Microsoft Messaging Application Program Interface (MAPI)

AAAAsn overview of the electronic messaging standard for the Microsoft® Windows™ Open Services Architecture (WOSA).

��Contents

�TOC \o�Overview	4

The Origins of MAPI (WOSA)	5

Requirements for an Open Messaging API	7

Open Client and Server Interfaces	7

Integration with the Operating System	7

Cross-Platform Availability	7

Rich, Easy-to-Use Features	7

More Than APIs: The Messaging Subsystem	8

APIs	8

Messaging Subsystems	8

The Advantages of Messaging Subsystems	8

The Best of Both Worlds	9

MAPI Architecture	10

Client APIs	11

Simple MAPI	11

Common Messaging Calls (CMC)	11

CMC or Simple MAPI?	12

Extended MAPI	13

Message Store	13

Address Book	14

The MAPI Messaging Subsystem	14

Message Security	15

Service Provider Interfaces (SPIs)	16

Separating Messaging Services	16

The MAPI Programming Model	17

Multi-Platform Support	17

Solutions to Customer Messaging Problems	18

Migrating from Multiple Messaging Services	18

Integrating Services at the Desktop	18

Choosing Specialized Service Providers	19

MAPI and Messaging Applications	20

Messaging-Aware Applications	20

Messaging-Enabled Applications	20

Messaging-Based Workgroup Applications	20

MAPI Developer Resources	22

Software Development Kits (SDKs)	22

Summary	23

Ordering Information	24

�Overview

The information revolution of the 1980's and 1990's has created a serious challenge for organi�zations. Workers use a greater variety of information in their daily activities than ever before—voice mail, fax, documents, and visual presentations, to name only a few. In addition, workers use this information in a variety of often incompatible software programs, each with different features and commands.

How can information from all these systems be integrated and made easily accessible to users across the entire organization? Many organizations are looking to their electronic messaging sys�tem to take on the role of a central communications backbone, used not just for electronic-mail (e-mail) messages, but to integrate all types of information.

With the emergence of powerful enterprise-wide workgroup applications for scheduling, forms routing, order processing, project management, and more, the need for such a communications backbone has never been greater.

Microsoft is committed to making a reality of this vision of electronic messaging as the “central nervous system” for organizational communication. However, achieving this goal requires that messaging applications be plentiful, easy to use, and compatible with each other and with a mul�titude of messaging systems.

Unfortunately, today’s messaging systems and applications have vastly different user interfaces, many are hard to use, and the systems and development tools are largely incompatible with one another. Not surprisingly, developing and deploying a new enterprise-wide program such as a scheduling workgroup application in this mixed-bag scenario can be a nightmare.

Microsoft offers a solution to this dilemma with the Windows™ operating system and a new messaging industry standard. In consultation with independent software vendors and industry consultants, Microsoft created the messaging application program interface (MAPI) standard to help ensure complete system independence for messaging applications.

MAPI solves a critical development problem. To date, if developers wanted to create a widely usable scheduling workgroup application, they had to write a version for each messaging system on the market. Or else write their own messaging system to go with the application. Neither option is attractive and both demand a tremendous amount of resources. The result is to discour�age the development of a variety of messaging applications, especially by smaller vendors.

MAPI offers an alternative by providing a layer of functionality between applications and underlying messaging systems, allowing each to be developed independent of the other.

�The impact on enterprise-wide messaging systems is tremendous. With the MAPI subsystem, adding messaging features to any Windows-based applications is easy for developers, making basic workgroup activities, such as electronically sharing charts and reports, easy for the end users. MAPI also encourages the development of advanced workgroup applications that give workers a better way to exchange information in a corporate setting—from schedules and timesheets to automated forms processing. MAPI does this by acting as a broker between the PC client application and the underlying messaging services. As a result, developers can spend less time trying to fit round pegs into square holes and more time creating applications that let people work in more productive, natural ways.

Alternative Application Designs for Addressing Messaging Systems.

� EMBED Word.Picture.6
�
�
�

MAPI allows developers to save time and leverage their efforts by writing a single messaging application that will work without modification on multiple messaging systems. And because users of different systems can share the same client application, an organization can dramatically reduce training and support costs.

MAPI also gives organizations the freedom to choose messaging systems and applications according to what best meets the organization’s needs, rather than choosing from the few that happen to be compatible. And with the Windows operating system, all of the messaging systems and applications—whether host-based or LAN-based, e-mail, fax, workgroup, and more—are united on the user’s desktop with familiar graphical tools.

The Origins of MAPI (WOSA)

MAPI is part of the Microsoft® Windows open services architecture (WOSA), a comprehensive design created to hide programming complexities from both users and application developers while providing seamless access across a variety of systems.

WOSA defines a common set of application program interfaces (APIs) that allow developers to write applications and back-end services with the confidence that these products can be easily connected in a distributed computing environment.

WOSA is a critical part of the Microsoft vision of computing in the future, a vision based on the concept of information at your fingertips. The goal of this vision is to make information easier to find and use, with the desktop PC serving as the entrance into corporate information, wherever the information resides.

�WOSA standards are being developed for database, directory, security, and messaging functions to provide superior PC integration across a variety of platforms. More information on WOSA is available in the WOSA specification on the Microsoft Developer Network CD (Specs and Strategy, Specifications).

As the messaging component of WOSA, MAPI is the result of an effort among Microsoft and more than a hundred independent software vendors (ISVs), messaging system providers, corporate developers, and consultants from around the world. The goal was to develop a messaging API that truly met the needs of developers and vendors while providing the greatest flexibility and power for future messaging applications, allowing workgroup computing to succeed.

MAPI is an open API; it can support virtually any client messaging-enabled application—including advanced workgroup solutions—on any messaging system.

In this white paper, we’ll explain the innovative dual (client and messaging-service) API approach of MAPI, its ability to leverage the power of the Windows operating system, and the benefits of this architecture for developers, users, and organizations using electronic messaging.

WOSA Architecture

� EMBED Word.Picture.6
�
�
�
Windows APIs provide the link for Windows-based applications. Windows service provider interfaces provide the link for service providers. Together they enable Windows-based applications to access a wide range of services across multiple environments.

Requirements for an Open Messaging API

During the development of MAPI, a variety of vendors with a wide range of industry knowledge provided Microsoft with a clear picture of the “must-have” capabilities for any open messaging industry standard.

Open Client and Server Interfaces

It is not enough to be open on the front end, or client-application side, if you can only connect to a single, or at best a few, predefined messaging services. The messaging system API must also be open to a variety of independent message services, whether host-based or LAN-based. In addition, the capabilities of the system should be consistent, regardless of the underlying messaging system. Client applications must be able to communicate across varied messaging systems, giving the customer the greatest freedom to mix and match different client applications with different messaging systems and to choose the “best of breed” products in each category.

Integration with the Operating System

The goal is clear: messaging will be a natural part of all applications, simply another way of exchanging information just as printing from a computer is today. However, the only way this can occur is for the messaging APIs to be closely integrated with the features of the underlying operating system. The operating system itself should include messaging functions and interfaces tailored to its distinctive strengths. There are several benefits to this approach. Consistent messaging functions are always available on every desktop because they are a part of the operating system itself, rather than being an optional add-in that some users may not have. Developers can write to the operating system and exploit advanced features already programmed into every desktop. And finally, messaging functions will look and feel like applications that users and developers are already familiar with.

Cross-Platform Availability

Taking advantage of the distinctive strengths of a specific operating system is crucial for advanced enterprise-wide messaging. So, too, is the ability to communicate cross-platform with other operating systems. Consequently, any operating system-based messaging API should also support a cross-platform industry standard that provides basic messaging functions such as sending and receiving mail on multiple platforms.

Rich, Easy-to-Use Features

Finally, an industry-standard messaging API must be sophisticated enough to handle the needs of a wide range of applications while being easy enough to encourage widespread use to solve a variety of messaging challenges.

MAPI is designed specifically to address each of these critical requirements for an industry-standard messaging API while meeting the needs of the different development communities—from corporate developers to messaging-system developers.

MAPI is open on both the client and server sides. In addition, MAPI is highly integrated with the operating system and will, in fact, ship as a part of the Windows operating system in future releases.

More Than APIs: The Messaging Subsystem

What is the difference between an API and a messaging subsystem?

As operating systems become more sophisticated in the 1990s, messaging subsystems will be as important as industry-standard APIs for electronic messaging.

APIs

In any messaging application, there are common functions such as sending, receiving, saving, and reading mail. Each function is controlled within the application by a command or function call. These commands are the Application Programming Interfaces, or APIs. They tell the underlying messaging system what to do; that is, they trigger an action.

Messaging Subsystems

A messaging subsystem, which is part of the computer’s operating system, responds to the API calls and performs the requested actions. It is called a subsystem because it is a set of code that is a subset of the entire operating system.

In the past, all messaging functions have been handled by the particular messaging service that is running on the LAN or host system. A messaging subsystem does not replace a messaging system such as MS® Mail, Novell® MHS, X.400, or IBM® PROFS®, but rather acts as a central clearinghouse to unify the various messaging services and shield the user from their differences. Typical functions handled by the subsystem include:

•	Providing common user interfaces for message sending, receiving, saving, and so on.

•	Managing different message stores.

•	Managing different address books.

•	Managing the different transports required to send messages to different messaging systems.

•	Storing messages in an out box when the intended message system is not connected, and automatically forwarding the message at a later time.

•	Notifying applications when events such as mail delivery or mail sending occur.�

The Advantages of Messaging Subsystems

The advantage of having a messaging subsystem is that messaging applications do not have to rely on the particular code of each vendor’s messaging product. Instead, developers can create applications that will work reliably and consistently for all customers who are using the operating system, regardless of the underlying messaging services or network system.

Developers can rely on the common user interfaces and message functions available on every user’s computer (via the messaging subsystem of the operating system). Consequently, the developer of a desktop publishing program who wants to add “Send Mail” as a menu option is assured that this command will always look and work the same for every user, regardless of which messaging or network system is running in the background.

�The Best of Both Worlds

MAPI is much more than a set of industry-standard API calls. It is also a messaging subsystem present in the Windows operating system. This innovative architecture allows true independence for both front-end messaging applications and back-end messaging systems.

The MAPI messaging subsystem works just like the print subsystem in the Windows operating system. All Windows applications share common dialog boxes to prompt the user for printing their documents and selecting printers. Different print drivers, which work with the Windows operating system rather than directly with each application, allow applications to work with a variety of printers. The Print Manager and Spooler let a word-processing application print to a network laser printer, for example, while a spreadsheet is printing to a local dot-matrix printer. MAPI’s messaging subsystem works in the same way, allowing different messaging applications to communicate to a variety of messaging services.

Because electronic messaging on the desktop PC is relatively new, very few PC operating systems provide a built-in messaging subsystem. MAPI and its messaging subsystem is one of the first messaging systems created as an integral part of a microcomputer’s operating system.

MAPI Architecture

In the past, developers had to write messaging and workgroup applications to proprietary platforms. This created obvious limitations, allowing a vendor to support only those users with a particular messaging system. The single alternative was for developers to write their own comprehensive messaging services (including complete facilities for storing, transporting, and addressing messages) in order to be independent. This demands tremendous resources and frequently creates unnecessary duplication of the messaging system.

The MAPI architecture is designed to make it easy to write powerful messaging-enabled applications that are truly independent of the messaging system. To achieve this, MAPI provides two “faces”: the application program interfaces (client APIs), which form the client-to-MAPI link, and the service-provider interfaces, which complete the MAPI-to-messaging system link. MAPI provides a set of common function calls that, together with its messaging subsystem, act as brokers between the front-end (client) applications and the back-end (network-messaging) system.

MAPI Open Architecture

� EMBED Word.Picture.6
�
�
�MAPI’s innovative architecture provides separate APIs for both the client applications (front end) and for the messaging systems (back end), allowing true independence between the two and freeing developers and vendors from compatibility concerns.

This dual interface helps ensure true openness on both the client and server sides. Using MAPI calls, any messaging application can use any messaging service (see “Separating Messaging Services” later in this paper). The application developers are freed from the messaging-system concerns, and messaging-system vendors are freed from application-specific concerns.

The MAPI architecture not only makes development easier, but in many cases makes it possible on a large scale for systems that do not have APIs, such as many host-based systems. Once a MAPI driver is written for a host system (by either Microsoft, a third party, or the system vendor itself), developers simply write applica�tions to the MAPI calls, which in effect become the host APIs.

Finally, the MAPI architecture offers an easy way to tie all of these development efforts together for the every�day messaging user; namely, the consistent graphical user interface of the Windows operating system.

The following sections explain the three levels of MAPI architecture: the client (front-end) APIs, the messaging subsystem of the Windows operating system, and the service provider (back-end) interfaces.

�Client APIs

The MAPI front-end, or client, APIs are available in three parts: Simple MAPI and the Common Messaging Calls (CMC), which are for those applications that require only basic messaging functions, and Extended MAPI, which is used for creating advanced messaging-based applications.

MAPI UI Dialog in Microsoft Excel Spreadsheet

� EMBED Word.Picture.6 ���Simple MAPI and its common dialog boxes make it easy to add messaging functions to applications for Windows, such as spreadsheets or word processors.

� EMBED Word.Picture.6 ���

Simple MAPI

Simple MAPI contains the 12 most common API calls and is designed to make it easy for developers to build powerful, custom messaging applications. The type of application that can be created with Simple MAPI includes a forms routing program that automatically sends a purchase request form to various workers for their completion and approval. Another example is a calendar and scheduling program that lets users view the schedules of other workers and make requests for meetings. Simple MAPI can also be used to add message capabilities to applications that normally do not provide message services, such as spreadsheets and word processors. Simple MAPI includes an optional common user interface (dialog boxes) so that developers can easily add a consistent look to their applications with very little work.

Whether creating a custom messaging application or adding message capabilities to an existing application, developers do not have to worry about the underlying messaging system or the network platform.

The 12 Simple MAPI calls enable an application to send, address, and receive messages. Messages can include data attachments and Windows object linking and embedding (OLE) objects.

Common Messaging Calls (CMC)

The Common Messaging Call Application Program Interface (CMC API) provides a set of ten high-level functions for mail-enabled applications to send and receive electronic messages. It is very easy to add mail capability to an application with CMC, since an important consideration in the design of the API is to minimize the number of function calls needed to send or receive a message. For example a mail-enabled application can send a message with a single function call and receive a specific message with two calls.

�The CMC API is designed to be independent of the actual messaging service used. It is also independent of the operating system and underlying hardware used by the messaging service and will allow a common interface over virtually any electronic messaging service. The CMC API is a good choice for applications to use when:���SYMBOL 183 \f "Symbol" \s 10 \h�	multiple computing platforms need to be supported

�SYMBOL 183 \f "Symbol" \s 10 \h�	multiple messaging services need to be supported

�SYMBOL 183 \f "Symbol" \s 10 \h�	detailed knowledge of the underlying message service is not needed or known

The CMC API was developed in conjunction with the X.400 API Association (XAPIA) standards organization and electronic mail vendors and users. As a cross-platform API, applications on Windows, DOS, OS/2, Macintosh and UNIX platforms can benefit from this simple, easy-to-implement messaging API.

CMC or Simple MAPI?

Since Simple MAPI and CMC provide similar basic messaging functionality for applica�tions, which is the right API to use? As described above, CMC offers many benefits, such as messaging service independ�ence and cross-platform support, so many applica�tions developers would find that API to be the best choice. Simple MAPI is available to support existing applica�tions which have been written to that API. The chart below lists all of the CMC functions, their Simple MAPI equivalents and the purpose of each function:

CMC call�MAPI call�Result��CMC_Logon�MAPILogon�Establishes a session with the messaging service..��CMC_Logoff�MAPILogoff�Terminates a session with the messaging service.��CMC_Free�MAPIFree�Frees the memory allocated by the messaging service.��CMC_Send�MAPISendMail�Sends a standard mail message. Messages can be sent without any user interaction or can be prompted via a common user interface (dialog box).��CMC_SendDocuments�MAPISendDocuments�Sends a standard mail message. This call always prompts with a dialog box for the recipient’s name and other sending options. It is primarily intended for use with a scripting language such as a spreadsheet macro.��CMC_List�MAPIFindNext�Lists information about messages meeting specific criteria.��CMC_Read�MAPIReadMail�Reads a specified mail message.��CMC_ActOn�MAPISaveMail, MAPIDeleteMail�Saves or deletes a specified mail message.��CMC_LookUp�MAPIAddress, MAPIDetails, MAPIResolveName�This group of functions handles addressing chores, such as creating addresses, looking up addresses and resolving friendly names with email names.��CMC_QueryConfiguration��Determines information about the installed CMC service.��Extended MAPI

Extended MAPI goes beyond Simple MAPI to provide even greater interaction with the messaging services. Extended MAPI is the additional API set, intended for complex messaging-based applications such as advanced workgroup programs that use the messaging subsystem extensively. Such applications are likely to handle large and complex messages in large numbers, and require sophisticated addressing features. Extended MAPI supports advanced message features such as custom forms and smart forms. With custom forms, an organization can replace a standard send and receive mail form with its own timesheet or calendar form, with its own predefined fields of information. Smart forms take this one step further, letting you link the information that is entered into those fields with other applications. So, for example, the timesheet entries could all be pulled off the message system automatically and sent to a host-based payroll program.

The message-store and address-book capabilities provided by Extended MAPI are discussed as follows.

Message Store

Extended MAPI provides powerful message store capabilities with its use of folders to organize messages. Folders contain messages, and messages can contain attachments. Folders, messages, and attachments all have properties such as the time sent, type (binary, integer), and so on.

Folders are organized in a hierarchical tree, allowing applications to store messages in any subtree. In addition, wastebasket or out-box folders can be created. Table operations are provided to enable a user to scroll through the folder structure and to view the messages in each folder by subject or other property. Multiple folders can also be searched for specific information. Criteria can be entered to locate messages with particular properties such as subject, sender or recipient, or message text.

Received messages can be modified and stored back in their folders. For example, a user could rotate a fax message that arrived upside down and store it right side up for later viewing. In the Windows operating system, a person who has received a Microsoft Excel spreadsheet as an OLE object in a message can launch Microsoft Excel from within the message, edit the file, and then store the changed file as part of the message.

�Address Book

Address books, as defined by MAPI, are a collection of one or more lists of message recipients. Each list is called a container. Recipients can be either a single user or a distribution list—that is, a group of recipients that are commonly addressed together. Depending on the features of the service providers available on the network system, address books can be organized to have just a single container, a list of containers, or a hierarchy of containers.

Address Book

�Even when different messaging systems are being used together, each with their own directories, MAPI can present a single master address book that combines all of the directories, hiding the complexities of the system from the user.

MAPI supports custom address-book providers. For example, a corporate phone book could be created listing all of a company’s employees. When a name is selected as a message recipient, additional information could appear such as the person’s office location, title and department, supervisor’s name, and more.

Even if multiple service providers are installed, MAPI allows access to the different service directories and provides a common interface to give the appearance of a single address book to the client application. This hides the complexities of the multiple back ends from the user. MAPI also provides a specialized container in the address book called the personal address book. Users can store copies of frequently used addresses in this container and can also maintain entries for e-mail recipients who are not in the main address book of the underlying messaging system.

With MAPI’s support for robust messaging functions, message-service developers can be confident that their existing and future message-store, address-book, and transport services will be fully supported by any MAPI application.

For more information on the types of messaging applications that can be created by Simple and Extended MAPI, refer to the section “MAPI and Messaging Applications” later in this document.

The MAPI Messaging Subsystem

The Common Messaging Calls (CMC), Simple MAPI and Extended MAPI provide the required API calls for messaging applications. These calls work with a second level of MAPI features that are actually built into the Windows operating system: the messaging subsystem. The MAPI messaging subsystem and a MAPI dynamic-link library (DLL) are responsible for dividing the tasks of handling multiple transport-service providers. Drivers for each transport exist in the form of a Windows DLL to provide the interface between the MAPI messaging subsystem message spooler and the underlying back-end messaging system(s) or services (see the “Service Provider Interfaces (SPIs)” section later in this paper for more information on drivers). The message spooler is similar to a print spooler except that it assists with the routing of messages instead of print jobs. The spooler, MAPI.DLL, and the transport drivers work together to handle the sending and receiving of messages.

�When many different transport drivers are installed on a Windows-based desktop, messages from client applications can be sent to a variety of transport services. When a message is sent from a client application, the MAPI.DLL responds to the CMC, Simple or Extended MAPI calls first, routing the message to the appropriate message store and address book service providers. When a message is marked for sending, it is handled by the message spooler where it is delivered to the appropriate transport driver.

The message spooler looks at the message’s address to determine which transport to use to send the message. Depending on the recipients, the message spooler may call upon more than one transport provider. The spooler performs other message-management functions as well, such as directing inbound messages to a message store and catching messages that are undeliverable because no transport provider can handle them. The spooler also provides an important store and forward function, maintaining a message in a store if the needed messaging service is currently unavailable. When connection to the service is reestablished, the spooler automatically forwards the message to its destination.

Except for dialog boxes at the initial transport logon, the spooler and transport providers operate in the background, transferring messages among various messaging services. The spooler does its work and makes its calls to the transport providers when the foreground applications are idle, so users don’t have to wait while they are working with the messaging application.

Windows application developers enjoy the benefits of the spooler and other messaging subsystem features without having to write additional code beyond the MAPI calls. MAPI automatically assigns the appropriate tasks to the appropriate service providers.

In addition to the common functions for sending and receiving messages, MAPI and its subsystem can support file attachments and Windows OLE objects.

Message Security

MAPI provides tremendous flexibility for message security while supporting multiple message services. MAPI gives complete freedom to each service provider to implement an appropriate level of security for access to the underlying messaging system(s). The service provider (driver) can either prompt for a user’s credentials every time a message is sent, or can remember a user’s logon and forgo the prompting.

In the Windows operating system, MAPI gives each service provider the option of sharing its security responsibilities with the messaging subsystem. The security features MAPI can provide will vary according to what is offered by the operating system. The Windows NT™ operating system, for example, provides more sophisticated security capabilities than Windows.

Typically, however, the Windows messaging subsystem can, if the provider so requests, store users’ credential sets for the service provider. The service provider can also choose how much information is to be retained by the subsystem for each user. It might be as little as the user’s network address with no name or password, all the way up to a complete credential set. The subsystem also supports unified logons; that is, with a single initial logon to the messaging system, the user can gain access to multiple workgroup applications. Users don’t have to enter their name and password for each application they wish to use.

The MAPI messaging subsystem encrypts any security information it stores for a service provider.

Service Provider Interfaces (SPIs)

The third level of MAPI features is the innovative use of a back-end architecture to provide true messaging-system independence for applications. MAPI does this by carrying the concept of printer drivers into the messaging arena. Just as a word-processing program can print to many different printers as long as the necessary drivers are installed, so can any MAPI-compliant messaging application communicate with any messaging service.

The back-end or service-provider interfaces to MAPI are called service provider drivers. These drivers can be written by either the service vendor or third-party developers.

MAPI Open Architecture

� EMBED Word.Picture.6
�
�
�

Information from a variety of services—fax, bulletin boards, host email, LAN email, and more—can be easily used with any MAPI client application. From the Windows desktop, users simply choose the service provider drivers for the desired back-end services. A single in box can present messages from all of the different services.

Because of these drivers, client applications can work with multiple messaging systems such as MS MAIL, Novell MHS, and IBM PROFS at the same time, without having to be customized for each system. On a Windows-based desktop, the user simply selects the desired drivers from the control panel as easily as if installing different printers. Once a driver is installed, the user is never again concerned with the underlying messaging system.

MAPI supports more than just LAN-based electronic-mail systems. Communication in an organization typically includes fax, host services such as DEC® All-In-1®, voice mail, public services such as AT&T® EasyLink®, CompuServe®, MCI MAIL®, and others. Drivers can be written for each of these systems and installed by users according to their needs, providing true transport independence. In addition, all of these back ends can share a single, Windows-based user interface. For example, the same client mail application can receive messages from a fax, bulletin board system, host-based e-mail system, and a LAN-based e-mail system. Mail from all of these systems, each with a different transport, can arrive in one universal in box. A single client application handling all of these systems not only reduces development costs, but also reduces costs for application purchases, user training, and system administration.

MAPI’s back-end driver approach creates a truly open future. As new technologies provide unforeseen communication tools, vendors can write a driver for the messaging system and it immediately becomes compatible with any existing or future MAPI client applications. Users simply load the new driver to access the new system.

Separating Messaging Services

Most messaging systems include three types of back-end services—message store, address book or directory, and message transport. MAPI supports each type of service independently, allowing a vendor to offer, for example, a specialized addressing service. Or a customer could create its own corporate phone-book directory of employees. In addition, by writing a MAPI driver, a customer could use one of an organization’s existing databases to act as a message store. In all these cases, the customer simply loads and selects the appropriate driver for the specialized message service and begins using it with any MAPI-compatible client application.

The MAPI Programming Model

MAPI uses object-oriented programming methods for its messaging functions. Messages, folders, and attachments are all accessed through MAPI object structures. When one of these objects is opened, the calling program gets a pointer to the MAPI object; it uses the pointer to further manipulate the object. Each type of object allows different calls, or operations, to be made to it. Many MAPI objects support polymorphism, which means that the same set of calls can be made to different objects. This can reduce the time it takes to write an application by reducing the amount of code required. For example, an application can use the same code to browse a list of messages and to browse a list of attachments.

The MAPI object model is consistent with both present and future object-oriented models for Windows, recognizing each service-provider dynamic-link library (DLL) as a separate object.

Multi-Platform Support

MAPI is the messaging standard for the Windows operating system. As an integral part of the Windows operating system, MAPI will pave the way for powerful network-independent messaging capabilities for workgroup applications. Tight integration with the operating system is vital to achieve advanced messaging functions with the benefits of the graphical Windows operating system.

In an enterprise-wide messaging system, the ability to support the basic messaging features common to other operating systems is also important. As a member of the X.400 Application Program Interface Association (XAPIA), Microsoft has worked with other messaging vendors and end users to define a cross-platform, Common Messaging Call API set for basic messaging functions such as sending and receiving mail. Microsoft will deliver CMC implementations on other platforms such as MS-DOS® and Macintosh® to assist developers working on those platforms. Other vendors will add support for platforms like OS/2® and UNIX®. By writing to CMC, an application could be easily ported from one platform to another. When running on Windows, this CMC application would have the benefit of MAPI services.

Solutions to Customer Messaging Problems

MAPI’s architecture provides organizations with tremendous flexibility to respond to the challenges of enterprise-wide messaging systems. Because the client messaging applications are truly independent of the underlying network services, MAPI helps solve three critical messaging problems facing organizations today. The problems: supporting multiple messaging services with a common client, integrating services at the desktop, and choosing specialized service providers.

Migrating from Multiple Messaging Services

Typically, an organization running multiple e-mail systems linked by gateways must use tremendous development and support resources in order to maintain compatibility among the systems. Users are often stuck with the proprietary mail application that came with each messaging system. With users in the same organization working on different applications to accomplish the same tasks, training and support demands can be greatly increased. Alternatively, a single messaging system, with a universal client application, can provide significant benefits. MAPI makes it easier for an organization to migrate to a single messaging system by allowing a gradual, phased migration.

Migration/Multiple Backends

� EMBED Word.Picture.6 ���MAPI lets an organization use the same client mail application with a variety of messaging systems, providing a consistent user interface during a migration to a single messaging system.

Because MAPI eliminates the dependence between the client application and the server messaging system, there is true transport independence. As a result, an organization can continue to use its different messaging systems while migrating all users to the same client e-mail application. The organization is free to choose the client application that best meets its needs.

An organization can then consolidate its multiple messaging systems to a new single system at its own pace, without disrupting the users and their common client application.

The move to a single client application provides an additional benefit for organizations running different e-mail systems. A common client application gives an organization a consistent API on every desktop. This makes it easier to develop custom messaging applications that will run the same for every user, despite the different back-end messaging systems.

Integration of Services at Desktop

� EMBED Word.Picture.6 ���By simply installing MAPI drivers for each desired service, users can access a variety of communication services—from e-mail to fax—through a single client interface.

Integrating Services at the Desktop

MAPI makes it possible to integrate multiple, diverse messaging services at the desktop. This means that an e-mail, fax, voice mail, and bulletin-board service could all be reached through a single client application acting as a master communications window. Rather than have a separate in box for each messaging system, users can enjoy the simplicity of a single universal in box to consolidate all of the various message types.

The user simply installs the drivers for the appropriate services, just like printer drivers for different printers.

Choosing Specialized Service Providers

Today, when choosing a messaging system for their networks or host systems, organizations are faced with an all-or-nothing choice. Either take all of the system’s services—the directory/address service, the message-store and database functions, and the transport agent—or take nothing at all. And rarely is one system equally strong in all three areas.

Provide for Service Provider Specialization

� EMBED Word.Picture.6 ���Because MAPI supports each part of a messaging system separately—the address book, transport, and message store—an organization can choose from the best specialized back-end services while maintaining a consistent client front-end for users.

MAPI, because it defines each aspect of the messaging system independently, supports specialized service providers. Independent developers can focus on just one type of service. A directory developer doesn’t have to worry about writing a transport, for example. The customer benefits with a choice of powerful, specialized services.

Any organization can mix services from its own corporate resources and from outside vendors to customize a messaging system for its own needs. For example, an existing database could be used for the message-store facility in conjunction with an off-the-shelf directory service. Using MAPI drivers, any service or combination of services from different sources can work together without modification and without affecting any existing MAPI-compatible client applications.

MAPI and Messaging Applications

Messaging-Aware Applications

What types of messaging applications does MAPI support?

MAPI allows basic messaging capabilities to be easily integrated into virtually any desktop application. Using the Common Messaging Calls or Simple MAPI, developers can add message capabilities to their applications’ own user interfaces. A word-processing program could be enhanced to include a Send Message option next to the print selection. Such an option would send the document as a mail message to a recipient.

MAPI also supports application macro languages, such as those in Microsoft Excel and Word. This method of incorporating message capabilities into existing applications is extremely flexible. For example, a spreadsheet macro could be written that automatically sends a monthly budget spreadsheet to a designated recipient when the file is updated with new sales figures.

Applications are called messaging-aware when they do not depend upon messaging for their functions. That is, the basic messaging capabilities provide an additional value to the regular features of that application.

Using Microsoft Mail with Microsoft Excel

� EMBED Word.Picture.6 ���The Eastern and Western sales divisions create sales reports that are automatically sent to the controller machine at the corporate office. The controller machine automatically consolidates the two reports and sends the combined report back to the sales divisions.

Simple MAPI and CMC are designed for messaging-aware applications.

Messaging-Enabled Applications

Unlike messaging-aware applications, messaging-enabled applications require some type of messaging capability in order to function. One example is a scheduling application in which users can view the schedules of their coworkers and send meeting requests to the coworkers’ calendars. Another example is a forms-routing application that sends an expense report to a series of recipients and records their approval or disapproval.

Simple MAPI and CMC are designed for messaging-enabled applications.

Messaging-Based Workgroup Applications

The most advanced type of messaging application is the workgroup application, which requires full access to all of the back-end messaging services, including the message-store, address-book or directory, and transport functions. These applications include e-mail clients, workflow automation programs, and bulletin board services. For example, a workflow application might allow a user to inspect a message stored in a certain project folder to see if the appropriate workers have signed off on their tasks. This application could also include a sophisticated search-and-store feature that retrieves relevant files from a bulletin board system and stores them in the folders of certain recipients.

�A workgroup application could also be created for an advanced expense-report system in which the application selects the appropriate managers to send the report to based on the type of expense. In addition, this application could search the schedules of the appropriate managers, identify who is available to approve the expense report, and automatically route the report to that manager.

For these advanced workgroup applications, we recommend that developers also use Extended MAPI.

MAPI Developer Resources

Developers can be assured of having the tools and resources they need to develop any MAPI-compatible application.

Software Development Kits (SDKs)

Simple MAPI is available today in the Windows SDK. Simple MAPI is also included in MS Mail for PC Networks.

The Simple MAPI SDK and the Common Messaging Call (CMC) Software Development Kits are available on Microsoft’s Developer Network (MSDN) Level II. The Microsoft Developer Network is the official source of development toolkits (SDKs and DDKs), operating systems, and development-related technical, strategic, and resource information from Microsoft. The Developer Network is an annual membership program, ensuring that members are kept up-to-date with the latest toolkits and information. Developers that join receive regular deliveries of information via the Development Library and the Developer Network News, and toolkits and operating systems via the Development Platform. To join the Developer Network in the U.S. and Canada, call (800) 759-5474, 7 days a week, 24 hours a day.

Because the full MAPI functionality will be built into future releases of the Windows operating system, all of MAPI will eventually be available in the Windows SDK itself.

MAPI functions are designed to be called from C programs as well as through scripting packages such as Microsoft Visual Basic™ programming system and various application macro languages such as Microsoft Excel and Word.

Summary

In order to take advantage of their messaging systems as powerful communication backbones, organizations need a messaging standard that is open on both the client and messaging-system ends. Because MAPI provides both a client API and a service-provider API, it is possible to insulate application developers from the details of the underlying messaging system. MAPI’s use of service provider interfaces and its support for industry-standard, cross-platform messaging APIs ensures interoperability with other messaging systems on other leading operating systems. By providing a standard that is easy for both service providers and application developers to adopt, MAPI encourages and makes possible the creation of a new generation of exciting workgroup applications.

Ordering Information

More information on MAPI, the Windows SDK, and the Windows Open Services Architecture is available by calling Microsoft Developer Services Team toll-free at (800) 227-4679. If you require TDD/TT (text telephone) services for the deaf and hard of hearing, call (206) 635-4948. Alternately, you can write to:

Microsoft Developer Services Team

Microsoft Corporation

One Microsoft Way

RWF

Redmond, WA 98052-6393

You can also contact Microsoft by fax at (206) 93-MSFAX (that is, 936-7329). Specify Developer Services Team, RWF, on your cover sheet. Outside of the United States, please contact your regional Microsoft subsidiary for information on MAPI or for additional literature. In Canada, call (800) 563-9048. Outside of the United States and Canada, call (206) 936-8661 for information about your nearest subsidiary.

�

�PAGE�24�	Microsoft Messaging Application Program Interface

Microsoft Messaging Application Program Interface	�PAGE�
24
�

	m

©1993 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted as a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This technical review is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Companies, names and data used in screens and diagrams are fictitious unless otherwise noted.

Microsoft, MS, and MS-DOS are registered trademarks and Visual Basic, Windows and Windows NT are trademarks of Microsoft Corporation.

AppleTalk and Macintosh are registered trademarks of Apple Computer, Inc. CompuServe is a registered trademark of CompuServe, Inc. All-In-1 and DEC are registered trademarks of Digital Equipment Corporation. IBM and PROFS are registered trademarks of International Business Machines Corporation. MCI MAIL is a registered servicemark of MCI Communications Corp. Novell is a registered trademark of Novell, Inc. EasyLink is a registered trademark of American Telephone and Telegraph Corporation.

