“OLE for Design & Modeling Applications”�Design Specification

January 23, 1995

DRAFT

�� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc315446233 � PAGEREF _Toc315446233 �2��

1.1. The “OLE for Design & Modeling Applications” Council	� GOTOBUTTON _Toc315446234 � PAGEREF _Toc315446234 �2��

1.2. Organization of this Document	� GOTOBUTTON _Toc315446235 � PAGEREF _Toc315446235 �2��

1.3. Revision History	� GOTOBUTTON _Toc315446236 � PAGEREF _Toc315446236 �3��

2. Three Dimensional Objects	� GOTOBUTTON _Toc315446237 � PAGEREF _Toc315446237 �4��

2.1. IOle3DObject interface	� GOTOBUTTON _Toc315446238 � PAGEREF _Toc315446238 �6��

2.1.1. IOle3DObject::Get3DExtent	� GOTOBUTTON _Toc315446239 � PAGEREF _Toc315446239 �6��

2.1.2. IOle3DObject::GetDefaultView	� GOTOBUTTON _Toc315446240 � PAGEREF _Toc315446240 �6��

2.1.3. IOle3DObject::SetView	� GOTOBUTTON _Toc315446241 � PAGEREF _Toc315446241 �7��

2.2. IViewGLObject interface	� GOTOBUTTON _Toc315446242 � PAGEREF _Toc315446242 �8��

2.2.1. IViewGLObject::Draw	� GOTOBUTTON _Toc315446243 � PAGEREF _Toc315446243 �8��

2.3. IOleInPlace3DObject interface	� GOTOBUTTON _Toc315446244 � PAGEREF _Toc315446244 �8��

2.3.1. IOleInPlace3DObject::OnModelMatrixChange	� GOTOBUTTON _Toc315446245 � PAGEREF _Toc315446245 �9��

3. Transitions Between Objects (both 2D and 3D)	� GOTOBUTTON _Toc315446246 � PAGEREF _Toc315446246 �10��

3.1. IOleInPlace3DSite interface	� GOTOBUTTON _Toc315446247 � PAGEREF _Toc315446247 �11��

3.1.1. IOleInPlace3DSite::GetModelMatrix	� GOTOBUTTON _Toc315446248 � PAGEREF _Toc315446248 �11��

3.1.2. IOleInPlace3DSite::GetWindowContext	� GOTOBUTTON _Toc315446249 � PAGEREF _Toc315446249 �12��

3.2. IOleInPlaceViews interface	� GOTOBUTTON _Toc315446250 � PAGEREF _Toc315446250 �12��

3.2.1. IOleInPlaceViews::EnumInPlaceViews	� GOTOBUTTON _Toc315446251 � PAGEREF _Toc315446251 �12��

3.2.2. IOleInPlaceViews::GetViewContext	� GOTOBUTTON _Toc315446252 � PAGEREF _Toc315446252 �12��

3.2.2. 	� GOTOBUTTON _Toc315446253 � PAGEREF _Toc315446253 �12��

3.2.3. IOleInPlaceViews::SetActive3DObject	� GOTOBUTTON _Toc315446254 � PAGEREF _Toc315446254 �13��

3.3. IOleInPlaceActive3DObject interface	� GOTOBUTTON _Toc315446255 � PAGEREF _Toc315446255 �14��

3.3.1. IOleInPlaceActive3DObject::OnInPlaceViewChange	� GOTOBUTTON _Toc315446256 � PAGEREF _Toc315446256 �14��

3.3.2. IOleInPlaceActive3DObject::OnInPlaceViewCreate	� GOTOBUTTON _Toc315446257 � PAGEREF _Toc315446257 �14��

3.3.3. IOleInPlaceActive3DObject::OnInPlaceViewDelete	� GOTOBUTTON _Toc315446258 � PAGEREF _Toc315446258 �15��

4. Locating Pseudo-Objects	� GOTOBUTTON _Toc315446259 � PAGEREF _Toc315446259 �16��

4.1. IOleLocate interface	� GOTOBUTTON _Toc315446260 � PAGEREF _Toc315446260 �17��

4.1.1. IOleLocate::PointLocate	� GOTOBUTTON _Toc315446261 � PAGEREF _Toc315446261 �17��

4.1.2. IOleLocate::ShapeLocate	� GOTOBUTTON _Toc315446262 � PAGEREF _Toc315446262 �17��

5. User Interface	� GOTOBUTTON _Toc315446263 � PAGEREF _Toc315446263 �19��

5.1. Deactivating an Active Object	� GOTOBUTTON _Toc315446264 � PAGEREF _Toc315446264 �19��

5.2. Other	� GOTOBUTTON _Toc315446265 � PAGEREF _Toc315446265 �19��

�

Introduction

This document contains the detailed specification for the technical content of “OLE for Design & Modeling Applications”, an industry defined extension to OLE that enables three-dimensional compound document functionality.

Modeling applications use three dimensional entities and define relationships between these entities. Manipulations of one entity may require information about another entity to produce or maintain the correct relationship. Geometric relationships are the most obvious example but modeling applications are not limited to this. To provide interoperability between modeling applications, OLE interfaces are defined to communicate three dimensional information between objects and to allow an object to be in-place edited in the context of its overall model.

The illustration below shows graphically where the “OLE for Design & Modeling Applications” (OLE D&M for short) interfaces fit within the current set of OLE interfaces as defined by Microsoft.

�

The “OLE for Design & Modeling Applications” Council

This specification has been placed in the public domain by it’s original designer, Intergraph Corporation. Several vendors including Intergraph, Microsoft, and Autodesk are working to create a ‘council’ that can take ownership of this specification and move it forward. “OLE for Design & Modeling Applications” is what Microsoft calls an OLE Industry Solution; that is, it is a 3rd party initiative to extend OLE for a specific industry or industry segment. For more information on OLE Industry Solutions see the January 1995 issue of the Microsoft Developer Network News.

Organization of this Document

The remainder of this document contains the detailed specification for the technical content of “OLE for Design & Modeling Applications”. Interfaces defined fall into three major classes, each with it’s own chapter (Three Dimensional Objects, Transitions Between Objects (both 2D and 3D), and Locating Pseudo-Objects). These chapters are followed by a chapter on User Interface.

Annotations are indicated by diamond shaped bullet points (like this one). They are used to indicate places in the specification where additional work is needed.

Each feature section within a chapter has the following format:

X.X. Feature Name

Priority: Low, Medium, or High

Stability: Low, Medium, or High

Overview: Brief technical or conceptual overview of this feature, it’s expected uses, known problems it solves or scenarios it enables.

Each feature should have a small code fragment that clearly illustrates it’s implementation use.

Revision History

Date�Comments��October 5, 1994�Preliminary Draft��November 30, 1994�OLE architect feedback incorporated��December 6, 1994�Additional refinements��January 19, 1995�Final Draft for Design Preview��

Three Dimensional Objects

Priority: High

Stability: High

Overview: With more applications today modeling 3 dimensional physical entities it becomes important to provide interfaces so that objects can communicate certain 3 dimensional information. New interfaces allow 3 dimensional containers and objects to take full advantage of the third dimension. This does not relieve them of the responsibility of working with 2 dimensional applications. The 3D container must still be able to insert 2 dimensional objects and the 3D object must still be insertable in a 2D container.

Approach: IOle3DObject is an extension of IOleObject that allows a container that understands 3 dimensions to retrieve 3 dimensional information about an object so that it may know its spatial relation to the rest of its 3 dimensional entities. It also allows a 2 dimensional container that understands 3 dimensions to specify the orientation of a 3 dimensional object.

During initialization (object creation or loading), the container may ask for the IOle3DObject interface. IOle3DObject derives from IUnknown and the application supporting it should ensure that QueryInterface on IOleObject for IOle3DObject is successful. Similarly, QueryInterface on IOle3DObject for IOleObject must be successful. If the object does not support IOle3DObject, then the container must treat the object as 2 dimensional.�

IOle3DObject::GetExtent is analagous to IOleObject::GetExtent and returns the extents of the object in 3 dimensions. A 3 dimensional object must still support IOleObject::GetExtent when it is inserted into 2 dimensional containers.

IOle3DObject::GetDefaultView allows a 2 dimensional container to retrieve the default orientation with which a 3 dimensional object displays. The 3 dimensional object should store this default view. For example, an object may display with a top view or side view, or isometric view with perspective. Note that the actual position of the the 3 dimensional object in the 2 dimensional container is governed by lprcPosRect returned by OleInPlaceSite::GetWindowContext.

IOle3DObject::SetView allows a 2 dimensional container to specify the orientation with which the object is to display. For example, the 2 dimensional container (via the user, probably) can change the display of a 3 dimensional object from top view to side view. This allows a 2 dimensional container to have multiple links to a 3 dimensional object, each with different orientation. This is not necessary with a 3 dimensional object in a 3 dimensional container because the orientation is stored in each site object and can be adjusted by the container (probably by the user) without sending to the server (see attachment matrix below).

IViewGLObject allows a 3 dimensional container to provide OpenGL display capabilities to a 3 dimensional object. When an object is loaded and the container retrieves the IViewObject interface it may also query for the IViewGLObject interface. IViewGLObject derives from IUnknown and the application supporting it should ensure that QueryInterface on IViewObject for IViewGLObject is successful. If the object supports IViewGLObject, then the container can ask the object to render itself via OpenGL. If the object does not support IViewGLObject, then the container must use IViewObject and enable a 2 dimensional display in the 3 dimensional container (the site creates a GDI to GL adapter). Although IViewGLObject::Draw is analagous to IViewObject::Draw, it is completely independent of IViewObject which the object must still support in order to be displayed in a 2 dimensional container.�

When a 3 dimensional object is inserted into a 3 dimensional container, the 3 dimensional orientation of the object should be stored in the container site. This is called the attachment matrix. Creation and storing of this attachment matrix is up to the container and requires no OLE interface in of itself. IOleInPlace3DSite::GetModelMatrix allows the object to retrieve this attachment matrix when it is initially in-place activated. This is somewhat analagous to IOleInPlaceSite::GetWindowContext which returns lprcPosRect. Although this method is an enhancement for 3 dimensional objects, this interface has more enhancements that are described in detail in the next section, Transitions Between Objects (both 2D and 3D). IOleInPlace3DSite derives from IUnknown and the application supporting it should ensure that QueryInterface on IOleInPlaceSite for IOleInPlace3DSite is successful.

IOleInPlace3DObject::OnModelMatrixChange allows the container to inform the in-place active object of changes in its 3 dimensional position and orientation. This is the attachment matrix stored with the site which indicates where and how the object was originally positioned in the container. The 3 dimensional container might allow a change to the attachment matrix (although it should not) in which case the container would have to call IOleInPlace3DObject::OnModelMatrixChange to inform the in-place active object of the new model transformation matrix. IOleInPlace3DObject derives from IUnknown and the application supporting it should ensure that QueryInterface on IOleInPlaceObject for IOleInPlace3DObject is successful.

interface IOle3DObject � XE "IDropInactive" � : IUnknown {

	// *** IUnknown methods ***

	HRESULTQueryInterface (REFIID riid, LPVOID FAR* ppvObj);

	ULONGAddRef ();

	ULONGRelease ();

	// *** IOle3DObject methods ***

	HRESULTGet3DExtent (DVREP dwRep, LPEXTENT3D pExtent);

	HRESULTGetDefaultView (LPXFORM3D pVToW, LPXFORM3D pWToV, WORD pwPlaneCnt, LPCLIPPLANES pClip);

	HRESULTSetView (LPXFORM3D pVToW, LPXFORM3D pWToV, WORD wPlaneCnt, LPCLIPPLANES pClip);

	};

Value for IID_IOle3DObject TBD

interface IViewGLObject : IUnknown {

	// *** IUnknown methods ***

	HRESULTQueryInterface (REFIID riid, LPVOID FAR* ppvObj);

	ULONGAddRef ();

	ULONGRelease ();

	// *** IViewGLObject methods ***

	HRESULTDraw (DVREP dwRep, LPIGL pIGL, LPXFORM3D pVToW, LPXFORM3D pWToV, WORD wPlaneCnt, LPCLIPPLANES pClip);

	};

Value for IID_IViewGLObject TBD

interface IOleInPlace3DObject : IUnknown {

	// *** IUnknown methods ***

	HRESULTQueryInterface (REFIID riid, LPVOID FAR* ppvObj);

	ULONGAddRef ();

	ULONGRelease ();

	// *** IOleInPlace3DObject methods ***

	HRESULTOnModelMatrixChange (LPXFORM3D pMatrix);

};

Value for IID_IOleInPlace3DObject TBD

typedef enum tagDVREP	 {			// Standard representations

	DVREP_CONTENT = 1,		// display all the details of the object

	DVREP_SIMPLIFIED = 2,		// display a simplified version

	DVREP_SYMBOL = 4,			// display as a symbol

	DVREP_TEXT = 8			// display only the text description

	} DVREP;

// Extent definition

typedef double* EXTENT3D; 			// Low point, and High points (6 doubles)

typedef EXTENT3D LPEXTENT3D;

// Clipping plane equations

typedef double* CLIPPLANEEQUATION; // 6 plane equations complying with GL format (24 doubles)

typedef CLIPPLANEEQUATION LPCLIPPLANES;

// XForm matrix

typedef double* XFORM3D; 			// Matrix of 16 doubles complying with GL format

typedef XFORM3D LPXFORM3D;

IOle3DObject interface

The IOle3DObject interface is implemented by 3D graphic objects and is used by 3D containers�.

IOle3DObject::Get3DExtent

HRESULT IOle3DObject:: Get3DExtent (DVREP dwRep, LPEXTENT3D pExtent)

Returns the 3D extent of a 3D object, depending on its representation.

Argument	Type	Description

dwRep	DVREP	Type of representation requested. It is an extension of the 2D aspect of IOleObject::GetExtent. This argument is a DVREP type.

pExtent	LPEXTENT3D	Array of 6 doubles representing the low and high points of the object expressed in the server coordinate system.

return value	S_OK	The extent is returned successfully.

E_INVALIDARG	One of the arguments is invalid.

E_OUTOFMEMORY	Out of memory.

E_UNEXPECTED	An unexpected error happened.

The immediate container sends Get3DExtent to the server in order to display the tracker and get the range of the object for locate/display purposes. The range is then transformed into the container coordinate system using the site’s attachment matrix.

See Also	IOleObject::Get3DExtent

IOle3DObject::GetDefaultView

HRESULT IOle3DObject ::GetDefaultView (LPXFORM3D pVToW, LPXFORM3D pWToV, WORD* pwPlaneCnt, LPCLIPPLANES pClip)

Returns the default view with which a server displays.

Argument	Type	Description

pVToW	LPXFORM3D	Matrix representing the View to Server World (pixel to 3D (real worls) coordinate system) Transformation Matrix. This matrix is a 4x4 matrix as described in OpenGL view matrices. It includes Rotation, Translation, Scale, Perspective and shearing information.

pWtoV	LPXFORM3D	Matrix representing the Server World to View Transformation Matrix. This matrix is a 4x4 matrix as described in OpenGL view matrices. It includes Rotation, Translation, Scale, Perspective and shearing information. This is the inverse of the pVtoW argument without perspective or projections.

pwPlaneCnt	WORD*	Number of clipping planes used to display. This number can vary between 0 and 6. When the number is 0, the pointer to the clipping planes equations can be null.

pClip	LPCLIPPLANES	Equations of the clipping planes expressed into the Object coordinate system. Each clipping plane is represented by the 4 coefficients of the plane equation. There is a maximum of 6 clipping planes; this is an array of 24 doubles. The definition of the clipping planes is the same as in OpenGL.

return value	S_OK	The display context is returned successfully.

E_INVALIDARG	One of the arguments is invalid.

E_OUTOFMEMORY	Out of memory.

E_UNEXPECTED	An unexpected error happened.

IOle3DObject::SetView

HRESULT IOle3DObject ::SetView (LPXFORM3D pVToW, LPXFORM3D pWToV, WORD wPlaneCnt, LPCLIPPLANES pClip)

Allows the container to specify the view with which a server displays.

Argument	Type	Description

pVToW	LPXFORM3D	Matrix representing the View to Server World (pixel to 3D (real worls) coordinate system) Transformation Matrix. This matrix is a 4x4 matrix as described in OpenGL view matrices. It includes Rotation, Translation, Scale, Perspective and shearing information.

pWtoV	LPXFORM3D	Matrix representing the Server World to View Transformation Matrix. This matrix is a 4x4 matrix as described in OpenGL view matrices. It includes Rotation, Translation, Scale, Perspective and shearing information. This is the inverse of the pVtoW argument without perspective or projections.

wPlaneCnt	WORD	Number of clipping planes used to display. This number can vary between 0 and 6. When the number is 0, the pointer to the clipping planes equations can be null.

pClip	LPCLIPPLANES	Equations of the clipping planes expressed into the Object coordinate system. Each clipping plane is represented by the 4 coefficients of the plane equation. There is a maximum of 6 clipping planes; this is an array of 24 doubles. The definition of the clipping planes is the same as in OpenGL.

return value	S_OK	The operation is successful.

E_INVALIDARG	One of the arguments is invalid.

E_OUTOFMEMORY	Out of memory.

E_UNEXPECTED	An unexpected error happened.

IViewGLObject interface

The IViewGLObject interface is the 3D counterpart to the IViewObject interface. It allows 3D servers to display themselves in the container display context. This interface refers explicitly to an argument of type IGL interface which is understood to be an OpenGL COM interface that would provide a “cooperative” container/server display mechanism..

IGL is not specified here, although the problem is well understood. IGL is essentially a COM wrapper around the OpenGL API that would allow a provider (e.g. a container) to provide a prepared display surface that the client (e.g. an object) could render to.

OLE for Design & Modeling container applications will generally expect an object that supports IOle3DObject to support IViewGLObject. However the container must be prepared for the case where this interface is not supported (in which case IViewObject should be used instead).�

IViewGLObject::Draw

HRESULT IViewGLObject ::Draw (DVREP dwRep, LPIGL pIGL, LPXFORM3D pVToW, LPXFORM3D pWToV, WORD wPlaneCnt, LPCLIPPLANES pClip)

Displays a server within a display context.

Argument	Type	Description

dwRep	DVREP	Type of representation requested. It is an extension of the 2D aspect of IOleObject::GetExtent. This argument is a DVREP type.

pIGL	LPIGL	Pointer to the IGL interface. To display, the server simply calls IGL functions on the IGL interface pointer.

pVToW	LPXFORM3D	Matrix representing the View to World (pixel to 3D (real worls) coordinate system) Transformation Matrix of the OuterMost In-Place container. This matrix is a 4x4 matrix as described in OpenGL view matrices. It includes Rotation, Translation, Scale, Perspective and shearing information.

pWtoV	LPXFORM3D	Matrix representing the World to View Transformation Matrix of the OuterMost In-Place container. This matrix is a 4x4 matrix as described in OpenGL view matrices. It includes Rotation, Translation, Scale, Perspective and shearing information. If there is no perspective or projections, this is the inverse of the pVtoW argument.

wPlaneCnt	WORD	Number of clipping planes used to display. This number can vary between 0 and 6. When the number is 0, the pointer to the clipping planes equations can be null.

pClip	LPCLIPPLANES	Equations of the clipping planes expressed into the Object coordinate system. Each clipping plane is represented by the 4 coefficients of the plane equation. There is a maximum of 6 clipping planes; this is an array of 24 doubles. The definition of the clipping planes is the same as in OpenGL.

return value	S_OK	Operation is successful.

E_INVALIDARG	One of the arguments is invalid.

E_UNEXPECTED 	An unexpected error happened

During the display, the 3D Site pushes its attachment matrix, the eventual override symbology, transforms the clipping planes, and then asks the 3D server to display. The server determines which objects have to be drawn using the clipping plane information and calls functions from IGL to display itself. Then the client pops the context back (matrix, symbology, clipping planes, and so on). The View toWorld and World to View matrices are only important to the server for view independent displays (for example, view independent text which should not display sheared, rotated or skewed). In these cases, the server may want to reverse the container’s view matrix.

IOleInPlace3DObject interface

The IOleInPlace3DObject interface is implemented by 3D graphic objects and is used by 3D container applications to negotiate 3D display context.

IOleInPlace3DObject::OnModelMatrixChange

HRESULT IOleInPlace3DObject ::OnModelMatrixChange (LPXFORM3D pMatrix)

Notifies the in-place object that the outermost 3D container changed its model transformation matrix..

Argument	Type	Description

pMatrix	LPXFORM3D	Pointer to an array of 16 doubles representing the 4x4 transformation from the in-place server to the outermost 3D container. This matrix is ordered in the same way as a model transformation in OpenGL. It should not include any component that would make it singular (for example, perspective or projection). The matrix is allocated and deallocated by the caller.

return value	S_OK	The notification is done successfully.

E_OUTOFMEMORY	The matrix cannot be allocated.

E_INVALIDARG	The argument is invalid.

E_UNEXPECTED 	An unexpected error happened

The matrix is built by concatenating all the attachment matrices from the outermost 3D container to the in-place server.

See Also	IOleInPlace3DSite::GetModelMatrix

Transitions Between Objects (both 2D and 3D)

Priority: High

Stability: High

Overview: User interface transitions from one active object to the next must become smoother as more applications combine large numbers of different objects with complicated relationships in the same container/document. More objects require non-rectangular boundaries and more applications require objects to overlap but not always obscure each other (irregular polygons and transparency).

For containers that provide multiple views of data (e.g. top, side, oblique), new interfaces allow objects to become in-place active in multiple view simultaneously, allowing continuous, uninterrupted editing of the object while taking advantage of and working in these disparate views.

Approach: When activated, the object asks the container for the views in which it supports in-place activation. It then creates a child view corresponding to each of those views. Each new view has the same extents as the corresponding container view. The view allows the object to receive events, but is otherwise unobtrusive; it is in fact, invisible. The server controls all views and events at this stage. It can thus provide a user interface that allows arbitrary inputs for manipulation without fear of sudden deactivation. In fact the default way to deactivate is via <esc>, although the server can provide a menu selection or may interpret a double-click on another object as a signal to deactivate.

Precise user interface guidelines TBD. Not deactivating the object when clicking outside of its client area (forcing the use of <esc>) is significantly different than the UI for the same operation in 2D OLE Documents. A solution may involve the use of modifier keys with the default action (no modifier keys) resulting in a deactivation. See Chapter 3 for more information on possible user interface specifications.

The main interface facilitating this is IOleInPlaceViews to which the server obtains a pointer via IOleInPlace3DSite::GetWindowContext. IOleInPlace3DSite derives from IUnknown and the application supporting it should ensure that QueryInterface on IOleInPlaceSite for IOleInPlace3DSite is successful.

As part of in-place activation, the server calls IOleInPlaceViews::EnumInPlaceViews to receive a list of the container’s views supporting in-place activation. For each of these views, the server calls IOleInPlaceViews::GetViewContext (to get an IGL interface pointer and View to World and World to View matrices) so that it can properly process events and perform dynamic (rubberbanding) displays on that view. To avoid marshalling, a server could instead draw to its newly created child view by using the attachment matrix and World to View matrix to determine the context for that view. Lastly it calls IOleInPlaceViews::SetActive3DObject to give the document a pointer to its IOleInPlaceActive3DObject interface.

A server may utilize IOleInPlaceViews almost in place of IOleInPlaceUIWindow (except for SetActiveObject) if it intends to control views during in-place activation. The container must still support IOleInPlaceUIWindow for SetActiveObject and for servers negotiating border space.

The IOleInPlaceActive3DObject interface allows the container to inform the in-place active object of any view changes, deletions or creations.

The more complete in-place activation flow is as follows:

receiving IOleObject::DoVerb, the server calls:

IOleClientSite::QueryInterface for the IOleInPlaceSite interface, and stores it.

IOleInPlaceSite::QueryInterface for the IOleInPlace3DSite interface, and stores it.

IOleInPlaceSite::CanInPlaceActivate, asking if the container supports In-place activation.

IOleInPlace3DSite::GetModelMatrix to get the ModelMatrix (outermost container to server). Note that this calls recurses until it reaches the outermost 3D container.

IOleInPlaceSite::OnInPlaceActivate to notify the container that the object is about to be activated.

IOleInPlaceSite::OnUIActivatate to notify the container that the menus are going to be merged.

IOleInPlaceSite::GetWindowContext to return IOleInPlaceFrame and IOleInPlaceUIWindow interfaces.

IOleInPlace3DSite::GetWindowContext to return the IOleInPlaceViews interface.

CreateMenu to create an empty menu.

IOleInPlaceFrame::InsertMenus	to ask the container to insert its menus.

InsertMenus to insert its own menus.

IOleInPlaceUIWindow::SetActiveObject to give the container a pointer to its IOleInPlaceActiveObject.

IOleInPlaceViews::SetActive3DObject to give the container a pointer to its IOleInPlaceActive3DObject.

IOleInPlaceViews::EnumInPlaceViews to get the list of container views.

IOleInPlaceViews::GetViewsContext to get view context for each view.

IOleInPlaceFrame::SetMenu to set the composite frame menu on the container’s frame.

interface IOleInPlace3DSite � XE "IDropInactive" � : IUnknown {

	// *** IUnknown methods ***

	HRESULTQueryInterface (REFIID riid, LPVOID FAR* ppvObj);

	ULONGAddRef ();

	ULONGRelease ();

	// *** IOleInPlace3DSite methods ***

	HRESULTGetModelMatrix (LPXFORM3D pMatrix);

	HRESULTGetWindowContext (LPOLEINPLACEVIEWS* ppInPlaceViews);

	};

Value for IID_IOleInPlace3DSite TBD

interface IOleInPlaceViews : IUnknown {

	// *** IUnknown methods ***

	HRESULTQueryInterface (REFIID riid, LPVOID FAR* ppvObj);

	ULONGAddRef ();

	ULONGRelease ();

	// *** IOleInPlaceViews methods ***

	HRESULTEnumInPlaceViews (LPENUMHWND* ppenumHwnd);

	HRESULTGetViewContext (HWND hwnd, LPUNKNOWN *ppunk, LPXFORM3D pVToW, LPXFORM3D pWToV);

	HRESULTSetActive3DObject(LPOLEINPLACEACTIVE3DOBJECT p3DActiveObj);

	};

Value for IID_IOleInPlaceViews TBD

interface IOleInPlaceActive3DObject :IUnknown {

	// *** IUnknown methods ***

	HRESULTQueryInterface (REFIID riid, LPVOID FAR* ppvObj);

	ULONGAddRef ();

	ULONGRelease ();

	// *** IOleInPlaceActiveObject methods ***

	// *** IOleInPlaceActive3DObject methods ***

	HRESULTOnInPlaceViewChange(HWND hwnd, LPXFORM3D pVtoW, LPXFORM3D pWtoV);

	HRESULTOnInPlaceViewCreate(HWND hwnd);

	HRESULTOnInPlaceViewDelete(HWND hwnd);

	}

Value for IID_IOleInPlaceActive3DObject TBD

// XForm matrix

typedef double* XFORM3D; 		// Matrix of 16 doubles complying with GL format

typedef XFORM3D LPXFORM3D;

IOleInPlace3DSite interface

The IOleInPlace3DSite interface is an extension of IOleInPlaceSite for 3D containers. It allows 3D objects to get the 3D information from the 3D containers.

IOleInPlace3DSite::GetModelMatrix

HRESULT IOleInPlace3DSite::GetModelMatrix (LPXFORM3D pMatrix)

Gets the transformation matrix from the outermost 3D container to the in-place server.

Argument	Type	Description

pMatrix	LPXFORM3D	Pointer to an array of 16 doubles representing the 4x4 transformation from the in-place server to the outermost 3D container. This matrix is ordered in the same way as a model transformation in OpenGL. The matrix is allocated and deallocated by the caller.

return value	S_OK	The matrix is returned successfully.

E_UNEXPECTED	An unexpected error happened.

This function is called by the in-place server and recurses until it reaches the outermost 3D container, concatenating the matrices.

See Also	IOleInPlace3DObject::OnModelMatrixChange

IOleInPlace3DSite::GetWindowContext

HRESULT IOleInPlace3DSite :: GetWindowContext (LPOLEINPLACEVIEWS* ppInPlaceViews)

Returns the outermost 3D container window context.

Argument	Type	Description

ppInPlaceViews	LPOLEINPLACEVIEWS*	Pointer to the IOleInPlaceViews interface of the outermost 3D container..

return value	S_OK	The context is returned successfully..

E_INVALIDARG	One of the arguments is invalid

E_UNEXPECTED	An unexpected error happened.

This function recurses until it reaches the outermost 3D container and returns its IOleInPlaceViews interface to the in-place server. This function establishes the handshaking between the outermost 3D container and the 3D in-place server.

See Also	IOleInPlaceView::SetActive3DObject

IOleInPlaceViews interface

The IOleInPlaceViews interface is implemented by 3D Graphic container applications and is used by 3D Object applications to provide information about the 3D Display context. It replaces the IOleInPlaceUIWindow interface.

IOleInPlaceViews::EnumInPlaceViews

HRESULT IOleInPlaceViews:: EnumInPlaceViews(LPENUMHWND* ppenumHwnd)

Returns the list of in-place active windows into the container.

Argument	Type	Description

ppenumHwnd	LPENUMHWND*	Enumerator of the views used for in-place activation.

return value	S_OK	The Display context information is passed successfully.

E_OUTOFMEMORY	The enumerator cannot be allocated.

E_INVALIDARG	One of the arguments is invalid

E_UNEXPECTED	An unexpected error happened.

This function, implemented by 3D graphic containers, is called by In-Place 3D servers to know the list of views supporting in-place activation. Once the object has this list, it can ask for their context by calling IOleInPlaceViews::GetViewContext.

IEnumHWND is not specified here (nor is it specified by Microsoft). Its specification is trivial however.

See Also		IOleInPlaceView::SetActive3DObject

�xe "GetViewContext function:IOleInPlace3DWindow interfaces"��xe "IOleInPlace3DWindow interfaces:GetViewContext function"�IOleInPlaceViews::GetViewContext

HRESULT IOleInPlaceViews:: GetViewContext(HWND hwnd, LPUNKNOWN* ppunk, LPXFORM3D pVToW, LPXFORM3D pWToV)

Returns the Graphic context of the 3D In-Place Window.

Argument	Type	Description

hwnd	HWND	Handle to the window to get the context from.

ppunk	LPUNKNOWN*	Address of pointer to the object that implements a rendering interface. The server must use QueryInterface on this pointer using the IID of the rendering interface (usually IID_IGL).

Eariler versions of this specification specified LPIGL* as the type for this paramter. However this restricts the use of rendering interfaces other than IGL. By changing it to LPUNKNOWN* (IUnknown**) the specification is made more flexible,allowing support for rednering APIs other than OpenGL.

Earlier versions of this specification indicated that the caller was required to add a reference to the passed pointer. This is incorrect. Per standard COM guidelines the callee should AddRef all outgoing interface pointers before returning.

pVToW	LPXFORM3D	Matrix representing the View to World (pixel to 3D (real worls) coordinate system) Transformation Matrix of the OuterMost In-Place container. This matrix is a 4x4 matrix as described in OpenGL view matrices. It includes Rotation, Translation, Scale, Perspective and shearing information.

pWtoV	LPXFORM3D	Matrix representing the World to View Transformation Matrix of the OuterMost In-Place container. This matrix is a 4x4 matrix as described in OpenGL view matrices. It includes Rotation, Translation, Scale, Perspective and shearing information. This is the inverse of the pVtoW argument without perspective or projections.

return value	S_OK	The Display context information is passed successfully.

E_OUTOFMEMORY	The matrix cannot be allocated.

E_INVALIDARG	One of the arguments is invalid

E_UNEXPECTED	An unexpected error happened.

This function, implemented by 3D graphic containers, is called by In-Place 3D servers to initialize their display context. The pointer to the IGL interface is different here. The server must push the container’s model matrix (see IOleInPlace3DSite::GetModelMatrix) before displaying in dynamics. After displaying, the server should pop the context back. This allows the container (possibly upon an IAdviseSink::OnViewChange) to send the display to other objects without concern for this object’s display context.

See Also	IOleInPlaceActive3DObject::OnViewMatrixChange, IOleInPlaceViews ::EnumInPlaceViews

IOleInPlaceViews::SetActive3DObject

HRESULT IOleInPlaceViews::SetActive3DObject (LPOLEINPLACEACTIVE3DOBJECT p3DActiveObj)

Sets the IOleInPlaceActive3DObject connection.

Argument	Type	Description

p3DActiveObj	LPOLEINPLACEACTIVE3DOBJECT	Pointer to the IOleInActiveObject interface

return value	S_OK	The operation was successful.

E_INVALIDARG		One of the arguments is invalid.

E_UNEXPECTED		An unexpected error happened.

To establish a direct link between the In-Place server and the container, the server calls IOleInPlace3DSite::GetWindowContext and stores it, then it calls IOleInPlaceViews::SetActive3DObject giving its interface to IOleInPlaceActive3DObject, so the container can store its connection too.

See Also	IOleInPlace3DSite::GetWindowContext

IOleInPlaceActive3DObject interface

The IOleInPlaceActive3DObject interface is an extension of IOleInPlaceActiveObject and is implemented by servers wishing to track the container’s views during in-place activation. It is called by containers supporting In-Place Activation. The IOleInPlaceActive3DObject interface adds methods to notify the In-Place Active Object of changes in views.

IOleInPlaceActive3DObject::OnInPlaceViewChange

HRESULT IOleInPlaceActive3DObject::OnInPlaceViewChange(HWND hwnd, LPXFORM3D pVtoW, LPXFORM3D pWtoV)

Notifies the In-Place Object that the outermost 3D container modified one of its In-place views, by sending the 2 matrices.

Argument	Type	Description

hwnd	HWND	Handle of the view modified.

pVtoW	LPXFORM3D	ViewToWorld 3D Matrix transformation (this is a 4x4 Matrix following OpenGL standard, it carries rotation, translation, scaling, shearing, and perspective information.

pWtoV	LPXFORM3D	WorldToView 3D Matrix transformation (this is a 4x4 Matrix following OpenGL standard, it carries rotation, translation, scaling, shearing, and perspective information.

return value	S_OK	The operation was successful

E_OUTOFMEMORY	The matrix cannot be allocated.

E_INVALIDARG	One of the arguments is invalid.

E_UNEXPECTED	An unexpected error happened.

The in-place server has to keep this information. One matrix is used for locate purpose, the other one for display in dynamics. Two matrices are passed because they might carry perpective or projection and can be singular, so one might not be deduced from the other one by inversion.

See Also	IOleInPlaceViews::GetViewContext

IOleInPlaceActive3DObject::OnInPlaceViewCreate

HRESULT IOleInPlaceActive3DObject::OnInPlaceViewCreate(HWND hwnd)

Notifies the In-Place Object that the outermost 3D container just created a new in-place active window.

Argument	Type	Description

hwnd	HWND	Handle of the view created.

return value	S_OK	The notification is receivied successfully

E_INVALIDARG	One of the arguments is invalid.

E_UNEXPECTED	An unexpected error happened.

The in-place server then calls IOleInPlaceViews::GetViewContext to get the new display context and stores it.

See Also	IOleInPlaceViews::GetViewContext

IOleInPlaceActive3DObject::OnInPlaceViewDelete

HRESULT IOleInPlaceActive3DObject::OnInPlaceViewDelete(HWND hwnd)

Notifies the In-Place Object that the outermost 3D container just deleted a view participating in the in-place activation.

Argument	Type	Description

hwnd	HWND	Handle of the view deleted.

return value	S_OK	The delete notification is receivied successfully

E_INVALIDARG	One of the arguments is invalid.

E_UNEXPECTED	An unexpected error happened.

The in-place server then remove this view from its “active view list” and free the useless context.

See Also	IOleInPlaceViews::GetViewContext

�xe "OnViewMatrixChange function:IOleInPlaceActive3DObject interfaces"��xe "IOleInPlaceActive3DObject interfaces:OnViewMatrixChange function"�

Locating Pseudo-Objects

Priority: High

Stability: High

Overview: As applications combine objects with complicated relationships in a container/document, it seems reasonable that one object may make use of information in another object.

This is not just “dragging” one object into another object container. That interoperability extends to sharing the container space and the user’s time/attention. This allows one object to “find” another object. What is done with that information is up to the user or server application. But it allows overlapping objects to utilize each other’s position and geometry during complicated, precise-relationship manipulations.

Approach: The IOleLocate interface allows one to locate pseudo-objects from other objects. In fact, if the container supports this interface then an in-place active object can obtain this information about container elements.

The common example involves a user wanting to manipulate some geometric element relative to the geometry of some other object (or element in the container).

The sophisticated server or container can achieve this by sending IOleLocate::PointLocate or ShapeLocate with a geometric locate criteria to the other object. The other object can respond to this by determining what pieces of it (pseudo-objects, elements) meet the locate criteria. Items that meet the criteria are returned as a list of monikers. (The object could support this in a minimal way by returning ALL of its elements).

The server or container may then call the BindMoniker helper function or IMoniker::BindToObject to bind to each moniker, retrieve a DataObject for each item and make use of its geometry. It could present this in a manner allowing the user to choose how the manipulated element should relate geometrically to the located pseudo-object. The server supporting the location of pseudo-objects with IOleLocate must insure that IOleItemContainer::QueryInterface can return IOleLocate. IOleLocate must also have a pointer to IOleItemContainer to take advantage of EnumObjects and ParseDisplayName. If the server only supports location of the object itself, then IOleLocate need not be concerned with IOleItemContainer.

interface IOleLocate : IUnknown {

	// *** IUnknown methods ***

	HRESULTQueryInterface (REFIID riid, LPVOID FAR* ppvObj);

	ULONGAddRef ();

	ULONGRelease ();

	// *** IOleLocate methods ***

	HRESULTPointLocate (LPBORELINE pBoreLine, LPENUMMONIKER* ppEnumMoniker);

	HRESULTShapeLocate (LPSHAPE pShape, LPENUMMONIKER* ppEnumMoniker);

	};

Value of IID_IOleLocate TBD.

typedef struct tagBoreLine {		// BoreLine definition

	double m_point[3]; 		// Eye Point

	double m_direction[3]; 		// Direction vector

	double m_front; 		// Front curvilinear abscissa >= 0.0

	double m_back; 		// Back curvilinear abscissa <= 0.0

	double m_radius; 		// Tolerance to locate > 0.0

	} BORELINE;

typedef BORELINE FAR* LPBORELINE;

typedef enum tagSHAPETYPE {		// Possible types of shapes

	SHAPETYPE_INSIDE = 0, 		// Select the elements inside the polygon

	SHAPETYPE_OUTSIDE = 1,		// select the elements outside the polygon

	SHAPETYPE_OVERLAP = 2		// select elements overlapping either INSIDE or OUTSIDE

	} SHAPETYPE;

typedef struct tagShape	 {			// Shape definition

	double* m_lpoint; 			// List of points defining the polygon

	int m_pointCount; 			// Number of points in the list

	double m_direction[3]; 		// Direction vector (of shape walls)

	double m_front; 			// Front curvilinear abscissa >= 0.0

	double m_back; 		// Back curvilinear abscissa <= 0.0

	SHAPETYPE m_type; 		 	// type of shape described

	} SHAPE;

typedef SHAPE FAR* LPSHAPE;

IOleLocate interface

The IOleLocate interface is an extension of IOleItemContainer. It adds the capability of retreiving an object by a locate operation.

IOleLocate::PointLocate

HRESULT IOleLocate:: PointLocate (LPBORELINE pBoreLine, LPENUMMONIKER* ppEnumMoniker)

Gets a list of all elements of an object that intersect with a point or a boreline

Argument	Type	Description

pBoreLine	LPBORELINE	Point + depth information to define a sphere or a cylinder used for the intersection criteria. This is a pointer to a boreline structure.

ppEnumMoniker	LPENUMMONIKER* 	Moniker enumerator. Each element located is a moniker.

return value	S_OK	The operation was successful

E_OUTOFMEMORY	Out of memory.

E_INVALIDARG	One of the arguments is invalid.

E_UNEXPECTED	An unexpected error happened.

Returns an enumerator of monikers. This moniker can be converted to a DataObject.

See Also		�"ole.doc!d2hrb11", "ILocate::BoreLocateOnElement"�Error! Bookmark not defined.�IOleLocate::ShapeLocate

IOleLocate::ShapeLocate

HRESULT IOleLocate:: ShapeLocate (LPSHAPE pShape, LPENUMMONIKER* ppEnumMoniker)

Gets a list of all elements intersecting/contained by a shape.

Argument	Type	Description

pShape	LPSHAPE	Shape defined by a set of points defining a polygon, a depth and an attribute specifying the position of the object relative to this shape.

ppEnumMoniker	LPENUMMONIKER* 	Moniker enumerator. Each element located is a moniker.

return value	S_OK	The operation was successful

E_OUTOFMEMORY	Out of memory.

E_INVALIDARG	One of the arguments is invalid.

E_UNEXPECTED	An unexpected error happened.

Return an enumerator of monikers. This moniker can be converted to a DataObject.

See Also	�"ole.doc!d2hrb11", "ILocate::BoreLocateOnElement"�Error! Bookmark not defined.�IOleLocate::PointLocate

User Interface

This section describes the user interface specification for actions that are specific to 3D manipulation.

This section is intentionally underspecified. The “OLE for Design & Modeling Applications” Council needs to discuss these details in depth and come to agreement.

Deactivating an Active Object

Current specification dictates that <esc> should be used to deactiveate an active object. This differs from the OLE Documents (2D) specification where clicking outside of the ‘client area’ of a 2D object is the standard deactivation mechanism.

Other

A detailed list of user interface issues needs to be created.

Appendix A - Assigned GUIDs

The “OLE for Design & Modeling Applications” specification has been allocated a range of 256 globally unique identifiers (GUIDs). The range is {0002D2xx-0000-0000-C000-000000000046}. This range is to be used by this specification only.

Assign IIDs for the itnerfaces defined by this specification from this range and list assignments here.

� The implication being that if an object supports IOle3DObject, it is assumed that it supports the full OLE for Design & Modeling specification.

� Containers and objects that support 3D embedding may support “view” interfaces above and beyond IViewObject and IViewGLObject (e.g. for rendering systems other than OpenGL). In this case the container should QueryInterface on IViewObject for the new interface first, and if that fails, QueryInterface for IViewGLObject.

� 2D containers may also use this object if they “understand” 3D and want to be able to specify, for example, the default view of a 3D object.

� As noted earlier objects may also implement “view” interfaces other than IViewGLObject. For example if there exists a rendering API called XYZ, a container optimized for that API would QueryInterface on the object’s IViewObject for IViewXYZObject. If that QI call failed, the container should then QI for IViewGLObject. If QI for IViewGLObject fails, the container should use IViewObject.

�PAGE �

OLE for Design & Modeling Applications	Page: �page �20�	DRAFT

