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Abstract:
The mathematical analysis of hydraulic ram-pumps began soon after their invention in the late 18th 
century. However simple models of adequate accuracy for use by system designers, pump 
manufacturers, installers and operators are still not available. This paper describes algebraic models 
of varying complexity for use by system and pump designers and by those involved in training 
installers and users. It argues that a pump plus dnvepipe, rather than pump alone is the natural unit 
for modelling and for characterising performance in applications literature. Behaviour is shown to 
depend primarily upon three parameters. The first is X, the ratio of peak drive flow (which depends 
upon tuning) to the pump's maximum flow with its impulse valve locked open. The second is p., the 
ratio of peak drive flow to the 'Joukowski' flow just sufficient to achieve the system delivery head. 
The third is R> the ratio of delivery head to drive head. The analysis shows some of the trade-offs 
entailed in tuning, indicates the optimum choice of drivepipe and explains certain forms of 
malfunction observable in the field. Several rules of thumb' are derived. The paper also indicates 
areas where the greater precision of computer simulation over algebraic modelling is desirable.
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1. INTRODUCTION

This  pap e r  descr ibes  a n u m b er  o f  analyt ic models ,  o f  varying degrees o f  complexi ty ,  for  represent ing 
hydraul ic  rum pumps.  It examines  how such models  can be used to opt imise  tuning,  explain 
anom alous  behaviour ,  aid sys tem des ign and help in the design o f  better pumps.

T h e  hydraul ic  ram pump,  a wate r-powered water-l if t ing device ,  is o f  som e  antiqui ty ,  having been 
deve loped by Whitehurs t ,  Montgol f ie r  and others during the e ighteenth  century.  A l though  its heyday 
was  the late 19th century,  there are over  twenty  manufactu rer s  wor ldwide still produc ing machines . 
T h e  ram p u m p  performs  the sam e role as a low-head high-f low turbine dr iv ing  a h igh-head low-f low 
pump;  it is h o w e v e r  much s impler  than a mrb ine-pum p set as it contains only  tw o  m o v in g  parts,  each 
a type o f  valve.  T h e  ram pump is mainly used to lift dr ink ing water  f rom  small  s t reams in locations 
whe re  elect rici ty is not available and engine-dr iven pumps  would  be costly to operate.  T h e  ram pump 
operates  cont inuous ly  but usually at a low pow er  level (typically 50 to 20 0 watts),  h igher-powered 
p u m ping  being m o re  easi ly achieved by other  means.

T h ere  is current ly  a revival  o f  interest in ram pum ps  in deve lop ing coun tr i es  and (due to changing 
tari ff  s tructures fo l lowing privatisation o f  water  suppl ies) in some industrial ised countries  too. 
Renewable  ene rgy devices  in general  are exper iencing a co me- back  usual ly ac companied  by design 
im pro vem en ts  resul t ing f rom new mater ia ls  or  new understanding.  R am  pum ps ,  not withstanding 
their s imple  const ruction,  have also undergone some des ign changes  af fec ting their cost  and 
per formance.  More  impor tant  to their wider  use have been organisa tional  cha nges  (reducing the 
commun icat ion  di ff icul t ies  betw'cen manufacturers ,  installers and potential  users).  In developing 
countr ies popula t ion growth is caus ing expansion o f  rural set tlements  located higher  than spring lines 
and intensi ficat ion o f  agr icul ture through irrigation.  Both o f  these increase the d em an d  for water- 
powered  pumping .  T h e  revival o f  interest has been reflected in several  new publ ica tions  (SKAT.  
Jeffery 1992, Knot  1992) and some t ransfer  o f  manufacture  to S. Amer ica  and Afr ica from other 
cont inents.

T he  mode l l ing  o f  ram p u m p  behaviour  also has a considerable  history (e.g. Eyte lwein  1805, Lorenz 
1910, O'Br ien &  Go sl ing 1933. Krol 1951, Rennie & Bunt 1981. G lo v e r  & Boldy 1990),  although 
there is little ev iden ce  o f  such improvemen ts  in unders tanding affecting p u m p  des ign or  installation 
practice in the past.  T w o  fairly recent deve lopm ents  have facilitated the devis ing o f  better models - 
improvemen ts  in inst rumentat ion have m ade  it easier  to observe the com plex  m o v em en t  of  shock 
waves  in actual systems,  and the dramat ic  drop in computa t ion cos ts have permit ted the use of 
s imula t ion m ode l s  us ing short  t ime steps (e.g. 0.1 millisec).

Thi s  pape r  arises f rom the work of  the Deve lopment  Tec hno logy Unit  at Warwick  University over 
nearly ten years  on the identification o f  social  and technical  const ra in ts  to ram p u m p  use,  on the 
deve lo pm e n t  o f  low-cost  pumps  for local manufacture  in areas o f  use and on the t ransfer  o f  system- 
installat ion skills into ten deve loping countries.  Out  o f  that work the need for,  and the l imi tat ions of, 
model l ing  have bec om e clearer.

2. REPRESENTING SYSTEM PERFORMANCE

The key co m p o n en t s  o f  a ra m - p u m p  sys tem are shown in Figure 1. Alt o f  these have propert ies  that 
affect  sys tem per formance.  There  are some com plex interact ions  between these com po nent s ,  so that 
little m ean in g  that can be at tached to the "performance"  of  the p um p in isolation.  W hen  analys ing the 
opera t ion o f  a m o re  convent ional  motor ised  p u m p  it is possible to characterise the pum p and the rest 
o f  the hydraulic circuit  separately and to then com bine  these characterisat ions .  T h e  behav iour  o f  a 
ra m -p u m p  is so s t rongly inf luenced by the nature o f  its drive pipe that this sort o f  analyt ic separation 
o f  sys tem par ts is not helpful.
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Fig. 1 Components of a ram -pum p system

T he  com ponen t s  o f  the sys tem have the fol lowing genera! characterist ics that influence overall  
performance.

Feed pipe .. this has a head  loss (dependent  upon its length,  d iameter ,  roughness  and the mean flow 
£},) which can be readi ly ca lculated  independent ly  o f  o ther  sys tem co mponen ts .

Drive tank .. this is usual ly o f  sufficiently large surface area that it has negl igible effect  on sys tem 
output  and once  sized can be left out  o f  any further analysis.

Drive pipe ... this has a drop {/ / )  that enters into even the crudest  o f  per formance equat ions ,  a slope  
(S) that pr imar i ly  de te rm ines  the wa ter  accelerat ion dur ing the accelerat ion phase o f  pumping ,  an 
ov e r a l l .friction fac tor  (relat ing friction head loss to instantaneous  wa ter  flowrate)  and an area  (-4) that 
relates veloci ty to fiowrate.

P u m p ........... this has a tuning contro l  that determines  the dr ivef low at the onset  o f  impulse valve
closure ,  an im pulse  valve  whose  inertia and fluid drag determines  speed o f  c losure  once  initiated and 
whose  aperture  when open de te rm ines  friction and kinetic energy losses dur i ng  the accelerat ion phase,  
a delivery  valve  whose  fr iction when open  and W'hose inertia when open ing and closing help determine 
p u m ping  ef f ic iency and finally a f low -sm ooth ing  dev ice  (e.g. pressure vessel)  which if adequately 
sized has  iittle effect  on sys tem  performance.

D e l i v e r y ....... this com pri ses  a delivery  p ip e  carrying a s teady f low (q)  whose  friction head loss is
readi ly and separately ca lculable  us ing standard formulae ,  and a storage tank  which once  sized (e.g. 
for  12 hours s torage)  has little effect  on mean sys tem performance.  Th e delivery  height (h)  o f  course 
determines  the outlet  pressure at the pump.

When  we co m e  to character ise the performance o f  a sys tem having a g iven site, p u m p ,  dr ive  p ipe etc. 
we normal ly  treat the fo l lowing as output  (dependent) variables:
(i) de l ivery  f low q
(ii) mean drive How <9;. taken as an average  over  many cycles



(iii) beat rate / (cadence)  b , p u m p  cyc les  per second
(iv) ef f ic iency r|, o f  the pump alone (not an easily def ined enl ity) ,  o f  the p u m p  plus  dr ive  p ipe or 

o f  the whole  sys tem.  Eff ic iency is t reated as a  k now n  constant  ( i nd ependent  var iable)  in crude 
mode ls  and as a depen den t  var iable  in m o re  e laborate models.

The normal ly  de te rm inab le  independen t  var iables  are
(i) de l ivery  head h, or  a h igher head li  that inc ludes  friction iiead loss in the del ivery  pipe 
(li) dr ive  head H , usual I y measured f rom  the drive tank and hence  al ready a l lowing  for feedpipe 

friction head loss
(iii) dr ive  pipe ef fec tive slope 5. def ined as drive head H  divided by drive pipe length L  (S  has a 

so m ew h a t  m o re  direct  influence on pe r formance than L)
(iv) p u m p  set ting Q n„ the f low at which the impulse valve  has been tuned to c o m m e n c e  closing; 

this in com binat ion with o ther  var iables  determines  the peak dr ivef low Q fi occurr ing during 
each cyc le  (a key var iable in mos t  analyt ic models)

(v) dr ive  p ipe area A
(vi) drive pipe type,  and hence firstly its friction coefficient and secondly its wall st iffness that 

de t ermines  the veloci ty o f  sound in the water within it
(vii) p um p  type,  and hence its interna! frictions,  exhaust velocity for a given dr ivef low and impulse 

valve-c losure  speed.

W e have thus  a p lethora o f  independent  variables whose  num ber  is tolerable for ent ry  to a 
computer ised  model  but is intolerably high if we intend to prepare graphs o r  tables to be used by a 
sys tem des igner  in the field.  (Indeed for a des igner  even the heads  H  and h are i terative variables 
since sys tem des ign includes  select ing between al ternative water  sources  and p u m p h o u s e  sites).

T he  list o f  var iables  abo ve  does  not include feed pipe or  del ivery pipe characterist ics and for the rest 
o f  the pape r  these will be assumed to be reflected in the values  used for drive head H  and effective 
del ivery head In pract ice these pipes will be sized,  taking into account  their probably large 
contribut ion to sys tem cost,  to give hydraulic 'efficiencies’ o f  around 95%  or  even 9 0 %  for each: thus 
H  might  only  be 90% o f  the drop from source to pumpl iouse  and It = h!0.90.  In all our  models  we 
will be represent ing only that p a n  of the sys tem between the ent ry to the dr ive  pipe and the ent ry to 
the del ivery pipe.

O f  the seven independent  var iables  listed earlier,  we might com bine  the last three for purposes  of  
d isplay  output  character is t ics ,  producing graphs  or  tables for a par ticular  combinat ion of  pum p and 
drive pipe type (e.g. pum p X Y Z  when used with a 110 m m  OD, 10 bar,  P V C  drive pipe).  This  leaves 
for independent  var iables,  two more  than can be handled by a single readi ly readable graph or  table. 
It is useful therefore to identify the degree  o f  influence o f  these input var iables  upon the main  output  
variables.  Tab le  1 shows such an influence chart.  Th e ent ries in the chart  are based on exper ienced 
es t imates  o f  (the m o d u lu s  of) sensit ivity |£|

with y  being regarded as the dependen t  variable.  T o  em ph asi se  the sensi tivit ies,  de l ivery  head h' and 
head ratio R -  t i /H  are used ra ther than /;' and H .

Sensi tivi ties o f  each output var iable to each input var iable (act ing a lone) are allocated into four 

categories:

where £
|r)y / Q.\

y /  x

H = high sensit ivity 
M =  m ed iu m  sensi tivity 
L -  low sensit ivity 

V L  = verv low sensit ivity

0.3 < \E\ < 0 . 8  
0.1 < |£|  < 0.3 

|E| <0.1

|£'| > 0.8 over  most  o f  both var iables '  ranges
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Table 1: Influence of Independent Variables on Performance

Output Variable (y)

Delivery flow Driveflow Beatrate Efficiency

Q fid b A

Input variable (*)

Pump setting H H H M
Head ratio R H VL L L
Delivery head h' M L VL M
Drivepipe slope 5 VL L H VL

Of these output variables, beatrate b is of no fundamental importance but may be used as a tuning 
indicator by operators. Mean driveflow Qa may be constrained by the available source flow <2S and 
hence should be known. Delivery flow is of primary interest to the system designer and knowledge of 
efficiency is useful when choosing between models of pumps. Of the independent variables, pump 
setting Qck and head ratio R are the main determinants of behaviour, with delivery head h' having a 
strong influence near the top of its range. Figure 2 illustrates the form of the relationship between 
inputs and R and the outputs q and QA.

Fig. 2 Characteristic for pump type M8 with 50 mm drive pipe when tuning (Qcc) is varied 
(delivery head of h' = 80m, drive pipe slope 5 = 0.4, drive head H -  2 ,4 or 8 m)
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3. MODELS

3.1 Algebraic and Simulation Models Compared

Algebraic  model s ,  invariable entai l ing the use o f  approx ima t ions  to keep them manageable ,  are suited 
to appl ica tion by 'hand'  or  by  small  co m p u te r  to a range o f  activities - educat ion,  sys tem des ign,  pump 
selection and p u m p  des ign.  Because il is di fficult  to solve some o f  the equat ions ,  such models  are 
often em ployed  i teratively to indicate the performance,  for  example  o f  a guessed-a t  sys tem design, 
and h ow  it might  be improved  by a change in parameters.

Users o f  r a m - p u m p s  are not,  general ly specialist  engineers.  Some installers have little education and 
cannot  unders tand any algebraic notation.  A major  use o f  mode ls  therefore  is to prepare design 
in format ion even at the level o f  "rules o f  thumb".  In fact three levels o f  m ode l  complexi ty  can 
usefully be d is t inguished.  S imple  mode ls  are those operable  by (some)  water  technicians .  Standard 
models  are usable by mach ine  or  sys tem des ign engineers,  by manufactu re rs  to prepare charts and 
tables and for  t rain ing demonst ra t ions .  Research mode ls  are primari ly for p u m p  designers.  Th e Third 
World  bias in r a m - p u m p  usage makes  it particularly difficult  to co m m u n ica te  and support  models  in 
lhe form o f  c o m p u te r  software.

T im e-s tep  (or-evcnt-s tep) simula tion models ,  usually based on the met hod  o f  characterist ics to 
represent t ransient  Hows in the drive pipe,  have been developed for ram p u m p s  (Glover) .  T h ey  are 
powerful  but so costly o f  co m pu t ing  power  that they are primari ly useful for  a iding pump des ign or 
expla in ing sys tem p h en o m en a  ra ther than calculat ing rout ine pe r formance graphs .  Like all numerical  
t echniques ,  these s imula t ions  deal  with the par ticular - the influence of  a par t icular  variable can only 
be explored by repeated  s imulat ion ’runs'  in which di fferent values  o f  that var iable  are used. Wish 
small  computer s ,  even with 486  processors,  t ime-s tep  s imulat ions o f  ra m - p u m p  sys tems run at only a 
small  fraction {e.g. 1%) o f  real time.

This  pape r  restricts i tself lo ' simple'  and 'standard'  algebraic models  and their use.

3.2 Simple Models

The s imples t  mode l  o f  a ra m - p u m p  em pl oy s  the concept  o f  p ow er  balance and ef f ic iency to give: 

output  p o w e r  -  input p ow er  x efficiency 

pg  q l i  = pg  Q a H x  r|

q  = y \ Q J R  where  head-ra tio R -  l i /H  | l |

Th e  ef fic iency t] so def ined var ies widely  with opera t ing condit ions,  fall ing to zero  i f  is too small 
or R  is too large.  Manufacturers  tables are ho w ever  usually based on an assumed constan t  efficiency 
and users are often  advised o f  constra ints outside which they should not stray. Equat ion [ 5 ] probably 
represents  the highes t  level o f  mathemat ica l  complexi ty  one  can expect  any field wo rker  or  water 
technician to handle.

A mode l  that can be em ployed  in the teaching o f  field s taff  is the ' lumped-sys tem'  one whe reby the 
p um p cyc le  is broken into two phases.  Dur ing an accelerat ion phase the waiter in the drive pipe 
accelerates  und er  the drive head / / ,  that is at rate a  = g l l /L  = i>S. Dur ing the decelera t ion phase the 
wa ter  decelera tes  under  a reverse head o f  l i  -  I I  g iving a  = # {H -  h")IL -  ^5(1 -  R). This  model 
neglects friction or  the kinetic energy in the exhaust  water; it also treats the water  in the drive pipe as 
incompress ib le  and hence fails to predict the negative pressures  dur ing  end-o f-cycie  rebound that are



impor tant  for  p u m p  opera tion.  H o w e v e r  this lumped-sys tem model  hits several  s imple  vi rtues that are 
not ser iously af fected by the ra ther dras tic app rox ima t ions  inherent in it.

T h e  veloci ty prof ile that the mode! genera tes is shown in Figure  3 super imposed upon a m ore  realistic 
one.

Fij*. 3 Velocity profile predicted l>y friction less luniped-system model 
(Actual profile shown dashed)

Th e approx imat ions  result in predic t ions o f  accelerat ion phase t ime a little shorter  than reality ta, 

a de l ivery phase o f  about  the right duration ( t d =  td) and no rebound t ime ( i r = 0 ) .  H o w e v er  in 

normal  opera tion the dr ivepipe  friction causing ia to exceed tu will be fairly smal l and the rebound 

phase  may be short.  Within  about  10% accuracy this model  correc tly  indicates the fol lowing.

(i) T he  cycle  t ime is dom ina ted  by the accelerat ion phase.

(ii) For high head ratios (R > 1 0 so r. = r j ,

peak veloci ty -  # .S' r  (ic is cycle  t ime) 12]
mean dr ive f lowrate  = 0.5 A i'„

(iii) T he  shape o f  the dr ivef low-versus- t ime plot.  Fig. 4 will be rough ly  a sawtooth  (since Q = A v) 
for which the fr iction correc tion factor is

averasie head loss with sawtooth  f low pattern
cr- = ------- -— — ---------------------- 1--------  = 2 13)

head loss at same Q t, but f lowing steadily
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Fig. 4 Flowrate versus time predicted by frictionless lumped-system model

Thus drive pipe and exhaust kinetic energy losses can be first calculated assuming Qd flows constantly 
and then doubled to allow for the waveform. Derived f rom this and the assumption that neither pipe 
friction loss nor waterflow kinetic energy should exceed, say, 10% of input energy gives two rules-of- 
thumb:

ROT.] "Drive pipe size should be such that its headless when carrying steady flow  Qd does not exceed 
5% o f H".

ROT.2 "The maximum height to which exhaust water sprays above the impulse valve (just before the 
latter closes) should not exceed 20% o f H" (Height assumed proportional to KE, maximum 
flow  rate Qp assumed to be twice QJ.

For any specific tuning, the pump manufacturer couid describe the pump's friction and kinetic losses 
by specifying an equivalent length of (standard diameter) drive pipe Lpe. Drivepipe plus pump can be 
replaced by a simple but longer drivepipe (length L + Lpe), enabling a designer with access to pipe 
friction tables to apply:

ROT.3 "The headloss through drivepipe and pump together when carrying steady flow  Qd should not 
exceed 10% ofH".

3.3 Acceleration Phase Models

The acceleration phase model above neglects various important effects, most noticeably factors which 
retard the gravitational acceleration. More accurate models were developed long ago but are not 
usually of a form convenient for a system designer.

The acceleration phase can be deemed to start when the water in the drive pipe starts to move 
downwards again (following its upwards recoil movement at the end of the previous cycle). Although 
shock waves may still be travelling up and down the water in the drive pipe, their amplitude should be 
small enough that the whole water column can be treated as having a single, initially zero, velocity.
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It can readily be shown that the instantaneous acceleration of the drive pipe water satisfies
dv 2
—  = g S  {I -  kvz ) [4]
dt

So that acceleration terminates when

v = v, = k J [5]

The retardation factor k reflects the headloss at drive pipe entry, plus that due to drive pipe friction, 
that caused by friction within the pump and the velocity head 'thrown away' in the waste water. The
head loss due to all these factors can be expressed as a multiple of the velocity head in the pipe

2

= C x —  {where C = 2gW x k) [6]
2g

and C = Cj + C2 + C3 + C4 [7]

where Cl is pipe inlet loss coefficient, typically 0.2 to 0.5
C2 is pipe friction coefficient fLlD  and / i s  typically 0.02
C3 is pump loss coefficient, typically 1.5 but may be much higher
C4 = A2JAe where A is the pipe’s cross-sectional area and Ae is the effective area of the 

discharge aperture of the impulse valve.

The first of these coefficients is usually negligible compared to the others, especially if the drive pipe 
inlet has a bell mouth. For practical purposes:

k = kd + k p [81

where kd (representing the drive pipe) equals C2I2gH and kp (representing the pump) equals 

(C3 + C4)/2gW.

For the pump designer the minimisation of k is an objective, especially by maximising Ae to keep C4 
small and having large internal channels to keep C3 small. kp varies with pump tuning. For the system 
designer maximum economy comes from matching drive pipe to pump so that kd is neither much 
greater than kp nor much less. This fixing a pump (with impulse valve jammed open) onto a 
previously open-ended drive pipe should not reduce the flow through it by a factor more than 1.7 
(implying k < 2 kd) or less than 1.22 (implying kp > kJ2).  A rule-of-thumb that arises out of this 
analysis is:

ROTA "The area o f the impulse valve's exhaust aperture should not be much smaller than the drive 
pipe's cross-sectional area".

Returning to equations [4] and j'5], solving and relating all velocities to the maximum velocity 
attainable, gives

2T 1 C — |
normalised velocity, X = v /  = ----------  [9]

e 2T + 1

where normalised time, x = t / 1 (and where X = X t  = x = t / 1 )
y '  o v p  m it ‘  o 1

and reference time, t0 = /gS (time to reach the velocity were there no retarding influences)

8



The relationship is plotted in Figure 5 where the normalisation is also illustrated.

Fig. 5 Variation of water velocity during the acceleration phase
(X -  v / and \  = 1 1T0 are normalised values)

This model is helpful discussing pump tuning. Tuning indirectly determines the peak velocity v at 
which acceleration terminates. As the purpose of the acceleration phase is to convert potential energy 
(height) into kinetic energy, we are interested in efficiency and power (rate of forming KE). Both of 
these are functions of v .

Figure 6 shows the efficiency and the normalised power of the acceleration phase as a whole, as 
functions of the normalised peak velocity at impulse valve closure (A, -  v = Q JQ J. The relevant 
algebraic expressions are:

n. = -x \ im-x \ )

pH  X
= PAL. ---- .v„ x -

2 x
[10]

r = t  ta  t o * . /g s

9



Fig. 6 Efficiency and power of the acceleration phase 
(Vp is velocity at the end of the phase)

During the acceleration period the average velocity is about half the peak (final) velocity. The 
average and peak flows are similarly related. The acceleration time is close to v j g  S  being actually:

v, ln{(l +  A, )/(1 —A, )} 
t = —— . ------------ -----------------

and the average velocity during acceleration is given by:

va Qa - l n ( l - ^ y )

vp ~ QP ~ \ P ln{(l + * . , ) / ( l - A . ,}

Which tabulates as Table 2

Table 2______ Mean acceleration flowrate and acceleration time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (1-0)

gS/vp 1.00 1.00 1.01 1.03 1.06 1.10 1.16 1.24 1.37 1.64 (°°)

G. l \ Q , 1.00 1.00 1.01 1.02 1.03 1.05 1.07 1.11 1.16 1.25 (2)

n. 1.00 0.99 0.98 0.95 0.92 0.87 0.81 0.72 0.62 0.49 (0)
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From Figure 6 it is obvious there is no purpose in setting X higher than 0.8 (i.e. peak drivepipe flow 
equal to 80% of its maximum possible value). Maximum acceleration power occurs at X = 0.8 but the 
efficiency is then low, r\ ~ 63%. A much lower flow setting is usually preferable, for example X = 
0.47 will give 75% of maximum power but raise acceleration efficiency to rj = 90%. Although there 
are other factors to be discussed in the next section, Figure 6 illustrates the main trade-off between 
throughput and efficiency involved in tuning. It can also be used in reverse, in the sense that a 
designer could work back from a desired mean drive flow Q6 and desired acceleration efficiency to 
estimate the necessary limiting flow (Q„ = A v j .  From that the value of k in equations [4] to [8] is 
implied for which a suitable pipe and pump can be selected.

Refinements to this model are possible but do not greatly affect Figure 6. For example the previous 
recoil phase may have left the lower part of the drive pipe empty at the instant that forward motion of 
water recommences. This will have the effect of reducing the coefficients in equation [7] (e.g. C3 = 0, 
C4 = 1) until the water-air interface has passed back through the pump again. With normal recoils this 
lessening of friction at low velocities has negligible effect.

Representing, in fine detail, the flow behaviour during the last milliseconds of impulse valve closure 
is beyond the practical scope of algebraic models and is an area where simulation models give better 
insight. There is little evidence that the assumption of instantaneous valve closure will seriously 
falsify conclusions drawn from the acceleration model described above.

The acceleration phase model developed above does not readily yield a rule of thumb for pump tuning 
other than

ROT.5 "Pumps tuned to have very long cycle times (e.g. tc over 3 seconds) will be very inefficient".

This rule is illustrated by Fig. 7: Ta is typically 0.5 to 1.5 seconds and ta is typically 90% of measured 
cycle time /c.

Fig. 7 Variation of acceleration efficiency with normalised acceleration time
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3.4 Delivery Phase Model

During the acceleration phase the water in the drive pipe is building up its kinetic energy. It is 
accelerating because the impulse valve at the bottom of the pipe is open to atmosphere. During the 
delivery phase this impulse valve is closed and the flow is diverted through the delivery valve which it 
has forced open against a back head of h' (delivery head plus delivery-pipe headloss). The large net 
retarding force on the column of water in the drive pipe (A x pg(h'-H)) causes it to decelerate rapidly. 
The detailed mechanism of this retardation is more complex than that assumed in Fig. 5 and comprises 
a sequence of shock waves travelling up and down the pipe. The overall effect of the delivery phase 
is to consume the kinetic energy formed during the preceding acceleration phase, using it to pump 
water. At the end of the delivery phase there is a small residue of kinetic energy that has not been 
used: this drives a water-recoil process namely the 'recoil phase’.

The transition between acceleration and delivery phases is very complex and must be idealised if 
algebraic models of tolerable complexity are to result. The sequence is as follows. Once the drive 
flow Q has exceeded the set threshold Q^, the impulse valve starts to close (conveniently visualised as 
a piston moving towards a hole smaller than itself)- The flow continues increasing, beyond Qcc, while 
the piston of the valve accelerates. As the piston gathers significant speed the fraction of the flow 
pressing round the piston decreases while the fraction following the piston increases (the latter is equal 
to piston area times piston velocity). The velocity of the former however increases, since the annulus 
through which it has to pass is rapidly getting thinner, causing the back pressure behind the piston to 
rise. The acceleration of the drivepipe water therefore diminishes and finally goes negative. By this 
time the piston is close to striking its stop and the first (annulus passing) fraction has a very high 
velocity manifest as a visible spurt of water above the valve. In the last millisecond of valve closure 
the exhaust flow falls to zero, the piston hits its stop and the pressure in the pump body rises 
precipitately to the Joukowski (or water-hammer) head hy Provided this is higher than the delivery 
head h\ the delivery valve will be pushed open and the head will then fall back to h' + hL where hL is 
the friction headloss through the delivery valve. The Joukowski head is thus maintained for a very 
short time whose duration depends on the velocity of sound, the distance from the impulse valve to 
the air-water interface above the delivery valve and the inertia of the delivery valve.

This sequence is portrayed in Figure 8 which represents approximately ten milliseconds of the change 
over between acceleration and delivery phases. The idealised model in Figure 8(b) is suitable for 
performance predictions but not for estimating the fatigue life of components. The boundary between 
acceleration and delivery phases has been taken as the instant the pump body pressure head has risen 
to the drive head H. Modem instrumentation provides ready confirmation of the 'actual' pressure 
transient but not of the flow transient: velocity sampling every 0.1 milliseconds is too expensive.

In Figure 8(b) the net effect of energy losses (e.g. lost piston KE) during the last instants of valve 
closure are replaced by a step reduction Qa  in the drive pipe flow. The further drop Q} corresponds 
to Joukowski velocity drop in a shock wave whose pressure differential is pg x (h" -  H)

Qj = A vj and vy -  — ( /r  -  H) [11]
c

where c is the effective velocity of sound in the drive pipe and h" -  ti + average delivery valve head 
loss. The quantities c and h" will be discussed later. In our idealised model, which draws upon the 
work of O'Brien 1933 and Rennie 1980, the delivery phase starts with flow out of the drive pipe (i.e. 
into the pump body) dropping suddenly from Qp' to Qp' -  Q} and the head rising suddenly from H to 
h". This initiates a shock wave that travels up the drive pipe, at speed c to arrive at the drive tank after 
transit time

T  = L/c [12]
12



The pressure distribution along the drive pipe is further assumed to have been the static distribution 
corresponding to steady conditions of no flow, i.e. head equal's zero at the drive tank surface and H at 
the pump entry. Effectively we are neglecting the effect of drive pipe friction during the delivery 
phase.

Drivepipe flow

(a) probable actual behaviour (b) idealised behaviour
Fig. 8 Transition from acceleration phase to delivery phase 

(over a few milliseconds around time /a)

In the acceleration-phase model of section 3.2, behaviour depended on the peak drivepipe water 
velocity normalised with respect to its maxi mum possible value; A. = v Jv„ = QJQ„ . In the deli very-
phase model behaviour depends on the velocity (and flow) normalised with respect to the Joukowski 
velocity defined in equation j 11 ]. We therefore need to define another normalised flow

V- = Q.IQj and its initial value p., ~ Q JQ }

Consider now the flow and pressure at a point in the drive pipe very close to the pump. Its form will 
be as in Figure 9.

In Figure 9 the shaded area is proportional to the water pumped per cycle. The dashed curve (A) is 
the behaviour we should expect if the delivery valve were to remain open; however to avoid reverse 
flow it is designed to close almost instantly. The dashed curve (B) is the projected behaviour
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following delivery valve closure. However the negative pressures so generated will usually take the 
absolute pressure below atmospheric, causing air to be drawn through the (high friction) snifter valve 
and shortly afterwards through the (low friction) impulse valve when it has reopened a little. 
Consequently trajectory (C) will be followed.

Figure 9(a) was drawn for p., = 3.3 whose integer part is odd. Figure 9(b) shows the different 
behaviour when the integer part of ji, is even.

Normalised flow 

H

time

(ur = U j - 4  + H/Ah )

■t
Head in pump

H

T

i
H*(uj-4)Ah

+ +
T 2T 3T AT 5T 

H-{ pj-4)Ah

Fig. 9 Pressure and normalised flow at pump entrance
(A) delivery valve remains open (B) delivery valve closes but impulse
(C) actual: delivery closes and valve does not reopen

impulse reopens 
Shaded area indicates normalised volume delivered per cycle

The discussions so far have emphasised the complexity of the delivery phase and the many 
approximations necessary to achieve a manageable algebraic model. The model developed - one of 
several possible - does however allow us to answer the following questions:

- how long td will the delivery phase last?
- what fraction of the kinetic energy developed during the acceleration phase is used in
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pumping (and what remaining fraction is therefore passed on to the recoil phase)?
- what therefore are the bounds within which |j.1 should be tuned to lie?
- what efficiency has the delivery phase?

From the graphs we can see that the duration of the delivery phase is an integer number of 
'reflections', where each reflection lasting 2T  is the passage of a shock wave up the delivery pipe and 
back. By inspection

td = 2 T  (1 + Int(p.t )) where Int( ) denotes 'integer pan o f  and (is > 1 [14]

(a) Fraction of available kinetic energy used during delivery phase and recoil time tT 
(f4is acceleration time if no friction)

Initial Rebound

(b) Head in pump body at start o f recoil phase
(hm = head below which the impulse valve reopens)

Fig. 10 Effect o f peak flowrate on energy utilisation and rebound
(Mi = Qp/Qj is normalised peak flowrate, where Q j  is the Joukowski flow rate 
corresponding to effective delivery head h"‘ H  is drive head)
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It can be shown that the fraction of kinetic energy,/dc!, applied to pumping is the shaded area (the (I - 
time integral) of Fig. 9 divided by (0.5 (ii T). (For various reasons it is correct with this model to 
exclude potential energy released by the water flowing down the drive pipe during the delivery phase).

The graph is of interest for several reasons. A low fraction (e.g. / del < 0.9) indicates a reduced 
throughput and a reduced efficiency. The throughput is lowered not only because some of the kinetic 
energy is not used but also because the unused part contributes to a long rebound time (discussed 
later) which lengthens the cycle of operation and hence reduces the effective power. The efficiency is 
lowered because any losses while accelerating the water cannot be recovered even though the rebound 
water returns to the drive tank. The delivered fraction/dd is generally acceptable for > 1.5 but falls 
sharply as jo., drops below 1.5.

Q ’ c
From [11] and [ 13] }i. = --------------  [15]

A g ( h " -H )

Low values of )J.( arise when delivering to very high heads (h" large), setting the pump flow too low 
(Qp' low), or using too large a drive pipe (A large) in combination with a low velocity of sound (c is 
low in plastic feed pipes). Clearly ^  should not fall below 1 (no output) and it would be unwise to 
drop below ^  = 1.5 (at which use-fraction is only./Jcl = 0.89).

Lastly there is the matter of delivery phase inefficiency. This has been represented by an additional 
friction head during delivery, increasing effective delivery height fi to h".

We can therefore define

delivery valve efficiency = h' lh"  [16]

where delivery valve headloss is

h " -h ' = - ^ - q l  [17a]
2g A

The delivery valve water-flow area AtW can be measured. The loss coefficient Cdv will lie between 0.8 
and 1.2. The mean square value of is not easy to estimate. The instantaneous delivery flow qdv has 
the staircase waveform shown in Figure 9, and therefore magnitude Q  x ji /  j i . . The flow-weighted

mean-value of (ji/|i,)2 rises from zero (at m = 1) to 0.45 (at m -  3) and then stays approximately 
constant for m > 3. In practice friction losses in the delivery valve are significant only at relatively 
low delivery heads and hence at large values of fa.,. For this condition and via a series of 
approximations we can come to

0-4 Q l  Q l
h"—ti  = —-----—  = ------— which is accurate within ± 30% [ 17bJ

12/4^

A pump designer can use equations [16], f!7bj in combination with the maximum value of and 
minimum value of h' to decide whether the valve area is sufficient.
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3.5 Recoil-phase Model

Water velocities during recoil are small so do not result in significant friction losses. Our interest in 
the recoil phase therefore centres on (i) whether the recoil suction is sufficient to reopen the impulse 
valve, and (ii) how long the recoil phase lasts.

From inspection of Figure 9 it can be seen that the initial rebound pressure satisfies Figure 11. 
However there exists a head Hw above which the impulse valve will not reopen and the pumping cycle 
will not continue. In Figure 11 the zones of width 25 indicate values of for which the rebound is 
inadequate. In an operational pump with a weighted impulse valve Hm is never greater than the drive 
head H, and is usually much less. As a first approximation we can take Hm as zero in which case:

§ = H/{h" — H) — l/(/? — 1) [IB]

As 8 = 1 represents the valve not reopening at any value of jXj (any flow setting), R  should never drop 
below 2 and it would be risky to use values of R below say 5 (25% chance of impulse valve failing to 
reopen). In practice the approximation behind [18] is a drastic one; however the observed phenomena 
of pumps being difficult to run at low head ratios and very high drive heads is confirmed. A pump 
with a sprung rather than weighted impulse valve will have a much higher value for Hm, usually 
higher than H in fact. Such pumps are therefore much less liable to failure of the impulse valve to 
reopen.

The simplest model of the rebound process is an energy one. An acceleration phase of duration 
results in the drive pipe water having a certain kinetic energy. At the end of the delivery phase a 
fraction approximately (1 - / dcl) of this energy remains which should cause a rebound of duration

X^ / W «  U91

This data is also plotted in Figure 10.

This analysis assumes constant acceleration/deceleration for a given pipe slope: it thus neglects 
friction effects which if included would reduce t j t% by typically several percent. It also assumes 
instantaneous reopening of the impulse valve, whereas in practice this is so delayed by inertia that 
some of the rebound energy is expended in sucking air through the tiny snifter valve hole. More 
fundamentally, the model assumes that during rebound the water column recedes, unbroken, back up 
the drive pipe. In reality water and air mix and their interface is geometrically very complex. 
Equation [19] may be taken to give a crude estimate of the rebound time tr It shows that under many 
operating conditions /f is not negligible and is especially large when (I, is close to 1 (i.e. when the 
necessary delivery head can only just be achieved).

3.6 Combining Acceleration, Delivery and Recoil Models

In the previous sections three models have been discussed. For the acceleration phase a lumped- 
system model has been used, for the delivery phase a distributed-system model (with reverberating 
shock waves), and for the rebound phase again a lumped system model. In practice shock waves 
continue to roam the drive pipe water column during rebound and die away during the subsequent 
acceleration phase. An algebraic model to represent these would be intolerably complex and add little 
to accuracy. The transition from phase to phase is complex and could only be fully modelled if the 
dynamics (drag, mass etc.) of valves were included. The transition from acceleration to delivery and 
from delivery to recoil entail irreversibilities that cause loss of work energy. The first is represented 
by the drop QcL in delivery flowrate shown in Figure 8, which reduces both efficiency and throughput. 
The second energy loss, at the start of the rebound phase, arises from any backflow through the
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delivery valve, any air or water friction in the snifter, or cavitation. It affects efficiency unfavourable 
but throughput favourably (since rebound time will be reduced).

During acceleration and rebound the impulse valve is open to atmosphere, and pressures at the bottom 
of the drive pipe have been related to atmospheric. During delivery, however, the impulse valve is 
closed and the model used has related pressures (heads) to a datum at the surface of the drive tank 
height H  higher. The change in datum has hidden certain minor energy transactions (kinetic energy to 
strain energy). The acceleration, delivery and rebound models can be combines as follows:

cycle time t3 = ta + rd + t( [20]

where the constituent times are defined by equations [9 ],! 14] and [19] and Table 2.

efficiency r[ = = Tja . r]acl. in the absence of recoil

•n f
rj _ ------ ----------- if recoil is significant [21]

i - i i a - / * , )

where r\t and ii()v are defined by equations [10] and [17], / dd by Fig. 10 and the acceleration-to- 
delivery handover efficiency T|a(, is typically 0.97.

delivered power P = Pt . riJ((. r\iiv. / dcl. t j t c [22]

where acceleration power Pi is given by equation 110].

driveflow Q,=  ^  + _  [23]

obtained by dividing drive volume per cycle (allowing for recoil flow) by cycle time (including recoil 
time).

Putting the three phases together gives Figure 11.

From this graph it can be seen than mean drive flow Qj is usually considerably less than the flow Qcc 
at which closure commences. {Q JQ ti is typically between 1.5 and 2.0). This yields the rule of thumb

Rot 6. "If the source flow  falls temporarily below the pump's mean driveflow Qd the pump will stop, 
usually with its impulse valve open. To restart the pump without human intervention the 
source flow  must increase to a level IV2 to 2 times Qa".

This rule implies that after a drive flow interruption pumps usually fail to restart without human 
intervention. This is a serious inconvenience in practice.
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4. THE APPLICATION OF ALGEBRAIC MODELS

In the introduction to this paper reference was made to the need to explain behaviour, prepare 
performance graphs/tables and develop rules for system design, pump tuning and pump design. Six 
such 'rules' were developed in the course of model building (section 3 above). Many more might be 
devised. The purpose of this concluding section is to illustrate the use of algebraic models via some 
examples.

Fig. 11 Driveflow over a complete cycle for high and tow driveheads
(Qp ^  Peak driveflow, Qcc is driveflow to start valve closure, Q^ is mean driveflow)

4.1 Explaining Phenomena and Improving Pump Design

Ram-pumps, for all their mechanical simplicity, display complex and sometimes 'temperamental' 
behaviour. Reasons for the latter include operation too close to some limit, and blockages and 
leakages in pipes. Two major causes of erratic operation are the presence of excess air in the drive 
system (often due to excessive recoil at the end of the delivery phase) and the failure of the impulse 
valve to reopen (insufficient recoil). Algebraic models help us understand both phenomena.

The recoil can be expressed as an energy fraction (1 - f tM, w here/ild is illustrated in Fig. 10(a)), a time 
fraction (Fig. 13) or a distance:

rebound distance L =(1 -/".,.,) — — [24]
2gS

where f M is determined by the ratio (i; of Joukowski head to delivery head. The term v2p / 2 gS is

rarely greater than 100 cm, and 1 - / dd is less than 0.11 for all ji, greater than 1.5 (see Fig. 10a). So Lt 
rarely exceeds 10 cm.

Excessive recoil is that which draws so much air back into the drive pipe that it is not swept out 
during the ensuing acceleration phase. Whether this occurs depends on Lr and the pump design. It is 
least likely to do so if the pump discharges under water or rises more than 10 cm from its drive pipe 
entry to its delivery valve. Conversely, air entrainment is most likely when the delivery head is near
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the maximum possible for the drive flow chosen < 1.5), or when a high-flow pump has a low-set 
impulse valve.

Failure to reopen due to lack o f recoil occurs when the pump is most efficient: f iel -  1.0 at m = 2 or 4 
or 6 etc.. This is illustrated in Fig. 10(b), where a zone of width = 25 is shown around each even 
value of H-j. Within this zone the pump may fail to reopen. Equation [18] indicates a relationship 
between 5 and the head-ratio R, suggesting serious probability of failure to reopen at low head-ratios. 
However any such failure is inconvenient. During start-up, when a pump generally fills up a delivery 
pipe from the bottom, the Joukowski ratio falls with each pump stroke. Such stait-up requires the 
continuous attention o f an operator if the pump may stop whenever m is close to an even number. 
Even worse the final full delivery head may correspond to fi, = 2 so that reliable operation is 
impossible until the pump is slightly retuned to change Qp and (via the Joukowski head hs) ji,. 
Equation [ 18] is a special case o f the more general relation:

width of failure zone 25 = 2(H — H) / ( h '  ~  H) [24]

So ideally we should like the head against which the impulse valve will just reopen (Hi0) to exceed the 
drive head H. The advantages and costs of raising HI0 may be observed from the following graph of 
impulse valve closure. Note that may be re-expressed as a force Fro keeping the valve closed (Fm 
= H:o • pg • valve area) which a spring force or the valve’s weight must just equal and oppose.

A Valve position i  Valve position

closed

open

V
/

/

time time
(a) Weighted valve (b) Sprung valve

Fig. 12 Forces and position variation during impulse valve closure
{ f c -  closure force due to water drag; F0 ^ opposing force; time is measured from start 
of valve closure)

20



Thus the use of a sprung impulse valve whose 'opposing force' rises as the valve closes (Fig 12(b) can 
give a much higher figure for FIO and hence Hm than a merely weighted impulse valve will (Fig. 
15(a)). A pump with the former is therefore less likely to stop, provided the valve's much slower 
closure doesn't cause other problems.

For the pump designer many issues - and desirable proportions - have been raised in the course of the 
analysis. Impulse valve and delivery valve losses should be tolerable at maximum drive flow. The 
last stage of impulse valve closure should take less time than that for a shock wave to traverse up and 
down the drive pipe. An impulse valve that will reopen against full drive head should reduce the 
chance of maverick operation. Certain design details cannot however be decided using the algebraic 
models of section 3. In particular the dynamics of the opening and closing of the two main valves 
require more specialised models to predict velocities and accelerations, peak stresses, back leakages 
and so on. Time step simulations have application to these tasks.

4.2 Calculating Pump Characteristics

It was argued in Section 2 that the pump and its drive pipe should be treated as an inseparable system 
for performance characterisation. The many equations of section 3 can be combined to obtain 
performance predictions of varying degrees of accuracy. It is difficult to avoid iterative calculations 
since the equations are numerous and complex. However an approach of adequate accuracy for 
practical purposes is as follows:

A peak flow Qp is selected.

The maximum possible flow QM is calculated from H. S, h \ A, kd and kp.

The normalised peak flow X? -  QJQ^ is obtained and used to predict acceleration efficiency rta 
and mean acceleration flow Q a. The Joukowski flow is obtained (<2j) and used to obtain the 
Joukowski ratio ji, = QJQy A modified value Qp' may be used if the acceleration-to-delivery 
transition efficiency T|a(i can be estimated. From this ratio (I, the energy delivery fraction / dd 
can be derived and any possibility of malfunction can be identified (nt= 2, 4, 6 etc. m < 1.5).

From Qf and delivery valve geometry, the delivery valve efficiency ridv is estimated. The 
efficiencies and energy fraction are combined using equation [21] to give an overall efficiency 
r\. The drive flow Qa is obtained to varying levels of accuracy using Qa or better equation 
[23]. Delivery flow q can now be calculated using equation [ 1 ].

Using a sequence of values for peak flow Q a table or graph of delivery flow q versus drive flow Qd 
is thus obtained. Other equations can be used to obtain cycle time, although this is rarely tabulated.

4.3 System Design

System design can be undertaken using performance charts or graphs for a range of pump/drive pipe 
combinations: the lowest-cost option capable of meeting a specification should be chosen. This 
approach requires many such graphs and the ability to interpolate reliably between them. 
Alternatively, likely candidate systems can be evaluated using a computer programme to generate 
delivery flow versus driveflow loci. Unfortunately neither of these approaches fits the situation
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frequently met with in the field, where computers are remote and water technicians not very numerate. 
Rules of thumb also have their place.

Consider the difficult task of choosing drivepipe diameter and slope. The drivepipe pressure rating 
needs, incidentally, to be about twice the delivery pressure to limit fatigue failure and the drive pipe 
should be able to withstand negative heads down to -H .

Slope S  is usually site-constrained: it is difficult to lay a pipe steeper than the valley side. Low slopes 
are expensive (the drive pipe is long) and inefficient. Very high slopes give a high operating cadence 
(and thus high noise and a short pump life), low efficiency through increased frequency with which 
valve closure losses occur, and possibility of impulse valve malfunction due to too short a drive pipe.

Too large a drivepipe diameter D result in excessive drivepipe cost and peak velocities too low to 
generate the required delivery pressure. Too small a diameter results, for a given drive flow, in 
excessive acceleration phase losses and low overall efficiency.

It has already been argued that for reliable operation the Joukowski ratio should not fall below 1.5. 
This can be expressed as a upper limit on pipe size. Noting that at fis= 1.5, Q? = 3Qd and 
A -  0.67 c QJg (h-H ), we need to know the effective wave speed c to derive any specific rules. For 
steel pipes we should use c = 1400 m/s and for PVC pipes (of wall thickness one-tenth of their 
diameter) c = 400 m/s. These lead to the rough rule of thumb.

ROT.7 "For steel pipes, drive pipe diameter in mm should not exceed 
600 yj drive flow  in litres /  sec delivery head in meters; 
fo r  PVC pipes replace 600 by 300"

A lower limit for pipe diameter in combination with pipe slope can be obtained by ensuring QJQ„ 
does not exceed 0.8, yielding Q JQ A > 2.5. However is the maximum flow obtained when drive 
pipe and pump together are left to run with an open impulse valve. The flow through an open-ended 
drive pipe alone, laid down the slope, would be higher. By a series of assumptions one can arrive at a 
rule:

ROT.8 "The drive pipe diameter and slope must be sufficient that its flow open-ended, the pump 
having been removed, is at least 3.5 times the intended drive flow ".

4.4 Tuning

The contribution of algebraic models to achieving good pump timing is not very great. Tuning of 
ram-pumps on site is not essential, as a pump set for a mid-range drive flow will operate on most 
sites. Indeed with some operators the provision of a means of tuning may be unwise: the pump is 
then vulnerable to gross maladjustment. Where the pump is tuneable, by variation of the flow Qcc at 
which impulse valve closure begins, heuristic methods are often adequate: the operator finds by 
experiment the setting that maximises delivery flow within the limits of available source flow, Only 
when several pumps are operated in parallel is this trial-and-error approach likely to prove difficult.

An operator usually has little data with which to work. On many sites the pump cycle time is the only 
easily measured variable; drive flow and waste flow may be inconvenient to gauge, delivery flow is 
measurable but only at the delivery tank sited many minutes climb away from the pump house. 
Unfortunately cycle-time is not simply related to the flow variables of interest. Figure 13 shows cycle 
time, drive flow and delivery flow as functions of Joukowski ratio |i; itself a measure of peak flow 
and hence of tuning. The plot is for a representative system and displays considerable complexity.
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No simple tuning rule for finding a high efficiency point (such as (I = 2) by observing cycle time 
suggests itself.

With knowledge of site parameters and in particular of drivepipe diameter, an installer or 
manufacturer can pre-set a pump's tuning Qcc to a suitable value, or can constrain it to lie within a 
particular range of flows. A suitable range might be that which makes ^  lie in the narrow band 1.25 < 

< 2, or the wider band 1.5 < ^  < 4. The lower limit prevents the pump being tuned to give 
negligible delivery or to entrain air. The upper limit prevents use of unnecessarily high drive flow 
and also protects the pump for excessive over-pressures should its delivery become blocked. The 
optimum range will depend on the ratio of open-pump flow Q„ to Joukowski flow Qs.

Fig. 13 Driveflow, delivery flow and cycle time variation with tuning

(Qj is flow just sufficient to attain delivery head, tc is cycle time, Qd is driveflow, 
q is delivery flow, assuming Q„  = SQj R = 20 T}dv = 0.9)

5. CONCLUSIONS

The three main phases - acceleration, delivery and recoil - of a ram-pump cycle have been modelled 
using equations of manageable simplicity. Several rules of thumb have been derived. The paper has 
throughout stressed the application of algebraic modelling to solve common problems in system 
design and tuning.

Equation [1] in section 3.2 represents the level of modelling usually employed by manufacturers in the 
preparation of data sheets. This paper has shown that its assumption of constant efficiency is 
unreasonable and its objective of describing the performance of a pump in isolation (from its drive 
pipe) is unrealistic. Such simple models are incapable of explaining many phenomena important to 
pump users. Through the use of two ratios (k  = QJQ„ and p., = QJQS) much more can be explained, 
even though the peak flow Qp itself can not be readily measured. The several approximations and 
omissions in the model developed make it inadequate for some aspects of pump design optimisation, 
for which complex simulation models are preferable.
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