�

Web Application Server for the Windows NT Server Operating System

��

�White Paper

Using Active Server Pages �with Microsoft® Internet Information Server 3.0

�© 1996 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, Visual Basic, Win32, and Windows NT are registered trademarks and ActiveX, the BackOffice logo, Jscript, and Visual J++ are trademarks of Microsoft Corporation.

Java is a trademark of Sun Microsystems, Inc.

Other product or company names mentioned herein may be the trademarks of their respctive owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

1196 Part no. 098-67673

��

�Abstract�

�Microsoft® Internet Information Server (IIS) 3.0 introduces Active Server Pages (ASP Files), the technology formerly code-named “Denali.” Active Server Pages let organizations combine ActiveX™ Scripts and ActiveX Server Components to easily create dynamic content, and powerful Web-based applications.

Active Server Pages enables component-based Web application development in any language, including Java™. It is easy to learn; it provides, an open development environment, and it allows developers to build truly “browser-independent” Web solutions.

The combination of Active Server Pages in IIS 3.0 running on Windows NT® Server 4.0 provides the ideal platform for developing personalized content and powerful Web-based business solutions for corporate intranets and the Internet.

�CONTENTS

� TOC \o "1-4" �INTRODUCTION	� GOTOBUTTON _Toc371931066 � PAGEREF _Toc371931066 �2��

ACTIVE SERVER PAGES	� GOTOBUTTON _Toc371931067 � PAGEREF _Toc371931067 �3��

Open	� GOTOBUTTON _Toc371931068 � PAGEREF _Toc371931068 �3��

Approachable	� GOTOBUTTON _Toc371931069 � PAGEREF _Toc371931069 �3��

Separating Content and Logic from Presentation	� GOTOBUTTON _Toc371931070 � PAGEREF _Toc371931070 �3��

No Manual Compiling	� GOTOBUTTON _Toc371931071 � PAGEREF _Toc371931071 �4��

Browser Independence	� GOTOBUTTON _Toc371931072 � PAGEREF _Toc371931072 �4��

SCRIPTING AND ACTIVE SERVER PAGES	� GOTOBUTTON _Toc371931073 � PAGEREF _Toc371931073 �5��

ACTIVEX SERVER COMPONENTS	� GOTOBUTTON _Toc371931074 � PAGEREF _Toc371931074 �6��

Benefits of ActiveX Server Components	� GOTOBUTTON _Toc371931075 � PAGEREF _Toc371931075 �6��

Intrinsic Objects	� GOTOBUTTON _Toc371931076 � PAGEREF _Toc371931076 �6��

Base Components	� GOTOBUTTON _Toc371931077 � PAGEREF _Toc371931077 �7��

ActiveX Data Objects Component	� GOTOBUTTON _Toc371931078 � PAGEREF _Toc371931078 �7��

Content Linking Component	� GOTOBUTTON _Toc371931079 � PAGEREF _Toc371931079 �7��

Filesystem Component	� GOTOBUTTON _Toc371931080 � PAGEREF _Toc371931080 �7��

Browser Capabilities Component	� GOTOBUTTON _Toc371931081 � PAGEREF _Toc371931081 �7��

Advertisement Rotator Component	� GOTOBUTTON _Toc371931082 � PAGEREF _Toc371931082 �8��

Third-Party Opportunities	� GOTOBUTTON _Toc371931083 � PAGEREF _Toc371931083 �8��

ACTIVE SERVER PAGE APPLICATIONS	� GOTOBUTTON _Toc371931084 � PAGEREF _Toc371931084 �9��

Building Web-Based Applications	� GOTOBUTTON _Toc371931085 � PAGEREF _Toc371931085 �9��

Flexibility and Security	� GOTOBUTTON _Toc371931086 � PAGEREF _Toc371931086 �9��

DCOM	� GOTOBUTTON _Toc371931087 � PAGEREF _Toc371931087 �10��

Microsoft Transaction Server	� GOTOBUTTON _Toc371931088 � PAGEREF _Toc371931088 �10��

SUMMARY	� GOTOBUTTON _Toc371931089 � PAGEREF _Toc371931089 �11��

For More Information	� GOTOBUTTON _Toc371931090 � PAGEREF _Toc371931090 �11��

���Introduction

Organizations are looking to Internet technology to improve productivity, reduce costs, and provide access to existing information and knowledge in new dynamic and interactive ways. Businesses want to run Web-based applications on their servers, which will allow them to realize the advantages of providing users access to “Information At Your Fingertips.” For example you can:

Put your employee handbook online, rather than printing copies that are obsolete soon after publication. This also reduces administrative costs by allowing employees to access and update their personal information such as address and health plan benefits.

Tie your online store to your existing inventory database and order processing system.

Give every visitor to your site a personalized view of only the information they are interested in, and automatically flag what is new since their last visit.

While much of this can be done today through creative programming tricks, the challenge until now has been to find a technology that is easy to use, open, scaleable, and takes advantage of existing skills and investments.

Microsoft(Internet Information Server (IIS) 3.0 was designed to be a powerful, open platform for developing Internet and corporate intranet applications with Active Server Pages (ASP Files). IS professionals and Webmasters can combine ActiveX™ scripts and ActiveX Server Components running on the server to create a new generation of server-based solutions for the Web solutions.

This White Paper is designed to provide a detailed overview of the various building blocks that Active Server Pages make available to Web developers. These include the following:

Active Server Pages (ASP Files)

ActiveX Scripting for Internet Information Server 3.0

ActiveX Server Components

Active Server Pages

Internet Information Server 3.0 introduces Active Server Pages, which enables HTML authors and Web developers to intermix HTML with in-line scripting using almost any authoring tool. The scripts can reference components running on the local server—or any other server—to access databases, applications, or process information. When a browser requests a ASP File, it is processed by the server, and the page is returned to the client as standard HTML.

Open

When using IIS 3.0, developers are not required to use a proprietary scripting language to create Web applications—Active Server Pages are compatible with any ActiveX Scripting language. Active Server Pages include native support for Visual Basic® Scripting Language (VBScript) and Jscript™. Third parties will be providing support for other languages such as REXX, Perl, and Tcl through plug-ins. Multiple scripting languages can even be used interchangeably in the same ASP File.

ActiveX Server Components can be created in virtually any language. This includes Java, Visual Basic, C++, COBOL, and more.

Approachable

Active Server Pages make it easy for HTML authors to “activate” their Web pages on the server. Customized pages, and simple applications can be developed immediately. Instead of writing complicated CGI programs in languages like Perl and C to generate personalized content for each user, a Web developer can use an Active Server Page to do all the work. In the following simple example, VBScript is used to display both the current time and the type of browser the client is using.

<HTML>

<HEAD>

<TITLE>Sample Web Page</TITLE>

</HEAD>

<BODY>

<P>

Hello <%= Request.ServerVariables(“REMOTE_USER”) %>

The time here is <%= now %>

Your browser is <% = Request.ServerVariables(“http_user_agent”) %>

</BODY></HTML>��Example 1. HTML with in-line VBScript.

Separating Content and Logic from Presentation

The Web brings together teams from many disciplines—graphic artists, HTML authors, programmers, publishers, and more. The challenge is to enable them to work together efficiently, and make changes without upsetting each others work. Dynamic content today often requires elements of design, logic, and content to live together. This makes Web development difficult as changes require wading through lines of Perl or C code, and an inadvertent change could damage the program or the HTML formatting.

Through the use of scripting and components, Active Server Pages allow you to separate the programming to access data in databases and applications, from the design and other content of a Web page. This helps to ensure that developers can be free to focus on writing their business logic in components without worrying about how the output looks. Conversely, it frees designers creating HTML layouts to use familiar tools to modify the page as they see fit. Scripting is the “glue” that ties them together.

�In the example below, a form is used to pass a ticker symbol request in the URL to the ASP Files. The first part of the ASP File calls a component that talks to a stock price server. Properties of this object, such as opening and closing price, can then be easily inserted in the HTML. The programmer can work in any language, and only needs to worry about how to talk to the stock price server. The HTML author only needs to know how to script the component, and does not care how the stock price server works.

��<HTML>

<%

	TSym=Request.QueryString("TickerSymbol")

	Set NObj=Server.CreateObject("NASDAQ.TickerObj")

	if NObj.GetCompany(TSym)=False then

		 Server.Redirect("ticker/entryform.htm")

%>

<H1>Today's trade summary for:<%=NObj.CompanyName%> </H1>

<TABLE>

<TR><TD>Open</TD><TD>Close</TD><TD>Volume</TD></TR>

<TR><TD><%=NObj.Open%></TD>

<TD><%=NObj.Close%></TD>

<TD><%=NObj.Volume%></TD></TR>

</TABLE>

<H2>Time of report: <%=time()%><%=date()%></H2>

</HTML>��Example 2. Active Server Pages let you separate content and logic.

No Manual Compiling

To prevent the need for manual recompilation whenever a change is made, just-in-time compiling automatically recompiles the ASP Files upon the next request, and loads it into the server cache. So, when building your site, by simply saving the file and refreshing the page, changes to ASP Files can be previewed immediately in your browser.

Browser Independence

Active Server Pages files provide a browser-neutral approach to application design. Because all of the application logic to generate dynamic content can be executed on the server, developers do not have to worry about what browser is used to view the site. Browsers “see” the results of an ASP File as a normal HTML page.

scripting and Active Server Pages

Active Server Pages provide a server-side scripting environment to create and run dynamic, interactive, high-performance Web server applications. Server-side scripting enables your Web server to perform the work involved in generating customized HTML pages. For example, you can build different views based upon who the user is, what browser they are using, where they’ve been on your site, or what they have purchased in the past.

Scripting languages are an intermediate stage between HTML and programming languages such as C, C++, and Visual Basic. HTML is generally used for formatting and hypertext linking purposes. Programming languages are generally used for giving complex instructions to computers. Scripting languages fall somewhere in between, much like macro languages in many desktop applications.

Active Server Pages support any ActiveX scripting language through the use of scripting “engines.” Scripting engines are the Component Object Model (COM) objects that process scripts. IIS 3.0 will include native support for VBScript and JScript, and plug-ins are available for REXX, Perl, Tcl, and other scripting languages.

Active Server Pages makes it possible for the Web developer to use a variety of scripting languages. This is because scripts can be processed on the server side, as opposed to the client side. In fact, several scripting languages can be used within a single ASP File. This can be done by identifying the script language in a simple tag at the beginning of the script sequence.

For example, the following script example would indicate that the upcoming script sequences are to be processed by Active Server Pages as JScript code and Visual Basic Scripting Edition code, respectively:

<HTML>

<SCRIPT LANGUAGE=JScript RUNAT=Server>

<JScript code here>

<SCRIPT LANGUAGE=VBScript RUNAT=Server>

<VBScript code here>

</HTML>

Example 3. Using JScript and VBScript on the same ASP page.

activex server�components

A compelling advantage of IIS 3.0 is that it will enable component-based development of Web solutions with support for ActiveX Server Components. Active Server Pages allow you to run ActiveX Server Components developed in any language, such as C++, Visual Basic, Java, or COBOL. While Internet Information Server will continue to support CGI and ISAPI programs for Web-specific applications and filters, Active Server Components offer a powerful, component-based approach for applications development.

Benefits of ActiveX Server Components

ActiveX Server Components, formerly known as OLE Automation Servers, are designed to run on your Web server as part of a Web application. These components allow you to extend the functionality of your script behind the scenes—no interface is involved in running them.

ActiveX Server Components are built on a popular standard. This ensures that most programmers are already familiar with developing components and that existing development tools can be used to create these components. Moreover, there are large numbers of ActiveX Server Components already available, and ready to be used as building blocks for Web-based applications.

Depending upon how they are written, ActiveX Server Components can also be run on a Web browser and used in other environments outside the Web server, such as traditional client-server applications or application plug-ins.

Intrinsic Objects

Active Server Pages includes a number of “built-in” server and application building objects. These objects free developers from the “grunt-work” of writing code to access details about incoming requests from clients, managing the application state, handling cookies, and assembling the response. These intrinsic objects include the following:

Request and Response—The request object provides access to any information passed into the script with the HTTP request. This includes information from cookies, forms, URL queries, and HTTP headers. The response object is used to build the response, including setting cookies, page expiration, and full control of the HTTP output stream.

Application and Session—These objects are designed to make state management easier—managing a state across a number of users and applications has typically been difficult in Web-based solutions. The session object is used to store information needed for a particular user-session. Variables stored in the Session object are not discarded when the user jumps between pages in the application; instead, these variables persist across the entire site. The server destroys the Session object when the session expires or is abandoned. The application object allows properties to be set that share information among all users of a given application. There are Lock and Unlock methods to ensure that multiple users do not try to alter a property simultaneously.

Server. The server object allows scripts to create instances of ActiveX Server Components, and thus extend the Active Server Pages environment with new capabilities. The server object provides access to methods and properties on the server. Most of these methods and properties serve as utility functions. Without the server object, it would not be possible to access components from your Web application.

Base Components

To help you create Web applications, Internet Information Server 3.0 also provides several base components.

ActiveX Data Objects Component

ActiveX Data Objects (ADO) provide high-performance connectivity to any ODBC-compliant database or OLE DB data source. ActiveX Data Objects allows Web developers to easily link a database to an “active” Web page to access and manipulate data. This enables putting a Web “front-end” on a legacy system or developing a new database-driven application for the Web. Unlike the Internet Database Connector (IDC), the ADO component can be “driven” using any ActiveX scripting language from a single ASP page.

ASP Files using ActiveX Data Objects can dynamically request the information from a database. For example, changes in an inventory or pricing database can be immediately reflected for every user—without touching HTML code.

Content Linking Component

The Content Linking Component manages a list of URLs so that you can treat the pages in your Web site like the pages in a book. You can use the functionality of the Content Linking Component to automatically generate and update tables of contents, and navigational links to previous and following Web pages. This is ideal for applications such as online newspapers and forum message listings.

The Content Linking Component references a Content Linking list file that contains the list of the linked Web pages. This list is stored on the Web server. A “stream” of pages can be managed and rearranged dynamically without worrying about broken links. Adding, deleting or moving pages requires changing the order of the pages in the list file. It is unnecessary to edit the HTML on the individual pages to provide navigation.

Filesystem Component

This component provides access to reading in text files stored on the server. By providing filesystem access, developers do not need to write their own code to open and close files on the file system, as most scripting languages are not allowed direct file access.

Browser Capabilities Component

Using the Browser Capabilities Component, ASP Files can recognize the capabilities of a requesting browser, and dynamically optimize the layout and content. This ensures that the Webmaster does not have to create a series of duplicate pages for each browser. For example, the microsoft.com site has one view for ActiveX enabled browsers, a second for frames-enabled browsers, and a third for browsers that don’t support frames. ASP Files handle the customization, so there is only one copy of the content.

In the following example, the Browser Capabilities Component is being used to determine how to deliver dynamic advertising. If the client’s browser supports ActiveX, a client-side control is sent. Otherwise, the advertising component is run on the server, which sends only a graphic image to the client.

<%

 Set OBJbrowser = Server.CreateObject("MSWC.BrowserType")

 If OBJbrowser.ActiveXControls = TRUE Then

%>

 <OBJECT

CODEBASE="/AdvWorks/Controls/nboard.cab#version=5,0,0,5"

WIDTH=460

HEIGHT=60

DATA="/AdvWorks/Controls/billboard.ods"

CLASSID="clsid:6059B947-EC52-11CF-B509-00A024488F73">

 </OBJECT>

<%

 Else

 Set Ad = Server.CreateObject("MSWC.Adrotator")

 Response.Write(Ad.GetAdvertisement("/AdvWorks/adrot.txt"))

 End If

%>

Example 4. Example of the Browser Capabilities Component.

A Web user is not able to view the actual source code for Active Server Pages. All the browser sees is the HTML output of the ASP page.

Advertisement Rotator Component

The billboard rotator component simplifies the process of displaying different advertisements or announcements by managing air-time rotation for the different images. It allows a list of different advertisements to be assigned relative display-priority percentages. Every time the ASP Files are requested, the component can be used to display an ad based on the preset criteria.

Third-Party Opportunities

The components outlined above are just the beginning. ActiveX Server Components provide excellent opportunities for third parties as organizations move to deploy Web-based solutions across intranets and the Internet. There is a limitless number components needing to be created. Many of these will be of interest to all Web developers, while others will be designed to create custom business applications. There are currently more that 30 independent software developers writing new ActiveX Server Components for IIS 3.0, with many more on the way.

Web developers can also create components themselves using, for example, the new Microsoft Visual Basic Control Creation Edition or Microsoft �Visual J++™ development software.

Active Server page applications

IIS 3.0 provides a platform to not only create dynamic, personalized Web sites today, but also provides an infrastructure for powerful Web solutions in the future. This is made possible by Internet Information Server 3.0 which combines the Win32® API, open Internet standards, and the open ActiveX standard. Together they provide the best platform for Web application development.

Building Web-Based Applications

IIS 3.0 brings together the key technologies needed to run business applications on either the Internet or on corporate intranets. For example, while there are many catalogs online, very few support online transactions due to the difficulty of linking to inventory and order processing systems. By allowing organizations to move towards a component-based approach to application development, Active Server Pages help to ensure that powerful solutions can be built both quickly and easily.

IIS 3.0 enables truly component-based Web development through the support of the ActiveX Server Components described above. IS professionals can purchase components from ActiveX Server ISVs, or reuse existing components to build powerful intranet solutions. Active Server Pages use these components to access information, and publish it to the Web through scripting and HTML markup. This approach to application development offers numerous advantages:

Rapid Application Development. Using a component-based approach to building applications is much faster than building a complex CGI program from the ground-up.

Browser Independence. Applications can easily produce a “layout” that takes advantage of the browser’s capabilities.

Reuse. Based on standard interfaces, ActiveX Server Components can be used by any OLE Automation Server. This helps to ensure that these components can be re-used outside of the Web paradigm. For example, an ActiveX Server Component that provides stock-ticker functionality can be used in either Microsoft Internet Information Server, or Microsoft Excel.

Flexibility and Security

Because Active Server Pages uses the same scripting and component model as Microsoft Internet Explorer, developers can choose to run scripts and components on the server and/or the client. This allows the most efficient use of network bandwidth and server capacity for a given application. For example, a script on the client can check the contents of a form for missing data before passing it on to the server for processing.

Running components on the server, also places the business logic closer to the data, which has advantages in terms of efficiency and security. Web browsers make it very easy to take components and view client-side script code. With Active Server Pages, stealing scripts or components is not possible. The source code lives only on the server and is executed to generate basic HTML.

DCOM

The components that make up an ASP-based application are usually run in the same process as IIS 3.0 for the greatest efficiency. They communicate with each other and with the server using the Component Object Model (COM).

As developers build richer applications, they will want to run components across several servers and on clients. This is enabled by Distributed COM (DCOM). DCOM takes care of all the remote procedure call (RPC) magic to make it work, so developers can use the same code no matter where the object is running. Components can talk to each other in a consistent way, using the same interfaces.

Microsoft Transaction Server

As organizations move towards deploying component-based solutions on the Web, it is critical to provide a path to easily and cost-effectively “scale-up” these applications with full transaction support. Microsoft will soon release Microsoft Transaction Server, code-named “Viper,” a product that integrates component-based applications with transaction support.

The Transaction Server automatically provides applications with transaction support, so that companies can rapidly build and easily modify server applications without sacrificing mission-critical reliability and scalability. Viper is designed to work with Internet and industry standards—including HTTP, DCOM, and databases that support X/Open’s XA transactional protocol—so that businesses can preserve investments in existing mainframe and UNIX systems while deploying modern applications using component software.

Microsoft Transaction Server combines the best features of transaction processing monitors, reliability, and scalability, with the best features from object request brokers, distributed services, and components. Transaction Server provides the vital application infrastructure developers need and do not want to develop themselves. ISVs that develop server solutions estimate that building this plumbing into their products consumes 30-40% of their development costs. Active Server Page applications will be able to plug right into the Transaction Server. Examples of Transaction Server services include:

Managing low-level operating system processes and thread pools

Building and managing server processes

Registering servers with the directory

Synchronizing access to shared data and resources across multiple client requests

Distributed security

Management and configuration

As organizations begin to evaluate tools and products that enable component-based Web development, it is important to find a vendor that offers full transaction support. The combination of Internet Information Server 3.0, with Active Server Pages, and the Microsoft Transaction Server is designed to deliver on the need for Web-based solutions that can scale to Enterprise-level applications.

Summary

Microsoft Internet Information Server 3.0 with Active Server Pages provide the ideal platform for creating and managing dynamic server-side applications that can be deployed over the Internet and corporate intranets.

Internet Information Server 3.0 allows Web site developers to manage content, design, and application logic as separate components, so team members can focus on their specialty. Virtually any scripting and programming language can be used, while still supporting any browser. It does all of this within a no-compile development environment that frees project teams from the expense and delays of having to recompile every time an element is changed.

For organizations that are interested in reusing existing investments, purchasing turnkey solutions, or building new applications from the ground up, IIS 3.0 is the ideal environment. It simplifies the development of Web-based solutions, takes advantage of investments in languages, OLE, and existing applications, while providing a robust framework for the future.

For More Information

For the latest information on Windows NT Server, check out our World Wide Web site at http://www.microsoft.com/backoffice or the Windows NT Server Forum on the Microsoft Network (GO WORD: MSNTS).

��

��

�PAGE �1�

�PAGE �1�

��

��

�PAGE �12�

� PAGE �12�	Microsoft Internet Information Active Server Pages White Paper

	Microsoft Internet Information Active Server Pages White Paper	� PAGE �11�

	Microsoft Internet Information Active Server Pages White Paper	� PAGE �2�

Getting user

request

Invoking�component

Inserting�dynamic content

