
· Unix User's Manual
Supplementary Documents

,
, .".

, , JI"
~

UNIX User's Supplementary Documents
(USD)

4.3 Berkeley Software Distribution
Virtual VAX-II Version

April, 1986

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California

Berkeley, California 94720

USD Contents

UNIX User's Supplementary Documents (USD)

4.3 Berkeley Software Distribution, Virtual VAx-II Version

February, 1986

This volume contains documents which supplement the manual pages in The Unix User's Refer
ence Manllal for the Virtual VAx-II version of the system as distributed by U.c. Berkeley, and
Volumes 2a and 2b as provided by Bell Laboratories.

Getting Started

Unix for Beginners - Second Edition USD:I

An introduction to the most basic l'~es of the system.

Learn - Computer-Aided Instruction on UNIX (Second Edition) USD:2

Describes a computer-aided instruction program that walks new users through the basics of
files, the editor, and document prepararation software.

Basic Utilities

An Introduction to the UNIX Shell USD:3

Steve Bourne's introduction to the capabilities of sh. a command interpreter especially
popular for writing shell scripts.

An Introduction to the C shell USD:4

This introduction to csh. (a command interpreter popular for interactive work) describes
many commonly used UNIX commands, assumes little prior knowledge of UNIX, and has
a glossary useful for beginners.

DC - An Interactive Desk Calculator USD:5

A super HP calculator, if you do not need floating point.

BC - An Arbitrary Precision Desk-Calculator Language

A front end for DC that provides infix notation, control flow, and built-in functions.

Communicating with the World

Mail Reference Manual

Complete details on one of the programs for sending and reading your mail.

The Rand MH Message Handling System

USD:6

USD:7

USD:8

This system for managing your computer mail uses lots of small programs, instead of one
large one.

How to Read the Network News USD:9

Describes how news works (generally) and some alternatives for reading it, readnews and
vnews.

USD Contents

A System for Typesetting Mathematics USD:26

Describes eqn, an easy-to-Iearn language for high-qu~lity mathematical typesetting.

Typesetting Mathematics - User's Guide (Second Edition)

More details about how to use eqn.

Tbl - A Program to Format Tables

A program for easily typesetting tabular material.

Refer - A Bibliography System

USD:27

USD:28

USD:29

An introduction to one set of tools used to maintain bibliographic databases. The major
program, refer, is used to automatically retrieve and format the references .based on docu
ment citations.

Some Applications of Inverted Indexes on the UNIX System USD:30

Mike Lesk's paper describes the refer programs in a somewhat larger context.

BIB - A Program for Formatting Bibliographies USD:31

This is an alternative to refer for expanding citations in documents.

Writing Tools - The STYLE and DICTION Programs USD:32

These are programs which can help you understand and improve your writing style.

Amusements

A Guide to the Dungeons of Doom USD:33

An introduction to the popular game of rogue, a fantasy game which is one of the biggest
known users of VAX cycles.

Star Trek USD:34

You are the Captain of the Starship Enterprise. Wipe out the Klingons and save the
Federation.

UNIX For Beginners USD:l-l

UNIX For Beginners - Second Edition

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated for 4.3BSD by Mark Seiden)

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating system.
It includes:

• basics needed for day-to-day use of the system - typing commands, correcting
typing mistakes, logging in and out, mail, inter-terminal communication, the file
system, printing files, redirecting 110, pipes, and the shell.

• document preparation - a brief discussion of the major formatting programs and
macro packages, hints on preparing documents, and capsule descriptions of some
supporting software.

• UNIX programming - using the editor, programming the shell, programming in
C, other languages and tools.

• An annotated UNIX bibliography.

INTRODUCTION
From the user's point of view, the UNIX operat

ing system is easy to learn and use, and presents few
of the usual impediments to getting the job done. It
is hard, however, for the beginner to know where to
start, and how to make the best use of the facilities
available. The purpose of this introduction is to
help new users get· used to the main ideas of the
UNIX system and start making effective use of it
quickly.

You should have a couple of other documents
with you for easy reference as you read this one.
The most important is The UNIX Programmer's
Manual; it's often easier to tell you to read about
something in the manual than to repeat its contents
here, The other useful document is A Tutoriallntro
duetion to the UNIX Text Editor. which will tell you
how to use the editor to get text - programs, data.
documents - into the computer.

A word of warning: the UNIX system has
become quite popular, and there are several major
variants in widespread use. Of course details also

t UNIX is a trademark of AT&T Bell Laboratories.

change with time. So although the basic structure of
UNIX and how to use it is common to all versions.
there will certainly be a few things which are
different on your system from what is described
here. We have tried to minimize the problem. but
be aware of it. In cases of doubt. this paper
describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in. how to type.
what to do about mistakes in typing. how to log
out. Some of this is dependent on which system
you log into (phone numbers. for example) and
what terminal you use. so this section must
necessarily be supplemented by local informa
tion.

2. Day-to-day Use: Things you need every day to
use the system effectively: generally useful com
mands; the file system.

3. Document Preparation: Preparing manuscripts
is one of the most common uses for UNIX sys
tems. This section contains advice, but not
extensive instructions on any of the formatting

UNIX For Beginners

command

stty -tabs

and the system will convert each tab into the right
number of blanks for you. If your terminal does
have computer-settable tabs, the command tabs will
set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it before
RETURN has been typed, there are two ways to
recover. The sharp-character # erases the last char
acter typed; in fact successive uses of # erase charac
ters back to the beginning of the line (but not
beyond). So if you type badly, you can correct as
you go:

dd#atte##e

is the same as date.*
The at-sign @ erases all of the characters typed

so far on the current input line, so if the line is irre
trievably fouled up, type an @ and start the line
over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either # or @ by a
backslash \, it loses its erase meaning. So to enter a
sharp or at-sign in something, type \# or \@. The
system will always echo a newline at you after your
at-sign, even if preceded by a backslash. Don't
worry - the at-sign has been recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash is
used extensively in UNIX to indicate that the follow
ing character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that you
can type as fast as you want, whenever you want,
even when some command is typing at you. If you
type during output, your input characters will appear
intermixed with the output characters, but they will
be stored away and interpreted in the correct order.
So you can type several commands one after another
without waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the char
acter "DEL" (perhaps called "delete" or "rubout" on
your terminal). The "interrupt" or "break" key
found on most terminals can also be used. t In a few
programs, like the text editor, DEL stops whatever

* Many installations set the erase character for display termi
nals to the delete or backspace key. ~stty aW tells you what it
actually is.
t In Berkeley Unix, ·control-c· is the usual way to stop pro
grams. ·suy aU" tells you the value of your "inte" key.

USD:I-3

the program is doing but leaves you in that program.
Hanging up the phone will stop most programs.*

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login

and let someone else use the terminal you were on.·
It is usually not sufficient just to turn off the termi
nal. Most UNIX systems do not use a time-out
mechanism, so you'll be there forever unless you
hang up.

Mail

When you log in, you may sometimes get the
message

You have mail.

UNIX provides a postal system so you can communi
cate with other users of the system. To read your
mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first.* After each message, mail
waits for you to say what to do with it. The two
basic responses are d, which deletes the message,
and RETURN, which does not (so it will still be there
the next time you read your mailbox). Other
responses are described in the manual. (Earlier ver
sions of mail do not process one message at a time,
but are otherwise similar.)

How do you send mail to someone else? Sup
pose it is to go to "joe" (assuming "joe" is
someone's login name). The easiest way is this:

mail joe
now type in the text of the letter
on as many lines as you like '"
Ajier the last line of the letter
type the character "control-d",
that is, hold down "control" and type
a letter "d".

And that's it. The "control-d" sequence, often
called "EOF" for end-of-file, is used throughout the
system to mark the end of input from a terminal, so
you might as well get used to it.

For practice, send mail to yourself. (This isn't
as strange as it might sound - mail to oneself is a
handy reminder mechanism.)

t If you use the c shell, programs running in the background
continue funning even if you hang up.
* "control-d" and "logout" are other alternatives.
t The Berkeley mail program lists the headers of some
number of unread pieces of mail in the order of their receipt.

UNIX For Beginners

have typed into a file with the editor command w:

w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per
manently, so if you hang up and go home the infor
mation is lost. t But after w the information is there
permanently; you can re-access it any time by typing

ed junk

Type a q command to quit the editor. (If you try to
quit without writing, ed will print a ? to remind you.
A second q gets you out regardless.)

Now create a second file called temp in the same
manner. You should now have two files, junk and
temp.

What files are out there?

The Is (for "list") command lists the names (not
contents) of any of the files that UNIX knows about.
If you type

Is

the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order automati
cally, but other variations are possible. For exam
ple, the command

Is -t

causes the files to be listed in the order in which
they were last changed, most recent first. The-I
option gives a "long" listing:

Is -I

will produce something like

-rw-rw-rw- 1 bwk 41 Jul 22 2:56 junk
-rw-rw-rw- 1 bwk 78 Jul22 2:57 temp

The date and time are of the last change to the file.
The 41 and 78 are the number of characters (which
should agree with the numbers you got from ed).
bwk is the owner of the file, that is, the person who
created it. The -rw-rw-rw- tells who has permis
sion to read and write the file, in this case everyone.

Options can be combined: Is -It gives the same
thing as Is -I, but sorted into time order. You can
also name the files yciu're interested in, and Is will
list the information about them only. More details

t This is not strictly true - if you hang up while editing. the
data you were working on is saved in a file called ed.hup,
which you can continue with at your next session.

USD:1-5

can be found in Is(l).

The use of optional arguments that begin with a
minus sign, like -t and -It, is a common convention
for UNIX programs. In general, if a program accepts
such optional arguments, they precede any filename
arguments. It is also vital that you separate the vari
ous arguments with spaces: Is-I is not the same as
Is -I.

Printing Files

Now that you've got a file of text, how do you
print it so people can look at it? There are a host of
programs that do that, probably more than are
needed.

One simple thing is to use the editor, since
printing is often done just before making changes
anyway. You can say

ed junk
I,Sp

ed will reply with the count of the characters in junk
and then print all the lines in the file. After you
learn how to use the editor, you can be selective
about the parts you print.

There are times when it's not feasible to use the
editor for printing. For example, there is a limit on
how big a file ed can handle (several thousand lines).
Secondly, it will only print one file at a time, and
sometimes you want to print several, one after
another. So here are a couple of alternatives.

First is cat, the simplest of all the printing pro
grams. cat simply prints on the terminal the con
tents of all the files named in a list. Thus

cat junk

prints one file, and

cat junk temp

prints two. The files are simply concatenated (hence
the name "cat") onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list. The
difference is that it produces headings with date,
time, page number and file name at the top of each
page, and extra lines to skip over the fold in the
paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a new
page and print temp neatly.

pr can also produce multi-column output:

pr -3 junk

prints junk in 3-column format. You can use any
reasonable number in place of "3" and pr will do its
best. pr has other capabilities as well; see pr(I).

UNIX For Beginners

chap1.l
chap1.2
chap1.3

The * is not limited to the last position in a filename
- it can be anywhere and can occur several times.
Thus

rm *junk* *temp*

removes all files that contain junk or temp as any
part of their name. As a special case, * by itself
matches every filename, so

pr *

prints all your files (alphabetical order), and

rm *

removes all files. (You had better be very sure that's
what you wanted to say!)

The * is not the only pattern-matching feature
available. Suppose you want to print only chapters
I through 4 and 9. Then you can say

pr chap[12349]*

The [...] means to match any of the characters inside
the brackets. A range of consecutive letters or digits
can be abbreviated, so you can also do this with

pr chap[l-49]*

Letters can also be used within brackets: [a-z]
matches any character in the range a through z.

The? pattern matches any single character, so

Is?

lists all files which have single-character names, and

Is -I chap?l

lists information about the first file of each chapter
(chapl.l, chap2.l, etc.).

Of these niceties, * is certainly the most useful,
and you should get used to it. The others are frills,
but worth knowing.

If you should ever have to turn off the special
meaning of *, ?, etc., enclose the entire arguinent in
single quotes, as in

Is'r

We'll see some more examples of this shortly.

What's in a Fileuame, Continued

When you first made that file called junk, how
did the system know that there wasn't another junk
somewhere else, especially since the person in the
next office is also reading this tutorial? The answer
is that generally each user has a private directory,
which contains only the files that belong to him.

USD:I-7

When you log in, you are "in" your directory.
Unless you take special action, when you create a
new file, it is made in the directory that you are
currently in; this is most often your own directory,
and thus the file is unrelated to any other file of the
same name that might exist in someone else's direc
tory.

The set of all files is organized into a (usually
big) tree, with your files located several branches
into the tree. It is possible for you to "walk"
around this tree, and to find any file in the system,
by starting at the root of the tree and walking along
the proper set of branches. Conversely, you can
start where you are and walk toward the root.

Let's try the latter first. The basic tools is the
command pwd ("print working directory"), which
prints the name of the directory you are currently in.

Although the details will vary according to the
system you are on, if you give the command pwd, it
will print something like

lusr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory lusr,
which is in turn in the root directory called by con
vention just I. (Even if it's not called lusr on your
system, you will get something analogous. Make the
corresponding mental adjustment and read on.)

If you now type

Is lusr/your-name

you should get exactly the same list of file names as
you get from a plain Is: with no arguments, Is lists
the contents of the current directory; given the name
of a directory, it lists the contents of that directory.

Next, try

Is lusr

This should print a long series of names, among
which is your own login name your-name. On many
systems, usr is a directory that contains the direc
tories of all the normal users of the system, like you.

The next step is to try

Is I

You should get a response something like this
(although again the details may be different):

bin
de.
etc
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root of
the tree.

UNIX For Beginners

put. As one example,

Is

makes a list of files on your tenninal. But if you say

Is >fIIelist

a list of your files will be placed in the file fiJelist
(which will be created if it doesn't already exist, or
overwritten if it does). The symbol > means "put
the output on the following file, rather than on the
tenninal." Nothing is produced on the tenninal. As
another example, you could combine several files
into one by capturing the output of cat in a file:

cat n fl f3 >temp

The symbol » operates very much like> does,
except that it means "add to the end of." That is.

cat n fl f3 »temp

means to concatenate n, fl and f3 to the end of
whatever is already in temp, instead of overwriting
the existing contents. As with >, if temp doesn't
exist, it will be created for you.

In a similar way, the symbol < means to take
the input for a program from the following file,
instead of from the terminal. Thus, you could make
up a script of commonly used editing commands
and put them into a file called script. Then you can
run the script on a file by saying

cd lIle <script

As another example, you can use ed to prepare a
leiter in file let, then send it to several people with

mall adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX sys
tem is the idea of a pipe. A pipe is simply a way to
connect the output of one program to the input of
another program, so the two run as a sequence of
processes - a pipeline.

For example,

pr fll h

will print the files f, II, and h. beginning each on a
new page. Suppose you want them run together
instead. You could say

cat fll h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly what
we want is to take the output of cat and connect it
to the input of pro So let us use a pipe:

caUIl hi pr

USD:I-9

The vertical bar I means to take the output from
cat. which would normally have gone to the termi
nal. and put it into pr to be neatly formatted.

There are many other examples of pipes. For
example.

Is I pr-3

prints a list of your files in three columns. The pro
gram we counts the number of lines. words and
characters in its input. and as we saw earlier. who
prints a list of currently-logged on people. one per
line. Thus

who I we

tells how many people are logged on. And of course

Is I we

counts your files.

Any program that reads from the terminal can
read from a pipe instead: any program that writes on
the terminal can drive a pipe. You can have as
many elements in a pipeline as you wish.

Many UNIX programs are written so that they
will take their input from one or more files if file
arguments are given: if no arguments arc given they
will read from the terminal. and thus can be used in
pipelines. pr is one example:

pr -3 abc

prints files a. band c in order in three columns. But
in

cat abc I pr-3

pr prints the information coming down the pipeline.
still in three columns.

The Shell

We have already mentioned once or twice the
mysterious "shell." which is in fact sh(l). t The shell
is the program that interprets what you type as com
mands and arguments. It also looks after translating
*. etc .. into lists of filenames. and <. >. and I into
changes of input and output streams.

The shell has other capabilities too. For exam
ple. you can run two programs with one command
line by separating the commands' with a semicolon:
the shell recognizes the semicolon and breaks the
line into two commands. Thus

date; who

does both commands before returning with a prompt
character.

t On Berkeley Unix systems. the usual shell for interactive
use is the c shell. <sh(I).

UNIX For Beginners

.TL
title of document
.. u:
author name
.SII
section heading
.rr
paragraph ...
.rr
another paragraph ., .
. SH
another section heading
.rr
etc.

The lines that begin with a period arc the formatting
requests. For example .. rr calls for starting a new
paragraph. The precise meaning of .rr depends on
what output device is being used (typesetter or ter
minal. for instance). and on what publication the
document will appear in. For example. -ms nor
mally assumes that a paragraph is preceded by a
space (one line in nroff. 'I, line in troff). and the tirst
word is indented. These rules can be changed if you
like. but they arc changed by changing the interpre·
tation of .rr. not by re·typing the document.

To actually produce a document in standard
format using -ms. use the command

troff -ms files ...

for the typesetter. and

nroff -ms files ...

for a terminal. The -ms argument tells troff and
nroff to use the manuscript package of formatting
requests.

There are several similar packages; check with a
local expert to determine which ones are in common
use on your machine.

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu
ment preparation. The list in the next few para
graphs is far from complete, so browse through the
manual and check with people around you for other
possibilities.

eqn and neqn let you integrate mathematics into
the text of a document, in an easy-to-learn language
that closely resembles the way you would speak it
aloud. For example, the eqn input

sum from i=O to n x sub i -=' pi over 2

produces the output

~Xi
i=O 2

USD:l-ll

The program tbl pro"ides an analogous service
for preparing tabular material: it does all the compu
tations necessary to align complicated columns with
clements of varying widths.

refer prepares bibliographic citations from a
data base. in whatever stvle is defined b\' the format
ting package. It look; after all th~ details of
numbering references in sequence. lilling in page and
volume numbers. getting the author's initials and the
journal name right. and so on.

spell and typo detect possible spelling mistakes
in a document. t spell works by comparing the words
in your document to a dictionary. printing those that
arc not in the dictionary. It knows enough about
English spelling to detect plurals and the like. so it
does a very good job. typo looks for words which
arc "unusual". and prints those. Spelling mistakes
tend to be more unusual. and thus show up early
when the most unusual words are printed first.

grep looks through a set of files for lines that
contain a particular text pattern (rather like the
editor's context search docs. but on a bunch of files).
For example.

grep 'ing$' chap*

will tind all lines that end with the letters ing in the
files chap*. (It is almost always a good practice to
put single quotes around the pattern you're search
ing for, in case it contains characters like * or $ that
have a special meaning to the shell.) grcp is often
useful for finding out in which of a set of files the
misspelled words detected by spell are actually
located.

diff prints a list of the differences between two
tiles, so you can compare two versions of something
automatically (which certainly beats proofreading by
hand).

wc counts the words, lines and characters in a
set of files. tr translates characters into other charac
ters; for example it will convert upper to lower case
and vice versa. This translates upper into lower:

tr A-Z a-z <input >output

sort sorts tiles in a variety of ways; eref makes
cross-references; ptx makes a permuted index
(keyword-in-context listing). sed provides many of
the editing facilities of ed, but can apply them to
arbitrarily long inputs. awk provides the ability to
do both pattern matching and numeric computa
tions, and to conveniently process fields within lines.
These programs are for more advanced users, and
they are not limited to document preparation. rut
them on your list of things to learn about.

..
t ~typoH is not provided with Berkeley Unix.

UNIX For Beginners

routines, and interrupt handling. Since there are
many building-block programs, you can sometimes
avoid writing a new program merely by piecing
together some of the building blocks with shell com
mand files.

We will not go into any details here; examples
and rules can be found in An Introduction to the
UNIX Shell. by S. R. Bourne.

Programming in C

If you are undertaking anything substantial. C is
the only reasonable choice of programming language:
everything in the UNIX system is tuned to it. The
system itself is written in C, as are most of the pro
grams that run on it. It is also a easy language to
use once you get started. C is introduced and fully
described in The C Programming Language by B.
W. Kernighan and D. M. Ritchie (Prentice-Hall,
1978). Several sections of the manual describe the
system interfaces. that is. how you do 110 and simi
lar functions. Read UNIX Programming for more
complicated things.

Most input and output in C is best handled with
the standard 110 library, which provides a set of 110
functions that exist in compatible form on most
machines that have C compilers. [n general, it's
wisest to confine the system interactions in a pro
gram to the facilities provided by this library.

C programs that don't depend too much on spe
cial features of UNIX (such as pipes) can be moved
to other computers that have C compilers. The list
of such machines grows daily; in addition to the ori
ginal PDP-II, it currently includes at least
Honeywell 6000, IBM 370 and PC families, Inter
data 8/32, Data General Nova and Eclipse, HP
2100, Harris /7, Motorola 68000 family (including
machines like Sun Microsystems and Apple Macin
tosh), V AX II family, SEL 86, and Zilog Z80. Calls
to the standard 110 library will work on all of these
machines.

There are a number of supporting programs that
go with C. lint checks C programs for potential por
tability problems, and detects errors such as
mismatched argument types and uninitialized vari
ables.

For larger programs (anything whose source is
on more than one file) make allows you to specify
the dependencies among the source files and the pro
cessing steps needed to make a new version; it then
checks the times that the pieces were last changed
and does the minimal amount of recompiling to
create a consistent updated version.

The debugger adb is useful for digging through
the dead bodies of C programs, but is rather hard to
learn to use effectively. The most effective debug
ging tool is still careful thought, coupled with judi
ciously placed print statements. t
t The "dbx" debugger. supplied starting with 4.2BSD, has ex
tensive facilities for high-level debugging of C programs and is

USD:I-13

The C compiler provides a limited instrumenta
tion service, so you can find out where programs
spend their time and what parts are worth optimiz
ing. Compile the routines with the -p option; after
the test run, use prof to print an execution profile.
The command time will give you the gross run-time
statistics of a program, but they are not super accu
rate or reproducible.

Other Languages

If you have to use Fortran, there are two possi
bilities. You might consider Ratfor, which gives you.
the decent control structures and free-form input
that characterize C, yet lets you write code that is
still portable to other environments. Bear in mind
that UNIX Fortran tends to produce large and rela
tively slow-running programs. Furthermore, sup
porting software like adb, prof, etc., are all virtually
useless with Fortran programs. There may also be a
Fortran 77 compiler on your system. If so, this is a
viable alternative to Ratfor, and has the non-trivial
advantage that it is compatible with C and related
programs. (The Ratfor processor and C tools can be
used with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another language,
you are in effect building a compiler, though prob
ably a small one. In that case, you should be using
the yace compiler-compiler, which helps you develop
a compiler quickly. The lex lexical analyzer genera
tor does the same job for the simpler languages that
can be expressed as regular expressions. It can be
used by itself, or as a front end to recognize inputs
for a yacc-based program. Both yacc and lex require
some sophistication to use, but the initial effort of
learning them can be repaid many times over in pro
grams that are easy to change later on.

Most UNIX systems also make available other
languages, such as Algol 68, APL, Basic, Lisp, Pas
cal, and Snobol. Whether these are useful depends
largely on the local environment: if someone cares
about the language and has worked on it, it may be
in good shape. If not, the odds are strong that it
will be more trouble than it's worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX
Programmer's Manual, Bell Laboratories, 1978
(PS2:3)t Lists commands, system routines and inter
faces, file formats, and some of the maintenance
procedures. You can't live without this, although
you will probably only need to read section I.

much easier to use than -adb~.

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

USD:2-1

This paper describes the second version of the learn program for interpreting
CAl scripts on the UNIXt operating system, and a set of scripts that provide a com
puterized introduction to the system.

Six current scripts cover basic commands and file handling, the editor, addi
tional file handling commands, the eqn program for mathematical typing, the "-ms"
package of formatting macros, and an introduction to the C programming language.
These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to acquire
basic UNIX skills. Most usage involves the first two scripts, an introduction to
UNIX files and commands, and the UNIX editor.

The second version of learn is about four times faster than the previous one in
CPU utilization, and much faster in perceived time because of better overlap of
computing and printing. It also requires less file space than the first version. Many
of the lessons have been revised; new material has been added to reflect changes and
enhancements in UNIX itself. Script-writing is also easier because of revisions to the
script language.

1. Introduction.

Learn is a driver for CAl scripts. It is intended to permit the easy composition of lessons and
lesson fragments to teach people computer skills. Since it is teaching the same system on which it is
implemented, it makes direct use of UNIX facilities to create a controlled UNIX environment. The
system includes two main parts: (1) a driver that interprets the lesson scripts; and (2) the lesson
scripts themselves. At present there are seven scripts:

basic file handling commands

the UNIX text editors ed and vi
advanced file handling

the eqn language for typing mathematics

the "ms" macro package for document formatting

the C programming language

The purported advantages of CAl scripts for training in computer skills include the following:

t UNIX is a trademark of AT&T Ben Laboratories.

LEARN - Computer-Aided Instruction on UNIX

Figure I: Sample dialog from basic files script

(Student responses in italics; '$' is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
'"food" in this directory. List it
by saying "cat food"; then type ··ready".
$ cat food

this is the file
named food.

$ ready

Good. Lesson 3.3a (I)

Of course, you can print any file with ··cat"".
In particular, it is common to first use
"Is" to find the name of a file and then "cat""
to print it. Note the difference between
"Is", which tells you the name of the file,
and ., cat"", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
$ cat President
cat: can't open President
$ ready

Sorry, that's not right. Do you want to try again? yes
Try the problem again.
$ Is
.ocopy
XI
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat"" as an abbreviation
for "concatenate"

USD:2-3

the answer is wrong, the student is offered a chance to repeat the lesson. The "speed" rating of the
student (explained in section 5) is given after the lesson number when the lesson is completed success
fully; it is printed only for the aid of script authors checking out possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly "understands"
what he or she is doing; accordingly, the current learn scripts only measure performance, not
comprehension. If the student can perform a given task, that is deemed to be "learning.,,4

LEARN - Computer-Aided Instruction on UNIX USD:2-5

detected, the easier it will be on the student. Anyone proceeding through the scripts should be getting
mostly correct answers; otherwise, the system will be unsatisfactory both because the wrong habits are
being learned and because the scripts make little effort to deal with wrong answers. Unprepared stu
dents should not be encouraged to continue with scripts.

There are some preliminary items which the student must know before any scripts can be tried.
In particular, the student must know how to connect to a UNIX system, set the terminal properly, log
in, and execute simple commands (e.g., learn itself). In addition, the character erase and line kill con
ventions (# and @) should be known. It is hard to see how this much could be taught by computer
aided instruction, since a student who does not know these basic skills will not be able to run the
learning program. A brief description on paper is provided (see Appendix A), although assistance will
be needed for the first few minutes. This assistance, however, need not be highly skilled.

The first script in the current set deals with files. It assumes the basic knowledge above and
teaches the student about the Is, cat, mv, rm, cp and diff commands. It also deals with the abbrevi
ation characters *, ?, and [] in file names. It does not cover pipes or 110 redirection, nor does it
present the many options on the Is command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven
are review exercises. There are a total of 75 lessons in all three tracks, and the instructional passages
typed at the student to begin each lesson total 4,476 words. The average lesson thus begins with a
60-word message. In general, the fast track lessons have somewhat longer introductions, and the slow
tracks somewhat shorter ones. The longest message is 144 words and the shortest 14.

The second script trains students in the use of the UNIX context editor ed, a sophisticated edi
tor using regular expressions for searching.5 All editor features except encryption, mark names and ';'
in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a review les
son. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is 2,572
words long. The ed tutorial6 is 6,138 words long. The fast track through the ed script is 7,407 words
of explanatory messages, and the total ed script, 242 lessons, has 15,615 words. The average ed les
son is thus also about 60 words; the largest is 171 words and the smallest 10. The original ed script
represents about three man-weeks of effort.

The advanced file handling script deals with Is options, 110 diversion, pipes, and supporting pro
grams like pr, we, tail, spell and grep. (The basic file handling script is a prerequisite.) It is not as
refined as the first two scripts; this is reflected at least partly in the fact that it provides much less of a
full three-track sequence than they do. On the other hand, since it is perceived as "advanced," it is
hoped that the student will have somewhat more sophistication and be better able to cope with it at a
reasonably high level of performance.

A fourth script covers the eqn language for typing mathematics. This script must be run on a
terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo-based termi
nals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of tracks: of 76 les
sons, only 17 are in the second track and 2 in the third track. Most of these provide additional prac
tice for students who are having trouble in the first track.

The -ms script for formatting macros is a short one-track only script. The macro package it
describes is no longer the standard, so this script will undoubtedly be superseded in the future.
Furthermore, the linear style of a single learn script is somewhat inappropriate for the macros, since
the macro package is composed of many independent features, and few users need all of them. It
would be better to have a selection of short lesson sequences dealing with the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on C,
but that document has since become obsolete. The current script has been partially converted to fol
low the order of presentation in The C Programming Language,7 but this job is not complete. The C
script was never intended to teach C; rather it is supposed to be a series of exercises for which the
computer provides checking and (upon success) a suggested solution.

LEARN - Computer-Aided Instruction on UNIX

Figure 2: Directory structure for learn

lib

play

files

editor

(other courses)

log

(5) a list of possible successor lessons.

student!

student2

LO.la
LO.lb

files for student 1...

files for student2 ...

lessons for files course

USD:2-7

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort involved
in script production is in planning lessons, writing tutorial paragraphs, and coding tests of student
performance.

The basic sequence of events is as follows. First, learn creates the working directory. Then, for
each lesson, learn reads the script for the lesson and processes it a line at a time. The lines in the
script are: (1) commands to the script interpreter to print something, to create a files, to test some
thing, etc.; (2) text to be printed or put in a file; (3) other lines, which are sent to the shell to be exe
cuted. One line in each lesson turns control over to the user; the user can run any UNIX commands.
The user mode terminates when the user types yes, no, ready, or answer. At this point, the user's
work is tested; if the lesson is passed, a new lesson is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure I; this is shown in Figure 3.

Lines which begin with # are commands to the learn script interpreter. For example,

#print
causes printing of any text that follows, up to the next line that begins with a sharp.

#print file
prints the contents of file; it is the same as cat file but has less overhead. Both forms of #print have
the added property that if a lesson is failed, the #print will not be executed the second time through;
this avoids annoying the student by repeating the preamble to a lesson.

#create filename
creates a file of the specified name, and copies any subsequent text up to a # to the file. This is used
for creating and initializing working files and reference data for the lessons.

#user
gives control to the student; each line he or she types is passed to the shell for execution. The #lIser
mode is terminated when the student types one of yes, no, ready or answer. At that time, the driver
resumes interpretation of the script.

#copyin
#uncopyin

LEARN - Computer-Aided Instruction on UNIX

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#copyin
#user
#uncopyin
#match m$
#match .m$
"m$" is easier.
#Iog
#next
63.1d 10

USD:2-9

This is similar to #malch, except that it corresponds to specific failure answers; this can be used to
produce hints for particular wrong answers that have been anticipated by the script writer.

#slIc('('ed
#fail

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the "commands" yes, no, ready, or answer, the driver ter
minates the #llser command, and evaluation of the student's work can begin. This can be done either
by the built-in commands above, such as #malch and #cmp, or by status returned by normal UNIX
commands, typically grep and lest. The last command should return status true (0) if the task was
done successfully and false (non-zero) otherwise; this status return tells the driver whether or not the
student has successfully passed the lesson.

Performance can be logged:

#Iog file

writes the date, lesson, user name and speed rating, and a success/failure indication on file. The com
mand

#Iog

by itself writes the logging information in the logging directory within the learn hierarchy, and is the
normal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it. A
typical set might read

25.la 10
25.2a 5
25.3a 2

indicating that unit 25.la is a suitable follow-on lesson for students with a speed rating of 10 units,
25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings ar? maintained for
each session with a student; the rating is increased by one each time the student gets a lesson right
and decreased by four each time the student gets a lesson wrong. Thus the driver tries to maintain a
level such that the users get 80% right answers. The maximum rating is limited to 10 and the
minimum to O. The initial rating is zero unless the student specifies a different rating when starting a
sesSIOn.

LEARN - Computer-Aided Instruction on UNIX USD:2-11

computer. They should exercise the scripts on the same computer and the same kind of terminal that
they will later use for their real work. and their first few jobs for the computer should be relatively
easy ones. Also. both training and initial work should take place on days when the UNIX hardware
and software are working reliably. Rarely is all of this possible, but the closer one comes the better
the result. For example. if it is known that the hardware is shaky one day, it is better to attempt to
reschedule training for another one. Students are very frustrated by machine downtime; when noth
ing is happening, it takes some sophistication and experience to distinguish an infinite loop, a slow
but functioning program. a program waiting for the user, and a broken machine.*

One disadvantage of training with learn is that students come to depend completely on the CAl
system, and do not try to read manuals or use other learning aids. This is unfortunate, not only
because of the increased demands for completeness and accuracy of the scripts, but because the
scripts do not cover all of the UNIX system. New users should have manuals (appropriate for their
level) and read them; the scripts ought to be altered to recommend suitable documents and urge stu
dents to read them.

There are several other difficulties which are clearly evident. From the student's viewpoint, the·
most serious is that lessons still crop up which simply can't be passed. Sometimes this is due to poor
explanations, but just as often it is some error in the lesson itself - a botched setup, a missing file, an
invalid test for correctness, or some system facility that doesn't work on the local system in the same
way it did on the development system. It takes knowledge and a certain healthy arrogance on the
part of the user to recognize that the fault is not his or hers, but the script writer's. Permitting the
student to get on with the next lesson regardless does alleviate this somewhat, and the logging facili
ties make it easy to watch for lessons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) - it was often excruci
atingly slow and made a significant drain on the system. The current version so far does not seem to
have that difficulty, although some scripts, notably eqn, are intrinsically slow. eqn, for example, must
do a lot of work even to print its introductions, let alone check the student responses, but delay is
perceptible in all scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing inter
rupt at the wrong time, or by removing critical files, or any number of similar slips. The defenses
against such problems have steadily been improved, to the point where most students should not
notice difficulties. Of course, it will always be possible to break learn maliciously, but this is not
likely to be a problem.

One area is more fundamental - some UNIX commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is cd, which changes
to another directory. The prospect of a student who is learning about directories inadvertently mov
ing to some random directory and removing files has deterred us from even writing lessons on cd, but
ultimately lessons on such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn. for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox, and M.
J. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also provided
many of the ideas in the system. We are also indebted to Don Jackowski for serving as a guinea pig
for the second version, and to Tom Plum for his efforts to improve the C script.

References

I. D.L. Bitzer and D. Skaperdas, "The Economics of a Large Scale Computer Based Educational
System: Plato IV," in Computer Assisted Instruction. Testing and Guidance, ed. Wayne Holtz
man, pp. 17-29, Harper and Row, New York, 1970.

* We have even known an expert programmer to decide the computer was broken when he had simply left
his terminal in local mode. Novices have great difficulties with such problems.

An Introduction to the UNIX Shell

S. R. Bourne

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated/or 4.3BSD by Mark Seiden)

ABSTRACT

USD:3-1

The shell! is a command programming language that provides an interface to the
UNIXt operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while, if then else, case
and for are available. Two-way communication is possible between the shell and
commands. String-valued parameters, typically file names or flags, may be passed to
a command. A return code is set by commands that may be used to determine
control-flow, and the standard output from a command may be used as shell input.

The shell can modify the environment in which commands run. Input and output
can be redirected to files, and processes that communicate through 'pipes' can be
invoked. Commands are found by searching directories in the file system in a
sequence that can be defined by the user. Commands can be read either from the
terminal or from a file, which allows command procedures to be stored for later use.

1.0 Introduction
The shell is both a command language and a programming language that provides an interface to the
UNIX operating system. This memorandum describes, with examples, the UNIX shell. The first sec
tion covers most of the everyday requirements of terminal users. Some familiarity with UNIX is an
advantage when reading this section; see, for example, '"UNIX for beginners'".l Section 2 describes
those features of the shell primarily intended for use within shell procedures. These include the
control-flow primitives and string-valued variables provided by the shell. A knowledge of a program
ming language would be a help when reading this section. The last section describes the more
advanced features of the shell. References of the form '"see pipe (2)" are to a section of the UNIX
manual.2

1.1 Simple commands
Simple commands consist of one or more words separated by blanks. The first word is the name of
the command to be executed; any remaining words are passed as arguments to the command. For
example,

who

is a command that prints the names of users logged in. The command

* This paper describes sh(l). If it's the c shell (csh) you're interested in, a good place to begin is William
Joy's paper" An Introduction to the C shell" (USO:4).
t UNIX is a trademark of AT&T Bell Laboratories.

An I~oduction to the UNIX Shell

For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

Is I grep old I wc -I

prints the number of file names in the current directory containing the string old.

1.5 File name generation

Many commands accept arguments which are file names. For example,

Is -I main.c

prints information relating to the file main.c.

USD:3-3

The shell provides a mechanism for generating a list of file names that match a pattern. For example,

Is -I *.c

generates, as arguments to Is. all file names in the current directory that end in .c. The character * is
a pattern that will match any string including the null string. In general patterns are specified as fol
lows.

* Matches any string of characters including the null string.

? Matches any single character.

(•••) Matches anyone of the characters enclosed. A pair of characters separated by a minus
will match any character lexically between the pair.

For example,

[a-z)*

matches all names in the current directory beginning with one of the letters a through z.

lusr/fredltestl?

matches all names in the directory lusr/fred/test that consist of a single character. If no file name is
found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It may
also be used to find files. For example,

echo lusr/fredl*/core

finds and prints the names of all core files in sub-directories of lusr/fred. (echo is a standard UNIX
command that prints its arguments, separated by blanks.) This last feature can be expensive, requiring
a scan of all sub-directories of lusrlfred •

There is one exception to the general rules given for patterns. The character ',' at the start of a file
name must be explicitly matched.

echo *

will therefore echo all file names in the current directory not beginning with ',' .

echo .*

will echo all those file names that begin with '.'. This avoids inadvertent matching of the names ','
and ' • .' which mean 'the current directory' and 'the parent directory' respectively. (Notice that Is
suppresses information for the files '.' and ' • .' .)

An Introduction to the UNIX Shell USD:3-5

• Is I grep old I we -I
Print the number of files whose name contains the string old.

• ce pgm.e &
Run cc in the background.

2.0 Shell procedures

The shell may be used to read and execute commands contained in a file. For example,

sh file [args .. , I
calls the shell to read commands from file. Such a file is called a command procedure or shell pro
cedure. Arguments may be supplied with the call and are referred to in file using the positional
parameters $1, $2, For example, if the file wg contains

who I grep $1

then

sh wg fred

is equivalent to

who I grep fred

UNIX files have three independent attributes, read. write and execute. The UNIX command chmod
(I) may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status. Following this, the command

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new process is
created to run the command.

As well as providing names for the positional parameters, the number of positional parameters in the
call is available as $#. The name of the file being executed is available as $0.
A special shell parameter $* is used to substitute for all positional parameters except $0. A typical
use of this is to provide some default arguments, as in,

nroff - T450 -ms $*

which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments ($1, $2, .•.) executing commands
once for each argument. An example of such a procedure is tel that searches the file lusr/lib/telnos
that contains lines of the form

fred mh0123
bert mh0789

The text of tel is

An Introduction to the UNIX Shell USD:3-7

match is found the associated command-list is executed and execution of the case is complete. Since
* is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argument. The
first match found defines the set of commands to be executed. In the example below the commands
following the second * will never be executed.

case $# in
*) ••• ;;
*) •.• ;;

esac

Another example of the use of the case construction is to distinguish between different forms of an
argument. The following example is a fragment of a cc command.

for i
do case $i in

-[ocs]) ... ;;
-*) echo 'unknown flag $i' ;;
*.c) !lib/cO $i .•• ;;
*)echo 'unexpected argument $i' ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command pro
vides for alternative patterns separated by a I. For example,

case $i in

esac

is equivalent to

-xl-y)

case $i in
-[xy])

esac

The usual quoting conventions apply so that

case $i in
\7) •••

will match the character? .

2.3 Here documents

The shell procedure tel in section 2.1 uses the file lusr/lib/telnos to supply the data for grep. An alter
native is to include this data within the shell procedure as a here document, as in,

for i
do grep $i «!

fred mhOl23
bert mh0789

!
done

In this example the shell takes the lines between «~I and! as the standard input for grep. The string
! is arbitrary, the document being terminated by a line that consists of the string following «.

An Introduction to the UNIX Shell

echo ${user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For example.

tmp=/tmp/ps
ps a >${tmp}a

will direct the output of ps to the file Itmp/psa, whereas,

ps a >Stmpa

would cause the value of the variable tmpa to be substituted.

USD:3-9

Except for $? the following are set initially by the shell. $? is set after executing each command.

$? The exit status (return code) of the last command executed as a decimal string. Most
commands return a zero exit status if they complete successfully, otherwise a non-zero
exit status is returned. Testing the value of return codes is dealt with later under if and
while commands.

$# The number of positional parameters (in decimal). Used, for example, in the append
command to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are unique
among all existing processes, this string is frequently used to generate unique temporary
file names. For example,

ps a >/tmp/ps$$

rm Itmp/ps$$

$! The process number of the last process run in the background (in decimal).

$- The current shell flags, such as -x and -v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks at the file specified by this variable before it
. issues a prompt. If the specified file has been modified since it was last looked at the

shell prints the message you have mail before prompting for the next command. This
variable is typically set in the file .profile, in the user's login directory. For example,

MAIL=/usrlspool/mail/fred

$HOME The default argument for the cd command. The current directory is used to resolve file
name references that do not begin with a I, and is changed using the cd command. For
example,

cd lusr/fredlbin

makes the current directory lusr/fred/bin.

cat wn

will print on the terminal the file wn in this directory. The command cd with no argu
ment is equivalent to

cd$HOME

This variable is also typically set in the the user's login profile.

$PATH A list of directories that contain commands (the search path). Each time a command is

An Introduction to the UNIX Shell

until test - f file
do sleep 300; done
cmnmanc/s

USD:3-ll

will loop until ./ile exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control now - if
Also available is a general conditional branch of the form.

if command-iisl
then command-iisl
else command-iisl
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the lesl command to test for the existence of a file
as in

if test - f file
then process ./ill.'
else do somel hi nK else
fi

An example of the use of if, case and for constructions is given in section 2.10.

A multiple test if command of the form

if ••.
then •.•
else if '"

then •••
else if ...

fi
fi

fi

may be written using an extension of the if notation as,

if ...
then .,.
elif .. .
then .. .
elif

fi

The following example is the touch command which changes the 'last modified' time for a list of files.
The command may be used in conjunction with make (I) to force recompilation of a list of files.

An Introduction to the UNIX Shell USD:3-13

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is
invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help
isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the -n flag
which prevents execution of subsequent commands. (Note that saying set -n at a terminal will
render the terminal useless until an end-of-file is typed.)

The command

set -x

will produce an execution trace. Following parameter substitution each command is printed as it is
executed. (Try these at the terminal to see what effect they have.) Both flags may be turned off by
saying

set -

and the current setting of the shell flags is available as $- .

2.10 The man command

The following is the man command which is used to diplay sections of the UNIX manual on your ter
minal. It is called, for example, as

man sh
man -t ed
man 2 fork

In the first the manual section for sh is displayed.. Since no section is specified, section I is used.
The second example will typeset (-t option) the manual section for ed. The last prints the fork
manual page from section 2, which covers system calls.

An Introduction to the UNIX Shell USD:3-15

3.1 Parameter transmission
When a shell procedure is invoked both positional and keyword parameters may be supplied with the
call. Keyword parameters are also made available implicitly to a shell procedure by specifying in
advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are made of
all exportable variables for use within the invoked procedure. Modification of such variables within
the procedure does not affect the values in the invoking shell. It is generally true of a shell procedure
that it may not modify the state of its caller without explicit request on the part of the caller. (Shared
file descriptors are an exception to this rule.)
Names whose value is intended to remain constant may be declared readonly. The form of this com
mand is the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the variable d
is not set

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d-.}

which will echo the value of the variable d if it is set and',' otherwise. The default string is evaluated
using the usual quoting conventions so that

echo ${d- '.'}

will echo * if the variable d is not set. Similarly

echo ${d-$I}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be assigned
a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set then it will be set to the string ','. (The notation ${ ... = ... } is not
available for positional parameters.)

If there is no sensible default then the notation

echo $ {d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and execu
tion of the shell procedure is abandoned. If message is absent then a standard message is printed. A
shell procedure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} $(bin?)

An Introduction to the UNIX Shell USD:3-17

echo $X

will echo $y.

• blank interpretation

Following the above substitutions the resulting characters are broken into non-blank words
(blank interpretation). For this purpose 'blanks' are the characters of the string $IFS. By
default, this string consists of blank, tab and newline. The null string is not regarded as a
word unless it is quoted. For example,

echo ••

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to the null string.

• file name generation

Each word is then scanned for the file pattern characters *. ? and I ... J and an alphabetical
list of file names is generated to replace the word. Each such file name is a separate argu
ment.

The evaluations just described also occur in the list of words associated with a for loop. Only substi
tution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and •.•.• a third quoting mechanism is
provided using double quotes. Within double quotes parameter and command substitution occurs
but file name generation and the interpretation of blanks does not. The following characters have a
special meaning within double quotes and may be quoted using \.

For example,

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $' "\

echo "$x"

will pass the value of the variable x as a single argument to echo. Similarly,

echo "$*"

will pass the positional parame.ters as a single argument and is equivalent to

echo "$1 $2 .. :·

The notation $@ is the same as $* except when it is quoted.

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" •..

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

An Introduction to the UNIX Shell

I hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* lOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
II" segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (I»

Figure 3. UNIX signalst

USD:3-19

Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself
ignores quit which is the only external signal that can cause a dump. The signals in this list of poten
tial interest to shell programs are I, 2, 3, 14 and 15.

3.6 Fault handling
Shell procedures normally terminate when an interrupt is received from the terminal. The trap com
mand is used if some cleaning up is required, such as removing temporary files. For example,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands

rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is required;
otherwise, after the trap has been taken, the shell will resume executing the procedure at the place
where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is
never sent to the process. They can be caught, in which case the process must decide what action to
take when the signal is received. Lastly, they can be left to cause termination of the process without
it having to take any further action. If a signal is being ignored on entry to the shell procedure, for
example, by invoking it in the background (see 3.7) then trap commands (and the signal) are ignored.
The use of trap is illustrated by this modified version of the touch command (Figure 4). The cleanup
action is to remove the file junk$$.

t Additional signals have been added in Berkeley Unix. See sigvec(2) or signal(3C) for an up-to-date list.

An Introduction to the UNIX Shell USD:3-21

read x is a built-in command that reads one line from the standard input and places the result in the
variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system call
fork. The execution environment for the command includes input, output and the states of signals,
and is established in the child process before the command is executed. The built-in command exec
is used in the rare cases when no fork is required and simply replaces the shell with a new command.
For example, a simple version of the nohup command looks like

trap" I 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created commands
and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is only
subject to parameter and command substitution. No file name generation or blank interpretation
takes place so that, for example,

echo ... >*.C

will write its output into a file whose name is *.c. Input output specifications are evaluated left to
right as they appear in the command.

> word

» word

< word
« word

>& digit

<& digit

<&-

The standard output (file descriptor I) is sent to the file word which is created if it does
not already exist.

The standard output is sent to file word. If the file exists then output is appended (by
seeking to the end); otherwise the file is created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation of the
document occurs. If word is not quoted then parameter and command substitution
occur and \ is used to quote the characters \ $, and the first character of word. In the
latter case \newline is ignored (c.f. quoted strings).

The file descriptor digit is duplicated using the system call dup (2) and the result is used
as the standard output.

The standard input is duplicated from file descriptor digit.

The standard input is closed.

>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that specified
by the digit instead of the default 0 or I. For example,

... 2>file

runs a command with message output (file descriptor 2) directed to file .

... 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file descrip
tor 2 is created by duplicating file descriptor I but the effect is usually to merge the two streams.)

The environment for a command run in the background such as

list *.c I lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty file
Idev/null. This prevents two processes (the shell and the command), which are running in parallel,
from trying to read the same input. Chaos would ensue if this were not the case. For example,

An Introduction to the UNIX Shell

Appendix A - Grammar

itl'm: I\'ord
i nplll-Olllplll
name = I'aille

simple-CIImmand: item
simple-(,ommand item

('ommand: simpit'-CIImmand
(('ommand-list)
{ ('ommand-list)
for naml' do ('ommand-list done
for name in I\'ord _ .. do CIImmand-list done
while CIImmand-list do ('ommand-lisl done
until CIImmand-list do CIImmand-list done
case word in ('aolol'-part ... esac
if mmmand-list then mmmand-list else-part fi

pipelint': mmmand
pipeline I ('ommand

andor: pipelint,
andor && pipeline
andor I I pipI'line

command-list: andor
command-list;
command-list &
command-list; andor
command-list & andor

inpllf-Olllpllf: > jill'
<jill'
» word
« word

jill': word
& digit
&-

case-part: pallern) command-list ;;

pattern: word
pailI'm I word

else-part: elif command-list then command-list else-part
else command-list

empty:

word:

name:

digit:

empty

a sequence of non-blank characters

a sequence of letters, digits or underscores starting with a letter

0123456789

USD:3-23

An Introduction to the C shell

William Joy
(revised.filr 4.3BSD h.l' Mark Seiden)

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley. California 94720

ABSTRACT

USD:4-1

C5h is a new command language interpreter for UNIXt systems. It incor
porates good features of other shells and a hislOr.l' mechanism similar to the redo of
INTERLISP. While incorporating many features of other shells which make writing
shell programs (shell scripts) easier. most of the features unique to csh are designed
more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a valu
able basic explanation of the shell here. Simple terminal interaction with csh is pos
sible after reading just the first section of this document. The second section
describes the shell's capabilities which you can explore after you have begun to
become acquainted with the shell. Later sections introduce features which are use
ful. but not necessary for all users of the shell.

Additional information includes an appendix listing special characters of the
shell and a glossary of terms and commands introduced in this manual.

Introduction
A shell is a command language interpreter. Csh is the name of one particular command inter

preter on UNIX. The primary purpose of csh is to translate command lines typed at a terminal into
system actions, such as invocation of other programs. Csh is a user program just like any you might
write. Hopefully, csh will be a very useful program for you in interacting with the UNIX system.

In addition to this document, you will want to refer to a copy of the UNIX User Reference
Manual. The csh documentation in section I of the manual provides a full description of all features
of the shell and is the definitive reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of com
mands, and words which have special meaning in discussing the shell and UNIX. Many of the words
are defined in a glossary at the end of this document. If you don't know what is meant by a word,
you should look for it in the glossary.

Acknowledgements
Numerous people have provided good input about previous versions of csh and aided in its

debugging and in the debugging of its documentation. I would especially like to thank Michael Ubell
who made the crucial observation that history commands could be done well over the word structure
of input text, and implemented a prototype history mechanism in an older version of the shell. Eric
Allman has also provided a large number of useful comments on the shell, helping to unify those

t UNIX is a trademark of AT&T Bell Laboratories.

An Introduction to the C shell USO:4-3

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other programs are invoked. While it
has a set of builtin functions which it performs directly, most commands cause execution of programs
that are, in fact, external to the shell. The shell is thus distinguished from the command interpreters
of other systems both by the fact that it is just a user program, and by the fact that it is used almost
exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted as a command
name followed by arguments. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed, in this case the mail
program which sends messages to other users. The shell uses the name of the command in attempting
to execute it for you. It will look in a number of directories for a file with the name mail which is
expected to contain the mail program.

The rest of the words of the command are given as arguments to the command itself when it is
executed. In this case we specified also the argument bill which is interpreted by the mail program to
be the name of a user to whom mail is to be sent. In normal terminal usage we might use the mail
command as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
EOT
%

Here we typed a message to send to bill and ended this message with a -0 which sent an end
of-file to the mail program. (Here and throughout this document, the notation "-x" is to be read
"control-x" and represents the striking of the x key while the control key is held down.) The mail pro
gram then echoed the characters 'EOT' and transmitted our message. The characters '% ' were
printed before and after the mail command by the shell to indicate that input was needed.

After typing the '% ' prompt the shell was reading command input from ou~ terminal. We typed
a complete command 'mail bill'. The shell then executed the mail program with argument bill and
went dormant waiting for it to complete. The mail program then read input from our terminal until
we signalled an end-of-file via typing a -0 after which the shell noticed that mail had completed and
signaled us that it was ready to read from the terminal again by printing another '% ' prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete com
mand is typed at the terminal, the shell executes the command and when this execution completes, it
prompts for a new command. If you run the editor for an hour, the shell will patiently wait for you
to finish editing and obediently prompt you again whenever you finish editing.

An example of a useful command you can execute now is the tset command, which sets the
default erase and kill characters on your terminal - the erase character erases the last character you
typed and the kill character erases the entire line you have entered so far. By default, the erase char
acter is the delete key (equivalent to 'A?') and the kill character is 'AU'. Some people prefer to make
the erase character the backspace key (equivalent to '-H'). You can make this be true by typing

tset -e

which tells the program tset to set the erase character to tset's default setting for this character (a
backspace).

An Introduction to the C shell USD:4-5

1.4. Metacharacters in the shell

The shell has a large number of special characters (like '>') which indicate special functions.
We say that these notations have syntactic and semantic meaning to the shell. In general, most char
acters which are neither letters nor digits have special meaning to the shell. We shall shortly learn a
means of quotation which allows us to use metacharacters without the shell treating them in any spe
cial way.

Metacharacters normally have effect only when the shell is reading our input. We need not
worry about placing shell metacharacters in a letter we are sending via mail, or when we are typing in
text or data to some other program. Note that the shell is only reading input when it has prompted
with '% ' (although we can type our input even before it prompts).

1.5. Input from files; pipelines

We learned above how to redirect the standard output of a command to a file. It is also possible
to redirect the standard input of a command from a file. This is not often necessary since most com
mands will read from a file whose name is given as an argument. We can give the command

sort < data

to run the sort command with standard input, where the command normally reads its input, from the
file 'data'. We would more likely say

sort data

letting the sort command open the file 'data' for input itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the standard
input, it would sort lines as we typed them on the terminal until we typed a "D to indicate an end-of
file.

A most useful capability is the ability to combine the standard output of one command with the
standard input of another, i.e. to run the commands in a sequence known as a pipeline. For instance
the command

Is -s

normally produces a list of the files in our directory with the size of each in blocks of 512 characters.
If we are interested in learning which of our files is largest we may wish to have this sorted by size
rather than by name, which is the default way in which Is sorts. We could look at the many options
of Is to see if there was an option to do this but would eventually discover that there is not. Instead
we can use a couple of simple options of the sort command, combining it with Is to get what we
want.

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

Is -s I sort-n

specifies that the output of the Is command run with the option -s is to be piped to the command
sort run with the numeric sort option. This would give us a sorted list of our files by size, but with
the smallest first. We could then use the -r reverse sort option and the head command in combina
tion with the previous command doing

Is -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We have run
this to the standard input of the sort command asking it to sort numerically in reverse order (largest
first). This output has then been run into the command head which gives us the first few lines. In
this case we have asked head for the first 5 lines. Thus this command gives us the names and sizes of
our 5 largest files.

An Introduction to the C shell USD:4-7

echo? ?? 11?

will echo a line of filenames; first those with one character names, then those with two character
names, and finally those with three character names. The names of each length will be independently
sorted.

Another mechanism consists of a sequence of characters between T and T. This metasequence
matches any single character from the enclosed set. Thus

prog.[co)

will match

prog.c prog.o

in the example above. We can also place two characters around a '-' in this notation to denote a
range. Thus

chap.[1-5)

might match files

chap.1 chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap.[12345)

and otherwise equivalent.
An important point to note is that if a list of argument words to a command (an argument list)

contains filename expansion syntax, and if this filename expansion syntax fails to match any existing
file names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.
Another very important point is that files with the character ',' at the beginning are treated spe

cially. Neither ' ... ' or'?' or the T T mechanism will match it. This prevents accidental matching of
the filenames ',' and'.,' in the working directory which have special meaning to the system, as well as
other files such as .cshrc which are not normally visible. We will discuss the special role of the file
. cshrc later.

Another filename expansion mechanism gives access to the pathname of the home directory of
other users. This notation consists of the character ,~, (tilde) followed by another user's login name.
For instance the word '~bill' would map to the pathname '/usrlbill' if the home directory for 'bill' was
'/usr/bill'. Since, on large systems, users may have login directories scattered over many different disk
volumes with different prefix directory names, this notation provides a convenient way of accessing
the files of other users.

A special case of this notation consists of a ,~, alone, e.g. '~/mbox'. This notation is expanded by
the shell into the file 'mbox' in your home directory, i.e. into '/usrlbill/mbox' for me on Ernie Co-vax,
the UCB Computer Science Department VAX machine, where this document was prepared. This can
be very useful if you have used cd to change to another directory and have found a file you wish to
copy using cpo If I give the command

cp that file ~

the shell will expand this command to

cp thatfile /usrlbill

since my home directory is lusr/bill.

There also exists a mechanism using the characters '{' and '}' for abbreviating a set of words
which have common parts but cannot be abbreviated by the above mechanisms because they are not

An Introduction to the C shell USD:4-9

If a command has its standard input redirected from a file, then it will normally terminate when
it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a-D. This is because it read to the end-of-file
of our file 'prepared.text' in which we placed a message for 'bill' with an editor program. We could
also have done

cat prepared. text I mail bill

since the cat command would then have written the text through the pipe to the standard input of the
mail command. When the cat command completed it would have terminated, closing down the pipe
line and the mail commandwouldhavereceivedanend-of-filefromitandterminated.Using a pipe
here is more complicated than redirecting input so we would more likely use the first form. These
commands could also have been stopped by sending an INTERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily, with the
possibility of continuing execution later. This is done by sending a STOP signal via typing a OZ. This
signal causes all commands running on the terminal (usually one but more if a pipeline is executing)
to become suspended. The shell notices that the command(s) have been suspended, types 'Stopped'
and then prompts for a new command. The previousl¥ executing command has been suspended, but
otherwise unaffected by the STOP signal. Any other commands can be executed while the original
command remains suspended. The suspended command can be continued using the Ig command
with no arguments. The shell will then retype the command to remind you which command is being
continued, and cause the command to resume execution. Unless any input files in use by the
suspended command have been changed in the meantime, the suspension has no effect whatsoever on
the execution of the command. This feature can be very useful during editing, when you need to look
at another file before continuing. An example of command suspension follows.

% mail harold
Someone just copied a big file into my directory and it~ name is
-Z
Stopped
% Is
funnyfile
prog.c
prog.o
% jobs
[I] + Stopped mail harold
%fg
mail harold
funnyfile. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he wanted
to mention. The mail command was suspended by typing oZ. When the shell noticed that the mail
program was suspended, it typed 'Stopped' and prompted for a new command. Then the Is com
mand was typed to find out the name of the file. The jobs command was run to find out which com
mand was suspended. At this time the Ig command was typed to continue execution of the mail pro
gram. Input to the mail program was then continued and ended with a -D which indicated the end of
the message at which time the mail program typed EOT. The jobs command will show which com
mands are suspended. The -Z should only be typed at the beginning of a line since everything typed
on the current line is discarded when a signal is sent from the keyboard. This also happens on INTER
RUPT, and QUIT signals. More information on suspending jobs and controlling them is given in sec
tion 2.6.

An Introduction to the C shell USD:4-11

2. Details on the shell for terminal users

2.1. Shell startup and termination
When you login, the shell is started by the system in your home directory and begins by reading

commands from a file .cshrc in this directory. All shells which you may start during your terminal
session will read from this file. We will later see what kinds of commands are usefully placed there.
For now we need not have this file and the shell does not complain about its absence.

A login shell, executed after you login to the system, will, after it reads commands from .c.vhrc.
read commands from a file .login also in your home directory. This file contains commands which
you wish to do each time you login to the UNIX system. My .login file looks something like:

set ignoreeof
set mail=(/usrlspoollmail/bill)
echo "S{prompt}users" ; users
alias ts \

'set noglob; eval 'tset -s -m dialup:clOOrv4pna -m plugboard:?hp262Inl·' ';
ts; stty intr ·C kill 'U crt
set time= 15 history= 10
msgs ':'f
if (-e Smail) then

endif

echo "S{prompt}mail"
mail

This file contains several commands to be executed by UNIX each time I login. The first is a .vet
command which is interpreted directly by the shell. It sets the shell variable ignoreeo/ which causes
the shell to not log me off if I hit ·D. Rather, I use the logow command to log off of the system. By
setting the mail variable, I ask the shell to watch for incoming mail to me. Every 5 minutes the shell
looks for this file and tells me if more mail has arrived there. An alternative to this is to put the com
mand

biffy

in place of this sel; this will cause me to be notified immediately when mail arrives, and to be shown
the first few lines of the new message.

Next I set the shell variable 'time' to 'IS' causing the shell to automatically print out statistics
lines for commands which execute for at least 15 seconds of CPU time. The variable 'history' is set to
10 indicating that I want the shell to remember the last 10 commands I type in its history list,
(described later).

I create an alias "ts" which executes a tsel(l) command setting up the modes of the terminal.
The parameters to lsel indicate the kinds of terminal which I usually use when not on a hardwired
port. I then execute "ts" and also use the stly command to change the interrupt character to 'C and

. the line kill character to ·U.

I then run the 'msgs' program, which provides me with any system messages which I have not
seen before; the '-f option here prevents it from telling me anything if there are no new messages.
Finally, if my mailbox file exists, then I run the 'mail' program to process my mail.

When the 'mail' and 'msgs' programs finish, the shell will finish processing my .login file and
begin reading commands from the terminal, prompting for each with 'qo '. When I log off (by giving

, the logoul command) the shell will print 'logout' and execute commands from the file '.logout' if it
exists in my home directory. After that the shell will terminate and UNIX will log me off the system.
If the system is not going down, I will receive a new login message. In any case, after the 'logout'
message the shell is committed to terminating and will take no further input from my terminal.

An Introduction to the C shell USD:4-13

Other useful built in variables are the variable home which shows your home directory, cwd
which contains your current working directory, the variable iglloree(~(which can be set in your .Iogin
file to tell the shell not to exit when it receives an end-of-file from a terminal (as described above).
The variable 'ignoreeof is one of several variables which the shell does not care about the value of,
only whether they are se1 or IInse1. Thus to set this variable you simply do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable 'ignoreeof no value, but none is desired or required.
Finally, some other built-in shell variables of use are the variables noclobber and mail. The

metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous contents
of the named file. In this way you may accidentally overwrite a file which is valuable. If you would
prefer that the shell not overwrite files in this way you can

set noclobber

in your .Iogin file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

date >! now

if you really wanted to overwrite the contents of 'now'. The '>r is a special metasyntax indicating
that clobbering the file is ok. t

2.3. The shell's history list

The shell can maintain a history list into which it places the words of previous commands. It is
possible to use a notation to reuse commands or words from commands in forming new commands.
This mechanism can be used to repeat previous commands or to correct minor typing mistakes in
commands.

The following figure gives a sample session involving typical usage of the history mechanism of
the shell. In this example we have a very simple C program which has a bug (or two) in it in the file
'bug.c', which we 'cat' out on our terminal. We then try to run the C compiler on it, referring to the
file again as 'IS', meaning the last argument to the previous command. Here the 'r is the history
mechanism invocation metacharacter, and the '$' stands for the last argument, by analogy to '$' in the
editor which stands for the end of the line. The shell echoed the command, as it would have been
typed without use of the history mechanism, and then executed it. The compiiatiOIi yielded error

. diagnostics so we now run the editor on the file we were trying to compile, fix the bug, and run the C
compiler again, this time referring to this command simply as '!c', which repeats the last command
which started with the letter 'c'. If there were other commands starting with 'c' done recently we
could have said 'Icc' or even '!cc:p' which would have printed the last command starting with 'cc'
without executing it.

After this recompilation, we ran the resulting 'a. out' file, and then noting that there still was a
. bug, ran the editor again. After fixing the program we ran the C compiler again, but tacked onto the

command an extra '-0 bug' telling the compiler to place the resultant binary in the file 'bug' rather
than 'a.out'. In general, the history mechanisms may be used anywhere in the formation of new

tThe space between the 'I' and the word 'now' is critical here, as '!now' would be an invocation of the histo
ry mechanism, and have a totally different effect.

An Introduction to the C shell USD:4-15

commands and other characters may be placed before and after the substituted commands.
We then ran the 'size' command to see how large the binary program images we have created

were. and then an 'Is -I' command with the same argument list. denoting the argument list •••.
Finally we ran the program 'bug' to see that its output is indeed correct.

To make a numbered listing of the program we ran the 'num' command on the file ·bug.c·. In
order to compress out blank lines in the output of 'num' we ran the output through the filter ·ssp·. but
misspelled it as spp. To correct this we used a shell substitute. placing the old text and new text
between .-. characters. This is similar to the substitute command in the editor. Finally. we repeated
the same command with '!!'. but sent its output to the line printer.

There are other mechanisms available for repeating commands. The history command prints
out a number of previous commands with numbers by which they can be referenced. There is a way
to refer to a previous command by searching for a string which appeared in it. and there are other.
less useful. ways to select arguments to include in a new command. A complete description of all
these mechanisms is given in the C shell manual pages in the UNIX Programmer's Manual.

2.4. Aliases
The shell has an alias mechanism which can be used to make transformations on input com

mands. This mechanism can be used to simplify the commands you type. to supply default argu
ments to commands. or to perform transformations on commands and their arguments. The alias
facility is similar to a macro facility. Some of the features obtained by aliasing can be obtained also
using shell command files. but these take place in another instance of the shell and cannot directly
affect the current shells environment or involve commands such as cd which must be done in the
current shell.

As an example. suppose that there is a new version of the mail program on the system called
'newmail' you wish to use. rather than the standard mail program which is called ·mail'. If you place
the shell command

alias mail newmail

in your .cshrc file. the shell will transform an input line of the form

mail bill

into a call on ·newmail'. More generally. suppose we wish the command 'Is' to always show sizes of
files. that is to always do ·-s·. We can do

alias Is Is -s

or even

alias dir Is -s

creating a new command syntax 'dir' which does an 'Is -s·. If we say

dir -bill

then the shell will translate this to

Is -s /mnt/bill

Thus the alias mechanism can be used to provide short names for commands. to provide
default arguments. and to define new short commands in terms of other commands. It is also possi
ble to define aliases which contain mUltiple commands or pipelines. showing where the arguments to
the original command are to be substituted using the facilities of the history mechanism. Thus the
definition

alias cd . cd \,. ; Is .

would do an Is command after each change directory cd command. We enclosed the entire alias
definition in ... characters to prevent most substitutions from occurring and the character ';' from

An Introduction to the C shell USD:4-I7

is ready for another command. The job runs in the background at the same time that normal jobs,
called foreground jobs, continue to be read and executed by the shell one at a time. Thus

du > usage &

would run the du program, which reports on the disk usage of your working directory (as well as any
directories below it), put the output into the file 'usage' and return immediately with a prompt for the
next command without out waiting for du to finish. The du program would continue executing in
the background until it finished, even though you can type and execute more commands in the mean
time. When a background job terminates, a message is typed by the shell just before the next prompt
telling you that the job has completed. In the following example the du job finishes sometime during
the execution of the mail command and its completion is reported just before the prompt after the
mail job is finished.

% du > usage &
[I] 503
% mail bill
How do you know when a background job is finished?
EOT
[I] - Done du > usage
%

If the job did not terminate normally the 'Done' message might say something else like 'Killed'. If
you want the terminations of background jobs to be reported at the time they occur (possibly inter
rupting the output of other foreground jobs), you can set the notify variable. In the previous example
this would mean that the 'Done' message might have come right in the middle of the message to Bill.
Background jobs are unaffected by any signals from the keyboard like the STOP, INTERRUPT, or QUIT
signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell
remembers the command names, arguments and the process numbers of all commands in the job as
well as the working directory where the job was started. Each job in the table is either running in the
foreground with the shell waiting for it to terminate, running in the background, or suspended. Only
one job can be running in the foreground at one time, but several jobs can be suspended or running
in the background at once. As each job is started, it is assigned a small identifying number called the
job number which can be used later to refer to the job in the commands described below. Job
numbers remain the same until the job terminates and then are re-used.

When a job is started in the backgound using '&', its number, as well as the process numbers of
all its (top level) commands, is typed by the shell before prompting you for another command. For
example,

% Is -5 I sort -n > usage &
[2] 2034 2035
%

runs the 'Is' program with the '-s' options, pipes this output into the 'sort' program with the '-n'
option which puts its output into the file 'usage'. Since the '&' was at the end of the line, these two
programs were started together as a background job. After starting the job, the shell prints the job
number in brackets (2 in this case) followed by the process number of each program started in the
job. Then the shell immediates prompts for a new command, leaving the job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing 'z which sends a
STOP signal to the currently running foreground job. A background job can become suspended by
using the stop command described below. When jobs are suspended they merely stop any further
progress until started again, either in the foreground or the backgound. The shell notices when a job
becomes stopped and reports this fact, much like it reports the termination of background jobs. For
foreground jobs this looks like

An Introduction to the C shell

% du > usage &
[I] 3398
% Is -s I sort -n > myfile &
[2] 3405
% mail bill
-z
Stopped
% jobs
[I] - Running
[2] Running
[3] + Stopped
% fg %Is
Is -s I sort -n > myfile
% more myfile

du> usage
Is -s I sort -n > myfile
mail bill

USD:4-19

The fg command runs a suspended or background job in the foreground. It is used to restart a
previously suspended job or change a background job to run in the foreground (allowing signals or
input from the terminal). In the above example we used fg to change the 'Is' job from the back
ground to the foreground since we wanted to wait for it to finish before looking at its output file. The
bg command runs a suspended job in the background. It is usually used after stopping the currently
running foreground job with the STOP signal. The combination of the STOP signal and the bg com
mand changes a foreground job into a background job. The stop command suspends a background
job.

The kill command terminates a background or suspended job immediately. In addition to jobs,
it may be given process numbers as arguments, as printed by ps. Thus, in the example above, the run
ning du command could have been terminated by the command

% kill %1
[1] Terminated
%

du> usage

The notify command (not the variable mentioned earlier) indicates that the termination of a
specific job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically
stopped. When such a job is then run in the foreground, input can be given to the job. If desired,
the job can be run in the background again until it requests input again. This is illustrated in the fol
lowing sequence where the's' command in the text editor might take a long time.

% ed bigfile
120000
I,$slthiswordlthatwordl
-z
Stopped
%bg
[l] ed bigfile &
%
. .. some foreground commands

[I] Stopped (tty input) ed bigfile
% fg
ed bigfile
w
120000
q
%

An Introduction to the C shell

%pwd
lusr/bill
% mkdir newpaper
% chdir newpaper
%pwd
lusr/bill/newpaper
%

USD:4-21

the user has created and moved to the directory newpaper. where, for example, he might place a
group of related files.

No matter where you have moved to in a directory hierarchy, you can return to your 'home'
login directory by doing just

cd

with no arguments. The name ' . .' always means the directory above the current one in the hierarchy,
thus

cd ..

changes the shell's working directory to the one directly above the current one. The name ' . .' can be
used in any path name, thus,

cd . ./programs

means change to the directory 'programs' contained in the directory above the current one. If you
have several directories for different projects under, say, your home directory, this shorthand notation
permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in the variable cwd.
The shell can also be requested to remember the previous directory when you change to a new work
ing directory. If the 'push directory' command pushd is used in place of the cd command, the shell
saves the name of the current working directory on a directory stack before changing to the new one.
You can see this list at any time by typing the 'directories' command dirs.

% pushd newpaper/references
~/newpaper/references ~

% pushd lusrllib/tmac
lusr/lib/tmac ~/newpaper/references ~
% dirs
lusr/lib/tmac ~/newpaper/references ~

%popd
~/newpaper/references ~

%popd

%

The list is printed in a horizontal line, reading left to right, with a tilde (~) as shorthand for your
home directory-in this case 'Iusrlbill'. The directory stack is printed whenever there is more than
one entry on it and it changes. It is also printed by a dirs command. Dirs is usually faster and more
informative than pwd since it shows the current working directory as well as any other directories
remembered in the stack.

The pushd command with no argument alternates the current directory with the first directory
in the list. The 'pop directory' popd command without an argument returns you to the directory you
were in prior to the current one, discarding the previous current directory from the stack (forgetting
it). Typing popd several times in a series takes you backward through the directories you had been in
(changed to) by pushd command. There are other options to pushd and popd to manipulate the con
tents of the directory stack and to change to directories not at the top of the stack; see the csh manual
page for details.

An Introduction to the C shell U8D:4-23

list. You can use this number to refer to this command in a history substitution. Thus you could

set prompt = '\! % '

Note that the '!' character had to be escaped here even within '" characters.

The limit command is used to restrict use of resources. With no arguments it prints the current
limitations:

cputime
filesize
datasize
stacksize
coredumpsize

Limits can be set, e.g.:

unlimited
unlimited
5616 kbytes
512 kbytes
unlimited

limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more details.
The logout command can be used to terminate a login shell which has ignoreeof set.

The rehash command causes the shell to recompute a table of where commands are located.
This is necessary if you add a command to a directory in the current shell's search path and wish the
shell to find it, since otherwise the hashing algorithm may tell the shell that the command wasn't in
that directory when the hash table was computed.

The repeat command can be used to repeat a command several times. Thus to make 5 copies
of the file one in the file five you could do

repeat 5 cat one » five

The setenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to 'adm3a'. A user program printenv exists
which will print out the environment. It might then show:

% printenv
HOME = lusr/bill
8HELL=lbin/csh
PATH = :/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a
U8ER=bill
%

The source command can be used to force the current shell to read commands from a file. Thus

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect right away.
The time command can be used to cause a command to be timed no matter how much CPU

time it takes. Thus

An Introduction to the C shell USD:4-25

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells to be invoked to read and execute
commands from these files. which are called shell scripts. We here detail those features of the shell
useful to the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are not useful for. There is a program called
make which is very useful for maintaining a group of related files or performing sets of operations on
related files. For instance a large program consisting of one or more files can have its dependencies
described in a make./ile which contains definitions of the commands used to create these different files
when changes occur. Definitions of the means for printing listings. cleaning up the directory in which
the files reside. and installing the resultant programs are easily, and most appropriately placed in this
mak~/ile. This format is superior and preferable to maintaining a group of shell procedures to main
tai n these files.

Similarly when working on a document a makefile may be created which defines how different
versions of the document are to be created and which options of nro.ff or troff are appropriate.

3.3. Invocation and the argv variable

A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and •.. .' is replaced by a
sequence of arguments. The shell places these arguments in the variable argv and then begins to read
commands from the script. These parameters are then available through the same mechanisms which
are used to reference any other shell variables.

If you make the file 'script' executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (Le. begin the file with a '#' character)
then a '/bin/csh' will automatically be invoked to execute 'script' when you type

script

If the file does not begin with a '#' then the standard shell '/bin/sh' will be used to execute it. This
allows you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it, the input
line is parsed into distinct commands. Before each command is executed a mechanism know as vari
able substitution is done on these words. Keyed by the character '$' this substitution replaces the
names of variables by their values. Thus

echo $argv

when placed in a command script would cause the current value of the variable argv to be echoed to
the output of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables. The
notation

$?name

expands to '\' if name is set or to '0' if name is not set. It is the fundamental mechanism used for
checking whether particular variables have been assigned values. All other forms of reference to

An Introduction to the C shell USD:4-27

One minor difference between '$n' and '$argv[n]' should be noted here. The form '$argv[n]'
will yield an error if n is not in the range 'l-$#argv' while '$n' will never yield an out of range sub
script error. This is for compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form 'n-'; if there
are less than n components of the given variable then no words are substituted. A range of the form
'm-n' likewise returns an empty vector without giving an error when m exceeds the number of ele
ments of the given variable, provided the subscript n is in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate expressions
in the shell based on the values of variables. In fact, all the arithmetic operations of the language C
are available in the shell with the same precedence that they have in C. In particular, the operations
'==' and '!=' compare strings and the operators '&&' and 'I I' implement the boolean and/or opera
tions. The special operators '=-' and '!-' are similar to '==' and '!=' except that the string on the
right side can have pattern matching characters (like *, ? or []) and the test is whether the string on
the left matches the pattern on the right.

The shell also allows file enquiries of the form

-? filename

where'?' is replace by a number of single characters. For instance the expression primitive

-e filename

tell whether the file 'filename' exists. Other primitives test for read, write and execute access to the
file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form

{ command}

which returns true, i.e. 'I' if the command succeeds exiting normally with exit status 0, or '0' if the
command terminates abnormally or with exit status non-zero. If more detailed information about the
execution status of a command is required, it can be executed and the variable '$status' examined in
the next command. Since '$status' is set by every command, it is very transient. It can be saved if it
is inconvenient to use it only in the single immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and some of its
control structure follows:

An Introduction to the C shell

The shell does have another form of the if statement of the form

if (expression) command

which can be written

if (expression) \
command

USD:4-29

Here we have escaped the newline for the sake of appearance. The command must not involve' I "
'&' or ';' and must not be another control command. The second form requires the final '\' to
immediately precede the end-of-line.

The more general if statements above also admit a sequence of else-if pairs followed by a single
else and an endi/. e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is the ':' modifier. We can use the modifier
':r' here to extract a root of a filename or ':e' to extract the extension. Thus if the variable i has the
value '/mnt/foo.bar' then

% echo $i $i:r $i:e
/mnt/foo.bar /mnt/foo bar
%

shows how the ':r' modifier strips off the trailing '.bar' and the the ':e' modifier leaves only the 'bar'.
Other modifiers will take off the last component of a pathname leaving the head ':h' or all but the last
component of a pathname leaving the tail ':1'. These modifiers are fully described in the csh manual
pages in the User's Reference Manual. It is also possible to use the command substitution mechanism
described in the next major section to perform modifications on strings to then reenter the shell's
environment. Since each usage of this mechanism involves the creation of a new process, it is much
more expensive to use than the ':' modification mechanism.* Finally, we note that the character '#'
lexically introduces a shell comment in shell scripts (but not from the terminal). All subsequent char
acters on the input line after a '#' are discarded by the shell. This character can be quoted using' 't
or '\' to place it in an argument word.

3.7. Other control structures

The shell also has control structures while and switch similar to those of C. These take the
forms

* It is also important to note that the current implementation of the shell limits the number of ':' modifiers
on a'S' substitution to 1. Thus

% echo $i Si:h:t
lalblc laIb:t
%

does not do what one would expect.

An Introduction to the C shell USD:4-31

intervening lines. In general, if any part of the word following the '«' which the shell uses to ter
minate the text to be given to the command is quoted then these substitutions will not be performed.
In this case since we used the form '1,$' in our editor script we needed to insure that this '$' was not
variable substituted. We could also have insured this by preceding the '$' here with a '\', i.e.:

l,\$sf"[]*/1

but quoting the 'EOF' terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell script
so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a 'goto label' and
we can remove the temporary files and then do an exit command (which is built in to the shell) to
exit from the shell script. If we wish to exit with a non-zero status we can do

exit(l)

e.g. to exit with status '1'.

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The verbose and echo
options and the related -v and -x command line options can be used to help trace the actions of the
shell. The -n option causes the shell only to read commands and not to execute them and may some
times be of use.

One other thing to note is that csh will not execute shell scripts which do not begin with the
character '#', that is shell scripts that do not begin with a comment. Similarly, the "bin/sh' on your
system may well defer to 'csh' to interpret shell scripts which begin with '#'. This allows shell scripts
for both shells to live in harmony.

There is also another quotation mechanism using ,., which allows only some of the expansion
mechanisms we have so far discussed to occur on the quoted string and serves to make this string
into a single word as '" does.

An Introduction to the C shell USD:4-33

AstrlB Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively (i.e.
nested). The results of each expanded string are sorted separately, left to right order being preserved.
The resulting filenames are not required to exist if no other expansion mechanisms are used. This
means that this mechanism can be used to generate arguments which are not filenames, but which
have common parts.

A typical use of this would be

mkdir -I (hdrs,retrofit,csh)

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This mechanism is most
useful when the common prefix is longer than in this example, i.e.

chown root lusrl (ucbl (ex,edit) ,Iibl (ex??* ,how _ex))

4.3. Command substitution

A command enclosed in ", characters is replaced, just before filenames are expanded, by the
output from that command. Thus it is possible to do

set pwd='pwd'

to save the current directory in the variable pwd or to do

ex 'grep -I TRACE *.c'

to run the editor ex supplying as arguments those files whose names end in '.e' which have the string
'TRACE' in them. *

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of different
substitutions performed by the shell. The exact meaning of certain combinations of quotations is also
occasionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX programs,
and debugging shell scripts. See the csh(1) manual section for a list of these options.

·Command expansion also occurs in input redirected with '«' and within •• , quotations. Refer to the
shell manual section for full details.

An Introduction to the C shell USD:4-35

Glossary
This glossary lists the most important terms introduced in the introduction to the shell and gives

references to sections of the shell document for further information about them. References of the
form 'pr (I)' indicate that the command pr is in the UNIX User Reference manual in section I. You
can look at an online copy of its manual page by doing

man I pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this
manual.

a.out

Your current directory has the name '.' as well as the name printed by the command
pwd; see also dirs. The current directory '.' is usually the first component of the
search path contained in the variable path, thus commands which are in '.' are found
first (2.2). The character '.' is also used in separating components of filenames (1.6).
The character '.' at the beginning of a component of a pathname is treated specially
and not matched by the filename expansion metacharacters '?', '.', and '[' T pairs
(1.6).

Each directory has a file ' . .' in it which is a reference to its parent directory. After
changing into the directory with chdir, i.e.

chdir paper

you can return to the parent directory by doing

chdir ..

The current directory is printed by pwd (2.7).

Compilers which create executable images create them, by default, in the file a.out.
for historical reasons (2.3).

absolute path name

alias

argument

argv

background

base

bg

A pathname which begins with a '/' is absolute since it specifies the path of direc
tories from the beginning of the entire directory system - called the root directory.
Pathnames which are not absolute are called relative (see definition of relative path
name) (1.6).
An alias specifies a shorter or different name for a UNIX command, or a transforma
tion on a command to be performed in the shell. The shell has a command alias
which establishes aliases and can print their current values. The command unalias
is used to remove aliases (2.4).

Commands in UNIX receive a list of argument words. Thus the command

echo abc

consists of the command name 'echo' and three argument words 'a', 'b' and 'c'. The
set of arguments after the command name is said to be the argument list of the com
mand (1.1).

The list of arguments to a command written in the shell language (a shell script or
shell procedure) is stored in a variable called argv within the shell. This name is
taken from the conventional name in the C programming language (3.4).

Commands started without waiting for them to complete are called background com
mands (2.6).

A filename is sometimes thought of as consisting of a base part, before any '.' charac
ter, and an extension - the part after the '.'. See filename and extension (1.6) and
basename (I).

The bg command causes a suspended job to continue execution in the background
(2.6).

An Introduction to the C shell USD:4-37

continue

control-·

core dump

cp

csh

.cshrc

cwd

date

debugging

default:

DELETE

detached

diagnostic

directory

A builtin command which causes execution of the enclosing jiJreach or while loop to
cycle prematurely. Similar to the continue command in the programming language C
(3.6).

Certain special characters, called control characters, are produced by holding down
the CONTROL key on your terminal and simultaneously pressing another character,
much like the SHIFT key is used to produce upper case characters. Thus control- c is
produced by holding down the CONTROL key while pressing the 'c' key. Usually UNIX
prints an caret n followed by the corresponding letter when you type a control char
acter (e.g. '-C' for control-c (\.8).

When a program terminates abnormally, the system places an image of its current
state in a file named 'core'. This core dump can be examined with the system
debugger 'adb (I)' or 'sdb (I)' in order to determine what went wrong with the pro
gram (1.8). If the shell produces a message of the form

Illegal instruction (core dumped)

(where 'Illegal instruction' is only one of several possible messages), you should
report this to the author of the program or a system administrator, saving the 'core'
file.

The cp (copy) program is used to copy the contents of one file into another file. It is
one of the most commonly used UNIX commands (1.6).

The name of the shell program that this document describes.

The file .cshrc in your home directory is read by each shell as it begins execution. It
is usually used to change the setting of the variable path and to set alias parameters
which are to take effect globally (2.1).

The cwd variable in the shell holds the absolute pathname of the current working
directory. It is changed by the shell whenever your current working directory changes
and should not be changed otherwise (2.2).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scripts. The
shell has several options and variables which may be used to aid in shell debugging
(4.4).

The label default: is used within shell switch statements, as it is in the C language to
label the code to be executed if none of the case labels matches the value switched on
(3.7).

The DELETE or RUBOUT key on the terminal normally causes an interrupt to be sent
to the current job. Many users change the interrupt character to be -co
A command that continues running in the background after you logout is said to be
detached.

An error message produced by a program is often referred to as a diagnostic. Most
error messages are not written to the standard output, since that is often directed
away from the terminal (1.3, 1.5). Error messsages are instead written to the diagnos
tic output which may be directed away from the terminal, but usually is not. Thus
diagnostics will usually appear on the terminal (2.5).

A structure which contains files. At any time you are in one particular directory
whose names can be printed by the command pwd. The chdir command will change
you to another directory, and make the files in that directory visible. The directory in
which you are when you first login is your home directory (1.1, 2.7).

directory stack The shell saves the names of previous working directories in the directory stack when
you change your current working directory via the pushd command. The directory
stack can be printed by using the dirs command, which includes your current

An Introduction to the C shell USD:4-39

fg

filename

'prog.c' were a C program. then the object file for this program would be stored in
'prog.o'. Similarly a paper written with the '-me' nroff macro package might be
stored in 'paper. me' while a formatted version of this paper might be kept in
'paper. out' and a list of spelling errors in 'paper. errs' (1.6).

The joh control command.li: is used to run a background or suspended job in the
.IiJreground (1.8. 2.6).

Each file in UNIX has a name consisting of up to 14 characters and not including the
character 'r which is used in palilname building. Most filenames do not begin with
the character ','. and contain only letters and digits with perhaps a ',' separating the
base portion of the filename from an extension (1.6).

filename expansion

flag

foreach

foreground

goto

grep

head

. history

Filename expansion uses the metacharacters '.', '?' and T and T to provide a con
venient mechanism for naming files. Using filename expansion it is easy to name all
the files in the current directory. or all files which have a common roOI name. Other
filename expansion mechanisms use the meta character ,~, and allow files in other
users' directories to be named easily (1.6, 4.2).

Many UNIX commands accept arguments which are not the names of files or other
users but are used to modify the action of the commands. These are referred to as
flag options, and by convention consist of one or more letters preceded by the char
acter '-' (1.2). Thus the Is (list files) command has an option '-s' to list the sizes of
files. This is specified

Is -s

The foreach command is used in shell scripts and at the terminal to specify repetition
of a sequence of commands while the value of a certain shell variable ranges through
a specified list (3.6, 4.1).

When commands are executing in the normal way such that the shell is waiting for
them to finish before prompting for another command they are said to be foreground
jobs or running in the foreground. This is as opposed to background. Foreground
jobs can be stopped by signals from the terminal caused by typing different control
characters at the keyboard (1.8, 2.6).

The shell has a command goto used in shell scripts to transfer control to a given label
(3.7).

The grep command searches through a list of argument files for a specified string.
Thus

grep bill /etc/passwd

will print each line in the file /etc/passwd which contains the string 'bill'. Actually,
grep scans for regular expressions in the sense of the editors 'ed (1)' and 'ex (I)'.
Grep stands for 'globally find regular expression and print' (2.4).

The head command prints the first few lines of one or more files. If you have a
bunch of files containing text which you are wondering about it is sometimes useful
to run head with these files as arguments. This wiII usually show enough of what is
in these files to let you decide which you are interested in (1.5).
Head is also used to describe the part of a pathname before and including the last '/'
character. The tail of a pathname is the part after the last '/'. The ':h' and ':1'
modifiers allow the head or tail of a pathname stored in a shell variable to be used
(3.6).

The history mechanism of the shell allows previous commands to be repeated, possi
bly after modification to correct typing mistakes or to change the meaning of the
command. The shell has a history list where these commands are kept, and a history

An Introduction to the C shell USD:4-41

logout

.logout

Ipr

Is

mail

make

makefile

manual

metacharacter

mkdir

modifier

more

file after you logout (2.1).

The logout command causes a login shell to exit. Normally, a login shell will exit
when you hit control-d generating an end-of-file, but if you have set ignoreeof in you
.Iogin file then this will not work and you must use logout to log off the UNIX system
(2.8).

When you log off of UNIX the shell will execute commands from the file .Iogout in
your home directory after it prints 'logout'.

The command Ipr is the line printer daemon. The standard input of lpr spooled and
printed on the UNIX line printer. You can also give lpr a list of filenames as argu
ments to be printed. It is most common to use lpr as the last component of a pipe
line (2.3).

The Is (list files) command is one of the most commonly used UNIX commands.
With no argument filenames it prints the names of the files in the current directory.
It has a number of useful flag arguments, and can also be given the names of direc
tories as arguments, in which case it lists the names of the files in these directories
(1.2).

The mail program is used to send and receive messages from other UNIX users (1.1,
2.1), whether they are logged on or not.

The make command is used to maintain one or more related files and to organize
functions to be performed on these files. In many ways make is easier to use, and
more helpful than shell command scripts (3.2).

The file containing commands for make is called makefde or Makefile (3.2).

The manual often referred to is the 'UNIX manual'. It contains 8 numbered sections
with a description of each UNIX program (section I), system call (section 2), subrou
tine (section 3), device (section 4), special data structure (section 5), game (section 6),
miscellaneous item (section 7) and system administration program (section 8). There
are also supplementary documents (tutorials and reference guides) for individual pro
grams which require explanation in more detail. An online version of the manual is
accessible through the man command. Its documentation can be obtained online via

man man

If you can't decide what manual page to look in, try the apropos(l) command. The
supplementary documents are in subdirectories of /usr/doc.

Many characters which are neither letters nor digits have special meaning either to
the shell or to UNIX. These characters are called metacharacters. If it is necessary to
place these characters in arguments to commands without them having their special
meaning then they must be quoted. An example of a metacharacter is the character
'>' which is used to indicate placement of output into a file. For the purposes of the
history mechanism, most un quoted metacharacters form separate words (1.4). The
appendix to this user's manual lists the metacharacters in groups by their function.

The mkdir command is used to create a new directory.

Substitutions with the history mechanism, keyed by the character 'I' or of variables
using the metacharacter '$', are often subjected to modifications, indicated by placing
the character ':' after the substitution and following this with the modifier itself. The
command substitution mechanism can also be used to perform modification in a
similar way, but this notation is less clear (3.6).

The program more writes a file on your terminal allowing you to control how much
text is displayed at a time. More can move through the file screenful by screenful,
line by line, search forward for a string, or start again at the beginning of the file. It
is generally the easiest way of viewing a file (1.8).

An Introduction to the C shell USD:4-43

port

pr

printenv

process

program

prompt

pushd

ps

pwd

quit

quotation

, redirection

, rehash

type its name, forgetting the name of the current working directory before doing so
(2.7).

The part of a computer system to which each terminal is connected is called a port.
Usually the system has a fixed number of ports, some of which are connected to tele
phone lines for dial-up access, and some of which are permanently wired directly to
specific terminals.
The pr command is used to prepare listings of the contents of files with headers giv
ing the name of the file and the date and time at which the file was last modified
(2.3).

The printenv command is used to print the current setting of variables in the
environment (2.8).
An instance of a running program is called a process (2.6). UNIX assigns each process
a unique number when it is started - called the process number. Process numbers
can be used to stop individual processes using the kill or stop commands when the
processes are part of a detached background job.
Usually synonymous with command; a binary file or shell command script which per
forms a useful function is often called a program.
Many programs will print a prompt on the terminal when they expect input. Thus
the editor 'ex (1)' will print a ':' when it expects input. The shell prompts for input
with '% ' and occasionally with '1 ' when reading commands from the terminal (l.l).
The shell has a variable prompt which may be set to a different value to change the
shell's main prompt. This is mostly used when debugging the shell (2.8).
The pushd command, which means 'push directory', changes the shell's working
directory and also remembers the current working directory before the change is
made, allowing you to return to the same directory via the popd command later
without retyping its name (2.7).

The ps command is used to show the processes you are currently running. Each pro
cess is shown with its unique process number, an indication of the terminal name it
is attached to, an indication of the state of the process (whether it is running,
stopped, awaiting some event (sleeping), and whether it is swapped out), and the
amount of CPU time it has used so far. The command is identified by printing some
of the words used when it was invoked (2.6). Shells, such as the csh you use to run
the ps command, are not normally shown in the output.
The pwd command prints the full pathname of the current working directory. The
dirs builtin command is usually a better and faster choice.
The quit signal, generated by a control-\, is used to terminate programs which are
behaving unreasonably. It normally produces a core image file (1.8).
The process by which metacharacters are prevented their special meaning, usually by
using the character" in pairs, or by using the character '\', is referred to as quotation
(1. 7).
The routing of input or output from or to a file is known as redirection of input or
output (1.3).

The rehash command tells the shell to rebuild its internal table of which commands
are found in which directories in your path. This is necessary when a new program
is installed in one of these directories (2.8).

relative pathname
A pathname which does not begin with a 'f' is called a relative pathname since it is
interpreted relative to the current working directory. The first component of such a
pathname refers to some file or directory in the working directory, and subsequent
components between '/' characters refer to directories below the working directory.

An Introduction to the C shell USD:4-45

stty

substitution

suspended

switch

termination

then

time

tset

tty

unalias

UNIX

unset

The stty program changes certain parameters inside UNIX which determine how your
terminal is handled. See 'stty (1)' for a complete description (2.6).

The shell implements a number of substitutions where sequences indicated by meta
characters are replaced by other sequences. Notable examples of this are history sub
stitution keyed by the metacharacter 'I' and variable substitution indicated by '$'.
We also refer to substitutions as expansions (3.4).

A job becomes suspended after a STOP signal is sent to it, either by typing a control-z
at the terminal (for foreground jobs) or by using the stop command (for background
jobs). When suspended, a job temporarily stops running until it is restarted by either
the fg or bg command (2.6).

The switch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the switch
statement in the language C (3.7).

When a command which is being executed finishes we say it undergoes termination
or terminates. Commands normally terminate when they read an end-offile from
their standard input. It is also possible to terminate commands by sending them an
interrupt or quit signal (1.8). The kill program terminates specified jobs (2.6).

The then command is part of the shell's 'if-then-else-endiP control construct used in
command scripts (3.6).

The time command can be used to measure the amount of CPU and real time con
sumed by a specified command as well as the amount of disk 110 (input/output),
memory used, and number of page faults and swaps taken by the command (2.1, 2.8).

The tset program is used to set standard erase and kill characters and to tell the sys
tem what kind of terminal you are using. It is often invoked in a .login file (2.1).

The word tty is a historical abbreviation for 'teletype' which is frequently used in
UNIX to indicate the port to which a given terminal is connected. The tty command
will print the name of the tty or port to which your terminal is presently connected.

The unalias command removes aliases (2.8).

UNIX is an operating system on which csh runs. UNIX provides facilities which allow
csh to invoke other programs such as editors and text formatters which you may wish
to use.

The unset command removes the definitions of shell variables (2.2, 2.8).

variable expansion

variables

verbose

wc

while

word

See variables and expansion (2.2, 3.4).

Variables in csh hold one or more strings as value. The most common use of vari
ables is in controlling the behavior of the shell. See path, noclobber, and ignoreeof
for examples. Variables such as argv are also used in writing shell programs (shell
command scripts) (2.2).

The verbose shell variable can be set to cause commands to be echoed after they are
history expanded. This is often useful in debugging shell scripts. The verbose vari
able is set by the shell's -v command line option (3.10).

The wc program calculates the number of characters, words, and lines in the files
whose names are given as arguments (2.6).

The while builtin control construct is used in shell command scripts (3.7).

A sequence of characters which forms an argument to a command is called a word.
Many characters which are neither letters, digits, '-', '.' nor 'I' form words all by
themselves even if they are not surrounded by blanks. Any sequence of characters
may be made into a word by surrounding it with'" characters except for the charac
ters ,., and 'I' which require special treatment (1.1). This process of placing special

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

USD:5-1

DC is an interactive desk calculator program implemented on the UNIXt
time-sharing system to do arbitrary-precision integer arithmetic. It has provision for
manipulating scaled fixed-point numbers and for input and output in bases other
than decimal.

The size of numbers that can be manipulated is limited only by available core
storage. On typical implementations of UNIX, the size of numbers that can be han
dled varies from several hundred digits on the smallest systems to several thousand
on the largest.

DC is an arbitrary precision arithmetic package implemented on the UNIX time-sharing system
in the form of an interactive desk calculator. It works like a stacking calculator using reverse Polish
notation. Ordinarily DC operates on decimal integers, but one may specify an input base, output
base, and a number of fractional digits to be maintained.

A language called BC [I] has been developed which accepts programs written in the familiar
style of higher-level programming languages and compiles output which is interpreted by DC. Some
of the commands described below were designed for the compiler interface and are not easy for a
human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by taking
the top number or two off the stack, performing the desired operation, and pushing the result on the
stack. If an argument is given, input is taken from that file until its end, then from the standard
input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional com
mands that are intended to be invoked by compiled output are described in the detailed description.

Any number of commands are permitted on a line. Blanks and new-line characters are ignored
except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string of the
digits 0-9 and the capital letters A-F which are treated as digits with values 10-15 respectively.
The number may be preceded by an underscore to input a negative number. Numbers may
contain decimal points.

t UNIX is a trademark of AT&T Bell Laboratories.

DC - An Interactive Desk Calculator USD:5-3

c

o

k

z

?

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX com
mand terminates.

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for further input. If i is
capitalized, the value of the input base is pushed onto the stack. No mechanism has been pro
vided for the input of arbitrary numbers in bases less than I or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If 0 is
capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during mUltiplication, division, and exponentia
tion. The scale factor must be greater than or equal to zero and less than 100. If k is capital
ized, the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form
of a string of digits to the base 100 stored one digit per byte (centennial digits). The string is stored
with the low-order digit at the beginning of the string. For example, the representation of 157 is 57,1.
After any arithmetic operation on a number, care is taken that all digits are in the range 0-99 and
that the number has no leading zeros. The number zero is represented by the empty string.

Negative numbers are represented in the 100'5 complement notation, which is analogous to
two's complement notation for binary numbers. The high order digit of a negative number is always
-1 and all other digits are in the range 0-99. The digit preceding the high order -1 digit is never a
99. The representation of -157 is 43,98,-1. We shall call this the canonical form of a number. The
advantage of this kind of representation of negative numbers is ease of addition. When addition is
performed digit by digit, the result is formally correct. The result need only be modified, if necessary,
to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition can
be carried out and the handling of carries done later when that is convenient, as it sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3 where
the scale has been italicized to emphasize the fact that it is not the high order digit. The value of this
extra byte is called the scale factor of the number.

DC - An Interactive Desk Calculator USD:5-5

may require stripping of leading zeros, or for negative numbers replacing the high-order configuration
99,-1 by the digit -1. In any case, digits which are not in the range 0-99 must be brought into that
range, propagating any carries or borrows that result.

Multiplication

The scales are removed from the two operands and saved. The operands are both made posi
tive. Then multiplication is performed in a digit by digit manner that exactly mimics the hand
method of multiplying. The first number is multiplied by each digit of the second number, beginning
with its low order digit. The intermediate products are accumulated into a partial sum which
becomes the final product. The product is put into the canonical form and its sign is computed from
the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is
larger than the internal register scale and also larger than both of the scales of the two operands, then
the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed from the
dividend to make the scale of the result of the integer division equal to the internal quantity scale.
The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths of the
two numbers is computed. If the divisor is longer than the dividend, zero is returned. Otherwise the
top digit of the divisor is divided into the top two digits of the dividend. The result is used as the
first (high-order) digit of the quotient. It may turn out be one unit too low, but if it is, the next trial
quotient will be larger than 99 and this will be adjusted at the end of the process. The trial digit is
multiplied by the divisor and the result subtracted from the dividend and the process is repeated to
get additional quotient digits until the remaining dividend is smaller than the divisor. At the end, the
digits of the quotient are put into the canonical form, with propagation of carry as needed. The sign
is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division truncates
toward zero, remainders have the same sign as the dividend. The scale of the remainder is set to the
maximum of the scale of the dividend and the scale of the quotient plus the scale of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer result
have a scale that is the larger of the internal quantity scale and the scale of the operand.

rule
The method used to compute sqrt(y) is Newton's method with successive approximations by the

Xn+1 = Ih(xn+ L)
Xn

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 1.
If the exponent is negative, then it is made positive and the base is divided into one. The scale of the
base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and the
result is obtained as a product of those powers of the base that correspond to the positions of the
one-bits in the binary representation of the exponent. Enough digits of the result are removed to

DC - An Interactive Desk Calculator USD:5-7

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve push-down
registers and arrays. In addition to the stack that commands work on, DC can be thought of as hav
ing individual stacks for each register. These registers are operated on by the commands Sand L. Sx
pushes the top value of the main stack onto the stack for the register x. Lx pops the stack for register
x and puts the result on the main stack. The commands s and I also work on registers but not as
push-down stacks. I doesn't effect the top of the register stack, and s destroys what was there before.

The commands to work on arrays are: and;. :x pops the stack and uses this value as an index
into the array x. The next element on the stack is stored at this index in x. An index must be greater
than or equal to 0 and less than 2048. ;X is the command to load the main stack from the array x.
The value on the top of the stack is the index into the array x of the value to be loaded.

Miscellaneous Commands

The command! interprets the rest of the line as a UNIX command and passes it to UNIX to exe
cute. One other compiler command is Q. This command uses the top of the stack as the number of
levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose program
could be (and in fact has been) used for a variety of other tasks. The allocator has some value for
input and for compiling (i.e. the bracket [...] commands) where it cannot be known in advance how
long a string will be. The result was that at a modest cost in execution time, all considerations of
string allocation and sizes of strings were removed from the remainder of the program and debugging
was made easier. The allocation method used wastes approximately 25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet
the base cannot exceed 127 because of hardware limitations and at the cost of 5% in space, debugging
was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addition to
subroutine execution to be implemented in essentially the same way. The result was a considerable
degree of logical separation of the final program into modules with very little communication between
modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already been
entered. An earlier implementation which had global notions of scale and base did not work out well.
If the value of scale were to be interpreted in the current input or output base, then a change of base
or scale in the midst of a computation would cause great confusion in the interpretation of the results.
The current scheme has the advantage that the value of the input and output bases are only used fOJ
input and output, respectively, and they are ignored in all other operations. The value of scale is not
used for any essential purpose by any part of the program and it is used only to prevent the number
of decimal places resulting from the arithmetic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in no
case should any significant digits be thrown away if, on appearances, the user actually wanted them.
Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give him the result
5.017 without requiring him to unnecessarily specify his rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more digits
than their operands and it seemed reasonable to give as a minimum the number of decimal places in
the operands but not to give more than that number of digits unless the user asked for them by speci
fying a value for scale. Square root can be handled in just the same way as multiplication. The
operation of division gives arbitrarily many decimal places and there is simply no way to guess how
many places the user wants. In this case only, the user must specify a scale to get any decimal places
at all.

BC - An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

USD:6-1

BC is a language and a compiler for doing arbitrary precision arithmetic on the
PDP-II under the UNIXt time-sharing system. The output of the compiler is inter
preted and executed by a collection of routines which can input, output, and do
arithmetic on indefinitely large integers and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage allocator. Overflow
does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later exe~ution.

Two five hundred-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Introduction

Some of the uses of this compiler are

to do computation with large integers,

to do computation accurate to many decimal places,
conversion of numbers from one base to another base.

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX time
sharing system Ill. The compiler was written to make conveniently available a collection of routines
(called DC [5]) which are capable of doing arithmetic on integers of arbitrary size. The compiler is
by no means intended to provide a complete programming language. It is a minimal language facil
ity.

There is a scaling provision that permits the use of decimal point notation. Provision is made
for input and output in bases other than decimal. Numbers can be converted from decimal to octal
by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of storage
available on the machine. Manipulation of numbers with many hundreds of digits is possible even on
the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language [2].
Those who are familiar with C will find few surprises in this language.

t UNIX is a trademark of AT&T Bell Laboratories.

BC - An Arbitrary Precision Desk-Calculator Language USD:6-3

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change the
input base back to decimal by typing

ibase = 10

Because the number lOis interpreted as octal, this statement will have no effect. For those who deal
in hexadecimal notation, the characters A-F are permitted in numbers (no matter what base is in
effect) and are interpreted as digits having values 10-15 respectively. The statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative and
large positive input bases are permitted but useless. No mechanism has been provided for the input
of arbitrary numbers in bases less than I and greater than 16.

The contents of 'obase', initially set to 10, are used as the base for output numbers. The lines

obase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permitted,
and they are sometimes useful. For example, large numbers can be output in groups of frve digits by
setting 'obase' to 100000. Strange (Le. 1,0, or negative) output bases are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are continued
end with \. Decimal output conversion is practically instantaneous, but output of very large numbers
(i.e., more than 100 digits) with other bases is rather slow. Non-decimal output conversion of a one
hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of internal
computation or on the evaluation of expressions, but only affect input and output conversion, respec
tively.

Scaling
A third special internal quantity called 'scale' is used to determine the scale of calculated quanti

ties. Numbers may have up to 99 decimal digits after the decimal point. This fractional part is
retained in further computations. We refer to the number of digits after the decimal point of a
number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations, tht
result has a scale determined by the following rules. For addition and subtraction, the scale of the
result is the larger of the scales of the two operands. In this case, there is never any truncation of the
result. For multiplications, the scale of the result is never less than the maximum of the two scales of
the operands, never more than the sum of the scales of the operands and, subject to those two restric
tions, the scale of the result is set equal to the contents of the internal quantity 'scale'. The scale of a
quotient is the con:tents of the internal quantity 'scale'. The scale of a remainder is the sum of the
scales of the quotient and the divisor. The result of an exponentiation is scaled as if the implied mul
tiplications were performed. An exponent must be an integer. The scale of a square root is set to the
maximum of the scale of the argument and the contents of 'scale'.

All of the internal operations are actually carried out in terms of integers, with digits being dis·
carded when necessary. In every case where digits are discarded, truncation and not rounding is per
formed.

The contents of 'scale' must be no greater than 99 and no less than O. It is initially set to O. In
case you need more than 99 fraction digits, you may arrange your own scaling.

BC - An Arbitrary Precision Desk-Calculator Language

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),S)

would cause the value of x to become 60.

Subscripted Variables

USD:6-5

A single lower-case letter variable name followed by an expression in brackets is called a sub
scripted variable (an array element). The variable name is called the array name and the expression
in brackets is called the subscript. Only one-dimensional arrays are permitted. The names of arrays
are permitted to collide with the names of simple variables and function names. Any fractional part
of a subscript is discarded before use. Subscripts must be greater than or equal to zero and less than
or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return state
ments.

An array name may be used as an argument to a function, or may be declared as automatic in a
function definition by the use of empty brackets:

f(alD
define f(al»
auto all

When an array name is so used, the whole contents of the array are copied for the use of the function,
and thrown away on exit from the function. Array names which refer to whole arrays cannot be used
in any other contexts.

Control Statements
The ~ir, the 'while', and the 'for' statements may be used to alter the flow within programs or to

cause iteration. The range of each of them is a statement or a compound statement consisting of a
collection of statements enclosed in braces. They are written in the following way

or

if(relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

if(relation) {statements}
while(relation) {statements}
for(expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, <=, >=, ==, or !=.
The relation == stands for 'equal to' and!= stands for 'not equal to'. The meaning of the remaining
relational operators is clear.

BEWARE of using = instead of == in a relational. Unfortunately, both of them are legal, so
you will not get a diagnostic message, but = really will not do a comparison.

The 'ir statement causes execution of its range if and only if the relation is true. Then control
passes to the next statement in sequence.

The 'while' statement causes execution of its range repeatedly as long as the relation is true.
The relation is tested before each execution of its range and if the relation is false, control passes to
the next statement beyond the range of the while.

BC - An Arbitrary Precision Desk-Calculator Language USD:6-7

If an assignment statement is parenthesized, it then has a value and it can be used anywhere
that an expression can. For example, the line

(x=y+I7)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a[i=i+IJ

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C language.
Consult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as
x =+ y
x =-y
x =* y
x =1 y
x =%y
x =' y
x++
x--
++x
--x

x=(y=z)
x = x+y
x = x-y
x = x*y
x = x/y
x = x%y
x = x'y
(x=x+I)-I
(x=x-I)+I
x = x+I
x = x-I

Even if you don't intend to use the constructs, if you type one inadvertently, something correct but
unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real difference
between x =- y and x= -yo The first replaces x by x-y and the second by -yo

Three Important Things

I. To exit a Be program, type 'quit'.

2. There is a comment convention identical to that of C and of PLII. Comments begin with '1*'
and end with '*/'.

3. There is a library of math functions which may be obtained by typing at command level

be -I

This command will load a set of library functions which, at the time of writing, consists of sine
(named's'), cosine ('c'), arctangent ('a'), natural logarithm ('1'), exponential ('e') and Bessel functions
of integer order ('j(n,x)'). Doubtless more functions will be added in time. The library sets the scale
to 20. You can reset it to something else if you like. The design of these mathematical library rou
tines is discussed elsewhere [3].

If you type

be file ...

BC will read and execute the named file or files before accepting commands from the keyboard. In
this way, you may load your favorite programs and function definitions.

Acknowledgement

The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

BC - An Arbitrary Precision Desk-Calculator Language USD:6-9

Appendix

1. Notation
In the following pages syntactic categories are in italics; literals are in bold; material in brackets

[] is optional.

2. Tokens
Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators

may be blanks, tabs or comments. Newline characters or semicolons separate statements.

2.1. Comments
Comments are introduced by the characters /* and terminated by */.

2.2. Identifiers
There are three kinds of identifiers - ordinary identifiers, array identifiers and function

identifiers. All three types consist of single lower-case letters. Array identifiers are followed by square
brackets, possibly enclosing an expression describing a subscript. Arrays are singly dimensioned and
may contain up to 2048 elements. Indexing begins at zero so an array may be indexed from 0 to
2047. Subscripts are truncated to integers. Function identifiers are followed by parentheses, possibly
enclosing arguments. The three types of identifiers do not conflict; a program can have a variable
named x, an array named x and a function named x, all of which are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal
digits A-F are also recognized as digits with values 1001S, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Precedence is
the same as the order of presentation here, with highest appearing first. Left or right associativity,
where applicable, is discussed with each operator.

BC - An Arbitrary Precision Desk-Calculator Language USD:6-ll

3.2. Unary operators

The unary operators bind right to left.

3.2.1. - expression

The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named expression
after incrementing.

3.2.3. -- named-expression

The named expression is decremented by one. The result is the value of the named expression
after decrementing.

3.2.4. named-expression + +
The named expression is incremented by one. The result is the value of the named expression

before incrementing.

3.2.5. named-expressioll--

The named expression is decremented by one. The result is the value of the named expression
before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression' expression

The result is the first expression raised to the power of the second expression. The second
expression must be an integer. If a is the scale of the left expression and b is the absolute value of the
right expression, then the scale of the result is:

min (axb, max (scale, a»

3.4. Multiplicative operators

The operators *, /, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the two expressions,
then the scale of the result is:

min (a+b, max (scale, a, b»

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More precisely,
a%b is a-a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

BC - An Arbitrary Precision Desk-Calculator Language USD:6-13

identifiers, global and local, have initial values of zero. Identifiers declared as auto are allocated on
entry to the function and released on returning from the function. They therefore do not retain
values between function calls. auto arrays are specified by the array name followed by empty square
brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PUI. On
entry to a function, the old values of the names that appear as parameters and as automatic variables
are pushed onto a stack. Until return is made from the function, reference to these names refers only
to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control state
ments, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value of the
expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by surrounding
them with { }.

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if(relation) statement
The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement
The statement is executed while the relation is true. The test occurs before each execution of

the statement.

6.6. For statements

for (expression; relation; expression) statement
The for statement is the same as
first-expression
while (relation) {

statement
last-expression

All three expressions must be present.

6.7. Break statements

break

break causes termination of a for or while statement.

MAIL REFERENCE MANUAL

Kurt Shoens

Revised by

Craig Leres

Version 5.2

August 26, 1986

1. Introduction

Mail provides a simple and friendly environment for sending and receiving mail. It
divides incoming mail into its constituent messages and allows the user to deal with them in
any order. In addition, it provides a set of ed-like commands for manipulating messages and
sending mail. Mail offers the user simple editing capabilities to ease the composition of out
going messages, as well as providing the ability to define and send to. names which address
groups of users. Finally, Mail is able to send and receive messages across such networks as
the ARPANET, OOCP, and Berkeley network.

This document describes how to use the Mail program to send and receive messages.
The reader is not assumed to be familiar with other message handling systems, but should be
familiar with the UNIX l shell, the text editor, and some of the common UNIX commands.
"The UNIX Programmer's Manual," "An Introduction to Csh," and "Text Editing with Ex
and Vi" can be consulted for more information on these topics.

Here is how messages are handled: the mail system accepts incoming messages for you
from other people and collects them in a file, called your system mailbox. When you login,
the system notifies you if there are any messages waiting in your system mailbox. If you are a
csh user, you will be notified when new mail arrives if you inform the shell of the location of
your mailbox. On version 7 systems, your system mailbox is located in the directory
lusrlspoollmail in a file with your login name. If your login name is "sam," then you can
make csh notify you of new mail by including the following line in your .cshrc file:

set mail=lusrlspool/maillsam

When you read your mail using Mail, it reads your system mailbox and separates that file into
the individual messages that have been sent to you. You can then read, reply to, delete, or
save these messages. Each message is marked with its author and the date they sent it.

1 UNIX is a trademark of Ben Laboratories.

Mail Reference Manual

From root Wed Sep 2109:21:45 1978
Subject: Tuition fees
Status: R

Tuition fees are due next Wednesday. Don't forget!!

USD:7-3

Many Mail commands that operate on messages take a message number as an argument like
the type command. For these commands, there is a notion of a current message. When you
enter the Mail program, the current message is initially the first one. Thus, you can often
omit the message number and use, for example,

to type the current message. As a further shorthand, you can type a message by simply giving
its message number. Hence,

would type the first message.

Frequently, it is useful to read the messages in your mailbox in order, one after another.
You can read the next message in Mail by simply typing a newline. As a special case, you can
type a newline as your first command to Mail to type the first message.

If, after typing a message, you wish to immediately send a reply, you can do so with the
reply command. Reply, like type, takes a message number as an argument. Mail then begins
a message addressed to the user who sent you the message. You may then type in your letter
in reply, followed by a <control-d> at the beginning of a line, as before. Mail will type EOT,
then type the ampersand prompt to indicate its readiness to accept another command. In our
example, if, after typing the first message, you wished to reply to it, you might give the com
mand:

reply

Mail responds by typing:

To: root
Subject: Re: Tuition fees

and waiting for you to enter your letter. You are now in the message collection mode
described at the beginning of this section and Mail will gather up your message up to a
control-d. Note that it copies the subject header from the original message. This is useful in
that correspondence about a particular matter will tend to retain the same subject heading,
making it easy to recognize. If there are other header fields in the message, the information
found will also be used. For example, if the letter had a "To:" header listing several reci
pients, Mail would arrange to send your replay to the same people as well. Similarly, if the
original message contained a "Cc:" (carbon copies to) field, Mail would send your reply to
those users, too. Mail is careful, though, not too send the message to you, even if you appear
in the "To:" or "Cc:" field, unless you ask to be included explicitly. See section 4 for more
details.

After typing in your letter, the dialog with Mail might look like the following:

reply
To: root
Subject: Tuition fees

Thanks for the reminder
EOT
&

Mail Reference Manual USD:7-5

Another adaptation to user needs that Mail provides is that of aliases. An alias is sim
ply a name which stands for one or more real user names. Mail sent to an alias is really sent
to the list of real users associated with it. For example, an alias can be defined for the
members of a project, so that you can send mail to the whole project by sending mail to just a
single name. The alias command in Mail defines an alias. Suppose that the users in a project
are named Sam, Sally, Steve, and Susan. To define an alias called "project" for them, you
would use the Mail command:

alias project sam sally steve susan

The alias command can also be used to provide a convenient name for someone whose user
name is inconvenient. For example, if a user named "Bob Anderson" had the login name
"anderson,"" you might want to use:

alias bob anderson

so that you could send mail to the shorter name, "bob."

While the alias and set commands allow you to customize Mail, they have the drawback
that they must be retyped each time you enter Mail. To make them more convenient to use,
Mail always looks for two files when it is invoked. It first reads a system wide file
"/usr/lib/Mail.rc," then a user specific file, ".mailrc," which is found in the user's home direc
tory. The system wide file is maintained by the system administrator and contains set com
mands that are applicable to all users of the system. The" .mailrc" file is usually used by each
user to set options the way he likes and define individual aliases. For example, my .mailrc file
looks like this:

set ask nosave SHELL=/bin/csh

As you can see, it is possible to set many options in the same set command. The "nosave"
option is described in section 5.

Mail aliasing is implemented at the system-wide level by the mail delivery system send
mail. These aliases are stored in the file lusr/lib/aliases and are accessible to all users of the
system. The lines in lusr/lib/aliases are of the form:

alias: namel' name2, name3

where alias is the mailing list name and the namej are the members of the list. Long lists can
be continued onto the next line by starting the next line with a space or tab. Remember that
you must execute the shell command newaliases after editing lusrllib/aliases since the delivery
system uses an indexed file created by newaliases.

We have seen that Mail can be invoked with command line arguments which are people
to send the message to, or with no arguments to read mail. Specifying the -f flag on the com
mand line causes Mail to read messages from a file other than your system mailbox. For
example, if you have a collection of messages in the file "letters" you can use Mail to read
them with:

% Mail -f letters

You can use all the Mail commands described in this document to examine, modify, or delete
messages from your "letters" file, which will be rewritten when you leave Mail with the quit
command described below.

Since mail that you read is saved in the file mbox in your home directory by default,
you can read mbox in your home directory by using simply

% Mail -f

Normally, messages that you examine using the type command are saved in the file
"mbox" in your home directory if you leave Mail with the quit command described below. If
you wish to retain a message in your system mailbox you can use the preserve command to

Mail Reference Manual USD:7-7

copy +classwork

copies the current message into the classwork folder and leaves a copy in your system mail
box.

The folder command can be used to direct Mail to the contents of a different folder.
For example,

folder +classwork

directs Mail to read the contents of the classwork folder. All of the commands that you can
use on your system mailbox are also applicable to folders, including type, delete, and reply.
To inquire which folder you are currently editing, use simply:

folder

To list your current set of folders, use the folders command.

To start Mail reading one of your folders, you can use the -f option described in section
2. For example:

% Mail -f +classwork

will cause Mail to read your classwork folder without looking at your system mailbox.

Mail Reference Manual USD:7-9

escape. Mail will print out the number of lines and characters written to the file, after which
you may continue appending text to your message. Shell metacharacters may be used in the
filename, as in -r and are expanded with the conventions of your shell.

If you are sending mail from within Mail:l' command mode you can read a message sent
to you into the message you are constructing with the escape:

-m 4

which will read message 4 into the current message, shifted right by one tab stop. You can
name any non-deleted message, or list of messages. Messages can also be forwarded without
shifting by a tab stop with -f. This is the usual way to forward a message.

If, in the process of composing a message, you decide to add additional people to the list
of message recipients, you can do so with the escape

-t name I name2 ...

You may name as few or many additional recipients as you wish. Note that the users origi
nally on the recipient list will still receive the message; you cannot remove someone from the
recipient list with -to

If you wish, you can associate a subject with your message by using the escape

-s Arbitrary string of text

which replaces any previous subject with "Arbitrary string of text." The subject, if given, is
sent near the top of the message prefixed with "SUbject:" You can see what the message will
look like by using -po

For political reasons, one occasionally prefers to list certain people as recipients of car
bon copies of a message rather than direct recipients. The escape

-c name I name2 ...

adds the named people to the "Cc:" list, similar to -to Again, you can execute -p to see what
the message will look like.

The recipients of the message together constitute the "To:" field, the subject the "Sub
ject:" field, and the carbon copies the "Cc:" field. If you wish to edit these in ways impossi
ble with the -t, -s, and -c escapes, you can use the escape

-h
which prints "To:" followed by the current list of recipients and leaves the cursor (or print
head) at the end of the line. If you type in ordinary characters, they are appended to the end
of the current list of recipients. You can also use your erase character to erase back into the
list of recipients, or your kill character to erase them altogether. Thus, for example, if your
erase and kill characters are the standard (on printing terminals) # and @ symbols,

-h
To: root kurt####bill

would change the initial recipients "root kurt" to "root bill." When you type a newline, Mail
advances to the "Subject:" field, where the same rules apply. Another newline brings you to
the "Cc:" field, which may be edited in the same fashion. Another newline leaves you
appending text to the end of your message. You can use -p to print the current text of the
header fields and the body of the message.

To effect a temporary escape to the shell, the escape

-!command

is used, which executes command and returns you to mailing mode without altering the text
of your message. If you wish, instead, to filter the body of your message through a shell com
mand, then you can use

Mail Reference Manual USD:7-ll

and so on. It is actually a feature of UUCP that the map of all the systems in the network is
not known anywhere (except where people decide to write it down for convenience). Talk to
your system administrator about good ways to get places; the IIlIname command will tell you
systems whose names are recognized, but not which ones are frequently called or well
connected.

When you use the reply command to respond to a letter, there is a problem of figuring
out the names of the users in the "To:" and "Cc:" lists relative to the cllrrent machine. If the
original letter was sent to you by someone on the local machine, then this problem does not
exist, but if the message came from a remote machine, the problem must be dealt with. Mail
uses a heuristic to build the correct name for each user relative to the local machine. So,
when you reply to remote mail, the names in the "To:" and "Cc:" lists may change somewhat.

4.3. Special recipients

As described previously, you can send mail to either user names or alias names. It is
also possible to send messages directly to files or to programs, using special conventions. If a
recipient name has a 'I' in it or begins with a '+', it is assumed to be the path name of a file
into which to send the message. If the file already exists, the message is appended to the end
of the file. If you want to name a file in your current directory (ie, one for which a 'I' would
not usually be needed) you can precede the name with '.I' So, to send mail to the file "memo"
in the current directory, you can give the command:

% Mail .lmemo

If the name begins with a '+,' it is expanded into the full path name of the folder name in
your folder directory. This ability to send mail to files can be used for a variety of purposes,
such as maintaining a journal and keeping a record of mail sent to a certain group of users.
The second example can be done automatically by including the full path name of the record
file in the alias command for the group. Using our previous alias example, you might give
the command:

alias project sam sally steve susan lusr/project/mail_record

Then, all mail sent to "project" would be saved on the file "/usr/project/maiLrecord" as well
as being sent to the members of the project. This file can be examined using Mail -f

It is sometimes useful to send mail directly to a program, for example one might write a
project billboard program and want to access it using Mail. To send messages to the bill
board program, one can send mail to the special name 'Ibillboard' for example. Mail treats
recipient names that begin with a 'I' as a program to send the mail to. An alias can be set up
to reference a 'I' prefaced name if desired. Caveats: the shell treats 'I' specially, so it must be
quoted on the command line. Also, the 'I program' must be presented as a single argument to
mail. The safest course is to surround the entire name with double quotes. This also applies
to usage in the alias command. For example, if we wanted to alias 'rmsgs' to 'rmsgs -s' we
would need to say:

alias rmsgs "I rmsgs -s"

Mail Reference Manual

Print Like print, but also print out ignored header fields. See also print and ignore.

Reply

USD:7-l3

Note the capital R in the name. Frame a reply to a one or more messages. The reply
(or replies if you are using this on multiple messages) will be sent ONLY to the person
who sent you the message (respectively, the set of people who sent the messages you are
replying to). You can add people using the -t and -c tilde escapes. The subject in your
reply is formed by prefacing the subject in the original message with "Re:" unless it
already began thus. If the original message included a "reply-to" header field, the reply
will go only to the recipient named by "reply-to." You type in your message using the
same conventions available to you through the mail command. The Reply command is
especially useful for replying to messages that were sent to enormous distribution groups
when you really just want to send a message to the originator. Use it often.

Type Identical to the Print command.

alias Define a name to stand for a set of other names. This is used when you want to send
messages to a certain group of people and want to avoid retyping their names. For
example

alias project john sue willie kathryn

creates an alias project which expands to the four people John, Sue, Willie, and Kathryn.

alternates
If you have accounts on several machines, you may find it convenient to use the
lusrlliblaliases on all the machines except one to direct your mail to a single account.
The alternates command is used to inform Mail that each of these other addresses is
really you. Alternates takes a list of user names and remembers that they are all actually
you. When you reply to messages that were sent to one of these alternate names, Mail
will not bother to send a copy of the message to this other address (which would simply
be directed back to you by the alias mechanism). If alternates is given no argument, it
lists the current set of alternate names. Alternates is usually used in the . mailrc file.

ehdir The ehdir command allows you to change your current directory. Chdir takes a single
argument, which is taken to be the path name of the directory to change to. If no argu
ment is given, chdir changes to your home directory.

copy The eopy command does the same thing that save does, except that it does not mark the
messages it is used on for deletion when you quit.

delete
Deletes a list of messages. Deleted messages can be reclaimed with the undelete com
mand.

dp These

commands delete the current message and print the next message. They are useful for
quickly reading and disposing of mail.

edit To edit individual messages using the text editor, the edit command is provided. The
edit command takes a list of messages as described under the type command and
processes each by writing it into the file Messagex where x is the message number being
edited and executing the text editor on it. When you have edited the message to your
satisfaction, write the message out and quit, upon which Mail will read the message back
and remove the file. Edit may be abbreviated to e.

else Marks the end of the then-part of an if statement and the beginning of the part to take
effect if the condition of the if statement is false.

Mail Reference Manual USD:7-15

if Commands in your ".mailrc" file can be executed conditionally depending on whether
you are sending or receiving mail with the if command. For example, you can do:

if receive
commands ...

endif

An else form is also available:

if send
commands ...

else
commands ...

endif

Note that the only allowed conditions are receive and send.

ignore
Add the list of header fields named to the ignore list. Header fields in the ignore list are
not printed on your terminal when you print a message. This allows you to suppress
printing of certain machine-generated header fields, such as Via which are not usually of
interest. The Type and Print commands can be used to print a message in its entirety,
including ignored fields. If ignore is executed with no arguments, it lists the current set
of ignored fields.

list List the vaild Mail commands.

mail Send mail to one or more people. If you have the ask option set, Mail will prompt you
for a subject to your message. Then you can type in your message, using tilde escapes as
described in section 4 to edit, print, or modify your message. To signal your satisfaction
with the message and send it, type control-d at the beginning of a line, or a . alone on a
line if you set the option dot. To abort the message, type two interrupt characters
(RUBOUT by default) in a row or use the ~q escape.

mboxIndicate that a list of messages be sent to mbox in your home directory when you quit.
This is the default action for messages if you do not have the hold option set.

next The next command goes to the next message and types it. If given a message list, next
goes to the first such message and types it. Thus,

next root

goes to the next message sent by "root" and types it. The next command can be abbre
viated to simply a newline, which means that one can go to and type a message by sim
ply giving its message number or one of the magic characters "." "." or "$". Thus,

prints the current message and

4

prints message 4, as described previously.

preserve
Same as hold. Cause a list of messages to be held in your system mailbox when you
quit.

print Takes a message list and types out each message on the terminal.

quit LeaveMail and update the file, folder, or system mailbox your were reading. Messages
that you have examined are marked as "read" and messages that existed when you
started are marked as "old." If you were editing your system mailbox and if you have
set the binary option hold, all messages which have not been deleted, saved, or mboxed
will be retained in your system mailbox. If you were editing your system mailbox and

Mail Reference Manual

unset Reverse the action of setting a binary or valued option.

visual

USD:7-l7

It is often useful to be able to invoke one of two editors, based on the type of terminal
one is using. To invoke a display oriented editor, you can use the visual command. The
operation of the visual command is otherwise identical to that of the edit command.

Both the edit and visual commands assume some default text editors. These default edi
tors can be overridden by the valued options "EDITOR" and "VISUAL" for the stan
dard and screen editors. You might want to do:

set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi

write The save command always writes the entire message, including the headers, into the file.
If you want to write just the message itself, you can use the write command. The write
command has the same syntax as the save command, and can be abbreviated to simply
w. Thus, we could write the second message by doing:

w 2 file.c

As suggested by this example, the write command is useful for such tasks as sending and
receiving source program text over the message system.

z Mail presents message headers in windowfuls as described under the headers command.
You can move Mail's attention forward to the next window by giving the

z+

command. Analogously, you can move to the previous window with:

z-

5.3. Custom options

Throughout this manual, we have seen examples of binary and valued options. This sec
tion describes each of the options in alphabetical order, including some that you have not
seen yet. To avoid confusion, please note that the options are either all lower case letters or
all upper case letters. When I start a sentence such as: "Ask" causes Mail to prompt you for a
subject header, I am only capitalizing "ask" as a courtesy to English.

EDITOR
The valued option "EDITOR" defines the pathname of the text editor to be used in the
edit command and ~e. If not defined, a standard editor is used.

SHELL
The valued option "SHELL" gives the path name of your shell. This shell is used for
the! command and ~! escape. In addition, this shell expands file names with shell
metacharacters like * and? in them.

VISUAL
The valued option "VISUAL" defines the pathname of your screen editor for use in the
visual command and ~v escape. A standard screen editor is used if you do not define
one.

append
The "append" option is binary and causes messages saved in mbox to be appended to
the end rather than prepended. Normally, Mailwill mbox in the same order that the sys
tem puts messages in your system mailbox. By setting "append," you are requesting
that mbox be appended to regardless. It is in any event quicker to append.

ask "Ask" is a binary option which causes Mail to prompt you for the subject of each mes
sage you send. If you respond with simply a newline, no subject field will be sent.

Mail Reference Manual USD:7-19

noheader
The binary option "noheader" suppresses the printing of the version and headers when
Mail is first invoked. Setting this option is the same as using -N on the command line.

nosave
Normally, when you abort a message with two RUBOUTs, Mail copies the partial letter to
the file "dead.letter" in your home directory. Setting the binary option "nosave"
prevents this.

quiet The binary option "quiet" suppresses the printing of the version when Mail is first
invoked, as well as printing the for example "Message 4:" from the type command.

record
If you love to keep records, then the valued option "record" can be set to the name of a
file to save your outgoing mail. Each new message you send is appended to the end of
the file.

screen
When Mail initially prints the message headers, it determines the number to print by
looking at the speed of your terminal. The faster your terminal, the more it prints. The
valued option "screen" overrides this calculation and specifies how many message
headers you want printed. This number is also used for scrolling with the z command.

sendmail
To alternate delivery system, set the "sendmail" option to the full pathname of the pro
gram to use. Note: this is not for everyone! Most people should use the default
delivery system.

toplines
The valued option "toplines" defines the number of lines that the "top" command will
print out instead of the default five lines.

verbose
The binary option "verbose" causes Mail to invoke sendmail with the -v flag, which
causes it to go into versbose mode and announce expansion of aliases, etc. Setting the
"verbose" option is equivalent to invoking Mail with the -v flag as described in section
6.

Mail Reference Manual USD:7-21

Following the from line are zero or more header field lines. Each header field line is of
the form:

name: information

Name can be anything, but only certain header fields are recognized as having any meaning.
The recognized header fields are: article-id, bec, cc, from, reply-to, sender. subject. and to.
Other header fields are also significant to other systems; see. for example. the current Arpanet
message standard for much more on this topic. A header field can be continued onto follow
ing lines by making the first character on the following line a space or tab character.

If any headers are present, they must be followed by a blank line. The part that follows
is called the body of the message. and must be ASCII text. not containing null characters.
Each line in the message body must be terminated with an ASCII newline character and no
line may be longer than 512 characters. If binary data must be passed through the mail sys
tem, it is suggested that this data be encoded in a system which encodes six bits into a print
able character. For example. one could use the upper and lower case letters. the digits, and
the characters comma and period to make up the 64 characters. Then. one can send a 16-bit
binary number as three characters. These characters should be packed into lines. preferably
lines about 70 characters long as long lines are transmitted more efficiently.

The message delivery system always adds a blank line to the end of each message. This
blank line must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a mes
sage each time it is forwarded through a machine.

It should be noted that some network transport protocols enforce limits to the lengths of
messages.

Mail Reference Manual USD:7·23

9. Summary of commands, options, and escapes

This section gives a quick summary of the Mail commands, binary and valued options,
and tilde escapes.

The following table describes the commands:

Command

Print
Reply
Type
alias
alternates
chdir
copy
delete
dt
endif
edit
else
exit
file
folder
folders
from
headers
help
hold
if
ignore
list
local
mail
mbox
next
preserve
quit
reply
save
set
shell
top
type
undelete
unset
visual
write
z

Description
Single command escape to shell
Back up to previous message
Type message with ignored fields
Reply to author of message only
Type message with ignored fields
Define an alias as a set of user names
List other names you are known by
Change working directory, home by default
Copy a message to a file or folder
Delete a list of messages
Delete current message, type next message
End of conditional statement; see if
Edit a list of messages
Start of else part of conditional; see if
Leave mail without changing anything
Interrogate/change current mail file
Same as file
List the folders in your folder directory
List headers of a list of messages
List current window of messages
Print brief summary of Mail commands
Same as preserve
Conditional execution of Mail commands
Set/examine list of ignored header fields
List valid Mail commands
List other names for the local host
Send mail to specified names
Arrange to save a list of messages in mbox
Go to next message and type it
Arrange to leave list of messages in system mailbox
Leave Mail; update system mailbox, mbox as appropriate
Compose a reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive shell
Print first so many (5 by default) lines of list of messages
Print messages
Undelete list of messages
Undo the operation of a set
Invoke visual editor on a list of messages
Append messages to a file, don't include headers
Scroll to next/previous screenful of headers

Mail Reference Manual USD:7-25

The following table shows the command line flags that Mail accepts:

Flag Description
-N Suppress the initial printing of headers
- T file Article-id's of read/deleted messages to file
-d Turn on debugging
-f file Show messages in file or ~/mbox
-h number Pass on hop count for mail forwarding
-i Ignore tty interrupt signals
-n Inhibit reading of lusr/lib/Mail.rc
-r name Pass on name for mail forwarding
-s string Use string as subject in outgoing mail
-u name Read name's mail instead of your own
-v Invoke sendmail with the -v flag

Notes: -T, -d, -h, and -r are not for human use.

THERANDMH
MESSAGE HANDLING

SYSTEM:
USER'S MANUAL

UCI/UCB Version

Marshall T. Rose
John L. Romine

Based on the original manual by
Borden, Gaines, and Shapiro

April 20, 1986
6.4 #2[UCI]

PICK ... 47
PREY .. 51
PROMPTER .. 52

RCVSTORE ... 54
REFILE .. 55
REPL .. 57
RMF ... 60

RMM .. 61
SCAN .. 62
SEND .. 64
SHOW .. 66

SORTM .. 68
VMH ... 69
WHATNOW ... 71

WHOM ... 73

MORE DETAILS ... 74
MH-ALIAS .. 75
MH-FORMAT ... 78
MH-MAIL ... 82

MH-PROFILE ... 85

AP ... 91
CONFLICT .. 93
DP ... 94
INSTALL-MH .. 95
POST .. 96

5. REPORTING PROBLEMS ... 98

6. ADVANCED FEATURES .. 99

USER-DEFINED SEQUENCES .. 99
Pick and User-Defined Sequences .. 99
Mark and User-Defined Sequences ... 100
Public and Private User-Defined Sequences .. 100
Sequence Negation ... 100
The Previous Sequence 101
The Unseen Sequence .. 101

COMPOSITION OF MAIL ... 101
The Draft Folder .. 102
What Happens if the Draft Exists ... 103
The Push Option at What now? Level..... 104
Options at What now? Level 104
Digests .. 1 04

FOLDER HANDLING ... 105
Relative Folder Addressing .. 106

READ THIS

Although the MH system was originally developed by the Rand Corporation, and is now in the
public domain, the Rand Corporation assumes no responsibility for MH or this particular version of
MH.

In addition, the Regents of the University of California issue the following disclaimer in regard
to the UCI/UCB version of MH:

"Although each program has been tested by its contributor, no warranty, express or implied,
is made by the contributor or the University of California, as to the accuracy and functioning
of the program and related program material, nor shall the fact of distribution constitute any
such warranty, and no responsibility is assumed by the contributor or the University of Cali
fornia in connection herewith."

This version of MH is in the public domain, and as such, there are no real restrictions on its
use. The MH source code and documentation have no licensing restrictions whatsoever. As a cour
tesy, the authors ask only that you provide appropriate credit to the Rand Corporation and the
University of California for having developed the software.

MH is a software package that is supported neither by the Rand Corporation nor the University
of California. However, since we do use the software ourselves and plan to continue using (and
improving) MH, bug reports and their associated fixes should be reported back to us so that we may
include them in future releases. The current computer mailbox for MH is Bug-MH@UCI.EDU (in
the ARPA Internet), and .. .!ucbvax!ucivax!bug-mh (UUCP). Presently, there are two Internet discus
sion groups, MH-Users@UCI.EDU and MH-Workers@UCI.EDU. If there is sufficient interest,
corresponding Usenet news groups may be established along with the appropriate gateways.

The Rand MH Message Handling System USD:8-i

ACKNOWLEDGMENTS

The MH system described herein is based on the original Rand MH system. It has been exten
sively developed (perhaps too much so) by Marshall T. Rose and John L. Romine at the University of
California, Irvine. Einar A. Stefferud, Jerry N. Sweet, and Terry P. Domae provided numerous
suggestions to improve the UCI version of MH. Of course, a large number of people have helped
MHI along. The list of "MH immortals" is too long to list here. However, Van Jacobson deserves a
special acknowledgement for his tireless work in improving the performance of MH. Some programs
have been speeded-up by a factor of 10 or 20. All of users of MH, everywhere, owe a special thanks
to Van.

This manual is based on the original MH manual written at Rand by Bruce Borden, Stockton
Gaines, and Norman Shapiro.

The Rand MH Message Handling System USD:8-iii

SUMMARY

Electronic communication of text messages is becoming commonplace. Computer-based mes
sage systems-software packages that provide tools for dealing with messages-are used in many con
texts. In particular, message systems are becoming increasingly important in command and control
and intelligence applications.

This report describes a message handling system called MH. This system provides the user with
tools to compose, send, receive, store, retrieve, forward, and reply to messages. MH has been built on
the UNIX time-sharing system, a popular operating system developed for the DEC PDP-II and VAX
classes of computers.

A complete description of MH is given for users of the system. For those who do not intend to
use the system, this description gives a general idea of what a message system is like. The system
involves some new ideas about how large subsystems can be constructed.

The interesting and unusual features of MH include the following: The user command interface
to MH is the UNIX "shell" (the standard UNIX command interpreter). Each separable component
of message handling, such as message composition or message display, is a separate command. Each
program is driven from and updates a private user environment, which is stored as a file between pro
gram invocations. This private environment also contains information to "custom tailor" MH to the
individual's tastes. MH stores each message as a separate file under UNIX, and it utilizes the tree
structured UNIX file system to organize groups of files within separate directories or "folders". All of
the UNIX facilities for dealing with files and directories, such as renaming, copying, deleting, catalog
ing, off-line printing, etc., are applicable to messages and directories of messages (folders). Thus,
important capabilities needed in a message system are available in MH without the need (often seen
in other message systems) for code that duplicates the facilities of the supporting operating system. It
also allows users familiar with the shell to use MH with minimal effort.

The Rand MH Message Handling System USD:8-v

I. INTRODUCTION

Although people can travel cross-country in hours and can reach others by telephone in seconds.
communications still depend heavily upon paper. most of which is distributed through the mails.

There are several major reasons for this continued dependence on written documents. First. a
written document may be proofread and corrected prior to its distribution. giving the author com
plete control over his words. Thus. a written document is better than a telephone conversation in this
respect. Second. a carefully written document is far less likely to be misinterpreted or poorly
translated than a phone conversation. Third. a signature offers reasonable verification of authorship.
which cannot be provided with media such as telegrams.

However. the need for fast. accurate. and reproducible document distribution is obvious. One
solution in widespread use is the telefax. Another that is rapidly gaining popularity is electronic mail.
Electronic mail is similar to telefax in that the data to be sent are digitized. transmitted via phone
lines. and turned back into a document at the receiver. The advantage of electronic mail is in its
compression factor. Whereas a telefax must scan a page in very fine lines and send all of the black
and white information. electronic mail assigns characters fixed codes which can be transmitted as a
few bits of information. Telefax presently has the advantage of being able to transmit an arbitrary
page. including pictures. but electronic mail is beginning to deal with this problem. Electronic mail
also integrates well with current directions in office automation, allowing documents prepared with
sophisticated equipment at one site to be quickly transferred and printed at another site.

Currently. most electronic mail is intraorganizational, with mail transfer remaining within one
computer. As computer networking becomes more common, however, it is becoming more feasible to
communicate with anyone whose computer can be linked to your own via a network.

The pioneering efforts on general-purpose electronic mail were by organizations using the DoD
ARPAnet[l]. The capability to send messages between computers existed before the ARPAnet was
developed, but it was used only in limited ways. With the advent of the ARPAnet, tools began to be
developed which made it convenient for individuals or organizations to distribute messages over
broad geographic areas, using diverse computer facilities. The interest and activity in message sys
tems has now reached such proportions that steps have been taken within the DoD to coordinate and
unify the development of military message systems. The use of electronic mail is expected to increase
dramatically in the next few years. The utility of such systems in the command and control and intel
ligence environments is clear, and applications in these areas will probably lead the way. As the costs
for sending and handling electronic messages continue their rapid decrease, such uses can be expected
to spread rapidly into other areas and, of course, will not be limited to the DoD.

A message system provides tools that help users (individuals or organizations) deal with mes
sages in various ways. Messages must be composed, sent, received, stored, retrieved, forwarded, and
replied to. Today's best interactive computer systems provide a variety of word-processing and infor
mation handling capabilities. The message handling facilities should be well integrated with the rest
of the system, so as to be a graceful extension of overall system capability.

The message system described in this report, MH, provides most of the features that can be
found in other message systems and also incorporates some new ones. It has been built on the UNIX
time-sharing system[2], a popular operating system for the DEC PDP-III and VAX-II classes of
computers. A "secure" operating system similar to UNIX is currently being developed[3], and that
system will also run MH.

I PDP and VAX are trademarks of Digital Equipment Corporation.

2. OVERVIEW

There are three main aspects of Mil : the way messages are stored (the message database),
the user's profile (which directs how certain actions of the message handler take place), and the com
mands for dealing with messages.

Under Mil. each message is stored as a separate file. A user can take any action with a message
that he could with an ordinary file in UNIX. A UNIX directory in which messages are stored is
called a folder. Each folder contains some standard entries to support the message-handling func
tions. The messages in a folder have numerical names. These folders (directories) are entries in a
particular directory path. described in the user profile. through which Mil can find message folders.
Using the UNIX "link" facility. it is possible for one copy of a message to be "filed" in more than
one folder, providing a message index facility. Also. using the UNIX tree-structured file system, it is
possible to have a folder within a folder. nested arbitrarily deep, and have the full power of the Mil
commands available.

Each user of Mil has a user profile, a file in his $HOME (initial login) directory called
.mh_proflle. This profile contains several pieces of information used by the Mil commands: a path
name to the directory that contains the message folders and parameters that tailor Mil commands to
the individual user's requirements. There is also another file, called the user context, which contains
information concerning which folder the user last referenced (the "current" folder). It also contains
most of the necessary state information concerning how the user is dealing with his messages, ena
bling Mil to be implemented as a set of individual UNIX commands, in contrast to the usual
approach of a monolithic subsystem.

In Mil, incoming mail is appended to the end of a file in a system spooling area for the user.
This area is called the mail drop directory, and the file is called the user's mail drop. Normally when
the user logins in, s/he is informed of new mail (or the Mil program msgchk may be run). The user
adds the new messages to his/her collection of Mil messages by invoking the command inc. The inc
(incorporate) command adds the new messages to a folder called "in box", assigning them names
which are consecutive integers starting with the next highest integer available in inbox. inc also pro
duces a scan summary of the messages thus incorporated. A folder can be compacted into a single
file, for easy storage, by using the pack! command. Also, messages within a folder can be sorted by
date and time with the sortm command.

There are four commands for examining the messages in a folder: show, prev, next, and scan.
The show command displays a message in a folder, prev displays the message preceding the current
message, and next displays the message following the current message. Mil lets the user choose the
program that displays individual messages. A special program, mhl, can be used to display messages
according to the user's preferences. The scan command summarizes the messages in a folder, nor
mally producing one line per message, showing who the message is from, the date, the subject, etc.

The user may move a message from one folder to another with the command reflle. Messages
may be removed from a folder by means of the command rmm. In addition, a user may query what
the current folder is and may specify that a new folder become the current folder, through the com
mand folder. All folders may be summarized with the folders command. A message folder (or sub
folder) may be removed by means of the command rmf

A set of messages based on content may be selected by use of the command pick. This com
mand searches through messages in a folder and selects those that match a given set of criteria.
These messages are then bound to a "sequence" name for use with other Mil commands. The mark
command manipulates these sequences.

USD:8-3 The Rand MH Message Handling System

3. TUTORIAL

This tutorial provides a brief introduction to the MH commands. It should be sufficient to
allow the user to read his mail, do some simple manipulations of it, and create and send messages.

A message has two major pieces: the header and the body. The body consists of the text of the
message (whatever you care to type in). It follows the header and is separated from it by an empty
line. (When you compose a message, the form that appears on your terminal shows a line of dashes
after the header. This is for convenience and is replaced by an empty line when the message is sent.)
The header is composed of several components, including the subject of the message and the person
to whom it is addressed. Each component starts with a name and a colon; components must not start
with a blank. The text of the component may take more than one line, but each continuation line
must start with a blank. Messages typically have "To:", "cc:", and "Subject:" components. When
composing a message, you should include the "To:" and "Subject:" components; the "cc:" (for people
you want to send copies to) is not necessary.

The basic MH commands are inc, scan, show, next, prev, rmm, comp, and repi. These are
described below.

inc

When you get the message "You have mail", type the command inc. You will get a "scan list
ing" such as:

7+ 7/13 Cas revival of measurement work
8 101 9 Norm NBS people and publications
9 11126 To:norm question «Are there any functions

This shows the messages you received since the last time you executed this command (inc adds
these new messages to your inbox folder). You can see this list again, plus a list of any other mes
sages you have, by using the scan command.

scan

The scan listing shows the message number, followed by the date and the sender. (If you are the
sender, the addressee in the "To:" component is displayed. You may send yourself a message by
including your name among the "To:" or "cc:" addressees.) It also shows the message's subject; if the
subject is short, the first part of the body of the message is included after the characters «.

show

This command shows the current message, that is, the first one of the new messages after an inc.
If the message is not specified by name (number), it is generally the last message referred to by an
MH command. For example,

show 5 will show message 5.

You can use the show command to copy a message or print a message.

USD:8-5 The Rand MH Message Handling System

4. DETAILED DESCRIPTION

This section describes the MH system in detail, including the components of the user profile, the
conventions for message naming, and some of the other MH conventions. Readers who are generally
familiar with computer systems will be able to follow the principal ideas, although some details may
be meaningful only to those familiar with UNIX.

THE USER PROFILE

The first time an MH command is issued by a new user, the system prompts for a "Path" and
creates an MH "profile".

Each MH user has a profile which contains tailoring information for each individual program.
Other profile entries control the MH path (where folders and special files are kept), folder and mes
sage protections, editor selection, and default arguments for each MH program. Each user of MH
also has a context file which contains current state information for the MH package (the location of
the context file is kept in the user's MH directory, or may be named in the user profile). When a
folder becomes the current folder, it is recorded in the user's context. (Other state information is
kept in the context file, see the manual entry for mh-profile (5) for more details.) In general, the term
"profile entry" refer to entries in either the profile or context file. Users of MH needn't worry about
the distinction, MH handles these things automatically.

The MH profile is stored in the file .mh_profile in the user's $HOME directoryl. It has the for
mat of a message without any body. That is, each profile entry is on one line, with a keyword fol
lowed by a colon (:) followed by text particular to the keyword.
__ This file must not have blank lines.
The keywords may have any combination of upper and lower case. (See the information of mh-mail
later on in this manual for a description of message formats.)

For the average MH user, the only profile entry of importance is "Path". Path specifies a direc
tory in which MH folders and certain files such as "draft" are found. The argument to this keyword
must be a legal UNIX path that names an existing directory. If this path is not absolute (i.e., does
not begin with a /), it will be presumed to start from the user's $HOME directory. All folder and
message references within MH will relate to this path unless full path names are used.

Message protection defaults to 644, and folder protection to 711. These may be changed by
profile entries "Msg-Protect" and "Folder-Protect", respectively. The argument to these keywords is
an octal number which is used as the UNIX file mode2•

When an MH program starts running, it looks through the user's profile for an entry with a key
word matching the program's name. For example, when comp is run, it looks for a "comp" profile
entry. If one is found, the text of the profile entry is used as the default switch setting until all
defaults are overridden by explicit switches passed to the program as arguments. Thus the profile
entry "comp: -form standard.list" would direct comp to use the file "standard.list" as the message
skeleton. If an explicit form switch is given to the comp command, it will override the switch
obtained from the profile.

I By defining the environment variable $MH, you can specify an alternate profile to be used by MH commands.

, See chmod (1) in the UNIX Programmer's Manual [5].

USD:8-7 The Rand MH Message Handling System

USD:8-9 The Rand MH Message Handling System

Table I

PROFILE COMPONENTS

Keyword and Argument

Path: Mail
Current-Folder: inbox
Editor: /usr/ucb/ex
Msg-Protect: 644
Folder-Protect: 711
<program>: default switches
prompter-next: ed

MH Programs that
use Component

All
Most
comp, dist, !orw, repl
inc
inc, pick, refile
All
comp, dist, !orw, repl

Path should be present. Current-Folder is maintained automatically by many MH commands
(see the Context sections of the individual commands in Sec. IV). All other entries are optional,
defaulting to the values described above.

MESSAGE NAMING

Messages may be referred to explicitly or implicitly when using MH commands. A formal syn
tax of message names is given in Appendix B, but the following description should be sufficient for
most MH users. Some details of message naming that apply only to certain commands are included
in the description of those commands.

Most of the A1H commands accept arguments specifying one or more folders, and one or more
messages to operate on. The use of the word "msg" as an argument to a command means that
exactly one message name may be specified. A message name may be a number, such as 1, 33, or
234, or it may be one of the "reserved" message names: first, last, prev, next, and cur. (As a short
hand, a period (.) is equivalent to cur.) The meanings of these names are straightforward: "first" is the
first message in the folder; "last" is the last message in the folder; "prev" is the message numerically
previous to the current message; "next" is the message numerically following the current message;
"cur" (or ".") is the current message in the folder. In addition, MH supports user-defined-sequences;
see the description of the mark command for more information.

The default in commands that take a "msg" argument is always "cur".

The word "msgs" indicates that several messages may be specified. Such a specification consists
of several message designations separated by spaces. A message designation is either a message name
or a message range. A message range is a specification of the form namel-name2 or namel:n, where
name I and name2 are message names and n is an integer. The first form designates all the messages
from namel to name2 inclusive; this must be a non-empty range. The second form specifies up to n
messages, starting with namel if name I is a number, or first, cur, or next, and ending with namel if
name I is last or prev. This interpretation of n is overridden if n is preceded by a plus sign or a
minus sign; +n always means up to n messages starting with namel, and -n always means up to n
messages ending with namel. Repeated specifications of the same message have the same effect as a
single specification of the message. Examples of specifications are:

USD:8-11 The Rand MH Message Handling System

MHCOMMANDS

The MH package comprises several programs:

ali (I)
anno (I)
burst (I)
comp (I)
dist (1)
folder (I)
folders (I)
forw (I)
inc (I)
mark (I)
mhl (I)
mhmail (I)
mhook (I)
mhpath (I)
msgchk (1)
msh (I)
next (1)
packf (I)
pick (I)
prev (I)
prompter (I)
rcvstore (I)
refile (I)
repl (I)
rmf(l)
rmm (I)
scan (I)
send (I)
show (I)
sortm (I)
vmh (1)
whatnow (I)
whom (I)

- list mail aliases
- annotate messages
- explode digests into messages
- compose a message
- redistribute a message to additional addresses
- setllist current folder/message
- list all folders
- forward messages
- incorporate new mail
- mark messages
- produce formatted listings of MH messages
- send or read mail
- MH receive-mail hooks
- print full pathnames of MH messages and folders
- check for messages
- MH shell (and BBoard reader)
- show the next message
- compress a folder into a single file
- select messages by content
- show the previous message
- prompting editor front end
- incorporate new mail asynchronously
- file messages in other folders
- reply to a message
- remove folder
- remove messages
- produce a one line per message scan listing
- send a message
- show (list) messages
- sort messages
- visual front-end to MH
- prompting front-end for send
- report to whom a message would go

These programs are described below. The form of the descriptions conforms to the standard
form for the description of UNIX commands.

VSD:8-13 The Rand MH Message Handling System ANNO(l)

NAME
anno - annotate messages

SYNOPSIS
anno [+folder) [msgs) [-component field) [-inplace) [-noinplace) [-text body) [-help)

DESCRIPTION

Files

Anno annotates the specified messages in the named folder using the field and body. Annota
tion is optionally performed by dist, forw, and rep!, to keep track of your distribution of, for
warding of, and replies to a message. By using anno, you can perform arbitrary annotations
of your own. Each message selected will be annotated with the lines

field: date
field: body

The '-inplace' switch causes annota';on to be done in place in order to preserve links to the
annotated message.

The field specified should be a valid 822-style message field name, which means that it should
consist of alphanumerics (or dashes) only. The body specified is arbitrary text.

If a '-component field' is not specified when anno is invoked, an no will prompt the user for
the name of field for the annotation.

$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder

See Also

Defaults

Context

(mh.6)

Current-Folder:

dist (I), forw (1), repl (1)

'+folder' defaults to the current folder
'msgs' defaults to cur
'-noinplace'

If a folder is given, it will become the current folder. The first message annotated will become
the current message.

MH VCI/VCR version

USD:8-IS The Rand MH Message Handling System BURST(I)

Conlexl

BURS

[mh.61

If a folder is given. it will become the current folder. If '-in place' is given. then the first mes
sage burst becomes the current message. This leaves the context ready for a sholl" of the table
of contents of the digest, and a next to see the first message of the digest. If '-noinplace' is
given, then the first message extracted from the first digest burst becomes the current message.
This leaves the context in a similar. but not identical, state to the context achieved when us
ing '-inplace'.

The hurst program enforces a limit on the number of messages which may be hurst from a sin
gle message. This number is on the order of 1000 messages. There is usually no limit on the
number of messages which may reside in the folder after the hursting.

Although hurst uses a sophisticated algorithm to determine where one encapsulated message
ends and another begins, not all digestifying programs use an encapsulation algorithm. In de
generate cases, this usually results in burst finding an encapsulation boundary prematurely and
splitting a single encapsulated message into two or more messages. These erroneous digestify
ing programs should be fixed.

Furthermore, any text which appears after the last encapsulated message is not placed in a
seperate message by burst. In the case of digestified messages, this text is usally an "End of
digest" string. As a result of this possibly un-friendly behavior on the part of burst, note that
when the '-inplace' option is used, this trailing information is lost. In practice, this is not a
problem since correspondents usually place remarks in text prior to the first encapsulated
message, and this information is not lost.

MH VCI/VCB version

USD:8-17 The Rand MH Message Handling System COMP(l)

Profile Components

Path: To determine the user's MH directory
To find the default draft-folder

See Also

Defaults

Context

Bugs

(mh.6J

Draft-Folder:
Editor:
Msg-Protect:
fileproc:
whatnowproc:

To override the default editor
To set mode when creating a new message (draft)
Program to refile the message
Program to ask the "What now?" questions

dist(l), forw(l), repl(l), send(I), whatnow(l)

'+ folder' defaults to the current folder
'msg' defaults to the current message
, -nodraftfolder'
'-no use ,

None

If wllatnowproc is wllatnow, then comp uses a built-in wllatnow, it does not actually run the
wllatnow program. Hence, if you define your own wllatnowproc, don't call it whatnow since
camp won't run it.

MH UCI/UCB version

USD:8-19 The Rand MH Message Handling System DIST(I)

Files

Upon exiting from the editor, dist will invoke the whatnow program. See whatnow (I) for a
discussion of available options. The invocation of this program can be inhibited by using the
'-nowhatnowproc' switch. (In truth of fact, it is the whatnow program which starts the initial
edit. Hence, '-nowhatnowproc' will prevent any edit from occurring.)

lusr/new/lib/mh/distcomps
or <mh-dir>/distcomps
$HOME/.mh_profile
<mh-dir>/draft

The message skeleton
Rather than the standard skeleton
The user profile
The draft file

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

Defaults

Context

History

Bugs

[mh.6)

Current-Folder:
Draft-Folder:
Editor:
fileproc:
whatnowproc:

To find the default draft-folder
To override the default editor
Program to refile the message
Program to ask the "What now?" questions

comp(1), forw(1), repl(1), send(I), whatnow(I)

'. + folder' defaults to the current folder
'msg' defaults to cur
'-no annotate'
, -nodraftfolder'
'-noinplace'

If a folder is given, it will become the current folder. The message distributed will become
the current message.

Dis!. originally used headers of the form "Distribute-xxx:" instead of "Resent-xxx:". In order
to conform with the ARPA Internet standard, RFC-822, the "Resent-xxx:" form is now used.
Dist will recognize "Distribute-xxx:" type headers and automatically convert them to
"Resent-xxx:".

Dist does not rigorously check the message being distributed for adherence to the transport
standard, but post called by send does. The post program will balk (and rightly so) at poorly
formatted messages, and dist won't correct things for you.

If whatnowproc is whatnow, then dist uses a built-in whatnow, it does not actually run the
whatnow program. Hence, if you define your own whatnowproc, don't call it whatnow since
dist won't run it.

If your current working directory is not writable, the link named "@" is not available.

MH UCIIUCB version

USD:8-21 The Rand MH Message Handling System FOLDER(l)

Files

If '-fast' is given, only the folder name (or names in the case of '-all') will be listed. (This is
faster because the folders need not be read.)

The '-pack' switch will compress the message names in a folder, removing holes in message
numbering.

The '-recurse' switch will list each folder recursively. Use of this option effectively defeats
the speed enhancement of the '-fast' option, since each folder must be searched for sub fold
ers. Nevertheless, the combination of these options is useful.

If the specified (or default) folder doesn't exist, the user will be queried if the folder should be
created. (This is the easy way to create an empty folder for use later.)

The '-push' switch directs folder to push the current folder onto the folder-stack, and make
the '+folder' argument the current folder. If '+folder' is not given, the current folder and the
top of the folder-stack are exchanged. This corresponds to the "pushd" operation in the
CShell.

The '-pop' switch directs folder to discard the top of the folder-stack, after setting the current
folder to that value. No '+folder' argument is allowed. This corresponds to the "popd"
operation in the CShell. The '-push' switch and the '-pop' switch are mutually exclusive: the
last occurrence of either one overrides any previous occurrence of the other.

The '-list' switch directs folder to list the contents of the folder-stack. No '+folder' argument
is allowed. After a successful '-push' or '-pop', the '-list' action is taken. This corresponds
to the "dirs" operation in the CShell.

$HOME/.mlLprofile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

Defaults

Conte~t

Imh.6)

Current-Folder:
Folder-Protect:
Folder-Stack:
lsproc:

refile(1), mhpath(1)

To set mode when creating a new folder
To determine the folder stack
Program to list the contents of a folder

'+ folder' defaults to the current folder
'msg' defaults to none
'-no fast'
'-noheader'
'-nototal'
'-nopack'
'-norecurse'
'-print' is the default if no '-list', '-push', or '-pop' is specified

If '+folder' and/or 'msg' are given, they will become the current folder and/or message.

MH UCIIUCB version

VSD:8-23 The Rand MH Message Handling System FORW(l)

NAME
forw - forward messages

SYNOPSIS
forw [+folder] [msgs] [-annotate] [-noannotate] [-draftfolder +folder] [-draftmessage msg]

[-nodraftfolder] [-editor editor] [-noedit] [-filter filterfile] [-form formfile] [-format]
[-noformat] [-inplace] [-noinplace] [-whatnowproc program] [-nowhatnowproc]
[-help]

forw [+folder] [msgs] [-digest list] [-issue number] [-volume number]
[other switches for forw] [-help]

DESCRIPTION

[mh.6]

Forw may be used to prepare a message containing other messages. It constructs the new
message from the components file or '-form formfile' (see comp), with a body composed of
the message(s) to be forwarded. An editor is invoked as in comp, and after editing is com
plete, the user is prompted before the message is sent.

The default message form contains the following elements:

To:
cc:
Subject:

If the file named "forwcomps" exists in the user's MH directory, it will be used instead of this
form. In either case, the file specified by '-form formfile' will be used if given.

If the draft already exists, forw will ask you as to the disposition of the draft. A reply of quit
will abort forw, leaving the draft intact; replace will replace the existing draft with a blank
skeleton; and list will display the draft.

If the '-annotate' switch is given, each message being forwarded will be annotated with the
lines

Forwarded: date
Forwarded: addrs

where each address list contains as many lines as required. This annotation will be done only
if the message is sent directly from forw. If the message is not sent immediately from forw,
"comp -use" may be used to re-edit and send the constructed message, but the annotations
won't take place. The '-inplace' switch causes annotation to be done in place in order to
preserve links to the annotated message.

See comp (I) for a description of the '-editor' and '-noedit' switches.

Although forw uses the '-form formfile' switch to direct it how to construct the beginning of
the draft, the '-filter filterfile', '-format', and '-noformat' switches directforw as to how each
forwarded message should be formatted in the body of the draft. If '-noformat' is specified,
then each forwarded message is output exactly as it appears. If '-format' or '-filter filterfile' is
specified, then each forwarded message is filtered (re-formatted) prior to being output to the
body of the draft. The filter file for forw should be a standard form file for mhZ, as forw will

MH VCI/VCB version

USD:8-25 The Rand MH Message Handling System FORW(I)

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

Defaults

Context

Bugs

[mh.6)

Current-Folder:
Draft-Folder:
Editor:
Msg-Protect:
fileproc:
mhlproc:
whatnowproc:

To find the default draft-folder
To override the default editor
To set mode when creating a new message (draft)
Program to refile the message
Program to filter messages being forwarded
Program to ask the "What now?" questions

Proposed Standard for Message Encapsulation (aka RFC-934),
comp(l), dist(l), repl(1), send(l), whatnow(l)

'+folder' defaults to the current folder
'msgs' defaults to cur
'-noannotate'
'-nodraftfolder'
'-noformat'
'-noinplace'

If a folder is given, it will become the current folder. The first message forwarded will be
come the current message.

If whatnowproc is whatnow, then forw uses a built-in what now, it does not actually run the
whatnow program. Hence, if you define your own whatnowproc, don't call it whatnow since
forw won't run it.

When forw is told to annotate the messages it forwards, it doesn't actually annotate them until
the draft is successfully sent. If from the whatnowproc, you push instead of send, it's possible
to confuse forw by re-ordering the file (e.g., by using 'folder -pack') before the message is suc
cessfully sent. Dist and repl don't have this problem.

MH VCI/VCB version

VSD:8-27 The Rand MH Message Handling System INC(I)

Files

If the environment variable $MAILDROP is set. then il1c uses it as the location of the user's
maildrop instead of the default (the '-file name' switch still overrides this. however). If this
environment variable is not set. then il1c will consult the profile entry "MailDrop" for this
information. If the value found is not absolute. then it is interpreted relative to the user's
M 1/ directory. If the value is not found. then il1c will look in the standard system location for
the user's maildrop.

The '-silent' switch directs il1c to be quiet and not ask any questions at all. This is useful for
putting il1c in the background and going on to other things.

$HOME/.mh_profile
lusr/new/lib/mh/mtstailor
lusrlspool/mail/$ USER

The user profile
tailor file
Location of mail drop

Profite Components

Path: To determine the user's MH directory
To determine the user's mailboxes

See Atso

Defaults

Context

Bugs

(mh.6)

Alternate-Mailboxes:
Folder-Protect: To set mode when creating a new folder
Msg-Protect:
Unseen-Sequence:

To set mode when creating a new message and audit-file
To name sequences denoting unseen messages

mhmail(I). scan(I). mh-mail(S). post(S)

'+folder' defaults to "inbox"
'-noaudit'
'-changecur'
'-format' defaulted as described above
'-nosilent'
'-truncate' if '-file name' not given. '-notruncate' otherwise
'-width' defaulted to the width of the terminal

The folder into which messages are being incorporated will become the current folder. The
first message incorporated will become the current message, unless the '-nochangecur' option
is specified. This leaves the context ready for a sholl' of the first new message.

The argument to the '-format' switch must be interpreted as a single token by the shell that
invokes inc. Therefore, one must usually place the argument to this switch inside
double-quotes.

MH VCI/VCB version

USD:8-29 The Rand MH Message Handling System MARK(l)

usually limited to 10.

-he name used to denote a message sequence can not occur as part of a message range,
e.g .. constructs like "seen:20" or "seen-l 0" are forbidden.

Files
$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

Defaults

Context

[rnh.6)

Current-Folder:

pick (I)

'+folder' defaults to the current folder
'-add' if 'msgs' is specified. '-list' otherwise
'msgs' defaults to cur (or all if '-list' is specified)
'-nopublic' if the folder is read-only, '-public' otherwise
"-nozero'

If a folder is given, it will become the current folder.

MH UCI/UCB version

VSD:8-31 The Rand MH Message Handling System MHL(I)

. (mh.6)

the order in the format file.

Each line of mhl.format has one of the formats:

;comment
:cleartext
variable[, variable ...]
component:[variable, ...]

A line beginning with a ';' is a comment, and is ignored. A line beginning with a ':' is clear
text, and is output exactly as is. A line containing only a ':' produces a blank line in the out
put. A line beginning with "component:" defines the format for the specified component, and
finally, remaining lines define the global environment.

For example, the line:

width; 80,length; 40,clearscreen,overflowtext; .. *** .. ,overflowoffset; 5

defines the screen size to be 80 columns by 40 rows, specifies that the screen should be cleared
prior to each page, that the overflow indentation is 5, and that overflow text should be flagged
with " ••• ".

Following are all of the current variables and their arguments. If they follow a component,
they apply only to that component, otherwise, their affect is global. Since the whole format is
parsed before any output processing, the last global switch setting for a variable applies to the
whole message if that variable is used in a global context (i.e., bell, c1earscreen, width, length).

variable type semantics
width integer screen width or component width
length integer screen length or component length
offset integer positions to indent "component: "
overflowtext string text to use at the beginning of an

overflow line
overflowoffset integer positions to indent overflow lines
compwidth integer positions to indent component text

after the first line is output
uppercase flag output text of this component in all

upper case
nouppercase flag don't uppercase
clearscreen flagiG clear the screen prior to each page
noc1earscreen flagiG don't c1earscreen
bell flagiG ring the bell at the end of each page
nobell flagiG don't bell
component stringiL name to use instead of "component" for

this component
nocomponent flag don't output "component: " for this

component
center flag center component on line (works for

one-line components only)
nocenter flag don't center
leftadjust flag strip off leading whitespace on each

line of text
noleftadjust flag don't leftadjust

MH VCI/VCB version

USD:8-33 The Rand MH Message Handling System MHL(J)

Files

mhl can be given a default format string for either address or date fields (but not both). To
do this, on a global line specify either the variable addrfield or the variable datefield, along
with the variable formatfield.

/usr/new/lib/mh/mhl.format
or <mh-dir>/mhl.format
$HOME/.miLprofile

The message template
Rather than the standard template
The user profile

Profile Components

moreproc: Program to use as interactive front-end

See Also

Defaults

Context

Bugs

(mh.6)

show(I), ap(8), dp(8)

'-bell'
'-noclear'
'-length 40'
'-width 80'

None

There should be some way to pass 'bell' and 'clear' information to the front-end.

On host, where MH was configured with the BERK option, address parsing is not enabled.

MH UCI/UCB version

USD:8-35 The Rand MH Message Handling System MHOOK(I)

NAME
mhook - MH receive-mail hooks

SYNOPSIS
$HOME/.maildelivery

lusr/new/lib/mh/rcvdist address ... [-help]

lusr/newnib/mh/rcvpack file [-help]

lusr/new/lib/mh/rcvtty [command ...] [-help]

DESCRIPTION

(mh.6)

A receive-mail hook is a program that is run whenever you receive a mail message. You do
NOT invoke the hook yourself, rather the hook is invoked on your behalf by SendMail, when
you include the line

'" lusr/new/lib/mh/slocal"
in your .forward file in your home directory.

The .maildelivery file, which is an ordinary ASCII file, controls how local delivery is per
formed. This file is read by slocal.

The format of each line in the .maildelivery file is

field pattern action result string

where

field:
The name of a field that is to be searched for a pattern. This is any field in the
headers of the message that might be present. In addition, the following special fields
are also defined:

pattern:

source: the out-of-band sender information
addr: the address that was used to cause delivery to the recipient
de/ault: this matches only if the message hasn't been delivered yet
*: this always matches

The sequence of characters to match in the specified field. Matching is
case-insensitive but not RE-based.

action:
The action to take to deliver the message. This is one of

file or >:
Append the message to the file named by string. The standard maildrop
delivery process is used. If the message can be appended to the file, then this
action succeeds.

When writing to the file, a new field is added:

Delivery-Date: date

MH UClIUCB version

VSD:8-37 The Rand MH Message Handling System MHOOK(l)

-lmh.6)

Perform the action only if the message has not been delivered. If the action
succeeded, then the message is considered delivered.

The file is always read completely, so that several matches can be made and several actions
can be taken. The .maildelivery file must be owned either by the user or by root, and must be
writable only by the owner. If the .maildelivery file can not be found, or does not perform an
action which delivers the message, then the file lusr/new/lib/mh/maildelivery is read according
to the same rules. This file must be owned by the root and must be writable only by the root.
If this file can not be found or does not perform an action which delivers the message, then
standard delivery to the user's maildrop, lusrlspool/mail/$VSER, is performed.

Arguments in the .maildelivery file are separated by white-space or comma. Since
double-quotes are honored, these characters may be included in a single argument by enclos
ing the entire argument in double-quotes. A double-quote can be included by preceeding it
with a backslash.

To summarize, here's an example:

#field pattern action result string
lines starting with a '#' are ignored, as are blank lines

file mail with mmdf2 in the "To:" line into file mmdf2.log
To mmdf2 file A mmdf2.log
Messages from mmdf pipe to the program err-message-archive
From mmdf pipe A err-message-archive
Anything with the "Sender:" address "uk-mmdf-workers"
file in mmdf2.log if not filed already
Sender uk-mmdf-workers file ? mmdf2.log
"To:" unix - put in file unix-news
To Vnix > A unix-news
if the address is jpo=mmdf - pipe into mmdf-redist
addr jpo=mmdf I A mmdf-redist
if the address is jpo=ack - send an acknowledgement copy back
addr jpo=ack I R "resend -r $(reply-to)"
anything from steve - destroy!
From steve destroy A
anything not matched yet - put into mailbox
default - >? mailbox
always run rcvalert

* R rcvalert

Four programs are currently standardly available, rcvdist (redistribute incoming messages to
additional recipients), rcvpaqk (save incoming messages in a packfd file), and rcvtty (notify
user of incoming messages). The fourth program, rcvstore (I) is described separately. They
all reside in the lusrlnewlliblmhl directory.

The rcvdist program will resend a copy of the message to all of the addresses listed on its com
mand line.

The rev pack program will append a copy of the message to the file listed on its command line.
Its use is obsoleted by the .maildelivery.

MH VCI/VCB version

VSD:8-39 The Rand MH Message Handling System MHPATH(I)

NAME
mhpath - print full pathnames of MH messages and folders

SYNOPsIS
mhpath [+folder] [msgs] [-help]

DESCRIPTION

(mh.6)

Mhpath expands and sorts the message list 'msgs' and writes the full path names of the mes
sages to the standard output separated by newlines. If no 'msgs' are specified, mhpalh outputs
the folder pathname instead.

Contrasted with other MH commands, a message argument to mhpalh may often be intended
for writing. Because of this: I) the name "new" has been added to mhpath's list of reserved
message names (the others are "first", "last", "prev", "next", "cur", and "all"). The new
message is equivalent to the message after the last message in a folder (and equivalent to I in
a folder without messages). The "new" message may not be used as part of a message range.
2) Within a message list, the following designations may refer to messages that do not exist: a
single numeric message name, the single message name "cur", and (obviously) the single mes
sage name "new". All other message designations must refer to at least one existing message.
3) An empty folder is not in itself an error.

Message numbers greater than the highest existing message in a folder as part of a range
designation are replaced with the next free message number.

Examples: The current folder foo contains messages 3 5 6. Cur is 4.

% mhpath
Ir/phyllMail/foo

% mhpath all
Ir/phyllMail/foo/3
Ir/phyllMail/foo/5
Ir/phyllMail/foo/6

% mhpath 2001
Ir/phyl/Mail/fool7

% mhpath 1-2001
Ir/phyllMail/foo/3
Ir/phyllMail/foo/5
Ir/phyllMail/foo/6

% mhpath new
Ir/phyl/Mail/fool7

% mhpath last new
Ir/phyi/Mail/foo/6
Ir/phyl/Mail/fool7

% mhpath last-new
bad message list "last-new".

MH VCI/VCB version

USD:8-41 The Rand Mil Message Handling System MSGCHK(I)

NAME
msgchk - check for messages

SYNOPSIS
msgchk [users ...) [-help)

DESCRIPTION

The msgc"k program checks all known mail drops for mail waiting for you to receive. For
those drops which have mail for you. msgc"k will indicate if it believes that you have seen the
mail in question before.

Files
$HOME/.mlLprotile
lusr/new/lib/mh/mtstailor
lusrlspool/mail/$USER

Profile Components
None

See Also
inc(l)

Defaults
'user' defaults to the current user

Context
None

[mh.6)

The user profile
tailor tile
Location of mail drop

MH UCIIUCB venlon

USD:8-43 The Rand MH Message Handling System MSH(l)

Files

to bbc, and bbc will continue examining the list of BBoards that it is scanning.

If the file is writable and has been modified, then using "quit" will query the user if the file
should be updated.

The '-prompt string' switch sets the prompting string for msh.

You may wish to use an alternate MH profile for the commands that msh executes; see mh
profile (5) for details about the $MH environment variable.

When invoked from bbc, two special features are enabled: First, the '-scan' switch directs msh
to do a 'scan unseen' on start-up if new items are present in the BBoard. This feature is best
used from bbc, which correctly sets the stage. Second, the mark command in msh acts spe
cially when you are reading a BBoard, since msh will consult the sequence "unseen" in deter
mining what messages you have actually read. When msh exits, it reports this information to
bbc. In addition, if you give the mark command with no arguments, msh will interpret it as
'mark -sequence unseen -delete -nozero all' Hence, to discard all of the messages in the
current BBoard you're reading, just use the mark command with no arguments.

When invoked from vmh, another special feature is enabled: The 'topcur' switch directs msh
to have the current message "track" the top line of the vmh scan window. Normally, msh has
the current message "track" the center of the window (under '-notopcur', which is the
default).

msh supports an output redirection facility. Commands may be followed by one of

> file write output to file
» file append output to file
I command pipe output to UNIX command

If file starts with a ' , (tilde), then a csh-like expansion takes place. Note that command is
interpreted by sh (1). Also note that msh does NOT support history substitutions, variable
substitutions, or alias substitutions.

When parsing commands to the left of any redirection symbol, msh will honor '\' (back-slash)
as the quote next-character symbol, and , .. , (double-quote) as quote-word delimiters. All
other input tokens are separated by whitespace (spaces and tabs).

$HOME/.mh_profile
lusr/new/lib/mh/mtstailor

The user profile
tailor file

Profile Components

Path: To determine the user's MH directory
To set mode when creating a new 'file'
Program to file messages

See Also

(mh.6)

Msg-Protect:
fileproc:
showproc:

bbc(l)

Program to show messages

MH UCIIUCB version

VSD:8-45 The Rand MH Message Handling System NEXT(1)

NAME
next - show the next message

SYNOPSIS
next [+folder] [-header] [-noheader] [-showproc program] [-noshowproc]

[switches for showproc] [-help]

DESCRIPTION

Files

Next performs a show on the next message in the specified (or current) folder. Like show, it
passes any switches on to the program showproc, which is called to list the message. This
command is almost exactly equivalent to "show next". Consult the manual entry for
show (I) for all the details.

$HOME/.miLprofile The user profile

Profile Components
Path: To determine the user's MH directory

To find the default current folder
Program to show the message

See Also

Defaults

Context

Bugs

. [mh.6]

Current-Folder:
showproc:

show(l), prev(l)

'+folder' defaults to the current folder
'-format'
'-header'

If a folder is specified, it will become the current folder. The message that is shown (i.e., the
next message in sequence) will become the current message.

next is really a link to the show program. As a result, if you make a link to next and that link
is not called next, your link will act like show instead. To circumvent this, add a profile-entry
for the link to your MH profile and add the argument next to the entry.

MH VCI/VCB version

VSD:8-47 The Rand MH Message Handling System PICK(I)

NAME
pick - select messages by content

SYNOPSIS
pick -cc

-date
-from
-search
-subject
-to
--component

typically:

[+folderl [msgsl [-helpl
[-before datel [-after datel [-datefield fieldl

pattern [-and ... 1 [-or ··.1 [-not ... 1 [-lbrace ... -rbracel

[-sequence name ... 1 [-publicI [-nopublicl [-zerol [-nozerol
[-list I [-nolist I

scan 'pick -from jones'
pick -to holloway -sequence select
show 'pick -before friday'

DESCRIPTION

Imh.61

Pick searches messages within a folder for the specified contents, and then identifies those
messages. Two types of search primitives are available: pattern matching and date constraint
operations.

A modified grep(l) is used to perform the matching, so the full regular expression (see ed(l»
facility is available within 'pattern'. With '-search', 'pattern' is used directly, and with the
others, the grep pattern constructed is:

"component[\tl*:. *pattern"

This means that the pattern specified for a '-search' will be found everywhere in the message,
including the header and the body, while the other pattern matching requests are limited to
the single specified component. The expression

'--component pattern'

is a shorthand for specifying

'-search "component[\tl*:.*pattern" ,

It is used to pick a component which is not one of "To:", "cc:", "Date:", "From:", or "Sub
ject:". An example is 'pick -reply-to pooh'.

Pattern matching is performed on a per-line basis. Within the header of the message, each
component is treated as one long line, but in the body, each line is separate. Lower-case
letters in the search pattern will match either lower or upper case in the message, while upper
case will match only upper case.

Independent of any pattern matching operations requested, the switches '-after date' or
'-before date' may also be used to introduce date/time contraints on all of the messages. By
default, the "Date:" field is consulted, but if another date yielding field (such as "BB-Posted:"
or "Delivery-Date:") should be used, the '-datefield field' switch may be used. Pick will actu
ally parse the date fields in each of the messages specified in 'msgs' (unlike the '-date' switch
described above which does a pattern matching operation), and compare them to the

MH VCI/VCR version

VSD:8-49 The Rand MH Message Handling System PICK(l)

Files
$HOME/.mlLprofile .The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

Defaults

Context

History

[mh.6)

Current-Folder:

mark(l)

'+ folder' defaults to the current folder
'msgs' defaults to all
'-datefield date'
'-nopublic' if the folder is read-only, '-public' otherwise
'-zero'
'-list' is the default if no '-sequence', '-nolist' otherwise

If a folder is given, it will become the current folder.

In previous versions of MH, the pick command would show, scan, or refile the selected mes
sages. This was rather "inverted logic" from the VNIX point of view, so pick was changed to
define sequences and output those sequences. Hence, pick can be used to generate the argu
ments for all other MH commands, instead of giving pick endless switches for invoking those
commands itself.

Also, previous versions of pick balked if you didn't specify a search string or a date/time con
straint. The current version does not, and merely matches the messages you specify. This
lets you type something like:

show 'pick last:20 -seq fear'

instead of typing

mark -add -nozero -seq fear last:20
show fear

Finally, timezones used to be ignored when comparing dates: they aren't any more.

MH VCI/VCB version

VSD:8-S1 The Rand MH Message Handling System PREV(1)

NAME
prev - show the previous message

SYNOPSIS
prev [+folder] [-header] [-noheader] [-showproc program] [-noshowproc]

[-switches for showproc] [-help]

DESCRIPTION

Files

Prey performs a show on the previous message in the specified (or current) folder. Like show,
it passes any switches on to the program named by showproc, which is called to list the mes
sage. This command is almost exactly equivalent to "show prev". Consult the manual entry
for show (1) for all the details.

$HOME/.mILprofile The user profile

Profile Components

See Also

Deraults

Context

Bugs

[mh.6)

Path: To determine the user's MH directory
Current-Folder: To find the default current folder
showproc: Program to show the message

show(1), next(1)

'+folder' defaults to the current folder
'-format'
'-header'

If a folder is specified, it will become the current folder. The message that is shown (Le., the
previous message in sequence) will become the current message.

prey is really a link to the show program. As a result, if you make a link to prey and that link
is not called prey, your link will act like show instead. To circumvent this, add a profile-entry
for the link to your MH profile and add the argument prey to the entry.

MH VCI/VCB version

USD:8-53 The Rand Mil Message Handling System PROMPTER(I)

The first non-flag argument to prompter is taken as the name of the draft file. and suhsequent
non-flag arguments are ignored.

Files
$HOME/.mh_profile
Itmp/prompter·

Profile Components
prompter-next:
Msg-Protect:

See Also

The user profile
Temporary copy of message

To name the editor to be used on exit from prompter
To set mode when creating a new draft

comp(I). dist(I), forw(I). repl(I), whatnow(I)

Defaults

Context

Bugs

[mh.6J

'-prepend'
'-norapid'

None

Prompter uses .I'tdio (3), so it will lose if you edit files with nulls in them.

MH VCI/VCB version

USD:8-SS The Rand Mil Message Handling System REFILE(I)

NAME
refile - file message in other folders

SYNOPSIS
refile [msgs] [-draft] [-link] [-nolink] [-preserve] [-nopreserve] [-src +folder] [-file file]

+folder ... [-help]

DESCRIPTION

Files

[mh.61

ReJile moves (ml' (I» or links (In (I» messages from a source folder into one or more desti
nation folders. If you think of a message as a sheet of paper, this operation is not unlike
filing the sheet of paper (or copies) in file cabinet folders. When a message is filed, it is linked
into the destination folder(s) if possible, and is copied otherwise. As long as the destination
folders are all on the same file system, multiple filing causes little storage overhead. This
facility provides a good way to cross-file or multiply-index messages. For example, if a mes
sage is received from Jones about the ARPA Map Project, the command

refile 'cur +jones + Map

would allow the message to be found in either of the two folders 'jones' or 'Map'.

The option '-file file' directs refill' to use the specified file as the source message to be filed,
rather than a message from a folder. Note that the file should be a validly formatted message,
just like any other MH message. It should NOT be in mail drop format (to convert a file in
mail drop format to a folder of MH messages, see inc (I».

If a destination folder doesn't exist, refill' will ask if you want to create it. A negative
response will abort the file operation.

The option '-link' preserves the source folder copy of the message (i.e., it does a In(l) rather
than a mv(l», whereas, '-nolink' deletes the filed messages from the source folder. Normally,
when a message is filed, it is assigned the next highest number available in each of the desti
nation folders. Use of the '-preserve' switch will override this message renaming, but name
conflicts may occur, so use this switch cautiously.

If '-link' is not specified (or '-nolink' is specified), the filed messages will be removed
(unlink (2» from the source folder, similar to the way mv (I) works.

If the user has a profile component such as

rmmproc: Ibin/rm

then instead of simply renaming the message file, refile will call the named program to delete
the file.

The '-draft' switch tells refile to file the <mh-dir>/draft.

$HOME/.miLprofile The user profile

MH UCIIUCB version

VSD:8-57 The Rand MH Message Handling System REPL(I)

NAME
repl - reply to a message

SYNOPSIS
repl [+folder] [msg] [-annotate] [-noannotate] [-cc all/to/ce/me] [-nocc all/totce/me]

[-draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [-editor editor] [-no edit]
[-fcc +folder] [-filter filterfile] [-form formfile] [-format] [-no format] [-inplace]
[-noinplace] [-query] [-noquery] [-width columns] [-whatnowproc program]
[-nowhatnowproc] [-help]

DESCRIPTION

(mh.6)

Rep! aids a user in producing a reply to an existing message. Rep! uses a reply template to
guide its actions when constructing the message draft of the reply. In its simplest form (with
no arguments), it will set up a message-form skeleton in reply to the current message in the
current folder, and invoke the whatnow shell. The default reply template will direct rep! to
construct the composed message as follows:

To: <Reply-To> or <From>
cc: <cc>, <To>, and yourself
Subject: Re: <Subject>
In-reply-to: Your message of <Date>.

<Message-Id>

where field names enclosed in angle brackets « » indicate the contents of the named field
from the message to which the reply is being made. The '-cc type' switch takes an argument
which specifies who gets placed on the "cc:" list of the reply. The '-query' switch modifies
the action of '-cc type' switch by interactively asking you if each address that normally would
be placed in the "To:" and "cc:" list should actually be sent a copy. (This is useful for
special-purpose replies.) Note that the position of the '-cc' and '-nocc' switches, like all other
switches which take a positive and negative form, is important.

If the file named "replcomps" exists in the user's MH directory, it will be used instead of the
default form. In either case, the file specified by '-form form file' will be used if given.

If the draft already exists, rep! will ask you as to the disposition of the draft. A reply of quit
will abort rep!, leaving the draft intact; replace will replace the existing draft with a blank
skeleton; and list will display the draft.

See camp (I) for a description of the '-editor' and '-noedit' switches. Note that while in the
editor, the message being replied to is available through a link named "@" (assuming the
default whatnawprac). In addition, the actual pathname of the message is stored in the
environment variable $editalt, and the pathname of the folder containing the message is
stored in the environment variable $mhfolder.

Although rep! uses the '-form formfile' switch to direct it how to construct the beginning of
the draft, the '-filter filterfile' switch directs rep! as to how the message being replied-to
should be formatted in the body of the draft. If' -filter' is not specified, then the message
being replied-to is not included in the body of the draft. If '-filter filterfile' is specified, then
the message being replied-to is filtered (re-formatted) prior to being output to the body of the
draft. The filter file for rep! should be a standard form file for mh!, as rep! will invoke mh! to
format the message being replied-to. There is no default message filter ('-filter' must be fol
lowed by a file name). A filter file that is commonly used is:

MH VCI/VCB version

VSD:8-59 The Rand MH Message Handling System REPL(l)

Profile Components
Path: To determine the user's MH directory

To determine the user's mailboxes

See Also

Defaults

Context

Bugs

[mh.6)

Alternate-Mailboxes:
Current-Folder:
Draft-Folder:
Editor:
Msg-Protect:
fileproc:
mhlproc:
whatnowproc:

To find the default current folder
To find the default draft-folder
To override the default editor
To set mode when creating a new message (draft)
Program to refile the message
Program to filter message being replied-to
Program to ask the "What now?" questions

comp(1), dist(I), forw(1), send(I), whatnow(l), mh-format(5)

'+ folder' defaults to the current folder
'msg' defaults to cur
'-nocc all' at ATHENA sites, '-cc all' otherwise
'-format'
'-noannotate'
, -nodraftfolder'
'-noinplace'
'-noquery'
'-width 72'

If a folder is given, it will become the current folder. The message replied-to will become the
current message.

If any addresses occur in the reply template, addresses in the template that do not contain
hosts are defaulted incorrectly. Instead of using the localhost for the default, repi uses the
sender's host. Moral of the story: if you're going to include addresses in a reply template, in
clude the host portion of the address.

If whatnowproc is whatnow, then repi uses a built-in whatnow, it does not actually run the
whatnow program. Hence, if you define your own whatnowproc, don't call it whatnow since
repi won't run it.

If your current working directory is not writable, the link named "@" is not available.

MH VCI/VCB version

VSD:8-61 The Rand MH Message Handling System RMM(l)

NAME
rmm - remove messages

SYNOPSIS
rmm [+folder] [msgs] [-help]

DESCRIPTION

Files

Rmm removes the specified messages by renaming the message files with preceding commas.
Many sites consider files that start with a comma to be a temporary backup, and arrange for
cran (8) to remove such files once a day.

If the user has a profile component such as

rmmproc: Ibinlrm

then instead of simply renaming the message file, rmm will call the named program to delete
the file. Note that at most installations, cron (8) is told to remove files that begin with a
comma once a night.

Some users of csh prefer the following:

alias rmm 'refile +d'

where folder +d is a folder for deleted messages, and

alias mexp 'rm 'mhpath +d all"

is used to "expunge" deleted messages.

The current message is not changed by rmm, so a next will advance to the next message in
the folder as expected.

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder
Program to delete the message

See Also

Defaults

Context

. [mh.6]

Current-Folder:
rmmproc:

rmf(l)

'+folder' defaults to the current folder
'msgs' defaults to cur

If a folder is given, it will become the current folder.

MH UCIIVCB version

VSD:8-63 The Rand MH Message Handling System SCAN(l)

Flies

simply a format string and the file is simply a format file. See mh-format (5) for the details.

In addition to the standard escapes, scan also recognizes the following additional escape:
escape substitution
body the (compressed) first part of the body

On hosts where MH was configured with the BERK option, scan has two other switches:
'-reverse', and '-noreverse'. These make scan list the messages in reverse order. In addition,
scan will update the MH context prior to starting the listing, so interrupting a long scan listing
preserves the new context. MH purists hate both of these ideas.

$HOME/.mlLprofile The user profile

Profile Components
Path: To determine the user's MH directory

To determine the user's mailboxes

See Also

Defaults

Context

History

'Bugs

Imh.61

Alternate-Mailboxes:
Current-Folder: To find the default current folder

inc(l), pick(l), show(I), mh-format(5)

'+ folder' defaults to the folder current
'msgs' defaults to all
'-format' defaulted as described above
'-noheader'
'-width' defaulted to the width of the terminal

If a folder is given, it will become the current folder.

Prior to using the format string mechanism, '-header' used to generate a heading saying what
each column in the listing was. Format strings prevent this from happening.

The argument to the '-format' switch must be interpreted as a single token by the shell that
invokes sCJn. Therefore, one must usually place the argument to this switch inside
double-quotes.

MH VCI/VCB version

USD:8-65 The Rand MH Message Handling System SEND(I)

Flies

already contains a "From:" field, then a "Sender: user@local" field will be added as well. (An
already existing "Sender:" field is an error!)

By using the '-format' switch, each of the entries in the "To:" and "cc:" fields wilI be
replaced with "standard" format entries. This standard format is designed to be usable by all
of the message handlers on the various systems around the Internet. If '-no format' is given,
then headers are output exactly as they appear in the message draft.

If an "Fcc: folder" is encountered, the message will be copied to the specified folder for the
sender in the format in which it wilI appear to any non-Bee receivers of the message. That is,
it will have the appended fields and field reformatting. The "Fcc:" fields will be removed
from all outgoing copies of the message.

By using the '-width columns' switch, the user can direct send as to how long it should make
header lines containing addresses.

By using the '-alias aliasfile' switch, the user can direct send to consult the named files for
alias definitions (more than one file, each preceded by '-alias', can be named). See
mh-alias (5) for more information.

$HOME/.mLprofile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default draft-folder

See Also

Defaults

Context

(mh.6)

Draft-Folder:
Signature: To determine the user's mail signature
mailproc:-Program to post failure notices
postproc: Program to post the message

comp(l), dist(l), forw(I), repl(I), mh-alias(5), post(8)

'file' defaults to <mh-dir>/draft
'-alias /usr/new/lib/mh/MailAliases'
, -nodraftfolder'
'-nofilter'
'-format'
'-forward'
'-nomsgid'
'-nopush'
'-noverbose'
'-nowatch'
'-width 72'

None

MH UCI/UCB version

USD:8-67 The Rand Mil Message Handling System SHOW(I)

Defaults

Context

BUllS

, (mh.6(

'+ folder' defaults to the current folder
'msgs' defaults to cur
'-format'
'-header'

If a folder is given, it will become the current folder. The last message shown will become the
current message.

The '-header' switch doesn't work when 'msgs' expands to more than one message. If the
sholl'proc is mhl, then is problem can be circumvented by referencing the "messagename"
field in the mhl format file.

Sholl' updates the user's context before showing the message. Hence if show will mark mes
sages as seen prior to the user actually seeing them. This is generally not a problem, unless
the user relies on the "unseen" messages mechanism, and interrupts show while it is showing
"unseen" messages.

If showproc is mhl, then show uses a built-in mh/: it does not actually run the mhl program.
Hence, if you define your own showproc, don't call it mhl since show won't run it.

If more (I) is your showproc (the default), then avoid running show in the background with
only its standard output piped to another process, as in

show I imprint &

Due to a bug in more, show will go into a "tty input" state. To avoid this problem, re-direct
show's diagnostic output as well. For users of csh:

show I & imprint &

For users of sh:

show 2>& I I imprint &

MH UCIIUCB version

VSD:8-69 The Rand MH Message Handling System VMH(l)

NAME
vmh - visual front-end to MH

SYNOPSIS
vmh [-prompt string] [-vmhproc program] [-novmhproc] [switches for vmhproc] [-help]

DESCRIPTION

[mh.6]

vmh is a program which implements the server side of the MH window management protocol
and uses curses (3) routines to maintain a split-screen interface to any program which imple
ments the client side of the protocol. This latter program, called the vmhproc, is specified
using the '-vmhproc program' switch.

The upshot of all this is that one can run msh on a display terminal and get a nice visual
interface. To do this, for example, just add the line .

mshproc: vmh

to your .mh_profile. (This takes advantage of the fact that msh is the default vmhproc for
vmh.)

In order to facilitate things, if the '-novmhproc' switch is given, and vmh can't run on the
user's terminal, the vmhproc is run directly without the window management protocol.

After initializing the protocol, vmh prompts the user for a command to be given to the client.
Usually, this results in output being sent to one or more windows. If a output to a window
would cause it to scroll, vmh prompts the user for instructions, roughly permitting the capabil
ities of less or more (e.g., the ability to scroll backwards and forwards):

SPACE
RETURN
y
d
u
g

G

CTRL-L
h
q

advance to the next windowful
* advance to the next line
* retreat to the previous line
* advance to the next ten lines
* retreat to the previous ten lines
* go to an arbitrary line

(preceed g with the line number)
* go to the end of the window

(if a line number is given, this acts like 'g')
refresh the entire screen
print a help message
abort the window

(A ,*, indicates that a numeric prefix is meaningful for this command.)

Note that if a command resulted in more than one window's worth of information being
displayed, and you allow the command which is generating information for the window to
gracefully finish (i.e., you don't use the 'q' command to abort information being sent to the
window), then vmh will give you one last change to peruse the window. This is useful for
scrolling back and forth. Just type 'q' when you're done.

To abnormally terminate vmh (without core dump), use <QUIT> (usually CTRL-\). For
instance, this does the "right" thing with bbc and msh.

MH VCI/VCB version

USD:8-71 The Rand MH Message Handling System WHATNOW(l)

NAME
whatnow - prompting front-end for send

SYNOPSIS
whatnow [-draft folder +folder) [-draftmessage msg) [-nodraftfolder) [-editor editor) [-noedit)

[-prompt string) [file) [-help)

DESCRIPTION

Files

(mh.6)

Whatnow is the default program that queries the user about the disposition of a composed
draft. It is normally invoked by one of camp, dist, !orw, or repl after the initial edit.

When started, the editor is started on the draft (unless '-no edit' is given, in which case the
initial edit is suppressed). Then, whatnow repetitively prompts the user with "What now?"
and awaits a response. The valid responses are
display to list the message being distributed/replied-to on

the terminal
edit to re-edi t using the same editor that was used on the

preceding round unless a profile entry
"<Iasteditor>-next: <editor>" names an alternate editor

edit <editor> to invoke <editor> for further editing
list to list the draft on the terminal
push to send the message in the background
quit to terminate the session and preserve the draft
quit -delete to terminate, then delete the draft
refile + folder to refile the draft into the given folder
send to send the message
send -watch to cause the delivery process to be monitored
whom to list the addresses that the message will go to
whom -check to list the addresses and verify that they are

acceptable to the transport service

For the edit response, any valid switch to the editor is valid. Similarly, for the send and
whom responses, any valid switch to send (I) and whom (I) commands, respectively, are
valid. For the push response, any· valid switch to send (I) is valid (as this merely invokes
send with the '-push' option). For the refile response, any valid switch to the fileproc is valid.
For the display and list responses, any valid argument to the lproc is valid. If any non-switch
arguments are present, then the pathname of the draft will be excluded from the argument list
given to the lproc (this is useful for listing another MH message).

See mh-profile (5) for further information about how editors are used by MH. It also
discusses how complex environment variables can be used to direct whatnow's actions.

The '-prompt string' switch sets the prompting string for whatnow.

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facil
ity. This is an advanced (and highly useful) feature. Consult the Advanced Features section
of the MH manual for more information.

$HOME/.miLprofile
<mh-dir>/draft

The user profile
The draft file

MH UCI/UCB version

VSD:8-73 The Rand MH Message Handling System WHOM(1)

NAME
whom - report to whom a message would go

SYNOPSIS
whom [-alias aliasfile) [-check) [-nocheck) [-draft) [-draftfolder +folder) [-draftmessage msg)

[-nodraftfolder) [file) [-help)

DESCRIPTION

Files

Whom is used to expand the headers of a message into a set of addresses and optionally ver
ify that those addresses are deliverable at that time (if '-check' is given).

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facil
ity. This is an advanced (and highly useful) feature. Consult the Advanced Features section
of the MH manual for more information.

By using the '-alias aliasfile' switch, the user can direct send to consult the named files for
alias definitions (more than one file, each preceeded by '-alias', can be named). See
mh-alias (5) for more information.

$HOME/.miLprofile The user profile

Profile Components

See Also

Defaults

Context

Bngs

(mh.6)

Draft-Folder: To find the default draft-folder
postproc: Program to post the message

mh-alias(5), post(8)

'file' defaults to <mh-dir>/draft
'-nocheck'
'-alias lusr/newllib/mhlMaiWiases'

None

With the '-check' option, whom makes no guarantees that the addresses listed as being ok are
really deliverable, rather, an address being listed as ok means that at the time that whom was
run the address was thought to be deliverable by the transport service. For local addresses,
this is absolute; for network addresses, it means that the host is known; for uucp addresses, it
(often) means that the UUCP network is available for use.

MH VCI/VCB version

USD:8-7S The Rand MH Message Handling System MH-ALIAS(S)

NAME
mh-alias - alias file for MH message system

SYNOPSIS
any MH command

DESCRIPTION

Imh.6)

This describes both MH personal alias files and the (primary) alias file for mail delivery, the
file

/usr/new/lib/mh/MaiIAliases

It does not describe aliases files used by the message transport system. Each line of the alias
file has the format:

or

or

where:

alias: address-group

alias ; address-group

< alias-file

address-group
I
I
I
I

: = address-list
"<" file
"=" UNIX-group
"+" UNIX-group
"*,,

address-list : = address
I address-list, address

Continuation lines in alias files end with '\' followed by the newline character.

Alias-file and file are UNIX file names. UNIX-group is a group name (or number) from
/etc/group. An address is a "simple" Internet-style address. Througout this file, case is
ignored, except for alias-file names.

If the line starts with a '<', then the file named after the '<' is read for more alias definitions.
The reading is done recursively, so a '<' may occur in the beginning of an alias file with the
expected results.

If the address-group starts with a '<', then the file named after the' <' is read and its contents
are added to the address-list for the alias.

If the address-group starts with an '=', then the file /etc/group is consulted for the
UNIX-group named after the '='. Each login name occurring as a member of the group is
added to the address-list for the alias.

In contrast, if the address-group starts with a '+', then the file /etc/group is consulted to
determine the group-id of the UNIX-group named after the '+'. Each login name occurring
in the /etc/passwd file whose group-id is indicated by this group is added to the address-list

MH UCI/UCB version

VSD:8-77 The Rand MH Message Handling System MH-ALIAS(S)

to be local, a system-wide alias file is consulted. These aliases are NOT expanded into the
headers of messages delivered.

Helpful Hints

Files

To use aliasing in MH quickly, do the following:

First, in your .mh_profile, choose a name for your primary alias file, say "aliases", and
add three lines:

ali: -alias aliases
send: -alias aliases
whom: -alias ailases

Second, create the file "aliases" in your MH directory.

Third, start adding aliases to your "aliases" file as appropriate.

/usr/new/lib/mh/MaiIAliases Primary alias file

Profile Components
None

See Also

Defaults

Context

History

Bugs

[mh.6]

ali(1), send(l), whom(l), group(5), passwd(5), conflict(8), post(8)

None

None

In previous releases of MH, only a single, system-wide mh-alias file was supported. - This led
to a number of problems, since only mail-system administrators were capable of (un)defining
aliases. Hence, the semantics of mh-alias were extended to support personal alias files. Vsers
of MH no longer need to bother mail-system administrators for keeping information in the
system-wide alias file, as each MH user can create/modify/remove aliases at will from any
number of personal files.

Although the forward-referencing semantics of mh-alias files prevent recursion, the
"< alias-file" command may defeat this. Since the number of file descriptors is finite (and
very limited), such infinite recursion will terminate with a meaningless diagnostic when all the
fds are used up.

MH VCI/VCB version

USD:8-79 The Rand MH Message Handling System MH-FORMA T(5)

cur integer message is current
size integer size of message
strlen string integer length of sIr
me string the user's mailbox
plus integer add width to nUI1l
minus integer subtract nlIIn from width
charleft integer space left in output buffer
timenow integer seconds since the UNIX epoch

When sIr is a date, these escapes are useful:
escape argul1lenl rellirnsinterprelalion
sec string integer seconds of the minute
min string integer minutes of the day
hour string integer hours of the day (24 hour clock)
mday string integer day of the month
mon string integer month of the year
wday string integer day of the week (Sunday;O)
year string integer year of the century
yday string integer day of the year
dst string integer daylight savings in effect
zone string integer timezone
sday string integer day of the week known

I for explicit in date
o for implicit (MH figured it out)
-I for unknown (MH couldn't figure it out)

clock string integer seconds since the UNIX epoch
rclock string integer seconds prior to current time
month string string month of the year
Imonth string string month of the year (long form)
tzone string string timezone
day string string day of the week
weekday string string day of the week (long)
tws string string official 822 rendering of the date
pretty string string a more user-friendly rendering
nodate string date wasn't parseable

When str is an address, these escapes are useful:
escape argument returnsinterpretation
pers string string the personal name of the address
mbox string string the local part of the address
host string string the domain part of the address
path string string the route part of the address
type string integer the type of host

-I for uucp
o for local
I for network
2 for unknown

nohost string integer no host was present in the address
ingrp string integer the address appeared inside a group
gname string string name of the group (present for first

address only)
note string string commentary text
proper string string official 822 rendering of the address

(mh,6) MH UCI/UCB version

USD:8-81 The Rand MH Message Handling System MH-FORMAT(S)

Context
None

Bugs

On hosts where Mil was configured with the BERK option. address parsing is not enabled.

(mh.6) MH UCllUCB version

USD:8-83 The Rand MH Message Handling System MH-MAIL(5)

[mh.6)

programs.
Date:

From:

Sender:

To:

cc:

Bcc:

Fcc:

Added by post (8), contains date and time of the message's entry into the transport
system.

Added by post (8), contains the address of the author or authors (may be more than
one if a "Sender:" field is present). Replies are typically directed to addresses in the
"Reply-To:" or "From:" field (the former has precedence if present).

Added by post (8) in the event that the message already has a "From:" line. This line
contains the address of the actual sender. Replies are never sent to addresses in the
"Sender:" field.

Contains addresses of primary recipients.

Contains addresses of secondary recipients.

Still more recipients. However, the "Bcc:" line is not copied onto the message as
delivered, so these recipients are not listed. MH uses an encapsulation method for
blind copies, see send (I).

Causes post (8) to copy the message into the specified folder for the sender, if the
message was successfully given to the transport system.

Message-ID:
A unique message identifier added by post (8) if the '-msgid' flag is set.

Subject:
Sender's commentary. It is displayed by scan (I).

In-Reply-To:
A commentary line added by repl (I) when replying to a message.

Resent-Date:
Added when redistributing a message by post (8).

Resent-From:
Added when redistributing a message by post (8).

Resent-To:
New recipients for a message resent by dist (I).

Resent-cc:
Still more recipients. See "cc:" and "Resent-To:".

Resent-Bcc:
Even more recipients. See "Bcc:" and "Resent-To:".

MH UCI/UCB version

VSD:8-85 The Rand MH Message Handling System MH-PROFILE(5)

NAME
.mlLprofile - user customization for MH message system

SYNOPSIS
any MH command

DESCRIPTION

[mh.6)

Each user of MH is expected to have a file named .mh_profile in his or her home directory.
This file contains a set of user parameters used by some or all of the MH family of programs.
Each line of the file is of the format

profile-component: value

The possible profile components are exemplified below. Only 'Path:' is mandatory. The oth
ers are optional; some have default values if they are not present. In the notation used below,
(profile, default) indicates whether the information is kept in the user's MH profile or MH
context, and indicates what the default value is.

Path: Mail
Locates MH transactions in directory "Mail". (profile, no default)

context: context
Declares the location of the MH context file, see the HISTORY section below.
(profile, default: <mh-dir>/context)

Current-Folder: inbox
Keeps track of the current open folder. (context, default: +inbox)

Previous-Sequence: pseq
Names the sequences which should be defined as the 'msgs' or 'msg' argument
given to the program. If not present, or empty, no sequences are defined.
Otherwise, for each name given, the sequence is first zero'd and then each
message is added to the sequence. (profile, no default)

Sequence-Negation: not
Defines the string which, when prefixed to a sequence name, negates that
sequence. Hence, "notseen" means all those messages that are not a member
of the sequence "seen". (profile, no default)

Unseen-Sequence: unseen
Names the sequences which should be defined as those messages recently
incorporated by inc. Show knows to remove messages from this sequence
once it thinks they have been seen. If not present, or empty, no sequences are
defined. Otherwise, for each name given, the sequence is first zero'd and then
each message is added to the sequence. (profile, no default)

mh-sequences: .mlLsequences
The name of the file in each folder which defines public sequences. To disable
the use of public sequences, leave the value portion of this entry blank.
(profile, default: .mlLsequences)

atr-seq-folder: 172 178-181 212

MH VCI/VCB version

VSD:8-87 The Rand MH Message Handling System MH-PROFILE(5)

[mh.6)

default)

digest-issue-list: I
Tells forw the last issue of the last volume sent for the digest list. (context, no
default)

digest-volume-list: I
Tells forw the last volume sent for the digest list. (context, no default)

MailDrop: .mail
Tells inc your maildrop, if different from the default. This is superceded by
the $MAILDROP environment variable. (profile, default:
lusrlspool/mail/$VSER)

Signature: Rand MH System (agent: Marshall Rose)
Tells send your mail signature. This is superceded by the $SIGNATVRE
environment variable. On hosts where MH was configured with the VCI
option, if $SIGNATVRE is not set and this profile entry is not present, the
file $HOME/.signature is consulted. (profile, no default)

The following profile elements are used whenever an MH program invokes some other pro
gram such as more (I). The. mh_profile can be used to select alternate programs if the user
wishes. The default values are given in the examples.

fileproc:
incproc:
installproc:
Iproc:
mailproc:
mhlproc:
moreproc:
mshproc:
packproc:
postproc:
rmmproc:
rmfproc:
sendproc:
showproc:
whatnowproc:
whomproc:

lusr/new/mhlrefile
lusr/new/mh/inc
lusr/new/Jib/mh/install-mh
lusr/ucb/more
lusr/new/mh/mhmail
lusr/new/Jib/mh/mhl
lusr/ucb/more
lusr/new/mh/msh
lusr/new/mh/packf
lusr/new/lib/mh/post
none
lusr/new/mh/rmf
lusr/new/mh/send
lusr/ucb/more
lusr/new/mh/whatnow
lusr/new/mhlwhom

If you define the environment variable $MH, you can specify a profile other than .mh_profile
to be read by the MH programs that you invoke. If the value of $MH is not absolute, (i.e.,
does not begin with a I), it will be presumed to start from the current working directory.
This is one of the very few exceptions in MH where non-absolute pathnames are not con
sidered relative to the user's MH directory.

Similarly, if you define the environment variable $MHCONTEXT, you can specify a context
other than the normal context file (as specified in the MH profile). As always, unless the value
of $MHCONTEXT is absolute, it will be presumed to start from your MH directory.

MH programs also support other environment variables:

MH VCI/VCB version

USD:8-89 The Rand MH Message Handling System MH-PROFILE(S)

Files

If the OVERHEAD option was set during MH configuration (type '-help' to an MH
command to find out), then if this environment variable is set, MH considers it to be
the number of a file-descriptor which is opened, read-only to the MH profile. Simi
larly, if the environment variable $MHCONTEXTFD is set, this is the number of a
file-descriptor which is opened read-only to the MH context. This feature of MH is
experimental, and is used to examine possible speed improvements for MH startup.
Note that these environment variables must be set and non-empty to enable this
feature. However, if OVERHEAD is enabled during MH configuration, then when
MH programs call other MH programs, this scheme is used. These file-descriptors
are not closed throughout the execution of the MH program, so children may take
advantage of this. This approach is thought to be completely safe and does result in
some performance enhancements.

$HOME/.mlLprofile
or$MH
<mh-dir>/context
or$CONTEXT
<folder>/.mlLsequences

The user profile
Rather than the standard profile
The user context
Rather than the standard context
Public sequences for <folder>

Profile Components

All

See Also

Defaults

Context

History

[mh.6]

mh(l), environ(5)

None

All

In previous versions of MH, the current-message value of a writable folder was kept in a file
called /ocur" in the folder itself. In mh.3, the .mh-profile contained the current-message
values for all folders, regardless of their writability.

In all versions of MH since mh.4, the .mh-profile contains only static information, which MH
programs will NOT update. Changes in context are made to the context file kept in the users
MH directory. This includes, but is not limited to: the "Current-Folder" entry and all private
sequence information. Public sequence information is kept in a file called .mlLsequences in
each folder.

To convert from the format used in releases of MH prior to the format used in the mh.4
release, install-mh should be invoked with the '-compat' switch. This generally happens au
tomatically on MH systems generated with the "COMPAT" option during MH configuration.

The .mh_profile may override the path of the context file, by specifying a "context" entry (this
must be in lower-case). If the entry is not absolute (does not start with a I), then it is inter
preted relative to the user's MH directory. As a result, you can actually have more than one
set of private sequences by using different context files.

MH UCIIUCB version

USD:8-91 The Rand MH Message Handling System AP(8)

NAME
ap - parse addresses 822-style

SYNOPSIS
lusr/new/lib/mh/ap [-form formatfileJ [-format string] [-normalize] [-nonormalize]

[-width columns] addrs ... [-help]

DESCRIPTION

Flies

Ap is a program that parses addresses according to the ARPA Internet standard. It also
understands many non-standard formats. It is useful for seeing how MH will interpret an
address.

The ap program treats each argument as one or more addresses, and prints those addresses
out in the official 822-format. Hence, it is usually best to enclose each argument in
double-quotes for the shell.

To override the output format used by ap, the '-format string' or '-format file' switches are
used. This permits individual fields of the address to be extracted with ease. The string is
simply a format stringand thefile is simply a format file. See mh-format (5) for the details.

In addition to the standard escapes, scan also recognizes the following additional escape:
escape substitution
error a diagnostic if the parse failed

If the '-normalize' switch is given, ap will try to track down the official hostname of the
address.

Here is the default format string used by ap:

%< (error)%(error}: %{ text}% I %(putstr(proper(text) »%>

which says that if an error was detected, print the error, a ':', and the address in error. Other
wise, output the 822-proper format of the address.

$HOME/.mh_profile
lusr/new/lib/mh/mtstailor

The user profile
tailor file

Profile Components

None

See Also

Defaults

Context

(mh.6)

dp(8),
Standard for the Format of ARPA Internet Text Messages (aka RFC-822)

'-format' defaults as described above
'-normalize'
'-width' defaults to the width of the terminal

None

MH VCI/VCB version

USD:8-93 The Rand MH Message Handling System CONFLICT(8)

NAME
conflict - search for alias/password conflicts

SYNOPSIS
/usr/new/lib/mh/conflict [-mail name] [-search directory] [aliasfiles ...] [-help]

DESCRIPTION

Files

Conflict is a program that checks to see if the interface between MH and transport system is
in good shape

Conflict also checks for maildrops in lusrlspoollmail which do not belong to a valid user. It
assumes that no user name will start with '.', and thus ignores files in lusrlspool/mail which
begin with '.'. It also checks for entries in the group (5) file which do not belong to a valid
user, and for users who do not have a valid group number. In addition duplicate users and
groups are noted.

If the' -mail name' switch is used, then the results will be sent to the specified name. Other
wise, the results are sent to the standard output.

The '-search directory' switch can be used to search directories other than lusrlspoollmail and
to report anomalies in those directories. The '-search directory' switch can appear more than
one time in an invocation to conflict.

Conflict should be run under cron (8), or whenever system accounting takes place.

lusr/new/lib/mh/mtstailor
letc/passwd
letc/group
lusr/new/mh/mhmail
lusrlspool/maill

tailor file
List of users
List of groups
Program to send mail
Directory of mail drop

Profile Components

None

See Also
mh -alias(5)

Defaults
'aliasfiles' defaults to lusr/newlIib/mh/MaiiAliases

Context
None

(mh.6) MH UCI/UCB version

VSD:8-95 The Rand MH Message Handling System INSTALL-MH(8)

NAME
instaIl-mh - initialize the MH environment

SYNOPSIS
/usr/new/lib/mh/install-mh [-auto] [-compat]

DESCRIPTION

Flies

When a user runs any MH program for the first time, the program will invoke install-mh
(with the '-auto' switch) to query the user for the initial MH environment. The user does
NOT invoke this program directly. The user is asked for the name of the directory that will
be designated as the user's MH directory. If this directory does not exist, the user is asked if
it should be created. Normally, this directory should be under the user's home directory, and
has the default name of Mail/. After install-mh has written the initial .mlLprofile for the
user, control returns to the original MH program.

As with all MH commands, install-mh first consults the $HOME environment variable to
determine the user's home directory. If $HOME is not set, then the !etc!passwd file is con
sulted.

When converting from mh.3 to mh.4, install-mh is automatically invoked with the '-compat'
switch.

$HOME/.mh_profile The user profile

Profile Componenls

Path: To set the user's MH directory

Conlexl
With '-auto', the current folder is changed to "inbox".

[mh.6) MH VCI/VCB version

VSD:8-97 The Rand MH Message Handling System POST(8)

See Also

Defaulls

Context

Bugs

[mh.6)

Standard/or the Format 0/ ARPA Internet Text Messages (aka RFC-822),
mhmail(l), send(l), mh-mail(S), mh-alias(S)

'-alias lusr/new/lib/mh/MailAliases'
'-format'
'-nomsgid'
'-noverbose'
'-width 72'
'-nofilter'

None

"Reply-To:" fields are allowed to have groups in them according to the 822 specification, but
post won't let you use them.

MH VCI/VCB version

6. ADVANCED FEATURES

This section describes some features of MH that were included strictly for advanced MH users.
These capabilities permit MH to exhibit more powerful behavior for the seasoned MH users.

USER-DEFINED SEQUENCES

User-defined sequences allow the MH user a tremendous amount of power in dealing with
groups of messages in the same folder by allowing the user to bind a group of messages to a meaning
ful symbolic name. The user may choose any name for a message sequence, as long as it consists of
alphanumeric characters and does not conflict with the standard MH reserved message names (e.g.,
"first", etc). After defining a sequence, it can be used wherever an MH command expects a 'msg' or
'msgs' argument. Although all MH commands expand user-defined sequences as appropriate, there
are two commands that allow the user to define and manipulate them: pick and mark.

Pick and User-Defined Sequences

Most users of MH will use user-defined sequences only with the pick command. By giving the
'-sequence name' switch to pick (which can occur more than once on the command line), each
sequence named is defined as those messages which pick matched according the the selection criteria
it was given. Hence,

pick -from frated -seq fred

finds all those messages in the current folder which were from "frated", creates a sequence called
"fred", and then adds them to the sequence. The user could then invoke

scan fred

to get a scan listing of those messages. Note that by default, pick creates the named sequences before
it adds the selected messages to the sequence. Hence, if the named sequence already existed, the
sequence is destroyed prior to being re-defined (nothing happens to the messages that were a part of
this sequence, they simply cease to be members of that sequence). By using the '-nozero' switch, this
behavior can be inhibited, as in

pick -from frated -seq sgroup
pick -from fear -seq sgroup -nozero
pick -from freida -seq sgroup -nozero

finds all those messages in the current folder which were from "frated", "fear", or "freida", and
defines the sequence called "sgroup" as exactly those messages. These operations amounted to an
"inclusive-or" of three selection criteria, using pick, one can also generate the "and" of some selec
tion criteria as well:

pick -from frated -seq fred
pick -before friday -seq fred fred

This example defines the sequence called "fred" as exactly those messages from "frated" that were

USD:8-99 The Rand MH Message Handling System

USD:8-101 The Rand MH Message Handling System

changed, "notseen" will have to be updated. Another way to achieve this is to define the entry
"Sequence-Negation:" in the .miLprofile. If the entry was

Sequence-Negation: not

then anytime an MH command was given "notseen" as a 'msg' or 'msgs' argument, it would substi
tute all messages that are not a member of the sequence "seen". That is,

refile notseen +new

does just that. The value of the "Sequence-Negation:" entry in the profile can be any string. Hence,
experienced users of MH do not use a word, but rather a special character which their shell does not
interpret (users of the CShe/l use a single caret or circumflex (usually shift-6), while users of the
Bourne shell use an exclamation-mark). This is because there is nothing to prevent a user of MH
from defining a sequence with this string as its prefix, if the string is nothing by letters and digits.
Obviously, this could lead to confusing behavior if the "Sequence-Negation:" entry leads MH to
believe that two sequences are opposites by virtue of their names differing by the prefix string.

The Previous Sequence

Many times users find themselves issuing a series of commands on the same sequences of mes
sages. If the user first defined these messages as a sequence, then considerable typing may be saved.
If the user doesn't have this foresight, MH provides a handy way of having MH remember the 'msgs'
or 'msg' argument last given to an MH command. If the entry "Previous-Sequence:" is defined in
the .miLprofile, then when the command finishes, it will define the sequence(s) named in the value of
this entry as being exactly those messages that were specified. Hence, a profile entry of

Previous-Sequence: pseq

directs any MH command that accepts a 'msg' or 'msgs' argument to define the sequence "pseq" as
those messages when it finishes. More than one sequence name may be placed in this entry,
separated with spaces. The one disadvantage of this approach is that the MH progams have to
update the sequence information for the folder each time they run (although most programs read this
information, usually only pick and mark have to write this information out).

The Unseen Sequence

Finally, some users like to distinguish between messages which have been previously seen by
them. Both inc and show honorthe profile entry "Unseen-Sequence" to support this activity. When
ever inc places new messages in a folder, if the entry "Unseen-Sequence" is defined in the
.miLprofile, then when the command finishes, inc will add the new messages to the sequence(s)
named in the value of this entry. Hence, a profile entry of

Unseen-Sequence: unseen

directs inc to add new messages to the sequence "unseen". Unlike the behavior of the
"Previous-Sequence" entry in the profile however, the sequence(s) will not be zero'd.

Similarly, whenever show (or next or prey) displays a message, they remove those messages
from any sequences named by the "Unseen-Sequence" entry in the profile.

COMPOSITION OF MAIL

There are a number of interesting advanced facilities for the composition of outgoing mail.

USD:8-103 The Rand MH Message Handling System

sendf

Or, if more editing was required, the draft could be edited with

comp -use

Instead, if other drafts had been composed in the meantime, so that this message draft was no longer
known as 'cur' in the 'draft' folder, then the user could scan the folder to see which message draft in
the folder should be used for editing or sending. Clever users could even employ a back-quoted pick
to do the work:

comp -use 'pick +drafts -to bug-mhO

or

sendf 'pick +drafts -to bug-mhO

Note that in the comp example, the output from pick must resolve to a single message draft (it makes
no sense to talk about composing two or more drafts with one invocation of comp). In contrast, in
the send example, as many message drafts as desired can appear, since send doesn't mind sending
more than one draft at a time.

Note that the argument '-draftfolder +folder' is not included in the profile entry for send, since
when comp, et. aI., invoke send directly, they supply send with the UNIX pathname of the message
draft, and not a 'draftmessage msg' argument. As far as send is concerned, a draft folder is not being
used.

It is important to realize that MH treats the draft folder like a standard MH folder in nearly all
respects. There are two exceptions: first, under no circumstancs will the '-draftfolder folder' switch
cause the named folder to become the current folder. 3 Second, although conceptually send deletes the
'msgs' named in the draft folder, it does not call 'delete-prog' to perform the deletion.

What Happens if the Draft Exists

When the comp, dist, forw, and repl commands are invoked and the draft you indicated already
exists, these programs will prompt the user for a reponse directing the program's action. The prompt
is

Draft "/usrlsrc/uci/mh/mhbox/draft" exists (xx bytes).
Disposition?

The appropriate responses and their meanings are: replace: deletes the draft and starts afresh; list:
lists the draft; refile: files the draft into a folder and starts afresh; and, ~: leaves the draft intact and
exits. In addition, if you specified '-draftfolder folder' to the command, then one other response will
be accepted: new: finds a new draft, just as if '-draftmessage new' had been given. Finally, the comp
command will accept one more response: use: re-uses the draft, just as if '-use' had been given.

3 Obviously, if the folder appeared in the context of a standard' + folder' argument to an MH program, as in

scan +drafts

it might become the current folder, depending on the context changes of the MH program in question.

USD:8-I05 The Rand MH Message Handling System

increment its value) to use as the volume number.

Having calculated the name of the digest and the volume and issue numbers . .Iiml· will now process
the components file using the same format string mechanism used by repl. The current '%'-escapes
are:

escape type slliJstitlllio/l
digest string digest name
issue integer issue number
volume integer volume number

In addition. to capture the current date. any of the escapes valid for dp (8) are also valid for forII'.

The default components file used by.liml· when in digest mode is:

\ ... so lusr/new/lib/mh/digestcomps included inline here so it looks good
From: %{ digest }-Request
To: %{ digest} Distribution: dist-%{ digest};
Subject: %{digest} Digest V%(putnum(msg» #%(putnum(cur))
Reply-To: %{digest}

%{ digest} Digest %(putstr(weekday{ date})). %2(putnumf(mday{ date}» \
%(putstr(month{ date}» 19%02(putnumf(year{ date}))

Volume %(putnum(msg» : Issue %(putnum(cur))

Today's Topics:

Hence, when the '-digest' switch is present, the first step taken by forw is to expand the format strings
in the component file. The next step is to compose the draft using the standard digest encapsulation
algorithm (even putting an "End of list Digest" trailer in the draft). Once the draft is composed by
forII', fonv writes out the volume and issue profile entries for the digest, and then invokes the editor.

Naturally, when composing the draft, forw will honor the '-filter filterfiIe' switch, which is given to
mhl to filter each message being forwarded prior to encapsulation in the draft. A good filter file to
use, which is called mhl.digest, is:

width= 80,overflowoffset= 10
leftadjust,compress,compwidth = 9
Date:formatfield= "%«nodate{ text})0/0 { text}% I %(putstr(tws{ text)))%>"
From:
Subject:

body:nocomponent,overflowoffset=O,noIeftadjust,nocompress

FOLDER HANDLING

There are two interesting facilities for manipulating folders: relative folder addressing, which
allows a user to shorten the typing of long folder names; and the folder-stack, which permits a user to
keep a stack of current folders.

USD:8-I07 The Rand MH Message Handling System

Appendix A
COMMAND SUMMARY

Appendix A

ali [-alias aliasfile] [-list] [-nolist] [-normalize] [-nonormalize] [-user] [-nouser] names ...
[-help]

anna [+folder] [msgs] [-component field] [-inplace] [-noinplace] [-text body] [-help]

burst [+folder] [msgs] [-inplace] [-noinplace] [-quiet] [-noquiet] [-verbose] [-no verbose]
[-help]

comp [+folder] [msg] [-draftfolder +folder] [-draft message msg] [-nodraftfolder]
[-editor editor] [-noedit] [-file file] [-form form file] [-use] [-nouse]
[-whatnowproc program] [-nowhatnowproc] [-help]

dist [+folder] [msg] [-annotate] [-noannotate] [-draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [-editor editor] [-noedit] [-form form file] [-inplace] [-noinplace]
[-whatnowproc program] [-nowhatnowproc] [-help]

folder [+folder] [msg] [-all] [-fast] [-no fast] [-header] [-noheader] [-pack] [-nopack]
[-recurse] [-norecurse] [-total] [-nototal] [-print] [-noprint] [-list] [-nolist] [-push]
[-pop] [-help]

folders

forw [+folder] [msgs] [-annotate] [-noannotate] [-draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [-editor editor] [-noedit] [-filter filterfile] [-form form file] [-format]
[-no format] [-inplace] [-noinplace] [-whatnowproc program] [-nowhatnowproc]
[-help]

forw [+folder] [msgs] [-digest list] [-issue number] [-volume number]
[other switches for forw] [-help]

inc [+folder] [-audit audit-file] [-noaudit] [-changecur] [-nochangecur] [-file name]
[-form formatfile] [-format string] [-silent] [-nosilent] [-truncate] [-notruncate]
[-width columns] [-help]

mark [+folder] [msgs] [-sequence name ...] [-add] [-delete] [-list] [-public] [-nopublic]
[-zero] [-no zero] [-help]

USD:8-109 The Rand MH Message Handling System Appendix A

scan [+folder] [msgs] [-clear] [-noclear] [-form formatfile] [-format string] [-header]
[-noheader] [-width columns] [-help]

send [-alias aliasfile] [-draft] [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder]
[-filter filterfile] [-nofilter] [-format] [-no format] [-forward] [-noforward] [-msgid]
[-nomsgid] [-push] [-nopush] [-verbose] [-no verbose] [-watch] [-nowatch]
[-width columns] [file ...] [-help]

show [+folder] [msgs] [-draft] [-header] [-noheader] [-showproc program] [-noshowproc]
[switches for showproc] [-help]

sortm [+folder] [msgs] [-datefield field] [-verbose] [-noverbose] [-help]

vmh [-prompt string] [-vmhproc program] [-novmhproc] [switches for vmhproc] [-help]

whatnow [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [-editor editor] [-noedit]
[-prompt string] [file] [-help]

whom [-alias aliasfile] [-check] [-nocheck] [-draft] [-draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [file] [-help]

lusr/new/lib/mh/ap [-form formatfile] [-format string] [-normalize] [-nonormalize]
[-width columns] addrs ... [-help]

lusr/new/lib/mh/conflict [-mail name] [-search directory] [aliasfiles ...] [-help]

lusr/new/lib/mh/dp [-form formatfile] [-format string] [-width columns] dates ... [-help]

lusr/new/lib/mh/install-mh [-auto] [-compat]

lusr/new/lib/mh/post [-alias aliasfile] [-filter filterfile] [-nofilter] [-format] [-noformat]
[-msgid] [-nomsgid] [-verbose] [-noverbose] [-watch] [-nowatch] [-width columns]
file [-help]

USD:8-1l1 The Rand MH Message Handling System Appendix B

REFERENCES

1. Crocker, D. H., J. J. Vittal, K. T. Pogran, and D. A. Henderson, Jr., "Standard for the Format of
ARPA Network Text Messages," RFC733, November 1977.

2. Thompson, K., and D. M. Ritchie, "The UNIX Time-sharing System," Communications of the
ACM, Vol. 17, July 1974, pp. 365-375.

3. McCauley, E. J., and P. J. Drongowski, "KSOS-The Design of a Secure Operating System."
AFIPS Conference Proceedings, National Computer Conference, Vol. 48, 1979, pp. 345-353.

4. Crocker, David H., Framework and Functions of the "MS" Personal Message System, The Rand
Corporation, R-2134-ARPA, December 1977.

5. Thompson, K., and D. M. Ritchie, UNIX Programmer's Manual, 6th ed., Western Electric Com·
pany, May 1975 (available only to UNIX licensees).

6. Crocker, D. H., "Standard for the Format of ARPA Internet Text Messages," RFC822, Augus
1982.

What is the Network News?

How to Read the Network News

Mark R. Horton
AT&T Bell Laboratories
Columbus. OB 43213

Revised by Rick Adams for 2.10.3

USENET (Users' Network) is a bulletin board shared among many computer systems around
the world. USENET is a logical network, sitting on top of several physical networks, among them
UUCP, BLlCN, BERKNET, X.25, and the ARPANET. Sites on USENET include many universities,
private companies and research organizations. Most of the members of USENET are either universi
ty computer science departments or part of AT&T. Currently, there are over 2000 USENET sites in
the USA, Canada, Europe, Japan and Korea with more joining every day. Most are running the
UNIXt operating system.

The network news, or simply netnews, is the set of programs that provide access to the news and
transfer it from one machine to the next. Netnews was originally written at Duke University and has
been modified extensively by the University of California at Berkeley and others. Netnews allows ar
ticles to be posted for limited or very wide distribution. This document contains a list of newsgroups
that were active at the time the document was written. It exists to assist you in determining which
newsgroups you may want to subscribe to. When creating a new article, the level of distribution can
be controlled by use of the "Distribution" field. This will prevent notices of apartments for rent in
New Jersey being broadcast to California (or even Europe).

Any user can post an article, which will be sent out to the network to be read by persons in
terested in that topic. You can specify which topics are of interest to you by putting them in a sub
scription list. Then, whenever you ask to read news, the news reading program will present all unread
articles of interest. There are also facilities for browsing through old news, posting follow-up articles,
and sending direct electronic mail replies to the author of an article.

This paper is a tutorial, aimed at the user who wants to read and possibly post news. The sys
tem administrator who must install the software should see the companion document USENET Ver
sion B Installation.

Why USENET?
USENET is useful in a number of ways. Someone wishing to announce a new program or pro

duct can reach a wide audience. A user can ask "Does anyone have an x?" and will usually get
several responses within a day or two. Bug reports and their fixes can be made quickly available
without the usual overhead of sending out mass mailings. Discussions involving many people at
different locations can take place without having to get everyone together.

Another facility with similar capabilities to netnews is the electronic mailing list. A mailing list
is a collection of electronic mailing addresses of users who are interested in a particular topic. By

tUNIX is a trademark of AT&T Bell Laboratories.

How to Read the Network News USD:9-1

How to Read the Network News USD:9-3

article.
Among the other commands you can type after seeing the header of an article are:

x Exit readnews. This is different from q in that the q command will update the record
of which articles you have read, but x will pretend you never started readnews.

N Go on to the next newsgroup. The remaining articles in the current newsgroup are con
sidered unread, and will be offered to you again the next time you read news.

s file The article is saved in 'a disk file with the given name. In practice, what usually hap
pens is that an article is printed, and then readnews goes on to print the header of the
next article before you get a chance to type anything. So you usually want to write out
the previous message (the last one you have read in full); in this case, use the form s
filename.

e Erase the memory of having seen this article. It will be offered to you again next time,
as though you had never seen it. The e- case variation (erase memory of the previous
ly read article instead of the current article) is useful for checking follow-ups to see if
anyone has already said what you wanted to say.

r Reply to the author of the message. You will be placed in the editor, with a set of
headers derived from the message you are replying to. Type in your message after the
blank line. If you wish to edit the header list to add more recipients or send carbon
copies, for instance, you can edit the header lines. Anyone listed on a line beginning
with "To" or "Cc" will receive a copy of your reply. Note that the path used to receive
a piece of news may not be the fastest way to reply by mail. If speed is important and
you know a faster way, edit it in place of what the reply command supplied. A mail
command will then be started up, addressed to the persons listed in the header. You
are then returned to readnews. The case r- is also useful to reply to the previous mes
sage. Another variation on this is rd- which puts you in $MAILER (or mail(l) by de
fault) to type in your reply directly.

f Post a follow-up message to the same newsgroup. This posts an article on this news
group with the same title as the original article. Use common sense when posting
follow-ups. (Read Matt Bishop's paper "How to use USENET Effectively" for extended
discussion of when and when not to post - many follow-up articles should have just
been replies.) You will be placed in the editor. Enter your message and exit. The case
f- is also useful to follow up the previous message. In each case, the editor you are
placed in will be vi(l) unless you set EDITOR (in your environment) to some other edi
tor. You should enter the text of the follow-up after the blank line.

+ The article is skipped for now. The next time you read news, you will be offered this
article again.
Go back to the previous article. This toggles, so that two -'s get you the current article.

b Back up one article in the current group. This is not necessarily the previous article.

U Unsubscribe from this newsgroup. Your .newsrc(5) file will be edited to change the: for
that newsgroup to an! preventing you from being shown that newsgroup again.

? If you type any unrecognized command, a summary of valid commands will be printed.

Changing your Subscription List

If you take no special action you will subscribe to a default subscription list. This default varies
locally. To find out your local default, type

readnews -s
Typically this list will include all newsgroups ending in "general", such as general, and net.general.
(As distributed, the default is general,all.general. Another popular default is all.) You can change this
by creating a file in your home directory named .newsrc which contains as its first line a line of the

News Version B2.1O.3 February 26, 1986

How to Read the Network News USD:9-5

about the headers while you are still in the editor, you can edit them as well. Extra headers can also
be added before the blank line.

Browsing through Old News

There are a number of command line options to the readnews command to help you find an old
article you want to see again. The -n newsgroups option restricts your search to certain newsgroups.
The -x option arranges to ignore the record of articles read, which is kept in your .newsrc file. This
will cause all articles in all newsgroups to which you subscribe to be displayed, even those which you
have already seen. It also causes readnews to not update the .newsrc file. The -a date option asks for
news received after the given date. Note that even with the -a option, only articles you have not al
ready seen will be printed, unless you combine it with the -x option. (Articles are kept on file until
they expire, typically after two weeks.) The -t keywords option restricts the query to articles mention
ing one of the keywords in the title of the article. Thus, the command

readnews -n net. unix -x -a last thursday -t setuid

asks for all articles in newsgroup net.unix since last Thursday about the setuid feature. (Be careful
with the -t option. The above example will not find articles about "suid", nor will it find articles
with no title or whose author did not use the word "setuid" in the title.)

Other useful options include the -I option (which lists only the headers of articles - a useful
form for browsing through lots of messages.) The -p option prints the messages without asking for
any input; this is similar to some older news programs on many UNIX systems and is useful for
directing output to a printer. The -r option produces articles in reverse order, from newest to oldest.

User Interfaces

The user interface of a program is the view it presents to the user, that is, what it prints and
what it allows you to type. Readnews has options allowing you to use different user interfaces. The
interface described above is called the "msgs" interface because it mimics the style of the Berkeley
msgs(l) program. (This program, in tum, mimics a program at MIT of the same name.) The key ele
ment of the msgs interface is that after printing the header, you are asked if you want the rest of the
message.

Another interface is available with the -c option. In this case, the entire message is printed,
header and body, and you are prompted at the end of the message. The command options are the
same as the msgs interface, but it is usually not necessary to use the - suffix on the r, s, or f com
mands. This interface is called the "/bin/mail" (pronounced "bin mail") interface, because it mimics
the UNIX program of that name.

A third interface is the Mail(l) (pronounced "cap mail") interface, available with the -M op
tion. This invokes the Mail program directly, and allows you to read news with the same commands
as you read mail. (This interface may not work on your system - it requires a special version of Mail
with a -T option.)

A fourth interface, is the MH news/mail program from Rand. That program can be used direct
ly to read network news.

A fifth interface, vnews, which works well on display terminals, is described in the Appendix.

A sixth possibility is the notes file system, described in a separate paper. It is also display
oriented.

A seventh possibility is to use your favorite mail system as an interface. There are a number of
different mail reading programs, including Ibinlmail(I), Mail, msg(I), and MH. Any mail system
with an option to specify an alternative mailbox can be used to read news. For example, to use Mail
without the -M option, type

readnews -c "Mail -f %.

The shell command in quotes is invoked as a child of readnews. The -f option to Mail names the al
ternative mailbox. Readnews will put the news in a temporary file, and give the name of this file to

News Version B2.10.3 February 26, 1986

How to Read the Network News USD:9-7

List of Newsgroups

This section lists the newsgroups that are currently active. It is intended to help you decide
what you want to subscribe to. Note that the list is constantly changing. Note also that this list only
describes those groups available on a network-wide basis. Since not all installations choose to receive
all newsgroups, it is recommended that each installation edit the list of local newsgroups to be correct
before distributing this document to their users. If this is not possible. a local appendix can be creat
ed.

Local

Local groups are kept on the current machine only. Local names can be identified by the lack of
a prefix, that is, there are no periods in local newsgroup names.

general News to be read by everyone on the local machine. For example: "The system will be
down Monday morning for PM." Or, "A new version of program x has been installed."
This newsgroup is usually mandatory - you are required to subscribe to this newsgroup.
(The list of mandatory newsgroups varies locally.) This requirement assures that important
announcements reach all users. (Formerly msgs.)

Network Wide

These are the groups as of the last editing of this manual. The list is undoubtably already out of
date. A current list can be obtained by typing? to the "Newsgroups? " prompt in postnews.
net.abortion All sorts of discussions on abortion.
net.ai Artificial intelligence discussions.
net.analog Analog design developments, ideas, and components.
net.announce Moderated, general announcements of interest to all.
net.announce.newusers Moderated, explanatory postings for new users.
net. announce. arpa-internet Announcements from the Arpa world.
net.arch Computer architecture.
net.astro Astronomy discussions and information.
net.astro.expert Discussion by experts in astronomy.
net.audio High fidelity audio.
net.auto Automobiles, automotive products and laws.
net.auto.tech Technical aspects of automobiles, et. al.
net.aviation Aviation rules, means, and methods.
net. bicycle Bicycles, related products and laws.
net.bio Biology and related sciences.
net. books Books of all genres, shapes, and sizes.
net.bugs General bug reports and fixes.
net.bugs.2bsd Reports of UNIX· version 2BSD related bugs.
net.bugs.4bsd Reports of UNIX version 4BSD related bugs.
net.bugs.usg Reports of USG (System III, V, etc.) bugs.
net.bugs.uucp Reports of UUCP related bugs.
net.bugs. v7 Reports of UNIX V7 related bugs.
net. cog-eng Cognitive engineering.
net.college College, college activities, campus life, etc.
net.columbia The space shuttle and the STS program.

, net.comics The funnies, old and new.
net.consumers Consumer interests, product reviews, etc.
net.cooks Food, cooking, cookbooks, and recipes.
net.crypt Different methods of data en/decryption.
net.cse Computer science education.
net.cycle Motorcycles and related products and laws.
net. database Database and data management issues and theory.

News Version B2.1O.3 February 26, 1986

How to Read the Network News

net.micro.apple
net.micro.amiga
neLmicro.atari
neLmicro.att
neLmicro.cbm
neLmicro.cpm
neLmicro.hp
neLmicro.mac
net.micro.pc
neLmicro.ti
neLmicro.trs-80
neLmisc
neLmotss
neLmovies
neLmusic
neLmusic.classical
net.music.folk
neLmusic.gdead
neLmusic.synth
neLnet-people
neLnews
neLnews.adm
neLnews.b
net.news.config
net.news.group
net.news.newsite
net.news.notes
net.news.sa
neLnews.stargate
net.nlang
neLnlang.africa
neLnlang.celts
n eL nlang:greek
net.nlang.india
net. origins
neLperiphs
net. pets
net.philosophy
net. physics
net.poems
neLpolitics
net. politics. theory
net.puzzle
neLrailroad
neLrec
net.rec.birds
neLrec.boat
net.rec.bridge
net.rec.nude
neLrec. photo
net.rec.scuba
net.rec.ski
net.rec.skydi ve

.News Version B2.10.3

Discussion about Apple micros.
Talk about the new Amiga micro.
Discussion about Atari micros.
Discussions about AT&T microcomputers
Discussion about Commodore micros.
Discussion about the CP/M operating system.
Discussion about Hewlett/Packard's.
Material about the Apple Macintosh & Lisa.
Discussion about IBM personal computers.
Discussion about Texas Instruments.
Discussion about TRS-80's.
Various discussions too short-Ii ved for other groups.
Issues pertaining to homosexuality.
Reviews and discussions of movies.
Music lovers' group.
Discussion about classical music.
Folks discussing folk music of various sorts.
A group for (Grateful) Dead-heads.
Synthesizers and computer music.

USD:9-9

Announcements, requests, etc. about people on the neL
Discussions of USENET itself.
Comments directed to news administrators.
Discussion about B news software.
Postings of system down times and interruptions.
Discussions and lists of newsgroups
Postings of new site announcements.
Notesfile software from the Univ. of Illinois.
Comments directed to system administrators.
Discussion about satellite transmission of news.
Natural languages, cultures, heritages, etc.
Discussions about Africa & things African.
Group about Celtics.
Group about Greeks.
Group for discussion about India & things Indian
Evolution versus creationism (sometimes hot!).
Peripheral devices.
Pets, pet care, and household animals in general.
Philosophical discussions.
Physical laws, properties, etc.
For the posting of poems.
Political discussions. Could get hot.
Theory of politics and political systems.
Puzzles, problems, and quizzes.
Real and model train fans' newsgroup.
Recreational/participant sports.
Hobbyists interested in bird watching.
Hobbyists interested in boating.
Hobbyists interested in bridge.
Hobbyists interested in naturist/nudist activities.
Hobbyists interested in photography.
Hobbyists interested in SCUBA diving.
Hobbyists interested in skiing.
Hobbyists interested in skydiving.

February 26, 1986

How to Read the Network News

mod.computers. workstations
mod.graphics
mod. human-nets
mod.legal
mod.map
mod.motss
mod.movies
mod. music
mod.newprod
mod.newslists
mod.os
mod.os.os9
mod.os.unix
mod. politics
mod.politics.arms-d
mod. protocols
mod.protocols.appletalk
mod. protocols. kermit
mod. protocols. tcp-ip
mod.rec
mod.rec.guns
mod.recipes
mod.risks
mod. sources
mod.sources.doc
mod.std
mod.std.c
mod.std.mumps
mod. std. unix
mod.techreports
mod.telecom
mod.test
mod.vlsi

News Version B2.10.3

USD:9-11

Various workstation-type computers.
Graphics software, hardware, theory, etc.
Computer aided communications digest.
Discussions of computers and the law.
Various maps, including UUCP maps.
Moderated newsgroup on gay issues and topics.
Moderated reviews and discussion of movies.
Moderated reviews and discussion of things musical.
Announcements of new products of interest to readers.
Postings of news-related statistics and lists.
Disussions about operating systems and related areas.
Discussions about the os9 operating system.
Moderated discussion of Unix'" features and bugs.
Discussions on political problems, systems, solutions.
Arms discussion digest.
Various forms and types of FrP protocol discussions.
Applebus hardware & software discussion.
Information about the Kermit package.
TCP and IP network protocols.
Discussions on pastimes (not currently active).
Discussions about firearms.
A "distributed cookbook" of screened recipes.
Risks to the public from computers & users.
Moderated postings of public-domain sources.
Archived public-domain documentation.
Moderated discussion about various standards.
Discussion about C language standards.
Discussion for the X 11.1 committee on Mumps.
Discussion for the PlO03 committee on Unix.
Announcements and lists of technical reports.
Telecommunications digest.
Testing of moderated newsgroups - no moderator.
Very large scale integrated circuits.

February 26, 1986

How to Read the Network News USD:9-13

<CONTROL-N>
Go forwards count lines.

<CONTROL-Z>
Go backwards counl lines.

<CONTROL-L>
Redraw the screen. <CONTROL-L> may be typed at any time.

b Back up one article in the current group.

Redisplay the article after you have sent a follow-up or reply.

n Move on to the next item in a digest. "." is equivalent to n. This is convenient if your terminal
has a keypad.

p Show the parent article (the article that the current article is a follow-up to). This doesn't work
if the current article was posted by A-news or notesfiles. To switch between the current and
parent articles, use the - command. Unfortunately, if you use several p commands to trace the
discussion back further, there is no command to return to the original level.

ug Unsubscribe to the current group. This is a two character command to ensure that it is not
typed accidentally and to leave room for other types of unsubscribes (e.g., unsubscribe to discus
sion).

v Print the current version of the news software.

D Decrypts a joke. It only handles rol13 jokes. The D command is a toggle; typing another D re
encrypts the joke.

News Version B2.IO.3 February 26, 1986

1. Introduction

How to Use USENET Effectively

Matt Bishop
Research Institute for Advanced Computer Science

Mail Stop 230-5
NASA Ames Research Center

Moffett Field, CA 94035

USENET is a worldwide bulletin board system in which thousands of computers pass articles
back and forth. Of necessity, customs have sprung up enabling very diverse people and groups to
communicate peaceably and effectively using USENET. These customs are for the most part written,
but are scattered over several documents that can be difficult to find; in any case, even if a new user
can find all the documents, he most likely will have neither the time nor the inclination to read them
all. This document is intended to collect all these conventions into one place, thereby making it easy
for new users to learn about the world of USENET. (Old-timers, too, will benefit from reading this.)

You should read this document and understand it thoroughly before you even think about post
. ing anything. If you have questions, please ask your USENET administrator (who can usually be
reached by sending mail to usenet) or a more knowledgeable USENET user. Believe me, you will
save yourself a lot of grief.

The mechanics of posting an article to USENET are explained in Mark Horton's excellent paper
How to Read the Network News; if you have not read that yet, stop here and do so. A lot of what fol
lows depends on your knowing (at least vaguely) the mechanics of posting news.

Before we discuss these customs, we ought to look at the history of USENET, what it is today,
and why we need these conventions.

2. All About USENET

USENET began on a set of computers in North Carolina's Research Triangle. The programs in
volved (known as "netnews" then, and "A news" now) exchanged messages; it was a small, multi

. computer bulletin board system. As time passed, administrators of other systems began to connect
their computers to this bulletin board system. The network grew. Then, at Berkeley, the news pro

. grams were rewritten (this version became known as "B news") and the format changed to conform to
ARPA standards (again, this became the "B protocol for news".t) This version of news was very
widely distributed, and at this point USENET began to take on its current shape.

USENET is a logical network (as opposed to a physical network.) It is also a very amorphous
network, in that there is no central administration or controlling site. There is not even an official list
of members, although there is a very complete unofficial one. A site gets access to USENET by
finding some other site already on USENET that it can connect to and exchange news articles. So
long as this second site (called a neighbor of the first site) remains willing and able to pass articles to
and from the first site, the first site is on USENET. A site leaves the USENET only when no one is
willing or able to pass articles to, or accept articles from, it.

t See Standard!or Interchange o!USENET Messages for a description of the two formats.

How to Use USENET Effectively USD:IO-l

How to Use USENET Effectively USD:I0-3

that many copies of the same answer to a simple question are posted.
If you want to repost something because you believe it did not get to other USENET sites due

to transmission problems (this happens sometimes, but a lot less often than commonly believed), do
some checking before you repost. If you have a friend at another USENET site, call him and ask if
the article made it to his site. Ask your USENET administrator if he knows of any problems in the
USENET; there are special newsgroups to which USENET administrators subscribe in which prob
lems are reported, or he can contact his counterparts at other sites for information. Finally, if you
decide you must repost it, indicate in the article subject that it is a reposting, and say why you are re
posting it (if you don't, you'll undoubtedly get some very nasty mail.)

Reposting announcements of products or services is flatly forbidden. Doing so may convince
other sites to turn off your USENET access.

When school starts, hoards of new users descend upon the USENET asking questions. Many of
these questions have been asked, and answered, literally thousands of times since USENET began.
The most common of these questions, and their answers, have been collected in the hope that the new
users will read them and not re-post the same questions. So, if you want to ask a question, check Ap
pendix I (Answers to Frequently Asked Questions) to be sure it isn't one that has been asked and
answered literally hundreds of times before you started reading the USENET.

3.2. Do not post anything when upset, angry, or intoxicated
Posting an article is a lot like driving a car - you have to be in control of yourself. Postings

which begin "Jane, you ignorant slut, ... " are very definitely considered in poor tastet. Unfortunate
ly, they are also far too common.

The psychology of this is interesting. One popular belief is that since we interact with USENET
via computers, we all often forget that a computer did not do the posting; a human did. A contribut
ing factor is that you don't have to look the target of abuse in the eye when you post an abusive mes
sage; eye-to-eye contact has an amazing effect on inhibiting obnoxious behavior. As a result, discus
sions on the USENET often degenerate into a catfight far more readily than would a face-to-face dis
cussion.

Before you post an article, think a minute; decide whether or not you are upset, angry, or high.
If you are, wait until you calm down (or come down) before deciding to post something. Then think
about whether or not you really want to post it. You will be amazed what waiting a day or even a
few hours can do for your perspective.

Bear in mind that shouting hasn't convinced anyone of anything since the days of Charlemagne,
and being abusive makes people hold even more tenaciously to their ideas or opinions. Gentleness,
courtesy, and eloquence are far more persuasive; not only do they indicate you have enough
confidence in your words to allow them to speak for you, but also they indicate a respect for your au
dience. This in turn makes it easier for your audience to like or respect you - and people tend to be
far more interested in, and receptive to, arguments advanced by those they like or respect than by
writers who are abusive. Finally, remember that some discussions or situations simply cannot be

. resolved. Because people are different, agreed-upon facts often lead to wildly different feelings and
conclusions. These differences are what makes life so wonderful; were we all alike, the world would
be a very boring place. So, don't get frantic; relax and enjoy the discussion. Who knows, you might
even learn something!

. 3.3. Be sure your posting is appropriate to USENET
Some things are inappropriate to post to USENET. Discussing whether or not some other dis

cussion is appropriate, or if it is in the right newsgroup, is an example. Invariably, the "meta
discussion" generates so many articles that the discussion is simply overwhelmed and vanishes; but

t Unless you are critiquing Saturday Night Live.

News Version B2.1O.3 February 24, 1986

How to Use USENET Effectively USD:1O-5

Part of the price of freedom is allowing others to make fools of themselves. You wouldn't like
to be censored, so don't advocate censorship of others. No one is forcing you to read the postings.

In some countries, posting or receiving certain types of articles may be a criminal offense. As a
result, certain newsgroups which circulate freely within the United States may not be circulated in
other nations without risking civil or criminal liabilities. In this case, the appropriate action for sites
in that country is neither to accept nor to transmit the newsgroup. No site is ever forced to accept or
pass on any newsgroup.

4. Where to Post

The various newsgroups and distributions have various rules associated with their use. This sec
tion will describe these rules and offer suggestions on which news groups to post your message.

4.1. Keep the distribution as limited as possible

A basic principle of posting is to keep the distribution of your article as limited as possible.
Like our modern society, USENET is suffering from both an information glut and information pollu
tion. It is widely believed that the USENET will cease to function unless we are able to cut down the
quantity of articles. One step in this direction is not to post something to places where it will be
worthless. For example, if you live in Hackensack, New Jersey, the probability of anyone in Korea
wanting to buy your 1972 Toyota is about as close to zero as you can get. So confine your posting to
the New Jersey area.

To do this, you can either post to a local group, or post to a net-wide group and use the distribu
tion feature to limit how widely your article will go. When you give your posting program (usually
postnews(l» a distribution, you are (in essence) saying that machines which do not recognize that dis
tribution should not get the article. (Think of it as a subgroup based on locality and you'll get the
idea.) For example, if you are posting in the San Francisco Bay Area, and you post your article to
net.auto but give ba as the distribution, the article will not be sent beyond the San Francisco Bay Area
(to which the ba distribution is local) even though you put it in a net-wide newsgroup. Had you given
the distribution as ca (the California distribution), your article would have been sent to all Californi
an sites on USENET. Had you given the distribution as net, your article would have been sent to all
sites on USENET.

4.2. Do not post the same article twice to different groups

If you have an article that you want to post to more than one group, post to both at the same
time. Newer versions of the news software will show an article only once regardless of how many
newsgroups it appears in. But if you post it once to each different group, all versions of news
software will show it once for each newsgroup. This angers a lot of people and wastes everybody's
time.

4.3. Do not post to "mod." or "net.announce" newsgroups

You may not post directly to certain newsgroups; you cannot post to some at all. Newer ver
sions of the news software will inform you when either of these restrictions apply, but older versions
of news software will not.

The mod. newsgroups are bona fide moderated newsgroups. If you want to have the appropriate
moderator post something, mail it to him. (If you do not know his address, ask your USENET ad
ministrator. In some cases, the software will automatically mail, rather than post, your article to the
moderator.)

The newsgroup net.announce and its subgroups are moderated newsgroups designed for impor
tant announcements. It is used to post important announcements that everyone on USENET can
read. (Net.general was meant to provide such a place, but so many inappropriate messages have been
posted there that a lot of people began to unsubscribe; hence, this moderated newsgroup was set up.
Very few messages are posted to it, so don't be afraid to subscribe; you will not be overwhelmed.) To

News Version B2.1O.3 February 24, 1986

How to Use USENET Effectively

4.7. Watch out for newsgroups which have special rules about posting

Some newsgroups have special rules. This section summarizes them.

USD:IO-7

net.books Do not post anything revealing a plot or a plot twist without putting the word
"spoiler" somewhere in the "Subject" field. This will let those who do not wish
to have a surprise spoiled skip the article.

net.followup This group is for followups to articles posted in net.general or for results of sur
veys. No discussions are allowed.

net.jokes If you want to post an offensive joke (this includes racial, religious, sexual, and
scatalogical humor, among other kinds) rotate it. (If you do not know what this
means, look in the section Writing Your Posting.)

net. movies Do not post anything revealing a plot or a plot twist without putting the word
"spoiler" in the "Subject" field. This will let those who do not wish to have a
surprise spoiled skip the article.

net.news.group Discussions about whether or not to create new groups, and what to name
them, go here. Please mail your votes to the proposer; don't post them.

net.sources Source code postings go here. Discussions are not allowed. Do not post bug
fixes here.

net.sources.bugs Bug reports and bug fixes to sources posted in net.sources go here.

net.test Use the smallest distribution possible. In the body of the message, say what
you are testing.

net.wanted Requests for things other than source code go here. Please use the smallest dis
tribution possible. Post offers here, too.

net.wanted.sources Requests for sources go here.

5. Writing the Article
Here are some suggestions to help you communicate effectively with others on the USENET.

Perhaps the best advice is not to be afraid to consult a book on writing style; two of the best are How
to Write for the World of Work by Cunningham and Pearsall, and Elements of Style by Strunk and
White.

5.1. Write for your audience
USENET is an international network, and any article you post will be very widely read. Even

more importantly, your future employers may be among the readers! So, try to make a good impres
, sion.

A basic principle of all writing is to write at your readers' reading level. It is better to go below
, than above. Aiming where "their heads ought to be" may be fine if you are a college professor (and a

lot of us would dispute even that), but it is guaranteed to cause people to ignore your article. Studies
, have shown that the average American reads at the fifth grade level and the average professional reads

at the twelfth grade level.

5.2. Be clear and concise
Remember that you are writing for a very busy audience; your readers will not puzzle over your

article. So be very clear and very concise. Be precise as well; choose the least ambiguous word you
can, taking into account the context in which you are using the word. Split your posting into sections
and paragraphs as appropriate. Use a descriptive title in the "Subject" field, and be sure that the title
is related to the body of the article. If the title is not related, feel free to change it to a title that is.

News Version B2.10.3 February 24, 1986

How to Use USENET Effectively USD:10-9

6. Conclusion and Summary
Here is a list of the rules given above:

IF Deciding to post

• Do not repeat postings
• Do not post anything when upset, angry, or intoxicated
• Be sure your posting is appropriate to USENET

• Do not post other people's work without permission

• Don't forget that opinions are those of the poster and not his company
IF Where to Post

• Keep the distribution as limited as possible
• Do not post the same article twice to different groups

• Do not post to mod., or net.announce newsgroups

• Do not post to net.general
• Ask someone if you can't figure out where to post your article
• Be sure there is a consensus before creating a new newsgroup

• Watch out for newsgroups which have special rules about posting
IF Writing the Article

• Write for your audience

• Be clear and concise
• Proofread your article
• Be extra careful with announcements of products or services

• Indicate sarcasm and humor
• Mark postings which spoil surprises

• Rotate offensive postings
• The shorter your signature, the better

The USENET can be a great place for us all. Sadly, not enough people are following the cus
toms that have been established to keep the USENET civilized. This document was written to edu
cate all users of the USENET on their responsibilities. Let's clean up the USENET, and tum it into a
friendly, helpful community again!

Acknowledgements: The writing of this document was inspired by Chuq von Rospach's posting on
USENET etiquette, and it draws on previous work by Mark Horton, A. Jeff Offutt, Gene Spafford,
and Chuq von Rospach.

News Version B2.JO.3 February 24, 1986

How to Use USENET Effectively USD:IO-II

can give it to you even if he works at a different location. If you must try the net, use newsgroup
net.net-people, not net.general.

9. net.math: Proofs that 1 = O.

Almost everyone has seen one or more of these in high school. They are almost always based on
either division by 0 or taking the square root of a negative number.

10. net.games: Where can I get the source for empire(6) or rogue(6)?

You can't. The authors of these games, as is their right, have chosen not to make the sources
available.

II. net. unix-wizards: How do I remove files with non-ASCII characters in their names?

You can try to find a pattern that uniquely identifies the file. This sometimes fails because a
peculiarity of some shells is that they strip off the high-order bit of characters in command lines.
Next, you can try an "rm _i", or "rm -r" (see rm(l).) Finally, you can mess around with i-node
numbers and find(I).

12. net.unix-wizards: There is a bug in the way UNIX handles protection for programs that run setuid.

There are indeed problems with the treatment of protection in setuid programs. When this is
brought up, suggestions for changes range from implementing a full capability list arrangement to
new kernel calls for allowing more control over when the effective id is used and when the real id
is used to control accesses. Sooner or later you can expect this to be improved. For now you just
have to live with it.

13. net.women: What do you think about abortion?
Although abortion might appear to be an appropriate topic for net.women, more heat than light is
generated when it is brought up. Since the newsgroup net.abortion has been created, all abortion
related discussion should take place there.

14. net.singles: Whl:t do "MaTOS," "MOTSS,", "MaTAS", and "SO" stand for?

Member of the opposite sex, member of the same sex, member of the appropriate sex, and
significant other, respectively.

15 net.columbia: Shouldn't this name be changed?

The name was devised to honor the first space shuttle. It was realized at the time the group began
that the name would quickly become out of date. The intent was to create a bit of instant nostal
gia.

16. net.columbia: Shouldn't this group be merged with net.space? No. Net.columbia is for timely
news bulletins. Net.space is for discussions.

17. How do I use the "Distribution" feature?
When postnews(I) prompts you for a distribution, it's asking how widely distributed you want
your article. The set of possible replies is different, depending on where you are, but at Bell Labs
in Murray Hill, New Jersey, possibilities include:

mh3bcl local to this machine
mh Bell Labs, Murray Hill Branch
nj all sites in New Jersey
btl All Bell Labs machines
att All AT&T machines
usa Everywhere in the USA
na Everywhere in North America
net Everywhere on USENET in the world (same as ·world")

If you hit <RETURN>, you'll get the default, which is the first part of the newsgroup name. This
default is often not appropriate - please take a moment to think about how far away people are
likely to be interested in what you have to say. Used car ads, housing wanted ads, and things for
sale other than specialized equipment like computers certainly shouldn't be distributed to Europe

News Version B2.1O.3 February 24, 1986

Report No. UIUCDCS-R-82-108I

NOTESFILE REFERENCE MANUAL
(abridged)

by

Raymond B. Essick IV
Rob Kolstad

February 14, 1983
(Revised: October 20, 1985)

(Printed: April 8, 1986)

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

1304 W. SPRINGFIELD AVENUE
URBANA, ILLINOIS 61801-2987

Supported in part by NASA Project NAS-I-138

TABLE OF CONTENTS

1 Introduction ... 1

2 Using Notesfi1es .. 1
2.1 Invocation .. 1
2.2 Notesfile Names and Wildcards .. 2
2.3 The -f Option ... 3
2.4 General. .. 3

2.4.1 Help .. 3
2.4.2 Exiting .. 3
2.4.3 Shells4
2.4.4 Comments & Suggestions4

2.5 The Index Page4
2.5.1 Scrolling the Index Page .. 5
2.5.2 Choosing Notes & Responses .. 5

2.6 Notes & Responses .. 5
2.6.1 Reading Notes .. 5
2.6.2 Reading Responses .. 7
2.6.3 Writing Notes & Responses ... 7
2.6.4 Mailing Notesfi1e Text. .. 8
2.6.5 Forwarding Text To Other Notesfiles ... 8
2.6.6 Saving Text in Local Files ... 8
2.6.7 Deletion .. 8
2.6.8 Online Communication ... 8
2.6.9 Editing Note Titles ... 9
2.6.10 Editing Notes/Responses ... 9

2.7 Other Commands ... 9
2.7.1 Returning to the Index Page .. 9
2.7.2 Searching Titles for Keywords ... 9
2.7.3 Searching for Authors .. 9
2.7.4 Stacking Notesfiles ... 9
2.7.5 Accessing Archives .. 10
2.7.6 Policy Note .. 10

2.8 The Sequencer ... 10
2.8.1 Seeing New Notes and Responses .. 10
2.8.2 Alternate Sequencers ... 11
2.8.3 Automatic Sequencing .. 11

2.9 Environment Variables ... 12

3 Other Notesfile Utilities .. 13
3.1 Hard Copy Output .. 13
3.2 Piped Insertion of Notes ... 13
3.3 User Subroutines ... 13

3.3.1 Nfcomment ... 13
3.3.2 Nfabort .. 14

3.4 Statistics .. 14
3.5 Checking for New Notes ... 15

APPENDICES

1 Introduction.

Notesfiles support computer managed discussion forums. Discussions can have many
different purposes and scopes: the notes file system has been designed to be flexible enough to handle
differing requirements.

Each notesfile discusses a single topic. The depth of discussion within a notesfile is ideally
held constant. While some users may require a general discussion of personal workstations, a
different group may desire detailed discussions about the 110 bus structure of the WICAT 68000 (a
particular workstation). These discussions might well be separated into two different notesfiles.

Each notesfile contains a list of logically independent notes (called base notes). A note is a
block of text with a comment or question intended to be seen by members of the notesfile commun
ity. The note display shows the text, its creation time, its title, the notesfile's title, the author's name
(some notesfiles allow anonymous notes), the number of "responses", and optionally a "director mes
sage". Each base note can have a number of "responses": replies, retorts, further comments, criti
cism, or related questions concerning the base note. Thus, a notesfile contains an ordered list of
ordered lists. This arrangement has historically been more convenient than other proposals (e.g.,
trees were studied on the PLATO (trademark of Control Data Corporation) system).

The concept of a notesfile was originally implemented at the University of Illinois, Urbana
Champaign, on the PLATO system. The UNIX (trademark of Bell Laboratoris) notesfile system
includes these ideas with adaptations and enhancements made possible by the UNIX environment.

The UNIX notesfile system was designed and implemented by Ray Essick at the University of
Illinois, Urbana-Champaign. It provides users with the abilities to read notes and responses, write
notes and responses, forward note text to other users (via mail) or other notesfiles, save note text in
their own files, and sequence through a set of notes files seeing just new text. Each notesfile has a set
of "directors" who manage the notesfile: they delete old notes, compress the file when needed, grant
and restrict access to the notesfile, and set different notesfile parameters (e.g., title, "director mes
sage", policy note, whether notes' authors can be anonymous). Some notesfiles contain correspon
dence from other computers. Like the UNIX "USENET", notes and responses are exchanged (often
over phone lines) with remote machines. The notesfile system provides automatic exchange and
updating of notes in an arbitrarily connected network.

This document details the use of notcsfiles from invocation through intersystem notes
exchanges. The last chapter summarizes the entire set of commands for easy reference. An appendix
contains detailed checklists for the installation of a notesfile system.

2 Using Notesfiles.

The notesfile system is invoked with a single command line. Most notesfile commands
require only a single character (like the vi editor). Those that require more than one character are
terminated by a carriage return.

2.1 Invocation.

Invoke the notesfile system with:

notes [-sxi] [-a subsequencer] [-t termtype] [-f nfile] [topic!] [topic2 ...]

The topic list (e.g., topic!) specifies the notesfiles to read. Invoking the notes system with NO

USD:II-3 Notesfile Reference Manual

2.3 The -f Option.

The "-P' option of the notesfile system specifies a file of notesfile names to read. The file con
sists of lines containing notesfile names:

nfgripes
net.unix-wizards
net.general
fa.telecom

The names start at the left margin; they are indented here for readability. Wildcard characters ("*",
"?", "[", and "]") are acceptable in this context. Full names such as "/usr/spool/notes/general" are
also accepted. Notesfiles can be eliminated through the "!" feature as described in section 2.2. The
sequencer mode can be changed (see section 2.8) by inserting a line of the form:

-s

Again, this starts at the left margin. The "s" can be any of: "s", "x", "i", or "n". When a
line of this form is read from the file, the sequencer mode is set to the corresponding mode: The nor
mal "s"equencer, the e"x"tended sequencer, the "i"ndex sequencer, and "n"o sequencer.

To always enter nfgripes, micro notes, and bicycle while only entering the networked notesfiles
"net. *" when new notes are present, one might use "notes -f myfile" with this "myfile":

-x
nfgripes
micronotes
bicycle
-s
net.*

2.4 General.

Almost all notesfile commands consist of exactly one character (no carriage return). Only
commands that are longer than one character require a terminating carriage return (currently, choos
ing a note to read is the only non-single character command).

The commands were chosen to be easy to remember. Upper case forms of commands usually
function like their lower case counterparts but with some additional feature or power (i.e., "w" writes
a response, "w" includes the current displayed text in the response).

Some comm'ands are available almost everywhere in the notesfile system. These include those
for help, exiting, forking a shell, and making a comment for the suggestion box.

2.4.1 Help.

Typing "?" anywhere will list the available options in an abbreviated format.

2.4.2 Exiting.

Type "q" ("quit") to leave the current notesfile. Capital "Q" leaves the current notesfile and
refrains from entering your last entry time into the sequencer table (see section "The Sequencer").
The notes file system proceeds to the next topic in the invocation list. The "k" and UK" keys function
exactly as "q" and "Q".

USD:II-5

• Search for keywords within notes' titles.
• Search for notes/responses by a specific author.
• Go to another notesfile.
• Consult the notesfile's archive.
• Read the policy note.
• Check on anonymous and networked status.
• Register a complaint/suggestion about notesfiles.
• Fork a shell.
• Exit the notes program.
• Invoke notesfile director options (if the user is a director).

2.5.1 Scrolling the Index Page.

Scroll the index page by:

+, <return>, <space> forward one page
.. forward to the most recent page (* is multiple + 's)

backward one page
backward all the way (= is multiple -'s)

2.5.2 Choosing Notes & Responses.

Notesfile Reference Manual

While on the index page, choose a note to read by typing its number followed by a carriage
return. (This is the only command that requires a carriage return after it.) Usually the space bar is
used to scan text. To skip to a particular note or response, use the features below.

While reading a note, ";" or "+" advances to the first response of the note. The next note is
displayed if there are no responses. The number keys ("(", "2", ... , "9") advance that many
responses. If there are fewer responses, the last response is displayed. The return key skips the
responses and goes to the next note. Press "-" or backspace to see the previous page of the current
note; if the page currently displayed is the first, the notesfile program displays the first page of the pre
vious note.

While a response is on the screen, the ";" and "+" keys display the next response. As with
reading a note, if there are no further responses these keys advance to the next note. The number
keys ("I", ... , "9") will advance the appropriate number of responses. If there are fewer responses,
the last response is displayed. The "-" or backspace keys display the previous page of the current
response. If the current page is the first page of the response, these keys display the first page of the
previous response. Enter" =" to see the base note of the current note string. Press the return key to
proceed to the next note.

2.6 Notes & Responses.

2.6.1 Reading Notes.

After selecting a note from the index page (or entering the notesfile with your "sequencer"
on), the note is displayed. A sample display is shown below:

USD:II-7 Notesfile Reference Manual

2.6.2 Reading Responses.

Response displays are similar to those of main notes with the exception that "Response x of
y" replaces the note's title. The first response to note 15 is shown below:

Note 15
koehler

Workstation Discussion
Response I of2 11:53pm Dec II, 1981

Does anyone have any insight about the relative speeds of the Winchester disks available
on these systems? The previous disk seems to have track to track response times commensurate
with reasonably fast 8" floppies. I wonder if some of the manufacturers are using disks that
will not meet reasonable specifications for response time for these kinds of applications.

On the other hand, with intelligent layout of file sectors, the 110 system
could romp and stomp on often used files ...

The commands for manipulating the text of a long response are the same as those for looking
at long notes. Typing space will move to the next page. Typing "-" or backspace will display the pre
vious page, within the same limitations as for reading notes (only 50 pages are kept). Press "=" to go
back to the first page of the text.

The options available while reading responses include:
• Display the next, previous, or first page of the response.
• Go to a different response (usually the next one).
• Go to the next unread note/response.
• Reread the base note.
• Reread the previous note.
• Return to the index page.
• Copy the response to another notesfile.
• Mail the response to someone.
• Save the response in your file space.
• Talk to the response's author.
• Write another response to the note.
• Search for keywords in note titles.
• Search for notes/responses by particular authors.
• Delete the response (if you are its author or a file director).
• Edit the response (if it is yours and there are no later responses).
• Fork a shell
• Go to another notesfile.
• Register a suggestion or complaint about the notesfile program.
• Exit the notesfile program.

2.6.3 Writing Notes & Responses.

Write new base notes by hitting "w" while reading the index page. The notesfile system will
then invoke an editor ("ed" by default; use either of the shell variables NFED or EDITOR to change
it). After the prompt, compose the text you wish to enter, then write the text to the disk and leave
the editor. The system will prompt you for various options if they are available: anonymity, director
message status, and the note's title.

To write a response to a note type "w" while that note or any of its responses is displayed.
The same steps used to write a base note should then be followed.

USD:11-9 Notesfile Reference Manual

2.6.9 Editing Note Titles.

While reading a base note, type "e" ("edit") to change the note's title (provided you are the
author of the note or a notesfile director).

2.6.10 Editing Notes/Responses.

"E" allows editing of the text of a note or response. It is not permitted to edit an article if it
has subsequent responses or if it has been sent to the network. If the "later responses" are deleted, it
is possible to edit the original text.

2.7 Other Commands.

2.7.1 Returning to the Index Page.

Type "i" ("index") while reading notes or responses to return to the index page.

2.7.2 Searching Titles for Keywords.

While reading, you can search backwards for keywords appearing in note titles. Typing "x"
("x is the unknown title") prompts for the substring to be found. Searching begins at the current note
(or from the last note shown on the index page) and proceeds towards note 1. The search is insensi
tive to upper/lowercase distinctions. Use upper case "X" to continue the search. The search can be
aborted by hitting the RUBOUT (or DELETE) key.

2.7.3 Searching for Authors.

The "a" command searches backwards for notes or responses written by a specific author.
Notesfiles prompts for the author's name. The "A" command continues the search backwards. The
author name may be preceded by an optional 'system!'. Abort the search by hitting the RUB OUT (or
DELETE) key.

The entire name need not be specified when searching for articles by a particular author.
Author searching uses substring searching. Searching for the author "john" will yield articles written
by a local user "john", a remote user "somewhere!johnston", and any articles from the "uiucjohnny"
machine. Author searching is case sensitive.

2.7.4 Stacking Notesfiles.

Sometimes it is useful to be able to glance at another notesfile while reading notes. Using
"n", the user can save (stack) his current place and peruse another notesfile.

When on the index page or while reading notes/responses, type "n" ("nest") to read another
notesfile. Notesfiles prompts for the notesfile to read. If the notesfile exists, the place is marked in
the old notesfile and the new one's index is displayed.

Type any of the standard keys to leave the nested notesfile. Both "q" and "Q" leave the
nested notesfile and return to the previously stacked notesfile. Control-d ("signotr') causes the
notesfile program to exit regardless of the depth of nesting.

Sequencing is turned off in the new notesfile regardless of its state in the old notesfile. The
depth of the stack of notesfiles is limited only by the amount of memory available to the user.

USD:II-II Notesfile Reference Manual

disabled, the "last time" information is not modified. The "last time" information for a particular
notes file is updated as that notes file is exited; using "Q" or control-D later will have no effect on the
sequencer information for notes files already read.

The "0" and "0" commands allow the user to modify the variable used to determine whether
notes and responses are "new". The "0" command allows the user to set this variable to any date he
wishes. Use the "0" command to set this variable to show only notes and responses written that day.
The "last time" file kept for each user is never modified by the "0" and "0" commands.

When no more new notes or responses exist, both the "j" and "J" commands will take the
user to the index page. To exit the notesfile, use the "q" command. Exiting with "q" will update the
user's "last entry" time. Exiting with capital "Q" will NOT modify the "last entry" time for that
notesfile (neither will control-D).

The "I" and "L" command behave similarly to "j" and "J". The difference is that while "j"
and "1' take the user to the last index page when no more new notes or responses exist, the "1" and
"L" commands will leave the notesfile as if a "q" had been typed. Thus when no more new notes
exist, the "I" command is like typing "jq".

2.8.2 Alternate Sequencers.

If several people share a login account, it is convenient for each to have a set of sequencing
timestamps. This is accomplished through the use of the subsequencer option of notesfiles.

Specifying the -a option and a subsequencer name causes notes to use a different sequencing
timestamp file. Many different subsequencer names can be used with each login account.

The main sequencer file for a given account is distinct from each of its subsequencer files.
Each of the sub sequencer files is normally distinct. If the subsequencer names are not unique in their
first 6 characters, sub sequencer files may collide.

2.8.3 Automatic Sequencing.

An alternate entry to the notes program allows the user to invoke notes with the sequencer
· enabled and a list of notes files to be scanned with a single, simple command. The "autoseq" com
mand is invoked by typing

autoseq

and reads the environment variable "NFSEQ" to find the names of all notesfiles to be scanned. On
· some systems, the "auto seq" command may be known as "readnotes", "autonotes" or some similar
variant; substitute the appropriate name in the following paragraphs. The "NFSEQ" variable should
be defined in . profile for Bourne shell users as follows:

NFSEQ= "pbnotes,micronotes,he1pnotes, works"
export NFSEQ

· For users of the C shell, the following line should be added to the .login file:

setenv NFSEQ "pbnotes,micronotes,helpnotes,works"

With NFSEQ assigned this value, a call to autoseq will process the notesfiles "pbnotes",
"micronotes", "helpnotes", and "works" with the sequencer turned on.

The full naming conventions, pattern matching capabilities, and 'I' exclusion described in

USD:II-13 Notesfile Reference Manual

what screen handling conventions to use. In most cases the value will be
correctly initialized by the system at login time .

• "SHELL" specifies which shell the user is running. This will almost always be set by
the operating system.

3 Other Notesfile Utilities.

The notesfile distribution includes utility programs to provide hard copy output, additional
interfaces to user programs, and statistics. They are described below.

3.1 Hard Copy Output.

The program "nfprint" sends to standard output a nicely formatted listing of the notesfile in
its command line. Its format is:

nfprint [-Inn] [-p] [-t] topic [note#] [note#-note#] [...]

The "-I" option specifies an alternate page size (the default is 66). The optional note number list
specifies that only certain notes of the notesfile are to be printed. The list can specify individual
notes and ranges. The notes are printed in the order specified.

The -p option specifies that each notestring is to begin on a new page. The -t option signifies
that only a table of contents is to be generated.

3.2 Piped Insertion of Notes.

The nfpipe program enters text from the standard input into a notesfile:

nfpipe topic [-t title] [-d 1 [-a]

The -t option allows specification of a title. The -d and -a options specify the director and
anonymous flags respectively (if available). If no title is specified, one is manufactured from the first
line of the note.

3.3 User Subroutines.

3.3.1 Nfcomment.

The nfcomment subroutine is callable from a user's C program. It allows any user program to
enter text into a notesfile:

nfcomment (nfname, text, title, dirflag, anonflag)

The parameters are:

char "'nfname;
char *text;
char "'title;
int dirflag;
int anonflag;

/* name of notesfile */
/* null terminated text to be entered */
/* if non-null, title of note * /
/* != 0 -> director flag on (if allowed) */
/* != 0 -> anonymous note (if allowed) */

USD:II-15 Notesfile Reference Manual

rbenotes on uiucdcs at 6:24 pm May 7, 1982
NOTES RESPS TOTALS

Local Reads 359 115 474
Local Written 53 55 108
Networked in 0 0 0
Networked out 0 0 0
Network Dropped 0 0 0
Network Transmissions: 0 Network Receptions: 0
Orphaned Responses Received: 0 Entries into notesfile: 109
Total time in notesfile: 66.57 minutes Average Time/entry: 0.61 minutes
Created at 10:04 pm May 5, 1982, Used on 3 days

A combined set of statistics is produced at the end of listings of more than one notesfile. The
statistics are largely self explanatory.

3.5 Checking for New Notes.

The checknotes program checks the notesfiles specified by the NFSEQ environment variable
to determine if there are new notes. The exit code is arranged to make the program useful in shell
scripts: 0 (TRUE) is there are new notes, 1 (FALSE) otherwise.

Use the "-q" option to receive a message

There are new notes

if one or more of the notesfiles have notes/responses written since the user's last entry time into that
notesfile.

The "-n" option is similar to the "-q" option, with the exception that it yields output when
there are no new notes. The output of checknotes with the "-n" option is:

There are no new notes

Use "-v" to print the name of each notesfile with new notes/responses. The "-s" option is
suitable for use in conditional expressions in shell scripts; no output is generated by this option.

USD:12-1

A Tutorial Introduction to the UNIX Text Editor

Brian w: Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNlxt operating system is done with the text-editor
ed. This memorandum is a tutorial guide to help beginners get started with text
editing.

Although it does not cover everything, it does discuss enough for most users'
day-to-day needs. This includes printing, appending, changing, deleting, moving and
inserting entire lines of text; reading and writing tiles; context searching and line
addressing; the substitute command; the global commands; and the use of special
characters for advanced editing.

Introduction

Ed is a "text editor", that is, an interactive pro
gram for creating and modifying "text", using direc
tions provided by a user at a terminal. The text is
often a document like this one, or a program or
perhaps data for a program.

This introduction is meant to simplify learning
ed. The recommended way to learn ed is to read
this document, simultaneously using ed to follow the

. examples, then to read the description in section I of
the UNIX Programmer's Manual, all the while exper
imenting with ed. (Solicitation of advice from
experienced users is also useful.)

Do the exercises! They cover material not com
pletely discussed in the actual text. An appendix
summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For this
reason, no attempt is made to cover more than a
part of the facilities that ed offers (although this frac
tion includes the most useful and frequently used
parts). When you have mastered the Tutorial, try
Advanced Editing on UNIX. Also, there is not
enough space to explain basic UNIX procedures. We
will assume that you know how to log on to UNIX,
and that you have at least a vague understanding of
what a file is. For more on that, read UNIX for
Beginners.

t UNIX is a trademark of AT&T Bell Laboratories.

You must also know what character to type as
the end-of-Iine on your particular terminal. This
character is the RETURN key on most terminals.
Throughout, we will refer to this character, whatever
it is, as RETURN.

Getting Started

We'll assume that you have logged in to your sys
tem and it has just printed the prompt character,
usually either a $ or a %. The easiest way to get ed
is to type

ed (followed by a return)

You are now ready to go - ed is waiting for you to
tell it what to do.

Creating Text - the Append command "a"

As your first problem, suppose you want to
create some text starting from scratch. Perhaps you
are typing the very first draft of a paper; clearly it
will have to start somewhere, and undergo
modifications later. This section will show how to
get some text in, just to get started. Later we'll talk
about how to change it.

When ed is first started, it is rather like working
with a blank piece of paper - there is no text or
information present. This must be supplied by the
person using ed; it is usually done by typing in the
text, or by reading it into ed from a file. We will

A Tutorial Introduction to the UNIX Text Editor

Exercise 1:

Enter ed and create some text using

a
. '.' text ...

Write it out using w. Then leave ed with the q com
mand, and print the file, to see that everything
worked. (To print a file, say

pr filename

or

cat filename

in response to the prompt character. Try both.)

Reading text from a file - the Edit command "e"

A common way to get text into the buffer is to
read it from a file in the file system. This is what
you do to edit text that you saved with the w com
mand in a previous session. The edit command e
fetches the entire contents of a file into the buffer.
So if you had saved the three lines "Now is the
time", etc., with a w command in an earlier session,
the ed command

e junk

would fetch the entire contents of the file junk into
the buffer, and respond

68

which is the number of characters in junk. If any
thing was already in the buffer. it is deleted first.

If you use the e command to read a file into the
buffer, then you need not use a file name after a sub
sequent w command; ed remembers the last file
name used in an e command, and w will write on
this file. Thus a good way to operate is

ed
e file
[editing session 1
w
q

This way, you can simply say w from time to time,
and be secure in the knowledge that if you got the
file name right at the beginning, you are writing into
the proper file each time.

You can find out at any time what file name ed
is remembering by typing the file command f. In
this example, if you typed

f

ed would reply

junk

USD:12-3

Reading text from a file - the Read command .or"

Sometimes you want to read a file into the buffer
without destroying anything that is already there.
This is done by the read command r. The command

r junk

will read the file junk into the buffer; it adds it to the
end of whatever is already in the buffer. So if you
do a read after an edit:

e junk
r junk

the buffer will contain two copies of the text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the wand e commands, r prints the number of
characters read in, after the reading operation is
complete.

Generally speaking, r is much less used than e.

Exercise 2:

Experiment with the e command - try reading
and printing various files. You may get an error
?name, where name is the name of a file; this means
that the file doesn't exist, typically because you
spelled the file name wrong, or perhaps that you are
not allowed to read or write it. Try alternately read
ing and appending to see that they work similarly.
Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

f filename

do?

Printing the contents of the buffer - the Print com
mand "p"

To print or list the contents of the buffer (or
parts of it) on the terminal, use the print command

p

The way this is done is as follows. Specify the lines
where you want printing to begin and where you
want it to end, separated by a comma, and followed
by the letter p. Thus to print the first two lines of
the buffer, for example, (that is, lines I through 2)

A Tutorial Introduction to the UNIX Text Editor

typing

Ed will respond by printing the value of dot.

Let's summarize some things about the p com
mand and dot. Essentially p can be preceded by O.
I. or 2 line numbers. If there is no line number
given. it prints the "current line", the line that dot
refers to. If there is one line number given (with or
without the letter p), it prints that line (and dot is
set there); and if there are two line numbers, it
prints all the lines in that range (and sets dot to the
last line printed.) If two line numbers are specified
the first can't be bigger than the second (see Exercise
2,)

Typing a single return will cause printing of the
next line - it's equivalent to ,+ Ip. Try it. Try typ
ing a -; you will find that it's equivalent to .-lp.

Deleting lines: the "d" command

Suppose you want to get rid of the three extra
lines in the buffer. This is done by the delete com
mand

d

Except that d deletes lines instead of printing them,
its action is similar to that of p. The lines to be
deleted are specified for d exactly as they are for p:

starting line, ending line d

Thus the command

4,$d

deletes lines 4 through the end. There are now three
lines left, as you can check by using

1,$p

And notice that $ now is line 3! Dot is set to the
next line after the last line deleted, unless the last
line deleted is the last line in the buffer. In that
case, dot is set to $.

Exercise 4:

Experiment with a, e, r, w, p and d until you are
sure that you know what they do, and until you
understand how dot, $, and line numbers are used.

If you are adventurous, try using line numbers
with a, rand w as well. You will find that a will
append lines after the line number that you specify
(rather than after dot); that r reads a file in after the
line number you specify (not necessarily at the end
of the buffer); and that w will write out exactly the
lines you specify, not necessarily the whole buffer.
These variations are sometimes handy. For instance
you can insert a file at the beginning of a buffer by
saying

USD:12-5

Or filename

and you can enter lines at the beginning of the
buffer by saying

Oa
. .. text.

Notice that .w is rerJ' different from

w

Modifying text: the Substitute command "s"

We are now ready to try one of the most impor
tant of all commands - the substitute command

This is the command that is used to change indivi
dual words or letters within a line or group of lines.
It is what you use, for example, for correcting spel
ling mistakes and typing errors.

Suppose that by a typing error, line I says

Now is th time

- the e has been left off the. You can use s to fix
this up as follows:

1 s/th/thel

This says: "in line I, substitute for the characters th
the characters the." To verify that it works (ed will
not print the result automatically) say

p

and get

Now is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution took
place, since the p command printed that line. Dot is
always set this way with the s command.

The general way to use the substitute command
is

starting-line, ending-line slchange thislto this!

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in all the lines between starting-line
and ending-line. Only the first occurrence on each
line is changed, however. If you want to change
every occurrence, see Exercise 5. The rules for line
numbers are the same as those for p, except that dot
is set to the last line changed. (But there is a trap
for the unwary: if no substitution took place, dot is
not changed. This causes an error? as a warning.)

Thus you can say

A Tutorial Introduction to the UNIX Text Editor

There were three parts to that last command: con
text search for the desired line, make the substitu
tion, print the line.

The expression Itheirl is a context search expres
sion. In their simplest form, all context search
expressions are like this - a string of characters sur
rounded by slashes. Context searches are inter
changeable with line numbers, so they can be used
by themselves to find and print a desired line, or as
line numbers for some other command, like s. They
were used both ways in the examples above.

Suppose the buffer contains the three familiar
lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

1N0w/+1
Igoodl
Iparty/-I

are all context search expressions, and they all refer
to the same line (line 2). To make a change in line
2, you could say

INowl + I s/goodlbadl

or

Igoodls/goodlbadl

or

Iparty/-Is/goodlbadl

The choice is dictated only by convenience. You
could print all three lines by, for instance

1N0wl,lparty/p

or

lNow/,lNow/+2p

or by any number of similar combinations. The first
one of these might be better if you don't know how
many lines are involved. (Of course, if there were
only three lines in the buffer, you'd use

I,$p

but not if there were several hundred.)

The basic rule is: a context search expression is
the same as a line number, so it can be used wher

_ ever a line number is needed.

Exercise 6:

Experiment with context searching. Try a body
of text with several occurrences of the same string of
characters, and scan through it using the same con
text search.

USD:12-7

Try using context searches as line numbers for
the substitute, print and delete commands. (They
can also be used with r, w, and a.)

Try context searching using ?text? instead of
Itext!. This scans lines in the buffer in reverse order
rather than normal. This is sometimes useful if you
go too far while looking for some string of characters
- it's an easy way to back up.

(If you get funny results with any of the charac
ters

$ * \ &

read the section on "Special Characters".)

Ed provides a shorthand for repeating a context
search for the same string. For example, the ed line
number

Istring!

will find the next occurrence of string. It often hap
pens that this is not the desired line, so the search
must be repeated. This can be done by typing
merely

" This shorthand stands for "the most recently used
context search expression." It can also be used as
the first string of the substitute command, as in

Istring I Isllstring21

which will find the next occurrence of stringl and
replace it by string2. This can save a lot of typing.
Similarly

??

means "scan backwards for the same expression."

Change and Insert - "c" and "i"

This section discusses the change command

c

which is used to change or replace a group of one or
more lines, and the insert command

which is used for inserting a group of one or more
lines.

"Change", written as

c

is used to replace a number of lines with different
lines, which are typed in at the terminal. For exam
ple, to change lines .+ 1 through $ to something else,
type

.+I,$c
.. type the lines oj text you want here .

A Tutorial Introduction to the UNIX Text Editor

match the string following v:

vI Id

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just don't
work right when you used some characters like ., .,
$, and others in context searches and the substitute
command. The reason is rather complex, although
the cure is simple. Basically, ed treats these charac
ters as special, with special meanings. For instance,
in a context search or the first string of the substitute
command only, . means "any character," not a
period, so

Ix.yl

means "a line with an x, any character, and a y," not
just "a line with an x, a period, and a y." A com
plete list of the special characters that can cause
trouble is the following:

$ \

Warning: The backslash character \ is special to ed.
For safety's sake, avoid it where possible. If you
have to use one of the special characters in a substi
tute command, you can tum off its magic meaning
temporarily by preceding it with the backslash.
Thus

sf\ \ _ \.lbackslash dot starl

will change \ •• into "backslash dot star".

Here is a hurried synopsis of the other special
characters. First, the circumflex - signifies the begin
ning of a line. Thus

/"string!

finds string only if it is at the beginning of a line: it
will find

string

but not

the string ...

The dollar-sign $ is just the opposite of the
circumflex; it means the end of a line:

IstringSl

will only find an occurrence of string that is at the
end of some line. This implies, of course, that

rstring$1

will find only a line that contains just string, and

r.$1

finds a line containing exactly one character.

USD:12-9

The character " as we mentioned above, matches
anything;

Ix.yl

matches any of

x+y
x-y
x y
x.y

This is useful in conjunction with ., which is a
repetition character; a. is a shorthand for "any
number of a's," so .• matches any number of any
things. This is used like this:

s/ •• /stuffl

which changes an entire line, or

s/ •• ,11

which deletes all characters in the line up to and
including the last comma. (Since •• finds the longest
possible match, this goes up to the last comma.)

[is used with) to form "character classes"; for
example,

1(0123456789)1

matches any single digit - anyone of the characters
inside the braces will cause a match. This can be
abbreviated to [0-9).

Finally, the & is another shorthand character - it
is used only on the right-hand part of a substitute
command where it means "whatever was matched
on the left-hand side". It is used to save typing.
Suppose the current line contained

Now is the time

and you wanted to put parentheses around it. You
could just retype the line, but this is tedious. Or
you could say

srl(l
s/$/)1

using your knowledge of - and $. But the easiest
way uses the &:

s/ •• /(&)1

This says "match the whole line, and replace it by
itself surrounded by parentheses." The & can be
used several times in a line; consider using

s/ •• I&? &!!I

to produce

Now is the time? Now is the time!!

You don't have to match the whole line, of
course: if the buffer contains

I

Advanced Editing on UNIX

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated for 4.3BSD by Mark Seiden)

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIXt facilities for preparing and editing text. It provides expla
nations and examples of

• special characters, line addressing and global commands in the editor ed;

• commands for "cut and paste" operations on files and parts of files, including
the mY, cp, cat and rm commands, and the r, w, m and t commands of the edi
tor;

• editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
background should find helpful hints on how to get their jobs done more easily.

1. INTRODUCTION

Although UNIX provides remarkably effective
tools for text editing, that by itself is no guarantee
that everyone will automatically make the most
effective use of them. In particular, people who are
not computer specialists - typists, secretaries, casual
users - often use the system less effectively than
they might. (There is a good argument that new
users would better use their time learning a display
editor, like vi, or perhaps a version of emacs, like
jove, rather than an editor as ignorant of display ter
minals as ed.)

This document is intended as a sequel to A
Tutorial Introduction to the UNIX Text Editor [I],
providing explanations and examples of how to edit
using ed with less effort. (You should also be fami
liar with the material in UNIX For Beginners [2].)
Further information on all commands discussed here
can be found in section I of the The UNIX User's
Manual [3].

Examples are based on observations of users
and the difficulties they encounter. Topics covered
include special characters in searches and substitute

t UNIX is a trademark of AT&T Bell Laboratories.

commands, line addressing, the global commands,
and line moving and copying. There are also brief
discussions of effective use of related tools, like
those for file manipulation, and those based on ed,
like grep and sed.

A word of caution. There is only one way to
learn to use something, and that is to use it. Read
ing a description is no substitute for trying some
thing. A paper like this one should give you ideas
about what to try, but until you actually try some
thing, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to the
system for many people, so it is worthwhile to know
how to get the most out of ed for the least effort.

The next few sections will discuss shortcuts
and labor-saving devices. Not all of these will be
instantly useful to anyone person, of course, but a
few will be, and the others should give you ideas to
store away for future use. And as always, until you
try these things, they will remain theoretical
knowledge, not something you have confidence in.

Advanced Editing on UNIX

x+y
x-y
xoy
x.y

and so on. (We will use 0 to stand for a space
whenever we need to make it visible.)

Since .. ' matches a single character, that gives
you a way to deal with funny characters printed by I.
Suppose you have a line that, when printed with the
I command, appears as

.... th\07is

and you want to get rid of the \07 (which represents
the bell character, by the way).

The most obvious solution is to try

sI\0711

but this will fail. (Try it.) The brute force solution,
which most people would now take, is to re-type the
entire line. This is guaranteed, and is actually quite
a reasonable tactic if the line in question isn't too
big, but for a very long line, re-typing is a bore.
This is where the metacharacter '.' comes in handy.
Since '\07' really represents a single character, if we
say

slth.is/thisl

the job is done. The'.' matches the mysterious
character between the 'h' and the 'i', whatever it is.

Bear in mind that since '.' matches any single
character, the command

s/.l,I

converts the first character on a line into a ',', which
very often is not what you intended.

As is true of many characters in ed, the'.' has
several meanings, depending on its context. This
line shows all three:

.s!.!.!

The first'.' is a line number, the number of the line
we are editing, which is called 'line dot'. (We will
discuss line dot more in Section 3.) The second '.' is
a metacharacter that matches any single character on
that line. The third '.' is the only one that really is
an honest literal period. On the right side of a sub
stitution, '.' is not special. If you apply this com
mand to the line

Now is the time.

. the result will be

.ow is the time.

which is probably not what you intended.

USD:13-3

The Backslash '\'

Since a period means 'any character', the
question naturally arises of what to do when you
really want a period. For example, how do you con
vert the line

Now is the time.

into

Now is the time?

The backslash '\' does the job. A backslash turns off
any special meaning that the next character might
have; in particular, '\.' converts the '.' from a
'match anything' into a period, so you can use it to
replace the period in

Now is the time.

like this:

s/\.!?!

The pair of characters '\.' is considered by ed to be
a single real period.

The backslash can also be used when searching
for lines that contain a special character. Suppose
you are looking for a line that contains

.PP

The search

I.PPI

isn't adequate, for it will find a line like

THE APPLICATION OF ...

because the '.' matches the letter 'A'. But if you say

I\.PPI

you will find only lines that contain '.PP'.

The backslash can also be used to tum off spe
cial meanings for characters other than '.'. For
example, consider finding a line that contains a
backslash. The search

1\1

won't work, because the '\' isn't a literal '\', but
instead means that the second '/' no longer delimits
the search. But by preceding a backslash with
another one, you can search for a literal backslash.
Thus

1\\1

does work. Similarly, you can search for a forward
slash '/' with

1\11

The backslash turns off the meaning of the immedi
ately following '/' so that it doesn't terminate the 1 .. .1
construction prematurely.

Advanced Editing on UNIX

The Star '.'
Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some
indeterminate number of spaces between the x and
the y. Suppose the job is to replace all the spaces
between x and y by a single space. The line is too
long to retype, and there are too many spaces to
count. What now?

This is where the metacharacter '.' comes in
handy. A character followed by a star stands for as
many consecutive occurrences of that character as
possible. To refer to all the spaces at once, say

s/xo.yixoyl

The construction '0 *' means 'as many spaces as pos
sible'. Thus 'xo*y' means 'an x, as many spaces as
possible, then a y'.

The star can be used with any character, not
just space. If the original example was instead

text x--------y text

then all '-' signs can be replaced by a single space
with the command

s/x-.y/xoyl

Finally, suppose that the line was

text x •••••••••••••••••• y text

Can you see what trap lies in wait for the unwary?
If you blindly type

s/x •• y/xoyl

what will happen? The answer, naturally, is that it
depends. If there are no other x's or y's on the line,
then everything works, but it's blind luck, not good
management. Remember that ',' matches any single
character? Then' •• ' matches as many single charac
ters as possible, and unless you're careful, it can eat
up a lot more of the line than you expected. If the
line was, for example, like this:

text x text x y text y text

then saying

s/x •• y/xoyl

will take everything from the first 'x' to the last 'y',
which, in this example, is undoubtedly more than
you wanted.

The solution, of course, is to tum off the spe
cial meaning of ',' with '\,':

s/x\ •• y/xoyl

Now everything works, for '\ •• ' means 'as many
periods as possible'.

USD:13-5

There are times when the pattern' •• ' is exactly
what you want. For example, to change

Now is the time for all good men

into

Now is the time.

use' •• ' to eat up everything after the 'for':

sl 0 for •• !.!

There are a couple of additional pitfalls associ
ated with '.' that you should be aware of. Most not
able is the fact that 'as many as possible' means zero
or more. The fact that zero is a legitimate possibil
ity is sometimes rather surprising. For example, if
our line contained

text xy text x

and we said

sixo.y/xoyl

y text

the first 'xy' matches this pattern, for it consists of
an 'x', zero spaces, and a 'y'. The result is that the
substitute acts on the first 'xy', and does not touch
the later one that actually contains some intervening
spaces.

The way around this, if it matters, is to specify
a pattern like

ixo o.yl

which says 'an x, a space, then as many more spaces
as possible, then a y', in other words, one or more
spaces.

The other startling behavior of '.' is again
related to the fact that zero is a legitimate number of
occurrences of something followed by a star. The
command

s/x./y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a legal
number of matches, and there are no x's at the
beginning of the line (so that gets converted into a
'y'), nor between the 'a' and the 'b' (so that gets con
verted into a 'y'), nor... and so on. Make sure you
really want zero matches; if not, in this case write

s/xxo/y/g

'xx.' is one or more x's.

Advanced Editing on UNIX

you can break it between the 'x' and the 'y' like this:

s/xy/x\
yl

This is actually a single command. although it is
typed on two lines. Bearing in mind that '\' turns
off special meanings, it seems relatively intuitive
that a '\' at the end of a line would make the new
line there no longer special.

You can in fact make a single line into several
lines with this same mechanism. As a large exam
ple, consider underlining the word 'very' in a long
line by splitting 'very' onto a separate line. and
preceding it by the rolf or nrolf formatting command
'.ul'.

text a very big text

The command

s/overyo/\
.ul\
very\
I

converts the line into four shorter lines. preceding
the word 'very' by the line '.ur, and eliminating the
spaces around the 'very', all at the same time.

When a newline is substituted in, dot is left
pointing at the last line created.

Joining Lines

Lines may also be joined together, but this is
done with the j command instead of s. Given the
lines

Now is
othe time

and supposing that dot is set to the first of them,
then the command

joins them together. No blanks are added, which is
why we carefully showed a blank at the beginning of
the second line.

All by itself, a j command joins line dot to
line dot+ I, but any contiguous set of lines can be
joined. Just specify the starting and ending line
numbers. For example,

I,$jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \(.. , \)

(This section should be skipped on first read
ing.) Recall that '&' is a shorthand that stands for
whatever was matched by the left side of an s com
mand. In much the same way you can capture

USD:13-7

separate pieces of what was matched: the only
difference is that you have to specify on the left side
just what pieces you're interested in.

Suppose. for instance. that you have a file of
lines that consist of names in the form

Smith. A. B.
Jones. C.

and so on. and you want the initials to precede the
name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing com
mands. but it is tedious and error-prone. (It is
instructive to figure out how it is done, though.)

The alternative is to 'tag' the pieces of the pat
tern (in this case, the last name. and the initials),
and then rearrange the pieces. On the left side of a
substitution, if part of the pattern is enclosed
between \(and \), whatever matched that part is
remembered, and available for use on the right side.
On the right side, the symbol '\1' refers to whatever
matched the first \(... \) pair, '\2' to the second
\(... \), and so on.

The command

1,$sl'\([",).\),o.\(•• \)/\20 \11

although hard to read, does the job. The first \(... \)
matches the last name, which is any string up to the
comma: this is referred to on the right side with '\ I'.
The second \(... \) is whatever follows the comma
and any spaces, and is referred to as '\2'.

Of course, with any editing sequence this com
plic,ated, it's foolhardy to simply run it and hope.
The global commands g and v discussed in section 4
provide a way for you to print exactly those lines
which were affected by the substitute command, and
thus verify that it did what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is that of
line addressing in ed, that is, how you specify what
lines are to be affected by editing commands. We
have already used constructions like

I,$s/x/y/

to specify a change on all lines. And most users are
long since familiar with using a single newline (or
return) to print the next line, and with

Ithing!

to find a line that contains 'thing'. Less familiar,
surprisingly enough, is the use of

?thing?

to scan backwards for the previous occurrence of

Advanced Editing on UNIX

What happens if there was no 'thing'? Then
you are left right where you were - dot is
unchanged. This is also true if you were sitting on
the only 'thing' when you issued the command. The
same rules hold for searches that use '?.?,; the only
difference is the direction in which you search.

The delete command d leaves dot pointing at
the line that followed the last deleted line. When
line '$' gets deleted, however. dot points at the nell'
line '$'.

The line-changing commands a. c and i by
default all affect the current line - if you give no
line number with them. a appends text after the
current line. c changes the current line. and i inserts
text before the current line.

a. c, and i behave identically in one respect -
when you stop appending. changing or inserting. dot
points at the last line entered. This is exactly what
you want for typing and editing on the fly. For
example. you can say

a
... text ...
... botch ...

s/botch/correctl
a
... more text .. ,

(minor error)

(fix botched line)

without specifying any line number for the substitute
command or for the second append command. Or
you can say

a
... text ...
... horrible botch ... (major error)

c (replace entire line)
... fixed up line ...

You should experiment to determine what
happens if you add no lines with a, c or i.

The r command will read a file into the text
being edited, either at the end if you give no
address, or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say Or to read a file in
at the beginning of the text. (You can also say Oa or
Ii to start adding text at the beginning.)

The w command writes out the entire file. If
you precede the command by one line number, that
line is written, while if you precede it by two line
numbers, that range of lines is written. The w com
mand does not change dot: the current line remains
the same, regardless of what lines are written. This
is true even if you say something like

n.AB/,r\.AE/w abstract

which involves a context search.

USO:13·9

Since the w command is so easy to use, you
should save what you are editing regularly as you go
along just in case the system crashes, or in case you
do something foolish. like clobbering what you're
editing.

The least intuitive behavior. in a sense, is that
of the s command. The rule is simple - you are left
sitting on the last line that got changed. If there
were no changes. then dot is unchanged.

To illustrate. suppose that there are three lines
in the buffer. and you are sitting on the middle one:

xl
x2
x3

Then the command

-,+s/x/y/p

prints the third line. which is the last one changed.
But if the three lines had been

xl
y2
y3

and the same command had been issued while dot
pointed at the second line, then the result would be
to change and print only the first line, and that is
where dot would be set.

Semicolon ';'

Searches with '1 .. .1' and '? ... ?' start at the
current line and move forward or backward respec
tively until they either find the pattern or get back to
the current line. Sometimes this is not what is
wanted. Suppose, for example, that the buffer con
tains lines like this:

ab

be

Starting at line I, one would expect that the com
mand

la/,/b/p

prints all the lines from the 'ab' to the 'be' inclusive.
Actually this is not what happens. Both searches
(for 'a' and for 'b') start from the same point, and
thus they both find the line that contains 'ab'. The
result is to print a single line. Worse, if there had
been a line with a 'b' in it before the 'ab' line, then
the print command would be in error, since the

Advanced Editing on UNIX

took place.

The global command operates by making two
passes over the file. On the first pass, all lines that
match the pattern are marked. On the second pass,
each marked line in turn is examined, dot is set to
that line, and the command executed. This means
that it is possible for the command that follows a g
or v to use addresses, set dot, and so on, quite freely.

gI-\.PP/+

prints the line that follows each '.PP' command (the
signal for a new paragraph in some formatting pack
ages). Remember that '+' means 'one line past dot'.
And

gltopic/l\.SH? I

searches for each line that contains 'topic', scans
backwards until it finds a line that begins '.SH' (a
section heading) and prints the line that follows that,
thus showing the section headings under which
'topic' is mentioned. Finally,

gI-\.EQI +,r\.EN/-p

prints all the lines that lie between lines beginning
with '.EQ' and '.EN' formatting commands.

The g and v commands can also be preceded
by line numbers, in which case the lines searched are
only those in the range specified.

Multi-line Global Commands

It is possible to do more than one command
under the control of a global command, although the
syntax for expressing the operation is not especially
natural or pleasant. As an example, suppose the
task is to change 'x' to 'y' and 'a' to 'b' on all lines
that contain 'thing'. Then

glthingls/x/y/\
s/albl

is sufficient. The '\' signals the g command that the
set of commands continues on the next line; it ter
minates on the first line that does not end with '\'.
(As a minor blemish, you can't use a substitute com
mand to insert a newline within a g command.)

You should watch out for this problem: the
command

glxlslly/\
s/albl

does not work as you expect. The remembered pat
tern is the last pattern that was actually executed, so
sometimes it will be 'x' (as expected), and sometimes
it will be 'a' (not expected). You must spell it out,
like this:

glxlstxly/\
stalbl

USD:13-ll

It is also possible to execute a, C and i com
mands under a global command; as with other
multi-line constructions, all that is needed is to add
a '\' at the end of each line except the last. Thus to
add a '.nr and '.sp' command before each '.EQ' line,
type

gI-\.EQ/i\
.nf\
.sp

There is no need for a final line containing a ',' to
terminate the i command, unless there are further
commands being done under the global. On the
other hand, it does no harm to put it in either.

5. CUT AND PASTE WITH UNIX COMMANDS

One editing area in which non-programmers
seem not very confident is in what might be called
'cut and paste' operations - changing the name of a
file, making a copy of a file somewhere else, moving
a few lines from one place to another in a file,
inserting one file in the middle of another, splitting a
file into pieces, and splicing two or more files
together.

Yet most of these operations are actually quite
easy, if you keep your wits about you and go cau
tiously. The next several sections talk about cut and
paste. We will begin with the UNIX commands for
moving entire files around, then discuss ed com
mands for operating on pieces of files.

Changing the Name of a File

You have a file named 'memo' and you want
it to be called 'paper' instead. How is it done?

The UNIX program that renames files is called
mv (for 'move'); it 'moves' the file from one name to
another, like this:

mv memo paper

That's all there is to it: mv from the old name to the
new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently clob
bered by the information from the other file. The
one exception is that you can't move a file to itself

mv x x

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a file -
an entirely fresh version. This might be because you
want to work on a file, and yet save a copy in case
something gets fouled up, or just because you're

Advanced Editing on UNIX

cat goodl »good

and 'goodl' is added to the end of 'good'. (And if
'good' didn't exist, this makes a copy of 'good I '
called 'good'.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces of
files - individual lines or groups of lines. This is
another area where new users seem unsure of them
selves.

Filenames

The first step is to ensure that you know the
ed commands for reading and writing files. Of
course you can't go very far without knowing rand
w. Equally useful, but less well known, is the 'edit'
command e. Within ed, the command

e newfile

says 'I want to edit a new file called newfile, without
leaving the editor.' The e command discards what
ever you're currently working on and starts over on
newfile. It's exactly the same as if you had quit with
the q command, then re-entered ed with a new file
name, except that if you have a pattern remem
bered, then a command like II will still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any subse
quent e, r or w commands that don't contain a
filename will refer to this remembered file. Thus

ed file I
... (editing) ...

w (writes back in filel)
e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on fiIe2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the name
of any file more than once. (As an aside, if you
examine the sequence of commands here, you can
see why many UNIX systems use e as a synonym for
ed.)

You can find out the remembered file name at
any time with the f command; just type f without a
file name. You can also change the name of the
remembered file name with f; a useful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f to
guarantee that a careless w command won't clobber
the original.

USD:J3-13

Inserting One File into Another

Suppose you have a file called 'memo', and
you want the file called 'table' to be inserted just
after the reference to Table I. That is, in 'memo'
somewhere is a line that says

Table I shows that ...

and the data contained in 'table' has to go there,
probably so it will be formatted properly by nroff or
troff. Now what?

This one is easy. Edit 'memo', find 'Table 1',
and add the file 'table' right there:

ed memo
ITable 11
Table 1 shows that ... [response from ed}
.r table

The critical line is the last one. As we said earlier,
the r command reads a file; here you asked for it to
be read in right after line dot. An r command
without any address adds lines at the end, so it is
the same as Sr.

Writing out Part of a File

The other side of the coin is writing out part
of the document you're editing. For example,
maybe you want to copy out into a separate file that
table from the previous example, so it can be for
matted and tested separately. Suppose that in the
file being edited we have

.TS
... [Iots of stuff]
.TE

which is the way a table is set up for the tbl pro
gram. To isolate the table in a separate file called
'table', first find the start of the table (the '.TS' line),
then write out the interesting part:

r\.TSI
.TS red prints the line it found}
.,n.TE/w table

and the job is done. If you are confident, you can
do it all at once with

n.TS/;n.TE/w table

and now you have two copies, one in the file you're
still editing, one in the file 'table' you've just written.

The point is that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like; just
give one line number instead of two. For example,
if you have just typed a horribly complicated lint'
and you know that it (or something like it) is going
to be needed later, then save it - don't re-type it.
In the editor, say

Advanced Editing on UNIX

Copying Lines

We mentioned earlier the idea of saving a line
that was hard to type or used often, so as to cut
down on typing time. Of course this could be more
than one line; then the saving is presumably even
greater.

ed provides another command, called t (for
'transfer') for making a copy of a group of one or
more lines at any point. This is often easier than
writing and reading.

The t command is identical to the m com
mand, except that instead of moving lines it simply
duplicates them at the place you named. Thus

l,t

duplicates the entire contents that you are editing.
A more common use for t is for creating a series of
lines that differ only slightly. For example, you can
say

a

t.
slxly/
t_
sly/z/

and so on.

x (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

The Temporary Escape '!'

Sometimes it is convenient to be able to tem
porarily escape from the editor to do some other
UNIX command, perhaps one of the file copy or
move commands discussed in section 5, without
leaving the editor. The 'escape' command ! pro
vides a way to do this.

If you say

!any UNIX command

your current editing state is suspended, and the
UNIX command you asked for is executed. When
the command finishes, ed will signal you by printing
another !; at that point you can resume editing.

You can really do any UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another !.

On Berkeley UNIX systems, there is an addi
tional (and preferable) mechanism called job control
which lets you suspend your edit session (or, for that
matter, any program), return to the shell from which
you invoked that program, and issue any commands,
then resume the program from the point where it
was stopped. See An Introduction to the C Shell for
more details.

USD:I3-15

7. SUPPORTING TOOLS

There are several tools and techniques that go
along with the editor, all of which are relatively easy
once you know how ed works, because they are all
based on the editor. In this section we will give
some fairly cursory examples of these tools, more to
indicate their existence than to provide a complete
tutorial. More information on each can be found in
[3).

Grep

Sometimes you want to find all occurrences of
some word or pattern in a set of files, to edit them
or perhaps just to verify their presence or absence.
It may be possible to edit each file separately and
look for the pattern of interest, but if there are many
files this can get very tedious, and if the files are
really big, it may be impossible because of limits in
ed.

The program grep was invented to get around
these limitations. The search patterns that we have
described in the paper are often called 'regular
expressions', and 'grep' stands for

g/re/p

That describes exactly what grep does - it prints
every line in a set of files that contains a particular
pattern. Thus

grep 'thing' file I file2 file3 ...

finds 'thing' wherever it occurs in any of the files
'file I', 'file2', etc. grep also indicates the file in
which the line was found, so you can later edit it if
you like.

The pattern represented by 'thing' can be any
pattern you can use in the editor, since grep and ed
use exactly the same mechanism for pattern search
ing. It is wisest always to enclose the pattern in the
single quotes ' .. : if it contains any non-alphabetic
characters, since many such characters also mean
something special to the UNIX command interpreter
(the 'shell'). If you don't quote them, the command
interpreter will try to interpret them before grep gets
a chance.

There is also a way to find lines that don't
contain a pattern:

grep -v 'thing' file I file2 ...

finds all lines that don't contains 'thing'. The-v
must occur in the position shown. Given grep and
grep -v, it is possible to do things like selecting all
lines that contain some combination of patterns.
For example, to get all lines that contain 'x' but not
'y':

grep x file... I grep -v y

(The notation I is a 'pipe', which causes the output

Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edit assumes no prior
familiarity with computers or with text editing. Its aim is to lead the begin
ning UNIXt user through the fundamental steps of writing and revising a file of
text. Edit, a version of the text editor ex, was designed to provide an infor
mative environment for new and casual users.

We welcome comments and suggestions about this tutorial and the UNIX
documentation in general.

September 1981

tUNIX is a trademark of Bell Laboratories.

Edit: A Tutorial USD:14-3

Introduction
Text editing using a terminal connected to a computer allows you to create, modify, and print

text easily. A text editor is a program that assists you as you create and modify text. The text editor
you will learn here is named edit. Creating text using edit is as easy as typing it on an electric type
writer. Modifying text involves telling the text editor what you want to add, change, or delete. You
can review your text by typing a command to print the file contents as they are currently. Another
program (which we do not discuss in this document), a text formatter, rearranges your text for you
into "finished form."

These lessons assume no prior familiarity with computers or with text editing. They consist of a
series of text editing sessions which lead you through the fundamental steps of creating and revising
text. After scanning each lesson and before beginning the next, you should try the examples at a ter
minal to get a feeling for the actual process of text editing. If you set aside some time for experimen
tation, you will soon become familiar with using the computer to write and modify text. In addition
to the actual use of the text editor, other features of UNIX will be very important to your work. You
can begin to learn about these other features by reading one of the other tutorials that provide a gen
eral introduction to the system. You will be ready to proceed with this lesson as soon as you are fam
iliar with (I) your terminal and its special keys, (2) how to login, (3) and the ways of correcting typing
errors. Let's first define some terms:

program

UNIX

edit

file

filename

disk

buffer

A set of instructions, given to the computer, describing the sequence of steps the com
puter performs in order to accomplish a specific task. The task must be specific, such as
balancing your checkbook or editing your text. A general task, such as working for
world peace, is something we can all do, but not something we can currently write pro
grams to do.

UNIX is a special type of program, called an operating system, that supervises the
machinery and all other programs comprising the total computer system.

edit is the name of the UNIX text editor you will be learning to use, and is a program
that aids you in writing or revising text. Edit was designed for beginning users, and is a
simplified version of an editor named ex.

Each UNIX account is allotted space for the permanent storage of information, such as
programs, data or text. A file is a logical unit of data, for example, an essay, a program,
or a chapter from a book, which is stored on a computer system. Once you create a file,
it is kept until you instruct the system to remove it. You may create a file during one
UNIX session, end the session, and return to use it at a later time. Files contain anything
you choose to write and store in them. The sizes of files vary to suit your needs; one file
might hold only a single number, yet another might contain a very long document or
program. The only way to save information from one session to the next is to store it in
a file, which you will learn in Session I.

Filenames are used to distinguish one file from another, serving the same purpose as the
labels of manila folders in a file cabinet. In order to write or access information in a file,
you use the name of that file in a UNIX command, and the system will automatically
locate the file.

Files are stored on an input/output device called a disk, which looks something like a
stack of phonograph records. Each surface is coated with a material similar to that on
magnetic recording tape, and information is recorded on it.

A temporary work space, made available to the user for the duration of a session of text
editing and used for creating and modifying the text file. We can think of the buffer as a
blackboard that is erased after each class, where each session with the editor is a class.

Edit: A Tutorial

% edit text (fiJl/olI'ed hy a RI:'H'RA)

"text" No such file or directory

USD:14-5

If you typed the command correctly, you will now be in communication with edit. Edit has set aside
a buffer for use as a temporary working space during your current editing session, Since "text" is a
new file we are about to create the editor was unable to find that file, which it confirms by saying:

"text" No such file or directory

On the next line appears edit's prompt ":", announcing that you are in command mode and edit
expects a command from you, You may now begin to create the new file,

The "Command not found" message

If you misspelled edit by typing, say, "editor", this might appear:

% editor
editor: Command not found
%

Your mistake in calling edit "editor" was treated by UNIX as a request for a program named "editor",
Since there is no program named "editor", UNIX reported that the program was "not found", A new
% indicates that UNIX is ready for another command, and you may then enter the correct command,

A summary

Your exchange with UNIX as you logged in and made contact with edit should look something
like this:

Entering text

login: susan
Password:
, .. A Message of General Interest ...
% edit text
"text" No such file or directory

You may now begin entering text into the buffer. This is done by appending (or adding) text to
whatever is currently in the buffer. Since there is nothing in the buffer at the moment, you are
appending text to nothing; in effect, since you are adding text to nothing you are creating text. Most
edit commands have two equivalent forms: a word that suggests what the command does, and a
shorter abbreviation of that word. Many beginners find the full command names easier to remember
at first, but once you are familiar with editing you may prefer to type the shorter abbreviations. The
command to input text is "append". (It may be abbreviated "a".) Type append and press the
RETURN key.

% edit text
: append

Messages from edit

If you make a mistake in entering a command and type something that edit does not recognize,
edit will respond with a message intended to help you diagnose your error. For example, if you
misspell the command to input text by typing, verhaps, "add" instead of "append" or "a", you will
recei ve this message:

Edit: A Tutorial USD:14-7

on. You may immediately begin to retype the line. This, unfortunately, does not work after you type
the line and press RETURN. To make corrections in lines that have been completed, it is necessary to
use the editing commands covered in the next sessions.

Writing text to disk
You are now ready to edit the text. One common operation is to write the text to disk as a file

for safekeeping after the session is over. This is the only way to save information from one session to
the next, since the editor's buffer is temporary and will last only until the end of the editing session.
Learning how to write a file to disk is second in importance only to entering the text. To write the
contents of the buffer to a disk file, use the command "write" (or its abbreviation "w"):

: write

Edit will copy the contents of the buffer to a disk file. If the file does not yet exist, a new file will be
created automatically and the presence of a "[New file]" will be noted. The newly-created file will be
given the name specified when you entered the editor, in this case "text". To confirm that the disk
file has been successfully written, edit will repeat the filename and give the number of lines and the
total number of characters in the file. The buffer remains unchanged by the "write" command. All
of the lines that were written to disk will still be in the buffer, should you want to modify or add to
them.

Edit must have a name for the file to be written. If you forgot to indicate the name of the file
when you began to edit, edit will print in response to your write command:

No current filename

If this happens, you can specify the filename in a new write command:

: write text

After the "write" (or "w"), type a space and then the name of the file.

Signing off
We have done enough for this first lesson on using the UNIX text editor, and are ready to quit

the session with edit. To do this we type "quit" (or "q") and press RETURN:

: write
··text"" [New file] 3 lines, 90 characters
: quit
%

The % is from UNIX to tell you that your session with edit is over and you may command UNl"
further. Since we want to end the entire session at the terminal, we also need to exit from UNIX. In
response to the UNIX prompt of" % " type the command

% logout

This will end your session with UN!X, and will ready the terminal for the next user. It is always
important to type logout at the end of a session to make absolutely sure no one could accidentally
stumble into your abandoned session and thus gain access to your files, tempting even the most
honest of souls.

This is the end of the first session on UNIX text editing.

Edit: A Tutorial USD:I4-9

Listing what's in the buffer (p)
Having appended text to what you wrote in Session I, you might want to see all the lines in the

buffer. To print the contents of the buffer, type the command:

:l,$p

The "I "t stands for line I of the buffer, the "$" is a special symbol designating the last line of the
buffer, and "p" (or print) is the command to print from line I to the end of the buffer. The com
mand "I,$p" gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may accidentally type a character that can't be printed, which can be done by strik
ing a key while the CTRL key is pressed. In printing lines, edit uses a special notation to show the
existence of non-printing characters. Suppose you had introduced the non-printing character
"control-A" into the word "illustrate" by accidently pressing the CTRL key while typing "a". This can
happen on many terminals because the CTRL key and the "A" key are beside each other. If your
finger presses between the two keys, control-A results. When asked to print the contents of the buffer,
edit would display

it does illustr' Ate the editor.

To represent the control-A, edit shows ·"A". The sequence " ... followed by a capital letter stands for
the one character entered by holding down the CTRL key and typing the letter which appears after the
...... We'll soon discuss the commands that can be used to correct this typing error.

In looking over the text we see that "this" is typed as "thiss" in the second line, a deliberate
error so we can learn to make corrections. Let's correct the spelling.

Finding things in the buffer
In order to change something in the buffer we first need to find it. We can find "thiss" in the

text we have entered by looking at a listing of the lines. Physically speaking, we search the lines of
text looking for "thiss" and stop searching when we have found it. The way to tell edit to search for
something is to type it inside slash marks:

: !thiss!

By typing Ithissl and pressing RETURN, you instruct edit to search for "thiss". If you ask edit to
look for a pattern of characters which it cannot find in the buffer, it will respond "Pattern not found".
When edit finds the characters "thiss", it will print the line of text for your inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the line.

tThe numeral "one" is the top left-most key, and should not be confused with the letter "el".

Edit: A Tutorial USD:14-11

Substitute pattern match failed

indicating that your instructions could not be carried out. When edit does find the characters that
you want to change, it will make the substitution and automatically print the changed line, so that
you can check that the correct substitution was made. In the example,

: 2s/thiss/thisl
And this is some more text.

line 2 (and line 2 only) will be searched for the characters "thiss", and when the first exact match is
found, "thiss" will be changed to "this". Strictly speaking, it was not necessary above to specify the
number of the line to be changed. In

: s/thiss/this/

edit will assume that we mean to change the line where we are currently located ("."). In this case,
the command without a line number would have produced the same result because we were already
located at the line we wished to change.

For another illustration of the substitute command, let us choose the line:

Text editing is strange, but nice.

You can make this line a bit more positive by taking out the characters "strange, but" so the line
reads:

Text editing is nice.

A command that will first position edit at the desired line and then make the substitution is:

: Istrange/s/strange, but II

What we have done here is combine our search with our substitution. Such combinations are per
fectly legal, and speed up editing quite a bit once you get used to them. That is, you do not neces
sarily have to use line numbers to identify a line to edit. Instead, you may identify the line you want
to change by asking edit to search for a specified pattern of letters that occurs in that line. The parts
of the above command are:

Istrangel
s
Istrange, but 1/

tells edit to find the characters "strange" in the text
tells edit to make a substitution
substitutes nothing at all for the characters "strange, but"

You should note the space after "but" in "/strange, but I". If you do not indicate that the space
is to be taken out, your line will read:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again, we realize from
this that a blank space is a real character to a computer, and in editing text we need to be aware of
spaces within a line just as we would be aware of an "a" or a "4".

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other commands
may be more convenient for viewing large sections of text. You can ask to see a screen full of text at
a time by using the command z. If you type

:lz

edit will start with line I and continue printing lines, stopping either when the screen of your termi
nal is full or when the last line in the buffer has been printed. If you want to read the next segment
of text, type the command

Edit: A Tutorial USD:14-13

Session 3

Bringing text into the buffer (e)

Login to UNIX and make contact with edit. You should try to login without looking at the notes,
but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you type

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named "text"
into the buffer. If you did forget to tell edit the name of your file, you can get it into the buffer by typ
ing:

: e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated e, tells edit that you want to erase anything that might
already be in the buffer and bring a copy of the file "text" into the buffer for editing. You may also
use the edit (e) command to change files in the middle of an editing session, or to give edit the name
of a new file that you want to create. Because the edit command clears the buffer, you will receive a
warning if you try to edit a new file without having saved a copy of the old file. This gives you a
chance to write the contents of the buffer to disk before editing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means of the
move (m) command. The first two examples are for illustration only, though after you have read this
Session you are welcome to return to them for practice. The command

:2,4m$

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move command
is that you specify the first line to be moved, the last line to be moved, the move command "m", and
the line after which the moved text is to be placed. So,

:1,3m6

would instruct tdit to move lines I through 3 (inclusive) to a location after line 6 in the buffer. To
move only one line, say, line 4, to a location in the buffer after line 5, the command would be "4m5".

Let's move some text using the command:

:5,$ml
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit tells how many lines
were affected by the move and prints the last moved line for your inspection. If you want to see
more than just the last line, you can then use the print (p), z, or number (nu) command to view more
text. The buffer should now contain:

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

Edit: A Tutorial

This is some sample text.
And this is some more text.
Text editing is nice.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.
It doesn't mean much here, but

To delete both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

:2,Jd
2 lines deleted

USD:14-15

which specifies the range of lines from 2 to 3, and the operation on those lines - "d" for delete. If
you delete more than one line you will receive a message telling you the number of lines deleted, as
indicated in the example above.

The previous example assumes that you know the line numbers for the lines to be deleted. If
you do not you might combine the search command with the delete command:

: lAnd this is some/,lText editing is nice.ld

A word or two of caution
In using the search function to locate lines to be deleted you should be absolutely sure the char

acters you give as the basis for the search will take edit to the line you want deleted. Edit will search
for the first occurrence of the characters starting from where you last edited - that is, from the line
you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which edit will
do as easily as if you had meant it. For this reason, it is usually safer to specify the search and then
delete in two separate steps, at least until you become familiar enough with using the editor that you
understand how best to specify searches. For a beginner it is not a bad idea to double-check each
command before pressing RETURN to send the command on its way.

Undo (u) to the rescue
The undo (u) command has the ability to reverse the effects of the last command that changed

the buffer. To undo the previous command, type "u" or "undo". Undo can rescue the contents of
the buffer from many an unfortunate mistake. However, its powers are not unlimited, so it is still
wise to be reasonably careful about the commands you give.

It is possible to undo only commands which have the power to change the buffer - for example,
delete, append, move, copy, substitute, and even undo itself. The commands write (w) and edit (e),
which interact with disk files, cannot be undone, nor can commands that do not change the buffer,
such as print. Most importantly, the only command that can be reversed by undo is the last "undo
able" command you typed. You can use control-H and @ to change commands while you are typing
them, and undo to reverse the effect of the commands after you have typed them and pressed
RETURN.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command we
gave deleted the lines formerly numbered 2 and 3. Typing undo at this moment will reverse the
effects ofthe deletion, causing those two lines to be replaced in the buffer.

Edit: A Tutorial USD:14-17

At end-of-file
or

Not that many lines in buffer

Similarly, if you try to move to a position before the first line, edit will print one of these messages:

Nonzero address required on this command
or

Negative address - first buffer line is I

The number associated with a buffer line is the line's "address", in that it can be used to locate the
line.

Changing lines (c)

You can also delete certain lines and insert new text in their place. This can be accomplished
easily with the change (c) command. The change command instructs edit to delete specified lines and
then switch to text input mode to accept the text that will replace them. Let's say you want to change
the first two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the UNIX text editor.

To do so, you type:

: l,2c
2 lines changed
This text was created with the UNIX text editor.

In the command l,2c we specify that we want to change the range of lines beginning with I and end
ing with 2 by giving line numbers as with the print command. These lines will be deleted. After you
type RETURN to end the change command, edit notifies you if more than one line will be changed and
places you in text input mode. Any text typed on the following lines will be inserted into the position
where lines were deleted by the change command. You will remain in text input mode until you exit in
the usual way, by typing a period alone on a line. Note that the number of lines added to the buffer
need not be the same as the number of lines deleted.

This is the end of the third session on text editing with UNIX.

Edit: A Tutorial USD:14-19

: Itext/s/textltextsl

as we have done in the past, or a somewhat abbreviated command:

: Itext/slltextsl

In this example, the characters to be changed are not specified - there are no characters, not even a
space, between the two slash marks that indicate what is to be changed. This lack of characters
between the slashes is taken by the editor to mean "use the characters we last searched for as the
characters to be changed."

Similarly, the last context search may be repeated by typing a pair of slashes with nothing
between them:

: Idoesl
It doesn't mean much here, but
: II
it does illustrate the editor.

(You should note that the search command found the characters "does" in the word "doesn't" in the
first search request.) Because no characters are specified for the second search, the editor scans the
buffer for the next occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the buffer
to the beginning, until the specified character string is found. If you want to search in the reverse
direction, use question marks (?) instead of slashes to surround the characters you are searching for.

It is also possible to repeat the last substitution without having to retype the entire command.
An ampersand (&) used as a command repeats the most recent substitute command, using the same
search and replacement patterns. After altering the current line by typing

: s/text/textsl

you type

: Itext/&

or simply

:11&

to make the same change on the next line in the buffer containing the characters "text".

Special characters

Two characters have special meanings when used in specifying searches: "$" and "'''. "$" is
taken by the editor to mean "end of the line" and is used to identify strings that occur at the end of a
line.

: g/text.$/sllmaterial.lp

tells the editor to search for all lines ending in "text." (and nothing else, not even a blank space), to
change each final "text." to "material.", and print the changed lines.

The symbol "." indicates the beginning of a line. Thus,

: srlt. I

instructs the editor to insert "I." and a space at the beginning of the current line.

The characters "$" and "." have special meanings only in the context of searching. At other
times, they are ordinary characters. If you ever need to search for a character that has a special
meaning, you must indicate that the character is to lose temporarily its special significance by typing
another special character, the backslash (\), before it.

Edit: A Tutorial

:w
"text" 4 lines, 88 characters
:f
"text" line 3 of 4 --75%--

Reading additional files (r)

USO:14-21

The read (r) command allows you to add the contents of a file to the buffer at a specified loca
tion, essentially copying new lines between two existing lines. To use it, specify the line after which
the new text will be placed, the read (r) command, and then the name of the file. If you have a file
named "example", the command

:$r example
"example" 18 lines, 473 characters

reads the file "example" and adds it to the buffer after the last line. The current filename is not
changed by the read command.

Writing parts of the buffer

The write (w) command can write all or part of the buffer to a file you specify. We are already
familiar with writing the entire contents of the buffer to a disk file. To write only part of the buffer
onto a file, indicate the beginning and ending lines before the write command, for example

: 45,$w ending

Here all lines from 45 through the end of the buffer are written onto the file named ending. The lines
remain in the buffer as part of the document you are editing, and you may continue to edit the entire
buffer. Your original file is unaffected by your command to write part of the buffer to another file.
Edit still remembers whether you have saved changes to the buffer in your original file or not.

Recovering files

Although it does not happen very often, there are times UNIX stops working because of some
malfunction. This situation is known as a crash. Under most circumstances, edit's crash recovery
feature is able to save work to within a few lines of changes before a crash (or an accidental phone
hang up). If you lose the contents of an editing buffer in a system crash, you will normally receive
mail when you login that gives the name of the recovered file. To recover the file, enter the editor
and type the command recover (rec), followed by the name of the lost file. For example, to recover
the buffer for an edit session involving the file "chap6", the command is:

: recover chap6

Recover is sometimes unable to save the entire buffer successfully, so always check the contents of the
saved buffer carefully before writing it back onto the original file. For best results, write the buffer to
a new file temporarily so you can examine it without risk to the original file. Unfortunately, you can
not use the recover command to retrieve a file you removed using the shell command rm.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your work by
using the command preserve (pre), which saves the buffer as if the system had crashed. If you are
writing a file and you get the message "Quota exceeded", you have tried to use more disk storage
than is allotted to your account. Proceed with caution because it is likely that only a part of the
editor's buffer is now present in the file you tried to write. In this case you should use the shell
escape from the editor (!) to remove some files you don't need and try to write the file again. If this is
not possible and you cannot find someone to help you, enter the command

: preserve

An Introduction to Display Editing with Vi

William Joy

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

USD:15-1

Vi (visual) is a display oriented interactive text editor. When using vi the
screen of your terminal acts as a window into the file which you are editing.
Changes which you make to the file are reflected in what you see.

Using vi you can insert new text any place in the file quite easily. Most of the
commands to vi move the cursor around in the file. There are commands to move
the cursor forward and backward in units of characters, words, sentences and para
graphs. A small set of operators, like d for delete and c for change, are combined
with the motion commands to form operations such as delete word or change para
graph, in a simple and natural way. This regularity and the mnemonic assignment
of commands to keys makes the editor command set easy to remember and to use.

Vi will work on a large number of display terminals, and new terminals are
easily driven after editing a terminal description file. While it is advantageous to
have an intelligent terminal which can locally insert and delete lines and characters
from the display, the editor will function quite well on dumb terminals over slow
phone lines. The editor makes allowance for the low bandwidth in these situations
and uses smaller window sizes and different display updating algorithms to make
best use of the limited speed available.

IUs also possible to use the command set of vi on hardcopy terminals, storage
tubes and "glass tty's" using a one line editing window; thus vi's command set is
available on all terminals. The full command set of the more traditional, line
oriented editor ex is available within vi; it is quite simple to switch between the two
modes of editing.

1. Getting started
This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be run

ning vi on a file you are familiar with while you are reading this. The first part of this document (sec
tions I through 5) describes the basics of using vi. Some topics of special interest are presented in sec
tion 6, and some nitty-gritty details of how the editor functions are saved for section 7 to avoid
cluttering the presentation here.

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-0729I is gratefully acknowledged.

An Introduction to Display Editing with Vi USD:15-3

1.2. Editing a file

After telling the system which kind of terminal you have, you should make a copy of a file you
are familiar with, and run vi on this file, giving the command

% vi name

replacing name with the name of the copy file you just created. The screen should clear and the text
of your file should appear on the screen. If something else happens refer to the footnote.;

1.3. The editor's copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor makes a
copy of this file, in a place called the buffer, and remembers the file's name. You do not affect the
contents of the file unless and until you write the changes you make back into the original file.

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text which
should be replaced with appropriate input will be given in italics. We will represent special characters
in SMALL CAPITALS.

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals with
cursor positioning keys, these keys will also work within the editor. If you don't have cursor position
ing keys, or even if you do, you can use the h j k and I keys as cursor positioning keys (these are
labelled with arrows on an adm3a). *

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick) to send
to the machine, otherwise they only act locally. Unshifted use will leave the cursor positioned
incorrectly.)

1.6. Special characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now. Look
on your keyboard for a key labelled ESC or ALT. It should be near the upper left corner of your termi
nal. Try hitting this key a few times. The editor will ring the bell to indicate that it is in a quiescent
state.; Partially formed commands are cancelled by ESC, and when you insert text in the file you end
the text insertion with ESC. This key is a fairly harmless one to hit, so you can just hit it if you don't
know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It is
usually at the right side of the keyboard, and is the same command used at the end of each shell com
mand.

* If you gave the system an incorrect terroinal type code then the editor may have just made a mess out of
your screen. This happens when it sends control codes for one kind of terroinal to some other kind of ter
minal. In this case hit the keys :q (colon and the q key) and then hit the RETURN key. This should get you
back to the command level interpreter. Figure out what you did wrong (ask someone else if necessary) and
try again.

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an
error diagnostic. In this case you should follow the above procedure for getting out of the editor, and try
again this time spelling the tile name correctly.

If the editor doesn't seem to respond to the commands which you type here, try sending an interrupt to
it by hitting the DEL or RUB key on your terroinal, and then hitting the :q command again followed by a car
riage return.

• As we will see later, h moves back to the left (like control-h which is a backspace), j moves down (in the
same column), k moves up (in the same column), and I moves to the right. * On smart terroinals where it is possible, the editor will quietly flash the screen rather than ringing the bell.

An Introduction to Display Editing with Vi USD:15-5

2.2. Searching, goto, and previous context
Another way to position yourself in the file is by giving the editor a string to search for. Type

the character I followed by a string of characters terminated by CR. The editor will position the cur
sor at the next occurrence of this string. Try hitting n to then go to the next occllrrence of this string.
The character? will search backwards from where you are, and is otherwise like I.t

If the search string you give the editor is not present in the file the editor will print a diagnostic
on the last line of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string with an t.
To match only at the end of a line, end the search string with a $. Thus ItsearchcR will search for
the word 'search' at the beginning of a line, and llast$CR searches for the word 'last' at the end of a
line.*

The command G, when preceded by a number will position the cursor at that line in the file.
Thus IG will move the cursor to the first line of the file. If you give G no count, then it moves to the
end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the editor
will place only the character '-' on each remaining line. This indicates that the last line in the file is
on the screen; that is, the '-' lines are past the end of the file.

You can find out the state of the file you are editing by typing a AG. The editor will show you
the name of the file you are editing, the number of the current line, the number of lines in the buffer,
and the percentage of the way through the buffer which you are. Try doing this now, and remember
the number of the line you are on. Give a G command to get to the end and then another G com
mand to get back where you were.

You can also get back to a previous position by using the command" (two back quotes). This
is often more convenient than G because it requires no advance preparation. Try giving a G or a
search with I or ? and then a " to get back to where you were. If you accidentally hit n or any com
mand which moves you far away from a context of interest, you can quickly get back by hitting' , .

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4 or 5
keys with arrows going in each direction) try them and convince yourself that they work. If you don't
have working arrow keys, you can always use h, j, k, and I. Experienced users of vi prefer these keys
to arrow keys, because they are usually right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the file, at
the first non-white position on the line. The - key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you go off
the bottom or top with these keys then the screen will scroll down (and up if possible) to bring a line
at a time into view. The RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H will take you
to the top (home)· line on the screen. Try preceding it with a number as in 3H. This will take you to
the third line on the screen. Many vi commands take preceding numbers and do interesting things
with them. Try M, which takes you to the middle line on the screen, and L, which takes you to the
last line on the screen. L also takes counts, thus SL will take you to the fifth line from the bottom.

t These searches will normally wrap around the end of the file, and thus find the string even if it is not on a
line in the direction you search provided it is anywhere else in the file. You can disable this wraparound in
scans by giving the command :se nowrapscancR, or more briefly :se nowsCR.
·Actually, the string you give to search for here can be a regular expression in the sense of the editors ex(l)
and ed(l). If you don't wish to learn about this yet, you can disable this more general facility by doing
:se DOmagicCR; by putting this command in EXINIT in your environment, you can have this always be in
effect (more about EXINIT later.)

An Introduction to Display Editing with Vi USD:15-7

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, everything you
type until you hit ESC is inserted into the file. Try this now; position yourself to some word in the file
and try inserting text before this word. If you are on an dumb terminal it will seem, for a minute,
that some of the characters in your line have been overwritten, but they will reappear when you hit
ESC.

Now try finding a word which can, but does not, end in an ·s'. Position yourself at this word
and type e (move to end of word), then a for append and then 'sESC' to terminate the textual insert.
This sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works; i placing
text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or after
some specific line in the file. Find a line where this makes sense and then give the command 0 to
create a new line after the line you are on, or the command 0 to create a new line before the line you
are on. After you create a new line in this way, text you type up to an ESC is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that one is
given by a lower case key and the other is given by an upper case key. In these cases, the upper case
key often differs from the lower case key in its sense of direction, with the upper case key working
backward and/or up, while the lower case key moves forward and/or down.

Whenever you are typing in text, you can give many lines of input or just a few characters. To
type in more than one line of text, hit a RETURN at the middle of your input. A new line will be
created for text, and you can continue to type. If you are on a slow and dumb terminal the edit~r
may choose to wait to redraw the tail of the screen, and will let you type over the existing screen
lines. This avoids the lengthy delay which would occur if the editor attempted to keep the tail of the
screen always up to date. The tail of the screen will be fixed up, and the missing lines will reappear,
when you hit ESC.

While you are inserting new text, you can use the characters you normally use at the system
command level (usually 'H or #) to backspace over the last character which you typed, and the char
acter which you use to kill input lines (usually @, 'X, or 'V) to erase the input you have typed on the
current line.t The character 'W will erase a whole word and leave you after the space after the previ
ous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are not
erased; the cursor moves backwards, and the characters remain on the display. This is often useful if
you are planning to type in something similar. In any case the characters disappear when when you
hit ESC; if you want to get rid of them immediately, hit an ESC and then a again.

Notice also that you can't erase characters which you didn't insert, and that you can't backspace
around the end of a line. If you need to back up to the previous line to make a correction, just hit
ESC and move the cursor back to the previous line. After making the correction you can return to
where you were and use the insert or append command again.

3.2. Making small corrections

You can make small corrections in existing text quite easily. Find a single character which is
wrong or just pick any character. Use the arrow keys to find the character, or get near the character
with the word motion keys and then either backspace (hit the BS key or 'H or even just h) or SPACE
(using the space bar) until the cursor is on the character which is wrong. If the character is not
needed then hit the x key; this deletes the character from the file. It is analogous to the way you x
out characters when you make mistakes on a typewriter (except it's not as messy).

t In fact, the character 'H (backspace) always works to erase the last input character here, regardless of
what your erase character is.

An Introduction to Display Editing with Vi

3.6. Summary

SPACE
'H
'W
erase
kill

0
U
a
c
d
i
0

u

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually 'H or #). erases a character during an insert
your kill (usually @. ·X. or ·U). kills the insert on this line
repeats the changing command
opens and inputs new lines. above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following tex,t
deletes the object you specify
inserts text before the cursor
opens and inputs new lines. below the current
undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low level character motions

USD:15-9

Now move the cursor to a line where there is a punctuation or a bracketing character such as a
parenthesis or a comma or period. Try the command fx where x is this character. This command
finds the next x character to the right of the cursor in the current line. Try then hitting a ;, which
finds the next instance of the same character. By using the f command and then a sequence of ;'s you
can often get to a particular place in a line much faster than with a sequence of word motions or
SPACES. There is also a F command, which is like f. but searches backward. The; command repeats
F also.

When you are operating on the text in a line it is often desirable to deal with the characters up
to, but not including, the first instance of a character. Try dfx for some x now and notice that the x
character is deleted. Undo this with u and then try dtx; the t here stands for to, i.e. delete up to the
next x, but not the x. The command T is the reverse of t.

When working with the text of a single line, an t moves the cursor to the first non-white posi
tion on the line, and a $ moves it to the end of the line. Thus $a will append new text at the end of
the current line.

Your file may have tab CI) characters in it. These characters are represented as a number of
spaces expanding to a tab stop, where tab stops are every 8 positions. * When the cursor is at a tab, it
sits on the last of the several spaces which represent that tab. Try moving the cursor back and forth
over tabs so you understand how this works.

On rare occasions, your file may have non printing characters in it. These characters are
displayed in the same way they are represented in this document, that is with a two character code,
the first character of which is "'. On the screen non-printing characters resemble a .. , character adja
cent to another, but spacing or backspacing over the character will reveal that the two characters are,
like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the setting of
the beautifY option, if you attempt to insert them in your file. You can get a control character in the
file by beginning an insert and then typing a 'Y before the control character. The'Y quotes the fol
lowing character, causing it to be inserted directly into the file .

• This is settable by a command of the form :se tS=XCR, where x is 4 to set tabstops every four columns.
This has effect on the screen representation within the editor.

An Introduction to Display Editing with Vi USD:lS-ll

"a5dd deleting 5 lines into the named buffer a. You can then move the cursor to the eventual resting
place of the these lines and do a "ap or "aP to put them back. In fact, you can switch and edit
another file before you put the lines back, by giving a command of the form :e namecR where name is
the name of the other file you want to edit. You will have to write back the contents of the current
editor buffer (or discard them) if you have made changes before the editor will let you switch to the
other file. An ordinary delete command saves the text in the unnamed buffer, so that an ordinary put
can move it elsewhere. However, the unnamed buffer is lost when you change files, so to move text
from one file to another you should use an unnamed buffer.

4.4. Summary.

t first non-white on line
$ end of line
) forward sentence
} forward paragraph
II forward section
(backward sentence
{ backward paragraph
([backward section
fx find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
Fx f backward in line
P put text back, before cursor or above current line
Tx t backward in line

5. High level commands

5.1. Writing, quitting, editing new files

So far we have seen how to enter vi and to write out our file using either ZZ or :wCR. The first
exits from the editor, (writing if changes were made), the second writes and stays in the editor.

If you have changed the editor's copy of the file but do not wish to save your changes, either
because you messed up the file or decided that the changes are not an improvement to the file, then
you can give the command :q!CR to quit from the editor without writing the changes. You can also
reedit the same file (starting over) by giving the command :e!CR. These commands should be used
only rarely, and with caution, as it is not possible to recover the changes you have made after you dis
card them in this manner.

You can edit a different file without leaving the editor by giving the command :e namecR. If
you have not written out your file before you try to do this, then the editor will tell you this, and
delay editing the other file. You can then give the command :wCR to save your work and then the
:e namecR command again, or carefully give the command :e! namecR, which edits the other file dis
carding the changes you have made to the current file. To have the editor automatically save
changes, include set autowrite in your EXINIT, and use :n instead of :e.

5.2. Escaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form
:!cmdcR. The system will run the single command cmd and when the command finishes, the editor
will ask you to hit a RETURN to continue. When you have finished looking at the output on the
screen, you should hit RETURN and the editor will clear the screen and redraw it. You can then con
tinue editing. You can also give another: command when it asks you for a RETURN; in this case the

. screen will not be redrawn.

An Introduction to Display Editing with Vi USD:15-13

You can control the size of the window which is redrawn each time the screen is cleared by giv
ing window sizes as argument to the commands which cause large screen motions:

:/?[[II' •

Thus if you are searching for a particular instance of a common string in a file you can precede the
first search command by a small number, say 3, and the editor will draw three line windows around
each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose, by giving
a number on a z command, after the z and before the following RETURN, . or -. Thus the command
zS. redraws the screen with the current line in the center of a five line window.t

If the editor is redrawing or otherwise updating large portions of the display, you can interrupt
this updating by hitting a DEL or RUB as usual. If you do this you may partially confuse the editor
about what is displayed on the screen. You can still edit the text on the screen if you wish; clear up
the confusion by hitting a AL; or move or search again, ignoring the current state of the display.

See section 7.8 on open mode for another way to use the vi command set on slow terminals.

6.2. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most useful
options are given in the following table.

Name Default Description
autoindent noai Supply indentation automatically
autowrite noaw Automatic write before :n, :ta, At, !
ignorecase noic Ignore case in searching
lisp nolisp (() } commands deal with S-expressions
list nolist Tabs print as AI; end oflines marked with $
magic nomagic The characters . [and * are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para=IPLPPPQPbpP LI Macro names which start paragraphs
redraw nore Simulate a smart terminal on a dumb one
sections sect=NHSHH HU Macro names which start new sections
shiftwidth sw=8 Shift distance for <, > and input AD and 1
showmatch nosm Show matching (or (as) or } is typed
slowopen slow Postpone display updates during inserts
term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You can
set numeric and string options by a statement of the form

set opt=lIal

and toggle options can beset or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are running
vi by preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setCR, or the value of
a single option by the command :set opt?CR. A list of all possible options and their values is gen
erated by :set alICR. Set can be abbreviated se. Multiple options can be placed on one line, e.g. :se
ai aw nuCR.

t Note that the command Sz. has an entirely different effect, placing line 5 in the center of a new window.

An Introduction to Display Editing with Vi USD:15-15

% vi-r

If there is more than one instance of a particular file saved, the editor gives you the newest instance
each time you recover it. You can thus get an older saved copy back by first recovering the newer
copies.

For this feature to work, vi must be correctly installed by a super user on your system, and the
mail program must exist to receive mail. The invocation "vi -r" will not always list all saved files,
but they can be recovered even if they are not listed.

6.5. Continuous text input

When you are typing in large amounts of text it is convenient to have lines broken near the right
margin automatically. You can cause this to happen by giving the command :se wm~10CR. This
causes all lines to be broken at a space at least 10 columns from the right hand edge of the screen.

If the editor breaks an input line and you wish to put it back together you can tell it to join the
lines with J. You can give J a count of the number of lines to be joined as in 3J to join 3 lines. The
editor supplies white space, if appropriate, at the juncture of the joined lines, and leaves the cursor at
this white space. You can kill the white space with x if you don't want it.

6.6. Features for editing programs
The editor has a number of commands for editing programs. The thing that most distinguishes

editing of programs from editing of text is the desirability of maintaining an indented structure to the
body of the program. The editor has a aUloindenl facility for helping you generate correctly indented
programs.

To enable this facility you can give the command :se aicR. Now try opening a new line with 0

and type some characters on the line after a few tabs. If you now start another line, notice that the
editor supplies white space at the beginning of the line to line it up with the previous line. You can
not backspace over this indentation, but you can use -D key to backtab over the supplied indentation.

Each time you type -D you back up one position, normally to an 8 column boundary. This
amount is settable; the editor has an option called shiftwidlh which you can set to change this value.
Try giving the command :se sw~4CR and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators < and >. These shift the
lines you specify right or left by one shiftwidlh. Try « and » which shift one line left or right, and
<L and> L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match, put the cursor
at a left or right parenthesis and hit %. This will show you the matching parenthesis. This works
also for braces { and }, and brackets [and l.

If you are editing C programs, you can use the [[and]] keys to advance or retreat to a line start
ing with a {, i.e. a function declaration at a time. When]] is used with an operator it stops after a
line which starts with }; this is sometimes useful with y]].

6.7. Filtering portions of the buffer
You can run system commands over portions of the buffer using the operator!. You can use

this to sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer. Try typing
in a list of random words, one per line and ending them with a blank line. Back up to the beginning
of the list, and then give the command !}sortCR. This says to sort the next paragraph of material, and
the blank line ends a paragraph.

6.S. Commands for editing LISP

If you are editing a LISP program you should set the option lisp by doing :se IispCR. This
changes the (and) commands to move backward and forward over s-expressions. The { and } com
mands are like (and) but don't stop at atoms. These can be used to skip to the next list, or through

An Introduction to Display Editing with Vi USD:lS-17

The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a '!' after the word map causes the mapping to apply to input mode, rather'than com
mand mode. Thus, to arrange for" to be the same as 4 spaces in input mode, you can type:

:map ,. -WlIl\lI

where IS is a blank. The -V is necessary to prevent the blanks from being taken as white space
between the Ihs and rhs.

7. Word Abbreviations
A feature similar to macros in input mode is word abbreviation. This allows you to type a short

word and have it expanded into a longer word or words. The commands are :abbreviate and :unab
breviate (:ab and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineering and Computer Sci
ences'. Word abbreviation is different from macros in that only whole words are affected. If 'eecs'
were typed as part of a larger word, it would be left alone. Also, the partial word is echoed as it is
typed. There is no need for an abbreviation to be a single keystroke, as it should be with a macro.

7.1. Abbreviations
The editor has a number of short commands which abbreviate longer commands which we have

introduced here. You can find these commands easily on the quick reference card. They often save a
bit of typing and you can learn them as convenient.

8. Nitty-gritty details

8.1. Line representation in the display
The editor folds long logical lines onto many physical lines in the display. Commands which

advance lines advance logical lines and will skip over all the segments of a line in one motion. The
command I moves the cursor to a specific column, and may be useful for getting near the middle of a
long line to split it in half. Try 801 on a line which is more than 80 columns long.t

The editor only puts full lines on the display; if there is not enough room on the display to fit a
logical line, the editor leaves the physical line empty, placing only an @ on the line as a place holder.
When you delete lines on a dumb terminal, the editor will often just clear the lines to @ to save time
(rather than rewriting the rest of the screen.) You can always maximize the information on the screen
by giving the -R command.

If you wish, you can have the editor place line numbers before each line on the display. Give
the command :se nuCR to enable this, and the command :se nonuCR to tum it off. You can have tabs
represented as -I and the ends of lines indicated with '$' by giving the command :se listCR; :se nol
istCR turns this off.

Finally, lines consisting of only the character ,~, are displayed when the last line in the file is in
the middle of the screen. These represent physical lines which are past the logical end of file.

8.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The follow
ing table gives the common ways in which the counts are used:

t You can make long lines very easily by using J to join together short lines.

An Introduction to Display Editing with Vi USD:15-19

of time you can give :w commands occasionally after major amounts of editing, and then finish with a
ZZ. When you edit more than one file, you can finish with one with a :w and start editing a new file
by giving a :e command, or set autowrite and use :n <file>.

If you make changes to the editor's copy of a file, but do not wish to write them back, then you
must give an ! after the command you would otherwise use; this forces the editor to discard any
changes you have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file, or a +n argument to
start at line n. In actuality, n may be any editor command not containing a space, usefully a scan
like +Ipat or +?pat. In forming new names to the e command, you can use the character % which is
replaced by the current file name, or the character # which is replaced by the alternate file name. The
alternate file name is generally the last name you typed other than the current file. Thus if you try to
do a :e and get a diagnostic that you haven't written the file, you can give a :w command and then a
:e # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that bound the range to be writ
ten using -G, and giving these numbers after the: and before the w, separated by ,'s. You can also
mark these lines with m and then use an address of the form 'x,' y on the w command here.

You can read another file into the buffer after the current line by using the :r command. You
can similarly read in the output from a command, just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command line,
and then edit each one in turn using the command :n. It is also possible to respecify the list of files to
be edited by giving the :n command a list of file names, or a pattern to be expanded as you would
have given it on the initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a data
base of function names and their locations, which can be created by programs such as ctags. to
quickly find a function whose name you give. If the :ta command will require the editor to switch
files, then you must :w or abandon any changes before switching. You can repeat the :ta command
without any arguments to look for the same tag again.

S.4. More about searching for strings

When you are searching for strings in the file with I and ?, the editor normally places you at the
next or previous occurrence of the string. If you are using an operator such as d, c or y, then you may
well wish to affect lines up to the line before the line containing the pattern. You can give a search of
the form Ipatl-n to refer to the n'th line before the next line containing pat, or you can use instead
of - to refer to the lines after the one containing pat. If you don't give a line offset, then the editor
will affect characters up to the match place, rather than whole lines; thus use" +0" to affect to the line
which matches.

You can have the editor ignore the case of words in the searches it does by giving the command
:se iCCR. The command :se noicCR turns this off.

Strings given to searches may actually be regular expressions. If you do not want or need this
facility, you should

set nomagic

in your EXINIT. In this case, only the characters t and $ are special in patterns. The character \ is
also then special (as it is most everywhere in the system), and may be used to get at the an extended
pattern matching facility. It is also necessary to use a \ before a I in a forward scan or a ? in a back
ward scan, in any case. The following table gives the extended forms when magic is set.

An Introduction to Display Editing with Vi USD:IS-21

When you are using allloindeni you may wish to place a label at the left margin of a line. The
way to do this easily is to type t and then "D. The editor will move the cursor to the left margin for
one line, and restore the previous indent on the next. You can also type a 0 followed immediately by
a -D if you wish to kill all the indent and not have it come back on the next line.

8.6. Upper case only terminals

If your terminal has only upper case, you can still use vi by using the normal system convention
for typing on such a terminal. Characters which you normally type are converted to lower case, and
you can type upper case letters by preceding them with a \. The characters (- } I ' are not available
on such terminals, but you can escape them as \(\t \) \! \'. These characters are represented on the
display in the same way they are typed.*

8.7. Vi and ex

Vi is actually one mode of editing within the editor ex. When you are running vi you can
escape to the line oriented editor of ex by giving the command Q. All of the: commands which were
introduced above are available in ex. Likewise, most ex commands can be invoked from vi using :.
Just give them without the: and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic and be
left in the command mode of ex. You can then save your work and quit if you wish by giving a com
mand x after the: which ex prompts you with, or you can reenter vi by giving ex a vi command.

There are a number of things which you can do more easily in ex than in vi. Systematic changes
in line oriented material are particularly easy. You can read the advanced editing documents for the
editor ed to find out a lot more about this style of editing. Experienced users often mix their use of
ex command mode and vi command mode to speed the work they are doing.

8.8. Open mode: vi on hardcopy terminals and "glass tty's" *

If you are on a hardcopy terminal or a terminal which does not have a cursor which can move
off the bottom line, you can still use the command set of vi, but in a different mode. When you give
a vi command, the editor will tell you that it is using open mode. This name comes from the open
command in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is
displayed.

In open mode the editor uses a single line window into the file, and moving backward and for
ward in the file causes new lines to be displayed, always below the current line. Two commands of vi
work differently in open: z and -R. The z command does not take parameters, but rather draws a
window of context around the current line and then returns you to the current line.

If you are on a hardcopy terminal, the -R command will retype the current line. On such termi
nals, the editor normally uses two lines to represent the current line. The first line is a copy of the
line as you started to edit it, and you work on the line below this line. When you delete characters,
the editor types a number of \'s to show you the characters which are deleted. The editor also
reprints the current line soon after such changes so that you can see what the line looks like again.

It is sometimes useful to use this mode on very slow terminals which can support vi in the full
screen mode. You can do this by entering ex and using an open command.

Acknowledgements

Bruce Englar encouraged the early development of this display editor. Peter Kessler helped
bring sanity to version 2's command layout. Bill Joy wrote versions 1 and 2.0 through 2.7, and
created the framework that users see in the present editor. Mark Horton added macros and other
features and made the editor work on a large number of terminals and Unix systems.

* The \ character you give will not echo until you type another key.

Ex Reference Manual
Version 3.7

William Joy

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Ex a line oriented text editor, which supports both command and
display oriented editing. This reference manual describes the command
oriented part of ex; the display editing features of ex are described in An
Introduction to Display Editing with Vi. Other documents about the editor
include the introduction Edit: A tutorial, the Ex/edit Command Summary,
and a Vi Quick Reference card.

l. Starting ex

Each instance of the editor has a set of options, which can be set to tailor it to your lik
ing. The command edit invokes a version of ex designed for more casual or beginning users
by changing the default settings of some of these options. To simplify the description which
follows we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environ
ment. It there is a TERMCAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the
TERMCAP variable contains a pathname (beginning with a /) then the editor will seek the
description of the terminal in that file (rather than the default /etc/termcap). If there is a
variable EXINIT in the environment, then the editor will execute the commands in that vari
able, otherwise if there is a file .exrc in your HOME directory ex reads commands from that
file, simulating a source command. Option setting commands placed in EXINIT or .exrc will
be executed before each editor session.

A command to enter ex has the following prototype:t

ex [-) [-v) [-t tag 1 [-r) [-I) [-wn) [-x) [-R) [+command 1 name ...

The most common case edits a single file with no options, i.e.:

ex name

The - command line option option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files. The -v option is equivalent to using vi rather
than ex. The -t option is equivalent to an initial tag command, editing the file containing the
tag and positioning the editor at its definition. The -r option is used in recovering after an

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.
t Brackets '[' ')' surround optional parameters here.

Ex Reference Manual USD:16-3

2.5. Read only

It is possible to use ex in read only rnode to look at files that you have no intention of
rnodifying. This rnode protects you frorn accidently overwriting the file. Read only rnode is
on when the readonly option is set. It can be turned on with the -R cornrnand line option, by
the view cornrnand line invocation, or by setting the readonly option. It can be cleared by
setting noreadonly. It is possible to write, even while in read only rnode, by indicating that
you really know what you are doing. You can write to a different file, or can use the ! form of
write, even while in read only rnode.

3. Exceptional Conditions

3.1. Errors and interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an
error diagnostic. If the prirnary input is frorn a file, editor processing will terminate. If an
interrupt signal is received, ex prints "Interrupt" and returns to its cornrnand level. If the
prirnary input is a file, then ex will exit when this occurs.

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been rnodified since it was last written
out, or if the systern crashes, either the editor (in the first case) or the systern (after it reboots
in the second) will atternpt to preserve the buffer. The next tirne you log in you should be
able to recover the work you were doing, losing at rnost a few lines of changes frorn the last
point before the hangup or editor crash. To recover a file you can use the -r option. If you
were editing the file resume, then you should change to the directory where you were when
the crash occurred, giving the cornrnand

ex -r resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents
of that file.

You will normally get rnail frorn the systern telling you when a file has been saved after
a crash. The cornrnand

ex -r

will print a list of the files which have been saved for you. (In the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct rnodes. The prirnary rnode is command rnode. Cornrnands are
entered in cornrnand rnode when a':' prornpt is present, and are executed each tirne a corn
plete line is sent. In text input rnode ex gathers input lines and places thern in the file. The
append, insert, and change cornrnands use text input rnode. No prornpt is printed when you
are in text input rnode. This rnode is left by typing a '.' alone at the beginning of a line, and
command rnode resurnes.

The last three rnodes are open and visual rnodes, entered by the cornrnands of the sarne
narne, and, within open and visual rnodes text insertion rnode. Open and visual rnodes allow
local editing operations to be performed on the text in the file. The open cornrnand displays
one line at a tirne on any terminal while visual works on CRT terminals with randorn posi
tioning cursors, using the screen as a (single) window for file editing changes. These rnodes
are described (only) in An Introduction to Display Editing with Vi.

Ex Reference Manual USD:16-5

6. Command addressing

6.1. Addressing primitives

n

$

%

The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the
current line, thus'.' is rarely used alone as an address.

The nth line in the editor's buffer, lines being numbered sequentially
from I.

The last line in the buffer.

+n -n

/pat/ ?pat?

An abbreviation for "1,$", the entire buffer.

An offset relative to the current buffer line. t
Scan forward and backward respectively for a line containing pat, a reg
ular expression (as defined below). The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line contain
ing pat, then the trailing / or ? may be omitted. If pat is omitted or
explicitly empty, then the last regular expression specified is located.*

Before each non-relative motion of the current line '.', the previous
current line is marked with a tag, subsequently referred to as '-'. This
makes it easy to refer or return to this previous context." Marks may
also be established by the mark command, using single lower case
letters x and the marked lines referred to as '·x'.

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by',' or
';'. Such address lists are evaluated left-to-right. When addresses are separated by';' the
current line'.' is set to the value of the previous addressing expression before the next address
is interpreted. If more addresses are given than the command requires, then all but the last
one or two are ignored. If the command takes two addresses, the first addressed line must
precede the second in the buffer. t

7. Command descriptions

The following form is a prototype for all ex commands:

address command ! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with use from within visual mode, ex ignores a ":" preceding any com
mand.

In the following command descriptions, the· default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word
is typed as a complete word, it will be changed to rhs.

t The forms '.+3' '+3' and '+++' are all equivalent; if the current line is line 100 they all address line 103. * The forms V and \? scan using the last regular expression used in a scan; after a substitute /I and ??
would scan using the substitute's regular expression.
t Null address specifications are permitted in a list of addresses, the default in this case is the current line
':; thus ',100' is equivalent to '.,100'. It is an error to give a prefix address to a command which expects
none.

Ex Reference Manual USD:16-7

e! file

trailing newline character, it will be supplied and a complaint will be issued. This com
mand leaves the current line ',' at the last line read.*

The variant form suppresses the complaint about modifications having been made and
not written from the editor buffer, thus discarding all changes which have been made
before editing the new file.

e +nfile

file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g.: "+/pat".

abbr: f

Prints the current file name, whether it has been '[Modified]' since the last write com
mand, whether it is read only, the current line, the number of lines in the buffer, and
the percentage of the way through the buffer of the current line. *

file file

The current file name is changed to file which is considered '[Not edited]'.

(1 , $) global Ipat I cmds abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with ',' initially set to each marked line.

The command list consists of the remaining commands on the current input line and
may continue to multiple lines by ending all but the last such line with a '\'. If cmds
(and possibly the trailing I delimiter) is omitted, each line matching pat is printed.
Append, insert, and change commands and associated input are permitted; the ',' ter
minating input may be omitted if it would be on the last line of the command list.
Open and visual commands are permitted in the command list and take input from the
terminal.

The global command itself may not appear in cmds. The undo command is also not
permitted there, as undo instead can be used to reverse the entire global command.
The options autoprint and autoindent are inhibited during a global, (and possibly the
trailing I delimiter) and the value of the report option is temporarily infinite, in defer
ence to a report for the entire global. Finally, the context mark ,~ is set to the value of
'.' before the global command begins and is not changed during a global command,
except perhaps by an open or visual within the global.

g! Ipatl cmds abbr: v

The variant form of global runs cmds at each line not matching pal.

(.) insert
text

abbr: i

Places the given text before the specified line. The current line is left at the last line
input; if there were none input it is left at the line before the addressed line. This com
mand differs from append only in the placement of text.

* If executed from within open or visual, the current line is initially the first line of the file .
• In the rare case that the current file is '[Not edited\' this is noted also; in this case you have to use the
form w! to write to the file, since the editor is not sure that a write will not destroy a file unrelated to the
current contents of the buffer.

Ex Reference Manual USD:16-9

n filelist
n +command filelist

The specified filelist is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command is given (it must contain no
spaces), then it is executed after editing the first such file.

(. , .) number count flags abbr: # or nu
Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(.) open flags abbr: 0

(.) open /pat / flags

Enters intraline editing open mode at each addressed line. If pat is given, then the cur
sor will be placed initially at the beginning of the string matched by the pattern. To exit
this mode use Q. See An Introduction to Display Editing with Vi for more details.

preserve

The current editor buffer is saved as though the system had just crashed. This com
mand is for use only in emergencies when a write command has resulted in an error and
you don't know how to save your work. After a preserve you should seek help.

(. , .) print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters '~x ';
delete (octal 177) is represented as 'I'. The current line is left at the last line printed.

(.) put buffer abbr: pu

quit

q!

Puts back previously deleted or yanked lines. Normally used with delete to effect move
ment of lines, or with yank to effect duplication of lines. If no buffer is specified, then
the last deleted or yanked text is restored. * By using a named buffer, text may be
restored that was saved there at any previous time.

abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write com
mand was issued, and does not quit.f Normally, you will wish to save your changes, and
you should give a write command; if you wish to discard them, use the q! command
variant.

Quits from the editor, discarding changes to the buffer without complaint.

(.) read file abbr:r

Places a copy of the text of the given file in the editing buffer after the specified line. If
no file is given the current file name is used. The current file name is not changed
unless there is none in which case file becomes the current name. The sensibility res
trictions for the edit command apply here also. If the file buffer is empty and there is
no current name then ex treats this as an edit command .

• But no modifying commands may intervene between the delete or yank and the put. nor may lines be
moved between files without using a named buffer.
t Ex will also issue a diagnostic if there are more files in the argument list.

Ex Reference Manual USD:16-ll

stop
Suspends the editor, returning control to the top level shell. If autowrite is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands
is only available where supported by the teletype driver and operating system.

(. , .) substitute options count flags abbr: s
If pat and repl are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(. , .) t addr flags
The t command is a synonym for copy.

ta tag
The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file.;
The tags file is normally created by a program such as ctags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address
ing form which can be used by the editor to find the tag; this field is usually a contextual
scan using 'Ipatl' to be immune to minor changes in the file. Such scans are always per
formed as if nomagic was set.
The tag names in the tags file must be sorted alphabetically.

unabbreviate word abbr: una

undo

Delete word from the list of abbreviations.

abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are
open and visual.) Also, the commands write and edit which interact with the file system
cannot be undone. Undo is its own inverse.
Undo always marks the previous value of the current line '.' as '~. After an undo the
current line is the first line restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such as global and visual the
current line regains it's pre-command value after an undo.

unmap lhs
The macro expansion associated by map for lhs is removed.

(I , $) v Ipat I cmds
A synonym for the global command variant g!, running the specified cmds on each line
which does not match pat.

version abbr: ve
Prints the current version number of the editor as well as the date the editor was last
changed.

* If you have modified the current file before giving a tag command, you must write it out; giving another
tag command, specifying no tag will reuse the previous tag.

Ex Reference Manual USD:16-13

(.+1) Z cOllnt
Print the next cOllnt lines, default window.

(•) Z type cOllnt
Prints a window of text with the specified line at the top. If type is '-' the line is placed
at the bottom; a ',' causes the line to be placed in the center.* A count gives the number
of lines to be displayed rather than double the number specified by the scroll option. On
a CRT the screen is cleared before display begins unless a count which is less than the
screen size is given. The current line is left at the last line printed.

! command
The remainder of the line after the '!' character is sent to a shell to be executed. Within
the text of command the characters '%' and '#' are expanded as in filenames and the
character '!' is replaced with the text of the previous command. Thus, in particular, 'I!'
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

If there has been "[No write]" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning.
A single '!' is printed when the command completes.

(addr , addr) ! command
Takes the specified address range and supplies it as standard input to command; the
resulting output then replaces the input lines.

($)=

Prints the line number of the addressed line. The current line is unchanged.

(.,.) > cOllntflags
(. , .) < COllnt flags

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shiftwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white
characters are discarded in a left-shift. The current line becomes the last line which
changed due to the shifting.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.+1, .+1)
(.+ I , .+1) I

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file.

(• , •) & options count flags

Repeats the previous substitute command.

* Forms 'z=' and 'zt' also exist; 'z=' places the current line in the center, surrounds it with lines of'-' char·
acters and leaves the current line at this line. The form 'zt' prints the window before 'z-' would. The char·
acters '+', 't' and '-' may be repeated for cumulative effect. On some v2 editors, no type may be given.

Ex Reference Manual USD:16-15

letter. If the first character of string is an T then the construct matches
those characters which it otherwise would not; thus '[ta-z]' matches anything
but a lower-case letter (and of course a newline). To place any of the charac
ters T, '[', or '-' in string you must escape them with a preceding '\'.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest
string which can be divided with the first piece matching the first regular expression and the
second piece matching the second. Any of the (single character matching) regular expressions
mentioned above may be followed by the character '.' to form a regular expression which
matches any number of adjacent occurrences (including 0) of characters matched by the regu
lar expression it follows.

The character ,-, may be used in a regular expression, and matches the text which
defined the replacement part of the last substitute command. A regular expression may be
enclosed between the sequences '\(' and '\)' with side effects in the substitute replacement
patterns.

8.5. Substitute replacement patterns
The basic metacharacters for the replacement pattern are '&' and '-'; these are given as

'\&' and '\-' when nomagic is set. Each instance of '&' is replaced by the characters which
the regular expression matched. The metacharacter ,-, stands, in the replacement pattern, for
the defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character '\'. The sequence '\n' is replaced by the text matched by the n-th regular
subexpression enclosed between '\(' and '\)'.t The sequences '\u' and '\I' cause the immedi
ately following character in the replacement to be converted to upper- or lower-case respec
tively if this character is a letter. The sequences '\U' and '\L' turn such conversion on, either
until '\E' or '\e' is encountered, or until the end of the replacement pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of
each append, change or insert command or when a new line is opened or created by an
append, change, insert, or substitute operation within open or visual mode, ex looks at
the line being appended after, the first line changed or the line inserted before and calcu
lates the amount of white space at the start of the line. It then aligns the cursor at the
level of indentation so determined.
If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following
line will start aligned with the first non-white character of the previous line. To back
the cursor up to the preceding tab stop one can hit AD. The tab stops going backwards
are defined at multiples of the shiftwidth option. You cannot backspace over the
indent, except by sending an end-of-file with a AD.

Specially processed in this mode is a line with no characters added to it, which turns
into a completely blank line (the white space provided for the autoindent is discarded.)
Also specially processed in this mode are lines beginning with· an 't' and immediately
followed by a AD. This causes the input to be repositioned at the beginning of the line,
but retaining the previous indent for the next line. Similarly, a '0' followed by a AD

t When nested, parenthesized subexpressions are present, n is determined by counting occurrences of '\('
starting from the left.

Ex Reference Manual USD:16-17

list default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines
as in the list command.

magic default: magic for ex and vit

mesg

If nomagic is set, the number of regular expression metacharacters is greatly reduced,
with only T and '$' having special effects. In addition the metacharacters ,-, and '&' of
the replacement pattern are treated as normal characters. All the normal metacharacters
may be made magic when nomagic is set by preceding them with a '\'.

default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if
nomesg is set.

modeline default: nomodeline

If modeline is set, then the first 5 lines and the last five lines of the file will be checked
for ex command lines and the comands issued. To be recognized as a command line,
the line must have the string ex: or vi: preceeded by a tab or a space. This string may be
anywhere in the line and anything after the : is interpeted as editor commands. This
option defaults to off because of unexpected behavior when editting files such as
letclpasswd.

number, nu default: non umber

Causes all output lines to be printed with their line numbers. In addition each input
line will be prompted for by supplying the line number it will have.

open default: open

If noopen, the commands open and visual are not permitted. This is set for edit to
prevent confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP LIbp

Specifies the paragraphs for the { and } operations in open and visual. The pairs of
characters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a':'.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

t Nomagic for edit.

Ex Reference Manual USD:16-19

tags default: tags=tags /usrlIib/tags

A path of files to be used as tag files for the tag command. A requested tag is searched
for in the specified files, sequentially. By default, files called tags are searched for in the
current directory and in /usr/lib (a master file for the entire system).

term from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been '[No write since last change]' before a '!' command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus
one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitable for an EXINIT and make it easy
to change the 8/ 16/full screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm default: wm=O

Defines a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction to Text Editing with Vi for details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file
which the system protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line,
256 characters per global command list, 128 characters per file name, 128 characters in the
previous inserted and deleted text in open or visual, 100 characters in a shell escape com
mand, 63 characters in a string valued option, and 30 characters in a tag name, and a limit of
250000 lines in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and
the total number of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce
Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton
added macros and other features and made the editor work on a large number of terminals
and Unix systems.

USD:17-l

JOVE Manual for UNIX Users

Jonathan Payne
(revisedfor 4.3BSD by Doug Kingston and Mark Seiden)

1. Introduction
JOVE* is an advanced, self-documenting, customizable real-time display editor. It (and this tutorial
introduction) are based on the original EMACS editor and user manual written at M.I.T. by Richard
Stallman+.
JOVE is considered a display editor because normally the text being edited is visible on the screen and
is updated automatically as you type your commands.

It's considered a real-time editor because the display is updated very frequently, usually after each
character or pair of characters you type. This minimizes the amount of information you must keep
in your head as you edit.
JOVE is advanced because it provides facilities that go beyond simple insertion and deletion: filling of
text; automatic indentations of programs; view more than one file at once; and dealing in terms of
characters, words, lines, sentences and paragraphs. It is much easier to type one command meaning
"go to the end of the paragraph" than to find the desired spot with repetition of simpler commands.
Self-documenting means that at almost any time you can easily find out what a command does, or to
find all the commands that pertain to a topic.
Customizable means that you can change the definition of JOVE commands in little ways. For exam
ple, you can rearrange the command set; if you prefer to use arrow keys for the four basic cursor
motion commands (up, down, left and right), you can. Another sort of customization is writing new.
commands by combining built in commands.

2. The Organization of the Screen
JOVE divides the screen up into several sections. The biggest of these sections is used to display the
text you are editing. The terminal's cursor shows the position of point, the location at which editing
takes place. While the cursor appears to point at a character, point should be thought of as between
characters; it points before the character that the cursor appears on top of. Terminals have only one
cursor, and when output is in progress it must appear where the typing is being done. This doesn't
mean that point is moving; it is only that JOVE has no way of showing you the location of point
except when the terminal is idle.
The lines of the screen are usually available for displaying text but sometimes are pre-empted by
typeout from certain commands (such as a listing of all the editor commands). Most of the time, out
put from commands like these is only desired for a short period of time, usually just long enough to
glance at it. When you have finished looking at the output, you can type Space to make your text
reappear. (Usually a Space that you type inserts itself, but when there is typeout on the screen, it
does nothing but get rid of that). Any other command executes normally, after redrawing your text.

2.1. The Message Line
The bottom line on the screen, called the message line, is reserved for printing messages and for
accepting input from the user, such as filenames or search strings. When JOVE prompts for input, the
cursor will temporarily appear on the bottom line, waiting for you to type a string. When you have
finished typing your input, you can type a Return to send it to JOVE. If you change your mind about
running the command that is waiting for input, you can type Control-G to abort, and you can

"JOVE stands for Jonathan's Own Version of Emacs.
+Although JOVE is meant to be compatible with EMACS, and indeed many of the basic commands are very
similar, there are some major differences between the two editors, and you should not rely on their behav
ing identically.

JOVE Manual for UNIX Users USD:17-3

see a list of all the commands whose names begin with the characters you've already typed; you can
type Space to have JOVE supply as many characters as it can; or you can type Return to complete the
command if there is only one possibility. For example, if you have typed the letters "au" and you
then type a question mark, you will see the list

auto-execute-command
auto-execute-macro
auto-fill-mode
auto-indent· mode

If you type a Return at this point, JOVE will complain by ringing the bell, because the letters you've
typed do not unambiguously specify a single command. But if you type Space, JOVE will supply the
characters "to-" because all commands that begin "au" also begin "auto-". You could then type the
letter 'J followed by either Space or Return, and JOVE would complete the entire command.
Whenever JOVE is prompting you for a filename, say in the find-./ile command, you also need only type
enough of the name to make it unambiguous with respect to files that already exist. In this case,
question mark and Space work just as they do in command completion, but Return always accepts
the name just as you've typed it, because you might want to create a new file with a name similar to
that of an existing file.

4. Commands and Variables

JOVE is composed of commands which have long names such as next-line. Then keys such as C-N are
connected to commands through the command dispatch table. When we say that C-N moves the cur
sor down a line, we are glossing over a distinction which is unimportant for ordinary use, but essen
tial for simple customization: it is the command next-line which knows how to move a down line,
and C-N moves down a line because it is connected to that command. The name for this connection
is a binding; we say that the key C-N is bound to the command next-line.
Not all commands are bound to keys. To invoke a command that isn't bound to a key, you can type
the sequence ESC X, which is bound to the command execute-named-command. You will then be
able to type the name of whatever command you want to execute on the message line.

Sometimes the description of a command will say "to change this, set the variable mumble-foo". A
variable is a name used to remember a value. JOVE contains variables which are there so that you can
change them if you want to customize. The variable's value is examined by some command, and
changing that value makes the command behave differently. Until you are interesting in customizing
JOVE, you can ignore this information.

4.1. Prefix Characters
Because there are more command names than keys, JOVE provides prefix characters to increase the
number of commands that can be invoked quickly and easily. When you type a prefix character JOVE

will wait for another character before deciding what to do. If you wait more than a second or so,
JOVE will print the prefix character on the message line as a rem,inder and leave the cursor down there
until you type your next character. There are two prefix characters built into JOVE: Escape and
Control-X. How the next character is interpreted depends on which prefix character you typed. For
example, if you type Escape followed by B you'll run backward-word, but if you type Control-X fol
lowed by B you'll run select-buffer. Elsewhere in this manual, the Escape key is indicated as "ESC",
which is also what JOVE displays on the message line for Escape.

4.2. Help

To get a list of keys and their associated commands, you type ESC X describe-bindings. If you want
to describe a single key, ESC X describe-key will work. A description of an individual command is
available by using ESC X describe-command, and descriptions of variables by using ESC X describe
variable. If you can't remember the name of the thing you want to know about, ESC X apropos will
tell you if a command or variable has a given string in its name. For example, ESC X apropos
describe will list the names of the four describe commands mentioned briefly in this section.

JOVE Manual for UNIX Users

5.3. Erasing Text

Rubout
CoD

C-K

Delete the character before the cursor.

Delete the character after the cursor.

Kill to the end of the line.

USD:17-5

You already know about the Rubout command which deletes the character before the cursor.
Another command, Control-D, deletes the character after the cursor, causing the rest of the text on
the line to shift left. If Control-D is typed at the end of a line, that line and the next line are joined
together.

To erase a larger amount of text, use the Control-K command, which kills a line at a time. If
Control-K is done at the beginning or middle of a line, it kills all the text up to the end of the line. If
Control-K is done at the end of a line, it joins that line and the next line. If Control-K is done twice,
it kills the rest of the line and the line separator also.

5.4. Files - Saving Your Work

The commands above are sufficient for creating text in the JOVE buffer. The more advanced JOVE
commands just make things easier. But to keep any text permanently you must put it in a file. Files
are the objects which UNIXt uses for storing data for a length of time. To tell JOVE to read text into
a file, choose a filename, such as foo.bar, and type CoX CoR foo.bar<return>. This reads the file
foo.bar so that its contents appear on the screen for editing. You can make changes, and then save
the file by typing CoX CoS (save-file). This makes the changes permanent and actually changes the file
foo.bar. Until then, the changes are only inside JOVE, and the file foo.bar is not really changed. If the
file foo.bar doesn't exist, and you want to create it, read it as if it did exist. When you save your text
with CoX CoS the file will be created.

5.5. Exiting and Pausing - Leaving JOVE

The command CoX C-C (exit-jove) will terminate the JOVE session and return to the shell. If there are
modified but unsaved buffers, JOVE will ask you for confirmation, and you can abort the command,
look at what buffers are modified but unsaved using CoX CoB (list-buffers), save the valuable ones, and
then exit. If what you want to do, on the other hand, is preserve the editing session but return to the
shell temporarily you can (under Berkeley UNIX only) issue the command ESC S (pause-jove), do your
UNIX work within the c-shell, then return to JOVE using the fg command to resume editing at the
point where you paused. For this sort of situation you might consider using an interactive shell (that
is, a shell in a JOVE window) which lets you use editor commands to manipulate your UNIX com
mands (and their output) while never leaving the editor. (The interactive shell feature is described
below.)

5.6. Giving Numeric Arguments to JOVE Commands

Any JOVE command can be given a numeric argument. Some commands interpret the argument as a
repetition count. For example, giving an argument of ten to the C-F command (forward-character)
moves forward ten characters. With these commands, no argument is equivalent to an argument of 1.

Some commands use the value of the argument, but do something peculiar (or nothing) when there is
no argument. For example, ESC G (goto-line) with an argument n goes to the beginning of the n'th
line. But ESC G with no argument doesn't do anything. Similarly, C-K with an argument kills that
many lines, including their line separators. Without an argument, C-K when there is text on the line
to the right of the cursor kills that text; when there is no text after the cursor, C-K deletes the line
separator.

The fundamental way of specifying an argument is to use ESC followed by the digits of the argument,
for example, ESC 123 ESC G to go to line 123. Negative arguments are allowed, although not all of
the commands know what to do with one.

t UNIX is a trademark of AT&T Bell Laboratories.

JOVE Manual for UNIX Users USD:17-7

5.9. Killing and Moving Text

The most common way of moving or copying text with JOVE is to kill it, and get it back again in one
or more places. This is very safe because the last several pieces of killed text are all remembered, and
it is versatile, because the many commands for killing syntactic units can also be used for moving
those units. There are also other ways of moving text for special purposes.

5.10. Deletion and Killing
Most commands which erase text from the buffer save it so that you can get it back if you change
your mind, or move or copy it to other parts of the buffer. These commands are known as kill com
mands. The rest of the commands that erase text do not save it; they are known as delete commands.
The delete commands include CoD and Rubout, which delete only one character at a time, and those
commands that delete only spaces or line separators. Commands that can destroy significant amounts
of nontrivial data generally kill. A command's name and description will use the words kill or delete
to say which one it does.
CoD Delete next character.

Rubout

ESC \
CoX CoO

C-K
CoW

ESCD

ESC Rubout

ESCK
CoX Rubout

5.11. Deletion

Delete previous character.

Delete spaces and tabs around point.

Delete blank lines around the current line.
Kill rest of line or one or more lines.

Kill region (from point to the mark).

Kill word.

Kill word backwards.

Kill to end of sentence.
Kill to beginning of sentence.

The most basic delete commands are CoD and Rubout. CoD deletes the character after the cursor, the
one the cursor is "on top of' or "underneath". The cursor doesn't move. Rubout deletes the charac
ter before the cursor, and moves the cursor back. Line separators act like normal characters when
deleted. Actually, CoD and Rubout aren't always delete commands; if you give an argument, they kill
instead. This prevents you from losing a great deal of text by typing a large argument to a CoD or
Rubout.
The other delete commands are those which delete only formatting characters: spaces, tabs, and line
separators. ESC \ (delete-white-space) deletes all the spaces and tab characters before and after point.
CoX CoO (delete-blank-lines) deletes all blank lines after the current line, and if the current line is
blank deletes all the blank lines preceding the current line as well (leaving one blank line, the current
line).

5.12. Killing by Lines

The simplest kill command is the C-K command. If issued at the beginning of a line, it kills all the
text on the line, leaving it blank. If given on a line containing only white space (blanks and tabs) the
line disappears. As a consequence, if you go to the front of a non-blank line and type two C-K's, the
line disappears completely.

More generally, C-K kills from point up to the end of the line, unless it is at the end of a line. In that
case, it kills the line separator following the line, thus merging the next line into the current one.
Invisible spaces and tabs at the end of the line are ignored when deciding which case applies, so if
point appears to be at the end of the line, you can be sure the line separator will be killed.

C-K with an argument of zero kills all the text before point on the current line.

JOVE Manual for UNIX Users USD:17-9

When the text you are looking for is brought into the buffer, you can stop doing ESC V's and the text
will stay there. It's really just a copy of what's at the front of the ring, so editing it does not change
what's in the ring. And the ring, once rotated, stays rotated, so that doing another C-Y gets another
copy of what you rotated to the front with ESC Y.

If you change your mind about un-killing, C-W gets rid of the un-killed text, even after any number
of ESC V's.

6. Searching
The search commands are useful for finding and moving to arbitrary positions in the buffer in one
swift motion. For example, if you just ran the spell program on a paper and you want to correct
some word, you can use the search commands to move directly to that word. There are two flavors
of search: string search and incremental search. The former is the default flavor-if you want to use
incremental search you must rearrange the key bindings (see below).

6.1. Conventional Search

C-S

C-R

Search forward.

Search backward.

To search for the string "Faa" you type "C-S FOO<return>". If JOVE finds FOO it moves point to
the end of it; otherwise JOVE prints an error message and leaves point unchanged. C-S searches for
ward from point so only occurrences of FOO after point are found. To search in the other direction
use C-R. It is exactly the same as C-S except it searches in the opposite direction, and if it finds the
string, it leaves point at the beginning of it, not at the end as in C-S.

While JOVE is searching it prints the search string on the message line. This is so you know what
JOVE is doing. When the system is heavily loaded and editing in exceptionally large buffers, searches

· can take several (sometimes many) seconds.

JOVE remembers the last search string you used, so if you want to search for the same string you can
type "C-S <return>". If you mistyped the last search string, you can type C-S followed by C-R. C-R,
as usual, inserts the default search string into the minibuffer, and then you can fix it up.

· 6.2. Incremental Search

This search command is unusual in that is is incremental; it begins to search before you have typed
· the complete search string. As you type in the search string, JOVE shows you where it would be
found. When you have typed enough characters to identify the place you want, you can stop.
Depending on what you will do next, you mayor may not need to terminate the search explicitly with
a Return first.

'The command to search is C-S (i-search-forward). C-S reads in characters and positions the cursor at
the first occurrence of the characters that you have typed so far. If you type C-S and then F, the cur
sor moves in the text just after the next "F". Type an "0", and see the cursor move to after the next
"FO". After another "0", the cursor is after the next "FOO". At the same time, the "FOO" has

,echoed on the message line.

If you type a mistaken character, you can rub it out. After the FOO, typing a Rubout makes the "0"
disappear from the message line, leaving only "FO". The cursor moves back in the buffer to the
"FO". Rubbing out the "0" and "F" moves the cursor back to where you started the search.

When you are satisfied with the place you have reached, you can type a Return, which stops search
ing, leaving the cursor where the search brought it. Also, any command not specially meaningful in
searches stops the searching and is then executed. Thus, typing C-A would exit the search and then
move to the beginning of the line. Return is necessary only if the next character you want to type is a
printing character, Rubout, Return, or another search command, since those are the characters that
have special meanings inside the search.

'iometimes you search for "FOO" and find it, but not the one you hoped to find. Perhaps there is a
lecond FOO that you forgot about, after the one you just found. Then type another C-S and the

JOVE Manual for UNIX Users USD:17-11

Rubout
Return

Period

! or P

C-R or R

C-W

U

to skip to the next FOO without replacing this one.
to stop without doing any more replacements.

to replace this FOO and then stop.

to replace all remaining FOO's without asking.

to enter a recursive editing level, in case the FOO needs to be edited rather than just
replaced with a BAR. When you are done, exit the recursive editing level with CoX
C-C and the next FOO will be displayed.

to delete the FOO, and then start editing the buffer. When you are finished editing
whatever is to replace the FOO, exit the recursive editing level with C-X C-C and the
next FOO will be displayed.

move to the last replacement and undo it.
Another alternative is using replace-in-region which is just like replace-string except it searches only
within the region.

8. Commands for English Text

JOVE has many commands that work on the basic units of English text: words, sentences and para
graphs.

8.1. Word Commands

JOVE has commands for moving over or operating on words. By convention, they are all ESC com
mands.
ESC F
ESCB

ESCD

ESC Rubout

Move Forward over a word.

Move Backward over a word.

Kill forward to the end of a word.

Kill backward to the beginning of a word.

Notice how these commands form a group that parallels the character- based commands, C-F, C-B,
C-D, and Rubout.

The commands ESC F and ESC B move forward and backward over words. They are thus analogous
to Control-F and Control-B, which move over single characters. Like their Control- analogues, ESC F
and ESC B move several words if given an argument. ESC F with a negative argument moves back
ward like ESC B, and ESC B with a negative argument moves forward. Forward motion stops right
after the last letter of the word, while backward motion stops right before the first letter.
It is easy to kill a word at a time. ESC D kills the word after point. To be precise, it kills everything
from point to the place ESC F would move to. Thus, if point is in the middle of a word, only the
part after point is killed. If some punctuation comes after point, and before the next word, it is killed
along with the word. If you wish to kill only the next word but not the punctuation, simply do ESC F
to get to the end, and kill the word backwards with ESC Rubout. ESC D takes arguments just like
ESCF.
ESC Rubout kills the word before point. It kills everything from point back to where ESC B would
move to. If point is after the space in ··FOO, BAR··, then "FOO, .. is killed. If you wish to kill just
··FOO··, then do a ESC B and a ESC D instead of a ESC Rubout.

8.2. Sentence Commands

The JOVE commands for manipulating sentences and paragraphs are mostly ESC commands, so as to
resemble the word-handling commands.

ESC A Move back to the beginning of the sentence.

JOVE Manual for UNIX Users USD:17-13

Normally ESC J figures out the indent of the paragraph and uses that same indent when filling. If
you want to change the indent of a paragraph you set left-margin to the new position and type C
U ESC J. ftll-paragraph, when supplied a numeric argument, uses the value of left-margin.

If you know where you want to set the right margin but you don't know the actual value, move to
where you want to set the value and use the right-margin-here command. left-margin-here does the
same for the left-margin variable.

8.6. Case Conversion Commands

ESC L

ESCU

ESCC

Convert following word to lower case.

Convert following word to upper case.

Capitalize the following word.

The word conversion commands are most useful. ESC L converts the word after point to lower case,
moving past it. Thus, successive ESC L's convert successive words. ESC U converts to all capitals
instead, while ESC C puts the first letter of the word into upper case and the rest into lower case. All
these commands convert several words at once if given an argument. They are especially convenient
for converting a large amount of text from all upper case to mixed case, because you can move
through the test using ESC L, ESC U or ESC C on each word as appropriate.

When given a negative argument, the word case conversion commands apply to the appropriate
number of words before point, but do not move point. This is convenient when you have just typed
a word in the wrong case. You can give the case conversion command and continue typing.

If a word case conversion command is given in the middle of a word, it applies only to the part of the
word which follows the cursor, treating it as a whole word.

The other case conversion functions are case-region-upper and case-region-lower, which convert every
thing between point and mark to the specified case. Point and mark remain unchanged.

8.7. Commands for Fixing Typos

In this section we describe the commands that are especially useful for the times when you catch a
mistake on your text after you have made it, or change your mind while composing text on line.

Rubout Delete last character.

ESC Rubout Kill last word.

COX Rubout
CoT

CoX CoT

ESC Minus ESC L

ESC Minus ESC U

ESC Minus ESC C

8.8. Killing Your Mistakes

Kill to beginning of sentence.

Transpose two characters.

Transpose two lines.

Convert last word to lower case.

Convert last word to upper case.

Convert last word to lower case with capital initial.

The Rubout command is the most important correction command. When used among printing (self
inserting) characters, it can be thought of as canceling the last character typed.

When your mistake is longer than a couple of characters, it might be more convenient to use ESC
Rubout or CoX Rubout. ESC Rubout kills back to the start of the last word, and CoX Rubout kills
back to the start of the last sentence. CoX Rubout is particularly useful when you are thinking of
what to write as you type it, in case you change your mind about phrasing. ESC Rubout and CoX
Rubout save the killed text for C-Y and ESC Y to retrieve.

ESC Rubout is often useful even when you have typed only a few characters wrong, if you know you
are confused in your typing and aren't sure what you typed. At such a time, you cannot correct with
Rubout except by looking at the screen to see what you did. It requires less thought to kill the whole

JOVE Manual for UNIX Users USD:17-15

If you wish to save the file and make your changes permanent, type CoX CoS. After the save is
finished, CoX CoS prints the filename and the number of characters and lines that it wrote to the file.
If there are no changes to save (no asterisk at the end of the mode line), the file is not saved; other
wise the changes saved and the asterisk at the end of the mode line will disappear.

What if you want to create a file? Just visit it. JOVE prints (New file) but aside from that behaves as if
you had visited an existing empty file. If you make any changes and save them, the file is created. If
you visit a nonexistent file unintentionally (because you typed the wrong filename), go ahead and visit
the file you meant. If you don't save the unwanted file, it is not created.

If you alter one file and then visit another in the same buffer, JOVE offers to save the old one. If you
answer YES, the old file is saved; if you answer NO, all the changes you have made to it since the last
save are lost. You should not type ahead after a file visiting command, because your type-ahead
might answer an unexpected question in a way that you would regret.
Sometimes you will change a buffer by accident. Even if you undo the effect of the change by editing,
JOVE still knows that "the buffer has been changed". You can tell JOVE to pretend that there have
been no changes with the ESC - command (make-buffer-unmodified). This command simply clears
the "modified" flag which says that the buffer contains changes which need to be saved. Even if the
buffer really is changed JOVE will still act as if it were not.

If JOVE is about to save a file and sees that the date of the version on disk does not match what JOVE

last read or wrote, JOVE notifies you of this fact, and asks what to do, because this probably means
that something is wrong. For example, somebody else may have been editing the same file. If this is
so, there is a good chance that your work or his work will be lost if you don't take the proper steps.
You should first find out exactly what is going on. If you determine that somebody else has modified
the file, save your file under a different filename and then DIFF the two files to merge the two sets of
changes. (The "patch" command is useful for applying the results of context diffs directly). Also get
in touch with the other person so that the files don't diverge any further.

9.2. How to Undo Drastic Changes to a File
If you have made several extensive changes to a file and then change your mind about them, and you
haven't yet saved them, you can get rid of them by reading in the previous version of the file. You
can do this with the CoX C-V command, to visit the unsaved version of the file.

9.3. Recovering from system/editor crashes

JOVE does not have Auto Save mode, but it does provide a way to recover your work in the event of
a system or editor crash. JOVE saves information about the files you're editing every so many
changes to a buffer to make recovery possible, Since a relatively small amount of information is
involved it's hardly even noticeable when JOVE does this, The variable "sync-frequency" says how
often to save the necessary information, and the default is every 50 changes. 50 is a very reasonable
number: if you are writing a paper you will not lose more than the last 50 characters you typed,
which is less than the average length of a line.

9.4. Miscellaneous File Operations

ESC X write-file <file><return> writes the contents of the buffer into the file <file>, and then visits
that file. It can be thought of as a way of "changing the name" of the file you art> visiting, Unlike C
X CoS, write-file saves even if the buffer has not been changed. CoX CoW is another way of getting
this command.

ESC X insert-file <file><return> inserts the contents of <file> into the buffer at point, leaving point
unchanged before the contents. You can also use CoX C-I to get this command.
ESC X write-region <file><return> writes the region (the text between point and mark) to the
specified file. It does not set the visited filename. The buffer is not changed.

ESC X append-region <file><return> appends the region to <file>. The text is added to the end of
<file>.

JOVE Manual for UNIX Users USD:17-l7

error. When this happens you will want to kill some buffers with the C-X K (delete-buffer) command.
You can kill the buffer FOO by doing C-X K FOO<return>. If you type C-X K <return> JOVE will
kill the previously selected buffer. If you try to kill a buffer that needs saving JOVE will ask you to
confirm it.

If you need to kill several buffers, use the command kill-same-buffers. This prompts you with the
name of each buffer and asks for confirmation before killing that buffer.

11. Controlling the Display

Since only part of a large file will fit on the screen, JOVE tries to show the part that is likely to be
interesting. The display control commands allow you to see a different part of the file.

C-L

C-V

ESC V

C-Z

ESCZ

Reposition point at a specified vertical position, OR clear and redraw the screen with
point in the same place.

Scroll forwards (a screen or a few lines).

Scroll backwards.

Scroll forward some lines.

Scroll backwards some lines.

The terminal screen is rarely large enough to display all of your file. If the whole buffer doesn't fit on
the screen, JOVE shows a contiguous portion of it, containing point. It continues to show approxi
mately the same portion until point moves outside of what is displayed; then JOVE chooses a new por
tion centered around the new point. This is JOVE's guess as to what you are most interested in seeing,
but if the guess is wrong, you can use the display control commands to see a different portion. The
available screen area through which you can see part of the buffer is called the window, and the choice
of where in the buffer to start displaying is also called the window. (When there is only one window,
it plus the mode line and the input line take up the whole screen).

First we describe how JOVE chooses a new window position on its own. The goal is usually to place
point half way down the window. This is controlled by the variable scroll-step, whose value is the
number of lines above the bottom or below the top of the window that the line containing point is
placed. A value of 0 (the initial value) means center point in the window.

The basic display control command is C-L (redraw-display). In its simplest form, with no argument,
it tells JOVE to choose a new window position, centering point half way from the top as usual.

C-L with a positive argument chooses a new window so as to put point that many lines from the top.
An argument of zero puts point on the very top line. Point does not move with respect to the text;
rather, the text and point move rigidly on the screen.

If point stays on the same line, the window is first cleared and then redrawn. Thus, two C-L's in a
row are guaranteed to clear the current window. ESC C-L will clear and redraw the entire screen.

The scrolling commands C-V, ESC V, C-Z, and ESC Z, let you move the whole display up or down a
few lines. C-V (next-page) with an argument shows you that many more lines at the bottom of the
screen, moving the text and point up together as C-L might. C-V with a negative argument shows
you more lines at the top of the screen, as does ESC V (previous-page) with a positive argument.

To read the buffer a window at a time, use the C-V command with no argument. It takes the last line
at the bottom of the window and puts it at the top, followed by nearly a whole window of lines not
visible before. Point is put at the top of the window. Thus, each C-V shows the "next page of texf" ,
except for one line of overlap to provide context. To move backward, use ESC V without an argu
ment, which moves a whole window backwards (again with a line of overlap).

C-Z and ESC Z scroll one line forward and one line backward, respectively. These are convenient for
moving in units of lines without having to type a numeric argument.

JOVE Manual for UNIX Users USD:17-l9

If you have the same buffer in both windows, you must beware of trying to visit a different file in one
of the windows with c-x C-V, because if you bring a new file into this buffer, it will replaced the old
file in both windows. To view different files in different windows, you must switch buffers in one of
the windows first (with C-X B or C-X C-F, perhaps).

A convenient "combination" command for viewing something in another window is C-X 4 (window
find). With this command you can ask to see any specified buffer, file or tag in the other window.
Follow the C-X 4 with either B and a buffer name, F and a filename, or T and a tag name. This
switches to the other window and finds there what you specified. If you were previously in one
window mode, multiple-window mode is entered. C-X 4 B is similar to C-X 2 C-X B. C-X 4 F is
similar to C-X 2 C-X C-F. C-X 4 T is similar to C-X 2 C-X T. The difference is one of efficiency,
and also that C-X 4 works equally well if you are already using two windows.

12, Processes Under JOVE

. Another feature in JOVE is its ability to interact with UNIX in a useful way. You can run other UNIX
commands from JOVE and catch their output in JOVE buffers. In this chapter we will discuss the
different ways to run and interact with UNIX commands.

12.1. Non-interactive UNIX commands

To run a UNIX command from JOVE just type "C-X !" followed by the name of the command ter
minated with Return. For example, to get a list of all the users on the system, you do:

C-X ! who<return>

Then JOVE picks a reasonable buffer in which the output from the command will be placed. E.g.,
"who" uses a buffer called who; "ps alx" uses ps; and "fgrep -n foo *.c" uses fgrep. If JOVE wants to
use a buffer that already exists it first erases the old contents. If the buffer it selects holds a file, not
output from a previous shell command, you must first delete that buffer with C-X K.

Once JOVE has picked a buffer it puts that buffer in a window so you can see the command's output
as it is running. If there is only one window JOVE will automatically make another one. Otherwise,
JOVE tries to pick the most convenient window which isn't the current one.

It's not a good idea to type anything while the command is running. There are two reasons for this:

. (i) JOVE won't see the characters (thus won't execute them) until the command finishes, so you may
forget what you've typed.

(ii) Although JOVE won't know what you've typed, it will know that you've typed something, and
then it will try to be "smart" and not update the display until it's interpreted what you've typed.
But, of course, JOVE won't interpret what you type until the UNIX command completes, so
you're left with the uneasy feeling you get when you don't know what the hell the computer is
doing*.

If you want to interrupt the command for some reason (perhaps you mistyped it, or you changed your
mind) you can type C-]. Typing this inside JOVE while a process is running is the same as typing C-C
when you are outside JOVE, namely the process stops in a hurry.

When the command finishes, JOVE puts you back in the window in which you started. Then it prints
a message indicating whether or not the command completed successfully in its (the command's)
opinion. That is, if the command had what it considers an error (or you interrupt it with C-)) JOVE
will print an appropriate message.

·This is a bug and should be fixed, but probably won't be for a while.

JOVE Manual for UNIX Users USD:17-21

type ESC X list-processes<return> to get a list of each process and its state. If your process died
abnormally. list-processes may help you figure out why.

12.6. How to Run a Shell in a Window

Type ESC X i-sheik return> to start up a shell. As with C-X !, JOVE will create a buffer, called
shell-I, and select a window for this new buffer. But unlike C-X ! you will be left in the new win
dow. Now, the shell process is said to be attached to shell-I, and it is considered an i-process buffer.

13. Directory Handling

To save having to use absolute pathnames when you want to edit a nearby file JOVE allows you to
move around the UNIX filesystem just as the c-shell does. These commands are:

cd dir

pushd [dir]

popd

dirs

Change to the specified directory.

Like cd, but save the old directory on the directory stack. With no directory argu
ment, simply exchange the top two directories on the stack and cd to the new top.

Take the current directory off the stack and cd to the directory now at the top.

Display the contents of the directory stack.

The names and behavior of these commands were chosen to mimic those in the c-shell.

14. Editing C Programs

· This section details the support provided by JOVE for working on C programs.

14.1. Indentation Commands

To save having to layout C programs "by hand", JOVE has an idea of the correct indentation ofa line,
· based on the surrounding context. When you are in C Mode, JOVE treats tabs specially - typing a tab
at the beginning of a new line means "indent to the right place". Closing braces are also handled spe
cially, and are indented to match the corresponding open brace.

14.2. Parenthesis and Brace Matching

To check that parentheses and braces match the way you think they do, turn on Show Match mode
(ESC X show-match-mode). Then, whenever you type a close brace or parenthesis, the cursor moves
momentarily to the matching opener, if it's currently visible. If it's not visible, JOVE displays the line
containing the matching opener on the message line.

14.3. C Tags

Often when you are editing a C program, especially someone else's code, you see a function call and
wonder what that function does. You then search for the function within the current file and if
you're lucky find the definition, finally returning to the original spot when you are done. However, if
are unlucky, the function turns out to be external (defined in another file) and you have to suspend
· the edit, grep for the function name in every .c that might contain it, and finally visit the appropriate
file.

To avoid this diversion or the need to remember which function is defined in which file, Berkeley
UNIX has a program called ctags(l), which takes a set of source files and looks for function

· definitions, producing a file called tags as its output.

JOVE has a command called C-X T (find-tag) that prompts you for the name of a function (a tag),
looks up the tag reference in the previously constructed tags file, then visits the file containing that tag
in a new buffer, with point positioned at the definition of the function. There is another version of
.this command, namely find-tag-at-point, that uses the identifier at point.

So, when you've added new functions to a module, or moved some old ones around, run the ctags
.program to regenerate the tags file. JOVE looks in the file specified in the tag-file variable. The default

JOVE Manual for UNIX Users USD:17-23

15.1.3. Lisp mode
This mode is analogous to C Mode, but performs the indentation needed to layout Lisp programs
properly. Note also the grind-s-expr command that prettyprints an s-expression and the kill-mode
expression command.

15.2. Minor Modes
In addition to the major modes, JOVE has a set of minor modes. These are as follows:

15.2.1. Auto Indent
In this mode, JOVE indents each line the same way as that above it. That is, the Return key in this
mode acts as the Linefeed key ordinarily does.

15.2.2. Show Match
Move the cursor momentarily to the matching opening parenthesis when a closing parenthesis is
typed.

15.2.3. Auto Fill
In Auto Fill mode, a newline is automatically inserted when the line length exceeds the right margin.
This way, you can type a whole paper without having to use the Return key.

15.2.4. Over Write
, In this mode, any text typed in will replace the previous contents. (The default is for new text to be
inserted and "push" the old along.) This is useful for editing an already-formatted diagram in which

, you want to change some things without moving other things around on the screen.

,15.2.5. Word Abbrev
In this mode, every word you type is compared to a list of word abbreviations; whenever you type an

,abbreviation, it is replaced by the text that it abbreviates. This can save typing if a particular word
or phrase must be entered many times. The abbreviations and their expansions are held in a file that

,looks like:

abbrev:phrase

This file can be set up in your -/,joverc with the read-word-abbrev-:file command. Then, whenever you
are editing a buffer in Word Abbrev mode, JOVE checks for the abbreviations you've given. See also
'the commands read-word-abbrev-file, write-word-abbrev-file, edit-word-abbrevs, define-global-word
abbrev, define-mode-word-abbrev, and bind-macro-to-word-abbrev, and the variable auto-case-abbrev.

15.3. Variables
. JOVE can be tailored to suit your needs by changing the values of variables. A JOVE variable can be
given a value with the set command, and its value displayed with the print command.

'The variables JOVE understands are listed along with the commands in the alphabetical list at the end
of this document.

15.4. Key Re-binding
'Many of the commands built into JOVE are not bound to specific keys. The command handler in
JOVE is used to invoke these commands and is activated by the execute-extended-command command
(ESC X). When the name of a command typed in is unambiguous, that command will be executed.
Since it is very slow to have to type in the name of each command every time it is needed, JOVE

.makes it possible to bind commands to keys. When a command is bound to a key any future hits on
that key will invoke that command. All the printing characters are initially bound to the command
self-insert. Thus, typing any printing character causes it to be inserted into the text. Any of the

JOVE Manual for UNIX Users USD:17-25

16. Alphabetical List of Commands and Variables

16.1. Prefix-l (E~cape)

This reads the next character and runs a command based on the character typed. If you wait for
more than a second or so before typing the next character, the message "ESC" will be printed on the
message line to remind you that JOVE is waiting for another character.

16.2. Prefix-2 (C-X)

This reads the next character and runs a command based on the character typed. If you wait for
more than a second or so before typing another character, the message "C-X" will be printed on the
message line to remind you that JOVE is waiting for another character.

16.3. Prefix-3 (Not Bound)

This reads the next character and runs a command based on the character typed. If you wait for
more than a second or so before typing the next character, the character that invoked Prefix-3 will be
printed on the message line to remind you that JOVE is waiting for another one.

16.4. allow-AS-and-AQ (variable)

This variable, when set, tells JOVE that your terminal does not need to use the characters C-S and C-Q
for flow control, and that it is okay to bind things to them. This variable should be set depending
upon what kind of terminal you have.

16.5. allow-bad-filenames (variable)

If set, this variable permits filenames to contain "bad" characters such as those from the set
*&O/O!,,'[J{). These files are harder to deal with, because the characters mean something to the shell.
The default value is "off'.

16.6. append-region (Not Bound)

This appends the region to a specified file. If the file does not already exist it is created.

16.7. apropos (Not Bound)

This types out all the commands, variables and macros with the specific keyword in their names. For
each command and macro that contains the string, the key sequence that can be used to execute the
command or macro is printed; with variables, the current value is printed. So, to find all the com
mands that are related to windows, you type "ESC X apropos window<Return>".

16.8. auto-case-abbrev (variable)

When this variable is on (the default), word abbreviations are adjusted for case automatically. For
example, if "jove" were the abbreviation for "jonathan's own version of emacs", then typing "jove"
would give you "jonathan's own version of emacs", typing "Jove" would give you "Jonathan's own
version of emacs", and typing "JOVE" would give you "Jonathan's Own Version of Emacs". When
this variable is "off', upper and lower case are distinguished when looking for the abbreviation, Le., in
the example above, "JOVE" and "Jove" would not be expanded unless they were defined separately.

16.9. auto-execute-command (Not Bound)

This tells JOVE to execute a command automatically when a file whose name matches a specified pat
tern is visited. The first argument is the command you want executed and the second is a regular
expression pattern that specifies the files that apply. For example, if you want to be in show-match
mode when you edit C source files (that is, files that end with ".c" or ".h") you can type

ESC X auto-execute-command show-match-mode . *.[ch)$

JOVE Manual for UNIX Users USD:17-27

16.20. beginning-of-line (C-A)

This moves point to the beginning of the current line.

16.21. beginning-of-window (ESC ,)

This moves point to the beginning of the current window. The sequence "ESC," is the same as "ESC
<" (beginning of file) except without the shift key on the "<", and can thus can easily be remembered.

16.22. bind-to-key (Not Bound)

This attaches a key to an internal JOVE command so that future hits on that key invoke that com
mand. For example, to make "C-W" erase the previous word, you type "ESC X bind-to-key kill
previous-word C-W".

16.23. bind-macro-to-key (Not Bound)

This is like bind-lo-key except you use it to attach keys to named macros.

16.24. bind-macro-to-word-abbrev (Not Bound)

This command allows you to bind a macro to a previously defined word abbreviation. Whenever you
type the abbreviation, it will first be expanded as an abbreviation, and then the macro will be exe
cuted. Note that if the macro moves around, you should set the mark first (C-@) and then exchange
the point and mark last (C-X C-X).

16.25. buffer-position (Not Bound)

This displays the current file name, current line number, total number of lines, percentage of the way
through the file, and the position of the cursor in the current line.

16.26. c-mode (Not Bound)

This turns on C mode in the currently selected buffer. This is one of currently four possible major
modes: Fundamental, Text, C, Lisp. When in C or Lisp mode, Tab, "} ", and ")" behave a little
differently from usual: They are indented to the "right" place for C (or Lisp) programs. In JOVE, the
"right" place is simply the way the author likes it (but I've got good taste).

16.27. case-character-capitalize (Not Bound)

This capitalizes the character after point, i.e., the character undo the cursor. If a negative argument is
supplied that many characters before point are upper cased.

16.28. case-ignore-search (variable)

This variable, when set, tells JOVE to treat upper and lower case as the same when searching. Thus
"jove" and "JOVE" would match, and "JoVe" would match either. The default value of this variable
is "off'·.

16.29. case-region-lower (Not Bound)

This changes all the upper case letters in the region to their lower case equivalent.

16.30. case-region-upper (Not Bound)

This changes all the lower case letters in the region to their upper case equivalent.

16.31. case-word-capitalize (ESC C)

This capitalizes the current word by making the current letter upper case and making the rest of the
word lower case. Point is moved to the end of the word. If point is not positioned on a word it is
first moved forward to the beginning of the next word. If a negative argument is supplied that many
words before point are capitalized. This is useful for correcting the word just typed without having to

JOVE Manual for UNIX Users USD:17-29

16.41. current-error (Not Bound)

This moves to the current error in the list of parsed errors. See the next-error and previous-error com-
mands for more detailed information. .

16.42. date (Not Bound)

This prints the date on the message line.

16.43. define-mode-word-abbrev (Not Bound)

This defines a mode-specific abbreviation.

16.44. define-global-word-abbrev (Not Bound)

This defines a global abbreviation.

16.45. delete-blank-lines (C-X CoO)

This deletes all the blank lines around point. This is useful when you previously opened many lines
with "C-O" and now wish to delete the unused ones.

16.46. delete-buffer (C-X K)

This deletes a buffer and frees up all the memory associated with it. Be careful! Once a buffer has
been deleted it is gone forever. JOVE will ask you to confirm if you try to delete a buffer that needs
saving. This command is useful for when JOVE runs out of space to store new buffers.

16.47. delete-macro (Not Bound)

This deletes a macro from the list of named macros. It is an error to delete the keyboard-macro.
Once the macro is deleted it is gone forever. If you are about to save macros to a file and decide you
don't want to save a particular one, delete it.

16.48. delete-next-character (C-D)

This deletes the character that's just after point (that is, the character under the cursor). If point is at
the end of a line, the line separator is deleted and the next line is joined with the current one.

16.49. delete-other-windows (C-X 1)

This deletes all the other windows except the current one. This can be thought of as going back into
One Window mode .

. 16.50. delete-previous-character (Rubout)

This deletes the character that's just before point (that is, the character before the cursor). If point is
at the beginning of the line, the line separator is deleted and that line is joined with the previous one.

16.51. delete-white-space (ESC \)

This deletes all the Tabs and Spaces around point.

16.52. delete-current-window (C-X D)

This deletes the current window and moves point into one of the remaining ones. It is an error to try
to delete the only remaining window.

16.53. describe-bindings (Not Bound)

This types out a list containing each bound key and the command that gets invoked every time that
key is typed. To make a wall chart of JOVE commands, set send-typeout-to-bufJer to "on" and JOVE

will store the key bindings in a buffer which you can save to a file and then print.

JOVE Manual for UNIX Users USD:17-31

16.65. digit-8 (Not Bound)
This pretends you typed "ESC 8". This is useful for terminals that have keypads that send special
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This
can save having type "ESC" when you want to specify an argument.

16.66. digit-9 (Not Bound)
This pretends you typed "ESC 9". This is useful for terminals that have keypads that send special
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This
can save having type "ESC" when you want to specify an argument.

16.67. digit-O (Not Bound)
This pretends you typed "ESC 0". This is useful for terminals that have keypads that send special
sequences for numbers typed on the keypad as opposed to numbers typed from the keyboard. This
can save having type "ESC" when you want to specify an argument.

16.68. dirs (Not Bound)
This prints out the directory stack. See the "cd", "pushd", "popd" commands for more info.

16.69. disable-biff (variable)
When this is set, JOVE disables biff when you're editing and enables it again when you get out of JOVE,

or when you pause to the parent shell or push to a new shell. (This means arrival of new mail will not
be immediately apparent but will not cause indiscriminate writing on the display). The default is
"off".

16.70. dstop-process (Not Bound)
Send the "dsusp" character to the current process. This is the character that suspends a process on
the next read from the terminal. Most people have it set to CoY. This only works if you have the
interactive process feature, and if you are in a buffer bound to a process.

16.71. edit-word-abbrevs (Not Bound)
This creates a buffer with a list of each abbreviation and the phrase it expands into, and enters a

"recursive edit to let you change the abbreviations or add some more. The format of this list is
"abbreviation:phrase" so if you add some more you should follow that format. It's probably simplest
just to copy some already existing abbreviations and edit them. When you are done you type "CoX
C-C" to exit the recursive edit.

"16.72. end-of-file (ESC »
This moves point forward to the end of the buffer. This sometimes prints the "Point Pushed" mes
sage. If the end of the buffer isn't on the screen JOVE will set the mark so you can go back to where
you were if you want.

16.73. end-of-line (C-E)
This moves point to the end of the current line. If the line is too long to fit on the screen JOVE will
scroll the line to the left to make the end of the line visible. The line will slide back to its normal
position when you move backward past the leftmost visible character or when you move off the line
altogether. "

16.74. end-of-window (ESC .)
This moves point to the last character in the window.

JOVE Manual for UNIX Users USD:17-33

it will add one automatically.

16.85. fill-comment (Not Bound)

This command fills in your C comments to make them pretty and readable. This filling is done
according the variable comment-format.

1*
* the default format makes comments like this.
*1

This can be changed by changing the format variable. Other languages may be supported by changing
the format variable appropriately. The formatter looks backwards from dot for an open comment
symbol. If found. all indentation is done relative the position of the first character of the open sym
bol. If there is a matching close symbol, the entire comment is formatted. If not. the region between
dot and the open symbol is reformatted.

16.86. fill-llaragraph (ESC J)

This rearranges words between lines so that all the lines in the current paragraph extend as close to
the right margin as possible, ensuring that none of the lines will be greater than the right margin. The
default value for right-margin is 78, but can be changed with the set and right-margin-here com
mands. JOVE has a complicated algorithm for determining the beginning and end of the paragraph.
In the normal case JOVE will give all the lines the same indent as they currently have, but if you wish
to force a new indent you can supply a numeric argument to fill-paragraph (e.g., by typing C-U ESC J)
and JOVE will indent each line to the column specified by the left-margin variable. See also the left
margin variable and left-margin-here command.

16.87. fill-region (Not Bound)

This is like fill-paragraph, except it operates on a region instead of just a paragraph.

16.88. filter-region (Not Bound)

This sends the text in the region to a UNIX command, and replaces the region with the output from
that command. For example, if you are lazy and don't like to take the time to write properly
indented C code, you can put the region around your C file and filter-region it through cb, the UNIX

. C beautifier. If you have a file that contains a bunch of lines that need to be sorted you can do that
from inside JOVE too, by filtering the region through the sort UNIX command. Before output from
the command replaces the region JOVE stores the old text in the kill ring, so if you are unhappy with
the results you can easily get back the old text with "C-Y".

16.89. find-file (C-X C-F)

This visits a file into its own buffer and then selects that buffer. If you've already visited this file in
another buffer, that buffer is selected. If the file doesn't yet exist, JOVE will print "(New file)" so that
you know.

16.90. find-tag (C-X T)

This finds the file that contains the specified tag. JOVE looks up tags by default in the "tags" file in the
current directory. You can change the default tag name by setting the tag-file variable to another
name. If you specify a numeric argument to this command, you will be prompted for a tag file. This
is a good way to specify another tag file without changing the default. If the tag cannot be found the
error is reported and point stays where it is.

16.91. find-tag-at-~oint (Not Bound)

This finds the file that contains the tag that point is currently on. See find-tag.

JOVE Manual for UNIX Users USD:17-35

16.104. i-search-forward (Not Bound)

Incremental search. Like search-forward except that instead of prompting for a string and searching
for that string all at once, it accepts the string one character at a time. After each character you type
as part of the search string, it searches for the entire string so far. When you like what it found, type
the Return key to finish the search. You can take back a character with Rubout and the search will
back up to the position before that character was typed. C-G aborts the search.

16.105. i-search-reverse (Not Bound)

Incremental search. Like search-reverse except that instead of prompting for a string and searching
for that string all at once, it accepts the string one character at a time. After each character you type
as part of the search string, it searches for the entire string so far. When you like what it found, type
the Return key to finish the search. You can take back a character with Rubout and the search will
back up to the position before that character was typed. C-G aborts the search.

16.106. insert-file (C-X C-I)

This inserts a specified file into the current buffer at point. Point is positioned at the beginning of the
inserted file.

16.107. internal-tabstop (variable)

The number of spaces JOVE should print when it displays a tab character. The default value is 8.

16.108. interrupt-process (Not Bound)

This sends the interrupt character (usually C-C) to the interactive process in the current buffer. This
is only for versions of JOVE that have the interactive processes feature. This only works when you are
inside a buffer that's attached to a process.

16.109. i-shell (Not Bound)

This starts up an interactive shell in a window. JOVE uses "shell-I" as the name of the buffer in which
the interacting takes place. See the manual for information on how to use interactive processes.

16.IIO. i-shell-command (Not Bound)

This is like shell-command except it lets you continue with your editing while the command is run
ning. This is really useful for long running commands with sporadic output. See the manual for
information on how to use interactive processes.

16.1II. kill-next-word (ESC D)

This kills the text from point to the end of the current or next word.

16.II2. kill-previous-word (ESC Rubout)

This kills the text from point to the beginning of the current or previous word.

16.113. kill-process (Not Bound)

This command prompts for a buffer name or buffer number (just as select-buffer does) and then sends
the process in that buffer a kill signal (9).

16.114. kill-region (C-W)

This deletes the text in the region and saves it on the kill ring. Commands that delete text but save it
on the kill ring all have the word "kill" in their names. Type "C-Y" to yank back the most recent kill.

JOVE Manual for UNIX Users USD:17-37

column is the name of the file that's attached to the buffer. In this case, both Minibuf and
commands. doc have been changed but not yet saved. In fact Minibuf won't be saved since it's an
internal JOVE buffer that I don't even care about.

16.124. list-processes (Not Bound)
This makes a list somewhat like "list-buffers" does, except its list consists of the current interactive
processes. Right now the list looks like this:

Buffer Status Command name

shell-l Running i-shell
fgrep Done fgrep -n Buffer *.c

The first column has the name of the buffer to which the process is attached. The second has the
status of the process; if a process has exited normally the status is "Done" as in fgrep; if the process
exited with an error the status is "Exit N" where N is the value of the exit code; if the process was
killed by some signal the status is the name of the signal that was used; otherwise the process is run
ning. The last column is the name of the command that is being run.

16.125. mailbox (variable)
Set this to the full pathname of your mailbox. JOVE will look here to decide whether or not you have
any unread mail. This defaults to lusrlspool/mail/$USER, where $USER is set to your login name.

16.126. mail-check-frequency (variable)

This is how often (in seconds) JOVE should check your mailbox for incoming mail. See also the mail
box and disable-bifJ variables.

16.127. make-backup-files (variable)
If this variable is set, then whenever JOVE writes out a file, it will move the previous version of the
file (if there was one) to "#filename". This is often convenient if you save a file by accident. The
default value of this variable is "off'. Note: this is an optional part of JOVE, and your guru may not
have it enabled, so it may not work.

16.128. make-buffer-unmodified (ESC 1
This makes JOVE think the selected buffer hasn't been changed even if it has. Use this when you
accidentally change the buffer but don't want it considered changed. Watch the mode line to see the
* disappear when you use this command.

16.129. make-macro-interactive (Not Bound)

This command is meaningful only while you are defining a keyboard macro. Ordinarily, when a com
mand in a macro definition requires a trailing text argument (file name, search string, etc.), the argu
ment you supply becomes part of the macro definition. If you want to be able to supply a different
argument each time the macro is used, then while you are defining it, you should give the make
macro-interactive command just before typing the argument which will be used during the definition
process. Note: you must bind this command to a key in order to use it; you can't say ESC X make
macro-interactive.

16.130. mark-threshold (variable)
This variable contains the number of lines point may move by before the mark is set. If, in a search
or something, point moves by more than this many lines, the mark is set so that you may return
easily. The default value of this variable is 22 (one screenful, on most terminals).

JOVE Manual for UNIX Users U5D:17-39

16.136. name-keyboard-macro (Not Bound)
This copies the keyboard macro and gives it a name freeing up the keyboard macro so you can define
some more. Keyboard macros with their own names can be bound to keys just like built in com
mands can. See the read-macros-file-file and write-macros-to-file commands.

16.137. newline (Return)

This divides the current line at point moving all the text to the right of point down onto the newly
created line. Point moves down to the beginning of the new line.

16.138. newline-and-backup (C-O)
This divides the current line at point moving all the text to the right of point down onto the newly
created line. The difference between this and "newline" is that point does not move down to the
beginning of the new line.

16.139. newline-and-indent (LineFeed)

This behaves the same was as Return does when in Auto Indent mode. This makes Auto Indent
mode obsolete but it remains in the name of backward compatibility.

16.140. next-error (C-X CoN)

This moves to the next error in the list of errors that were parsed with parse-errors or parse-special
errors. In one window the list of errors is shown with the current one always at the top. In another
window is the file that contains the error. Point is positioned in this window on the line where the
error occurred.

16.141. next-line (C-N)

This moves down to the next line.

16.142. next-page (C-Y)

This displays the next page of the buffer by taking the bottom line of the window and redrawing the
window with it at the top. If there isn't another page in the buffer JOVE rings the bell. If a numeric
argument is supplied the screen is scrolled up that many lines; if the argument is negative the screen
is scrolled down.

16.143. next-window (C-X N)
This moves into the next window. Windows live in a circular list so when you're in the bottom win
dow and you try to move to the next one you are moved to the top window. It is an error to use this
command with only one window. .

16.144. number-lines-in-window (Not Bound)

This displays the line numbers for each line in the buffer being displayed. The number isn't actually
part of the text; it's just printed before the actual buffer line is. To turn this off you run the com
mand again; it toggles.

16.145. over-write-mode (Not Bound)

This turns Over Write mode on (or off if it's currently on) in the selected buffer. When on, this mode
changes the way the self-inserting characters work. Instead of inserting themselves and pushing the
rest of the line over to the right, they replace or over-write the existing character. Also, Rubout
replaces the character before point with a space instead of deleting it. When Over Write mode is on
"OvrWr' is displayed on the mode line.

JOVE Manual for UNIX Users USD:17-41

16.157. previous-page (ESC V)

This displays the previous page of the current buffer by taking the top line and redrawing the window
with it at the bottom. If a numeric argument is supplied the screen is scrolled down that many lines;
if the argument is negative the screen is scrolled up.

16.158. previous-window (C-X P and CoX 0)

This moves into the next window. Windows live in a circular list so when you're in the top window
and you try to move to the previous one you are moved to the bottom window. It is an error to use
this command with only one window.

16.159. print (Not Bound)

This prints the value of a JOVE variable.

16.160. print-message (Not Bound)

This command prompts for a message, and then prints it on the bottom line where JOVE messages are
printed.

16.161. process-bind-to-key (Not Bound)
This command is identical to bind-to-key, except that it only affects your bindings when you are in a
buffer attached to a process. When you enter the process buffer, any keys bound with this command
will automatically take their new values. When you switch to a non-process buffer, the old bindings
for those keys will be restored. For example, you might want to execute

process-bind-to-key stop-process 'z
process-bind-to-key interrupt-process 'C

Then, when you start up an interactive process and switch into that buffer, C-Z will execute stop
process and C-C will execute interrupt- process. When you switch back to a non-process buffer, C-Z
will go back to executing scroll-up (or whatever you have it bound to).

16.162. process-newline (Return)

This this only gets executed when in a buffer that is attached to an interactive-process. JOVE does two
different things depending on where you are when you hit Return. When you're at the end of the 1-
Process buffer this does what Return normally does, except it also makes the line available to the pro
cess. When point is positioned at some other position that line is copied to the end of the buffer
(with the prompt stripped) and point is moved there with it, so you can then edit that line before
sending it to the process. This command must be bound to the key you usually use to enter shell
commands (Return), or else you won't be able to enter any.

16.163. process-prompt (variable)
What a prompt looks like from the i-shell and i-shell-command processes. The default is "% .. , the
default C-shell prompt. This is actually a regular expression search string. So you can set it to be
more than one thing at once using the \1 operator. For instance, for LISP hackers, the prompt can be
"% \1-> \1<[0-9]>: ".

16.164. push-shell (Not Bound)

This spawns a child shell and relinquishes control to it. This works on any version of UNIX, but this
isn't as good as pause-jove because it takes time to start up the new shell and you get a brand new
~nvironment every time. To return to JOVE you type "C-D".

JOVE Manual for UNIX Users USD: I 7-43

16.172. read-macros-from-file (Not Bound)

This reads the specified file that contains a bunch of macro definitions, and defines all the macros that
were currently defined when the file was created. See write-macros-to-file to see how to save macros.

16.173. redraw-display (C-L)

This centers the line containing point in the window. If that line is already in the middle the window
is first cleared and then redrawn. If a numeric argument is supplied, the line is positioned at that
offset from the top of the window. For example, "ESC 0 C-L" positions the line containing point at
the top of the window.

16.174. recursive-edit (Not Bound)

This enters a recursive editing level. This isn't really very useful. I don't know why it's available for
public use. I think I'll delete it some day.

16.175. rename-buffer (Not Bound)

This lets you rename the current buffer.

16.176. replace-in-region (Not Bound)

This is the same as replace-string except that it is restricted to occurrences between Point and Mark.

16.177. replace-string (ESC R)

This replaces all occurrences of a specified string with a specified replacement string. This is just like
query-replace-string except it replaces without asking.

16.178. right-margin (variable)

Where the right margin is for Auto Fill mode and the justify-paragraph and justify-region commands.
The default is 78.

16.179. right-margin-here (Not Bound)
This sets the right-margin variable to the current position of point. This is an easy way to say, "Make
the right margin begin here," without having to count the number of spaces over it actually is.

16.180. save-file (C-X C-S)

This saves the current buffer to the associated file. This makes your changes permanent so you
should be sure you really want to. 'If the buffer has not been modified save-file refuses to do the save.
If you really do want to write the file you can use "C-X C-W" which executes write-file.

16.181. scroll-down (ESC Z)
This scrolls the screen one line down. If the line containing point moves past the bottom of the win
dow point is moved up to the center of the window. If a numeric argument is supplied that many
lines are scrolled; if the argument is negative the screen is scrolled up instead.

16.182. scroll-step (variable)

How many lines should be scrolled if the previous-line or next-line commands move you off the top or
bottom of the screen. You may wish to decrease this variable if you are on a slow terminal.

16.183. scroll-up (C-Z)
This scrolls the screen one line up. If the line containing point moves past the top of the window
point is moved down to the center of the window. If a numeric argument is supplied that many lines
are scrolled; if the argument is negative the screen is scrolled down instead.

lOVE Manual for UNIX Users USD:17-45

holding a file, not some output from a previous command, JOVE prints an error message and refuses
to execute the command. If you really want to execute the command you should delete that buffer
(saving it first, if you like) or use shell-command-to-buffer, and try again.

16.194. shell-command-to-buffer (Not Bound)

This is just like shell-command except it lets you specify the buffer to use instead of JOVE.

16.195. shell-flags (variable)

This defines the flags that are passed to shell commands. The default is "-c". See the shell variable to
change the default shell.

16.196. show-match-mode (Not Bound)

This turns on Show Match mode (or off if it's currently on) in the selected buffer. This changes "r
and ")" so that when they are typed the are inserted as usual, and then the cursor flashes back to the
matching" {" or "(" (depending on what was typed) for about half a second, and then goes back to just
after the"}" or ")" that invoked the command. This is useful for typing in complicated expressions in
a program. You can change how long the cursor sits on the matching paren by setting the "paren
flash-delay" variable in tenths of a second. If the matching "{" or "(" isn't visible nothing happens.

16.197. shrink-window (Not Bound)

This makes the current window one line shorter, if possible. Windows must be at least 2 lines high,
one for the text and the other for the mode line.

16.198. source (Not Bound)

This reads a bunch of JOVE commands from a file. The format of the file is the same as that in your
initialization file (your ".joverc") in your main directory. There should be one command per line and
it should be as though you typed "ESC X" while in JOVE. For example, here's part of my initializa
tion file:

bind-to-key i-search-reverse AR
bind-to-key i-search-forward AS
bind-to-key pause-jove A[S

What they do is make "CoR"~ call the i-search-reverse command and "C-S" call i-search-forward and
"ESC S" call pause-jove.

16.199. spell-buffer (Not Bound)

This runs the current buffer through the UNIX spell program and places the output in buffer "Spell".
Then JOVE lets you edit the list of words, expecting you to delete the ones that you don't care about,
i.e" the ones you know are spelled correctly. Then the parse-spelling-errors-in-buffer command comes
along and finds all the misspelled words and sets things up so the error commands work.

16.200. split-current-window (C-X 2)

This splits the current window into two equal parts (providing the resulting windows would be big
enough) and displays the selected buffer in both windows, Use "CoX I" to go back to I window
mode.

16.201. start-remembering (C-X 0
This starts remembering your key strokes in the Keyboard macro, To stop remembering you type
"CoX)". Because of a bug in JOVE you can't stop remembering by typing "ESC X stop-remembering";
stop-remembering must be bound to "CoX)" in order to make things work correctly. To execute the
remembered key strokes you type "C-X E" which runs the execute-keyboard-macro command. Some
times you may want a macro to accept different input each time it runs. To see how to do this, see

JOVE Manual for UNIX Users USD: I 7-47

16.213. use-i/d-char (variable)

If your terminal has insert/delete character capability you can tell JOVE not to use it by setting this to
"off'. In my opinion it is only worth using insert/delete character at low baud rates. WARNING: if
you set this to "on" when your terminal doesn't have insert/delete character capability, you will get
weird (perhaps fatal) results.

16.214. version (Not Bound)

Displays the version number of this JOVE.

16.215. visible-bell (variable)

Use the terminal's visible bell instead of beeping. This is set automatically if your terminal has the
capability.

16.216. visible-spaces-in-window (Not Bound)

This displays an underscore character instead of each space in the window and displays a greater-than
followed by spaces for each tab in the window. The actual text in the buffer is not changed; only the
screen display is affected. To tum this off you run the command again; it toggles.

16.217. visit-file (C-X C-Y)

This reads a specified file into the current buffer replacing the old text. If the buffer needs saving
JOVE will offer to save it for you. Sometimes you use this to start over, say if you make lots of
changes and then change your mind. If that's the case you don't want JOVE to save your buffer and
you answer "NO" to the question.

16.218. window-find (C-X 4)
This lets you select another buffer in another window three different ways. This waits for another
character which can be one of the following:

T Finds a tag in the other window.
F Finds a file in the other window.
B Selects a buffer in the other window.

This is just a convenient short hand for "C-X 2" (or "CoX 0" if there are already two windows) fol
lowed by the appropriate sequence for invoking each command. With this, though, there isn't the
extra overhead of having to redisplay. In addition, you don't have to decide whether to type "CoX 2"
or "C-X 0" since "C-X 4" does the right thing.

16.219. word-abbrev-mode (Not Bound)

This turns on Word Abbrev mode (or off if it's currently on) in the selected buffer. Word Abbrev
mode lets you specify a word (an abbreviation) and a phrase with which JOVE should substitute the
abbreviation. You can use this to define words to expand into long phrases, e.g., "jove" can expand
into "Jonathan's Own Version of Emacs"; another common use is defining words that you often
misspell in the same way, e.g., "thier" => "their" or "teh" => "the". See the information on the auto
case-abbrev variable. There are two kinds of abbreviations: mode specific and global. If you define a
Mode specific abbreviation in C mode, it will expand only in buffers that are in C mode. This is so
you can have the same abbreviation expand to different things depending on your context. Global
abbreviations expand regardless of the major mode of the buffer. The way it works is this: JOVE looks
first in the mode specific table, and then in the global table. Whichever it finds it in first is the one
that's used in the expansion. If it doesn't find the word it is left untouched. JOVE tries to expand
words as they are typed, when you type a punctuation character or Space or Return. If you are in
Auto Fill mode the expansion will be filled as if you typed it yourself.

SED - A Non-interactive Text Editor

Lee E. McMahon

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

USD:18-1

Sed is a non-interactive context editor that runs on the UNIXt operating sys-
tem. Sed is designed to be especially useful in three cases: "

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too com

plicated to be comfortably typed in interactive mode.
3) To perform multiple 'global' editing functions efficiently in one pass

through the input.
This memorandum constitutes a manual for users of sed.

Introduction
Sed is a non-interactive context editor designed to be especially useful in three cases:

I) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to be com

fortably typed in interactive mode;
3) To perform multiple 'global' editing functions efficiently in one pass through the input.

Since only a few lines of the input reside in core at one time, and no temporary files are used, the
effective size of file that can be edited is limited only by the requirement that the input and output fit
simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For com
plex edits, this saves considerable typing, and its attendant errors. Sed running from a command file
is much more efficient than any interactive editor known to the author, even if that editor can be
driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command has done
what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interactive and
non-interactive operation, considerable changes have been made between ed and sed; even confirmed
users of ed will frequently be surprised (and probably chagrined), if they rashly use sed without read
ing Sections 2 and 3 of this document. The most striking family resemblance between the two editors
is in the class of patterns ('regular expressions') they recognize; the code for matching patterns is
copied almost verbatim from the code for ed, and the description of regular expressions in Section 2
is copied almost verbatim from the UNIX Programmer's Manual[l]. (Both code and description were
written by Dennis M. Ritchie.)

t UNIX is a trademark of AT&T Ben Laboratories.

SED - A Non-interactive Text Editor

Example:

The command
2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

USD:18-3

Lines in the input file(s) to which editing commands are to be applied can be selected by addresses.
Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by group
ing the commands with curly braces ('{ },)(Sec. 3.6.).

2.1. Line-number Addresses
A line number is a decimal integer. As each line is read from the input, a line-number counter is
incremented; a line-number address matches (selects) the input line which causes the internal counter
to equal the address line-number. The counter runs cumulatively through multiple input files; it is
not reset when a new input file is opened.
As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses
A context address is a pattern (,regular expression') enclosed in slashes ('/'). The regular expressions
recognized by sed are constructed as follows:

I) An ordinary character (not one of those discussed below) is a regular expression, and
matches that character.

2) A circumflex '" at the beginning of a regular expression matches the null character at the
beginning of a line.

3) A dollar-sign '$' at the end of a regular expression matches the null character at the end of
a line.

4) The characters '\n' match an imbedded newline character, but not the newline at the end
of the pattern space.

5) A period '.' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk ,*, matches any number (including 0) of adja

cent occurrences of the regular expression it follows.
7) A string of characters in square brackets '[]' matches any character in the string, and no

others. If, however, the first character of the string is circumflex '"', the regular
expression matches any character except the characters in the string and the terminal
newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the concate
nation of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\(' and '\)' is identical in effect to the una
dorned regular expression, but has side-effects which are described under the s com
mand below and specification 10) immediately below.

10) The expression '\d' means the same string of characters matched by an expression
enclosed in '\(' and '\)' earlier in the same pattern. Here d is a single digit; the string
specified is that beginning with the dth occUrrence of '\(' counting from the left. For
example, the expression "\(.*\)\1' matches a line beginning with two repeated
occurrences of the same string.

11) The null regular expression standing alone (e.g., 'I/') is equivalent to the last regular
expression compiled.

SED - A Non-interactive Text Editor USD:18-5

(l)i\

the end of a line, and <text> may contain any number of lines. To preserve the one
command-to-a-line fiction, the interior newlines must be hidden by a backslash char
acter ('\') immediately preceding the newline. The <text> argument is terminated by
the first unhidden newline (the first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the output
regardless of what later commands do to the line which triggered it. The triggering
line may be deleted entirely; <text> will still be written to the output.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

<text> -- insert lines

(2)c\

The i function behaves identically to the a function, except that <text> is written to
the output before the matched line. All other comments about the a function apply to
the i function as well.

<text> -- change lines

The c function deletes the lines selected by its addressees), and replaces them with the
lines in <text>. Like a and i. c must be followed by a newline hidden by a backslash;
and interior new lines in <text> must be hidden by backslashes.

The c command may have two addresses, and therefore select a range of lines. If it
does, all the lines in the range are deleted, but only one copy of <text> is written to
the output, not one copy per line deleted. As with a and i. <text> is not scanned for
address matches, and no editing commands are attempted on it. It does not change
the line-number counter.

After a line has been deleted by a c function, no further commands are attempted on
the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the a or r
functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disappear, as
always in sed commands. To get leading blanks and tabs into the output, precede the first desired
blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Aiph, the sacred river, ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following command
lists:

SED - A Non-interactive Text Editor USD:18-7

The possibilities of multiple, somewhat different copies of one input
line being written are the same as for p.

Examples:

A maximum of 10 different file names may be mentioned after w flags
and w functions (see below), combined.

The following command, applied to our standard input,

s/tolby/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file 'changes':
Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:
s/[.,;?:)/-P&-/gp

produces:
A stately pleasure dome decree-P:
Where Alph-P,- the sacred rive~P,- ran
Down to a sunless sea-P.-

Finally, to illustrate the effect of the g flag, the command:

IX/sian! AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan
and the command:

IX/s/anl AN/gp
produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2)p - print

The print function writes the addressed lines to the standard output file. They are
written at the time the p function is encountered, regardless of what succeeding edit
ing commands may do to the lines.

(2)w <filename> - write on <filename>

The write function writes the addressed lines to the file named by <filename>. If the
file previously existed, it is overwritten; if not, it is created. The lines are written
exactly as they exist when the write function is encountered for each line, regardless of
what subsequent editing commands may do to them.

Exactly one space must separate the wand <filename>.

A maximum of ten different files may be mentioned in write functions and w flags
after s functions, combined.

SED - A Non-interactive Text Editor

3.5. Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.

(2)h - hold pattern space

USD:18-9

The h functions copies the contents of the pattern space into a hold area (destroying
the previous contents of the hold area).

(2)H - Hold pattern space

The H function appends the contents of the pattern space to the contents of the hold
area; the former and new contents are separated by a newline.

(2)g - get contents of hold area

The g function copies the contents of the hold area into the pattern space (destroying
the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the pattern
space; the former and new contents are separated by a newline.

(2)x - exchange

Example
The commands

Ih
lsI did.*/!
Ix
G
s/\nI :1

The exchange command interchanges the contents of the pattern space and the hold
area.

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions
These functions do no editing on the input lines, but control the application of functions to the lines
selected by the address part.

(2)! - Don't

The Don't command causes the next command (written on the same line), to be
applied to all and only those input lines not selected by the adress part.

(2){ - Grouping

The grouping command '{' causes the next set of commands to be applied (or not
applied) as a block to the input lines selected by the addresses of the grouping com
mand. The first of the commands under control of the grouping may appear on the
same line as the '{' or on the next line.

Awk - A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aha

Brian W. Kernighan

Peter 1. Weinberger

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

USD:19-1

Awk is a programming language whose basic operation is to search a set of files
for patterns, and to perform specified actions upon lines or fields of lines which con
tain instances of those patterns. Awk makes certain data selection and transforma
tion operations easy to express; for example, the awk program

length> 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 == 0

prints all lines with an even number of fields; and the program

($1 = log($I); print}

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular expres
sions and of relational operators on strings, numbers, fields, variables, and array ele
ments. Actions may include the same pattern-matching constructions as in patterns,
as well as arithmetic and string expressions and assignments, if-else, while, for state
ments, and multiple output streams.

This report contains a user's guide, a discussion of the design and implementa
tion of awk, and some timing statistics.

1. Introduction
Awk is a programming language designed to

make many common information retrieval and text
manipulation tasks easy to state and to perform.

The basic operation of awk is to scan a set of
input lines in order, searching for lines which match
any of a set of patterns which the user has specified.
For each pattern, an action can be specified; this
action will be performed on each line that matches
the pattern.

Readers familiar with the UNIXt program

t UNIX is a trademark of AT&T Bell Laboratories.

grep I will recognize the approach, although in awk
the patterns may be more general than in grep, and
the actions allowed are more involved than merely
printing the matching line. For example, the awk
program

{print $3, $2)

prints the third and second columns of a table in
that order. The program

$2 - IAIBICI

prints all input lines with an A, B, or C in the

Awk - A Pattern Scanning and Processing Language

Similarly, output can be piped into another
process (on UNIX only); for instance,

print I "mail bwk"

mails the output to bwk.

The variables OFS and DRS may be used to
change the current output field separator and output
record separator. The output record separator is
appended to the output of the print statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ...

formats the expressions in the list according to the
specification in format and prints them. For exam
ple,

printf "%S.2f %10ld\n, $1, $2

prints $1 as a floating point number 8 digits wide,
with two after the decimal point, and $2 as a 10-
digit long decimal number, followed by a newline.
No output separators are produced automatically;
you must add them yourself, as in this example.
The version of printf is identical to that used with
c.2

2. Patterns

A pattern in front of an action acts as a selec
tor that determines whether the action is to be exe
cuted. A variety of expressions may be used as pat
terns: regular expressions, arithmetic relational
expressions, string-valued expressions, and arbitrary
boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the begin
ning of the input, before the first record is read.
The pattern END matches the end of the input, after
the last record has been processed. BEGIN and
END thus provide a way to gain control before and
after processing, for initialization and wrapup.

As an example, the field separator can be set
to a colon by

BEGIN (FS = ",')
... rest of program ...

Or the input lines may be counted by

END (print NR)

If BEGIN is present, it must be the first pattern;
END must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

USD:19-3

Ismithl

This is actually a complete awk program which will
print all lines which contain any occurrence of the
name "smith". If a line contains "smith" as part of
a larger word, it will also be printed, as in

blacksmithing

Awk regular expressions include the regular
expression forms found in the UNIX text editor ed I
and grep (without back-referencing). In addition,
awk allows parentheses for grouping, I for alterna
tives, + for "one or more", and? for "zero or one",
all as in lex. Character classes may be abbreviated:
[a-zA-ZO-9) is the set of all letters and digits. As an
example, the awk program

I[Aa)ho I[Ww)einberger I[Kk)ernighanl

will print all lines which contain any of the names
"Aho," "Weinberger" or "Kernighan," whether capi
talized or not.

Regular expressions (with the extensions listed
above) must be enclosed in slashes, just as in ed and
sed. Within a regular expression, blanks and the
regular expression metacharacters are significant. To
turn of the magic meaning of one of the regular
expression characters, precede it with a backslash.
An example is the pattern

1\/.0\//

which matches any string of characters enclosed in
slashes.

One can also specify that any field or variable
matches a regular expression (or does not match it)
with the operators - and !-. The program

$1 - I[jJ)ohnl

prints all lines where the first field matches "john"
or "John." Notice that this will also match "John
son", "St. Johnsbury", and so on. To restrict it to
exactly [jJ)ohn, use

$1 - r[jJ)ohn$1

The caret • refers to the beginning of a line or field;
the dollar sign $ refers to the end .

2.3. Relational Expressions

An awk pattern can be a relational expression
involving the usual relational operators <, <=,
!=, >=, and >. An example is

$2 > $1 + 100

which selects lines where the second field is at least
100 greater than the first field. Similarly,

NF % 2 == 0

prints lines with an even number of fields.

Awk - A Pattern Scanning and Processing Language

Arithmetic is done internally in floating point.
The arithmetic operators are +, -, *, I, and % (mod).
The C increment ++ and decrement - operators
are also available, and so are the assignment opera
tors +=, -=, *=,1=, and %=. These operators may
all be used in expressions.

3.3. Field Variables
Fields in awk share essentially all of the pro

perties of variables - they may be used in arith
metic or string operations, and may be assigned to.
Thus one can replace the first field with a sequence
number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ If ($3 > 1000)

}

$3 = "too big"
print

which replaces the third field by "too big" when it
is, and in any case prints the record.

Field references may be numerical expres
sions, as in

{ print $i, $(i+ 1), $(i+n) }

Whether a field is deemed numeric or string depends
on context; in ambiguous cases like

If ($1 == $2) •••

fields are treated as strings.

Each input line is split into fields automati
cally as necessary. It is also possible to split any
variable or string into fields:

n = split(s, array, sep)

splits the the string s into array!I), ... , array/n). The
number of elements found is returned. If the sep
argument is provided, it is used as the field separa
tor; otherwise FS is used as the separator.

3.4. String Concatenation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in a
print statement,

print $1 " is ' $2

prints the two fields separated by " is ". Variables
and numeric expressions may also appear in con
catenations.

USD:19-5

3.S. Arrays

Array elements are not declared; they spring
into existence by being mentioned. Subscripts may
have any non-null value, including non-numeric
strings. As an example of a conventional numeric
subscript, the statement

xINR) = $0

assigns the current input record to the NR-th ele
ment of the array x. In fact, it is possible in princi
ple (though perhaps slow) to process the entire input
in a random order with the awk program

(xINR) = $0 }
END{ ... program ... }

The first action merely records each input line in the
array x.

Array elements may be named by non
numeric values, which gives awk a capability rather
like the associative memory of Snobol tables. Sup
pose the input contains fields with values like apple,
orange, etc. Then the program

lapplel (xrapple")+ + }
lorangel (x("orange")+ + }
END (print xrapple"), xrorange")

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control state
ments if-else, while, for, and statement grouping
with braces, as in C. We showed the if statement in
section 3.3 without describing it. The condition in
parentheses is evaluated; if it is true, the statement
following the if is done. The else part is optional.

The while statement is exactly like that of C.
For example, to print all input fields one per line,

i = 1
while (i <= NF) {

print $i
++i

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $1

does the same job as the while statement above.

There is an alternate form of the for statement
which is suited for accessing the elements of an asso
ciative array:

for (I in array)
statement

does statement with i set in turn to each element of
array. The elements are accessed in an apparently

Awk - A Pattern Scanning and Processing Language

"jdmr", respectively.

7. print each line prefixed by "line-number: ".

8. sum the fourth column of a table.

The program we merely counts words, lines and
characters in its input; we have already mentioned
the others. In all cases the input was a file contain
ing 10,000 lines as created by the command Is -I;
each line has the form

-rw-rw-rw- 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 characters.
Times for lex do not include compile or load.

As might be expected, awk is not as fast as the
specialized tools we, sed, or the programs in the
grep family, but is faster than the more general tool
lex. In all cases, the tasks were about as easy to
express as awk programs as programs in these other
languages; tasks involving fields were considerably
easier to express as awk programs. Some of the test
programs are shown in awk, sed and lex.

References

I. K. Thompson and D. M. Ritchie, UNIX
Programmer's Manual, Bell Laboratories, May
1975. Sixth Edition

2. B. W. Kernighan and D. M. Ritchie, The C
Programming L,anguage, Prentice-Hall, Engle
wood Cliffs, New Jersey, 1978.

3. M. E. Lesk, "Lex - A Lexical Analyzer Gen
erator," Compo Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey,
October 1975. Reprinted as PSI:16 in UNIX
Programmer's Manual, Usenix Association,
(1986).

4. S. C. Johnson, "Yacc - Yet Another
Compiler-Compiler," Compo Sci. Tech. Rep.
No. 32, Bell Laboratories, Murray Hill, New
Jersey, July 1975. Reprinted as PSI:15 in
UNIX Programmer's Manual, Usenix Associa
tion, (1986).

)

USD:19-7

Typing Documents on the UNIX System:
Using the -ms Macros with Troff and Nroff

M. E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

USD:20-1

This document describes a set of easy-to-use macros for preparing documents
on the UNIX system. Documents may be produced on either the phototypesetter or
a on a computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-column format,
and cover pages for papers.

This memo includes, as an appendix, the text of the "Guide to Preparing
Documents with -ms" which contains additional examples of features of -ms.

This manual is a revision of, and replaces, "Typing Documents on UNIX,"
dated November 22, 1974.

Introduction. This memorandum describes a package of commands to produce papers
using the troff and nroff formatting programs on the UNIX system. As with other roff-derived pro
grams, text is prepared interspersed with formatting commands. However, this package, which itself
is written in troff commands, provides higher-level commands than those provided with the basic
troff program. The commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading
".PP" before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) paragraph. The
paragraph spacing can be changed: see below under "Registers."

Beginning. For a document with a paper-type cover sheet, the input should start as fol
lows:

[optional overall format .RP - see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author's institution(s)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .11 here to change .
. AE (abstract end)
text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit the

Using the -ms Macros with Troff and Nroff

.NH
Erie-Lackawanna
.NH2
Morris and Essex Division
.NH3
Gladstone Branch
.NH3
Montclair Branch
.NH2
Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex Division

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit ".NH 0" will reset the
numbering of level 1 to one, as here:

.NHO
Penn Central

1. Penn Central
Indented paragraphs. (Para-

graphs with hanging numbers, e.g. references.)
The sequence

.IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.IP [2]
Text for second paragraph, ...

produces
[1] Text for first paragraph, typed normally

for as long as you would like on as many
lines as needed.

[2] Text for second paragraph, ...
A series of indented paragraphs may be fol
lowed by an ordinary paragraph beginning with
.PP or .LP, depending on whether you wish
indenting or not. The command .LP was used
here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for example, a
plain block indent is produced.

.IP
This material will
just be turned into a

U8D:20-3

block indent suitable for quotations or
such matter.
.LP

will produce

This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
required, it may be specified after the label (in
character positions) and will remain in effect
until the next .PP or .LP. Thus, the general
form of the .IP command contains two addi
tional fields: the label and the indenting length.
For example,

.IP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs .
.IP second:
And so forth.
.LP

produces this:

first: Notice the longer label, requmng
larger indenting for these paragraphs.

second: . And so forth.

It is also possible to produce multiple nested
indents; the command .R8 indicates that the
next .IP starts from the current indentation
level. Each .RE will eat up one level of indent
ing so you should balance .R8 and .RE com
mands. The .R8 command should be thought
of as "move right" and the .RE command as
"move left". As an example

Using the -ms Macros with Troff and Nroff

whereas

these lines were preceded
by .DS C and followed by

a .DE command;

these lines were preceded
by .DS L and followed by
a :DE command.

Note that .DS C centers each line; there is a
variant .DS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is kept
together, on one page. If you wish to have a
long display which may be split across page
boundaries, use .CD, .LD, or .10 in place of
the commands .DS C, .DS L, or .DS I respec
tively. An extra argument to the .DS I or .DS
command is taken as an amount to indent.
Note: it is tempting to assume that .DS R will
right adjust lines, but it doesn't work.

Boxing words or lines. To
draw rectangular boxes around words the com
mand

.BX word

will print Iwordl as shown. The boxes will not
be neat on a terminal, and this should not be
used as a substitute for italics.

Longer pieces of text may be boxed by enclos
ing them with .BI and .B2:

.Bl
text. ..
.B2

as has been done here.

Keeping blocks together. If
you wish to keep a table or other block of lines
together on a page, there are, "keep - release"
commands. If a block of lines preceded by .KS
and followed by .KE does not fit on the
remainder of the current page, it will begin on
a new page. Lines bracketed by .DS and .DE
commands are automatically kept together this
way. There is also a "keep floating" command:
if the block to be kept together is preceded by
.KF instead of .KS and does not fit on the
current page, it will be moved down through
the text until the top of the next page. Thus,
no large blank space will be introduced in the
document.

NrofflTroff commands.
Among the useful commands from the basic
formatting programs are the following. They

USD:20-5

all work with both typesetter and computer ter
minal output:

.bp - begin new page.

.br - "break", stop running text
from line to line .

. sp n - insert n blank lines.

.na - don't adjust right margins.

Date. By default, documents produced
on computer terminals have the date at the
bottom of each page; documents produced on
the typesetter don't. To force the date, say
".DA". To force no date, say ".ND". To lie
about the date, say ".DA July 4, 1776" which
puts the specified date at the bottom of each
page. The command

.ND May 8, 1945

in -.RP" format places the specified date on the
cover sheet and nowhere else. Place this line
before the title.

Signature line. You can obtain
a signature line by placing the command .SG in
the document. The authors' names will be out
put in place of the .SG line. An argument to
.SG is used as a typing identification line, and
placed after the signatures. The .SG command
is ignored in released paper format.

Registers. Certain of the registers
used by -ms can be altered to change default
settings. They should be changed with .nr
commands, as with

.nr PS 9

to make the default point size 9 point. If the
effect is needed immediately, the normal troff
command should be used in addition to chang
ing the number register.
Register Defines Takes Default

effect
PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para. 6-
LT title length next para. 6-
PD para. spacing next para. 0.3 VS
PI para. indent next para. 5 ens
FL footnote length next FS 11112 LL
CW column width next 2C 7/15 LL
OW intercolumn gap next 2C 1115 LL
PO page offset next page 26127"
HM top margin next page I-
FM bottom margin next page I-

You may also alter the strings LH, CH, and
RH which are the left, center, and right head
ings respectively; and similarly LF, CF, and RF

Using the -ms Macros with Troff and Nroff USD:20-7

Appendix A
List of Commands

IC Return to single column format. LG Increase type size.
2C Start double column format. LP Left aligned block paragraph.
AB Begin abstract.
AE End abstract.
AI Specify author's institution.
AU Specify author. ND Change or cancel date.
B Begin boldface. NH Specify numbered heading.
DA Provide the date on each page. NL Return to normal type size.
DE End display. PP Begin paragraph.
DS Start display (also CD, LD, 10).
EN End equation. R Return to regular font (usually Roman).
EQ Begin equation. RE End one level of relative indenting.
FE End footnote. RP Use released paper format.
FS Begin footnote. RS Relative indent increased one level.

SG Insert signature line.
Begin italics. SH Specify section heading.

SM Change to smaller type size.
IP Begin indented paragraph. TL Specify title.
KE Release keep.
KF Begin floating keep. UL Underline one word.
KS Start keep.

Register Names

The following register names are used by -ms internally. Independent use of these names in
one's own macros may produce incorrect output. Note that no lower case letters are used in any -ms
internal name.

Number registers used in -ms
DW GW HM IQ LL NA OJ PO T. TV

#T EF HI HT IR LT NC PD PQ TB VS
IT FL H3 IK KI MM NF PF PX TD YE
AV FM H4 1M LI MN NS PI RO TN yy
CW FP H5 IP LE MO OI PN ST TQ ZN

String registers used in -ms
A5 CB DW EZ I KF MR RI RT TL
AB CC DY FA II KQ ND R2 SO TM
AE CD EI FE 12 KS NH R3 SI TQ
AI CF E2 FJ I3 LB NL R4 S2 TS
AU CH E3 FK 14 LD NP R5 SG TT

, B CM E4 FN 15 LG OD RC SH UL
IC BG CS E5 FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME PP RF SN WH
AI C D EL FS 1M MF PT RH SY WT
A2 CI DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

A Revised Version of -ms

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

USD:21-1

The -ms macros have been slightly revised and rearranged for the Berkeley Unix distribution.
Because of the rearrangement, the new macros can be read by the computer in about half the time
required by the previous version of -ms. This means that output will begin to appear between ten
seconds and several minutes more quickly, depending on the system load. On long files, however, the
savings in total time are not substantial. The old version of -ms is still available as -m9s.

Several bugs in -ms have been fixed, including a bad problem with the .IC macro, minor
difficulties with boxed text, a break induced by .EQ before initialization, the failure to set tab stops in
displays, and several bothersome errors in' the refer macros. Macros used only at Bell Laboratories
have been removed. There are a few extensions to previous -ms macros, and a number of new mac
ros, but all the documented -ms macros still work exactly as they did before, and have the same
names as before. Output produced with -ms should look like output produced with -mos.

One important new feature is automatically numbered footnotes. Footnote numbers are printed
by means of a pre-defined string (**), which you invoke separately from .FS and .FE. Each time it is
used, this string increases the footnote number by one, whether or not you use .FS and .FE in your
text. Footnote numbers will be superscripted on the phototypesetter and on daisy-wheel terminals,
but on low-resolution devices (such as the lpr and a crt), they will be bracketed. If you use \ •• to
indicate numbered footnotes, then the .FS macro will automatically include the footnote number at

'the bottom of the page. This footnote, for example, was produced as follows: I

This footnote, for example, was produced as follows:\ ••
. FS

.FE

If you are using \ .. to number footnotes, but want a particular footnote to be marked with an aster
'isk or a dagger, then give that mark as the first argument to .FS: t

then give that mark as the first argument to .FS: \(dg
.FS \(dg

.FE

,Footnote numbering will be temporarily suspended, because the \ .. string is not used. Instead of a
dagger, you could use an asterisk • or double dagger t, represented as \(dd.

Another new feature is a macro for printing theses according to Berkeley standards. This macro
is called .TM, which stands for thesis mode. (It is much like the .th macro in -me.) It will put page
numbers in the upper right-hand comer; number the first page; suppress the date; and doublespace
everything except quotes, displays, and keeps. Use it at the top of each file making up your thesis.

I If you never use the .. , string, no footnote numbers will appear anywhere in the text, including down here.
The output footnotes will look exactly like footnotes produced with -mos.

t In the footnote, the dagger will appear where the footnote number would otherwise appear, as on the left.

A Revised Version of -ms USD:21-3

There are now a large number of optional foreign accent marks defined by the -ms macros. All
the accent marks available in -mos are present, and they all work just as they always did. However,
there are better definitions available by placing .AM at the beginning of your document. Unlike the
-mos accent marks, the accent strings should come after the letter being accented. Here is a list of
the diacritical marks, with examples of what they look like.

name of accent input output

acute accent e\. e
grave accent e*' e
circumflex 0*, 1)

cedilla c*, " tilde n*- ii
question *? ~
exclamation *!
umlaut u*: ii
digraph s *8 f3
hacek c*v c
macron a*_ ii
underdot s*. ~
o-slash 0*1 rJ
angstrom a*o a
yogh kni*3t kni3t
Thorn *(Th P
thorn *(th p
Eth *(D- D
eth *(d- {J

hooked 0 *q p
ae ligature *(ae lie

AE ligature *(Ae A!
oe ligature *(oe re
OE ligature *(Oe <E

If you want to use these new diacritical marks, don't forget the .AM at the top of your file. Without
it, some will not print at all, and others will be placed on the wrong letter.

It is also possible to produce custom headers and footers that are different on even and odd
pages. The .OH and .EH macros define odd and even headers, while .OF and .EF define odd and
even footers. Arguments to these four macros are specified as with .tl. This document was produced
with:

.OH \fIThe -mx Macros'1'age %\fp'

.EH \fIPage %"The -mx Macros\fP'

Note that it would be a error to have an apostrophe in the header text; if you need one, you will have
to use a different delimiter around the left, center, and right portions of the title. You can use any
character as a delimiter, provided it doesn't appear elsewhere in the argument to .OH, .EH, .OF, or
EF.

The -ms macros work in conjunction with the tbl, eqn, and refer preprocessors. Macros to deal
with these items are read in only as needed, as are the thesis macros (.TM), the special accent mark
definitions (.AM), table of contents macros (.xS and .xE), and macros to format the optional cover
page. The code for the -ms package lives in lusr/lib/tmac/tmac.s, and sourced files reside in the direc
tory lusr/ucb/lib/ms.

April 18, 1986

Writing Papers with NROFF using -me

Eric P. Allman·

Project INGRES
Electronics Research Laboratory

University of California, Berkeley
Berkeley, California 94720

This document describes the text processing facilities available on the UNIXt operating system
via NROFFt and the -me macro package. It is assumed that the reader already is generally familiar
with the UNIX operating system and a text editor such as ex. This is intended to be a casual intro
duction, and as such not all material is covered. In particular, many variations and additional
features of the -me macro package are not explained. For a complete discussion of this and other
issues, see The -me Reference Manual and The NROFFITROFF Reference Manual.

NROFF, a computer program that runs on the UNIX operating system, reads an input file
prepared by the user and outputs a formatted paper suitable for publication or framing. The input
consists of text, or words to be printed, and requests, which give instructions to the NROFF program
telling how to format the printed copy.

Section I describes the basics of text processing. Section 2 describes the basic requests. Section
3 introduces displays. Annotations, such as footnotes, are handled in section 4. The more complex
requests which are not discussed in section 2 are covered in section S. Finally, section 6 discusses
things you will need to know if you want to typeset documents. If you are a novice, you probably
won't want to read beyond section 4 until you have tried some of the basic features out.

When you have your raw text ready, call the NROFF formatter by typing as a request to the
UNIX shell:

nroff -me - Ttype files
where type describes the type of terminal you are outputting to. Common values are dte for a DTC
300s (daisy-wheel type) printer and lpr for the line printer. If the -T flag is omitted, a "lowest com
mon denominator" terminal is assumed; this is good for previewing output on most terminals. A
complete description of options to the NROFF command can be found in The NROFF/TROFF Refer
ence Manual.

The word argument is used in this manual to mean a word or number which appears on the
same line as a request which modifies the meaning of that request. For example, the request

.sp

spaces one line, but

*Author's current address: Britton Lee, Inc., 1919 Addison Suite 105, Berkeley, California 94704.

tUNIX is a trademark of AT&T Bell Laboratories

Writing Papers with NROFF using -me USD:22-1

Writing Papers with NROFF using -me USD:22-3

Now is the time for all good men to come to the aid of their party.
Four score and seven years ago, ...

Notice that the sentences of the paragraphs must not begin with a space, since blank lines
and lines beginning with spaces cause a break. For example, if I had typed:

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, ...

The output would be:

Now is the time for all good men
to come to the aid of their party. Four score and seven years ago, ...

A new line begins after the word "men" because the second line began with a space character.

There are many fancier types of paragraphs, which will be described later.

2.2. Headers and Footers

Arbitrary headers and footers can be put at the top and bottom of every page. Two
requests of the form .he title and .fo title define the titles to put at the head and the foot of
every page, respectively. The titles are called three-part titles, that is, there is a left-justified
part, a centered part, and a right-justified part. To separate these three parts the first character
of title (whatever it may be) is used as a delimiter. Any character may be used, but backslash
and double quote marks should be avoided. The percent sign is replaced by the current page
number whenever found in the title. For example, the input:

.he -%-

.fo 'Jane Jones-My Book'

results in the page number centered at the top of each page, "Jane Jones" in the lower left
comer, and "My Book" in the lower right comer.

2.3. Double Spacing

NROFF will double. space output text automatically if you use the request .Is 2, as is done

in this section. You can revert to single spaced mode by typing.ls 1.

2.4. Page Layout

A number of requests allow you to change the way the printed copy looks, sometimes
called the layout of the output page. Most of these requests adjust the placing of "white space"
(blank lines or spaces). In these explanations, characters in italics should be replaced with
values you wish to use; bold characters represent characters which should actually be typed.

The .bp request starts a new page.

The request .sp N leaves N lines of blank space. N can be omitted (meaning skip a single
line) or can be of the form Ni (for N inches) or Nc (for N centimeters). For example, the input:

.sp l.Si
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line "My thoughts on the subject", fol
lowed by a single blank line.

The .in + N request changes the amount of white space on the left of the page (the indent).
The argument N can be of the form +N (meaning leave N spaces more than you are already

Writing Papers with NROFF using -me

.u12
Notice that these two input lines
are underlined.

will underline those eight words in NROFF. (In TROFF they will be set in italics.)

3. Displays

USD:22-S

Displays are sections of text to be set off from the body of the paper. Major quotes, tables,
and figures are types of displays, as are all the examples used in this document. All displays
except centered blocks are output single spaced.

3.1. Major Quotes

Major quotes are quotes which are several lines long, and hence are set in from the rest of
the text without quote marks around them. These can be generated using the commands .(q
and .)q to surround the quote. For example, the input:

As Weizenbaum points out:
.(q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...
.)q

generates as output:

As Weizenbaum points out:
It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as in the
areas of computer programming, ...

3.2. Lists

A list is an indented, single spaced, unfilled display. Lists should be used when the
material to be printed should not be filled and justified like normal text, such as columns of
figures or the examples used in this paper. Lists are surrounded by the requests .(1 and .)1. For
example, type:

Alternatives to avoid deadlock are:
.(1
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
.)1

will produce:
Alternatives to avoid deadlock are:

3.3. Keeps

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

A keep is a display of lines which are kept on a single page if possible. An example of
where you would use a keep might be a diagram. Keeps differ from lists in that lists may be
broken over a page boundary whereas keeps will not.

Blocks are the basic kind of keep. They begin with the request .(b and end with the
request .)b. If there is not room on the current page for everything in the block, a new page is

Writing Papers with NROFF using -me

.(1 L F
text of block
.)1

The input:

.(1
first line of unfilled display
more lines
.)1

produces the indented text:

first line of unfilled display
more lines

Typing the character L after the .(1 request produces the left justified result:

first line of unfilled display
more lines

Using C instead of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

USD:22-7

Sometimes it may be that you want to center several lines as a group, rather than center
ing them one line at a time. To do this use centered blocks, which are surrounded by the
requests .(c and .)c. All the lines are centered as a unit, such that the longest line is centered
and the rest are lined up around that line. Notice that lines do not move relative to each other
using centered blocks, whereas they do using the C argument to keeps.

Centered blocks are not keeps, and may be used in conjunction with keeps. For example,
to center a group of lines as a unit and keep them on one page, use:

.(b L

.(c
first line of unfilled display
more lines
.)c
.)b

to produce:

first line of unfilled display
more lines

If the block requests (.(b and .)b) had been omitted the result would have been the same, but
with no guarantee that the lines of the centered block would have all been on one page. Note
the use of the L argument to .(b; this causes the centered block to center within the entire line
rather than within the line minus the indent. Also, the center requests must be nested inside
the keep requests.

4. Annotations

There are a number of requests to save text for later printing. Footnotes are printed at the
bottom of the current page. Delayed text is intended to be a variant form of footnote; the text is
printed only when explicitly called for, such as at the end of each chapter. Indexes are a type of
delayed text having a tag (usually the page number) attached to each entry after a row of dots.
Indexes are also saved until called for explicitly.

Writing Papers with NROFF using -me

The .xp request prints the index.

For example, the input:

.(x
Sealing wax
.)x
.(x
Cabbages and kings
.)x _
.(x
Why the sea is boiling hot
.)x 2.5a
.(x
Whether pigs have wings
.)x ""
.(x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines .
.)x
.xp

USD:22-9

generates:
Sealing wax ., " ,', ... , ,... 9
Cabbages and kings
Why the sea is boiling hot ... 2.5a
Whether pigs have wings ... , , , , ,
This is a terribly long index entry, such as might be used for a list of illustrations,

tables, or figures; I expect it to take at least two lines. ,............ 9

The .(x request may have a single character argument, specifying the "name" of the
index; the normal index is x, Thus, several "indices" may be maintained simultaneously (such
as a list of tables, table of contents, etc.).

Notice that the index must be printed at the end of the paper, rather than at the begin
ning where it will probably appear (as a table of contents); the pages may have to be physically
rearranged after printing.

5. Fancier Features
A large number of fancier requests exist, notably requests to provide other sorts of para

graphs, numbered sections of the form 1.2.3 (such as used in this document), and multicolumn
output.

5.1. More Paragraphs

Paragraphs generally start with a blank line and with the first line indented. It is possible
to get left-justified block-style paragraphs by using .Ip instead of .pp, as demonstrated by the
next paragraph.

Sometimes you want to use paragraphs that have the body indented, and the first line exdented
(opposite of indented) with a label. This can be done with the .ip request. A word specified on
the same line as .ip is printed in the margin, and the body is lined up at a prespecified position
(normally five spaces). For example, the input:

Writing Papers with NROFF using -me

.ip [aJ
This is the first paragraph of the example.
We have seen this sort of example before .
.ip
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

produces as output:

USD:22-11

[aJ This is the first paragraph of the example. We have seen this sort of example before.

This paragraph is lined up with the previous paragraph, but it has no tag in the margin.

A special case of .ip is .np, which automatically numbers paragraphs sequentially from 1.
The numbering is reset at the next .pp, .Ip, or .sh (to be described in the next section) request.
For example, the input:

.np
This is the first point.
.np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np request.
.pp
This paragraph will reset numbering by .np .
. np
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.

(2) This is the second point. Points are just regular paragraphs which are given sequence
numbers automatically by the .np request.

This paragraph will reset numbering by .np.

(I) For example, we have reverted to numbering from one now.

The .bu request gives lists of this sort that are identified with bullets rather than numbers.
The paragraphs are also crunched together. For example, the input:

.bu
One egg yolk
.bu
One tablespoon cream or top milk
.bu
Salt, cayenne, and lemon juice to taste
.bu
A generous two tablespoonfuls of butter

produces3:

• One egg yolk

'By the way. if you put the first three ingredients in a a heavy, deep pan and whisk the ingredients madly over a medium
flame (never taking your hand off the handle of the pot) until the mixture reaches the consistency of custard (just a minute or
two), then mix in the butter off·heat, you will have a wonderful Hollandaise sauce.

Writing Papers with NROFF using -me USD:22-13

which will do a section heading, but will put no number on the section.

5.3. Parts of the Basic Paper

There are some requests which assist in setting up papers. The .tp request initializes for a
title page. There are no headers or footers on a title page, and unlike other pages you can
space down and leave blank space at the top. For example, a typical title page might appear
as:

.tp

.sp 2i

.(1 C
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank N. Furter
.)1
.bp

The request .th sets up the environment of the NROFF processor to do a thesis, using the
rules established at Berkeley. It defines the correct headers and footers (a page number in the
upper right hand corner only), sets the margins correctly, and double spaces.

The .+c T request can be used to start chapters. Each chapter is automatically numbered
from one, and a heading is printed at the top of each chapter with the chapter number and the
chapter name T. For example, to begin a chapter called "Conclusions", use the request:

.+c "CONCLUSIONS"

which will produce, on a new page, the lines

CHAPTER 5
CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page on the
first page of a chapter. Although the .+c request was not designed to work only with the .th
request, it is tuned for the format acceptable for a PhD thesis at Berkeley.

If the title parameter T is omitted from the .+c request, the result is a chapter with no
heading. This can also be used at the beginning of a paper; for example, .+c was used to gen
erate page one of this document.

Although papers traditionally have the abstract, table of contents, and so forth at the
front of the paper, it is more convenient to format and print them last when using NROFF.
This is so that index entries can be collected and then printed for the table of contents (or
whatever). At the end of the paper, issue the .++ P request, which begins the preliminary part
of the paper. After issuing this request, the .+c request will begin a preliminary section of the
paper. Most notably, this prints the page number restarted from one in lower case Roman
numbers .. +c may be used repeatedly to begin different parts of the front material for exam
ple, the abstract, the table of contents, acknowledgments, list of illustrations, etc. The request
.+ + B may also be used to begin the bibliographic section at the end of the paper. For exam
ple, the paper might appear as outlined in figure 2. (In this figure, comments begin with the
sequence \ •.)

5.4. Equations and Tables

Two special UNIX programs exist to format special types of material. Eqn and neqn set
equations for the phototypesetter and NROFF respectively. Tbl arranges to print extremely

Writing Papers with NROFF using -me USD:22-15

The .EQ request may take an equation number as an optional argument, which is printed
vertically centered on the right hand side of the equation. If the equation becomes too long it
should be split between two lines. To do this, type:

.EQ (eq 34)
text of equation 34
.ENC
.EQ
continuation of equation 34
.EN

The C on the .EN request specifies that the equation will be continued.

The tbl program produces tables. It is fully described (including numerous examples) in
the document Tbl - A Program to Format Tables by M. E. Lesk. Tables begin with the .TS
request and end with the .TE request. Tables are normally kept on a single page. If you have
a table which is too big to fit on a single page, so that you know it will extend to several pages,
begin the table with the request .TS H and put the request .TH after the part of the table which
you want duplicated at the top of every page that the table is printed on. For example, a table
definition for a long table might look like:

.TSH
css
n n n.
THE TABLE TITLE
.TH
text of the table
.TE

5.5. Two Column Output

You can get two column output automatically by using the request .2c. This causes
everything after it to be output in two-column form. The request .bc will start a new column;
it differs from .bp in that .bp may leave a totally blank column when it starts a new page. To
revert to single column output, use .lc.

5.6. Defining Macros

A macro is a collection of requests and text which may be used by stating a simple
request. Macros begin with the line .de xx (where xx is the name of the macro to be defined)
and end with the line consisting of two dots. After defining the macro, stating the line .xx is
the same as stating all the other lines. For example, to define a macro that spaces 3 lines and
then centers the next input line, enter:

.de SS

.sp 3

.ce

and use it by typing:

.SS
Title Line
(beginning of text)

Macro names may be one or two characters. In order to avoid conflicts with names in
-me, always use upper case letters as names. The only names to avoid are TS, TH, TE, EQ,
and EN.

Writinl Papers with NROFF usinl -me USD:22-17

to appear, you should quote the entire string (even if a single word), and use two quote marks
where you want one to appear. For example, if you want to produce the text:

"Master Control"
in italics, you must type:

.i "" "Master Control\ I"""

The \1 produces a very narrow space so that the "I" does not overlap the quote sign in TROFF,
like this:

"Master Contror

There are also several "pseudo-fonts" available. The input:

.(b

.u underlined

.bi "bold italics"

.bx "words in a box"

.)b

generates

underlined
boIIl iIIIlia
Iwords In a boxl

In NROFF these all just underline the text. Notice that pseudo font requests set only the single
parameter in the pseudo font; ordinary font requests will begin setting all text in the special
font if you do not provide a parameter. No more than one word should appear with these
three font requests in the middle of lines. This is because of the way TROFF justifies text. For
example, if you were to issue the requests:

.bi "some bold italics"
and
.bx "words in a box"

in the middle of a line TROFF would produce sOiJIIflebilldditidilB:s and Iwords In a boxl,
which I think you will agree does not look good.

The second parameter of all font requests is set in the original font. For example, the
font request:

.b bold face

generates "bold" in bold font, but sets "face" in the font of the surrounding text, resulting in:

boldface.

To set the two words bold and face both in bold face, type:

.b "bold face"

You can mix fonts in a word by using the special sequence \c at the end of a line to indi
cate "continue text processing"; this allows input lines to be joined together without a space
between them. For example, the input:

.u under \c

.i italics

generates underitalics, but if we had typed:

.u under

.i italics

the result would have been under italics as two words.

Writing Papers with NROFF using -me USD:22-19

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use the
-me macros to produce non-trivial papers during the development stages; Ricki Blau, Pamela Hum
phrey, and Jim Joyce for their help with the documentation phase; peter kessler for numerous com
plaints years after I was "done" with this project, most accompanied by fixes (hence forcing me to fix
several small bugs); and the plethora of people who have contributed ideas and have given support
for the project.

This document was TROFF'ed on April 20, 1986 and applies to version 2.27 of the -me macros.

-ME REFERENCE MANUAL

Release 2.27

Eric P. Allman"

Project INGRES
Electronics Research Laboratory

University of California, Berkeley
Berkeley, California 94720

This document describes in extremely terse form the features of the -me macro package for ver·
sion seven NROFFITROFF. Some familiarity is assumed with those programs. Specifically, the reader
should understand breaks, fonts, pointsizes, the use and definition of number registers and strings,
how to define macros, and scaling factors for ens, points, v's (vertical line spaces), etc.

For a more casual introduction to text processing using NROFF, refer to the document Writing
Papers with NROFF using -me.

There are a number of macro parameters that may be adjusted. Fonts may be set to a font
number only. Font 8 means bold font in TROFF; in NROFF font 8 is underlined unless the -rb3 flag
is specified to use "true bold" font (most versions of NROFF do not interpret bold font nicely). Font
o is no font change; the font of the surrounding text is used instead. Notice that fonts 0 and 8 are
"pseudo-fonts"; that is, they are simulated by the macros. This means that although it is legal to set a
font register to zero or eight, it is not legal to use the escape character form, such as:

\rs

All distances are in basic units, so it is nearly always necessary to use a scaling factor. For
example, the request to set the paragraph indent to eight one·en spaces is:

.nr pi 8n

and not

.nrpi 8

which would set the paragraph indent to eight basic units, or about 0.02 inch. Default parameter
values are given in brackets in the remainder of this document.

Registers and strings of the form $x may be used in expressions but should not be changed.
Macros of the form $x perform some function (as described) and may be redefined to change this
function. This may be a sensitive operation; look at the body of the original macro before changing
it.

All names in -me follow a rigid naming convention. The user may define number registers,
strings, and macros, provided that s/he uses single character upper case names or double character

·Author's current address: Britton Lee, Inc., 1919 Addison Suite lOS, Berkeley, California 94704.
tNROFF and TROFF may be trademarks of AT&T Bell Laboratories.

-me Reference Manual USD:23·1

-me Reference Manual USD:23-3

depth, and the section title is exdented. (See .ba.) Also, an additional indent
of \n(so [0] is added to the section title (but not to the body of the section).
The font is then set to the paragraph font, so that more information may
occur on the line with the section number and title. .sh insures that there is
enough room to print the section head plus the beginning of a paragraph
(about 3 lines total). If a through f are specified, the section number is set to
that number rather than incremented automatically. If any of a through fare
a hyphen that number is not reset. If T is a single underscore ("_") then the
section depth and numbering is reset, but the base indent is not reset and
nothing is printed out. This is useful to automatically coordinate section
numbers with chapter numbers .

. sx +N Go to section depth N [-1], but do not print the number and title, and do not
increment the section number at level N. This has the effect of starting a new
paragraph at level N.

.uh T Unnumbered section heading. The title T is printed with the same rules for
spacing, font, etc., as for .sh .

. $p T B N Print section heading. May be redefined to get fancier headings. T is the title
passed on the .sh or .uh line; B is the section number for this section, and N is
the dept):l of this section. These parameters are not always present; in particu
lar, .sh passes all three, .uh passes only the first, and .sx passes three, but the
first two are null strings. Care should be taken if this macro is redefined; it is
quite complex and subtle .

. $0 T B N This macro is called automatically after every call to .$p. It is normally
undefined, but may be used to automatically put every section title into the
table of contents or for some similar function. T is the section title for the
section title which was just printed, B is the section number, and N is the sec
tion depth .

. $1 - .$6 Traps called just before printing that depth section. May be defined to (for
example) give variable spacing before sections. These macros are called from
.$p, so if you redefine that macro you may lose this feature.

3. Headers and Footers

Headers and footers are put at the top and bottom of every page automatically. They are set in
font \n(tf [3] and size \n(tp [lOp]. Each of the definitions apply as of the next page. Three-part titles
must be quoted if there are two blanks adjacent anywhere in the title or more than eight blanks total.

The spacing of headers and footers are controlled by three number registers. \u(hm [4v] is the
distance from the top of the page to the top of the header, \n(fm [3v] is the distance from the bottom
of the page to the bottom of the footer, \n(tm [7v] is the distance from the top of the page to the top
of the text, and \n(bm [6v] is the distance from the bottom of the page to the bottom of the text
(nominal). The macros .ml, .m2, .m3, and .m4 are also supplied for compatibility with ROFF docu
ments .

. he '['mY

. fo "['mY

.eh "['mY

. oh "['mY

.ef"['mY

. 0f"['mY

Define three-part header, to be printed on the top of every page .

Define footer, to be printed at the bottom of every page,

Define header, to be printed at the top of every even-numbered page.

Define header, to be printed at the top of every odd-numbered page .

Define footer, to be printed at the bottom of every even-numbered page .

Define footer, to be printed at the bottom of every odd-numbered page.

-me Reference Manual USD:23-S

text changes. The floating keep is preceded and followed by \n(zs [Iv] space.
Also, it defaults to mode M .

•)z End floating keep .

. (e Begin centered block. The next keep is centered as a block, rather than on a
line-by-line basis as with .(b C. This call may be nested inside keeps .

•)e End centered block.

S. Annotations

.(d

.)d n

.pd

.(f

.)f n

.$s

.(x x

.)xPA

.xpx

6. Columned Output

.2e +SN

. le

.be

Begin delayed text. Everything in the next keep is saved for output later with
.pd, in a manner similar to footnotes.

End delayed text. The delayed text number register \n($d and the associated
string \ *# are incremented if \ *# has been referenced.

Print delayed text. Everything diverted via .(d is printed and truncated. This
might be used at the end of each chapter.

Begin footnote. The text of the footnote is floated to the bottom of the page
and set in font \n(ff [1] and size \n(fp [8p]. Each entry is preceded by \n(fs
[0.2v] space, is indented \n(ft [3n] on the first line, and is indented \n(fu [0]
from the right margin. Footnotes line up underneath two column output. If
the text of the footnote will not all fit on one page it will be carried over to
the next page.

End footnote. The number register \n($f and the associated string \ ** are
incremented if they have been referenced.

The macro to output the footnote separator. This macro may be redefined to
give other size lines or other types of separators. Currently it draws a I.Si
line.

Begin index entry. Index entries are saved in the index x [x] until called up
with .xp. Each entry is preceded by a \n(xs [0.2v] space. Each entry is
"undented" by \n(xu [O.Si]; this register tells how far the page number extends
into the right margin.

End index entry. The index entry is finished with a row of dots with A [null]
right justified on the last line (such as for an author's name), followed by P
[\n%]. If A is specified, P must be specified; \n% can be used to print the
current page number. If P is an underscore, no page number and no row of
dots are printed.

Print index x [x]. The index is formatted in the font, size, and so forth in
effect at the time it is printed, rather than at the time it is collected.

Enter two-column mode. The column separation is set to +S [4n, O.Si in
ACM mode] (saved in \n($s). The column width, calculated to fill the single
column line length with both columns, is stored in \n($1. The current column
is in \n($c. You can test register \n($m [1] to see if you are in single column
or double column mode. Actually, the request enters N [2] column output.

Revert to single-column mode .

Begin column. This is like .bp except that it begins a new column on a new
page only if necessary, rather than forcing a whole new page if there is another
column left on the current page.

-me Reference Manual USD:23-7

no space will ever be output.

9. Preprocessor Support

.EQ m T Begin equation. The equation is centered if m is C or omitted, indented \n(bi
[4m] if m is I, and left justified if m is L. T is a title printed on the right mar
gin next to the equation. See Typesetting Mathematics - User's Guide by
Brian W. Kernighan and Lorinda L. Cherry.

.ENc

.TS h

. TH

.TE

. PS h w

. PE

. IS

. IE

.IF

GS
GE

GF

10. Miscellaneous

• re

.ba +N

.xl +N

.11 +N

.hl

.Ih

End equation. If c is C the equation must be continued by immediately fol
lowing with another .EQ, the text of which can be centered along with this
one. Otherwise, the equation is printed, always on one page, with \n(es [0.5v
in TROFF, 1 v in NROFF] space above and below it.

Table start. Tables are single spaced and kept on one page if possible. If you
have a large table which will not fit on one page, use h = H and follow the
header part (to be printed on every page of the table) with a .TH. See Tbl - A
Program to Format Tables by M. E. Lesk.

With .TS H, ends the header portion of the table .

Table end. Note that this table does not float, in fact, it is not even
guaranteed to stay on one page if you use requests such as .sp intermixed with
the text of the table. If you want it to float (or if you use requests inside the
table), surround the entire table (including the .TS and .TE requests) with the
requests .(z and .)z.

Begin pic picture. H is the height and w is the width, both in basic units .
Ditroff only.

End picture .

Begin ideal picture .

End ideal picture .

End ideal picture (alternate form) .

Begin gremlin picture.

End gremlin picture.

End gremlin picture (alternate form).

Reset tabs. Set to every 0.5i in TROFF and every O.Si in NROFF .

Set the base indent to + N [0] (saved in \n($i). All paragraphs, sections, and
displays come out indented by this amount. Titles and footnotes are
unaffected. The .sh request performs a .ba request if \n(si [0] is not zero, and
sets the base indent to \n(si*\n($O.

Set the line length to N [6.0i]. This differs from .11 because it only affects the
current environment.

Set line length in all environments to N [6.0i]. This should not be used after
output has begun, and particularly not in two-column output. The current
line length is stored in \n($I;

Draws a horizontal line'the length of the page. This is useful inside floating
keeps to differentiate between the text and the figure.

Print a letterhead at the current position on the page. The format of the
letterhead must be defined in the file lusr/lib/me/letterhead.me by your local

-me Reference Manual

12. Predefined Strings

**

*#

*(

*]

*<

*>
*(dw

*(mo

*(td

*(Iq

*(rq

*-

USD:23-9

part which will be printed in the conference proceedings), together with the
current page number and the total number of pages N. Additionally, this
macro loads the file lusr/lib/me/acm.me, which may later be augmented with
other macros useful for printing papers for ACM conferences. It should be
noted that this macro will not work correctly in version 7 TROFF, since it sets
the page length wider than the physical width of the CI AfT phototypesetter
roll.

Footnote number, actually \ *(\n($£\ *]. This macro is incremented after each
call to .)f.

Delayed text number. Actually (\n($d].

Superscript. This string gives upward movement and a change to a smaller
point size if possible, otherwise it gives the left bracket character ('('). Extra
space is left above the line to allow room for the superscript.

Unsuperscript. Inverse to *(. For example, to produce a superscript you
might type x*(2*], which will produce x2•

Subscript. Defaults to '<' if half-carriage motion not possible. Extra space is
left below the line to allow for the subscript.

Inverse to \ *<.

The day of the week, as a word.

The month, as a word.

Today's date, directly printable. The date is of the form April 20, 1986.
Other forms of the date can be used by using \n(dy (the day of the month; for
example, 20), *(mo (as noted above) or \n(mo (the same, but as an ordinal
number; for example, April is 4), and \n(yr (the last two digits of the current
year).

Left quote marks. Double quote in NROFF.

Right quote.

% em dash in TROFF; two hyphens in NROFF.

13. Special Characters and Marks

There are a number of special characters and diacritical marks (such as accents) available
through -me. To reference these characters, you must call the macro .sc to define the characters
before using them.

.sc Define special characters and diacritical marks, as described in the remainder
of this section. This macro must be stated before initialization. The special
characters available are listed below.

Name Usage
Acute accent \ ...
Grave accent \
UmIat \"':
Tilde \
Caret *A
Cedilla *,
Czech *v
Circle *0
There exists *(qe

Example
a*-
e*'
u*:
n*
e*-
c*,
e*v
A*o

it
e
ii
ii
e
j:

e
A
3

-me Reference Mannal USD:23-11

Summary

This alphabetical list summarizes all macros, strings, and number registers available in the -me
macros. Selected trojf commands, registers, and functions are included as well; those listed can gen
erally be used with impunity.

The columns are the name of the command, macro, register, or string; the type of the object,
and the description. Types are M for macro or builtin command (invoked with. or' in the first
input column), S for a string (invoked with \ * or *0, R for a number register (invoked with \n or
\nO, and F for a trojfbuiltin function (invoked by preceding it with a single backslash).

Lines marked with § are trojf internal codes. Lines marked with t or * may be defined by the
user to get special functions; * indicates that these are defined by default and changing them may
have unexpected side effects. Lines marked with 0 are specific to ditrojf(device-independent tro.ff}.

NAME TYPE DESCRIPTION
\(space) F§ unpaddable space
\" F§ comment (to end of line)
\ *# S optional delayed text tag string
\$N F§ interpolate argument N
\n($O R section depth
.$0 Mt invoked after section title printed
\n($l R first section number
.$1 Mt invoked before printing depth 1 section
\n($2 R second section number
.$2 Mt invoked before printing depth 2 section
\n($3 R third section number
.$3 Mt invoked before printing depth 3 section
\n($4 R fourth section number
.$4 Mt invoked before printing depth 4 section
\n($5 R fifth section number
.$5 Mt invoked before printing depth 5 section
\n($6 R sixth section number
.$6 Mt invoked before printing depth 6 section
.$C Mt called at beginning of chapter
.$H Mt text header
\n($R R* relative vertical spacing in displays
\n($c R current column number
.$c M* print chapter title
\n($d R delayed text number
\n($f R footnote number
.$f M* print footer
.$h M* print header
\n($i R paragraph base indent
\n($l R column width
\n($m R number of columns in effect
\ *($n S section name
\n($p R numbered paragraph number
.$p M* print section heading (internal macro)
\n($r R* relative vertical spacing in text
\n($s R column indent
.$s M* footnote separator (from text)
\n% R§ current page number
\& F§ zero width character, useful for hiding controls
\(xx F§ interpolate special character xx
.(b M begin block

-me Reference Manual USD:23-13

NAME TYPE DESCRIPTION
\(F§ grave accent
*] S end superscript
\" F§ 1112 em narrow space
*" S caret
.ac M ACMmode
.ad M§ set text adjustment
.af M§ assign format to register
.am M§ append to macro
.ar M set page numbers in Arabic
.as M§ append to string
.b M bold font
.ba M set base indent
.bc M begin new column
.bi M bold italic
\n(bi R display (block) indent
.bl M blank lines (even at top of page)
\n(bm R bottom title margin
.bp M§ begin page
.br M§ break (start new line)
\n(bs R display (block) pre/post spacing
\n(bt R block keep threshold
.bx M boxed
\c F§ continue input
.ce M§ center lines
\n(ch R current chapter number
.de M§ define macro
\n(df R display font
.ds M§ define string
\n(dw R§ current day of week
*(dw S current day of week
\n(dy R§ day of month
\e F§ printable version of \
.ef M set footer (even numbered pages only)
.eh M set header (even numbered pages only)
.el M§ else part of conditional
.ep M end page
\n(es R equation pre/post space
\if F§ inline font change to font f
\f(ff F§ inline font change to font.lf
.fc M§ set field characters
\n(ff R footnote font
.fi M§ fill output lines
\n(fi R footnote indent (first line only)
\n(fm R footer margin
.fo M set footer
\n(fp R footnote pointsize
\n(fs R footnote prespace
\n(fu R footnote undent (from right margin)
\h'a F§ local horizontal motion for distance d
.hc M§ set hyphenation character
.he M set header
.hl M draw horizontal line

-me Reference Manual USD:23-IS

NAME TYPE DESCRIPTION
*(qa S for all
*(qe S there exists
\n(qi R quote indent (also shortens line)
\n(qp R quote pointsize
\n(qs R quote pre/post space
.r M roman font
.rb M real bold font
.re M reset tabs
.rrn M§ remove macro or string
.m M§ rename macro or string
.ro M set page numbers in roman
*(rq S right quote marks
.rr M§ remove register
.rs M§ restore spacing
.rt M§ return to vertical position
\sS F§ inline size change to size S
.sc M load special characters
\n(sf R section title font
.sh M begin numbered section
\n(si R relative base indent per section depth
.sk M skip next page
.sm M set argument in a smaller pointsize
.so M§ source input file
\n(so R additional section title offset
.sp M§ vertical space
\n(sp R section title pointsize
\n(ss R section pres pace
.sx M change section depth
.sz M set point size and vertical spacing
.ta M§ set tab stops
.tc M§ set tab repetition character
*(td S today's date
\n(tf R title font
.th M set thesis mode
.ti M§ temporary indent (next line only)
.t1 M§ three part title
\n(tm R top title margin
.tp M begin title page
\n(tp R title pointsize
.tr M§ translate
.u M underlined
.uh M unnumbered section
.ul M§ underline next line
\v'a F§ local vertical motion for distance d
*v S inverted 'v' for czeck "e"
\w'S F§ return width of string S
.xl M set line length (local)
.xp M print index
\n(xs R index entry prespace
\n(xu R index undent (from right margin)
\n(yr R§ year (last two digits only)
\n(zs R floating keep pre/post space

ntroduction

NROFF /TROFF User's Manual

Joseph F. Ossanna
(updatedliil' 4.3BSD hy Mark Sr!iden)

Bell Laboratories
Murray Hill. New Jersey 07974

~ROFF and TROFF are text processors under the UNIX Time-Sharing System that format text for
ypewriter-like terminals and for a Graphic Systems phototypesetter, respectively. (Device
ndependent TROFF. part of the Documenter's Workbench, supports additional output devices.) They
Iccept lines of text interspersed with lines of format control information and format the text into a
Jrintable, paginated document having a user-designed style. NROFF and TROFF offer unusual free-
10m in document styling. including: arbitrary style headers and footers; arbitrary style footnotes; mul
iple automatic sequence numbering for paragraphs. sections, etc: multiple column output: dynamic
'ont and point-size control: arbitrary horizontal and vertical local motions at any point: and a family
Jf automatic overstriking. bracket construction. and line drawing functions.

~ROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
nput acceptable to both. Conditional input is provided that enables the user to embed input
~xpressly destined for either program. NROFF can prepare output directly for a variety of terminal
ypes and is capable of utilizing the full resolution of each terminal.

Jsage

rhe general form of invoking NROFF (or TROFF) at UNIX command level is

nroff options .files (or troff options jiles)

iIIhere options represents any of a number of option arguments and jiles represents the list of files con
.aining the document to be formatted. An argument consisting of a single minus (-) is taken to be a
'lIe name corresponding to the standard input. If no file names are given input is taken from the
;tandard input. The options, which may appear in any order so long as they appear before the files,
Ire:

Option Effect

-i Read standard input after the input files are exhausted.

-mname Prepends the macro file jusr /Iib/tmac.name to the input files.

-nN Number first generated page N.

-olist Print only pages whose page numbers appear in list, which consists of comma-
separated numbers and number ranges. A number range has the form N-M and
means pages N through M; a initial -N means from the beginning to page N; and
a final N- means from N to the end.

-q Invoke the simultaneous input-output mode of the rd request.

-raN Number register a (one-character) is set to N.

-sN Stop every N pages. NROFF will halt prior to every N pages (default N= I) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter START button is
pressed.

-z Efficiently suppress formatted output. Only produce output to standard error
(from tm requests or diagnostics).

NROFF/TROFF User's Manual

SUMMARY OF REQUESTS AND OUTLINE OF THIS MANUAL

If No Request
Form

Initial
Value* Argument NoteS# Explanation

1. General Explanation

2. Font and Character Size Control

.ps ±N 10 point previous E

. fz F±N off E

.fz S F ±N off E

. ss N 12/36em ignored E

Point size; also \s±N.t
font F to point size ±N .
Special Font characters to point size ±N .
Space-character size set to N/36em.t

USD:24-3

.cs FNM off P

.bd F N off P
Constant character space (width) mode (font F).t
Embolden font F by N - I units. t

.bd SF N off P

. ft F Roman previous E
• fp N F R,I,B,S ignored

3. Page Control

.pl±N II in II in v

.bp±N N=I Bt,v

.pn±N N=I ignored

.po±N 0; 26/27 in previous v

.neN N=IV D,v

.mkR none internal D

.rt ±N none internal D,v

4. Text Filling, Adjusting, and Centering

.br B

. n fill B,E

. nf fill B,E

. ad c adj,both adjust E
• na adjust E
. ce N off N= I B,E

5. Vertical Spacing

.vsN

.Is N

. spN

. sv N

. os
• ns
.rs

1/6in;12pts previous E,p
N= I previous E

N=I V B,v
N=IV v

space 'D
D

6. Line Length and Indenting

Embolden Special Font when current font is F.t
Change to font F = x, xx, or 1-4. Also \IX, \f(xx, \fN .
Font named F mounted on physical position I:SN:S4 .

Page length.
Eject current page; next page number N.
Next page number N.
Page offset.
Need N vertical space (V = vertical spacing).
Mark current vertical place in register R.
Return (upward only) to marked vertical place.

Break .
Fill output lines .
No filling or adjusting of output lines .
Adjust output lines with mode c .
No output line adjusting.
Center following N input text lines .

Vertical base line spacing (V).
Output N-I Vs after each text output line.
Space vertical distance N in either direction .
Save vertical distance N .
Output saved vertical distance .
Turn no-space mode on .
Restore spacing; turn no-space mode off.

.11 ±N 6.5 in previous E,m Line length .
• in ±N N=O previous B,E,m Indent.
.ti ±N ignored B,E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

.de xx yy .yy=.. Define or redefine macro xx; end at call of yy .
• am xx yy .yy=.. Append to a macro .

. ·Values separated by';" are for NROFF and TROFF respectively .

• Notes are explained at tbe end of tbis Summary and Index
tNo effect in NROFF.
*The use of" • " as control character (instead of " .") suppresses tbe break function.

NROFF/TROFF User's Manual

I/No Request
Form

Initial
Value Argument Notes Explanation

16. Conditional Acceptance of Input

.if c anything

. if !c anything

.if N anything

.if !N anything
u
u

If condition c true, accept anything as input,
for multi-line use \{anything\}.
If condition c false, accept anything .
If expression N > 0, accept anything .
If expression N ::s; 0, accept anything .
If string 1 identical to string2, accept anything .

USD:24-5

. if 'string 1 'string2 ' anything

. if ! 'string 1 'string2 ' anything

.ie c anything u
If string 1 not identical to string2, accept anything .
If portion of if-else; all above forms (like it) .

. el anything

17. Environment Switching.

.evN N=O previous

18. Insertions from the Standard Input

. rd prompt -

. ex
prompt=BEL

19. Input/Output File Switching

.so filename

. nx filename

. pi program

20. Miscellaneous

.mccN

end-of-file

E,m

Else portion of if-else .

Environment switched (push down).

Read insertion .
Exit from NROFF/TROFF .

Switch source file (push down) .
Next file.
Pipe output to program (NROFF only) .

Set margin character c and separation N.
.tm string
. ig yy

off
newline
.yy= ..
all

Print string on terminal (UNIX standard error output).
Ignore till call of yy .

.pm t Print macro names and sizes;

. ab string

.11

if t present, print only total of sizes.
Print a message and abort .

B Flush output buffer.

21. Output and Error Messages

Notes-

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
o Must stay in effect until logical output.
P Mode must be stilI or again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Section Number Cross Reference

ab 20 c2 IO di 7 ex 18 hw 13 Ig IO ne 3 os 5 rd 18
ad 4 cc IO ds 7 fc 9 hy 13 Ii 10 nf 4 pc 14 rm 7
af 8 ee 4 dt 7 fi 4 ie 16 II 6 nh 13 pi 19 m 7
am 7 eh 7 ec 10 tl 20 if 16 Is 5 nml5 pi 3 IT 8
as 7 es 2 e1 16 fp 2 ig 20 It 14 nn 15 pm20 rs 5
bd 2 eu IO em 7 ft 2 in 6 me 20 nr 8 pn 3 rt 3
bp 3 da 7 eo 10 fz 2 it 7 mk 3 ns 5 po 3 so 19
br 4 de 7 ev 17 he 13 Ie 9 na 4 nx 19 ps 2 sp 5

ss 2 uf IO
sv 5 ul IO
ta 9 vs 5
te 9 wh 7
Ii 6
tl 14
tm20
tr IO

NROFF/TROFF User's Manual

Predefined General Number Registers

Section
Reference

3
19
11.2
7.4
7.4

11.3
15

4.1
11.2
11.2

Register
Name Description

% Current page number.
c. Number of lines read from current input file.
ct Character type (set by width function).
dl Width (maximum) of last completed diversion.
dn Height (vertical size) of last completed diversion.
dw Current day of the week (1-7).
dy Current day of the month (1-31).
hp Current horizontal place on input line (not in ditroff)
In Output line number.
mo Current month (1-12).
nl Vertical position oflast printed text base-line.
sb Depth of string below base line (generated by width function).
st Height of string above base line (generated by width function).
yr Last two digits of current year.

Predefined Read-Only Number Registers

Section
Reference

7.3

11.1
5.3

. 11.1
5.2

19

Register
Name

.$

. A

. H

.L

. P

. T
• V
.a
.c

Description

Number of arguments available at the current macro level.
Set to I in TROFF, if -a option used; always I in NROFF .
A vailable horizontal resolution in basic units .
Set to current line-spacing (Is) parameter
Set to I if the current page is being printed; otherwise O .
Set to I in NROFF, if -T option used; always 0 in TROFF .
A vail able vertical resolution in basic units .
Post-line extra line-space most recently utilized using \x' N'.
J\lumber of lines read from current input file.

USD:24-7

7.4
2.2

. d

. f
Current vertical place in current diversion; equal to nI, if no diversion .
Current font as physical quadrant (1-4) .

4 .h
6 .i
4.2 .j
4.1 . k
6 .I
4 .n
3 .0

3 . p
2.3 • S

7.5 .t
4.1 .u
5.1 .V

11.2 .W
.x
.y

7.4 • Z

Text base-line high-water mark on current page or diversion.
Current indent.
Current adjustment mode and type.
Length of text portion on current partial output line .
Current line length .
Length of text portion on previous output line.
Current page offset.
Current page length .
Current point size .
Distance to the next trap.
Equal to I in fil! mode and 0 in nofil! mode.
Current vertical line spacing.
Width of previous character.
Reserved version-dependent register.
Reserved version-dependent register.
Name of current diversion .

NROFF/TROFF User's Manual USD:24-9

the input line to the horizontal place N. For example,

.sp 13.2c

will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected, an expression involving
parentheses, the arithmetic operators +, -, I, *, % (mod), and the logical operators <, >, <=, >=, =
(or = =), & (and), : (or) may be used. Except where controlled by parentheses, evaluation of expres
sions is left-to-right; there is no operator precedence. In the case of certain requests, an initial + or -
is stripped and interpreted as an increment or decrement indicator respectively. In the presence of
default scaling, the desired scale indicator must be attached to every number in an expression for
which the desired and default scaling differ. For example, if the number register x contains 2 and the
current point size is 10, then

.11 (4.25i+\nxP+3)/2u

will set the line length to 112 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ±N means that the
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an
initial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests ps,
ft, po, vs, Is, II, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi
character mnemonics.

2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of a typesetter-dependent basic character set plus
a Special Mathematical Font character set-each having 102 characters. An example of these charac
ter sets is shown in the Appendix Table I. All printable ASCII characters are included, with some on
the Special Font. With three exceptions, these ASCII characters are input as themselves, and non
ASCII characters are input in the form \(xx where xx is a two-character name given in the Appendix
Table II. The three ASCII exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name

acute accent
,

close quote
grave accent ,

open quote
- minus - hyphen

The characters ., " and - may be input by \', \', and \- respectively or by their names (Table II).
The ASCII characters @, #, ", ., " <, >, \, {, }, -, A, and exist only on the Special Font and are
printed as a I-em space if that font is not mounted. -

NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into
other printable characters. The exact behavior is determined by a driving table prepared for each
device. The characters ., " and print as themselves.

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and
the Special Mathematical Font (S) on physical typesetter positions I, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may be changed (among the
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(xx, or \fN
where x and xx are the name of a mounted font and N is a numerical font position. It is not

NROFFITROFF User's Manual

.bd S F N off

.ftF Roman previous

.fpNF R,I,B,S ignored

3. Page control

P

E

USD:24-ll

were printed with .be1 I 3. The mode must be still or
again in effect when the characters are physically
printed. Ignored in NROFF.

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was
printed with .be1 S B 3. The mode must be still or again
in effect when the characters are physically printed.

Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named F
is mounted on position N (1-4). It is a fatal error if F is
not known. The phototypesetter has four fonts physi
cally mounted. Each font consists of a film strip which
can be mounted on a numbered quadrant of a wheel.
The default mounting sequence assumed by TROFF is
R, I, B, and S on positions 1,2, 3 and 4.

Top and bottom margins are not automatically provided; it is conventional to define two macros and
to set traps for them at vertical positions 0 (top) and -N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs
or when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of
the first page must be completed before this transition. In the following, references to the current
diversion (§7.4) mean that the mechanism being described works during both ordinary and diverted
output (the former considered as the top diversion level).

The usable page width on the Graphic Systems phototypesetter was about 7.54 inches, beginning
about 1/27 inch from the left edge of the 8 inch wide, continuous roll paper, but these characteristics
are typesetter- dependent. The physical limitations on NROFF output are output-device dependent.

Request Initial If No
Form Value Argument Notes Explanation

.pl±N 11 in 11 in

.bp±N N=I

.pn±N N=I ignored

.po±N 0; 26/27 int previous

.neN N=IV

v Page length set to ±N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register.

B",v Begin page. The current page is ejected and a new page
is begun. If ±N is given, the new page number will be
±N. Also see request ns.

Page number. The next page (when it occurs) will have
the page number ±N. A pn must occur before the initial
pseudo-page transition to affect the page number of the
first page. The current page number is in the % register.

v Page offset. The current left margin is set to ±N. The
TROFF initial value provides about I inch of paper mar
gin including the physical typesetter margin of
1/27 inch. In TROFF the maximum (line
length) + (page-offset) is about 7.54 inches. See §6. The
current page offset is available in the .0 register.

D,v Need N vertical space. If the distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical

·"The use of" • " as control character (instead of":) suppresses the break function.

tValues separated by";" are for NROFF and TROFF respectively.

NROFF/TROFF User's Manual USD:24-13

II No Request
Form

Initial
Value Argument Notes Explanation

.br B

.fi fill on B,E

.nf fill on B,E

.ad c adj,both adjust E

.na adjust E

.ceN off N=I B,E

5. Vertical Spacing

Break. The filling of the line currently being collected is
stopped and the line is output without adjustment.
Text lines beginning with space characters and empty
text lines (blank lines) also cause a break.

Fill subsequent output lines. The register .u is I in fill
mode and 0 in nofill mode.

Nofil!. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

Line adjustment is begun. If fill mode is not on, adjust
ment will be deferred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table. The type indi
cator can also be a value saved from the read-only .j
number register, which is set to contain the current
adjustment mode and type.

Indicator Adjust Type
I adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged

Noadjust. Adjustment is turned off; the right margin
will be ragged. The adjustment type for ad is not
changed. Output line filling still occurs if fill mode is
on.

Center the next N input text lines within the current
(line-length minus indent). If N=O, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left
adjusted.

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can
be set using the vs request with a resolution of 1/144inch = 1/2 point in TROFF, and to the output
device resolution in NROFF. V must be large enough to accommodate the character sizes on the
affected output lines. For the common type sizes (9-12 points), usual typesetting practice is to set V
to 2 points greater than the point size; TROFF default is lO-point type on a 12-point spacing (as in
this document). The current V is available in the .v register. Multiple-V line separation (e. g. double
spacing) may be requested with Is.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing
it to have extra vertical space before and/or after it, the extra-line-space function \x' N' can be
imbedded in or attached to that word. In this and other functions having a pair of delimiters around
their parameter (here'), the delimiter choice is arbitrary, except that it can't look like the continua
tion of a number expression for N. If N is negative, the output line containing the word will be pre
ceded by N extra vertical space; if N is positive, the output line containing the word will be followed
by N extra vertical space. If successive requests for extra space apply to the same line, the maximum
values are used. The most recently utilized post-line extra line-space is available in the .a register.

NROFF/TROFF User's Manual USD:24-15

.ti ±N ignored B,E,m Temporary indent. The next output text line will be
indented a distance ±N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or
with a trap. A ,string is a named string of characters, not including a newline character, that may be
interpolated by name at any point. Request, macro, and string names share the same name list.
Macro and string names may be one or two characters long and may usurp previously defined
request, macro, or string names. Any of these entities may be renamed with m or removed with rm.
Macros are created by de and di, and appended to by am and da; di and da cause normal output to be
stored in a macro. Strings are created by ds and appended to by as. A macro is invoked in the same
way as a request; a control line beginning .xx will interpolate the contents of macro xx. The
remainder of the line may contain up to nine arguments. The strings x and xx are interpolated at any
desired point with \,.x and \",(xx respectively. String references and macro invocations may be
nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not
by diversion) the input is read in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
• Strings indicated by \. are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed newlines indicated by \(newline) are eliminated.
• Comments indicated by \" are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \ \ is interpreted as \.
• \. is interpreted as

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a\,\ \n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up
to nine arguments. The argument separator is the space character, and arguments may be surrounded
by double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a
line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro with \$N, which interpo
lates the Nth argument (1:::;N:::;9). If an invoked argument doesn't exist, a null string results. For
example, the macro xx may be defined by

.de xx \ "begin definition
Today is \\$1 the \\$2.

\ "end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The number of currently avail
able arguments is in the .$ register.

NROFF/TROFF User's Manual

.as xx string

.rmxx

.rn xx yy

.dixx

.daxx

.whNxx

.ch xxN

.dt N xx

.itN xx

.emxx none

8. Number Registers

ignored

ignored

ignored

end

end

off

off

none

D

D

v

v

D,v

E

USD:24-l7

blanks.

Append string to string xx (append version of ds).

Remove request, macro, or string. The name xx is
removed from the name list and any related storage
space is freed. Subsequent references will have no
effect.

Rename request, macro, or string xx to yy. If yy exists,
it is first removed.

Divert output to macro xx. Normal text processing
occurs during diversion except that page offsetting is not
done. The diversion ends when the request di or da is
encountered without an argument; extraneous requests
of this type should not appear when nested diversions
are being used.

Divert, appending to xx (append version of di).

Install a trap to invoke xx at page position N; a negative
N will be interpreted with respect to the page bottom.
Any macro previously planted at N is replaced by xx. A
zero N refers to the top of a page. In the absence of xx,
the first found trap at N, if any, is removed.

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed.

Install a diversion trap at position N in the current
diversion to invoke macro xx. Another dt will redefine
the diversion trap. If no arguments are given, the diver
sion trap is removed.

Set an input-line-count trap to invoke the macro xx
after N lines of text input have been read (control or
request lines don't count). The text may be in-line text
or text interpolated by inline or trap-invoked macros.

The macro xx will be invoked when all input has ended.
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own named registers. Register names are
one or two characters long and do not conflict with request, macro, or string names. Except for cer
tain predefined read-only registers, a number register can be read, written, automatically incremented
or decremented, and interpolated into the input in a variety of formats. One common use of user
defined registers is to automatically number sections, paragraphs, lines, etc. A number register may'"
be used any time numerical input is expected or desired and may be used in numerical expressions
(§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

NROFF/TROFF User's Manual USD:24-19

Tab Length of motion or Location of
type repeated characters next-string

Left D FoliowingD
Right D-W Right adjusted within D

Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string can
not be. Repeated character strings contain an integer number of characters, and any residual distance
is prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab
and leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the
field delimiter is # and the padding indicator is ., #'xxx'right # specifies a right-adjusted string with
the string xxx centered in the remaining space.

, Request Initial If No
Form Value Argument Notes Explanation

, .ta Nt ," 8n; 0.5in none

, .tc c none none

, .Ie c none

'.fc a b off off

E,m

E

E

Set tab stops and types. t=R, right adjusting; t=C,
centering; t absent, left adjusting. TROFF tab stops are
preset every 0.5in.; NROFF every 8 character widths.
The stop values are separated by spaces, and a value
preceded by + is treated as an increment to the previ
ous stop value.

The tab repetition character becomes c, or is removed
specifying motion.

The leader repetition character becomes c, or is
removed specifying motion.

The field delimiter is set to a; the padding indicator is
set to the space character or to b, if given. In the
absence of arguments the field mechanism is turned off.

to. Input and Outpnt Conventions and Character Translations

JO.l.Input character translations. Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§1O.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are
accepted, and may be used as delimiters or translated into a graphic with tr (§ 1 0.5). All others are
ignored.

The escape character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same
name. The escape character \ can be input with the sequence \ \. The escape character can be
changed with ec, and all that has been said about the default \ becomes true for the new escape char
'acter. \e can be used to print whatever the current escape character is. If necessary or convenient,
the escape mechanism may be turned off with eo, and restored with ec.

NROFFITROFF User's Manual USD:24-21

Request
Form

.tr abed

Initial
Value

none

IJNo
Argument Notes Explanation

o Translate a into b, c into d, etc. If an odd number of
characters is given, the last one will be mapped into the
space character. To be consistent, a particular transla
tion must stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and tran
sparently output (without the initial \!); the text processor is otherwise unaware of the line's presence.
This mechanism may be used to pass control information to a post-processor or to imbed control
lines in a macro created by a diversion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e.
g. a string definition, or nofilled text) can be split into many physical lines by ending all but the last
one with the escape \. The sequence \(newline) is always ignored-except in a comment. Comments
may be imbedded at the end of any line by prefacing them with \.. The newline at the end of a com
ment cannot be concealed. A line beginning with \. will appear as a blank line and behave like .sp 1;
a comment can be on a line by itself by beginning the line with .\ •.

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions \ v' N' and \h' N' can be used for local vertical and horizontal
motion respectively. The distance N may be negative; the positive directions are rightward and down
ward. A local motion is one contained within a line. To avoid unexpected vertical dislocations, it is
necessary that the net vertical local motion within a word in filled text and otherwise within a line
balance to zero. The above and certain other escape sequences providing local motion are summar
ized in the following table.

Vertical Effect in Horizontal Effect in
Local Motion TROFF NROFF Local Motion TROFF NROFF

\v'N' Move distance N \h'N' Move distance N
\(space) Unpaddable space-size space

\u liz em up liz line up \0 Digit-size space
\d liz em down liz line down
\r I em up I line up \1 1/6 em space I ignored

\A 1/12 em space ignored

As an example, E2 could be generated by the sequence E\s-2\v'-0.4m'2\v'0.4m'\s+2; it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w'string' generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current
environment. For example, .ti -\w'l. 'u could be used to temporarily indent leftward a distance
equal to the size of the string "1. ".

The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders (like e); I
means that at least one character has a descender (like y); 2 means that at least one character is tall
(like H); and 3 means that both tall characters and characters with descenders are present.

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
. input line to be stored in register x. As an example, the construction \kxword\h' 1 \nxu+ 2u' word
will embolden word by backing up to almost its beginning and overprinting it, resulting in word.

NROFF/TROFF User's Manual USD:24-23

The horizontal and vertical line drawing functions may be used in combination to produce large
boxes. The zero-width box-rule and the '/2-em wide underrule were designed to form comers when
using I-em vertical spacings. For example the macro

.de eb

.sp -1 \ "compensate for next automatic base-line spacing

.nf \ "avoid possibly overflowing word buffer
\h' -.5n'\L '\ \ \nau-l'\I'\ \n(.Iu+ln\(ul'\L' -\ \ \nau+l'\I'\ Ou-.5n\(ul' \"draw box
.Ii

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.
using .mk a) as done for this paragraph.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with by, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphe
nation points, or may be prepended to suppress hyphenation. In addition, the user may specify a
small exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing
hyphens (minus), em-dashes (\(em), or hyphenation indicator characters-such as mother-in-Iaw-are
always subject to splitting after those characters, rhether or not automatic hyphenation is on or off.

Request Initial If No
Form Value Argument Notes Explanation

.nb

.byN

.hc c

.bw word] ...

hyphenate -

on,N= I on,N= I

\% \%

ignored

14. Three Part Titles.

E

E

E

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N~ I, or off for
N= O. If N= 2, last lines (ones that will cause a trap) are
not hyphenated. For N= 4 and 8, the last and first two
characters respectively of a word are not split off. These
values are additive; i. e. N= 14 will invoke all three res
trictions.

Hyphenation indicator character is set to c or to the
default \ %. The indicator does not appear in the out
put.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are
implied; i. e. dig-it implies dig-its. This list is exam
ined initially and after each suffix stripping. The space
available is small-about 128 characters.

The titling function tl provides for automatic placement of three fields at the left, center, and right of
a line with a title-length specifiable with It. tl may be used anywhere, and is independent of the nor
mal text collecting process. A common use is in header and footer macros.

Request Initial If No
Form Value Argument Notes Explanation

.tl 'left' center' right' The strings left, center, and right are respectively left
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over
lapping is permitted. If the page-number character (ini
tially %) is found within any of the fields it is replaced
by the current page number having the format assigned

NROFF/TROFF User's Manual

.ie c anything

.el anything

u

The built-in condition names are:

Condition
Name

0

e
t
n

If portion of if-else; all above forms (like if).

Else portion of if-else.

True If
Current page number is odd
Current page number is even
Formatter is TROFF
Formatter is NROFF

USD:24-25

If the condition c is trlle, or If the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), anything is accepted as input. If a ! precedes the
condition, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can
be either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line
case, the first line must begin with a left delimiter \ { and the last line must end with a right delimiter
\}.
The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested.

Some examples are:

.if e.tI • Even Page %" •

which outputs a title if the page number is even; and

.ie \n%>1 \{\
'sp O.Si
.tl 'Page %'"
'sp 11.2i \}
.el .sp I 2.Si

which treats page I differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered togethe~ into an environ
ment, which can be switched by the user. The environment parameters are those associated with
requests noting E in their Notes column; in addition, partially c.ollected lines and words are in the
environment. Everything else is global; examples are page-oriented parameters, diversion-oriented
parameters, number registers, and macro and string definitions. All environments are initialized with
default parameter values .

. Request Initial
Form Value

.evN N=O

IINo
Argument Notes Explanation

previous Environment switched to environment O~N~2. Switch
ing is done in push-down fashion so that restoring a pre
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the Standard Input

. The input can be temporarily switched to the system standard input with rd, which will switch back
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key

. board, a pipe, or a./ile.

NROFF/TROFF User's Manual

.pm I all

.ab siring

.f)

21. Output and Error Messages.

B

USD:24-27

Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal; if
t is given, only the total of the sizes is printed. The
sizes is given in blocks of 128 characters.

Print siring on standard error and terminate immedi
ately. The default string is "User Abort". Does not
cause a break. Only output preceding the last break is
written.

Flush output buffer. Used in interactive debugging to
force output.

The output from tm, pm, ab and the prompt from rd, as well as various error messages are written
onto UNIX's standard error output. The latter is different from the standard output, where NROFF
formatted output goes. By default, both are written onto the user's terminal, but they can be indepen
dently redirected.

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious
errors having only local impact do not cause processing to terminate. Two examples are word
overflow, caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow,
caused by an output line that grew too large to fit in the line buffer; in both cases, a message is
printed, the offending excess is discarded, and the affected word or line is marked at the point of
truncation with a • in NROFF and a ... in TROFF. The philosophy is to continue processing, if possi
ble, on the grounds that output useful for debugging may be produced. If a serious error occurs, pro
cessing terminates, and an appropriate message is printed. Examples are the inability to create, read,
or write files, and the exceeding of certain internal limits that make future output unlikely to be use
ful.

NItOFFITROFF User's Manual

of hd to render ineffective accidental
occurrences of sp at the top of the running text.

The above method of restoring size, font, etc.
presupposes that such requests (that set previolls
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow
ing:

• de fo
.nr 51 \\n(.s \ "current size
.ps
.nr 52 \ \n(.s \ "previous size
• -- \ "rest of footer

.de hd

.-

.ps \\n(s2

.ps \ \n(51

\ "header stuff
\ "restore previous size
\ "restore current size

Page numbers may be printed in the bottom
margin by a separate macro triggered during the
footer's page ejection:

.de bn \ "bottom number

.tl .. - % -" \ "centered page number

. wh -O.Si-1v bn \ "tl base O.Si up

T3. Paragraphs and Headings

The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
preparagraph spacing, forces the correct font,
size, base-line spacing, and indent, checks that
enough space remains for more than one line,
and requests a temporary indent.

. de pg \ "paragraph

.br \"break

.ft R \ "force font,

.ps 10 \"size,

.vs 12p \ "spacing,
In 0 \ "and indent
.sp 0.4 \ "prespace
.ne l+\\n(.Vu \"want more than I line
.ti 0.2i \ "temp indent

The first break in pg will force out any previous
partial lines, and must occur before the VS. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec
tion heading macros to set parameters only
once. The prespacing parameter is suitable for

, TROFF; a larger space, at least as big as the

i.

USD:24-29

output device vertical resolution, would be more
suitable in NROFF. The choice of remaining
space to test for in the ne is the smallest amount
greater than one line (the .V is the available
vertical resolution).

A macro to automatically number section head
ings might look like:

.de sc \ "section
\ "force font, etc .

.sp 0.4 \ "prespace

.ne 2.4+ \\n(.Vu \ "want 2.4+ lines

.fi
\\n+S.

.nr SOl \ "init S

The usage is .sc, followed by the section heading
text, followed by .pg. The ne test value includes
one line of heading, 0.4 line in the following pg,
and one line of the paragraph text. A word con
sisting of the next section number and a period
is produced to begin the heading line. The for
mat of the number may be set by af (§8).

Another common form is the labeled, indented
paragraph, where the label protrudes left into
the indent space .

.de Ip

.pg

.in O.Si

.ta 0.2i O.Si

.ti 0
\t\ \$I\t\c

\ "labeled paragraph

\ "paragraph indent
\ "label, paragraph

\ "Oow into paragraph

The intended usage is ".Ip labe/"; label will
begin at 0.2 inch, and cannot exceed a length of
0.3 inch without intruding into the paragraph .
The label could be right adjusted agabst
0.4 inch by setting the tabs instead with
.ta 0.4iR O.Si. The last line of Ip ends with \c so
that it will become a part of the first line of the
text that follows.

T4. Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column, so
that it will begin a new column rather than pro
duce the bottom margin. The header can ini
tialize a column register that the footer will
increment and test. The following is arranged
for two columns, but is easily modified for
more.

NROFFITROFF User's Manual

difference in vertical base-line spacings of the
two environments, to prevent the late triggering
the footer trap from causing the last line of the
combined footnotes to overflow. The footer
trap is then set to the lower (on the page) of y or
the current page position (nl) plus one line, to
allow for printing the reference line. If indi
cated by x, the footer fo rereads the footnotes
from FN in nofill mode in environment 1, and
deletes FN. If the footnotes were too large to
fit, the macro fx will be trap-invoked to redivert
the overflow into fy, and the register dn will
later indicate to the header whether fy is empty.
Both fo and fx are planted in the nominal footer
trap position in an order that causes fx to be
concealed unless the fo trap is moved. The
footer then terminates the overflow diversion, if
necessary, and zeros x to disable fx, because the
uncertainty correction together with a not-too
late triggering of the footer can result in the
footnote rereading finishing before reaching the
fx trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

T6. The Last Page

After the last input file has ended, NROFF and
TROFF invoke the end macro (§7), if any, and
when it finishes, eject the remainder of the page.
During the eject, any traps encountered are pro
cessed normally. At the end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.de en
\c
"bp

.em en

\ "end-macro

will deposit a null partial word, and effect
another last page.

USD:24-31

NROFF/TROFF User's Manual

Table II

Input Naming Conventions for', ',and -
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the standard fonts.

Input Character Input Character
Char Name Name Char Name Name

close quote fi \(fi fi
open quote fI \(fI fI

\(em 3/4 Em dash If \(If If
hyphen o~ Iii \(Fi Iii

\(hy hyphen ffl \(FI ffl
\- current font minus \(de degree

• \(bu bullet t \(dg dagger
0 \(sq square \(fm foot mark

\(ru rule ¢ \(ct cent sign
1/4 \(14 1/4 ® \(rg registered
112 \(12 1/2 © \(co copyright
% \(34 3/4

Non-ASCII characters and " " ,+, -, =, and * on the special font.

USD:24-33

The ASCII characters @, #, ", ., ., <, >, \, {, }, -, ., and _ exist only on the special font and are
printed as a I-em space if that font is not mounted. The following characters exist only on the spe
cial font except for the upper case Greek letter names followed by t which are mapped into upper
case English letters in whatever font is mounted on font position one (default Times Roman). The
special math plus, minus, and equals are provided to insulate the appearance of equations from the
choice of standard fonts.

Input Character Input Character
Char Name Name Char Name Name

+ \(pl math plus K \(*k kappa
\(mi math minus A \(*1 lambda
\(eq math equals Jl \(*m mu

* \(** math star \(*n nu
§ \(sc section ~ \(*c xi

\(aa acute accent \(*0 omicron
\(ga grave accent 'II" \(*p pi
\(ul underrule p \(*r rho

/ \(sl slash (matching backslash) fJ \(*s sigma
ex \(*a alpha \(ts terminal sigma
(3 \(*b beta T \(*t tau
'Y \(*g gamma v \(*u upsilon
[j \(*d delta

'"
\(*f phi

\(*e epsilon x \(*x chi
I \(*z zeta

'"
\(*q psi

'1 \(*y eta w \(*w omega
0 \(*h theta A \(*A Alphat

\(*i iota B \(*B Betat

USD:25-l

A TROFF Tutorial

Brian W. Kernighan
(updated for 4.3BSD by Mark Seiden)

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

troff is a text-formatting program for typesetting on the UNIXt operating sys
tem. This device is capable of producing high quality text; this paper is an example
of troff output.

The phototypesetter itself normally runs with four fonts, containing roman,
italic and bold letters (as on this page), a full greek alphabet, and a substantial
number of special characters and mathematical symbols. Characters can be printed
in a range of sizes, and placed anywhere on the page.

troff allows the user full control over fonts, sizes, and character positions, as
well as the usual features of a formatter - right-margin justification, automatic
hyphenation, page titling and numbering, and so on. It also provides macros, arith
metic variables and operations, and conditional testing, for complicated formatting
tasks.

This document is an introduction to the most basic use of troff. It presents just
enough information to enable the user to do simple formatting tasks like making
viewgraphs, and to make incremental changes to existing packages of troff com
mands. In most respects, the UNIX formatter nroff and a more recent version
(device-independent troft) are identical to the version described here, so this docu
ment also serves as a tutorial for them as well.

1. Introduction

troff [I] is a text-formatting program, written
originally by J. F. Ossanna, for producing high
quality printed output from the phototypesetter on
the UNIX operating system. This document is an
example of troff output.

The single most important rule of using troff is
not to use it directly, but through some intermedi
ary. In many ways, troff resembles an assembly
language - a remarkably powerful and flexible one
- but nonetheless such that many operations must
be specified at a level of detail and in a form that is
too hard for most people to use effectively.

t UNIX is a trademark of AT&T Bell Laboratories.

For two special applications, there are pro
grams that provide an interface to troff for the
majority of users. eqn [2] provides an easy to learn
language for typesetting mathematics; the eqn user
need know no troff whatsoever to typeset mathemat
ics. tbl [3] provides the same convenience for pro
ducing tables of arbitrary complexity.

For producing straight text (which may well
contain mathematics or tables), there are a number
of 'macro packages' that define formatting rules and
operations for specific styles of documents, and
reduce the amount of direct contact with troff. In
particular, the '-ms' [4], PWB/MM [5], and '-me'
[6] packages for internal memoranda and external

A TROFF Tutorial

size, except that \sO causes the size to revert to its
previous value. Notice that \slOll can be under
stood correctly as 'size 10, followed by an II', if the
size is legal, but not otherwise. Be cautious with
similar constructions.

Relative size changes are also legal and useful:

\s-2UNIX\s+2

temporarily decreases the size, whatever it is, by two
points, then restores it. Relative size changes have
the advantage that the size difference is independent
of the starting size of the document. The amount of
the relative change is restricted to a single digit.

The other parameter that determines what the
type looks like is the spacing between lines, which is
set iIidependently of the point size. Vertical spacing
is measured from the bottom of one line to the bot
tom of the next. The command to control vertical
spacing is .vs. For running text, it is usually best to
set the vertical spacing about 20% bigger than the
character size. For example, so far in this, docu
ment, we have used "9 on II", that is,

.ps 9

.vs lip

If we changed to

. ps 9

.vs 9p

the running text would look like this. After a few
lines, you will agree it looks a little cramped. The
right vertical spacing is partly a matter of taste,
depending on how much text you want to squeeze
into a given space, and partly a matter of traditional
printing style. By default, !rolf uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch. This is
12 on 14.

Point size and vertical spacing make a substantial difference in the
amount of text per square inch. For example. 10 on 12 usts about twice as
much space as 7 on 8. This is 6 on 7, which is even smaller. It packs a lot
more words per line, but you can go blind trying to read it.

When used without arguments, .ps and .vs
revert to the previous size and vertical spacing
respectively.

The command .sp is used to get extra vertical
space. Unadorned, it gives you one extra blank line
(one .vs, whatever that has been set to). Typically,
that's more or less than you want, so .sp can be fol
lowed by information about how much space you
want-

.sp 2i

means 'two inches of vertical space'.

USD:25-3

.sp 2p

means 'two points of vertical space'; and

.sp 2

means 'two vertical spaces' - two of whatever .vs is
set to (this can also be made explicit with .sp 2v);
!rolf also understands decimal fractions in most
places, so

.sp l.5i

is a space of 1.5 inches. These same scale factors
can be used after .vs to define line spacing, and in
fact after most commands that deal with physical
dimensions.

It should be noted that all size numbers are
converted internally to 'machine units', which are
11432 inch (1/6 point). For most purposes, this is
enough resolution that you don't have, to worry
about the accuracy of the representation. The situa
tion is not quite so good vertically, where resolution
is 11144 inch (1/2 point).

3. Fonts and Special Characters

!roff and the typesetter allow four different
fonts at anyone time. Normally three fonts (Times
roman, italic and bold) and one collection of special
characters are permanently mounted .

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcde/ghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany of
the special font are listed in Appendix A.

!roff prints in roman unless told otherwise. To
switch into bold, use the .ft command

.ft B

and for italics,

.ft I

To return to roman, use .ft R; to return to the previ
ous font, whatever it was, use e-ither .ft P or just .ft.
The 'underline' command

.ul

causes the next input line to print in italics. .ul can
be followed by a count to indicate that more than
one line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f:

bold/ace text

is produced by

·-\ TROFF Tutorial

.in 0.3i

.11 -0.3i
text to be set into a block
.11 +0.3i
.in -0.3i

will create a block thai looks like this:

Pater noster qui est in caelis sanctificetur
nomen tuum; adveniat regnum tuum: fiat
voluntas tua. sicut in caelo, et in terra
Amen.

Notice the use of '+' and '-' to specify the amount
of change. These change the previous setting by the
specified amount, rather than just overriding it. The
distinction is quite imponant: .11 + I i makes lines
one inch longer; .11 I i makes them one inch long.

With .in, .11 and .po, the previous value is
used if no argument is specified.

To indent a single line, use the 'temporary
indent' command .ti. For example, all paragraphs in
this memo effectively begin with the command

.Ii 3

Three of what? The default unit for .ti, as for most
horizontally oriented commands (.11, .in, .po), is
ems; an em is roughly the width of the letter 'm' in
the current point size. (Precisely, a em in size p is p
points.) Although inches are usually clearer than ems
to people who don't set type for a living, ems have a
place: they are a measure of size that is proponional
to the current point size. If you want to make text
that keeps its proportions regardless of point size,
you should use ems for all dimensions. Ems can be
specified as scale factors directly, as in ,ti 2.5m.

Lines can also be indented negatively if the
indent is already positive:

.ti -0.3i

causes the next line to be moved back three tenths
of an inch. Thus to make a decorative initial capi
tal, we indent the whole paragraph, then move the
letter 'P' back with a ,ti command:

Pater noster qui est in caelis
sanctificetur nomen tuum; adveniat

. regnum tuum; fiat voluntas tua, sicut
in caelo, et in terra.... Amen.

Of course, there is also some trickery to make the 'P'
bigger Uust a '\s36P\sO'), and to move it down from
its normal position (see the section on local
motions).

5. Tabs

Tabs (the ASCII 'horizontal tab' character) can
be used to produce output in columns, or to set the
horizontal position of output. Typically tabs are
used only in unfilled text. Tab stops are set by

USD:25-5

default every half inch from the current indent, but
can be changed by the .ta command. To set stops
every inch, for example.

.ta Ii 2i 3i 4i 5i 6i

Unfonunately the stops are left-justified only
(as on a typewriter). so lining up columns of right
justified numbers can be painful. If you have many
numbers, or if you need more complicated table lay
out. dOI!'1 usc (roff directly; usc the tbl program
described in [3].

For a handful of numeric columns, you can do
it this way: Precede every number by enough blanks
to make it line up when typed.

.nf

.ta Ii 2i 3i
I lah 2 lah 3

40 lah 50 lab 60
700 lah 800 lab 900
.fi

Then change each leading blank into the string \0.
This is a character that does not print, but that has
the same width as a digit. When printed, this will
produce

I
40

700

2
50

800

3
60

900

It is also possible to fill up tabbed-over space
with some character other than blanks by setting the
'tab replacement character' with the ,tc command:

.ta l.5i 2.5i

.tc \(ru (\(ru is "_")
Name lab Age lab

produces

Name _______ Age ____ _

To reset the tab replacement character to a blank,
use .tc with no argument. (Lines can also be drawn
with the \1 command, described in Section 6.)

troff also provides a very general mechanism
called 'fields' for setting up complicated columns.
(This is used by tbl), We will not go into it in this
paper.

6. Local Motions: Drawing lines and characters

Remember 'Area = lI'r2, and the big 'P' in the
Paternoster. How are they done? troff provides a
host of commands for placing characters of any size
at any place. You can use them to draw special
characters or to tune your output for a particular
appearance. Most of these commands are straight
forward, but messy to read and tough to type
correctly.

A TROFF Tutorial

which makes

systeme te!ephonique

The accents are \(ga and \(aa, or \' and \';
remember that each is just one character to trolf.

You can make your own overstrikes with
another special convention, \z, the zero-motion
command. \zx suppresses the normal horizontal
motion after printing the single character x, so
another character can be laid on top of it. Although
sizes can be changed within \0, it centers the charac
ters on the widest, and there can be no horizontal or
vertical motions, so \z may be the only way to get
what you want: .

is produced by

.sp 2
\s8\z \(sq \s 14 \z\(sq \s22\z\(sq \s3 6\(sq

The .sp is needed to leave room for the result.

As another example, an extra-heavy semicolon
that looks like

; instead of ; or ;

can be constructed with a big comma and a big
. period above it:

\s+6\z,\v'-O.25m'.\v'O.25m\sO

'O.25m' is an experimentally-derived constant.

A more ornate overstrike is given by the
bracketing function \b, which piles up characters
vertically, centered on the current baseline. Thus we

. can get big brackets, constructing them with piled-up
smaller pieces:

by typing in only this:

.sp
\b'\(lt\(lk\(lb' \b'\(lc\(lf x \b'\(rc\(rf \b'\(rt\(rk\(rb'

trolf also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \1'li' draws a line
one inch long, like this: . The

. length can be followed by the character to use if the
_ isn't appropriate; \1'O.5i.' draws a half-inch line of
dots: The construction \L is entirely
analogous, except that it draws a vertical line instead
of horizontal.

USD:25-7

7, Strings

Obviously if a paper contains a large number
of occurrences of an acute accent over a letter 'e',
typing \o"e\~ for each e would be a great nuisance.

Fortunately, trolf provides a way in which you
can store an arbitrary collection of text in a 'string',
and thereafter use the string name as a shorthand for
its contents. Strings are one of several trolf mechan
isms whose judicious use lets you type a document
with less effort and organize it so that extensive for
mat changes can be made with few editing changes.

A reference to a string is replaced by whatever
text the string was defined as. Strings are defined
with the command .ds. The line

.ds e \o"e\""

defines the string e to have the value \o"e\ ~

String names may be either one or two charac
ters long, and are referred to by *x for one charac
ter names or *(xy for two character names. Thus
to get telephone, given the definition of the string e
as above, we can say t*el\.ephone.

If a string must begin with blanks, define it as

.ds xx" text

The double quote signals the beginning of the
definition. There is no trailing quote; the end of the
line terminates the string .

A string may actually be several lines long; if
trolf encounters a \ at the end of any line, it is
thrown away and the next line added to the current
one. So you can make a long string simply by end
ing each line but the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will dis
cuss some of these possibilities later.

8. Introduction to Macros

Before we can go much further in trolf, we
need to learn a bit about the macro facility. In its
simplest form, a macro is just a shorthand notation
quite similar to a string. Suppose we want every
paragraph to start in exactly the same way - with a
space and a temporary indent of two ems:

.sp

.ti +2m

Then to save typing, we would like to collapse these
into one shorthand line, a trolf 'command' like

.PP

that would be treated by trolf exactly as

A TROFF Tutorial

.wh -Ii NP

(No '.' is used before NP; this is simply the name of
a macro, not a macro call.) The minus sign means
'measure up from the bottom of the page', so '-Ii'
means 'one inch from the bottom'.

The .wh command appears in the input out
side the definition of .NP; typically the input would
be

.deNP

.wh -Ii NP

Now what happens? As text is actually being
output, trolf keeps track of its vertical position on
the page, and after a line is printed within one inch
from the bottom, the .NP macro is activated. (In
the jargon, the .wh command sets a trap at the
specified place, which is 'sprung' when that point is
passed.) .NP causes a skip to the top of the next
page (that's what the 'bp was for), then prints the
title with the appropriate margins.

Why 'bp and 'sp instead of .bp and .sp? The
answer is that .sp and .bp, like several other com
mands, cause a break to take place. That is, all the
input text collected but not yet printed is flushed out
as soon as possible, and the next input line is
guaranteed to start a new line of output. If we had

, used .sp or .bp in the .NP macro, this would cause a
break in the middle of the current output line when

, a new page is started. The effect would be to print
the left-over part of that line at the top of the page,
followed by the next input line on a new output line.

, This is not what we want. Using' instead of. for a
command tells trolf that no break is to take place -

, the output line currently being filled should not be
forced out before the space or new page.

The list of commands that cause a break is
short and natural:

.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether you
, use a . or a '. If you really need a break, add a .br

command at the appropriate place.

One other thing to beware of - if you're
changing fonts or point sizes a lot, you may find that

, if you cross a page boundary in an unexpected font
or size, your titles come out in that size and font
instead of what you intended. Furthermore, the

, length of a title is independent of the current line
length, so titles will come out at the default length of

, 6.S inches unless you change it, which is done with
the .It command.

There are several ways to fix the problems of
point sizes and fonts in titles. For the simplest

, applications, we can change .NP to set the proper

USD:2S-9

size and font for the title, then restore the previous
values, like this:

.deNP
'bp
'sp O.Si
.ft R \"' set title font to roman
.ps 10 \" and size to 10 point
.It 6i \" and length to 6 inches
. tl 1eft'centefright'
. ps \"' revert to previous size
.ft P \"' and to previous font
'sp 0.3i

This version of .NP does not work if the fields
in the .tl command contain size or font changes. To
cope with that requires trolf's 'environment'
mechanism, which we will discuss in Section 13.

To get a footer at the bottom of a page, you
can modify .NP so it does some processing before
the 'bp command, or split the job into a footer
macro invoked at the bottom margin and a header
macro invoked at the top of the page. These varia
tions are left as exercises.

Output page numbers are computed automati
cally as each page is produced (starting at I), but no
numbers are printed unless you ask for them expli
citly. To get page numbers printed, include the
character % in the .tlline at the position where you
want the number to appear. For example

.tl "- % -"

centers the page number inside hyphens, as on this
page. You can set the page number at any time with
either .bp n, which immediately starts a new page
numbered n, or with .pn n, which sets the page
number for the next page but doesn't cause a skip to
the new page. Again, .bp +n sets the page number
to n more than its current value; .bp means .bp + I.

10. Number Registers and Arithmetic

trolf has a facility for doing arithmetic, and for
defining and using variables with numeric values,
called number registers. Number registers, like
strings and macros, can be useful in setting up a
document so it is easy to change later. And of
course they serve for any sort of arithmetic compu
tation.

Like strings, number registers have one or two
character names. They are set by the .nr command,
and are referenced anywhere by \nx (one character
name) or \n(xy (two character name).

There are quite a few pre-defined number
registers maintained by trofi", among them % for the
current page number; n1 for the current vertical posi
tion on the page; dy, mo and yr for the current day,

A TROFF Tutorial

The definition of .SM is

.deSM
\s-2\\$1 \s+ 2

Within a macro definition, the symbol \ \$n refers to
the nth argument that the macro was called with.
Thus \\$1 is the string to be placed in a smaller
point size when .SM is called.

As a slightly more complicated version, the
following definition of .SM permits optional second
and third arguments that will be printed in the nor
mal size:

.deSM
\\$3\s-2\\$I\s+2\\$2

Arguments not provided when the macro is called
are treated as empty, so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse the
order of arguments because trailing punctuation is
much more common than leading.

By the way, the number of arguments that a
macro was called with is available in number regis
ter .$.

The following macro .DD is the one used to
· make the 'bold roman' we have been using for trofl"

command names in text. It combines horizontal
· motions, width computations, and argument rear

rangement.

.deBD
\&\ \$3\fl \ \$I\h'-\w'\ \$I'u+ 1 u\ \$1 \fP\\$2

The \h and \w commands need no extra backslash,
as we discussed above. The \& is there in case the

, argument begins with a period.

Two backslashes are needed with the \\$n
commands, though, to protect one of them when the

, macro is being defined, Perhaps a second example
will make this clearer. Consider a macro called .SH

· which produces section headings rather like those in
this paper, with the sections numbered automati
cally, and the title in bold in a smaller size. The use

· is

.SH 'Section title ... "

(If the argument to a macro is to contain blanks,
then it must be surrounded by double quotes, unlike

- a string, where only one leading quote is permitted.)

USD:25-11

Here is the definition of the .SH macro:

.nr SH 0 \" initialize section number

.deSH

.sp O.3i

.ft B

.nr SH \\n(SH+1 \" increment number

.ps \\n(PS-1 \" decrease PS
\ \n(SH. \\$1 \" number. title
.ps \\n(PS \" restore PS
.sp O.3i
.ft R

The section number is kept in number register SH,
which is incremented each time just before it is
used. (A number register may have the same name
as a macro without conflict but a string may not.)

We used \\n(SH instead of \n(SH and \\n(PS
instead of \n(PS. If we had used \n(SH, we would
get the value of the register at the time the macro
was defined. not at the time it was used. If that's
what you want, fine, but not here. Similarly, by
using \ \n(PS, we get the point size at the time the
macro is called.

As an example that does not involve numbers,
recall our .NP macro which had a

.t11eft'center'right'

We could make these into parameters by using
instead

.tl \\.(LT\\.(CT\\.(RT'

so the title comes from three strings called LT, CT
and RT. If these are empty, then the title will be a
blank line. Normally CT would be set with some
thing like

.ds CT - %-

to give just the page number between hyphens (as on
the top of this page), but a user could supply private
definitions for any of the strings.

12. Conditionals

Suppose we want the .SH macro to leave two
extra inches of space just before section I, but
nowhere else. The cleanest way to do that is to test
inside the .SH macro whether the section number is
I, and add some space if it is. The.if command
provides the conditional test that we can add just
before the heading line is output:

.if \\n(SH= I .sp 2i \" first section only

The condition after the .if can be any arith
metic or logical expression. If the condition is logi
cally true, or arithmetically greater than zero, the
rest of the line is treated as if it were text - here a
command. If the condition is false, or zero or nega-

A TROFF Tutorial

.xy

The vertical size of the last linished diversion is con
tained in the built-in number register dn.

As a simple example, suppose we want to
implement a 'keep-release' operation, so that text
between the commands .KS and .KE will not be
split across a page boundary (as for a ligure or
table). Clearly, when a .KS is encountered, we have
to begin diverting the output so we can lind out how
big it is. Then when a .KE is seen, we decide
whether the diverted text will lit on the current page,
and print it either there if it lits, or at the top of the
next page if it doesn't. So:

.de KS

.br

.ev I

.Ii

.diXX

\" start keep
\" start fresh line
\" collect in new environment
\" make it lilled text
\" collect in XX

. de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if\\n(dn>=\\n(.t .bp \" bp ifdoesn't lit

.nf \" bring it back in no-fill

.XX \" text

.ev \" return to normal environment

Recall that number register nl is the current position
on the output page. Since output was being
diverted, this remains at its value when the diver
sion started. dn is the amount of text in the diver
sion; .t (another built-in register) is the distance to
the next trap, which we assume is at the bottom
margin of the page. If the diversion is large enough
to go past the trap, the .if is satisfied, and a .bp is

, issued. In either case, the diverted output is then
brought back with .xx. It is essential to bring it
back in no-fill mode so trolf will do no further pro
cessing on it.

This is not the most general keep-release, nor
is it robust in the face of all conceivable inputs, but
it would require more space than we have here to
write it in full generality. This section is not
intended to teach everything about diversions, but to

, sketch out enough that you can read existing macro
packages with some comprehension.

Acknowledgements

I am deeply indebted to J. F. Ossanna, the
author of trolf, for his repeated patient explanations
of line points, and for his continuing willingness to

, adapt trolf to make other uses easier. I am also
grateful to Jim Blinn, Ted Dolotta, Doug McIlroy,
Mike Lesk and Joel Sturman for helpful comments

, on this paper.

USD:25-13

References

[I] J. F. Ossanna, NROFFrTROFF User's Manual,
Bell Laboratories Computing Science Techni
cal Report 54, 1976.

[2] B. W. Kernighan, A System for Typesetting
Mathematics - User's Guide (Second Edition),
Bell Laboratories Computing Science Techni
cal Report 17, 1977.

[3] M. E. Lesk, TBL - A Program to Format
Tables, Bell Laboratories Computing Science
Technical Report 49, 1976.

[4] M. E. Lesk, Typing Documents on UNIX, Bell
Laboratories, 1978.

[5] J. R. Mashey and D. W. Smith, PWBIMM -
Programmer's Workbench Memorandum Mac
ros, Bell Laboratories internal memorandum.

[6] Eric P. Allman, Writing Papers with NROFF
using -me, University of California, Berkeley .

A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

USD:26-1

This paper describes the design and implementation of a system for typesetting
mathematics. The language has been designed to be easy to' learn and to use by people (for
example, secretaries and mathematical typists) who know neither mathematics nor typesetting.
Experience indicates that the language can be learned in an hour or so, for it has few rules and
fewer exceptions. For typical expressions, the size and font changes, positioning, line drawing,
and the like necessary to print according to mathematical conventions are all done automati
cally. For example, the input

sum from i=O to infinity x sub i = pi over 2

produces
00

~x;=.!.
;.0 2

The syntax of the language is specified by a small context-free grammar; a compiler
compiler is used to make a compiler that translates this language into typesetting commands.
Output may be produced on either a phototypesetter or on a terminal with forward and
reverse half-line motions. The system interfaces directly with text formatting programs, so
mixtures of text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction

"Mathematics is known in the trade as
difficult, or penalty, copy because it is slower, more
difficult, and more expensive to set in type than any
other kind of copy normally occurring in books and
journals." [I)

One difficulty with mathematical text is the
multiplicity of characters, sizes, and fonts. An
expression such as

lim (tan x)'in 2x =
X_'70/2

requires an intimate mixture of roman, italic and
greek letters, in three sizes, and a special character
or two. ("Requires" is perhaps the wrong word, but
mathematics has its own typographical conventions
which are quite different from those of ordinary

, text.) Typesetting such an expression by traditional
methods is still an essentially manual operation.

A second difficulty is the two dimensional
character of mathematics, which the superscript and

limits in the preceding example showed in its sim
plest form. This is carried further by

hi
aO+------~b~2-----

and still further by

al+ h)
a2+--a)+ ...

These examples also show line-drawing, built-up
characters like braces and radicals, and a spectrum
of positioning problems. (Section 6 shows what a
user has to type to produce these on our system.)

A System for Typesetting Mathematics

text, but marked by user settable delimiters. The
program reads this input and treats as comments
those things which are not mathematics, simply
passing them through untouched. At the same time
it converts the mathematical input into the neces
sary TROFF commands. The resulting ioutput is
passed directly to TROFF where the comments and
the mathematical parts both become text and/or
TROFF commands.

4. The Language

We will not try to describe the language pre
cisely here; interested readers may refer to the
appendix for more details. Throughout this section,
we will write expressions exactly as they are handed
to the typesetting program (hereinafter called
"EQN"), except that we won't show the delimiters
that the user types to mark the beginning and end of
the expression. The interface between EQN and
TROFF is described at the end of this section.

As we said, typing x=y+Z+ I should produce
x=y+z+l, and indeed it does. Variables are made
italic, operators and digits become roman, and nor
mal spacings between letters and operators are
altered slightly to give a more pleasing appearance.

Input is free-form. Spaces and new lines in
the input are used by EQN to separate pieces of the
input; they are not used to create space in the out
put. Thus

x y
+ z + 1

also gives x=y+z+l. Free-form input is easier to
type initially; subsequent editing is also easier, for
an expression may be typed as many short lines.

Extra white space can be forced into the out
put by several characters of various sizes. A tilde
.. -" gives a space equal to the normal word spacing
in text; a circumflex gives half this much, and a tab
charcter spaces to the next tab stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

f(t)=2" J sin(wt)dl

we write

f(t) = 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate
that sin, pi, int, and omega are special, and poten
tially worth special treatment. EQN looks up each
such string of characters in a table, and if appropri
ate gives it a translation. In this case, pi and omega
become their greek equivalents, inl becomes the
integral sign (which must be moved down and
enlarged so it looks "right"), and sin is made roman,
following conventional mathematical practice.
Parentheses, digits and operators are automatically

USD:26-3

made roman wherever found.

Fractions are specified with the keyword over:

a+b over c+d+e =

produces

Similarly, subscripts and superscripts are
introduced by the keywords sub and sup:

X2+y2=Z2

is produced by

x sup 2 + y sup 2 = z sup 2

The spaces after the 2's are necessary to mark the
end of the superscripts; similarly the keyword sup
has to be marked off by spaces or some equivalent
delimiter. The return to the proper baseline is
automatic. Multiple levels of subscripts or super
scripts are of course allowed: "x sup y sup z" is x.l".
The construct "something sub something sup some
thing" is recognized as a special case, so "x sub i sup
2" is x,2 instead of x, 2.

More complicated expressions can now be
formed with these primitives:

a2f=x'+L
ax' a2 b'

is produced by

(partial sup 2 f) over (partial x sup 2) =
x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces () are used to group objects together; in this
case they indicate unambiguously what goes over
what on the left-hand side of the expression. The
language defines the precedence of sup to be higher
than that of over, so no braces are needed to get the
correct association on the right side. Braces can
always be used when in doubt about precedence.

The braces convention is an example of the
power of using a recursive grammar to define the
language. It is part of the language that if a con
struct can appear in some context, then any expres
sion in braces can also occur in that context.

There is a sqrl operator for making square
roots of the appropriate size: "sqrt a+b" produces
v7i+J), and

x = (-b +- sqrt(b sup 2 -4ac)} over 2a

is

-b±~
X=

2a

Since large radicals look poor on our typesetter, sqrt
is not useful for tall expressions.

A System for Typesetting Mathematics

input:

.ce

.EQ
x sub i = y sub i ...
.EN

Since it is tedious to type ".EQ" and ".EN"
around very short expressions (single letters, for
instance), the user can also define two characters to
serve as the left and right delimiters of expressions.
These characters are recognized anywhere in subse
quent text. For example if the left and right delim
iters have both been set to "#", the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let X" y and" be positive

Running a preprocessor is strikingly easy on
UNIX. To typeset text stored in file "f", one issues
the command:

eqn f I troff

The vertical bar connects the output of one process
(EQN) to the input of another (TROFF).

5. Language Theory

The basic structure of the language is not a
particularly original one. Equations are pictured as
a set of "boxes," pieced together in various ways.
For example, something with a subscript is just a
box followed by another box moved downward and
shrunk by an appropriate amount. A fraction is just
a box centered above another box, at the right alti
tude, with a line of correct length drawn between
them.

The grammar for the language is shown below.
For purposes of exposition, we have collapsed some
Jroductions. In the original grammar, there are
Ibout 70 productions, but many of these are simple
lnes used only to guarantee that some keyword is
'ecognized early enough in the parsing process.
lymbols in capital letters are terminal symbols;
ower case symbols are non-terminals, i.e., syntactic
;ategories. The vertical bar I indicates an alterna
:ive; the brackets [] indicate optional material. A
[EXT is a string of non-blank characters or any
tring inside double quotes; the other terminal sym
)ols represent literal occurrences of the correspond
ng keyword.

eqn box I eqn box

box text
{ eqn }
box OVER box
SQRT box
box SUB box I box SUP box
[L I C I R]PILE { list}
LEFT text eqn [RIGHT text]
box [FROM box] [TO box]
SIZE text box
[ROMAN I BOLD I ITALIC] box

USD:26-5

box [HAT I BAR I DOT I DOT DOT I TILDE]
DEFINE text text

list : eqn I list ABOVE eqn

text: TEXT

The grammar makes it obvious why there are
few exceptions. For example, the observation that
something can be replaced by a more complicated
something in braces is implicit in the productions:

eqn : box I eqn box
box : text I { eqn }

Anywhere a single character could be used, any legal
construction can be used.

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c

Is it

{a over b} over c

or is it

a over (b over c)

To answer questions like this, the grammar is
supplemented with a small set of rules that describe
the precedence and associativity of operators. In
particular, we specify (more or less arbitrarily) that
over associates to the left, so the first alternative
above is the one chosen. On the other hand, sub
and sup bind to the right, because this is closer to
standard mathematical practice. That is, we assume
x a" is x(a">, not (xa)b.

The precedence rules resolve the ambiguity in
a construction like

a sup 2 over b

We define sup to have a higher precedence than over,
2 2

so this construction is parsed as ~ instead of a b.

Naturally, a user can always force a particular
parsing by placing braces around expressions.

The ambiguous grammar approach seems to
be quite useful. The grammar we use is small
enough to be easily understood, for it contains none

A System for Typesetting Mathematics

interesting than a regular typewriter.

The main difficulty that users have seems to
be remembering that a blank is a delimiter; even
experienced users use blanks where they shouldn't
and omit them when they are needed. A common
instance is typing

f(x sub i)

which produces

instead of

I(x,)

Since the EQN language knows no mathematics, it
cannot deduce that the right parenthesis is not part
of the subscript.

The language is somewhat prolix, but this
doesn't seem excessive considering how much is
being done, and it is certainly more compact than
the corresponding TROFF commands. For example,
here is the source for the continued fraction expres
sion in Section I of this paper:

a sub 0 + b sub lover
{a sub I + b sub 2 over

{a sub 2 + b sub 3 over
(a sub 3 + ... })}

This is the input for the large integral of Section I;
notice the use of definitions:

define emx "(e sup mx)'"
define mab "(m sqrt ab)'"
define sa -{sqrt a r
define sb • (sqrt b)'"
int dx over {a emx - be sup -mx} -=
left { Ipile {

lover {2 mab} log-
{sa emx - sb} over {sa emx + sb}

above
lover mab - tanh sup -I (sa over sb emx)

above
-lover mab - coth sup - I (sa over sb emx)

As to ease of construction, we have already
mentioned that there are really only a few person
months invested. Much of this time has gone into
two things-fine-tuning (what is the most esthetically
pleasing space to use between the numerator and
denominator of a fraction?), and changing things
found deficient by our users (shouldn't a tilde be a
delimiter?).

The program consists of a number of small,
essentially unconnected modules for code genera
tion, a simple lexical analyzer, a canned parser
which we did not have to write, and some miscel
lany associated with input files and the macro facil
ity. The program is now about 1600 lines ofc [6], a

USD:26-7

high-level language reminiscent of BCPL. About 20
percent of these lines are "print" statements, gen
erating the output code.

The semantic routines that generate the actual
TROFF commands can be changed to accommodate
other formatting languages and devices. For exam
ple, in less than 24 hours, one of us changed the
entire semantic package to drive NROFF, a variant
of TROFF, for typesetting mathematics on teletype
writer devices capable of reverse line motions. Since
many potential users do not have access to a
typesetter, but still have to type mathematics, this
provides a way to get a typed version of the final
output which is close enough for debugging pur
poses, and sometimes even for ultimate use.

7. Conclusions

We think we have shown that it is possible to
do acceptably good typesetting of mathematics on a
phototypesetter, with an input language that is easy
to learn and use and that satisfies many users'
demands. Such a package can be implemented in
short order, given a compiler-compiler and a decent
typesetting program underneath.

Defining a language, and building a compiler
for it with a compiler-compiler seems like the only
sensible way to do business. Our experience with
the use of a grammar and a compiler-compiler has
been uniformly favorable. If we had written every
thing into code directly, we would have been locked
into our original design. Furthermore, we would
have never been sure where the exceptions and spe
cial cases were. But because we have a grammar, we
can change our minds readily and still be reasonably
sure that if a construction works in one place it will
work everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna, the
author of TROFF, for his willingness to modify
TROFF to make our task easier and for his conthu
ous assistance during the development of our pro
gram. We are also grateful to A. V. Aho for help
with language theory, to S. C. Johnson for aid with
the compiler-compiler, and to our early users A. V.
Aho, S. I. Feldman, S. C. Johnson, R. W. Hamming,
and M. D. McIlroy for their constructive criticisms.

References

[I] A Manual 01 Style. 12th Edition. University
of Chicago Press, 1969. p 295.

[2] Model CIAIT Phototypesetter. Graphic Sys
tems, Inc., Hudson, N. H.

[3] Ritchie, D. M., and Thompson, K. L., "The
UNIX time-sharing system." Comm. ACM 17.
7 (July 1974), 365-375 (reprinted here as
PS2:1).

USD:27-1

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user's guide for a system for typesetting mathematics, using the phototypesetters on
the UNIXt operating system.

Mathematical expressions are described in a language designed to be easy to use by people who
know neither mathematics nor typesetting. Enough of the language to set in-line expressions like
lim (tan Nxyin-2xN=N! or display equations like

X_1r/2

G(z) = elnG(z) = expl~ Sk zk] = IIeSkzk/k
k"l k k"l

= [1+SIZ+ S~~2 + ...][1+ S~z2 + ~!~> ...] ...
S~' S;, s!m

= ~ ~ Ik'kl'. 2k'k2' mkmkm! zm m"O k .. k" ... ,km"O
k l +2k2+ ... +mkm =m

can be learned in an hour or so.
The language interfaces directly with the phototypesetting language TROFF, so mathematical

expressions can be embedded in the running text of a manuscript, and the entire document produced
in one process. This user's guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathematical expressions
on DASI and GSI terminals and Model 37 teletypes.

1. Introduction
EQN is a program for typesetting

mathematics on the Graphics Systems photo
typesetters on the UNIX operating system. The
EQN language was designed to be easy to use by
people who know neither mathematics nor
typesetting. Thus EQN knows relatively little
about mathematics. In particular, mathemati
cal symbols like +, -, x, parentheses, and so

t UNIX is a trademark of AT&T Bell Laboratories.

on have no special meanings. EQN is quite
happy to set garbage (but it will look good).

EQN works as a preprocessor for the
typesetter formatter, TROFF[I], so the normal
mode of operation is to prepare a document
with both mathematics and ordinary text inter
spersed, and let EQN set the mathematics while
TROFF does the body of the text.

Typesetting Mathematics - User's Guide

error is to type f(pi) without leaving spaces on
both sides of the pi. As a result, EQN does not
recognize pi as a special word, and it appears
as f (Pi) instead of f (7r).

A complete list of EQN names appears in
section 23. Knowledgeable users can also use
TROFF four-character names for anything EQN
doesn't know about, like \{bs for the Bell Sys
tem sign @.

6. Spaces, Again

The only way EQN can deduce that some
sequence of letters might be special is if that
sequence is separated from the letters on either
side of it. This can be done by surrounding a
special word by ordinary spaces (or tabs or
newlines), as we did in the previous section.

You can also make special words stand
out by surrounding them with tildes or

· circumflexes:

r=~2~Hnt~sin~(~omega~~)~dt

is much the same as the last example, except
that the tildes not only separate the magic
words like sin, omega, and so on, but also add

, extra spaces, one space per tilde:

x = 2 7r f sin (w t) dt

Special words can also be separated by
· braces () and double quotes , which have

special meanings that we will see soon.

· 7. Subscripts and Superscripts

Subscripts and superscripts are obtained
with the words sub and sup.

x sup 2 + Y sub k

gives

X 2+Yk

EQN takes care of all the size changes and verti
cal motions needed to make the output look
right. The words sub and sup must be sur
rounded by spaces; x sub2 will give you xsub2

· instead of X2' Furthermore, don't forget to
leave a space (or a tilde, etc.) to mark the end
of a subscript or superscript. A common error
is to say something like

y = (x sup 2)+ 1

which causes

USD:27-3

instead of the intended

Y =(x2)+ 1

Subscripted subscripts and superscripted
superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same thing
are printed one above the other if the subscript
comes first:

x sub i sup 2

is

xl
Other than this special case, sub and sup

group to the right, so x sup y sub z means x Y"

not xY z.

8. Braces for Grouping

Normally, the end of a subscript or super
script is marked simply by a blank (or tab or
tilde, etc.) What if the subscript or superscript
is something that has to be typed with blanks
in it? In that case, you can use the braces (
and) to mark the beginning and end of the
subscript or superscript:

e sup (i omega t)

is

Rule: Braces can always be used to force EQN
to treat something as a unit, or just to m:-.ke
your intent perfectly clear. Thus:

x sub (i sub I) sup 2

is

with braces, but

x sub i sub I sup 2

is

which is rather different.

Braces can occur within braces if neces
sary:

Typesetting Mathematics - User's Guide

n.

12. Size and Font Changes

By default, equations are set in 10-point
type (the same size as this guide), with stan
dard mathematical conventions to determine
what characters are in roman and what in
italic. Although EQN makes a valiant attempt
to use esthetically pleasing sizes and fonts, it is
not perfect. To change sizes and fonts, use size
n and roman, italic, bold and fat. Like sub and
sup, size and font changes affect only the thing
that follows them, and revert to the normal
situation at the end of it. Thus

is

and

gives

bold x y

xy

size 14 bold x = y +
size 14 (alpha + beta)

x=y+a+{3

As always, you can use braces if you want to
affect something more complicated than a sin
gle letter. For example, you can change the
size of an entire equation by

size 12 (...)

Legal sizes which may follow size are 6, 7,
8, 9, 10, II, 12, 14, 16, 18, 20, 22, 24, 28, 36.
You can also change the size by a given
amount; for example, you can say size + 2 to
make the size two points bigger, or size -3 to
make it three points smaller. This has the
advantage that you don't have to know what
the current size is.

If you are using fonts other than roman,
italic and bold, you can say font X where X is a
one character TROFF name or number for the

. font. Since EQN is tuned for roman, italic and
bold, other fonts may not give quite as good an
appearance.

The fat operation takes the current font
and widens it by overstriking: fat grad is V and
fat (x sub i) is Xi.

If an entire document is to be in a non
standard size or font, it is a severe nuisance to
have to write out a size and font change for
each equation. Accordingly, you can set a

USD:27-5

"global" size or font which thereafter affects all
equations. At the beginning of any equation,
you might say, for instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman
thereafter. In place of R, you can use any of
the TROFF font names. The size after gsize can
be a relative change with + or -.

Generally, gsize and gfont will appear at
the beginning of a document but they can also
appear thoughout a document: the global font
and size can be changed as often as needed.
For example, in a footnote; you will typically
want the size of equations to match the size of
the footnote text, which is two points smaller
than the main text. Don't forget to reset the
global size at the end of the footnote.

13. Diacritical Marks

To get funny marks on top of letters,
there are several words:

x dot x
x dotdot x
x hat x
x tilde x
x vec x
x dyad x
x bar x
x under :!

The diacritical mark is placed at the right
height. The bar and under are made the right
length for the entire construct, as in x+y+z;
other marks are centered.

14. Quoted Text

Any input entirely within quotes (" .. :) is
not subject to any of the font changes and
spacing adjustments normally done by the
equation setter. This provides a way to do
your own spacing and adjusting if needed:

italic "sin(x)" + sin (x)

is

fLike this one, in which we have a few random ex
pressions like Xj and .. 2. The sizes for these were set
by the command gsize - 2.

Typesetting Mathematics - User"s Guide

If you want to omit the left part, things
are more complicated, because technically you
can't have a right without a corresponding left.
Instead you have to say

left right)

for example. The left .". means a "left noth
ing". This satisfies the rules without hurting
your output.

17. Piles
There is a general facility for making vert

ical piles of things; it comes in several flavors.
For example:

A ~=~ left [
pile { a above b above c }
- pile { x above y above z }

right]

will make

The elements of the pile (there can be as many
as you want) are centered one above another,
at the right height for most purposes. The key
word above is used to separate the pieces;
braces are used around the entire list. The ele
ments of a pile can be as complicated as
needed, even containing more piles.

Three other forms of pile exist: Ipile
makes a pile with the elements left-justified;
rpile makes a right-justified pile; and epile
makes a centered pile, just like pile. The verti
cal spacing between the pieces is somewhat
larger for 1-, r- and epi/es than it is for ordinary
piles.

roman sign (x)~=~
left {

lpile {I above 0 above -I}
-lpile
{ih>O above ih=O above ih<O}

makes

sign(x) = l~
-1

ifx>O
ifx=O
ifx<O

Notice the left brace without a matching right
one.

USD:27-7

18. Matrices

It is also possible to make matrices. For
example, to make a neat array like

you have to type

matrix {

Xi x 2

Yi y2

ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

)

This produces a matrix with two centered
columns. The elements of the columns are
then listed just as for a pile, each element
separated by the word above. You can also use
leol or reol to left or right adjust columns.
Each column can be separately adjusted, and
there can be as many columns as you like.

The reason for using a matrix instead of
two adjacent piles, by the way, is that if the
elements of the piles don't all have the same
height, they won't line up properly. A matrix
forces them to line up, because it looks at the
entire structure before deciding what spacing to
use.

A word of warning about matrices - each
column must have the same number of elements
in it. The world will end if you get this wrong.
n.

19. Shorthand for In-line Equations

In a mathematical document, it is neces
sary to follow mathematical conventions not
just in display equations, but also in the body
of the text, for example by making variable
names like X italic. Although this could be
done by surrounding the appropriate parts with
.EQ and .EN, the continual repetition of .EQ and
.EN is a nuisance. Furthermore,. with '-ms',
.EQ and .EN imply a displayed equation.

EQN provides a shorthand for short in
line expressions. You can define two charac
ters to mark the left and right ends of an in
line equation, and then type expressions right
in the middle of text lines. To set both the left
and right characters to dollar signs, for exam
ple, add to the beginning of your document the
three lines

Typesetting Mathematics - User's Guide

22. A Large Example

Here is the complete source for the three
display equations in the abstract of this guide.

.EQ I
G(zj"mark = - e sup (In - G(z))
-=- exp left {
sum from k>= I (S sub k z sup k) over k right)
-=- prod from k>= I e sup (S sub k z sup k Ik)
.EN
.EQI
lineup = left (I + S sub I z +
(S sub I sup 2 z sup 2) over 2! + ... right)
left (1+ (S sub 2 z sup 2) over 2
+ (S sub 2 sup 2 z sup 4) over (2 sup 2 cdot 2!)
+ ... right) '"
.EN
.EQ I
lineup = sum from m>=O left (
sum from
pile (k sub I ,k sub 2 , ... , k sub m >=0
above
k sub I +2k sub 2 + ... +mk sub m =m)
(S sub I sup (k sub 1)) over (I sup k sub I k sub I !) -
(S sub 2 sup (k sub 2)) over (2 sup k sub 2 k sub 2 !) -

{ S sub m sup (k sub m)) over (m sup k sub m k sub m !)
right) z sup m
.EN

23. Keywords, Precedences, Etc.

If you don't use braces, EQN will do
operations in the order shown in this list.

dyad vec under bar tilde hat dot dot dot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

'These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctuation
marks, and these mathematical words are con
verted to Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re 1m and if for det

These character sequences are recognized and
translated as shown.

>= ~

<= ~

-
!= '#

USD:27-9

+- ±
-> -+

<- -« «
» »
inf 00

partial a
half '/2
prime
approx ::::

nothing
cdot
times x
del 'V
grad 'V

"" I

sum ~
int f
prod II
union U
inter n

To obtain Greek letters, simply spell them
out in whatever case you want:

DELTA ~ iota
GAMMA r kappa K

LAMBDA A lambda A
OMEGA n mu JL
PHI ~ nu v
PI IT omega w
PSI \{I omicron 0

SIGMA ~ phi cJ>

THETA e pi ...
UPSILONT psi

'" XI ::: rho p
alpha a sigma 0'

beta (3 tau T

chi X theta 0
delta (, upsilon v
epsilon xi ~
eta 11 zeta I
gamma 'Y

These are all the words known to EQN
(except for characters with names), together
with the section where they are discussed.

above
back
bar
bold

17, 18
21
13
12

Ipile
mark
matrix
ndefine

17
15
18
20

Typesetting Mathematics - User's Guide

cisms.

References

[I] J. F. Os sanna, "NROFFITROFF User's
Manual", Bell Laboratories Computing
Science Technical Report #54, 1976.

[2] M. E. Lesk, "Typing Documents on
UNIX", Bell Laboratories, 1976.

[3] M. E. Lesk, "TBL - A Program for Set
ting Tables", Bell Laboratories Comput
ing Science Technical Report #49, 1976.

USD:27-11

Tbl - A Program to Format Tables

M. E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

USD:28-1

Tbl is a document formatting preprocessor for troff or nroffwhich makes even
fairly complex tables easy to specify and enter. It is available on the UNIXt system
and on Honeywell 6000 GCOS. Tables are made up of columns which may be
independently centered, right-adjusted, left-adjusted, or aligned by decimal points.
Headings may be placed over single columns or groups of columns. A table entry
may contain equations, or may consist of several rows of text. Horizontal or vertical
lines may be drawn as desired in the table, and any table or element may be
enclosed in a box. For example:

1970 Federal Budget Transfers
(in billions of dollars)

State Taxes Money Net collected spent
New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12 3.10 -1.02
Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +1.17
Texas 9.33 11.13 +1.80

Introduction.
Tblturns a simple description ofa table into a troffor nroff[I] program (list of commands) that

prints the table. Tbl may be used on the UNIX [2] system and on the Honeywell 6000 GCOS system.
It attempts to isolate a portion of a job that it can successfully handle and leave the remainder for
other programs. Thus tbl may be used with the equation formatting program eqn [3] or various lay
out macro packages [4,5,6], but does not duplicate their functions.

This memorandum is divided into two parts. First we give the rules for preparing tbl input;
then some examples are shown. The description of mles is precise but technical, and the beginning
user may prefer to read the examples first, as they show some common table arrangements. A section
explaining how to invoke tbl precedes the examples. To avoid repetition, henceforth read troff as
"troff or nrojJ."

The input to tbl is text for a document, with tables preceded by a ... TS" (table start) command
and followed by a ". TE" (table end) command. Tbl processes the tables, generating troff formatting

t UNIX is a trademark of AT&T Bell Laboratories.

Tbl - A Program to Format Tables USD:28-3

2) FORMAT. The format section of the table specifies the layout of the columns. Each line in this
section corresponds to one line of the table (except that the last line corresponds to all following
lines up to the next .T&, if any - see below), and each line contains a key-letter for each
column of the table. It is good practice to separate the key letters for each column by spaces or
tabs. Each key-letter is one of the following:

L or I

R or r

Cor c

Nor n

A or a

S ori s

to indicate a left-adjusted column entry;

to indicate a right-adjusted column entry;

to indicate a centered column entry;

to indicate a numerical column entry, to be aligned with other numerical entries so
that the units digits of numbers line up;

to indicate an alphabetic subcolumn; all corresponding entries are aligned on the left,
and positioned so that the widest is centered within the column (see example on page
12);

to indicate a spanned heading, i.e. to indicate that the entry from the previous
column continues across this column (not allowed for the first column, obviously); or

to indicate a vertically spanned heading, i.e. to indicate that the entry from the previ
ous row continues down through this row. (Not allowed for the first row of the table,
obviously).

When numerical alignment is specified, a location for the decimal point is sought. The right
most dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining a digit,
the rightmost digit is used as a units digit; if no alignment is indicated, the item is centered in
the column. However, the special non-printing character string \& may be used to override
unconditionally dots and digits, or to align alphabetic data; this string lines up where a dot nor
mally would, and then disappears from the final output. In the example below, the items shown
at the left will be aligned (in a numerical column) as shown on the right:

13 13
4.2 4.2
26.4.12 26.4.12
abc abc
abc\& abc
43\&3.22 433.22
749.12 749.12

Note: If numerical data are used in the same column with wider L or r type table entries, the
widest number is centered relative to the wider L or r items (L is used instead of I for readabil
ity; they have the same meaning as key-letters). Alignment within the numerical items is
preserved. This is similar to the behavior of a type data, as explained above. However, alpha
betic subcolumns (requested by the a key-letter) are always slightly indented relative to L items;
if necessary, the column width is increased to force this. This is not true for n type entries.

Warning: the n and a items should not be used in the same column.

For readability, the key-letters describing each column should be separated by spaces. The end
of the format section is indicated by a period. The layout of the key-letters in the format sec
tion resembles the layout of the actual data in the table. Thus a simple format might appear as:

c s s
Inn.

which specifies a table of three columns. The first line of the table contains a heading centered
across all three columns; each remaining line contains a left-adjusted item in the first column
followed by two columns of numerical data. A sample table in this format might be:

Tbl - A Program to Format Tables USD:28-5

This width is used as a minimum column width. If the largest element in the column is
not as wide as the width value given after the w, the largest element is assumed to be that
wide. If the largest element in the column is wider than the specified value, its width is
used. The width is also used as a default line length for included text blocks. Normal troff
units can be used to scale the width value; if none are used, the default is ens. If the width
specification is a unitless integer the parentheses may be omitted. If the width value is
changed in a column, the last one given controls.

Equal width columns
- A key-letter may be followed by the letter e or E to indicate equal width columns. All
columns whose key-letters are followed by e or E are made the same width. This permits
the user to get a group of regularly spaced columns.

Note:
The order of the above features is immaterial; they need not be separated by spaces, except
as indicated above to avoid ambiguities involving point size and font changes. Thus a
numerical column entry in italic font and 12 point type with a minimum width of 2.5
inches and separated by 6 ens from the next column could be specified as

npI2w(2.5i}fI 6

Alternative notation
- Instead of listing the format of successive lines of a table on consecutive lines of the for
mat section, successive line formats may be given on the same line, separated by commas,
so that the format for the example above might have been written:

css,lnn.

Default
- Column descriptors missing from the end of a format line are assumed to be L. The
longest line in the format section, however, defines the number of columns in the table;
extra columns in the data are ignored silently.

3} DATA. The data for the table are typed after the format. Normally, each table line is typed as
one line of data. Very long input lines can be broken: any line whose last character is \ is com
bined with the following line (and the \ vanishes). The data for different columns (the table
entries) are separated by tabs, or by whatever character has been specified in the option tabs
option. There are a few special cases:

Troff commands within tables
- An input line beginning with a ' .' followed by anything but a number is assumed to be a
command to troff and is passed through unchanged, retaining its position in the table. So,
for example, space within a table may be produced by ... sp" commands in the data.

Full width horizontal lines
- An input line containing only the character (underscore) or = (equal sign) is taken to
be a single or double line, respectively, extendini the full width of the table.

Single column horizontal lines
- An input table entry containing only the character or = is taken to be a single or dou
ble line extending the full width of the column. Such lines are extended to meet horizontal
or vertical lines adjoining this column. To obtain these characters explicitly in a column,
either precede them by \& or follow them by a space before the usual tab or newline.

Short horizontal lines
- An input table entry containing only the string \ is taken to be a single line as wide as
the contents of the column. It is not extended to meet adjoining lines.

Vertically spanned items
- An input table entry containing only the character string \A indicates that the table
entry immediately above spans downward over this row. It is equivalent to a table format
key-letter of "'.

I

Tbl - A Program to Format Tables USD:28-7

the global options such as box, or the selection of columns to be made equal width.

Usage.
On UNIX, tbl can be run on a simple table with the command

tbl input-file I troff

but for more complicated use, where there are several input files, and they contain equations and ms
memorandum layout commands as well as tables, the normal command would be

tbl file-I file-2 ••. I eqn I troff -ms

and, of course, the usual options may be used on the troff and eqn commands. The usage for nroff is
similar to that for troff, but only TELETYPE~ Model 37 and Diablo-mechanism (DASI or GSI) terminals
can print boxed tables directly.

For the convenience of users employing line printers without adequate driving tables or post
filters, there is a special - TX command line option to tbl which produces output that does not have
fractional line motions in it. The only other command line options recognized by tbl are -ms and
-mm which are turned into commands to fetch the corresponding macro files; usually it is more con
venient to place these arguments on the troff part of the command line, but they are accepted by tbl
as well.

Note that when eqn and thl are used together on the same file tbl should be used first. If there
- are no equations within tables, either order works, but it is usually faster to run tbl first, since eqn

normally produces a larger expansion of the input than tbl. However, if there are equations within
tables (using the delim mechanism in eqn), tbl must be first or the output will be scrambled. Users
must also beware of using equations in n-style columns; this is nearly always wrong, since tbl attempts
to split numerical format items into two parts and this is not possible with equations. The user can
defend against this by giving the delim(xx) table option; this prevents splitting of numerical columns
within the delimiters. For example, if the eqn delimiters are $$, giving delim($$) a numerical
column such as "1245 $+- 16$" will be divided after 1245, not after 16.

Thllimits tables to twenty columns; however, use of more than 16 numerical columns may fail
because of limits in troff, producing the 'too many number registers' message. Troff number registers
used by tbl must be avoided by the user within tables; these include two-digit names from 31 to 99,
and names of the forms #x, X+, x I, "X, and x-, where x is any lower case letter. The names ##, #-,
and #" are also used in certain circumstances. To conserve number register names, the n and a for
mats share a register; hence the restriction above that they may not be used in the same column.

For aid in writing layout macros, thl defines a number register TW which is the table width; it is
defined by the time that the ". TE" macro is invoked and may be used in the expansion of that
macro. More importantly, to assist in laying out multi-page boxed tables the macro T# is defined to
produce the bottom lines and side lines of a boxed table, and then invoked at its end. By use of this
macro in the page footer a multi-page table can be boxed. In particular, the ms macros can be used
to print a multi-page boxed table with a repeated heading by giving the argument H to the ". TS"
macro. If the table start macro is written

.TSH
a line of the form

.TH
must be given in the table after any table heading (or at the start if none). Material up to the" .TH"

~ is placed at the top of each page of table; the remaining lines in the table are placed on several pages
as required. Note that this is not a feature of tbl, but of the ms layout macros.

Examples.
Here are some examples illustrating features of tbl. The symbol Q) in the input represents a tab

character.

Tbl - A Program to Format Tables

Output: Input:

.TS
box;
c s s

Major New York Bridges

c I c I c
I II I n.
Major New York Bridges

Bridge <l) Designer <l) Length

Brooklyn<l)J. A. Roebling<l) 1595
Manhattan <l) G. Lindenthal <l) 1470
Williamsburg <l) L. L. Buck <l) 1600

Queensborough <l) Palmer & <l) 1182
<l) Hornbostel

(0 <l) 1380
Triborough <l) O. H. Ammann <l)
<l) <l) 383 -

Bronx Whitestone <l) O. H. Ammann <l) 2300
Throgs Neck<l)O. H. Ammann<l) 1800

Bridge
Brooklyn
Manhattan
Williamsburg
Queensborough

Triborough

Bronx Whitestone
Throgs Neck
George Washington

George Washington<l)O. H. Ammann<l) 3500
.TE

Input: Output:

.TS Stack
cc 46
np-2 I n I 2 23
<l)Stack

3 15 <l)
1 cD46 4 6.5
<l) 5 2.1
2cD23
<l)
3cDI5
<l)
4cD6.5
<l)
5cD2.1
<l)
.TE

Designer
J. A. Roebling
G. Lindenthal
L. L. Buck
Palmer &

Hornbostel

O. H.Ammann

O. H.Ammann
O. H.Ammann
O. H. Ammann

USD:28-9

Length
1595
1470
1600
1182

1380

383
2300
1800
3500

Tbl - A Program to Format Tables USD:28-11

Input: Output:

.TS
allbox;
cfI s s

New York Area Rocks

c cw(l i) cw(I i)
Ip91p91p9.
New York Area Rocks
Era Cll Formation Cll Age (years)
Precambrian Cll Reading Prong Cll > I billion
Paleozoic Cll Manhattan Prong Cll400 million
MesozoicCllT{
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T} Cll200 million

Era
Precambrian
Paleozoic
Mesozoic

Cenozoic

Formation Age (years)
Reading Prong >1 billion
Manhattan Prong 400 million
Newark Basin. 200 million
inc!. Stockton,
Lockatong, and
Brunswick for-
mations; also
Watchungs and
Palisades.
Coastal Plain On Long Island

30,000 years;
Cretaceous sedi-
ments redepo-
sited by recent

Cenozoic Cll Coastal Plain Cll T { glaciation.
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation •
• ad
T}
.TE

Input:

.EQ
delim $$
.EN

.TS
doublebox;
cc
I I.
Name Cll Definition
.sp
.vs +2p

Output:

Name

Gamma

Sine

Error

Bessel

Zeta

Definition

r(z)=fo tZ-1e-ldt
I· .

sin(x)=-;-(e 'X _e- 1X)
21 z

212 erf(z)= r .e-' dt
V1rW'0

Jo(Z)=J..l cos(zsin8)d8
11' 0

00

l"(s)= ~k-s (Re s>l)
k=1

Gamma Cll $GAMMA (z) = int sub 0 sup inf t sup (z-I) e sup -t dt$
Sine Cll $sin (x) = lover 2i (e slip ix - e sup -ix)$
ErrorCll $ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup (-t sup 2) dt$
Bessel Cll $ J sub 0 (z) = lover pi int sub 0 sup pi cos (z sin theta) d theta $
Zeta Cll $ zeta (s) = sum from k= 1 to inf k sup -s -(Re-s > 1)$
• vs -2p
.TE

Tbl - A Program to Format Tables

Input:

.TS
c s
cip·2 s
In
an.
Some London Transport Statistics
(Year 1964)
Railway route miles CD 244
TubeCD66
Sub-surface CD 22
Surface CD 156
.sp .5
.T&
I r
ar.
Passenger traffic \- railway
Journeys CD 674 million
Average lengthCD4.55 miles
Passenger miles CD 3,066 million
.T&
I r
a r.
Passenger traffic \- road
Journeys CD 2,252 million
A verage length CD 2 .26 miles
Passenger miles CD 5,094 million
.T&
In
an.
.sp .5
Vehicles CD 12,521
Railway motor cars CD 2,905
Railway trailer cars CD 1,269
Total railway CD 4,1 74
Omnibuses CD 8,347
.T&
In
an .
• sp .5
Staff CD 73,739
Administrative, etc. CD 5,582
Civil engineering CD 5;134
Electrical eng. CD 1,714
Mech. eng. \- railwayCD4,3IO
Mech. eng. \- roadCD9,152
Railway operations CD 8,930
Road operations CD 35,946
OtherCD2,971
.TE

Output:

Some London Transport Statistics
(Year /964)

Railway route miles 244
Tube 66
Sub-surface 22
Surface 156

Passenger traffic - railway
Journeys
A verage length
Passenger miles

Passenger traffic - road
Journeys
A verage length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Civil engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations
Other

674 million
4.55 miles

3,066 million

2,252 million
2.26 miles

5,094 million

12,521
2,905
1,269
4,174
8,347

73,739
5,582
5,134
1,714
4,310
9,152
8,930

35,946
2,971

USD:28-13

Tbl - A Program to Format Tables

Output:

Name

James J. Florio
William J. Hughes
James J. Howard
Frank Thompson, Jr.
Andrew Maguire
Robert A. Roe
Henry Helstoski
Peter W. Rodino, Jr.
Joseph G. Minish
Helen S. Meyner
Dominick V. Daniels
Edward J. Patten

Millicent Fenwick
Edwin B. Forsythe
Matthew J. Rinaldo

New Jersey Representatives
(Democrats)

Office address

23 S. White Horse Pike. Somerdale 08083
2920 Atlantic Ave., Atlantic City 08401
80 I Bangs Ave., Asbury Park 07712
10 Rutgers PI., Trenton 08618
115 W. Passaic St., Rochelle Park 07662
U.S. P.O., 194 Ward St., Paterson 07510
666 Paterson Ave., East Rutherford 07073
Suite 1435A, 970 Broad St., Newark 07102
308 Main St., Orange 07050
32 Bridge St., Lambertville 08530
895 Bergen Ave., Jersey City 07306
Natl. Bank Bldg., Perth Amboy 08861

(Republicans)

41 N. Bridge St., Somerville 08876
301 Mill St., Moorestown 08057
1961 Morris Ave., Union 07083

Phone

609-627-8222
609-345-4844
201·774-1600
609-599-1619
201-843-0240
201-523-5152
201-939-9090
201-645-3213
201-645-6363
609-397-1830
201-659-7700
201-826-4610

201-722-8200
609-235-6622
201-687-4235

USO:28-15

This is a paragraph of normal text placed here only to indicate where the left and right margins are.
In this way the reader can judge the appearance of centered tables or expanded tables, and observe
how such tables are formatted.

Input:

.TS
expand;
csss
cccc
II n n.
Bell Labs Locations
Name <]) Address <]) Area Code <]) Phone
Holmdel<])Holmdel, N. J. 07733<])201 <])949-3000
Murray Hill<])Murray Hill, N. 1. 07974<])201 <]) 582-6377
WhippanyGlWhippany, N. 1. 07981 <])201 <]) 386-3000
Ind.ian Hill <]) Naperville, Illinois 60540 <]) 312 <]) 690-2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell Labs Locations
Address

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, Illinois 60540

Area Code
201
201
201
312

Phone
949-3000
582-6377
386-3000
690-2000

fbi - A Program to Format Tables USD:28-17

Output:

Some Interesting Places
Name Description Practical Information

American Muse
um oj Natural
History

Bronx Zoo

Brooklyn Museum

New-York Histori
cal Society

\.cknowledgments.

The collections fill 11.5 acres Hours
(Michelin) or 25 acres (MTA) Location
of exhibition halls on four Admission

floors. There is a full-sized re- Subway
plica of a blue whale and the Telephone
world's largest star sapphire
(stolen in 1964).
About a mile long and .6 mile Hours

wide, this is the largest zoo in
America. A lion eats 18 Location

pounds of meat a day while a
sea lion eats 15 pounds of fish. Admission

Five floors of galleries contain
American and ancient art.
There are American period
rooms and architectural orna
ments saved from wreckers,
such as a classical figure from
Pennsylvania Station.
All the original paintings for
Audubon's Birds oj America
are here, as are exhibits of
American decorative arts, New
York history, Hudson River
school paintings, carriages, and
glass paperweights.

Subway

Telephone

Hours
Location

Admission
Subway

Telephone

Hours

Location
Admission
Subway

Telephone

10-5, ex. Sun 11-5, Wed. to 9
Central Park West & 79th St.

Donation: $1.00 asked
AA to 81st St.
212-873-4225

10-4:30 winter, to 5:00 sum-
mer
185th St. & Southern Blvd,
the Bronx.
$1.00, but Tu,We,Th free
2, 5 to East Tremont Ave.

212-933-1759

Wed-Sat, 10-5, Sun 12-5
Eastern Parkway & Washing
ton Ave., Brooklyn.

Free
2,3 to Eastern Parkway.

718-638-5000

Tues-Fri & Sun, 1-5; Sat lO
S

Central Park West & 77th St.
Free

AA to 8 1st St.
212-873-3400

Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted with
.he design of the program. He has also written many of the more intelligible sentences in this docu
nent and helped edit all of it. All phototypesetting programs on UNIX are dependent on the work of
I. F. Ossanna, whose assistance with this program in particular has been most helpful. This program
s patterned on a table formatter originally written by J. F. Gimpel. The assistance of T. A. Dolotta,
~. W. Kernighan, and J. N. Sturman is gratefully acknowledged.

~eferences.

1] J. F. Ossanna, NROFFITROFF User's Manual, Computing Science Technical Report No. 54, Bell
Laboratories, 1976.

2] K. Thompson and D. M. Ritchie, "The UNIX Time-Sharing System," Comm. ACM. 17, pp.
365-75 (1974).

3] B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. ACM. 18,
pp. 151-57 (1975).

4] M. E. Lesk, Typing Documents on UNIX, Bell Laboratories internal memorandum.
'5] M. E. Lesk and B. W. Kernighan, Computer Typesetting oj Technical Journals on UNIX, Com

puting Science Technical Report No. 44, Bell Laboratories, July 1976.

Refer - A Bibliography System

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

ABSTRACT

USD:29-1

Refer is a bibliography system that supports data entry, indexing, retrieval,
sorting, runoff, convenient citations, and footnote or endnote numbering. This
document assumes you know how to use some Unix editor, and that you are familiar
with the nroff/troff text formatters.

The refer program is a preprocessor for nroff/troff, like eqn and tbl, except that
it is used for literature citations, rather than for equations and tables. Given incom
plete but sufficiently precise citations, refer finds references in a bibliographic data
base. The complete references are formatted as footnotes, numbered, and placed
either at the bottom of the page, or at the end of a chapter.

A number of ancillary programs make refer easier to use. The addbib program
is for creating and extending the bibliographic database; sortbib sorts the bibliogra
phy by author and date, or other selected criteria; and roffbib runs off the entire
database, formatting it not as footnotes, but as a bibliography or annotated bibliog
raphy.

Once a full bibliography has been created, access time can be improved by
making an index to the references with indxbib. Then, the lookbib program can be
used to quickly retrieve individual citations or groups of citations. Creating this
inverted index will speed up refer, and lookbib will allow you to verify that a citation
is sufficiently precise to deliver just one reference.

Introduction

Taken together, the refer programs constitute a database system for use with variable-length
information. To distinguish various types of bibliographic material, the system uses labels composed
of upper case letters, preceded by a percent sign and followed by a space. For example, one docu
ment might be given this entry:

%A Joel Kies
O/OT Document Formatting on Unix Using the oms Macros
%1 Computing Services
%C Berkeley
%D 1980

Each line is called a field, and lines grouped together are called a record; records are separated from
'!ach other by a blank line. Bibliographic information follows the labels, containing data to be used
by the refer system. The order of fields is not important, except that authors should be entered in the
lame order as they are listed on the document. Fields can be as long as necessary, and may even be
continued on the following line(s).

Refer - A Bibliography System USD:29-3

Data Entry with Addbib

The addbib program is for creating and extending bibliographic databases. You must give it the
filename of your bibliography:

% addbib database

Every time you enter addbib, it asks if you want instructions. To get them, type y; to skip them, type
RETURN. Addbib prompts for various fields, reads from the keyboard, and writes records containing
the refer codes to the database. After finishing a field entry, you should end it by typing RETURN. If
a field is too long to fit on a line, type a backslash (\) at the end of the line, and you will be able to
continue on the following line. Note: the backslash works in this capacity only inside addbib.

A field will not be written to the database if nothing is entered into it. Typing a minus sign as
the first character of any field will cause addbib to back up 'one field at a time. Backing up is the best
way to add multiple authors, and it really helps if you forget to add something important. Fields not
contained in the prompting skeleton may be entered by typing a backslash as the last character before
RETURN. The following line will be sent verbatim to the database and addbib will resume with the
next field. This is identical to the procedure for dealing with long fields, but with new fields, don't
forget the % key-letter.

Finally, you will be asked for an abstract (or annotation), which will be preserved as the %X
field. Type in as many lines as you need, and end with a control-D (hold down the CTRL button, then
press the "d" key). This prompting for an abstract can be suppressed with the -a command line
option.

After one bibliographic record has been completed, addbib will ask if you want to continue. If
you do, type RETURN; to quit, type q or n (quit or no). It is also possible to use one of the system
editors to correct mistakes made while entering data. After the "Continue?" prompt, type any of the
following: edit, ex, vi, or ed - you will be placed inside the corresponding editor, and returned to add
bib afterwards, from where you can either quit or add more data.

If the prompts normally supplied by addbib are not enough, are in the wrong order, or are too
numerous, you can redefine the skeleton by constructing a promptfile. Create some file, to be named
after the -p command line option. Place the prompts you want on the left side, followed by a single
TAB (control-I), then the refer code that is to appear in the bibliographic database. Addbib will send
the left side to the screen, and the right side, along with data entered, to the database.

Printing the Bibliography

Sortbib is for sorting the bibliography by author (%A) and date (%D), or by data in other fields.
It is quite useful for producing bibliographies and annotated bibliographies, which are seldom entered
in strict alphabetical order. It takes as arguments the names of up to 16 bibliography files, and sends
the sorted records to standard output (the terminal screen), which may be redirected through a pipe
~r into a file.

The -sKEYS flag to sortbib will sort by fields whose key-letters are in the KEYS string, rather
than merely by author and date. Key-letters in KEYS may be followed by a '+' to indicate that all
such fields are to be used. The default is to sort by senior author and date (printing the senior author
'ast name first), but -sA+D will sort by all authors and then date, and -sATD will sort on senior
lUthor, then title, and then date.

Roftbib is for running off the (probably sorted) bibliography. It can handle annotated bibliogra
phies - annotations are entered in the %X (abstract) field. Roftbib is a shell script that calls refer -B
md nroff -mbib. It uses the macro definitions that reside in lusr/lib/tmac/tmac. bib, which you can
'edefine if you know nroff and troff. Note that refer will print the %H and %0 commentaries, but will
.gnore abstracts in the O/OX field; roftbib will print both fields, unless annotations are suppressed with
the -x option.

Refer - A Bibliography System

.[
Ides document formatting
%P 10
.J

USD:29-5

The first line, a partial citation, will find the reference in your bibliography. The second line will
insert the page number into the final citation. Ranges of pages may be specified as "%P 56-78".

When the time comes to run off a paper, you will need to have two files: the bibliographic data-
base, and the paper to format. Use a command line something like one of these:

% refer -p database paper I nroff -ms
% refer -p database paper I tbl I nroff -ms
% refer -p database paper I tbl I neqn I nroft' -ms

If other preprocessors are used, refer should precede tbl, which must in tum precede eqn or neqn.
The -p option specifies a "private" database, which most bibliographies are.

Refer's Command-line Options

Many people like to place references at the end of a chapter, rather than at the bottom of the
page. The -e option will accumulate references until a macro sequence of the form

.[
$LIST$
.J

is encountered (or until the end of file). Refer will then write out all references collected up to that
point, collapsing identical references. Warning: there is a limit (currently 200) on the number of
references that can be accumulated at one time.

It is also possible to sort references that appear at the end of text. The -sKEYS flag will sort
references by fields whose key-letters are in the KEYS string, and permute reference numbers in the
text accordingly. It is unnecessary to use -e with it, since -s implies -e. Key-letters in KEYS may be
followed by a • +' to indicate that all such fields are to be used. The default is to sort by senior author
and date, but -sA+D will sort on all authors and then date, and -sA+ T will sort by authors and then
title.

Refer can also make citations in what is known as the Social or Natural Sciences format.
Instead of numbering references, the -I (letter ell) flag makes labels from the senior author's last name
and the year of publication. For example, a reference to the paper on Inverted Indexes cited above
might appear as [Lesk 1978aJ. It is possible to control the number of characters in the last name, and
the number of digits in the date. For instance, the command line argument -16,2 might produce a
reference such as [Kernig78cj.

Some bibliography standards shun both footnote numbers and labels composed of author and
date, requiring some keyword to identify the reference. The -k flag indicates that, instead of number
ing references, key labels specified on the %L line should be used to mark references.

The -n flag means to not search the default reference file, located in lusr/dict/papers/Rv7man.
Using this flag may make refer marginally faster. The -an flag will reverse the first n author names,
printing Jones, J. A. instead of J. A. Jones. Often -al is enough; this will reverse the names of only
the senior author. In some versions of refer there is also the -f flag to set the footnote number to
some predetermined value; for example, -f23 would start numbering with footnote 23.

Making an Index

Once your database is large and relatively stable, it is a good idea to make an index to it, so that
references can be found quickly and efficiently. The indxbib program makes an inverted index to the

"bibliographic database (this program is called pubindex in the Bell Labs manual). An inverted index

Refer - A Bibliography System USO:29-7

instead. This is because the %X field is not passed through as a string, but as the body of a paragraph
macro.

Another problem arises from authors with foreign names. When a name like "Valery Giscard
d'Estaing" is turned around by the -a option of refer, it will appear as "d'Estaing, Valery Giscard,"
rather than as "Giscard d'Estaing, Valery." To prevent this, enter names as follows:

%A Vale\ \.ry Giscard\Od'Estaing
%A Alexander Csoma\Ode\OKo\ *:ro\ *:s

(The second is the name of a famous Hungarian linguist.) The backslash-zero is an nroft"/troft" request
meaning to insert a digit-width space. It will protect against faulty name reversal, and also against
mis-sorting.

Footnote numbers are placed at the end of the line before the .[macro. This line should be a
line of text, not a macro. As an example, if the line before the .[is a .R macro, then the .R will eat
the footnote number. (The.R is an -ms request meaning change to Roman font.) In cases where the
font needs changing, it is necessary to do the following:

\fiet al. \tR
.[
awk aho kernighan weinberger
.J

Now the reference will be to Aho el al.2 The \fi changes to italics, and the \tR changes back to
Roman font. Both these requests are nroft"/troft" requests, not part of -ms. If and when a footnote
number is added after this sequence, it will indeed appear in the output.

Internal Details of Refer

You have already read everything you need to know in order to use the refer bibliography sys
tem. The remaining sections are provided only for extra information, and in case you need to change
the way refer works.

The output of refer is a stream of string definitions, one for each field in a reference. To create
string names, percent signs are simply changed to an open bracket, and an [F string is added, contain
ing the footnote number. The %X, %Y and %Z fields are ignored; however, the annobib program
changes the %X to an .AP (annotation paragraph) macro. The citation used above yields this inter
mediate output:

.ds [F I

.J-

.ds [A Mike E. Lesk

.ds [T Some Applications ofInverted Indexes on the Unix System

.ds [J Unix Programmer's Manual

.ds [I Bell Laboratories

.ds [C Murray Hill, NJ

.ds [0 1978

.ds [V 2a

.nr [T 0

.nr [A 0

.nr [0 0

.][1 journal-article

These string definitions are sent to Droft", which can use the -ms macros defined in
lusrllib/mxltmac.xref to take care of formatting things properly. The initializing macro .)- precedes

2 Alfred V. Abo, Brian W. Kernighan, and Peter J. Weinberger, "Awk - A Pattern Scanning and Processing
• Language," Unix Programmer's Manual, vol. 2a, Bell Laboratories, Murray Hill, NJ, 1978.

Refer - A Bibliography System USO:29-9

See reference
.[(
partial citation
.J),

Note that blanks are significant on these signal lines. If a permanent change in the footnote format is
desired, it's best to redefine the [. and .) strings.

Changing the Refer Macros

This section is provided for those who wish to rewrite or modify the refer macros. This is
necessary in order to make output correspond to specific journal requirements, or departmental stan
dards. First there is an explanation of how new macros can be substituted for the old ones. Then
several alterations are given as examples. Finally, there is an annotated copy of the refer macros used
by roffbib.

The refer macros for nroff/troff supplied by the -ms macro package reside in
lusr/lib/mx/tmac.xref; they are reference macros, for producing footnotes or endnotes. The refer mac
ros used by roffbib, on the other hand, reside in lusr/lib/tmac/tmac.bib; they are for producing a
stand-alone bibliography.

To change the macros used by roffbib, you will need to get your own version of this shell script
into the directory where you are working. These two commands will get you a copy of roffbib and the
macros it uses: t

% cp lusr/lib/tmac/tmac.bib bib mac

You can proceed to change bibmac as much as you like. Then when you use roffbib, you should
specify your own version of the macros, which will be substituted for the normal ones

% roffbib -m bibmac filename

where filename is the name of your bibliography file. Make sure there's a space between -m and bib
mac.

If you want to modify the refer macros for use with nroff and the -ms macros, you will need to
get a copy of "tmac.xreP':

% cp /usrllib/ms/s.ref refmac

These macros are much like "bibmac", except they have .FS and .FE requests, to be used in conjunc
tion with the -ms macros, rather than independently defined .xp and .AP requests. Now you can put
this line at the top of the paper to be formatted:

.so refmac

Your new refer macros will override the definitions previously read in by the -ms package. This
method works only if "refmac" is in the working directory.

Suppose you didn't like the way dates are printed, and wanted them to be parenthesized, with
no comma before. There are five identical lines you will have to change. The first line below is the
old way, while the second is the new way:

.if !"*([O'''' , *([D\c

.if r\ \ *([0.... \& (\ \ *([O}\c

In the first line, there is a comma and a space, but no parentheses. The "\c" at the end of each line
indicates to nroff that it should continue, leaving no extra space in the output. The "\&" in the
second line is the do-nothing character; when followed by a space, a space is sent to the output.

If you need to format a reference in the style favored by the Modem Language Association or
Chicago University Press, in the form (city: publisher, date), then you will have to change the middle

Some Applications of Inverted Indexes on the UNIX System

1. Introduction.

M. E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

USD:30-1

The UNIXt system has many utilities (e.g. grep, awk, lex, egrep, fgrep, ...) to search through files
of text, but most of them are based on a linear scan through the entire file, using some deterministic
automaton. This memorandum discusses a program which uses inverted indexes I and can thus be
used on much larger data bases.

As with any indexing system, of course, there are some disadvantages; once an index is made,
the files that have been indexed can not be changed without remaking the index. Thus applications
are restricted to those making many searches of relatively stable data. Furthermore, these programs
depend on hashing, and can only search for exact matches of whole keywords. It is not possible to
look for arithmetic or logical expressions (e.g. "date greater than 1970") or for regular expression
searching such as that in lex. 2

Currently there are two uses of this software, the refer preprocessor to format references, and
the lookall command to search through all text files on the UNIX system.;

The remaining sections of this memorandum discuss the searching programs and their uses.
Section 2 explains the operation of the searching algorithm and describes the data collected for use
with the lookall command. The more important application, refer has a user's description in section
3. Section 4 goes into more detail on reference files for the benefit of those who wish to add refer
ences to data bases or write new troff macros for use with refer. The options to make refer collect
identical citations, or otherwise relocate and adjust references, are described in section 5.

2. Searching.
The indexing and searching process is divided into two phases, each made of two parts. These

are shown below.

A. Construct the index.
(I) Find keys - turn the input files into a sequence of tags and keys, where each tag identifies

a distinct item in the input and the keys for each such item are the strings under which it
is to be indexed.

(2) Hash and sort - prepare a set of inverted indexes from which, given a set of keys, the
appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

t UNIX is a trademark of AT&T Bell Laboratories.
I D. Knuth, The Art of Computer Programming: Vol. 3, Sorting and Searching, Addison-Wesley, Read

ing, Mass., 1977. See section 6.5.
2 M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39, Bell Laboratories,

Murray Hill, New Jersey, October 1975. Reprinled as PS1:16 in UNIX Programmer's Manual, Usenix As
socialion, (1986). * lookall is not part of the Berkeley UNIX distribution.

Some Applications of Inverted Indexes on the UNIX System USD:30-3

false drops, since items referenced by the correct hash codes need not actually have contained the
correct keys. Normally, if there are several keys in the query, there are not likely to be many false
drops in the final combined list even though each hash code is somewhat ambiguous. The actual tags
are then obtained from the tag file, and to guard against the possibility that an item has false-dropped
on some hash code in the query, the original items are normally obtained from the delivery program
(4) and the query keys checked against them by string comparison.

Usually, therefore, the check for bad drops is made against the original file. However, if the key
derivation procedure is complex, it may be preferable to check against the keys fed to program (2).
In this case the optional key file which contains the keys associated with each item is generated, and
the item tag is supplemented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for each
item. This file is not usually necessary with the present key-selection program, since the keys always
appear in the original document.

There is also an option (-en) for coordination level searching. This retrieves items which match
all but n of the query keys. The items are retrieved in the order of the number of keys that they
match. Of course, n must be less than the number of query keys (nothing is retrieved unless it
matches at least one key).

As an example, consider one set of 4377 references, comprising 660,000 bytes. This included
51,000 keys, of which 5,900 were distinct keys. The hash table is kept full to save space (at the
expense of time); 995 of 997 possible hash codes were used. The total set of index files (no key file)
included 171,000 bytes, about 26% of the original file size. It took 8 minutes of processor time to
hash, sort, and write the index. To search for a single query with the resulting index took 1.9 seconds
of processor time, while to find the same paper with a sequential linear search using grep (reading all
of the tags and keys) took 12.3 seconds of processor time.

We have also used this software to index all of the English stored on our UNIX system. This is
the index searched by the lookall command. On a typical day there were 29,000 files in our user file
system, containing about 152,000,000 bytes. Of these 5,300 files, containing 32,000,000 bytes (about
21%) were English text. The total number of 'words' (determined mechanically) was 5,100,000. Of
these 227,000 were selected as keys; 19,000 were distinct, hashing to 4,900 (of 5,000 possible)
different hash codes. The resulting inverted file indexes used 845,000 bytes, or about 2.6% of the size

· of the original files. The particularly small indexes are caused by the fact that keys are taken from
only the first 50 non-common words of some very long input files.

Even this large lookall index can be searched quickly. For example, to find this document by
looking for the keys "lesk inverted indexes" required 1.7 seconds of processor time and system time.

· By comparison, just to search the 800,000 byte dictionary (smaller than even the inverted indexes, let
alone the 27,000,000 bytes of text files) with grep takes 29 seconds of processor time. The lookall
program is thus useful when looking for a document which you believe is stored on-line, but do not
know where. For example, many memos from our center are in the file system, but it is often difficult
to guess where a particular memo might be (it might have several authors, each with many direc-

· tories, and have been worked on by a secretary with yet more directories). Instructions for the use of
the lookall command are given in the manual section, shown in the appendix to this memorandum.

The only indexes maintained routinely are those of publication lists and all English files. To
make other indexes, the programs for making keys, sorting them, searching the indexes, and deliver
ing answers must be used. Since they are usually invoked as parts of higher-level commands, they are
not in the default command directory, but are available to any user in the directory lusrlliblrefer.
Three programs are of interest: mkey, which isolates keys from input files; inv, which makes an index
from a set of keys; and hunt, which searches the index and delivers the items. Note that the two

· parts of the retrieval phase are combined into one program, to avoid the excessive system work and
delay which would result from running these as separate processes.

Some Applications of Inverted Indexes on the UNIX System

-p

-v

Pipe into the sort program, rather than writing a temporary
input file. This saves disk space and spends processor time.
Verbose mode; print a summary of the number of keys which
finished indexing.

USD:30-5

About half the time used in inv is in the contained sort. Assuming the sort is roughly linear,
however, a guess at the total timing for inv is 250 keys per second. The space used is usually of more
importance: the entry file uses four bytes per possible hash (note the -h option), and the tag file
around 15-20 bytes per item indexed. Roughly, the posting file contains one item for each key
instance and one item for each possible .hash code; the items are two bytes long if the tag file is less
than 65336 bytes long, and the items are four bytes wide if the tag file is greater than 65536 bytes
long. Note that to minimize storage, the hash tables should be over-full; for most of the files indexed
in this way, there is no other real choice, since the entry file must fit in memory.

Searching and Retrieving. The hunt program retrieves items from an index. It combines, as
mentioned above, the two parts of phase (B): search and delivery. The reason why it is efficient to
combine delivery and search is partly to avoid starting unnecessary processes, and partly because the
delivery operation must be a part of the search operation in any case. Because of the hashing, the
search part takes place in two stages: first items are retrieved which have the right hash codes associ
ated with them, and then the actual items are inspected to determine false drops, i.e. to determine if
anything with the right hash codes doesn't really have the right keys. Since the original item is
retrieved to check on false drops, it is efficient to present it immediately, rather than only giving the
tag as output and later retrieving the item again. If there were a separate key file, this argument
would not apply, but separate key files are not common.

Input to hunt is taken from the standard input, one query per line. Each query should be in
mkey -s output format; all lower case, no punctuation. The hunt program takes one argument which
specifies the base name of the index files to be searched. Only one set of index files can be searched
at a time, although many text files may be indexed as a group, of course. If one of the text files has
been changed since the index, that file is searched with jgrep; this may occasionally slow down the
searching, and care should be taken to avoid having many out of date files. The following option
arguments are recognized by hunt:

-a
-Cn

-F(yndl

-g

-i string
-1 n

-0 string

-p

-T(yndl

-t string

Give all output; ignore checking for false drops.
Coordination level n; retrieve items with not more than n
terms of the input missing; default CO, implying that each
search term must be in the output items.
"-Fy" gives the text of all the items found; "-Fn" suppresses
them. "-Fd" where d is an integer gives the text of the first d
items. The default is -Fy.
Do not use jgrep to search files changed since the index was
made; print an error comment instead.
Take string as input, instead of reading the standard input.
The maximum length of internal lists of candidate items is n;
default 1000.
Put text output ("-Fy") in string; of use only when invoked
from another program.
Print hash code frequencies; mostly for use in optimizing hash
table sizes.
"-Ty" gives the tags of the items found; "-Tn" suppresses
them. "-Td" where d is an integer gives the first dtags. The
default is - Tn .
Put tag output ("-Ty") in string; of use only when invoked
from another program.

The timing of hunt is complex. Normally the hash table is overfull, so that there will be many
false drops on any single term; but a multi-term query will have few false drops on all terms. Thus if

Some Applications of Inverted Indexes on the UNIX System USD:30-7

citations searched may be tailored to each system, and individual users may specify their own citation
files. On our system, the default data base is accumulated from the publication lists of the members
of our organization, plus about half a dozen personal bibliographies that were collected. The present
total is about 4300 citations, but this increases steadily. Even now, the data base covers a large frac
tion ofIocal citations.

For example, the reference for the eqn paper above was specified as

preprocessor like
.I eqn .
. [
kernighan cherry acm 1975
.J
It scans its input looking for items

This paper was itself printed using refer. The above input text was processed by refer as well as tbl
and troff by the command

refer memo-file I tbl I troff -ms

and the reference was automatically translated into a correct citation to the ACM paper on
mathematical typesetting.

The procedure to use to place a reference in a paper using refer is as follows. First, use the
lookbib command to check that the paper is in the data base and to find out what keys are necessary
to retrieve it. This is done by typing lookbib and then typing some potential queries until a suitable
query is found. For example, had one started to find the eqn paper shown above by presenting the
query

$lookbib
kernighan cherry
(EOT)

lookbib would have found several items; experimentation would quickly have shown that the query
given above is adequate. Overspecifying the query is of course harmless. A particularly careful
reader may have noticed that "acm" does not appear in the printed citation; we have supplemented
some of the data base items with common extra keywords, such as common abbreviations for jour
nals or other sources, to aid in searching.

If the reference is in the data base, the query that retrieved it can be inserted in the text,
between ., and .] brackets. If it is not in the data base, it can be typed into a private file of refer
ences, using the format discussed in the next section, and then the -p option used to search this
private file. Such a command might read (if the private references are called myfile)

refer -p myfile document I tbl I eqn I troff -ms ...

where tbl andlor eqn could be omitted if not needed. The use of the -ms macros4 or some other
macro package, however, is essential. Refer only generates the data for the references; exact format
ting is done by some macro package, and if none is supplied the references will not be printed.

By default, the references are numbered sequentially, and the -ms macros format references as
footnotes at the bottom of the page. This memorandum is an example of that style. Other possibili
ties are discussed in section 5 below.

4 M. E. Lesk, Typing Documents on UNIX and GCOS: The oms Macros/or TrojJ, 1977. Revised version
reprinted as USD:20 in UNIX User's Manual, Usenix Association, (1986).

Some Applications of Inverted Indexes on the UNIX System

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctrl27
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. ACM
%V 23
%N I
%P 1-12
%M abcd-78
%D Jan. 1976

USD:30-9

Order is irrelevant, except that authors are shown in the order given. The output of refer is a stream
of string definitions, one for each of the fields of each reference, as shown below .

. J-

.ds [A authors' names ...

. ds [T title ...

. ds [J journal ...

• J [type-number

The special macro .1- precedes the string definitions and the special macro .1 [follows. These are
changed from the input ., and .1 so that running the same file through refer again is harmless. The
.1- macro can be used by the macro package to initialize. The .11 macro, which should be used to
print the reference, is given an argument type-number to indicate the kind of reference, as follows:

Value Kind of reference
I Journal article
2 Book
3 Article within book
4 Technical report
5 Bell Labs technical memorandum
o Other

The reference is flagged in the text with the sequence

\. ([.number\· (.J
where number is the footnote number. The strings I. and.J should be used by the macro package to
format the reference flag in the text. These strings can be replaced for a particular footnote, as
described in section 5. The footnote number (or other signal). is available to the reference macro .)(
as the string register IF.

In some cases users wish to suspend the searching, and merely use the reference macro format
ting. That is, the user doesn't want to provide a search key between .[and .1 brackets, but merely the
reference lines for the appropriate document. Alternatively, the user can wish to add a few fields to
those in the reference as in the standard file, or override some fields. Altering or replacing fields, or
supplying whole references, is easily done by inserting lines beginning with %; any such line is taken
as direct input to the reference processor rather than keys to be searched. Thus

.[
keyl key2 key3 ...
%Q New format item
O/OR Override report name
.J

makes the indicated changes to the result of searching for the keys. All of the search keys must be

Some Applications of Inverted Indexes on the UNIX System USD:30-11

is encountered. Thus, to place references at the end of a"paper, the user would run refer with the -e
option and place the above $LIST$ commands after the last line of the text. Refer will then move all
the references to that point. To aid in formatting the collected references, refer writes the references
preceded by the line

.)<

and followed by the line

.»
to invoke special macros before and after the references.

Another possible option to refer is the -s option to specify sorting of references. The default, of
course, is to list references in the order presented. The -s option implies the -e option, and thus
requires a

.[
$LIST$
.J

entry to call out the reference list. The -s option may be followed by a string of letters, numbers, and
'+' signs indicating how the references are to be sorted. The sort is done using the fields whose key
letters are in the string as sorting keys; the numbers indicate how many of the fields are to be con
sidered, with '+' taken as a large number. Thus the default is -sAD meaning "Sort on senior author,
then date." To sort on all authors and then title, specify -sA+T. And to sort on two authors and
then the journal, write -sA2J.

Other options to refer change the signal or label inserted in the text for each reference. Nor
mally these are just sequential numbers, and their exact placement (within brackets, as superscripts,
etc.) is determined by the macro package. The -I option replaces reference numbers by strings com
posed of the senior author's last name, the date, and a disambiguating letter. If a number follows the
I as in -13 only that many letters of the last name are used in the label string. To abbreviate the date
as well the form -Im.n shortens the last name to the first m letters and the date to the last n digits.
For example, the option -13,2 would refer to the eqn paper (reference 3) by the signal Ker75a, since it
is the first cited reference by Kernighan in 1975,

A user wishing to specify particular labels for a private bibliography may use the -k option.
Specifying -kx causes the field x to be used as a label. The default is L. If this field ends in -, that
character is replaced by a sequence letter; otherwise the field is used exactly as given.

If none of the refer-produced signals are desired, the -b option entirely suppresses automatic
text signals.

If the user wishes to override the -ms treatment of the reference signal (which is normally to
enclose the number in brackets in nroff and make it a superscript in troff) this can be done easily. If
the lines ., or .) contain anything following these characters, the remainders of these lines are used to
surround the reference signal, instead of the default. Thus, for example, to say "See reference (2)."
and avoid "See reference.2" the input might appear

See reference
.[(
imprecise citation ...
• J).

Note that blanks are significant in this construction. If a permanent change is desired in the style of
reference signals, however, it is probably easier to redefine the strings ,. and.) (which are used to
bracket each signal) than to change each citation.

Although normally refer limits itself to retrieving the data for the reference, and leaves to a
macro package the job of arranging that data as required by the local format, there are two special
options for rearrangements that can not be done by macro packages. The -c option puts fields into
all upper case (CAPS-SMALL CAPS in troff output). The key-letters indicated what information is to be

BIB - A Program for Formatting Bibliographies

Timothy A. Budd

The University of Arizona
Department of Computer Science

Tucson, Arizona 85721

USD:31-1

Bib is a program for collecting and formatting reference lists in documents. It is a preprocessor
to the nroff/troff typesetting systems, (much like the tbl [4] and eqn [2] programs) and an alternative
to the refer [3] bibliography program. Bib takes two inputs: a document to be formatted and a library
of references. Imprecise citations in the source document are replaced by more conventional citation
strings, the appropriate references are selected from the reference file, and commands are generated to
format both citation and the referenced item in the bibliography.

An imprecise citation is a list of words surrounded by the characters [..]. Words (which are
truncated to six letters) in the imprecise citation are matched against entries in the reference file, and
if an entry is found that matches all words, that reference is used. For example:

In Brooks's interesting book [. brooks mythical.] various reasons ...

Multiple citations are indicated by simply placing a comma in the imprecise citation:

In [.kernig tools, kernig elements.], Kernighan and Plauger have .. ,

Embedded newlines, tabs and extra blanks within the imprecise citation are ignored.
Judicious use of the K (keyword) field in references in the database can simplify citations con

siderably. Also additional information can be placed into citations by surrounding text with curly
braces. The additional information is inserted verbatim into the citation, e.g. [I, Chapter 6]. Note
that it may be desirable to use non-breakable spaces, in order that the citation not be split across a
line boundary by troff, for example:

For a description of LR parsing, see [.dragon {, \ Chapter 6}.] by Aho and Ullman.

An alternative citation style can be used by surrounding the imprecise citation with {. and .}.
Most document styles just give the raw citation, without the braces, in this case. This is useful, for
example, to refer to citations in running text.

For ~ discussion of this point, see reference {.dragon.}.

The algorithm used by bib scans the source input in two passes. In the first pass, references are
collected and the location of citations marked. In the second pass, these marks are replaced by the
appropriate citation, and the entire list of references is dumped following a call on the macro .[].
This macro is left untouched. However, this can be altered to achieve other typographic effects.

An exception to this process is made in those instances where references are indicated in foot
notes. In this case the macro that generates the reference is placed immediately after each line in
which the reference is cited.

BIB - A Program for Formatting Bibliographies USD:31-3

the citation (i.e., Knu79 becomes Knu79a and Knu79b). As noted previously, this can be altered by
using the F field.

For the purposes of sorting by author, the last name is taken to be the last word of the name
field. This means some care must be taken when names contain embedded blanks, such as in 'Hart
ley Rogers, Ir.' or 'Mary-Claire van Leunen'. In these cases a concealed space (\) should be used, as
in 'Hartley Rogers,\ Ir.'.

bib knows very little about troffusage or syntax. This can sometimes be useful. For example, to
cause an entry to appear in a reference list without having it explicitly cited in the text the citation
can be placed in a troff comment.

.\" [.imprecise citation.]

It is also possible to embed troff commands within a reference definition. See 'abbreviations' in
the section 'Reference Format Designer's Guide' for an example.

In some styles (superscripts) periods and commas should precede the citation while spaces fol
low. In other styles (brackets) these rules are reversed. If a period, comma or space immediately pre
cedes a citation, it will be moved to the appropriate location for the particular reference style being
used. This movement is not done for citations given in the alternative style.

The following is a complete list of options for bib:

-aa

-arnum

-ax

-cstr

-ea

-ex

,-ernum

-f

-h

-i file
-ifile

-nstr

-0

-p file

-pfile

-sstr

-t type

-ttype

reduce author's first names to abbreviations.

reverse the first num author's names. If num is omitted all names are reversed.

print authors last names in Caps-Small Caps style. For example Budd becomes
BUDD.

build citations according to the template str. See the reference format designer's
guide for more information on templates.

abbreviate editors' names

places editors' names in Caps-Small Caps style. (see -x)

reverse the first Ilum editors' names. If Ilum is omitted all editors' names are
reversed.

instead of dumping references following the call on .[], dump each reference
immediately following the line on which the citation is placed (used for footnoted
references).

hyphenate runs of three or more contiguous references in the citation string. (eg
2,3,4,5 becomes 2-5). This is most useful for numeric citation styles, but works gen
erally. The -h option implies the -0 option.

include and process the indicated file. This is useful for including a private file of
string definitions.

turn off the indicated options. str must be composed of the characters afhorx.

sort contiguous citations according to the order given by the reference list. (This
option defaults on).

instead of searching the file INDEX, search the indicated reference file(s) before
searching the system file. Multiple files are separated by commas.

sort references according to the template str.

use the standard macros and switch settings to generate citations and references in
the indicated style.

BIB - A Program for Formatting Bibliographies USD:31-S

Sometimes a book (particularly old books) will have no listed publisher. The reference entry
must still have an I field.

%A R. Colt Hoare
%T A Tour through the Island of Elba
%1 (no listed publisher)
'%C London
%D 1814

If a reference database contains entries from many people (such as a departmental-wide data
base), the W field can be used to indicate where the referenced item can be found; using the initials of
the owner, for example. Any entry style can take a W field, since this field is not used in formatting
the reference.

The K field is used to define general subject categories for an entry. This is useful in locating all
entries pertaining to a specific subject area. Note the use of the backslash, to indicate the last name is
Van Tassel, and not simply Tassel.

%A Dennie Van\ Tassel
%T Program Style, Design, EfficiencY,
Debugging and Testing
%1 PRHALL
%D 1978
%W tab
%K testing debugging

Journal article
The only requirement for a journal article is that it have a journal name and a volume number.

Usually journal articles also have authors, titles, page numbers, and a date of pUblication. They may
!l1so have numbers, and, less frequently, a publisher. (Generally, publishers are only listed for obscure
journals).

Note that string names (such as CACM for Communications of the ACM) are defined for most
major journals. There are also string names for the months of the year, so that months can be abbre
viated to the first three letters. Note also in this example the use of the K field to define a short name
(hr'u) that can be used in searching for the reference.

%A M. A. Harrison
%A W. L. Ruzzo
%A J. D. Ullman
%T Protection in Operating Systems
%J CACM
%V 19
lION 8
%P 461-471
%D AUG 1976
%K hru

Article ~D conference proceedings

An article from a conference is printed as though it were a journal article and the journal name
was the name of the conference. Note that string names (SOSP) are also defined for the major confer
ences (Symposium on Operating System Principles) ..

'lOA M. Bishop
'lilA L. Snyder
'lOT The Transfer of Information and Authority

BIB - A Program for Formatting Bibliographies USD:31-7

%0 (Discussed in Glib [32])

Compilations
A compilation is the work of several authors gathered together by an editor into a book. The

reference format is the same as for a book, with the editor(s) taking the place of the author.

%E R. A. DeMilio
%E D. P. Dobkin
%E A. K. Jones
%E R. J. Lipton
%T Foundations of Secure Computation
%1 ACPRESS
%D 1978

Technical Reports
A technical report must have a report number. They usually have authors, titles, dates and an

issuing institution (the I field is used for this). They may also have a city and a government issue
number. Again string values (UATR for 'University of Arizona Technical Report') will frequently
simplify typing references.

%A T. A. Budd
%T An APL Complier
%R UATR 81-17
%C Tucson, Arizona
%D 1981

If the institution name is not part of the technical report number, then the institution should be
given separately.

%A Douglas Baldwin
%A Frederick Sayward
%T Heuristics for Determining Equivalence of Program Mutations
%R Technical Report Number 161
%1 Yale University

· %D 1979

· PhD Thesis

A PhD thesis is listed as if it were a book, and the institution granting the degree the publisher.

%A Martin Brooks
· %T Automatic Generation of Test Data for

Recursive Programs Having Simple Errors
· %1 PhD Thesis, Stanford University

%D 1980
Some authors prefer to treat Master's and Bachelor theses similarly, although most references on

style instruct say to treat a Master's degree as an article or as a report.

%A A. Snyder
%T A Portable Compiler for the Language C
%R Master's Thesis
%1 M.I.T.

· %D 1974

BIB - A Program for Formatting Bibliographies USD:31-9

F
The F command indicates that references are to be dumped immediately after a line containing

a citation, such as when the references are to be placed in footnotes.

S template

The S command indicates references are to be sorted before being dumped. The comparison
used in sorting is based on the template. See the discussion on sorting (below) for an explanation of
templates.

C template

The template is used as a model in constructing citations. Sce the discussion below.

D word definition

The word-definition pair is placed into a table. Before each reference is dumped it is examined
for the occurrence of these words. Any occurrence of a word from this table is replaced by the
definition, which is then rescanned for other words. Words are limited to alphanumeric characters,
ampersand and underscore.

Definitions can extend over multiple lines by ending lines with a backslash (\). The backslash
will be removed, and the definition, including the newline and the next line, will be entered into the
table. This is useful for including several fields as part of a single definition (city names can be
included as part of a definition for a publishing house, for example).

I filename

The indicated file is included at the current point. The included file may contain other format
ting commands.

H

Three or more contiguous citations that refer to adjacent items in the reference list are replaced
by a hyphenated string. For example, the citation 2,3,4,5 would be replaced by 2-5. This is most use
ful with numeric citations. The H option implies the 0 option.

o
Contiguous citations are sorted according to the order given by the reference list.

R number

The first number author's names are reversed on output (i.e. T. A. Budd becomes Budd, T. A.).
If number is omitted all names are reversed.

T str

The str is a list of field names. Each time a definition string for a named field is produced, a
second string containing just the last character will also be generated. See 'Trailing characters', below.

x
Authors' last names are to be printed in Caps/Small Caps format (i.e., Budd becomes BUDD).

The first line in the format file that does not match a format command causes that line, and all
subsequent lines, to be immediately copied to the output.

BIB - A Program for Formatting Bibliographies USD:31-11

, is used to specify a format consisting of the authors' last names, or the senior author followed by the
text 'et ai' if more than four authors are listed. The fields '4' through '9' are reserved to be used to
specify formats that cannot be produced using templates. These will be implemented either as local

, modifications to bib or in future releases.

In order to postpone the inevitable clash of local changes versus new releases, it is suggested that
local formatting styles use numbers starting at 9 and working downward.

Each object can be followed by either of the letters 'u' or 'I' and the field will be printed in all
upper or all lower case, respectively.

If necessary for disambiguating, the character '@' can be used as a separator between objects in
the citation template. Any text which should be inserted into the citation uninterpreted should be
surrounded by either {} or <> pairs.

, Citation Formatting
In the output, each citation is surrounded by the strings \ *([[and \ *(J) (\ *([{ and \ *()] in the

alternative style). Multiple citations are separated by the string *(],. The text portion of a format
file should contain troff definitions for these strings to achieve the appropriate typographic effect.

Citations that are preceded by a period, comma, space or other puncuation are surrounded by
string values for formatting the puncuation in the approprate location. Again, troff commands should
be given to insure the appropriate values are produced.

The following table summarizes the string values that must be defined to handle citations.

Name Formatting

[[]]
{[}]
[. .]
[, ,]
[? ?]
[! !]
[: :]
[; ;]
[" "]
[' ']
[< >]
],
]-

Standard citation beginning and ending
Alternate citation beginning and ending
Period before and after citation
Comma before and after citation
Question mark before and after citation
Exclaimation Point before and after citation
Colon before and after citation
Semi-Colon before and after citation
Double Quote before and after citation
Single Quote before and after citation
Space before and after citation
Multiple citation separator
Separator for a range of citations

Authors' (and editors') names can be abbreviated, reversed, and/or printed in Caps-small Caps
format. In producing the string values for an author, formatting strings are inserted to give the macro
",riter greater flexibility in producing the final output. Currently the following strings are used:

a] gap between sucessive initials
b) comma between last name and initial in reversed text
c) comma between authors
n] and between two authors
m] and between last two authors
p] period following initial

For example, suppose the name 'William E. Howden' is abbreviated and reversed. It will come
lut looking like

Howden \ *(b]W\ *(p]\ *(a]E\ *(p]

BIB - A Program for Formatting Bibliographies USO:31-13

should test this value before generating punctuation.

Abbreviations
The algorithm used to generate abbreviations from first names is fairly simple: Each word in the

first name field that begins with a capital is reduced to that capital letter followed by a period. In
some cases, this may not be sufficient. For example, suppose Ole-Johan Oahl should be abbreviated
'O-J. Dahl'. The only way to achieve this (short of editing the output) is to include troff commands
in the reference file that alter the strings produced by bib, as in the following

%A Ole-Johan Dahl
.ds [A O-J. Dahl

In fact, any troff commands can be entered in the middle of a reference entry, and the com
mands are copied un interpreted to the output. For example, the user may wish to have a switch indi
cating whether the name is to be abbreviated or not:

%A Ole-Johan Dahl
.if \n(i[.ds [A O-J. Dahl

An Example
Figure I shows the format file for the standard alphabetic format. The sort command indicates

that sorting is 'to be done by senior author, followed by the last two digits of the date. The citation
template indicates that citations will be the three character sequence described in the section of cita

, tions followed by the last two characters of the date (i.e. AHU79, for example).

, # standard alphabetic format
SAD-2

. C2D-2
I BMACLIBlbibinc.fullnames
I BMACLlBlbibinc.std

Figure 1

The two I commands include two files. The first is a file of definitions for common strings, such
, as dates and journal names. A portion of this file is shown in figure 2. Note that a no-op has been
inserted into the definition string for BIT in order to avoid further expansion when the definition is

, rescanned.
The second file is a sequence of troff macros for formatting the references. The beginning of this

file is shown in figure 3.
On the basis of some simple rules (the presence or absence of certain fields) the document is

. identified as one of five different types, and a call made on a different macro for each type. This is
shown in figure 4.

Finally figure 5 shows the macro for one of those different types, in this case the book format
ting macro.

BIB - A Program for Formatting Bibliographies

.de 2[\" book

.if !"*([F"" .p[*([F

.if !"*([A"" *([A,

.if !"*([T"" \\t2*([T,\\fl
\ *([I\c
.if !,,*([C"" , *([C\c
.if I"*([D"" \& (*([D)\c
\& .
.if !"*([G Gov't. ordering no. \\-([G .
. if! .. *([O· .. · *([0
.]-

Acknowledgements

Figure 5

bib was inspired by refer, written by M. Lesk.

1. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, 1977.

USD:31-15

2. B. W. Kernighan and L. L. Cherry, A System for Typesetting Mathematics, Comm. of the ACM
18,3 (Mar. 1978), 151-156.

3. M. E. Lesk, Some Applications of Inverted Indexes on the UNIX System, Bell Laboratories
Computing Science Technical Report 69, June 1978.

4. M. E. Lesk, Tbl - A Program to Format Tables, Unix Programmer's Manual, Vol2A, .

IB - A Program for Formatting Bibliographies

OPL?
OPLS
OPL9
OPLlO
OPLlI
ROC
OSP
TOC
YMP
vJCC

Conference Record of the Seventh POPL
Conference Record of the Eighth POPL
Conference Record of the Ninth POPL
Conference Record of the Tenth POPL
Conference Record of the Eleventh POPL
Proceedings
SYMP on Operating System Principles
Annual ACM SYMP on Theory of Computing
Symposium
PROC Western Joint Computer CONF

,onger place names
,TLHO Bell Laboratories
,TLMH Bell Laboratories
:MU Carnegie-Mellon University
:MUCS Computer Science Department, Carnegie-Mellon University
)G Data General
UTAI MIT Artificial Intelligence Laboratory
UTLCS MIT Laboratory for Computer Science
UCS Computer Science Department, Stanford University

USD:31-1?

UCSL Computer Systems Lab., Stanford Electronics Lab., Dept. of Electrical Engineering and Computer Science
UEE Department of Electrical Engineering, Stanford University
'UM Technische Universitiit Munchen
TCB University of California, Berkeley
TCBCS Computer Science Division, EECS, UCB
rCBERLERL, EECS, UCB

,hort place names
:ORP Corporation
:SD Computer Science Department
ICS Department of Computer Science
IEPT Department
nss Dissertation
'R Technical Report
fATR University of Arizona Technical Report
,NIV University
:RL Electronics Research Laboratory

lonths of the year
<\N January
'EB February
1AR March
PR April
lAY May
IN June
UL July
,UG August
C:P September
CT October

.OV November
lEC December

ublishers
,CADEMIC
,CPRESS
DDISON
NSI

Academic Press
Academic Press
Addison Wesley
American National Standards Institute

CSPRESS
DIGITAL
ELSEVIER
FREEMAN
GPO
HOLT
IEEEP
MCGRAW
MGHILL
MITP
NHOLL
NYC
PRENTICE
PRHALL
SPRINGER
SRA
WILEY
WINTH

Computer Science Press
Digital Press
American Elsevier
W. H. Freeman and Company
U. S. Government Printing Office
Holt, Rinehart, and Winston
IEEE Press
McGraw-Hill
McGraw-Hill
MIT Press
North-Holland
New York, NY
Prentice Hall
Prentice Hall
Springer Verlag
Science Research Associates
John Wiley & Sons
Winthrop Publishers

Writing Tools - The STYLE and DICTION Programs

L. L. Cherry

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

W. Vesterman

Livingston College
Rutgers University

ABSTRACT

USD:32-1

Text processing systems are now in heavy use in many companies to format
documents. With many documents stored on line, it has become possible to use
computers to study writing style itself and to help writers produce better written and
more readable prose. The system of programs described here is an initial step
toward such help. It includes programs and a data base designed to produce a stylis
tic profile of writing at the word and sentence level. The system measures read
ability, sentence and word length, sentence type, word usage, and sentence openers.
It also locates common examples of wordy phrasing and bad diction. The system is
useful for evaluating a document's style, locating sentences that may be difficult to
read or excessively wordy, and determining a particular writer's style over several
documents.

1. Introduction
Computers have become important in the document preparation process, with programs to

check for spelling errors and to format documents. As the amount of text stored on line increases, it
becomes feasible and attractive to study writing style and to attempt to help the writer in producing
readable documents. The system of writing tools described here is a first step toward such help. The
system includes programs and a data base to analyze writing style at the word and sentence level. We
use the term "style" in this paper to describe the results of a writer's particular choices among indivi
dual words and sentence forms. Although many judgements of style are subjective, particularly those
of word choice, there are some objective measures that experts agree lead to good style. Three pro
grams have been written to measure some of the objectively definable characteristics of writing style
and to identify some commonly misused or unnecessary phrases. Although a document that con
forms to the stylistic rules is not guaranteed to be coherent and readable, one that violates all of the
rules is likely to be difficult or tedious to read. The program STYLE calculates readability, sentence
length variability, sentence type, word usage and sentence openers at a rate of about 400 words per
second on a PDPllnO running the UNIXt Operating System. It assumes that the sentences are well
formed, i. e. that each sentence has a verb and that the subject and verb agree in number. DICTION
identifies phrases that are either bad usage or unnecessarily wordy. EXPLAIN acts as a thesaurus for
the phrases found by DICTION. Sections 2, 3, and 4 describe the programs; Section 5 gives the
results on a cross-section of technical documents; Section 6 discusses accuracy and problems; Section
7 gives implementation details.

t UNIX is a trademark of AT&T Bell Laboratories.

Writing Tools - the STYLE and DICTION Programs USD:32-3

2.1. What is a sentence?

Readers of documents have little trouble deciding where the sentences end. People don't even
have to stop and think about uses of the character "." in constructions like 1.25, A. J. Jones, Ph.D., i.
e., or etc.. When a computer reads a document, finding the end of sentences is not as easy. First we
must throwaway the printer's marks and formatting commands that litter the text in computer form.
Then STYLE defines a sentence as a string of words ending in one of:

. ! ? I.

The end marker "I." may be used to indicate an imperative sentence. Imperative sentences that are
not so marked are not identified as imperative. STYLE properly handles numbers with embedded
decimal points and commas, strings of letters and numbers with embedded decimal points used for
naming computer file names, and the common abbreviations listed in Appendix 1. Numbers that end
sentences, like the preceding sentence, cause a sentence break if the next word begins with a capital
letter. Initials only cause a sentence break if the next word begins with a capital and is found in the
dictionary of function words used by PARTS. So the string

J. D. JONES

does not cause a break, but the string

... system H. The ...

does. With these rules most sentences are broken at the proper place, although occasionally either
two sentences are called one or a fragment is called a sentence. More on this later.

2.2. Readability Grades

The first section of STYLE output consists of four readability indices. As Klare points out in
[3] readability indices may be used to estimate the reading skills needed by the reader to understand a
document. The readability indices reported by STYLE are based on measures of sentence and word
lengths. Although the indices may not measure whether the document is coherent and well organized,
experience has shown that high indices seem to be indicators of sty,listic difficulty. Documents with
short sentences and short words have low scores; those with long sentences and many polysyllabic
words have high scores. The 4 formulae reported are Kincaid Formula [4], Automated Readability

, Index [5], Coleman-Liau Formula [6] and a normalized version of Flesch Reading Ease Score [7].
The formulae differ because they were experimentally derived using different texts and subject

, groups. We will discuss each of the formulae briefly; for a more detailed discussion the reader should
see [3].

The Kincaid Formula, given by:

Reading_Grade = 11.8*syLper _wd +.39*wds-per_sent -15.59

was based on Navy training manuals that ranged in difficulty from 5.5 to 16.3 in reading grade level.
, The score reported by this formula tends to be in the mid-range of the 4 scores. Because it is based

on adult training manuals rather than school book text, this formula is probably the best one to apply
to technical documents.

The Automated Readability Index (ARI), based on text from grades 0 to 7, was derived to be
" easy to automate. The formula is:

Reading_Grade =4.71 *let-per _wd +.5*wds-per _sent -21.43

ARI tends to produce scores that are higher than Kincaid and Coleman-Liau but are usually slightly
lower than Flesch.

The Coleman-Liau Formula, based on text ranging in difficulty from .4 to 16.3, is:

Reading_Grade = 5. 89 *let-per_wd -.3*sent-per_lOO_wds -15.8

Of the four formulae this one usually gives the lowest grade when applied to technical documents.

Writing Tools - the STYLE and DICTION Programs USD:32-5

2. A complex sentence has one independent clause and one dependent clause, each with one verb.
Complex sentences are found by identifying sentences that contain either a subordinate conjunc
tion or a clause beginning with words like "that" or "who". The preceding sentence has such a
clause.

3. A compound sentence has more than one verb and no dependent clause. Sentences joined by
";" are also counted as compound.

4. A compound-complex sentence has either several dependent clauses or one dependent clause
and a compound verb in either the dependent or independent clause.

Even using these broader definitions, simple sentences dominate many of the technical docu
ments that have been tested, but the example in Figure I shows variety in both sentence structure and
sentence length.

2.4. Word Usage

The word usage measures are an attempt to identify some other constructional features of writ
ing style. There are many different ways in English to say the same thing. The constructions differ
from one another in the form of the words used. The following sentences all convey approximately
the same meaning but differ in word usage:

The cxio program is used to perform all communication between the systems.
The cxio program performs all communications between the systems.
The cxio program is used to communicate between the systems.
The cxio program communicates between the systems.
All communication between the systems is performed by the cxio program.

The distribution of the parts of speech and verb constructions helps identify overuse of particular
constructions. Although the measures used by STYLE are crude, they do point out problem areas.
For each category, STYLE reports a percentage and a raw count. In addition to looking at the per
centage, the user may find it useful to compare the raw count with the number of sentences. If, for
example, the number of infinitives is almost equal to the number of sentences, then many of the sen
tences in the document are constructed like the first and third in the preceding example. The user
may want to transform some of these sentences into another form. Some of the implications of the
word usage measures are discussed below.

Verbs are measured in several different ways to try to determine what types of verb constructions are
most frequent in the document. Technical writing tends to contain many passive verb construc
tions and other usage of the verb "to be". The category of verbs labeled "tobe" measures both
passives and sentences of the form:

subject tobe predicate

In counting verbs, whole verb phrases are counted as one verb. Verb phrases containing auxili
ary verbs are counted in the category "aux". The verb phrases counted here are those whose
tense is not simple present or simple past. It might eventually be useful to do more detailed
measures of verb tense or mood. Infinitives are listed as "inf'. The percentages reported for
these three categories are based on the total number of verb phrases found. These categories are
not mutually exclusive; they cannot be added, since, for example, "to be going" counts as both
"tobe" and "inf'. Use of these three types of verb constructions varies significantly among
authors.

STYLE reports passive verbs as a percentage of the finite verbs in the document. Most style
books warn against the overuse of passive verbs. Coleman [II] has shown that sentences with
active verbs are easier to learn than those with passive verbs. Although the inverted object
subject order of the passive voice seems to emphasize the object, Coleman's experiments showed
that there is little difference in retention by word position. He also showed that the direct object
of an active verb is retained better than the subject of a passive verb. These experiments

Writing Tools - the STYLE and DICTION Programs

There are three streets used by the traffic.
There are too many users on this system.

USD:32-7

This construction tends to emphasize the object rather than the subject of the sentence. The flag "-e"
will cause STYLE to print all sentences that begin with an expletive.

3. DICTION

The program DICTION prints all sentences in a document containing phrases that are either
frequently misused or indicate wordiness. The program, an extension of Aho's FGREP (12] string
matching program, takes as input a file of phrases or patterns to be matched and a file of text to be
searched. A data base of about 450 phrases has been compiled as a default pattern file for DICTION.
Before attempting to locate phrases, the program maps upper case letters to lower case and substitutes
blanks for punctuation. Sentence boundaries were deemed less critical in DICTION than in STYLE,
so abbreviations and other uses of the character "." are not treated specially. DICTION brackets all
pattern matches in a sentence with the characters "[" "]". Although many of the phrases in the
default data base are correct in some contexts, in others they indicate wordiness. Some examples of
the phrases and suggested alternatives are:

Phrase
a large number of
arrive at a decision
collect together
for this reason
pertaining to
through the use of
utilize
with the exception of

Alternative
many
decide
collect
so
about
by or with
use
except

Appendix 2 contains a complete list of the default file. Some of the entries are short forms of prob
lem phrases. For example, the phrase "the fact" is found in all of the following and is sufficient to
point out the wordiness to the user:

Phrase
accounted for by the fact that
an example of this is the fact that
based on the fact that
despite the fact that
due to the fact that
in light of the fact that
in view of the fact that
notwithstanding the fact that

Alternative
caused by
thus
because
although
because
because
since
although

· Entries in Appendix 2 preceded by"'" are not matched. See Section 7 for details on the use of "'''.

The user may supply her/his own pattern file with the flag "-f patfile". In this case the default
· file will be loaded first, followed by the user file. This mechanism allows users to suppress patterns

contained in the default file or to include their own pet peeves that are not in the default file. The
· flag "-n" will exclude the default file altogether. In constructing a pattern file, blanks should be used

before and after each phrase to avoid matching substrings in words. For example, to find ail
· occurrences of the word "the", the pattern .. the" should be used. The blanks cause only the word

"the" to be matched and not the string "the" in words like there, other, and therefore. One side
effect of surrounding the words with blanks is that when two phrases occur without intervening
words, only the first will be matched.

Writing Tools - the STYLE and DICTION Programs USD:32-9

types of sentences, while author 2 prefers simple and complex sentences, using few compound or
compound-complex sentences. The other major difference in the styles of these authors is the loca
tion of subordination. Author I seems to prefer embedded or trailing subordination, while author 2
begins many sentences with the subordinate clause. The documents tested for both authors 1 and 2
were technical documents, written for a technical audience. The instructional documents, which are
written for craftspeople, vary surprisingly little from the two technical samples. The sentences and
words are a little longer, and they contain many passive and auxiliary verbs, few adverbs, and almost
no pronouns. The instructional documents contain many imperative sentences, so there are many
sentence with verb openers. The sample of Federalist Papers contrasts with the other samples in
almost every way.

Table 2
Text Statistics on Single Authors

variable author 1 author 2 inst. FED
readability Kincaid 11.0 10.3 10.8 16.3

automated 11.0 10.3 11.9 17.8
Coleman-Liau 9.3 10.1 10.2 12.3
Flesch 10.3 10.7 10.1 15.0

sentence info a v sent length 22.64 19.61 22.78 31.85
av word length 4.47 4.66 4.65 4.95
av nonfunction length 5.64 5.92 6.04 6.87
short sent 35% 43% 35% 40%
long sent 18% 15% 16% 21%

sentence types simple 36% 43% 40% 31%
complex 34% 41% 37% 34%
compound 13% 7% 4% 10%
compound-complex 16% 8% 14% 25%

verb type tobe 42% 43% 45% 37%
auxiliary 17% 19% 32% 32%
infinitives 17% 15% 12% 21%
passives 20% 19% 36% 20%

word usage prepositions 10.0% 10.8% 12.3% 15.9%
conjunctions 3.2% 2.4% 3.9% 3.4%
adverbs 5.05% 4.6% 3.5% 3.7%
nouns 27.7% 26.5% 29.1% 24.9%
adjectives 17.0% 19.0% 15.4% 12.4%
pronouns 5.3% 4.3% 2.1% 6.5%
nominalizations 1% 2% 2% 3%

sentence openers prepositions 11% 14% 6% 5%
adverbs 9% 9% 6% 4%
subject 65% 59% 54% 66%
verb 3% 2% 14% 2%
subordinating conj 8% 14% 11% 3%
conjunction 1% 0% 0% 3%
expletives 3% 3% 0% 3%

S.2. DICTION

In the few weeks that DICTION has been available to users about 35,000 sentences have been
run with about 5,000 string matches. The authors using the program seem to make the suggested
changes about 50-75% of the time. To date, almost 200 of the 450 strings in the default file have
been matched. Although most of these phrases are valid and correct in some contexts, the 50-75%
'change rate seems to show that the phrases are used much more often than concise diction warrants.

Writing Tools - the STYLE and DICTION Programs USD:32-11

words. For this reason, header files containing the definition of the EQN delimiters must also
be included as input to STYLE. End markers are often hidden when an equation ends a sen
tence and the period is typed inside the EQN delimiters.

5. Add a "."' after lists. If the flag -ml is also used, all lists are suppressed. This is a separate flag
because of the variety of ways the list macros are used. Often, lists are sentences that should be
included in the analysis. The user must determine how lists are used in the document to be
analyzed.
Both STYLE and DICTION call DEROFF before they look at the text. The user should supply

the -ml flag if the document contains many lists of non-sentences that should be skipped.

7.2. Details of DICTION
The program DICTION is based on the string matching program FGREP. FGREP takes as

input a file of patterns to be matched and a file to be searched and outputs each line that contains any
of the patterns with no indication of which pattern was matched. The following changes have been
added to FGREP:
I. The basic unit that DICTION operates on is a sentence rather than a line. Each sentence that

contains one of the patterns is output.
2. Upper case letters are mapped to lower case.

3. Punctuation is replaced by blanks.
4 All pattern matches in the sentence are found and surrounded with "[" "]" .

5, A method for suppressing a string match has been added. Any pattern that begins with "-,, will
not be matched. Because the matching algorithm finds the longest substring, the suppression of
a match allows words in some correct contexts not to be matched while allowing the word in
another context to be found. For example, the word "which" is often incorrectly used instead
of "that" in restrictive clauses. However, "which" is usually correct when preceded by a prepo
sition or ",". The default pattern file suppresses the match of the common prepositions or a
double blank followed by "which" and therefore matches only the suspect uses. The double
blank accounts for the replaced comma.

8. Conclusions
A system of writing tools that measure some of the objective characteristics of writing style has

been developed. The tools are sufficiently general that they may be applied to documents on any sub
ject with equal accuracy. Although the measurements are only of the surface structure of the text,
they do point out problem areas. In addition to helping writers produce better documents, these pro
grams may be useful for studying the writing process and finding otherformulae for measuring reada
bility.

Writing Tools - the STYLE and DICTION Programs

a. d.
A.M.
a. m.
b. c.
Ch.
ch.
ckts.
dB.
Dept.
dept.
Depts.
depts.
Dr.
Drs.
e. g.
Eq.
eq.
et aI.
etc.
Fig.
fig.
Figs.
figs.
ft.
i. e.
in.
Inc.
Jr.
jr.
mi.
Mr.
Mrs.
Ms.
No.
no.
Nos.
nos.
P.M.
p.m.
Ph.D.
Ph. d.
Ref.
ref.
Refs.
refs.
St.
vs.
yr.

Appendix 1

STYLE Abbreviations

USD:32-l3

Writing Tools - the STYLE and DICTION Programs

more preferable
most unique
must of
mutual cooperation
necessary requisite
necessitate
need for
nice
not be un
not in a position to
not of a hiah order of accuracy
not un
notwithstanding
of (:onsidemblc: magnitude
orlhat
of the opinion that
off or
on a few occasions
on account of
on bchalfof
on the 8flJunds that
on the occasion
on the part of
onc ofthc:
open up
operates to correct
outside: of
ovc:rwith
overall
past history
perceptive of
perform a measurement
perform the measurement
permits the reduction of
personalize
pertaining to
physical size
plan ahead
plan for the: future
plan in advance
plan on
present a conclusion
present a report
presently
prior to
prioritize
proceed to
procure
productive of
prolong the duration
protrude out from
provided that
pursuant to
put to use in
raose all the way from
reason is because
reason why
recur apin
reduce down
refer back
reference to lhis
reflective of
rqardill8
rqr<tful
reinitiate
relative to
repeat apin
representative of
resultant effect
resumeapin
retreat back
retumapin
return back
revert back
sealolf

seems apparent
send a communication
short space of time
should of
single unit
situation
so as to
sort of
spell out
still continue
still remain
subsequent
substantially in agreement
succeed in
suggestive of
superior than
surrounding circumstances
take appropriate
take cognizance of
take into consideration
termed as
terminate
termination
the author
the authors
the case that
the fact
the foregoing
the foreseeable future
the fullest possible extent
the majority of
the nature
the necessity of
the only difference being that
the order of
the point that
the truth is
there are not many
through the medium of
through the u~ of
throughout the entire
time interval
to summarize the above
total effect of all this
totality
transpire
true facts
try and
ultimate end
under a separate cover
under date of
under separate cover
under the necessity to
underlying purpose
undertake a study
uniformly consistent
unique
until such time lIS

up to this time
upshot
utHize
very
very complete
very unique
vital
which
with a view to
with reference to
with reprd to
with the exception of
with the object of
with the result that
with this in mind, it is clear that
within the realm of possibility
without further delay

worth while
would of

ing behavior
wise
~ which
~ about which
• after which
• at which
• between which
• by which
• for which
~ from which
~ in which
• into which
• of which
• on which
~ on which
• over which
• through which
~ to which
• under which
• upon which
• with which
• without which
·dockwise
likewise
·otherwise

USD:32-15

A Guide to the Dungeons of Doom

Michael C. Toy
Kenneth C. R. C. Arnold

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

ABSTRACT

Rogue is a visual CRT based fantasy game which runs under the UNIXt
timesharing system. This paper describes how to play rogue, and gives a few
hints for those who might otherwise get lost in the Dungeons of Doom.

1. Introduction

You have just finished your years as a student at the local fighter's guild. After much
practice and sweat you have finally completed your training and are ready to embark upon a
perilous adventure. As a test of your skills, the local guildmasters have sent you into the
Dungeons of Doom. Your task is to return with the Amulet of Yendor. Your re)Vard for the
completion of this task will be a full membership in the local guild. In addition, you are
allowed to keep all the loot you bring back from the dungeons.

In preparation for your journey, you are given an enchanted mace, a bow, and a quiver
of arrows taken from a dragon's hoard in the far off Dark Mountains. You are also outfitted
with elf-crafted armor and given enough food to reach the dungeons. You say goodbye to
family and friends for what may be the last time and head up the road.

You set out on your way to the dungeons and after several days of uneventful travel,
you see the ancient ruins that mark the entrance to the Dungeons of Doom. It is late at
night, so you make camp at the entrance and spend the night sleeping under the open skies.
In the morning you gather your weapons, put on your armor, eat what is almost your last
food, and enter the dungeons.

2. What is going on here?

You have just begun a game of rogue. Your goal is to grab as much treasure as you can,
find the Amulet of Yendor, and get .out of the Dungeons of Doom alive. On the screen, a
map of where you have been and what you have seen on the current dungeon level is kept.
As you explore more of the level, it appears on the screen in front of you.

Rogue differs from most computer fantasy games in that it is screen oriented. Com-

tUNIX is a trademark of Bell Laboratories

A Guide to the Dungeons of Doom USD:33-3

Arm Your current armor protection. This number indicates how effective your armor is in
stopping blows from unfriendly creatures. The higher this number is, the more
effecti ve the armor.

Exp These two numbers give your current experience level and experience points. As you
do things, you gain experience points. At certain experience point totals, you gain an
experience level. The more experienced you are, the better you are able to fight and to
withstand magical attacks.

3.2. The top line

The top line of the screen is reserved for printing messages that describe things that are
impossible to represent visually. If you see a "--More--" on the top line, this means that
rogue wants to print another message on the screen, but it wants to make certain that you
have read the one that is there first. To read the next message, just type a space.

3.3. The rest of the screen

The rest of the screen is the map of the level as you have explored it so far. Each sym
bol on the screen represents something. Here is a list of what the various symbols mean:

@

-I
+

•

This symbol represents you, the adventurer.

These symbols represent the walls of rooms.

A door to/from a room.

The floor of a room.

The floor of a passage between rooms.

A pile or pot of gold .

A weapon of some sort.

A piece of armor.

A flask containing a magic potion.

? A piece of paper, usually a magic scroll.

A ring with magic properties

A magical staff or wand

A trap, watch out for these.

% A staircase to other levels

A piece of food.

A-Z The uppercase letters represent the various inhabitants of the Dungeons of Doom.
Watch out, they can be nasty and vicious.

4. Commands

Commands are given to rogue by typing one or two characters. Most commands can be
preceded by a count to repeat them (e.g. typing "lOs" will do ten searches). Commands for
which counts make no sense have the count ignored. To cancel a count or a prefix, type
<ESCAPE>. The list of commands is rather long, but it can be read at any time during the
game with the "?" command. Here it is for reference, with a short explanation of each com
mand.

? The help command. Asks for a character to give help on. If you type a ".", it will list
all the commands, otherwise it will explain what the character you typed does.

A Guide to the Dungeons of Doom USD:33-5

w Wield a weapon. Take a weapon out of your pack and carry it for use in combat,
replacing the one you are currently using (if any).

W Wear armor. You can only wear one suit of armor at a time. This takes extra time.

T Take armor off. You can't remove armor that is cursed. This takes extra time.

P Put on a ring. You can wear only two rings at a time (one on each hand). If you aren't
wearing any rings, this command will ask you which hand you want to wear it on, other
wise, it will place it on the unused hand. The program assumes that you wield your
sword in your right hand.

R Remove a ring. If you are only wearing one ring, this command takes it off. If you are
wearing two, it will ask you which one you wish to remove,

d Drop an object. Take something out of your pack and leave it lying on the floor. Only
one object can occupy each space. You cannot drop a cursed object at all if you are
wielding or wearing it.

c Call an object something. If you have a type of object in your pack which you wish to
remember something about, you can use the call command to give a name to that type
of object. This is usually used when you figure out what a potion, scroll, ring, or staff is
after you pick it up, or when you want to remember which of those swords in your pack
you were wielding.

D Print out which things you've discovered something about. This command will ask you
what type of thing you are interested in. If you type the character for a given type of
object (e.g. "!" for potion) it will tell you which kinds of that type of object you've
discovered (i.e., figured out what they are). This command works for potions, scrolls,
rings, and staves and wands.

o Examine and set options. This command is further explained in the section on options.

'R Redraws the screen. Useful if spurious messages or transmission errors have messed up
the display.

'P Print last message. Useful when a message disappears before you can read it. This only
repeats the last message that was not a mistyped command so that you don't loose any
thing by accidentally typing the wrong character instead of 'P.

<ESCAPE>

Cancel a command, prefix, or count.

Escape to a shell for some commands.

Q Quit. Leave the game.

S Save the current game in a file. It will ask you whether you wish to use the default save
file. Caveat: Rogue won't let you start up a copy of a saved game, and it removes the
save file as soon as you start up a restored game. This is to prevent people from saving
a game just before a dangerous position and then restarting it if they die. To restore a
saved game, give the file name as an argument to rogue. As in

0/0 rogue save Jile

To restart from the default save file (see below), run
0/0 rogue -r

v Prints the program version number.

Print the weapon you are currently wielding

Print the armor you are currently wearing

Print the rings you are currently wearing

A Guide to the Dungeons of Doom

Type
None
Leather armor
Studded leather / Ring mail
Scale mail
Chain mail
Banded mail/Splint mail
Plate mail

Protection
o
2
3
4
5
6
7

USD:33-7

If a piece of armor is enchanted, its armor protection will be higher than normal. If a suit of
armor is cursed, its armor protection will be lower, and you will not be able to remove it.
However, not all armor with a protection that is lower than normal is cursed.

The commands to use weapons are "W" (wear) and "T" (take off).

7 .3. Scrolls

Scrolls come with titles in an unknown tongue3. After you read a scroll, it disappears
from your pack. The command to use a scroll is "r" (read).

7 .4. Potions

Potions are labeled by the color of the liquid inside the flask. They disappear after
being quaffed. The command to use a scroll is "q" (quaff).

7.5. Staves and Wands

Staves and wands do the same kinds of things. Staves are identified by a type of wood;
wands by a type of metal or bone. They are generally things you want to do to something
over a long distance, so you must point them at what you wish to affect to use them. Some
staves are not affected by the direction they are pointed, though. Staves come with multiple
magic charges, the number being random, and when they are used up, the staff is just a piece
of wood or metal.

The command to use a wand or staff is "z" (zap)

7.6. Rings

Rings are very useful items, since they are relatively permanent magic, unlike the usually
fleeting effects of potions, scrolls, and staves. Of course, the bad rings are also more powerful.
Most rings also cause you to use up food more rapidly, the rate varying with the type of ring.
Rings are differentiated by their stone settings. The commands to use rings are "P" (put on)
and "R" (remove).

7.7. Food

Food is necessary to keep you going. If you go too long without eating you will faint,
and eventually die of starvation. The command to use food is "e" (eat).

8. Options

Due to variations in personal tastes and conceptions of the way rogue should do things,
there are a set of options you can set that cause rogue to behave in various different ways.

3 Actually, it's a dialect spoken only by the twenty-seven members of a tribe in Outer Mongolia. but you're not
supposed to know that.

A Guide to the Dungeons of Doom USD:33-9

tombstone [tombstone]
Print out the tombstone at the end if you get killed. This is nice but slow, so you can
turn it off if you like.

inven [overwrite]
Inventory type. This can have one of three values: overwrite, slow, or clear. With
overwrite the top lines of the map are overwritten with the list when inventory is
rt:quested or when "Which item do you wish to ... ? " questions are answered with a
".". However, if the list is longer than a screenful, the screen is cleared. With slow,
lists are displayed one item at a time on the top of the screen, and with clear, the screen
is cleared, the list is displayed, and then the dungeon level is re-displayed. Due to speed
considerations, clear is the default for terminals without clear-to-end-of-line capabilities.

name [account name]
This is the name of your character. It is used if you get on the top ten scorer's list.

fruit [slime-mold]
This should hold the name of a fruit that you enjoy eating. It is basically a whimsey
that rogue uses in a couple of places.

file ["Irogue.save]
The default file name for saving the game. If your phone is hung up by accident, rogue
will automatically save the game in this file. The file name may start with the special
character "-,, which expands to be your home directory.

9. Scoring

Rogue usually maintains a list of the top scoring people or scores on your machine.
Depending on how it is set up, it can post either the top scores or the top players. In the
latter case, each account on the machine can post only one non-winning score on this list. If
you score higher than someone else on this list, or better your previous score on the list, you
will be inserted in the proper place under your current name. How many scores are kept can
also be set up by whoever installs it on your machine.

If you quit the game, you get out with all of your gold intact. If, however, you get killed
in the Dungeons of Doom, your body is forwarded to your next-of-kin, along with 90% of
your gold; ten percent of your gold is kept by the Dungeons' wizard as a fee6• This should
make you consider whether you want to take one last hit at that monster and possibly live, or
quit and thus stop with whatever you have. If you quit, you do get all your gold, but if you
swing and live, you might find more.

If you just want to see what the current top players/games list is, you can type
% rogue-s

10. Acknowledgements

Rogue was originally conceived of by Glenn Wichman and Michael Toy. Ken Arnold
and Michael Toy then smoothed out the user interface, and added jillions of new features.
We would like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman, Mark
Horton, Daniel Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and
Scott Nelson for their ideas and assistance; and also the teeming multitudes who graciously
ignored work, school, and social life to play rogue and send us bugs, complaints, suggestions,
and just plain flames. And also Mom.

, The Dungeon's wizard is named Wally the Wonder Badger. Invocations should be accompanied by a sizable
donation.

STAR

TREK
by

Eric Allman
University of California

Berkeley

INTRODUCTION

USD:34-1

Well, the federation is once again at war with the K1ingon empire. It is up to you,
as captain of the U.S.S. Enterprise, to wipe out the invasion fleet and save the Federation.

For the purposes of the game the galaxy is divided into 64 quadrants on an eight
by eight grid, with quadrant 0,0 in the upper left hand corner. Each quadrantis divided into
100 sectors on a ten by ten grid. Each sector contains one object (e.g., the Enterprise, a
K1ingon, or a star).

Navigation is handled in degrees, with zero being straight up and ninety being to
the right. Distances are measured in quadrants. One tenth quadrant is one sector.

The galaxy contains starbases, at which you can dock to refuel, repair damages, etc.
The galaxy also contains stars. Stars usually have a knack for getting in your way, but they
can be triggered into going nova by shooting a photon torpedo at one, thereby (hopefully) des
troying any adjacent K1ingons. This is not a good practice however, because you are penal
ized for destroying stars. Also, a star will sometimes go supernova, which obliterates an
entire quadrant. You must never stop in a supernova quadrant, although you may "jump
over" one.

Some starsystems have inhabited planets. K1ingons can attack inhabited planets
and enslave the populace, which they then put to work building more K1ingon battle cruisers.

STARTING UP THE GAME

To request the game, issue the command

/usr/games/trek

from the shell. If a filename is supplied, a log of the game is written onto that file. (Other
wise, no file is written.) If the "-a" flag is stated before the filename, the log of the game is

Star Trek

THE COMMANDS

Short Range Scan

Mnemonic: srscan
Shortest Abbreviation: s
Full Commands: srscan

srscan yes/no
Consumes: nothing

USD:34-3

The short range scan gives you a picture of the quadrant you are in, and (if you say
"yes") a status report which tells you a whole bunch of interesting stuff. You can get a status
report alone by using the status command. An example follows:

Short range sensor scan

0 2 3 4 5 6 7 8 9
0 * * 0 stardate 3702.16
I E I condition RED
2 * 2 position 0,3/1,2
3 * # 3 warp factor 5.0
4 4 total energy 4376
5 * * 5 torpedoes 9
6 @ 6 shields down, 78%
7 7 Klingons left 3
8 K 8 time left
9 * 9 life support

0 2 3 4 5 6 7 8 9

Distressed Starsystem Marcus XII

The cast of characters is as follows:
E the hero
K the villain
the starbase
* stars
@ inhabited starsystem

empty space
a black hole

6.43
damaged, reserves = 2.4

The name of the starsystem is listed underneath the short range scan. The word
"distressed", if present, means that the starsystem is under attack.

Short range scans are absolu~ely free. They use no time, no energy, and they don't
give the Klingons another chance to hit you.

'1tatus Report

Mnemonic: status
Shortest Abbreviation: st

Star Trek

Mnemonic: Irscan
Shortest Abbreviation: I
Consumes: nothing

USD:34-5

Long range scan gives you information about the eight quadrants that surround the
quadrant you're in. A sample long range scan follows:

Long range scan for quadrant 0,3

2

*
o 108

9

3 4

* *
6 19

//I! 8

The three digit numbers tell the number of objects in the quadrants. The units
digit tells the number of stars, the tens digit the number of starbases, and the hundreds digit
is the number of Klingons. "*., indicates the negative energy barrier at the edge of the galaxy,
which you cannot enter. "///" means that that is a supernova quadrant and must not be
entered.

Damage Report

Mnemonic: damages
Shortest Abbreviation: da
Consumes: nothing

A damage report tells you what devices are damaged and how long it will take to
repair them. Repairs proceed faster when you are docked at a starbase.

Set Warp Factor

Mnemonic: warp
Shortest Abbreviation: w
Full Command: warp factor
Consumes: nothing

The warp factor tells the speed of your starship when you move under warp power
(with the move command). The higher the warp factor, the faster you go, and the more
energy you use.

The minimum warp factor is 1.0 and the maximum is 10.0. At speeds above warp
6 there is danger of the warp engines being damaged. The probability of this increases at
higher warp speeds. Above warp 9.0 there is a chance of entering a time warp.

Move Under Warp Power

Star Trek USD:34-7

Shields protect you from Klingon attack and nearby novas. As they protect you,
they weaken. A shield which is 78% effective will absorb 78% of a hit and let 22% in to hurt
you.

The Klingons have a chance to attack you every time you raise or lower shields.
Shields do not rise and lower instantaneously, so the hit you receive will be computed with
the shields at an intermediate effectiveness.

It takes energy to raise shields, but not to drop them.

Cloaking Device

Mnemonic: cloak
Shortest Abbreviation: cI
Full Command: cloak up/down
Consumes: energy

When you are cloaked, Klingons cannot see you, and hence they do not fire at ·you.
They are useful for entering a quadrant and selecting a good position, however, weapons can
not be fired through the cloak due to the huge energy drain that it requires.

The cloak up command only starts the cloaking process; K1ingons will continue to
fire at you until you do something which consumes time.

Fire Phasers

Mnemonic: phasers
Shortest Abbreviation: p
Full Commands: phasers automatic amount

phasers manual amtl coursel spread I ...
Consumes: energy

Phasers are energy weapons; the energy comes from your ship's reserves ("total
energy·· on a srscan). It takes about 250 units of hits to kill a K1ingon. Hits are cumulative
as long as you stay in the quadrant.

Phasers become less effective the further from a K1ingon you are. Adjacent
K1ingons receive about 90% of what you fire, at five sectors about 60%, and at ten sectors
about 35%. They have no effect outside of the quadrant.

Phasers cannot be fired while shields are up; to do so would fry you. They have no
effect on starbases or stars.

In automatic mode the computer decides how to divide up the energy among the
K1ingons present; in manual mode you do that yourself.

Star Trek USD:34-9

colons.

trajectory -- prints the course and distance to all the Klingons in the quadrant.

warpcost dist warp_factor -- computes the cost in time and energy to move 'dist' qua
drants at warp 'warp_factor'.

impcost dist -- same as warpcost for impulse engines.

pheff range -- tells how effective your phasers are at a given range.

distresslist -- gives a list of currently distressed starbases and starsystems.

More than one request may be stated on a line by separating them with semi-

Dock at Starbase

Mnemonic: dock
Shortest Abbreviation: do
Consumes: nothing

You may dock at a starbase when you are in one of the eight adjacent sectors.

When you dock you are resupplied with energy, photon torpedoes, and life support
reserves. Repairs are also done faster at starbase. Any prisoners you have taken are
unloaded. You do not receive points for taking prisoners until this time.

Starbases have their own deflector shields, so you are safe from attack while
docked.

Undock from Starbase

Rest

Mnemonic: undock
Shortest Abbreviation: u
Consumes: nothing

This just allows you to leave starbase so that you may proceed on your way.

Mnemonic: rest
Shortest Abbreviation: r
Full Command: rest time
Consumes: time

This command allows you to rest to repair damages. It is not advisable to rest
while under attack.

Star Trek USD:34-11

and there is an inhabitable starsystem in the area, the crew beams down, otherwise you leave
them to die. You are given an old but still usable ship, the Faire Queene.

Ram

Mnemonic: ram
Shortest Abbreviation: ram
Full Command: ram course distance
Consumes: time and energy

This command is identical to "move", except that the computer doesn't stop you
from making navigation errors.

You get very nearly slaughtered if you ram anything.

Self Destruct

Mnemonic: destruct
Shortest Abbreviation: destruct
Consumes: everything

Your starship is self-destructed. Chances are you will destroy any K1ingons (and
stars, and starbases) left in your quadrant.

Terminate the Game

Mnemonic: terminate
Shortest Abbreviation: terminate
Full Command: terminate yes/no

Cancels the current game. No score is computed. If you answer yes, a new game
will be started, otherwise trek exits.

Call the Shell

game.

Mnemonic: shell
Shortest Abbreviation: shell

Temporarily escapes to the shell. When you exit the shell you will return to the

SCORING

The scoring algorithm is rather complicated. Basically, you get points for
each K1ingon you kill, for your K1ingon per stardate kill rate, and a bonus if you win
the game. You lose points for the number of K1ingons left in the galaxy at the end of
the game, for getting killed, for each star, starbase, or inhabited starsystem you

NOTES

URM

. USD
USD:l
USD:2
USD:3
USD:4
USD:5
USD:6
USD:7
USD:8
USD:9
USD:lO
USD:ll
USD:12
USD:13
USD:14
USD:15
USD:16
USD:17
USD:18
USD:19
USD:20
USD:21
USD:22
USD:23
USD:24
USD:25
USD:26
USD:27
USD:28
USD:29
USD:30
USD:31
USD:32
USD:33
USD:34

PRM

PSI
PSl:l
PSl:2
PSl:3
PSl:4
PSl:5

UNIX Documents

User Reference Manual
man section I (commands)
man section 6 (games)
man section 7 (miscellaneous)
User Supplementary Documents
Unix for Beginners
Learn - Computer-Aided Instruction
Introduction to the UNIX Shell
Introduction to the C shell .
DC - Interactive Desk Calculator
BC - Arbitrary Precision Desk-Calculator
Mail Reference Manual
MH Message Handling System
How to Read the Network News
How to Use USENET Effectively
N otesfile Reference Manual
Tutorial Introduction to "ed"
Advanced Editing on Unix
Edit: A Tutorial
Introduction to Display Editing with Vi
Ex Reference Manual (Version 3.7)
Jove Manual for UNIX Users
SED - A Non-interactive Text Editor
A WK - Pattern Scanning/Processing Language
Using the -ms Macros with Troff and Nroff
Revised Version of-ms
Writing Papers with nroffusing -me
-me Reference Manual
NROFF/TROFFUser's Manual
TROFF Tutorial
Typesetting Mathematics (eqn)
Typesetting Mathematics - User's Guide
Tbl- A Program to Format Tables
Refer - A Bibliography System
Some Applications of Inverted Indexes ...
BIB - Bibliography Formatting Program
Writing Tools - STYLE and DICTION
A Guide to the Dungeons of Doom
Star Trek

Programmer Reference Manual
man sections 2 (system calls)
man sections 3 (library routines)
man sections 4 (devices, special files)
man sections 5 (file formats)
Programmer Supplementary Docs, part I
C Language - Reference Manual
Fortran 77
f77 I/O Library
Berkeley Pascal User's Manual
Vax Assembler Reference Manual

PSl:6
PSl:7
PSl:8
PSl:9
PSI:lO
PSI:ll
PSl:12
PSI:13
PSl:14
PSl:15
PSl:16
PSI: 17
PSI:18

PS2
PS2:1
PS2:2
PS2:3
PS2:4
PS2:5
PS2:6
PS2:7
PS2:8
PS2:9
PS2:1O

SMM

SMM:l
SMM:2
SMM:3
SMM:4
SMM:5
SMM:6
SMM:7
SMM:8
SMM:9
SMM:IO
SMM:ll
SMM:12
SMM:13
SMM:14
SMM:15
SMM:16
SMM:17
SMM:18
SMM:19
SMM:20
SMM:21
SMM:22

Berkeley Software Architecture Manual (4.3 Edition)
Introductory 4.3BSD Interprocess Communication
Advanced 4.3BSD Interprocess Communication
Lint, A C Program Checker
ADB Tutorial
Debugging with dbx
Make
Revision Control System (RCS)
Source Code Control System (SCCS)
Y ACC: Yet Another Compiler-Compiler
LEX - A Lexical Analyzer Generator
M4 Macro Processor
curses library

Programmer Supplementary Documents, part 2
The Unix Time-Sharing System
UNIX 32/V - Summary
Unix Programming - Second Edition
Unix Implementation
The Unix I/O System
Programming Language EFL
Berkeley FP User's Manual
Ratfor - Preprocessor for Rational FORTRAN
The FRANZ Lisp Manual
Ingres (Version 8) Reference Manual

System Manager's Manual
man section 8 (system administration)
Installing and Operating 4.3BSD
Building 4.3BSD Systems with Conftg
Using ADB to Debug the Kernel
Disc Quotas
Fsck - File System Check Program
Line Printer Spooler Manual
Sendmail Installation and Operation
Timed Installation and Operation
UUCP Implementation Description
USENET Version B Installation
Name Server Operations Guide
Bug Fixes and Changes in 4.3BSD
Changes to the Kernel in 4.3BSD
A Fast File System for UNIX
4.3BSD Networking Implementation Notes
Sendmail- An Internetwork Mail Router
On the Security of UNIX
Password Security - A Case History
A Tour Through \he Portable C Compiler
Writing NROFF Temtinal Descriptions
A Dial-Up Network of UNIX Systems
Berkeley Time Synchronization Protocol

