin is full. No more media can be retracted. The current media is still in the device.

Comments	An invalid field name is treated as a WFS_EXEE_PTR_FIELDWARNING event with WFS_PTR_FIELDNOTFOUND status. A WFS_EXEE_PTR_FIELDWARNING event is returned with WFS_PTR_FIELDOVERFLOW status if the data overflows the field, and the field definition OVERFLOW value is TRUNCATE, BESTFIT, OVERWRITE or WORDWRAP. Other field-related problems generate a field error return and event.
Events	The following events can be generated by this command:
WFS_EXEE_PTR_NOMEDIA
WFS_EXEE_PTR_FIELDERROR
WFS_EXEE_PTR_FIELDWARNING
WFS_EXEE_PTR_MEDIAINSERTED
WFS_USRE_PTR_RETRACTBINFULL	The retract bin is full; operator intervention is required. Note that this event is sent only once, at the point at which the bin becomes full.
WFS_
S
R
V
E_PTR_MEDIATAKEN	This event is generated when the media is taken by the user.

WFS_CMD_PTR_READ_FORM
Description	This command is used to read data from input fields on the specified form.
Input Param	LPWFSPTRREADFORM
typedef struct _wfs_ptr_read_form�	{�	LPSTR		lpszFormName;�	LPSTR		lpszFieldNames;�	LPSTR		lpszMediaName;�	DWORD		dwMediaControl;�	} WFSPTRREADFORM, * LPWFSPTRREADFORM;
	lpszFormName�Pointer to the null-terminated name of the form.
	lpszFieldNames�Pointer to a list of null-terminated field names from which to read input data, with the final name terminating with two null characters. If this value is NULL, then read data from all input fields on the form.
	lpszMediaName�Pointer to the null-terminated media name.
	dwMediaControl�Specifies the manner in which the media should be handled and can be a combination of the bit flags described under WFS_CMD_PTR_CONTROL_MEDIA.
Output Param	LPSTR 	lpszFields;
	lpszFields�Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated with the final string terminating with two null characters. If the field is an index field, then the syntax of the string is instead "<FieldName>[<index>]=<FieldValue>", where <index> specifies the zero-based element of the index field.
Error Codes	The following additional error codes can be generated by this command:
Value	Meaning
WFS_ERR_PTR_READNOTSUPPORTED	The device has no read capability.
WFS_ERR_PTR_NOMEDIAPRESENT	No form is present in the device.
WFS_ERR_PTR_FORMNOTFOUND	The specified form cannot be found.
WFS_ERR_PTR_FORMINVALID	The specified form definition is invalid.
WFS_ERR_PTR_MEDIANOTFOUND	The specified media definition cannot be found.
WFS_ERR_PTR_MEDIAINVALID	The specified media definition is invalid.
WFS_ERR_PTR_MEDIASKEWED	The media skew exceeded the limit in the form definition.
WFS_ERR_PTR_FIELDSPECFAILURE	The syntax of the lpszFieldNames member is invalid.
Comments	All field errors are treated as a WFS_EXEE_PTR_FIELDWARNING execute event when reading.
Events 	The following events can be generated by this command:
WFS_EXEE_PTR_FIELDERROR
WFS_EXEE_PTR_FIELDWARNING
WFS_EXEE_PTR_NOMEDIA
WFS_EXEE_PTR_MEDIAINSERTED
WFS_USRE_PTR_RETRACTBINFULL	The retract bin is full; operator intervention is required. Note that this event is sent only once, at the point at which the bin becomes full.

WFS_S
RV
E_PTR_MEDIATAKEN	This event is generated when the media is taken by the user.

WFS_CMD_PTR_RAW_DATA
Description	This command is used to send raw data (a byte string of device dependent data) to the physical device.
Input Param	LPWFSPTRRAWDATA
typedef struct _wfs_ptr_raw_data�	{�	WORD		wInputData;�	ULONG		ulSize;�	LPBYTE		lpbData;�	} WFSPTRRAWDATA, * LPWFSPTRRAWDATA;
	wInputData�Specifies that input data from the device is expected in response to sending the raw data (i.e., the data contains a command requesting data). Possible values are:
Value	Meaning
WFS_PTR_NOINPUTDATA	No input data is expected.
WFS_PTR_INPUTDATA	Input data is expected.
	ulSize�Specifies the size of the byte string passed to the device.
	lpbData�Points to the byte string holding the device dependent data.
Output Param	LPWFSPTRRAWDATAIN [used only if wInputData is set to WFS_PTR_INPUTDATA]None.
typedef struct _wfs_ptr_raw_data_in�	{�	ULONG		ulSize;�	LPBYTE		lpbData;�	} WFSPTRRAWDATAIN, * LPWFSPTRRAWDATAIN;
	ulSize�Specifies the size of the byte string received from the device.
	lpbData�Points to the byte string received from the device.

Error Codes	The following additional error codes can be generated by this command:
Value	Meaning
WFS_ERR_PTR_NOMEDIAPRESENT	No media is present in the device.
Comments	Applications which send raw data to a device may will typically not be device or vendor independent. Problems with the use of this command include:
	1. The data sent to the device can include commands that change the state of the device in unpredictable ways (in particular, in ways that the service provider may not be aware of).
	2. Usage of this command will not be portable.
	3. This command violates the XFS forms model that is the basis of XFS printer access.
	Thus usage of this command should be avoided whenever possible. If it is used, the usage should be carefully isolated from all other XFS access to the service by at least the WFSLock and WFSUnlock commands.
Execute Events	None. WFS_EXEE_PTR_NOMEDIA�WFS_EXEE_PTR_MEDIAINSERTED

WFS_CMD_PTR_MEDIA_EXTENTS
Description	This command is used to get the extents of the media inserted in the physical device. The input parameter specifies the base unit and fractions in which the media extent values will be returned.
Input Param	LPWFSPTRMEDIAUNIT
typedef struct _wfs_ptr_media_unit�	{�	WORD			wBase;�	WORD			wUnitX;�	WORD			wUnitY;�	} WFSPTRMEDIAUNIT, * LPWFSPTRMEDIAUNIT;
	wBase�Specifies the base unit of measurement of the media and can be one of the following:
Value	Meaning
WFS_FRM_INCH	The base unit is inches.
WFS_FRM_MM	The base unit is millimeters.
WFS_FRM_ROWCOLUMN	The base unit is rows and columns.
	wUnitX�Specifies the horizontal resolution of the base units as a fraction of the fwUnitGlobal value. For example, a value of 16 applied to the global unit WFS_FRM_INCH means that the base horizontal resolution is 1/16".
	wUnitY�Specifies the vertical resolution of the base units as a fraction of the fwUnitGlobal value. For example, a value of 10 applied to the global unit WFS_FRM_MM means that the base vertical resolution is 0.1 mm.
Output Param	LPWFSPTRMEDIAEXT
typedef struct _wfs_ptr_media_ext�	{�	ULONG		ulSizeX;�	ULONG		ulSizeY;�	} WFSPTRMEDIAEXT, * LPWFSPTRMEDIAEXT;
	ulSizeX�Specifies the width of the media in terms of the base horizontal resolution.
	ulSizeY�Specifies the height of the media in terms of the base vertical resolution.
Error Codes	The following additional error codes can be generated by this command:
Value	Meaning
WFS_ERR_PTR_EXTENTNOTSUPPORTED	The device cannot report extent(s).
Execute Events	WFS_EXEE_PTR_NOMEDIA�WFS_EXEE_PTR_MEDIAINSERTED

WFS_CMD_PTR_RESET_COUNT
Description	This function resets the present value for number of media items retracted to zero. The function is possible only for printers with retract capability.
The number of media items retracted is controlled by the service and can be requested before resetting via the WFS_INF_PTR_STATUS.
Input Param	None.
Output Param	None.
Error Codes	There are no additional error codes generated by this command.
�Execute Events
WFS_EXEE_PTR_NOMEDIA
Description	This event specifies that the physical media must be inserted into the device in order for the execute command to proceed.
Event Param	LPSTR		lpszUserPrompt;
	lpszUserPrompt�Pointer to a null-terminated user prompt string from the form definition.
Comments	The application may use the lpszUserPrompt in any manner it sees fit, for example it might display the string to the operator, along with a message that the media should be inserted.

WFS_EXEE_PTR_MEDIAINSERTED
Description	This event specifies that the physical media has been inserted into the device.
Event Param	None.
Comments	The application may use this event to, for example, remove a message box from the screen telling the user to insert a form.

WFS_EXEE_PTR_FIELDERROR
Description	This event specifies that a fatal error has occurred while processing a field.
Event Param	LPWFSPTRFIELDFAIL
typedef struct _wfs_ptr_field_failure�	{�	LPSTR			lpszFormName;�	LPSTR			lpszFieldName;�	WORD			wFailure;�	} WFSPTRFIELDFAIL, * LPWFSPTRFIELDFAIL;
	lpszFormName�Points to the null-terminated form name.
	lpszFieldName�Points to the null-terminated field name.
	wFailure�Specifies the type of failure and can be one of the following:
Value	Meaning
WFS_PTR_FIELDREQUIRED	The specified field must be supplied by the application.
WFS_PTR_FIELDSTATICOVWR	The specified field is static and thus cannot be overwrittensupplied by the application.
WFS_PTR_FIELDOVERFLOW	The value supplied for the specified fields is too long.
WFS_PTR_FIELDNOTFOUND	The specified field does not exist.
WFS_PTR_FIELDNOTREAD	The specified field is not an input field.
WFS_PTR_FIELDNOTWRITE	An attempt was made to write to an input field.
WFS_PTR_FIELDHWERROR	The specified field uses special hardware (e.g., OCR) and an error occurred.
Comments	None.

WFS_EXEE_PTR_FIELDWARNING
Description	This event is used to specify that a non-fatal error has occurred while processing a field.
Event Param	LPWFSPTRFIELDFAIL, as defined in the section describing WFS_EXEE_PTR_FIELDERROR.
Comments	None.

WFS_USRE_PTR_RETRACTBINFULL
Description	This event specifies that the retract bin holding the retracted media is full.
Event Param	LPUSHORT	lpusCount;
	lpusCount�Points to the number of media contained in the retract bin.
Comments	None,

WFS_
S
RV
E_PTR_MEDIATAKEN
Description 	This event is sent when the media is taken from the exit slot following the completion of a successful eject operation.
Event Param	None.
Comments	Note that since this event occurs after the completion of a function that includes a media eject, it is not an execute event.
�Form, Field and Media Definitions
This section outlines the format of the definitions of forms, the fields within them, and the media on which they are printed.

Definition Syntax
The syntactic rules for form, field and media definitions are as follows:
White space	space, tab
Line continuation	backslash (\)
Line termination	CR, LF, CR/LF; line termination ends a “keyword section” (a keyword and its value[s])
Keywords	must be all upper case
Names	(field/media/font names) any case; case is preserved; service providers are case sensitive
Strings	all strings must be enclosed in double quote characters ("); �		to include a double quote in a string, “escape” with a forward slash (/")
Comments	start with two forward slashes (//), end at line termination

Other notes:
If a keyword is present, all its values must be specified; default values are used only if the keyword is absent.
Values that are character strings are marked with asterisks in the definitions below, and must be quoted as specified above.

Form and Media Measurements
The UNIT keyword sections of the form and media definitions specify the base horizontal and vertical resolution�as follows:
the base value specifies the base unit of measurement
the x and y values specify the horizontal and vertical resolution as fractions of the base value (e.g., an x value of 10 and a base value of MM means that the base horizontal resolution is 0.1mm).

The base resolutions thus defined by the UNIT keyword section of the form definition are used as the units of the form definition keyword sections:
SIZE (width and height values)
ALIGNMENT (xoffset and yoffset values)
and of the field definition keyword sections:
POSITION (x and y values)
SIZE (width and height values)
INDEX (xoffset and yoffset values)

The base resolutions thus defined by the UNIT keyword section of the media definition are used as the units of the media definition keyword sections:
SIZE (width and height values)
PRINTAREA (x, y, width and height values)
RESTRICTED (x, y, width and height values)
�Form Definition
XFSFORM��formname���BEGIN�����(required)�UNIT�base, �Base resolution unit for form definition�	MM�	INCH�	ROWCOLUMN����x, �Horizontal base unit fraction����y�Vertical base unit fraction��(required)�SIZE�width, �Width of form in base resolution units����height�Height of form in base resolution units���ALIGNMENT�alignment,�Alignment of the form on the physical medium:�	TOPLEFT (default)�	TOPRIGHT�	BOTTOMLEFT�	BOTTOMRIGHT�This option allows the positioning of a form onto a physical page relative to any combination of the edges of the physical medium, to support the variations in how devices sense the edge of page for positioning purposes.����xoffset,�Horizontal offset relative to the horizontal alignment specified by alignment. Always specified as a positive value (i.e., if aligned to the right side of the medium, means offset the form to the left). (default = 0)����yoffset�Vertical offset relative to the vertical alignment specified by alignment. Always specified as a positive value (i.e., if aligned to the bottom of the medium, means offset the form upward). (default = 0)���SKEW�skewfactor�Maximum skew factor in degrees (default = 0)���VERSION�major, �Major version number����minor, �Minor version number����date*, �Creation/modification date����author*�Author of form��(required)�LANGUAGE�languageID�Language used in this form – a 16 bit value (LANGID) which is a combination of a primary (10 bits) and a secondary (6 bits) language ID (This is the standard language ID in the Win32 API; standard macros support construction and decomposition of this composite ID)���COPYRIGHT�copyright*�Copyright entry���TITLE�title*�Title of form���COMMENT�comment*�Comment section���USERPROMPT�prompt*�Prompt string for user interaction���[XFSFIELD�fieldname �One field definition (as defined in the next section) for each field in the form���	BEGIN�	 . . . �	END]����END������Field Definition
XFSFIELD��fieldname���BEGIN�����(required)�POSITION�x, �Horizontal position (relative to left side of form)����y�Vertical position (relative to top of form)���FOLLOWS�fieldname�Print this field directly following the field with the name <fieldname>; positioning information is ignored. See the description of WFS_CMD_PTR_PRINT_FORM.���SIDE�side�Side of form where field is positioned:�	FRONT (default)�	BACK��(required)�SIZE�width, �Field width����height�Field height���INDEX�repeatcount,�Count how often this field is repeated in the form (default is no index field)����xoffset,�Horizontal offset for next field����yoffset�Vertical offset for next field���TYPE�fieldtype�Type of field:�	TEXT (default)�	MICR�	OCR�	MSF�	BARCODE���CLASS�class�Field class�	OPTIONAL (default)�	STATIC�	REQUIRED���ACCESS�access�Access rights of field�	WRITE (default)�	READ�	READWRITE���OVERFLOW�overflow�Action on field overflow:�	TERMINATE (default) �	TRUNCATE�	BESTFIT (the service provider fits the data �		into the field as well as it can)�	OVERWRITE�	WORDWRAP���STYLE�style�Display attributes as a combination of the following, ORed together using the "|" operator:�	NORMAL (default)�	BOLD�	ITALIC�	UNDER (single underline)�	DOUBLEUNDER (double underline)
	DOUBLE (double width)�	STRIKETHROUGH���CASE�case�Convert field contents to�	NOCHANGE (default)�	UPPER�	LOWER���HORIZONTAL�justify�Horizontal alignment of field contents�	LEFT (default)�	RIGHT�	CENTER�	JUSTIFY���VERTICAL�justify�Vertical alignment of field contents�	BOTTOM (default)�	CENTER�	TOP���COLOR�color�Color name�	BLACK (default)�	WHITE�	GRAY�	RED�	BLUE�	GREEN�	YELLOW��font�FONT�fontname*�Font name; in some cases this predefines the following parameters:�� definition�POINTSIZE�pointsize�Point size�� information�CPI�cpi�Characters per inch���LPI�lpi�Lines per inch���FORMAT�formatstring*�Application definedThis is an application defined input field describing how the application should format the data. It is not interpreted by the service provider.�����INITIALVALUE�value*�Initial value��END�����
�The following diagrams illustrate the positioning and sizing of text fields on a form, and, in particular, the vertical alignment of text within a field using VERTICAL=TOP and VERTICAL=BOTTOM values in the field definition.

�\EMBED MSDraw * mergeformat���
VERTICAL=TOP 	the upper boundary of the character drawing box (shown below) is positioned vertically to the upper field boundary.
VERTICAL=BOTTOM 	the baseline of the character drawing box (shown below) �is positioned vertically to the lower field boundary.

Definition of the character drawing box:

�\EMBED MSDraw * mergeformat���

When more than one line of text is to be printed in a field, and the definition includes VERTICAL=BOTTOM, the vertical position of the first line is calculated using the specified (or implied) LPI value.

�Media Definition
The media definition determines those characteristics that result from the combination of a particular media type together with a particular vendor's printer. The aim is to make it easy to move forms between different vendors' printers which might have different constraints on how they handle a specific media type. It is the service provider's responsibility to ensure that the form definition does not specify the printing of any fields that conflict with the media definition. An example of such a conflict might be that the form definition asks for a field to be printed in an area that the media definition defines as an unprintable area.

The media definition is also intended to provide the capabilty of defining media types that are specific to the financial industry. An example is a passbook as shown below.
�EMBED MSDraw * mergeformat���

XFSMEDIA��medianame���BEGIN������TYPE�type�Predefined media types are:�GENERICUNDEFINED (default)�MULTIPART�PASSBOOK��(required)�UNIT��base,����x,�y,�Base resolution unit for media definition�	MM�	INCH�	ROWCOLUMN
Horizontal base unit fraction
Vertical base unit fraction��(required)�SIZE�widthx,�Width of physical media����heighty�Height of physical media (0 = unlimited, i.e, roll paper)���PRINTAREA�x,�Printable area relative����y,� to top left corner����width,� of physical media����height� (default = physical size of media)���RESTRICTED�x,�Restricted area relative to����y,� to top left corner����width,� of physical media����height� (default = no restricted area)���FOLD�fold�Type of passbook�	HORIZONTAL�	VERTICAL���STAGGERING�staggering�Staggering of passbook from top (default = 0)���PAGE�count�Number of pages in passbook (default = 0)���LINES�count�Number of printable lines (default = 0)��END�����

�PAGE �

WOSA/XFS Printer Device Class Specification, Revision 1.11	February 3, 1995	� PAGE �
ii
�

�PAGE �
1
�
WOSA/XFS Printer Device Class Specification, Revision 1.11	February 13, 1995	

