Timings

Examples

Mitosis
Digestive
System
Matrices
Simple Cell
Lightening
Conductor
Discharging
Tube
Human Eye
Telecollaboration

Links

Spreadsheets Tutorial
Introduction
Worksheets
D:/cd3wddvd/NoExe/.../meister10.htm

Creating Learning Networks for African...

- Unit 5: Geometric Optics
- Unit 6: Waves
- Unit 7: Thermal Properties of Matter
- Unit 8: Electrostatics, Electric Current and Electronic

Devices

- Unit 9: Electromagnetism

UNIT 1: FUNDAMENTALS

Topics And Assessment Objectives:

- 1.1 Physical Quantities and their Units (9 Periods)
- Dimensions of fundamental quantities
- Fundamental units of ; mass (kg), length(m), time (s), current (A), temperature(k), amount of substance (mol)
- Dimensions of derived quantities
- Use of dimensions to check equations
- Scalars and Vectors

Columns \& Rows

Charts

Examples

Refraction of Light
Solving
Polynomial
Equations
Workers'
Database

Base Converter

Activities

Links

Databases
 Tutorial
 Introduction

Fvammlo

D:/cd3wddvd/NoExe/.../meister10.htm

Creating Learning Networks for African...

- addition and subtraction of vectors by the component method
- resolution of vectors in two perpendicular directions
- components of a vector

Assessment Objectives:
By the end of the topic, the student should be able to :

- State the basic physical quantities and state their SI units.
- Measure and read basic and derived physical quantities using linear and circular scales.
- Work out the dimensions of the derived physical quantities.
- Use Dimensions to check equations.
- Define scalars and vectors.
- Distinguish between scalars and vectors.
- Solve problems involving vectors by the component method.
Links
Word
Examples
Address list
Time table
Newsletter
Repeat Patterns
Logos

HTML Editors

Tutorial

Basic html
Netscape
Composer

Examples

Teaching
Syllabus
Teachers' Notes
Subject Website
Lists
Students
Website
Art
Principles of Art
D:/cd3wddvd/NoExe/.../meister10.htm

Book cover

Posters

Scanning an

image

Presentation Software | Spreadsheets | Databases | Word Processing | HTML Editors
 Computer Literacy | Common Applications | Pedagogy \& Internet | Infrastructure Guides | Home Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Creating Learning Networks for African Teachers
UNESCO PROJECT (Contract No. 408.302.9)

Background

COMMON APPLICATIONS

Presentation
Software
Tutorial
Introduction
Background
Text
Slides
Graphics
Animations \&
Timings

UNIT 7: THERMAL PROPERTIES OF MATTER

(9 Periods)

- Temperature scales.
- Practical thermometers.
- liquid in glass
- constant volume gas thermometer
- electrical resistance
- thermocouples
- pyrometers
- Absolute temperature scale.

Assessment objectives
By the end of this topic, the student should be able to:

Examples

Mitosis

ninnotiven

- List the different types of thermometers available for mnnoirnmont

Links

Spreadsheets Tutorial

Introduction
Worksheets
Columns \& Rows
Charts

Examples

of temperature and the thermometric properties used.

- Describe the steps involved in setting up a celcius scale of temperature.
- Describe the structure and action of the liquid- inglass, constant
volume gas thermometer, platinum resistance and thermocouple thermometers.
- Perform and describe measurement of temperature by the thermistor.
- Perform and describe measurement of temperature using a resistance of
an insulated copper coil and metre bridge.
- Perform and describe measurement of temperature using thermocouple.
- Compare temperature measured thermometers using different thermometric

Retraction of

Light

Solving
Polynomial

Equations

Workers'
Database
Base Converter
Activities
Links
Databases

Tutorial
Introduction

Example

Periodic Table

Links

properties.

- State the relative merits (advantages and disadvantages) of different
thermometers.
- Define the absolute temperature scale.
- Convert temperatures in degrees celcius to absolute temperatures.
- Describe and explain the structure and mode of operation of the optical
and total radiation pyrometers.
- 7.2 Specific Heat Capacity
(9 Periods)
- Definition and its measurement.
- method of mixtures; Newton's law of cooling; cooling corrections
- electrical methods including; the continuous flow method for liquids.

Assessment objectives

Word

Processing Tutorial
Introduction
Text
Page Properties
Printing
Quit

Examples

Address list
Time table
Newsletter
Repeat Patterns
Logos
Practical
Questions

- Define specific heat capacity.
- Perform and describe an experiment to determine the specific heat capacity
of a solid and a liquid by the method of mixtures.
- Explain what cooling correction is.
- Obtain a cooling correction in the method of mixtures for the determination
of the specific heat capacity of a poor conductor of heat like rubber using the graphical method.
- Perform and describe an experiment to determine the specific heat capacities
of solids and liquids by electrical methods including the continuous flow method.

25/10/2011

HTML Editors

Tutorial

Basic html
Netscape
Composer

Examples

Teaching

Syllabus

Teachers' Notes
Subject Website
Lists
Students
Website
Art
Principles of Art
Elements of Art Coloured Pencil Paintings
Pastel Paintings By the end of this topic, the student should be able to:
capacities of liquids using Newton's law of cooling.

- 7.3 Change of state. (9 Periods)
- Molecular theory explanation of melting, evaporaiton and boiling.
- Specific latent heat of fusion and vaporization. Internal and external latent heat of vaporisation.
- Electrical method of measuring specific latent heat of vaporization.

Assessment objectives

Book cover

Posters

Scanning an

image

- Explain melting, evaporation and boiling using molecular theory.
- Define specific latents of fusion and vaporization.
- Perform and describe experiments for determination of specific latent heats using method of mixtures.
- Perform and describe an electrical method for determination of
specific latent heats of fusion and vaporization.
- Solve problems involving changes of state and changes in temperature.
- 7.4 Expansion of gases. (5 Periods)
- The gas laws and the equation $\mathrm{PV}=\mathrm{Nk}_{\mathrm{B}} \mathrm{T}$ or nRT
- Pressure and volume coefficients of expansion.

By the end of this topic, the student should be able to:

- State Boyle's, Charles's and the pressure laws.
- Perform and describe experiments to verify the laws.
- Derive and use the equation $\mathbf{P V}=\mathbf{N k}_{\mathbf{B}} \mathbf{T}$ or $\mathbf{P V}=\mathbf{n R T}$
- Define pressure and volume coefficients of expansion and show that
they are equal.
- 7.5 Kinetic Theory of gases.
- Brownian motion and evidence of molecules
- Postulates about the molecules of an ideal gas.
- Derivation of $P=\underline{1} r<c^{2}>$ and comparison with $P V=N k_{B} T$ or nRT.

3

- Deduction from the ideal gas equation.
- Avogadros hypothesis

Creating Learning Networks for African...

- Graham's law of diffusion.
- Dalton's law of partial pressures.
- Real gases.
- Van der Waal's equation of state.

$$
\left(P+\underset{v^{2}}{(P)}(V-b)=R T\right.
$$

P vs V curves for a real gas.

- critical temperature.
- Saturated and unsaturated vapours, saturated vapour pressure.
- connection with boiling of a liquid.

Creating Learning Networks for African Teachers

UNESCO PROJECT (Contract No. 408.302.9) Home | Computer Literacy | Common Applications | Pedagogy \& Internet | Infrastructure Guide

Background

KINETIC THEORY (CON'T)

COMMON APPLICATIONS

Assessment objectives

By the end of this topic, the student should be able to:

Presentation

Software
Tutorial
Introduction
Background
Text
Slides
Graphics
D:/cd3wddvd/NoExe/.../meister10.htm

- Explain what is meant by kinetic theory of gases.
- Explain quantitatively why a gas exerts pressure on the walls
of its container.
- Derive the expression $\mathbf{P}=\underline{1} \quad \mathrm{r}\left\langle\mathrm{c}^{2}\right\rangle$ stating any assumntions made.

Animations \&

Timings

Examples

Mitosis
Digestive

System

Matrices
Simple Cell
Lightening
Conductor
Discharging
Tube
Human Eye
Telecollaboration

Links

Spreadsheets Tutorial
Introduction
D:/cd3wddvd/NoExe/.../meister10.htm

Creating Learning Networks for African...

3

- Relate the mean kinetic energy of a gas to its absolute temperature.
- Use the formula $\mathbf{P}=\underline{1} \mathrm{r}\left\langle\mathbf{c}^{2}\right\rangle$ to deduce Avogadro's Hypothesis,

3

Boyle's law, Charles's law, Dalton's law of partial pressures and Graham's law of diffusion.

- Distinguish between a real and an ideal gas.
- Account for the difference between equations PV = RT and

$$
(P+\underline{a})(V-b)=R T
$$ v^{2}

- Define critical temperature $\mathbf{T}_{\mathbf{c}}$ of a gas.
- Draw labelled P-V diagrams to show the behaviour of a real gas under

Worksheets

Columns \& Rows
Charts

Examples

Refraction of

Light

Solving
Polynomial

Equations

Workers'

Database
Base Converter

Activities

Links

Databases
Tutorial

Introduction
D:/cd3wddvd/NoExe/.../meister10.htm

Creating Learning Networks for African...
compression tor temperatures adove ana Deıow tne critical temperature.

- Distinguish between a gas and a vapour.
- Distinguish between saturated an unsaturated vapour and define saturated
vapour pressure.(s.v.p)
- Explain the occurrence of saturated vapour pressure using molecular theory.
- Use kinetic theory to explain the effect of volume and temperature change

```
on s.v.p.
```

- Distinguish the behaviour of saturated vapours from that of unsaturated ones.
- Use Dalton's law of partial pressures to solve problems on s.v.p
- Relate variation of s.v.p to boiling point.
- Describe an experiment to measure the variation of s.v.p of water with
temperature.

Example

Periodic Table
Links

Word
Processing
Tutorial
Introduction
Text
Page Properties
Printing
Quit

Examples

Address list
Time table
Newsletter Repeat Patterns

- 7.6 Thermodynamics
(12 Periods)
- Work done by an expanding gas
- Internal Energy
- First law of thermodynamics DQ = DU + DW
- Principle specific heat capacities, the relation $C_{p}-C_{v}=R$
- Isothermal and adiabatic changes of a gas inlcuding work done
by a gas on such a process.

Assessment objectives

By the end of this topic, the student should be able to:

- State the component of the internal energy of a real gas and the factors
on which they depend.
- Define an ideal gas and show that the internal energy of an ideal gas has no

Practical

Questions

HTML Editors

Tutorial

Basic html
Netscape
Composer

Examples

Teaching
Syllabus
Teachers' Notes
Subject Website
Lists
Students
Website

D:/cd3wddvd/NoExe/.../meister10.htm
potential energy component.

- Explain the meanings of terms: isovolumetric, isobaric, isothermal, and
adiabatic changes.
- Derive the expression W = Pdv for the work done when a gas expands and
relate it to the area under the $\mathbf{P}-\mathbf{V}$ curve.
- State the first law of thermodynamics and apply it to isobaric processes.
- Explain why a gas has more than one specific heat capacity.
- Define specific heat capacity of a gas at constant pressure and constant
volume.
- Explain why the molar principle heat capacity at constant pressure Cp
is oreater than that at at ronctant volume riv

Principles of Art
Elements of Art
Coloured Pencil

Paintings

Pastel Paintings

Book cover

Posters

Scanning an

 image

- Derive the expression $\mathbf{C}_{\mathbf{p}} \mathbf{-} \mathbf{C}_{\mathbf{v}}=\mathbf{R}$
- Relate $\mathbf{g}=\mathbf{C}_{\mathbf{p}} / \mathbf{C}_{\mathbf{v}}$ to atomicity of a gas.
- Represent isovolumetric, isobaric, isothermal, and adiabatic processes on
a P-V sketch.
- State the conditions necessary in practice to achieve isothermal and adiabatic
processes.
- State and use the equations relating
- Derive expressions for the work done in isothermal and adiabatic processes.
- Solve problems involving isovolumetric, isobaric, isothermal, and adiabatic
processes.
-Thermal Conduction.
- Mechanism of thermal conduction in insulators and in metals.
- Thermal conductivity.
- The relation DQ = k A DT

Dt Dx

- Measurement of thermal conductivity of good and bad conductors of heat.
- Convection as a consequence of change of density.
- Radiation as a form of energy.
- Blackbody radiation
- Energy distribution in the spectrum of blackbody radiation.
- Stefan's law $E=s T^{4}$.
- Wein's displacement law, $\mathrm{I}_{\mathrm{m}}{ }^{\top}=2.9 \times 10^{-3} \mathrm{mK}$.
- Surface temperature of the sun.
- Survey of the electromagnetic spectrum.

By the end of this topic, the student should be able to:

- Explain the mechanism of heat conduction in gases, liquids metallic
and non-metallic solids.
- State the factors which determine the rate of heat transfer through
a material.
- Define thermal conductivity k of a material.
- Draw a sketch graph to show the variation of temperature with length
along a lagged and an unlagged metal bar.
- Perform and describe an experiment to determine thermal conductivity
of a good conductor of heat like copper and a poor conductor of heat like glass.
- Coluen numbinma inumlıina mandiontinn nf hont
- -
- Describe and explain the process of convection.
- State properties of infra-red radiation and describe how it can be detected.
- Define a blackbody and blackbody radiation.
- Describe how an approximate blackbody can be realised in practice.
- Draw sketch graphs to show variation of relative intensity with wavelength
and describe their special features.
- State and use Wein's displacement law and Stefan's law in calculations, including
the estimation of the temperature of the sun.
- State Prevost's theory of heat exchanges and apply it in calculations.
- Arrange the components of the electromagnetic spectrum in order of
decreasing wavelength.

Presentation Software | Spreadsheets | Databases | Word Processing | HTML Editors
Computer Literacy | Common Applications | Pedagogy \& Internet |
Infrastructure Guides Home ${ }^{1}>$ ar.ch.de.en.es.fr.dd.it.ph.po.ru.sw

Creating Learning Networks for African Teachers
UNESCO PROJECT (Contract No. 408.302.9)
Home | Computer Literacy | Common Applications | Pedagogy \& Internet| Infrastructure Guide

Background
COMMON
APPLICATIONS

UNIT 8: ELECTROSTATICS, ELECTRIC CURRENT AND ELECTRONIC DEVICES

Presentation - 8.1 Electrostatics.
D:/cd3wddvd/NoExe/.../meister10.htm

Software

Tutorial

Introduction
Background
Text
Slides
Graphics
Animations \&
Timings

Examples

Mitosis
Digestive System
Matrices
Simple Cell
Lightening
Conductor
Discharging
Tube
Hirman Fve
D:/cd3wddvd/NoExe/.../meister10.htm

- 8.1.1 Basic Electrostatics Phenomena.
- Charging by friction.
- Types of charges.
- use of electroscope to detect charge.
- Charge by induction.
- Distribution of charge outside and inside a hollow conductor
at constant potential.
- Principle of the Van der Graaf generator.
- Applications
- lightning conductor, electrostatic screening,
paint spraying, and dust extraction.
Assessment objectives
By the end of this topic, the student should be able to:
- Distinguish between a conductor and a non conductor.

Telecollaboration

Links

Spreadsheets Tutorial

Introduction

Worksheets
Columns \& Rows
Charts

Examples

Refraction of
Light
Solving
Polynomial
Equations
Workers'
Database
Base Converter

Creating Learning Networks for African...

- Perform an experiment to show that there are two types of charges.
- Explain gharging by electrostatic induction.
- Explain the attraction of an uncharged material by a charged body.
- Describe the structure and action of a Gold Leaf Electroscope.
- Explain how a gold leaf electroscope can be charged negatively or
positively.
- Describe how a gold leaf electroscope can be used to determine the
charge on a body
- Describe Faraday's Ice Pail experiment and state the conclusions that
can be deduced from it.
- Perform and describe an experiment to show the
\qquad

Links

Databases
Tutorial
Introduction

Example

Periodic Table

Links

Word

Processing
Tutorial
Introduction
Text
Page Properties Printing Quit
on a charged conductor of different shapes.

- Explain corona discharge (action at points) and give an example of its
application.
- Describe the structure and operation of the Van de Graaf generator.
- 8.1.2 The Electric Field
- Electric fields and electric field lines.
- Force between point charges.
- Coulomb's law.
- Electric Field Intensity.
- electric field intensity of a point charge.
- electric field intensity between charged parallel metal plates.
- Electric Potential
- relationship between electric potential and electric

Examples

Address list
Time table
Newsletter
Repeat Patterns Logos

Practical
Questions

HTML Editors

Tutorial
Basic html
Netscape
Composer

Examples

Teaching
Syllabus

- equipotential surfaces and electric field lines.
- electric potential at a point in the electric field of a point charge.

Assessment objectives
By the end of this topic, the student should be able to:

- State Coulomb's law of electrostatics.
- Calculate the force between two point charges.
- Calculate force on a point charge due to a number of charges.
- Define electric field intensity, state its units and draw sketch diagrams to show the electric field patterns for different charge configuration.
- State the expression for the electric field intensity at a point charge.
- Calculate the electric field intensity at a point due to a number of point charges.
- Derive and use the relation between electric potential and electric field intensity.

Teachers' Notes Subject Website Lists
Students
Website
Art
Principles of Art Elements of Art Coloured Pencil Paintings
Pastel Paintings
Book cover Posters

Scanning an image

Creating Learning Networks for African...

- Compare Coulomb's law with Newton's law of graviation.
- 8.1.3 Capacitors
- Capacitor and capacitance , the farad
- Polarization of dielectrics
- the dielectric constant
- Parallel plate capacitor
- Factors which affect capacitance
- Series and parallel arrangement of capacitors
- Energy stored in a charged capacitor

Assessment Objectives
By the end of this topic the student should be able to:

- Define the capacitance of a capacitor
- State the factors which determine capacitance of a ronuritnr
- Explain the action of a dielectric using the molecular theory
- Explain what is meant by dielectric constant (relative permitivity) and dielectric strength.
- Perform and describe experiments to investigate the dependence of capacitance of a parallel plate capacitor on the area, A , of the plates, the separation, d, of the plates and
the nature of the dielectric material between the plates using a gold leaf electroscope.
- Perform and describe an experiment to measure dielecric constant of dielectric material.
- State and use the law of coservation of charge
- Derive and use expressions for effective capacitance of capacitors in series and in parallel.
- Derive and use the expression for energy stored in a charged capacitor.

END OF S6 TERM 1

- Electric Current

- Electric current as flow of charge $\mathbf{I}=\mathbf{Q}$ t
the ampere, the Coulomb, electric potential difference, the volt.
*Electric power
- resistance and Ohm's law
- electric energy, kWh
- Power delivered to an ohmic circuit element
- Interule conversion of electrical energy with forms
- Simple d.c circuits
- e.m.f of a source of electrical energy
- internal resistance
- conservation of charge at a junction in a circuit
- mocictnre in corise and nomallal
- potential divider
- mechanism of metallic conduction, current density j = nev
- mechanism of the heating effect of an electric current
- temperature coefficients of resistance
- electrical resistivity, p : the relation $R=p l$ A

Measurement of resistance and voltage

- the Wheat-stone bridge and its applications including
measurement of temperature coefficient of resistance
- the potentiometer and its applications including measurement of voltage, current, thermocouple, e.m.fs, comparison of resistances.

Assessment Objectives:

- Define an electric current and state its unit
- State the charge carriers in different types of conductors (metals, ionized gases, electrolytes, semi-conductors)
- Explain the mechanism of electric conduction in metals.
- Derive and use the relation between current and the drift velocity of electrons in metals $1=n A V d e$
- Explain the causes of electrical resistance in metals and
identify the factors which determine resistance of
a metallic conductor.
- Define the term electical resistivity and state its unit
- Explain the effect of temperature on resistance.
- Define temperature coefficient of resistance and state its unit.
- State Ohm's law and give examples of ohmic and non-ohmic

Creating Learning Networks for African...
conductors, and draw sketch graphs to show their I-
V characteristic
curves.

- Perform and describe an experiment to verify Ohm's law for metallic conductors.
- State and use the law of conservation of current at a junction.
- Derive and use expressions for effective resistance of resistor in series and in parallel.
- List sources of e.m.f
- Explain what is meant by e.m.f, E, and internal resistance, r, of a cell
- Explain how the e.m.f and iunternal resistance of a cell change with time and use.
- Derive and use the expression $P=12 R$
- Convert energy in joules into kWh.
- Convert electrical energy to other forms of energy.
- Derive the condition for maximum power dissipation
in the external
resistance and the expression for efficiency, \mathbf{h}.
- Derive and use the condition for balance of Wheatstone bridge
- Perform and describe an experiment to compare resistances using simple metre bridge
- Perform and describe an experiment to determine the resistivity, p, and temperature coefficient of a resistance of a wire using a metre bridge.
- Explain why the Wheatstone bridge network is not suitable for comparison of two very high or very low resistances.
- Solve problems on simple bridges including calculations of end-corrections.
- Explain the principle of a slide wire Potentiometer
- Perform and describe an experiment to calibrate a slide wire potentiometer.
- Perform and describe experiments to determine the internal resistance r. of a cell. the e.m.f. F. of
thermocouple using the slide wire potentiometer.
- Perform and describe experiments to calibrate an ammeter and voltmeter using a calibrated slide wire potentiometer.
- State the advantages and disadvantages of the potentiometer over an ordinary voltmeter for measurement of voltage
- State theadvantage of using a potentiometer instead of a Wheatstone bridge to compart resistances.
- 8.3 Electronic Derives
- The Vacuum diode valve
- thermionic emission
- anode current - anode voltage chracteristics
- incremental resistance of a diode
- half - wave rectification.
- full wave (bridge) rectification
- The vacuum triode
- anode current-anode voltage characteristics
- anode current -grid voltage characteristics
- anode slope resistance, mutual conductance and amplification factor
- amplification by a triode - voltage gain, $A=y R L$
$+\mathrm{RL}$
- The p-n junction
- I-V characteristic
- half - wave rectification
- full wave rectifier using semi-conducting diodes
- The transistor
- transistor characteristics

Assessment Objectives:

By the end of this topic the student should be able to :

- Lxplail ul mellalisii ui ulemilim emissivi.
- Describe the structure and operation of a vacuum diode
- Draw a sketch graph of the anode current -anode voltage characteristics of a thermionic diode and
explain its special features.
- Perform an experiment to obtain the I-V characteristic of a p-n junction and explain forward bias and reverse bias
- Explain half-wave and full-wave rectificatin and how they can be achieved
- Draw sketch graphs of the anode current-anode voltage and mutual characteristics of a triode.
- Define the terms anode resistance, mutual conductance and amplification factor of a triode.
- Derive and use the expression $A=y R L$ for the voltage gain

$$
R a+R L
$$

- Describe the structure of $n-p-n$ and $p-n-p$ type transistorl
- Perform experiments to obtain $\mathbf{I}_{\mathbf{B}}-\mathrm{V}_{\mathbf{B E}}, \mathrm{I}_{\mathbf{C}}-\mathrm{V}_{\mathbf{C E}}$

- 9.1 Magnetic Effects of an Electric Current

- Idea of a magnetic field as a field of force due to current
- carrying conductors or permanent magnet
- Force on a current
- carrying straight wire.
- Fleming's left hand rule
- definition of magnetic flux density and the tesla
- Magnetic field patterns due to an electric current in a straight wire, circular coil and long solenoid.
- Motion of a charge particle in a uniform magnetic field
- Hall effect
- the Hall probe

- moving coil galvanometer
- conversion of moving coil galvanometer into an ammeter and voltmeter
- Magnetic force between current carrying conductors
- definition of ampere
- simple form of current balance

Assessment objectives
By the end of this topic the student should be able to:

- Define a magnetic field
- Perform experiments to obtain the magnetic field patterns for a bar magnet, a current - carrying
straightwire, a current - carrying circular coil, and a current - carrying solenoid.
- Perform an experiment to determine the direction of a magnetic field.
- State, explain and use the expressions $B=m_{0} L$, $B=m_{0} \underline{N I}$, and $B=m_{0 n l}$

2pa 2R

for the magnetic flux density at a perpendicular distance a from a straight current carrying wire, at the centre
of a circular coil of N turns each of radius R and at centre of a long solenoid of n turns per metre.

Derive and apply the expression for the magnetic force between two long parallel current - carrying conductor

- Derive and apply the expression for the magnetic force between two long parallel current - carrying conductor
- Define the ampere
- Describe a simple form of a current balance.
- Recall and use the expression $\mathbf{F}=\mathbf{B q v} \boldsymbol{\operatorname { s i n }} \mathbf{q}$ for the force on a particle of charge q, moving in a uniform magnetic field of flux density \mathbf{B}.

Creating Learning Networks for African...

- Describe quantitively the motion ot a charge particle in a uniform magnetic field.
- Explain the Hall Effect
- Explain how a calibrated Hall Probe can be used to measure magnetic flux density.
- Derive and use the expresion $\mathbf{t}=\mathrm{BANI} \sin \mathbf{q}$ for the torque on a current carrying coil in a magnetic field.
- Describe how a moving coil galvanometer can be converted into an ammeter and into a voltmeter.
- Calculate the value of the resistor required to convert a moving coil galvanometer into an ammeter or voltmeter.
- Describe how a moving coil galvanometer is converted into a ballistic galvanometer.

Presentation Software \| Spreadsheets | Databases | Word Processing | HTML Editors

Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Creating Learning Networks for African Teachers
UNESCO PROJECT (Contract No. 408.302.9)
Home | Computer Literacy | Common Applications | Pedagogy \& Internet| Infrastructure Guide

Background

COMMON APPLICATIONS

Presentation
Software
Tutorial
Introduction
Background
Text
Slides
D:/cd3wddvd/NoExe/.../meister10.htm
-1.2 Kinematics (18 Periods)

- Equations of uniformly accelerated linear motion.
- Distance, speed-time graphs for uniformly and nonuniformly accelerated linear motion.
- Interpretation of area under a speed-time graph.
- Meaning of the slope of the tangent at a point on the distance-time, speed-time graphs.
- Motion of a body falling freely near the surface of the Earth
- Acceleration due to gravity (g)

Timings

Examples

Mitosis
Digestive
System
Matrices
Simple Cell
Lightening
Conductor

Discharging

Tube
Human Eye
Telecollaboration

Links

Spreadsheets Titorial

Creating Learning Networks for African...

- Motion of a projectile:
- An example of motion due to uniformly velocity in one direction and uniform acceleration in the perpendicular direction.
- Time taken to reach maximum height, time of flight T , range of a projectile.
- Relative velocity
- Examples.

Assessment Objectives:
By the end of this topic, the student should be able to:

- Define displacement ,speed, velocity and acceleration.
- Draw sketchs and interpret various motion graphs.
- Determine the distance travelled and the acceleration from the velocity-time graph.
- Derive and use the following expressions:
- $v=u+a t, s=u t+1 / 2 a^{2}$ and $v^{2}=u^{\mathbf{2}}+2 a s$
- Perform and describe an experiment to determine \mathbf{g}

25/10/2011

Introduction

Worksheets
Columns \& Rows
Charts

Examples

Refraction of Light Solving
Polynomial Equations Workers'
Database
Base Converter

Activities

Creating Learning Networks for African... using a ticker-timer.

- Derive and use expressions for time taken to reach maximum height, time of flight,
maximum height and range for a projectile.
- Solve problems involving relative velocity.

UNIT 2 : DYNAMICS 1

- 2.1 Newton's Laws of Motion and Momentum (9 Periods)
- Newton's laws of motion.
- inertia
- resultant force $F=m a$
- Linear momentum and its conservation
- Impulse and relation to change momentum
- Elastic and perfect inelastic collisions.
Links

Assessment Objectives:

Databases

Bv the end of this topic. the student should be able to:

Introduction

Example

Periodic Table

Links

Word

Processing
Tutorial
Introduction

Text

Page Properties
Printing
Quit

Examples

 Address listTime table
Newsletter

- State and use Newton's laws of motion.
- Define linear momentum.
- Verify that linear momentum is conserved in a collision.
- Verify and use the Principle of conservation of linear momentum in collisions.
- Distinguish between elastic , inelastic and perfectly inelastic collisions.
- 2.2 Solid Friction (8 Periods)
- Laws of friction.
- Coeffients of static and kinetic friction.
- Motion of a body on a rough inclined plane.
- Molecular theory explanation of solid friction

Assessment Objectives:
By the end of this topic, the student be able to:

- Perform and describe experiments to measure the coefficient of static

Practical

Questions

HTML Editors

 TutorialBasic html
Netscape
Composer

Examples

Teaching
Syllabus
Teachers' Notes
Subject Website Lists
Students

and of kinetic friction.

- State and explain the laws of solid friction in terms of molecular theory.
- Solve problem involving motion of a body on rough surfaces.
- 2.3 Work, Energy and Power (15 Periods)
- Work as a product of force and distance in the direction of force.
- Work-energy theorem
- Force-distance graphs
- Kinetic and gravitationa potential energy
- Elastic potential energy
- Conservative forces
- Energy conservation and conversion
- Dissipative forces
- Power as rate of transfer of energy; P = Fv

By the end of this topic, the student should be able to:

Art

Principles of Art
Elements of Art
Coloured Pencil
Paintings
Pastel Paintings

Book cover

Posters

Scanning an image

- Define work, energy and power.
- State and apply the Principle of energy conversion.
- Relate work to the force-distance graph.
- Calculate work done in a number of situations.
- Derive and use the expressions K.E = ½ mv², P.E = mgh
- Distinguish between kinetic energy and gravitational potential energy.
- Derive and use the relationship between work done and change in energy.
- Perform experiments to determine efficiency of a simple system.
- State the Principle of Conservation of mechanical energy and illustrate it
with examples.
- Solve problems involving conservation of mechanical energy.
- Derive and use the expression $\mathbf{P}=\mathbf{F v}$

Presentation Software | Spreadsheets | Databases | Word Processing | HTML Editors
 Computer Literacy | Common Applications | Pedagogy \& Internet | Infrastructure Guides | Home Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Creating Learning Networks for African Teachers

Background
COMMON APPLICATIONS

UNESCO PROJECT (Contract No. 408.302.9)
Home | Computer Literacy | Common Applications | Pedagogy \& Internet| Infrastructure Guide

- 2.4 STATICS (Periods 15)
- Parallel forces
- Resultant of parallel forces, turning effect of forces and moment of a force, couples.
- Coplanar forces

25/10/2011
Sorcware
Tutorial
Introduction
Background
Text
Slides
Graphics
Animations \&

Timings

Examples

Mitosis
Digestive
System
Matrices
Simple Cell
Lightening
Conductor
Discharging
Tube
Human Eye

Creating Learning Networks for African..

- Equilibrium of forces.
- Triangle of forces to represent forces in equilibrium.
- Principle of moments.
- Centre of gravity.
- Fluids in static equilibrium
- Density, relative density.
- Pressure at a point in a fluid.
- Archimede's Principle
- Floatation

Assessment objectives:

By the end of this topic, the student should be able to:

- Define centre of gravity.
- Calculate the resultant of parallel forces.
- Define and use moment of a force, couple and torque.
- State and use the conditions for equilibrium for a system under the

Telecollaboration

Links

Spreadsheets

Tutorial

Introduction
Worksheets
Columns \& Rows

Charts

Examples

Refraction of
Light
Solving
Polynomial

Equations

Workers'

Database

Base Converter

Creating Learning Networks for African...
action of coplanar forces.

- Solve problems related to three coplanar forces in equilibrium.
- Define and use density and relative density.
- Derive and use the expression for pressure at a point in a fluid.
- State and use Archimede's Principle.
- State the Law of floation and use it to solve problems related to floating bodies.
- Perform and describe experiments involving the Principle of moments.

End of S5 Term 1 (Estimated time: 8 Weeks)

UNIT 3 : PROPERTIES OF MATTER

- 3.1 Fluid Flow (9 Periods)
- Streamline and turbulent flow.
- Tnuminal ..alnait..

Activities

Links

Databases
Tutorial
Introduction

Example

Periodic Table

Links

Word

Processing
Tutorial
Introduction
Text
Page Properties
Printing
nıit
D:/cd3wddvd/NoExe/.../meister10.htm

Creating Learning Networks for African...
F ierimilial veiucity

- Bernoulli's equation.
- Viscosity in liquids and its determination.
- Poiseulle's and Stoke's law methods.
- Viscosity in gases.

Assessment Objectives.
By the end of this topic, the student should be able to:

- Explain the terms steady (lamina, streamline) and turbulent flow as applied to the motion of a fluid.
- Explain the effects of viscosity of an object moving in a fluid
- Define the terms velocity gradient and coefficient of viscocity of a viscous fluid
and state their units.
- State Stoke's Law and use it to define the expression fnr torminal velncity of a

Examples

Address list

Time table
Newsletter
Repeat Patterns
Logos
Practical
Questions

HTML Editors

Tutorial
Basic html
Netscape
Composer

Examples

Teaching
c．，ll－h．．－
D：／cd3wddvd／NoExe／．．．／meister10．htm

Creating Learning Networks for African．．．

sphere in a viscous fluid．
－Perform and describe an experiment to mesure viscocity of a viscous liquid．
－Derive and use Bernoulli＇s equation $\mathbf{P}+1 / 2 \mathbf{r v}^{\mathbf{2}}+\mathbf{r g h}$ ＝a constant
－Explain the applications of Bernoulli＇s Principles in the filter pumps，atomisers and
erofoil．
－Explain the effects of temperature on viscocity of liquids and gases．
－3．2 Deformation of Solids（9 Periods）
－Classification of Solids on the basis of strength， stiffness，ductility and
toughness．
－Stress－strain curve for ductile and brittle materials．
－clactir and nlactir hohavinir

Teachers' Notes
Subject Website
Lists
Students
Website
Art
Principles of Art
Elements of Art
Coloured Pencil
Paintings
Pastel Paintings
Book cover
Posters

Scanning an

 image- Liastil allu prasul neravivu.
- Hooke's law
- elastic potential energy.

Assessment Objectives

 toughness and elasticity. their units. Hooke's law using springs, the following features:- Work done in extension and compression.

By the end of this topic, the student should be able to:

- Explain the term strength, stiffness, ductility,
- Define stress, strain, and Young's modulus and state
- Perform and describe an experiment to verify
draw a sketch graph of the stress-strain and show
limit of proportionality, elastic limit, yield point, breaking point.
- Explain the special features of the stress-strain graph fnn- N..ntiln motnrinl
- Distinguish the elastic behaviours of ductile and brittle materials.
- Compare the elastic behaviours of ductile materials, rubber and brittle materials.
- Perform and describe an experiment to determine Young's modulus of a metal in
form of an elastic material.
- Relate the work done to the elasic potential energy.
- Relate the work done to area under the forceextension curve.
- 3.3 Surface Tension (12 Periods)
- Simple surface tension phenomena.
- Molecular theory of matter
- Explanation of surface tension.
- Definition of surface tension.

- Angle of contact
- Capillary rise.
- Methods of measuring surface tension.
- Effects of temperature on surface tension.

Assessement Objectives

By the end of this topic, the students should be able to:

- Perform and describe experiments to show the existance of surface tension.
- Explain surface tension in terms of molecular theory of matter.
- Define surface tension and state its units.
- Derive and use expressions for excess pressure inside air and soap bubbles.
- Describe an experiment to measure angle of contact q.
- Explain capillarity.
- noriun and ...nnthn numunnninn h - Da ann ~
- Perform and describe an experiment to measure surface using capillary.
- Explain the effects of impurities on surface tension.

Creating Learning Networks for African Teachers
UNESCO PROJECT (Contract No. 408.302.9)
Home | Computer Literacy | Common Applications | Pedagogy \& Internet I Infrastructure Guide
－4．1 Circular Motion（12 Periods）
－Speed of a body，$v=r w$ ，moving with uniform angular speed
Presentation
Software

Tutorial

Introduction
Background
Text
Slides
Graphics
Animations \＆
Timings

Examples

Mitosis
Digestive
System
Matrices
Simple Cell
1：～レレー～：～～
D：／cd3wddvd／NoExe／．．．／meister10．htm
－Define centripetal force．
－Define the radian．
－Derive and use the expression $\mathbf{v}=\mathbf{r w}$ ．
－Derive and use the expression $\mathbf{a}=\mathrm{v}^{\mathbf{2}} / \mathbf{r}=\mathbf{r w}^{\mathbf{2}}$ and state its direction．
blyriteririg

Conductor

Discharging
Tube
Human Eye
Telecollaboration

Links

Spreadsheets

 TutorialIntroduction
Worksheets
Columns \& Rows
Charts

Examples

Refraction of Light
Solving
Polynomial - 4.2 Gravitation (18 Periods)

- Use the expression $\mathbf{F}=\mathrm{mrw}^{\mathbf{2}}=\mathrm{mv}^{\mathbf{2}} / \mathbf{r}$ for centripetal force.
- Explain the following as applied to circular motion:
- conical pendulum
- banking of a road
- motion in a vertical circle.
- Describe conditions for skidding and toppling of a cyclist or a vehicle
moving round a bend.
- Define moment of inertia about a given axis.
- State the expression for rotational K.E of a body rotating about an axis with a
constant angular velocity.
- Distinguish between transitional and rotational K.E
- Relate work done by a couple to rotational K.E

Equations

Workers'

Database

Base Converter
Activities
Links
Databases
Tutorial
Introduction

Example

Periodic Table

Links

Word

Processing
Tutorial
D:/cd3wddvd/NoExe/.../meister10.htm

- Kepler's law's.
- Newton's law's of gravitation.
- Gravitational field including local variations of g.
- Principle of laboratory determination of G.
- Gravitational Potential
- Satellites
- Mechanical energy in a given orbit.
- Parking satellites.

Assessment Objectives
By the end of this topic, the student should be able to:

- State Kepler's laws
- State Newton's law of Gravitation.
- Derive dimensions of the gravitation G.
- Derive and use the relation between \mathbf{G} and \mathbf{g}.
- Describe the principle of laboratory determination of
G.
- Derive and use Kepler's third law $\mathrm{T}^{\mathbf{2}}$ a $\mathrm{r}^{\mathbf{3}}$.
- Define and use gravitational potential.

25/10/2011
Introduction
Text
Page Properties
Printing
Quit

Examples

Address list
Time table
Newsletter
Repeat Patterns
Logos
Practical
Questions

HTML Editors
Tutorial
Basic html

Netscape

Creating Learning Networks for African...

- Define the velocity of escape $v_{\mathbf{e}}$
- Derive and use the expression $v_{\mathbf{e}}=\ddot{O}_{\mathbf{e}} \mathbf{g}$
- Describe the variation of \mathbf{g} from the centre of the earth to a point
above the earth's surface.
- Derive and use the formulae for K.E, P.E and mechanical energy of
a satellite in orbit.
- Define parking orbit and relate it to communication satellites.
- Derive and use the expression $\mathbf{T}^{\mathbf{2}}=\underline{\mathbf{4} \mathbf{R}^{\mathbf{3}}}$ for parking orbit./

$$
\mathrm{Gr}^{2}
$$

- Explain a state of weightlessness.
- Define free fall.
- Perform and describe an experiment to determine the acceleration

Examples

Teaching
Syllabus
Teachers' Notes
Subject Website Lists
Students
Website
Art
Principles of Art
Elements of Art
Coloured Pencil
Paintings
Pastel Paintings
Book cover
Posters

- 4.3 Oscillations

Periods)

- 4.3.1 Simple Harmonic Motion (SHM)
- A special periodic motion defined by $a=-w^{2}$.
- Derivation of the equation $a=-w^{2} x$.
- a mass on a helical spring.
- a simple pendulum.
- a floating cylinder.
- a liquid in a U-tube.
- Solution of $a=-w^{2} x$ of the form $x=A \sin w t$ or $x=$ Acos wt
- Graphical representations of displacement, speed and acceleration
in SHM.
- Phase difference demostrated with two oscillating pendula or two masses
ncrillating at the ond of heliral enrinos

Creating Learning Networks for African..

- Amplitude, Period and frequency.

$$
\text { speed } v= \pm \text { wö }\left(A^{2}-x^{2}\right)
$$

- Interchange of kinetic and potential energy in SHM.
- Conservation of Energy.
- Measurement of acceleration due to gravity using
- a simple pendulum.
- a mass of a helical spring.

> Presentation Software \| Spreadsheets | Databases | Word Processing | HTML Editors
> Computer Literacy | Common Applications | Pedagogy \& Internet | Infrastructure Guides | Home Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Background

COMMON

 APPLICATIONSAssessment objectives
By the end of this topic, the student should be able to:

Presentation

Software
Tutorial
Introduction
Background
Text
Slides
Graphics
Animations \&
Timings

Examples

Mitosis
D:/cd3wddvd/NoExe/.../meister10.htm

- Derive the expression $\mathbf{a}=-\mathbf{w}^{\mathbf{2}} \mathbf{x}$ component of acceleration of a body moving in a circle.
- Define simple harmonic motion.
- Verify that a simple pendulum, a mass at the end of a string, a liquid
in a U-tube, floating cylinder and car piston oscillate with SHM.
- Define the terms period and amplitude.
- Derive and use the expression for the period in each of the above

System

Matrices
Simple Cell
Lightening
Conductor

Discharging

Tube
Human Eye
Telecollaboration
Links
Spreadsheets
Tutorial
Introduction
Worksheets
Columns \& Rows

Charts

Examples

D:/cd3wddvd/NoExe/.../meister10.htm
examples of SHM.

- Verify that the solutions of the equation $\mathbf{a}=-\mathbf{w}^{\mathbf{2}} \mathbf{x}$ are of the form
$x=A \sin \boldsymbol{w t}$ or $\mathbf{x}=\mathbf{A} \boldsymbol{\operatorname { c o s }} \mathbf{w t}$.
- Explain phase difference between two different simple harmonic
oscillators.
- Draw sketch graphs to show the variation of displacement, velocity,
acceleration with time.
- Derive and use the expression $\mathbf{v}= \pm \mathbf{w} \boldsymbol{O}\left(A^{\mathbf{2}}-\mathbf{x}^{\mathbf{2}}\right)$ for the velocity of a simple
harmonic oscillator.
- Derive and use expressions for potential energy and kinetic energv of a simple

Refraction of
Light
Solving
Polynomial

Equations

Workers'
Database
Base Converter

Activities

Links

Databases

Tutorial
Introduction

Example

Periodic Table
harmonic oscillator and hence the mechanical energy.

- Describe the interchange between kinetic energy and potential energy during

SHM and show that mechanical energy is constant.

- Draw a sketch graph to show the variation of P.E and K.E and mechanical energy
with displacement.
- 4.3.2 Damped and Free Oscillations.
- Damped oscillations.
- Forced oscillations and resonance.
- practical examples.

Assessment objectives
By the end of this topic, the student should be able to:
linle
D:/cd3wddvd/NoExe/.../meister10.htm

Word Processing

Tutorial
Introduction

Text

Page Properties

Printing

Quit

Examples

Address list
Time table
Newsletter
Repeat Patterns
Logos

Practical

Questions

Creating Learning Networks for African...

- Distinguish between free and damped oscillations.
- Describe practical examples of damped oscillations with
- particular reference to the degree of damping and the importance
- of critical damping in such cases as car suspension system.
- Explain forced oscillations and describe practical examples of forced
- oscillations and resonance.
- Describe graphically how amplitude of forced oscillations varies with
- frequency.
- Define resonance.
- State the factors which determine the frequency response and sharpness
- of the resonance of a forced oscillator.
- List examples od cases where resonance is useful and where it is undesirable.
- Perform and describe an experiment to determine acceleration due to gravity using ;

HTML Editors
 Tutorial

Basic html
Netscape
Composer

Examples

Teaching
Syllabus
Teachers' Notes Subject Website

Lists

Students

Website

Art

Principles of Art Elements of Art Coloured Pencil Paintings
(i) simple pendulum .
(ii) helical spring.

- Perform an experiment to determine Young's modulus of wood using a
vibrating wooden beam .

Presentation Software \| Spreadsheets | Databases | Word Processing | HTML Editors
 Computer Literacy | Common Applications | Pedagogy \& Internet |
 Infrastructure Guides | Home Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Creating Learning Networks for African Teachers
UNESCO PROJECT (Contract No. 408.302.9)
Home | Computer Literacy | Common Applications | Pedagogy \& Internet | Infrastructure Guide

Background

UNIT 5: GEOMETRIC OPTICS

COMMON APPLICATIONS

Presentation

Software
Tutorial
Introduction
Background
Text
Slides
Graphics
Animations \&

Timings

Examples

Mitosis
Digestive
System
Matrices
Simple Cell
D:/cd3wddvd/NoExe/.../meister10.htm

- 5.1 Reflection of light at plane surfaces. (6 Periods)
- Regular and diffuse reflection.
- Rotation of a plane mirror with direction of incident ray.
- Images formed in a plane mirror.
*Focal point, focal length, centre of curvature.
Assessment objectives
By the end of this topic, the student should be able to:
- Define a ray of light.
- Define a beam of light and draw sketch diagrams for the convergent and
divergent beams.
- Perform and describe an experiment to illustrate the principle of reversibility
of light.
- State the laws of reflection of light.

Lightening
Conductor
Discharging
Tube
Human Eye
Telecollaboration

Links

Spreadsheets Tutorial

Introduction
Worksheets
Columns \& Rows
Charts

Examples

Refraction of Light
Solving
Polvnomial
D:/cd3wddvd/NoExe/.../meister10.htm

Creating Learning Networks for African...

- Perform and desctibe an experiment to illustrate the laws of reflection of
light.
- Distinguish between regular an diffuse refleciton.
- Perform and describe an experiment to determine the relation between angle
of rotation of a plane mirror and angle of the reflected ray while keeping the direction of the incident ray fixed.
- Describe the application of rotation of a plane mirror in the light beam galvanometer.
- Perform and describe an experiment to find the position and nature of an image formed
by a plane mirror.
- Derive and use the expression relating the number of images formed by two inclined
mirrors and the angle between the two mirrors.

Equations Workers' Database Base Converter

Activities

Links
Databases
Tutorial
Introduction
ExamplePeriodic Table
Links
Word
Processing
D:/cd3wddvd/NoExe/.../meister10.htm

- 5.2 Reflection of light at curved surfaces.
- The equation $\underline{1}+\underline{1}=\underline{1}=\underline{2}$

$$
u \quad v \quad f \quad r
$$

-Spherical aberration, caustic surface.

Assessment objectives

By the end of this topic, the student should be able to:

- Describe the types of curved mirrors.
- Define the terms focal point, centre of curvature, radius of curvature,
pole and aperure as applied to curved mirrors.
- Derive and use the relation $\mathbf{r}=\mathbf{2 f}$ for curved mirrors.
- Distingiush between marginal and paraxial rays.
- Describe the formation of caustic surface.
- Describe spherical aberration and the use of

Tutorīal

Introduction

Text

Page Properties

Printing

Quit

Examples

Address list
Time table
Newsletter
Repeat Patterns
Logos

Practical

Questions

HTML Editors
 Tutorial

Basic html

Creating Learning Networks for African...
parabolic mirrors to

- correct the defect.

Derive and use the formula $\underline{\mathbf{1}}+\underline{\mathbf{1}}=\underline{\mathbf{1}}=\underline{\mathbf{2}}$
$u \quad v \quad f \quad r$

- Determine image and object position, focal length and radius of curvature
by construction and calculation.
- Distinguish between the nature of images formed by convex and concave mirrors.
- Perform and describe experiments to detemine focal length or radius of curvature
of curved mirrors.
- Perform and describe experiments to determine
focal length or radius of curvature
of curved mirrors using a distant object, no-parallax and an illuminated object.
- List applications of concave and convex mirrors.

Composer

- 5.3 Refraction of light at plane boundaries (9 Periods)

Examples

Teaching
Syllabus
Teachers' Notes
Subject Website Lists

Students

Website

> Art

Principles of Art Elements of Art Coloured Pencil

> Paintings

Pastel Paintings
Book cover

Posters

-Snell's law.

- Real and apparent depth.
- Critical angle and total internal reflection.
- applications, including optical fibres.

Assessment objectives
By the end of this topic, the student should be able to:

- Perform and describe experiments to demonstrate refraction of light through
a glass block and through a liquid.
- State the laws of refraction.
- Perform and describe an experiment to establish $\underline{\sin \mathrm{i}}=$ constant
- Define refractive index and explain its variation with optical media.
- Define refractive index in terms of velocities of light in the respective media.
- Derive and use relation $\mathbf{g n}_{\mathbf{a}}=\underline{\mathbf{1}}$

$$
a^{n_{g}}
$$

- Derive and use the the expression $\mathbf{1 n}_{\mathbf{3}}=\mathbf{1} \mathbf{n}_{\mathbf{2}} \mathbf{x}$ $\mathbf{2 n}_{\mathbf{3}}$ for three parallel sided
transparent media.
- Derive and use the expression \mathbf{n} sini = constant.
- Perform and describe an experiment to determine the refractive index by the
apparent depth method.
- Explain critical angle and the total internal reflection.
- State the conditions for the occurence of total internal reflection.
- List applications of total internal reflection e.g fibre
optics, radio wave transmission,
binoculars, periscopes and mirage formation.

Presentation Software | Spreadsheets | Databases | Word Processing | HTML Editors
 Computer Literacy | Common Applications | Pedagogy \& Internet |

Background COMMON

Creating Learning Networks for African Teachers
UNESCO PROJECT (Contract No. 408.302.9) Home | Computer Literacy | Common Applications | Pedagogy \& Internet I Infrastructure Guide

- 5.4 Refraction through Prisms (9 periods)
* Minimum deviation

APPLICATIONS

Presentation

Software

Tutorial
Introduction
Background
Text
Slides
Graphics
Animations \&
Timings
Examples
Mitosis
Digestive
System
Matrices
Simple Cell
Lightening

Conductor

Creating Learning Networks for African...

- Deviation by thin prisms.
- Prism spectrometer and white light spectrum.

Assessment objectives

By the end of this topic, the student should be able to:

- Explain dispersion of white light by a prism.
- Derive and use the expression for deviation

$$
d=\left(i_{1}-r_{1}\right)+\left(i_{2}-r_{2}\right)
$$

- Derive and use the expression $\mathbf{d}=(\mathbf{n}-\mathbf{1}) \mathrm{A}$ for a small angled prism.
- State conditions required for minimum deviation to occur.
- Derive and use the expression $\mathbf{n}=\boldsymbol{\operatorname { s i n }}\left(\mathrm{A}+\mathrm{D}_{\min }\right) / \boldsymbol{\operatorname { s i n }}$ A
- Perform and describe experiments to measure angle A of

Discharging

Tube

Human Eye

Telecollaboration

Links

Spreadsheets

Tutorial
Introduction
Worksheets
Columns \& Rows
Charts

Examples

Refraction of
Light
Solving
Polynomial
Equations
Workers'

Creating Learning Networks for African...
a prism and $\mathbf{D}_{\text {min }}$ using a spectrometer.

- Perform an experiment to determine refractive index of the material of the prism
using optical pins and spectrometer.
- Describe applications of glass prisms.
- 5.5 Refraction through a thin lens.
(12 Periods)
- Types of lenses.
- Focal points, focal lengths
- Power of lens.
- Thin lens formula $\frac{1}{u}+\underline{1}=\underline{1}$
- Transverse magnification.
- Displacement formula, $L^{2}-d^{2}=4 d 1$
- Conjugate foci; Newton's formula $x y=1^{2}$
*Full lens formula $\underline{1}=(n-1)(\underline{1}+\underline{1})$ for a thin lens in air.
$r_{1} \quad r_{2}$
- Methods of determination of focal lengths of both

25/10/2011
Database
Base Converter

Activities

Links

Databases Tutorial
Introduction

Example

Periodic Table
Links
Word
Processing
Tutorial
Introduction
Text
D:/cd3wddvd/NoExe/.../meister10.htm

Creating Learning Networks for African...
converging and
diverging lenses.

- Defects of images formed by a lens;
- spherical and chromatic aberration.

Assessment objectives
By the end of this topic, the student should be able to:

- Identify converging and diverging lenses.
- Define the terms:- principle focus, principle axis, optical centre,
focal length as applied to converging and diverging lenses.
- Draw ray diagrams to illustrate formation of real and virtual images.
- Derive and use the expression $\underline{\mathbf{1}}+\underline{\mathbf{1}=\underline{1}=\underline{\mathbf{2}}}$
u v \quad r
- Define transverse magnification.
- Derive and use the relation: $\mathbf{m}=\underline{\mathbf{v}}$

Page Properties

Printing

Quit

Examples

Address list
Time table
Newsletter
Repeat Patterns
Logos
Practical
Questions

HTML Editors

Tutorial
Basic html
Netscape
Composer

Fvammlac

D:/cd3wddvd/NoExe/.../meister10.htm

u

- Derive and use the expression $\mathbf{L}^{\mathbf{2}}-\mathbf{d}^{\mathbf{2}=4 d}$
- Derive and use the expression $\underline{\mathbf{1}}=\underline{\mathbf{1}}+\underline{\mathbf{1}}$ for thin lenses in contact.

F i_{1} in

- Define power of the lens and state its units.
- Derive and use Newton's formula $\mathbf{x y}=\mathbf{1}^{\mathbf{2}}$
- Derive and use the expression $\underline{1}=(\mathrm{n}-\mathbf{1})(\underline{1}+\underline{1})$
- Explain chromatic aberration and spherical aberration in lenses and how
they are minimised.
- Perform an experiment to demostrate chromatic aberration and spherical
aberration in lenses.
- Perform and describe experiments to determine

Teaching
Syllabus Subject Website Lists
Students
Website
Art
Principles of Art Elements of Art

Coloured Pencil
Paintings
Pastel Paintings
Book cover

Posters

Scanning an

 image| \| HTML Editors | |
| :---: | :---: |
| Computer Literacy \| Common Applications | Pedagogy \& Internet | | |
| Infrastructure Guides \mid Home Home"" "n""> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw | |
| | Creating Learning Networks for African Teachers UNESCO PROJECT (Contract No. 408.302.9) |
| Home \| Computer Literacy | Common Applications | | |
| Pedagogy \& Internet \| Infrastructure Guide | |
| Background | - 5.6 Optical Instruments (9 Periods) |
| COMMON | - Magnifying power of an optical instrument. |
| APPLICATIONS | - The magnifying glass (simple microscope). |
| | * The romnnund talesrenno |

Presentation

Software

Tutorial
Introduction
Background
Text
Slides
Graphics
Animations \&
Timings

Examples

Mitosis
Digestive
System
Matrices
Simple Cell
Lightening
Conductor
Discharging

- magnifying power in normal adjustment.
- Astronomical telescope and Galiliean telescope.
- magnifying power in normal adjustment.
- Reflecting telescope.
- Prism binoculars.
- Simple lens camera.
- The human eye.
- eye defects and their corrections.

Assessment objectives

By the end of this topic, the student should be able to:

- Descirbe the optical parts of the human eye.
- Distinguish between long and short sightedness.
- Explain how the eye defects are corrected.
- Define the terms visual angle, angular magnification, near point and far point.
- Describe structure and action of: simple microscope, compound

Tube

Human Eye

Telecollaboration

Links

Spreadsheets Tutorial

Introduction
Worksheets
Columns \& Rows

Charts

Examples

Refraction of
Light
Solving
Polynomial

Equations

Workers'

Database

telescope, Galilean telescope, reflecting telescope, simple lens camera, projector lantern.

- State the advantages and disadvantages of reflecting telescopes
over refracting telescopes (Astronomical telescope and Galilean telescope)
- Derive and use the expression
- $\mathbf{M}=\boldsymbol{\ddagger}$ for telescopes
i
- Define the eye-ring of a telescope and explain it's significance.
- Describe the action of prism binoculars.

UNIT 6: WAVES

Base Converter

Activities

Links
Databases
Tutorial
Introduction

Example

Periodic Table
Links

Word

Processing
Tutorial
Introduction
Text
nー～～n－anのート：～ー
－6．1 Types of Wave Motion．（9 Periods）
－Transverse and longitudinal wave motion．
－Relation between v，i，and I．
－Progressive waves．
－the equation for th eprogressive wave．

$$
y=A \sin 2 p(t-\underline{x})
$$

－Transmission of energy by waves．
－Relation between intensity，frequency and amplitude．

Assessment objectives

By the end of this topic，the student should be able to：
－Describe longitudinal and transverse waves and explain their mode
of propagation．
－Define the terms：displacement，amplitude，period， frequency and

Printing

Quit

Examples

Address list
Time table
Newsletter
Repeat Patterns
Logos

Practical

Questions

HTML Editors

Tutorial
Basic html
Netscape
Composer

Creating Learning Networks for African... wavelength.

- Derive and use the expression $\mathbf{v}=\mathbf{l} \mathbf{l}$.
- Perform and describe experiments to demonstrate progressive wave.
- Explain phase of vibrations.
- Derive and use the expression $\mathbf{y}=\mathbf{A} \boldsymbol{\operatorname { s i n }} \mathbf{2 p}(\underline{\mathbf{t}}-\underline{\mathbf{x}})$ and explain the

T I
significance of \pm in the equation.

- Relate amplitude and frequency with energy.
- 6.2 Superposition of waves
- Principle of superposition
- Stationary waves and their properties.
- Interference and beats, Doppler effect.
- Longitudeinal stationary waves and air columns, resonance.
- Stationary waves and stretched strings including the relation

$$
\mathrm{v}=\underline{1} \ddot{O}(\mathrm{~T} / \mathrm{m})
$$

2L

- Overtones and harmonies.

Examples

Teaching

Syllabus

Teachers' Notes

Subject Website

Lists

Students
Website
Art
Principles of Art
Elements of Art
Coloured Pencil
Paintings
Pastel Paintings
Book cover

Posters

Scanning an image

Assessment objectives

By the end of this topic, the student should be able to:

- State and use the principle of superposition of waves.
- Explain interference fo waves and occurrence of beats.
- Derive and use the expression for beat frequency.
- Explain Doppler effect.
- Derive and use the expression for Doppler shift.
- Explain the formation of a stationary wave.
- Explain the terms node and antinode.
- Perform and describe experiments to demonstrate formation of
stationary waves.
- Derive and use the relation $\mathbf{v}=\underline{10}(\mathbf{T} / \mathrm{m})$ for a stationary wave in

2L

a stretched string.

Creating Learning Networks for African...

- vescribe appiıcatıons ot statıonary waves in strıngs.
- Perform and describe experiments to demonstrate longitudinal stationary
waves in air columns using open pipes and closed pipes.
- Demonstrate and explain resonance.
- Explain overtones and harmonics.
- Perform and describe experiments to measure velocity and frequency of
sound, using open and closed pipes.
- Derive and use a relationship between the frequency and length of an air
column.
- Perform and describe experiments to show variation in speed of sound in
different media and explain the variation.
- Explain the dependence of speed of sound in air on

(Next Page (Units (Top of Page) (Previous Page)
Presentation Software \| Spreadsheets | Databases \| Word Processing
| HTML Editors
Computer Literacy | Common Applications | Pedagogy \& Internet |
Infrastructure Guides | Home
Home"" """"> ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

Creating Learning Networks for African Teachers

UNESCO PROJECT (Contract No. 408.302.9)
Home | Computer Literacy | Common Applications | Pedagogy \& Internet I Infrastructure Guide

Background

- 6.3 Wave theory of light
(18 Periods)

COMMON APPLICATIONS

Presentation

Software

Tutorial

Introduction
Background
Text
Slides
Graphics
Animations \&
Timings

Examples

Mitosis
Digestive
System
Matrices
Simple Cell
I:~んな~~:~~
D:/cd3wddvd/NoExe/.../meister10.htm

* Huygen's construction as applied to reflection and refraction.
- Speed of light in air.
- Interference of light and its apllications.
- conditions for interference.
- Young's double slit interference; derivation of
I = aDx

D

- thin films.
- Diffraction
- demonstration of diffraction using water wave in a ripple tank. single slit diffraction of light.
- plane transmission grating and application of formula $\mathbf{d s i n q}=\mathrm{nl}$
in the determination of wavelength.
- Polarisation
- as a phenomenon associated with transverse waves.

25/10/2011
니yIILeIIIIy
Conductor
Discharging
Tube
Human Eye
Telecollaboration
Creating Learning Networks for African..

- producing polarised light by reflection, double refraction, selective absorption and scattering.
- application of polarisation.

Assessment objectives

Links

By the end of this topic, the student should be able to:

Spreadsheets

Tutorial
Introduction
Worksheets
Columns \& Rows
Charts

Examples

Refraction of
Light
Solving
Polynomial

Equations

Workers'

Database
Base Converter

Activities

Links

Databases

Tutorial
Introduction

Example
Periodic Table

Links

Word
Processing
Tutorial

D:/cd3wddvd/NoExe/.../meister10.htm

Creating Learning Networks for African...
optical as applied to light.

- Explain interference by "division of wave fronts".
- Describe Young's double slit experiments.
- Explain destructive and constructive interference.

Derive and use the equation $\mathbf{I}=\underline{\mathbf{a D} \mathbf{x}}$
D

- Describe an experiment for measuring I using the double slit
arrangement.
- State factors which determine the appearence of fringes.
- Explain interference by "division of amplitude".
- Explain interference of light waves in thin films.
- Perform and describe an experiment to demostrate diffraction of water
waves in a ripple tank.
- Explain diffraction of waves.
- Describe plane transmission grating.

25/10/2011
Introduction
Text
Page Properties
Printing
Quit

Examples

Address list
Time table
Newsletter
Repeat Patterns
Logos

Practical

Questions

HTML Editors

 TutorialComposer

Examples

Teaching
Syllabus
Teachers' Notes
Subject Website
Lists
Students
Website

Art

Principles of Art
Elements of Art
Coloured Pencil
Paintings
Pastel Paintings
Book cover
Posters

Scanning an

image

Presentation Software \| Spreadsheets | Databases | Word Processing | HTML Editors
Computer Literacy | Common Applications | Pedagogy \& Internet |
Infrastructure Guides $\mid \underline{\text { Home }}$

