

WOSA Extensions for

Real Time Market Data (WOSA/XRT)

Design Specification

Version 1.010

Created by the Members of the

Open Market Data Council For Windows

�Revisions

1.00.001	August 23, 1993	Created.

1.00.064	October 5, 1993	Revised.

1.00.095	October 22, 1993	Revised.

1.00.151	December 12, 1993	Revised.

1.00.301	December 20, 1993	Revised.

1.00.400	January 4, 1994	Revised.

1.00.401	January 11, 1994	Fixed minor typographical errors. Removed “Compliance” section (will appear in a separate document).

1.00	January 25, 1994	Changed "spec" version number to 1.00.

1.00.402	February 23, 1994	Section "6.2.2. Header" had an error: DWORD dwPropSetOffset was missing from the structure declaration. This was fixed.

		Fixed errors in sample VBA code.

		Fixed typographical errors.

		Clarified some points.

1.00.403	March 4, 1994	Added OMDC Appendix.

1.00.404	September 12, 1994	Win32 Update

1.01.001	September 29, 1994	Version 1.01 Changes

1.01.002	October 4, 1994	Added “Appendix A: Assigned GUIDs”

1.01.003	October 12, 1994	Fixed typographical errors (which somehow snuck back in).

1.01.000	October 18, 1994	Changed
“spec
”
 version number to 1.01.

�Table Of Contents

�toc \o "1-3" �1. Introduction	� GOTOBUTTON _Toc306599025 � PAGEREF _Toc306599025 �1��

2. Objective	� GOTOBUTTON _Toc306599026 � PAGEREF _Toc306599026 �2��

3. WOSA/XRT Design Overview	� GOTOBUTTON _Toc306599027 � PAGEREF _Toc306599027 �3��

3.1 Requirements	� GOTOBUTTON _Toc306599028 � PAGEREF _Toc306599028 �3��

3.2 Architecture Overview	� GOTOBUTTON _Toc306599029 � PAGEREF _Toc306599029 �4��

3.3 Version 1.01 Changes	� GOTOBUTTON _Toc306599030 � PAGEREF _Toc306599030 �7��

4. Data Objects	� GOTOBUTTON _Toc306599031 � PAGEREF _Toc306599031 �8��

4.1 Programmability Interface	� GOTOBUTTON _Toc306599032 � PAGEREF _Toc306599032 �8��

4.1.1 The Application Object	� GOTOBUTTON _Toc306599033 � PAGEREF _Toc306599033 �9��

4.1.2 The DataObjects Collection Object	� GOTOBUTTON _Toc306599034 � PAGEREF _Toc306599034 �10��

4.1.3 The DataObject Object	� GOTOBUTTON _Toc306599035 � PAGEREF _Toc306599035 �11��

4.1.4 The Requests Object	� GOTOBUTTON _Toc306599036 � PAGEREF _Toc306599036 �12��

4.1.5 The Request Object	� GOTOBUTTON _Toc306599037 � PAGEREF _Toc306599037 �13��

4.1.6 The Properties Collection Object	� GOTOBUTTON _Toc306599038 � PAGEREF _Toc306599038 �13��

4.1.7 The Property Object	� GOTOBUTTON _Toc306599039 � PAGEREF _Toc306599039 �15��

4.1.8 The DataItems Collection Object	� GOTOBUTTON _Toc306599040 � PAGEREF _Toc306599040 �16��

4.1.9 The DataItem Object	� GOTOBUTTON _Toc306599041 � PAGEREF _Toc306599041 �16��

5. Data Users	� GOTOBUTTON _Toc306599042 � PAGEREF _Toc306599042 �17��

5.1 Registration	� GOTOBUTTON _Toc306599043 � PAGEREF _Toc306599043 �17��

5.2 Data Requests	� GOTOBUTTON _Toc306599044 � PAGEREF _Toc306599044 �17��

5.3 Notification/Receiving Updates	� GOTOBUTTON _Toc306599045 � PAGEREF _Toc306599045 �17��

5.3.1 Hot Advise	� GOTOBUTTON _Toc306599046 � PAGEREF _Toc306599046 �17��

5.3.2 Warm Advise	� GOTOBUTTON _Toc306599047 � PAGEREF _Toc306599047 �18��

5.3.3 Processing Updates	� GOTOBUTTON _Toc306599048 � PAGEREF _Toc306599048 �18��

6. Data Formats	� GOTOBUTTON _Toc306599049 � PAGEREF _Toc306599049 �19��

6.1 Standard Format - CF_TEXT	� GOTOBUTTON _Toc306599050 � PAGEREF _Toc306599050 �19��

6.2 The WOSA/XRT Clipboard Format	� GOTOBUTTON _Toc306599051 � PAGEREF _Toc306599051 �19��

6.2.1 A Streaming Data Format	� GOTOBUTTON _Toc306599052 � PAGEREF _Toc306599052 �21��

6.2.2 Header	� GOTOBUTTON _Toc306599053 � PAGEREF _Toc306599053 �21��

6.2.3 Update Items	� GOTOBUTTON _Toc306599054 � PAGEREF _Toc306599054 �23��

6.2.4 Property Sets	� GOTOBUTTON _Toc306599055 � PAGEREF _Toc306599055 �26��

7. Appendix A: Assigned GUIDs	� GOTOBUTTON _Toc306599056 � PAGEREF _Toc306599056 �28��

8. Appendix B: Definitions	� GOTOBUTTON _Toc306599057 � PAGEREF _Toc306599057 �29��

8.1 Programmability Interface	� GOTOBUTTON _Toc306599058 � PAGEREF _Toc306599058 �29��

8.2 Item	� GOTOBUTTON _Toc306599059 � PAGEREF _Toc306599059 �29��

8.3 Properties	� GOTOBUTTON _Toc306599060 � PAGEREF _Toc306599060 �29��

8.4 Collection	� GOTOBUTTON _Toc306599061 � PAGEREF _Toc306599061 �29��

8.5 Data User	� GOTOBUTTON _Toc306599062 � PAGEREF _Toc306599062 �29��

8.6 Data Object	� GOTOBUTTON _Toc306599063 � PAGEREF _Toc306599063 �29��

8.7 Object Server	� GOTOBUTTON _Toc306599064 � PAGEREF _Toc306599064 �29��

8.8 Request Objects Collection	� GOTOBUTTON _Toc306599065 � PAGEREF _Toc306599065 �29��

8.9 Requests Object	� GOTOBUTTON _Toc306599066 � PAGEREF _Toc306599066 �30��

9. Appendix C: Other WOSA Specifications	� GOTOBUTTON _Toc306599067 � PAGEREF _Toc306599067 �31��

10. Appendix D: The Open Market Data Council for Windows	� GOTOBUTTON _Toc306599068 � PAGEREF _Toc306599068 �32��

�

�1.	Introduction

In October of 1992, the Open Market Data Council (OMDC) was formed with the charter of developing a standard way of accessing real time market data from within Windows applications. In June of 1993, the OMDC decided that the best way to accomplish this was by leveraging existing OLE 2.0 technology. The specification for this use of OLE 2.0 is called Windows Open Services Architecture, Extensions for Real-time Market Data (WOSA/XRT).

This document describes the way in which Windows applications and objects within them must behave in order to comply with the WOSA/XRT standard.

The WOSA/XRT Design Specification Version 1.0 focuses on addressing one major real-time market data access: integration of real-time market data in Windows desktop applications. The Open Market Data Council will continue to work to extend the WOSA/XRT specification to address other problems as they are identified.

The WOSA/XRT specificaittion defines a contract, in terms of OLE 2.0, through which two objects (i.e. server object and container) can exchange real-time market data. Unlike other WOSA standards such as MAPI, ODBC, and TAPI�, WOSA/XRT does not require new APIs to be defined, nor does it require any production code from Microsoft (other than the OLE 2.0 DLL’s). This is possible because WOSA/XRT leverages the existing architecture and binary standard provided by OLE 2.0. For example, WOSA/XRT data exchange uses existing OLE 2.0 interfaces, including Uniform Data Transfer and OLE Automation.

In general, the WOSA/XRT specification does not define anything other than the programmatic interface for accessing real-time market data. As a result of the design of the WOSA/XRT specification, the functionality of the data object can later be extended by including other OLE 2.0 features. For example, an application vendor could write a WOSA/XRT data object that graphs the real-time market data inside an OLE 2.0 container application. By using OLE 2.0 in this manner, WOSA/XRT addresses the need for multiple applications running on one workstation to exchange market data information with each other.

It is assumed that the reader has a basic understanding of the WindowsOLE Component Object Model (COM), a basic understanding of Object Linking and Embedding (OLE)(OLE 2.0 (including OLE Automation), and is familiar with the real-time market data industry. For more information on the OMDC please see The WOSA/XRT Corporate Backgrounder.

2.	Objective

The WOSA/XRT Design Specification serves one main purpose: Define a binary standard for accessing real-time market data from Windows applications There are two groups of individuals that will benefit from defining this standard -- developers and customers.

Developers will receive the following benefits:

·	There will be a common interface for accessing real time data

·	Application development will become tool independent

	

Customers will receive the following benefits:

·	The applications will be easier to use.

·	It will give the customer the choice of off the shelf OLE 2.0 compliant applications to use for their solutions, which will allow these solutions to be developed and implemented faster.

·	The technology that WOSA/XRT provides allows real-time data users to focus on business problems rather than data access problems.

For example, if a Solution Provider (Independent Software Developers, Independent Consultants, etc.) decides to use Microsoft Office to create an application which accesses real-time market data, the OLE 2.0 interface of WOSA/XRT would allow the application to be created in a high level language such as Visual Basic for Applications or Visual Basic 3.0. The application could be seamlessly integrated with the Microsoft Office giving, ease of use, flexibility, and customizability.

The above noted customer and developer benefits will have a positive impact on the use of real-time market data. Better, easier, and more frequent use of real-time market data will lead to increased numbers of users. This in turn will eventually lower the cost each user is charged in reaction to the forces of supply and demand.

It is important to note this specification is not intended to solve all problems relating to real-time market data access. The following list of topics is intended to clearly delineate those areas not initially addressed by Version 1.0 of WOSA/XRT. Because WOSA/XRT is based on OLE 2.0 technology, and because a basic premise of OLE 2.0 is that an object user can ‘Query’ an object for it’s capabilities, there is no reason why future versions of WOSA/XRT cannot address the issues noted below and still maintain complete backwards compatibility.

·	Over The Wire Formats. WOSA/XRT Version 1.0 defines a standard way in which Windows applications can access market data. It assumes that there are already existing mechanisms for getting that data from the server or data feed onto the users machine. WOSA/XRT Version 1.0 does not define a networking model, protocol stacks, or ‘over the wire data formats.’

·	Cross Platform Interoperability. WOSA/XRT Version 1.0 targets Windows desktop applications only. There are no specific provisions in WOSA/XRT Version 1.0 for interoperInteropability with other operating systems beyond those provided by OLE 2.0. However, Microsoft is committed to providing OLE interoperInteropability with other operating systems such as UnixNIX; when those systems become available WOSA/XRT will interoperate seemlessly.

·	Ticker Plants / Feed Servers. WOSA/XRT Version 1.0 is focused on solving the very real problem of getting market data into off-the-shelf Windows applications. This specification does not attempt to directly address the issues of creating object oriented “ticker plants” or data feed servers. However, much of the technology described here and in the OLE 2.0 Specification could be used to implement these components.

Normalize Symbology. It is beyond the scope of this version of WOSA/XRT to try to ‘normalize’ the sSymbology used by the vendors in the market data industry.

3.	WOSA/XRT Design Overview

The following diagram illustrates WOSA/XRT’s role in the larger scope of Real-Time Market data access. This diagram should make it clear that Version 1.0 of WOSA/XRT is concerned only with providing access to real-time market data from desktop applications.

�

3.1	Requirements

This specification must define a standard that meets the following requirements:

·	Applicability to ‘desktop-app.’ based solutions. The key requirement for WOSA/XRT is to simplify access to real-time and semi-real-time market data from desktop Windows applications. Users and integrators should be able to easily integrate real-time market data from multiple vendors using commercial Windows applications:

¨	Interoperability with Commercial OLE 2.0 Enabled Windows Applications

¨	Any application that serves as an OLE 2.0 container and OLE Automation controller should be able to utilize WOSA/XRT Data Objects.

¨	OLE Automation as a development tool

¨	WOSA/XRT data objects must be able to be controlled and accessed through OLE Automation.

¨	Advanced User Interface.

¨	While the WOSA/XRT specification does not specify any user interface guidelines, it is essential that the specification allow for any of the advanced user interface features made possible by OLE 2.0.

·	Normalize access to multiple data sources. It is a requirement of this specification that a common interface be presented by all Data Objects.

·	Permissioning. WOSA/XRT must provide a standard mechanism for vendors to ensure that only those users who have the rights to the data can access it from their desktop applications.

·	Interactive and Broadcast Feeds. The WOSA/XRT architecture must be able to handle market data from both interactive and broadcast feeds.

·	High-performance data transfer. It is required that the system be capable of maintaining a transaction rate of at least 400 data changes a second�.

3.2	Architecture Overview

�embed ShapewareVISIO20 ���

Figure �styleref 1 \n �0�-�seq Figure * arabic \r 1 �1� WOSA/XRT Request/Advise Architecture

The WOSA/XRT architecture is based on two components of OLE 2.0: OLE Automation and Uniform Data Transfer (UDT). Automation is used by the client application to make requests of the data source. Data is then transferred from the data source to the client through UDT.�

In this specification the term Data User is used to indicate the client application, while the OLE object that provides the standard interface to the data source is called the Data Object. A Data Object supports IDispatch (Automation) and IDataObject (UDT), while the Data User supports IAdviseSink (UDT).

As with any OLE 2.0 object, a WOSA/XRT Data Object supports the necessary OLE interfaces and supports the creation of an OLE 2.0 class object (i.e. supports IClassFactory::CreateInstance). This is called the Object Server, which can instantiate a specific instance of the Data Object. A data feed vendor or integrator may implement any number of Object Servers which can support more than one Data Object class. Each WOSA/XRT Data Object must have Class ID associated with it and must be correctly registered in the Registration Database. Therefore, developing a WOSA/XRT Data Object is essentially the same as developing any other OLE 2.0 object; the only possible difference are the interfaces the object supports.

The overall architecture of WOSA/XRT is a request - advise based system. This works by doing the following:

1.	A Data User obtains a pointer to a Data Object.

2.	The Data User requests the items (and properties) it is interested in (this is done through OLE Automation (IDispatch)).

3.	(optional) the Data User sets up an advise sink (which is similar to a call back function) where it will receive notifications from the Data Object that some or all of the items it has requested have changed property values.

Steps 1 and 2 typically involve concepts revolving around OLE Automation and the WOSA/XRT Programmability Interface and step 3 involves Uniform Data Transfer and the WOSA/XRT Data Formats.

There are essentially three techniques that can be used by the Data User to receive the data:

·	Implement an IAdviseSink

·	OLE 2.0 Linking

·	Poll through OLE Automation

Implement an IAdviseSink

An OLE 2.0 Container application which serves as a WOSA/XRT Data User should implement an IAdviseSink interface that understands the WOSA/XRT clipboard format (see section �ref B_Ref280262652 �ref B_Ref280262652 \n �0� �ref B_Ref280262652 * mergeformat �6.2	The "Market Data (WOSA/XRT)" Clipboard Format� * mergeformat �6.2	The "Market Data (WOSA/XRT)"WOSA/XRT Clipboard Format�).

The following Visual Basic for Applications (VBA) example illustrates how a Data User would create an instance of a Data Object, make requests of the object, and setup the advise sink:

Code�Purpose��Dim xrtobj As DataObject

Dim props As Properties�Declare a VBA variables.. Since the add-in provides a typelibrary, DataObject can be declared as a WOSA/XRT object. xrtobj must be declared at the module or project level since it will be referenced in at least two separate functions.��Set xrtobj = Realtime.Extension.DataObjects.CreateObject("QuoteMaster.Quotes", “Lisa’s Data”)�Call the add-in’s CreateObject method, telling the add-in to create an instance of 'QuoteMaster.Quotes', and to return the object's IDispatch pointer. The name is required by the add-in to keep track of multiple data objects.��Dim xrtobj As Object�Declare a VBA Object variable named xrtobj��Set xrtobj = CreateObje

Call the VBA function CreateObject, telling itct("QuoteMaster.Quotes")�Call the VBA function CreateObject, telling it to create a

pointer.n instance of 'QuoteMaster.Quotes', and to return the object's IDispatch pointer.��xrtobj.Requests.Add("USD:*", "German Mark",

"British Pound", "Japanese Yen")�Request to be updated on the exchange rates for the US Dollar vs. the Mark, Pound, and Yen.��xrtobj.Requests.Add("MSFT", "Last", "Volume")�Request to be update whenever the Last or Volume properties of the MSFT security change.��

xrtobj.OnDataChange = “VBDataChangeCallback”�Specify a VBA subroutine for the add-in to call each time the add-in receives a data update from the WOSA/XRT object.��xrtobj.GetData “workbook.xls”, “sheet1”, B2”�Initialize spreadsheet with data.��xrtobj.Actve = True�Tell the DataObject to start sending notifications to the IAdviseSink.��RealTime.Client = xrtobj

RealTime.UpdateObject = ActiveWorksheet

Cell(1,1).Value = RealTime.ObjID�Tell Excel to create an IAdviseSink interface and call the DAdvise member of the Data Object's IDataObject interface.���xrtobj.Active = True�Tel

Tell the Data Objecl the Data Object to start sending notifications to the IAdviseSink.��Sub VBDataChangeCallback()

 xrtobj.GetData “workbook.xls”, “sheet1”, B2”

End Sub�Implement callback subroutine. The subroutine can contain any VBA code. In this example, we want the spreadsheet to be updated with the latest data..��

When the Data Object passes Excel new data through IAdviseSink, Excel makes that data available to worksheets via worksheet functionsan Automation interface and/or worksheet callable functions. Refer to the WOSA/XRT Excel Real-time Add-in User’s Guide for more information.

In the above example, the fictional data feed vendor "QuoteMaster" has defined properties (fields) such as "German Mark", "Last", and "Volume". WOSA/XRT does not define a standard set of these property names. It is recognized that in the Market Data Industry, each vendor treats the meaning of properties differently, and it is beyond the scope of this standard to rectify this situation.�

OLE 2.0 Linking

While it is not a requirement of WOSA/XRT objects to support all of the OLE 2.0 linking interfaces, it is anticipated that many objects will.� In the case where a WOSA/XRT object does support the linking interfaces, the user will simply be able to use standard clipboard operations to paste a linked WOSA/XRT object into their document.

Polling through OLE Automation

In many cases it is not necessary to access market data in true real-time. Many users simply need to have the latest data available at any time. These solutions can use polling to request the latest data from the Data Object at pre-defined intervals using only OLE Automation.�

If getting true real-time updates is not a priority, there are several advantages to a polling based solution:

·	Ease of implementation. The Data User, in order to receive update notifications must implement the IAdviseSink interface. However, this interface is not natively implemented (or not easily accessible) in some common programming environments, such as Visual Basic 3.0 and Visual Basic for Applications. These applications require a DLL or a VBX to use the advise sink�. This additional complexity can cause confusion for end users.

·	Less load on system resources. Each IAdviseSink::OnDataChange notification requires some CPU cycles to process the changed data. By only asking for data when it is needed, a polling system can result in more responsive applications.

The sample VBA code below illustrates how a polling only solution would be implemented:

Code�Purpose��xrtobj.Username = UserName�WOSA/XRT supports user level permissioning���xrtobj.Password = Password�Finish logging in by setting the password property�����Set p = xrtobj.Requests.CreateProperties("High","Low", "Last", "Volume")�Create a Properties object that contains "High", "Low", "Last", "Volume" properties.�����xrtobj.Requests.Add("MSFT", p)�Add a request for the "High", "Low", "Last", and "Volume" on "MSFT" to the Reqeusts object.��xrtobj.Requests.Add("AAPL", p)�Add a request for the "High", "Low", "Last", and "Volume" on "AAPL" to the Reqeusts object.��xrtobj.Requests.Add("NOVL", p)�Add a request for the "High", "Low", "Last", and "Volume" on "NOVL" to the Reqeusts object.�����For Each o In p�Output column headings by iterating over the Properties object p.�� Debug.Print o.Name + Chr$(8)�Print the name property of the current Property, followed by a tab character.��Next ���Debug.Print Chr$(13)�Print a new line.�����Set all = xrtobj.Items�Set the variable 'all' to the Data Object's Items object��For Each i In all�Iterate through the Items collection, which represents a snapshot of the data feed.�� For Each prop In i�Iterate through all the properties of the current Item object (i).�� Debug.Print prop.Value + Chr$(8)�Print the value property of the current Property.�� Next ��� Debug.Print Chr$(13)�Print a new line.��Next���

The Debug window in Visual Basic for Applications in Excel 5.0 would show the following output after the above code was executed:

Name	High	Low	Last	Volume

MSFT	95.75	94.25	95	39023

AAPL	23.875	22	23	31211

NOVL	47.5	42.25	43.5	12123

As this sample shows a Data Object's Properties, Requests, and Items properties are implemented and exposed as OLE Automation collections.�

3.3	Version 1.01 Changes

This section documents the changes that appear in Version 1.01 of this specification. The primary impetus behind the changes in Version 1.01 was to ensure that the specification was suitable for the Win32 environment. Secondarily there were some shortcomings in the original design that needed to be corrected.

In Section 3.2 the sample that illustrated how to use an Advise Style notification has been replaced with code and text that matches the way the WOSA/XRT Excel 5.0 AddIn actually works. The previous text was based on an early prototype.

Version 1.00 incorrectly identified the “Item” property of the collections in the programmability interface as Methods. “Item” needs to be a parameterized Property.

The text name of the WOSA/XRT clipboard format has been changed from the string “Market Data (WOSA/XRT)” to the string representation of a GUID. See section 6.2. This string will never appear in the user interface, and thus it does not make sense to make it a human readable string. In addition, there is no defined protocol in OLE for ‘naming’ clipboard formats with version numbers. GUIDs, by definition provide a clean way to accommodate different versions.

There are two versions of the clipboard format: one for ANSI and one for Unicode. See section 6.2 for details

An additional DWORD (reserved for future use) has been added to the end of the clipboard format header (MARKETDATA) for future expansion (6.2.2).

A “DataItemID” DWORD has been added as the first value in the Update Item Header (UPDATEITEM) (6.2.3.1).

An additional DWORD (reserved for future use) has been added to the end of the update item header (UPDATEITEM) for future expansion (6.2.3.1).

Section 6.2.4.2. has been renamed to Property Set Dictionary Format (from Property set Format) to more clearly explain what this section is about. Additional comments were also added in this section to clarify things.

Version 1.00 of the specification failed to note the dwPropertySetID and dwNext elements of the Property Set Dictionary (6.2.4.2), although these elements were present in the reference implementation. These elements are now correctly documented.

An additional DWORD (reserved for future use) has been added to the end of the Property Set Dictionary structure (PROPERTYSET) for future expansion (6.2.4.2).

A new Appendix A has been added (“Assigned GUIDs”). The original appendices have been shifted down.

4.	Data Objects

As discussed in �ref B_Ref281796118 * mergeformat �3.2	Architecture Overview� the term Data User is used to indicate the client application, while the OLE object that provides the standard interface to the data source is called the Data Object. A Data Object supports IDispatch (Automation) and IDataObject (UDT), while the Data User supports IAdviseSink (UDT).

WOSA/XRT Data Objects access real-time market data from external data feeds and make that data accessible to WOSA/XRT Data Users. The term Data Object describes an instance of a OLE 2.0 object that provides access to a live (e.g. updated in real-time) sub-set of the content available from the actual data feed.

In order for an OLE 2.0 object to be WOSA/XRT compliant, the object must follow this specification for the Programmability Interface the object exposes through IDispatch and the Data Format supported by the object's IDataObject implementation.

This section describes the OLE Automation programmability interface and Uniform Data Transfer data format for WOSA/XRT Data Objects.

4.1	Programmability Interface

�embed ShapewareVISIO20 ���

WOSA/XRT Data Users, or container applications, serve as OLE 2.0 Automation controllers for WOSA/XRT Data Objects in order to request data items from the objects. This section describes the Programmability Interface that WOSA/XRT Data Objects expose to containers. The Programmability Interface is a set of OLE Automation methods and properties that WOSA/XRT Data Object Applications and Data Objects must support. This specification defines only a base programmability interface. Vendors may choose to extend it to suite the particular requirements of a data feed.

The figure to the right, and the table below provide a simplified overview of how the objects, members, and properties of the WOSA/XRT Programmability Interface fit together. Sections �ref B_Ref281799222 \n �0�.x give further detail.

Object�Property�Method�Description��Application���Top-level object that provides a standard way for OLE Automation controllers to retrieve and navigate an application's subordinate objects.���DataObjects��A collection of DataObject objects.��DataObject���Requests are made, and data can be retrieved through the DataObject object.���Name��A vendor defined name for the Data Object (e.g. "QuoteMaster Securities")���Requests��A collection of Request objects.���UpdateFrequency��Controls how long the Data Object will wait between notifying Data Users of new data.���MostRecentOnly��Controls whether the Data Object operates in FIFO or LIFO mode.���Active��Controls whether or not the Data Object is sending data change notifications.���Username��For user level Permissioning.���Username��For user level permissioning.���Password��For user level Permissioning.���Password��For user level permissioning.���WorkstationID��For machine level Permissioning.���WorkstationID��For machine level permissioning.���DataUserID��For application level Permissioning.���DataUserID��For application level permissioning.���ColumnDelimiter��Indicates the character that is used to delimit columns when data is transferred using the CF_TEXT clipboard format. This property must be set to the TAB character by default. Read/Write.���DataItems��A collection of data items representing a snapshot of the data feed.���Status��Data feed status information.����Quit�Shuts down the Data Object.��Request���Represents a request against the Data Object. (e.g. "The Last Price for all securities that begin with IB*")���Request��String that describes the data requested (e.g. "IB*").���Properties��An array object that represents the list of properties of the request item (e.g. "High", "Low", "Last Price", "Volume").����CreateProperties�Creates a properties object.��DataItem���Each DataItem object represents the snapshot of one item in the data feed.���Properties��The values of the DataItem.��Property���Request and DataItem objects store their data in Property objects.���Name��A string that defines the property.���Value��The current value of the property.�������

Every OLE Automation object can define one property or method as that object’s value or default method. This is the property or method that is invoked if the object name is used in an OLE Automation controller without specifying a property or method . This is accomplished by giving the property or method a DISPID of DISPID_VALUE. For each object defined for WOSA/XRT there is a Value method or property; these are denoted by † in the sections that follow. Properties and methods in bold below are required for all WOSA/XRT objects; those that are not bold are optional.

4.1.1	The Application Object

WOSA/XRT Object Servers implemented as local servers must expose a top-level object named "Application".� The programmability interface for the Application object must conform to the standards defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2. In addition the Application object must support the properties and methods listed in the following sections.

The following Visual Basic code illustrates the use of the Application object.

Code�Purpose��xrtobj = CreateObject("QuoteMaster.Quotes")�Create a DataObject��app = xrtobj.Application�Get the DataObject's Application object.��app.Visible = True�Show the application's window.��Debug.Print app.FullName�Print the full pathname of the application's executable file.��

It is possible to implement WOSA/XRT Object Servers as in-process DLLs. In such cases the Application object is not required.

4.1.1.1	Application Object Properties

The Application object must have the following properties above and beyond those defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2.

Property�Type�Description��DataObjects�VT_DISPATCH�Returns a collection object for the currently active DataObject objects. If the OLE 2.0 server is implemented as a single use executable (typically an SDI application) this collection will never contain more than one DataObject, but is still required. Read only.��4.1.1.2	Application Object Methods

The Application object must support the standard methods defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2.

4.1.2	The DataObjects Collection Object

Non-in-process WOSA/XRT Object Servers must implement a collection object which can enumerate over the Data Object objects that are currently running on the server.

The programmability interface for the DataObjects collection object must conform to the standards defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2. In addition the DataObjects object must support the properties and methods listed in the following sections.

This object is a collection of the DataObject objects that have been created. Note that the DataObjects object does not have a CLSID (e.g. it cannot be found by CoGetClassObject or instantiated by IClassFactory::CreateInstance()). In other words the DataObjects object is created and maintained internally to the Object Server.

The following Visual Basic code illustrates the use of the DataObjects collection object.

Code�Purpose��app.DataObjects.Add("Data Object #1")�Create a new DataObject and add it to the collection��Debug.Print DataObjects.Count�Print the number of DataObject objects in the collection.��

4.1.2.1	DataObjects Collection Object Properties

See Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2 for more information on these standard collection properties.

Property�Type�Description��Count�VT_I4�Returns the number of DataObject objects in the collection. Read only.��Item (index) †�VT_DISPATCH�Returns a DataObject object. The ‘index’ parameter is required and may be a string or an integer.��Count�VT_I4�Returns the number of DataObject objects in the collection. Read only.��_NewEnum�VT_UNKNOWN�Returns an IEnumVARIANT pointer. Read only.��4.1.2.2	DataObjects Collection Object Methods

See Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2 for more information on these standard collection properties.

Method�Return Type�Description��Add (name)�VT_DISPATCH if successful, VT_EMPTY on failure.�Creates a new DataObject object and adds it to the collection. The ‘name’ argument is optional and specifies the name the new object is to have.�������Item (index) †�VT_DISPATCH�Returns a DataObject object. The ‘index’ parameter is required and may be a string or an integer.��Remove(index)�VT_EMPTY�Destroys and removes the specified DataObject from the collection. The ‘index’ parameter is required and may be a string or an integer.��4.1.3	The DataObject Object

The DataObject object is the central piece of the WOSA/XRT Programmability Interface. Data Users can access the Requests collection and the DataItems collection through the DataObject object. These collections are used for requesting updates and retrieving market data.

The programmability interface for the DataObject object must conform to the standards defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2. In addition the DataObject object must support the properties and methods listed in the following sections.

The following Visual Basic code illustrates the use of the DataObject object.

Code�Purpose��Set xrtobj = CreateObject("QuoteMaster.Quotes")�Create a DataObject object��xrtobj.Name = "Object #1"�Give it a name`��xrtobj.UpdateFrequency = 1000�Send updates no more rapidly than once a second.��xrtobj.MostRecentOnly = True�LIFO behavior.��Debug.Print xrtobj.Status�Print the data feed status��

4.1.3.1	DataObject Object Properties

Property�Type�Description��Name�VT_BSTR�The name of the object. Read/Write.��Requests †�VT_DISPATCH�Returns the Requests object that represents all the requests that have been made of the DataObject.��UpdateFrequency�VT_I4�Specifies the number of milliseconds the Data Object will wait between IAdviseSink::OnDataChange notifications. The Data Object is responsible for caching item changes during this time and then sending all changes or just the most recent data after UpdateFrequency milliseconds (behavior determined by the MostRecentOnly property). Read/Write.��MostRecentOnly�VT_BOOL�Controls whether the Data Object operates in FIFO or LIFO mode. Read/Write.��Active�VT_BOOL�If True and the Data Object’s DAdvise member has been called, OnDataChange notifications will be generated. Read/Write.��Username�VT_BSTR�The DataObject can use this property to provide user level Permissioning functionality. Read/Write. Optional.��Password�VT_BSTR�The DataObject can use this property to provide user level Permissioning functionality. Write only. Optional.��WorkstationID�VT_VARIANT�Vendor defined workstation identifier. Used for workstation level Permissioning. Write only. Optional.��DataUserID�VT_VARIANT�Vendor defined application identifier. Used for application level Permissioning. Write only. Optional.��DataItems�VT_DISPATCH�Returns an DataItems collection object. This method is used to actually retrieve data from an DataObject (as opposed to requesting updates). Read only.��ColumnDelimiter�VT_BSTR�Indicates the character that is used to delimit columns when data is transferred using the CF_TEXT clipboard format. This property must be set to the TAB character by default. Read/Write.��Status�VT_I4�Returns the current status of the data feed. See the section titled �ref B_Ref280163141 * mergeformat �6.2.2.3	Data Feed Status� for a list of values. Read only.��

4.1.3.2	DataObject Object Methods

Method�Return Type�Description��Quit�VT_EMPTY�Destroys the DataObject object.��4.1.4	The Requests Object

The Requests object is a collection object that is used to manage the list of Request objects that tell the Data Object what items to send to the Data User.

The programmability interface for the Requests collection object must conform to the standards defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2. In addition the Requests object must support the properties and methods listed in the following sections.

4.1.4.1	Requests Object Properties

The Requests Collection Object must support the following properties.

Property�Type�Description��DataObject�VT_DISPATCH�Returns the DataObject that owns this Requests object.��Item (index) †�VT_DISPATCH�Returns a Request object. The ‘index’ parameter is required and may be a string or an integer.��DataObject�VT_DISPATCH�Returns the DataObject that owns this Requests object.��Count�VT_I4�Number of items in the list. Read Only.��_NewEnum�VT_UNKNOWN�Returns an IEnumVARIANT pointer. Read only. Not visible.��

4.1.4.2	Requests Object Methods

The Requests Collection Object must support the following methods.

Method�Return Type�Description��Reset�VT_EMPTY�Resets the Requests to contain zero elements. Takes no parameters.��Add(name, properties)�VT_DISPATCH�Creates a Request object and adds it to the collection. If the optional name argument is passed, the collection object will have it’s name property set to that name. The optional properties argument may either be a list of property names (e.g. “High”, “Low”, “Last”) or a previously created Properties collection object (see “CreateProperties” below).������Item (index) †�VT_DISPATCH�Returns a Request object. The ‘index’ parameter is required and may be a string or an integer.��Remove(item)�VT_EMPTY�Removes a Request Object from the collection. The required item argument indicates which item to remove. Item can either be a string or integer.��CreateProperties(P1, ... , Pn)�VT_DISPATCH�Creates a Properties Collection object. The optional arguments, P1 through Pn are the names of the initial Property Objects the collection is to contain. If no arguments are passed the collection is initially empty.��4.1.5	The Request Object

Each request object represents a request of the Data Object. For example, if a Data User want’s to be updated on the High, Low, and Last prices for all securities that begin with the letter “M” a request object is created with a Properties collection containing “High”, “Low”, “Last”, and the Request property set to “M*”. The following Visual Basic code illustrates:

Code�Purpose��Set req = dataobj.Requests.Add�Create a Request object��req.Request = "M*"�Set the Request property of the Request object to "M*"��req.Properties.Add("High")�Create and add a property we are interested in.��req.Properties.Add("Low")�Create and add a property we are interested in.��req.Properties.Add("Last")�Create and add a property we are interested in.��

The programmability interface for the Request object must conform to the standards defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2. In addition the Request object must support the properties and methods listed in the following section.

4.1.5.1	Request Object Properties

Property�Type�Description��Request †�VT_BSTR�String that describes the data requested (e.g. "USD:*"). Read/Write.��Properties�VT_DISPATCH�An array object that represents the list of properties on the item. Read/Write.��

4.1.6	The Properties Collection Object

The Properties collection objects are used in two ways: to describe the properties (or fields) that are being requested for a RequestObject and to convey the contents of an item of data that the DataObject has access to.

Each Requests collection object has a property named 'Properties' which is a collection object. A given Properties collection object can be shared among many Requests objects. The following Visual Basic code illustrates:

Code�Purpose��Set prop = req.CreateProperties�Create a Properties object by calling the CreateProperties method of the DataObject object.��prop.Add("High")�Add a property named "High" to the Properties collection.��prop.Add("Low")�Add a property named "Low" to the Properties collection.��prop.Add("Last")�Add a property named "Last" to the Properties collection.��Set req1 = dataobj.Requests.Add("M*", p)�Create a Request object, asking for the High, Low, and Last for all securities with names starting with M*.��Set req2 = dataobj.Requests.Add("IBM*")�Create a Request object for "IBM*".��Set req2.Properties = prop�Ask for the High, Low, and Close properties of "IBM*".��

In the above code the RequestObject req1 and req2 share the same Properties collection, but have different values for their Request property.

Note that the Properties collection is always initialized to contain at least one items: a property who’s value is “Name”. Thus if the following Visual Basic code were executed after the code above executed the output given would be generated:

For Each p In req2.Properties

	Debug.Print p.Name

Next

The above code fragment would give the following output:

 Name

 Last

 High

 Low

 Close

In the examples above no reference is made to a Property’s “Value” property, only it’s “Name” property. The “Value” property is only meaningful in the context where the Data User is retrieving actual market data from a Data Object through OLE Automation rather than Uniform Data Transfer (See section �ref B_Ref281806147 \n �0�. �ref B_Ref281806156 * mergeformat �4.1.9	The DataItem Object� for details).

4.1.6.1	Properties Object Properties

Property�Type�Description��DataObject�VT_DISPATCH�Returns the DataObject that owns this Request object.��Count�VT_I4�Number of items in the list. Read Only.��Item (index) †�VT_DISPATCH�Returns a Property object. The ‘index’ parameter is required and may be a string or an integer.��Count�VT_I4�Number of items in the list. Read Only.��_NewEnum�VT_UNKNOWN�Returns an IEnumVARIANT pointer. Read only. Not visible.��

4.1.6.2	Properties Object Methods

Method�Return Type�Description��Reset�VT_EMPTY�Resets the Properties collection to contain one element: A property with a value of “Name”. Takes no parameters. This method is only valid when the properties object is being used in conjunction with a RequestObject object��Add(name)�VT_DISPATCH�Creates a Property object and adds it to the collection. If the optional name argument is passed, the collection object will have it’s Value property set to that name. This method is only valid when the properties object is being used in conjunction with a RequestObject object.��Remove(item)�VT_EMPTY�Removes a Property Object from the collection. The required item argument indicates which item to remove. Item can either be a string or integer. It is illegal to remove the zero’th element. This method is only valid when the properties object is being used in conjunction with a RequestObject object������Item (index) †�VT_DISPATCH�Returns a Property object. The ‘index’ parameter is required and may be a string or an integer.��

4.1.7	The Property Object

Both Request objects and DataItem objects contain collections of Property objects which contain the data that makes up the request or data item. The following Visual Basic code illustrates how the Property object is used in the context of a Request object.

Code�Purpose��Set req = xrtobj.Requests.Add("USD:*")�Create a request object for US currency exchange rates.��Set props = xrtobj.CreateProperties("BPS")�Create a properties object. This Properties object initially contains two Property objects: "Name" and "BPS". "Name" is always the first property in a Properties collection, and is always present.��Set BPS = props.Item(1)�Get the "BPS" Property object.��Debug.Print BPS.Name�Would print "BPS"��

The following Visual Basic code illustrates how the Property object is used in the context of a DataItem object.

Code�Purpose��Set item = xrtobj.DataItems("MSFT")�Get the DataItem that represents the latest MSFT update.��For Each p In item.Properties�Iterate through all the properties of the item�� Debug.Print p.Name + p.Value�Print the name and value of the property.��Next���

The programmability interface for the Property object must conform to the standards defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2. In addition the Property object must support the properties and methods listed in the following section.

4.1.7.1	Property Object Properties

Property�Type�Description��Name�VT_BSTR�String that describes the property. Read/Write when describing a RequestObject, read only when describing a DataItem.��Value †�VT_VARIANT�The value of the property. Read only��

4.1.8	The DataItems Collection Object

To get snapshot data from the Data Object, a Data User can iterate through the DataItems collection object. The Visual Basic code below illustrates:

Code�Purpose��Set items = xrtobj.DataItems�Set "items" to point to the DataItems collection of "xrtobj".��For n = 0 to items.Count - 1�Iterate through all available items�� Debug.Print items(n).Properties("Last")�Print the last price for each item.��Next n���

The programmability interface for the DataItems collection object must conform to the standards defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2. In addition the DataItems object must support the properties and methods listed in the following section.

4.1.8.1	DataItems Object Properties

Property�Type�Description��DataObject�VT_DISPATCH�Returns the DataObject that owns this DataItems collection object.��Count�VT_I4�Number of items in the list. Read Only.��Item (index) †�VT_DISPATCH�Returns a Property object. The ‘index’ parameter is required and may be a string or an integer.��Count�VT_I4�Number of items in the list. Read Only.��_NewEnum�VT_UNKNOWN�Returns an IEnumVARIANT pointer. Read only. Not visible.��

4.1.8.2	DataItems Object Methods

Method�Return Type�Description������Item (index) †�VT_DISPATCH�Returns a Property object. The ‘index’ parameter is required and may be a string or an integer.��4.1.9	The DataItem Object

DataItem objects are used to get snapshot information from the data feed.

Code�Purpose��Set I = xrtobj.DataItems("MSFT")�Get the DataItem object for MSFT��Debug.Print I.Properties("High")�Print the value of the "High" property.��Debug.Print I.Properties("Last")�Print the value of the "Last" property.��

The programmability interface for the DataItem object must conform to the standards defined in Chapter 4 of the OLE 2.0 Programmers Reference, Volume 2. In addition the DataItem object must support the properties and methods listed in the following section.

4.1.9.1	DataItem Object Properties

Property�Type�Description��DataObject�VT_DISPATCH�Returns the DataObject that owns this DataItem object.��Properties †�VT_DISPATCH�Returns a Properties collection. Read only.��5.	Data Users

WOSA/XRT Data Users are OLE 2.0 container applications that support Uniform Data Transfer and OLE Automation. The Data User is responsible for creating instances of Data Objects and communicating with them through OLE Automation. The Data Object can then notify the Data User that data has changed, and provide the new/changed data.

5.1	Registration

Before any requests can be made of the Data Object by the Data User, the Data Object may require the Data User to register itself. The DataObject object defined in section �ref B_Ref280167010 \n �0� may support Username, Password, WorkstationID, and DataUserID properties. The behavior of the Data Object in regard to these properties is not defined by this specification. However, in most cases where these properties are implemented, the Data Object will refuse requests (by causing property and method access to fail) if they are not set in accordance with the vendor's pPermissioning rules.

5.2	Data Requests

Data Users invoke OLE Automation properties and methods on the Data Object to request data. A request is logically composed of two pieces of information:

·	An identifier for the data. For example "MSFT" or "USD:*".

·	A list of properties or "fields" that are of interest for this request item.

A Data User requests data from a Data Object by adding items to the Data Object's Requests object using the Requests.Add method.

See section �ref �ref B_Ref281808319 \n �0� �ref B_Ref281808330 * mergeformat �4.1	Programmability Interface� B_Ref281808330 * mergeformat �4.1	Programmability Interface� for more details on the WOSA/XRT request mechanism.

5.3	Notification/Receiving Updates

A Data User receives notifications of data changes through the IAdviseSink interface. See the OLE 2.0 SDK for more information on the IAdviseSink interface and Uniform Data Transfer in general.

When the data that a Data Object provides access to changes, the DataObject will call the DataUser’s IAdviseSink::OnDataChange member.

5.3.1	Hot Advise

ADVF_PRIMEFIRST is specified when the Data User calls the Data Object’s IDataObject::DAdvise member. The ADVF_PRIMEFIRST flag tells the Data Object to immediately send an OnDataChange notification. The data that accompanies this initial notification will contain a stream of data representing all items that were added to the Data Object's Requests object.

The data delivered on subsequent OnDataChange notifications from the Data Object will contain only the items that have changed since the last notification (and only the properties those items that have changed).

Any time the Data User calls the DataObject’s IDataObject::GetData member the returned stream will represent all items reflected in the Data Object's Requests object (as opposed to only those items that have changed).

5.3.2	Warm Advise

ADVF_NODATA is specified when the Data User calls the Data Object’s IDataObject::DAdvise member. The Data User must call the Data Object’s IDataObject::GetData to get the data.�

Any time the Data User calls the DataObject’s IDataObject::GetData member the returned stream will represent all items reflected in the Data Object's Requests object (as opposed to only those items that have changed).

5.3.3	Processing Updates

The Data User tells the Data Object what data format it wants to use when it calls the Data Object’s IDataObject::DAdvise member. Any clipboard format supported by the DataObject can be specified. However, the “Market Data (WOSA/XRT)” format (see section �ref B_Ref280262652 �ref B_Ref280262652 \n �0� �ref B_Ref280262652 * mergeformat �6.2	The "Market Data (WOSA/XRT)" Clipboard Format� * mergeformat �6.2	The "Market Data (WOSA/XRT)" The WOSA/XRT Clipboard Format�) can provide the Data User with partial updates of items, and multiple updates per OnDataChange notification.

The Data User processes the data it has received (either through the OnDataChange notification or by calling IDataObject::GetData()) depending on the clipboard format specified. Refer to the Windows SDK documentation for information on the standard clipboard formats. Refer to section �ref B_Ref280262652 �ref B_Ref280262652 \n �0� �ref B_Ref280262652 * mergeformat �6.2	The "Market Data (WOSA/XRT)" Clipboard Format� * mergeformat �6.2	The "Market Data (WOSA/XRT)" The WOSA/XRT Clipboard Format� for details on processing the WOSA/XRT clipboard format.

6.	Data Formats

WOSA/XRT components utilize Uniform Data Transfer as a data transfer mechanism. The format of the data transferred via UDT is identified via the cfFormat member of the FORMATETC structure as defined by OLE2. cfFormat can be a predefined clipboard format such as CF_TEXT or a format that has been registered using the RegisterClipboardFormat Windows API. Implementors of WOSA/XRT Data Objects are required to provide CF_TEXT (CF_UNICODETEXT on Windows NT) and “Market Data (WOSA/XRT)”the WOSA/XRT clipboard format as defined in section 6.2. Any other standard or custom clipboard format may also be implemented.

This section describes the clipboard formats used and defined by WOSA/XRT. Having a number of clipboard formats available gives both data users and data providers a large amount of flexibility in both their implementation and use.

6.1	Standard Format - CF_TEXT

WOSA/XRT compliant components must support the standard Windows 3.x CF_TEXT clipboard format�. The data in CF_TEXT is an array of text characters. Each line ends with a carriage return–linefeed (CR-LF) combination. A null character signals the end of the data.

The data transferred in CF_TEXT format is a table representing the entire Data Object's DataItems collection. For example, if a Data User requested three stock quote items:

Set p = dataobj.Requests.CreateProperties("OPEN", "HIGH", "LOW", "CLOSE", "VOLUME")

p(0) = "SYMB"

dataobj.Requests.Add("MSFT", p)

dataobj.Requests.Add("IBM", p)

dataobj.Requests.Add("AAPL", p)

dataobj.ColumnDelimiter = Chr$(8)

The ColumnDelimiter property of the DataObject object is used to determine how columns are delimited in the buffer. See section �ref B_Ref281809495 \n �0� �ref B_Ref281809495 * mergeformat �4.1.3.1	DataObject Object Properties� for details

The buffer transferred in CF_TEXT format would be a string that looks like this:

"SYMB\tOPEN\tHIGH\tLOW\tCLOSE\tVOLUME\r\nMSFT\t94.75\t95.50\t94.75\t95.00\t24053\r\nIBM\t26.25\t27.00\t\t\t\r\nAAPL\t44.50\t44.75\t42.25\t\t32432"

In a Windows edit control the string above would look like this:

SYMB	OPEN	HIGH	LOW	CLOSE	VOLUME

MSFT	94.75	95.50	94.75	95.00	24053

IBM	26.25	27.00			

AAPL	44.50	44.75	42.25		32432

Note that using the CF_TEXT format is inefficient compared to other formats because the contents of the entire DataItems list is transferred for each update, even if only one attribute of one item has changed.

Only the primary value of each property per item is included in data transferred though CF_TEXT. There is no way to transfer properties of properties of items.

6.2	The "Market Data (WOSA/XRT)"WOSA/XRT Clipboard Format

The requirements of a common data format stem largely from the nature of the information being processed. The format discussion is based on the assumption that a security or other instrument has multiple data fields (properties) associated with it that change value in real time. To allow for optimum performance under heavy load, it is necessary to provide an application with ability to receive updated properties when and only when that property changes. Finally, it must be possible to combine multiple data changes into one notification to the application.

WOSA/XRT Data Objects expose the data they represent in two ways: through OLE Automation and through Uniform Data Transfer. Because data is exposed through OLE Automation using IDispatch methods, properties, and collections�, the standard clipboard formats defined in this specification for Uniform Data Transfer are synergistic with OLE Automation concepts, data structures, and types.

Almost any complexity of data can be handled by this data format through properties. Any item or property in the stream can have any number of properties and those properties can, in turn, have other properties, and so on. For example status information on the ‘item’ or ‘record’ level can be stored in a property of an item. Status information at the ‘property’ or ‘field’ level can be stored in a property of the property.

Although care has been taken to design the format described here so that it is flexible and complete, the data format described in this section is by no means the only one that can be implemented and used. OLE 2.0 allows two objects to negotiate which data transfer format is used through the IDataObject::QueryGetData function. Therefore, if the format described below is not satisfactory for a very specific, custom scenario any other clipboard format could be defined and used.

There is nothing in this specification that prevents a WOSA/XRT compliant Data Object and/or Data User from implementing clipboard formats beyond what is described here.

WOSA/XRT Data Objects expose the data they represent in two ways: through OLE Automation and through Uniform Data Transfer. As described in section �ref B_Ref275798337 \�ref B_Ref275798337 \n �0� �ref B_Ref275798337 * mergeformat �4.1	Programmability Interface�* mergeformat �4.1Programmability Interface� data is exposed through OLE Automation using IDispatch methods, properties, and collections. Therefore, for ease of implementation, the standard clipboard formats defined in this specification for Uniform Data Transfer are synergistic with OLE Automation concepts, data structures, and types.

The “Market Data (WOSA/XRT)” clipboard format is a streaming data format through which market data can be transferred. Any object that understands this format must call the Windows API RegisterClipboardFormat to retrieve a clipboard format ID from the system. This format is alwaysusually transferred using the TYMED_HGLOBAL medium type.

The "WOSA/XRT Market Data"WOSA/XRT clipboard format has the following characteristics:

1.	Compact. The overhead to represent data is minimal. A stream containing a single item with one property incurs an overhead of 82 bytes, each additional property on the item incurs 24 bytes (including the value of that property), and each additional item incurs only 42 bytes.

	

2.	Self Identifying. The format allows for transfer between applications (and even machines when Distributed OLE is available). The stream itself, and the data it contains must be self-describing.

	

3.	Extensible. The format is open-ended. There is a mechanism where complex data types can be defined and these new data types are self-describing.

	

4.	Multiple Items and Partial Data. Any individual exchange can contain information regarding multiple items and multiple properties of those items. In addition, for a given Item in the exchange any sub-set of the properties of that Item may be included, allowing for partial updates on all levels.

	

5.	Source Status Information. ‘Available’, ‘Dropped’, ‘No Resource’, ‘No Access’ type state/status indicators are easily implemented as properties on Items.

	

6.	Item Status Information. ‘OK’, ‘Stale’, etc... item status information indicators are easily implemented as properties on Items.

	

7.	Field (or Property) Status Information. ‘OK’, ‘Stale’, etc.. property level status information indicators are easily implemented as properties on Items.

	

8.	Consistent with Component Object Model. This format is consistent with many aspects of the Component Object Model and OLE Automation. In addition it works well with future technologies such as data access objects, Distributed OLE, and Cairo.

The WOSA/XRT Version 1.01 clipboard format is identified by the string representation of the following GUIDs (Globally Unique Identifiers):

00023C00-0000-0000-C000-000000000046 (Unicode Version)

00023C01-0000-0000-C000-000000000046 (ANSI Version)

The WOSAXRT.H file in the XRTFrame sample application contains the following defines:

#define szCF_WOSAXRT101W "{00023C00-0000-0000-C000-000000000046}" // Unicode

#define szCF_WOSAXRT101A "{00023C01-0000-0000-C000-000000000046}" // Ansi

Data Objects and Data Users which want to exchange data using the WOSA/XRT clipboard format should call the RegisterClipboardFormat API with these strings. For example, a Data Object that was designed to be compiled for either ANSI or Unicode would contain code similar to the following:

#ifdef _UNICODE

	cfXRT = (CLIPFORMAT)::RegisterClipboardFormat(szCF_WOSAXRT101W);

 #else

	cfXRT = (CLIPFORMAT)::RegisterClipboardFormat(szCF_WOSAXRT101A);

#else

The only difference between the ANSI and Unicode versions of the clipboard format is the way string data within the data stream is interpreted. If the ANSI clipboard format is used, all string data is stored as 8 bit (single byte) ANSI characters. In the Unicode case all string data is stored as 16 bit (two byte) Unicode characters. All strings are BYTE counted, not character counted.

6.2.1	A Streaming Data Format

The data format defined here can be described as a streaming data format. That is, it is intended to be stored in a contiguous stream and accessed serially.

All data elements are stored in the Intel representation (little endian).

6.2.2	Header

At the beginning of the property set stream is a header that provide status information for the data object and data feed, and describes the stream that is to follow.

Element�Type/Size�Description��dwSize�DWORD�Count of bytes of the entire stream from the beginning of the header.��clsID�CLSID (16 bytes)�The CLSID of the DataObject that generated the stream.��dwStatus�DWORD�DataObject status��dwSubStatus�DWORD�Additional status information��dwVendorData1�DWORD�Vendor defined��dwVendorData2�DWORD�Vendor defined��dwPropSetOffset�DWORD�Offset to first property set��dwItemOffset�DWORD�Offset from the beginning of the header to the first Item header��dwReserved�DWORD�Reserved for future use��dwItemOffset�DWORD�Offset from the beginning of the header to the first Item header��

In C, the header would be declared as follows:

typedef struct tagMARKETDATA

{

	// Header

	DWORD	dwSize ;			// Count of bytes in entire structure

	CLSID	clsID ;				// Data Object CLSID

	DWORD	dwStatus ;			// Indicates the status of the Data Object

	DWORD 	dwSubStatus ;		// Additional status information

	DWORD	dwVendorData1 ;	//

	DWORD	dwVendorDat2 ;	 	//

	DWORD	dwPropSetOffset ;	// Offset to first property set

	DWORD	dwItemOffset ;

	DWORD	dwReserved ;		// Reserved for future use

} MARKETDATA ;

The definition of the members of this structure follow.

6.2.2.1	Size of Stream

The first DWORD in the stream indicates the total count of bytes in the stream, including the first DWORD.

6.2.2.2	Class Identifier

The Class Identifier is the 16 byte CLSID of the class that generated the data in the stream.

6.2.2.3	Data Feed Status

32 bit value that indicates the status of the Data Object and data feed.

The following Data Object Status values are defined�:

Status Name�Value�Description��xrtStatusNormal�0�Indicates that the feed is operating correctly. See possible sub-status indicators below.��xrtStatusError�1�Indicates that there is some sort of error condition on the data feed. See sub-status' below.��

6.2.2.4	Data Feed Sub-Status

32 bit value that further describes the status of the data feed. For each Data Feed Status given above, there are the following sub-status indicators defined.

Sub-Status indicators for xrtStatusNormal�Value�Description��xrtStatusNormal�0�No sub-status available.������

Sub-Status indicators for xrtStatusError�Value�Description��xrtErrorGeneral�0�General error, no additional information available.��xrtErrorFeedDown�1�The data feed is not longer available.��xrtErrorNoPrivledge�2�The user does not have sufficient rights to the data feed.��

6.2.2.5	Vendor Defined Data

dwVendorData1 and dwVendorData2 are vendor specific. A vendor can use the Class Identifier to identify that a stream originated from one of it's objects and can use these two 32 bit values accordingly.

6.2.2.6	Offset to First Property Set

dwPropSetOffset is the offset from the start of the stream to the first property set (see section �ref B_Ref280262109 �ref B_Ref280262109 \n �0� �ref B_Ref280262109 * mergeformat �6.2.4	Property Sets� * mergeformat �6.2.4	Property Sets�).

6.2.2.7	Offset to First Item

dwItemOffset is the offset from the start of the stream to the first item. See below for details on items.

6.2.3	Update Items

The Market Data stream format serves as a transfer format for item changes.

6.2.3.1	Update Item Header

The item header describes the contents of an update item and gives the offset in the stream of the next item.

Element�Type/Size�Description��dwDataItemID�DWORD�Identifies the DataItem Object that is associated with this update item.��Element�Type/Size�Description��dwRequestID�DWORD�Identifies the Request Object that requested this item.��dwNextItem�DWORD�Offset from start of stream to the next item.��cProperties�DWORD�Count of the filled out property ID/offset pairs to follow��dwPropertySet�DWORD�Offset from the start of the stream to the property set that is associated with this item.��dwReserved�DWORD�Reserved for future use��dwPropertySet�DWORD�Offset from the start of the stream to the property set that is associated with this item.��rgPropIDValue[0]�DWORD+DWORD�Property ID/ValueOffset pair. Offsets are relative to start of Item header.��rgPropIDValue[1]�DWORD+DWORD�Property ID/ValueOffset pair. Offsets are relative to start of Item header.��...����rgPropIDValue

[cProperties-1]�DWORD+DWORD�Property ID/ValueOffset pair. Offsets are relative to start of Item header.��

The following pseudo structure further illustrates the format of the Update Item Header:

typedef struct tagUPDATEITEM

{

	DWORD		dwDataItemID ;		// ID of the Data Item

	DWORD		dwRequestID ;		// ID of the Request Object

	DWORD		dwNextItem ;		// Offset from start of stream to next item

	DWORD		cProperties ;		// Number of properties

	DWORD		dwPropertySet ;	// Offset to associated property set

	DWORD		dwReserved ;		// Reserved for future use

	ITEMOFFSET	rgPropIDValue[cProperties] ;

} UPDATEITEM ;

The dwDataItemID and dwRequestID are the unique identifiers of the DataItem and Request objects that generated the Update Item. dwDataItemID can be used by Data Users to handle cases where a single Request object generates multiple DataItems.

The cProperties element indicates how many Property ID/Offset pairs are included in the Update Item Header. May be zero.

The dwPropertySet element contains the offset from the start of the entire stream to the property set that is associated with this update item.

Each rgPropIDValue element contains 2 DWORDs. The first DWORD is the property ID of the property and the second DWORD is the offset from the start of the Update Item Header to the associated Update Item Value:

typedef struct tagITEMOFFSET

{

	DWORD		dwPropertyID;		// Property ID

	DWORD		dwValueOffset ;	// Offset to the VARIANT (from start of

									// the Update Item Header)

} ITEMOFFSET ;

As described below in section �ref B_Ref280262109 \n �0� �ref B_Ref280262109 * mergeformat �6.2.4	Property Sets�, property ID 0 is reserved for the Name property.

6.2.3.2	Update Item Value

The Update Item Value is a serialized form of the OLE 2.0 VARIANT data structure. The VARIANT structure is a core piece of the OLE Automation design.� The use of the VARIANT structure within the WOSA/XRT Market Data streaming data format provides synergy between the WOSA/XRT Programmability Interface and the data format.

Element�Type/Size�Description��vt�VARTYPE (16 bits)�VARTYPE��wReserved1�unsigned short�Reserved.��wReserved2�unsigned short�Reserved.��wReserved3�unsigned short�Reserved.��value�Variable length (>= 8 bytes)�The value.��

The following VARTYPEs are allowed to exist in the a WOSA/XRT Market Data stream:

VARTYPE�Value�Value Representation��VT_EMPTY�0�None. An un-initialized value.��VT_NULL�1�4 bytes with the value 0x0L��VT_I2�2�2 bytes representing a WORD value. This will be zero padded to 32-bit boundary.��VT_I4�3�4 bytes representing a DWORD value.��VT_R4�4�4 bytes representing a 32-bit IEEE Floating point value.��VT_R8�5�8 bytes representing 64-bit IEEE Floating point value.��VT_CY�6�8 byte two's complement integer (scaled by 10,000). This type is commonly used for currency amounts.��VT_DATE�7�Time format used by many applications: a 64-bit floating point number representing seconds since January 1st 1900. This is stored in the same representation as VT_R8��VT_BSTR�8�Counted, zero-terminated binary string; represented as a DWORD byte count (including the terminating null character) followed by the bytes of data. For the ANSI version of the clipboard format all characters are 8 bit ANSI characters. For the Unicode version, all characters are 16 bit Unicode characters.��VT_BSTR�8�Counted, zero-terminated binary string; represented as a DWORD byte count (including the terminating null character) followed by the bytes of data.��VT_DISPATCH�9�DWORD Always 0x0L.��VT_ERROR�10�A SCODE.��VT_BOOL�11�2 bytes representing a boolean (WORD) value containing 0 (false) or -1 (true). This will be zero padded to 32-bit boundary.��VT_VARIANT�12�DWORD Always 0x0L.��VT_UNKNOWN�13�DWORD Always 0x0L.��VT_VARIANT | VT_BYREF�16396�A DWORD offset to another ITEMHEADER. The offset is from the beginning of the entire stream. This is used to represent ‘properties of properties’.��

If a value for VARTYPE is encountered that is not in the list above the data that follows is a BLOB (binary large object). Readers should seek past the data and ignore it. A BLOB is defined as a DWORD count of bytes followed by that number of bytes.

The serialized format of the VARIANT makes reading one very simple:

	VARIANT v ;

	pStream->Read(&v, sizeof(VARIANT)) ; // sizeof VARIANT is 16 bytes

	if (v.vt == VT_BSTR)

	{

		// Read the size of the BSTR

		DWORD dw ;

		pStream->Read(&dw, sizeof(DWORD)) ;

		// Read the string

		pStr = SysAllocStringLen(NULL, dw) ;

		pStream->Read(pStr, dw) ;

	}

	else if (v.vt == VT_VARIANT | VT_BYREF)

	{	

		// Read the offset of the item

		DWORD dw ;

		pStream->Read(&dw, sizeof(DWORD)) ;

		// Read the item at that offset

		...

	}

	else if (vt.vt > VT_BOOL)

	{

		// To ensure backwards compatiblity if .vt.vt is greater

		// than any defined when this code was written, the spec says that

		// we should assume such unknown VARTYPES indicate a BLOB

		DWORD dw ;

		pStream->Read(&dw, sizeof(DWORD)) ;

		// Seek past the data (ignore it)

		pStream->Seek(dw , STREAM_SEEK_CUR, NULL) ;

 }

For completeness the VARIANT structure is given below. See the OLE 2.0 SDK for more details on this structure.

struct FARSTRUCT tagVARIANT{

 VARTYPE vt;

 unsigned short wReserved1;

 unsigned short wReserved2;

 unsigned short wReserved3;

 union {

 short iVal; // VT_I2 XRT: Yes

 long lVal; // VT_I4 XRT: Yes

 float fltVal; // VT_R4 XRT: Yes

 double dblVal; // VT_R8 XRT: Yes

 VARIANT_BOOL bool; // VT_BOOL XRT: Yes

 SCODE scode; // VT_ERROR XRT: Yes

 CY cyVal; // VT_CY XRT: Yes

 DATE date; // VT_DATE XRT: Yes

 BSTR bstrVal; // VT_BSTR XRT: Yes

 IUnknown FAR* punkVal; // VT_UNKNOWN XRT: Yes*

 IDispatch FAR* pdispVal; // VT_DISPATCH XRT: Yes*

 SAFEARRAY FAR* parray; // VT_ARRAY|* XRT: No

 short FAR* piVal; // VT_BYREF|VT_I2 XRT: No

 long FAR* plVal; // VT_BYREF|VT_I4 XRT: No

 float FAR* pfltVal; // VT_BYREF|VT_R4 XRT: No

 double FAR* pdblVal; // VT_BYREF|VT_R8 XRT: No

 VARIANT_BOOL FAR* pbool; // VT_BYREF|VT_BOOL XRT: No

 SCODE FAR* pscode; // VT_BYREF|VT_ERROR XRT: No

 CY FAR* pcyVal; // VT_BYREF|VT_CY XRT: No

 DATE FAR* pdate; // VT_BYREF|VT_DATE XRT: No

 BSTR FAR* pbstrVal; // VT_BYREF|VT_BSTR XRT: No

 IUnknown FAR* FAR* ppunkVal; // VT_BYREF|VT_UNKNOWN XRT: No

 IDispatch FAR* FAR* ppdispVal; // VT_BYREF|VT_DISPATCH XRT: No

 SAFEARRAY FAR* FAR* pparray; // VT_BYREF|VT_ARRAY|* XRT: No

 VARIANT FAR* pvarVal; // VT_BYREF|VT_VARIANT XRT: Yes

 void FAR* byref; // Generic ByRef XRT: No

 };

};

6.2.4	Property Sets

Each Update Item has a property set associated with it. The property set describes the properties that the item has. For example the update item “MSFT” may have “High”, “Low”, “Last”, and “Volume” properties. A property has two pieces of data associated with it: a value and a name. The value is stored within the UpdateItem itself as a VARIANT and the name is stored separated in the Property Set whose offset in the stream is UpdateItem.dwPropertySet. The VARIANTs stored in the UpdateItem each have an associated property ID that relates to an entry in the property set.

6.2.4.1	Property IDs

Property IDs are generated by the DataObject at runtime and are valid for a given item over the lifetime of the associated Request Object. For a given Request Object, Property IDs are always contiguous.

The first property ID (ID == 0) is reserved for the name property and is always present in every property set.

6.2.4.2	Property Set Dictionary Format

A Property Set is broken down into two components in the stream. The Property Set Dictionary contains header information about the property set, as well as the human readable property names for the properties contained in the stream. The actual property values are contained in the Update Item as described in section 6.2.3.1.

All strings in the Property Set Dictionary are either ANSI characters or Unicode characters, depending on whether the ANSI or Unicode version of the clipboard format is being used.

Element�Type/Size�Description��dwPropertySetID�DWORD�Unique identifier of the property set. Uniqueness is guaranteed across the instance of the data object.��Element�Type/Size�Description��cProperties�DWORD�Total numbers of properties in the property set��dwNext�DWORD�Offset from the start of the stream to the next Property Set Dictionary��dwReserved�DWORD�Reserved for future use��cProperties�DWORD�Total numbers of properties in the property set��rgProperty[0]

(strSymbol)�DWORD count of bytes followed by that many bytes.�String that describes the name of the update item (e.g. “Name”). It is possible for this entry is usually empty (e.g. the DWORD count of bytes == 0), in which case the reader should assume the property name is “Name”. Always zero-terminated.��rgProperty[0]

(bstrSymbol)�DWORD count of bytes followed by tha

BSTRt many bytes.�BSTR that describes the name of the update item (e.g. “Sym

“Symbol”). Thisbol”). This entry is usually empty (e.g. the DWORD count of bytes == 0), in which case the reader should assume the property name is “Sym

“Symbol”. Always zero-bol”. Always zero-terminated.��rgProperty[1]

�DWORD count of bytes followed by that many bytes.�BSTRString that describes the property whose ID is cProperties - 1. Always zero-terminated.��...����rgProperty

[cProperties-1]�DWORD count of bytes followed by that many bytes.�BSTRString that describes the property whose ID is cProperties - 1. Always zero-terminated.��

Below is a pseudo C structure that describes the Property Set Dictionary format.

typedef struct tagPROPERTYSET

{

	DWORD		dwPropertySetID ;

	DWORD		cProperties ;

	DWORD		dwNext ;			// Offset from start of stream to next item

	DWORD		dwReserved ;		// Reserved

//	DWORD		rgbName ;			// rgProperty[0] (property ID == 0)*/

//	BYTE 		szName[cbName] ;	// not valid C/C++

//	DWORD 		cbName ;			// rgProperty[1] (property ID == 1)*/

//	BYTE		rgbName[cbName] ; 	// not valid C/C++

//	...

//	DWORD		cbName ;			// rgProperty[cProperties-1] (property ID==cProperties1)

//	BYTE 		rgbName[cbName] ;	// not valid C/C++

} PROPERTYSET, *PPROPERTYSET, FAR *LPPROPERTYSET ;

7.	Appendix A: Assigned GUIDs

The WOSA/XRT Design Specification has been assigned a block of 256 GUIDs to be used for CLSIDs, IIDs, and other places where a unique identifier is needed. The assigned range is {00023Cxx-0000-0000-C000-000000000046}. The GUIDs defined thus far are:

{00023C00-0000-0000-C000-000000000046}

The string to be used in a call to the RegisterClipboardFormat API to get the clipboard format ID for the Unicode Version of the WOSA/XRT clipboard format.

{00023C01-0000-0000-C000-000000000046}

The string to be used in a call to the RegisterClipboardFormat API to get the clipboard format ID for the ANSI Version of the WOSA/XRT clipboard format.

8.	Appendix B: Definitions

This section defines the terms that are used throughout the WOSA/XRT documentation.

78.1	Programmability Interface

The Programmability Interface is the component of the WOSA/XRT specification that defines the members that WOSA/XRT Data Objects must expose through OLE Automation.

78.2	Item

An Item is a single data element that may have multiple properties (sometimes called a record). For example, a "stock quote item" may have "open", "close", "high", "low", "last", and "volume" properties. Other items could be "bond item", "news items", etc.

78.3	Properties

A Property is a single attribute (sometimes called a field) of an Item. Examples of Properties are “ASK”, “BID”, “HIGH”, etc... A property has three data points associated with it: a name, a type, and a value.

78.4	Collection

A Collection is a group of objects that can be indexed like an array using integer indices or by name. In this specification there are collections of Items and collections of Properties. Collections are described in terms of OLE Automation and are defined more thoroughly in the Programmability Interface section of this document.

78.5	Data User

Data User refers to applications or application components that, through OLE2 interfaces and the WOSA/XRT standard, access real-time data. A Data User is typically an OLE2 container application, but may also be a WOSA/XRT Data Object that re-packages or combines real-time data from other WOSA/XRT Data Objects. Data Users are described in detail in the section titled �ref B_Ref275740243 * mergeformat �4.	Data Objects�.

78.6	Data Object

A Data Object is an instance of an object that provides real-time data to one Data User. The data that is represented by an instance of a Data Object is composed of a list of items which have properties. Instances of Data Objects are created by Data Object Applications or by and EXE or DLL that registers it’s OLE2 class object as REGCLS_SINGLEUSE. Data Objects are described in the section titled �ref B_Ref275740243 * mergeformat �4.	Data Objects�.

78.7	Object Server

An Object Server is an EXE or DLL that implements the WOSA/XRT Data Object for a given class. Object Servers may be implemented as single-use local servers (e.g. an SDI application), multiple-use local servers (e.g. and MDI application), or in-process servers (e.g. a DLL). The Object Server manages the creation of instances of Data Objects of a particular class.

Object Servers are described in the section titled �ref B_Ref275740243 * mergeformat �4.	Data Objects�.

78.8	Request Objects Collection

A request object has properties that define a request for data. A Data User adds Request objects to a Data Object’s Requests collection object.

78.9	Requests Object

Every Data Object maintains an internal list of items that Data Users have requested updates for. This list is called the Object Request List or Requests Object.

In terms of the Programmability Interface the Requests Object is a collection of Request Objects.

8.	Appendix B9.	Appendix C: Other WOSA Specifications

The Windows Open Services Architecture and the individual WOSA elements each have one or more specifications or other documents either available or under development. To request more information, contact either a Microsoft field sales or systems engineering representative, or the Open Market Data Council for Windows contact at:

Fax (U.S.S):	+ 1 206 936 7329 ATTN.: Open Market Data Council for Windows

Fax: (Europe):	+ 33 1 46 35 10 30 ATTN.: Open Market Data Council for Windows

Email: 		

	Internet:		wosaxrt@microsoft.com

	CompuServe:	>INTERNET:wosaxrt@microsoft.com

File Access:	

	CompuServe:	Section 4 of the WINEXT forum.

	Internet:		ftp.microsoft.com in the drgevelopr/drg/OLE-Info/WOSA-XRT-Info directory.

Mail:		Microsoft Developer Services		Microsoft Developer Services

		c/o Microsoft Corporation 		c/o Microsoft Europe

		One Microsoft Way 22/2028		Tour Pacific

		Redmond, WA 98052			Cedex 77

		(800)227-4679				92977 Paris La Defense - France

The WOSA specifications or other documents that may be requested include the following. Note that some of these may not be immediately available due to being in development, under revision, or may require execution of a non-disclosure agreement and/or a beta site agreement.

·	WOSA Corporate Backgrounder [Microsoft part number 098-53420]

·	WOSA Extensions for Real-time Market Data Backgrounder [Microsoft part number 089-54433]

·	WOSA Extensions for Real Time Market Data Specification [Microsoft part number 089-54432]

·	Windows SNA API Specifications:

·	Windows LUA (RUI and SLI)

·	Windows APPC

·	Windows CPI-C

·	Windows HLLAPI

·	Windows CSV

·	Windows Sockets Specification

·	Windows RPC (Remote Procedure Call) Specification

·	ODBC (Open Database Connectivity) Specification

·	MAPI (Messaging API) Specification

·	License Service API Specification

·	TAPI (Telelphony API) Specifciphony API) Specification

For more information on OLE 2.0, Microsoft development tools, or any Microsoft application, call the Microsoft Developer Services Team toll-free at (800)227-4679. If you require TDD/TT (text telephone) for hearing impaired, call (206)635-4948. In Canada, call (800) 563-9048. Outside the 50 United States and Canada, contact your local Microsoft subsidiary. You can also contact Microsoft by fax at (206)936-7329. Specify Developer Services Team, RWF on your cover sheet.

9.	Appendix C10.	Appendix D: The Open Market Data Council for Windows

(As of February 1994)

A-T Financial Information, Inc.�Labtech��Abraxas Sostware�London Stock Exchange��ACT Financial Systems�Market Arts Software��ADAPTI, Inc.�Market Broadcasting Corporation��ADP�Market Vision��ADS Associates�May Consulting��American Real-time Services�Micrognosis Inc.��Andersen Consulting �Microsoft Corporation��AXL�Minerva Technology Inc.��Bridge Information Systems, Inc.�NASD��BT [CBP]�NCS��Business Graf Software Industries, Ltd.�NYSE��Canaan Analytics Inc.�PC Quote, Inc.��CATS Software, Inc.�Prophet Software, Inc.��Chuck Jones & Associates�Quay Financial Software��City Technologies Ltd.�Quick America, Inc.��Co-Cam Computer Group�Quotron Systems, Inc.��CQG�Reuters Information Technology Inc.��Datastream International�SAS Institute, Inc ��De La Rue Inter Innovation AB�SEI Corporation ��Desktop Data Corporation�SIAC��DEC�Siemens Nixdorf��Dow Jones Telerate*�Software Design & Construction��DWS Software Corporation�Standard & Poors/ ComStock��EI�Standard & Poors/ McGraw- Hill��Essex Trading�Star Data Systems��FIDES Informatik�Step Technology��Glassco Park, Inc.�Systems Imagineering��HA Associates �TCAM Systems��ILX�Teknekron Software Systems��Inetco�Telekurs (North America) Inc.��Infortec�Telemet America, Inc.��Infosel�Townsend Analytics Ltd.��INFOSOFT�Track Data Corporation��Instinet Analytics�Tradepoint Financial��Interactive Data�Troy Systems Ltd.��ISIS Distributed Systems Inc.�Visual Numerics, Inc.��Kapiti Ltd.�WinClient Technologies, Inc.��Keynote Software���Knight-Ridder Financial/Americas���

�MAPI is the Messaging API, ODBC is Open Database Connectivity, and TAPI is the Telephony API.

�The OMDC has specified that 300-400 messages a second are possible during peak market periods on a 486/25 with 16 MB RAM.

�See the OLE 2.0 Software Development Kit for details of OLE Automation and Uniform Data Transfer.

�See the WOSA/XRT Software Development Kit document titled “Excel 5.0 Real-Time Extensions” for details.

�It is possible that future versions of WOSA/XRT will provide a mechanism for programmatically requesting a list of the properties a Data Object supports.

�Objects built using the Microsoft Foundation Classes (MFC) 2.5 get OLE 2.0 Linking support ‘for free’.

�This type of solution could also use notifications. The Data Objects are required to support a method that allows the Data User to specify how often update notifications are made. The Data User could essentially say “Update me every n seconds”.

�Microsoft will provide an Excel 5.0 AddIn and a Visual Basic 3.0 Custom Control (VBX) as part of the WOSA/XRT Software Development Kit.

�User, application, and machine level permissioning is supported.

�See the OLE 2.0 SDK documentation and the document COLLECT.DOC for more information on collections and properties.

�This requirement is actually a requirement of all OLE Automation applications. Chapter 4 of the OLE 2.01 SDK document "Creating Programmable Applications" specifies that "applications with subordinate objects should include an Application object."

�As specified in the OLE 2.01 SDK, all arguemtents to OLE Automation methods must be of type VT_VARIANT. The implementation is responsible for coercing the VARIANT to a suitable type.

�IDataObject::GetData cannot be called during the processing of IAdviseSink::OnDataChange because OnDataChange notifications from a Local (implemented in an EXE) object are asynchronous. During an asynchronous call in OLE 2.0, the callee cannot make any calls that might require remoting. This only applies to Data Objects that are implemented as Local servers; Data Objects implemented as InProcess servers can call ::GetData during an ::OnDataChange notification.

�Under Windows NT, the CF_UNICODETEXT format mustay also be provided.

�As described in the section titled “Programmability Interface”

�In this preliminary draft specification some status indicators are missing. The final version will have a complete list.

�All methods and properties defined on an OLE Automation object are passed through the IDispatch::Invoke method as pointers to VARIANT structures. A complete set of variant coercion functions are provided in the OLE 2.0 DLLs. These functions automatically coerce a variant of one type to a variant of another type.

* Supported for completeness, but the value must always be zero in the

WOSA/XRT Design Specification		Page �page �
ii
35
�

WindowsOSA Extensions for Real-time Market Data		Printed: January 4, 1994

	Microsoft Part Number:	098-54432

	Revision Number:	1.00.4031.002

	Created:	January 3, 1994

	Last Revised:	MarchOctober 4, 1994

