

Paint Shop Pro (PSP)
File Format Specification

September, 2005

Paint Shop Pro (PSP) File Format Version 8.0
Paint Shop Pro Application Version 10.0
File Format Documentation Version 8.0

Copyright © 2005 Corel Corporation

All rights reserved.

1 The information contained within this document is confidential and is subject to change without notice

By downloading and / or using these Specifications, user certifies that they have read and agreed
to the following disclaimers and warranties:

The Paint Shop Pro File Format Specification (the “Specification”) is copyrighted 1998 to 2005 by
Corel Corporation (“Corel”). Corel grants you a nonexclusive license to use the Specification for the sole
purpose of developing software products(s) incorporating the Specification. You are also granted the right
to identify your software product(s) as incorporating the Paint Shop Pro Format, provided that your
software in incorporating the Specification complies with the terms, definitions, constraints and
specifications contained in the Specification and is subject to the following:

DISCLAIMER OF WARRANTIES. THE SPECIFICATION IS PROVIDED “AS IS.” COREL
DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT.

You are solely responsible for the selection, use, efficiency and suitability of the Specification for
your software products.

OTHER WARRANTIES EXCLUDED. COREL SHALL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, CONSEQUENTIAL, EXEMPLARY, PUNITIVE OR INCIDENTAL
DAMAGES ARISING FROM ANY CAUSE, EVEN IF COREL HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. CERTAIN JURISDICTIONS DO NOT PERMIT THE
LIMITATION OR EXCLUSION OF INCIDENTAL DAMAGES, SO THIS LIMITATION MAY
NOT APPLY TO YOU.

IN NO EVENT WILL COREL BE LIABLE FOR ANY AMOUNT GREATER THAN WHAT
YOU ACTUALLY PAID FOR THE SPECIFICATION. Should any warranties be found to exist,
such warranties shall be limited in duration to ninety (90) days following the date you receive the
Specification.

INDEMNIFICATION. By your inclusion of the Paint Shop Pro File Format in your software
product(s), you agree to indemnify and hold Corel harmless from any and all claims of any kind or
nature made by any of your customers with respect to your software product(s).

EXPORT LAWS. You agree that you and your customers will not export your software or
Specification except in compliance with the laws and regulations of the United States.

US GOVERNMENT RESTRICTED RIGHTS. The Specification and any accompanying materials are
provided with Restricted Rights. Use, duplication or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013, or subparagraphs (c)(1) and (2) of the Commercial
Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/manufacturer is Corel Corporation, 1600 Carling Avenue, Ottawa, Ontario, KIZ 8R7,
Canada.

Corel reserves the right to amend, modify, change, revoke or withdraw the Specification at any
time and from time to time. Corel shall have no obligation to support or maintain the
Specification.

2 The information contained within this document is confidential and is subject to change without notice

Table of Contents

1 VERSION HISTORY .. 5

2 INTRODUCTION .. 7

3 RESOURCES.. 8

4 FORMAT OVERVIEW... 9

5 COMMON STRUCTURES AND DEFINITIONS.. 11
5.1 PARLANCE... 11
5.2 TYPE DEFINITIONS .. 11
5.3 LIMITING FIELD VALUES... 12
5.4 COMMON BLOCKS AND COMMON CHUNKS... 19

5.4.1 Block Header .. 20
5.4.2 Variable Length String Chunk .. 20
5.4.3 Color Palette Sub-Block ... 20
5.4.4 Paint Style Sub-Block ... 21
5.4.5 Line Style Sub-Block... 26
5.4.6 Composite Image Attributes Sub-Block .. 27
5.4.7 Composite Image Sub-Block... 28

5.4.7.1 JPEG Composite Image Sub-Block... 28
5.4.7.2 Normal Composite Image Sub-Block.. 29

5.4.8 Channel Sub-Block and Channel Compression.. 30

6 PAINT SHOP PRO (PSP) FILE FORMAT DESCRIPTION .. 32
6.1 CONSTRAINTS.. 32

6.1.1 Main Block Ordering.. 32
6.2 PSP FILE HEADER... 32
6.3 THE GENERAL IMAGE ATTRIBUTES BLOCK... 32
6.4 THE EXTENDED DATA BLOCK... 34
6.5 THE COLOR PROFILE BLOCK ... 38
6.6 THE TUBE DATA BLOCK ... 39
6.7 THE CREATOR DATA BLOCK... 40
6.8 THE COMPOSITE IMAGE BANK BLOCK .. 42
6.9 THE TABLE BANK BLOCK ... 44

3 The information contained within this document is confidential and is subject to change without notice

6.9.1 Table Sub-Block.. 45
6.9.1.1 Table Entry Sub-Block.. 47

6.9.1.1.1 Paper Sub-Block .. 47
6.9.1.1.2 Pattern Sub-Block .. 48

6.10 THE COLOR PALETTE BLOCK .. 49
6.11 THE LAYER BANK BLOCK ... 50

6.11.1 Adjustment Layer Sub-Block... 55
6.11.2 Vector Layer Sub-Block.. 64

6.11.2.1 Vector Shape Sub-Block ... 65
6.11.3 Group Layer Sub-Block .. 73
6.11.4 Mask Layer Sub-Block.. 74
6.11.5 Art Media Layer Sub-Block .. 75

6.11.5.1 Art Media Layer Map sub-block... 76

6.11.5.2 Art Media Tile sub-block.. 77

6.11.5.3 Art Media Texture sub-block.. 79

6.12 THE SELECTION BLOCK... 79
6.13 THE ALPHA BANK BLOCK... 81

APPENDIX A : PSP FILE FORMAT OVERVIEW... 84

4 The information contained within this document is confidential and is subject to change without notice

1 Version History

Date Author Description
April 20, 1998 JMS Initial draft, submitted for review.
April 23, 1998 JMS Minor changes.
April 29, 1998 JMS Minor changes (changed Layer

flags, Layer transparency flags to
Boolean Layer visible flag, and
Transparency protected flag).

August 7, 1998 JMS Made additions for storing
Picture Tube control information
in PSP files.

November 16,1998 JCO Added additional Copyright
information, release notes,
disclaimers, and comments, and
cleaned for public release.

November 23, 1998 JMS Added restrictions for readers and
writers.
Changes based on latest review.

November 30, 1998 JCO Restrictions clarified. Requests
email address added.

December 1, 1998 JMS Added descriptions of
compression types.
Added descriptions of non-color
channels.

January 28, 1999 JMS • First crack at documenting
support for text and vector
shape data.

• Explicitly stated where we
might add fields in the future,
which reader should ignore
(note that our reader must be
updated to ignore this as
well!).

February 16, 1999 JMS Changes after document review.
April 31, 1999 JMS Updated to PSP file format

version 4.0.
September 9, 1999 AS Initial draft for the new PSP

version 4.0 file format. Submitted
for review.

September 19, 1999 AS Changes after document review.
October 20, 1999 AS Corrected the polyline node type

flags, PSPPolylineNodeTypes.
September 11, 2000 AS Initial draft for the new PSP

version 5.0 file format. Submitted
for review.

April 24, 2003 AS Initial draft for the new PSP
version 6.0 file format. Submitted
for review.

October 20, 2003 SLN Made updates regarding EXIF
makernote storage for PSP 8.1,
corrected some ambiguities.

5 The information contained within this document is confidential and is subject to change without notice

March 5, 2004 SLN Added new text char style
attributes for format version 7
(PSP9).

November 10, 2004 SLN Added description of art media
layers, added picture tube scale
factor. Made corrections to Char
style definition chunk. Final draft
of version 7 format (PSP9).

September 21, 2005 SLN Updated specification for version
8 format (PSP 10). Added
information about color profiles
and IPTC information.

September 27, 2005 SLN Updated restrictions section for
16 bits per channel images. Also
minor edits throughout the
document for 16 bits per channel
support.

6 The information contained within this document is confidential and is subject to change without notice

2 Introduction

The Paint Shop Pro (PSP) file format is an extremely rich graphics file format that is capable of describing
a multi-layered image document in minute detail. The format facilitates the retention of a great deal of
information, including layer bitmaps, layer masks, layer vector data, layer adjustment data, layer grouping
information, multiple sample thumbnails, multiple sample composite images, image dimension, image
resolution, creator name, copyright owner, image description, EXIF information, masks, selections, alpha
channels, etc.

The PSP format supports storing image bitmaps in an uncompressed format or, to reduce the size of the
file, in either Run Length Encoding (RLE) or LZ77 compressed format. As each of these is a lossless
storage method, the PSP format always maintains the original quality of stored image documents.

Finally, the PSP format supports storing image bitmaps at a variety of bit depths, including 48-bit color (16
bits per channel), 24-bit color (16.7 million colors), 8-bit color (256 color), 16 bits per channel greyscale,
8-bit greyscale (256 greys), 4-bit color (16 colors), and 1-bit color (2 colors).

When developing an image document in Paint Shop Pro, the full-service graphics editing tool from Corel,
the PSP file format is the format of choice because an image document can be maintained in its entirety.
(Saving image documents to less versatile formats results in loss of some image document data.)

This document describes the PSP file format. The next section (Section 3) provides several resources
related to the PSP format and Corel products. Section 4 provides a high-level overview of the format.
Section 5 provides descriptions of several types, blocks, chunks, and conventions used throughout the
remainder of the document. Section 6 provides the details of the PSP file format. Finally, “Appendix A :
PSP File Format Overview” provides an overview of the PSP file format. (This overview is more detailed
than that of Section 4.)

NOTICE: This document describes the PSP file format, not necessarily the technology or code
required to fully read, interpret, or display all aspects of the data that may be contained within the
file.

7 The information contained within this document is confidential and is subject to change without notice

3 Resources

For more information about Corel, Paint Shop Pro, or the PSP file format, please visit the Corel web site
and the Paint Shop Pro newsgroup (both listed below). The latest published version of this document is
available at the Corel web site. If you have any questions or comments about this document or about the
PSP file format, please send them to the Corel PSP File Format email address listed below.

The Corel web site:

http://www.corel.com/

The Paint Shop Pro newsgroup:

comp.graphics.apps.paint-shop-pro

The Corel PSP File Format email address:

PSPFileFormat@corel.com

8 The information contained within this document is confidential and is subject to change without notice

http://www.corel.com/

4 Format Overview

The Paint Shop Pro (PSP) file format is a block-oriented format that consists of a file header with a
sequence of up to ten main blocks. The main blocks are the General Image Attributes Block, the Extended
Data Block (optional), the Tube Data Block (optional), the Creator Data Block (optional), the Composite
Image Bank Block (optional), the Table Bank Block (optional), the Color Palette Block (for paletted
images), the Layer Bank Block, the Selection Block (optional), and the Alpha Channel Bank Block
(optional). Each of these main blocks contains information about the image document, and some of these
blocks contain sub-blocks. See subsequent sections of this document for more detailed information about
each of these main blocks.

The following table contains a high-level view of the PSP file format that includes only the header and the
top-level blocks.

File Header

General Image Attributes Block

Extended Data Block
(optional)

Tube Data Block
(optional)

Creator Data Block
(optional)

Composite Image Bank Block
(optional)

Table Bank Block
(optional)

Color Palette Block
(paletted image documents only)

Layer Bank Block

Selection Block
(optional)

Alpha Bank Block
(optional)

Table 1 : PSP Format Overview

9 The information contained within this document is confidential and is subject to change without notice

Restrictions for PSP format readers:

•

•

•

•

•

PSP format readers must be able to read and successfully process the PSP File Header, the General
Image Attributes Block, the Table Bank Block (if present), the Color Palette Block (if present), and the
Layer Bank Block. PSP readers may ignore all other main blocks.

If a PSP reader encounters any unrecognized block (whether documented or not), the reader must
ignore (skip over) that block and continue processing the rest of the file. Note that this document
describes “expansion fields” throughout the file format. These “expansion fields” mark places in the
file where the format has been left open for the addition of additional data. Readers should skip past
any data in these “expansion fields.” (Note that the “expansion fields” are not undocumented fields;
they are currently non-existent fields.)

Restrictions for PSP format writers (Format Versions 6.0 and 7.0):

PSP format writers must write the PSP File Header, the General Image Attributes Block, the
Composite Image Bank Block (if appropriate), the Table Bank Block (if appropriate), the Color Palette
Block (if appropriate), and the Layers Bank Block exactly as described in this specification.
Additionally, PSP format writers may write the other blocks described in this document when
necessary.

PSP format writers must neither write any blocks, chunks, or chunk fields that are not documented in
this specification nor otherwise stray from this specification. Additional block types or specification
changes may only be created by Corel. Requests for additional block types and other file format
enhancements can be sent to mailto:PSPFileFormat@corel.com.

PSP format writers must not write any data in the “expansion fields” described in this document.
“Expansion fields” are spots in the file that are reserved for future use by Corel.

• Color data of multi raster layer image documents must be stored in either 24-bit truecolor format or in

8-bit greyscale format.

• Color data of single-layer image documents can be stored in 1, 4, or 8-bit paletted format, in 24-bit

truecolor format, or in 8-bit greyscale format.

• PSP format writers must not write an image document with more than 500 layers.

Restrictions for PSP format writers (Format Version 8.0):

• Color data of multi raster layer image documents must be stored in either 8 or 16 bits per channel
truecolor format or in 8 or 16 bits per channel greyscale format.

• Color data of single-layer image documents can be stored in 1, 4, or 8-bit paletted format, in 8 or 16

bits per channel truecolor format, or in 8 or 16 bits per channel greyscale format.

10 The information contained within this document is confidential and is subject to change without notice

mailto:PSPFileFormat@corel.com

5 Common Structures and Definitions
This section contains information concerning structures and definitions that are used throughout the
remainder of this document. They are presented here to give the user a hint as to what to expect in
subsequent sections of the document and to provide references that can be used in subsequent sections of
the document to avoid too much repetition (though repetition is used when it provides needed clarification).

5.1 Parlance
With any documentation, it is important to ensure that the author and the audience have a common
parlance. With that in mind, the following glossary describes the usage, throughout this document, of
various words that otherwise might be ambiguous.

Word Definition/Usage

Block

As described above, the PSP format is a block-oriented format. The term “block” will
be used to refer to a part of a PSP file that consists of a Block Header (See Section
“5.4.1 - Block Header”) and all the data following the header that is associated with
the header. Since the Block Header indicates the size of the block, it is quickly
apparent how much of the data immediately following the block header is associated
with it.

Chunk

The term chunk will be used to represent an “interesting” piece of data within a PSP
file that does not have a block header.
Throughout the document, there is a need to refer to a piece of data within a block
that is not a sub-block. The term “chunk” is used in these cases.
It is worthwhile to note that the chunk length field of each chunk includes the length
field in the length calculation. This is different than blocks, since the block header is
not included in the block length calculation.

Main block
The PSP file format is a hierarchical format, with some blocks that are fully contained
within other blocks. A main block is any block in a PSP file that is not contained
within another block. The main blocks are illustrated in the table in Section 4.

Sub-Block A sub-block is a block that is fully contained within another block.

Table 2: Glossary of Terms

5.2 Type Definitions
The following table contains definitions for simple data types used throughout this document. The PSP file
format is always written in Intel® (or little-endian) byte order.

Type Description
BYTE An 8-bit unsigned integer value.

B_ARRAY An array of 8-bit unsigned integer values (i.e., an array of BYTE). The length of the
array is either fixed or can be determined from the discussion.

C_ARRAY An array of 8-bit signed integer values (i.e., an array of char). The length of the array is
either fixed or can be determined from the discussion.

DOUBLE A 64-bit floating point value.

DWORD A 32-bit unsigned integer value.

11 The information contained within this document is confidential and is subject to change without notice

LONG A 32-bit signed integer value.

RECT

An array of 4 LONGs that describe a rectangle. (The first two LONGs are the x-
coordinate and y-coordinate (respectively) of the upper-left corner of the rectangle; the
third and fourth LONGs are the x-coordinate and y-coordinate (respectively) of the
lower-right corner of the rectangle.)

RGBQUAD
An array of 4 BYTEs representing a color palette entry, where the first BYTE is the
entry’s red component, the second BYTE is the entry’s green component, the third
BYTE is the entry’s blue component, and the fourth BYTE is always 0 (reserved).

WORD A 16-bit unsigned integer value.

COLOR

The COLOR data type is used to represent a color. Its definition is based on whether
the PSP file contains a paletted image:
• If the PSP file contains a paletted image, the COLOR data type is a one BYTE

index into the image’s color palette (note that a global color palette is used).
• If the PSP file contains a 24-bit truecolor image, the COLOR data type is

composed of three bytes, containing the red, green, and blue components of the
represented color.

Table 3: Common type definitions

5.3 Limiting Field Values
The following enumerations are used throughout the document to limit the allowed values of various fields.
As an example, the Block Identifier field in a Block Header is a DWORD, but, as detailed in the Block
Identifier field description, the DWORD must be in the range covered by the enumeration PSPBlockID.

/* Block identifiers.
 */
enum PSPBlockID
{
 PSP_IMAGE_BLOCK = 0, // General Image Attributes Block (main)
 PSP_CREATOR_BLOCK, // Creator Data Block (main)
 PSP_COLOR_BLOCK, // Color Palette Block (main and sub)
 PSP_LAYER_START_BLOCK, // Layer Bank Block (main)
 PSP_LAYER_BLOCK, // Layer Block (sub)
 PSP_CHANNEL_BLOCK, // Channel Block (sub)
 PSP_SELECTION_BLOCK, // Selection Block (main)
 PSP_ALPHA_BANK_BLOCK, // Alpha Bank Block (main)
 PSP_ALPHA_CHANNEL_BLOCK,// Alpha Channel Block (sub)
 PSP_COMPOSITE_IMAGE_BLOCK, // Composite Image Block (sub)
 PSP_EXTENDED_DATA_BLOCK,// Extended Data Block (main)
 PSP_TUBE_BLOCK, // Picture Tube Data Block (main)
 PSP_ADJUSTMENT_EXTENSION_BLOCK, // Adjustment Layer Block (sub)
 PSP_VECTOR_EXTENSION_BLOCK, // Vector Layer Block (sub)
 PSP_SHAPE_BLOCK, // Vector Shape Block (sub)
 PSP_PAINTSTYLE_BLOCK, // Paint Style Block (sub)
 PSP_COMPOSITE_IMAGE_BANK_BLOCK, // Composite Image Bank (main)
 PSP_COMPOSITE_ATTRIBUTES_BLOCK, // Composite Image Attr. (sub)
 PSP_JPEG_BLOCK, // JPEG Image Block (sub)
 PSP_LINESTYLE_BLOCK, // Line Style Block (sub)
 PSP_TABLE_BANK_BLOCK, // Table Bank Block (main)
 PSP_TABLE_BLOCK, // Table Block (sub)
 PSP_PAPER_BLOCK, // Vector Table Paper Block (sub)
 PSP_PATTERN_BLOCK, // Vector Table Pattern Block (sub)

PSP_GRADIENT_BLOCK, // Vector Table Gradient Block (not used)
PSP_GROUP_EXTENSION_BLOCK, // Group Layer Block (sub)
PSP_MASK_EXTENSION_BLOCK, // Mask Layer Block (sub)

PSP_BRUSH_BLOCK, // Brush Data Block (main)

12 The information contained within this document is confidential and is subject to change without notice

 PSP_ART_MEDIA_BLOCK, // Art Media Layer Block (main)
 PSP_ART_MEDIA_MAP_BLOCK, // Art Media Layer map data Block (main)
 PSP_ART_MEDIA_TILE_BLOCK, // Art Media Layer map tile Block(main)
 PSP_ART_MEDIA_TEXTURE_BLOCK,// AM Layer map texture Block (main)

 PSP_COLORPROFILE_BLOCK, // ICC Color profile block
};

/* Truth values.
 */
enum PSP_BOOLEAN
{
 FALSE = 0,
 TRUE,
};

/* Possible metrics used to measure resolution.
 */
enum PSP_METRIC
{

PSP_METRIC_UNDEFINED = 0, // Metric unknown
PSP_METRIC_INCH, // Resolution is in inches
PSP_METRIC_CM, // Resolution is in centimeters

};

/* Creator application identifiers.
 */
enum PSPCreatorAppID
{

PSP_CREATOR_APP_UNKNOWN = 0, // Creator application unknown
PSP_CREATOR_APP_PAINT_SHOP_PRO, // Creator is Paint Shop Pro

};

/* Creator field types.
 */
enum PSPCreatorFieldID
{
 PSP_CRTR_FLD_TITLE = 0, // Image document title field
 PSP_CRTR_FLD_CRT_DATE, // Creation date field
 PSP_CRTR_FLD_MOD_DATE, // Modification date field
 PSP_CRTR_FLD_ARTIST, // Artist name field
 PSP_CRTR_FLD_CPYRGHT, // Copyright holder name field
 PSP_CRTR_FLD_DESC, // Image document description field
 PSP_CRTR_FLD_APP_ID, // Creating app id field
 PSP_CRTR_FLD_APP_VER, // Creating app version field
};

/* Extended data field types.
 */
enum PSPExtendedDataID
{
 PSP_XDATA_TRNS_INDEX = 0, // Transparency index field
 PSP_XDATA_GRID, // Image grid information
 PSP_XDATA_GUIDE, // Image guide information

PSP_XDATA_EXIF, // Image EXIF information
PSP_XDATA_IPTC, // Image IPTC information

};

13 The information contained within this document is confidential and is subject to change without notice

/* Grid units type.
 */
enum PSPGridUnitsType
{

keGridUnitsPixels = 0, // Grid units is pixels
keGridUnitsInches, // Grid units is inches
keGridUnitsCentimeters // Grid units is centimeters

};

/* Guide orientation type.
 */
enum PSPGuideOrientationType
{

keHorizontalGuide = 0, // Horizontal guide direction
keVerticalGuide // Vertical guide direction

};

/* Bitmap types.
 */
enum PSPDIBType
{
 PSP_DIB_IMAGE = 0, // Layer color bitmap
 PSP_DIB_TRANS_MASK, // Layer transparency mask bitmap
 PSP_DIB_USER_MASK, // Layer user mask bitmap
 PSP_DIB_SELECTION, // Selection mask bitmap
 PSP_DIB_ALPHA_MASK, // Alpha channel mask bitmap
 PSP_DIB_THUMBNAIL, // Thumbnail bitmap
 PSP_DIB_THUMBNAIL_TRANS_MASK, // Thumbnail transparency mask
 PSP_DIB_ADJUSTMENT_LAYER, // Adjustment layer bitmap
 PSP_DIB_COMPOSITE, // Composite image bitmap
 PSP_DIB_COMPOSITE_TRANS_MASK, // Composite image transparency
 PSP_DIB_PAPER, // Paper bitmap
 PSP_DIB_PATTERN, // Pattern bitmap
 PSP_DIB_PATTERN_TRANS_MASK, // Pattern transparency mask
};

/* Type of image in the composite image bank block.
 */
enum PSPCompositeImageType
{
 PSP_IMAGE_COMPOSITE = 0, // Composite Image
 PSP_IMAGE_THUMBNAIL, // Thumbnail Image
};

/* Channel types.
 */
enum PSPChannelType
{
 PSP_CHANNEL_COMPOSITE = 0, // Channel of single channel bitmap
 PSP_CHANNEL_RED, // Red channel of 8, 16 bpc bitmap
 PSP_CHANNEL_GREEN, // Green channel of 8,16 bpc bitmap
 PSP_CHANNEL_BLUE, // Blue channel of 8, 16 bpc bitmap
};

/* Possible types of compression.
 */
enum PSPCompression
{

14 The information contained within this document is confidential and is subject to change without notice

 PSP_COMP_NONE = 0, // No compression
 PSP_COMP_RLE, // RLE compression
 PSP_COMP_LZ77, // LZ77 compression
 PSP_COMP_JPEG // JPEG compression (only used by

// thumbnail and composite image)
};

/* Layer types.
 */
enum PSPLayerType
{

keGLTUndefined = 0, // Undefined layer type
keGLTRaster, // Standard raster layer
keGLTFloatingRasterSelection, // Floating selection (raster)
keGLTVector, // Vector layer
keGLTAdjustment, // Adjustment layer
keGLTGroup, // Group layer
keGLTMask, // Mask layer
keGLTArtMedia // Art media layer

};

/* Layer flags.
 */
enum PSPLayerProperties
{
 keVisibleFlag = 0x00000001, // Layer is visible
 keMaskPresenceFlag = 0x00000002, // Layer has a mask
};

/* Blend modes.
 */
enum PSPBlendModes
{

LAYER_BLEND_NORMAL,
LAYER_BLEND_DARKEN,
LAYER_BLEND_LIGHTEN,
LAYER_BLEND_LEGACY_HUE,
LAYER_BLEND_LEGACY_SATURATION,
LAYER_BLEND_LEGACY_COLOR,
LAYER_BLEND_LEGACY_LUMINOSITY,
LAYER_BLEND_MULTIPLY,
LAYER_BLEND_SCREEN,
LAYER_BLEND_DISSOLVE,
LAYER_BLEND_OVERLAY,
LAYER_BLEND_HARD_LIGHT,
LAYER_BLEND_SOFT_LIGHT,
LAYER_BLEND_DIFFERENCE,
LAYER_BLEND_DODGE,
LAYER_BLEND_BURN,
LAYER_BLEND_EXCLUSION,
LAYER_BLEND_TRUE_HUE,
LAYER_BLEND_TRUE_SATURATION,
LAYER_BLEND_TRUE_COLOR,
LAYER_BLEND_TRUE_LIGHTNESS,
LAYER_BLEND_ADJUST = 255,

};

/* Adjustment layer types.
 */
enum PSPAdjustmentLayerType

15 The information contained within this document is confidential and is subject to change without notice

{
keAdjNone = 0, // Undefined adjustment layer type
keAdjLevel, // Level adjustment
keAdjCurve, // Curve adjustment
keAdjBrightContrast, // Brightness-contrast adjustment
keAdjColorBal, // Color balance adjustment
keAdjHSL, // HSL adjustment
keAdjChannelMixer, // Channel mixer adjustment
keAdjInvert, // Invert adjustment
keAdjThreshold, // Threshold adjustment
keAdjPoster // Posterize adjustment

};

/* Art media layer map types
 */
enum PSPArtMediaMapType
{
 keArtMediaColorMap = 0,
 keArtMediaBumpMap,
 keArtMediaShininessMap,
 keArtMediaReflectivityMap,
 keArtMediaDrynessMap
};

/* Vector shape types.
 */
enum PSPVectorShapeType
{

keVSTUnknown = 0, // Undefined vector type
keVSTText, // Shape represents lines of text
keVSTPolyline, // Shape represents a multiple segment line
keVSTEllipse, // Shape represents an ellipse (or circle)
keVSTPolygon, // Shape represents a closed polygon
keVSTGroup, // Shape represents a group shape

};

/* Shape property flags
 */
enum PSPShapeProperties
{

keShapeAntiAliased = 0x00000001, // Shape is anti-aliased
keShapeSelected = 0x00000002, // Shape is selected
keShapeVisible = 0x00000004, // Shape is visible

};

/* Polyline node type flags.
 */
enum PSPPolylineNodeTypes
{

keNodeUnconstrained = 0x0000, // Default node type
keNodeSmooth = 0x0001, // Node is smooth
keNodeSymmetric = 0x0002, // Node is symmetric
keNodeAligned = 0x0004, // Node is aligned
keNodeActive = 0x0008, // Node is active
keNodeLocked = 0x0010, // Node is locked
keNodeSelected = 0x0020, // Node is selected
keNodeVisible = 0x0040, // Node is visible
keNodeClosed = 0x0080, // Node is closed

};

16 The information contained within this document is confidential and is subject to change without notice

/* Paint style types.
 */
enum PSPPaintStyleType
{

keStyleNone = 0x0000, // No paint style info applies
keStyleColor = 0x0001, // Color paint style info
keStyleGradient = 0x0002, // Gradient paint style info
keStylePattern = 0x0004, // Pattern paint style info
keStylePaper = 0x0008, // Paper paint style info
keStylePen = 0x0010, // Organic pen paint style info

};

/* Gradient type.
 */
enum PSPStyleGradientType
{

keSGTLinear = 0, // Linera gradient type
keSGTRadial, // Radial gradient type
keSGTRectangular, // Rectangulat gradient type
keSGTSunburst // Sunburst gradient type

};

/* Paint Style Cap Type (Start & End).
 */
enum PSPStyleCapType
{

keSCTCapFlat = 0, // Flat cap type (was round in psp6)
keSCTCapRound, // Round cap type (was square in psp6)
keSCTCapSquare, // Square cap type (was flat in psp6)
keSCTCapArrow, // Arrow cap type
keSCTCapCadArrow, // Cad arrow cap type
keSCTCapCurvedTipArrow, // Curved tip arrow cap type
keSCTCapRingBaseArrow, // Ring base arrow cap type
keSCTCapFluerDelis, // Fluer deLis cap type
keSCTCapFootball, // Football cap type
keSCTCapXr71Arrow, // Xr71 arrow cap type
keSCTCapLilly, // Lilly cap type
keSCTCapPinapple, // Pinapple cap type
keSCTCapBall, // Ball cap type
keSCTCapTulip // Tulip cap type

};

/* Paint Style Join Type.
 */
enum PSPStyleJoinType
{

keSJTJoinMiter = 0, // Miter join type
keSJTJoinRound, // Round join type
keSJTJoinBevel // Bevel join type

};

/* Organic pen type.
 */
enum PSPStylePenType
{

keSPTOrganicPenNone = 0, // Undefined pen type
keSPTOrganicPenMesh, // Mesh pen type
keSPTOrganicPenSand, // Sand pen type
keSPTOrganicPenCurlicues, // Curlicues pen type
keSPTOrganicPenRays, // Rays pen type

17 The information contained within this document is confidential and is subject to change without notice

keSPTOrganicPenRipple, // Ripple pen type
keSPTOrganicPenWave, // Wave pen type
keSPTOrganicPen // Generic pen type

};

/* Text element types.
*/
enum PSPTextElementType
{

keTextElemUnknown = 0, // Undefined text element type
keTextElemChar, // A single character code
keTextElemCharStyle, // A character style change
keTextElemLineStyle // A line style change

};

/* Text alignment types.
 */
enum PSPTextAlignment
{

keTextAlignmentLeft = 0, // Left text alignment
keTextAlignmentCenter, // Center text alignment
keTextAlignmentRight // Right text alignment

};

/* Text antialias modes.
 */
enum PSPAntialiasMode
{
 keNoAntialias = 0, // Antialias off
 keSharpAntialias, // Sharp
 keSmoothAntialias // Smooth
};

/* Text flow types
 */
enum PSPTextFlow
{
 keTFHorizontalDown = 0, // Horizontal then down
 keTFVerticalLeft, // Vertical then left
 keTFVerticalRight, // Vertical then right
 keTFHorizontalUp // Horizontal then up
};

/* Character style flags.
 */
enum PSPCharacterProperties
{

keStyleItalic = 0x00000001, // Italic property bit
keStyleStruck = 0x00000002, // Strike-out property bit
keStyleUnderlined = 0x00000004, // Underlined property bit
keStyleWarped = 0x00000008, // Warped property bit
keStyleAntiAliased = 0x00000010, // Anti-aliased property bit

};

/* Table type.

18 The information contained within this document is confidential and is subject to change without notice

 */
enum PSPTableType
{

keTTUndefined = 0, // Undefined table type
keTTGradientTable, // Gradient table type
keTTPaperTable, // Paper table type
keTTPatternTable // Pattern table type

};

/* Picture tube placement mode.
 */
enum TubePlacementMode
{
 tpmRandom, // Place tube images in random intervals
 tpmConstant, // Place tube images in constant intervals
};

/* Picture tube selection mode.
 */
enum TubeSelectionMode
{
 tsmRandom, // Randomly select the next image in

// tube to display
 tsmIncremental, // Select each tube image in turn
 tsmAngular, // Select image based on cursor direction
 tsmPressure, // Select image based on pressure

// (from pressure-sensitive pad)
 tsmVelocity, // Select image based on cursor speed
};

/* Graphic contents flags.
 */
enum PSPGraphicContents
{

// Layer types
keGCRasterLayers = 0x00000001, // At least one raster layer
keGCVectorLayers = 0x00000002, // At least one vector layer
keGCAdjustmentLayers = 0x00000004, // At least one adjust. layer

 keGCGroupLayers = 0x00000008, // at least one group layer
 keGCMaskLayers = 0x00000010, // at least one mask layer
 keGCArtMediaLayers = 0x00000020, // at least one art media layer

// Additional attributes

 keGCMergedCache = 0x00800000, // merged cache (composite image)
keGCThumbnail = 0x01000000, // Has a thumbnail
keGCThumbnailTransparency = 0x02000000, // Thumbnail transp.
keGCComposite = 0x04000000, // Has a composite image
keGCCompositeTransparency = 0x08000000, // Composite transp.
keGCFlatImage = 0x10000000, // Just a background
keGCSelection = 0x20000000, // Has a selection
keGCFloatingSelectionLayer = 0x40000000, // Has float. selection
keGCAlphaChannels = 0x80000000, // Has alpha channel(s)

};

5.4 Common Blocks and Common Chunks
This section describes various blocks and chunks that are used throughout the remainder of the document.
Recall that a “block” includes a PSP Block Header (see below) and all data related to the header, whereas a
“chunk” is simply a group of data that is related (but has no header).

19 The information contained within this document is confidential and is subject to change without notice

These blocks and chunks are described here in order to simplify reference to them later in the document
(either because they are referenced often or because it is easier to refer the reader to the definitions here
than to embed their descriptions within the context of their use).

5.4.1 Block Header

The block structure utilized by the PSP file format is quite simple. Each main block consists of a Block
Header, which indicates size and type information for the block, followed by the block data. The content of
the block data depends on the block’s type.

Moreover, the block structure used in the PSP format is hierarchical; a block may consist of one or more
sub-blocks. The sub-blocks take the same format as the main blocks (block header + block data).

As illustrated in the following table, the Block Header identifies the block’s type and the total block length.

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK” followed by
a zero byte).

WORD 2 bytes Block identifier Identifies the type of the block (one of
PSPBlockID).

DWORD 4 bytes Total block length
Total length of block (including all sub-blocks), not
including the header. Use this length to skip past
unknown or unwanted blocks.

5.4.2 Variable Length String Chunk

Variable length strings are used in the PSP format to store textual data, such as a layer name. This section
describes the representation of variable length strings in the PSP format.

As illustrated in the following table, the Variable Length String Chunk consists of a character count and the
array of characters that comprise the variable length string. The Variable Length String Chunk does not
contain the string's ending NULL character.

Type Length Name Description

WORD 2 bytes Character count Count of following characters (let’s call this j).

C_ARRAY j bytes Characters Characters that comprise the string.

5.4.3 Color Palette Sub-Block

Color Palette Sub-Blocks are used throughout the PSP file format to store palettes associated with paletted
bitmaps. For example, when a composite image is stored as a paletted bitmap, there is a Color Palette Sub-
Block in the Composite Image Sub-Block to store the composite image’s palette.

As illustrated in the following table, the Color Palette Sub-Block consists of a Color Palette Block Header,
a Color Palette Information Chunk, and a Color Palette Entries Chunk.

20 The information contained within this document is confidential and is subject to change without notice

Color Palette Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed by

a zero byte).

WORD 2 bytes Block identifier Always PSP_COLOR_BLOCK.

DWORD 4 bytes Total block length
Length of complete Color Palette Sub-Block,
including Color Palette Information Chunk and
Color Palette Entries Chunk.

Color Palette Information Chunk:

DWORD 4 bytes Chunk size Length of Color Palette Information Chunk.

DWORD 4 bytes Palette entry count
Number of entries in the palette (for the purpose of
determining the number of fields in the Color
Palette Entries Chunk, let’s call this i).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Color Palette Entries Chunk

RGBQUAD 4 bytes Palette entry 1 The 1st palette entry.

… … … …

RGBQUAD 4 bytes Palette entry i The ith palette entry

5.4.4 Paint Style Sub-Block

The Paint Style Sub-Block is used to describe how an item is to be painted. For example, it is used to
describe how each vector shape's outline and fill should be painted in the Vector Shape Sub-Block.

As illustrated below, the Paint Style Sub-Block consists of the Paint Style Block Header, the Paint Style
Information Chunk, and the Paint Style Definition Chunks.

Paint Style Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always PSP_PAINTSTYLE_BLOCK.

21 The information contained within this document is confidential and is subject to change without notice

DWORD 4 bytes Total block length
Length of the complete Paint Style Sub-Block,
including the Paint Style Information Chunk and
all the Paint Style Definition Chunks.

Paint Style Information Chunk:

DWORD 4 bytes Chunk size Length of Paint Style Information Chunk.

WORD 2 bytes Paint style type flags A series of flags (in PSPPaintStyleType) that
defines the paint style type(s).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Paint Style Definition Chunks:

The contents of the Paint Style Definition Chunks are based on the paint style type flags defined in the
previous Paint Style Information Chunk.

The Color Paint Style Definition Chunk is present if the keStyleColor paint style type flag is defined.

The Gradient Paint Style Definition Chunk is present if the keStyleGradient paint style type flag is defined.

The Pattern Paint Style Definition Chunk is present if the keStylePattern paint style type flag is defined.

The Paper Paint Style Definition Chunk is present if the keStylePaper paint style type flag is defined.

The Organic Pen Paint Style Definition Chunk is present if the keStylePen paint style type flag is defined.

Color Paint Style Definition Chunk:

DWORD 4 bytes Chunk size Length of Color Paint Style Definition Chunk.

DWORD 4 bytes RGB color definition RGB color definition

LONG 4 bytes Color palette index Color palette index (-1 if not paletted)

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Gradient Paint Style Definition Chunk:

DWORD 4 bytes Chunk size Length of Gradient Paint Style Definition
Chunk.

Variable
length
string
chunk

See
Section
5.4.2

Gradient name
Gradient name. (Please See Section “5.4.2 –
Variable Length String Chunk” for more
information about variable string chunks.)

LONG 4 bytes Gradient identifier Table entry identifier reserved for future
implementation of gradient table (currently -1).

22 The information contained within this document is confidential and is subject to change without notice

BYTE 1 byte Invert flag Indicates whether the gradient is inverted (0 =
not inverted, 1 = inverted).

LONG 4 bytes Center point horizontal Horizontal (x) value of gradient center point.

LONG 4 bytes Center point vertical Vertical (y) value of gradient center point.

LONG 4 bytes Focal point horizontal Horizontal (x) value of gradient focal point.

LONG 4 bytes Focal point vertical Vertical (y) value of gradient focal point.

DOUBLE 8 bytes Angle Gradient angle (for linear gradients only).

WORD 2 bytes Repeats Number of repeats of the gradient.

WORD 2 bytes Type Type of gradient (must be one of
PSPStyleGradientType).

WORD 2 bytes Color count Number of Gradient Color Chunk(s) following.

WORD 2 bytes Transparency count Number of Gradient Transparency Chunk(s)
following.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Gradient Color Chunk (first color):

DWORD 4 bytes Chunk size Length of Gradient Color Chunk.

DWORD 4 bytes Color Gradient color (RGB).

WORD 2 bytes Location Gradient color location.

WORD 2 bytes Midpoint Gradient color midpoint location (from previous
color).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

…
Gradient Color Chunk (last color):

DWORD 4 bytes Chunk size Length of Gradient Color Chunk.

DWORD 4 bytes Color Gradient color (RGB).

WORD 2 bytes Location Gradient color location.

WORD 2 bytes Midpoint Gradient color midpoint location (from previous
color).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

23 The information contained within this document is confidential and is subject to change without notice

Gradient Transparency Chunk (first transparency):

DWORD 4 bytes Chunk size Length of Gradient Transparency Chunk.

WORD 2 bytes Opacity Gradient transparency opacity (0 is fully
transparent - 100 is fully opaque).

WORD 2 bytes Location Gradient transparency location.

WORD 2 bytes Midpoint Gradient transparency midpoint location (from
previous transparency).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

…
Gradient Transparency Chunk (last transparency):

DWORD 4 bytes Chunk size Length of Gradient Transparency Chunk.

WORD 2 bytes Opacity Gradient transparency opacity (0 is fully
transparent - 100 is fully opaque).

WORD 2 bytes Location Gradient transparency location.

WORD 2 bytes Midpoint Gradient transparency midpoint location (from
previous transparency).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Pattern Paint Style Definition Chunk:

DWORD 4 bytes Chunk size Length of Pattern Paint Style Definition Chunk.

Variable
length
string
chunk

See
Section
5.4.2

Pattern name
Pattern name. (Please See Section “5.4.2 –
Variable Length String Chunk” for more
information about variable string chunks.)

LONG 4 bytes Pattern identifier

Pattern table entry identifier. This is an index
into the pattern table defined in the Table Bank
Block. (Please See Section “6.9 –The Table
Bank Block” for more information about tables.)

DOUBLE 8 bytes Rotation Pattern rotation angle.

DOUBLE 8 bytes Scale Pattern scale factor.

BYTE 1 byte Flip flag Indicates whether the pattern is flipped (0 = not
flipped, 1 = flipped).

BYTE 1 byte Mirror flag Indicates whether the pattern is mirrored (0 = not
mirrored, 1 = mirrored).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

24 The information contained within this document is confidential and is subject to change without notice

Paper Paint Style Definition Chunk:

DWORD 4 bytes Chunk size Length of Paper Paint Style Definition Chunk.

Variable
length
string
chunk

See
Section
5.4.2

Paper name
Paper name. (Please See Section “5.4.2 –
Variable Length String Chunk” for more
information about variable string chunks.)

LONG 4 bytes Paper identifier

Paper table entry identifier. This is an index into
the paper table defined in the Table Bank Block.
(Please See Section “6.9 –The Table Bank
Block” for more information about tables.)

DOUBLE 8 bytes Rotation Paper rotation angle.

DOUBLE 8 bytes Scale Paper scale factor.

BYTE 1 byte Flip flag Indicates whether the paper is flipped (0 = not
flipped, 1 = flipped).

BYTE 1 byte Mirror flag Indicates whether the paper is mirrored (0 = not
mirrored, 1 = mirrored).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Organic Pen Paint Style Definition Chunk:

DWORD 4 bytes Chunk size Length of Organic Pen Paint Style Definition
Chunk.

LONG 4 bytes Pen identifier Table entry identifier reserved for future
implementation of pen table (currently -1).

WORD 2 bytes Type Organic pen type (must be one of
PSPStylePenType).

DWORD 4 bytes First start color First start color (RGB).

DWORD 4 bytes First end color First end color (RGB).

DWORD 4 bytes Second start color Second start color (RGB).

DWORD 4 bytes Second end color Second end color (RGB).

BYTE 1 byte Key effect flag Indicates whether to use the key effect (0 = don’t
use key effect, 1 = use key effect).

BYTE 1 byte Extra color flag Indicates whether to use the extra (second) color
(0 = don’t use extra color, 1 = use extra color).

LONG 4 bytes Parameter 1 Organic pen parameter 1.

LONG 4 bytes Parameter 2 Organic pen parameter 2.

LONG 4 bytes Parameter 3 Organic pen parameter 3.

LONG 4 bytes Parameter 4 Organic pen parameter 4.

25 The information contained within this document is confidential and is subject to change without notice

LONG 4 bytes Parameter 5 Organic pen parameter 5.

LONG 4 bytes Parameter 6 Organic pen parameter 6.

LONG 4 bytes Parameter 7 Organic pen parameter 7.

LONG 4 bytes Parameter 8 Organic pen parameter 8.

LONG 4 bytes Parameter 9 Organic pen parameter 9.

LONG 4 bytes Parameter 10 Organic pen parameter 10.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

5.4.5 Line Style Sub-Block

The Line Style Sub-Block contains styled line data used by the outline paint style of vector shapes in the
Vector Shape Sub-Block.

As illustrated below, the Line Style Sub-Block consists of the Line Style Block Header, the Line Style
Information Chunk, and the Line Style Entries Chunk.

Line Style Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always PSP_LINESTYLE_BLOCK.

DWORD 4 bytes Total block length
Length of the complete Line Style Sub-Block,
including the Line Style Information Chunk and
the Line Style Entries Chunk.

Line Style Information Chunk:

DWORD 4 bytes Chunk size Length of Line Style Information Chunk.

BYTE 1 byte Start cap type Segment start cap type (must be one of
PSPStyleCapType).

BYTE 1 byte Start cap multipliers flag TRUE if use the following segment start cap
multipliers, FALSE otherwise.

DOUBLE 8 bytes Start cap width multiplier Segment start cap width (x) multiplier.

DOUBLE 8 bytes Start cap height multiplier Segment start cap height (y) multiplier.

BYTE 1 byte End cap type Segment end cap type (must be one of
PSPStyleCapType).

26 The information contained within this document is confidential and is subject to change without notice

BYTE 1 byte End cap multipliers flag TRUE if use the following segment end cap
multipliers, FALSE otherwise.

DOUBLE 8 bytes End cap width multiplier Segment end cap width (x) multiplier.

DOUBLE 8 bytes End cap height multiplier Segment end cap height (y) multiplier.

BYTE 1 byte Link caps flag TRUE if the line segment caps are linked to the
shape’s stroke outline caps, FALSE otherwise.

DWORD 4 bytes Dash-gap count Number of dash-gap entries in the following
Line Style Entries Chunk.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Line Style Entries Chunk:

DWORD 4 bytes First dash-gap entry The first dash-gap value of the styled line.

… … … …

DWORD 4 bytes Last dash-gap entry The last dash-gap value of the styled line.

5.4.6 Composite Image Attributes Sub-Block

The Composite Image Attributes Sub-Block contains information about a composite image or a thumbnail
stored within the PSP file.

As illustrated in the table below, the Composite Image Attributes Sub-Block consists of a Composite Image
Attributes Block Header and a Composite Image Attributes Information Chunk.

Composite Image Attributes Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always
PSP_COMPOSITE_ATTRIBUTES_BLOCK.

DWORD 4 bytes Total block length
Length of complete Composite Image Attributes
Sub-Block, including the Composite Image
Attributes Information Chunk.

Composite Image Attributes Information Chunk:

DWORD 4 bytes Chunk size Length of Composite Image Attributes
Information Chunk.

LONG 4 bytes Width Specifies the width of the composite image, in
pixels.

LONG 4 bytes Height Specifies the height of the composite image, in
pixels.

27 The information contained within this document is confidential and is subject to change without notice

WORD 2 bytes Bit depth
Number of bits used to represent each color
pixel of the composite image (must be 1, 4, 8,
24, or 48).

WORD 2 bytes Compression type
Type of compression used to compress the
composite image (one of PSPCompression,
including PSP_COMP_JPEG).

WORD 2 byte Plane count Number of planes in the composite image (this
value must be 1).

DWORD 4 bytes Color count Number of colors in the image (2Bit depth).

WORD 2 bytes Composite image type Type of composite image (one of
PSPCompositeImageType).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

5.4.7 Composite Image Sub-Block

The Composite Image Sub-Block contains a composite image or a thumbnail in the PSP file. The contents
of this sub-block are based on the composite image compression type.

If the compression type is PSP_COMP_JPEG, the contents are as described in the JPEG Composite Image
Sub-Block (below).

Otherwise (if the compression type is not PSP_COMP_JPEG), the contents are as described in the Normal
Composite Image Sub-Block (below).

5.4.7.1 JPEG Composite Image Sub-Block

The JPEG Composite Image Sub-Block contains a JPEG compressed composite image or thumbnail in the
PSP file.

As illustrated in the table below, the JPEG Composite Image Sub-Block consists of a JPEG Block Header,
a JPEG Information Chunk, and a JPEG Content Chunk.

JPEG Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_ JPEG_BLOCK.

DWORD 4 bytes Total block length
Length of complete JPEG Composite Image Sub-
Block, including JPEG Information Chunk and
JPEG Content Chunk.

JPEG Information Chunk:

DWORD 4 bytes Chunk size Length of JPEG Information Chunk.

28 The information contained within this document is confidential and is subject to change without notice

DWORD 4 bytes Compressed image size
Size of the image in JPEG compressed form (for the
purpose of determining the length of the last field in
this block, let’s call this size j).

DWORD 4 bytes
Uncompressed image
size Size of the image in uncompressed form.

WORD 2 bytes Image type Type of image (one of PSPDIBType).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

JPEG Content Chunk:

B_ARRAY j bytes JPEG image content This field contains JPEG compressed data that
defines the image.

5.4.7.2 Normal Composite Image Sub-Block

The Normal Composite Image Sub-Block contains a composite image or a thumbnail in the PSP file.

As illustrated in the table below, the Normal Composite Image Sub-Block consists of a Composite Image
Block Header, a Composite Image Information Chunk, a Composite Image Color Palette Sub-Block (if
any), and the Composite Image Channel Sub-Blocks.

Composite Image Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_COMPOSITE_IMAGE_BLOCK.

DWORD 4 bytes Total block length

Length of complete Composite Image Block,
including Composite Image Information Chunk,
Composite Image Color Palette Sub-Block (if any),
and all Composite Image Channel Sub-Blocks.

Composite Image Information Chunk:

DWORD 4 bytes Chunk size Length of Composite Image Information Chunk.

WORD 2 bytes Count of bitmaps
Number of bitmaps to follow (1 if the composite
image has no transparency mask; 2 if the composite
image has a transparency mask).

WORD 2 bytes Count of channels Number of channels to follow.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

29 The information contained within this document is confidential and is subject to change without notice

Composite Image Color Palette Sub-Block:

Color Palette Sub-Block containing the composite image's color palette (this Sub-Block is not present in
24-bit and 48-bit images). See Section “5.4.3 : Color Palette Sub-Block.”

Composite Image Channel Sub-Blocks:

All the composite image channels. Possible channels include:
1) One or three Channel Sub-Blocks defining the composite image bitmap. If the composite image is a

paletted bitmap, there is one channel; if the composite image is a 24-bit or 48-bit bitmap, there are
three channels.

2) One channel defining the composite image transparency mask. The transparency mask is stored as an
8-bit greyscale bitmap.

See Section “5.4.8: Channel Sub-Block and Channel Compression.”

5.4.8 Channel Sub-Block and Channel Compression

Channel Sub-Blocks are used throughout the PSP file format to store image document channel data. Each
color channel is stored separately in the PSP format. For example, when a composite image is stored as a
24-bit bitmap, there are 3 Channel Sub-Blocks (a red Channel Sub-Block, a green Channel Sub-Block, and
a blue Channel Sub-Block) in the Composite Image Sub-Block. However, when a composite image is
stored as a paletted bitmap, there will only be one Channel Sub-Block in the Composite Image Sub-Block
(because a paletted bitmap contains only one channel).

As illustrated in the table below, the Channel Sub-Block consists of a Channel Block Header, a Channel
Information Chunk, and a Channel Content Chunk.

A Word About Compression

All channel data in a PSP file can be stored compressed in the LZ77 format, compressed in the Run Length
Encoding (RLE) format, or uncompressed (in a “raw” format). This channel data can include composite
image color channels, layer color channels, layer transparency mask channels, layer user mask channels,
alpha channels, or selection channels.

The composite image and thumbnail color channels are stored in the compression format indicated in the
“Composite image compression type” field of the “Composite Image Attributes Information Chunk,” as
described in Section 5.4.6 of this document. All other channels are stored in the compression format
indicated in the “Compression type” field of the “General Image Attributes Chunk,” as described in Section
6.3 of this document.

The LZ77 compression scheme used in the PSP file format is the LZ77 variant used in the PNG file format.
There are a couple of important distinctions between the way this LZ77 variant is used in the PNG file
format and the way it is used in the PSP file format. First, the PNG file format requires that data be sent
through one of several filters before it can be compressed, whereas the PSP file format has no such filter.
Second, the PNG file format mandates support for a discontiguous compression stream, whereas the PSP
file format allows only a contiguous compression stream.

The Run Length Encoding (RLE) scheme used in the PSP file format is a relatively straightforward RLE
variant. RLE is a simple compression method that strives to take advantage of contiguous runs of the same
data. In the variant used in the PSP file format, the first byte encountered in the compressed stream is a byte
that represents a “run count.” While decompressing, if this run count is greater than 128, then 128 should
be subtracted from the “run count.” This calculated run count (run count – 128) indicates the number of
times the next byte in the compressed stream should be repeated in the decompressed stream. If the “run
count” read from compressed stream is less than 128, then it indicates the number of following bytes (in the

30 The information contained within this document is confidential and is subject to change without notice

compressed stream) that should be copied as-is from the compressed stream to the decompressed stream.
The compressed stream is comprised of these RLE “packets,” each containing a “run count” and data
associated with that run count.

In all compression methods used in the PSP format, each channel is a single compression stream, which,
when decompressed, represents bitmap data stored from left to right and from top to bottom. Each scanline
in the image data is stored on a 4 byte boundary.

All channels that represent something other than color (including layer transparency mask channels, layer
user mask channels, alpha channels, and selection channels), when decompressed, are 8-bit greyscale
bitmaps.

Channel Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by

a zero byte).

WORD 2 bytes Block identifier Always PSP_CHANNEL_BLOCK.

DWORD 4 bytes Total block length
Length of complete Channel Sub-Block, including
Channel Information Chunk and Channel Content
Chunk.

Channel Information Chunk:

DWORD 4 bytes Chunk size Length of Channel Information Chunk.

DWORD 4 bytes Compressed channel
length

Size of the channel in compressed form (for the
purpose of determining the length of the last field in
this block, let’s call this size j).

DWORD 4 bytes
Uncompressed channel
length Size of the channel in uncompressed form.

WORD 2 bytes Bitmap type Type of bitmap for which this channel is intended
(one of PSPDIBType).

WORD 2 bytes Channel type Type of channel (one of PSPChannelType).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Channel Content Chunk:

B_ARRAY j bytes Channel content

Content of channel. This field contains (possibly
compressed) data that defines the channel. Other
blocks define whether the channel is compressed
and define the size of the bitmap associated with
this channel (height and width).

31 The information contained within this document is confidential and is subject to change without notice

6 Paint Shop Pro (PSP) File Format Description
This section details the PSP file format.

6.1 Constraints
This section describes miscellaneous constraints that writers of the PSP file format must follow.

6.1.1 Main Block Ordering

With regard to the order of the ten main blocks, there are two hard and fast rules. First, the General Image
Attributes block must come immediately after the File Header. Second, the Composite Image Bank Block,
if present, must come before the Layer Bank Block.

The order of other blocks is not mandated. However, the order in which the main blocks are illustrated in
Table 1 of section “4 : Format Overview,” is the preferred order. This order allows programs to obtain
information quickly about an image document (information such as bit depth, compression type, resolution,
etc.) without having to read layer information (such as color bitmap and mask data).

6.2 PSP File Header
Every PSP file begins with the following header, which should be used for initial validation. Any file that
does not begin with this header should be considered an invalid PSP file.

As illustrated in the following table, the PSP file header consists of the PSP file signature followed by a
version number.

Type Length Name Description

B_ARRAY 32 bytes PSP file signature
Always “50 61 69 6E 74 20 53 68 6F 70 20 50
72 6F 20 49 6D 61 67 65 20 46 69 6C 65 0A

1A 00 00 00 00” (i.e., the string “Paint Shop Pro
Image File\n\x1a”, padded with zeroes to 32 bytes).

WORD 2 bytes PSP file major version
number

Currently 6. PSP files produced by Paint Shop Pro 5
have major version number 3. PSP files produced
by Paint Shop Pro 6 have major version number 4.
PSP files produced by Paint Shop Pro 7 have major
version number 5. PSP files produced by Paint Shop
Pro 8 have major version number 6. PSP files
produced by Paint Shop Pro 9 have major version
number 7.

WORD 2 bytes PSP file minor version Currently 0.

6.3 The General Image Attributes Block

Header

General Image Attributes

32 The information contained within this document is confidential and is subject to change without notice

The General Image Attributes Block, a required block that contains various information about the stored
image document, immediately follows the PSP file header. Much of this information is needed to read other
parts of the file. (For example, the compression type is required to decode any channel blocks (with the
exception of the Composite Image Bank Block channel(s)), and the layer count is required to know how
many layers need to be read from the Layers Block).

As illustrated in the following table, the General Image Attributes Block consists of the General Image
Attributes Header and the General Image Attributes Chunk.

General Image Attributes Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_IMAGE_BLOCK.

DWORD 4 bytes Total block length Length of complete General Image Attributes
Block.

General Image Attributes Chunk:

DWORD 4 bytes Chunk size Length of General Image Attributes Chunk.

LONG 4 bytes Image width Width of the image.

LONG 4 bytes Image height Height of the image.

DOUBLE 8 bytes Resolution value Number of pixels per metric.

BYTE 1 byte Resolution metric Metric used for resolution (one of PSP_METRIC).

WORD 2 bytes Compression type

Type of compression used to compress all image
document channels, except those in the composite
images, which have their own compression type
field (one of PSPCompression). The compression
type PSP_COMP_JPEG is not valid here (only used
for composite images).

WORD 2 bytes Bit depth The bit depth of the color bitmap in each layer of
the image document (must be 1, 4, 8, 24, or 48).

WORD 2 byte Plane count Number of planes in each layer of the image
document (this value must be 1).

DWORD 4 bytes Color count Number of colors in each layer of the image
document (2Bit depth).

BYTE 1 byte Greyscale flag
Indicates whether the color bitmap in each layer of
image document is a greyscale (0 = not greyscale, 1
= greyscale).

DWORD 4 byte Total image size Sum of the sizes of all layer color bitmaps.

LONG 4 bytes Active layer Identifies the layer that was active when the image
document was saved.

WORD 2 bytes Layer count Number of layers in the document.

33 The information contained within this document is confidential and is subject to change without notice

DWORD 4 bytes Graphic contents A series of flags (in PSPGraphicContents) that helps
define the image's graphic contents.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

6.4 The Extended Data Block

Header

Keyword-Value

…

Keyword-Value

The Extended Data Block is an optional block that contains miscellaneous information about the image
document. This information is organized in the PSP field format, which consists of a series of keyword-
value pairs.

Using keyword-value pairs in the Extended Data Block facilitates the storage of new, currently undefined,
image document attributes. Applications can be modified quickly to make use of the new keywords, while
old applications that do not know about the new keywords will simply ignore them. (Therefore, unknown
keywords encountered in the Extended Data Block should be ignored.) If the Extended Data Block is
present, it must contain at least one Extended Data Field.

As illustrated in the following table, the Extended Data Block consists of a block header followed by one or
more Extended Data Fields (each Extended Data Field consists of a keyword chunk and a value chunk).

Extended Data Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_EXTENDED_DATA_BLOCK.

DWORD 4 bytes Total block length

Length of following Extended Data Block (includes
all following extended data fields – each of which
consists of an Extended Data Keyword Chunk and
an Extended Data Value Chunk).

Extended Data Keyword Chunk (first extended data field):

B_ARRAY 4 bytes Field signature Always “7E 46 4C 00” (i.e.,“~FL”, followed by
a zero byte).

WORD 2 bytes Field keyword Keyword identifying type of extended data that is
contained in the Extended Data Value Chunk (must

34 The information contained within this document is confidential and is subject to change without notice

be one of PSPExtendedDataID).

DWORD 4 bytes Extended Data Value
Chunk size

Length of following Extended Data Value Chunk
(lets call this k).

Extended Data Value Chunk (first extended data field):

B_ARRAY k bytes Field
value

The contents of the Extended Data Value Chunk are dependent
upon the keyword extracted from the Extended Data Keyword
Chunk (currently there are three defined keywords). Unknown
keywords should be ignored:
Field keyword: Field value description:
PSP_XDATA_TRNS_INDEX A WORD that identifies the

palette index of the transparent
color (this field is not valid for
image documents whose color
bitmaps are non-paletted and
should be ignored in this case).

PSP_XDATA_GRID This field is 14 bytes and
contains the image grid
information. The contents are as
described in the Grid field value
section below.

PSP_XDATA_GUIDE This field is 10 bytes and
contains information about one
image guide (there can be
multiple guides). The contents
are as described in the Guide
field value section below.

PSP_XDATA_EXIF This field contains EXIF-specific
attribute information. The
contents are as described in the
EXIF field value section below.

 PSP_XDATA_IPTC This field contains IPTC-specific
attribute information. The
contents are as described in the
IPTC field value section below.

…

Extended Data Keyword Chunk (last extended data field):

B_ARRAY 4 bytes Field identifier Always “7E 46 4C 00” (i.e.,“~FL”, followed by
a zero byte).

WORD 2 bytes Field keyword
Keyword identifying type of extended data that is
contained in the Extended Data Value Chunk (must
be one of PSPExtendedDataID).

DWORD 4 bytes Data length Length of following Extended Data Value Chunk
(lets call this k).

35 The information contained within this document is confidential and is subject to change without notice

Extended Data Value Chunk (last extended data field):

B_ARRAY k bytes Field
value

The contents of the Extended Data Value Chunk are dependent
upon the keyword extracted from the Extended Data Keyword
Chunk (currently there are five defined keywords). Unknown
keywords should be ignored:
Field keyword: Field value description:
PSP_XDATA_TRNS_INDEX A WORD that identifies the

palette index of the transparent
color (this field is not valid for
image documents whose color
bitmaps are non-paletted and
should be ignored in this case).

PSP_XDATA_GRID This field is 14 bytes and
contains the image grid
information. The contents are as
described in the Grid field value
section below.

PSP_XDATA_GUIDE This field is 10 bytes and
contains information about one
image guide (there can be
multiple guides). The contents
are as described in the Guide
field value section below.

PSP_XDATA_EXIF This field contains EXIF-specific
attribute information. The
contents are as described in the
EXIF field value section below.

 PSP_XDATA_IPTC This field contains IPTC-specific
attribute information. The
contents are as described in the
IPTC field value section below.

Grid field value contents:

DWORD 4 bytes Color Grid color (RGB).

DWORD 4 bytes Horizontal spacing Horizontal grid spacing.

DWORD 4 bytes Vertical spacing Vertical grid spacing.

WORD 2 bytes Units Grid spacing units (must be one of
PSPGridUnitsType).

Guide field value contents:

DWORD 4 bytes Color Guide color (RGB).

DWORD 4 bytes Offset Guide offset (position of guide in document).

WORD 2 bytes Orientation Guide orientation (must be one of
PSPGuideOrientationType).

36 The information contained within this document is confidential and is subject to change without notice

EXIF field value contents:

B_ARRAY 6 bytes EXIF header Always “45 78 69 66 00 00” (i.e.,“Exif”,
followed by two zero bytes).

B_ARRAY 8 bytes TIFF header

TIFF header as defined by TIFF Rev. 6.0. Contains
byte-order identifier (WORD), version number
(WORD), and offset of the first IFD (DWORD).
The first IFD is the following EXIF IFD.

B_ARRAY k - 14
bytes EXIF IFD

This field contains a set of tags with EXIF-specific
attribute information. The format of this IFD value
is defined by the EXIF version 2.2 specification
(http://www.exif.org/specifications.html). This field
does not contain thumbnail data. The one exception
to the EXIF standard is when makernotes are stored
this is explained below.

For the EXIF IFD field, the tag that is stored differently from the EXIF specification is the makernote field.
It is stored either in straight binary format inside its own IFD, or stored as binary and as TIFF tags decoded
from the binary stream. The storage type depends on camera the file originated from and will dictate the
‘makernote type’. The ‘makernote type’, is one of 5 different types that will depend on if the binary
makernote can be decoded or not:

Unknown - 0 (the binary makernote stream could not be decoded or recognized)
IFD - 1
IFD prefixed - 2
TIFF header prefixed - 3
TIFF prefixed offset II - 4

Here’s the format:

Makernote IFD: 37500 – same ID as in the EXIF specification (current for EXIF 2.2)

 Makernote type (see types above)

 Depending on the type the rest follows this format

 Unknown:
 Binary makernote (ID: 1000)

 IFD:
 Makernote IFD (1001)

 Individual makernote tag 1
 Individual makernote tag 2
 …
 Individual makernote tag n
 Binary makernote (ID: 1000)

 IFD prefixed
 Makernote IFD Prefix (ID: 2)
 Makernote IFD (1001)

 Individual makernote tag 1
 Individual makernote tag 2
 …
 Individual makernote tag n
 Binary makernote (ID: 1000)

37 The information contained within this document is confidential and is subject to change without notice

http://www.exif.org/specifications.html

TIFF Header prefixed – same format as IFD Prefixed
TIFF prefixed offset II – same format as IFD Prefixed

IPTC field value contents:

DWORD 4 bytes Size Total number of all IPTC DataSets

DataSet Chunk (first value)

DWORD 4 bytes Record Number PSP always uses 2 for “Application Record”. May
be extended in the future to allow other record
types.

DWORD 4 bytes Dataset ID Identifier for the data field. See chapter 6 of IPTC
specification (“Application record”) for valid
values.

BYTE 1 byte DataSet type Always set to 1 to indicate extended dataset. 0
indicates standard dataset format (not used).

DWORD 4 bytes Size of data Indicates size in bytes of data “N”
B_ARRAY N bytes DataSet data An array of bytes containing the data

…
DataSet Chunk (last value)

DWORD 4 bytes Record Number PSP always uses 2 for “Application Record”. May
be extended in the future to allow other record
types.

DWORD 4 bytes Dataset ID Identifier for the data field. See chapter 6 of IPTC
specification (“Application record”) for valid
values.

BYTE 1 byte DataSet type Always set to 1 to indicate extended dataset. 0
indicates standard dataset format (not used).

DWORD 4 bytes Size of data Indicates size in bytes of data “N”
B_ARRAY N bytes DataSet data An array of bytes containing the data

6.5 The Color Profile Block

Header

Color Profile Data

The Color Profile Data Block is an optional block that contains ICC color profile data that is used in the
Paint Shop Pro color management system when converting between color spaces.

38 The information contained within this document is confidential and is subject to change without notice

Color Profile Data Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_COLORPROFILE_BLOCK.

DWORD 4 bytes Total block length Length of following complete Color Profile Data
Block.

Color Profile Data Chunk:

DWORD 4 bytes Chunk size Length of Color Profile Data chunk.

WORD 2 byte Description Size Size of the text description of the color profile

B_ARRAY n bytes Description A text description of the color profile

DWORD 4 bytes Size of color profile Size of raw color profile data in bytes

B_ARRAY n bytes ICC Color Profile The raw color profile data in ICC format.

6.6 The Tube Data Block

Header

Tube Data

The Tube Data Block is an optional block that contains Paint Shop Pro Picture Tube control data. This
block controls how Picture Tube files (which are PSP files) act.

Tube Data Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_TUBE_BLOCK.

DWORD 4 bytes Total block length Length of following complete Tube Data Block.

39 The information contained within this document is confidential and is subject to change without notice

Tube Data Chunk:

DWORD 4 bytes Chunk size Length of Tube Data chunk.

WORD 2 bytes Block version Version of following Tube Data Block.

LONG 4 bytes Tube step size Tube step size.

LONG 4 byte Tube column count Number of columns in tube file.

LONG 4 bytes Tube row count Number of rows in tube.

LONG 4 bytes Tube cell count Number of cells in tube.

LONG 4 bytes Tube placement mode Controls tube placement mode (one of
TubePlacementMode).

LONG 4 bytes Tube selection mode Controls tube selection mode (one of
TubeSelectionMode).

LONG 4 bytes Tube scale factor controls size/scale of tube. Valid range is 10-250

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

6.7 The Creator Data Block

Header

Creator Key-Value

…

Creator Key-Value

The Creator Data Block is an optional block that contains miscellaneous information about the creator of
the image document. This information is organized in the PSP field format, which consists of a series of
keyword-value pairs.

Using keyword-value pairs in the Creator Data Block facilitates the storage of new, currently undefined,
creator attributes. Applications can be modified quickly to make use of the new keywords, while old
applications that do not know about the new keywords will simply ignore them; (therefore, unknown
keywords encountered in the Creator Data Block should be ignored). If the Creator Data Block is present, it
must contain at least one creator field.

As illustrated in the following table, the Creator Data Block consists of a block header followed by one or
more Creator Data Fields (each Creator Data Field consists of a keyword chunk and a value chunk).

40 The information contained within this document is confidential and is subject to change without notice

Creator Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_CREATOR_BLOCK.

DWORD 4 bytes Total block length

Length of following Creator Block (includes all
following creator data fields, each of which consists
of a Creator Keyword Chunk and a Creator Value
Chunk).

Creator Keyword Chunk (first creator field):

B_ARRAY 4 bytes Field identifier Always “7E 46 4C 00” (i.e.,“~FL”, followed by
a zero byte).

WORD 2 bytes Field keyword
Keyword identifying the type of data that is
contained in the Creator Value Chunk (must be one
of PSPCreatorFieldID).

DWORD 4 bytes Data length Length of the Creator Value Chunk (lets call this n).

Creator Value Chunk (first creator field):

B_ARRAY n bytes Field value The contents of the field value are dependent upon the field
keyword extracted from the previous Creator Keyword Chunk:
Field keyword: Field value description
PSP_CRTR_FLD_TITLE Title of image document (in

ASCII format).
PSP_CRTR_FLD_CRT_DATE DWORD indicating date of

image document creation (in
MSVC time_t format).

PSP_CRTR_FLD_MOD_DATE DWORD indicating date of
last image document
modification (in MSVC
time_t format).

PSP_CRTR_FLD_ARTIST Name of artist (in ASCII
text).

PSP_CRTR_FLD_CPYRGHT Name of copyright holder (in
ASCII text).

PSP_CRTR_FLD_DESC Description of image
document (in ASCII text).

PSP_CRTR_FLD_APP_ID DWORD identifying
application that created image
document (one of
PSPCreatorAppID).

PSP_CRTR_FLD_APP_VER DWORD identifying version
of application that created
image document.

41 The information contained within this document is confidential and is subject to change without notice

…

Creator Keyword Chunk (last creator field):

B_ARRAY 4 bytes Field identifier Always “7E 46 4C 00” (i.e.,“~FL”, followed by
a zero byte).

WORD 2 bytes
Keyword identifying the type of data that is
contained in the Creator Value Chunk (must be one
of PSPCreatorFieldID).

DWORD 4 bytes

Field keyword

Data length Length of the Creator Value Chunk (lets call this p).

Creator Value Chunk (last creator field):

B_ARRAY p bytes Field value The contents of the field value are dependent upon the field
keyword extracted from the previous Creator Keyword Chunk:
Field keyword: Field value description:
PSP_CRTR_FLD_TITLE Title of text (in ASCII

format).
PSP_CRTR_FLD_CRT_DATE DWORD indicating date of

image document creation (in
MSVC time_t format).

PSP_CRTR_FLD_MOD_DATE DWORD indicating date of
last image document
modification (in MSVC
time_t format).

PSP_CRTR_FLD_ARTIST Name of artist (in ASCII
text).

PSP_CRTR_FLD_CPYRGHT Name of copyright holder (in
ASCII text).

PSP_CRTR_FLD_DESC Description of image
document (in ASCII text).

PSP_CRTR_FLD_APP_ID DWORD identifying
application that created image
document (one of
PSPCreatorAppID).

PSP_CRTR_FLD_APP_VER DWORD identifying version
of application that created
image document.

6.8 The Composite Image Bank Block

Header

Composite Image Bank Info

42 The information contained within this document is confidential and is subject to change without notice

Composite Image Attributes

…

Composite Image Attributes

Composite Image

…

Composite Image

The Composite Image Bank Block is a block that contains one or more bitmaps of the merged document.
Typically, the Composite Image Bank Block will contain one miniature bitmap of the merged document (a
thumbnail) and one full size bitmap of the merged document. The full size bitmap must have the same bit
depth and resolution as the entire image. All PSP files with more than one layer or with one layer with
transparency must have a full size composite image. Any additional composite images will generally have
different bit depths or different resolutions.

The Composite Image Bank Block is organized such that information about all the composite images is
presented first, followed by all the composite images themselves. The block is organized this way so the
reader can peruse the sizes and bit depths of all composite images, choose the desired composite image, and
then read only the desired composite image (skipping past the other composite images). The composite
image information blocks and the composite image blocks are stored in the same order (i.e., the first
composite image information block contains information about the first composite image).

As illustrated below, the Composite Image Bank Block consists of a Block Header, a Composite Image
Bank Info Chunk, the Composite Image Attributes entries, and the Composite Image entries.

Composite Image Bank Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always
PSP_COMPOSITE_IMAGE_BANK_BLOCK.

DWORD 4 bytes Total block length

Length of complete Composite Image Bank Block,
including Composite Image Bank Information
Chunk, Composite Image Attribute Entries Chunk,
and the Composite Image Entries Chunk.

Composite Image Bank Information Chunk:

DWORD 4 bytes Chunk size Length of Composite Image Bank Information
chunk.

43 The information contained within this document is confidential and is subject to change without notice

DWORD 4 bytes Composite image count

Number of composite images in the bank (for the
purpose of determining the number of fields in the
Composite Image Attributes Entries Chunk, let’s
call this i).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Composite Image Attributes Entries Chunk

Composite
Image
Attributes
Block

See
Section
5.4.6.

Entry 1
The composite image attributes of the 1st composite
image. Please See Section “5.4.6:Composite Image
Attributes Sub-Block” for more information about
composite image attributes.

… … … …

Composite
Image
Attributes
Block

See
Section
5.4.6.

Entry i

The composite image attributes of the ith composite
image. Please See Section “5.4.6:Composite Image
Attributes Sub-Block” for more information about
composite image attributes.

Composite Image Entries Chunk

Composite
Image Block

See
Section
5.4.7.

Entry 1
The 1st composite image. Please See Section
“5.4.7:Composite Image Sub-Block” for more
information about composite images.

… … … …

Composite
Image Block

See
Section
5.4.7.

Entry i
The ith composite image. Please See Section
“5.4.7:Composite Image Sub-Block” for more
information about composite images.

6.9 The Table Bank Block

Header

Information

Table

…

Table

44 The information contained within this document is confidential and is subject to change without notice

The Table Bank Block is an optional block that contains tables of information associated with the image
document. For example, it contains paper and pattern vector tables used by the paper and pattern paint
styles in the Paint Style Sub-Block.

As illustrated below, the Table Bank Block consists of a Block Header, a Table Bank Information Chunk,
and a separate Table Sub-Block for each table. The number of tables in the Table Bank Block is indicated
in the Table Bank Information Chunk.

Table Bank Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_TABLE_BANK_BLOCK.

DWORD 4 bytes Total block length
Length of complete Table Bank Block, including
Table Bank Information Chunk and all Table Sub-
Block(s).

Table Bank Information Chunk:

DWORD 4 bytes Chunk size Length of Table Bank Information Chunk.

DWORD 4 bytes Table count Number of tables in the bank.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Table Sub-Block(s):

Table Sub-
Block

See
Section
6.8.1

First table The first table. Please See Section "6.9.1: Table
Sub-Block" for more information about tables.

… … … …

Table Sub-
Block

See
Section
6.8.1

Last table The last table. Please See Section "6.9.1: Table Sub-
Block" for more information about tables.

6.9.1 Table Sub-Block

Header

Information

45 The information contained within this document is confidential and is subject to change without notice

Table Entry

…

Table Entry

The Table Sub-Block defines a table in the Table Bank Block. As illustrated below, the Table Sub-Block
consists of the Table Sub-Block Header, the Table Information Chunk, and the Table Entry Sub-Block(s).
The content of each Table Entry Sub-Block is based on the table type defined in the Table Information
Chunk.

Table Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed by

a zero byte).

WORD 2 bytes Block identifier Always PSP_TABLE_BLOCK.

DWORD 4 bytes Total block length
Length of complete Table Sub-Block, including
Table Information Chunk and all Table Entry Sub-
Block(s).

Table Information Chunk:

DWORD 4 bytes Chunk size Length of Table Information Chunk.

WORD 2 bytes Table type Type of table (must be one of PSPTableType).

DWORD 4 bytes Table size Number of entries in the table. The content of each
entry is based on the table type.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Table Entry Sub-Block(s):

Table Entry
Sub-Block

See
Section
6.8.1.1

First table entry
The first table entry. Please See Section "6.9.1.1:
Table Entry Sub-Block" for more information about
table entries.

… … … …

Table Entry
Sub-Block

See
Section
6.8.1.1

Last table entry
The last table entry. Please See Section "6.9.1.1:
Table Entry Sub-Block" for more information about
table entries.

46 The information contained within this document is confidential and is subject to change without notice

6.9.1.1 Table Entry Sub-Block

The Table Entry Sub-Block contains one table entry in the Table Sub-Block. The contents of this Table
Entry Sub-Block are based on the table type defined in the Table Information Chunk.

If the table type is keTTPaperTable, the contents are as described in the section "6.9.1.1.1: Paper Sub-
Block."

If the table type is keTTPatternTable, the contents are as described in the section "6.9.1.1.2: Pattern Sub-
Block."

6.9.1.1.1 Paper Sub-Block

The Paper Sub-Block defines a table entry in the Table Sub-Block if the table type is keTTPaperTable. As
illustrated in the following table, the Paper Sub-Block consists of a Block Header, a Paper Information
Chunk, a Paper Channel Information Chunk, and a Paper Channel Sub-Block.

Paper Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_PAPER_BLOCK.

DWORD 4 bytes Total block length
Length of complete Paper Sub-Block, including
Paper Information Chunk, Paper Channel
Information Chunk, and Paper Channel Sub-Block.

Paper Information Chunk:

DWORD 4 bytes Chunk size Length of Paper Information Chunk.

Variable
length
string
chunk

See
Section
5.4.2

Paper name

Paper texture name (not including file path and
extension). (Please See Section “5.4.2 – Variable
Length String Chunk” for more information about
variable string chunks.)

LONG 4 bytes Paper bitmap width Specifies the width of the paper bitmap, in pixels.

LONG 4 bytes Paper bitmap height Specifies the height of the paper bitmap, in pixels.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Paper Channel Information Chunk:

DWORD 4 bytes Chunk size Length of Paper Channel Information Chunk.

WORD 2 bytes Bitmap count
Number of paper bitmaps to follow. (Currently
always 1 because the paper bitmap is stored as an 8-
bit greyscale bitmap.)

47 The information contained within this document is confidential and is subject to change without notice

WORD 2 bytes Channel count Number of channels to follow. (Currently always 1.)

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Paper Channel Sub-Block:

Channel Sub-Block defining the paper bitmap. See Section “5.4.8: Channel Sub-Block and Channel
Compression.” Note that a paper bitmap is stored as an 8-bit greyscale bitmap.

6.9.1.1.2 Pattern Sub-Block

The Pattern Sub-Block defines a table entry in the Table Sub-Block if the table type is keTTPatternTable.
As illustrated in the following table, the Pattern Sub-Block consists of a Block Header, a Pattern
Information Chunk, a Pattern Channel Information Chunk, a Pattern Color Palette Sub-Block (if any), and
the Pattern Channel Sub-Blocks.

Pattern Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_PATTERN_BLOCK.

DWORD 4 bytes Total block length

Length of complete Pattern Sub-Block, including
Pattern Information Chunk, Pattern Channel
Information Chunk, Pattern Color Palette Sub-Block
(if any), and all Pattern Channel Sub-Blocks.

Pattern Information Chunk:

DWORD 4 bytes Chunk size Length of Pattern Information Chunk.

Variable
length
string
chunk

See
Section
5.4.2

Pattern name

Pattern name (not including file path and extension).
(Please See Section “5.4.2 – Variable Length String
Chunk” for more information about variable string
chunks.)

LONG 4 bytes Pattern width Specifies the width of the pattern bitmap, in pixels.

LONG 4 bytes Pattern height Specifies the height of the pattern bitmap, in pixels.

WORD 2 bytes Pattern bit depth Number of bits used to represent each color pixel of
the pattern bitmap (must be 1, 4, 8, or 24).

BYTE 1 byte Pattern greyscale flag Indicates whether the pattern bitmap is a greyscale
bitmap (0 = not greyscale, 1 = greyscale).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

48 The information contained within this document is confidential and is subject to change without notice

Pattern Channel Information Chunk:

DWORD 4 bytes Chunk size Length of Pattern Channel Information Chunk.

WORD 2 bytes Bitmap count
Number of bitmaps to follow (1 if the pattern has no
transparency mask; 2 if the pattern has a
transparency mask).

WORD 2 bytes Channel count Number of channels to follow.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Pattern Color Palette Sub-Block:

Color Palette Sub-Block containing the pattern's color palette (this Sub-Block is not present in 24-bit or 48-
bit pattern bitmaps). See Section “5.4.3 : Color Palette Sub-Block.”

Pattern Channel Sub-Blocks:

All the pattern channels. Possible channels include:
1) One or three Channel Sub-Blocks defining the pattern bitmap. If the pattern bitmap is a paletted

bitmap, there is one channel; if the pattern bitmap is a 24 or 48 bit bitmap, there are three channels.
2) One channel defining the pattern transparency mask. The transparency mask is stored as an 8-bit

greyscale bitmap.
See Section “5.4.8: Channel Sub-Block and Channel Compression.”

6.10 The Color Palette Block

Header

Color Palette Entry Count

Color Palette Entry

…

Color Palette Entry

The Color Palette Block contains a global color palette to be used with the color bitmaps in all layers of the
document. This block is required for image documents that contain paletted bitmaps and should not be
written for image documents that contain 24-bit or 48-bit bitmaps (the block can be ignored in the latter
cases).

As illustrated in the following table, the Color Palette Block consists of a Color Palette Sub-Block.

49 The information contained within this document is confidential and is subject to change without notice

A Color Palette Block containing the color palette for color bitmaps in all of the image document’s layers.
This block should not be present in image documents whose color bitmaps are 24-bit or 48-bit bitmaps, and
it can be ignored in this case. See Section “5.4.3 : Color Palette Sub-Block.”

6.11 The Layer Bank Block

Header

Layer Information

…

Layer Information

The Layer Bank Block is a required block that contains data describing all the layers in the image
document.

As illustrated in the following table, the Layer Bank Block consists of a Block Header and a separate Layer
Sub-Block for each layer in the image document (the number of layers in the document is indicated in the
General Image Attributes Block). Each Layer Sub-Block consists of a Layer Block Header, a Layer
Information Chunk, an optional Layer Extension Sub-Block, and one or more Channel Sub-Blocks.

Layer Bank Block Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_LAYER_START_BLOCK.

DWORD 4 bytes Total block length Length of complete Layers Block, including all
Layer Sub-Blocks.

Layer Sub-Block Header (first layer):

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”,

followed by a zero byte).

WORD 2 bytes Block identifier Always PSP_LAYER_BLOCK.

DWORD 4 bytes Total block length

Length of complete Layer Block, including
Layer Information Chunk, Layer Extension Sub-
Block, Layer Bitmap Chunk, and all Layer
Channel Sub-Blocks.

50 The information contained within this document is confidential and is subject to change without notice

Layer Information Chunk (first layer):

DWORD 4 bytes Chunk size Length of Layer Information Chunk.

Variable length
string chunk

 See
Section
5.4.2.

Layer name
Name of layer (please See Section “5.4.2 –
Variable Length String Chunk” for more
information about variable string chunks).

BYTE 1 byte Layer type Type of layer (must be one of PSPLayerType).

RECT 16 bytes Image rectangle Rectangle defining image border.

RECT 16 bytes Saved image
rectangle

Rectangle within image rectangle that contains
“significant” data (only the contents of this
rectangle are saved to the file).

BYTE 1 byte Layer opacity Overall layer opacity.

BYTE 1 byte Blending mode Mode to use when blending layer (one of
PSPBlendModes).

BYTE 1 byte Layer flags
A series of flags that help define the layer’s
attributes. (PSPLayerProperties values, bitwise-
ored together).

BYTE 1 byte Transparency
protected flag TRUE if transparency is protected.

BYTE 1 byte Link group identifier Identifies group to which this layer belongs.

RECT 16 bytes Mask rectangle Rectangle defining user mask border.

RECT 16 bytes Saved mask rectangle
Rectangle within mask rectangle that contains
“significant” data (only the contents of this
rectangle are saved to the file).

BYTE 1 byte Mask linked TRUE if mask linked to layer (i.e., mask moves
relative to layer), FALSE otherwise.

BYTE 1 byte Mask disabled TRUE if mask is disabled, FALSE otherwise.

BYTE 1 byte Invert mask on blend TRUE if mask should be inverted when the layer
is merged, FALSE otherwise.

WORD 2 bytes Blend range count
Number of valid source-destination field pairs to
follow (note, there are currently always 5 such
pairs, but they are not necessarily all valid).

B_ARRAY 4 bytes Source blend range
#1 First source blend range value.

B_ARRAY 4 bytes Destination blend
range #1 First destination blend range value.

B_ARRAY 4 bytes Source blend range
#2 Second source blend range value.

B_ARRAY 4 bytes Destination blend
range #2 Second destination blend range value.

B_ARRAY 4 bytes Source blend range
#3 Third source blend range value.

B_ARRAY 4 bytes Destination blend
range #3 Third destination blend range value.

51 The information contained within this document is confidential and is subject to change without notice

B_ARRAY 4 bytes Source blend range
#4 Fourth source blend range value.

B_ARRAY 4 bytes Destination blend
range #4 Fourth destination blend range value.

B_ARRAY 4 bytes Source blend range
#5 Fifth source blend range value.

B_ARRAY 4 bytes Destination blend
range #5 Fifth destination blend range value.

BYTE 1 byte Use highlight color TRUE if use highlight color in layer palette.

DWORD 4 bytes Highlight color Highlight color in layer palette (RGB).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Layer Extension Sub-Block (first layer):

The Layer Extension Sub-Block contains data that extends attributes of the current layer. This sub-block
must be present for adjustment, group, mask, and vector layers. The contents of the Layer Extension Sub-
Block are based on the layer type.

If the layer type is keGLTAdjustment, the contents are as described in the Adjustment Layer Sub-Block
(See Section “6.11.1: Adjustment Layer Sub-Block”).

If the layer type is keGLTVector, the contents are as described in the Vector Layer Sub-Block (See Section
“6.11.2: Vector Layer Sub-Block”).

If the layer type is keGLTGroup, the contents are as described in the Group Layer Sub-Block (See Section
“6.11.3: Group Layer Sub-Block”).

If the layer type is keGLTMask, the contents are as described in the Mask Layer Sub-Block (See Section
“6.11.4: Mask Layer Sub-Block”).

If the layer type is keGLTArtMedia, the contents are as described in the Art Media Layer Sub-Block (See
Section “6.10.5: Art Media Layer Sub-Block”).

For any other layer types, the Layer Extension Sub-Block must not be present.

Layer Bitmap Chunk (first layer):

DWORD 4 bytes Chunk size Length of Layer Bitmap Chunk.

WORD 2 bytes Count of bitmaps Number of bitmaps to follow.

WORD 2 bytes Channel count Number of channels to follow.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

52 The information contained within this document is confidential and is subject to change without notice

Layer Channel Sub-Blocks (first layer):

Contains all the layer’s channels. Possible channels include 1) one or three Channel Sub-Blocks defining
the layer’s color bitmap, 2) one channel defining the layer’s transparency mask, and 3) one channel
defining the layer’s user mask or the adjustment layer bitmap.

Note that the type of each channel can be obtained from the Channel Sub-Block (See Section “5.4.8:
Channel Sub-Block and Channel Compression”), and the number of channels is specified in the previous
Layer Information Chunk. Note also that the layer’s transparency mask, the layer’s user mask, and the
adjustment layer bitmap are stored as 8-bit greyscale bitmaps.

…

Layer Sub-Block Header (last layer):

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”,

followed by a zero byte).

WORD 2 bytes Block identifier Always PSP_LAYER_BLOCK.

DWORD 4 bytes Total block length

Length of complete Layers Block, including
Layer Information Chunk, Layer Extension Sub-
Block, Layer Bitmap Chunk, and all Layer
Channel Sub-Blocks.

Layer Information Chunk (last layer):

DWORD 4 bytes Chunk size Size of Layer Information Chunk.

Variable length
string chunk

 See
Section
5.4.2.

Layer name
Name of layer (please See Section “5.4.2 –
Variable Length String Chunk” for more
information about variable string chunks).

BYTE 1 byte Layer type Type of layer (must be one of PSPLayerType).

RECT 16 bytes Image rectangle Rectangle defining image border.

RECT 16 bytes Saved image
rectangle

Rectangle within image rectangle that contains
“significant” data. (Only the contents of this
rectangle are saved to the file.)

BYTE 1 byte Layer opacity Overall layer opacity.

BYTE 1 byte Blending mode Mode to use when blending layer.

BYTE 1 byte Layer flags PSPLayerProperties values, bitwise-ored
together.

BYTE 1 byte Transparency
protected flag TRUE if transparency is protected.

BYTE 1 byte Link group identifier Identifies group to which this layer belongs.

53 The information contained within this document is confidential and is subject to change without notice

RECT 16 bytes Mask rectangle Rectangle defining user mask border.

RECT 16 bytes Saved mask rectangle
Rectangle within mask rectangle that contains
“significant” data. (Only the contents of this
rectangle are saved to the file.)

BYTE 1 byte Mask linked TRUE if mask linked to layer (i.e., mask moves
relative to layer), FALSE otherwise.

BYTE 1 byte Mask disabled TRUE if mask is disabled, FALSE otherwise.

BYTE 1 byte Invert mask on blend TRUE if mask should be inverted when the layer
is merged.

WORD 2 bytes Blend range count
Number of valid source-destination field pairs to
follow. (Note, there are currently always 5 such
pairs, but they are not necessarily all valid.)

B_ARRAY 4 bytes Source blend range
#1 First source blend range value.

B_ARRAY 4 bytes Destination blend
range #1 First destination blend range value.

B_ARRAY 4 bytes Source blend range
#2 Second source blend range value.

B_ARRAY 4 bytes Destination blend
range #2 Second destination blend range value.

B_ARRAY 4 bytes Source blend range
#3 Third source blend range value.

B_ARRAY 4 bytes Destination blend
range #3 Third destination blend range value.

B_ARRAY 4 bytes Source blend range
#4 Fourth source blend range value.

B_ARRAY 4 bytes Destination blend
range #4 Fourth destination blend range value.

B_ARRAY 4 bytes Source blend range
#5 Fifth source blend range value.

B_ARRAY 4 bytes Destination blend
range #5 Fifth destination blend range value.

BYTE 1 byte Use highlight color TRUE if use highlight color in layer palette.

DWORD 4 bytes Highlight color Highlight color in layer palette (RGB).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Layer Extension Sub-Block (last layer):

The Layer Extension Sub-Block contains data that extends attributes of the current layer. This sub-block
must be present for adjustment, group, mask, and vector layers. The contents of the Layer Extension Sub-
Block are based on the layer type.

If the layer type is keGLTAdjustment, the contents are as described in the Adjustment Layer Sub-Block
(See Section “6.11.1: Adjustment Layer Sub-Block”).

If the layer type is keGLTVector, the contents are as described in the Vector Layer Sub-Block (See Section
“6.11.2: Vector Layer Sub-Block”).

54 The information contained within this document is confidential and is subject to change without notice

If the layer type is keGLTGroup, the contents are as described in the Group Layer Sub-Block (See Section
“6.11.3: Group Layer Sub-Block”).

If the layer type is keGLTMask, the contents are as described in the Mask Layer Sub-Block (See Section
“6.11.4: Mask Layer Sub-Block”).

For any other layer types, the Layer Extension Sub-Block must not be present.

Layer Bitmap Chunk (last layer):

DWORD 4 bytes Chunk size Length of Layer Bitmap Chunk.

WORD 2 bytes Count of bitmaps Number of bitmaps to follow.

WORD 2 bytes Channel count Number of channels to follow.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Layer Channel Sub-Blocks (last layer):

Contains all the layer’s channels. Possible channels include 1) one or three Channel Sub-Blocks defining
the layer’s color bitmap, 2) one channel defining the layer’s transparency mask, and 3) one channel
defining the layer’s user mask or the adjustment layer bitmap.

Note that the type of each channel can be obtained from the Channel Sub-Block (See Section “5.4.8:
Channel Sub-Block and Channel Compression”), and the number of channels is specified in the previous
Layer Information Chunk. Note also that the layer’s transparency mask, the layer’s user mask, and the
adjustment layer bitmap are stored as 8-bit greyscale bitmaps.

6.11.1 Adjustment Layer Sub-Block

Header

Information

Definition

The Adjustment Layer Sub-Block contains layer extension data required to define an adjustment layer.

As illustrated below, the Adjustment Layer Sub-Block consists of the Adjustment Layer Block Header, the
Adjustment Layer Information Chunk, and the Adjustment Layer Definition Chunk.

55 The information contained within this document is confidential and is subject to change without notice

Adjustment Layer Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always
PSP_ADJUSTMENT_EXTENSION_BLOCK.

DWORD 4 bytes Total block length
Length of complete Adjustment Layer Sub-
Block, including Adjustment Layer Information
Chunk and Adjustment Layer Definition Chunk.

Adjustment Layer Information Chunk:

DWORD 4 bytes Chunk size Length of Adjustment Layer Information Chunk.

WORD 2 bytes Adjustment layer type Type of adjustment layer (must be one of
PSPAdjustmentLayerType).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

56 The information contained within this document is confidential and is subject to change without notice

Adjustment Layer Definition Chunk:

Adjustment Layer Definition. The contents of this chunk are based on the previous field (adjustment layer
type).

If the adjustment layer type is keAdjLevel, the contents are as described in the Level Adjustment Layer
Definition Chunk (below).

If the adjustment layer type is keAdjCurve, the contents are as described in the Curve Adjustment Layer
Definition Chunk (below).

If the adjustment layer type is keAdjBrightContrast, the contents are as described in the Brightness /
Contrast Adjustment Layer Definition Chunk (below).

If the adjustment layer type is keAdjColorBal, the contents are as described in the Color Balance
Adjustment Layer Definition Chunk (below).

If the adjustment layer type is keAdjHSL, the contents are as described in the HSL Adjustment Layer
Definition Chunk (below).

If the adjustment layer type is keAdjChannelMixer, the contents are as described in the Channel Mixer
Adjustment Layer Definition Chunk (below).

If the adjustment layer type is keAdjInvert, the contents are as described in the Invert Adjustment Layer
Definition Chunk (below).

If the adjustment layer type is keAdjThreshold, the contents are as described in the Threshold Adjustment
Layer Definition Chunk (below).

If the adjustment layer type is keAdjPoster, the contents are as described in the Posterize Adjustment Layer
Definition Chunk (below).

Level Adjustment Layer Definition Chunk:

DWORD 4 bytes Chunk size Length of Level Adjustment Layer Definition
Chunk.

DOUBLE 8 bytes Gamma value #1 First gamma value for master, red, green, and
blue.

DOUBLE 8 bytes Gamma value #2 Second gamma value for master, red, green, and
blue.

DOUBLE 8 bytes Gamma value #3 Third gamma value for master, red, green, and
blue.

DOUBLE 8 bytes Gamma value #4 Fourth gamma value for master, red, green, and
blue.

LONG 4 bytes Ceiling input value #1 First ceiling input value for master, red, green,
and blue.

LONG 4 bytes Ceiling input value #2 Second ceiling input value for master, red,
green, and blue.

LONG 4 bytes Ceiling input value #3 Third ceiling input value for master, red, green,
and blue.

LONG 4 bytes Ceiling input value #4 Fourth ceiling input value for master, red, green,
and blue.

57 The information contained within this document is confidential and is subject to change without notice

LONG 4 bytes Floor input value #1 First floor input value for master, red, green, and
blue.

LONG 4 bytes Floor input value #2 Second floor input value for master, red, green,
and blue.

LONG 4 bytes Floor input value #3 Third floor input value for master, red, green,
and blue.

LONG 4 bytes Floor input value #4 Fourth floor input value for master, red, green,
and blue.

LONG 4 bytes Ceiling output value #1 First ceiling output value for master, red, green,
and blue.

LONG 4 bytes Ceiling output value #2 Second ceiling output value for master, red,
green, and blue.

LONG 4 bytes Ceiling output value #3 Third ceiling output value for master, red, green,
and blue.

LONG 4 bytes Ceiling output value #4 Fourth ceiling output value for master, red,
green, and blue.

LONG 4 bytes Floor output value #1 First floor output value for master, red, green,
and blue.

LONG 4 bytes Floor output value #2 Second floor output value for master, red, green,
and blue.

LONG 4 bytes Floor output value #3 Third floor output value for master, red, green,
and blue.

LONG 4 bytes Floor output value #4 Fourth floor output value for master, red, green,
and blue.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Curve Adjustment Layer Definition Chunk:

The curve adjustment layer definition consists of four Curve Adjustment Layer Definitions Chunks, one for
each of the four curve channels RGB, Red, Green, and Blue.

Curve Adjustment Layer Definition Chunk (RGB Channel):

DWORD 4 bytes Chunk size Length of Curve Adjustment Layer Definition
Chunk.

BYTE 1 byte Freehand flag TRUE if curve type is freehand, FALSE if curve
type is smooth.

WORD 2 bytes Point count Number of points used in the curve (for a
smooth curve).

BYTE 1 byte Channel input value #1
First channel input value in the set of curve
points (for a smooth curve). The full set of curve
points contains 18 points.

BYTE 1 byte Channel output value #1
First channel output value in the set of curve
points (for a smooth curve). The full set of curve
points contains 18 points.

… … … …

BYTE 1 byte Channel input value #18
Eighteenth channel input value in the set of
curve points (for a smooth curve). The full set of
curve points contains 18 points.

58 The information contained within this document is confidential and is subject to change without notice

BYTE 1 byte Channel output value #18
Eighteenth channel output value in the set of
curve points (for a smooth curve). The full set of
curve points contains 18 points.

B_ARRAY 256 bytes Curve lookup table Lookup table for all values in the channel (for a
freehand curve).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

…

Curve Adjustment Layer Definition Chunk (Blue Channel):

DWORD 4 bytes Chunk size Length of Curve Adjustment Layer Definition
Chunk.

BYTE 1 byte Freehand flag TRUE if curve type is freehand, FALSE if curve
type is smooth.

WORD 2 bytes Point count Number of points used in the curve (for a
smooth curve).

BYTE 1 byte Channel input value #1
First channel input value in the set of curve
points (for a smooth curve). The full set of curve
points contains 18 points.

BYTE 1 byte Channel output value #1
First channel output value in the set of curve
points (for a smooth curve). The full set of curve
points contains 18 points.

… … … …

BYTE 1 byte Channel input value #18
Eighteenth channel input value in the set of
curve points (for a smooth curve). The full set of
curve points contains 18 points.

BYTE 1 byte Channel output value #18
Eighteenth channel output value in the set of
curve points (for a smooth curve). The full set of
curve points contains 18 points.

B_ARRAY 256 bytes Curve lookup table Lookup table for all values in the channel (for a
freehand curve).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Brightness/Contrast Adjustment Layer Definition Chunk:

DWORD 4 bytes Chunk size Length of Brightness / Contrast Adjustment
Layer Definition Chunk.

LONG 4 bytes Brightness value Brightness adjustment value.

LONG 4 bytes Contrast value Contrast adjustment value.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

59 The information contained within this document is confidential and is subject to change without notice

Color Balance Adjustment Layer Definition Chunk:

DWORD 4 bytes Chunk size Length of Color Balance Adjustment Layer
Definition Chunk.

BYTE 1 byte Preserve Luminance flag TRUE if luminosity is preserved, FALSE
otherwise.

LONG 4 bytes Highlight value #1 Highlight value for the channel range Cyan to
Red.

LONG 4 bytes Highlight value #2 Highlight value for the channel range Magenta
to Green.

LONG 4 bytes Highlight value #3 Highlight value for the channel range Yellow to
Blue.

LONG 4 bytes Midtone value #1 Midtone value for the channel range Cyan to
Red.

LONG 4 bytes Midtone value #2 Midtone value for the channel range Magenta to
Green.

LONG 4 bytes Midtone value #3 Midtone value for the channel range Yellow to
Blue.

LONG 4 bytes Shadow value #1 Shadow value for the channel range Cyan to
Red.

LONG 4 bytes Shadow value #2 Shadow value for the channel range Magenta to
Green.

LONG 4 bytes Shadow value #3 Shadow value for the channel range Yellow to
Blue.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

HSL Adjustment Layer Definition Chunk:

DWORD 4 bytes Chunk size Length of HSL Adjustment Layer Definition
Chunk.

BYTE 1 byte Colorize flag TRUE if colorize is on, FALSE otherwise.

LONG 4 bytes Master value #1 First master value (Hue).

LONG 4 bytes Master value #2 Second master value (Saturation).

LONG 4 bytes Master value #3 Third master value (Luminance).

LONG 4 bytes Master colorize value #1 First master value when the colorize option is on
(Hue).

LONG 4 bytes Master colorize value #2 Second master value when the colorize option is
on (Saturation).

LONG 4 bytes Master colorize value #3 Third master value when the colorize option is
on (Luminance).

LONG 4 bytes Red value #1 First red value (Hue).

LONG 4 bytes Red value #2 Second red value (Saturation).

60 The information contained within this document is confidential and is subject to change without notice

LONG 4 bytes Red value #3 Third red value (Luminance).

LONG 4 bytes Red value #4 Fourth red value. Degree range that defines the
red floor-lower range.

LONG 4 bytes Red value #5 Fifth red value. Degree range that defines the red
floor-upper range.

LONG 4 bytes Red value #6 Sixth red value. Degree range that defines the
red ceiling-lower range.

LONG 4 bytes Red value #7 Seventh red value. Degree range that defines the
red ceiling-upper range.

LONG 4 bytes Yellow value #1 First yellow value (Hue).

LONG 4 bytes Yellow value #2 Second yellow value (Saturation).

LONG 4 bytes Yellow value #3 Third yellow value (Luminance).

LONG 4 bytes Yellow value #4 Fourth yellow value. Degree range that defines
the yellow floor-lower range.

LONG 4 bytes Yellow value #5 Fifth yellow value. Degree range that defines the
yellow floor-upper range.

LONG 4 bytes Yellow value #6 Sixth yellow value. Degree range that defines
the yellow ceiling-lower range.

LONG 4 bytes Yellow value #7 Seventh yellow value. Degree range that defines
the yellow ceiling-upper range.

LONG 4 bytes Green value #1 First green value (Hue).

LONG 4 bytes Green value #2 Second green value (Saturation).

LONG 4 bytes Green value #3 Third green value (Luminance).

LONG 4 bytes Green value #4 Fourth green value. Degree range that defines
the green floor-lower range.

LONG 4 bytes Green value #5 Fifth green value. Degree range that defines the
green floor-upper range.

LONG 4 bytes Green value #6 Sixth green value. Degree range that defines the
green ceiling-lower range.

LONG 4 bytes Green value #7 Seventh green value. Degree range that defines
the green ceiling-upper range.

LONG 4 bytes Cyan value #1 First cyan value (Hue).

LONG 4 bytes Cyan value #2 Second cyan value (Saturation).

LONG 4 bytes Cyan value #3 Third cyan value (Luminance).

LONG 4 bytes Cyan value #4 Fourth cyan value. Degree range that defines the
cyan floor-lower range.

LONG 4 bytes Cyan value #5 Fifth cyan value. Degree range that defines the
cyan floor-upper range.

LONG 4 bytes Cyan value #6 Sixth cyan value. Degree range that defines the
cyan ceiling-lower range.

LONG 4 bytes Cyan value #7 Seventh cyan value. Degree range that defines
the cyan ceiling-upper range.

61 The information contained within this document is confidential and is subject to change without notice

LONG 4 bytes Blue value #1 First blue value (Hue).

LONG 4 bytes Blue value #2 Second blue value (Saturation).

LONG 4 bytes Blue value #3 Third blue value (Luminance).

LONG 4 bytes Blue value #4 Fourth blue value. Degree range that defines the
blue floor-lower range.

LONG 4 bytes Blue value #5 Fifth blue value. Degree range that defines the
blue floor-upper range.

LONG 4 bytes Blue value #6 Sixth blue value. Degree range that defines the
blue ceiling-lower range.

LONG 4 bytes Blue value #7 Seventh blue value. Degree range that defines
the blue ceiling-upper range.

LONG 4 bytes Magenta value #1 First magenta value (Hue).

LONG 4 bytes Magenta value #2 Second magenta value (Saturation).

LONG 4 bytes Magenta value #3 Third magenta value (Luminance).

LONG 4 bytes Magenta value #4 Fourth magenta value. Degree range that defines
the magenta floor-lower range.

LONG 4 bytes Magenta value #5 Fifth magenta value. Degree range that defines
the magenta floor-upper range.

LONG 4 bytes Magenta value #6 Sixth magenta value. Degree range that defines
the magenta ceiling-lower range.

LONG 4 bytes Magenta value #7 Seventh magenta value. Degree range that
defines the magenta ceiling-upper range.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Channel Mixer Adjustment Layer Definition Chunk:

DWORD 4 bytes Chunk size Length of Channel Mixer Adjustment Layer
Definition Chunk.

BYTE 1 byte Monochrome flag TRUE if monochrome, FALSE otherwise.

LONG 4 bytes Blue channel value #1 First value for the blue output channel (Red).

LONG 4 bytes Blue channel value #2 Second value for the blue output channel
(Green).

LONG 4 bytes Blue channel value #3 Third value for the blue output channel (Blue).

LONG 4 bytes Blue channel value #4 Fourth value for the blue output channel
(Constant).

LONG 4 bytes Green channel value #1 First value for the green output channel (Red).

LONG 4 bytes Green channel value #2 Second value for the green output channel
(Green).

LONG 4 bytes Green channel value #3 Third value for the green output channel (Blue).

62 The information contained within this document is confidential and is subject to change without notice

LONG 4 bytes Green channel value #4 Fourth value for the green output channel
(Constant).

LONG 4 bytes Red channel value #1 First value for the red output channel (Red).

LONG 4 bytes Red channel value #2 Second value for the red output channel (Green).

LONG 4 bytes Red channel value #3 Third value for the red output channel (Blue).

LONG 4 bytes Red channel value #4 Fourth value for the red output channel
(Constant).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Invert Adjustment Layer Definition Chunk:

DWORD 4 bytes Chunk size Length of Invert Adjustment Layer Definition
Chunk.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Threshold Adjustment Layer Definition Chunk:

DWORD 4 bytes Chunk size Length of Threshold Adjustment Layer
Definition Chunk.

LONG 4 bytes Threshold value Threshold value.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Posterize Adjustment Layer Definition Chunk:

DWORD 4 bytes Chunk size Length of Posterize Adjustment Layer Definition
Chunk.

LONG 4 bytes Posterize value Posterize value.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

63 The information contained within this document is confidential and is subject to change without notice

6.11.2 Vector Layer Sub-Block

Header

Information

Shape

…

Shape

The Vector Layer Sub-Block contains layer extension data required to define a vector layer.

As illustrated below, the Vector Layer Sub-Block consists of a Vector Layer Block Header, a Vector Layer
Information Chunk, and a separate Vector Shape Sub-Block for each vector shape. (The number of vector
shapes for the vector layer is indicated in the Vector Layer Information Chunk.)

Vector Layer Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always
PSP_VECTOR_EXTENSION_BLOCK.

DWORD 4 bytes Total block length
Length of complete Vector Layer Sub-Block,
including the Vector Layer Information Chunk
and the Vector Shape Sub-Block(s).

Vector Layer Information Chunk:

DWORD 4 bytes Chunk size Length of Vector Layer Information Chunk.

DWORD 4 bytes Shape count Number of vector shapes (i.e., number of
following Vector Shape Sub-Block(s)).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

64 The information contained within this document is confidential and is subject to change without notice

Vector Shape Sub-Block(s):

Vector
Shape Sub-
Block

See
Section
6.9.2.1

First Vector Shape
The first vector shape. Please See Section "6.11.2.1:
Vector Shape Sub-Block" for more information
about vector shapes.

… … … …

Vector
Shape Sub-
Block

See
Section
6.9.2.1

Last Vector Shape
The last vector shape. Please See Section "6.11.2.1:
Vector Shape Sub-Block" for more information
about vector shapes.

6.11.2.1 Vector Shape Sub-Block

Header

Attributes

Definition

The Vector Shape Sub-Block is used to define one vector shape. As illustrated below, the Vector Shape
Sub-Block consists of the Vector Shape Block Header, the Vector Shape Attributes Chunk, and the Vector
Shape Definition. The Vector Shape Attributes Chunk contains shape attributes shared by all shape types.
The contents of the Vector Shape Definition are based on the shape type defined in the Vector Shape
Attributes Chunk.

Vector Shape Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always PSP_SHAPE_BLOCK.

DWORD 4 bytes Total block length
Length of complete Vector Shape Sub-Block,
including Vector Shape Attributes Chunk and
Vector Shape Definition.

Vector Shape Attributes Chunk:

DWORD 4 bytes Chunk size Length of Vector Shape Attributes Chunk.

Variable
length
string
chunk

See
Section
5.4.2

Shape name
Name of shape. (Please See Section “5.4.2 –
Variable Length String Chunk” for more
information about variable string chunks.)

65 The information contained within this document is confidential and is subject to change without notice

WORD 2 bytes Shape type Type of vector shape (must be one of
PSPVectorShapeType).

DWORD 4 bytes Shape property flags A series of flags (in PSPShapeProperties) that
defines the shape’s properties.

DWORD 4 bytes Shape identifier
Identifies shape. This identifier must be unique
within the layer. This identifier must be 1 based
(i.e., 0 is not a valid shape identifier).

DWORD 4 bytes Link shape identifier
Identifies a shape that is linked to this shape (for
text on path). If this value is 0 (an invalid link
shape identifier), the shape has no link shape.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Vector Shape Definition:

The contents of the Vector Shape Definition are based on the shape type (defined in the previous Vector
Shape Attributes Chunk).

If the shape type is keVSTPolyline, keVSTEllipse, or keVSTPolygon, the contents are as described in the
Polyline Vector Shape Definition.

If the shape type is keVSTText, the contents are as described in the Text Vector Shape Definition.

If the shape type is keVSTGroup, the contents are as described in the Group Vector Shape Definition.

Polyline Vector Shape Definition:

Polyline Attributes

Polyline Definition

Polyline Node

…

Polyline Node

The Polyline Vector Shape Definition consists of the chunks required to define one polyline shape. As
illustrated below, the Polyline Vector Shape Definition consists of the Polyline Shape Attributes Chunk, the
Polyline Shape Definition Chunk, and the Polyline Node Chunk(s).

Polyline Shape Attributes Chunk:

DWORD 4 bytes Chunk size Length of Polyline Shape Attributes Chunk.
This size does not include the line paint style, fill

66 The information contained within this document is confidential and is subject to change without notice

paint style, and styled line sub blocks.

BYTE 1 byte Stroked flag TRUE if stroked, FALSE otherwise.

BYTE 1 byte Filled flag TRUE if shape filled, FALSE otherwise.

BYTE 1 byte Styled line flag TRUE if styled line, FALSE otherwise.

DOUBLE 8 bytes Stroke width Stroke line width.

BYTE 1 byte Start cap type Start cap type (must be one of
PSPStyleCapType).

BYTE 1 byte Start cap multipliers flag TRUE if use the following start cap multipliers,
FALSE otherwise.

DOUBLE 8 bytes Start cap width multiplier Start cap width (x) multiplier.

DOUBLE 8 bytes Start cap height multiplier Start cap height (y) multiplier.

BYTE 1 byte End cap type End cap type (must be one of
PSPStyleCapType).

BYTE 1 byte End cap multipliers flag TRUE if use the following end cap multipliers,
FALSE otherwise.

DOUBLE 8 bytes End cap width multiplier End cap width (x) multiplier.

DOUBLE 8 bytes End cap height multiplier End cap height (y) multiplier.

BYTE 1 byte Join type Shape join type (must be one of
PSPStyleJoinType).

DOUBLE 8 bytes Miter limit Shape miter limit.

unknown Expansion field.

This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Paint Style
Sub-Block

See
Section
5.4.4

Line paint style Paint style to use when outlining this shape. (See
Section “5.4.4 : Paint Style Sub-Block.”)

Paint Style
Sub-Block

See
Section
5.4.4

Fill paint style Paint style to use when filling this shape. (See
Section “5.4.4 : Paint Style Sub-Block.”)

Line Style
Sub-Block

See
Section
5.4.5

Styled line Styled line data to use when outlining this shape.
(See Section “5.4.5: Line Style Sub-Block.”)

Polyline Shape Definition Chunk:

DWORD 4 bytes Chunk size Length of Polyline Shape Definition Chunk.

DWORD 4 bytes Polyline node count Number of nodes in the polyline shape (i.e.,
number of following Node Chunks).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

67 The information contained within this document is confidential and is subject to change without notice

Polyline Node Chunk (first node):

DWORD 4 bytes Chunk size Length of Polyline Node Chunk.

DOUBLE 8 bytes Point X value. X-value of node’s main point.

DOUBLE 8 bytes Point Y value Y-value of node’s main point.

DOUBLE 8 bytes Handle 1 X value X-value of node’s first handle.

DOUBLE 8 bytes Handle 1 Y value Y-value of node’s first handle.

DOUBLE 8 bytes Handle 2 X value X-value of node’s second handle.

DOUBLE 8 bytes Handle 2 Y value Y-value of node’s second handle.

BYTE 1 byte Move to flag TRUE if the node is a "move to" node, FALSE
otherwise.

WORD 2 bytes Node type flags
A series of flags (in PSPPolylineNodeTypes)
that define the polyline node type.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

…

Polyline Node Chunk (last node):

DWORD 4 bytes Chunk size Length of Polyline Node Chunk.

DOUBLE 8 bytes Point X value. X-value of node’s main point.

DOUBLE 8 bytes Point Y value Y-value of node’s main point.

DOUBLE 8 bytes Handle 1 X value X-value of node’s first handle.

DOUBLE 8 bytes Handle 1 Y value Y-value of node’s first handle.

DOUBLE 8 bytes Handle 2 X value X-value of node’s second handle.

DOUBLE 8 bytes Handle 2 Y value Y-value of node’s second handle.

BYTE 1 byte Move to flag TRUE if the node is a "move to" node, FALSE
otherwise.

WORD 2 bytes Node type flags
A series of flags (in PSPPolylineNodeTypes)
that define the polyline node type.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

68 The information contained within this document is confidential and is subject to change without notice

Text Vector Shape Definition:

Text Attributes

Text Definition

Text Element

…

Text Element

The Text Vector Shape Definition consists of the chunks required to define one text shape. As illustrated
below, the Text Vector Shape Definition consists of the Text Shape Attributes Chunk, the Text Shape
Definition Chunk, and the Text Shape Element Chunk(s).

Text Shape Attributes Chunk:

DWORD 4 bytes Chunk size Length of Text Shape Attributes Chunk.

BYTE 1 byte Text alignment Text alignment (must be one of
PSPTextAlignment).

LONG 4 bytes X insert point X value of the text insertion point.

LONG 4 bytes Y insert point Y value of the text insertion point.

DOUBLE 8 bytes Deformation value #1 First element of the text deformation matrix. The
text deformation matrix is a 3x3 matrix.

DOUBLE 8 bytes Deformation value #2 Second element of the text deformation matrix.

DOUBLE 8 bytes Deformation value #3 Third element of the text deformation matrix.

DOUBLE 8 bytes Deformation value #4 Fourth element of the text deformation matrix.

DOUBLE 8 bytes Deformation value #5 Fifth element of the text deformation matrix.

DOUBLE 8 bytes Deformation value #6 Sixth element of the text deformation matrix.

DOUBLE 8 bytes Deformation value #7 Seventh element of the text deformation matrix.

DOUBLE 8 bytes Deformation value #8 Eight element of the text deformation matrix.

DOUBLE 8 bytes Deformation value #9 Ninth element of the text deformation matrix.

69 The information contained within this document is confidential and is subject to change without notice

BYTE 1 byte Text Flow Text flow, must be one of PSPTextFlow

DOUBLE 8 bytes Path offset For text on a path. This defines the offset from
the text to the path.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Text Shape Definition Chunk:

DWORD 4 bytes Chunk size Length of Text Shape Definition Chunk.

DWORD 4 bytes Text element count
Number of text elements in the text shape (i.e.,
number of following Text Shape Element
Chunks).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Text Shape Element (first text element):

The first text shape element (see "Text Shape Element Definition" below).

…

Text Shape Element (last text element):

The last text shape element (see "Text Shape Element Definition" below).

Text Shape Element Definition:

The Text Shape Element Definition consists of the chunks required to define one text shape element. As
illustrated below, the Text Shape Element Definition consists of the Text Element Attributes Chunk and the
Text Element Definition Chunk.

Text Element Attributes Chunk:

DWORD 4 bytes Chunk size Length of Text Element Attributes Chunk.

WORD 2 bytes Text element type Type of text element (must be one of
PSPTextElementType).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

70 The information contained within this document is confidential and is subject to change without notice

Text Element Definition Chunk:

The contents of the Text Element Definition Chunk are based on the text element type (defined in the
previous Text Element Attributes Chunk).

If the text element type is keTextElemChar (a single character code), the contents are as described in the
Text Character Definition Chunk (below).

If the text element type is keTextElemCharStyle (a character style change), the contents are as described in
the Text Character Style Definition Chunk (below).

If the text element type is keTextElemLineStyle (a line style change), the contents are as described in the
Text Line Style Definition Chunk (below).

Text Character Definition Chunk:

DWORD 4 bytes Chunk size Length of Text Character Definition Chunk.

DWORD 4 bytes Character code The character code (for a single character). This
is the unicode value of the character.

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Text Character Style Definition Chunk:

DWORD 4 bytes Chunk size Length of Text Character Style Definition
Chunk.

Variable
length
string
chunk

See
Section
5.4.2

Font name
Character font name. (Please See Section “5.4.2
– Variable Length String Chunk” for more
information about variable string chunks.)

DWORD 4 bytes Attribute flags Character attribute flags (defined by
PSPCharacterProperties).

DWORD 4 bytes Weight Character weight.

LONG 4 bytes Set Character set.

LONG 4 bytes Font size Size of font.

BYTE 1 byte Anti alias mode One of PSPAntialiasMode

BYTE 1 byte Justify Mode for text justify (left, center, right)

BYTE 1 byte Auto kerning flag TRUE if auto kern, FALSE otherwise.

DOUBLE 8 bytes Kerning Text kerning value.

DOUBLE 8 bytes Tracking Text tracking value.

71 The information contained within this document is confidential and is subject to change without notice

DOUBLE 8 bytes Leading Text leading value

BYTE 1 byte Stroked flag TRUE if stroked, FALSE otherwise.

BYTE 1 byte Filled flag TRUE if shape filled, FALSE otherwise.

BYTE 1 byte Styled line flag TRUE if styled line, FALSE otherwise.

DOUBLE 8 bytes Stroke width Stroke line width.

BYTE 1 byte Start cap type Start cap type (must be one of
PSPStyleCapType).

BYTE 1 byte Start cap multipliers flag TRUE if use the following start cap multipliers,
FALSE otherwise.

DOUBLE 8 bytes Start cap width multiplier Start cap width (x) multiplier.

DOUBLE 8 bytes Start cap height multiplier Start cap height (y) multiplier.

BYTE 1 byte End cap type End cap type (must be one of
PSPStyleCapType).

BYTE 1 byte End cap multipliers flag TRUE if use the following end cap multipliers,
FALSE otherwise.

DOUBLE 8 bytes End cap width multiplier End cap width (x) multiplier.

DOUBLE 8 bytes End cap height multiplier End cap height (y) multiplier.

BYTE 1 byte Join type Shape join type (must be one of
PSPStyleJoinType).

DOUBLE 8 bytes Miter limit Shape miter limit.

Paint Style
Sub-Block

See
Section
5.4.4

Line paint style Paint style to use when outlining this shape. (See
Section “5.4.4 : Paint Style Sub-Block.”)

Paint Style
Sub-Block

See
Section
5.4.4

Fill paint style Paint style to use when filling this shape. (See
Section “5.4.4 : Paint Style Sub-Block.”)

Line Style
Sub-Block

See
Section
5.4.5

Styled line Styled line data to use when outlining this shape.
(See Section “5.4.5: Line Style Sub-Block.”)

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

72 The information contained within this document is confidential and is subject to change without notice

Group Vector Shape Definition:

Group Definition

The Group Vector Shape indicates the start of a group of shapes. The number of shapes in this group is
defined in the Group Shape Definition Chunk. As illustrated below, the Group Vector Shape Definition
consists only of the Group Shape Definition Chunk.

Group Shape Definition Chunk:

DWORD 4 bytes Chunk size Length of Group Shape Definition Chunk.

DWORD 4 bytes Shape count
Number of shapes in this group (i.e., number of
following Vector Shape Sub-Blocks belonging
to this group).

 unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

6.11.3 Group Layer Sub-Block

Header

Information

The Group Layer Sub-Block contains layer extension data required to define a group layer.

As illustrated below, the Group Layer Sub-Block consists of the Group Layer Block Header and the Group
Layer Information Chunk.

Group Layer Block Header:

Type Length Name
B_ARRAY 4 bytes

WORD Always PSP_GROUP_EXTENSION_BLOCK.

Description
Always "7E 42 4B 00" (i.e.,"~BK", followed
by a zero byte). Header identifier

2 bytes Block identifier

DWORD 4 bytes Total block length Length of complete Group Layer Sub-Block,
including the Group Layer Information Chunk.

73 The information contained within this document is confidential and is subject to change without notice

Group Layer Information Chunk:

DWORD 4 bytes Chunk size Length of Group Layer Information Chunk.

DWORD 4 bytes Layer count Number of layers in this group (does not include
count of layers in sub-group layers).

1 byte Linked TRUE if layer group is linked.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

BYTE

6.11.4 Mask Layer Sub-Block

Header

Information

The Mask Layer Sub-Block contains layer extension data required to define a mask layer.

As illustrated below, the Mask Layer Sub-Block consists of the Mask Layer Block Header and the Mask
Layer Information Chunk.

Mask Layer Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always PSP_MASK_EXTENSION_BLOCK.

DWORD 4 bytes Total block length Length of complete Mask Layer Sub-Block,
including the Mask Layer Information Chunk.

Mask Layer Information Chunk:

DWORD 4 bytes Chunk size Length of Mask Layer Information Chunk.

DWORD 4 bytes Overlay color Mask overlay color (RGB).

BYTE 1 byte Opacity Mask layer opacity (0 transparent - 100 opaque).

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

74 The information contained within this document is confidential and is subject to change without notice

6.11.5 Art Media Layer Sub-Block

The Art Media Layer Sub-Block contains layer extension data required to define an Art Media layer.

As illustrated below, the Art Media Layer Sub-Block consists of the Art Media Layer Block Header, Art
Media Map sub-blocks and Art Media Tile sub-blocks. There are 5 Art Media Map sub-blocks defined by
PSPArtMediaMapType, written in this order: keArtMediaColorMap, keArtMediaBumpMap,
keArtMediaShininessMap, keArtMediaReflectivityMap, keArtMediaDrynessMap. Note that the data is
written as sub-blocks and not chunks and that all 5 map blocks are written even if they contain no data.
Within each map block are a series of tile blocks of size 128x128 that represent the the portion of the layer
that contains art media data. Section 6.10.5.1 describes an Art Media Map sub-block. Section 6.10.5.2
describes an Art Media Tile sub-block.

Header
Art Media layer information

AM Layer Map Block 1
(keArtMediaColorMap)
Tile sub-block 1
Tile sub-block 2

...
Tile sub-block n

...
AM Layer Map Block 2

(keArtMediaBumpMap)

Tile sub-block 1
Tile sub-block 2

...
Tile sub-block n

 . . .
AM Layer Map Block n

Tile sub-block 1
Tile sub-block 2

...
Tile sub-block n

Art Media Texture sub-block

75 The information contained within this document is confidential and is subject to change without notice

Art Media Layer Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always PSP_ART_MEDIA_BLOCK.

DWORD 4 bytes Total block length
Length of complete Art Media Layer Sub-Block,
including the Art Media Layer Information
Chunk.

Art Media Layer Information Chunk:

DWORD 4 bytes Chunk size Length of Art Media Layer Information Chunk.

WORD 16 bytes Map count Number of maps in layer

DWORD 4 bytes Texture Boolean value indicating if texture is present

BYTE 1 byte Fill canvas Boolean value indicating if canvas should be filled
with a color

COLOR 3 bytes Fill color Specifies what color to fill with

DWORD 4 bytes Sequence Number Sequence number of stokes on this art media layer

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

6.11.5.1 Art Media Layer Map sub-block

Header
Information

Art Media Layer Map sub-block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always PSP_ART_MEDIA_MAP_BLOCK.

DWORD 4 bytes Total block length
Length of complete Art Media Layer Sub-Block,
including the Art Media Layer Information
Chunk.

76 The information contained within this document is confidential and is subject to change without notice

Art Media Map Information Chunk:

DWORD 4 bytes Chunk size Length of Map Information Chunk.

RECT 16 bytes Image rectangle Rectangle containing selected data for this map

DWORD 4 bytes Map type one of PSPArtMediaMapType

DWORD 4 bytes Memory method allocation method, always 3

LONG x 2 8 bytes Array Size Size of the array of tiles (x,y)

LONG x 2 8 bytes Tile Size Size of each tile (x,y)

WORD 2 bytes Compression one of PSPCompression, either PSP_COMP_NONE
or PSP_COMP_LZ77

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

6.11.5.2 Art Media Tile sub-block

Header
Information

 Tile Pixel data

If the tile has no data, only the header will be written and not the Art Media Map Information chunk or
pixel data. The pixel data is written after the information chunk, starting at row 0. Each row is then written
in sequence using LZ77 compression. The data is written in different bit depths depending on the map type
contained in the Art Media Map sub-block.

keArtMediaColorMap – 32 bits/pixel
keArtMediaBumpMap – 16 bits/pixel
keArtMediaShininessMap – 8 bits/pixel
keArtMediaReflectivityMap – 8 bits/pixel
keArtMediaDrynessMap – 16 bits/pixel

Art Media Tile Block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always PSP_ART_MEDIA_TILE_BLOCK.

DWORD 4 bytes Total block length Length of complete Art Media Tile Sub-Block,
including the Art Media Tile Information Chunk.

77 The information contained within this document is confidential and is subject to change without notice

Art Media Tile Information Chunk:

DWORD 4 bytes Chunk size Length of Tile Information Chunk.

RECT 16 bytes Has tile Does this tile have data?

DWORD 4 bytes Bytes to copy Bitmap width of current tile (pixel width * bpp)

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

78 The information contained within this document is confidential and is subject to change without notice

6.11.5.3 Art Media Texture sub-block

Header
Information

 Texture Pixel data

The texture pixel data is written after the texture information chunk encoding each row starting from row 0
using LZ77 compression method.

Art Media Texture sub-block Header:

Type Length Name Description
B_ARRAY 4 bytes Header identifier Always "7E 42 4B 00" (i.e.,"~BK", followed

by a zero byte).

WORD 2 bytes Block identifier Always
PSP_ART_MEDIA_TEXTURE_BLOCK.

DWORD 4 bytes Total block length Length of complete Art Media Texture Sub-
Block, not including the size of the pixel data

Art Media Texture Information Chunk:

DWORD 4 bytes Chunk size Length of Texture Information Chunk.

DWORD 4 bytes Width Width of texture bitmap in pixels

DWORD 4 bytes Height Height of texture bitmap in pixels

LONG x 2 8 bytes Offset (x,y)

texture offset to preserve texture position when the
layer is moved off canvas. If the layer is not moved
off canvas this value will be (0,0). This value
corresponds to a windows POINT structure

B_ARRAY 256 bytes Name Name of the texture, zero terminated string

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

6.12 The Selection Block

Header

Selection Info

79 The information contained within this document is confidential and is subject to change without notice

Selection Channels

The Selection Block is an optional block that defines the area that was selected when the image document
was saved.

As illustrated in the following table, the Selection Block consists of a Block Header, a Selection
Information Chunk, and a Selection Channel Sub-Block.

Selection Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_SELECTION_BLOCK.

DWORD 4 bytes Total block length
Length of complete Selection Block, including
Selection Information Chunk and Selection Channel
Sub-Chunk.

Selection Information Chunk:

DWORD 4 bytes Chunk size Length of Selection Information Chunk.

RECT 16 bytes Selection rectangle Rectangle containing selected data.

RECT 16 bytes Saved selection
rectangle

Rectangle within selection rectangle that contains
“significant” data. (Only the contents of this
rectangle are saved to the file.)

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Selection Channel Sub-Chunk:

DWORD 4 bytes Chunk size Length of Selection Channel Chunk.

WORD 2 bytes Selection bitmap count Count of following selection bitmaps. Currently
always 1.

WORD 2 bytes Channel count Count of following channels. Currently always 1.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Selection Channel Sub-Block. See Section “5.4.8: Channel Sub-Block and Channel Compression.”
Note that selections are stored as 8-bit greyscale bitmaps.

80 The information contained within this document is confidential and is subject to change without notice

6.13 The Alpha Bank Block

Header

Alpha Info

Alpha Channels

…

Alpha Info

Alpha Channels

The Alpha Bank Block is an optional block that defines alpha channels associated with the image
document.

As is illustrated in the following table, the Alpha Bank Block consists of a Block Header, an Alpha
Channel Information Chunk, and an Alpha Channel Sub-Block for each alpha channel in the image
document. (Each Alpha Channel Sub-Block consists of a Block Header and a Channel Sub-Block.)

Alpha Channel Bank Header:

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_ALPHA_BANK_BLOCK.

DWORD 4 bytes Total block length

Length of complete Alpha Bank Block, including
Alpha Bank Information Chunk, Alpha Channel
Headers, Alpha Channel Information Chunks, and
Alpha Channel Sub-Blocks for all alpha channels.

Alpha Bank Information Chunk:

DWORD 4 bytes Chunk size Length of Alpha Bank Information Chunk.

WORD 2 bytes Alpha channel count Number of alpha channels.

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

81 The information contained within this document is confidential and is subject to change without notice

Alpha Channel Header (first alpha channel):

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_ALPHA_CHANNEL_BLOCK.

DWORD 4 bytes Total block length
Length of complete Alpha Channel Block, including
following Alpha Channel Information Chunk and
Alpha Channel Sub-Block.

Alpha Channel Information Chunk (first alpha channel):

DWORD 4 bytes Initial data chunk
length Length of Alpha Channel Information Chunk.

Variable length
string chunk

See
Section
5.4.2

Alpha channel name
Name of alpha channel. (Please See Section “5.4.2 –
Variable Length String Chunk” for more
information about variable string chunks.)

RECT 16 bytes Alpha channel
rectangle Rectangle containing alpha channel.

RECT 16 bytes Saved alpha channel
rectangle

Rectangle within alpha channel rectangle that
contains “significant” data. (Only the contents of
this rectangle are saved to the file.)

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Alpha Channel Chunk (first alpha channel):

DWORD 4 bytes Chunk size Length of Alpha Channel Chunk.

WORD 2 bytes Alpha channel
bitmap count

Number of following alpha channel bitmaps.
(Currently always 1.)

WORD 2 bytes Channel count Number of following channels. (Currently always
1.)

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Channel Sub-Block defining the alpha channel. See Section “5.4.8: Channel Sub-Block and Channel
Compression.” Note that alpha channels are stored as 8-bit greyscale bitmaps.

…

82 The information contained within this document is confidential and is subject to change without notice

Alpha Channel Header (last alpha channel):

Type Length Name Description

B_ARRAY 4 bytes Header identifier Always “7E 42 4B 00” (i.e.,“~BK”, followed by
a zero byte).

WORD 2 bytes Block identifier Always PSP_ALPHA_CHANNEL_BLOCK.

DWORD 4 bytes Total block length
Length of complete Alpha Channel Block, including
Alpha Channel Information Chunk and Alpha
Channel Sub-Block.

Alpha Channel Information Chunk (last alpha channel):

DWORD 4 bytes Initial data chunk
length Length of Alpha Channel Information Chunk.

Variable length
string chunk

See
Section
5.4.2

Alpha channel name
Name of alpha channel. (Please See Section “5.4.2 –
Variable Length String Chunk” for more
information about variable string chunks.)

RECT 16 bytes Alpha channel
rectangle Rectangle containing alpha channel.

RECT 16 bytes Saved alpha channel
rectangle

Rectangle within alpha channel rectangle that
contains “significant” data. (Only the contents of
this rectangle are saved to the file.)

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Alpha Channel Chunk (last alpha channel):

DWORD 4 bytes Chunk size Length of Alpha Channel Chunk.

WORD 2 bytes Alpha channel
bitmap count

Number of following alpha channel bitmaps.
(Currently always 1.)

WORD 2 bytes Channel count Number of following channels. (Currently always
1.)

 Unknown Expansion field.
This field is currently non-existent, but robust
readers should assume that data may be added
here in the future, and silently ignore it.

Channel Sub-Block defining the alpha channel. See Section “5.4.8: Channel Sub-Block and Channel
Compression.” Note that alpha channels are stored as 8-bit greyscale bitmaps.

83 The information contained within this document is confidential and is subject to change without notice

Appendix A : PSP File Format Overview

PSP File Signature

PSP Major Version Number PSP File Header

PSP Minor Version Number

General Image Attributes Block Header General Image Attributes
Block

General Image Attributes

Extended Data Block Header

• Keyword-Value

• …
Extended Data Block

• Keyword-Value

Color Profile Data Block Header
Color Profile Data Block

Color Profile Data

84 The information contained within this document is confidential and is subject to change without notice

Picture Tube Data Block Header
Picture Tube Data Block

Picture Tube Data

Creator Data Block Header

• Creator Key-Value

• …
Creator Data Block

• Creator Key-Value

Composite Image Bank Block Header

Composite Image Bank Info

• Composite Image Attributes
Block

• …

• Composite Image Attributes
Block

• Composite Image Block

• …

Composite Image Bank
Block

• Composite Image Block

85 The information contained within this document is confidential and is subject to change without notice

Table Bank Block Header

Table Bank Information

• Table Block

• …

Table Bank Block

• Table Block

Color Palette Block Header

Color Palette Entry Count

Color Palette Block • Color Palette Entry

• …

• Color Palette Entry

Layer Bank Block Header

Layer Bank Block

• Layer Information
• Layer Extension (if any)
• Layer Channels

• …

• Layer Information
• Layer Extension (if any)
• Layer Channels

86 The information contained within this document is confidential and is subject to change without notice

87 The information contained within this document is confidential and is subject to change without notice

Selection Bank Block Header

Selection Info Selection Bank Block

Selection Channels

Alpha Bank Block Header

• Alpha Info
• Alpha Channels

• …
Alpha Bank Block

• Alpha Info
• Alpha Channels

	Version History
	Introduction
	Resources
	Format Overview
	Common Structures and Definitions
	Parlance
	Type Definitions
	Limiting Field Values
	Common Blocks and Common Chunks
	Block Header
	Variable Length String Chunk
	Color Palette Sub-Block
	Paint Style Sub-Block
	Line Style Sub-Block
	Composite Image Attributes Sub-Block
	Composite Image Sub-Block
	JPEG Composite Image Sub-Block
	Normal Composite Image Sub-Block

	Channel Sub-Block and Channel Compression

	Paint Shop Pro (PSP) File Format Description
	Constraints
	Main Block Ordering

	PSP File Header
	The General Image Attributes Block
	The Extended Data Block
	The Color Profile Block
	The Tube Data Block
	The Creator Data Block
	The Composite Image Bank Block
	The Table Bank Block
	Table Sub-Block
	Table Entry Sub-Block
	Paper Sub-Block
	Pattern Sub-Block

	The Color Palette Block
	The Layer Bank Block
	Adjustment Layer Sub-Block
	Vector Layer Sub-Block
	Vector Shape Sub-Block

	Group Layer Sub-Block
	Mask Layer Sub-Block
	Art Media Layer Sub-Block
	Art Media Layer Map sub-block
	Art Media Tile sub-block
	Art Media Texture sub-block

	The Selection Block
	The Alpha Bank Block

	Appendix A : PSP File Format Overview

