
Unix System Manager's Manual

Printed by the USENIX Association as a service to the UNIX Communi
ty. This material is copyrighted by The Regents of the University of
California and/or Bell Telephone Laboratories, and is reprinted by per
mission. Permission for the publication or other use of these materials
may be granted only by the Licensors and copyright holders.

Cover design by John Lassetter, Lucasfilm, Ltd.

4.2 BSD edition:
First Printing
Second Printing
Third Printing
Fourth Printing

4.3 BSD edition:
First Printing

July 1984
December 1984
September 1985
March 1986

November 1986

UNIX System Manager's Manual
(SMM)

4.3 Berkeley Software Distribution
Virtual VAX-11 Version

April, 1986

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California

Berkeley, California 94 720

Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Documents SMM:l7, 18, and 21 are copyright 1979, AT&T
Bell Laboratories, Incorporated. Documents SMM:9 and 19
are modifications of earlier documents that are copyrighted
1979 by AT&T Bell Laboratories, Incorporated. Holders of
UNIX™/32V, System III, or System V software licenses are
permitted to copy these documents, or any portion of them, as
necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

Document SMM: I 0 is part of the user contributed software.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
N00039-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.

SMM Contents

UNIX System Manager's Manual (SMM)

4.3 Berkeley Software Distribution, Virtual VAX-11 Version

April, 1986

This volume contains manual pages and supplementary documents useful to system administra
tors. The information in these documents applies to the Virtual VAX-I I version of the system as dis
tributed by U.C. Berkeley.

(8)
Reference Manual - Section 8

Section 8 of the UNIX Programmer's Manual contains information related to system operation,
administration, and maintenance.

System Installation and Administration

Installing and Operating 4.3BSD on the VAX SMM:l

The definitive reference document for those occasions when you find you need to start
over again.

Building 4.3BSD UNIX Systems with Config SMM:2

In-d-::pth discussions of the use and operation of the config program, and how to build your
very own Unix kernel.

Using ADB to Debug the Kernel SMM:3

Techniques for figuring out after the fact why the kernel crashed.

Disc Quotas in a UNIX Environment SMM:4

A light introduction to the techniques for limiting the use of disc resources.

Fsck - The UNIX File System Check Program SMM:5

A reference document for using the fack program during times of file system distress.

Line Printer Spooler Manual SMM:6

This document describes the structure and installation procedure for the line printer spool
ing system.

Sendmail Installation and Operation Guide SMM:7

The last word in installing and operating the sendmail program.

Timed Installation and Operation Guide SMM:8

Describes how to maintain time synchronization between machines in a local network.

SMM Contents

UUCP Implementation Description SMM:<l

Describes the implementation of uucp; for the installer and administrator.

USENET Version B Installation SMM:IO
How to install and maintain the News system.

Name Server Operations Guide SMM:ll
If you have a network this will be of interest.

Supporting Documentation

Bug Fixes and Changes in 4.3BSD SMM:12
This document summarizes changes visible to the user accustomed to 4.2BSD.

Changes to the Kernel in 4.3BSD SMM:13
A summary for the hard-core of changes in the kernel from 4.2BSD to 4.3BSD.

A Fast File System for UNIX SMM:14
A description of the 4.2BSD file system organization, design and implementation.

4.3BSD Networking Implementation Notes SMM:15
A concise description of the system interfaces used within the networking subsystem.

Sendmail - An Internetwork Mail Router SMM:16
An overview document on the design and implementation of sendmai/.

On the Security of UNIX SMM:17
Hints on how to break UNIX, and how to avoid your system being broken.

Password Security - A Case History SMM: 18

How the bad guys used to be able to break the password algorithm, and why they cannot
now (at least not so easily).

A Tour Through the Portable C Compiler SMM:19

How the portable C compiler works inside.

Writing NROFF Terminal Descriptions SMM:20
A description of how to add a printer with new characteristics to Version 7 nroff.

A Dial-Up Network of UNIX Systems SMM:21
Describes UUCP, a program for communicating files between UNIX systems.

The Berkeley UNIX Time Synchronization Protocol SMM:22
The protocols and algorithms used by timed, the network time synchronization daemon.

- i -

TABLE OF CONTENTS

8. System Maintenance

intro introduction to system maintenance and operation commands
. login accounting
. procedure for adding new users

. archiver and copier for floppy
. address resolution display and control
. • read/write dee standard 144 bad sector information

4.3BSD

ac
add user
arff
arp
bad144
badsect
bugfiler
catman
ch own
clri

. create files to contain bad sectors
. • • file bug reports in folders automatically

create the cat files for the manual
change owner

clear i-node
comsat . biff server
config . build system configuration files
crash . what happens when the system crashes
cron • . clock daemon
dcheck . file system directory consistency check
diskpart . calculate default disk partition sizes
dmesg • collect system diagnostic messages to form error log
drtest . standalone disk test program
dump • incremental file system dump
dumpfs • • dump file system information
edquota • • . • edit user quotas
fastboot • reboot/halt the system without checking the disks
fingerd . remote user information server
format • how to format disk packs
fsck • . . • . . . file system consistency check and interactive repair
ftpd • • DARPA Internet File Transfer Protocol server
gettable • • . . . • get NIC format host tables from a host
getty • . . . • • set terminal mode
halt . . . • . • . stop the processor
htable • . . . convert NIC standard format host tables
icheck • . . . • • file system storage consistency check
ifconfig configure network interface parameters
implog IMP log interpreter
implogd IMP logger process
inetd internet "super-server"
init • . . . process control initialization
kgmon generate a dump of the operating system's profile buffers
!pc • • line printer control program
!pd • • • . line printer daemon
makedev • • . . . • • • • . . . make system special files
makekey . • • generate encryption key
mkfs • • construct a file system
mkhosts . . • • • • . • • generate hashed host table
mklost+found make a lost+found directory for fsck
mknod . . • . . • . . . • • • • . . build special file
mkpasswd • • • • generate hashed password table
mkproto . construct a prototype file system
mount • • . . • • mount and dismount file system
named Internet domain name server
ncheck . . • . • • • • generate names from i-numbers
newfs . . • . • . . . • • . • • . . construct a new file system
pac • . • printer/plotter accounting information

April 1986

- ii - Table of Contents

ping • • . . . • send ICMP ECHO_REQUEST packets to network hosts
pstat • • • • • print system facts
quot . . • • • . . . • • summarize file system ownership
quotacheck • . . • • . . . • . . file system quota consistency checker
quotaon . . • • • . • • • • . • • • . . . • . • . • tum file system quotas on and off
re • • • • . . • • • . . . • command script for auto-reboot and daemons
rdump • • . . . • • . . . • . . file system dump across the network
reboot . • • • • • • • • • . • • . . • • . . • • • . UNIX bootstrapping procedures
renice • • • . . • • alter priority of running processes
repquota summarize quotas for a file system
restore incremental file system restore
rexecd remote execution server
rlogind . . • . . . remote login server
rmt . . . • • • . • • . remote magtape protocol module
route • • • . • • • . . . • . . • • . . • . . manually manipulate the routing tables
routed . . • • • . • • . • network routing daemon
rrestore . • • . . • • • restore a file system dump across the network
rshd . • • . • • • . . • • . • • . . • • . • • • • • • . . • • remote shell server
rwhod • • . • • • • • • • . • • • . • . • • . . • • system status server
rxformat • • • . . . • . . . • . . . • • • . . • . . . • • . . . format floppy disks
sa • • . • • • . . • • • . . • . . . • . . • . . • . • . . . system accounting
savecore . . • • • . • . • save a core dump of the operating system
sendmail • . . • • . . • . . . • • . . • . • send mail over the internet
shutdown • • • • . • • • • . . • close down the system at a given time
slattach • . • • . • • . attach serial lines as network interfaces
sticky • • . . . • • . . . • . • . • persistent text and append-only directories
swapon • . • • • . • • . • • . . . specify additional device for paging and swapping
sync • . . • • . . • • . , . • update the super block
syslogd • • • . • • • . • . • • • • . • • . . . • . . • . • . . log systems messages
talkd . . . • • . • • • . • • • remote user communication server
telnetd . • • . . • • • . • • • . . • . DARPA TELNET protocol server
tftpd • • • . . . • . • • . • • • • . • DARPA Trivial File Transfer Protocol server
timed • • • • • • . • • • . . . • • • . . • • . time server daemon
timedc • • . • • • . . . • • . • • • • . . . timed control program
trpt • • • • • • • • . . . • • . • • • . . transliterate protocol trace
trsp • • . • • . . • . . • . . . • • . . transliterate sequenced packet protocol trace
tunefs . • • • • . • . • • . . . • . . • • • • • . tune up an existing file system
update • • • . • . . • • . • • . • • • periodically update the super block
uucico transfer files queued by uucp or uux
uuclean uucp spool directory clean-up
uupoll poll a remote UUCP site
uusnap show snapshot of the UUCP system
uuxqt • . . . • . • • • . . • • . • . . UUCP execution file interpreter
vipw • • • . • • • • • • • • • . . . • . . edit the password file
XNSrouted • • • . . • • • • . . NS Routing Information Protocol daemon

April 1986 4.3BSD

INTRO(8) UNIX Programmer's Manual INTRO(8)

NAME
intro - introduction to system maintenance and operation commands

DESCRIPTION
This section contains information related to system operation and maintenance. It describes
commands used to create new file systems, newfs, verify the integrity of the file systems, fsck,
control disk usage, edquota, maintain system backups, dump, and recover files when disks die
an untimely death, restore. The section format should be consulted when formatting disk
packs. Network related services are distinguished as SC. The section crash should be con
sulted in understanding how to interpret system crash dumps.

4.2 Berkeley Distribution May 29, 1986

AC(8) UNIX Programmer's Manual AC(8)

NAME
ac - login accounting

SYNOPSIS
/etc/ac [-w wtmp) [-p) [-d) [people) ...

DESCRIPTION

FILES

Ac produces a printout giving connect time for each user who has logged in during the life of
the current wtmp file. A total is also produced. -w is used to specify an alternate wtmp file.
-p prints individual totals; without this option, only totals are printed. -d causes a printout
for each midnight to midnight period. Any people will limit the printout to only the specified
login names. If no wtmp file is given, /usr!adm!wtmp is used.

The accounting file /usr!adm!wtmp is maintained by init and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start account
ing, it should be created with length 0. On the other hand if the file is left undisturbed it will
grow without bound, so periodically any information desired should be collected and the file
truncated.

/usr/adm/wtmp

SEE ALSO
init(8), sa(8), login(1), utmp(5).

4th Berkeley Distribution April 27, 1985

ADDUSER(8) UNIX Programmer's Manual ADDUSER{8)

NAME
adduser - procedure for adding new users

DESCRIPTION

FILES

A new user must choose a login name, which must not already appear in /etc/passwd. An
account can be added by editing a line into the passwd file; this must be done with the pass
word file locked e.g. by using vipw(8).

A new user is given a group and user id. User id's should be distinct across a system, since
they are used to control access to files. Typically, users working on similar projects will be
put in the same group. Thus at UCB we have groups for system staff, faculty, graduate stu
dents, and a few special groups for large projects. System staff is group "IO" for historical
reasons, and the super-user is in this group.

A skeletal account for a new user "emie" would look like:

emie::235:20:& Kovacs,508E, 7925,6428202:/mnt/grad/emie:/bin/csh

The first field is the login name "ernie". The next field is the encrypted password which is
not given and must be initialized using passwd(I). The next two fields are the user and group
id's. Traditionally, users ip. group 20 are graduate students and have account names with
numbers in the 200's. The next field gives information about emie's real name, office and
office phone and home phone. This information is used by the finger(I) program. From this
information we can tell that emie's real name is "Ernie Kovacs" (the & here serves to repeat
"emie" with appropriate capitalization}, that his office is 508 Evans Hall, his extension is x2-
7925, and this his home phone number is 642-8202. You can modify the finger{ I} program if
necessary to allow different information to be encoded in this field. The UCB version of
finger knows several things particular to Berkeley - that phone extensions start "2-", that
offices ending in "E" are in Evans Hall and that offices ending in "C" are in Cory Hall. The
chfn(I) program allows users to change this information.

The final two fields give a login directory and a login shell name. Traditionally, user files live
on a file system different from /usr. Typically the user file systems are mounted on a direc
tories in the root named sequentially starting from from the beginning of the alphabet, eg /a,
lb, le, etc. On each such file system there are subdirectories there for each group of users, i.e.:
"/a/staff" and "lb/prof'. This is not strictly necessary but keeps the number of files in the top
level directories reasonably small.

The login shell will default to "/bin/sh" if none is given. Most users at Berkeley choose
"/bin/csh" so this is usually specified here. The chsh(I) program allows users to change their
login shell to one of the shells in the approved list given in /etc/shells.

It is useful to give new users some help in getting started, supplying them with a few skeletal
files such as .profile if they use "/bin/sh'', or .cshrc and .login if they use "/bin/csh". The
directory "/usr/skel" contains skeletal definitions of such files. New users should be given
copies of these files which, for instance, arrange to use tset(I) automatically at each login.

/etc/passwd
/usr/skel

password file
skeletal login directory

SEE ALSO
passwd{I}, finger(!), chsh(l}, chfn{l}, passwd(5), vipw(8)

BUGS
User information should be stored in its own data base separate from the password file.

4th Berkeley Distribution May 23, 1986

ARFF(8V.) UNIX Programmer's Manual ARFF(8V)

NAME
arff, flcopy - archiver and copier for floppy

SYNOPSIS
/etc/arff [key] [name ...]
/etc/flcopy [-h] [-tn]

DESCRIPTION .

FILES

Arjf saves and restores files on VAX console media (the console floppy on the VAX 11/780
and 785, the cassette on the 11/730, and the console RL02 on the 8600/8650). Its actions are
controlled by the key argument. The key is a string of characters containing at most one func
tion letter and possibly one or more function modifiers. Other arguments to the command
are file names specifying which files are to be dumped or restored. The default options are
correct for the RXOI floppy on the 780; for other console media, the f and m flags are
required.

Files names have restrictions, because of radix50 considerations. They must be in the form
1-6 alphanumerics followed by "." followed by 0-3 alphanumerics. Case distinctions are lost.
Only the trailing component of a pathname is used.

The function portion of the key is specified by one of the following letters:

r The named files are replaced where found on the floppy, or added taking up the
minimal possible portion of the first empty spot on the floppy.

x The named files are extracted from the floppy.

d The named files are deleted from the floppy. Arif will combine contiguous deleted
files into one empty entry in the rt-11 directory.

The names of the specified files are listed each time they occur on the floppy. If no
file argument is given, all of the names on the floppy are listed.

The following characters may be used in addition to the letter which selects the function
desired.

v The v (verbose) option, when used with the t function gives more information
about the floppy entries than just the name.

f causes arjf to use the next argument as the name of the archive instead of
/dev/floppy.

m causes arjf not to use the mapping algorithm employed in interleaving sectors
around a floppy disk. In conjunction with the f option it may be used for extract
ing files from rtl 1 formatted cartridge disks, for example. It may also be used to
speed up reading from and writing to rx02 floppy disks, by using the 'c' device
instead of the 'b' device. It must be used with TU58 or RL02 media.

c causes arjf to create a new directory on the floppy, effectively deleting all previ-
ously existing files.

Flcopy copies the console floppy disk (opened as '/dev/floppy') to a file created in the current
directory, named "floppy'', then prints the message "Change Floppy, hit return when done".
Then j/copy copies the local file back out to the floppy disk.

The -h option to j/copy causes it to open a file named "floppy" in the current directory and
copy it to ldevlj/oppy; the -t option causes only the first n tracks to participate in a copy.

/dev/floppy or /dev/rrx??
floppy (in current directory)

4th Berkeley Distribution May 20, 1986

ARFF(8V) UNIX Programmer's Manual ARFF(SV)

SEE AL<;O
crl(4), fl(4), rx(4), tu(4), rxformat(SV)

AUTHORS
Keith Sklower, Richard Tuck

BUGS
Device errors are handled ungracefully.

4th Berkeley Distribution May 20, 1986 2

ARP(SC) UNIX Programmer's Manual ARP(8C)

NAME
arp - address resolution display and control

SYNOPSIS
arp hostname
arp -a [vmunix] [kmem]
arp -d hostname
arp -s hostname ether _addr [temp] [pub] [trail]
arp -f filename

DESCRIPTION
The arp program displays and modifies the Internet-to-Ethernet address translation tables
used by the address resolution protocol (arp(4p)).

With no flags, the program displays the current ARP entry for hostname. The host may be
specified by name or by number, using Internet dot notation. With the -a flag, the program
displays all of the current ARP entries by reading the table from the file kmem (default
/dev/kmem) based on the kernel file vmunix (default /vmunix).

With the -d flag, a super-user may delete an entry for the host called hostname.

The -s flag is given to create an ARP entry for the host called host name with the Ethernet
address ether_addr. The Ethernet address is given as six hex bytes separated by colons. The
entry will be permanent unless the word temp is given in the command. If the word pub is
given, the entry will be "published"; i.e., this system will act as an ARP server, responding to
requests for hostname even though the host address is not its own. The word trail indicates
that trailer encapsulations may be sent to this host.

The -f flag causes the file filename to be read and multiple entries to be set in the ARP tables.
Entries in the file should be of the form

hostname ether _addr [temp] [pub] [trail]

with argument meanings as given above.

SEE ALSO
inet(3N), arp(4P), ifconfig(8C)

4.3 Berkeley Distribution May 20, 1986

BAD144(8) UNIX Programmer's Manual BAD144(8)

NAME
bad144 - read/write dee standard 144 bad sector information

SYNOPSIS
/etc/bad144 [-f] [-c] [-v] disktype disk [sno [bad ...]]
/etc/badl44 -a [-f] [-c] [-v] disktype disk [bad ...]

DESCRIPTION
Bad144 can be used to inspect the information stored on a disk that is used by the disk
drivers to implement bad sector forwarding. The format of the information is specified by
DEC standard 144, as follows.

The bad sector information is located in the first 5 even numbered sectors of the last track of
the disk pack. There are five identical copies of the information, described by the dkbad
structure.

Replacement sectors are allocated starting with the first sector before the bad sector informa
tion and working backwards towards the beginning of the disk. A maximum of 126 bad sec
tors are supported. The position of the bad sector in the bad sector table determines the
replacement sector to which it corresponds. The bad sectors must be listed in ascending
order.

The bad sector information and replacement sectors are conventionally only accessible
through the "c" file system partition of the disk. If that partition is used for a file system, the
user is responsible for making sure that it does not overlap the bad sector information or any
replacement sectors. Thus, one track plus 126 sectors must be reserved to allow use of all of
the possible bad sector replacements.

The bad sector structure is as follows:

struct dkbad {

};

long bt_csn;
u_short bt_mbz;
u_short bt_llag;
struct bt_bad {

u_short bt_cyl;
u_short bt_trksec;

} bt_bad[126];

I• cartridge serial number •I
I• unused; should be 0 •I
I• -1 => alignment cartridge •/

I• cylinder number of bad sector •I
I• track and sector number •I

Unused slots in the bt_bad array are filled with all bits set, a putatively illegal value.

Bad144 is invoked by giving a device type (e.g. rk07, rm03, rm05, etc.), and a device name
(e.g. hkO, hp!, etc.). With no optional arguments it reads the first sector of the last track of
the corresponding disk and prints out the bad sector information. It issues a warning if the
bad sectors are out of order. Badl44 may also be invoked with a serial number for the pack
and a list of bad sectors. It will write the supplied information into all copies of the bad
sector file, replacing any previous information. Note, however, that badl44 does not arrange
for the specified sectors to be marked bad in this case. This procedure should only be used to
restore known bad sector information which was destroyed. It is necessary to reboot before
any change will take effect.

With the -a option, the argument list consists of new bad sectors to be added to an existing
list. The new sectors are sorted into the list, which must have been in order. Replacement
sectors are moved to accommodate the additions; the new replacement sectors are cleared.
The entire process is described as it happens in gory detail if -v (verbose) is given. The -c
option forces an attempt to copy the old sector to the replacement, and may be useful when
replacing an unreliable sector.

4th Berkeley Distribution May 20, 1986

BAD144(8) UNIX Programmer's Manual BAD144(8)

If the disk is an RP06, RM03, RM05, Fujitsu Eagle, or SMD disk on a Massbus, the -f
option may .be used to mark the new bad sectors as "bad" by reformatting them as unusable
sectors. NOTE: this can be done safely only when there is no other disk activity, preferably
while running single-user. This option is required unless the sectors have already been
marked bad, or the system will not be notified that it should use the replacement sector.

SEE AISO

BUGS

badsect(8), format(8V)

It should be possible to format disks on-line under UNIX.

It should be possible to mark bad sectors on drives of all type.

On an 11/750, the standard bootstrap drivers used to boot the system do not und.erstand bad
sectors, handle ECC errors, or the special SSE (skip sector) errors of RM80-type disks. This
means that none of these errors can occur when reading the file /vmunix to boot. Sectors 0-
15 of the disk drive must also not have any of these errors.

The drivers which write a system core image on disk after a crash do not handle errors; thus
the crash dump area must be free of errors and bad sectors. ·

4th Berkeley Distribution May 20, 1986 2

BADSECT(8) UNIX Programmer's Manual BADSECT(8)

NAME
badsect - create files to contain bad sectors

SYNOPSIS
/etc/badsect bbdir sector ...

DESCRIPTION
Badsect makes a file to contain a bad sector. Normally, bad sectors are made inaccessible by
the standard formatter, which provides a forwarding table for bad sectors to the driver; see
bad/44(8) for details. If a driver supports the bad blocking standard it is much preferable to
use that method to isolate bad blocks, since the bad block forwarding makes the pack appear
perfect, and such packs can then be copied with dd(l). The technique used by this program is
also less general than bad block forwarding, as badsect can't make amends for bad blocks in
the i-list of file systems or in swap areas.

On some disks, adding a sector which is suddenly bad to the bad sector table . currently
requires the running of the standard DEC formatter. Thus to deal with a newly bad block or
on disks where the drivers do not support the bad-blocking standard badsect may be used to
good effect.

Badsect is used on a quiet file system in the following way: First mount the file system, and
change to its root directory. Make a directory BAD there. Run badsect giving as argument
the BAD directory followed by all the bad sectors you wish to add. (The sector numbers must
be relative to the beginning of the file system, but this is not hard as the system reports rela
tive sector numbers in its console error messages.) Then change back to the root directory,
unmount the file system and run fsck(8) on the file system. The bad sectors should show up
in two files or in the bad sector files and the free list. Have fsck remove files containing the
offending bad sectors, but do not have it remove the BAD/nnnnn files. This will leave the bad
sectors in only the BAD files.

Badsect works by giving the specified sector numbers in a mknod(2) system call, creating an
illegal file whose first block address is the block containing bad sector and whose name is the
bad sector number. When it is discovered by fsck it will ask "HOLD BAD BLOCK"? A
positive response will cause fsck to convert the inode to a regular file containing the bad
block.

SEE ALSO
bad 144(8), fsck(8), format(8V)

DIAGNOSTICS

BUGS

Badsect refuses to attach a block that resides in a critical area or is out of range of the file sys
tem. A warning is issued if the block is already in use.

If more than one sector which comprise a file system fragment are bad, you should specify
only one of them to badsect. as the blocks in the bad sector files actually cover all the sectors
in a file system fragment.

4th Berkeley Distribution April 27, 1985

BUG FILER (8) UNIX Programmer's Manual BUG FILER (8)

NAME
bugfiler - file bug reports in folders automatically

SYNOPSIS
bugfiler [mail directory]

DESCRIPTION

FILES

Bugjiler is a program to automatically intercept bug reports, summarize them and store them
in the appropriate sub directories of the mail directory specified on the command line or the
(system dependent) default. It is designed to be compatible with the Rand MH mail system.
Bugjiler is normally invoked by the mail delivery program through a/iases(5) with a line such
as the following in /usr/lib/aliases.

bugs:" I bugfiler /usr/bugs/mail"

It reads the message from the standard input or the named file, checks the format and returns
mail acknowledging receipt or a message indicating the proper format. Valid reports are then
summarized and filed in the appropriate folder; improperly formatted messages are filed in a
folder named "errors." Program maintainers can then log onto the system and check the sum
mary file for bugs that pertain to them. Bug reports should be submitted in RFC822 format
and aremust contain the following header lines to be properly indexed:

Date: <date the report is received>
From: <valid return address>
Subject: <short summary of the problem>
Index: <source directory>/<source file> <version> [Fix]

In addition, the body of the message must contain a line which begins with "Description:"
followed by zero or more lines describing the problem in detail and a line beginning with
"Repeat-By:" followed by zero or more lines describing how to repeat the problem. If the
keyword 'Fix' is specified in the 'Index' line, then there must also be a line beginning with
"Fix:" followed by a diff of the old and new source files or a description of what was done to
fix the problem.

The 'Index' line is the key to the filing mechanism. The source directory name must match
one of the folder names in the mail directory. The message is then filed in this folder and a
line appended to the summary file in the following format:

<folder name>l<message number> <Index info>
<Subject info>

The bug report may also be redistributed according to the index. If the file maildirl.redist
exists, it is examined for a line beginning with the index name followed with a tab. The
remainder of this line contains a comma-separated list of mail addresses which should receive
copies of bugs with this index. The list may be continued onto multiple lines by ending each
btit the last with a backslash ('\').

/usr/lib/sendmail
/usr/lib/unixtomh
maildir/.ack
maildir/.format
maildir/ .redist
maildir/summary
maildir/Bf??????
maildir/Rp??????

mail delivery program
converts unix mail format to mh format
the message sent in acknowledgement
the message sent when format errors are detected
the redistribution list
the summary file
temporary copy of the input message
temporary file for the reply message.

SEE ALSO
mh(I), newaliases(I), aliases(S)

4.2 Berkeley Distribution May 20, 1986

BUGFILER(8) UNIX Programmer's Manual BUGFILER(8)

BUGS
Since mail can be forwarded in a number of different ways, b11gfiler does not recognize for
warded mail and will reply/complain to the forwarder instead of the original sender unless
there is a 'Reply-To' field in the header.

Duplicate messages should be discarded or recognized and put somewhere else.

4.2 Berkeley Distribution May 20, 1986 2

CATMAN(8) UNIX Programmer's Manual CATMAN(8)

NAME
catman - create the cat files for the manual

SYNOPSIS
/etc/catman [-p] [-n] [-w] [-M path] [sections]

DESCRIPTION

FILES

Catman creates the preformatted versions of the on-line manual from the nroff input files.
Each manual page is examined and those whose preformatted versions are missing or out of
date are recreated. If any changes are made, catman will recreate the whatis database.

If there is one parameter not starting with a '-', it is taken to be a list of manual sections to
look in. For example

catman 123

will cause the updating to only happen to manual sections 1, 2, and 3.

Options:

-n prevents creations of the whatis database.

-p prints what would be done instead of doing it.

-w causes only the whatis database to be created. No manual reformatting is done.

-M updates manual pages located in the set of directories specified by path (/usr/man by
default). Path has the form of a colon (':') separated list of directory names, for exam
ple '/usr/local/man:/usr/man'. If the environment variable 'MANPATH' is set, its
value is used for the default path.

If the nroff source file contains only a line of the form '.so manx/yyy.x', a symbolic link is
made in the catx directory to the appropriate preformatted manual page. This feature allows
easy distribution of the preformatted manual pages among a group of associated machines
with rdist(l). The nroff sources need not be distributed to all machines, thus saving the associ
ated disk space. As an example, consider a local network with 5 machines, called machl
through mach5. Suppose mach3 has the manual page nroff sources. Every night, mach3 runs
catman via cron(8) and later runs rdist with a distfile that looks like:

MANSLAVES = (machl mach2 mach4 mach5)

MANUALS = (lusr/man/cat[l-8no] /usr/man/whatis)

${MANUALS} -> ${MANSLAVES}
install -R;

/usr/man
/usr/man/man?/•.•
/usr/man/cat?/•.•
/usr/man/whatis
/usr/lib/makewhatis

notify root;

default manual directory location
raw (nroff input) manual sections
preformatted manual pages
whatis database
command script to make whatis database

SEE ALSO
man(I), cron(8), rdist(I)

BUGS
Acts oddly on nights with full moons.

4th Berkeley Distribution May 28, 1986

CHOWN(8) UNIX Programmer's Manual CHOWN(8)

NAME
chown - change owner

SYNOPSIS
/etc/chown [-f -R] owner[.group] file ...

DESCRIPTION

FILES

Chown changes the owner of the files to owner. The owner may be either a decimal UID or a
login name found in the password file. An optional group may also be specified. The group
may be either a decimal GID or a group name found in the group-ID file.

Only the super-user can change owner, in order to simplify accounting procedures. No errors
are reported when the -f (force) option is given.

When the -R option is given, chown recursively descends its directory arguments setting the
specified owner. When symbolic links are encountered, their ownership is changed, but they
are not traversed.

/etc/passwd

SEE ALSO
chgrp{l), chown(2), passwd(5), group(5)

4th Berkeley Distribution May 22, 1986

CLRI(8) UNIX Programmer's Manual CLRI(8)

NAME
clri - clear i-node

SYNOPSIS
/etc/clri filesystem i-number ...

DESCRIPTION
N.B.: Clri is obsoleted for normal file system repair work by ftck(8).

Clri writes zeros on the i-nodes with the decimal i-numbers on the fi/esystem. After c/ri, any
blocks in the affected file will show up as 'missing' in an icheck(8) of the filesystem.

Read and write permission is required on the specified file system device. The i-node
becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory, care should be
taken to track down the entry and remove it. Otherwise, when the i-node is reallocated to
some new file, the old entry will still point to that file. At that point removing the old entry
will destroy the new file. The new entry will again point to an unallocated i-node, so the
whole cycle is likely to be repeated again and again.

SEE ALSO
icheck(8)

BUGS
If the file is open, c/ri is likely to be ineffective.

4th Berkeley Distribution April 27, 1985

COMSAT(8C) UNIX Programmer's Manual COMSAT(8C)

NAME
comsat - biff server

SYNOPSIS
/etc/comsat

DESCRIPTION

FILES

Comsat is the server process which receives reports of incoming mail and notifies users if they
have requested this service. Comsat receives messages on a datagram port associated with the
"biff'' service specification (see services(5) and inetd(8)). The one line messages are of the
form

user@mailbox-offset

If the user specified is logged in to the system and the associated terminal has the owner exe
cute bit turned on (by a "biff y"), the offset is used as a seek offset into the appropriate mail
box file and the first 7 lines or 560 characters of the message are printed on the user's termi
nal. Lines which appear to be part of the message header other than the "From", "To",
"Date", or "Subject" lines are not included in the displayed message.

/etc/utmp to find out who's logged on and on what terminals

SEE ALSO

BUGS

biff(l), inetd(8)

The message header filtering is prone to error. The density of the information presented is
near the theoretical minimum.

Users should be notified of mail which arrives on other machines than the one to which they
are currently logged in.

The notification should appear in a separate window so it does not mess up the screen.

4.2 Berkeley Distribution May 20, 1986

CONFIG(8) UNIX Programmer's Manual CONFIG(8)

NAME
config - build system configuration files

SYNOPSIS
/etc/config [-p] SYSTEM_NAME

DESCRIPTION

FILES

Config builds a set of system configuration files from a short file which describes the sort of
system that is being configured. It also takes as input a file which tells con.fig what files are
needed to generate a system. This can be augmented by a configuration specific set of files
that give alternate files for a specific machine. (see the FILES section below) If the -p option
is supplied, con.fig will configure a system for profiling; c.f. kgmon(8) and gproft.l).

Con.fig should be run from the conf subdirectory of the system source (usually /sys/cont). Its
argument is the name of a system configuration file containing device specifications,
configuration options and other system parameters for one system configuration. Con.fig
assumes that there is already a directory .. ISYSTEM_NAME created and it places all its out
put files in there. The output of con.fig consists of a number of files; for the VAX, they are:
ioconf.c contains a description of what 1/0 devices are attached to the system,; ubglue.s con
tains a set of interrupt service routines for devices attached to the UNIBUS; ubvec.s contains
offsets into a structure used for counting per-device interrupts; Makefile is a file used by
make(1) in building the system; a set of header files contain definitions of the number of vari
ous devices that will be compiled into the system; and a set of swap configuration files contain
definitions for the disk areas to be used for swapping, the root file system, argument process
ing, and system dumps.

After running config, it is necessary to run "make depend" in the directory where the new
makefile was created. Con.fig prints a reminder of this when it completes.

If any other error messages are produced by con.fig, the problems in the configuration file
should be corrected and con.fig should be run again. Attempts to compile a system that had
configuration errors are likely to meet with failure.

/sys/conf/Makefile. vax generic makefile for the VAX
/sys/conf/files list of common files system is built from
/sys/conf/files. vax list of VAX specific files
/sys/conf/devices. vax name to major device mapping file for the VAX
/sys/conf/files.ERNIE list of files specific to ERNIE system

SEE AISO
"Building 4.3BSD UNIX System with Config"
The SYNOPSIS portion of each device in section 4.

BUGS
The line numbers reported in error messages are usually off by one.

4th Berkeley Distribution May 20, 1986

CRASH(8V) UNIX Programmer's Manual CRASH(8V)

NAME
crash - what happens when the system crashes

DESCRIPTION
This section explains what happens when the system crashes and (very briefly) how to analyze
crash dumps.

When the system crashes voluntarily it prints a message of the form

panic: why i gave up the ghost

on the console, takes a dump on a mass storage peripheral, and then invokes an automatic
reboot procedure as described in reboot(8). (If auto-reboot is disabled on the front panel of
the machine the system will simply halt at this point.) Unless some unexpected inconsistency
is encountered in the state of the file systems due to hardware or software failure, the system
will then resume multi-user operations.

The system has a large number of internal consistency checks; if one of these fails, then it will
panic with a very short message indicating which one failed. In many instances, this will be
the name of the routine which detected the error, or a two-word description of the incon
sistency. A full understanding of most panic messages requires perusal of the source code for
the system.

The most common cause of system failures is hardware failure, which can reflect itself in
different ways. Here are the messages which are most likely, with some hints as to causes.
Left unstated in all cases is the possibility that hardware or software error produced the mes
sage in some unexpected way.

iinit This cryptic panic message results from a failure to mount the root filesystem during
the bootstrap process. Either the root filesystem has been corrupted, or the system is
attempting to use the wrong device as root filesystem. Usually, an alternate copy of
the system binary or an alternate root filesystem can be used to bring up the system to
investigate.

Can't exec /etc/init
This is not a panic message, as reboots are likely to be futile. Late in the bootstrap
procedure, the system was unable to locate and execute the initialization process,
init(8). The root filesystem is incorrect or has been corrupted, or the mode or type of
/etc/init forbids execution.

IO err in push
hard IO err in swap

The system encountered an error trying to write t'o the paging device or an error in
reading critical information from a disk drive. The offending disk should be fixed if it
is broken or unreliable.

realloccg: bad optim
ialloc: dup alloc
alloccgblk: cyl groups corrupted
ialloccg: map corrupted
free: freeing free block
free: freeing free frag
ifree: freeing free inode
alloccg: map corrupted

These panic messages are among those that may be produced when filesystem incon
sistencies are detected. The problem generally results from a failure to repair dam
aged filesystems after a crash, hardware failures, or other condition that should not
normally occur. A filesystem check will normally correct the problem.

4th Berkeley Distribution May 20, 1986

CRASH(8V) UNIX Programmer's Manual CRASH(8V)

timeout table overflow
This really shouldn't be a panic, but until the data structure involved is made to be
extensible, running out of entries causes a crash. If this happens, make the timeout
table bigger.

KSP not valid
SDI fault
CHM? in kernel

These indicate either a serious bug in the system or, more often, a glitch or failing
hardware. If SBI faults recur, check out the hardware or call field service. If the
other faults recur, there is likely a bug somewhere in the system, although these can be
caused by a flakey processor. Run processor microdiagnostics.

machine check o/ox:
description

machine dependent machine-check information
Machine checks are different on each type of CPU. Most of the internal processor
registers are saved at the time of the fault and are printed on the console. For most
processors, there is one line that summarizes the type of machine check. Often, the
nature of the problem is apparent from this messaage and/or the contents of key regis
ters. The VAX Hardware Handbook should be consulted, and, if necessary, your
friendly field service people should be informed of the problem.

trap type o/od, code=o/ox, pc=o/ox
A unexpected trap has occurred within the system; the trap types are:

0 reserved addressing fault
I privileged instruction fault
2 reserved operand fault
3 bpt instruction fault
4 xfc instruction fault
5 system call trap
6 arithmetic trap
7 ast deli very trap
8 segmentation fault
9 protection fault
I 0 trace trap
11 compatibility mode fault
12 page fault
13 page table fault

The favorite trap types in system crashes are trap types 8 and 9, indicating a wild
reference. The code is the referenced address, and the pc at the time of the fault is
printed. These problems tend to be easy to track down if they are kernel bugs since
the processor stops cold, but random flakiness seems to cause this sometimes. The
debugger can be used to locate the instruction and subroutine corresponding to the
PC value. If that is insufficient to suggest the nature of the problem, more detailed
examination of the system status at the time of the trap usually can produce an expla
nation.

init died
The system initialization process has exited. This is bad news, as no new users will
then be able to log in. Rebooting is the only fix, so the system just does it right away.

out of mbufs: map full
The network has exhausted its private page map for network buffers. This usually

4th Berkeley Distribution May 20, 1986 2

CRASH(8V) UNIX Programmer's Manual CRASH(8V)

indicates that buffers are being lost, and rather than allow the system to slowly
degrade, it reboots immediately. The map may be made larger if necessary.

That completes the list of panic types you are likely to see.

When the system crashes it writes (or at least attempts to write) an image of memory into the
back end of the dump device, usually the same as the primary swap area. After the system is
rebooted, the program savecore(8) runs and preserves a copy of this core image and the
current system in a specified directory for later perusal. See savecore(8) for details.

To analyze a dump you should begin by running adb(I) with the -k flag on the system load
image and core dump. If the core image is the result of a panic, the panic message is printed.
Normally the command "$c" will provide a stack trace from the point of the crash and this
will provide a clue as to what went wrong. A more complete discussion of system debugging
is impossible here. See, however, "Using ADB to Debug the UNIX Kernel".

SEE ALSO
adb(l), reboot(&)
VAX 111780 System Maintenance Guide and VAX Hardware Handbook for more information
about machine checks.
Using ADB to Debug the UNIX Kernel

4th Berkeley Distribution May 20, 1986 3

CRON(8) UNIX Programmer's Manual CRON(8)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times according to the instructions in the files
/usr/lib/crontab and /usr/lib/crontab.local. None, either one, or both of these files may be
present. Since cron never exits, it should only be executed once. This is best done by run
ning cron from the initialization process through the file /etc/re; see init(8).

The crontab files consist of lines of seven fields each. The fields are separated by spaces or
tabs. The first five are integer patterns to specify:

• minute (0-59)
• hour (0-23)
• day of the month (1-31)
• month of the year (1-12)
• day of the week (1-7 with 1 =Monday)

Each of these patterns may contain:

• a number in the range above
• two numbers separated by a minus meaning a range inclusive
• a list of numbers separated by commas meaning any of the numbers
• an asterisk meaning all legal values ·

The sixth field is a user name: the command will be run with that user's uid and permissions.
The seventh field consists of all the text on a line following the sixth field, including spaces
and tabs; this text is treated as a command which is executed by the Shell at the specified
times. A percent character ("%") in this field is translated to a new-line character.

Both crontab files are checked by cron every minute, on the minute.

/usr/lib/crontab
/usr/lib/crontab.local

7th Edition May 16, 1986

DCHECK(S) UNIX Programmer's Manual DCHECK(S)

NAME
dcheck - file system directory consistency check

SYNOPSIS
/etc/dcheck [-i numbers] [filesystem]

DESCRIPTION

FILES

N.B.: Dcheck is obsoleted for normal consistency checking by fsck(8).

Dcheck reads the directories in a file system and compares the link-count in each i-node with
the number of directory entries by which it is referenced. If the file system is not specified, a
set of default file systems is checked.

The -i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a direc
tory, the number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in
large chunks.

Default file systems vary with installation.

SEE ALSO
fsck(8), icheck(S), fs(S), clri(8), ncheck(S)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of directory entries disagree,
the relevant facts are reported. Allocated files which have 0 link-count and no entries are also
listed. The only dangerous situation occurs when there are more entries than links; if entries
are removed, so the link-count drops to 0, the remaining entries point to thin air. They
should be removed. When there are more links than entries, or there is an allocated file with
neither links nor entries, some disk space may be lost but the situation will not degenerate.

Since dcheck is inhe1ently two-pass in nature, extraneous diagnostics may be produced if
applied to active file systems.

Dcheck is obsoleted by fsck and remains for historical reasons.

4th Berkeley Distribution April 27, 1985

DISKPART(8) UNIX Programmer's Manual DISKPART(8)

NAME
diskpart - calculate default disk partition sizes

SYNOPSIS
/etc/diskpart [-p) [-d] disk-type

DESCRIPTION
Diskpart is used to calculate the disk partition sizes based on the default rules used at Berke
ley. If the -p option is supplied, tables suitable for inclusion in a device driver are produced.
If the -d option is supplied, an entry suitable for inclusion in the disk description file
/etcldisktab is generated; c.f. disktab(5). On disks that use bad144-sty1e bad-sector forward
ing, space is left in the last partition on the disk for a bad sector forwarding table. The space
reserved is one track for the replicated copies of the table and sufficient tracks to hold a pool
of 126 sectors to which bad sectors are mapped. For more information, see bad/44(8).

The disk partition sizes are based on the total amount of space on the disk as given in the
table below (all values are supplied in units of 512 byte sectors). The 'c' partition is, by con
vention, used to access the entire physical disk. The device driver tables include the space
reserved for the bad sector forwarding table in the 'c' partition; those used in the disktab and
default formats exclude reserved tracks. In normal operation, either the 'g' partition is used,
or the 'd', 'e', and ·r partitions are used. The 'g' and ·r partitions are variable-sized, occupy
ing whatever space remains after allocation of the fixed sized partitions. If the disk is smaller
than 20 Megabytes, then diskpart aborts with the message "disk too small, calculate by hand".

Partition 20-60 MB 61-205 MB 206-355 MB 356+ MB
a 15884 15884 15884 15884
b 10032 33440 33440 66880
d 15884 15884 15884 15884
e unused 55936 55936 307200
h unused unused 291346 291346

If an unknown disk type is specified, diskpart will prompt for the required disk geometry
information.

SEE ALSO

BUGS

disktab(5), badl44(8)

Certain default partition sizes are based on historical artifacts (e.g. RP06), and may result in
unsatisfactory layouts.

When using the -d flag, alternate disk names are not included in the output.

4th Berkeley Distribution May 30, 1986

DMESG(8) UNIX Programmer's Manual

NAME
dmesg - collect system diagnostic messages to form error log

SYNOPSIS
/etc/dmesg [-]

DESCRIPTION
N.B.: Dmesg is obsoleted by sys/ogd(S) for maintenance of the system error log.

DMESG(8)

Dmesg looks in a system buffer for recently printed diagnostic messages and prints them on
the standard output. The messages are those printed or logged by the system when errors
occur. If the - flag is given, then dmesg computes (incrementally) the new messages since the
last time it was run and places these on the standard output.

FILES
/usr/adm/msgbuf

SEE ALSO
syslogd(8)

4th Berkeley Distribution

scratch file for memory of - option

May 19, 1986

DRTEST(S) UNIX Programmer's Manual DRTEST(S)

NAME
drtest - standalone disk test program

DESCRIPTION
Driest is a standalone program used to read a disk track by track. It was primarily intended as
a test program for new standalone drivers, but has shown useful in other contexts as well,
such as verifying disks and running speed tests. For example, when a disk has been formatted
(by format(S)), you can check that hard errors has been taken care of by running driest. No
hard errors should be found, but in many cases quite a few soft ECC errors will be reported.

While driest is running, the cylinder number is printed on the console for every 10th cylinder
read.

EXAMPLE
A sample run of driest is shown below. In this example (using a 750), drtest is loaded from the
root file system; usually it will be loaded from the machine's console storage device. Boldface
means user input. As usual, "#" and "@" may be used to edit input.

DIAGNOSTICS

>>>B/3
%%
loading hk(O,O)boot
Boot
: hk(O,O)drtest
Test program for stand-alone up and hp driver ·

Debugging level (I =bse, 2=ecc, 3=bse+ecc)?
Enter disk name [type(adapter,unit), e.g. hp(l ,3)]? hp(O,O)
Device data: #cylinders= 1024, #tracks= 16, #sectors= 32
Testing hp(O,O), chunk size is 16384 bytes.
(chunk size is the number of bytes read per disk access)
Start ... Make sure hp(O,O) is online

(errors are reported as they occur)

(... program restarts to allow checking other disks)
(... to abort halt machine with • P)

The diagnostics are intended to be self explanatory. Note, however, that the device number in
the diagnostic messages is identified as typeX instead of type(a,u) where X = a•8+u, e.g.,
hp(l,3) becomes hp! I.

SEE ALSO
format(8V), badl44(8)

AUTlIOR
Helge Skrivervik

4.2 Berkeley Distribution May 19, 1986

DUMP(8) UNIX Programmer's Manual DUMP(8)

NAME
dump - incremental file system dump

SYNOPSIS
/etc/dump [key [argument ...] filesystem]

DESCRIPTION
Dump copies to magnetic tape all files changed after a certain date in the .filesystem. The key
specifies the date and other options about the dump. Key consists of characters from the set
0123456789fusdWn.

0-9 This number is the 'dump level'. All files modified since the last date stored in the file
/etcldumpdates for the same filesystem at lesser levels will be dumped. If no date is
determined by the level, the beginning of time is assumed; thus the option 0 causes the
entire filesystem to be dumped.

f Place the dump on the next argument file instead of the tape. If the name of the file is
"-",dump writes to standard output.

u If the dump completes successfully, write the date of the beginning of the dump on file
/etcldumpdates. This file records a separate date for each filesystem and each dump
level. The format of letc/dumpdates is readable by people, consisting of one free format
record per line: filesystem name, increment level and ctime(3) format dump date.
/etc/dumpdates may be edited to change any of the fields, if necessary.

s The size of the dump tape is specified in feet. The number of feet is taken from the
next argument. When the specified size is reached, dump will wait for reels to be
changed. The default tape size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next argument. This is used
in calculating the amount of tape used per reel. The default is 1600.

W Dump tells the operator what file systems need to be dumped. This information is
gleaned from the files /etc/dumpdates and /etclfstab. The W option causes dump to print
out, for each file system in letcldumpdates the most recent dump date and level, and
highlights those file systems that should be dumped. If the W option is set, all other
options are ignored, and dump exits immediately.

w Is like W, but prints only those filesystems which need to be dumped.

n Whenever dump requires operator attention, notify by means similar to a wall(!) all of
the operators in the group "operator".

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to
the default tape.

Dump requires operator intervention on these conditions: end of tape, end of dump, tape
write error, tape open error or disk read error (if there are more than a threshold of 32). In
addition to alerting all operators implied by the n key, dump interacts with the operator on
dump's control terminal at times when dump can no longer proceed, or if something is grossly
wrong. All questions dump poses must be answered by typing "yes" or "no", appropriately.

Since making a dump involves a lot of time and effort for full dumps, dump checkpoints itself
at the start of each tape volume. If writing that volume fails for some reason, dump will, with
operator permission, restart itself from the checkpoint after the old tape has been rewound
and removed, and a new tape has been mounted.

Dump tells the operator what is going on at periodic intervals, including usually low estimates
of the number of blocks to write, the number of tapes it will take, the time to completion, and
the time to the tape change. The output is verbose, so that others know that the terminal
controlling dump is busy, and will be for some time.

4th Berkeley Distribution May 23, 1986

DUMP(8) UNIX Programmer's Manual DUMP(8)

FILES

Now a short suggestion on how to perform dumps. Start with a full level 0 dump

dump Oun

Next, dumps of active file systems are taken on a daily basis, using a modified Tower of
Hanoi algorithm, with this sequence of dump levels:

3254769899 ...
For the daily dumps, a set of 10 tapes per dumped file system is used on a cyclical basis.
Each week, a level 1 dump is taken, and the daily Hanoi sequence repeats with 3. For weekly
dumps, a set of 5 tapes per dumped file system is used, also on a cyclical basis. Each month,
a level 0 dump is taken on a set of fresh tapes that is saved forever.

/dev/rrplg
/dev/rmt8
/etc/dumpdates
/etc/fstab
/etc/group

default filesystem to dump from
default tape unit to dump to
new format dump date record
dump table: file systems and frequency
to find group operator

SEEAI.SO
restore(8), dump(S), fstab(S)

DIAGNOSTICS

BUGS

Many, and verbose.

Dump exits with zero status on success. Startup errors are indicated with an exit code of 1;
abnormal termination is indicated with an exit code of 3.

Fewer than 32 read errors on the filesystem are ignored. Each reel requires a new process, so
parent processes for reels already written just hang around until the entire tape is written.

Dump with the W or w options does not report filesystems that have never been recorded in
/etc/dumpdates, even if listed in /etc/fstab.

It would be nice if dump knew about the dump sequence, kept track of the tapes scribbled on,
told the operator which tape to mount when, and provided more assistance for the operator
running restore.

4th Berkeley Distribution May 23, 1986 2

DUMPFS(S) UNIX Programmer's Manual

NAME
dumpfs - dump file system information

SYNOPSIS
dumpfs filesys I device

DESCRIPTION

DUMPFS(8)

Dumpfs prints out the super block and cylinder group information for the file system or spe
cial device specified. The listing is very long and detailed. This command is useful mostly
for finding out certain file system information such as the file system block size and minimum
free space percentage.

SEE ALSO
fs(5), disktab(5), tunefs(S), newfs(8), fsck(8)

4.2 Berkeley Distribution April 27, 1985

EDQUOTA(8) UNIX Programmer's Manual EDQUOTA(8)

NAME
edquota - edit user quotas

SYNOPSIS
edquota [-p proto-user] users ...

DESCRIPTION

FILES

Edquota is a quota editor. One or more users may be specified on the command line. For
each user a temporary file is created with an ASCII representation of the current disc quotas
for that user and an editor is then invoked on the file. The quotas may then be modified, new
quotas added, etc. Upon leaving the editor, edquota reads the temporary file and modifies the
binary quota files to reflect the changes made.

If the -p option is specified, edquota will duplicate the quotas of the prototypical user
specified for each user specified. This is the normal mechanism used to initialize quotas for
groups of users.

The editor invoked is vi(l) unless the environment variable EDITOR specifies otherwise.

Only the super-user may edit quotas.

quotas
/etc/fstab

at the root of each file system with quotas
to find file system names and locations

SEE ALSO
quota(1), quota(2), quotacheck(8), quotaon(8), repquota(8)

DIAGNOSTICS
Various messages about inaccessible files; self-explanatory.

BUGS
The format of the temporary file is inscrutable.

4.2 Berkeley Distribution May 19, 1986

F ASTBOOT (8) UNIX Programmer's Manual

NAME
fastboot, fasthalt - reboot/halt the system without checking the disks

SYNOPSIS
/etc/fastboot [boot-options]
/etc/fasthalt [halt-options]

DESCRIPTION

F ASTBOOT (8)

Fastboot and fasthalt are shell scripts which reboot and halt the system without checking the
file systems. This is done by creating a file lfastboot, then invoking the reboot program. The
system startup script, /etc/re, looks for this file and, if present, skips the normal invocation of
fsck(8).

SEE ALSO
halt(8), reboot(8), rc(8)

4.2 Berkeley Distribution April 27, 1985

FINGERD(8C) UNIX Programmer's Manual FINGERD (SC)

NAME
fingerd - remote user information server

SYNOPSIS
/etc/fingerd

DESCRIPTION
Fingerd is a simple protocol based on RFC742 that provides an interface to the Name and
Finger programs at several network sites. The program is supposed to return a friendly,
human-oriented status report on either the system at the moment or a particular person in
depth. There is no required format and the protocol consists mostly of specifying a single
"command line".

Fingerd listens for TCP requests at port 79. Once connected it reads a single command line
terminated by a <CRLF> which is passed to finger(1). Fingerd closes its connections as soon
as the output is finished.

If the line is null (i.e. just a <CRLF> is sent) then finger returns a "default" report that lists
all people logged into the system at that moment.

If a user name is specified (e.g. eric<CRLF>) then the response lists more extended informa
tion for only that particular user, whether logged in or not. Allowable "names" in the com
mand line include both "login names" and "user names". If a name is ambiguous, all possi
ble derivations are returned.

SEE ALSO
finger(1)

BUGS
Connecting directly to the server from a TIP or an equally narrow-minded TELNET-protocol
user program can result in meaningless attempts at option negotiation being sent to the
server, which will foul up the command line interpretation. Fingerd should be taught to filter
out IAC's and perhaps even respond negatively (IAC WON'T) to all option commands
received.

4.3 Berkeley Distribution May 23, 1986

FORMAT(8V) UNIX Programmer's Manual FORMAT(8V)

NAME
format - how to format disk packs

DESCRIPTION
There are two ways to format disk packs. The simplest is to use the format program. The
alternative is to use the DEC standard formatting software which operates under the DEC
diagnostic supervisor. This manual page describes the operation of format, then concludes
with some remarks about using the DEC formatter.

Format is a standalone program used to format and check disks prior to constructing file sys
tems. In addition to the formatting operation, format records any bad sectors encountered
according to DEC standard 144. Formatting is performed one track at a time by writing the
appropriate headers and a test pattern and then checking the sector by reading and verifying
the pattern, using the controller's ECC for error detection. A sector is marked bad if an unre
coverable media error is detected, or if a correctable ECC error too many bits in length is
detected (such errors are indicated as "ECC" in the summary printed upon completing the
format operation). After the entire disk has been formatted and checked, the total number of
errors are reported, any bad sectors and skip sectors are marked, and a bad sector forwarding
table is written to the disk in the first five even numbered sectors of the last track. It is also
possible to reformat sections of the disk in units of tracks. Format may be used on any
UNIBUS or MASSBUS drive supported by the up and hp device drivers which uses 4-byte
headers (everything except RP's).

The test pattern used during the media check may be selected from one of: OxfOOf (RH750
worst case), Oxec6d (media worst case), and Oxa5a5 (alternating l's and O's). Normally the
media worst case pattern is used.

Format also has an option to perform an extended "severe burn-in," which makes a number
of passes using different patterns. The number of passes can be selected at run time, up to a
maximum of 48, with provision for additional passes or termination after the preselected
number of passes. This test runs for many hours, depending on the disk and processor.

Each time format is run to format an entire disk, a completely new bad sector table is gen
erated based on errors encountered while formatting. The device driver, however, will always
attempt to read any existing bad sector table when the device is first opened. Thus, if a disk
pack has never previously been formatted, or has been formatted with different sectoring, five
error messages will be printed when the driver attempts to read the bad sector table; these
diagnostics should be ignored.

Formatting a 400 megabyte disk on a MASSBUS disk controller usually takes about 20
minutes. Formatting on a UNIBUS disk controller takes significantly longer. For every hun
dredth cylinder formatted format prints a message indicating the current cylinder being for
matted. (This message is just to reassure people that nothing is is amiss.)

Format uses the standard notation of the standalone 1/0 library in identifying a drive to be
formatted. A drive is specified as zz(x,y), where zz refers to the controller type (either hp or
up), xis the unit number of the drive; 8 times the UNIBUS or MASSBUS adaptor number
plus the MASSBUS drive number or UNIBUS drive unit number; and y is the file system par
tition on drive x (this should always be 0). For example, "hp(l,O)" indicates that drive 1 on
MASSBUS adaptor 0 should be formatted; while "up(I0,0)" indicates that UNIBUS drive 2
on UNIBUS adaptor 1 should be formatted.

Before each formatting attempt, format prompts the user in case debugging should be enabled
in the appropriate device driver. A carriage return disables debugging information.

Format should be used prior to building file systems (with newft(8)) to insure that all sectors
with uncorrectable media errors are remapped. If a drive develops uncorrectable defects after
formatting, either bad144(8) or badsect(8) should be able to avoid the bad sectors.

4th Berkeley Distribution May 22, 1986

FORMAT(8V) UNIX Programmer's Manual FORMAT(8V)

EXAMPLE
A sample run of format is shown below. In this example (using a VAX-111780), format is
loaded from the console floppy; on an 1117 50 format will be loaded from the root file system
with boot(8) following a "B/3" command. Boldface means user input. As usual, "#" and
"@" may be used to edit input.

DIAGNOSTICS

>>>LFORMAT
LOAD DONE, 00004400 BYTES LOADED

>>>S2
Disk format/check utility

Enable debugging (O=none, 1 =bse, 2=ecc, 3=bse+ecc)? 0
Device to format? hp(8,0)
(error messages may occur as old bad sector table is read)
Formatting drive hpO on adaptor 1: verify (yes/no)? yes
Device data: #cylinders=842, #tracks=20, #sectors=48
Starting cylinder (0):
Starting track (0):
Ending cylinder (841):
Ending track (19):
Available test patterns are:

1 - (fOOt) RH750 worst case
2 - (ec6d) media worst case
3 - (a5a5) alternating l's and O's
4 - (fill) Severe burnin (up to 48 passes)

Pattern (one of the above, other to restart)? 2
Maximum number of bit errors to allow for soft ECC (3):
Start formatting ... make sure the drive is online

(soft ecc's and other errors are reported as they occur)

(if 4 write check errors were found, the program terminates like this ...)

Errors:
Bad sector: 0
Write check: 4
Hard ECC: 0
Other hard: 0
Marked bad: 0
Skipped: 0
Total of 4 hard errors revectored.
Writing bad sector table at block 808272
(808272 is the block# of the first block in the bad sector table)
Done
(... program restarts to allow formatting other disks)
(... to abort halt machine with 'P)

The diagnostics are intended to be self explanatory.

USING DEC SOFTWARE TO FORMAT
Warning: These instructions are for people with 11/780 CPU's. The steps needed for 111750
or 111730 cpu's are similar, but not covered in detail here.

4th Berkeley Distribution May 22, 1986 2

FORMAT(8V) UNIX Programmer's Manual FORMAT(8V)

The formatting procedures are different for each type of disk. Listed here are the formatting
procedures for RK07's, RPOX, and RMOX disks.

You should shut down UNIX and halt the machine to do any disk formatting. Make certain
you put in the pack you want formatted. It is also a good idea to spin down or write protect
the disks you don't want to format, just in case.

Formatting an RK07. Load the console floppy labeled, "RX 11 VAX OSK LD DEV # l" in the
console disk drive, and type the following commands:

>>>BOOT
DIAGNOSTIC SUPERVISOR. ZZ-ESSAA-XS.0-119 23-JAN-1980 12:44:40.03
DS>ATTACH DW780 SBI DWO 3 S
DS>ATTACH RK61 I OMA
DS>A TT ACH RK07 DWO DMAO
DS>SELECT DMAO
DS>LOAD EVRAC
DS>START/SEC:PACKINIT

Formatting an RPOX. Follow the above procedures except that the ATTACH and SELECT
lines should read:

DS>ATTACH RH780 SBI RHO 8 S
DS>ATTACH RPOX RHO DBAO(RPOX is, e.g. RP06)
DS>SELECT DBAO

This is for drive 0 on mbaO; use 9 instead of 8 for mbal, etc.

Formatting an RMOX. Follow the above procedures except that the ATTACH and SELECT
lines should read:

DS>ATTACH RH780 SBI RHO 8 S
DS>ATTACH RMOX RHO DRAO
DS>SELECT DRAO

Don't forget to put your UNIX console floppy back in the floppy disk drive.

SEE ALSO

BUGS

bad 144(8), badsect(8), newfs(8)

An equivalent facility should be available which operates under a running UNIX system.

It should be possible to reformat or verify part or all of a disk, then update the existing bad
sector table.

4th Berkeley Distribution May 22, 1986 3

FSCK.(8) UNIX Programmer's Manual FSCK(S)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck -p [filesystem ...]
/etc/fsck [-b block#] [-y] [-n] [filesystem] ...

DESCRIPTION
The first form of fsck preens a standard set of filesystems or the specified file systems. It is
normally used in the script /etc/re during automatic reboot. In this case fsck reads the table
/etc/fstab to determine which file systems to check. It uses the information there to inspect
groups of disks in parallel taking maximum advantage of i/o overlap to check the file systems
as quickly as possible. Normally, the root file system will be checked on pass I, other "root"
("a" partition) file systems on pass 2, other small file systems on separate passes (e.g. the "d"
file systems on pass 3 and the "e" file systems on pass 4), and finally the large user file sys
tems on the last pass, e.g. pass 5. Only partitions in fstab that are mounted "rw" or "rq" and
that have non-zero pass number are checked.

The system takes care that only a restricted class of innocuous inconsistencies can happen
unless hardware or software failures intervene. These are limited to the following:

Unreferenced inodes

Link counts in inodes too large

Missing blocks in the free list

Blocks in the free list also in files

Counts in the super-block wrong

These are the only inconsistencies that fsck with the -p option will correct; if it encounters
other inconsistencies, it exits with an abnormal return status and an automatic reboot will
then fail. For each corrected inconsistency one or more lines will be printed identifying the
file system on which the correction will take place, and the nature of the correction. After
successfully correcting a file system, fsck will print the number of files on that file system, the
number of used and free blocks, and the percentage of fragmentation.

If sent a QUIT signal, fsck will finish the file system checks, then exit with an abnormal return
status that causes the automatic reboot to fail. This is useful when you wish to finish the file
system checks, but do not want the machine to come up multiuser.

Without the -p option, fsck audits and interactively repairs inconsistent conditions for file
systems. If the file system is inconsistent the operator is prompted for concurrence before
each correction is attempted. It should be noted that some of the corrective actions which are
not correctable under the -p option will result in some loss of data. The amount and severity
of data lost may be determined from the diagnostic output. The default action for each con
sistency correction is to wait for the operator to respond yes or no. If the operator does not
have write permission on the file system fsck will default to a -n action.

Fsck has more consistency checks than its predecessors check, dcheck, fcheck, and icheck com
bined.

The following flags are interpreted by fsck.

-b Use the block specified immediately after the flag as the super block for the file system.
Block 32 is always an alternate super block.

-y Assume a yes response to all questions asked by fsck; this should be used with great
caution as this is a free license to continue after essentially unlimited trouble has been
encountered.

4th Berkeley Distribution May21, 1986

FSCK(8) UNIX Programmer's Manual FSCK(8)

FILES

-n Assume a no response to all questions asked by fsck; do not open the file system for
writing.

If no filesystems are given to fsck then a default list of file systems is read from the file
/etc/fstab.

Inconsistencies checked are as follow:.

1. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an inode or the free list outside the range of the file system.
3. Incorrect link counts.
4. Size checks:

Directory size not of proper format.
5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.
!node number out of range.

8. Super Block checks:

More blocks for inodes than there are in the file system.
9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator's con
currence, reconnected by placing them in the lost+found directory. The name assigned is the
inode number. If the /ost+found directory does not exist, it is created. If there is insufficient
space its size is increased.

Checking the raw device is almost always faster.

/etc/fstab contains default list of file systems to check.

DIAGNOSTICS
The diagnostics produced by fsck are fully enumerated and explained in Appendix A of "Fsck
- The UNIX File System Check Program" (SMM:S).

SEE ALSO
fstab(S), fs(S), newfs(8), mkfs(8), crash(8V), reboot(8)

BUGS
There should be some way to start a fsck -p at pass n.

4th Berkeley Distribution May 21, 1986 2

FTPD(8C) UNIX Programmer's Manual FTPD(8C)

NAME
ftpd - DARPA Internet File Transfer Protocol server

SYNOPSIS
/etc/ftpd [-d] [-I] [-ttimeout]

DESCRIPTION
Ftpd is the DARPA Internet File Transfer Prototocol server process. The server uses the TCP
protocol and listens at the port specified in the "ftp" service specification; see services(5).

If the -d option is specified, debugging information is written to the syslog.

If the -I option is specified, each ftp session is logged in the syslog.

The ftp server will timeout an inactive session after 15 minutes. If the -t option is specified,
the inactivity timeout period will be set to timeout.

The ftp server currently supports the following ftp requests; case is not distinguished.

Request
ABOR
ACCT
ALLO
APPE
COUP
CWD
DELE
HELP
LIST
MKD
MODE
NLST
NOOP
PASS
PASV
PORT
PWD
QUIT
RETR
RMD
RNFR
RNTO
STOR
STOU
STRU
TYPE
USER
XCUP
XCWD
XMKD
XPWD
XRMD

Description
abort previous command
specify account (ignored)
allocate storage (vacuously)
append to a file
change to parent of current working directory
change working directory
delete a file
give help information
give list files in a directory ("ls -lg")
make a directory
specify data transfer mode
give name list of files in directory ("Is")
do nothing
specify password
prepare for server-to-server transfer
specify data connection port
print the current working directory
terminate session
retrieve a file
remove a directory
specify rename-from file name
specify rename-to file name
store a file
store a file with a unique name
specify data transfer structure
specify data transfer type
specify user name
change to parent of current working directory
change working directory
make a directory
print the current working directory
remove a directory

The remaining ftp requests specified in Internet RFC 959 are recognized, but not imple
mented.

The ftp server will abort an active file transfer only when the ABOR command is preceded by
a Telnet "Interrupt Process" (IP) signal and a Telnet "Synch" signal in the command Telnet
stream, as described in Internet RFC 959.

4.2 Berkeley Distribution April 27, 1985

FTPD(8C) UNIX Programmer's Manual FTPD(8C)

Ftpd interprets file names according to the "globbing" conventions used by csh(I). This
allows users to utilize the metacharacters "•?[){ f''.

Ftpd authenticates users according to three rules.

I) The user name must be in the password data base, letc/passwd, and not have a null
password. In this case a password must be provided by the client before any file
operations may be performed.

2) The user name must not appear in the file /etc!ftpusers.

3) The user must have a standard shell returned by getusershe/1(3).

4) If the user name is "anonymous" or "ftp", an anonymous ftp account must be present
in the password file (user "ftp"). In this case the user is allowed to Jog in by specify
ing any password (by convention this is given as the client host's name).

In the last case, ftpd takes special measures to restrict the client's access privileges. The server
performs a chroot(2) command to the home directory of the "ftp" user. In order that system
security is not breached, it is recommended that the "ftp" subtree be constructed with care;
the following rules are recommended.

-ftp) Make the home directory owned by "ftp" and unwritable by anyone.

-ftp/bin)

-ftp/etc)

Make this directory owned by the super-user and unwritable by anyone. The program
ls(I) must be present to support the list commands. This program should have mode
111.

Make this directory owned by the super-user and unwritable by anyone. The files
passwd(5) and group(5) must be present for the ls command to work properly. These
files should be mode 444.

-ftp/pub)
Make this directory mode 777 and owned by "ftp". Users should then place files
which are to be accessible via the anonymous account in this directory.

SEE ALSO

BUGS

ftp(1 C), getusershell(3), syslogd(8)

The anonymous account is inherently dangerous and should avoided when possible.

The server must run as the super-user to create sockets with privileged port numbers. It
maintains an effective user id of the Jogged in user, reverting to the super-user only when
binding addresses to sockets. The possible security holes have been extensively scrutinized,
but are possibly incomplete.

4.2 Berkeley Distribution April 27, 1985 2

GETT ABLE (SC) UNIX Programmer's Manual GETTABLE(SC)

NAME
gettable - get NIC format host tables from a host

SYNOPSIS
/etc/gettable [-v] host [outfile]

DESCRIPTION
Gettable is a simple program used to obtain the NIC standard host tables from a "nicname"
server. The indicated host is queried for the tables. The tables, if retrieved, are placed in the
file outfile or by default, hosts. txt.

The -v option will get just the version number instead of the complete host table and put the
output in the file out.file or by default, hosts. ver.

Gettable operates by opening a TCP connection to the port indicated in the service
specification for "nicname". A request is then made for "ALL" names and the resultant
information is placed in the output file.

Gettable is best used in conjunction with the htable(8) program which converts the NIC stan
dard file format to that used by the network library lookup routines.

SEEAISO

BUGS

intro(3N), htable(8), named(8)

If the name-domain system provided network name mapping well as host name mapping,
gettable would no longer be needed.

4.2 Berkeley Distribution May 22, 1986

GETTY(8} UNIX Programmer's Manual GETTY(8)

NAME
getty - set terminal mode

SYNOPSIS
/etc/getty [type [tty 11

DESCRIPTION
Getty is usually invoked by init(8) to open and initialize the tty line, read a login name, and
invoke login(I}. getty attempts to adapt the system to the speed and type of terminal being
used.

The argument tty is the special device file in /dev to open for the terminal (e.g., "ttyhO"). If
there is no argument or the argument is "-", the tty line is assumed to be open as file descrip
tor 0.

The type argument can be used to make getty treat the terminal line specially. This argument
is used as an index into the gettytab(5) database, to determine the characteristics of the line.
If there is no argument, or there is no such table, the default table is used. If there is no
/etc/gettytab a set of system defaults is used. If indicated by the table located, getty will clear
the terminal screen, print a banner heading, and prompt for a login name. Usually either the
banner of the login prompt will include the system hostname. Then the user's name is read, a
character at a time. If a null character is received, it is assumed to be the result of the user
pushing the 'break' ('interrupt') key. The speed is usually then changed and the 'login:' is
typed again; a second 'break' changes the speed again and the 'login:' is typed once more.
Successive 'break' characters cycle through the same standard set of speeds.

The user's name is terminated by a new-line or carriage-return character. The latter results in
the system being set to treat carriage returns appropriately (see tty(4)).

The user's name is scanned to see if it contains any lower-case alphabetic characters; if not,
and if the name is nonempty, the system is told to map any future upper-case characters into
the corresponding lower-case characters.

Finally, login is called with the user's name as an argument.

Most of the default actions of getty can be circumvented, or modified, by a suitable gettytab
table.

Getty can be set to timeout after some interval, which will cause dial up lines to hang up if
the login name is not entered reasonably quickly.

DIAGNOSTICS

FILES

ttyxx: No such device or address. ttyxx: No such file or address. A terminal which is turned
on in the ttys file cannot be opened, likely because the requisite lines are either not configured
into the system, the associated device was not attached during boot-time system configuration,
or the special file in /dev does not exist.

/etc/gettytab

SEE ALSO
gettytab(5}, init(8}, login(!), ioctl(2), tty(4), ttys(5)

4th Berkeley Distribution May 22, 1986

HALT(8) UNIX Programmer's Manual HALT(8)

NAME
halt - stop the processor

SYNOPSIS
/etc/halt [-n] [-q] [-y]

DESCRIPTION
Halt writes out sandbagged information to the disks and then stops the processor. The
machine does not reboot, even if the auto-reboot switch is set on the console.

The -n option prevents the sync before stopping. The _-q option causes a quick halt, no grace
ful shutdown is attempted. The -y option is needed if you are trying to halt the system from
a dialup.

Halt normally logs the shutdown using syslog(8) and places a shutdown record in the login
accounting file /usr/adm/wtmp. These actions are inhibited if the -n or -q options are
present.

SEE ALSO

BUGS

reboot(8), shutdown(8), syslogd(8)

It is very difficult to halt a VAX, as the machine wants to then reboot itself. A rather tight
loop suffices.

4th Berkeley Distribution May 24, 1986

-,

HTABLE(8) UNIX Programmer's Manual HTABLE(8)

NAME
htable - convert NIC standard format host tables

SYNOPSIS
/etc/htable [-c connected-nets] [-I local-nets] file

DESCRIPTION
Htable is used to convert host files in the format specified in Internet RFC 810 to the format
used by the network library routines. Three files are created as a result of running htable:
hosts, networks, and gateways. The hosts file may be used by the gethostbyname(3N) routines
in mapping host names to addresses if the nameserver, named(8), is not used. The networks
file is used by the getnetent(3N) routines in mapping network names to numbers. The gate
ways file may be used by the routing daemon in identifying "passive" Internet gateways; see
routed(8C) for an explanation.

If any of the files localhosts, loca/networks, or localgateways are present in the current direc
tory, the file's contents is prepended to the output file. Of these, only the gateways file is
interpreted. This allows sites to maintain local aliases and entries which are not normally
present in the master database. Only one gateway to each network will be placed in the gate
ways file; a gateway listed in the localgateways file will override any in the input file.

If the gateways file is to be used, a list of networks to which the host is directly connected is
specified with the -c flag. The networks, separated by commas, may be given by name or in
Internet-standard dot notation, e.g. -c arpanet,128.32,local-ether-net. Htable only includes
gateways which are directly connected to one of the networks specified, or which can be
reached from another gateway on a connected net.

If the -1 option is given with a list of networks (in the same format as for -c), these networks
will be treated as "local," and information about hosts on local networks is taken only from
the localhosts file. Entries for local hosts from the main database will be omitted. This
allows the localhosts file to completely override any entries in the input file.

Htable is best used in conjunction with the gettable(8C) program which retrieves the NIC
database from a host.

SEEAl.SO

BUGS

intro(3N), gettable(8C), named(8)

If the name-domain system provided network name mapping well as host name mapping,
htab/e would no longer be needed.

4.2 Berkeley Distribution May 22, 1986

ICHECK(8) UNIX Programmer's Manual ICHECK(8)

NAME
icheck - file system storage consistency check

SYNOPSIS
/etc/icheck [-s] [-b numbers] [filesystem]

DESCRIPTION

FILES

N.B.: Icheck is obsoleted for normal consistency checking by feck(8).

Icheck examines a file system, builds a bit map of used blocks, and compares this bit map
against the free list maintained on the file system. If the file system is not specified, a set of
default file systems is checked. The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and
character special files.

The total number of blocks in use and the numbers of single-, double-, and triple
indirect blocks and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free list.

The -s option causes icheck to ignore the actual free list and reconstruct a new one by rewrit
ing the super-block of the file system. The file system should be dismounted while this is
done; if this is not possible (for example if the root file system has to be salvaged) care should
be taken that the system is quiescent and that it is rebooted immediately afterwards so that
the old, bad in-core copy of the super-block will not continue to be used. Notice also that the
words in the super-block which indicate the size of the free list and of the i-list are believed.
If the super-block has been curdled these words will have to be patched. The -s option causes
the normal output reports to be suppressed.

Following the -b option is a list of block numbers; whenever any of the named blocks turns
up in a file, a diagnostic is produced.

Icheck is faster if the raw version of the special file is used, since it reads the i-list many
blocks at a time.

Default file systems vary with installation.

SEE ALSO
fsck(8), dcheck(8), ncheck(8), fs(5), clri(8)

DIAGNOSTICS

BUGS

For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the
difficulty, the i-number, and the kind of block involved. If a read error is encountered, the
block number of the bad block is printed and icheck considers it to contain 0. 'Bad freeblock'
means that a block number outside the available space was encountered in the free list. 'n
dups in free' means that n blocks were found in the free list which duplicate blocks either in
some file or in the earlier part of the free list.

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if
applied to active file systems.

It believes even preposterous super-blocks and consequently can get core images.

The system should be fixed so that the reboot after fixing the root file system is not necessary.

4th Berkeley Distribution April 27, 1985

IFCONFIG(8C) UNIX Programmer's Manual IFCONFIG (8C)

NAME
ifconfig - configure network interface parameters

SYOPNSIS
/etc/ifconfig interface address_family [address [dest_address]] [parameters]
/etc/ifconfig interface [protocoLfamily]

DESCRIPTION
Jfconfig is used to assign an address to a network interface and/or configure network interface
parameters. Jfconfig must be used at boot time to define the network address of each inter
face present on a machine; it may also be used at a later time to redefine an interface's
address or other operating parameters. The interface parameter is a string of the form "name
unit", e.g. "enO".

Since an interface may receive transmissions in differing protocols, each of which may require
separate naming schemes, it is necessary to specify the addressJamily, which may change the
interpretation of the remaining parameters. The address families currently supported are
"inet" and "ns".

For the DARPA-Internet family, the address is either a host name present in the host name
data base, hosts(5), or a DARPA Internet address expressed in the Internet standard "dot
notation". For the Xerox Network Systems(tm) family, addresses are net:a.b.c.d.e.f, where net
is the assigned network number (in decimal), and each of the six bytes of the host number, a
through f, are specified in hexadecimal. The host number may be omitted on lOMb/s Ether
net interfaces, which use the hardware physical address, and on interfaces other than the first.

The following parameters may be set with ifconfig:

up

down

trailers

-trailers

arp

-arp

metric n

Mark an interface "up". This may be used to enable an interface after an
"ifconfig down." It happens automatically when setting the first address on an
interface. If the interface was reset when previously marked down, the
hardware will be re-initialized.

Mark an interface "down". When an interface is marked "down", the system
will not attempt to transmit messages through that interface. If possible, the
interface will be reset to disable reception as well. This action does not
automatically disable routes using the interface.

Request the use of a "trailer" link level encapsulation when sending (default).
If a network interface supports trailers, the system will, when possible, encap
sulate outgoing messages in a manner which minimizes the number of
memory to memory copy operations performed by the receiver. On networks
that support the Address Resolution Protocol (see arp(4P); currently, only 10
Mb/s Ethernet), this flag indicates that the system should request that other
systems use trailers when sending to this host. Similarly, trailer encapsula
tions will be sent to other hosis that have made such requests. Currently
used by Internet protocols only.

Disable the use of a "trailer" link level encapsulation.

Enable the use of the Address Resolution Protocol in mapping between net
work level addresses and link level addresses (default). This is currently
implemented for mapping between DARPA Internet addresses and lOMb/s
Ethernet addresses.

Disable the use of the Address Resolution Protocol.

Set the routing metric of the interface to n, default 0. The routing metric is
used by the routing protocol (routed(8c)). Higher metrics have the effect of
making a route less favorable; metrics are counted as addition hops to the
destination network or host.

4.2 Berkeley Distribution May 22, 1986

IFCONFIG(SC) UNIX Programmer's Manual IFCONFIG (SC)

debug Enable driver dependent debugging code; usually, this turns on extra console
error logging.

-debug Disable driver dependent debugging code.

netmask mask (Inet only) Specify how much of the address to reserve for subdividing net
works into sub-networks. The mask includes the network part of the local
address and the subnet part, which is taken from the host field of the address.
The mask can be specified as a single hexadecimal number with a leading Ox,
with a dot-notation Internet address, or with .a pseudo-network name listed in
the network table networks(5). The mask contains I's for the bit positions in
the 32-bit address which are to be used for the network and subnet parts, and
O's for the host part. The mask should contain at least the standard network
portion, and the subnet field should be contiguous with the network portion.

dstaddr Specify the address of the correspondent on the other end of a point to point
link.

broadcast (lnet only) Specify the address to use to represent broadcasts to the network.
The default broadcast address is the address with a host part of all I's.

ipdst (NS only) This is used to specify an Internet host who is willing to receive ip
packets encapsulating NS packets bound for a remote network. In this case,
an apparent point to point link is constructed, and the address specified will
be taken as the NS address and network of the destinee.

Ifconfig displays the current configuration for a network interface when no optional parame
ters are supplied. If a protocol family is specified, Ifconfig will report only the details specific
to that protocol family.

Only the super-user may modify the configuration of a network interface.

DIAGNOSTICS
Messages indicating the specified interface does not exit, the requested address is unknown, or
the user is not privileged and tried to alter an interface's configuration.

SEEAISO
netstat(I), intro(4N), rc(8)

4.2 Berkeley Distribution May 22, 1986 2

IMPLOG(8C) UNIX Programmer's Manual IMPLOG(8C)

NAME
implog - IMP log interpreter

SYNOPSIS
/etc/implog [-D] [-f] [-c] [-r] [-1 [link]] [-h host#] [-i imp#] [-t message-type]

DESCRIPTION
Imp!og is program which interprets the message log produced by implogd(8C).

If no arguments are specified, imp/og interprets and prints every message present in the mes
sage file. Options may be specified to force printing only a subset of the logged messages.

-D Do not show data messages.

-f Follow the logging process in action. This flags causes imp/og to print the current
contents of the log file, then check for new logged messages every 5 seconds.

-c In addition to printing any data messages logged, show the contents of the data in
hexadecimal bytes.

-r Print the raw imp leader, showing all fields, in addition to the formatted interpreta
tion according to type.

-1 [link#]
Show only those messages received on the specified "link". If no value is given for
the link, the link number of the IP protocol is assumed.

-h host#

-i imp#

Show only those messages received from the specified host. (Usually specified in con
junction with an imp.)

Show only those messages received from the specified imp.

-t message-type
Show only those messages received of the specified message type.

SEEAISO

BUGS

imp(4P), implogd(8C)

Can not specify multiple hosts, imps, etc. Can not follow reception of messages without look
ing at those currently in the file.

4.2 Berkeley Distribution May 5, 1986

IMPLOGD (8C) UNIX Programmer's Manual IMPLOGD(8C)

NAME
implogd - IMP logger process

SYNOPSIS
/etc/implogd [-d]

DESCRIPTION
Implogd is program which logs error messages from the IMP, placing them in the file
/usrladmlimplog.

Entries in the file are variable length. Each log entry has a fixed length header of the form:

struct sockstamp (

);

short sin_family;
u_short sin_port;
struct in_addr sin_addr;
time_t sin_time;
int sin_len;

followed, possibly, by the message received from the IMP. Each time the logging process is
started up it places a time stamp entry in the file (a header with sin_len field set to 0).

The logging process will catch only those message from the IMP which are not processed by a
protocol module, e.g. IP. This implies the log should contain only status information such as
"IMP going down" messages, "host down" and other error messages, and, perhaps, stray NCP
messages.

SEE ALSO
imp(4P), implog(8C)

4.2 Berkeley Distribution May 22, 1986

INETD(8) UNIX Programmer's Manual INETD(8)

NAME
inetd - internet "super-server"

SYNOPSIS
/etc/inetd [-d] [configuration file]

DESCRIPTION
Inetd should be run at boot time by letclrc./oca/. It then listens for connections on certain
internet sockets. When a connection is found on one of its sockets, it decides what service
the socket corresponds to, and invokes a program to service the request. After the program is
finished, it continues to listen on the socket (except in some cases which will be described
below). Essentially, inetd allows running one daemon to invoke several others, reducing load
on the system.

Upon execution, inetd reads its configuration information from a configuration file which, by
default, is letclinetd.conf There must be an entry for each field of the configuration file, with
entries for each field separated by a tab or a space. Comments are denoted by a "#" at the
beginning of a line. There must be an entry for each field. The fields of the configuration file
are as follows:

service name
socket type
protocol
wait/nowait
user
server program
server program arguments

The service name entry is the name of a valid service in the file /etc/services/. For "internal"
services (discussed below), the service name must be the official name of the service (that is,
the first entry in /etc/services).

The socket type should be one of "stream", "dgram'', "raw", "rdm", or "seqpacket'', depend
ing on whether the socket is a stream, datagram, raw, reliably delivered message, or sequenced
packet socket.

The protocol must be a valid protocol as given in /etc/protocols. Examples might be "tcp" or
''udp".

The waitlnowait entry is applicable to datagram sockets only (other sockets should have a
"nowait" entry in this space). If a datagram server connects to its peer, freeing the socket so
inetd can received further messages on the socket, it is said to be a "multi-threaded" server,
and should use the "nowait" entry. For datagram servers which process all incoming
datagrams on a socket and eventually time out, the server is said to be "single-threaded" and
should use a "wait" entry. "Comsat" ("bifr') and "talk" are both examples of the latter type
of datagram server. Tfipd is an exception; it is a datagram server that establishes pseudo
connections. It must be listed as "wait" in order to avoid a race; the server reads the first
packet, creates a new socket, and then forks and exits to allow inetd to check for new service
requests to spawn new servers.

The user entry should contain the user name of the user as whom the server should run. This
allows for servers to be given less permission than root. The server program entry should con
tain the pathname of the program which is to be executed by inetd when a request is found on
its socket. If inetd provides this service internally, this entry should be "internal".

The arguments to the server program should be just as they normally are, starting with
argv[O], which is the name of the program. If the service is provided internally, the word
"internal" should take the place of this entry.

4.3 Berkeley Distribution May 26, 1986

INETD(8) UNIX Programmer's Manual INETD(8)

Inetd provides several "trivial" services internally by use of routines within itself. These ser
vices are "echo", "discard", "chargen" (character generator), "daytime" (human readable
time), and "time" (machine readable time, in the form of the number of seconds since mid
night, January 1, 1900). All of these services are tcp based. For details of these services, con
sult the appropriate RFC from the Network Information Center.

lnetd rereads its configuration file when it receives a hangup signal, SIGHUP. Services may
be added, deleted or modified when the configuration file is reread.

SEE AI.SO
comsat(8C), ftpd(8C), rexecd(8C), rlogind(8C), rshd(8C), telnetd(8C), tftpd(8C)

4.3 Berkeley Distribution May 26, 1986 2

INIT(8) UNIX Programmer's Manual INIT(S)

NAME
init - process control initialization

SYNOPSIS
/etc/in it

DESCRIPTION
!nit is invoked inside UNIX as the last step in the boot procedure. It normally then runs the
automatic reboot sequence as described in reboot(S), and if this succeeds, begins multi-user
operation. If the reboot fails, it commences single user operation by giving the super-user a
shell on the console. It is possible to pass parameters from the boot program to init so that
single user operation is commenced immediately. When such single user operation is ter
minated by killing the single-user shell (i.e. by hitting -o), init runs !etc/re without the reboot
parameter. This command file performs housekeeping operations such as removing tem
porary files, mounting file systems, and starting daemons.

In multi-user operation, init's role is to create a process for each terminal port on which a
user may log in. To begin such operations, it reads the file /etc/ttys and executes a command
for each terminal specified in the file. This command will usually be /etc/getty. Getty opens
and initializes the terminal line, reads the user's name and invokes login to log in the user
and execute the Shell.

Ultimately the Shell will terminate because of an end-of-file either typed explicitly or gen
erated as a result of hanging up. The main path of in it, which has been waiting for such an
event, wakes up and removes the appropriate entry from the file utmp, which records current
users, and makes an entry in /usrladmlwtmp, which maintains a history of logins and logouts.
The wtmp entry is made only if a user logged in successfully on the line. Then the appropri
ate terminal is reopened and getty is reinvoked.

!nit catches the hangup signal (signal SIGHUP) and interprets it to mean that the file !etc/ttys
should be read again. The Shell process on each line which used to be active in ttys but is no
longer there is terminated; a new process is created for each added line; lines unchanged in
the file are undisturbed. Thus it is possible to drop or add terminal lines without rebooting
the system by changing the ttys file and sending a hangup signal to the init process: use 'kill
-HUP I.'

!nit will terminate multi-user operations and resume single-user mode if sent a terminate
(TERM) signal, i.e. "kill - TERM I". If there are processes outstanding which are deadlocked
(due to hardware or software failure), init will not wait for them all to die (which might take
forever), but will time out after 30 seconds and print a warning message.

!nit will cease creating new getty's and allow the system to slowly die away, if it is sent a ter
minal stop (TSTP) signal, i.e. "kill -TSTP I". A later hangup will resume full multi-user
operations, or a terminate will initiate a single user shell. This hook is used by reboot(B) and
halt(B).

!nit's role is so critical that if it dies, the system will reboot itself automatically. If, at
bootstrap time, the init process cannot be located, the system will loop in user mode at loca
tion Ox13.

DIAGNOSTICS
/etc/getty gettyargs failing, sleeping. A process being started to service a line is exiting quickly
each time it is started. This is often caused by a ringing or noisy terminal line. /nit will sleep
for 30 seconds,

WARNING: Something is hung (wont die); ps ax! advised. A process is hung and could not be
killed when the system was shutting down. This is usually caused by a process which is stuck
in a device driver due to a persistent device error condition.

4th Berkeley Distribution May 22, 1986

JNIT(8) UNIX Programmer's Manual

FILES
/dev/console, /dev/tty•, /etc/utmp, /usr/adm/wtmp, /etc/ttys, /etc/re

SEE ALSO

JNIT(8)

login(!), kill(I), sh(!), ttys(S), crash(8V), getty(8), rc(8), reboot(8), halt(8), shutdown(8)

4th Berkeley Distribution May 22, 1986 2

KGMON(8) UNIX Programmer's Manual KGMON(8)

NAME
kgmon - generate a dump of the operating system's profile buffers

SYNOPSIS
/etc/kgmon [-b] [-h] [-r] [-p] [system] [memory]

DESCRIPTION

FILES

Kgmon is a tool used when profiling the operating system. When no arguments are supplied,
kgmon indicates the state of operating system profiling as running, off, or not configured. (see
config(8)) If the -p flag is specified, kgmon extracts profile data from the operating system and
produces a gmon.out file suitable for later analysis by gprof(l).

The following options may be specified:

-b Resume the collection of profile data.

-h Stop the collection of profile data.

-p Dump the contents of the profile buffers into a gmon.out file.

-r Reset all the profile buffers. If the -p flag is also specified, the gmon.out file is gen-
erated before the buffers are reset.

If neither -b nor -h is specified, the state of profiling collection remains unchanged. For
example, if the -p flag is specified and profile data is being collected, profiling will be momen
tarily suspended, the operating system profile buffers will be dumped, and profiling will be
immediately resumed.

/vmunix - the default system
/dev/kmem - the default memory

SEE Al.SO
gprof(I), config(8)

DIAGNOSTICS
Users with only read permission on /dev/kmem cannot change the state of profiling collection.
They can get a gmon.out file with the warning that the data may be inconsistent if profiling is
in progress.

4.2 Berkeley Distribution April 27, 1985

LPC(8) UNIX Programmer's Manual LPC(8)

NAME
lpc - line printer control program

SYNOPSIS
/etc/lpc [command [argument ...]]

DESCRIPTION
Lpc is used by the system administrator to control the operation of the line printer system.
For each line printer configured in /etc/printcap, !pc may be used to:

e disable or enable a printer,

o disable or enable a printer's spooling queue,

o rearrange the order of jobs in a spooling queue,

e find the status of printers, and their associated spooling queues and printer dameons.

Without any arguments, /pc will prompt for commands from the standard input. If argu
ments are supplied, /pc interprets the first argument as a command and the remaining argu
ments as parameters to the command. The standard input may be redirected causing !pc to
read commands from file. Commands may be abreviated; the following is the list of recog
nized commands.

? [command ...]

help [command ...]
Print a short description of each command specified in the argument list, or, if no
arguments are given, a list of the recognized commands.

abort { all I printer ... }
Terminate an active spooling daemon on the local host immediately and then disable
printing (preventing new daemons from being started by /pr) for the specified printers.

clean { all I printer ... }
Remove any temporary files, data files, and control files that cannot be printed (i.e.,
do not form a complete printer job) from the specified printer queue(s) on the local
machine.

disable { all I printer ... }
Tum the specified printer queues off. This prevents new printer jobs from being
entered into the queue by /pr.

down { all I printer } message ...
Tum the specified printer queue off, disable printing and put message in the printer
status file. The message doesn't need to be quoted, the remaining arguments are
treated like echo(I). This is normally used to take a printer down and let others know
why (lpq will indicate the printer is down and print the status message).

enable { all I printer ... }

exit

quit

Enable spooling on the local queue for the listed printers. This will allow /pr to put
new jobs in the spool queue.

Exit from lpc.

restart { all I printer ... }
Attempt to start a new printer daemon. This is useful when some abnormal condition
causes the daemon to die unexpectedly leaving jobs in ~he queue. Lpq will report that
there is no daemon present when this condition occurs. If the user is the super-user,
try to abort the current daemon first (i.e., kill and restart a stuck daemon).

4.2 Berkeley Distribution April 27, 1985

LPC(8) UNIX Programmer's Manual LPC(8)

start { all I printer ... }
Enable printing and start a spooling daemon for the listed printers.

status { all I printer ... }
Display the status of daemons and queues on the local machine.

stop (all I printer ... }
Stop a spooling daemon after the current job completes and disable printing.

topq printer [jobnum ...] [user ...]
Place the jobs in the order listed at the top of the printer queue.

up { all I printer ... }
Enable everything and start a new printer daemon. Undoes the effects of down.

FILES
/etc/printcap
/usr/spool/*
/usr/spool/•/lock

printer description file
spool directories
lock file for queue control

SEE ALSO
lpd(8), !pr(1), lpq(1), lprm(1), printcap(5)

DIAGNOSTICS
?Ambiguous command
?Invalid command
?Privileged command

4.2 Berkeley Distribution

abreviation matches more than one command
no match was found
command can be executed by root only

April 27, 1985 2

LPD(8) UNIX Programmer's Manual LPD(8)

NAME
!pd - line printer daemon

SYNOPSIS
/usr/lib/lpd [-I] [port #]

DESCRIPTION
Lpd is the line printer daemon (spool area handler) and is normally invoked at boot time
from the rc(S) file. It makes a single pass through the printcap(5) file to find out about the
existing printers and prints any files left after a crash. It then uses the system calls listen(2)
and accept(2) to receive requests to print files in the queue, transfer files to the spooling area,
display the queue, or remove jobs from the queue. In each case, it forks a child to handle the
request so the parent can continue to listen for more requests. The Internet port number used
to rendezvous with other processes is normally obtained with getservbyname(3) but can be
changed with the port# argument. The -I flag causes /pd to log valid requests received from
the network. This can be useful for debugging purposes.

Access control is provided by two means. First, All requests must come from one of the
machines listed in the file /etc/hosts.equiv or /etclhosts.lpd. Second, if the "rs" capability is
specified in the printcap entry for the printer being accessed, /pr requests will only be honored
for those users with accounts on the machine with the printer.

The file minfree in each spool directory contains the number of disk blocks to leave free so
that the line printer queue won't completely fill the disk. The minfree file can be edited with
your favorite text editor.

The file lock in each spool directory is used to prevent multiple daemons from becoming
active simultaneously, and to store information about the daemon process for !pr(!), /pq(l),
and lprm (1). After the daemon has successfully set the lock, it scans the directory for files
beginning with cf Lines in each c/file specify files to be printed or non-printing actions to be
performed. Each such line begins with a key character to specify what to do with the
remainder of the line.

J Job Name. String to be used for the job name on the burst page.

C Classification. String to be used for the classification line on the burst page.

L Literal. The line contains identification info from the password file and causes the
banner page to be printed.

T Title. String to be used as the title for pr(l).

H Host Name. Name of the machine where /pr was invoked.

P Person. Login name of the person who invoked /pr. This is used to verify ownership
by tprm.

M Send mail to the specified user when the current print job completes.

f Formatted File. Name of a file to print which is already formatted.

Like "f' but passes control characters and does not make page breaks.

p Name of a file to print using pr(!) as a filter.

Troff File. The file contains troff(!) output (cat phototypesetter commands).

n Di troff File. The file contains device independent troff output.

d DVI File. The file contains Tex(!) output (DVI format from Standford).

g Graph File. The file contains data produced by plot(3X).

c Cifplot File. The file contains data produced by cifplot.

4.2 Berkeley Distribution December 8, 1985

LPD(8) UNIX Programmer's Manual LPD(8)

FILES

v The file contains a raster image.

r The file contains text data with FORTRAN carriage control characters.

I Troff Font R. Name of the font file to use instead of the default.

2 Troff Font I. Name of the font file to use instead of the default.

3 Troff Font B. Name of the font file to use instead of the default.

4 Troff Font S. Name of the font file to use instead of the default.

W Width. Changes the page width (in characters) used by pr(!) and the text filters.

I Indent. The number of characters to indent the output by (in ascii).

U Unlink. Name of file to remove upon completion of printing.

N File name. The name of the file which is being printed, or a blank for the standard
input (when /pr is invoked in a pipeline).

If a file can not be opened, a message will be logged via syslog(3) using the LOG_LPR facility.
Lpd will try up to 20 times to reopen a file it expects to be there, after which it will skip the
file to be printed.

Lpd uses j[ock(2) to provide exclusive access to the lock file and to prevent multiple deamons
from becoming active simultaneously. If the daemon should be killed or die unexpectedly,
the lock file need not be removed. The lock file is kept in a readable ASCII form and con
tains two lines. The first is the process id of the daemon and the second is the control file
name of the current job being printed. The second line is updated to reflect the current status
of /pd for the programs /pq(I) and /prm(I).

/etc/printcap printer description file
/usr/spool/* spool directories
/usr/spool/*/minfree minimum free space to leave
/dev/lp* line printer devices
/dev/printer socket for local requests
/etc/hosts.equiv lists machine names allowed printer access
/etc/hosts.lpd lists machine names allowed printer access,

but not under same administrative control.

SEE ALSO
lpc(8), pac(l), !pr(!), lpq(l), lprm(l), syslog(3), printcap(5)
4.2BSD Line Printer Spooler Manual

4.2 Berkeley Distribution December 8, 1985 2

MAKEDEV(8) UNIX Programmer's Manual MAKEDEV(8)

NAME
makedev - make system special files

SYNOPSIS
/dev/MAKEDEV device ...

DESCRIPTION
MAKEDEV is a shell script normally used to install special files. It resides in the /dev direc
tory, as this is the normal location of special files. Arguments to MAKEDEV are usually of
the form device-name? where device-name is one of the supported devices listed in section 4
of the manual and "?" is a logical unit number (0-9). A few special arguments create assorted
collections of devices and are listed below.

std Create the standard devices for the system; e.g. /dev/console, /dev/tty. The VAX-
11/780 console floppy device, /dev/floppy, and VAX-11/750 and VAX-11/730 console
cassette device(s), /dev/tu?, are also created with this entry.

local Create those devices specific to the local site. This request causes the shell file
ldev/MAKEDEV.local to be executed. Site specific commands, such as those used to
setup dialup lines as "ttyd?" should be included in this file.

Since all devices are created using mknod(8), this shell script is useful only to the super-user.

DIAGNOSTICS
Either self-explanatory, or generated by one of the programs called from the script. Use "sh
-x MAKEDEV" in case of trouble.

SEEAISO
intro(4), config(8), mknod(8)

4.2 Berkeley Distribution May 19, 1986

MAKEKEY(8) UNIX Programmer's Manual MAKEKEY(8)

NAME
makekey - generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the
amount of time required to search the key space. It reads 10 bytes from its standard input,
and writes 13 bytes on its standard output. The output depends on the input in a way
intended to be difficult to compute (that is, to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the
salt) are best chosen from the set of digits, upper- and lower-case letters, and '.' and '/'. The
salt characters are repeated as the first two characters of the output. The remaining 11 output
characters are chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of
4096 cryptographic machines all based on the National Bureau of Standards DES algorithm,
but modified in 4096 different ways. Using the input key as key, a constant string is fed into
the machine and recirculated a number of times. The 64 bits that come out are distributed
into the 66 useful key bits in the result.

Makekey is intended for programs that perform encryption (for instance, ed and crypt(!)).
Usually makekey's input and output will be pipes.

SEE ALSO
crypt(!), ed(1)

7th Edition April 27, 1985

MKFS(8) UNIX Programmer's Manual MKFS(8)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs [-N] special size [nsect [ntrack [blksize [fragsize [ncpg [minfree [rps [nbpi [
opt]]]]]]]]]

DESCRIPTION
N.B.: file system are normally created with the newft(8) command.

Mkfs constructs a file system by writing on the special file special unless the -N flag has been
specified. The numeric size specifies the number of sectors in the file system. Mkfs builds a
file system with a root directory and a lost+ found directory. (see ftck(8)) The number of i
nodes is calculated as a function of the file system size. No boot program is initialized by
mkft (see newft(8).)

The optional arguments allow fine tune control over the parameters of the file system. Nsect
specify the number of sectors per track on the disk. Ntrack specify the number of tracks per
cylinder on the disk. Blksize gives the primary block size for files on the file system. It must
be a power of two, currently selected from 4096 or 8192. Fragsize gives the fragment size for
files on the file system. The fragsize represents the smallest amount of disk space that will be
allocated to a file. It must be a power of two currently selected from the range 512 to 8192.
Ncpg specifies the number of disk cylinders per cylinder group. This number must be in the
range 1 to 32. Minfree specifies the minimum percentage of free disk space allowed. Once
the file system capacity reaches this threshold, only the super-user is allowed to allocate disk
blocks. The default value is 10%. If a disk does not revolve at 60 revolutions per second, the
rps parameter may be specified. If a file system will have more or less than the average
number of files the nbpi (number of bytes per inode) can be specified to increase or decrease
the number of inodes that are created. Space or time optimization preference can be specified
with opt values of "s" for space or "t" for time. Users with special demands for their file sys
tems are referred to the paper cited below for a discussion of the tradeoffs in using different
configurations.

SEE ALSO

BUGS

fs(5), dir(5), fsck(8), newfs(8), tunefs(8)

M. McKusick, W. Joy, S. Leffler, R. Fabry, "A Fast File System for UNIX", ACM Transac
tions on Computer Systems 2, 3. pp 181-197, August 1984. (reprinted in the System
Manager's Manual, SMM:14)

There should be some way to specify bad blocks.

4th Berkeley Distribution May 21, 1986

MKHOSTS(8) UNIX Programmer's Manual MKHOSTS(8)

NAME
mkhosts - generate hashed host table

SYNOPSIS
/etc/mkhosts [-v] hostfile

DESCRIPTION

FILES

Mkhosts is used to generated the hashed host database used by one version of the library rou
tines gethostbyaddrO and gethostbynameO. It is not used if host name translation is per
formed by named(8). If the -v option is supplied, each host will be listed as it is added. The
file hostfi/e is usually /etc/hosts, and in any case must be in the format of /etc/hosts (see
hosts(5)). Mkhosts will generate database files named hostfi/e.pag and hostfile.dir. The new
database is build in a set of temporary files and only replaces the real database if the new one
is built without errors. Mkhosts will exit with a non-zero exit code if any errors are detected.

hostfile.pag - real database filenames
hostfile.dir
hostfi/e.new.pag - temporary database filenames
hostfile.new.dir

SEE AISO
gethostbyname(3), gettable(8), hosts(5), htable(8), named(8)

4.3 Berkeley Distribution May 23, 1986

MKLOST +FOUND(8) UNIX Programmer's Manual MKLOST +FOUND (8)

NAME
mldost+found - make a lost+found directory for fsck

SYNOPSIS
/etc/mklost+found

DF.SCRIPI'ION
A directory /ost+found is created in the current directory and a number of empty files are
created therein and then removed so that there will be empty slots for feck(8). This command
should not normally be needed since mkfe(8) automatically creates the lost+ found directory
when a new file system is created. ·

SEEAISO
fsck(8), mkfs(8)

4th Berkeley Distribution April 27, 1985

MKNOD(8) UNIX Programmer's Manual MKNOD(8)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name [c] [b] major minor

DESCRIPTION
Mknod makes a special file. The first argument is the name of the entry. The second is b if
the special file is block-type (disks, tape) or c if it is character-type (other devices). The last
two arguments are numbers specifying the major device type and the minor device (e.g. unit,
drive, or line number).

The assignment of major device numbers is specific to each system. They have to be dug out
of the system source file confc.

SEE ALSO
mknod(2), makedev(8)

4th Berkeley Distribution May 19, 1986

MKPASSWD (8) UNIX Programmer's Manual MKP ASSWD (8)

NAME
mkpasswd - generate hashed password table

SYNOPSIS
/etc/mkpasswd [-v] passwdfile

DESCRIPTION

FILES

Mkpasswd is used to generated the hashed password database used by the library routines
getpwnam() and getpwuid(). If the -v option is supplied, each entry will be listed as it is
added. The file passwdfile is usually /etc/ptmp (invoked by vipw(8)), and in any case must be
in the format of /etc/passwd (see passwd(S)). Mkpasswd will generate database files named
passwdji/e.pag and passwdjile.dir. Mkpasswd will exit with a non-zero exit code if any errors
are detected.

passwdjile.pag - database filenames
passwdji/e.dir

SEE ALSO
getpwent(3), vipw(8), passwd(S)

4.3 Berkeley Distribution June 3, 1986

MKPROTO(S) UNIX Programmer's Manual MKPROTO(S)

NAME
mkproto - construct a prototype file system

SYNOPSIS
/etc/mkproto special proto

DESCRIPTION
Mkproto is used to bootstrap a new file system. First a new file system is created using
newfs(B). Mkproto is then used to copy files from the old file system into the new file system
according to the directions found in the prototype file pro/o. The prototype file contains
tokens separated by spaces or new lines. The first tokens comprise the specification for the
root directory. File specifications consist of tokens giving the mode, the user-id, the group id,
and the initial contents of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the
file. (The characters -bed specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or - to specify set-user-id mode or
not. The third is g or - for the set-group-id mode. The rest of the mode is a three digit octal
number giving the owner, group, and other read, write, execute permissions, see chmod(I).

Two decimal number tokens come after the mode; they specify the user and group !D's of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are
copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory, mkproto makes the entries . and •• and then reads a list of names and
(recursively) file specifications for the entries in the directory. The scan is terminated with
the token$.

A sample prototype specification follows:

d-777 3 I
usr d--777 3 I

sh --755 3 I /bin/sh
ken d--755 6 1

$
bO b-644 3 I 0 0
cO c--644 3 I 0 0
$

$

SEEAISO

BUGS

fs(5), dir(5), fsck(S), newfs(S)

There should be some way to specify links.

There should be some way to specify bad blocks.

Mkproto can only be run on virgin file systems. It should be possible to copy files into
existent file systems.

4.2 Berkeley Distribution April 27, 1985

MOUNT(8) UNIX Programmer's Manual MOUNT(8)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [special name [-r 11
/etc/mount -a

/etc/umount special

/etc/umount -a

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present on the device special.
The file name must exist already; it must be a directory (unless the root of the mounted file
system is not a directory). It becomes the name of the newly mounted root. The optional
argument -r indicates that the file system is to be mounted read-only.

Umount announces to the system that the removable file system previously mounted on dev
ice special is to be removed.

If the -a option is present for either mount or umount, all of the file systems described in
/etclfstab are attempted to be mounted or unmounted. In this case, special and name are
taken from /etclfstab. The special file name from letclfstab is the block special name.

These commands maintain a table of mounted devices in letclmtab. If invoked without an
argument, mount prints the table.

Physically write-protected and magnetic tape file systems must be mounted read-only or errors
will occur when access times are updated, whether or not any explicit write is attempted.

/etc/mtab
/etc/fstab

mount table
file system table

SEE ALSO

BUGS

mount(2), mtab(5), fstab(5)

Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes some apparently good pathnames
invalid.

4th Berkeley Distribution April 27, 1985

NAMED(8) UNIX Programmer's Manual NAMED(8)

NAME
named - Internet domain name server

SYNOPSIS
named [-d debug/eve/] [-p port#] [bootfi/e]

DESCRIPTION
Named is the Internet domain name server (see RFC883 for more details). Without any argu
ments, named will read the default boot file /etc/named.boot, read any initial data and listen
for queries.

Options are:

-d Print debugging information. A number after the "d" determines the level of mes
sages printed.

-p Use a different port number. The default is the standard port number as listed in
/etc/services.

Any additional argument is taken as the name of the boot file. The boot file contains infor
mation about where the name server is to get its initial data. The following is a small exam
ple:

boot file for name server

; type

' domain
primary
secondary
cache

domain source file or host

berkeley.edu
berkeley.edu named.db

cc.berkeley.edu 10.2.0.78 128.32.0.10
named.ca

The first line specifies that "berkeley.edu" is the domain for which the server is authoritative.
The second line states that the file "named.db" contains authoritative data for the domain
"berkeley.edu". The file "named.db" contains data in the master file format described in
RFC883 except that all domain names are relative to the origin; in this case, "berkeley.edu"
(see below for a more detailed description). The second line specifies that all authoritative
data under "cc.berkeley.edu" is to be transferred from the name server at 10.2.0.78. If the
transfer fails it will try 128.32.0.10 and continue trying the address, up to 10, listed on this
line. The secondary copy is also authoritative for the specified domain. The fourth line
specifies data in "named.ca" is to be placed in the cache (i.e., well known data such as loca
tions of root domain servers). The file "named.ca" is in the same format as "named.db".

The master file consists of entries of the form:

$INCLUDE <filename>
$ORIGIN <domain>
<domain> <opt_ttl> <opt_class> <type> <resource_record_data>

where domain is "." for root, "@" for the current origin, or a standard domain name. If
domain is a standard domain name that does not end with".", the cu1Tent origin is appended
to the domain. Domain names ending with "." are unmodified. The opt_ttl field is an
optional integer number for the time-to-live field. It defaults to zero. The opt_class field is
the object address type; currently only one type is supported, IN, for objects connected to the
DARPA Internet. The type field ·is one of the following tokens; the data expected in the
resource_record_data field is in parentheses.

4th Berkeley Distribution 15 November 1985

NAMED(8) UNIX Programmer's Manual NAMED(8)

NOTES

FILES

A a host address (dotted quad)

NS an authoritative name server (domain)

MX a mail exchanger (domain)

CNAME the canonical name for an alias (domain)

SOA marks the start of a zone of authority (5 numbers (see RFC883))

MB

MG

MR

NULL

WKS

PTR

HINFO

MINFO

a mailbox domain name (domain)

a mail group member (domain)

a mail rename domain name (domain)

a null resource record (no format or data)

a well know service description (not implemented yet)

a domain name pointer (domain)

host information (cpu_type OS_type)

mailbox or mail list information (request_domain error_domain)

The following signals have the specified effect when sent to the server process using the kill(l)
command.

SIGHUP Causes server to read named.boot and reload database.

SIGINT Dumps current data base and cache to /usr/tmp/named_dump.db

SIGUSRl Tums on debugging; each SIGUSRl increments debug level.

SIGUSR2 Tums off debugging completely.

/etc/named.boot
/etc/named.pid
/usr/tmp/named.run
/usr/tmp/named_dump.db

name server configuration boot file
the process id
debug output
dump of the name servers database

SEE ALSO
kill(l), gethostbyname(3N), signal(3c), resolver(3), resolver(5), RFC882, RFC883, RFC973,
RFC974, Name Server Operations Guide for BIND

4th Berkeley Distribution 15 November 1985 2

NCHECK(8) UNIX Programmer's Manual NCHECK(8)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
/etc/ncheck [-i numbers] [-a) [-s) filesystems ...

DESCRIPTION
N.B.: For most normal file system maintenance, the function of ncheck is subsumed by
fsck(S).

Ncheck with no options generates a pathname vs. i-number list of all files on every specified
filesystem. Names of directory files are followed by '/.'. The -i option reduces the report to
only those files whose i-numbers follow. The -a option allows printing of the names '.' and
' . .', which are ordinarily suppressed. The -s option reduces the report to special files and files
with set-user-ID mode; it is intended to discover concealed violations of security policy.

The report is in no useful order, and probably should be sorted.

SEE ALSO
sort(!), dcheck(8), fsck(8), icheck(8)

DIAGNOSTICS
When the filesystem structure is improper, '??' denotes the 'parent' of a parentless file and a
pathname beginning with ' .. .' denotes a loop.

4th Berkeley Distribution January 13, 1986

NEWFS(8) UNIX Programmer's Manual NEWFS(8)

NAME
newfs - construct a new file system

SYNOPSIS
/etdnewfs [-N] [-v] [-n] [mkfs-options] special disk-type

DESCRIPTION

FILES

Newfs is a "friendly" front-end to the mkfs(8) program. Newfs will look up the type of disk a
file system is being created on in the disk description file /etcldisktab, calculate the appropri
ate parameters to use in calling mkfs, then build the file system by forking mkfs and, if the file
system is a root partition, install the necessary bootstrap programs in the initial 8 sectors of
the device. The -n option prevents the bootstrap programs from being installed. The -N
option causes the file system parameters to be printed out without actually creating the file
system.

If the -v option is supplied, newfs will print out its actions, including the parameters passed to
mkfs.

Options which may be used to override default parameters passed to mkfs are:

-s size The size of the file system in sectors.

-b block-size
The block size of the file system in bytes.

-f Crag-size
The fragment size of the file system in bytes.

-t #tracks/ cylinder

-c #cylinders/group
The number of cylinders per cylinder group in a file system. The default value
used is 16.

-m free space%
The percentage of space reserved from normal users; the minimum free space
threshhold. The default value used is 10%.

-o optimization preference ("space" or ''time")
The file system can either be instructed to try to minimize the time spent allocat
ing blocks, or to try to minimize the space fragmentation on the disk. If the value
of minfree (see above) is less than 10%, the default is to optimize for space; if the
value of minfree greater than or equal to 10%, the default is to optimize for time.

-r revolutions/minute
The speed of the disk in revolutions per minute (normally 3600).

-S sector-size
The size of a sector in bytes (almost never anything but 512).

-i number of bytes per inode
This specifies the density of inodes in the file system. The default is to create an
inode for each 2048 bytes of data space. If fewer inodes are desired, a larger
number should be used; to create more inodes a smaller number should be given.

/etc/disktab
/etc/mkfs
/usr/mdec

for disk geometry and file system partition information
to actually build the file system
for boot strapping programs

SEE ALSO
disktab(5), fs(5), diskpart(8), fsck(8), format(8), mkfs(8), tunefs(8)

4.2 Berkeley Distribution May 21, 1986

NEWFS(8) UNIX Programmer's Manual NEWFS(8)

BUGS

M. McKusick, W. Joy, S. Leffler, R. Fabry, "A Fast File System for UNIX'', ACM Transac
tions on Computer Systems 2, 3. pp 181-197, August 1984. (reprinted in the System
Manager's Manual, SMM: 14)

Should figure out the type of the disk without the user's help.

4.2 Berkeley Distribution May 21, 1986 2

PAC(8) UNIX Programmer's Manual PAC(8)

NAME
pac - printer/plotter accounting information

SYNOPSIS
/etc/pac [-Pprinter] [-pprice] [-s I [-r] [-c I [-m I [name ...]

DESCRIPTION

FILES

Pac reads the printer/plotter accounting files, accumulating the number of pages (the usual
case) or feet (for raster devices) of paper consumed by each user, and printing out how much
each user consumed in pages or feet and dollars. If any names are specified, then statistics
are only printed for those users; usually, statistics are printed for every user who has used any
paper.

The -P flag causes accounting to be done for the named printer. Normally, accounting is
done for the default printer (site dependent) or the value of the environment variable
PRINTER is used.

The -p flag causes the value price to be used for the cost in dollars instead of the default value
of 0.02 or the price specified in letclprintcap.
The -c flag causes the output to be sorted by cost; usually the output is sorted alphabetically
byname.

The -r flag reverses the sorting order.

The -s flag causes the accounting information to be summarized on the summary accounting
file; this summarization is necessary since on a busy system, the accounting file can grow by
several lines per day.

The -m flag causes the host name to be ignored in the accounting file. This allows for a user
on multiple machines to have all of his printing charges grouped together.

/usr/adm/?acct
/usr/adm/? _sum
/etc/printcap

raw accounting files
summary accounting files
printer capability data base

SEE AISO
printcap(5)

BUGS
The relationship between the computed price and reality is as yet unknown.

4.2 Berkeley Distribution October 30, 1985

PING(8) UNIX Programmer's Manual PING(8)

NAME
ping - send ICMP ECHO_REQUEST packets to network hosts

SYNOPSIS
/etc/ping [-r] [-v] host [packetsize] [count]

DESCRIPTION
The DARPA Internet is a large and complex aggregation of network hardware, connected
together by gateways. Tracking a single-point hardware or software failure can often be
difficult. Ping utilizes the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit
an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams
("pings") have an IP and ICMP header, followed by a struct timeval, and then an arbitrary
number of "pad" bytes used to fill out the packet. Default datagram length is 64 bytes, but
this may be changed using the command-line option. Other options are:

-r Bypass the normal routing tables and send directly to a host on an attached network.
If the host is not on a directly-attached network, an error is returned. This option can
be used to ping a local host through an interface that has no route through it (e.g.,
after the interface was dropped by routed(8C)).

-v Verbose output. ICMP packets other than ECHO RESPONSE that are received are
listed.

When using ping for fault isolation, it should first be run on the local host, to verify that the
local network interface is up and running. Then, hosts and gateways further and further away
should be "pinged". Ping sends one datagram per second, and prints one line of output for
every ECHO_RESPONSE returned. No output is produced if there is no response. If an
optional count is given, only that number of requests is sent. Round-trip times and packet
loss statistics are computed. When all responses have been received or the program times out
(with a count specified), or if the program is terminated with a SIGINT, a brief summary is
displayed.

This program is intended for use in network testing, measurement and management. It
should be used primarily for manual fault isolation. Because of the load it could impose on
the network, it is unwise to use ping during normal operations or from automated scripts.

AUTHOR
Mike Muuss

SEE AISO
netstat(I), ifconfig(8C)

4.3 Berkeley Distribution May 23, 1986

PSTAT(8) UNIX Programmer's Manual PST AT(8)

NAME
pstat - print system facts

SYNOPSIS
/etc/pstat -aixptuff [suboptions] [system] [corefile]

DESCRIPTION
Pstat interprets the contents of certain system tables. If corefile is given, the tables are sought
there, otherwise in !devlkmem. The required namelist is taken from /vmunix unless system is
specified. Options are

-a Under -p, describe all process slots rather than just active ones.

-i Print the inode table with the these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

CNT
DEV
RDC
WRC

L locked
U update time (fs(5)) must be corrected
A access time must be corrected
M file system is mounted here
W wanted by another process (L flag is on)
T contains a text file
C changed time must be corrected
S shared lock applied
E exclusive lock applied
Z someone waiting for a lock
Number of open file table entries for this inode.
Major and minor device number of file system in which this inode resides.
Reference count of shared locks on the inode.
Reference count of exclusive locks on the inode (this may be > 1 if, for example, a
file descriptor is inherited across a fork).

INO I-number within the device.
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

-x
LOC
FLAGS

Number of bytes in an ordinary file, or major and minor device of special file.

Print the text table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:
T ptrace(2) in effect
W text not yet written on swap device
L loading in progress
K locked
w wanted (L flag is on)
P resulted from demand-page-from-inode exec format (see execve(2))

DADDR Disk address in swap, measured in multiples of 512 bytes.

CAD DR Head of a linked list of loaded processes using this text segment.

RSS Size of resident text, measured in multiples of 512 bytes.

SIZE

IPTR

Size of text segment, measured in multiples of 512 bytes.

Core location of corresponding inode.

4th Berkeley Distribution May 24, 1986

PSTAT(8)

CNT

CCNT

FORW

BACK

-p

LOC
s

F

POIP
PRI
SIG
UID
SLP
TIM
CPU
NI
PGRP
PID
PPID
ADDR

RSS
SRSS

UNIX Programmer's Manual

Number of proce:;ses using this text segment.

Number of processes in core using this text segment.

Forward link in free list.

Backward link in free list.

Print process table for active processes with these headings:

The core location of this table entry.
Run state encoded thus:
0 no process
I waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped (by signal or under trace)
Miscellaneous state variables, or'ed together (hexadecimal):
0001 loaded
0002 the scheduler process
0004 loci•ed for swap out
0008 swapped out
0010 traced
0020 used in tracing
0080 in page-wait
0100 prevented from swapping duringfork(2)
0200 will restore old mask after taking signal
0400 exiting
0800 doing physical 110 (bio.c)
1000 process resulted from a vfork(2) which is not yet complete
2000 another flag for vfork(2)

PSTAT(8)

4000 process has no virtual memory, as it is a parent in the context of vfork(2)
8000 process is demand paging data pages from its text inode.
10000 process using sequential VM patterns
20000 process using random VM patterns
100000 using old 4.1-compatible signal semantics
200000 process needs profiling tick
400000 process is scanning descriptors during select
1000000 process page tables have changed
number of pages currently being pushed out from this process.
Scheduling priority, see setpriority(2).
Signals received (signals 1-32 coded in bits 0-31),
Real user ID.
Amount of time process has been blocked.
Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.
Nice level, see setpriority(2).
Process number of root of process group.
The process ID number.
The process ID of parent process.
If in core, the page frame number of the first page of the 'u-area' of the process. If
swapped out, the position in the swap area measured in multiples of 512 bytes.
Resident set size - the number of physical page frames allocated to this process.
RSS at last swap (0 if never swapped).

4th Berkeley Distribution May 24, 1986 2

PSTAT(8) UNIX Programmer's Manual

SIZE Virtual size of process image (data+stack) in multiples of 512 bytes.
WCHAN Wait channel number of a waiting process.
LINK Link pointer in list of runnable processes.
TEXTP If text is pure, pointer to location of text table entry.

-t

RAW
CAN
OUT
MODE
ADDR
DEL
COL
STATE

Print table for. terminals with these headings:

Number of characters in raw input queue.
Number of characters in canonicalized input queue.
Number of characters in putput queue.
See tty(4).
Physical device address.
Number of delimiters (newlines) in canonicalized input queue.
Calculated column position of terminal.
Miscellaneous state variables encoded thus:
T delay timeout in progress
W waiting for open to complete
0 open
F outq has been flushed during DMA
C carrier is on
B busy doing output
A process is awaiting output
X open for exclusive use
S output stopped
H hangup on close
Process group for which this is controlling terminal.

PST AT(8)

PGRP
DISC Line discipline; blank is old tty OTTYDISC or "new tty" for NTTYDISC or "net"

for NETLDISC (see bk(4)).

-u print information about a user process; the next argument is its address as given by
ps(I). The process must be in main memory, or the file used can be a core image
and the address 0. Only the fields located in the first page cluster can be located
succesfully ifthe process is in main memory.

-f Print the open file table with these headings:

LOC The core location of this table entry.

TYPE The type of object the file table entry points to.
FLG Miscellaneous state variables encoded thus:

R open for reading
W open for writing
A open for appending
S shared lock present
X exclusive lock present
I signal pgrp when data ready

CNT Number of processes that know this open file.
MSG Number of messages outstanding for this file.
DAT A The location of the inode table entry or socket structure for this file ..
OFFSET The file offset (see lseek(2)).

-s print information about swap space usage: the number of (lk byte) pages used and free is
given as well as the number of used pages which belong to text images.

-T prints the number of used and free slots in the several system tables and is useful for
checking to see how full system tables have become if the system is under heavy load.

4th Berkeley Distribution May 24, 1986 3

PSTAT(8) UNIX Programmer's Manual

FILES
/vmunix namelist
/dev/kmem default source of tables

SEE ALSO

BUGS

iostat(l), ps(1), systat(l), vmstat(I), stat(2), fs(5),
K. Thompson, UNIX Implementation

PST AT(8)

It would be very useful if the system recorded "maximum occupancy" on the tables reported
by -T; even more useful if these tables were dynamically allocated.

4th Berkeley Distribution May 24, 1986 4

QUOT(8) UNIX Programmer's Manual QUOT(8)

NAME
quot - summarize file system ownership

SYNOPSIS
/etc/quot [option) ... [filesystem)

DESCRIPTION

FILES

Quot prints the number of blocks in the named fi/esystem currently owned by each user. If no
fi/esystem is named, a default name is assumed. The following options are available:

-n Cause the pipeline ncheck filesystem I sort +On I quot -n filesystem to produce a list
of all files and their owners.

-c Print three columns giving file size in blocks, number of files of that size, and cumula
tive total of blocks in that size or smaller file.

-f Print count of number of files as well as space owned by each user.

Default file system varies with system.
/etc/passwd to get user names

SEE ALSO
Is(I), du(!)

4th Berkeley Distribution April 27, 1985

QUOTACHECK (8) UNIX Programmer's Manual QUOTACHECK(8)

NAME
quotacheck - file system quota consistency checker

SYNOPSIS
/etc/quotacheck [-v] [-p] filesystem ...
/etc/quotacheck [-v I [-p I -a

DESCRIPTION

FILES

Quotacheck examines each file system, builds a table of current disc usage, and compares this
table against that stored in the disc quota file for the file system. If any inconsistencies are
detected, both the quota file and the current system copy of the incorrect quotas are updated
(the latter only occurs if an active file system is checked).

If the -a flag is supplied in place of any file system names, quotacheck will check all the file
systems indicated in /etclfstab to be read-write with disc quotas.

Normally quotacheck reports only those quotas modified. If the -v option is supplied, quota
check will indicate the calculated disc quotas for each user on a particular file system.

If the -p flag is supplied then parallel passes will be run on the filesystems required, using the
pass numbers in /etc/fstab in an identical fashion to fsck(S).

Quotacheck expects each file system to be checked to have a quota file named quotas in the
root directory. If none is present, quotacheck will ignore the file system.

Quotacheck is normally run at boot time from the /etc/re.local file, see rc(8), before enabling
disc quotas with quotaon(S).

Quotacheck accesses the raw device in calculating the actual disc usage for each user. Thus,
the file systems checked should be quiescent while quotacheck is running.

/etc/fstab default file systems

SEE ALSO
quota(2), setquota(2), quotaon(8), fsck(8)

4.2 Berkeley Distribution September 15, 1985

QUOTAON(8) UNIX Programmer's Manual QUOTAON(S)

NAME
quotaon, quotaoff - turn file system quotas on and off

SYNOPSIS
/etc/quotaon [-v) fi/sys ...

/etc/quotaon [-v) -a

/etc/quotaoff [-v) fi/sys ...

/etc/quotaoff [-v) -a

DESCRIPTION

FILES

Quotaon announces to the system that disc quotas should be enabled on one or more file sys
tems. The file systems specified must have entries in /etc/fstab and be mounted at the time.
The file system quota files must be present in the root directory of the specified file system
and be named quotas. The optional argument -v causes quotaon to print a message for each
file system where quotas are turned on. If, instead of a list of file systems, a -a argument is
give to quotaon, all file systems in /etc/fstab marked read-write with quotas will have their
quotas turned on. This is normally used at boot time to enable quotas.

Quotaojf announces to the system that file systems specified should have any disc quotas
turned off. As above, the -v forces a verbose message for each file system affected; and the -a
option forces all file systems in /etc/fstab to have their quotas disabled.

These commands update the status field of devices located in /etclmtab to indicate when quo
tas are on or off for each file system.

/etc/mtab
/etc/fstab

mount table
file system table

SEE ALSO
setquota(2), mtab(5), fstab(5)

4.2 Berkeley Distribution April 27, 1985

RC(S) UNIX Programmer's Manual RC(S)

NAME
re - command script for auto-reboot and daemons

SYNOPSIS
/etc/re
I etc/re.local

DESCRIPTION
Re is the command script which controls the automatic reboot and re.local is the script hold
ing commands which are pertinent only to a SJ?ecific site.

When an automatic reboot is in progress, re is invoked with the argument autoboot and runs a
ftck with option -p to "preen" all the disks of minor inconsistencies resulting from the last
system shutdown and to check for serious inconsistencies caused by hardware or software
failure. If this auto-check and repair succeeds, then the second part of re is run.

The second part of re, which is run after a auto-reboot succeeds and also if re is invoked when
a single user shell terminates (see init(S)), starts all the daemons on the system, preserves edi
tor files and clears the scratch directory /tmp. Re.local is executed immediately before any
other commands after a successful ftck. Normally, the first commands placed in the re.local
file define the machine's name, using hostname(I), and save any possible core image that
might have been generated as a result of a system crash, savecore(8). The latter command is
included in the re.local file because the directory in which core dumps are saved is usually site
specific.

SEE ALSO
init(S), reboot(S), savecore(S)

BUGS

4th Berkeley Distribution April 27, 1985

RDUMP(8C) UNIX Programmer's Manual

NAME
rdump - file system dump across the network

SYNOPSIS
/etc/rdump [key [argument ...] filesystem]

DFSCRIPITON

RDUMP(8C)

Rdump copies to magnetic tape all files changed after a certain date in the filesystem. The
command is identical in operation to dump(8) except the /key should be specified and the file
supplied should be of the form machine:device.

Rdump creates a remote server, /etc/rmt, on the client machine to access the tape device.

SEEAISO
dump(8), rmt(8C)

DIAGNOSTICS
Same as dump(8) with a few extra related to the network.

4.2 Berkeley Distribution April 27, 1985

REBOOT(8) UNiX Programmer's Manual REBOOT(8)

NAME
reboot - UNIX bootstrapping procedures

SYNOPSIS
/etc/reboot [-n] [-q]

DESCRIPTION
UNIX is started by placing it in memory at location zero and transferring to the entry point.
Since the system is not reenterable, it is necessary to read it in from disk or tape each time it
is to be bootstrapped.

Rebooting a running system. When a UNIX is running and a reboot is desired, shutdown(8) is
normally used. If there are no users then /etc/reboot can be used. Reboot causes the disks to
be synced and allows the system to perform other shutdown activities such as resynchronizing
hardware time-of-day clocks. A multi-user reboot (as described below) is then initiated. This
causes a system to be booted and an automatic disk check to be performed. If all this
succeeds without incident, the system is then brought up for many users.

Options to reboot are:

-n option avoids the sync. It can be used if a disk or the processor is on fire.

-q reboots quickly and ungracefully, without shutting down running processes first.

Reboot normally logs the reboot using syslog(8) and places a shutdown record in the login
accounting file /usr/adm/wtmp. These actions are inhibited if the -n or -q options are
present.

Power fail and crash recovery. Normally, the system will reboot itself at power-up or after
crashes. Provided the auto-restart is enabled on the machine front panel, an automatic con
sistency check of the file systems will be performed, and unless this fails, the system will
resume multi-user operations.

Cold starts. These are processor type dependent. On an 11/780, there are two floppy files for
each disk controller, both of which cause boots from unit 0 of the root file system of a con
troller located on mbaO or ubaO. One gives a single user shell, while the other invokes the
multi-user automatic reboot. Thus these files are HPS and HPM for the single and multi-user
boot from MASSBUS RP06/RM03/RM05 disks, UPS and UPM for UNIBUS storage module
controller and disks such as the EMULEX SC-21 and AMPEX 9300 pair, or HKS and HKM
for RK07 disks. There is also a script for booting from the default device, which is normally
a copy of one of the standard multi-user boot scripts, but which may be modified to perform
other actions or to boot from a different unit. The situation on the 8600 is similar, with
scripts loaded from the console RL02.

Giving the command

>>>BOOTHPM

Would boot the system from (e.g.) an RP06 and run the automatic consistency check as
described in fsck(8). (Note that it may be necessary to type control-P and halt the processor
to gain the attention of the LSI-I I before getting the>>> prompt.) The command

>>>BOOT ANY

invokes a version of the boot program in a way which allows you to specify any system as the
system to be booted. It reads from the console a device specification (see below) followed
immediately by a pathname.

The scripts may be modified for local configuration if necessary. The boot device type is set
in register I 0 as the device major number. The flags and minor device are placed in register
11. The register is used in four one-byte fields; from least to most significant, they are boot
flags (as defined in <syslreboot.h>), disk partition, drive unit, and adaptor number (UNIBUS

4th Berkeley Distribution May 28, 1986

REBOOT(8) UNIX Programmer's Manual REBOOT(8)

FILES

or MASSBUS as appropriate).

On an 11/750, the reset button will boot from the device selected by the front panel boot dev
ice switch. In systems with RK07's, position B normally selects the RK07 for boot. This will
boot multi-user. To boot from RK07 with boot flags you may specify

>>>Bin DMAO

where, giving a n of 1 causes the boot program to ask for the name of the system to be
bootstrapped, giving a n of 2 causes the boot program to come up single user, and a n of 3
causes both of these actions to occur. The "DM" specifies RK07, the "A" represents the
adaptor number (UNIBUS or MASSBUS), and the "O" is the drive unit number. Other disk
types which may be used are DB (MASSBUS), DD (TU58), and DU (UDA-50/RA disk). A
non-zero disk partition can be used by adding (partition times 1000 hex) to n.

The 11/750 boot procedure uses the boot roms to load block 0 off of the specified device.
The /usr/mdec directory contains a number of bootstrap programs for the various disks which
should be placed in a new pack automatically by newfe(8) when the "a" partition file system
on the pack is created.

On any processor, the boot program finds the corresponding file on the given device (vmunix
by default), loads that file into memory location zero, and starts the program at the entry
address specified in the program header (after clearing off the high bit of the specified entry
address).

The file specifications used with "BOOT ANY" or "B/3" are of the form:

device(unit,minor)

where device is the type of the device to be searched, unit is 8 • the mba or uba number plus
the unit number of the disk or tape, and minor is the disk partition or tape file number. Nor
mal line editing characters can be used when typing the file specification. The following list
of supported devices may vary from installation to installation:

hp MASSBUS disk drive
up UNIBUS storage module drive
ht TE16,TU45,TU77 on MASSBUS
mt TU78 on MASSBUS
bk RK07 on UNIBUS
ra storage module on a UDA50
rb storage module on a 730 IDC
rl RL02 on UNIBUS
tm TMll emulation tape drives on UNIBUS
ts TSll on UNIBUS
ut UNIBUS TU45 emulator

For example, to boot from a file system which starts at cylinder 0 of unit 0 of a MASSBUS
disk, type "hp(O,O)vmunix" to the boot prompt; "up(O,O)vmunix" would specify a UNIBUS
drive, "hk(O,O)vmunix" would specify an RK07 disk drive, "ra(O,O)vmunix" would specify a
UDA50 disk drive, and "rb(O,O)vmunix" would specify a disk on a 730 IDC. For tapes, the
minor device number gives a file offset.

On an 11/750 with patchable control store, microcode patches will be installed by boot if the
file psc750.bin exists in the root of the filesystem from which the system is booted.

In an emergency, the bootstrap methods described in the paper "Installing and Operating
4.3bsd" can be used to boot from a distribution tape.

/vmunix
/boot
/usr/mdec/xxboot

system code
system bootstrap
sector-0 boot block for 7 50, xx is disk type

4th Berkeley Distribution May 28, 1986 2

REBOOT(8) UNIX Programmer's Manual REBOOT(8)

/usr/mdec/bootxx second-stage boot for 7 50, xx is disk type
/usr/mdec/installboot program to install boot blocks on 7 50
/pcs750.bin microcode patch file on 750

SEE ALSO
arff(8V), crash(8V), fsck(8), halt(8), init(8), newfs(8), rc(8), shutdown(8), syslogd(8)

4th Berkeley Distribution May 28, 1986 3

RENICE(8) UNIX Programmer's Manual RENICE(8)

NAME
renice - alter priority of running processes

SYNOPSIS
/etc/renice priority [[-p] pid ...] [[-g] pgrp ...] [[-u] user ...]

DESCRIPTION

FILES

Renice alters the scheduling priority of one or more running processes. The who parameters
are interpreted as process ID's, process group ID's, or user names. Renice'ing a process group
causes all processes in the process group to have their scheduling priority altered. Renice'ing a
user causes all processes owned by the user to have their scheduling priority altered. By
default, the processes to be affected are specified by their process ID's. To force who parame
ters to be interpreted as process group ID's, a -g may be specified. To force the who parame
ters to be interpreted as user names, a -u may be given. Supplying -p will reset who interpre
tation to be (the default) process ID's. For example,

/etc/renice +I 987 -u daemon root -p 32

would change the priority of process ID's 987 and 32, and all processes owned by users dae
mon and root.

Users other than the super-user may only alter the priority of processes they own, and can
only monotonically increase their "nice value" within the range 0 to PRIO_MAX (20). (This
prevents overriding administrative fiats.) The super-user may alter the priority of any process
and set the priority to any value in the range PRIO_MIN (-20) to PRIO_MAX. Useful prior
ities are: 20 (the affected processes will run only when nothing else in the system wants to), 0
(the "base" scheduling priority), anything negative (to make things go very fast).

/etc/passwd to map user names to user ID's

SEE ALSO

BUGS

getpriority(2), setpriority(2)

Non super-users can not increase scheduling priorities of their own processes, even if they
were the ones that decreased the priorities in the first place.

4th Berkeley Distribution May 19, 1986

REPQUOTA(8) UNIX Programmer's Manual

NAME
repquota - summarize quotas for a file system

SYNOPSIS
repquota file sys ...

DESCRIPTION

REPQUOTA(8)

Repquota prints a summary of the disc usage and quotas for the specified file systems. For
each user the current number files and amount of space (in kilobytes) is printed, along with
any quotas created with edquota(8).

Only the super-user may view quotas which are not their own.

FILES
quotas at the root of each file system with quotas
/etc/fstab for file system names and locations

SEE ALSO
quota(I), quota(2), quotacheck(8), quotaon(8), edquota(8)

DIAGNOSTICS
Various messages about inaccessible files; self-explanatory.

4.2 Berkeley Distribution April 27, 1985

RESTORE(8) UNIX Programmer's Manual RESTORE(8)

NAME
restore - incremental file system restore

SYNOPSIS
/etc/restore key [name ...]

DESCRIPTION
Restore reads tapes dumped with the dump(8) command. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter and possi
bly one or more function modifiers. Other arguments to the command are file or directory
names specifying the files that are to be restored. Unless the h key is specified (see below),
the appearance of a directory name refers to the files and (recursively) subdirectories of that
directory.

The function portion of the key is specified by one of the following letters:

r The tape is read and loaded into the current directory. This should not be done lightly;
the r key should only be used to restore a complete dump tape onto a clear file system or
to restore an incremental dump tape after a full level zero restore. Thus

/etc/newfs /dev/rrpOg eagle
/etc/mount /dev/rpOg /mnt
cd /mnt
restorer

is a typical sequence to restore a complete dump. Another restore can be done to get an
incremental dump in on top of this. Note that restore leaves a file restoresymtab in the
root directory to pass information between incremental restore passes. This file should
be removed when the last incremental tape has been restored.
A dump(S) followed by a newft(8) and a restore is used to change the size of a file sys
tem.

R Restore requests a particular tape of a multi volume set on which to restart a full restore
(see the r key above). This allows restore to be interrupted and then restarted.

x The named files are extracted from the tape. If the named file matches a directory
whose contents had been written onto the tape, and the h key is not specified, the direc
tory is recursively extracted. The owner, modification time, and mode are restored (if
possible). If no file argument is given, then the root directory is extracted, which results
in the entire content of the tape being extracted, unless the h key has been specified.

The names of the specified files are listed if they occur on the tape. If no file argument
is given, then the root directory is listed, which results in the entire content of the tape
being listed, unless the h key has been specified. Note that the t key replaces the func
tion of the old dumpdir program.

This mode allows interactive restoration of files from a dump tape. After reading in the
directory information from the tape, restore provides a shell like interface that allows the
user to move around the directory tree selecting files to be extracted. The available
commands are given below; for those commands that require an argument, the default is
the current directory.

Is [arg] - List the current or specified directory. Entries that are directories are
appended with a "/". Entries that have been marked for extraction are prepended
with a "•". If the verbose key is set the inode number of each entry is also listed.

cd arg - Change the current working directory to the specified argument.

pwd - Print the full pathname of the current working directory.

4th Berkeley Distribution March 27, 1986

RESTORE(8) UNIX Programmer's Manual RESTORE(8)

add [arg] - The current directory or specified argument is added to the list of files to be
extracted. If a directory is specified, then it and all its descendents are added to
the extraction list (unless the h key is specified on the command line). Files that
are on the extraction list are prepended with a "•" when they are listed by Is.

delete [arg] - The current directory or specified argument is deleted from the list of files
to be extracted. If a directory is specified, then it and all its descendents are
deleted from the extraction list (unless the h key is specified on the command line).
The most expedient way to extract most of the files from a directory is to add the
directory to the extraction list and then delete those files that are not needed.

extract - All the files that are on the extraction list are extracted from the dump tape.
Restore will ask which volume the user wishes to mount. The fastest way to
extract a few files is to start with the last volume, and work towards the first
volume.

setmodes - All the directories that have been added to the extraction list have their
owner, modes, and times set; nothing is extracted from the tape. This is useful for
cleaning up after a restore has been prematurely aborted.

verbose - The sense of the v key is toggled. When set, the verbose key causes the Is
command to list the inode numbers of all entries. It also causes restore to print
out information about each file as it is extracted.

help - List a summary of the available commands.

quit - Restore immediately exits, even if the extraction list is not empty.

The following characters may be used in addition to the letter that selects the function
desired.

b The next argument to restore is used as the block size of the tape (in kilobytes). If the -b
option is not specified, restore tries to determine the tape block size dynamically.

f The next argument to restore is used as the name of the archive instead of /dev/rmt?. If
the name of the file is "-", restore reads from standard input. Thus, dump(B) and
restore can be used in a pipeline to dump and restore a file system with the command

dump Of - /usr I (cd /mnt; restore xf -)

v Normally restore does its work silently. The v (verbose) key causes it to type the name
of each file it treats preceded by its file type.

y Restore will not ask whether it should abort the restore if gets a tape error. It will
always try to skip over the bad tape block(s) and continue as best it can.

m Restore will extract by inode numbers rather than by file name. This is useful if only a
few files are being extracted, and one wants to avoid regenerating the complete path
name to the file.

h Restore extracts the actual directory, rather than the files that it references. This
prevents hierarchical restoration of complete subtrees from the tape.

s The next argument to restore is a number which selects the file on a multi-file dump
tape. File numbering starts at I.

DIAGNOSTICS
Complaints about bad key characters.

4th Berkeley Distribution March 27, 1986 2

RESTORE(8) UNIX Programmer's Manual RESTORE(8)

FILES

Complaints if it gets a read error. If y has been specified, or the user responds "y", restore
will attempt to continue the restore.

If the dump extends over more than one tape, restore will ask the user to change tapes. If the
x or i key has been specified, restore will also ask which volume the user wishes to mount.
The fastest way to extract a few files is to start with the last volume, and work towards the
first volume.

There are numerous consistency checks that can be listed by restore. Most checks are self
explanatory or can "never happen". Common errors are given below.

Converting to new file system format.
A dump tape created from the old file system has been loaded. It is automatically con
verted to the new file system format.

<filename>: not found on tape
The specified file name was listed in the tape directory, but was not found on the tape.
This is caused by tape read errors while looking for the file, and from using a dump tape
created on an active file system.

expected next file <inumber>, got <inumber>
A file that was not listed in the directory showed up. This can occur when using a dump
tape created on an active file system.

Incremental tape too low
When doing incremental restore, a tape that was written before the previous incremental
tape, or that has too low an incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previ
ous incremental tape left off, or that has too high an incremental level has been loaded.

Tape read error while restoring <filename>
Tape read error while skipping over inode <inumber>
Tape read error while trying to resynchronize

A tape read error has occurred. If a file name is specified, then its contents are probably
partially wrong. If an inode is being skipped or the tape is trying to resynchronize, then
no extracted files have been corrupted, though files may not be found on the tape.

resync restore, skipped <num> blocks
After a tape read error, restore may have to resynchronize itself. This message lists the
number of blocks that were skipped over.

/dev/rmt? the default tape drive
/tmp/rstdir• file containing directories on the tape.
/tmp/rstmode• owner, mode, and time stamps for directories .
./restoresymtable information passed between incremental restores.

SEE ALSO

BUGS

rrestore(8C) dump(8), newfs(8), mount(8), mkfs(8)

Restore can get confused when doing incremental restores from dump tapes that were made
on active file systems.

A level zero dump must be done after a full restore. Because restore runs in user code, it has
no control over inode allocation; thus a full restore must be done to get a new set of direc
tories reflecting the new inode numbering, even though the contents of the files is unchanged.

4th Berkeley Distribution March 27, 1986 3

REXECD(8C) UNIX Programmer's Manual REXECD(8C)

NAME
rexecd - remote execution server

SYNOPSIS
I etc/rexecd

DESCRIPTION
Rexecd is the server for the rexec(3X) routine. The server provides remote execution facili
ties with authentication based on user names and passwords.

Rexecd listens for service requests at the port indicated in the "exec" service specification; see
services(5). When a service request is received the following protocol is initiated:

I) The server reads characters from the socket up to a null ('\0') byte. The resultant
string is interpreted as an ASCII number, base I 0.

2) If the number received in step I is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to
the specified port on the client's machine.

3) A null terminated user name of at most 16 characters is retrieved on the initial
socket.

4) A null terminated, unencrypted password of at most 16 characters is retrieved on the
initial socket.

5) A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system's
argument list.

6) Rexecd then validates the user as is done at login time and, if the authentication was
successful, changes to the user's home directory, and establishes the user and group
protections of the user. If any of these steps fail the connection is aborted with a
diagnostic message returned.

7) A null byte is returned on the initial socket and the command line is passed to the
normal login shell of the user. The shell inherits the network connections established
by rexecd.

DIAGNOSTICS
Except for the last one listed below, all diagnostic messages are returned on the initial socket,
after which any network connections are closed. An error is indicated by a leading byte with
a value of I (0 is returned in step 7 above upon successful completion of all the steps prior to
the command execution).

"username too long"
The name is longer than 16 characters.

"password too long"
The password is longer than 16 characters.

"command too long "
The command line passed exceeds the size of the argument list (as configured into the sys
tem).

"Login incorrect."
No password file entry for the user name existed.

"Password incorrect."
The wrong was password supplied.

"No remote directory."
The chdir command to the home directory failed.

4.2 Berkeley Distribution May 9, 1986

REXECD(8C) UNIX Programmer's Manual REXECD(8C)

"Try again."
A fork by the server failed.

"<shellname>: ..• "
The user's login shell could not be started. This message is returned on the connection associ
ated with the stderr, and is not preceded by a flag byte.

SEE AISO
rexec(3X)

BUGS
Indicating "Login incorrect" as opposed to "Password incorrect" is a security breach which
allows people to probe a system for users with null passwords.

A facility to allow all data and password exchanges to be encrypted should be present.

4.2 Berkeley Distribution May 9, 1986 2

RLOGIND (SC) UNIX Programmer's Manual RLOGIND (SC)

NAME
rlogind - remote login server

SYNOPSIS
/etc/rlogind [-d]

DESCRIPTION
Rlogind is the server for the rlogin(IC) program. The server provides a remote login facility
with authentication based on privileged port numbers from trusted hosts.

Rlogind listens for service requests at the port indicated in the "login" service specification;
see services(5). When a service request is received the following protocol is initiated:

I) The server checks the client's source port. If the port is not in the range 0-1023, the
server aborts the connection.

2) The server checks the client's source address and requests the corresponding host
name (see gethostbyaddr(3N), hosts(5) and named(S)). If the hostname cannot be
determined, the dot-notation representation of the host address is used.

Once the source port and address have been checked, rlogind allocates a pseudo terminal (see
pty(4)), and manipulates file descriptors so that the slave half of the pseudo terminal becomes
the stdio , stdout , and stderr for a login process. The login process is an instance of the
login(!) program, invoked with the -r option. The login process then proceeds with the
authentication process as described in rshd(SC), but if automatic authentication fails, it
reprompts the user to login as one finds on a standard terminal line.

The parent of the login process manipulates the master side of the pseduo terminal, operating
as an intermediary between the login process and the client instance of the r!ogin program. In
normal operation, the packet protocol described in pty(4) is invoked to provide ·srQ type
facilities and propagate interrupt signals to the remote programs. The login process pro
pagates the client terminal's baud rate and terminal type, as found in the environment vari
able, "TERM"; see environ(?). The screen or window size of the terminal is requested from
the client, and window size changes from the client are propagated to the pseudo terminal.

DIAGNOSTICS

BUGS

All diagnostic messages are returned on the connection associated with the stderr, after which
any network connections are closed. An error is indicated by a leading byte with a value of I.

"Try again."
A fork by the server failed.

"/bin/sh: ..• "
The user's login shell could not be started.

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

A more extensible protocol should be used.

4.2 Berkeley Distribution May 24, !9S6

RMT(8C) UNIX Programmer's Manual RMT(8C)

NAME
rmt - remote magtape protocol module

SYNOPSIS
/etc/rmt

DESCRIPTION
Rmt is a program used by the remote dump and restore programs in manipulating a magnetic
tape drive through an interprocess communication connection. Rmt is normally started up
with an rexec(3X) or rcmd(3X) call.

The rmt program accepts requests specific to the manipulation of magnetic tapes, performs
the commands, then responds with a status indication. All responses are in ASCII and in one
of two forms. Successful commands have responses of

Anumber\n

where number is an ASCII representation of a decimal number. Unsuccessful commands are
responded to with

Eerror-number\nerror-message\n,

where error-number is one of the possible error numbers described in intro(2) and error
message is the corresponding error string as printed from a call to perror(3). The protocol is
comprised of the following commands (a space is present between each token).

0 device mode Open the specified device using the indicated mode. Device is a full path
name and mode is an ASCII representation of a decimal number suitable for
passing to open(2). If a device had already been opened, it is closed before a
new open is performed.

C device Close the currently open device. The device specified is ignored.

L whence offset Perform an lseek(2) operation using the specified parameters. The response
value is that returned from the !seek call.

W count

R count

Write data onto the open device. Rmt reads count bytes from the connec
tion, aborting if a premature end-of-file is encountered. The response value is
that returned from the write(2) call.

Read count bytes of data from the open device. If count exceeds the size of
the data buffer (10 kilobytes), it is truncated to the data buffer size. Rmt then
performs the requested read(2) and responds with Acount:read\n if the read
was successful; otherwise an error in the standard format is returned. If the
read was successful, the data read is then sent.

I operation count

s

Perform a MTIOCOP ioct/(2) command using the specified parameters. The
parameters are interpreted as the ASCII representations of the decimal values
to place in the mt_op and mt_count fields of the structure used in the ioctl
call. The return value is the count parameter when the operation is success
ful.

Return the status of the open device, as obtained with a MTIOCGET ioctl
call. If the operation was successful, an "ack" is sent with the size of the
status buffer, then the status buffer is sent (in binary).

Any other command causes rmt to exit.

DIAGNOSTICS
All responses are of the form described above.

4.2 Berkeley Distribution April 27, 1985

RMT(8C) UNIX Programmer's Manual RMT(8C)

SEEAISO
rcmd(3X), rexec(3X), mtio(4), rdump(8C), rrestore(8C)

BUGS
People tempted to use this for a remote file access protocol are discouraged.

4.2 Berkeley Distribution April 27, 1985 2

ROUTE(8C) UNIX Programmer's Manual ROUTE(SC)

NAME
route - manually manipulate the routing tables

SYNOPSIS
/etc/route [-f] [-n] [command args]

DESCRIPTION
Route is a program used to manually manipulate the network routing tables. It normally is
not needed, as the system routing table management daemon, routed(8C), should tend to this
task.

Route accepts two commands: add, to add a route, and delete, to delete a route.

All commands have the following syntax:

/etc/route command [net I host] destination gateway [metric]

where destination is the destination host or network, gateway is the next-hop gateway to
which packets should be addressed, and metric is a count indicating the number of hops to
the destination. The metric is required for add commands; it must be zero if the destination
is on a directly-attached network, and nonzero if the route utilizes one or more gateways. If
adding a route with metric 0, the gateway given is the address of this host on the common
network, indicating the interface to be used for transmission. Routes to a particular host are
distinguished from those to a network by interpreting the Internet address associated with
destination. The optional keywords net and host force the destination to be interpreted as a
network or a host, respectively. Otherwise, if the destination has a "local address part" of
INADDR_ANY, or if the destination is the symbolic name of a network, then the route is
assumed to be to a network; otherwise, it is presumed to be a route to a host. If the route is
to a destination connected via a gateway, the metric should be greater than 0. All symbolic
names specified for a destination or gateway are looked up first as a host name using
gethostbyname(3N). If this lookup fails, getnetbyname(3N) is then used to interpret the name
as that of a network.

Route uses a raw socket and the SIOCADDRT and SIOCDELRT ioctl's to do its work. As
such, only the super-user may modify the routing tables.

If the -f option is specified, route will "flush" the routing tables of all gateway entries. If this
is used in conjunction with one of the commands described above, the tables are flushed prior
to the command's application.

The -n option prevents attempts to print host and network names symbolically when report
ing actions.

DIAGNOSTICS
"add I host I network I %s: gateway %s flags %x"
The specified route is being added to the tables. The values printed are from the routing table
entry supplied in the ioctl call. If the gateway address used was not the primary address of
the gateway (the first one returned by gethostbyname), the gateway address is printed numeri
cally as well as symbolically.

"delete I host I network I %s: gateway %s flags %x"
As above, but when deleting an entry.

"%s %s done"
When the -f flag is specified, each routing table entry deleted is indicated with a message of
this form.

"Network is unreachable"
An attempt to add a route failed because the gateway listed was not on a directly-connected
network. The next-hop gateway must be given.

4.2 Berkeley Distribution May 24, 1986

ROUTE(SC) UNIX Programmer's Manual ROUTE(SC)

"not in table"
A delete operation was attempted for an entry which wasn't present in the tables.

"routing table overflow"
An add operation was attempted, but the system was low on resources and was unable to allo
cate memory to create the new entry.

SEE ALSO
intro(4N), routed(SC), XNSrouted(SC)

4.2 Berkeley Distribution May 24, 1986 2

ROUTED(8C) UNIX Programmer's Manual ROUTED(8C)

NAME
routed - network routing daemon

SYNOPSIS ,
/etc/routed [-d] [-g] [-s] [-q] [-t] [/og/i/e]

DESCRIPTION
Routed is invoked at boot time to manage the network routing tables. The routing daemon
uses a variant of the Xerox NS Routing Information Protocol in maintaining up to date ker
nel routing table entries. It used a generalized protocol capable of use with multiple address
types, but is currently used only for Internet routing within a cluster of networks.

In normal operation routed listens on the udp(4P) socket for the route service (see services(5))
for routing information packets. If the host is an internetwork router, it periodically supplies
copies of its routing tables to any directly connected hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioctl to find those directly connected inter
faces configured into the system and marked "up" (the software loopback interface is
ignored). If multiple interfaces are present, it is assumed that the host will forward packets
between networks. Routed then transmits a request packet on each interface (using a broad
cast packet if the interface supports it) and enters a loop, listening for request and response
packets from other hosts.

When a request packet is received, routed formulates a reply based on the information main
tained in its internal tables. The response packet generated contains a list of known routes,
each marked with a "hop count" metric (a count of 16, or greater, is considered "infinite").
The metric associated with each route returned provides a metric relative to the sender.

Response packets received by routed are used to update the routing tables if one of the follow
ing conditions is satisfied:

(I) No routing table entry exists for the destination network or host, and the metric indi
cates the destination is "reachable" (i.e. the hop count is not infinite).

(2) The source host of the packet is the same as the router in the existing routing table
entry. That is, updated information is being received from the very internetwork
router through which packets for the destination are being routed.

(3) The existing entry in the routing table has not been updated for some time (defined to
be 90 seconds) and the route is at least as cost effective as the current route.

(4) The new route describes a shorter route to the destination than the one currently
stored in the routing tables; the metric of the new route is compared against the one
stored in the table to decide this.

When an update is applied, routed records the change in its internal tables and updates the
kernel routing table. The change is reflected in the next response packet sent.

In addition to processing incoming packets, routed also periodically checks the routing table
entries. If an entry has not been updated for 3 minutes, the entry's metric is set to infinity
and marked for deletion. Deletions are delayed an additional 60 seconds to insure the invali
dation is propagated throughout the local internet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds
to all directly connected hosts and networks. The response is sent to the broadcast address on
nets capable of that function, to the destination address on point-to-point links, and to the
router's own address on other networks. The normal routing tables are bypassed when send
ing gratuitous responses. The reception of responses on each network is used to determine
that the network and interface are functioning correctly. If no response is received on an
interface, another route may be chosen to route around the interface, or the route may be
dropped if no alternative is available.

4.2 Berkeley Distribution May 24, 1986

ROUTED(8C) UNIX Programmer's Manual ROUTED(8C)

Routed supports several options:

-d Enable additional debugging information to be logged, such as bad packets received.

-g This flag is used on internetwork routers to offer a route to the "default" destination.
This is typically used on a gateway to the Internet, or on a gateway that uses another
routing protocol whose routes are not reported to other local routers.

-s Supplying this option forces routed to supply routing information whether it is acting
as an internetwork router or not. This is the default if multiple network interfaces are
present, or if a point-to-point link is in use.

-q This is the opposite of the -s option.

-t If the -t option is specified, all packets sent or received are printed on the standard
output. In addition, routed will not divorce itself from the controlling terminal so
that interrupts from the keyboard will kill the process.

Any other argument supplied is interpreted as the name of file in which routed's actions
should be logged. This log contains information about any changes to the routing tables and,
if not tracing all packets, a history of recent messages sent and received which are related to
the changed route.

In addition to the facilities described above, routed supports the notion of "distant" passive
and active gateways. When routed is started up, it reads the file /etc/gateways to find gateways
which may not be located using only information from the SIOGIFCONF ioctl. Gateways
specified in this manner should be marked passive if they are not expected to exchange rout
ing information, while gateways marked active should be willing to exchange routing informa
tion (i.e. they should have a routed process running on the machine). Passive gateways are
maintained in the routing tables forever and information regarding their existence is included
in any routing information transmitted. Active gateways are treated equally to network inter
faces. Routing information is distributed to the gateway and if no routing information is
received for a period of the time, the associated route is deleted. External gateways are also
passive, but are not placed in the kernel routing table nor are they included in routing
updates. The function of external entries is to inform routed that another routing process will
install such a route, and that alternate routes to that destination should not be installed. Such
entries are only required when both routers may learn of routes to the same destination.

The /etc/gateways is comprised of a series of lines, each in the following format:

< net I host > name] gateway name2 metric value< passive I active I external >

The net or host keyword mdicates if the route is to a network or specific host.

Name] is the name of the destination network or host. This may be a symbolic name located
in /etc/networks or /etc/hosts (or, if started after named(8), known to the name server), or an
Internet address specified in "dot" notation; see inet(3N).

Name2 is the name or address of the gateway to which messages should be forwarded.

Value is a metric indicating the hop count to the destination host or network.

One of the keywords passive, active or external indicates if the gateway should be treated as
passive or active (as described above), or whether the gateway is external to the scope of the
routed protocol.

Internetwork routers that are directly attached to the Arpanet or Milnet should use the Exte
rior Gateway Protocol (EGP) to gather routing information rather then using a static routing
table of passive gateways. EGP is required in order to provide routes for local networks to
the rest of the Internet system. Sites needing assistance with such configurations should con
tact the Computer Systems Research Group at Berkeley.

4.2 Berkeley Distribution May 24, 1986 2

ROUTED(8C) UNIX Programmer's Manual ROUTED(8C)

FILES
/etc/gateways for distant gateways

SEEAISO

BUGS

"Internet Transport Protocols", XSIS 028112, Xerox System Integration Standard.
udp(4P), XNSrouted(8C), htable(8)

The kernel's routing tables may not correspond to those of routed when redirects change or
add routes. The only remedy for this is to place the routing process in the kernel.

Routed should incorporate other routing protocols, such as Xerox NS (XNSrouted(8C)) and
EGP. Using separate processes for each requires configuration options to avoid redundant or
competing routes.

Routed should listen to intelligent interfaces, such as an IMP, and to error protocols, such as
ICMP, to gather more information. It does not always detect unidirectional failures in net
work interfaces (e.g., when the output side fails).

4.2 Berkeley Distribution May 24, 1986 3

RRESTORE(8C) UNIX Programmer's Manual RRESTORE (SC)

NAME
rrestore - restore a file system dump across the network

SYNOPSIS
/etc/rrestore [key [name ...]

DESCRIPTION
Rrestore obtains from magnetic tape files saved by a previous dump(8). The command is
identical in operation to restore(8) except the f key should be specified and the file supplied
should be of the form machine:device.
Rrestore creates a remote server, letclrmt, on the client machine to access the tape device.

SEE ALSO
restore(8), rmt(8C)

DIAGNOSTICS
Same as restore(8) with a few extra related to the network.

4.2 Berkeley Distribution June 3, 1986

\.

RSHD(8C) UNIX Programmer's Manual RSHD(8C)

NAME
rshd - remote shell server

SYNOPSIS
/etc/rshd

DESCRIPTION
Rshd is the server for the rcmd(3X) routine and, consequently, for the rsh(IC) program. The
server provides remote execution facilities with authentication based on privileged port
numbers from trusted hosts.

Rshd listens for service requests at the port indicated in the "cmd" service specification; see
services(S). When a service request is received the following protocol is initiated:

I) The server checks the client's source port. If the port is not in the range 0-1023, the
server aborts the connection.

2) The server reads characters from the socket up to a null ('\0') byte. The resultant
string is interpreted as an ASCII number, base 10.

3) If the number received in step I is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to
the specified port on the client's machine. The source port of this second connection
is also in the range 0-1023.

4) The server checks the client's source address and requests the corresponding host
name (see gethostbyaddr(3N), hosts(S) and named(8)). If the hostname cannot be
determined, the dot-notation representation of the host address is used.

5) A null terminated user name of at most 16 characters is retrieved on the initial
socket. This user name is interpreted as the user identity on the client's machine.

6) A null terminated user name of at most 16 characters is retrieved on the initial
socket. This user name is interpreted as a user identity to use on the server's
machine.

7) A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system's
argument list.

8) Rshd then validates the user according to the following steps. The local (server-end)
user name is looked up in the password file and a chdir is performed to the user's
home directory. If either the lookup or chdir fail, the connection is terminated. If the
user is not the super-user, (user id 0), the file /etc/hosts.equiv is consulted for a list of
hosts considered "equivalent". If the client's host name is present in this file, the
authentication is considered successful. If the lookup fails, or the user is the super
user, then the file .rhosts in the home directory of the remote user is checked for the
machine name and identity of the user on the client's machine. If this lookup fails,
the connection is terminated.

9) A null byte is returned on the initial socket and the command line is passed to the
normal login shell of the user. The shell inherits the network connections established
by rshd.

DIAGNOSTICS
Except for the last one listed below, all diagnostic messages are returned on the initial socket,
after which any network connections are closed. An error is indicated by a leading byte with
a value of I (0 is returned in step 9 above upon successful completion of all the steps prior to
the execution of the login shell).

4.2 Berkeley Distribution May 24, 1986

RSHD(8C) UNIX Programmer's Manual RSHD(8C)

"locuser too long"
The name of the user on the client's machine is longer than 16 characters.

"remuser too long"
The name of the user on the remote machine is longer than 16 characters.

"command too long "
The command line passed exceeds the size of the argument list (as configured into the sys
tem).

"Login incorrect."
No password file entry for the user name existed.

"No remote directory."
The chdir command to the home directory failed.

"Permission denied."
The authentication procedure described above failed.

"Can't make pipe."
The pipe needed for the stderr, wasn't created.

"Try again."
A fork by the server failed.

"<shellname>: ... "
The user's login shell could not be started. This message is returned on the connection associ
ated with the stderr, and is not preceded by a flag byte.

SEE ALSO

BUGS

rsh(l C), rcmd(3X)

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

A more extensible protocol should be used.

4.2 Berkeley Distribution May 24, 1986 2

RWHOD(8C) UNIX Programmer's Manual RWHOD(8C)

NAME
rwhod - system status server

SYNOPSIS
/etc/rwhod

DESCRIPTION
Rwhod is the server which maintains the database used by the rwho(IC) and ruptime(IC) pro
grams. Its operation is predicated on the ability to broadcast messages on a network.

Rwhod operates as both a producer and consumer of status information. As a producer of
information it periodically queries the state of the system and constructs status messages
which are broadcast on a network. As a consumer of information, it listens for other rwhod
servers' status messages, validating them, then recording them in a collection of files located
in the directory /usrlspoo//rwho.

The server transmits and receives messages at the port indicated in the "rwho" service
specification; see services(5). The messages sent and received, are of the form:

struct outmp {

};

char out_Iine[8];/• tty name •/
char out_name[8];/• user id •I
long out_time;/• time on •I

struct whod (
char wd_ vers;
char wd_type;
char wd_fill[2];
int wd_sendtime;
int wd_recvtime;
char wd_hostname[32];
int wd_loadav[3];
int wd_boottime;
struct whoent {

struct outmp we_utmp;
int we_idle;

} wd_ we[I 024 I sizeof (struct whoent)];
};

All fields are converted to network byte order prior to transmission. The load averages are as
calculated by the w(I) program, and represent load averages over the 5, I 0, and 15 minute
intervals prior to a server's transmission; they are multiplied by I 00 for representation in an
integer. The host name included is that returned by the gethostname(2) system call, with any
trailing domain name omitted. The array at the end of the message contains information
about the users logged in to the sending machine. This information includes the contents of
the utmp(5) entry for each non-idle terminal line and a value indicating the time in seconds
since a character was last received on the terminal line.

Messages received by the rwho server are discarded unless they originated at an rwho server's
port. In addition, if the host's name, as specified in the message, contains any unprintable
ASCII characters, the message is discarded. Valid messages received by rwhod are placed in
files named whod.hostname in the directory /usr/spoo//rwho. These files contain only the
most recent message, in the format described above.

Status messages are generated approximately once every 3 minutes. Rwhod performs an
nlist(3) on /vmunix every 30 minutes to guard against the possibility that this file is not the
system image currently operating.

4.2 Berkeley Distribution May 24, 1986

RWHOD(8C) UNIX Programmer's Manual RWHOD(SC)

SEE ALSO
rwho(IC), ruptime(IC)

BUGS
There should be a way to relay status information between networks. Status information
should be sent only upon request rather than continuously. People often interpret the server
dying or network communtication failures as a machine going down.

4.2 Berkeley Distribution May 24, 1986 2

RXFORMAT(8V) UNIX Programmer's Manual RXFORMAT(8V)

NAME
rxformat - format floppy disks

SYNOPSIS
/etc/rxformat [-d] special

DESCRIPTION
The rx.format program formats a diskette in the specified drive associated with the special
device special. (Special is normally /dev/rxO, for drive 0, or /dev/rx I, for drive I.) By
default, the diskette is formatted single density; a -d flag may be supplied to force double den
sity formatting. Single density is compatible with the IBM 3740 standard (128 bytes/sector).
In double density, each sector contains 256 bytes of data.

Before formatting a diskette rxformat prompts for verification if standard input is a tty (this
allows a user to cleanly abort the operation; note that formatting a diskette will destroy any
existing data). Formatting is done by the hardware. All sectors are zero-filled.

DIAGNOSTICS

FILES

'No such device' means that the drive is not ready, usually because no disk is in the drive or
the drive door is open. Other error messages are selfexplanatory.

/dev/rx?

SEE ALSO
rx(4V)

AUTHOR

BUGS

Helge Skrivervik

A floppy may not be formatted if the header info on sector I, track 0 has been damaged.
Hence, it is not possible to format a completely degaussed disk. (This is actually a problem in
the hardware.)

4.2 Berkeley Distribution June 3, 1986

SA(8) UNIX Programmer's Manual SA(8)

NAME
sa, accton - system accounting

SYNOPSIS
/etc/sa [-abcdDfijkKlnrstuv] [-S savacctfile] [-U usracctfile] [file]

/etc/accton [file]

DESCRIPTION
With an argument naming an existing file, accton causes system accounting information for
every process executed to be placed at the end of the file. If no argument is given, accounting
is turned off.

Sa reports on, cleans up, and generally maintains accounting files.

Sa is able to condense the information in /usr/adm/acct into a summary file /usr/adm/savacct
which contains a count of the number of times each command was called and the time
resources consumed. This condensation is desirable because on a large system /usr/adm!acct
can grow by 100 blocks per day. The summary file is normally read before the accounting
file, so the reports include all available information.

If a file name is given as the last argument, that file will be treated as the accounting file;
lusrladmlacct is the default.

Output fields are labeled: "cpu" for the sum of user+system time (in minutes), "re" for real
time (also in minutes), "k" for cpu-time averaged core usage (in lk units), "avio" for average
number of i/o operations per execution. With options fields labeled "tio" for total i/o opera
tions, "k•sec" for cpu storage integral (kilo-core seconds), "u" and "s" for user and system
cpu time alone (both in minutes) will sometimes appear.

There are near a googol of options:

a Print all command names, even those containing unprintable characters and those
used only once. By default, those are placed under the name '**•other.'

b Sort output by sum of user and system time divided by number of calls. Default sort
is by sum of user and system times.

c Besides total user, system, and real time for each command print percentage of total
time over all commands.

d Sort by average number of disk i/o operations.

D Print and sort by total number of disk i/o operations.

f Force. no interactive threshold compression with -v flag.

Don't read in summary file.

Instead of total minutes time for each category, give seconds per call.

k Sort by cpu-time average memory usage.

K Print and sort by cpu-storage integral.

1 Separate system and user time; normally they are combined.

m Print number of processes and number of CPU minutes for each user.

n Sort by number of calls.

r Reverse order of sort.

Merge accounting file into summary file /usrladm/savacct when done.

For each command report ratio of real time to the sum of user and system times.

4th Berkeley Distribution July 29, 1985

SA(8)

FILES

UNIX Programmer's Manual SA(8)

u Superseding all other flags, print for each command in the accounting file the user ID
and command name.

v Followed by a number n, types the name of each command used n times or fewer.
Await a reply from the terminal; if it begins with 'y', add the command to the
category '**junk**.' This is used to strip out garbage.

S The followill8 filename is used as the command summary file instead of
/usr/admlsavacct.

U The following filename is used instead of /usrladmlusracct to accumulate the per-user
statistics printed by the -m option.

/usr/adm/acct
/usr/adm/savacct
/usr/adm/usracct

raw accounting
summary
per-user summary

SEE ALSO
ac(8), acct(2)

BUGS
The number of options to this program is absurd.

4th Berkeley Distribution July 29, 1985 2

SAVECORE(8) UNIX Programmer's Manual SAVECORE(8)

NAME
savecore - save a core dump of the operating system

SYNOPSIS
/etc/savecore dirname [system]

DESCRIPTION

FILES

BUGS

Savecore is meant to be called near the end of the /etc/re file. Its function is to save the core
dump of the system (assuming one was made) and to write a reboot message in the shutdown
log.

Savecore checks the core dump to be certain it corresponds with the current running unix. If
it does it saves the core image in the file dirnamelvmcore.n and its brother, the namelist,
dirnamelvmunix.n The trailing ".n"' in the pathnames is replaced by a number which grows
every time savecore is run in that directory.

Before savecore writes out a core image, it reads a number from the file dirnamelminfree. If
the number of free kilobytes on the filesystem which contains dirname is less than the number
obtained from the minfree file, the core dump is not saved. If the minfree file does not exist,
savecore always writes out the core file (assuming that a core dump was taken).

Savecore also logs a reboot message using facility LOG_AUTH (see syslog(3)) If the system
crashed as a result of a panic, savecore logs the panic string too.

If the core dump was from a system other than /vmunix, the name of that system must be
supplied as sysname.

/vmunix current UNIX

Can be fooled into thinking a core dump is the wrong size.

4th Berkeley Distribution May 24, 1986

SENDMAIL(8) UNIX Programmer's Manual SENDMAIL(8)

NAME
sendmail - send mail over the internet

SYNOPSIS
/usr/Iib/sendmail [flags] [address ...

newaliases

mailq [-v]

DESCRIPTION
Sendmail sends a message to one or more recipients, routing the message over whatever net
works are necessary. Sendmail does internetwork forwarding as necessary to deliver the mes
sage to the correct place.

Sendmail is not intended as a user interface routine; other programs provide user-friendly
front ends; sendmail is used only to deliver pre-formatted messages.

With no flags, sendmail reads its standard input up to an end-of-file or a line consisting only
of a single dot and sends a copy of the message found there to all of the addresses listed. It
determines the network(s) to use based on the syntax and contents of the addresses.

Local addresses are looked up in a file and aliased appropriately. Aliasing can be prevented
by preceding the address with a backslash. Normally the sender is not included in any alias
expansions, e.g., if 'john' sends to 'group', and 'group' includes 'john' in the expansion, then
the Jetter will not be delivered to 'john'.

Aags are:

-ba

-bd

-bi

-bm

-bp

-bs

-bt

-bv

-bz

-C.fi/e

-dX

-Ffullname

-fname

4th Berkeley Distribution

Go into ARPANET mode. All input lines must end with a CR-LF, and all
messages will be generated with a CR-LF at the end. Also, the "From:"
and "Sender:" fields are examined for the name of the sender.

Run as a daemon. This requires Berkeley IPC. Sendmail will fork and
run in background listening on socket 25 for incoming SMTP connections.
This is normally run from /etc/re.

Initialize the alias database.

Deliver mail in the usual way (default).

Print a listing of the queue.

Use the SMTP protocol as described in RFC821 on standard input and out
put. This flag implies all the operations of the -ba flag that are compatible
with SMTP.

Run in address test mode. This mode reads addresses and shows the steps
in parsing; it is used for debugging configuration tables.

Verify names only - do not tryito collect or deliver a message. Verify
mode is normally used for validating users or mailing lists.

Create the configuration freeze file.

Use alternate configuration file. Sendmail refuses to run as root if an alter
nate configuration file is specified. The frozen configuration file is
bypassed.

Set debugging value to X.

Set the full name of the sender.

Sets the name of the "from" person (i.e., the sender of the mail). -f can
only be used by "trusted" users (normally root, daemon, and network) or if
the person you are trying to become is the same as the person you are.

May 22, 1986

SENDMAIL(8)

-hN

-n

-ox value

-q[time]

-rname

-t

UNIX Programmer's Manual SENDMAIL(8)

Set the hop count to N. The hop count is incremented every time the mail
is processed. When it reaches a limit, the mail is returned with an error
message, the victim of an aliasing loop. If not specified, "Received:" lines
in the message are counted.

Don't do aliasing.

Set option x to the specified value. Options are described below.

Processed saved messages in the queue at given intervals. If time is omit
ted, process the queue once. Time is given as a tagged number, with 's'
being seconds, 'm' being minutes, 'h' being hours, 'd' being days, and 'w'
being weeks. For example, "-qlh30m" or "-q90m" would both set the
timeout to one hour thirty minutes. If time is specified, sendmail will run
in background. This option can be used safely with -bd.

An alternate and obsolete form of the -f flag.

Read message for recipients. To:, Cc:, and Bee: lines will be scanned for
recipient addresses. The Bee: line will be deleted before transmission.
Any addresses in the argument list will be suppressed, that is, they will not
receive copies even if listed in the message header.

-v Go into verbose mode. Alias expansions will be announced, etc.

There are also a number of processing options that may be set. Normally these will only be
used by a system administrator. Options may be set either on the command line using the -o
flag or in the configuration file. These are described in detail in the Sendmail Installation and
Operation Guide. The options are:

Afile Use alternate alias file.

c

dx

D

ex

Fmode

f

gN

Hfile

Ln

m

4th Berkeley Distribution

On mailers that are considered "expensive" to connect to, don't initiate
immediate connection. This requires queueing.

Set the delivery mode to x. Delivery modes are 'i' for interactive (synchro
nous) delivery, 'b' for background (asynchronous) delivery, and 'q' for
queue only - i.e., actual delivery is done the next time the queue is run.

Try to automatically rebuild the alias database if necessary.

Set error processing to mode x. Valid modes are 'm' to mail back the error
message, 'w' to "write" back the error message (or mail it back if the
sender is not logged in), 'p' to print the errors on the terminal (default), 'q'
to throw away error messages (only exit status is returned), and 'e' to do
special processing for the BerkNet. If the text of the message is not mailed
back by modes 'm' or 'w' and if the sender is local to this machine, a copy
of the message is appended to the file "dead.letter" in the sender's home
directory.

The mode to use when creating temporary files.

Save UNIX-style From lines at the front of messages.

The default group id to use when calling mailers.

The SMTP help file.

Do not take dots on a line by themselves as a message terminator.

The log level.

Send to "me" (the sender) also if I am in an alias expansion.

May 22, 1986 2

SEND MAIL (8) UNIX Programmer's Manual SENDMAIL(8)

FILES

0 If set, this message may have old style headers. If not set, this message is
guaranteed to have new style headers (i.e., commas instead of spaces
between addresses). If set, an adaptive algorithm is used that will correctly
determine the header format in most cases.

Qqueuedir

rtimeout

Select the directory in which to queue messages.

The timeout on reads; if none is set, sendmail will wait forever for a
mailer. This option violates the word (if not the intent) of the SMTP
specification, show the timeout should probably be fairly large.

Sfile

Ttime

tstz,dtz

uN

Save statistics in the named file.

Always instantiate the queue file, even under circumstances where it is not
strictly necessary. This provides safety against system crashes during
delivery.

Set the timeout on undelivered messages in the queue to the specified time.
After delivery has failed (e.g., because of a host being down) for this
amount of time, failed messages will be returned to the sender. The
default is three days.

Set the name of the time zone.

Set the default user id for mailers.

In aliases, the first character of a name may be a vertical bar to cause interpretation of the
rest of the name as a command to pipe the mail to. It may be necessary to quote the name to
keep sendmail from suppressing the blanks from between arguments. For example, a com
mon alias is:

msgs: "I /usr/ucb/msgs -s"

Aliases may also have the syntax ":include;/ilename" to ask sendmail to read the named file
for a list of recipients. For example, an alias such as:

poets: ":include:/usr /local/lib/poets.list"

would read /usr!local!lib!poets.list for the list of addresses making up the group.

Sendmail returns an exit status describing what it did. The codes are defined in <sysexits.h>
EX_OK Successful completion on all addresses.
EX_NOUSER User name not recognized.
EX_ UNAVAILABLE Catchall meaning necessary resources were not available.
EX_SYNTAX Syntax error in address.
EX_SOFTWARE Internal software error, including bad arguments.
EX_OSERR Temporary operating system error, such as "cannot fork".
EX_NOHOST Host name not recognized.
EX_TEMPFAIL Message could not be sent immediately, but was queued.

If invoked as newaliases, sendmail will rebuild the alias database. If invoked as mailq, send
mail will print the contents of the mail queue.

Except for /usr/lib/sendmail.cf, these pathnames are all specified in /usr/lib/sendmail.Cf. Thus,
these values are only approximations.

/usr/lib/aliases raw data for alias names
/usr/lib/aliases.pag
/usr/lib/aliases.dir data base of alias names
/usr/lib/sendmail.cf configuration file
/usr/lib/sendmail.fc frozen configuration
/usr/lib/sendmail.hf help file

4th Berkeley Distribution May 22, 1986 3

SENDMAIL(8) UNIX Programmer's Manual SENDMAIL(8)

/usr/lib/sendmail.st
/usr/spool/mqueue/•

SEE ALSO

collected statistics
temp files

binmail(l), mail(!), rmail(l), syslog(3), aliases(5), sendmail.cf(5), mailaddr(7), rc(8);
DARPA Internet Request For Comments RFC819, RFC821, RFC822;
Sendmai/ - An Internetwork Mail Router (SMM: 16);
Sendmail Installation and Operation Guide (SMM:7)

4th Berkeley Distribution May 22, 1986 4

SHUTDOWN (8) UNIX Programmer's Manual SHUTDOWN (8)

NAME
shutdown - close down the system at a given time

SYNOPSIS
/etc/shutdown [-k] [-r] [-h] [-f] [-n] time [warning-message ...]

DESCRIPTION

FILES

Shutdown provides an automated shutdown procedure which a super-user can use to notify
users nicely when the system is shutting down, saving them from system administrators, hack
ers, and gurus, who would otherwise not bother with niceties.

Time is the time at which shutdown will bring the system down and may be the word now
(indicating an immediate shutdown) or specify a future time in one of two formats: +number
and hour:min. The first form brings the system down in number minutes and the second
brings the system down at the time of day indicated (as a 24-hour clock).

At intervals which get closer together as apocalypse approaches, warning messages are
displayed at the terminals of all users on the system. Five minutes before shutdown, or
immediately if shutdown is in less than 5 minutes, logins are disabled by creating /etc/nologin
and writing a message there. If this file exists when a user attempts to log in, login(!) prints
its contents and exits. The file is removed just before shutdown exits.

At shutdown time a message is written in the system log, containing the time of shutdown,
who ran shutdown and the reason. Then a terminate signal is sent to init to bring the system
down to single-user state. Alternatively, if -r, -h, or -k was used, then shutdown will exec
reboot(8), halt(8), or avoid shutting the system down (respectively). (If it isn't obvious, -k is
to make people think the system is going down!)

With the -f option, shutdown arranges, in the manner of fastboot(8), that when the system is
rebooted the file systems will not be checked. The -n option prevents the normal sync(2)
before stopping.

The time of the shutdown and the warning message are placed in /etc/nologin and should be
used to inform the users about when the system will be back up and why it is going down (or
anything else).

/etc/nologin tells login not to let anyone log in

SEE ALSO

BUGS

login(I), reboot(8), fastboot(8)

Only allows you to kill the system between now and 23:59 if you use the absolute time for
shutdown.

4th Berkeley Distribution May 26, 1986

SLATTACH(SC) UNIX Programmer's Manual SLATTACH(SC)

NAME
slattach - attach serial lines as network interfaces

SYOPNSIS
/etc/slattach ttyname [baudrate]

DESCRIPTION
S/attach is used to assign a tty line to a network interface, and to define the network source
and destination addresses. The ttyname parameter is a string of the form "ttyXX", or
"/dev/ttyXX". The optional baudrate parameter is used to set the speed of the connection. If
not specified, the default of 9600 is used.

Only the super-user may attach a network interface.

To detach the interface, use 'ifconfig interface-name down' after killing off the slattach pro
cess. interface-name is the name that is shown by netstat(l)

EXAMPLES

DIAGNOSTICS

/etc/slattach ttyh8
/etc/slattach /dev/ttyOl 4800

Messages indicating the specified interface does not exit, the requested address is unknown,
the user is not privileged and tried to alter an interface's configuration.

SEE ALSO
rc(8), intro(4N), netstat(l), ifconfig(SC)

4.3 Berkeley Distribution February 17, 1986

STICKY(8) UNIX Programmer's Manual STICKY(8)

NAME
sticky - persistent text and append-only directories

DESCRIPTION
The sticky bit (file mode bit 01000, see chmod(2)) is used to indicate special treatment forcer
tain executable files and directories.

STICKY TEXT EXECUTABLE FILES
While the 'sticky bit' is set on a sharable executable file, the text of that file will not be
removed from the system swap area. Thus the file does not have to be fetched from the file
system upon each execution. Shareable text segments are normally placed in a least
frequently-used cache after use, and thus the 'sticky bit' has little effect on commonly-used
text images.

Sharable executable files are made by the -n and -z options of Id(I).

Only the super-user can set the sticky bit on a sharable executable file.

STICKY DIRECTORIES

BUGS

A directory whose 'sticky bit' is set becomes an append-only directory, or, more accurately, a
directory in which the deletion of files is restricted. A file in a sticky directory may only be
removed or renamed by a user if the user has write permission for the directory and the user
is the owner of the file, the owner of the directory, or the super-user. This feature is usefully
applied to directories such as /tmp which must be publicly writable but should deny users the
license to arbitrarily delete or rename each others' files.

Any user may create a sticky directory. See chmod(l) for details about modifying file modes.

Since the text areas of sticky text executables are stashed in the swap area, abuse of the
feature can cause a system to run out of swap.

Neither open(2) nor mkdir(2) will create a file with the sticky bit set.

4th Berkeley Distribution June 3, 1986

SWAPON(8) UNIX Programmer's Manual SWAPON(8)

NAME
swapon - specify additional device for paging and swapping

SYNOPSIS
/etc/swapon -a
/etc/swapon name ...

DESCRIPTION
Swapon is used to specify additional devices on which paging and swapping are to take place.
The system begins by swapping and paging on only a single device so that only one disk is
required at bootstrap time. Calls to swapon normally occur in the system multi-user initiali
zation file /etc/re making all swap devices available, so that the paging and swapping activity
is interleaved across several devices.

Normally, the -a argument is given, causing all devices marked as "sw" swap devices in
/etc/fstab to be made available.

The second form gives individual block devices as given in the system swap configuration
table. The call makes only this space available to the system for swap allocation.

SEE ALSO

FILES

BUGS

swapon(2), init(8)

/dev/[ru)[pk)?b normal paging devices

There is no way to stop paging and swapping on a device. It is therefore not possible to make
use of devices which may be dismounted during system operation.

4th Berkeley Distribution April 27, 1985

SYNC(8) UNIX Programmer's Manual

NAME
sync - update the super block

SYNOPSIS
/etc/sync

DESCRIPTION

SYNC(8)

Sync executes the sync system primitive. Sync can be called to insure that all disk writes have
been completed before the processor is halted in a way not suitably done by reboot(8) or
halt(S). Generally, it is preferable to use reboot or halt to shut down the system, as they may
perform additional actions such as resynchronizing the hardware clock and flushing internal
caches before performing a final sync.

See sync(2) for details on the system primitive.

SEE ALSO
sync(2), fsync(2), halt(8), reboot(8), update(8)

4th Berkeley Distribution May 28, 1986

SYSLOGD(8) UNIX Programmer's Manual SYSLOGD(8)

NAME
syslogd - log systems messages

SYNOPSIS
/etc/syslogd [-fconfigfile] [-mmarkinterval] [-d]

DESCRIPTION
Syslogd reads and logs messages into a set of files described by the configuration file
/etc/syslog.conf'. Each message is one line. A message can contain a priority code, marked by
a number in angle braces at the beginning of the line. Priorities are defined in
<sys!syslog.h>. Syslogd reads from the UNIX domain socket !dev!log, from an Internet
domain socket specified in lelc/services, and from the special device !devlklog (to read kernel
messages).

Syslogd configures when it starts up and whenever it receives a hangup signal. Lines in the
configuration file have a seleclor to determine the message priorities to which the line applies
and an action. The action field are separated from the selector by one or more tabs.

Selectors are semicolon separated lists of priority specifiers. Each priority has a Jacilily
describing the part of the system that generated the message, a dot, and a level indicating the
severity of the message. Symbolic names may be used. An asterisk selects all facilities. All
messages of the specified level or higher (greater severity) are selected. More than one facility
may be selected using commas to separate them. For example:

•.emerg;mail,daemon.crit

Selects all facilities at the emerg level and the mail and daemon facilities at the crit level.

Known facilities and levels recognized by syslogd are those listed in syslog(3) without the
leading "LOG_". The additional facility "mark" has a message at priority LOG_INFO sent
to it every 20 minutes (this may be changed with the -m flag). The "mark" facility is not
enabled by a facility field containing an asterisk. The level "none" may be used to disable a
particular facility. For example,

•.debug;mail.none

Sends all messages excepl mail messages to the selected file.

The second part of each line describes where the message is to be logged if this line is
selected. There are four fom1s:

• A filename (beginning with a leading slash). The file will be opened in append mode.

• A hostname preceeded by an at sign ("@"). Selected messages are forwarded to the sys
logd on the named host.

e A comma separated list of users. Selected messages are written to those users if they are
logged in.

• An asterisk. Selected messages are written to all logged-in users.

Blank lines and lines beginning with '#' are ignored.

For example, the configuration file:

kern,mark.debug
• .notice;mail.info
•.crit
kem.err
•.emerg
•.alert
•.alert;auth. warning

4.2 Berkeley Distribution

/dev/console
/usr/spool/adm/syslog
/usr/adm/critical
@ucbarpa

*
eric,kridle
ralph

May 26, 1986

SYSLOGD(8) UNIX Programmer's Manual SYSLOGD(8)

FILES

logs all kernel messages and 20 minute marks onto the system console, all notice (or higher)
level messages and all mail system messages except debug messages into the file
/usr/spool/adm/syslog, and all critical messages into /usr/adm/critical; kernel messages of error
severity or higher are forwarded to ucbarpa. All users will be informed of any emergency
messages, the users "eric" and "kridle" will be informed of any alert messages, and the user
"ralph" will be informed of any alert message, or any warning message (or higher) from the
authorization system.

The flags are:

-f Specify an alternate configuration file.

-m Select the number of minutes between mark messages.

-d Tum on debugging.

Syslogd creates the file /etc/syslog.pid, if possible, containing a single line with its process id.
This can be used to kill or reconfigure syslogd.

To bring syslogd down, it should be sent a terminate signal (e.g. kill 'cat /etc/syslog.picf).

/etc/syslog.conf
/etc/syslog.pid
/dev/log
/dev/klog

the configuration file
the process id
Name of the UNIX domain datagram log socket
The kernel log device

SEE AISO
logger(I), syslog(3)

4.2 Berkeley Distribution May 26, 1986 2

TALKD(8C) UNIX Programmer's Manual TALKD(8C)

NAME
talkd - remote user communication server

SYNOPSIS
/etc/talkd

DESCRIPTION
Talkd is the server that notifies a user that somebody else wants to initiate a conversation. It
acts a repository of invitations, responding to requests by clients wishing to rendezvous to
hold a conversation. In normal operation, a client, the caller, initiates a rendezvous by send
ing a CTL_MSG to the server of type LOOK_ UP (see <protoco/s/talkd.h>). This causes the
server to search its invitation tables to check if an invitation currently exists for the caller (to
speak to the callee specified in the message). If the lookup fails, the caller then sends an
ANNOUNCE message causing the server to broadcast an announcement on the callee's login
ports requesting contact. When the callee responds, the local server uses the recorded invita
tion to respond with the appropriate rendezvous address and the caller and callee client pro
grams establish a stream connection through which the conversation takes place.

SEE ALSO
talk(!), write(1)

4. 3 Berkeley Distribution May 21, 1986

TELNETD (8C) UNIX Programmer's Manual TELNETD (8C)

NAME
telnetd - DARPA TELNET protocol server

SYNOPSIS
/etc/telnetd

DESCRIPTION
Telnetd is a server which supports the DARPA standard TELNET virtual terminal protocol.
Telnetd is invoked by the internet server (see inetd(8)), normally for requests to connect to
the TELNET port as indicated by the /etc/services file (see services(5)).

Telnetd operates by allocating a pseudo-terminal device (see pty(4)) for a client, then creating
a login process which has the slave side of the pseudo-terminal as stdin, stdout, and stderr.
Telnetd manipulates the master side of the pseudo-terminal, implementing the TELNET pro
tocol and passing characters between the remote client and the login process.

When a TELNET session is started up, telnetd sends TELNET options to the client side indi
cating a willingness to do remote echo of characters, to suppress go ahead, and to receive ter
minal type information from the remote client. If the remote client is willing, the remote ter
minal type is propagated in the environment of the created login process. The pseudo
terminal allocated to the client is configured to operate in "cooked" mode, and with XTABS
and CRMOD enabled (see tty(4)).

Telnetd is willing to do: echo, binary, suppress go ahead, and timing mark. Telnetd is willing
to have the remote client do: binary, terminal type, and suppress go ahead.

SEE ALSO

BUGS

telnet(IC)

Some TELNET commands arc only partially implemented.

The TELNET protocol allows for the exchange of the number of lines and columns on the
user's terminal, but telnetd doesn't make use of them.

Because of bugs in the original 4.2 BSD telnet(! C), telnetd performs some dubious protocol
exchanges to try to discover if the remote client is, in fact, a 4.2 BSD telnet(IC).

Binary mode has no common interpretation except between similar operating systems (Unix
in this case).

The terminal type name received from the remote client is converted to lower case.

The packet interface to the pseudo-terminal (see pty(4)) should be used for more intelligent
flushing of input and output queues.

Telnetd never sends TELNET go ahead commands.

4.2 Berkeley Distribution May 28, 1986

TFTPD(8C) UNIX Programmer's Manual TFTPD(8C)

NAME
tftpd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
/etc/tftpd

DESCRIPTION
Tftpd is a server which supports the DARPA Trivial File Transfer Protocol. The TFTP server
operates at the port indicated in the "tftp" service description; see services(5). The server is
normally started by inetd(8).

The use of tftp does not require an account or password on the remote system. Due to the
lack of authentication information, tftpd will allow only publicly readable files to be accessed.
Files may be written only if they already exist and are publicly writable. Note that this
extends the concept of "public" to include all users on all hosts that can be reached through
the network; this may not be appropriate on all systems, and its implications should be con
sidered before enabling tftp service. The server should have the user ID with the lowest pos
sible privilege.

SEE ALSO
tftp(IC), inetd(8)

4.2 Berkeley Distribution May 26, 1986

TIMED(8) UNIX Programmer's Manual TIMED(8)

NAME
timed - time server daemon

SYNOPSIS
/etc/timed [-t] [-M] [-n network] [-i network]

DESCRIPTION

FILES

Timed is the time server daemon and is normally invoked at boot time from the rc(8) file. It
synchronizes the host's time with the time of other machines in a local area network running
timed(8). These time servers will slow down the clocks of some machines and speed up the
clocks of others to bring them to the average network time. The average network time is
computed from measurements of clock differences using the ICMP timestamp request mes
sage.

The service provided by timed is based on a master-slave scheme. When timed(8) is started
on a machine, it asks the master for the network time and sets the host's clock to that time.
After that, it accepts synchronization messages periodically sent by the master and calls adj
time(2) to perform the needed corrections on the host's clock.

It also communicates with date(I) in order to set the date globally, and with timedc(8), a
timed control program. If the machine running the master crashes, then the slaves will elect a
new master from among slaves running with the -M flag. A timed running without the -M
flag will remain a slave. The -t flag enables timed to trace the messages it receives in the file
/usr/adm/timed.log. Tracing can be turned on or off by the program timedc(8). Timed nor
mally checks for a master time server on each network to which it is connected, except as
modified by the options described below. It will request synchronization service from the first
master server located. If permitted by the -M flag, it will provide synchronization service on
any attached networks on which no current master server was detected. Such a server pro
pagates the time computed by the top-level master. The -n flag, followed by the name of a
network which the host is connected to (see networks(S)), overrides the default choice of the
network addresses made by the program. Each time the -n flag appears, that network name is
added to a list of valid networks. All other networks are ignored. The -i flag, followed by the
name of a network to which the host is connected (see networks(S)), overrides the default
choice of the network addresses made by the program. Each time the -i flag appears, that
network name is added to a list of networks to ignore. All other networks are used by the
time daemon. The -n and -i flags are meaningless if used together.

/usr/adm/timed.log tracing file for timed
/usr/adm/timed.masterlog log file for master timed

SEE ALSO
date(I), adjtime(2), gettimeofday(2), icmp(4P), timedc(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

4.3 Berkeley Distribution May 28, 1986

TIMEDC(8) UNIX Programmer's Manual TIMEDC(8)

NAME
timedc - timed control program

SYNOPSIS
/etc/timedc [command [argument ...)]

DESCRIPTION

FILES

Timedc is used to control the operation of the timed program. It may be used to:

• measure the differences between machines' clocks,

• find the location where the master time server is running,

• enable or disable tracing of messages received by timed, and

• perform various debugging actions.

Without any arguments, timedc will prompt for commands from the standard input. If argu
ments are supplied, timedc interprets the first argument as a command and the remaining
arguments as parameters to the command. The standard input may be redirected causing
timedc to read commands from a file. Commands may be abbreviated; recognized commands
are:

? [command ...)

help [command ...)
Print a short description of each command specified in the argument list, or, if no
arguments are given, a list of the recognized commands.

clockdiff host ...
Compute the differences between the clock of the host machine and the clocks of the
machines given as arguments.

trace { on I off }

quit

Enable or disable the tracing of incoming messages to timed in the file
/usr/adm/timed.log.

Exit from timedc.

Other commands may be included for use in testing and debugging timed; the help command
and the program source may be consulted for details.

/usr/adm/timed.log tracing file for timed
/usr/adm/timed.masterloglog file for master timed

SEE ALSO
date(!), adjtime(2), icmp(4P), timed(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

DIAGNOSTICS
?Ambiguous command
?Invalid command
?Privileged command

4.3 Berkeley Distribution

abbreviation matches more than one command
no match found
command can be executed by root only

May 28, 1986

TRPT(8C) UNIX Programmer's Manual TRPT(8C)

NAME
trpt - transliterate protocol trace

SYNOPSIS
trpt [-a I [-s] [-t I [-f) [-j I [-p hex-address I [system [core])

DESCRIPTION

FILES

Trpt interrogates the buffer of TCP trace records created when a socket is marked for "debug
ging" (see setsockopt(2)), and prints a readable description of these records. When no options
are supplied, trpt prints all the trace records found in the system grouped according to TCP
connection protocol control block (PCB). The following options may be used to alter this
behavior.

-a in addition to the normal output, print the values of the source and destination
addresses for each packet recorded.

-s in addition to the normal output, print a detailed description of the packet sequencing
information.

-t in addition to the normal output, print the values for all timers at each point in the
trace.

-f follow the trace as it occurs, waiting a short time for additional records each time the
end of the log is reached.

-j just give a list of the protocol control block addresses for which there are trace
records.

-p show only trace records associated with the protocol control block, the address of
which follows.

The recommended use of trpt is as follows. Isolate the problem and enable debugging on the
socket(s) involved in the connection. Find the address of the protocol control blocks associ
ated with the sockets using the -A option to netstat(I). Then run trpt with the -p option, sup
plying the associated protocol control block addresses. The -f option can be used to follow
the trace log once the trace is located. If there are many sockets using the debugging option,
the -j option may be useful in checking to see if any trace records are present for the socket
in question. The

If debugging is being performed on a system or core file other than the default, the last two
arguments may be used to supplant the defaults.

/vmunix
/dev/kmem

SEE ALSO
setsockopt(2), netstat(l), trsp(8C)

DIAGNOSTICS

BUGS

"no namelist" when the system image doesn't contain the proper symbols to find the trace
buffer; others which should be self explanatory.

Should also print the data for each input or output, but this is not saved in the race record.

The output format is inscrutable and should be described here.

4.2 Berkeley Distribution May 26, 1986

TRSP(8c) UNIX Programmer's Manual TRSP(8c)

NAME
trsp - transliterate sequenced packet protocol trace

SYNOPSIS
trsp [-a] [-s] [-t] [-j] [-p hex-address] [system [core 11

DESCRIPTION

FILES

Trpt interrogates the buffer of SPP trace records created when a socket is marked for "debug
ging" (see setsockopt(2)), and prints a readable description of these records. When no options
are supplied, trsp prints all the trace records found in the system grouped according to SPP
connection protocol control block (PCB). The following options may be used to alter this
behavior.

-s in addition to the normal output, print a detailed description of the packet sequencing
information,

-t in addition to the normal output, print the values for all timers at each point in the
trace,

-j just give a list of the protocol control block addresses for which there are trace
records,

-p show only trace records associated with the protocol control block who's address fol
lows,

-a in addition to the normal output, print the values of the source and destination
addresses for each packet recorded.

The recommended use of trsp is as follows. Isolate the problem and enable debugging on the
socket(s) involved in the connection. Find the address of the protocol control blocks associ
ated with the sockets using the -A option to netstat(l). Then run trsp with the -p option,
supplying the associated protocol control block addresses. If there are many sockets using the
debugging option, the -j option may be useful in checking to see if any trace records are
present for the socket in question.

If debugging is being performed on a system or core file other than the default, the last two
arguments may be used to supplant the defaults.

/vmunix
/dev/kmem

SEEMS<>
setsockopt(2), netstat(1)

DIAGNOSTICS

BUGS

"no namelist" when the system image doesn't contain the proper symbols to find the trace
buffer; others which should be self explanatory.

Should also print the data for each input or output, but this is not saved in the race record.

The output format is inscrutable and should be described here.

4.2 Berkeley Distribution October 8, 1985

TUNEFS(8) UNIX Programmer's Manual TUNEFS(8)

NAME
tunefs - tune up an existing file system

SYNOPSIS
/etc/tunefs tuneup-options special lfilesys

DESCRIPTION
Tunefs is designed to change the dynamic parameters of a file system which affect the layout
policies. The parameters which are to be changed are indicated by the flags given below:

-a maxcontig
This specifies the maximum number of contiguous blocks that will be laid out before
forcing a rotational delay (see -d below). The default value is one, since most device
drivers require an interrupt per disk transfer. Device drivers that can chain several
buffers together in a single transfer should set this to the maximum chain length.

-d rotdelay
This specifies the expected time (in milliseconds) to service a transfer completion
interrupt and initiate a new transfer on the same disk. It is used to decide how much
rotational spacing to place between successive blocks in a file.

-e maxbpg
This indicates the maximum number of blocks any single file can allocate out of a
cylinder group before it is forced to begin allocating blocks from another cylinder
group. Typically this value is set to about one quarter of the total blocks in a cylinder
group. The intent is to prevent any single file from using up all the blocks in a single
cylinder group, thus degrading access times for all files subsequently allocated in that
cylinder group. The effect of this limit is to cause big files to do long seeks more fre
quently than if they were allowed to allocate all the blocks in a cylinder group before
seeking elsewhere. For file systems with exclusively large files, this parameter should
be set higher.

-m minfree
This value specifies the percentage of space held back from normal users; the
minimum free space threshold. The default value used is 10%. This value can be set
to zero, however up to a factor of three in throughput will be lost over the perfor
mance obtained at a 10% threshold. Note that if the value is raised above the current
usage level, users will be unable to allocate files until enough files have been deleted to
get under the higher threshold.

-o optimization preference
The file system can either try to minimize the time spent allocating blocks, or it can
attempt minimize the space fragmentation on the disk. If the value of minfree (see
above) is less than 10%, then the file system should optimize for space to avoid run
ning out of full sized blocks. For values of minfree greater than or equal to 10%, frag
mentation is unlikely to be problematical, and the file system can be optimized for
time.

SEE ALSO

BUGS

fs(5), newfs(8), mkfs(8)

M. McKusick, W. Joy, S. Leffler, R. Fabry, "A Fast File System for UNIX'', ACM Transac
tions on Computer Systems 2, 3. pp 181-197, August 1984. (reprinted in the System
Manager's Manual, SMM:l4)

This program should work on mounted and active file systems. Because the super-block is
not kept in the buffer cache, the changes will only take effect if the program is run on
dismounted file systems. To change the root file system, the system must be rebooted after

4.2 Berkeley Distribution May 22, 1986

TUNEFS(S) UNIX Programmer's Manual TUNEFS(8)

the file system is tuned.

You can tune a file system, but you can't tune a fish.

4.2 Berkeley Distribution May 22, 1986 2

UPDATE(8) UNIX Programmer's Manual UPDATE(8)

NAME
update - periodically update the super block

SYNOPSIS
/etc/update

DESCRIPTION
Update is a program that executes the sync(2) primitive every 30 seconds. This insures that
the file system is fairly up to date in case of a crash. This command should not be executed
directly, but should be executed out of the initialization shell command file.

SEE ALSO

BUGS

sync(2), sync(8), init(8), rc(8)

With update running, if the CPU is halted just as the sync is executed, a file system can be
damaged. This is partially due to DEC hardware that writes zeros when NPR requests fail. A
fix would be to have s)mc(S) temporarily increment the system time by at least 30 seconds to
trigger the execution of update. This would give 30 seconds grace to halt the CPU.

7th Edition April27, 1985

UUCIC0(8C) UNIX Programmer's Manual UUCIC0(8C)

NAME
uucico, uucpd - transfer files queued by uucp or uux

SYNOPSIS
/usr/lib/uucp/uucico [-dspooldir] [-ggrade] [-rrole] [-R] [-ssystem] [-xdebug] [-L] [
-tturnaround]

/etc/uucpd

DESCRIPTION
Uucico performs the actual work involved in transferring files between systems. Uucp(IC) and
uux(1 C) merely queue requests for data transfer which uucico processes.

The following options are available.

-dspooldir
Use spooldir as the spool directory. The default is /usr/spool/uucp.

-ggrade Only send jobs of grade grade or higher this transfer. The grade of a job is specified
when the job is queued by uucp or uux.

-rrole role is either 1 or O; it indicates whether uucico is to start up in master or slave role,
respectively. 1 is used when running uucico by hand or from cron(8). 0 is used when
another system calls the local system. Slave role is the default.

-R Reverse roles. When used with the -rl option, this tells the remote system to begin
sending its jobs first, instead of waiting for the local machine to finish.

-ssystem

-xdebug

Call only system system. If -s is not specified, and -r 1 is specified, uucico will
attempt to call all systems for which there is work. If -s is specified, a call will be
made even if there is no work for that system. This is useful for polling.

Turn on debugging at level debug. Level 5 is a good start when trying to find out
why a call failed. Level 9 is very detailed. Level 99 is absurdly verbose. If role is 1
(master), output is normally written to the standard message output stderr. If stderr
is unavailable, output is written to /usr/spool/uucp/AUDIT/system. When role is 0
(slave), debugging output is always written to the AUDIT file.

-L Only call "local" sites. A site is considered local if the device-type field in L.sys is
one of LOCAL, DIR or TCP.

-tturnaround
Use turnaround as the line turnaround time (in minutes) instead of the default 30. If
turnaround is missing or 0, line turnaround will be disabled. After uucico has been
running in slave role for turnaround minutes, it will attempt to run in master role by
negotiating with the remote machine. In earlier versions of uucico, a transfer of
many large files in one direction would hold up mail going in the other direction.
With the turnaround code working, the message flow will be more bidirectional in
the short term. This option only works with newer uucico's and is ignored by older
ones.

If uucico receives a SIGFPE (see kill(I)), it will toggle the debugging on or off.

Uucpd is the server for supporting uucp connections over networks. Uucpd listens for service
requests at the port indicated in the "uucp" service specification; see services(5). The server
provides login name and password authentication before starting up uucico for the rest of the
transaction.

Uucico is commonly used either of two ways: as a daemon run periodically by cron(S) to call
out to remote systems, and as a "shell" for remote systems who call in. For calling out

4.3 Berkeley Distribution May 15, 1986

UUCIC0(8C) UNIX Programmer's Manual UUCIC0(8C)

FILES

periodically, a typical line in crontab would be:

0 * * /usr/lib/uucp/uucico -rl

This will run uucico every hour in master role. For each system that has transfer requests
queued, uucico calls the system, logs in, and executes the transfers. The file L.sys(5) is con
sulted for information about how to log in, while L-devices(5) specifies available lines and
modems for calling.

For remote systems to dial in, an entry in the passwd(5) file must be created, with a login
"shell" of uucico. For example:

nuucp:Password:6: I ::/usr/spool/uucppublic:/usr/lib/uucp/uucico

The UID for UUCP remote logins is not critical, so long as it differs from the UUCP Admin
istrative login. The latter owns the UUCP files, and assigning this UID to a remote login
would be an extreme security hazard.

/usr/lib/uucp/
/usr/lib/uucp/L-devices
/usr/lib/uucp/L-dialcodes
/usr/lib/uucp/L.aliases
/usr/lib/uucp/L.cmds
/usr/lib/uucp/L.sys
/usr/lib/uucp/USERFILE

/usr/spool/uucp/
/usr/spool/uucp/ AUDIT I•
/usr/spool/uucp/C./
/usr/spool/uucp/D./
/usr/spool/uucp/D.hostname/
/usr/spool/uucp/D.hostnameX/
/usr/spool/uucp/CORRUPT/
/usr/spool/uucp/ERRLOG
/usr/spool/uucp/LOGFILE
/usr/spool/uucp/LCK/LCK .. •
/usr/spool/uucp/SYSLOG
/usr/spool/uucp/STST I•
/usr/spool/uucp/TM./
/usr/spool/uucp/X./

UUCP internal files/utilities
Local device descriptions
Phone numbers and prefixes
Hostname aliases
Remote command permissions list
Host connection specifications
Remote directory tree permissions list

Spool directory
Debugging audit trails
Control files directory
Incoming data file directory
Outgoing data file directory
Outgoing execution file directory
Place for corrupted C. and D. files
UUCP internal error log
UUCP system activity log
Device lock files
File transfer statistics log
System status files
File transfer temp directory
Incoming execution file directory

/usr/spool/uucppublic Public access directory

SEE AUlO
uucp(IC), uuq(IC), uux(IC), L-devices(5), L-dialcodes(5), L.aliases(5), L.cmds(5), L.sys(5),
uuclean(SC), uupoll(SC), uusnap(SC), uuxqt(SC)

D. A. Nowitz and M. E. Lesk, A Dial-Up Network of UNIX Systems.

D. A. Nowitz, Uucp Implementation Description.

4.3 Berkeley Distribution May 15, 1986 2

UUCLEAN (SC) UNIX Programmer's Manual

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
/usr/lib/uucp/uuclean [-m] [-ntime] [-ppre]

DESCRIPTION

UUCLEAN (SC)

Uuclean will scan the spool directory for files with the specified prefix and delete all those
which are older than the specified number of hours.

The following options are available.

-pp re Scan for files with pre as the file prefix. Up to 10 -p arguments may be specified.

-ntime Files whose age is more than time hours will be deleted if the prefix test is satisfied.
(default time is 72 hours)

-m Send mail to the owner of the file when it is deleted.

-dsubdirectory
Only the specified subdirectory will be cleaned.

This program will typically be run daily by cron(8).

FILES
/usr/spool/uucp Spool directory

SEE ALSO
uucp(IC), uux(l C), uucico(8C)

4.2 Berkeley Distribution April 24, 1986

UUPOLL(8C) UNIX Programmer's Manual UUPOLL(8C)

NAME
uupoll - poll a remote UUCP site

SYNOPSIS
uupoll [-ggrade] [-n] system

DESCRIPTION

FILES

Uupoll is used to force a poll of a remote system. It queues a null job for the remote system
and then invokes uucico(8C).

The following options are available:

-ggrade Only send jobs of grade grade or higher on this call.

-n Queue the null job, but do not invoke uucico.

Uupoll is usually run by cron(5) or by a user who wants to hurry a job along. A typical entry
in crontab could be:

0 0,8, 16 • • • /usr/bin/uupoll ihnp4
0 4, 12,20 • • • /usr/bin/uupoll ucbvax

This will poll ihnp4 at midnight, 0800, and 1600, and ucbvax at 0400, noon, and 2000.

If the local machine is already running uucico every hour and has a limited number of outgo
ing modems, a more elegant approach might be:

0 0,8, 16 • /usr/bin/uupoll -n ihnp4
0 4, 12,20 • • • /usr/bin/uupoll -n ucbvax
5 • • * * /usr/lib/uucp/uucico -rl

This will queue null jobs for the remote sites at the top of hour; they will be processed by
uucico when it runs five minutes later.

/usr/lib/uucp/ UUCP internal files/utilities
/usr/spool/uucp/ Spool directory

SEE ALSO
uucp(! C), uux(1 C), uucico(8C)

4. 3 Berkeley Distribution April 24, 1986

UUSNAP(8C) UNIX Programmer's Manual UUSNAP(8C)

NAME
uusnap - show snapshot of the UUCP system

SYNOPSIS
uusnap

DESCRIPTION
Uusnap displays in tabular format a synopsis of the current UUCP situation. The format of
each line is as follows:

site N Cmds N Data N Xqts Message

Where ""site" is the name of the site with work, "'N" is a count of each of the three possible
types of work (command, data, or remote execute), and "Message" is the current status mes
sage for that site as found in the STST file.

Included in "'Message" may be the time left before UUCP can re-try the call, and the count of
the number of times that UUCP has tried (unsuccessfully) to reach the site.

SEE ALSO
uucp(! C), uux(l C), uuq(l C), uucico(8C)
UUCP Implementation Guide

4.2 Berkeley Distribution April 24, 1986

UUXQT(8C) UNIX Programmer's Manual UUXQT(SC)

NAME
uuxqt - UUCP execution file interpreter

SYNOPSIS
/usr/lib/uucp/uuxqt [-xdebug]

DESCRIPTION

FILES

Uuxqt interprets execution files created on a remote system via uux(IC) and transferred to the
local system via uucico(SC). When a user uses uux to request remote command execution, it
is uuxqt that actually executes the command. Normally, uuxqt is forked from uucico to pro
cess queued execution files; for debugging, it may also be run manually by the UUCP adminis
trator.

Uuxqt runs in its own subdirectory, lusrlspoo/luucp/XTMP. It copies intermediate files to
this directory when necessary.

/usr/lib/uucp/L.cmds
/usr/lib/uucp/USERFILE
/usr/spool/uucp/LOGFILE
/usr/spool/uucp/LCK/LCK.XQT
/usr/spool/uucp/X./
/usr/spool/uucp/XTMP

Remote command permissions list
Remote directory tree permissions list
UUCP system activity log
Uuxqt lock file
Incoming execution file directory
Uuxqt running directory

SEE ALSO
uucp(IC), uux(IC), L.cmds(5), USERFILE(5), uucico(8C)

4.3 Berkeley Distribution April 24, 1986

VIPW(8) UNIX Programmer's Manual VIPW(8)

NAME
vipw - edit the password file

SYNOPSIS
vipw

DESCRIPTION
Vipw edits the password file while setting the appropriate locks, and does any necessary pro
cessing after the password file is unlocked. If the password file is already being edited, then
you will be told to try again later. The vi editor will be used unless the environment variable
EDITOR indicates an alternate editor. Vipw performs a number of consistency checks on the
password entry for root, and will not allow a password file with a "mangled" root entry to be
installed.

SEE AI.SO
passwd(l), passwd(5), adduser(8), mkpasswd(8)

FILES
/etc/ptmp

4th Berkeley Distribution May 19, 1986

XNSROUTED (SC) UNIX Programmer's Manual XNSROUTED (SC)

NAME
XNSrouted - NS Routing Information Protocol daemon

SYNOPSIS
/etc/XNSrouted [-s] [-q] [-t] [logfi/e]

DESCRIPTION
XNSrouted is invoked at boot time to manage the Xerox NS routing tables. The NS routing
daemon uses the Xerox NS Routing Information Protocol in maintaining up to date kernel
routing table entries.

In normal operation XNSrouted listens for routing information packets. If the host is con
nected to multiple NS networks, it periodically supplies copies of its routing tables to any
directly connected hosts and networks.

When XNSrouted is started, it uses the SIOCGIFCONF ioctl to find those directly connected
interfaces configured into the system and marked "up" (the software loopback interface is
ignored). If multiple interfaces are present, it is assumed the host will forward packets
between networks. XNSrouted then transmits a request packet on each interface (using a
broadcast packet if the interface supports it) and enters a loop, listening for request and
response packets from other hosts.

When a request packet is received, XNSrouted formulates a reply based on the information
maintained in its internal tables. The response packet generated contains a list of known
routes, each marked with a "hop count" metric (a count of 16, or greater, is considered
"infinite"). The metric associated with each route returned provides a metric relative to the
sender.

Response packets received by XNSrouted are used to update the routing tables if one of the
following conditions is satisfied:

(I) No routing table entry exists for the destination network or host, and the metric indi
cates the destination is "reachable" (i.e. the hop count is not infinite).

(2) The source host of the packet is the same as the router in the existing routing table
entry. That is, . updated information is being received from the very internetwork
router through which packets for the destination are being routed.

(3) The existing entry in the routing table has not been updated for some time (defined to
be 90 seconds) and the route is at least as cost effective as the current route.

(4) The new route describes a shorter route to the destination than the one currently
stored in the routing tables; the metric of the new route is compared against the one
stored in the table to decide this.

When an update is applied, XNSrouted records the change in its internal tables and generates
a response packet to all directly connected hosts and networks. Routed waits a short period of
time (no more than 30 seconds) before modifying the kernel's routing tables to allow possible
unstable situations to settle. ·

In addition to processing incoming packets, XNSrouted also periodically checks the routing
table entries. If an entry has not been updated for 3 minutes, the entry's metric is set to
infinity and marked for deletion. Deletions are delayed an additional 60 seconds to insure
the invalidation is propagated to other routers.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds
to all directly connected hosts and networks.

Supplying the -s option forces XNSrouted to supply routing information whether it is acting
as an internetwork router or not. The -q option is the opposite of the -s option. If the -t
option is specified, all packets sent or received are printed on the standard output. In addi
tion, XNSrouted will not divorce itself from the controlling terminal so that interrupts from

4.3 Berkeley Distribution June 3, 19S6

XNSROUTED (8C) UNIX Programmer's Manual XNSROUTED (8C)

the keyboard will kill the process. Any other argument supplied is interpreted as the name of
file in which XNSrouted's actions should be logged. This log contains information about any
changes to the routing tables and a history of recent messages sent and received which are
related to the changed route.

SEE ALSO
"Internet Transport Protocols", XSIS 028112, Xerox System Integration Standard.
idp(4P)

4.3 Berkeley Distribution June 3, 1986 2

Installing and Operating 4.3BSD on the VAX

Installing and Operating 4.3BSD on the VAX
April 1, 1986

Michael J. Karels

James M. Bloom

Marshall Kirk McKusick

Samuel J. Le.ff/er

William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

SMM:l-1

This document contains instructions for the installation and operation of the
4.3BSD release of the VAX* UNIX** system, as distributed by The University of
California at Berkeley.

It discusses procedures for installing UNIX on a new VAX, and for upgrading
an existing 4.2BSD VAX UNIX system to the new release. An explanation of how
to Jay out file systems on available disks, how to set up terminal lines and user
accounts, and how to do system-specific tailoring is provided. A description of how
to install and configure the networking facilities included with 4.3BSD is included.
Finally, the document details system operation procedures: shutdown and startup,
hardware error reporting and diagnosis, file system backup procedures, resource con
trol, performance monitoring, and procedures for recompiling and reinstalling sys
tem software.

• DEC, VAX, JDC, SB!, UNIBUS and MASSBUS are trademarks of Digital Equipment Corporation.
•• UNIX is a Trademark of Bell Laboratories.

April 16, 1986

SMM:I-2 Installing and Operating 4.3BSD on the VAX

1. INTRODUCTION

This document explains how to install the 4.3BSD release of the Berkeley version of UNIX for
the VAX on your system. Because of the file system organization used in 4.3BSD, if you are not
currently running 4.2BSD you will have to do a full bootstrap from the distribution tape. The pro
cedure for performing a full bootstrap is outlined in chapter 2. The process includes booting stan
dalone utilities from tape to format a disk if necessary, then to copy a small root filesystem image
onto a swap area. This filesystem is then booted and used to extract a dump of a standard root
filesystem. Finally, that root filesystem is booted, and the remainder of the system binaries and
sources are read from the archives on the tape(s).

The technique for upgrading a 4.2BSD system is described in chapter 3 of this document. As
4.3BSD is upward-compatible with 4.2BSD, The upgrade procedure involves extracting a new set of
system binaries onto new root and /usr filesystems. The sources are then extracted, and local
configuration files are merged into the new system. 4.2BSD user filesystems may up upgraded in
place, and 4.2BSD binaries may be used with 4.3BSD in the course of the conversion. It is desirable
to recompile most local software after the conversion, as there are many changes and performance
improvements in the standard libraries.

1.1. Hardware supported

This distribution can be booted on a VAX 8650, VAX 8600, VAX-111785, VAX-11/780, VAX-
111750, VAX-111730 or VAX-111725 cpu with any of the following disks:

DEC MASSBUS:
EMULEX MASSBUS:

DEC UNIBUS:
EMULEX SC-2IV, SC-31

UNIBUS*:
EMULEX SC-31 UNIBUS*:
DEC IDC:

RM03, RM05, RM80, RP06, RP07
AMPEX Capricorn, 9300, CDC 9766, 9775,
FUJITSU 2351 Eagle
RK07, RL02, RASO, RA81, RA60, RC25
AMPEX DM980, Capricorn, 9300,
CDC 9762, 9766, FUJITSU I60M, 330M
FUJITSU 2351 Eagle
R80, RL02

The tape drives supported by this distribution are:

DEC MASSBUS:
EMULEX MASSBUS:
DEC UNIBUS:
EMULEX TC-I I, AVIV UNIBUS:
TU45 UNIBUS*:

TEI6, TU45, TU77, TU78
TC-7000
TSll, TU80
KENNEDY 9300, STC, CIPHER
SI 9700

The tapes and disks may be on any available UNIBUS or MASSBUS adapter at any slot with
the proviso that the tape device must be slave number 0 on the formatter if it is a MASSBUS tape
drive.

This distribution does not support the DEC CI780 or the HSC50 disk controller. As such, this
distribution will not boot on the standard VAX 8600 and VAX 8650 cluster configurations. You will
need to configure your system to use only UNIBUS and MASSBUS disk and tape devices.

• Other UNIBUS controllers and drives may be easily usable with the system, but will likely require minor
modifications to the system to allow bootstrapping. The EMULEX disk and SI tape controllers, and the
drives shown here are known to work as bootstrap devices.

April 16, 1986

Installing and Operating 4.3BSD on the VAX

1.2. Distribution format

The basic distribution contains the following items:

(3) 1600bpi 2400' magnetic tapes, or
(I) 6250bpi 2400' magnetic tape, and
(I) TU 58 console cassette, and
(I) RXO I console floppy disk.

SMM:l-3

Installation on any machine requires a tape unit. Since certain standard VAX packages do not include
a tape drive, this means one must either borrow one from another VAX system or one must be pur
chased separately. The console media distributed with the system are not suitable for use as the stan
dard console media; their intended use is only for installation.

The distribution does not fit on several standard VAX configurations that contain only small disks.
If your hardware configuration does not provide at least 75 Megabytes of disk space you can still
install the distribution, but you will probably have to operate without source for the user level com
mands and, possibly, the source for the operating system. The RK07-only distribution format once
provided by our group is no longer available. Further, no attempt has ever been made to install the
system on the standard VAX-11/730 hardware configuration from DEC that contains only dual RL02
disk drives (though the distribution tape may be bootstrapped on an RL21 l controller and the system
provides support for RL02 disk drives either on an IDC or an RL21 I). The labels on the distribution
tape(s) show the amount of disk space each tape file occupies, these should be used in selecting file
system layouts on systems with little disk space.

If you have the facilities, it is a good idea to copy the magnetic tape(s) in the distribution kit to
guard against disaster. The tapes are 9-track 1600 BPI or 6250 BPI and contain some 512-byte
records followed by many I 0240-byte records. There are interspersed tape marks; end-of-tape is sig
naled by a double end-of-file.

The basic bootstrap material is present in three short files at the beginning of the first tape. The
first file on the tape contains preliminary bootstrapping programs. This is followed by a binary image
of a 2 megabyte "mini root" file system. Following the mini root file is a full dump of the root file
system (see dump(8)*). Additional files on the tape(s) contain tape archive images (see tar(!)). See
Appendix A for a description of the contents and format of the tape(s). One file contains software
contributed by the user community; refer to the accompanying documentation for a description of its
contents and an explanation of how it should be installed.

1.3. VAX hardware terminology

This section gives a short discussion of VAX hardware terminology to help you get your bear
ings.

If you have MASSBUS disks and tapes it is necessary to know the MASSBUS that they are
attached to, at least for the purposes of bootstrapping and system description. The MASSBUSes can
have up to 8 devices attached to them. A disk counts as a device. A tape formatter counts as a dev
ice, and several tape drives may be attached to a formatter. If you have a separate MASSBUS
adapter for a disk and one for a tape then it is conventional to put the disk as unit 0 on the
MASSBUS with the lowest "TR" number, and the tape formatter as unit 0 on the next MASSBUS.
On a 11/780 this would correspond to having the disk on "mbaO" at "tr8" and the tape on "mbal"
at "tr9". Here the MASSBUS adapter with the lowest TR number has been called "mbaO" and the
one with the next lowest number is called "mbal".

To find out the MASSBUS that your tape and disk are on you can examine the cabling and the
unit numbers or your site maintenance guide. Do not be fooled into thinking that the number on the
front of the tape drive is a device number; it is a slave number, one of several possible tapes on the
single tape formatter. For bootstrapping, the slave number must be 0. The formatter unit number

• References of the form X(Y) mean the subsection named X in section Y of the UNIX programmer's
manual.

April 16, 1986

SMM:l-4 Installing and Operating 4.3BSD on the VAX

may be anything distinct from the other numbers on the same MASSBUS, but you must know what it
is.

The MASSBUS devices are known by several different names by DEC software and by UNIX.
At various times it is necessary to know both names. There is, of course, the name of the device like
"RM03" or "RM80"; these are easy to remember because they are printed on the front of the device.
DEC also names devices based on the driver name in the system using a convention that reflects the
interconnect topology of the machine. The first letter of such a name is a "D" for a disk, the second
letter depends on the type of the drive, "DR" for RM03, RM05, and RM80's, "DB" for RP06's. The
next letter is related to the interconnect; DEC calls the first MASSBUS or UNIBUS adapter "A", the
second "B", etc. Thus, "DRA" is a RM drive on the first MASSBUS adapter. Finally, the name
ends in a digit corresponding to the unit number for the device on the MASSBUS, i.e. "DRAO" is a
disk at the first device slot on the first MASSBUS adapter and is an RM disk.

1.4. UNIX device naming

viz.:
UNIX has a set of names for devices which are different from the DEC names for the devices,

RM/RP disks hp
TE/TU tapes ht
TU78 tape mt

The normal standalone system, used to bootstrap the full UNIX system, uses device names:

xx(y,z)

where xx is either hp, ht, or mt. The value y specifies the MASSBUS to use and also the device. It is
computed as

8 * mba + device

Thus mbaO device 0 would have a y value of 0 while mbal device 0 would have a y value of 8. The z
value is interpreted differently for tapes and disks: for disks it is a disk partition (in the range 0-7),
and for tapes it is a file number on the tape.

Each UNIX physical disk is divided into 8 logical disk partitions, each of which may occupy
any consecutive cylinder range on the physical device. The cylinders occupied by the 8 partitions for
each drive type are specified in section 4 of the programmers manual and in the disk description file
/etc/disktab (c.f. disktab(5)).* Each partition may be used for either a raw data area such as a paging
area or to store a UNIX file system. It is conventional for the first partition on a disk to be used to
store a root file system, from which UNIX may be bootstrapped. The second partition is traditionally
used as a paging area, and the rest of the disk is divided into spaces for additional "mounted file sys
tems" by use of one or more additional partitions.

The third logical partition of each physical disk also has a' conventional usage: it allows access to
the entire physical device, including the bad sector forwarding information recorded at the end of the
disk (one track plus I 26 sectors). It is occasionally used to store a single large file system or to access
the entire pack when making a copy of it on another. Care must be taken when using this partition
not to overwrite the last few tracks and thereby clobber the bad sector information.

The disk partitions have names in the standalone system of the form "hp(y,z)" with varying y as
described above. Thus partition I of a RM05 on mbaO at drive 0 would be "hp(O,I)". When not
running standalone, this partition would normally be available as "/dev/hpOb". Here the prefix
"/dev" is the name of the directory where all "special files" normally live, the "hp" serves an obvious

• It is possible to change the partitions by changing the code for the table in the disk driver; it is often
desirable to do this, therefore these tables should be read off each pack; they may be in a future version of
the system.

April I 6, I 986

Installing and Operating 4.3BSD on the VAX SMM:l-5

purpose, the "O" identifies this as a partition of hp drive number "O" and the "b" identifies this as
the second partition.

In all simple cases, a drive with unit number 0 (in its unit plug on the front of the drive) will be
called unit 0 in its UNIX file name. This is not, however, strictly necessary, since the system has a
level of indirection in this naming. If there are multiple controllers, the disk unit numbers will nor
mally be counted sequentially across controllers. This can be taken advantage of to make the system
less dependent on the interconnect topology, and to make reconfiguration after hardware failure
extremely easy. We will not discuss that now.

Returning to the discussion of the standalone system, we recall that tapes also took two integer
parameters. In the normal case where the tape formatter is unit 0 on the second mba (mbal), the
files on the tape have names "ht(8,0)", "ht(8,l)", etc. Here "file" means a tape file containing a sin
gle data stream. The distribution tape(s) have data structures in the tape files and though the tape(s)
contain only 9 tape files, they contain several thousand UNIX files.

For the UNIBUS, there are also conventional names. The important DEC names to know are
DM?? for RK07 drives and DU?? for drives on a UDA50. For example, RK07 drive 0 on a con
troller on the first UNIBUS on the machine is "DMAO". UNIX calls such a device an "hk" and the
standalone name for the first partition of such a device is "hk(0,0)". The first number is calculated
from the drive number and UNIBUS adapter as

8 * uba + drive

If the controller were on the second UNIBUS its name would be "hk(8,0)". If we wished to access
the first partition of an RK07 drive I on ubaO we would use "hk(1,0)".

The UNIBUS disk and tape names used by UNIX are:

RK disks hk
TS tapes ts
UDA disks ra
RC25 disks ra
JDC disks rb
SMD disks up
TM tapes tm
TMSCPtapes tmscp
TU tapes ut

Here SMD disks are disks on an RM-emulating controller on the UNIBUS, and TM tapes are
tapes on a controller that emulates the DEC TM! I. TU tapes are tapes on a UNIBUS controller that
emulates the DEC TU45. JDC disks are disks on an 11/730 Integral Disk Controller. TS tapes are
tapes on a controller compatible with the DEC TS! I (e.g. a TU80). The naming conventions for
partitions in UNIBUS disks and files in UNIBUS tapes are the same as those for MASSBUS disks
and tapes.

1.5. UNIX devices: block and raw
UNIX makes a distinction between "block" and "raw" (character) devices. Each disk has a

block device interface where the system makes the device byte addressable and you can write a single
byte in the middle of the disk. The system will read out the data from the disk sector, insert the byte
you gave it and put the modified data back. The disks with the names "/dev/xxOa", etc are block
devices. There are also raw devices available. These have names like "/dev/rxxOa", the "r" here
standing for "raw". Raw devices bypass the buffer cache and use OMA directly to/from the
program's 1/0 buffers; they are normally restricted to full-sector transfers. In the bootstrap pro
cedures we will often suggest using the raw devices, because these tend to work faster. Raw devices
are used when making new filesystems, when checking unmounted filesystems, or for copying quies
cent filesystems. The block devices are used to mount file systems, or when operating on a mounted
filesystem such as the root.

April 16, 1986

SMM:l-6 Installing and Operating 4.JBSD on the VAX

You should be aware that it is sometimes important whether to use the character device (for
efficiency) or not (because it wouldn't work, e.g. to write a single byte in the middle of a sector).
Don't change the instructions by using the wrong type of device indiscriminately.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-7

2. BOOTSTRAP PROCEDURE

This section explains the bootstrap procedure that can be used to get the kernel supplied with
this distribution running on your machine. If you are not currently running 4.2BSD you will have to
do a full bootstrap. Chapter 3 describes how to upgrade an existing 4.2BSD system. An understand
ing of the operations used in a full bootstrap is very helpful in performing an upgrade as well. In
either case, it is highly desirable to read and understand the remainder of this document before
proceeding.

2.1. Converting pre-4.2BSD Systems

The file system format was changed between 3BSD and 4.0BSD, and again between 4.IBSD and
4.2BSD. At a minimum you will have to dump your old file systems, and then restore them onto the
4.3BSD file system. Sites running 3BSD or 32/V may be able to modify the restore program to under
stand the old 512 byte block file system, but this has never been tried. The dump format used in
4.0BSD and 4.lBSD is backward-compatible with that used in 4.3BSD (which is unchanged from
4.2BSD). That is, the 4.3BSD restore program understands how to read 4.0BSD and 4. IBSD dump
tapes, although 4.3BSD dump tapes cannot be restored under 4.0BSD or 4. IBSD. It is also desirable
to make a convenient copy of system configuration files for use as guides when setting up the new sys
tem; the list of files to save from 4.2BSD systems in chapter 3 may be used as a guideline.

The first step is to dump your file systems with dump(8). For the utmost of safety this should
be done to magtape. However, if you enjoy gambling with your life (or you have a VERY friendly
user community) and you have enough disk space, you can try converting your file systems while
copying to a new disk partition by piping the output of dump directly into restore after bringing up
4.3BSD. If you select the latter tack, a version of the 4.1 BSD dump program that runs under 4.3BSD
is provided in letcldump.4.1. Beware that file systems created under 4.3BSD can use about 5-10%
more disk space for file system relllted information than under 4. IBSD. Thus, before dumping each
file system it is a good idea to remove any files that may be easily regenerated. Since most all pro
grams will likely be recompiled under the new system your best bet is to remove any object files. File
systems with at least 10% free space on them should restore into an equivalently sized 4.3BSD file
system without problem.

2.2. Booting from tape

The tape bootstrap procedure used to create a working system involves the following major
steps:

1)

2)

3)

4)

5)

6)

7)

Format a disk pack with the format program.

Copy a "mini root" file system from the tape onto the swap area of the disk.

Boot the UNIX system on the "mini root".

Restore the full root file system using restore (8).

Build a console floppy, cassette, or RL02 pack for bootstrapping.

Reboot the completed root file system.

Build and restore the /usr file system from tape with tar(l).
8) Extract the system and utility files and contributed software as desired.

Certain of these steps are dependent on your hardware configuration. Formatting the disk pack
used for the root file system may require using the DEC standard formatting programs. Also, if you
are bootstrapping the system on an 11/750, no console cassette is created.

Bootstrapping an 8650 or 8600 is a bit more difficult than bootstrapping the other machines.
The procedures for loading the toggle program and reading the tape bootstrap monitor described in
Appendix B must be used if you do not have access to a console RL02 pack with a UNIX bootstrap.
Such a pack may be made on an 8600 already running UNIX, or on another 4.3BSD system with an

April 16, 1986

SMM:l-8 Installing and Operating 4.3BSD on the VAX

RL02 drive using the procedures in 4.1.1. One may be required to enter the toggle program more
than once. After the bootstrap monitor is loaded, device addresses will be the same as if the machine
were an 11/780 or 11/785.

The following sections describe the above steps in detail. In these sections references to disk
drives are of the form xx(n,m) and references to files on tape drives are of the form yy(n,m) where xx
and yy are names described in section 1.4 and n and m are the unit and offset numbers described in
section 1.4. Commands you are expected to type are shown in Roman, while that information
printed by the system is shown emboldened. Throughout the installation steps the reboot switch on
an 111785, 111780 or 111730 should be set to off; on an 8650, 8600 or 11/750 set the power-on action
to halt. (In normal operation an 111785, 111780 or 11/730 will have the reboot switch on and an
8650, 8600 or 111750 will have the power-on action set to reboot/restart.)

If you encounter problems while following the instructions in this part of the document, refer to
Appendix C for help in troubleshooting.

2.2.1. Step 1: formatting the disk

All disks used with 4.3BSD should be formatted to insure the proper handling of physically cor
rupted disk sectors. If you have DEC disk drives, you should use the standard DEC formatter to for
mat your disks. If not, the format program included in the distribution, or a vendor supplied format
ting program, may be used to format disks. The format program is capable of formatting any of the
following supported distribution devices:

EMULEX MASSBUS:

EMULEX SC-21V, SC-31
UNIBUS:

EMULEX SC-31 UNIBUS:

AMPEX Capricorn, 9300, CDC 9766, 9775,
FUJITSU 330M, 2351 Eagle
AMPEX 9300, Capricorn, CDC 9730, 9766,
FUJITSU 160M, 330M
FUJITSU 2351 Eagle

If you have run a pre-4. IBSD version of UNIX on the packs you are planning to use for
bootstrapping it is likely that the bad sector information on the packs has been destroyed, since it was
accessible as normal data in the last several tracks of the disk. You should therefore run the for
matter again to make sure the information is valid.

On an 111750, to use a disk pack as a bootstrap device, sectors 0 through 15, the disk sectors in
the file "/boot" (the program that loads the system image), and the file system indices that lead to this
file must not have any errors. On an 8650, 8600, 11/785, 111780 or 11/730, the "boot" program is
loaded from the console medium and includes device drivers for the "hp" and "up" disks that do
ECC correction and bad sector forwarding; consequently, on these machines the system may be
bootstrapped on these disks even if the disk is not error free in critical locations. In general, if the
first 15884 sectors of your disk are clean you are safe; if not you can take your chances.

To load the format program, insert the distribution TU58 cassette or RXOl floppy disk in the
appropriate console device (on the 1117 30 use cassette 0) and do the following steps.

If you have an 8650 or 8600 start the bootstrap monitor using the procedure described in
Appendix B. Then give the command:

=format

If you have an 11/785 or 111780 give the commands:

>>>HALT
>>>UNJAM
>>>INIT
>>>LOAD FORMAT
>>>START 2

April 16, 1986

Installing and Operating 4.3BSD on the VAX

If you have an 111750 give the commands:

>>>I
>>>B DDAO
=format

If you have an 111730 give the commands:

>>>H
>>>I
>>>L DDO:FORMAT
>>>S 2

The format program should now be running and awaiting your input:

Disk format/check utility

Enable debugging (l=bse, 2=ecc, 3=bse+ecc)?

SMM:l-9

If you made a mistake loading the program off the TU 5 8 cassette or using the bootstrap monitor
loaded for the 8650 or 8600 the"=" prompt should reappear and you can retype the program name.
If something else happened, you may have a bad distribution cassette or floppy, or your hardware
may be broken; refer to Appendix C for help in troubleshooting. If you are unable to load programs
off the distributed medium, consult Appendix B for an alternate (more painful) approach.

Format will create sector headers and verify the integrity of each sector formatted by using the
disk controller's "write check" command. Remember format runs only on the up and hp drives listed
above. Format will prompt for the information required as shown below. Questions with default
answers appear with the default in parentheses at the prompt; a carriage return will take the default.
If you err in answering questions, "Delete" erases the last character typed, and "'U" erases the
current input line.

April 16, 1986

SMM:l-10 Installing and Operating 4.3BSD on the VAX

Enable debugging (O=none, l=bse, 2=ecc, 3=bse+ecc)?
Device to format? xx (0,0)
... (the old bad sector table is read; ignore any errors that occur here) ...

Formatting drive xxO on adaptor 0: verify (yes/no)? yes
Device data: #cylinders=842, #tracks=20, #sectors=48
Starting cylinder (0):
Starting track (0):
Ending cylinder (841):
Ending track (19):
Available test patterns are:

1 - (tuOf) RH750 worst case
2 - (ec6d) media worst case
3 - (a5a5) alternating l's and O's
4 - (fffl) Severe burnin (up to 48 passes)

Pattern (one of the above, other to restart)? 2
Maximum number of bit errors to allow for soft ECC (3): ·
Start formatting ... make sure the drive is online
... (soft ecc's and other errors are reported as they occur) ...
... (if 4 write check errors were found, the program terminates like this) ...

Errors:
Bad sector: 0
Write check: 4
Hard ECC: 0
Other hard: 0
Marked bad: 0
Skipped: 0
Total of 4 hard errors revectored.
Writing bad sector table at block 524256
... (524256 is the block# of the first block in the bad sector table) ...

Done

Once the root device has been formatted, format will prompt for another disk to format. Halt the
machine by typing "control-P" and "H" (the "H" is necessary only on an 111785 or 111780, but does
not hurt on the other machines).

Enable debugging (l=bse, 2=ecc, 3=bse+ecc)?"P
>>>H

It may be necessary to format other drives before constructing file systems on them; this can be
done at a later time with the steps just performed. Format can also be used in an extended test mode
(pattern 4) that uses numerous test patterns in up to 48 passes to detect as many disk surface errors
as possible; this test may be run for many hours, depending on the CPU and controller. On an
111780, this can be sped up significantly by setting the clock fast. It may be run for some number of
passes, then either terminated or continued according to the errors found to that point.

2.2.2. Step 2: copying the mini-root file system

The second step is to run a simple program, copy, which copies a small root file system into the
second partition of the disk. This file system will serve as the base for creating the actual root file sys
tem to be restored. The version of the operating system maintained on the "mini-root" file system
understands that it should not swap on top of itself, thereby allowing double use of the disk partition.
Copy is loaded just as the format program was loaded; for example, on an 8650 or 8600, one needs to
enter the toggle and the bootstrap monitor as described in Appendix B and then:

April 16, 1986

Installing and Operating 4.3BSD on the VAX

(copy mini root file system)
=copy
From: yy(y,1)
To: xx(x,1)
Copy completed: 205 records copied
From:

while for an 111785 or 111780:

(copy mini root file system)
>>>LOAD COPY
>>>START 2
From: yy(y,1)
To: xx(x,l)
Copy completed: 205 records copied
From:

or for an 111750:

(copy mini root file system)
>>>BDDAO
=copy
From: yy(y,1)
To: xx(x,1)
Copy completed: 205 records copied
From:

and for an 111730:

(copy mini root file system)
>>>L DDO:COPY
>>>S2
From: yy(y,l)
To: xx(x,l)
Copy completed: 205 records copied
From:

(unit y, second tape file)
(mini root is on drive x; second partition)

(unity, second tape file)
(mini root is on drive x; second partition)

(unity, second tape file)
(mini root is on drive x; second partition)

(unity, second tape file)
(mini root is on drive x; second partition)

(As above, 'delete' erases characters and ·~u· erases lines.)

2.2.3. Step 3: booting from the mini-root file system

SMM:l-11

You now have the minimal set of tools necessary to create a root file system and restore the file
system contents from tape. To access this file system load the bootstrap program and boot the ver
sion of unix that has been placed in the "mini-root":

(follow the procedure in Appendix B to load the bootstrap monitor)

(load bootstrap program)
=boot
Boot
: xx(x, 1)vmunix (bring in vmunix off mini root)

or, on an 111780 or 111785:

April 16, 1986

SMM:l-12

(load bootstrap program)
>>>BOOT ANY
Boot
: xx(x,l)vmunix

or, on an 111750:

(load bootstrap program)
>>>B DDAO
=boot
Boot
: xx(x,l)vmunix

or, on an 11/730:

(load bootstrap program)
>>> L DDO:BOOT
>>>D RB 3
>>>S 2
Boot
: xx(x,l)vmunix

Installing and Operating 4.3BSD on the VAX

(bring in vmunix off mini root)

(bring in vmunix off mini root)

(bring in vmunix off mini root)

(As above, 'delete' erases characters and "U' erases lines.)

The standalone boot program should then read the system from the mini root file system you just
created, and the system should boot:

271944+ 78848+92812 start Ox12e8
4.3 BSD UNIX #1: Wed Apr 9 23:33:59 PST 1985

karels@monet.berkeley.edu:/usr/src/sys/GENERIC
real mem = xxx
avail mem = yyy
... information about available devices ...
root device?

The first three numbers are printed out by the bootstrap programs and are the sizes of different
parts of the system (text, initialized and uninitialized data). The system also allocates several system
data structures after it starts running. The sizes of these structures are based on the amount of avail
able memory and the maximum count of active users expected, as declared in a system configuration
description. This will be discussed later.

UNIX itself then runs for the first time and begins by printing out a banner identifying the
release and version of the system that is in use and the date that it was compiled.

Next the mem messages give the amount of real (physical) memory and the memory available
to user programs in bytes. For example, if your machine has only 512K bytes of memory, then xxx
will be 520192, 4096 bytes less than 512K. The system reserves the last 4096 bytes of memory for
use in error logging and doesn't count it as part of real memory.

The messages that come out next show what devices were found on the current processor.
These messages are described in autoconf(4). The distributed system may not have found all the
communications devices you have (dh's, dz's, etc.), or all the mass storage peripherals you have espe
cially if you have more than two of anything. You will correct this soon, when you create a descrip
tion of your machine from which to configure UNIX. The messages printed at boot here contain
much of the information that will be used in creating the configuration. In a correctly configured sys
tem most of the information present in the configuration description is printed out at boot time as
the system verifies that each device is present.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:J-13

The "root device?" prompt was printed by the system and is now asking you for the name of
the root file system to use. This happens because the distribution system is a generic system. It can
be bootstrapped on any VAX cpu and with its root device and paging area on any available disk
drive. You should respond to the root device question with x.xO*. This response supplies two pieces
of information: first, x.xO shows that the disk it is running on is drive 0 of type xx, secondly the "*"
shows that the system is running "atop" the paging area. The latter is most important, otherwise the
system will attempt to page on top of itself and chaos will ensue. You will later build a system
tailored to your configuration that will not ask this question when it is bootstrapped.

root device? x.xO*
WARNING: preposterous time in file system -- CHECK AND RESET THE DA TE!
erase A?, kill -u, intr 'C

The "erase ... " message is part of /.profile that was executed by the root shell when it started.
This message is present to remind you that the line character erase, line erase, and interrupt charac
ters are set to be what is standard on DEC systems; this insures that things are consistent with the
DEC console interface characters.

2.2.4. Step 4: restoring the root file system
UNIX is now running, and the 'UNIX Programmer's manual' applies. The '#' is the prompt

from the shell, and lets you know that you are the super-user, whose login name is "root". To com
plete installation of the bootstrap system two steps remain. First, the root file system must be
created, and second a boot floppy or cassette must be constructed.

To create the root file system the shell script "xtr" should be run as follows:

#disk=xxO type=tt tape=yy xtr

where xxO is the name of the disk on which the root file system is to be restored (unit 0), tt is the type
of drive on which the root file system is to be restored (see the table below), and yy is the name of the
tape drive on which the distribution tape is mounted.

If the root file system is to reside on a disk other than unit 0 (as the information printed out
during autoconfiguration shows), you will have to create the necessary special files in /dev and use the
appropriate value. For example, ifthe root should be placed on hp!, you must create /dev/rhpla and
/dev/hpla using mknod(8).

Drive Type Drive Type
DEC RM03 type=rm03 DEC RM05 type=rm05
DEC RM80 type=rm80 DEC RP06 type=rp06
DEC RP07 type=rp07 DEC RK07 type=rk07
DECRA80 type=ra80 DEC RA60 type=ra60
DEC RAS! type=ra81 DEC R80 type=rb80
CDC 9766 type=9766 CDC 9775 type=9775
AMPEX 300M type=9300 AMPEX 330M type=capricorn
FUJITSU 160M type=fujil60 FUJITSU 330M type=capricorn
FUJITSU 404M type=eagle

This will generate many messages regarding the construction of the file system and the restoration of
the tape contents, but should eventually stop with the messages:

April 16, 1986

SMM:l-14 Installing and Operating 4.3BSD on the VAX

Root filesystem extracted

If this is an 8650 or 8600, update the console RL02
If this is a 780 or 785, update the floppy
If this is a 730, update the cassette

2.2.5. Step 5: creating a boot floppy or cassette

If the machine is an 8650, 8600, 11/785, 11/780 or 11/730, a boot floppy, cassette, or console
RL02 should be constructed according to the instructions in chapter 4. For I l/750's, bootstrapping is
performed by using a boot prom and special code located in sectors 0-15 of the root file system. The
newfs program automatically installs the needed code, so you may continue with the next step. On
an 11/785 or 111780 with interleaved memory, or other configurations that require alteration of the
standard boot files, this step may be left for later.

2.2.6. Step 6: rebooting the completed root file system

With the above work completed, all that is left is to reboot:

#sync
#.P
>>>HALT
>>>UNJAM
>>>I
>>>B xxS
... (boot program is eventually loaded) ...
Boot

(synchronize file system state)
(halt machine)
(for I l/785's or l 1/780's only)
(for 8650's, 8600's, l l/785's or I l/780's on!:
(initialize processor state)
(on an 11/750, use B/2)

: xx(x,O)vmunix (vmunix brought in off root)
271944+78848+92812 start Ox12e8
4.3 BSD UNIX #1: Wed Apr 9 23:33:59 PST 1985

karels@monet.berkeley.edu:/usr/src/sys/GENERIC
real mem = xxx
avail mem = yyy
... information about available devices ...
root on xxO
WARNING: preposterous time in file system -- CHECK AND RESET THE DATE!
erase "?, kill ·u, intr -C

If the root device selected by the kernel is not correct, it is necessary to reboot again using the
option to ask for the root device. On the 111750, use B/3; on the other processors, use BOOT ANY.
At the prompt from the bootstrap, use the same device specification above: xx(x,O)vmunix. Then, to
the question "root device?," respond with xxO. See section 6.1 and appendix C if the system does
not reboot properly.

The system is now running single user on the installed root file system. The next section tells
how to complete the installation of distributed software on the /usr file system.

2.2.7. Step 7: setting up the /usr file system

First set a shell variable to the name of your disk, so the commands we give will work regardless
of the disk you have; do one of the following:

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-15

disk=hp
disk=hk
disk=ra
#disk= up
disk=rb

(if you have an RP06, RM03, RM05, RMSO, or other MASSBUS drive)
(if you ha\·e RK07s)
(if you have UDA50 storage module drives)
(if you have UNIBUS storage module drives)
(if you have IDC storage module drives)

The next thing to do is to extract the rest of the data from the tape. You might wish to review
the disk configuration information in section 4.4 before continuing; the partitions used below are
those most appropriate in size. Find the disk you have in the following table and execute the com
mands in the right hand portion of the table:

DEC RM03
DEC RM05
DEC RMSO
DEC RP06
DEC RP07
DEC RK07
DEC RASO
DEC RA60
DEC RASI
DEC RSO
UNIBUS CDC 9766
UNIBUS AMPEX 300M
UNIBUS AMPEX 330M
UNIBUS FUJITSU 160M
UNIBUS FUJITSU 330M
UNIBUS FUJITSU 404M
MASSBUS CDC 9766
MASSBUS AMPEX 300M
MASSBUS AMPEX 330M
MASSBUS FUJITSU 330M
MASSBUS FUJITSU 404M

name=hpOg; type=rm03
name=hpOg; type=rm05
name=hpOg; type=rm80
name=hpOg; type=rp06
name=hpOh; type=rp07
name=hkOg; type=rk07
name=raOh; type=ra80
name=raOh; type=ra60
name=raOh; type=ra81
name=rbOh; type=rb80
name=upOg; type=9766
name=upOg; type=9300
name=upOg; type=capricorn
name=upOg; type=fuji160
name=upOg; type=capricorn
name=upOh; type=eagle
name=hpOg; type=9766
name=hpOg; type=9300
name=hpOg; type=capricorn
name=hpOg; type=capricorn
name=hpOh; type=eagle

Find the tape you have in the following table and execute the commands in the right hand portion of
the table:

DEC TE16/TU45ffU77
DECTU78
DEC TSll
EMULEXTCll
SI 9700

cd /dev; MAKEDEV htO; sync
cd /dev; MAKEDEV mtO; sync
cd /dev; MAKEDEV tsO; sync
cd /dev; MAKEDEV tmO; sync
cd /dev; MAKEDEV utO; sync

Then execute the following commands:

April 16, 1986

SMM:l-16

date yymmddhhmm

passwd root
New password:
Retype new password:
hostname mysitename
newfs ${name} ${type}
(this takes a few minutes)
#mount /dev/${name} /usr
cd /usr
#mt fsf
#tar xpbf 20 /dev/rmtl2
(this takes about 15-20 minutes)

Installing and Operating 4.3BSD on the VAX

(set date, see date(!))

(set password for super-user)
(password will not echo)

(set your hostname)
(create empty user file system}

(mount the usr file system)
(make /usr the current directory)

(extract all of usr except usr/src)

If the tape had been rewound or positioned incorrectly before the tar, it may be repositioned by the
following commands.

#mt rew
#mt fsf 3

The data on the fourth tape file has now been extracted. If you are using 1600bpi tapes, the first reel
of the distribution is no longer needed; the remainder of the installation procedure uses the second
reel of tape that should be mounted in place of the first. The first instruction below is ignored if
using 1600bpi tapes. The installation procedure continues from this point on the 6250bpi tape.

#mt fsf
mkdir src
mkdir src/sys
cd src/sys
#tar xpbf20 /dev/rmt12
(this takes about 5-10 minutes)
cd I
chmod 755 I lusr /usr/src /usr/src/sys
#rm -fsys
In -s usr/src/sys sys
umount /dev/${name}

(make directory for source)
(make directory for system source)
(make /usr/sys the current directory)
(extract the system source)

(back to root)

(make a symbolic link to the system source)
(unmount /usr)

You can check the consistency of the /usr file system by doing

fsck /dev/r${name}

The output from fsck should look something like:

** /dev/rxxOh
** Last Mounted on /usr
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
671 files, 3497 used, 137067 free (75 frags, 34248 blocks)

If there are inconsistencies in the file system, you may be prompted to apply corrective action;
see the document describingfsck for information.

To use the /usr file system, you should now remount it by saying

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-17

#/etc/mount /dev/${name} /usr

You can then extract the source code for the commands (except on RK07's and RM03's this will fit
in the /usr file system):

cd /usr/src
#mt fsf
#tar xpb 20

If you get an error at this point, most likely it was a problem with tape positioning. You can reposi
tion the tape by rewinding it and then skipping over the files already read (see mt (I)).

2.2.8. Additional software
There are three extra tape files on the distribution tape(s) which have not been installed to this

point. They are a font library for use with Varian and Versatec printers, the Ingres database system,
and user contributed software. All three tape files are in tar(I) format and can be installed by posi
tioning the tape using mt (I) and reading in the files as was done for /usr/src above. As distributed,
the fonts should be placed in a directory /usr/lib/vfont, the Ingres system should be placed in
/usr/ingres, and the user contributed software should be placed in /usr/src/new. The exact contents of
the user contributed software is given in a separate document.

2.3. Additional conversion information
After setting up the new 4.3BSD filesystems, you may restore the user files that were saved on

tape before beginning the conversion. Note that the 4.3BSD restore program does its work on a
mounted file system using normal system operations (unlike the older restor that accessed the raw file
system device and deposited inodes in the appropriate locations on disk). This means that file system
dumps may be restored even if the characteristics of the file system changed. To restore a dump tape
for, say, the /a file system something like the following would be used:

mkdir /a
newfs hp lg eagle
#mount /dev/hplg /a
cd /a
#restorer

If you chose to convert filesystems while copying to a new disk area, do so by piping the output of
dump.4.1 directly into restore after bringing up 4.3BSD.

If tar images were written instead of doing a dump, you should be sure to use the 'p' ·option
when reading the files back. No matter how you restore a file system, be sure and check its integrity
with feck when the job is complete.

To convert a compiler from 4.IBSD to 4.3BSD you should simply have to recompile and relink
the various parts. If the processor is written in itself, for instance a PASCAL compiler written in
PASCAL, the important step in converting is to save a working copy of the 4.IBSD binary before
converting to 4.3BSD. Then, once the system has been changed over, the 4. IBSD binary should be
used in the rebuilding process. To do this, you should enable the 4.1 compatibility option when you
configure the kernel (see section 4.3).

If no working 4.1 BSD binary exists, or the language processor uses some nonstandard system
call, you will likely have to compile the language processor into an intermediate form, such as assem
bly language, on a 4.1 BSD system, then bring the intermediate form to 4.3BSD for assembly and
loading.

April 16, 1986

SMM:l-18 Installing and Operating 4.3BSD on the VAX

3. UPGRADING A 4.2BSD SYSTEM

Begin by reading the "Bugs Fixes and Changes in 4.3BSD" document to see what has changed
since the last time you bootstrapped the system. If you have local system modifications to the kernel
to install, look at the document "Changes to the Kernel in 4.3BSD" to get an idea of how the system
changes will affect your local modifications.

If you are running 4.2BSD, upgrading your system involves replacing your kernel and system
utilities. Binaries compiled under 4.2BSD will work without recompilation under 4.3BSD, though
they may run faster if they are relinked. The easiest way to convert to 4.3BSD (depending on your
file system configuration) is to create new root and /usr file systems from the distribution tape on
unused disk partitions, boot the new system, and then copy any local utilities from your old root and
/usr file systems into the new ones. All user file systems and binaries can be retained unmodified,
except that the new fsck should be run before they are mounted (see below). 4.IBSD binary images
can also run unchanged under 4.3BSD but only when the system is configured to include the "4.IBSD
compatibility mode."*

Section 3.1 lists the files to be saved as part of the conversion process. Section 3.2 describes the
bootstrap process. Section 3.3 discusses the merger of the saved files back into the new system. Sec
tion 3.4 provides general hints on possible problems to be aware of when converting from 4.2BSD to
4.3BSD.

3.1. Files to save

The easiest upgrade path from a 4.2BSD is to build new root and usr file systems on unused par
titions, then copy or merge site specific files into their corresponding files on the new system. The fol
lowing list enumerates the standard set of files you will want to save and suggests directories in which
site specific files should be present. This list will likely be augmented with non-standard files you
have added to your system. If you do not have enough space to create parallel file systems, you
should create a tar image of the following files before the new file systems are created. In addition,
you should do a full dump before rebuilding the file system to guard against missing something the
first time around.

• With "4.IBSD compatibility mode" system calls from 4.IBSD are either emulated or safely ignored.
There are only two exceptions; programs that read directories or use the old jobs library will not operate
properly. However, while 4.IBSD binaries will execute under 4.3BSD it is STRONGLY RECOMMEND
ED that the programs be recompiled under the new system.

April 16, 1986

Installing and Operating 4.3BSD on the VAX

/.cshrc t root csh startup script
/.login t root csh login script
/.profile t root sh startup script
/.rhosts t for trusted machines and users
/dev/MAKEDEV *

in case you added anything here
/dev/MAKEDEV.local * for making local devices
/etc/disktab *

in case you changed disk partition sizes
/etc/fstab t disk configuration data
/etc/ftpusers t for local additions
/etc/gateways t routing daemon database
/etc/gettytab

*
getty database

/etc/group • group data base
/etc/hosts t for local host information
/etc/hosts.equiv t for local host equivalence information
/etc/networks t for local network information
/etc/passwd * user data base
/etc/printcap t line printer database
/etc/protocols *

in case you added any local protocols
/etc/re • for any local additions
/etc/re.local * site specific system startup commands
/etc/remote t auto-dialer configuration
/etc/services *

for local additions
/etc/syslog.conf * system logger configuration
/etc/securettys * for restricted list of ttys where root can log in
/etc/ttys .. terminal line configuration data
/etc/ttytype • terminal line to terminal type mapping data
/etc/termcap

*
for any local entries that may have been added

/lib *
for any locally developed language processors

/usr/dict/*

*
for local additions to words and papers

/usr/hosts/MAKEHOSTS t for local changes
/usr/include/*

*
for local additions

/usr/lib/aliases t mail forwarding data base
/usr/lib/crontab • cron daemon data base
/usr/lib/font/* * for locally developed font libraries
/usr/lib/lib* .a t for locally libraries
/usr/lib/lint/* * for locally developed lint libraries
/usr/lib/sendmail.cf • sendmail configuration
/usr/lib/tabsetf• * for locally developed tab setting files
/usr/lib/terrn/* *

for locally developed nroff drive tables
/usr/lib/tmac/* * for locally developed troff/nroff macros
/usr/lib/uucp/* t for local uucp configuration files
/usr/man/manl t for manual pages for locally developed programs
/usr/msgs t for current msgs
/usr/spool/* t for current mail, news, uucp files, etc.
/usr/src/local t for source for locally developed programs
/sys/conf/HOST t configuration file for your machine
/sys/conf/files.HOST t list of special files in your kernel
/*/quotas t file system quota files

t Files that can be used from 4.2BSD without change.
t Files that need local modifications merged into 4.3BSD files.
•Files that require special work to merge and are discussed below.

April 16, 1986

SMM:l-19

SMM:l-20 Installing and Operating 4.3BSD on the VAX

3.1.1. Installing 4.3BSD

The next step is to build a working 4.3BSD system. This can be done by following the steps in
section 2 of this document for extracting the root and /usr file systems from the distribution tape onto
unused disk partitions. If you have a running 4.2BSD system, you can also do this by using dd (1) to
copy the "mini root" filesystem onto one disk partition, then use it to load the 4.3BSD root filesystem
as as chapter 2. The root filesystem dump on the tape could also be extracted directly, although this
will require an additional file system check after booting 4.3BSD to convert the new root filesystem.
The exact procedure chosen will depend on the disk configuration and the number of suitable disk
partitions that may be used. If there is insufficient space to load the new root and /usr filesystems
before reusing the existing 4.2BSD partitions, it is strongly advised that you make full dumps of each
filesystem on magtape before beginning. It is also desirable to run file system checks of all filesystems
to be converted to 4.3BSD before shutting down 4.2BSD. If you are running an older system, you
will have to dump and restore your file systems; see section 2.1 for some hints. In either case, this is
an excellent time to review your disk configuration for possible tuning of the layout. Section 4.3 is
required reading.

To ease the transition to new kernels, the 4.3BSD bootstrap routines now pass the identity of
the boot device through to the kernel. The kernel then uses that device as its root file system. Thus,
for example, if you boot from ldev/hpla, the kernel will use hp la as its root file system. If !dev!hplb
is configured as a swap partition, it will be used as the initial swap area, otherwise the normal pri
mary swap area (ldevlhpOb) will be used. The 4.3BSD bootstrap is backward compatible with
4.2BSD, so you can replace your 4.2BSD bootstrap if you use it to boot your first 4.3BSD kernel.

Once you have extracted the 4.3BSD system and booted from it, you will have to build a kernel
customized for your configuration. If you have any local device drivers, they will have to be incor
porated into the new kernel. See section 4.2.3 and "Building 4.3BSD UNIX Systems with Config."

The disk partitions in 4.3BSD are the same as those in 4.2BSD, except for those on the DEC
UDA50; see section 4.3.2 for details. If you have changed the disk partition sizes, be sure to make
the necessary table changes and boot your custom kernel BEFORE trying to access any of your
4.2BSD file systems! After doing this if necessary, the remaining 4.2BSD filesystems may be con
verted in place. This is done by using the 4.3BSD version of fsck(8) on each filesystem and allowing
it to make the necessary corrections. The new version of fsck is more strict about the size of direc
tories than the version supplied with 4.2BSD. Thus the first time that it is run on a 4.2BSD file sys
tem, it will produce messages of the form:

DIRECTORY ... : LENGTH xx NOT MULTIPLE OF 512 (ADJUSTED)

Length "xx" will be the size of the directory; it will be expanded to the next multiple of 512 bytes.
Note that file systems are otherwise completely compatible between 4.2BSD and 4.3BSD, though run
ning a 4.3BSD file system under 4.2BSD may cause more of the above messages to be generated the
next time it is fsck'ed on 4.3BSD.

3.2. Merging your files from 4.2BSD into 4.3BSD

When your system is booting reliably and you have the 4.3BSD root and /usr file systems fully
installed you will be ready to continue with the next step in the conversion process, merging your old
files into the new system.

If you saved the files on a tar tape, extract them into a scratch directory, say /usr/convert:

mkdir /usr/convert
cd /usr/convert
#tar x

The data files marked in the previous table with a dagger (t) may be used without change from
the previous system. Those data files marked with a double dagger (t) have syntax changes or sub
stantial enhancements. You should start with the 4.3BSD version and carefully integrate any local
changes into the new file. Usually these local modifications can be incorporated without conflict into

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-21

the new file; some exceptions are noted below. The files marked with an asterisk (*) require particular
attention and are discussed below.

If you have any homegrown device drivers in /dev/MAKEDEV.local that use major device
numbers reserved by the system you will have to modify the commands used to create the devices or
alter the system device configuration tables in /sys/vax/conf.c. Otherwise /dev/MAKEDEV.local can
be used without change from 4.2BSD.

System security changes require adding several new "well-known" groups to /etc/group. The
groups that are needed by the system as distributed are:

name number
wheel 0
daemon 1
kmem 2
sys 3
tty 4
operator 5
staff 10

Only users in the "wheel" group are permitted to su to "root". Most programs that manage direc
tories in /usr/spool now run set-group-id to "daemon" so that users cannot directly access the files in
the spool directories. The special files that access kernel memory, /dev/kmem and /dev/mem, are
made readable only by group "kmem". Standard system programs that require this access are made
set-group-id to that group. The group "sys" is intended to control access to system sources, and other
sources belong to group "staff." Rather than make user's terminals writable by all users, they are now
placed in group "tty" and made only group writable. Programs that should legitimately have access
to write on user's terminals such as talk and write now run set-group-id to "tty". The "operator"
group controls access to disks. By default, disks are readable by group "operator", so that programs
such as df can access the file system information without being set-user-id to "root".

Several new users have also been added to the group of "well-known" users in /etc/passwd. The
current list is:

name number
root 0
daemon 1
operator 2
uucp 66
nobody 32767

The "daemon" user is used for daemon processes that do not need root privileges. The "operator"
user-id is used as an account for dumpers so that they can log in without having the root password.
By placing them in the "operator" group, they can get read access to the disks. The "uucp" login has
existed long before 4.3BSD, and is noted here just to provide a common user-id. The password entry
"nobody" has been added to specify the user with least privilege.

After installing your updated password file, you must run mkpasswd(B) to create the ndbm pass
word database. Note that mkpasswd is run whenever vipw(B) is run.

The format of the cron table, /usr/lib/crontab, has been changed to specify the user-id that
should be used to run a process. The userid "nobody" is frequently useful for non-privileged pro
grams.

Some of the commands previously in /etc/re.local have been moved to /etc/re; several new func
tions are now handled by /etc/re.local. You should look closely at the prototype version of
/etc/re.local and read the manual pages for the commands contained in it before trying to merge your
local copy. Note in particular that ifconfig has had many changes, and that host names are now fully

April 16, 1986

SMM:l-22 Installing and Operating 4.3BSD on the VAX

specified as domain-style names (e.g, monet.Berkeley.EDU) for the benefit of the name server.
The C library and system binaries on the distribution tape are compiled with new versions of

gethostbyname and gethostbyaddr which use the name server, named(8). If you have only a small net
work and are not connected to a large network, you can use the distributed library routines without
any problems; they use a linear scan of the host table /etc/hosts if the name server is not running. If
you are on the DARPA Internet or have a large local network, it is recommend that you set up and
use the name server. For instructions on how to set up the necessary configuration files, refer to
"Name Server Operations Guide for BIND". Several programs rely on the host name returned by
gethostname to determine the local domain name.

If you want to compile your system to use the host table lookup routines instead of the name
server, you will need to modify /usr/src/lib/libc/Makefile according to the instructions there and then
recompile all of the system and local programs (see section 6.6). Next, you must run mkhosts(8) to
create the ndbm host table database from /etc/hosts.

The format of /etc/ttys has changed, see ttys(5) for details. It now includes the terminal type
and security options that were previously placed in /etc/ttytype and /etc/securettys.

There is a new version of syslog that uses a more generalized facility/priority scheme. This has
changed the format of the syslog.conf file. See syslogd(8) for details. Syslog now logs kernel errors,
allowing events such as soft disk errors, filesystem-full messages, and other such error messages to be
logged without slowing down the system while the messages print on the console. It is also used by
many of the system daemons to monitor system problems more closely, for example network routing
changes.

If you are using the name server, your sendmail configuration file will need some minor updates
to accommodate it. See the "Sendmail Installation and Operation Guide" and the sample sendmail
configuration files in /usr/src/usr.lib/sendmail/nscf. Be sure to regenerate your sendmail frozen
configuration file after installation of your updated configuration file.

The spooling directories saved on tape may be restored in their eventual resting places without
too much concern. Be sure to use the 'p' option to tar so that files are recreated with the same file
modes:

cd /usr
tar xp msgs spool/mail spool/uucp spool/uucppublic spool/news

The ownership and modes of two of these directories at now runs set-user-id "daemon" instead
of root. Also, the uucp directory no longer needs to be publicly writable, as tip reverts to priveleged
status to remove its lock files. After copying your version of /usr/spool, you should do:

chown -R daemon /usr/spool/at
chown -R root /usr/spool/uucp
chgrp -R daemon /usr/spool/uucp
chmod -R o-w /usr/spool/uucp

Whatever else is left is likely to be site specific or require careful scrutiny before placing in its
eventual resting place. Refer to the documentation and source code before arbitrarily overwriting a
file.

3.3. Hints on converting from 4.2BSD to 4.3BSD
This section summarizes the most significant changes between 4.2BSD and 4.3BSD, particularly

those that are likely to cause difficulty in doing the conversion. It does not include changes in the
network; see chapter 5 for information on setting up the network.

The mailbox locking protocol has changed; it now uses the advisory locking facility to avoid
concurrent update of users' mail boxes. If you have your own mail interface, be sure to update its
locking protocol.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-23

The kernel's limit on the number of open files has been increased from 20 to 64. It is now pos
sible to change this limit almost arbitrarily (there used to be a hard limit of 30). The standard 1/0
library autoconfigures to the kernel limit. Note that file ("_iob") entries may be allocated by malloc
from fopen; this allocation has been known to cause problems with programs that use their own
memory allocators. This does not occur until after 20 files have been opened by the standard 1/0
library.

Select can be used with more than 32 descriptors by using arrays of ints for the bit fields rather
than single ints. Programs that used getdtablesize as their first argument to select will no longer work
correctly. Usually the program can be modified to correctly specify the number of bits in an ;int.
Alternatively the program can be modified to use an array of ints. There are a set of macros available
in <sys/types.h> to simplify this. See select (2).

Old core files will not be intelligible by the current debuggers because of numerous changes to
the user structure and because the kernel stack has been enlarged. The a.out header that was in the
user structure is no longer present. Locally-written debuggers that try to check the magic number will
need modification.

Find now has a database of file names, constructed once a week from cron. To find a file by
name only, the command find name will look in the database for files that match the name. This is
much faster than.find I -name name -print.

Files may not be deleted from directories having the "sticky" (ISVTX) bit set in their modes
except by the owner of the file or of the directory, or by the superuser. This is primarily to protect
users' files in publicly-writable directories such as ltmp and /usrltmp. All publicly-writable directories
should have their "sticky" bits set with "chmod +t."

The include file <time.h> has returned to /usrlinclude, and again contains the definitions for the
C library time routines of ctime(3).

The compact and uncompact programs have been supplanted by the faster compress. If your
user population has compacted files, you will want to install uncompact found in /usr/src/old/compact.

The configuration of the virtual memory limits has been simplified. A MAXDSIZ option,
specified in bytes in the machine configuration file, may be used to raise the maximum process region
size from the default of 17Mb to 32Mb or 64Mb. The initial per-process limit is still 6Mb, but can
be raised up to MAXDSIZ with the csh limit command.

Some 4.3BSD binaries will not run with a 4.2BSD kernel because they take advantage of new
functionality in 4.3BSD. One noticeable example of this problem is csh.

If you want to use ps after booting a new kernel, and before going multiuser, you must initialize
its name list database by running ps -U.

April 16, 1986

SMM:l-24 Installing and Operating 4.3BSD on the VAX

4. SYSTEM SETUP

This section describes procedures used to set up a VAX UNIX system. These procedures are
used when a system is first installed or when the system configuration changes. Procedures for nor
mal system operation are described in the next section.

4.1. Creating UNIX boot media
The procedures for making the various UNIX boot media are described in this section. If you

have an 111785 or 111780, you will need to make a floppy. For an 111730, you will need to make a
cassette. While for an 8650 or 8600, you will need lo make a console RL02 pack.

The boot command files are all set up for booting off of the first UNIBUS or MASSBUS. If you
are booting off of a different UNIBUS or MASSBUS, you will need to modify the boot command files
appropriately.

4.1.1. Making a UNIX boot console RL02 pack

If you have an 8650 or 8600 you will want to create a UNIX boot console RL02 pack by adding
some files to your current DEC console pack, using arjf(B). If you do not want to modify your
current DEC console pack, you may make a copy of it first using dd(l). This pack will make stan
dalone system operations such as bootstrapping much easier.

First change into the directory where the console RL02 information is stored:

cd /sys/consoler!

then set up the default boot device. If you have an RK07 as your primary root do:

cp detboo.hk detboo.com

If you have a drive on a UDA50 (e.g. an RA81) as your primary root do:

cp detboo.ra detboo.com

If you have a second vendor UNIBUS storage module as your primary root do:

cp detboo.up detboo.com

Otherwise:

cp detboo.hp detboo.com

The final step in updating the console RL02 pack is:

make update

More copies of this console RL02 pack can be made using dd(l).

4.1.2. Making a UNIX boot floppy
If you have an 11/785 or 11/780 you will want to create a UNIX boot floppy by adding some

files to a copy of your current DEC console floppy, usingflcopy(B) and arjf(8). This floppy will make
standalone system operations such as bootstrapping much easier.

First change into the directory where the console floppy information is stored:

cd /sys/floppy

then set up the default boot device. If you have an RK07 as your primary root do:

cp detboo.hk detboo.cmd

If you have a drive on a UDA50 (e.g. an RABI) as your primary root do:

April 16, 1986

Installing and Operating 4.3BSD on the VAX

cp defboo.ra defboo.cmd

If you have a second vendor UNIBUS storage module as your primary root do:

cp defboo.up defboo.cmd

Otherwise:

cp defboo.hp defboo.cmd

SMM:l-25

If the local configuration requires any changes in restar.cmd or defboo.cmd (e.g., for interleaved
memory controllers see defboo.MS780C-interleaved), these should be made now. The following com
mand will then copy your DEC local console floppy, updating the copy appropriately.

make update
Change Floppy, Hit return when done.
(waits for you to put clean floppy in console)
Are you sure you want to clobber the floppy? yes

More copies of this floppy can be made using.flcopy(8).

4.1.3. Making a UNIX boot cassette

If you have an 111730 you will want to create a UNIX boot cassette by adding some files to a
copy of your current DEC console cassette, using jlcopy (8) and arjf(8). This cassette will make stan
dalone system operations such as bootstrapping much easier.

First change into the directory where the console cassette information is stored:

cd /sys/cassette

then set up the default boot device. If you have an JDC storage module as your primary root do:

cp defboo.rb defboo.cmd

If you have an RK07 as your primary root do:

cp defboo.hk defboo.cmd

If you have a drive on a UDASO as your primary root do:

cp defboo.ra defboo.cmd

Otherwise:

cp defboo.up defboo.cmd

To complete the procedure place your DEC local console cassette in drive 0 (the drive at front of the
CPU); the following command will then copy it, updating the copy appropriately.

make update
Change Floppy, Hit return when done.
(waits for you to put clean cassette in console drive 0)
Are you sure you want to clobber the floppy? yes

More copies of this cassette can best be made using dd(l).

4.2. Kernel configuration

This section briefly describes the layout of the kernel code and how files for devices are made.
For a full discussion of configuring and building system images, consult the document "Building
4.3BSD UNIX Systems with Config".

April 16, 1986

SMM:l-26 Installing and Operating 4.3BSD on the VAX

4.2.1. Kernel organization
As distributed, the kernel source is in a separate tar image. The source may be physically

located anywhere within any file system so long as a symbolic link to the location is created for the
file /sys (many files in /usr/include are normally symbolic links relative to /sys). In further discussions
of the system source all path names will be given relative to /sys.

The directory /sys/sys contains the mainline machine independent operating system code. Files
within this directory are conventionally named with the following prefixes:

init_
kern_
quota_
sys_
tty_
ufs_
uipc_
vm_

system initialization
kernel (authentication, process management, etc.)
disk quotas
system calls and similar
terminal handling
file system
interprocess communication
virtual memory

The remaining directories are organized as follows:

/sys/h
/sys/conf
/sys/net
/sys/netinet
/sys/netimp
/sys/netns
/sys/vax
/sys/vaxif
/sys/vaxmba
/sys/vaxuba

machine independent include files
site configuration files and basic templates
network independent, but network related code
DARPA Internet code
IMP support code
Xerox NS support code
VAX specific mainline code
VAX network interface code
VAX MASSBUS device drivers and related code
VAX UNIBUS device drivers and related code

Many of these directories are referenced through /usr/include with symbolic links. For example,
/usr/include/sys is a symbolic link to /sys/h. The system code, as distributed, is totally independent of
the include files in /usr/include. This allows the system to be recompiled from scratch without the
/usr file system mounted.

4.2.2. Devices and device drivers
Devices supported by UNIX are implemented in the kernel by drivers whose source is kept in

/sys/vax, /sys/vaxuba, or /sys/vaxmba. These drivers are loaded into the system when included in a
cpu specific configuration file kept in the conf directory. Devices are accessed through special files in
the file system, made by the mknod(B) program and normally kept in the /dev directory. For all the
devices supported by the distribution system, the files in /dev are created by the /dev/MAKEDEV
shell script.

Determine the set of devices that you have and create a new /dev directory by running the
MAKEDEV script. First create a new directory /newdev, copy MAKEDEV into it, edit the file
MAKEDEV.local to provide an entry for local needs, and run it to generate a /newdev directory. For
instance, if your machine has a single DZ! I, a single DHll, a single DMF32, an RM03 disk, an
EMULEX UNIBUS SMD disk controller, an AMPEX 9300 disk, and a TE16 tape drive you would
do:

April 16, 1986

Installing and Operating 4.3BSD on the VAX

cd I
mkdir newdev
cp dev/MAKEDEV newdev/MAKEDEV
cd newdev
MAKEDEV dzO dhO dmfO hpO upO htO std LOCAL

SMM:l-27

Note the "std" argument causes standard devices such as ldev/conso/e, the machine console,
!dev/j/oppy, the console floppy disk interface for the 111780 and 111785, and !dev/tuO and !dev/tul,
the console cassette interfaces for the 111750 and 111730, to be created.

You can then do

cd I
mv dev olddev ; mv newdev dev
#sync

to install the new device directory.

4.2.3. Building new system images

The kernel configuration of each UNIX system is described by a single configuration file, stored
in the /sys/con! directory. To learn about the format of this file and the procedure used to build sys
tem images, start by reading "Building 4.3BSD UNIX Systems with Config", look at the manual
pages in section 4 of the UNIX manual for the devices you have, and look at the sample
configuration files in the /sys/conf directory.

The configured system image "vmunix" should be copied to the root, and then booted to try it
out. It is best to name it /newvmunix so as not to destroy the working system until you're sure it
does work:

cp vmunix /newvmunix
#sync

It is also a good idea to keep the previous system around under some other name. In particular, we
recommend that you save the generic distribution version of the system permanently as /genvmunix
for use in emergencies. To boot the new version of the system you should follow the bootstrap pro
cedures outlined in section 6.1. After having booted and tested the new system, it should be installed
as lvmunix before going into multiuser operation. A systematic scheme for numbering and saving old
versions of the system may be useful.

4.3. Disk configuration

This section describes how to layout file systems to make use of the available space and to bal
ance disk load for better system performance.

4.3.1. Initializing /etc/fstab

Change into the directory /etc and copy the appropriate file from:

April 16, 1986

SMM:l-28

fstab.rm03
fstab.rm05
fstab.rm80
fstab.ra60
fstab.ra80
fstab.ra8 I
fstab.rb80
fstab.rp06
fstab.rp07
fstab.rk07
fstab.upl60m (160Mb up drives)
fstab.hp400m (400Mb hp drives)
fstab.up (other up drives)
fstab.hp (other hp drives)

to the file /etc/fstab, i.e.:

cd /etc
cp fstab.xxx fstab

Installing and Operating 4.3BSD on the VAX

This will set up the default information about the usage of disk partitions, which we see how to
update more below.

4.3.2. Disk naming and divisions

Each physical disk drive can be divided into up to 8 partitions; UNIX typically uses only 3 or 4
partitions. For instance, on an RM03 or RP06, the first partition, hpOa, is used for a root file system,
a backup thereof, or a small file system like, /tmp; the second partition, hpOb, is used for paging and
swapping; and the third partition hpOg holds a user file system. On an RM05, the first three parti
tions are used as for the RM03, and the fourth partition, hpOh, holds the /usr file system, including
source code.

The disk partition sizes for a drive are based on a set of four prototype partition tables; c.f.
diskpart (8). The particular table used is dependent on the size of the drive. The "a" partition is the
same size across all drives, 15884 sectors. The "b" partition, used for paging and swapping, is sized
according to the total space on the disk. For drives less than about 400 megabytes the partition is
33440 sectors, while for larger drives the partition size is doubled to 66880 sectors. The "c" partition
is always used to access the entire physical disk, including the space at the back of the disk reserved
for the bad sector forwarding table. If the disk is larger than about 250 megabytes, an "h" partition
is created with size 291346 sectors, and no matter whether the "h" partition is created or not, the
remainder of the drive is allocated to the "g" partition. Sites that want to split up the "g" partition
into several smaller file systems may use the "d", "e'', and "r' partitions that overlap the "g" parti
tion. The default sizes for these partitions are 15884, 55936, and the remainder of the disk, respec
tively*.

The disk partition sizes for DEC RA60, RASO, and RAS I have changed since 4.2BSD. If
upgrading from 4.2BSD, you will need to decide if you want to use the new partitions or the old par
titions. If you desire to use the old partitions, you will need to update /etc/disktab and the device
driver for the UDA50. Any other partition sizes that were modified at your site, will require the
same consideration.

The space available on a disk varies per device. The amount of space available on the common
disk partitions is listed in the following table. Not shown in the table are the partitions of each drive
devoted to the root file system and the paging area.

• These rules are, unfortunately not evenly applied to all disks. Drives on DEC UDA50 and !DC controll
ers do not completely follow these rules; in particular, no Hd", "e", or "r' partitions are available on an
RA60 and RA80. Consult uda(4) for more information.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-29

Type Name Size Name Size
rk07 hk?g 13 Mb
rm03 hp?g 41 Mb
rp06 hp?g 145 Mb
rm05 hp?g 80 Mb hp?h 145 Mb
rm80 hp?g 96Mb
ra60 ra?g 78 Mb ra?h 96 Mb
ra80 ra?g 96 Mb
ra81 ra?g 257 Mb ra?h 145 Mb
rb80 rb?g 41 Mb rb?h 56 Mb
rp07 hp?g 315 Mb hp?h 145 Mb
up300 up?g 80Mb up?h 145 Mb
up330 up?g 90 Mb up?h 145 Mb
up400 hp?g 216 Mb hp?h 145 Mb
upl60 up?g 106 Mb

Here up300 refers to either an AMPEX or CDC 300 Megabyte disk on a MASSBUS or UNIBUS disk
controller, up330 refers to either an AMPEX or FUJITSU 330 Megabyte disk on a MASSBUS or
UNIBUS controller, up 160 refers to a FUJITSU 160 Megabyte disk on the UNIBUS, and up400
refers to a FUJITSU Eagle 400 Megabyte disk on a MASBUS or UNIBUS disk controller. "hp"
should be substituted for "up" above if the disk is on the MASSBUS. Consult the manual pages for
the specific controllers for other supported disks or other partitions.

Each disk also has a paging area, typically of 16 Megabytes, and a root file system of 8 Mega
bytes. The distributed system binaries occupy about 34 Megabytes while the major sources occupy
another 32 Megabytes. This overflows dual RK07, dual RL02 and single RM03 systems, but fits
easily on most other hardware configurations.

Be aware that the disks have their sizes measured in disk sectors (512 bytes), while the UNIX
file system blocks are variable sized. All user programs report disk space in kilobytes and, where
needed, disk sizes are always specified in units of sectors. The /etc/disktab file used in making file
systems specifies disk partition sizes in sectors; the default sector size may be overridden with the
"se" attribute. Note that the only sector size currently supported is DEV _BSIZE as defined in
/syslhlparam.h.

4.3.3. Layout considerations

There are several considerations in deciding how to adjust the arrangement of things on your
disks. The most important is making sure that there is adequate space for what is required; secon
darily, throughput should be maximized. Paging space is an important parameter. The system, as
distributed, sizes the configured paging areas each time the system is booted. Further, multiple pag
ing areas of different size may be interleaved. Drives smaller than 400 megabytes have swap parti
tions of 16 megabytes while drives larger than 400 megabytes have 32 megabytes. These values may
be changed to get more paging space by changing the appropriate partition table in the disk driver.

Many common system programs (C, the editor, the assembler etc.) create intermediate files in
the /tmp directory, so the file system where this is stored also should be made large enough to accom
modate most high-water marks; if you have several disks, it makes sense to mount this in a "root"
(i.e. first partition) file system on another disk. All the programs that create files in /tmp take care to
delete them, but are not immune to rare events and can leave dregs. The directory should be exam
ined every so often and the old files deleted.

The efficiency with which UNIX is able to use the CPU is often strongly affected by the
configuration of disk controllers. For general time-sharing applications, the best strategy is to try to
split the root file system (/), system binaries (/usr), the temporary files (/tmp), and the user files among
several disk arms, and to interleave the paging activity among several arms.

April 16, 1986

SMM:l-30 Installing and Operating 4.3BSD on the VAX

It is critical for good performance to balance disk load. There are at least five components of
the disk load that you can divide between the available disks:

I. The root file system.
2. The /tmp file system.
3. The /usr file system.
4. The user files.
5. The paging activity.

The following possibilities are ones we have used at times when we had 2, 3 and 4 disks:

disks
what 2 3 4
I 0 0 0
tmp 1 2 3
usr 1 1 1
paging O+l 0+2 0+2+3
users 0 0+2 0+2
archive x x 3

The most important things to consider are to even out the disk load as much as possible, and to
do this by decoupling file systems (on separate arms) between which heavy copying occurs. Note that
a long term average balanced load is not important; it is much more important to have an instantane
ously balanced load when the system is busy.

Intelligent experimentation with a few file system arrangements can pay off in much improved
performance. It is particularly easy to move the root, the /tmp file system and the paging areas.
Place the user files and the /usr directory as space needs dictate and experiment with the other, more
easily moved file systems.

4.3.4. File system parameters

Each file system is parameterized according to its block size, fragment size, and the disk
geometry characteristics of the medium on which it resides. Inaccurate specification of the disk
characteristics or haphazard choice of the file system parameters can result in substantial throughput
degradation or significant waste of disk space. As distributed, file systems are configured according to
the following table.

File system
I
usr
users

Block size
8 Kbytes
4 Kbytes
4 Kbytes

Fragment size
1 Kbytes
512 bytes
1 Kbytes

The root file system block size is made large to optimize bandwidth to the associated disk; this
is particularly important since the /tmp directory is normally part of the root file or a similar filesys
tem. The large block size is also important as many of the most heavily used programs are demand
paged out of the /bin directory. The fragment size of 1 Kbytes is a "nominal" value to use with a file
system. With a 1 Kbyte fragment size disk space utilization is about the same as with the earlier ver
sions of the file system.

The usr file system uses a 4 Kbyte block size with 512 byte fragment size in an effort to get high
performance while conserving the amount of space wasted by a large fragment size. Space compac
tion has been deemed important here because the source code for the system is normally placed on
this file system. If the source code is placed on a separate filesystem, use of an 8 Kbyte block size
with 1 Kbyte fragments might be considered for improved performance when paging from /usr
binaries.

April 16, 1986

Installing and Operating 4.3BSD on the VAX S\fM:l-31

The file systems for users have a 4 Kbyte block size with I Kbyte fragment size. These parame
ters have been selected based on observations of the performance of our user file systems. The 4
Kbyte block size provides adequate bandwidth while the 1 Kbyte fragment size provides acceptable
space compaction and disk fragmentation.

Other parameters may be chosen in constructing file systems, but the factors involved in choos
ing a block size and fragment size are many and interact in complex ways. Larger block sizes result
in better throughput to large files in the file system as larger I/O requests will then be performed by
the system. However, consideration must be given to the average file sizes found in the file system
and the performance of the internal system buffer cache. The system currently provides space in the
inode for 12 direct block pointers, 1 single indirect block pointer, and 1 double indirect block
pointer.* If a file uses only direct blocks, access time to it will be optimized by maximizing the block
size. If a file spills over into an indirect block, increasing the block size of the file system may
decrease the amount of space used by eliminating the need to allocate an indirect block. However, if
the block size is increased and an indirect block is still required, then more disk space will be used by
the file because indirect blocks are allocated according to the block size of the file system.

In selecting a fragment size for a file system, at least two considerations should be given. The
major performance tradeoffs observed are between an 8 Kbyte block file system and a 4 Kbyte block
file system. Because of implementation constraints, the block size I fragment size ratio can not be
greater than 8. This means that an 8 Kbyte file system will always have a fragment size of at least 1
Kbytes. If a file system is created with· a 4 Kbyte block size and a 1 Kbyte fragment size, then
upgraded to an 8 Kbyte block size and I Kbyte fragment size, identical space compaction will be
observed. However, if a file system has a 4 Kbyte block size and 512 byte fragment size, converting it
to an SK/ I K file system will result in significantly more space being used. This implies that 4 Kbyte
block file systems that might be upgraded to 8 Kbyte blocks for higher performance should use frag
ment sizes of at least 1 Kbytes to minimize the amount of work required in conversion.

A second, more important, consideration when selecting the fragment size for a file system is the
level of fragmentation on the disk. With a 512 byte fragment size, storage fragmentation occurs
much sooner, particularly with a busy file system running near full capacity. By comparison, the level
of fragmentation in a 1 Kbyte fragment file system is one tenth as severe. This means that on file sys
tems where many files are created and deleted, the 512 byte fragment size is more likely to result in
apparent space exhaustion because of fragmentation. That is, when the file system is nearly full, file
expansion that requires locating a contiguous area of disk space is more likely to fail on a 512 byte
file system than on a I Kbyte file system. To minimize fragmentation problems of this sort, a param
eter in the super block specifies a minimum acceptable free space threshold. When normal users (i.e.
anyone but the super-user) attempt to allocate disk space and the free space threshold is exceeded, the
user is returned an error as if the file system were really full. This parameter is nominally set to 10%;
it may be changed by supplying a parameter to newfs, or by updating the super block of an existing
file system using tunefs (8).

In general, unless a file system is to be used for a special purpose application (for example, stor
ing image processing data), we recommend using the values supplied above. Remember that the
current implementation limits the block size to at most 8 Kbytes and the ratio of block size I frag
ment size must be 1, 2, 4, or 8.

The disk geometry information used by the file system affects the block layout policies
employed. The file /etc/disktab, as supplied, contains the data for most all drives supported by the
system. When constructing a file system you should use the newfs (8) program and specify the type of
disk on which the file system resides. This file also contains the default file system partition sizes,
and default block and fragment sizes. To override any of the default values you can modify the file
or use an option to newfs.

* A triple indirect block pointer is also reservedi but not currently supported.

April 16, 1986

SMM:l-32 Installing and Operating 4.3BSD on the VAX

4.3.S. Implementing a layout

To put a chosen disk layout into effect, you should use the newft(S) command to create each
new file system. ·Each file system must also be added to the file /etc/fstab so that it will be checked
and mounted when the system is bootstrapped.

As an example, consider a system with RMSO's. On the first RMSO, hpO, we will put the root
file system in hpOa, and the /usr file system in hpOg, which has enough space to hold it and then
some. The /tmp directory will be part of the root file system, as no file system will be mounted on
/tmp. If we had only one RMSO, we would put user files in the hpOg partition with the system source
and binaries.

Ifwe had a second RMSO, we would place lusr in hp lg. We would put user files in hpOg, calling
the file system /mnt. We would also interleave the paging between the 2 RMSO's. To do this we
would build a system configuration that specified:

config vmunix root on hpO swap on hpO and hp!

to get the swap interleaved, and letclfttab would then contain

/dev/hpOa:/:rw: I: I
/dev/hpOb::sw::
/dev/hpOg:/mnt:rw: I :2
/dev/hp I b::sw::
/dev/hp lg:/usr:rw: I :2

We would keep a backup copy of the root file system in the hpla disk partition. Alternatively, that par
tition could be used for ltmp.

To make the /mnt file system we would do:

cd /dev
MAKEDEV hp!
newfs hp lg rm80
(information about file system prints out)
mkdir /mnt
#mount /dev/hplg /mnt

4.4. Configuring terminals

If UNIX is to support simultaneous access from directly-connected terminals other than the
console, the file /etc/ttys (ttys(5)) must be edited.

Terminals connected via DZ! I interfaces are conventionally named ttyDD where DD is a
decimal number, the "minor device" number. The lines on dzO are named /dev/ttyOO, /dev/ttyOI, ...
/dev/tty07. By convention, all other terminal names are of the form ttyCX, where C is an alphabetic
character according to the type of terminal multiplexor and its unit number, and X is a digit for the
first ten lines on the interface and an increasing lower case letter for the rest of the lines. C is defined
for the number of interfaces of each type listed below.

Interface Number of lines Number of
Type Characters per board Interfaces

DZ!! see above 8 10
DMF32 A-C,E-1 8 8
DMZ32 a-c,e-g 24 6
DHll h-o 16 8
DHUll S-Z 16 8
pty p-u 16 6

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-33

To add a new terminal device, be sure the device is configured into the system and that the spe
cial files for the device have been made by /dev/MAKEDEV. Then, enable the appropriate lines of
/etc/ttys by setting the "status" field to on (or add new lines). Note that Jines in !etc/ttys are one-for
one with entries in the file of current users (letclutmp), and therefore it is best to make changes while
running in single-user mode and to add all of the entries for a new device at once.

The format of the /etc/ttys file is completely new in 4.3BSD. Each line in the file is broken into
four tab separated fields (comments are shown by a '#' character and extend to the end of the line).
For each terminal line the four fields are: the device (without a leading /dev), the program /etc/init
should startup to service the line (or none if the line is to be left alone), the terminal type (found in
/etc/termcap), and optional status information describing if the terminal is enabled or not and if it is
"secure" (i.e. the super user should be allowed to login on the line). All fields are character strings
with entries requiring embedded white space enclosed in double quotes. Thus a newly added termi
nal /dev/ttyOO could be added as

ttyOO "/etc/getty std.9600" vt!OO on secure #mike's office

The std.9600 parameter provided to /etc/getty is used in searching tlie file /etc/gettytab; it specifies a
terminal's characteristics (such as baud rate). To make custom terminal types, consult gettytab(5)
before modifying /etc/gettytab.

Dialup terminals should be wired so that carrier is asserted only when the phone line is dialed
up. For non-dialup terminals from which modem control is not available, you must either wire back
the signals so that the carrier appears to always be present, or show in the system configuration that
carrier is to be assumed to be present with flags for each terminal device. See dh(4), dhu(4), dz(4),
dmz(4), and dmf(4) for details.

For network terminals (i.e. pseudo terminals), no program should be started up on the lines.
Thus, the normal entry in /etc/ttys would look like

ttypO none network

(Note the fourth field is not needed when here.)
When the system is running multi-user, all terminals that are listed in /etc/ttys as on have their

line are enabled. If, during normal operations, it is desired to disable a terminal line, you can edit
the file /etc/ttys to change the terminal's status to off and then send a hangup signal to the init pro
cess, by doing

#kill -I 1

Terminals can similarly be enabled by changing the status field from off to on and sending a hangup
signal to init.

Note that if a special file is inaccessible when init tries to create a process for it, init will log a
message to the system error logging process (/etc/syslogd) and try to reopen the terminal every
minute, reprinting the warning message every 10 minutes. Messages of this sort are normally printed
on the console, though other actions may occur depending on the configuration information found in
I etc/ syslog.conf.

Finally note that you should change the names of any dialup terminals to ttyd? where ? is in
[0-9a-zA-Z], as some programs use this property of the names to determine if a terminal is a dialup.
Shell commands to do this should be put in the /dev/MAKEDEV.local script.

While it is possible to use truly arbitrary strings for terminal names, the accounting and notice
ably the ps(l) command make good use of the convention that tty names (by default, and also after
dialups are named as suggested above) are distinct in the last 2 characters. Change this and you may
be sorry later, as the heuristic ps(l) uses based on these conventions will then break down and ps will
run MUCH slower.

April 16, 1986

SMM:l-34 Installing and Operating 4.3BSD on the VAX

4.5. Adding users
New users can be added to the system by adding a line to the password file /etc/passwd. The

procedure for adding a new user is described in adduser(8).

You should add accounts for the initial user community, giving each a directory and a pass
word, and putting users who will wish to share software in the same groups.

Several guest accounts have been provided on the distribution system; these accounts are for
people at Berkeley, Bell Laboratories, and others who have done major work on UNIX in the past.
You can delete these accounts, or leave them on the system if you expect that these people would
have occasion to login as guests on your system.

4.6. Site tailoring
All programs that require the site's name, or some similar characteristic, obtain the information

through system calls or from files located in /etc. Aside from parts of the system related to the net
work, to tailor the system to your site you must simply select a site name, then edit the file

/etc/re.local

The first line in I etc/re.local,

/bin/hostname mysitename

defines the value returned by the gethostname(2) system call. If you are running the name server,
your site name should be your fully qualified domain name. Programs such as getty(S), mail(!),
wall (1), uucp (I); and who (1) use this system call so that the binary images are site independent.

4.7. Setting up the line printer system
The line printer system consists of at least the following files and commands:

/usr/ucb/lpq
/usr/ucb/lprm
/usr/ucb/lpr
/etc/printcap
/usr/lib/lpd
/etc/lpc
/etc/hosts.lpd

spooling queue examination program
program to delete jobs from a queue
program to enter a job in a printer queue
printer configuration and capability data base
line printer daemon, scans spooling queues
line printer control program
list of host allowed to use the printers

The file /etc/printcap is a master data base describing line printers directly attached to a
machine and, also, printers accessible across a network. The manual page printcap(S) describes the
format of this data base and also shows the default values for such things as the directory in which
spooling is performed. The line printer system handles multiple printers, multiple spooling queues,
local and remote printers, and also printers attached via serial lines that require line initialization
such as the baud rate. Raster output devices such as a Varian or Versatec, and laser printers such as
an Imagen, are also supported by the line printer· system.

Remote spooling via the network is handled with two spooling queues, one on the local machine
and one on the remote machine. When a remote printer job is started with !pr, the job is queued
locally and a daemon process created to oversee the transfer of the job to the remote machine. If the
destination machine is unreachable, the job will remain queued until it is possible to transfer the files
to the spooling queue on the remote machine. The lpq program shows the contents of spool queues
on both the local and remote machines.

To configure your line printers, consult the printcap manual page and the accompanying docu
ment, "4.3BSD Line Printer Spooler Manual". A call to the /pd program should be present in /etc/re.

April 16, 1986

Installing and Operating 4.3BSD on the VAX

4.8. Setting up the mail system

The mail system consists of the following commands:

/bin/mail
/usr/ucb/mail
/usr/lib/sendmail
/usr/spool/mail
/usr/spool/secretmail
/usr/bin/xsend
/usr/bin/xget
/usr/lib/aliases
/usr/ucb/newaliases
/usr/ucb/biff
/etc/comsat

old standard mail program, binmail (1)
UCB mail program, described in mail(!)
mail routing program
mail spooling directory
secure mail directory
secure mail sender
secure mail receiver
mail forwarding information
command to rebuild binary forwarding database
mail notification enabler
mail notification daemon

SMM:l-35

Mail is normally sent and received using the mail(!) command, which provides a front-end to edit
the messages sent and received, and passes the messages to sendmail (8) for routing. The routing algo
rithm uses knowledge of the network name syntax, aliasing and forwarding information, and network
topology, as defined in the configuration file /usr/lib/sendmail.cf, to process each piece of mail. Local
mail is delivered by giving it to the program /bin/mail that adds it to the mailboxes in the directory
/usr/spool/mail/username, using a locking protocol to avoid problems with simultaneous updates.
After the mail is delivered, the local mail delivery daemon /etc/comsat is notified, which in turn
notifies users who have issued a "biff y" command that mail has arrived.

Mail queued in the directory /usr/spool/mail is normally readable only by the recipient. To send
mail that is secure against any possible perusal (except by a code-breaker) you should use the secret
mail facility, which encrypts the mail so that no one can read it.

To set up the mail facility you should read the instructions in the file READ_ME in the direc
tory /usr/src/usr.lib/sendmail and then adjust the necessary configuration files. You should also set up
the file /usr/lib/aliases for your installation, creating mail groups as appropriate. Documents describ
ing sendmail's operation and installation are also included in the distribution.

4.8.1. Setting up a UUCP connection

The version of uucp included in 4.3BSD is an enhanced version of the one originally distributed
with 32/V*. The enhancements include:

• support for many auto call units and dialers in addition to the DEC DN! 1,

• breakup of the spooling area into multiple subdirectories,

• addition of an L.cmds file to control the set of commands that may be executed by a remote site,

• enhanced "expect-send" sequence capabilities when logging in to a remote site,

• new commands to be used in polling sites and obtaining snap shots of uucp activity,

• additional protocols for different communication media.

This section gives a brief overview of uucp and points out the most important steps in its installation.

To connect two UNIX machines with a uucp network link using modems, one site must have an
automatic call unit and the other must have a dial up port. It is better if both sites have both.

You should first read the paper in the UNIX System Manager's Manual: "Uucp Implementation
Description". It describes in detail the file formats and conventions, and will give you a little con
text. In addition, the document "setup.tblms", located in the directory
/usr/src/usr.bin/uucp/UUAIDS, may be of use in tailoring the software to your needs.

• The uucp included in this distribution is the result of work by many people; we gratefully acknowledge
their contributions, but refrain from mentioning names in the interest of keeping this document current.

April 16, 1986

SMM:l-36 Installing and Operating 4.3BSD on the VAX

The uucp support is located in three major directories: /usr/bin, /usr/lib/uucp, and
/usr/spool/uucp. User commands are kept in /usr/bin, operational commands in /usr/lib/uucp, and
/usr/spool/uucp is used as a spooling area. The commands in /usr/bin are:

/usr/bin/uucp
/usr/bin/uux
/usr/bin/uusend
/usr/bin/uuencode
/usr/bin/uudecode
/usr/bin/uulog
/usr/bin/uusnap
/usr/bin/uupoll
/usr/bin/uuname
/usr/bin/uuq

file-copy command
remote execution command
binary file transfer using mail
binary file encoder (for uusend)
binary file decoder (for uusend)
scans session log files
gives a snap-shot of uucp activity
polls remote system until an answer is received
prints a list of known uucp hosts
gives information about the queue

The important files and commands in /usr/lib/uucp are:

/usr/lib/uucp/L-devices
/usr/lib/uucp/L-dialcodes
/usr/lib/uucp/L.aliases
/usr/lib/uucp/L.cmds
/usr/lib/uucp/L.sys
/usr/lib/uucp/SEQF
/usr/lib/uucp/USERFILE
/usr/lib/uucp/uucico
/usr/lib/uucp/uuclean
/usr/lib/uucp/uuxqt

list of dialers and hard-wired lines
dialcode abbreviations
hostname aliases
commands remote sites may execute
systems to communicate with, how to connect, and when
sequence numbering control file
remote site pathname access specifications
uucp protocol daemon
cleans up garbage files in spool area
uucp remote execution server

while the spooling area contains the following important files and directories:

/usr/spool/uucp/C.
/usr/spool/uucp/D.
/usr/spool/uucp/X.
/usrlspoolluucp/D.machine
/usrlspooI/uucp/D.machineX
/usr/spool/uucp/TM.
/usr/spool/uucp/LOGFILE
/usr/spool/uucp/SYSLOG ·

directory for command, "C." files
directory for data, "D.", files
directory for command execution, "X.", files
directory for local "D." files
directory for local "X." files
directory for temporary, "TM.", files
log file of uucp activity
log file of uucp file transfers

To install uucp on your system, start by selecting a site name (shorter than 14 characters). A
uucp account must be created in the password file and a password set up. Then, create the appropri
ate spooling directories with mode 755 and owned by user uucp, group daemon.

If you have an auto-call unit, the L.sys, L-dialcodes, and L-devices files should be created. The
L.sys file should contain the phone numbers and login sequences required to establish a connection
with a uucp daemon on another machine. For example, our L.sys file looks something like:

adiron Any ACU 1200 out0123456789- ogin-EOT-ogin uucp
cbosg Never Slave 300
cbosgd Never Slave 300
chico Never Slave 1200 out2010123456

The first field is the name of a site, the second shows when the machine may be called, the third field
specifies how the host is connected (through an ACU, a hard-wired line, etc.), then comes the phone
number to use in connecting through an auto-call unit, and finally a login sequence. The phone
number may contain common abbreviations that are defined in the L-dialcodes file. The device

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-37

specification should refer to devices specified in the L-devices file. Listing only ACU causes the uucp
daemon, uucico, to search for any available auto-call unit in L-devices. Our L-dialcodes file is of the
form:

ucb 2
out 9%

while our L-devices file is:

ACU cu!O unused 1200 ventel

Refer to the README file in the uucp source directory for more information about installation.
As uucp operates it creates (and removes) many small files in the directories underneath

/usr/spooUuucp. Sometimes files are left undeleted; these are most easily purged with the uuclean
program. The log files can grow without bound unless trimmed back; uu/og maintains these files.
Many useful aids in maintaining your uucp installation are included in a subdirectory UUAIDS
beneath /usr/src/usr.bin/uucp. Peruse this directory and read the "setup" instructions also located
there.

April 16, 1986

SMM:!-38 Installing and Operating 4.3BSD on the VAX

5. NETWORK SETUP

4.3BSD provides support for the DARPA standard Internet protocols IP, ICMP, TCP, and
UDP. These protocols may be used on top of a variety of hardware devices ranging from the IMP's
(PSN's) used in the ARPANET to local area network controllers for the Ethernet. Network services
are split between the kernel (communication protocols) and user programs (user services such as TEL
NET and FTP). This section describes how to configure your system to use the Internet networking
support. 4.3BSD also supports the Xerox Network Systems (NS) protocols. IDP and SPP are imple
mented in the kernel, and other protocols such as Courier run at the user level.

5.1. System configuration

To configure the kernel to include the Internet communication protocols, define the INET
option. Xerox NS support is enabled with the NS option. In either case, include the pseudo-devices
"pty", and "loop" in your machine's configuration file. The "pty" pseudo-device forces the pseudo
terminal device driver to be configured into the system, see pty(4), while the "loop" pseudo-device
forces inclusion of the software loopback interface driver. The loop driver is used in network testing
and also by the error Jogging system.

If you are planning to use the Internet network facilities on a 1 OMb/s Ethernet, the pseudo
device "ether" should also be included in the configuration; this forces inclusion of the Address Reso
lution Protocol module used in mapping between 48-bit Ethernet and 32-bit Internet addresses. Also,
if you have an IMP connection, you will need to include the pseudo-device "imp."

Before configuring the appropriate networking hardware, you should consult the manual pages in
section 4 of the Programmer's Manual. The following table lists the devices for which software sup
port exists.

Device name
ace
css
ddn
dmc
de
ec
en
ex
hdh
hy
ii
ix
pcl
VY

Manufacturer and product
ACC LH/DH interface to IMP
DEC IMP-1 IA interface to IMP
ACC ACP625 DDN Standard mode X.25 interface to IMP
DEC DMC-11 (also works with DMR-11)
DEC DEUNA IOMb/s Ethernet
3Com IOMb/s Ethernet
Xerox 3Mb/s prototype Ethernet (not a product)
Excelan 204 lOMb/s Ethernet
ACC IF-11/HDH IMP interface
NSC Hyperchannel, w/ DR-1 IB and PI-13 interfaces
Interlan 1010 and !OIOIA IOMb/s Ethernet interfaces
Interlan NPIOO IOMb/s Ethernet interface
DEC PCL-11
Proteon I OMb/s and 80Mb/s proNET ring network (V2LNI)

All network interface drivers including the loopback interface, require that their host address(es)
be defined at boot time. This is done with ifconfig(8C) commands included in the !etc/re.local file.
Interfaces that are able to dynamically deduce the host part of an address may check that the host
part of the address is correct. The manual page for each network interface describes the method used
to establish a host's address. Ifconfig(8) can also be used to set options for the interface at boot time.
Options are set independently for each interface, and apply to all packets sent using that interface.
These options include disabling the use of the Address Resolution Protocol; this may be useful if a
network is shared with hosts running software that does not yet provide this function. Alternatively,
translations for such hosts may be set in advance or "published" by a 4.3BSD host by use of the
arp(Sc) command. Note that the use of trailer link-level is now negotiated between 4.3BSD hosts
using ARP, and it is thus no longer necessary to disable the use of trailers with ifconfig.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-39

To use the pseudo terminals just configured, device entries must be created in the /dev direc
tory. To create 32 pseudo terminals (plenty, unless you have a heavy network load) execute the fol
lowing commands.

cd /dev
MAKEDEV ptyO ptyl

More pseudo terminals may be made by specifying pty2, pty3, etc. The kernel normally includes sup
port for 32 pseudo terminals unless the configuration file specifies a different number. Each pseudo
terminal really consists of two files in /dev: a master and a slave. The master pseudo terminal file is
named /dev/ptyp?, while the slave side is /dev/ttyp?. Pseudo terminals are also used by several pro
grams not related to the network. In addition to creating the pseudo terminals, be sure to install
them in the /etc/ttys file (with a 'none' in the second column so no getty is started).

5.2. Local subnetworks

In 4.3BSD the DARPA Internet support includes the notion of "subnetworks". This is a
mechanism by which multiple local networks may appears as a single Internet network to off-site
hosts. Subnetworks are useful because they allow a site to hide their local topology, requiring only a
single route in external gateways; it also means that local network numbers may be locally admin
istered. The standard describing this change in Internet addressing is RFC-950.

To set up local subnetworks one must first decide how the available address space (the Internet
"host part" of the 32-bit address) is to be partitioned. Sites with a class A network number have a
24-bit address space with which to work, sites with a class B network number have a 16-bit address
space, while sites with a class C network number have an 8-bit address space*. To define local sub
nets you must steal some bits from the local host address space for use in extending the network por
tion of the Internet address. This reinterpretation of Internet addresses is done only for local net
works; i.e. it is not visible to hosts off-site. For example, if your site has a class B network number,
hosts on this network have an Internet address that contains the network number, 16 bits, and the
host number, another 16 bits. To define 254 local subnets, each possessing at most 255 hosts, 8 bits
may be taken from the local part. (The use of subnets 0 and all-1 's, 255 in this example, is
discouraged to avoid confusion about broadcast addresses.) These new network numbers are then
constructed by concatenating the original 16-bit network number with the extra 8 bits containing the
local subnetwork number.

The existence of local subnetworks is communicated to the system at the time a network inter
face is configured with the netmask option to the ifconfig program. A "network mask" is specified to
define the portion of the Internet address that is to be considered the network part for that network.
This mask normally contains the bits corresponding to the standard network part as well as the por
tion of the local part that has been assigned to subnets. If no mask is specified when the address is
set, it will be set according to the class of the network. For example, at Berkeley (class B network
128.32) 8 bits of the local part have been reserved for defining subnetworks; consequently the
/etc/re.local file contains lines of the form

/etc/ifconfig enO netmask OxffifffOO 128.32.1. 7

This specifies that for interface "enO", the upper 24 bits of the Internet address should be used in cal
culating network numbers (netmask OxffifffOO), and the interface's Internet address is "128.32.1. 7"
(host 7 on network 128.32.1). Hosts m on sub-network n of this network would then have addresses
of the form "128.32.n.m"; for example, host 99 on network 129 would have an address
"128.32.129.99". For hosts with multiple interfaces, the network mask should be set for each inter
face, although in practice only the mask of the first interface on each network is actually used.

* If you are unfamiliar with the Internet addressing structure, consult "Address Mappings", Internet RFC-
796, J. Postel; available from the Internet Network Information Center at SRI.

April 16, 1986

SMM:l-40 Installing and Operating 4.3BSD on the VAX

S.3. Internet broadcast addresses
The address defined as the broadcast address for Internet networks according to RFC-919 is the

address with a host part of all I's. The address used by 4.2BSD was the address with a host part of 0.
4.3BSD uses the standard broadcast address (all 1 's) by default, but allows the broadcast address to be
set (with ifconfig) for each interface. This allows networks consisting of both 4.2BSD and 4.3BSD
hosts to coexist while the upgrade process proceeds. In the presence of subnets, the broadcast address
uses the subnet field as for normal host addresses, with the remaining host part set to l's (or O's, on a
network that has not yet been converted). 4.3BSD hosts recognize and accept packets sent to the
logical-network broadcast address as well as those sent to the subnet broadcast address, and when
using an all-1 's broadcast, also recognize and receive packets sent to host 0 as a broadcast.

S.4. Routing
If your environment allows access to networks not directly attached to your host you will need

to set up routing information to allow packets to be properly routed. Two schemes are supported by
the system. The first scheme employs the routing table management daemon /etc/routed to maintain
the system routing tables. The routing daemon uses a variant of the Xerox Routing Information Pro
tocol to maintain up to date routing tables in a cluster of local area networks. By using the
/etc/gateways file created by htable(B), the routing daemon can also be used to initialize static routes
to distant networks (see the next section for further discussion). When the routing daemon is started
up (usually from /etclrc./ocal) it reads /etc/gateways if it exists and installs those routes defined there,
then broadcasts on each local network to which the host is attached to find other instances of the
routing daemon. If any responses are received, the routing daemons cooperate in maintaining a glo
bally consistent view of routing in the local environment. This view can be extended to include
remote sites also running the routing daemon by setting up suitable entries in /etc/gateways; consult
routed(BC) for a more thorough discussion.

The second approach is to define a default or wildcard route to a smart gateway and depend on
the gateway to provide ICMP routing redirect information to dynamically create a routing data base.
This is done by adding an entry of the form

/etc/route add default smart-gateway 1

to /etclrc./oca/; see route(BC) for more information. The default route will be used by the system as a
"last resort" in routing packets to their destination. Assuming the gateway to which packets are
directed is able to generate the proper routing redirect messages, the system will then add routing
table entries based on the information supplied. This approach has certain advantages over the rout
ing daemon, but is unsuitable in an environment where there are only bridges (i.e. pseudo gateways
that, for instance, do not generate routing redirect messages). Further, if the smart gateway goes
down there is no alternative, save manual alteration of the routing table entry, to maintaining service.

The system always listens, and processes, routing redirect information, so it is possible to com
bine both of the above facilities. For example, the routing table management process might be used
to maintain up to date information about routes to geographically local networks, while employing
the wildcard routing techniques for "distant" networks. The nets tat (I) program may be used to
display routing table contents as well as various routing oriented statistics. For example,

#netstat -r

will display the contents of the routing tables, while

netstat -r -s

will show the number of routing table entries dynamically created as a result of routing redirect mes
sages, etc.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-41

5.5. Use of 4.3BSD machines as gateways

Several changes have been made in 4.3BSD in the area of gateway support (or packet forward
ing, if one prefers). A new configuration option, GATEWAY, is used when configuring a machine to
be used as a gateway. This option increases the size of the routing hash tables in the kernel. Unless
configured with that option, hosts with only a single non-loopback interface never attempt to forward
packets or to respond with ICMP error messages to misdirected packets. This change reduces the
problems that may occur when different hosts on a network disagree as to the network number or
broadcast address. Another change is that 4.3BSD machines that forward packets back through the
same interface on which they arrived will send ICMP redirects to the source host if it is on the same
network. This improves the interaction of 4.3BSD gateways with hosts that configure their routes via
default gateways and redirects. The generation of redirects may be disabled with the configuration
option IPSENDREDIRECTS;O in environments where it may cause difficulties.

Local area routing within a group of interconnected Ethernets and other such networks may be
handled by routed(8c). Gateways between the Arpanet or Milnet and one or more local networks
require an additional routing protocol, the Exterior Gateway Protocol (EGP), to inform the core gate
ways of their presence and to acquire routing information from the core. An EGP implementation
for 4.2BSD was done by Paul Kirton while visiting IS!, and any sites requiring such support that have
not already obtained a copy should contact Joyce Reynolds (JKReynolds@usc-isif.arpa) for informa
tion. That implementation works with 4.3BSD without kernel modifications. It must be modified, as
packets from the ICMP raw socket include the IP header like other raw sockets in 4.3BSD. If neces
sary, contact the Berkeley Computer Systems Research Group for assistance.

5.6. Network servers

In 4.3BSD most of the server programs are started up by a "super server", the Internet daemon.
The Internet daemon, letclinetd, acts as a master server for programs specified in its configuration
file, /etclinetd.conf, listening for service requests for these servers, and starting up the appropriate pro
gram whenever a request is received. The configuration file contains lines containing a service name
(as found in /etc/services), the type of socket the server expects (e.g. stream or dgram), the protocol to
be used with the socket (as found in /etc/protocols), whether to wait for each server to complete
before starting up another, the user name as which the server should run, the server program's name,
and at most five arguments to pass to the server program. Some trivial services are implemented
internally in inetd, and their servers are listed as "internal." For example, an entry for the file transfer
protocol server would appear as

ftp stream tcp nowait root /etc/ftpd ftpd

Consult inetd(8c) for more detail on the format of the configuration file and the operation of the
Internet daemon.

5.7. Network data bases

Several data files are used by the network library routines and server programs. Most of these
files are host independent and updated only rarely.

File
/etc/hosts
/etc/networks
/etc/services
/etc/protocols
/etc/hosts.equiv
/etc/re.local
/etc/ftpusers
/etc/hosts.lpd
/etc/inetd.conf

Manual reference
hosts(5)
networks(5)
services(5)
protocols(5)
rshd(8C)
rc(8)
ftpd(8C)
lpd(8C)
inetd(8)

Use
host names
network names
list of known services
protocol names
list of "trusted" hosts
command script for starting servers
list of "unwelcome" ftp users
list of hosts allowed to access printers
list of servers started by inetd

April 16, 1986

SMM:l-42 Installing and Operating 4.3BSD on the VAX

The files distributed are set up for ARPANET or other Internet hosts. Local networks and hosts
should be added to describe the local configuration; the Berkeley entries may serve as examples (see
also the next section). Network numbers will have to be chosen for each Ethernet. For sites not con
nected to the Internet, these can be chosen more or less arbitrarily, otherwise the normal channels
should be used for allocation of network numbers.

5.7.1. Regenerating /etc/hosts and /etc/networks

When using the host address routines that use the Internet name server, the file !etc/hosts is only
used for setting interface addresses and at other times that the server is not running, and therefore it
need only contain addresses for local hosts. There is no equivalent service for network names yet.
The full host and network name data bases are normally derived from a file retrieved from the Inter
net Network Information Center at SRI. To do this you should use the program /etc/gettable to
rrtrieve the NIC host data base, and the program htable(8) to convert it to the format used by the
libraries. You should change to the directory where you maintain your local additions to the host
table and execute the following commands.

/etc/gettable sri-nic.arpa
Connection to sri-nic.arpa opened.
Host table received.
Connection to sri-nic.arpa closed.
/etc/htable hosts.txt
Warning, no Iocalgateways file.

The htable program generates three files in the local directory: hosts, networks and gateways. If a file
"localhosts" is present in the working directory its contents are first copied to the output file. Simi
larly, a "localnetworks" file may be prepended to the output created by htable, and 'localgateways"
will be prepended to gateways. It is usually wise to run di.ff(!) on the new host and network data
bases before installing them in /etc. If you are using the host table for host name and address map
ping, you should run mkhosts (8) after installing !etc/hosts. If you are using the name server for the
host name and address mapping, you only need to install networks and a small copy of hosts describ
ing your local machines. The full host table in this case might be placed somewhere else for reference
by users. The gateways file may be installed in /etc/gateways if you use routed(8c) for local routing
and wish to have static external routes installed when routed is started. This procedure is essentially
obsolete, however, except for individual hosts that are on the Arpanet or Milnet and do not forward
packets from a local network. Other situations require the use of an EGP server.

If you are connected to the DARPA Internet, it is highly recommended that you use the name
server for your host name and address mapping, as this provides access to a much larger set of hosts
than are provided in the host table. Many large organization on the network, currently have only a
small percentage of their hosts listed in the host table retrieved from NIC.

5.7.2. /etc/hosts.equiv

The remote login and shell servers use an authentication scheme based on trusted hosts. The
hosts.equiv file contains a list of hosts that are considered trusted and, under a single administrative
control. When a user contacts a remote login or shell server requesting service, the client process
passes the user's name and the official name of the host on which the client is located. In the simple
case, if the host's name is located in hosts.equiv and the user has an account on the server's machine,
then service is rendered (i.e. the user is allowed to log in, or the command is executed). Users may
expand this "equivalence" of machines by installing a .rhosts file in their login directory. The root
login is handled specially, bypassing the hosts.equiv file, and using only the /.rhosts file.

Thus, to create a class of equivalent machines, the hosts.equiv file should contain the official
names for those machines. If you are running the name server, you may omit the domain part of the
host name for machines in your local domain. For example, several machines on our local network
are considered trusted, so the hosts.equiv file is of the form:

April 16, 1986

Installing and Operating 4.3BSD on the VAX

ucbarpa
calder
dali
ernie
kim
matisse
mo net
ucbvax
m1ro
degas

5.7.3. /etc/re.local

SMM:l-43

Most network servers are automatically started up at boot time by the command file /etc/re (if
they are installed in their presumed locations) or by the Internet daemon (see above). These include
the following:

Program Server Started by
/etc/rshd shell server inetd
/etc/rexecd exec server inetd
/etc/rlogind login server inetd
/etc/telnetd TELNET server inetd
/etc/ftpd FTP server inetd
/etc/fingerd Finger server inetd
/etc/tftpd TFTP server inetd
/etc/rwhod system status daemon /etc/re
/etc/syslogd error logging server /etc/re
/usr/lib/sendmail SMTP server /etc/re
/etc/routed routing table management daemon /etc/re

Consult the manual pages and accompanying documentation (particularly for sendmail) for details
about their operation.

To have other network servers started up as well, the appropriate line should be added to the
Internet daemon's configuration file /etclinetd.conf, or commands of the following sort should be
placed in the site dependent file /etc/re.local.

if [-f /etc/routed]; then
/etc/routed & echo -n ' routed' >/dev/console

fi

5.7.4. /etc/ftpusers

The FTP server included in the system provides support for an anonymous FTP account.
Because of the inherent security problems with such a facility you should read this section carefully if
you consider providing such a service.

An anonymous account is enabled by creating a user ftp. When a client uses the anonymous
account a chroot (2) system call is performed by the server to restrict the client from moving outside
that part of the file system where the user ftp home directory is located. Because a chroot call is used,
certain programs and files used by the server process must be placed in the ftp home directory.
Further, one must be sure that all directories and executable images are unwritable. The following
directory setup is recommended.

April 16, 1986

SMM:l-44

cd -ftp
chmod 555 .; chown ftp .; chgrp ftp .
mkdir bin etc pub
chown root bin etc
chmod 555 bin etc
chown ftp pub
chmod 777 pub
cd bin
cp /bin/sh /bin/ls .
chmod Ill sh ls
cd .. /etc
cp /etc/passwd /etc/group .
chmod 444 passwd group

Installing and Operating 4.3BSD on the VAX

When local users wish to place files in the anonymous area, they must be placed in a subdirectory. In
the setup here, the directory "'ftp/pub is used.

Another issue to consider is the copy of letclpasswd placed here. It may be copied by users who
use the anonymous account. They may then try to break the passwords of users on your machine for
further access. A good choice of users to include in this copy might be root, daemon, uucp, and the
ftp user. All passwords here should probably be"*".

Aside from the problems of directory modes and such, the ftp server may provide a loophole for
interlopers if certain user accounts are allowed. The file letclftpusers is checked on each connection.
If the requested user name is located in the file, the request for service is denied. This file normally
has the following names on our systems.

uucp
root

Accounts with nonstandard shells should be listed in this file. - Accounts without passwords need not
be listed in this file, the ftp server will not service these users.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-45

6. SYSTEM OPERATION

This section describes procedures used to operate a VAX UNIX system. Procedures described
here are used periodically, to reboot the system, analyze error messages from devices, do disk back
ups, monitor system performance, recompile system software and control local changes.

6.1. Bootstrap and shutdown procedures
In a normal reboot, the system checks the disks and comes up multi-user without intervention at

the console. Such a reboot can be stopped (after it prints the date) with a ·c (interrupt). This will
leave the system in single-user mode, with only the console terminal active. It is also possible to
allow the filesystem checks to complete and then to return to single-user mode by signaling ftck with a
QUIT signal C).

If booting from the console command level is needed, then the command

>>> B

will boot from the default device. On an 8650, 8600, 11/785, 11/780, or 111730 the default device is
determined by a "DEPOSIT" command stored on the console boot device in the file
"DEFBOO.CMD" ("DEFBOO.COM" on an 8650 or 8600); on an 11/750 the default device is deter
mined by the setting of a switch on the front panel.

You can boot a system up single user on an 8650, 8600, 785, 780, or 730 by doing

>>> BXXS

where XX is one of HP, HK, UP, RA, or RB for a 730. The corresponding command on an 11/750 is

>>> B/2

For second vendor storage modules on the UNIBUS or MASSBUS of an 111750 you will need
to have a boot prom. Most vendors will sell you such proms for their controllers; contact your ven
dor if you don't have one.

Other possibilities are:

>>> BANY

or, on a 750

>>> B/3

These commands boot and ask for the name of the system to be booted. They can be used after
building a new test system to give the boot program the name of the test version of the system.

To bring the system up to a multi-user configuration from the single-user status after, e.g., a "B
HPS" on an 8650, 8600, 11/785 or 111780, "B RBS" on a 11/730, or a "B/2" on an 11/750 all you
have to do is hit ·o on the console. The system will then execute /etc/re, a multi-user restart script
(and /etc/re.local), and come up on the terminals listed as active in the file /etc/ttys. See init (8) and
ttys(5). Note, however, that this does not cause a file system check to be performed. Unless the sys
tem was taken down cleanly, you should run "fsck -p" or force a reboot with reboot(8) to have the
disks checked.

To take the system down to a single user state you can use

kill 1

or use the shutdown (8) command (which is much more polite, if there are other users logged in.)
when you are up multi-user. Either command will kill all processes and give you a shell on the con
sole, as if you had just booted. File systems remain mounted after the system is taken single-user. If
you wish to come up multi-user again, y'ou should do this by:

April 16, 1986

SMM:l-46

cd I
/etc/umount -a
#'D

Installing and Operating 4.3BSD on the VAX

Each system shutdown, crash, processor halt and reboot is recorded in the file
/usr/adm/shutdownlog with the cause.

6.2. Device errors and diagnostics
When serious errors occur on peripherals or in the system, the system prints a warning diagnos

tic on the console. These messages are collected by the system error logging process syslogd(S) and
written into a system error log file lusrladmlmessages. Less serious errors are sent directly to syslogd,
which may log them on the console. The error priorities that are logged and the locations to which
they are logged are controlled by letc/syslog.conf. See syslogd(S) for details.

Error messages printed by the devices in the system are described with the drivers for the dev
ices in section 4 of the programmer's manual. If errors occur suggesting hardware problems, you
should contact your hardware support group or field service. It is a good idea to examine the error
log file regularly (e.g. with "tail -r /usr/adm/messages").

6.3. File system checks, backups and disaster recovery
Periodically (say every week or so in the absence of any problems) and always (usually automati

cally) after a crash, all the file systems should be checked for consistency by fsck(l). The procedures
of reboot(S) should be used to get the system to a state where a file system check can be performed
manually or automatically.

Dumping of the file systems should be done regularly, since once the system is going it is easy to
become complacent. Complete and incremental dumps are easily done with dump(S). You should
arrange to do a towers-of-hanoi dump sequence; we tune ours so that almost all files are dumped on
two tapes and kept for at least a week in most every case. We take full dumps every month (and keep
these indefinitely). Operators can execute "dump w" at login that will tell them what needs to be
dumped (based on the /etc/fstab information). Be sure to create a group operator in the file /etc/group
so that dump can notify logged-in operators when it needs help.

More precisely, we have three sets of dump tapes: 10 daily tapes, 5 weekly sets of 2 tapes, and
fresh sets of three tapes monthly. We do daily dumps circularly on the daily tapes with sequence '3 2
5 4 7 6 9 8 9 9 9 .. .'. Each weekly is a level I and the daily dump sequence level restarts after each
weekly dump. Full dumps are level 0 and the daily sequence restarts after each full dump also.

Thus a typical dump sequence would be:

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-47

tape name level number date opr size
FULL 0 Nov 24, 1979 jkf 137K

DI 3 Nov 28, 1979 jkf 29K
D2 2 Nov 29, 1979 rrh 34K
D3 5 Nov 30, 1979 rrh 19K
D4 4 Dec I, 1979 rrh 22K
WI 1 Dec 2, 1979 etc 40K
D5 3 Dec 4, 1979 rrh 15K
D6 2 Dec 5, 1979 jkf 25K
D7 5 Dec 6, 1979 jkf 15K
D8 4 Dec 7, 1979 rrh 19K
W2 I Dec 9, 1979 etc 118K
D9 3 Dec 11, 1979 rrh 15K

D!O 2 Dec 12, 1979 rrh 26K
DI 5 Dec 15, 1979 rrh 14K
W3 1 Dec 17, 1979 etc 71K
D2 3 Dec 18, 1979 etc 13K

FULL 0 Dec 22, 1979 etc 135K

We do weekly dumps often enough that daily dumps always fit on one tape.

Dumping of files by name is best done by tar(l) but the amount of data that can be moved in
this way is limited to a single tape. Finally if there are enough drives entire disks can be copied with
dd (1) using the raw special files and an appropriate blocking factor; the number of sectors per track is
usually a good value to use, consult letc!disktab.

It is desirable that full dumps of the root file system be made regularly. This is especially true
when only one disk is available. Then, if the root file system is damaged by a hardware or software
failure, you can rebuild a workable disk doing a restore in the same way that the initial root file sys
tem was created.

Exhaustion of user-file space is certain to occur now and then; disk quotas may be imposed, or
if you prefer a less facist approach, try using the programs du (1), df(1), quot (8), combined with
threatening messages of the day, and personal letters.

6.4. Moving file system data

If you have the equipment, the best way to move a file system is to dump it to magtape using
dump (8), use newfe (8) to create the new file system, and restore the tape, using restore (8). If for
some reason you don't want to use magtape, dump accepts an argument telling where to put the
dump; you might use another disk. Filesystems may also be moved by piping the output of dump to
restore. The restore program uses an "in-place" algorithm that allows file system dumps to be
restored without concern for the original size of the file system. Further, portions of a file system
may be selectively restored using a method similar to the tape archive program.

If you have to merge a file system into another, existing one, the best bet is to use tar(I). If you
must shrink a file system, the best bet is to dump the original and restore it onto the new file system.
If you are playing with the root file system and only have one drive, the procedure is more compli
cated. If the only drive is a Winchester disk, this procedure may not be used without overwriting the
existing root or another partition. What you do is the following:

I. GET A SECOND PACK!!!!

2. Dump the root file system to tape using dump(8).

3. Bring the system down and mount the new pack.

4. Load the distribution tape and install the new root file system as you did when first installing
the system.

April 16, 1986

SMM:l-48 Installing and Operating 4.3BSD on the VAX

5. Boot normally using the newly created disk file system.

Note that if you change the disk partition tables or add new disk drivers they should also be
added to the standalone system in /sys/stand and the default disk partition tables in /etcldisktab
should be modified.

6.5. Monitoring System Performance

The systat program provided with the system is designed to be an aid to monitoring systemwide
activity. The default "pigs" mode shows a dynamic "ps". By running in the "vmstat" mode when
the system is active you can judge the system activity in several dimensions: job distribution, virtual
memory load, paging and swapping activity, device interrupts, and disk and cpu utilization. Ideally,
there should be few blocked (b) jobs, there should be little paging or swapping activity, there should
be available bandwidth on the disk devices (most single arms peak out at 20-30 tps in practice), and
the user cpu utilization (us) should be high (above 50%).

If the system is busy, then the count of active jobs may be large, and several of these jobs may
often be blocked (b). If the virtual memory is active, then the paging demon will be running (sr will
be non-zero). It is healthy for the paging demon to free pages when the virtual memory gets active; it
is triggered by the amount of free memory dropping below a threshold and increases its pace as free
memory goes to zero.

If you run in the "vmstat" mode when the system is busy, you can find imbalances by noting
abnormal job distributions. If many processes are blocked (b), then the disk subsystem is overloaded
or imbalanced. If you have several non-dma devices or open teletype lines that are "ringing'', or user
programs that are doing high-speed non-buffered input/output, then the system time may go high
(60-70% or higher). It is often possible to pin down the cause of high system time by looking to see if
there is excessive context switching (cs), interrupt activity (in) and per-device interrupt counts, or sys
tem call activity (sy). Cumulatively on one of our large machines we average about 60-100 context
switches and interrupts per second and about 70-120 system calls per second.

If the system is heavily loaded, or if you have little memory for your load (2M is little in most
any case), then the system may be forced to swap. This is likely to be accompanied by a noticeable
reduction in system performance and pregnant pauses when interactive jobs such as editors swap out.
If you expect to be in a memory-poor environment for an extended period you might consider admin
istratively limiting system load.

6.6. Recompiling and reinstalling system software

It is easy to regenerate the system, and it is a good idea to try rebuilding pieces of the system to
build confidence in the procedures. The system consists of two major parts: the kernel itself (/sys)
and the user programs (/usr/src and subdirectories). The major part of this is /usr/src.

The three major libraries are the C library in /usr/src/lib/libc and the FORTRAN libraries
/usr/src/usr.lib/libI77 and /usr/src/usr.lib/libF77. In each case the library is remade by changing into
the corresponding directory and doing

#make

and then installed by

make install

Similar to the system,

#make clean

cleans up.

The source for all other libraries is kept in subdirectories of /usr/src/usr.lib; each has a makefile
and can be recompiled by the above recipe.

If you look at /usr/src/Makefile, you will see that you can recompile the entire system source
with one command. To recompile a specific program, find out where the source resides with the

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-49

whereis (1) command, then change to that directory and remake it with the makefile present in the
directory. For instance, to recompile "date", all one has to do is

whereis date
date: /usr/src/bin/date.c /bin/date /usr/man/manl/date.1
cd /usr/src/bin
#make date

this will create an unstripped version of the binary of "date" in the current directory. To install the
binary image, use the install command as in

install -s date /bin/date

The -s option will insure the installed version of date has its symbol table stripped. The install com
mand should be used instead of mv or cp as it understands how to install programs even when the
program is currently in use.

If you wish to recompile and install all programs in a particular target area you can override the
default target by doing:

#make
make DESTDIR=pathname install

To regenerate all the system source you can do

cd /usr/src
#make

If you modify the C library, say to change a system call, and want to rebuild and install every
thing from scratch you have to be a little careful. You must insure that the libraries are installed
before the remainder of the source, otherwise the loaded images will not contain the new routine
from the library. The following sequence will accomplish this.

cd /usr/src
#make clean
#make build
make installsrc

The first make removes any existing binaries in the source trees to insure that everything is reloaded.
The next make compiles and installs the libraries and compilers, then compiles the remainder of the
sources. The final line installs all of the commands not installed in the first phase. This will take
about 18 hours on a reasonably configured 11/750.

6.7. Making local modifications
To keep track of changes to system source we migrate changed versions of commands in

/usr/src/bin, /usr/src/usr.bin, and /usr/src/ucb in through the directory /usr/src/new and out of the ori
ginal directory into /usr/src/old for a time before removing them. (/usr/new is also used by default for
the programs that constitute the contributed software portion of the distribution.) Locally written
commands that aren't distributed are kept in /usr/src/local and their binaries are kept in /usr/local.
This allows /usr/bin, /usr/ucb, and /bin to correspond to the distribution tape (and to the manuals
that people can buy). People wishing to use /usr/local commands are made aware that they aren't in
the base manual. As manual updates incorporate these commands they are moved to /usr/ucb.

A directory, /usrijunk, to throw garbage into, as well as binary directories, /usr/old and /usr/new,
are useful. The man command supports manual directories such as /usr/man/mano for old and
/usr/man/manl for local to make this or something similar practical.

April 16, 1986

SMM:l-50 Installing and Operating 4.3BSD on the VAX

6.8. Accounting
UNIX optionally records two kinds of accounting information: connect time accounting and

process resource accounting. The connect time accounting information is stored in the file
/usr/adm/wtmp, which is summarized by the program ac(8). The process time accounting informa
tion is stored in the file lusr/adm/acct after it is enabled by accton (8), and is analyzed and summar
ized by the program sa(8).

If you need to recharge for computing time, you can develop procedures based on the informa
tion provided by these commands. A convenient way to do this is to give commands to the clock
daemon letc/cron to be executed every day at a specified time. This is done by adding lines to
/usrladmlcrontab; see cron (8) for details.

6.9. Resource control
Resource control in the current version of UNIX is more elaborate than in most UNIX systems.

The disk quota facilities developed at the University of Melbourne have been incorporated in the sys
tem and allow control over the number of files and amount of disk space each user may use on each
file system. In addition, the resources consumed by any single process can be limited by the mechan
isms of setrlimit (2). As distributed, the latter mechanism is voluntary, though sites may choose to
modify the login mechanism to impose limits not covered with disk quotas.

To use the disk quota facilities, the system must be configured with "options QUOTA". File
systems may then be placed under the quota mechanism by creating a null file quotas at the root of
the file system, running quotacheck(8), and modifying /etclfatab to show that the file system is read
write with disk quotas (an "rq" type field). The quotaon (8) program may then be run to enable quo
tas.

Individual quotas are applied by using the quota editor edquota(S). Users may view their quo
tas (but not those of other users) with the quota(!) program. The repquota(S) program may be used
to summarize the quotas and current space usage on a particular file system or file systems.

Quotas are enforced with soft and hard limits. When a user first reaches a soft limit on a
resource, a message is generated on his/her terminal. If the user fails to lower the resource usage
below the soft limit the next time they log in to the system the login program will generate a warning
about excessive usage. Should three login sessions go by with the soft limit breached the system then
treats the soft limit as a hard limit and disallows any allocations until enough space is reclaimed to
bring the user back below the soft limit. Hard limits are enforced strictly resulting in errors when a
user tries to create or write a file. Each time a hard limit is exceeded the system will generate a mes
sage on the user's terminal.

Consult the auxiliary document, "Disc Quotas in a UNIX Environment"· and the appropriate
manual entries for more information.

6.10. Network troubleshooting
If you have anything more than a trivial network configuration, from time to time you are

bound to run into problems. Before blaming the software, first check your network connections. On
networks such as the Ethernet a loose cable tap or misplaced power cable can result in severely
deteriorated service. The netstat (1) program may be of aid in tracking down hardware malfunctions.
In particular, look at the -i and -s options in the manual page.

Should you believe a communication protocol problem exists, consult the protocol specifications
and attempt to isolate the problem in a packet trace. The SO_DEBUG option may be supplied
before establishing a connection on a socket, in which case the system will trace all traffic and internal
actions (such as timers expiring) in a circular trace buffer. This buffer may then be printed out with
the trpt (8C) program. Most of the servers distributed with the system accept a -d option forcing all
sockets to be created with debugging turned on. Consult the appropriate manual pages for more
information.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-51

6.11. Files that need periodic attention

We conclude the discussion of system operations by listing the files that require periodic atten
tion or are system specific

/etc/fstab
/etc/disktab
/etc/printcap
/etc/gettytab
/etc/remote
/etc/group
/etc/motd
/etc/passwd
/etc/re.local
/etc/inetd.conf
/etc/hosts
/etc/networks
/etc/services
/etc/hosts.equiv
/etc/syslog.conf
/etc/ttys
/usr/lib/crontab
/usr/Iib/aliases
/usr/adm/acct
/usr/adm/messages
/usr/adm/shutdownlog
/usr/adm/wtmp

how disk partitions are used
disk partition sizes
printer data base
terminal type definitions
names and phone numbers of remote machines for tip(I)
group memberships
message of the day
password file; each account has a line
local system restart script; runs reboot; starts daemons
local internet servers
host name data base
network name data base
network services data base
hosts under same administrative control
error log configuration for syslogd (8)
enables/disables ports
commands that are run periodically
mail forwarding and distribution groups
raw process account data
system error log
log of system reboots
login session accounting

April 16, 1986

SMM:l-52 InstaJling and Operating 4.3BSD on the VAX

APPENDIX A - BOOTSTRAP DETAILS

This appendix contains pertinent files and numbers regarding the bootstrapping procedure for
4.3BSD. You should never have to look at this appendix. However, if there are problems in instal
ling the distribution on your machine, the material contained here may prove useful.

Contents of the distribution tape(s)
The distribution normally consists of three 1600bpi 2400' magnetic tapes or one 6250bpi 2400'

magnetic tape. The layout of the 1600bpi tapes is listed below. The 6250bpi tape is in the same
order, but is only on one tape. The first tape contains the following files on it. All tape files are
blocked in 10 kilobytes records, except for the first file on the first tape that has 512 byte records.

Tape file
one

two
three
four

Records*
210

205
430
3000

Contents
8 bootstrap monitor programs and a
tp (1) file containing boot,format, and copy
"mini root" file system
dump(S) of distribution root file system
tar(1) image of binaries and libraries in /usr

The second tape contains the following files:

Tape file
one
two
three

#Records
720
2500
580

Contents
tar(l) image of /sys, including GENERIC system
tar(1) image of /usr/src
tar (1) image of /usr/lib/vfont

The third tape contains the following files:

Tape file
one
two

#Records
3660
250

Contents
tar(1) image of user contributed software
tar(1) image of /usr/ingres

The distribution tape is made with the shell scripts located in the directory /sys/dist. To build a
distribution tape one must first create a mini root file system with the bui/dmini shell script.

• The number of records in each tape file are approximate and do not correspond to the actual tape.

April 16, 1986

Installing and Operating 4.3BSD on the VAX

#!/bin/sh
@(#)buildmini 4. 7 (Berkeley) 6/23/85

miniroot=hpOd
minitype=rm80

date
umount /dev/${miniroot}
newfs -s 4096 $ {mini root} $ {mini type}
fsck /dev/r${miniroot}
mount /dev/${miniroot} /mnt
cd /mnt; sh /sys/dist/get
cd /sys/dist; sync
umount /dev/${miniroot}
fsck /dev/${miniroot}
date

The buildmini script uses the get script to build the file system.

#!/bin/sh

@(#)get 4.23 (Berkeley) 4/9/86

Shell script to build a mini-root file system
in preparation for building a distribution tape.
The file system created here is image copied onto
tape, then image copied onto disk as the "first"
step in a cold boot of 4.2 systems.

DISTROOT =/nbsd

if I 'pwd' = '!' l
then

echo You just '(almost)' destroyed the root
exit

fi
cp $DISTROOT/sys/GENERIC/vmunix .
rm -rf bin; mkdir bin
rm -rf etc; mkdir etc
rm -rf a; mkdir a
rm -rf tmp; mkdir tmp
rm -rf usr; mkdir usr usr/mdec
rm -rf sys; mkdir sys sys/floppy sys/cassette sys/consoler)
cp $DISTROOT/etc/disktab etc
cp $DISTROOT/etc/newfs etc; strip etc/newfs
cp $DISTROOT/etc/mkfs etc; strip etc/mkfs
cp $DISTROOT/etc/restore etc; strip etc/restore
cp $DISTROOT/etc/init etc; strip etc/init
cp $DISTROOT/etc/mount etc; strip etc/mount
cp $DISTROOT/etc/mknod etc; strip etc/mknod
cp $DISTROOT/etc/fsck etc; strip etc/fsck
cp $DISTROOT/etc/umount etc; strip etc/umount
cp $DISTROOT/etc/arff etc; strip etc/arff
cp $DISTROOT/etc/llcopy etc; strip etc/flcopy
cp $DISTROOT/bin/mt bin; strip bin/mt

April 16, 1986

SMM:l-53

SMM:l-54

cp $DISTROOT/bin/ls bin; strip bin/ls
cp $DISTROOT/bin/sh bin; strip bin/sh
cp $DISTROOT/bin/mv bin; strip bin/mv
cp $DISTROOT/bin/sync bin; strip bin/sync
cp $DISTROOT/bin/cat bin; strip bin/cat
cp $DISTROOT/bin/mkdir bin; strip bin/mkdir

Installing and Operating 4.3BSD on the VAX

cp $DISTROOT/bin/stty bin; strip bin/stty; In bin/stty bin/STTY
cp $DISTROOT/bin/echo bin; strip bin/echo
cp $DISTROOT/bin/rm bin; strip bin/rm
cp $DISTROOT/bin/cp bin; strip bin/cp
cp $DISTROOT/bin/expr bin; strip bin/expr
cp $DISTROOT/bin/[bin; strip bin/[
cp $DISTROOT/bin/awk bin; strip bin/awk
cp $DISTROOT/bin/make bin; strip bin/make
cp $DISTROOT/usr/mdec/* usr/mdec
cp $DISTROOT/sys/floppy/[Ma-z0-9]* sys/floppy
cp $DISTROOT/sys/consolerl/[Ma-z0-9]* sys/consoler!
cp -r $DISTROOT/sys/cassette/[Ma-z0-9]* sys/cassette
cp $DISTROOT/sys/stand/boot boot
cp $DISTROOT/sys/stand/pcs750.bin pcs750.bin
cp $DISTROOT/.profile .profile
cat >etc/passwd <<EOF
root::O: I O::/:/bin/sh
EOF
cat >etc/group <<EOF
wheel:*:O:
staff:*: I 0:
EOF
cat >etc/fstab <<EOF
/dev/hpOa:/a:xx: I: I
/dev/upOa:/a:xx: I: I
/dev/hkOa:/a:xx: I: I
/dev/raOa:/a:xx: I: 1
/dev/rbOa:/a:xx: I: I
EOF
cat >xtr <<'EOF'
: ${disk?'Usage: disk=xxO type=tt tape=yy xtr'}
: ${type?'Usage: disk=xxO type=tt tape=yy xtr')
: ${tape?'Usage: disk=xxO type=tt tape=yy xtr'}
echo 'Build root file system'
newfs ${disk}a ${type}
sync
echo 'Check the file system'
fsck /dev/r${disk}a
mount /dev/${ disk}a /a
cd /a
echo 'Rewind tape'
mt -f /dev/${tape}O rew
echo 'Restore the dump image of the root'
restore rsf 3 /dev/${tape}O
cd I
sync
umount /dev/${ disk}a
sync

April 16, 1986

Installing and Operating 4.3BSD on the VAX

fsck /dev/r${ disk}a
echo 'Root filesystem extracted'
echo
echo 'If this is an 8650 or 8600, update the console rl02'
echo 'If this is a 780 or 785, update the floppy'
echo 'If this is a 730, update the cassette'
EOF
chmod +x xtr
rm -rf dev; mkdir dev
cp $DISTROOT/sys/dist/MAKEDEV dev
chmod +x dev/MAKEDEV
cp /dev/null dev/MAKEDEV.local
cd dev
./MAKEDEV std hpO hkO upO raO rbO
./MAKEDEV tsO; mv rmt12 tsO; rm *mt*;
./MAKEDEV tmO; mv rmtl2 tmO; rm *mt*;
./MAKEDEV htO; mv rmtl2 htO; rm *mt*;
./MAKEDEV utO; mv rmt 12 utO; rm *mt*;
./MAKEDEV mtO; mv rmt4 xtO; rm *mt*; mv xtO mtO
cd ..
sync

SMM:l-55

The mini root file system must have enough space to hold the files found on a floppy or cassette.

Once a mini root file system is constructed, the maketape script makes a distribution tape.

#!/bin/sh

@(#)maketape 4.27 (Berkeley) 10117/85

maketape [6250 I 1600 [tapename [remotetapemachine 111
miniroot=hpOd
tape=/dev/rmtl2
type=6250
if [$#-gt 0 l; then type=$ I; Ii
if [$# -gt I l; then tape=$2; Ii
tartape=$tape
if [$#-gt 2 l; then remote=$3; tartape='-'; Ii

trap "rm -f /tmp/tape.$$; exit" 0 I 2 3 13 15
$remote mt -t ${tape} rew
date
umount /dev/hp2g
umount /dev/hp2a
mount -r /dev/hp2a /c/nbsd
mount -r /dev/hp2g /c/nbsd/usr
cd tp
tp emf /tmp/tape.$$ boot copy format
cd /nbsd/sys/mdec
echo "Build I st level boot block file"
cat tsboot htboot tmboot mtboot utboot noboot noboot /tmp/tape.$$ I \

$remote dd of=${ tape} obs=512 conv=sync
cd /nbsd
sync
echo "Add dump of mini-root file system"
eval dd if=/dev/r${miniroot} count=205 bs=20b conv=sync ${remote+' I'}\

April 16, 1986

SMM:l-56 Installing and Operating 4.3BSD on the VAX

${remote-"of=$tape"} ${remote+'/usr/local/20b ">"$tape'}
echo "Add full dump of real file system"
/etc/$(remote+r}dump Ouf $remote${ remote+: }${tape} /c/nbsd
echo "Add tar image of /usr"
cd /nbsd/usr; eval tar cf${tartape} adm bin diet doc games\

guest hosts include lib local man mdec msgs new \
preserve pub spool tmp ucb \

${remote+'I $remote /usr/local/20b ">"$tape')
if [${type} != '6250']
then

fi

echo "Done, rewinding first tape"
$remote mt -t ${tape} rew &
echo "Mount second tape and hit return when ready"
echo "(or type name of next tape drive)"
read x
if ["$x" ! = .. "]
then tape=$x
fi

echo "Add tar image of system sources"
cd /nbsd/sys; eval tar cf ${tartape} . \

${remote+'! $remote /usr/local/20b ">"$tape')
echo "Add user source code"
cd /nbsd/usr/src; eval tar cf ${tartape} Makefile bin etc games\

include lib local old ucb undoc usr.bin usr.lib \
${remote+'I $remote /usr/local/20b ">"$tape')

echo "Add varian fonts"
cd /usr/lib/vfont; eval tar cf ${tartape} . \

${remote+' I $remote /usr/local/20b ">"$tape')
if [${type} != '6250']
then

fi

echo "Done, rewinding second tape"
$remote mt -t ${tape} rew &
echo "Mount third tape and hit return when ready"
echo "(or type name of next tape drive)"
read x
if["$x"!=""]
then tape=$x
fi

echo "Add user contributed software"
cd /nbsd/usr/src/new; eval tar cf $ { tartape} • \

${remote+' I $remote /usr/local/20b ">"$tape')
echo "Add ingres source"
cd /nbsd/usr/ingres; eval tar cf $ { tartape} . \

${remote+'! $remote /usr/local/20b ">"$tape')
echo "Done, rewinding tape"
$remote mt -t ${tape} rew &

Summarizing then, to create a distribution tape you can use the above scripts and the following
commands.

April 16, 1986

Installing and Operating 4.3BSD on the VAX

buildmini
maketape

(For i 600bpi tapes, the following will appear twice asking you to mount
fresh tapes)

Done, rewinding first tape
Mount second tape and hit return when ready
(remove the first tape and place a fresh one on the drive)

Done, rewinding second tape

Control status register addresses

SMM:l-57

The distribution uses many standalone device drivers that presume the location of a UNIBUS
device's control status register (CSR). The following table summarizes these values.

Device name Controller CSR address (octal)
ra DEC UDA50 0172150
rb DEC 730 IDC 0175606
rk DEC RKll 0177440
rl DEC RLll 0174400
tm EMULEX TC-I I 0172520
ts DEC TSll 0172520
up EMULEX SC-21V 0176700
ut SI 9700 0172440

All MASSBUS controllers are located at standard offsets from the base address of the MASSBUS
adapter register bank.

Generic system control status register addresses

The generic version of the operating system supplied with the distribution contains the
UNIBUS devices listed below. These devices will be recognized if the appropriate control status regis
ters respond at any of the listed UNIBUS addresses.

April 16, 1986

SMM:l-58 Installing and Operating 4.3BSD on the VAX

Device name Controller CSR addresses (octal)
hk DECRKll 0177440
tm EMULEX TC-11 0172520
tmscp DEC TU81, TMSCP 0174500
ts DEC TS!! 0172520
ut SI 9700 0172440
up EMULEX SC-21V 0176700,0174400, 0176300
ra DEC UDA-50 0172150,0172550, 0177550
rb DEC 730 IDC 0175606
r1 DEC RLll 0174400
dm DMl 1 equivalent 0170500
dh DH! I equivalent 0160020,0160040
dhu DEC DHUll 0160440,0160500
dz DEC DZ!! 0160100, 0160110, ... 0160170
dmf DEC DMF32 0160340
dmz DECDMZ32 0160540
Ip DEC LP!! 0177514
en Xerox 3MB ethemet 0161000
ec 3Com ethemet 0164330
ex Excelan ethemet 0164344
ii Interlan ethemet 0164000
de DECDEUNA 0174510

If devices other than the above are located at any of the addresses listed, the system may not
bootstrap properly.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-59

APPENDIX B - LOADING THE TAPE MONITOR

This section describes how the bootstrap monitor located on the first tape of the distribution
tape set may be loaded. This should not be necessary, but has been included as a fallback measure if
it is not possible to read the distributed console medium. WARNING: the bootstraps supplied below
may not work, in certain instances on an 11/730 because they use a buffered data path for transfer
ring data from tape to memory; consult our group if you are unable to load the monitor on an
11/730. All of the addresses given below refer to the first SBIA on the 8650 and 8600.

To load the tape bootstrap monitor, first mount the magnetic tape on drive 0 at load point,
making sure that the write ring is not inserted. Temporarily set the reboot switch on an 11/785,
11/780, or 111730 to off; on an 8650, 8600, or 111750 set the power-on action to halt. (In normal
operation an 11/785, 111780, or 111730 will have the reboot switch on, and an 8650, 8600, or 11/750
will have the power-on action set to boot/restart.)

If you have an 8650, 8600, 111785 or 11/780 give the commands:

>>>HALT
>>>UNJAM

Then, on any machine, give the init command:

>>>I

and then key in at location 200 and execute either the TS, HT, TM, or MT bootstrap that follows, as
appropriate. NOTE: All of the addresses given in this section refer to the first SBIA on the 8650 and
8600. The machine's printouts are shown in boldface, explanatory comments are within (). (You
can use 'delete' to erase a character and 'control U' to kill the whole line.)

TS bootstrap

>>>DIP 200 3AEFDO
>>> D + D05AOOOO
>>>D + 3BEF
>>> D + 800CAOO
>>>D + 32EFC1
>>>D + CAOlOOOO
>>>D + EFC10804
>>>D + 24
>>>D + 15508F
>>> D + ABB45BOO
>>> D + 2AB9502
>>>D + 8FBOFB18
>>> D + 956B024C
>>>D + FB1802AB
>>> D + 25C8FBO
>>>D + 6B

(The next two deposits set up the addresses of the UNIBUS)
(adapter and its memory; the 20006000 here is the address of)
(ubaO and the 2013EOOO the address of the 110 page, umemO)
(on an 8650, 8600, 111785 or 11/780)

>>> D + 20006000 (8650/86001785/780 ubaO)
(8650/8600/785/780 ubal: 20008000, uba2 2000AOOO)
(750 ubaO: F30000, ubal: F32000; 730 uba: F26000)

>>> D + 2013EOOO (8650/8600/785/780 umemO)
(8650/860017851780 umeml: 2017EOOO, umem2: 201BEOOO)

April 16, 1986

SMM:l-60 Installing and Operating 4.3BSD on the VAX

(750 umemO: FFEOOO, umeml: FBEOOO; 730 umem: FFEOOO)
> > > D + 80000000
>>>D + 254C004
>>>D + 80000
>>>D + 264
>>>D + E
>>>D + COOi
>>>D + 2000000
>>>S 200.

HT bootstrap

>>>DIP 200 3EEFDO
>>>D + C55AOOOO
>>>D + 3BEF
>>>D + 808FOO
>>>D + Cl5BOOOO
>>>D + C05B5A5B
>>>D + 4008F
>>> D + D05BOO
>>> D + 9D004AA
>>>D + C08F326B
>>>D + D424ABl4
>>> D + 8FDOOCAA
>>>D + 80000000
>>> D + 320800CA
>>> D + AAFE008F
>>>D + 6B39DOIO
>>>D + 0

(The next two deposits set up the addresses of the MASSBUS)
(adapter and the drive number for the tape formatter)
(the 20010000 here is the address of mbaO on an 8650, 8600, 11/785,)
(or 11/780 and the 0 indicates the formatter is drive 0 on mbaO)

>>> D + 20010000 (865018600/785/780 mbaO)
(865018600/785/780 mbal: 20012000; 750 mbaO: F28000, mbal: F2AOOO)

>>> D + 0 (Formatter unit number in range 0-7)
>>>S 200
>>>S 200

TM bootstrap

>>>DIP 200 2AEFDO
>>>D + D0510000
>>> D + 2000008F
>>>D + 800Cl80
>>>D + 804CID4
>>> D + IAEFDO
>>> D + C8520000
>>> D + F5508F
>>> D + 8FAE5200
>>>D + 4A20200
>>>D + B006A2B4
>>>D + 2A203

(The following two numbers are ubaO and umemO on a 865018600/785/780)

April 16, 1986

Installing and Operating 4.3BSD on the VAX

(See TS above for values for other CPU's and UBA's)
>>>D + 20006000 (8650/8600/785/780 ubaO)
>>>D + 2013EOOO (8650/8600/785/780 umemO)
>>>S 200
>>>S 200
>>>S 200

MT bootstrap

>>>DIP 200 46EFDO
>>> D + C55AOOOO
>>>D + 43EF
>>>D + 808FOO
>>>D + C15BOOOO
>>> D + C05B5A5B
>>>D + 4008F
>>>D + 19A5BOO
>>> D + 49A04AA
>>> D + AAD408AB
>>>D + 8FDOOC
>>>D + CA800000
>>> D + 8F320800
>>>D + IOAAFEOO
>>>D + 2008F3C
>>>D + ABD014AB
>>>D + FE15044
>>> D + 399AF850
>>>D + 6B

(The next two deposits set up the addresses of the MASSBUS)
(adapter and the drive number for the tape formatter)
(the 20012000 here is the address of mbal on an 8650, 8600, 11/785)
(or 11/780 and the 0 indicates the formatter is drive 0 on mbal)

>>>D + 20012000
>>>D + 0
>>>S 200
>>>S 200
>>>S 200
>>>S 200

(no functioning toggle-in code exists for the UT device)

SMM:l-61

If the tape doesn't move the first time you start the bootstrap program with "S 200" you prob
ably have entered the program incorrectly (but also check that the tape is online). Start over and
check your typing. For the HT, MT, and TM bootstraps you will not be able to see the tape motion
as you advance through the first few blocks as the tape motion is all within the vacuum columns.

Next, deposit in RlO the address of the tape MBA/UBA and in RI 1 the address of the device
registers or unit number from one of:

April 16, 1986

SMM:l-62

>>>DIG A 20006000
>>>DIG A 20008000
>>>DIG A 20010000
>>>DIG A 20012000
>>>DIG A F30000
>>>DIG A F32000
>>>DIG A F28000
>>>DIG A F2AOOO
>>>DIG A F26000

and for register 11:

>>>DIG B 0
>>>DIG BI
>>>DIG B 2013F550
>>>DIG B FFF550

Installing and Operating 4.3BSD on the VAX

(for tapes on 86501860017851780 ubaO)
(for tapes on 86501860017851780 ubal)
(for tapes on 86501860017851780 mbaO)
(for tapes on 86501860017851780 mbal)
(for tapes on 750 ubaO)
(for tapes on 750 ubal)
(for tapes on 750 mbaO)
(for tapes on 750 mbal)
(for tapes on 730 ubaO)

(for TM031TM78 formatters at mba? drive 0)
(for TM03/TM78 formatters at mba? drive I)
(for TM! !ITS! llTU80 tapes on 86501860017851780 ubaO)
(for TM! !ITS! llTU80 tapes on 750 or 730 ubaO)

Then start the bootstrap program with

>>>SO

The console should type

You are now talking to the tape bootstrap monitor. At any point in the following procedure you can
return to this section, reload the tape bootstrap, and restart the procedure. The console monitor is
identical to that loaded from a TU58 console cassette, follow the instructions in section 2 as they
apply to this device. The only exception is that when using programs loaded from the tape bootstrap
monitor, programs will always return to the monitor (the "=" prompt). This saves your having to
type in the above toggle-in code for each program to be loaded.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-63

APPENDIX C - INSTALLATION TROUBLESHOOTING

This appendix lists and explains certain problems that might be encountered while trying to
install the 4.3BSD distribution. The information provided here is limited to the early steps in the
installation process; i.e. up to the point where the root file system is installed. If you have a problem
installing the release consult this section before contacting our group.

Using the distribution console medium.

This section describes problems that may occur when using the programs provided on the distributed
console medium: TU58 cassette or RXOl floppy disk.

program can not be loaded.

Check to make sure the correct floppy or cassette is being used. If using a floppy, be sure it is not in
upside down. If using a cassette on an 11/730, be certain drive 0 is being used. If a hard I/O error
occurred while reading a floppy, try resetting the console LSI-I I by powering it on and off. If you can
not boot the cassette's bootstrap monitor, verify that the standard DEC console cassette can be read;
if it can not, your cassette drive is probably broken.

program halts without warning.

Check to make sure you have specified the correct disk to format; consult sections 1.3 and 1.4 for a
discussion of the VAX and UNIX device naming conventions. On 11/750's, specifying a non-existent
MASSBUS device will cause the program to halt as it receives an interrupt (standalone programs
operate by polling devices).

If using a floppy, try reading the floppy under your current system. If this works, copy the floppy to a
new one and begin again. If using a cassette on an 11/730, do likewise.

format prints "Known devices are ... ".

You have requested format to work on a device for which it has no driver, or that does not exist;
only the listed devices are supported.

format, boot, or copy prints "unknown drive type".

A MASSBUS disk was specified, but the associated MASSBUS drive type register indicates a drive of
unknown type. This probably means you typed something wrong or your hardware is incorrectly
configured.

format, boot, or copy prints "unknown device".

The device specified is probably not one of those supported by the distribution; consult section I. I.
If the device is listed in section I.I, the drive may be dual-ported, or for some other reason the driver
was unable to decipher its characteristics. If this is a MASSBUS drive, try powering the MASSBUS
adapter and/or controller on and off to clear the drive type register.

copy does not copy 205 records

If a tape read error occurred, clean your tape drive heads. If a disk write error occurred, the disk for
matting may have failed. If the disk pack is removable, try another one. If you are currently running
UNIX, you can reboot your old system and use dd to copy the mini-root file system into a disk parti
tion (assuming the destination is not in use by the running system).

boot prints "not a directory"

The boot program was unable to find the requested program because it encountered something other
than a directory while searching the file system. This usually suggests that no file system is present on
the disk partition supplied, or the file system has been corrupted. First check to make sure you typed
the correct line to boot. If this is the case and you are booting from the mini-root file system, the
mini-root was probably not copied correctly off the tape (perhaps it was not placed in the correct disk
partition). Try reinstalling the mini-root file system or, if trying to boot the true root file system, try
booting from the mini-root file system and run fsck on the restored root file system to insure its

April 16, 1986

SMM:l-64 Installing and Operating 4.3BSD on the VAX

integrity. Finally, as a last resort, copy the boot program from the mini-root file system to the newly
installed root file system.
boot prints "bad format"

The program you requested boot to load did not have a 407, 410, or 413 magic number in its header.
This should never happen on a distribution system. If you were trying to boot off the root file system,
reboot the system on the mini-root file system and look at the program on the root 1ile system. Try
copying the copy of vmunix on the mini-root to the root file system also.

boot prints "read short"

The file header for the program contained a size larger than the actual size of the file located on disk.
This is probably the result of file system corruption (or a disk 1/0 error). Try booting again or creat
ing a new copy of the program to be loaded (see above).

Booting the generic system

This section contains common problems encountered when booting the generic version of the system.
system panics with "panic: iinit"

This occurred because the system was unable to mount the root file system. The root file system sup
plied at the "root device?" prompt was probably incorrect. Remember that when running on the
mini-root file system, this question must be answered with something of the form "hpO*". If the
answer had been "hpO", the system would have used the "a" partition on unit 0 of the "hp" drive,
where presumably no file system exists.

Alternatively, the file system on which you were trying to run is corrupted. Try reinstalling the
appropriate file system.

system selects incorrect root device

That is, you try to boot the system single user with "B/2" or "B xxS" but do not get the root file sys
tem in the expected location. This is most likely caused by your having many disks available more
suited to be a root file system than the one you wanted. For example, if you have a "up" disk and an
"hk" disk and install the system on the "hk'', then try to boot the system to single-user mode, the
heuristic used by the generic system to select the root file system will choose the "up" disk. The fol
lowing list gives, in descending order, those disks thought most suitable to be a root file system: "hp",
"up", "ra", "rb", "rl", "hk" (the position of "rl" is subject to argument). To get the root device you
want you must boot using "B/3" or "B ANY'', then supply the root device at the prompt.
system crashes during autoconfiguration

This is almost always caused by an unsupported UNIBUS device being present at a location where a
supported device was expected. You must disable the device in some way, either by pulling it off the
bus, or by moving the location of the console status register (consult Appendix A for a complete list
of UNIBUS csr's used in the generic system).
system does not find device(s)

The UNIBUS device is not at a standard location. Consult the list of control status register addresses
in Appendix A, or wait to configure a system to your hardware.

Alternatively, certain devices are difficult to locate during autoconfiguration. A classic example is the
TS 11 tape drive that does not autoconfigure properly if it is rewinding when the system is rebooted.
Tape drives should configure properly if they are off-line, or are not performing a tape movement.
Disks that are dual-ported should autoconfigure properly if the drive is not being simultaneously
accessed through the alternate port.

Building console cassettes
This sections describes common problems encountered while constructing a console bootstrap
cassette.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:l-65

system crashes
You are trying to build a cassette for an 111750. On an 111750 the system is booted by using a
bootstrap prom and sector 0 of the root file system. Refer to section 2.1.5 or tu(4) for the appropri
ate reprimand.
system hangs
You are using an MRSP prom on an 111750 and think you can ignore the instructions in this docu
ment. The problem here is that the generic system only supports the MRSP prom on an 111730.
Using it on an 111750 requires a special system configuration; consult tu(4) for more information.

April 16, 1986

Building Berkeley UNIXt Kernels with Config

Samuel J. Leffler and Michael J. Karels

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes the use of config(8) to configure and create bootable
4.3BSD system images. It discusses the structure of system configuration files and
how to configure systems with non-standard hardware configurations. Sections
describing the preferred way to add new code to the system and how the system's
autoconfiguration process operates are included. An appendix contains a summary
of the rules used by the system in calculating the size of system data structures, and
also indicates some of the standard system size limitations (and how to change
them). Other configuration options are also listed.

Revised June 3, 1986

1. INTRODUCTION
Con.fig is a tool used in building 4.3BSD system images (the UNIX kernel). It takes a file

describing a system's tunable parameters and hardware support, and generates a collection of files
which are then used to build a copy of UNIX appropriate to that configuration. Con.fig simplifies sys
tem maintenance by isolating system dependencies in a single, easy to understand, file.

This document describes the content and format of system configuration files and the rules
which must be followed when creating these files. Example configuration files are constructed and
discussed.

Later sections suggest guidelines to be used in modifying system source and explain some of the
inner workings of the autoconfiguration process. Appendix D summarizes the rules used in calculat
ing the most important system data structures and indicates some inherent system data structure size
limitations (and how to go about modifying them).

tUNIX is a Trademark of Bell Laboratories.

SMM:2-2 Building Kernels with Config

2. CONFIGURATION FILE CONTENTS

A system configuration must include at least the following pieces of information:

• machine type

• cpu type

• system identification

• timezone

• maximum number of users

• location of the root file system

• available hardware

Conjig allows multiple system images to be generated from a single configuration description.
Each system image is configured for identical hardware, but may have different locations for the root
file system and, possibly, other system devices.

2.1. Machine type

The machine type indicates if the system is going to operate on a DEC VAX-I It computer, or
some other machine on which 4.3BSD operates. The machine type is used to locate certain data files
which are machine specific, and also to select rules used in constructing the resultant configuration
files.

2.2. Cpu type

The cpu type indicates which, of possibly many, cpu's the system is to operate on. For example,
if the system is being configured for a VAX-II, it could be running on a VAX 8600, VAX-111780,
VAX-11/750, VAX-11/730 or MicroVAX JI. (Other VAX cpu types, including the 8650, 785 and
725, are configured using the cpu designation for compatible machines introduced earlier.) Specifying
more than one cpu type implies that the system should be configured to run on any of the cpu's
specified. For some types of machines this is not possible and conjig will print a diagnostic indicating
such.

2.3. System identification

The system identification is a moniker attached to the system, and often the machine on which
the system is to run. For example, at Berkeley we have machines named Ernie (Co-VAX), Kim (No
v AX), and so on. The system identifier selected is used to create a global C "#define" which may be
used to isolate system dependent pieces of code in the kernel. For example, Ernie's Varian driver
used to be special cased because its interrupt vectors were wired together. The code in the driver
which understood how to handle this non-standard hardware configuration was conditionally com
piled in only if the system was for Ernie.

The system identifier "GENERIC" is given to a system which will run on any cpu of a particu
lar machine type; it should not otherwise be used for a system identifier.

2.4. Timezone

The timezone in which the system is to run is used to define the information returned by the
gettimeofday(2) system call. This value is specified as the number of hours east or west of GMT.
Negative numbers indicate a value east of GMT. The timezone specification may also indicate the
type of daylight savings time rules to be applied.

t DEC, VAX, UNIBUS, MASS BUS and MicroVAX are trademarks of Digital Equipment Corporation.

Building Kernels with Config SMM:2-3

2.5. Maximum number of users
The system allocates many system data structures at boot time based on the maximum number

of users the system will support. This number is normally between 8 and 40, depending on the
hardware and expected job mix. The rules used to calculate system data structures are discussed in
Appendix D.

2.6. Root file system location
When the system boots it must know the location of the root of the file system tree. This loca

tion and the part(s) of the disk(s) to be used for paging and swapping must be specified in order to
create a complete configuration description. Config uses many rules to calculate default locations for
these items; these are described in Appendix B.

When a generic system is configured, the root file system is left undefined until the system is
booted. In this case, the root file system need not be specified, only that the system is a generic sys
tem.

2.7. Hardware devices

When the system boots it goes through an autoconfiguration phase. During this period, the sys
tem searches for all those hardware devices which the system builder has indicated might be present.
This probing sequence requires certain pieces of information such as register addresses, bus intercon
nects, etc. A system's hardware may be configured in a very flexible manner or be specified without
any flexibility whatsoever. Most people do not configure hardware devices into the system unless
they are currently present on the machine, expect them to be present in the near future, or are simply
guarding against a hardware failure somewhere else at the site (it is often wise to configure in extra
disks in case an emergency requires moving one off a machine which has hardware problems).

The specification of hardware devices usually occupies the majority of the configuration file. As
such, a large portion of this document will be spent understanding it. Section 6.3 contains a descrip
tion of the autoconfiguration process, as it applies to those planning to write, or modify existing, dev
ice drivers.

2.8. Pseudo devices

Several system facilities are configured in a manner like that used for hardware devices although
they are not associated with specific hardware. These system options are configured as pseudo-devices.
Some pseudo devices allow an optional parameter that sets the limit on the number of instances of
the device that are active simultaneously.

2.9. System options

Other than the mandatory pieces of information described above, it is also possible to include
various optional system facilities or to modify system behavior and/or limits. For example, 4.3BSD
can be configured to support binary compatibility for programs built under 4.lBSD. Also, optional
support is provided for disk quotas and tracing the performance of the virtual memory subsystem.
Any optional facilities to be configured into the system are specified in the configuration file. The
resultant files generated by config will automatically include the necessary pieces of the system.

SMM:2-4 Building Kernels with Config

3. SYSTEM BUILDING PROCESS

In this section we consider the steps necessary to build a bootable system image. We assume the
system source is located in the "/sys" directory and that, initially, the system is being configured from
source code.

Under normal circumstances there are 5 steps in building a system.

1) Create a configuration file for the system.

2) Make a directory for the system to be constructed in.
3) Run config on the configuration file to generate the files required to compile and load the system

image.

4) Construct the source code interdependency rules for the configured system with makedepend
using make(!).

5) Compile and load the system with make.

Steps I and 2 are usually done only once. When a system configuration changes it usually
suffices to just run conjig on the modified configuration file, rebuild the source code dependencies,
and remake the system. Sometimes, however, configuration dependencies may not be noticed in
which case it is necessary to clean out the relocatable object files saved in the system's directory; this
will be discussed later.

3.1. Creating a configuration file

Configuration files normally reside in the directory "/sys/conP'. A configuration file is most
easily constructed by copying an existing configuration file and modifying it. The 4.3BSD distribu
tion contains a number of configuration files for machines at Berkeley; one may be suitable or, in
worst case, a copy of the generic configuration file may be edited.

The configuration file must have the same name as the directory in which the configured system
is to be built. Further, conjig assumes this directory is located in the parent directory of the directory
in which it is run. For example, the generic system has a configuration file "/sys/conf/GENERIC"
and an accompanying directory named "/sys/GENERIC". Although it is not required that the system
sources and configuration files reside in "/sys," the configuration and compilation procedure depends
on the relative locations of directories within that hierarchy, as most of the system code and the files
created by config use pathnames of the form" . ./". If the system files are not located in "/sys," it is
desirable to make a symbolic link there for use in installation of other parts of the system that share
files with the kernel.

When building the configuration file, be sure to include the items described in section 2. In par
ticular, the machine type, cpu type, timezone, system identifier, maximum users, and root device
must be specified. The specification of the hardware present may take a bit of work; particularly if
your hardware is configured at non-standard places (e.g. device registers located at funny places or
devices not supported by the system). Section 4 of this document gives a detailed description of the
configuration file syntax, section 5 explains some sample configuration files, and section 6 discusses
how to add new devices to the system. If the devices to be configured are not already described in
one of the existing configuration files you should check the manual pages in section 4 of the UNIX
Programmers Manual. For each supported device, the manual page synopsis entry gives a sample
configuration line.

Once the configuration file is complete, run it through config and look for any errors. Never try
and use a system which conjig has complained about; the results are unpredictable. For the most
part, config's error diagnostics are self explanatory. It may be the case that the line numbers given
with the error messages are off by one.

A successful run of conjig on your configuration file will generate a number of files in the
configuration directory. These files are:

• A file to be used by make(I) in compiling and loading the system, Makefile.

Building Kernels with Config SMM:2-5

• One file for each possible system image for this machine, swapxxx.c, where xxx is the name of the
system image, which describes where swapping, the root file system, and other miscellaneous sys
tem devices are located.

• A collection of header files, one per possible device the system supports, which define the
hardware configured.

• A file containing the 1/0 configuration tables used by the system during its autoconfiguration
phase, ioconf c.

• An assembly language file of interrupt vectors which connect interrupts from the machine's exter
nal buses to the main system path for handling interrupts, and a file that contains counters and
names for the interrupt vectors.

Unless you have reason to doubt con.fig, or are curious how the system's autoconfiguration
scheme works, you should never have to look at any of these files.

3.2. Constructing source code dependencies

When con.fig is done generating the files needed to compile and link your system it will ter
minate with a message of the form "Don't forget to run make depend". This is a reminder that you
should change over to the configuration directory for the system just configured and type "make
depend" to build the rules used by make to recognize interdependencies in the system source code.
This will insure that any changes to a piece of the system source code will result in the proper
modules being recompiled the next time make is run.

This step is particularly important if your site makes changes to the system include files. The
rules generated specify which source code files are dependent on which include files. Without these
rules, make will not recognize when it must rebuild modules due to the modification of a system
header file. The dependency rules are generated by a pass of the C preprocessor and reflect the global
system options. This step must be repeated when the configuration file is changed and con.fig is used
to regenerate the system makefile.

3.3. Building the system

The makefile constructed by con.fig should allow a new system to be rebuilt by simply typing
"make image-name". For example, if you have named your bootable system image "vmunix'', then
"make vmunix" will generate a bootable image named "vmunix". Alternate system image names are
used when the root file system location and/or swapping configuration is done in more than one way.
The makefile which con.fig creates has entry points for each system image defined in the configuration
file. Thus, if you have configured "vmunix" to be a system with the root file system on an "hp" dev
ice and "hkvmunix" to be a system with the root file system on an "hk" device, then "make vmunix
hkvmunix" will generate binary images for each. As the system will generally use the disk from
which it is loaded as the root filesystem, separate system images are only required to support different
swap configurations.

Note that the name of a bootable image is different from the system identifier. All bootable
images are configured for the same system; only the information about the root file system and paging
devices differ. (This is described in more detail in section 4.)

The last step in the system building process is to rearrange certain commonly used symbols in
the symbol table of the system image; the makefile generated by con.fig does this automatically for
you. This is advantageous for programs such as netstat(I) and vmstat(I), which run much faster
when the symbols they need are located at the front of the symbol table. Remember also that many
programs expect the currently executing system to be named "/vmunix". If you install a new system
and name it something other than "/vmunix'', many programs are likely to give strange results.

3.4. Sharing object modules

If you have many systems which are all built on a single machine there are at least two
approaches to saving time in building system images. The best way is to have a single system image

l,"'I,·

SMM:2-6 Building Kernels with Config

which is run on all machines. This is attractive since it minimizes disk space used and time required
to rebuild systems after making changes. However, it is often the case that one or more systems will
require a separately configured system image. This may be due to limited memory (building a system
with many unused device drivers can be expensive), or to configuration requirements (one machine
may be a development machine where disk quotas are not needed, while another is a production
machine where they are), etc. In these cases it is possible for common systems to share relocatable
object modules which are not configuration dependent; most of the modules in the directory
"/sys/sys" are of this sort.

To share object modules, a generic system should be built. Then, for each system configure the
system as before, but before recompiling and linking the system, type "make links" in the system
compilation directory. This will cause the system to be searched for source modules which are safe to
share between systems and generate symbolic links in the current directory to the appropriate object
modules in the directory " . ./GENERIC". A shell script, "makelinks" is generated with this request
and may be checked for correctness. The file "/sys/conf/defines" contains a list of symbols which we
believe are safe to ignore when checking the source code for modules which may be shared. Note
that this list includes the definitions used to conditionally compile in the virtual memory tracing facil
ities, and the trace point support used only rarely (even at Berkeley). It may be necessary to modify
this file to reflect local needs. Note further that interdependencies which are not directly visible in
the source code are not caught. This means that if you place per-system dependencies in an include
file, they will not be recognized and the shared code may be selected in an unexpected fashion.

3.S. Building profiled systems

It is simple to configure a system which will automatically collect profiling information as it
operates. The profiling data may be collected with kgmon(8) and processed with gprof(I) to obtain
information regarding the system's operation. Profiled systems maintain histograms of the program
counter as well as the number of invocations of each routine. The gprof command will also generate
a dynamic call graph of the executing system and propagate time spent in each routine along the arcs
of the call graph (consult the gprof documentation for elaboration). The program counter sampling
can be driven by the system clock, or if you have an alternate real time clock, this can be used. The
latter is highly recommended, as use of the system clock will result in statistical anomalies, and time
spent in the clock routine will not be accurately attributed.

To configure a profiled system, the -p option should be supplied to config. A profiled system is
about 5-10% larger in its text space due to the calls to count the subroutine invocations. When the
system executes, the profiling data is stored in a buffer which is 1.2 times the size of the text space.
The overhead for running a profiled system varies; under normal load we see anywhere from 5-25% of
the system time spent in the profiling code.

Note that systems configured for profiling should not be shared as described above unless all the
other shared systems are also to be profiled.

4. CONFIGURATION FILE SYNTAX

In this section we consider the specific rules used in writing a configuration file. A complete
grammar for the input language can be found in Appendix A and may be of use if you should have
problems with syntax errors.

A configuration file is broken up into three logical pieces:

• configuration parameters global to all system images specified ill the configuration file,

• parameters specific to each system image to be generated, and

• device specifications.

4.1. Global configuration par~meters
The global configuration parameters are the type of machine, cpu types, options, timezone, sys

tem identifier, and maximum users. Each is specified with a separate line in the configuration file.

Building Kernels with Config SMM:2-7

machine type
The system is to run on the machine type specified. No more than one machine type can
appear in the configuration file. Legal values are vax and sun.

cpu "type"
This system is to run on the cpu type specified. More than one cpu type specification can
appear in a configuration file. Legal types for a vax machine are V AX8600, V AX780, V AX750,
V AX730 and V AX630 (MicroVAX II). The 8650 is listed as an 8600, the 785 as a 780, and a
725 as a 730.

options optionlist
Compile the listed optional code into the system. Options in this list are separated by commas.
Possible options are listed at the top of the generic makefile. A line of the form "options
FUNNY,HAHA" generates global "#define"s -DFUNNY -DHAHA in the resultant makefile.
An option may be given a value by following its name with "=", then the value enclosed in
(double) quotes. The following are major options are currently in use: COMPAT (include code
for compatibility with 4.IBSD binaries), INET (Internet communication protocols), NS (Xerox
NS communication protocols), and QUOTA (enable disk quotas). Other kernel options control
ling system sizes and limits are listed in Appendix D; options for the network are found in
Appendix E. There are additional options which are associated with certain peripheral devices;
those are listed in the Synopsis section of the manual page for the device.

makeoptions optionlist
Options that are used within the system makefile and evaluated by make are listed as makeop
tions. Options are listed with their values with the form "makeoptions
name=value,name2=value2." The values must be enclosed in double quotes if they include
numerals or begin with a dash.

timezone number [dst [number]]
Specifies the timezone used by the system. This is measured in the number of hours your
timezone is west of GMT. EST is 5 hours west of GMT, PST is 8. Negative numbers indicate
hours east of GMT. If you specify dst, the system will operate under daylight savings time. An
optional integer or floating point number may be included to specify a particular daylight saving
time correction algorithm; the default value is 1, indicating the United States. Other values are:
2 (Australian style), 3 (Western European), 4 (Middle European), and 5 (Eastern European). See
gettimeofday(2) and ctime(3) for more information.

ident name
This system is to be known as name. This is usually a cute name like ERNIE (short for Ernie
Co-Vax) or V AXWELL (for V axwell Smart). This value is defined for use in conditional compi
lation, and is also used to locate an optional list of source files specific to this system.

maxusers number
The maximum expected number of simultaneously active user on this system is number. This
number is used to size several system data structures.

4.2. System image parameters

Multiple bootable images may be specified in a single configuration file. The systems will have
the same global configuration parameters and devices, but the location of the root file system and
other system specific devices may be different. A system image is specified with a "config" line:

config sysname con.fig-clauses
The sysname field is the name given to the loaded system image; almost everyone names their stan
dard system image "vmunix". The configuration clauses are one or more specifications indicating
where the root file system is located and the number and location of paging devices. The device used
by the system to process argument lists during execve(2) calls may also be specified, though in practice
this is almost always selected by con.fig using one of its rules for selecting default locations for system
devices.

SMM:2-8

A configuration clause is one of the following

root [on] root-device
swap [on] swa}rdevice [and swa[rdevice] ...
dumps [on] dum}rdevice
args [on] arg-device

Building Kernels with Config

(the "on" is optional.) Multiple configuration clauses are separated by white space; config allows
specifications to be continued across multiple lines by beginning the continuation line with a tab char
acter. The "root" clause specifies where the root file system is located, the "swap" clause indicates
swapping and paging area(s}, the "dumps" clause can be used to force system dumps to be taken on a
particular device, and the "args" clause can be used to specify that argument list processing for
execve should be done on a particular device.

The device names supplied in the clauses may be fully specified as a device, unit, and file system
partition; or underspecified in which case config will use builtin rules to select default unit numbers
and file system partitions. The defaulting rules are a bit complicated as they are dependent on the
overall system configuration. For example, the swap area need not be specified at all if the root dev
ice is specified; in this case the swap area is placed in the "b" partition of the same disk where the
root file system is located. Appendix B contains a complete list of the defaulting rules used in select
ing system configuration devices.

The device names are translated to the appropriate major and minor device numbers on a per
machine basis. A file, "/sys/conf/devices.machine" (where "machine" is the machine type specified in
the configuration file}, is used to map a device name to its major block device number. The minor
device number is calculated using the standard disk partitioning rules: on unit 0, partition "a" is
minor device 0, partition "b" is minor device 1, and so on; for units other than 0, add 8 times the
unit number to get the minor device.

If the default mapping of device name to major/minor device number is incorrect for your
configuration, it can be replaced by an explicit specification of the major/minor device. This is done
by substituting

major x minor y

where the device name would normally be found. For example,

. config vmunix root on major 99 minor 1
Normally, the areas configured for swap space are sized by the system at boot time. If a non

standard size is to be used for one or more swap areas (less than the full partition), this can also be
specified. To do this, the device name specified for a swap area should have a "size" specification
appended. For example,

config vmunix root on hpO swap on hpOb size 1200

would force swapping to be done in partition "b" of "hpO" and the swap partition size would be set
to 1200 sectors. A swap area sized larger than the associated disk partition is trimmed to the parti
tion size.

To create a generic configuration, only the clause "swap generic" should be specified; any extra
clauses will cause an error.

4.3. Device specifications
Each device attached to a machine must be specified to config so that the system generated will

know to probe for it during the autoconfiguration process carried out at boot time. Hardware
specified in the configuration need not actually be present on the machine where the generated system
is to be run. Only the hardware actually found at boot time will be used by the system.

The specification of hardware devices in the configuration file parallels the interconnection
hierarchy of the machine to be configured. On the VAX, this means that a configuration file must
indicate what MASSBUS and UNIBUS adapters are present, and to which nexi they might be con
nected.* Similarly, devices and controllers must be indicated as possibly being connected to one or

• While VAX-1 l/7SO's and V AX-111730 do not actually have nexi, the system treats them as having simu
lated nexi to simplify device configuration.

Building Kernels with Config SMM:2-9

more adapters. A device description may provide a complete definition of the possible configuration
parameters or it may leave certain parameters undefined and make the system probe for all the possi
ble values. The latter allows a single device configuration list to match many possible physical
configurations. For example, a disk may be indicated as present at UNIBUS adapter 0, or at any
UNIBUS adapter which the system locates at boot time. The latter scheme, termed wildcarding,
allows more flexibility in the physical configuration of a system; if a disk must be moved around for
some reason, the system will still locate it at the alternate location.

A device specification takes one of the following forms:
master device-name device-info
controller device-name device-info [interrupt-spec]
device device-name device-info interrupt-spec
disk device-name device-info
tape device-name device-info

A "master" is a MASSBUS tape controller; a "controller" is a disk controller, a UNIBUS tape con
troller, a MASSBUS adapter, or a UNIBUS adapter. A "device" is an autonomous device which con
nects directly to a UNIBUS adapter (as opposed to something like a disk which connects through a
disk controller). "Disk" and "tape" identify disk drives and tape drives connected to a "controller"
or "master."

The device-name is one of the standard device names, as indicated in section 4 of the UNIX
Programmers Manual, concatenated with the logical unit number to be assigned the device (the logi
cal unit number may be different than the physical unit number indicated on the front of something
like a disk; the logical unit number is used to refer to the UNIX device, not the physical unit
number). For example, "hpO" is logical unit 0 of a MASSBUS storage device, even though it might
be physical unit 3 on MASSBUS adapter I.

The device-info clause specifies how the hardware is connected in the interconnection hierarchy.
On the VAX, UNIBUS and MASSBUS adapters are connected to the internal system bus through a
nexus. Thus, one of the following specifications would be used:

controller mbaO at nexus x
controller ubaO at nexus x

To tie a controller to a specific nexus, "x" would be supplied as the number of that nexus; otherwise
"x" may be specified as "?", in which case the system will probe all nexi present looking for the
specified controller.

The remaining interconnections on the VAX are:

• a controller may be connected to another controller (e.g. a disk controller attached to a UNIBUS
adapter),

• a master is always attached to a controller (a MASSBUS adapter),
• a tape is always attached to a master (for MASSBUS tape drives),

• a disk is always attached to a controller, and
• devices are always attached to controllers (e.g. UNIBUS controllers attached to UNIBUS

adapters).

The following lines give an example of each of these interconnections:
controller hkO at ubaO .. .
master htO at mbaO .. .
disk hpO at mbaO .. .
tape tuO at htO .. .
disk rkl at hkO .. .
device dzO at ubaO .. .

Any piece of hardware which may be connected to a specific controller may also be wildcarded across
multiple controllers.

SMM:2-10 Building Kernels with Config

The final piece of information needed by the system to configure devices is some indication of
where or how a device will interrupt. For tapes and disks, simply specifying the slave or drive
number is sufficient to locate the control status register for the device. Drive numbers may be wild
carded on MASSBUS devices, but not on disks on a UNIBUS controller. For controllers, the control
status register must be given explicitly, as well the number of interrupt vectors used and the names of
the routines to which they should be bound. Thus the example lines given above might be completed
as:

controller hkO at ubaO csr 0177 440 vector rkintr
master htO at mbaO drive 0
disk hpO at mbaO drive ?
tape tuO at htO slave 0
disk rkl at hkO drive I
device dzO at ubaO csr 0160100 vector dzrint dzxint

Certain device drivers require extra information passed to them at boot time to tailor their
operation to the actual hardware present. The line printer driver, for example, needs to know how
many columns are present on each non-standard line printer (i.e. a line printer with other than 80
columns). The drivers for the terminal multiplexors need to know which lines are attached to modem
lines so that no one will be allowed to use them unless a connection is present. For this reason, one
last parameter may be specified to a device, a flags field. It has the syntax

flags number
and is usually placed after the csr specification. The number is passed directly to the associated
driver. The manual pages in section 4 should be consulted to determine how each driver uses this
value (if at all). Communications interface drivers commonly use the flags to indicate whether
modem control signals are in use.

The exact syntax for each specific device is given in the Synopsis section of its manual page in
section 4 of the manual.

4.4. Pseudo-devices
A number of drivers and software subsystems are treated like device drivers without any associ

ated hardware. To include any of these pieces, a "pseudo-device" specification must be used. A
specification for a pseudo device takes the form

pseudo-device device-name [howmany]
Examples of pseudo devices are pty, the pseudo terminal driver (where the optional howmany

value indicates the number of pseudo terminals to configure, 32 default), and loop, the software loop
back network pseudo-interface. Other pseudo devices for the network include imp (required when a
CSS or ACC imp is configured) and ether (used by the Address Resolution Protocol on 10 Mb/sec
Ethernets). More information on configuring each of these can also be found in section 4 of the
manual.

S. SAMPLE CONFIGURATION FILES
In this section we will consider how to configure a sample VAX-11/780 system on which the

hardware can be reconfigured to guard against various hardware mishaps. We then study the rules
needed to configure a VAX-11/750 to run in a networking environment.

5.1. V AX-111780 System
Our VAX-11/780 is configured with hardware recommended in the document "Hints on

Configuring a VAX for 4.2BSD" (this is one of the high-end configurations). Table 1 lists the per
tinent hardware to be configured.

Building Kernels with Config SMM:2-11

Item Vendor Connection Name Reference
cpu DEC VAX780
MASSBUS controller Emulex nexus? mbaO hp(4)
disk Fujitsu mbaO hpO
disk Fujitsu mbaO hpl
MASSBUS controller Emulex nexus? mbal
disk Fujitsu mbal hp2
disk Fujitsu mbal hp3
UNIBUS adapter DEC nexus?
tape controller Emulex ubaO tmO tm(4)
tape drive Kennedy tmO teO
tape drive Kennedy tmO tel
terminal multiplexor Emulex ubaO dhO dh(4)
terminal multiplexor Emulex ubaO dhl
terminal multiplexor Emulex ubaO dh2

Table I. VAX-111780 Hardware support.

We will call this machine ANSEL and construct a configuration file one step at a time.
The first step is to fill in the global configuration parameters. The machine is a VAX, so the

machine type is "vax". We will assume this system will run only on this one processor, so the cpu
type is "VAX780". The options are empty since this is going to be a "vanilla" VAX. The system
identifier, as mentioned before, is "ANSEL," and the maximum number of users we plan to support
is about 40. Thus the beginning of the configuration file looks like this:

ANSEL VAX (a picture perfect machine)

machine
cpu
timezone
ident
max users

vax
VAX780
8 dst
ANSEL
40

To this we must then add the specifications for three system images. The first will be our stan
dard system with the root on "hpO" and swapping on the same drive as the root. The second will
have the root file system in the same location, but swap space interleaved among drives on each con
troller. Finally, the third will be a generic system, to allow us to boot off any of the four disk drives.

config vmunix root on hpO
config hpvmunix root on hpO swap on hpO and hp2
config genvmunix swap generic

Finally, the hardware must be specified. Let us first just try transcribing the information from
Table 1.

SMM:2-12 Building Kernels with Config

controller mbaO at nexus?
disk hpO at mbaO disk 0
disk hpl at mbaO disk I
controller mbal at nexus?
disk hp2 at mbal disk 2
disk hp3 at mbal disk 3
controller ubaO at nexus?
controller tmO at ubaO csr 0172520 vector tmintr
tape teO at tmO drive 0
tape tel at tmO drive I
device dhO at ubaO csr 0160020 vector dhrint dhxint
device dmO at ubaO csr 0170500 vector dmintr
device dhl at ubaO csr 0160040 vector dhrint dhxint
device dh2 at ubaO csr 0160060 vector dhrint dhxint

(Oh, I forgot to mention one panel of the terminal multiplexor has modem control, thus the "dmO"
device.)

This will suffice, but leaves us with little flexibility. Suppose our first disk controller were to
break. We would like to recable the drives normally on the second controller so that all our disks
could still be used without reconfiguring the system. To do this we wildcard the MASSBUS adapter
connections and also the slave numbers. Further, we wildcard the UNIBUS adapter connections in
case we decide some time in the future to purchase another adapter to offload the single UNIBUS we
currently have. The revised device specifications would then be:

controller mbaO at nexus?
disk hpO at mba? disk ?
disk hp! at mba? disk ?
controller mbal at nexus?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller ubaO at nexus?
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drive 0
tape tel at tmO drive I
device dhO at uba? csr 0160020 vector dhrint dhxint
device dmO at uba? csr 0170500 vector dmintr
device dhl at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dhxint

The completed configuration file for ANSEL is shown in Appendix C.

5.2. V AX-111750 with network support
Our VAX-11/750 system will be located on two IOMb/s Ethernet local area networks and also

the DARPA Internet. The system will have a MASSBUS drive for the root file system and two
UNIBUS drives. Paging is interleaved among all three drives. We have sold our standard DEC ter
minal multiplexors since this machine will be accessed solely through the network. This machine is
not intended to have a large user community, it does not have a great deal of memory. First the glo
bal parameters:

Building Kernels with Config

UCBV AX (Gateway to the world)

machine
cpu
cpu
ident
timezone
max users
options
options

vax
"VAX780"
"VAX750"
UCBVAX
8 dst
32
INET
NS

SMM:2-13

The multiple cpu types allow us to replace UCBVAX with a more powerful cpu without
reconfiguring the system. The value of 32 given for the maximum number of users is done to force
the system data structures to be over-allocated. That is desirable on this machine because, while it is
not .expected to support many users, it is expected to perform a great deal of work. The "INET"
indicates that we plan to use the DARPA standard Internet protocols on this machine, and "NS" also
includes support for Xerox NS protocols. Note that unlike 4.2BSD configuration files, the network
protocol options do not require corresponding pseudo devices.

The system images and disks are configured next.

config vmunix root on hp swap on hp and rkO and rkl
config upvmunix root on up
config hkvmunix root on hk swap on rkO and rkl

controller mbaO at nexus?
controller ubaO at nexus?
disk hpO at mba? drive 0
disk hp! at mba? drive I
controller scO at uba? csr 0176700 vector upintr
disk upO at scO drive 0
disk up! at scO drive I
controller hkO at uba? csr 0177440 vector rkintr
disk rkO at hkO drive 0
disk rkl at hkO drive I

UCBVAX requires heavy interleaving of its paging area to keep up with all the mail traffic it
handles. The limiting factor on this system's performance is usually the number of disk arms, as
opposed to memory or cpu cycles. The extra UNIBUS controller, "scO", is in case the MASSBUS
controller breaks and a spare controller must be installed (most of our old UNIBUS controllers have
been replaced with the newer MASSBUS controllers, so we have a number of these around as spares).

Finally, we add in the network devices. Pseudo terminals are needed to allow users to log in
across the network (remember the only hardwired terminal is the console). The software loopback
device is used for on-machine communications. The connection to the Internet is through an IMP,
this requires yet another pseudo-device (in addition to the actual hardware device used by the IMP
software). And, finally, there are the two Ethernet devices. These use a special protocol, the Address
Resolution Protocol (ARP), to map between Internet and Ethernet addresses. Thus, yet another
pseudo-device is needed. The additional device specifications are show below.

SMM:2-14

pseudo-device
pseudo-device
pseudo-device
device
pseudo-device
device
device

pty
loop
imp
accO
ether
ecO
ilO

at uba? csr 0167600

at uba? csr 0164330
at uba? csr 0164000

Building Kernels with Config

vector accrint accxint

vector ecrint eccollide ecxint
vector ilrint ilcint

The completed configuration file for UCBVAX is shown in Appendix C.

S.3. Miscellaneous comments

It should be noted in these examples that neither system was configured to use disk quotas or
the 4.IBSD compatibility mode. To use these optional facilities, and others, we would probably clean
out our current configuration, reconfigure the system, then recompile and relink the system image(s).
This could, of course, be avoided by ·figuring out which relocatable object files are affected by the
reconfiguration, then reconfiguring and recompiling only those files affected by the configuration
change. This technique should be used carefully.

6. ADDING NEW SYSTEM SOFfW ARE

This section is not for the novice, it describes some of the inner workings of the configuration
process as well as the pertinent parts of the system autoconfiguration process. It is intended to give
those people who intend to install new device drivers and/or other system facilities sufficient informa
tion to do so in the manner which will allow others to easily share the changes.

This section is broken into four parts:

• general guidelines to be followed in modifying system code,

• how to add non-standard system facilities to 4.3BSD,

• how to add a device driver to 4.3BSD, and

• how UNIBUS device drivers are autoconfigured under 4.3BSD on the VAX.

6.1. Modifying system code

If you wish to make site-specific modifications to the system it is best to bracket them with

#ifdef SITENAME

#endif

to allow your source to be easily distributed to others, and also to simplify di.ff(I) listings. If you
choose not to use a source code control system (e.g. SCCS, RCS), and perhaps even if you do, it is
recommended that you save the old code with something of the form:

#ifndef SITENAME

#endif

We try to isolate our site-dependent code in individual files which may be configured with pseudo
device specifications.

Indicate machine-specific code with "#ifdef vax" (or other machine, as appropriate). 4.2BSD
underwent extensive work to make it extremely portable to machines with similar architectures- you
may someday find yourself trying to use a single copy of the source code on multiple machines.

Use lint periodically if you make changes to the system. The 4.3BSD kernel has only two lines
of lint in it. It is very simple to lint the kernel. Use the LINT configurntion file, designed to pull in
as much of the kernel source code as possible, in the following manner.

Building Kernels with Config

$ cd /sys/conf
$ mkdir . ./LINT
$ config LINT
$ cd . ./LINT
$ make depend
$ make assym.s
$ make -k lint > linterrs 2>& I &
(or for users of csh (I))
% make -k >& linterrs

This takes about an hour on a lightly loaded V AX-1117 50, but is well worth it.

6.2. Adding non-standard system facilities

SMM:2-15

This section considers the work needed to augment config's data base files for non-standard sys
tem facilities .. Con fig uses a set of files that list the source modules that may be required when build
ing a system. The data bases are taken from the directory in which config is run, normally /sys/conf.
Three such files may be used: files, files.machine, and files.ident. The first is common to all systems,
the second contains files unique to a single machine type, and the third is an optional list of modules
for use on a specific machine. This last file may override specifications in the first two. The format
of the files file has grown somewhat complex over time. Entries are normally of the form

dirlsource.c type option-list modifiers
for example,

vaxubalfoo.c optional foo device-driver
The type is one of standard or Files marked as standard are included in all system configurations.
Optional file specifications include a list of one or more system options that together require the
inclusion of this module. The options in the list may be either names of devices that may be in the
configuration file, or the names of system options that may be defined. An optional file may be listed
multiple times with different options; if all of the options for any of the entries are satisfied, the
module is included.

If a file is specified as a device-driver, any special compilation options for device drivers will be
invoked. On the VAX this results in the use of the -i option for the C optimizer. This is required
when pointer references are made to memory locations in the VAX I/O address space.

Two other optional keywords modify the usage of the file. Config understands that certain files
are used especially for kernel profiling. These files are indicated in the files files with a profiling
routine keyword. For example, the current profiling subroutines are sequestered off in a separate file
with the following entry:

sys/subr _mcount.c optional profiling-routine
The profiling-routine keyword forces config not to compile the source file with the -pg option.

The second keyword which can be of use is the config-dependent keyword. This causes config to
compile the indicated module with the global configuration parameters. This allows certain modules,
such as machdep.c to size system data structures based on the maximum number of users configured
for the system.

6.3. Adding device drivers to 4.3BSD

The I/O system and config have been designed to easily allow new device support to be added.
The system source directories are organized as follows:

SMM:2-16

/sys/h
/sys/sys
/sys/conf
/sys/net
/sys/netinet
/sys/netimp
/sys/netns
/sys/vax
/sys/vaxif
/sys/vaxmba
/sys/vaxuba

Building Kernels with Config

machine independent include files
machine-independent system source files
site configuration files and basic templates
network-protocol-independent, but network-related code
DARPA Internet code
IMP support code
Xerox NS code
VAX-specific mainline code
VAX network interface code
VAX MASSBUS device drivers and related code
VAX UNIBUS device drivers and related code

Existing block and character device drivers for the VAX reside in "/sys/vax", "/sys/vaxmba",
and "/sys/vaxuba". Network interface drivers reside in "/sys/vaxif'. Any new device drivers should
be placed in the appropriate source code directory and named so as not to conflict with existing dev
ices. Normally, definitions for things like device registers are placed in a separate file in the same
directory. For example, the "dh" device driver is named "dh.c" and its associated include file is
named "dhreg.h".

Once the source for the device driver has been placed in a directory, the file
"/sys/conf/files.machine", and possibly "/sys/conf/devices.machine" should be modified. The files
files in the conf directory contain a line for each C source or binary-only file in the system. Those
files which are machine independent are located in "/sys/conf/files," while machine specific files are in
"/sys/conf/files.machine." The "devices.machine" file is used to map device names to major block
device numbers. If the device driver being added provides support for a new disk you will want to
modify this file (the format is obvious).

In addition to including the driver in the files file, it must also be added to the device
configuration tables. These are located in "/sys/vax/conf.c", or similar for machines other than the
VAX. If you don't understand what to add to this file, you should study an entry for an existing
driver. Remember that the position in the device table specifies the major device number. The block
major number is needed in the "devices.machine" file if the device is a disk.

With the configuration information in place, your configuration file appropriately modified, and
a system reconfigured and rebooted you should incorporate the shell commands needed to install the
special files in the file system to the file "/dev/MAKEDEV" or "/dev/MAKEDEV.local". This is dis
cussed in the document "Installing and Operating 4.3BSD on the VAX".

6.4. Autoconfiguration on the VAX

4.3BSD requires all device drivers to conform to a set of rules which allow the system to:
1) support multiple UNIBUS and MASSBUS adapters,

2) support system configuration at boot time, and

3) manage resources so as not to crash when devices request resources which are unavailable.

In addition, devices such as the RK07 which require everyone else to get off the UNIBUS when they
are running need cooperation from other DMA devices if they are to work. Since it is unlikely that
you will be writing a device driver for a MASSBUS device, this section is devoted exclusively to
describing the 110 system and autoconfiguration process as it applies to UNIBUS devices.

Each UNIBUS on a VAX has a set of resources:

• 496 map registers which are used to convert from the 18-bit UNIBUS addresses into the much
larger VAX memory address space.

• Some number of buffered data paths (3 on an 111750, 15 on an 111780, 0 on an 111730) which
are used by high speed devices to transfer data using fewer bus cycles.

Building Kernels with Config SMM:2-17

There is a structure of type struct uba_hd in the system per UNIBUS adapter used to manage these
resources. This structure also contains a linked list where devices waiting for resources to complete
DMA UNIBUS activity have requests waiting.

There are three central structures in the writing of drivers for UNIBUS controllers; devices
which do not do DMA 1/0 can often use only two of these structures. The structures are struct
uba_ct/r, the UNIBUS controller structure, struct uba_de11ice the UNIBUS device structure, and struct
uba_driver, the UNIBUS driver structure. The uba_ct/r and uba_device structures are in one-to-one
correspondence with the definitions of controllers and devices in the system configuration. Each
driver has a struct uba_dri11er structure specifying an internal interface to the rest of the system.

Thus a specification

controller scO at ubaO csr 0176700 vector upintr

would cause a struct uba_ctlr to be declared and initialized in the file ioconf c for the system
configured from this description. Similarly specifying

disk upO at scO drive 0

would declare a related uba_de11ice in the same file. The up.c driver which implements this driver
specifies in its declarations:

int upprobe(), upslave(), upattach(), updgo(), upintr();
struct uba_ctlr *upminfo[NSC];
struct uba_device *updinfo[NUP];
u_short upstd[] = { 0776700, 0774400, 0776300, 0 };
struct uba_driver scdriver =

{ upprobe, upslave, upattach, updgo, upstd, "up", updinfo, "sc", upminfo };

initializing the uba_driver structure. The driver will support some number of controllers named scO,
scl, etc, and some number of drives named upO, upl, etc. where the drives may be on any of the con
trollers (that is there is a single linear name space for devices, separate from the controllers.)

We now explain the fields in the various structures. It may help to look at a copy of
vaxuba!ubareg.h, vaxuba!ubavar.h and drivers such as up.c and dz.c while reading the descriptions of
the various structure fields.

uba_driver structure

One of these structures exists per driver. It is initialized in the driver and contains functions
used by the configuration program and by the UNIBUS resource routines. The fields of the structure
are:
ud_probe

A routine which, given a caddr _/ address as· argument, should attempt to determine that the
device is present at that address in virtual memory, and should cause an interrupt from the dev
ice. When probing controllers, two additional arguments are supplied: the controller index, and
a pointer to the uba_ctlr structure. Device probe routines receive a pointer to the uba_device
structure as second argument. Both of these structures are described below. Neither is normally
used, but devices that must record status or device type information from the probe routine may
require them.

The autoconfiguration routine attempts to verify that the specified address responds before cal
ling the probe routine. However, the device may not actually exist or may be of a different type, and
therefore the probe routine should use delays (via the DELA Y(n) macro which delays for n
microseconds) rather than waiting for specific events to occur. The routine must not declare its argu
ment as a register parameter, but must declare

register int br, cvec;

as local variables. At boot time the system takes special measures that these variables are "value
result" parameters. The br is the IPL of the device when it interrupts, and the cvec is the interrupt

SMM:2-18 Building Kernels with Config

vector address on the UNIBUS. These registers are actually filled in in the interrupt handler when an
interrupt occurs.

As an example, here is the up.c probe routine:

upprobe(reg)
caddr_t reg;

register int br, cvec;

#ifdef lint
br = O; cvec = br; br = cvec; upintr(O);

#endif
((struct updevice *)reg)->upcsl = UP _IEjUP _RDY;
DELAY(IO);
((struct updevice *)reg)->upcsl = O;
return (sizeof (struct updevice));

The definitions for lint serve to indicate to it that the br and cvec variables are value-result. The
call to the interrupt routine satisfies lint that the interrupt handler is used. The cod here enable
interrupts on the device and write the ready bit UP _RDY. The 10 microsecond delay insures
that the interrupt enable will not be canceled before the interrupt can be posted. The return of
"sizeof (struct updevice)" here indicates that the probe routine is satisfied that the device is
present (the value returned is not currently used, but future plans dictate that you should return
the amount of space in the device's register bank). A probe routine may use the function
"badaddr" to see if certain other addresses are accessible on the UNIBUS (without generating a
machine check), or look at the contents of locations where certain registers should be. If the
registers contents are not acceptable or the addresses don't respond, the probe routine can
return 0 and the device will not be considered to be there.

One other thing to note is that the action of different V AXen when illegal addresses are accessed
on the UNIBUS may differ. Some of the machines may generate machine checks and some may
cause UNIBUS errors. Such considerations are handled by the configuration program and the
driver writer need not be concerned with them.

It is also possible to write a very simple probe routine for a one-of-a-kind device if probing is
difficult or impossible. Such a routine would include statements of the form:

br = Oxl5;
cvec = 0200;

for instance, to declare that the device ran at UNIBUS br5 and interrupted through vector 0200
on the UNIBUS.

ud_slave
This routine is called with a uba_device structure (yet to be described) and the address of the
device controller. It should determine whether a particular slave device of a controller is
present, returning I if it is and 0 if it is not. As an example here is the slave routine for up.c.

Building Kernels with Config

upslave(ui, reg)
struct uba_device *ui;
caddr_t reg;

register struct updevice *upaddr = (struct updevice *)reg;

upaddr->upcsl = O; I* conservative */
upaddr->upcs2 = ui->ui_slave;
if (upaddr->upcs2 & UPCS2_NED) {

upaddr->upcsl = UP _DCLR I UP _GO;
return (O);

)
return(!);

SMM:2-19

Here the code fetches the slave (disk unit) number from the ui_slave field of the uba_device
structure, and sees if the controller responds that that is a non-existent driver (NED). If the
drive is not present, a drive clear is issued to clean the state of the controller, and 0 is returned
indicating that the slave is not there. Otherwise a I is returned.

ud_attach
The attach routine is called after the autoconfigure code and the driver concur that a peripheral
exists attached to a controller. This is the routine where internal driver state about the peri
pheral can be initialized. Here is the attach routine from the up.c driver:

upattach(ui)
register struct uba_device *ui;

register struct updevice *upaddr;

if (upwstart = = 0) {

}

timeout(upwatch, (caddr_t)O, hz);
upwstart++;

if(ui->ui_dk >= 0)
dk_mspw[ui->ui_dk] = .0000020345;

upip[ui->ui_ctlr][ui->ui_slave] = ui;
up_softc[ui->ui_ctlr].sc_ndrive++;
ui->ui_type = upmaptype(ui);

The attach routine here performs a number of functions. The first time any drive is attached to
the controller it starts the timeout routine which watches the disk drives to make sure that inter
rupts aren't lost. It also initializes, for devices which have been assigned iostat numbers (when
ui->ui_dk >= 0), the transfer rate of the device in the array dk_mspw, the fraction of a second
it takes to transfer 16 bit word. It then initializes an inverting pointer in the array upip which
will be used later to determine, for a particular up controller and slave number, the correspond
ing uba_device. It increments the count of the number of devices on this controller, so that
search commands can later be avoided if the count is exactly I. It then attempts to decipher the
actual type of drive attached to the controller in a controller-specific way. On the EMULEX
SC-21 it may ask for the number of tracks on the device and use this to decide what the drive
type is. The drive type is used to setup disk partition mapping tables and other device specific
information.

ud_dgo
This is the routine which is called by the UNIBUS resource management routines when an
operation is ready to be started (because the required resources have been allocated). The

SMM:2-20

routine in up.c is:

updgo(um)
struct uba_ctlr *um;

Building Kernels with Config

register struct updevice *upaddr = (struct updevice *)um->um_addr;

upaddr->upba = um->um_ubinfo;
upaddr->upcsl = um->um_cmdJ ((um->um_ubinfo>>8)&0x300);

This routine uses the field um_ubinfo of the uba_ctlr structure which is where the UNIBUS rou
tines store the UNIBUS map allocation information. In particular, the low 18 bits of this word
give the UNIBUS address assigned to the transfer. The assignment to upba in the go routine
places the low 16 bits of the UNIBUS address in the disk UNIBUS address register. The next
assignment places the disk operation command and the extended (high 2) address bits in the
device control-status register, starting the I/O operation. The field um_cmd was initialized with
the command to be stuffed here in the driver code itself before the call to the ubago routine
which eventually resulted in the call to updgo.

ud_addr
This is a zero-terminated list of the conventional addresses for the device control registers in
UNIBUS space. This information is used by the system to look for instances of the device sup
ported by the driver. When the system probes for the device it first checks for a control-status
register located at the address indicated in the configuration file (if supplied), then uses the list
of conventional addresses pointed to be ud_addr.

ud_dname
This is the name of a device supported by this controller; thus the disks on a SC-21 controller
are called upO, upl, etc. That is because this field contains up.

ud_dinfo
This is an array of back pointers to the uba_device structures for each device attached to the
controller. Each driver defines a set of controllers and a set of devices. The device address
space is always one-dimensional, so that the presence of extra controllers may be masked away
(e.g. by pattern matching) to take advantage of hardware redundancy. This field is filled in by
the configuration program, and used by the driver.

ud_mname
The name of a controller, e.g. sc for the up.c driver. The first SC-21 is called scO, etc.

ud_minfo
The backpointer array to the structures for the controllers.

ud_xclu
If non-zero specifies that the controller requires exclusive use of the UNIBUS when it is run
ning. This is non-zero currently only for the RK611 controller for the RK07 disks to map
around a hardware problem. It could also be used if 6250bpi tape drives are to be used on the
UNIBUS to insure that they get the bandwidth that they need (basically the whole bus).

ud_ubamem
This is an optional entry point to the driver to configure UNIBUS memory associated with a
device. If this field in the driver structure is null, it is ignored. Otherwise, it is called before
beginning to probe for devices when configuration of a UNIBUS is begun. The driver must
probe for the existence of its memory, and is then responsible for allocating the map registers
corresponding to the device memory addresses so that the registers are not used for other pur
poses. The ud_ubamem returns 0 on success and -1 on failure. A return value of 1 indicates
that the memory exists, and that there is no further configuration required for the device.

Building Kernels with Config SMM:2-21

uba_ctlr structure

One of these structures exists per-controller. The fields link the controller to its UNIBUS
adapter and contain the state information about the devices on the controller. The fields are:

um_ driver
A pointer to the struct uba_device for this driver, which has fields as defined above.

um_ctlr
The controller number for this controller, e.g. the 0 in scO.

um_ alive
Set to I if the controller is considered alive; currently, always set for any structure encountered
during normal operation. That is, the driver will have a handle on a uba_ctlr structure only if
the configuration routines set this field to a 1 and entered it into the driver tables.

um_intr
The interrupt vector routines for this device. These are generated by config and this field is ini
tialized in the ioconfc file.

um_hd
A back-pointer to the UNIBUS adapter to which this controller is attached.

um_cmd
A place for the driver to store the command which is to be given to the device before calling the
routine ubago with the devices uba_device structure. This information is then retrieved when
the device go routine is called and stuffed in the device control status register to start the 1/0
operation.

um_ubinfo
Information about the UNIBUS resources allocated to the device. This is normally only used in
device driver go routine (as updgo above) and occasionally in exceptional condition handling
such as ECC correction.

urn_ tab
This buffer structure is a place where the driver hangs the device structures which are ready to
transfer. Each driver allocates a buf structure for each device (e.g. updtab in the up.c driver) for
this purpose. You can think of this structure as a device-control-block, and the buf structures
linked to it as the unit-control-blocks. The code for dealing with this structure is stylized; see
the rk.c or up.c driver for the details. If the ubago routine is to be used, the structure attached
to this buf structure must be:

• A chain of buf structures for each waiting device on this controller.

• On each waiting buf structure another buf structure which is the one containing the parame
ters of the 1/0 operation.

uba_device structure

One of these structures exist for each device attached to a UNIBUS controller. Devices which
are not attached to controllers or which perform no buffered data path OMA 1/0 may have only a
device structure. Thus dz and dh devices have only uba_device structures. The fields are:

ui_driver
A pointer to the struct uba_driver structure for this device type.

ui_unit
The unit number of this device, e.g. 0 in upO, or I in dhl.

ui_ctlr
The number of the. controller on which this device is attached, or -1 if this device is not on a
controller.

ui_ubanum
The number of the UNIBUS on which this device is attached.

SMM:2-22 Building Kernels with Config

ui_slave
The slave number of this device on the controller which it is attached to, or -1 if the device is
not a slave. Thus a disk which was unit 2 on a SC-21 would have ui_slave 2; it might or might
not be up2, that depends on the system configuration specification.

ui_intr
The interrupt vector entries for this device, copied into the UNIBUS interrupt vector at boot
time. The values of these fields are filled in by config to small code segments which it generates
in the file ubglue.s.

ui_addr
The control-status register address of this device.

ui_dk
The iostat number assigned to this device. Numbers are assigned to disks only, and are small
nonnegative integers which index the various dk_ * arrays in <sysldk.h>.

ui_flags
The optional "flags xxx" parameter from the configuration specification was copied to this field,
to be interpreted by the driver. If flags was not specified, then this field will contain a 0.

ui_alive
The device is really there. Presently set to 1 when a device is determined to be alive, and left I.

ui_type
The device type, to be used by the driver internally.

ui_physaddr
The physical memory address _of the device control-status register. This is typically used in the
device dump routines.

ui_mi
A struct uba_ctlr pointer to the controller (if any) on which this device resides.

ui_hd
A struct uba_hd pointer to the UNIBUS on which this device resides.

UNIBUS resource management routines

UNIBUS drivers are supported by a collection of utility routines which manage UNIBUS
resources. If a driver attempts to bypass the UNIBUS routines, other drivers may not operate prop
erly. The major routines are: uballoc to allocate UNIBUS resources, ubarelse to release previously
allocated resources, and ubago to initiate DMA. When allocating UNIBUS resources you may
request that you
NEEDBDP

if you need a buffered data path,
HAVEBDP

if you already have a buffered data path and just want new mapping registers (and access to the
UNIBUS),

CANTWAIT
if you are calling (potentially) from interrupt level, and

NEED16
if the device uses only 16 address bits, and thus requires map registers from the first 64K of
UNIBUS address space.

If the presentation here does not answer all the questions you may have, consult the file
/sys/vaxuba/uba.c

Building Kernels with Config SMM:2-23

Autoconfiguration requirements
Basically all you have to do is write a ud_probe and a ud_attach routine for the controller. It

suffices to have a ud_probe routine which just initializes br and cvec, and a ud_attach routine which
does nothing. Making the device fully configurable requires, of course, more work, but is worth it if
you expect the device to be in common usage and want to share it with others.

If you managed to create all the needed hooks, then make sure you include the necessary header
files; the ones included by vaxubalct.c are nearly minimal. Order is important here, don't be
surprised at undefined structure complaints if you order the includes incorrectly. Finally, if you get
the device configured in, you can try bootstrapping and see if configuration messages print out about
your device. It is a good idea to have some messages in the probe routine so that you can see that it
is being called and what is going on. If it is not called, then you probably have the control-status
register address wrong in the system configuration. The autoconfigure code notices that the device
doesn't exist in this case, and the probe will never be called.

Assuming that your probe routine works and you manage to generate an interrupt, then you are
basically back to where you would have been under older versions of UNIX. Just be sure to use the
ui_ctlr field of the uba_device structures to address the device; compiling in funny constants will make
your driver only work on the CPU type you have (780, 750, or 730).

Other bad things that might happen while you are setting up the configuration stuff:

o You get "nexus zero vector" errors from the system. This will happen if you cause a device to
interrupt, but take away the interrupt enable so fast that the UNIBUS adapter cancels the inter
rupt and confuses the processor. The best thing to do it to put a modest delay in the probe code
between the instructions which should cause and interrupt and the clearing of the interrupt enable.
(You should clear interrupt enable before you leave the probe routine so the device doesn't inter
rupt more and confuse the system while it is configuring other devices.)

o The device refuses to interrupt or interrupts with a "zero vector". This typically indicates a prob
lem with the hardware or, for devices which emulate other devices, that the emulation is incom
plete. Devices may fail to present interrupt vectors because they have configuration switches set
wrong, or because they are being accessed in inappropriate ways. Incomplete emulation can cause
"maintenance mode" features to not work properly, and these features are often needed to force
device interrupts.

SMM:2-24 Building Kernels with Config

. APPENDIX A. CONFIGURATION FILE GRAMMAR

The following grammar is a compressed form of the actual yacc(l) grammar used by config to
parse configuration files. Terminal symbols are shown all in upper case, literals are emboldened;
optional clauses are enclosed in brackets, "[" and "]"; zero or more instantiations are denoted with
"*"

Configuration ::= [Spec ; l*

Spec::= Config_spec
I Device_spec
I trace
I /*lambda•/

I* configuration specifications */

Config_spec :: = machine ID
I cpu ID
I options Opt_list
I ident ID
I System_spec
I timezone [- 1 NUMBER [dst [NUMBER 11
I timezone [- l FPNUMBER [dst [NUMBER 11
I maxusers NUMBER

1• system configuration specifications */

System_spec :: = config ID System_parameter [System_parameter l*

System_parameter ::= swap_spec I root_spec I dump_spec I arg_spec

swap_spec ::= swap [on 1 swap_dev [and swap_dev l*

swap_dev ::= dev_spec [size NUMBER 1

root_spec ::= root [on 1 dev_spec

tlump_spec :: = dumps [on 1 dev _spec

arg_spec ::= args [on 1 dev_spec

dev_spec ::= dev_name I major_minor

major_minor ::= major NUMBER minor NUMBER

dev_name ::= ID [NUMBER [ID 11

I* option specifications *I

Opt_Iist ::= Option [,Option l*

Option::= ID [= Opt_ value 1

Opt_ value::= ID I NUMBER

Building Kernels with Config

Mkopt_list :: = Mkoption [, Mkoption]*

Mkoption ::= JD= Opt_value

I* device specifications */

Device_spec ::=device Dev_name Dev_info Int_spec
master Dev_name Dev_info
disk Dev _name Dev _info
tape Dev _name Dev _info
controller Dev _name Dev _info [lnt_spec]
pseudo-device Dev [NUMBER]

Dev_name ::= Dev NUMBER

Dev::= uba I mba I ID

Dev _info :: = Con_info [Info]*

Con_info ::= at Dev NUMBER
I at nexus NUMBER

Info::= csr NUMBER
I drive NUMBER
I slave NUMBER
I flags NUMBER

Jnt_spec :: = vector ID [ID]*
I priority NUMBER

Lexical Conventions

The terminal symbols are loosely defined as:

ID
One or more alphabetics, either upper or lower case, and underscore, "_".

NUMBER

SMM:2-25

Approximately the C language specification for an integer number. That is, a leading "Ox" indi
cates a hexadecimal value, a leading "O" indicates an octal value, otherwise the number is
expected to be a decimal value. Hexadecimal numbers may use either upper or lower case
alphabetics.

FPNUMBER
A floating point number without exponent. That is a number of the form "nnn.ddd", where the
fractional component is optional.

In special instances a question mark, "?", can be substituted for a "NUMBER" token. This is used
to effect wildcarding in device interconnection specifications.

Comments in configuration files are indicated by a "#" character at the beginning of the line; the
remainder of the line is discarded.

A specification is interpreted as a continuation of the previous line if the first character of the line is
tab.

SMM:2-26 Building Kernels with Config

APPENDIX B. RULES FOR DEFAULTING SYSTEM DEVICES

When config processes a "config" rule which does not fully specify the location of the root file
system, paging area(s), device for system dumps, and device for argument list processing it applies a
set of rules to define those values left unspecified. The following list of rules are used in defaulting
system devices.

1) If a root device is not specified, the swap specification must indicate a "generic" system is to be
built.

2) If the root device does not specify a unit number, it defaults to unit 0.

3) If the root device does not include a partition specification, it defaults to the "a" partition.

4) If no swap area is specified, it defaults to the "b" partition of the root device.

5) If no device is specified for processing argument lists, the first swap partition is selected.

6) If no device is chosen for system dumps, the first swap partition is selected (see below to find out
where dumps are placed within the partition).

The following table summarizes the default partitions selected when a device specification is
incomplete, e.g. "hpO".

Type Partition
root "a"
swap "b"
args "b"
dumps "b"

Multiple swap/paging areas

When multiple swap partitions are specified, the system treats the first specified as a "primary"
swap area which is always used. The remaining partitions are then interleaved into the paging system
at the time a swapon(2) system call is made. This is normally done at boot time with a call to
swapon(S) from the /etc/re file.

System dumps

System dumps are automatically taken after a system crash, provided the device driver for the
"dumps" device supports this. The dump contains the contents of memory, but not the swap areas.
Normally the dump device is a disk in which case the information is copied to a location at the back
of the partition. The dump is placed in the back of the partition because the primary swap and dump
device are commonly the same device and this allows the system to be rebooted without immediately
overwriting the saved information. When a dump has occurred, the system variable dumpsize is set
to a non-zero value indicating the size (in bytes) of the dump. The savecore(S) program then copies
the information from the dump partition to a file in a "crash" directory and also makes a copy of the
system which was running at the time of the crash (usually "/vmunix"). The offset to the system
dump is defined in the system variable dumplo (a sector offset from the front of the dump partition).
The savecore program operates by reading the contents of dumplo, dumpdev, and dumpmagic from
/dev/kmem, then comparing the value of dumpmagic read from /dev/kmem to that located in
corresponding location in the dump area of the dump partition. If a match is found, savecore
assumes a crash occurred and reads dumpsize from the dump area of the dump partition. This value
is then used in copying the system dump. Refer to savecore (8) for more information about its opera
tion.

The value dumplo is calculated to be

dumpdev-size - memsize

where dumpdev-size is the size of the disk partition where system dumps are to be placed, and mem
size is the size of physical memory. If the disk partition is not large enough to hoid a full dump,
dumplo is set to 0 (the start of the partition).

Building Kernels with Config SMM:2-27

APPENDIX C. SAMPLE CONFIGURATION FILES

The following configuration files are developed in section 5; they are included here for complete
ness.

ANSEL VAX (a picture perfect machine)

machine vax
cpu VAX780
timezone 8 dst
ident ANSEL
max users 40

con fig vmunix root on hpO
config hpvmunix root on hpO swap on hpO and hp2
config genvmunix swap generic

controller rnbaO at nexus?
disk hpO at mba? disk ?
disk bpi at mba? disk ?
controller mbal at nexus?
disk hp2 at mba? disk ?
disk hp3 at mba? disk?
controller ubaO at nexus?
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drive 0
tape tel at tmO drive I
device dhO at uba? csr 0160020 vector dhrint dhxint
device dmO at uba? csr 0170500 vector dmintr
device dhl at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dhxint

SMM:2-28

UCBV AX - Gateway to the world

machine vax
cpu "VAX780"
cpu "VAX750"
ident UCBVAX
timezone 8 dst
max users 32
options INET
options NS

con fig vmunix
con fig upvmunix
con fig hkvmunix

controller mbaO
controller ubaO
disk hpO
disk hp!
controller scO
disk upO
disk up!
controller hkO
disk rkO
disk rkl
pseudo-device pty
pseudo-device loop
pseudo-device imp
device accO
pseudo-device ether
device ecO
device ilO

Building Kernels with Config

root on hp swap on hp and rkO and rk I
root on up
root on hk swap on rkO and rkl

at nexus?
at nexus?
at mba? drive 0
at mba? drive I
at uba? csr 0176700 vector upintr
at scO drive 0
at scO drive I
at uba? csr 0177440 vector rkintr
at hkO drive 0
at hkO drive I

at uba? csr 0167600 vector accrint accxint

at uba? csr 0164330 vector ecrint eccollide ecxint
at uba? csr 0164000 vector ilrint ilcint

Building Kernels with Config SMM:2-29

APPENDIX D. VAX KERNEL DAT A STRUCTURE SIZING RULES

Certain system data structures are sized at compile time according to the maximum number of
simultaneous users expected, while others are calculated at boot time based on the physical resources
present, e.g. memory. This appendix lists both sets of rules and also includes some hints on changing
built-in limitations on certain data structures.

Compile time rules

The file /syslconflparam.c contains the definitions of almost all data structures sized at compile
time. This file is copied into the directory of each configured system to allow configuration
dependent rules and values to be maintained. (Each copy normally depends on the copy in /sys/conf,
and global modifications cause the file to be recopied unless the makefile is modified.) The rules
implied by its contents are summarized below (here MAXUSERS refers to the value defined in the
configuration file in the "maxusers" rule). Most limits are computed at compile time and stored in
global variables for use by other modules; they may generally be patched in the system binary image
before rebooting to test new values.

nproc

ntext

The maximum number of processes which may be running at any time. It is referred to in other
calculations as NPROC and is defined to be

20 + 8 * MAXUSERS

The maximum number of active shared text segments. The constant is intended to allow for
network servers and common commands that remain in the table. It is defined as

36 + MAXUSERS.

ninode

nfile

The maximum number of files in the file system which may be active at any time. This includes
files in use by users, as well as directory files being read or written by the system and files associ
ated with bound sockets in the UNIX IPC domain. It is defined as

(NPROC + 16 + MAXUSERS) + 32

The number of "file table" structures. One file table structure is used for each open, unshared,
file descriptor. Multiple file descriptors may reference a single file table entry when they are
created through a dup call, or as the result of a fork. This is defined to be

16 * (NPROC + 16 + MAXUSERS) I 10 + 32

ncallout

nclist

The number of "callout" structures. One callout structure is used per internal system event han
dled with a timeout. Timeouts are used for terminal delays, watchdog routines in device
drivers, protocol timeout processing, etc. This is defined as

16 + NPROC

The number of "c-list" structures. C-list structures are used in terminal l/O, and currently each
holds 60 characters. Their number is defined as

60 + 12 * MAXUSERS

nmbclusters
The maximum number of pages which may be allocated by the network. This is defined as 256
(a quarter megabyte of memory) in /sys/h/mbuf.h. In practice, the network rarely uses this

SMM:2-30 Building Kernels with Config

much memory. It starts off by allocating 8 kilobytes of memory, then requesting more as
required. This value represents an upper bound.

nquota
The number of "quota" structures allocated. Quota structures are present only when disc quo
tas are configured in the system. One quota structure is kept per user. This is defined to be

(MAXUSERS * 9) I 7 + 3

ndquot
The number of "dquot" structures allocated. Dquot structures are present only when disc quo
tas are configured in the system. One dquot structure is required per user, per active file system
quota. That is, when a user manipulates a file on a file system on which quotas are enabled, the
information regarding the user's quotas on that file system must be in-core. This information is
cached, so that not all information must be present in-core all the time. This is defined as

NINODE + (MAXUSERS * NMOUNT) I 4

where NMOUNT is the maximum number of mountable file systems.

In addition to the above values, the system page tables (used to map virtual memory in the kernel's
address space) are sized at compile time by the SYSPTSIZE definition in the file /sys/vax/vmparam.h.
This is defined to be

20 + MAXUSERS

pages of page tables. Its definition affects the size of many data structures allocated at boot time
because it constrains the amount of virtual memory which may be addressed by the running system.
This is often the limiting factor in the size of the buffer cache, in which case a message is printed
when the system configures at boot time.

Run-time calculations

The most important data structures sized at run-time are those used in the buffer cache. Alloca
tion is done by allocating physical memory (and system virtual memory) immediately after tlie system
has been started up; look in the file /sys/vax/machdep.c. The amount of physical memory which may
be allocated to the buffer cache is constrained by the size of the system page tables, among other
things. While the system may calculate a large amount of memory to be allocated to the buffer cache,
if the system page table is too small to map this physical memory into the virtual address space of the
system, only as much as can be mapped will be used.

The buffer cache is comprised of a number of "buffer headers" and a pool of pages attached to
these headers. Buffer headers are divided into two categories: those used for swapping and paging,
and those used for normal file I/O. The system tries to allocate I 0% of the first two megabytes and
5% of the remaining available physical memory for the buffer cache (where available does not count
that space occupied by the system's text and data segments). If this results in fewer than 16 pages of
memory allocated, then 16 pages are allocated. This value is kept in the initialized variable bufpages
so that it may be patched in the binary image (to allow tuning without recompiling the system), or the
default may be overridden with a configuration-file option. For example, the option options BUF
PAGES= "3200" causes 3200 pages (3.2M bytes) to be used by the buffer cache. A sufficient number
of file I/O buffer headers are then allocated to allow each to hold 2 pages each. Each buffer maps SK
bytes. If the number of buffer pages is larger than can be mapped by the buffer headers, the number
of pages is reduced. The number of buffer headers allocated is stored in the global variable nbuf,
which may be patched before the system is booted. The system option options NBUF="lOOO" forces
the allocation of I 000 buffer headers. Half as many swap I/O buffer headers as file I/O buffers are
allocated, but no more than 256.

Building Kernels with Config SMM:2-31

System size limitations
As distributed, the sum of the virtual sizes of the core-resident processes is limited to 256M

bytes. The size of the text segment of a single process is currently limited to 6M bytes. It may be
increased to no greater than the data segment size limit (see below) by redefining MAXTSIZ. This
may be done with a configuration file option, e.g. options MAXTSIZ= "(10*1024*1024)" to set the
limit to 10 million bytes. Other per-process limits discussed here may be changed with similar
options with names given in parentheses. Soft, user-changeable limits are set to 512K bytes for stack
(DFLSSIZ) and 6M bytes for the data segment (DFLDSIZ) by default; these may be increased up to
the hard limit with the setrlimit (2) system call. The data and stack segment size hard limits are set
by a system configuration option to one of l 7M, 33M or 64M bytes. One of these sizes is chosen
based on the definition of MAXDSIZ; with no option, the limit is l 7M bytes; with an option options
MAXDSIZ= "(32*1024*1024)" (or any value between l 7M and 33M), the limit is increased to 33M
bytes, and values larger than 33M result in a limit of 64M bytes. You must be careful in doing this
that you have adequate paging space. As normally configured, the system has 16M or 32M bytes per
paging area, depending on disk size. The best way to get more space is to provide multiple, thereby
interleaved, paging areas. Increasing the virtual memory limits results in interleaving of swap space
in larger sections (from SOOK bytes to lM or 2M bytes).

By default, the virtual memory system allocates enough memory for system page tables mapping
user page tables to allow 256 megabytes of simultaneous active virtual memory. That is, the sum of
the virtual memory sizes of all (completely- or partially-) resident processes can not exceed this limit.
If the limit is exceeded, some process(es) must be swapped out. To increase the amount of resident
virtual space possible, you can alter the constant USRPTSIZE (in /sys/vax/vmparam.h). Each page of
system page tables allows 8 megabytes of user virtual memory.

Because the file system block numbers are stored in page table pg_blkno entries, the maximum
size of a file system is limited to 2'24 1024 byte blocks. Thus no file system can be larger than 8 giga
bytes.

The number of mountable file systems is set at 20 by the definition of NMOUNT in
/sys/h/param.h. This should be sufficient; if not, the value can be increased up to 255. If you have
many disks, it makes sense to make some of them single file systems, and the paging areas don't count
in this total.

The limit to the number of files that a process may have open simultaneously is set to 64. This
limit is set by the NOFILE definition in /sys/h/param.h. It may be increased arbitrarily, with the
caveat that the user structure expands by 5 bytes for each file, and thus UPAGES
(/sys/vax/machparam.h) must be increased accordingly.

The amount of physical memory is currently limited to 64 Mb by the size of the index fields in
the core-map (/sys/h/cmap.h). The limit may be increased by following instructions in that file to
enlarge those fields.

SMM:2-32 Building Kernels with Config

APPENDIX E. NETWORK CONFIGURATION OPTIONS

The network support in the kernel is self-configuring according to the protocol support options
(INET and NS) and the network hardware discovered during autoconfiguration. There are several
changes that may be made to customize network behavior due to local restrictions. Within the Inter
net protocol routines, the following options set in the system configuration file are supported:

GATEWAY
The machine is to be used as a gateway. This option currently makes only minor changes.
First, the size of the network routing hash table is increased. Secondly, machines that have only
a single hardware network interface will not forward IP packets; without this option, they will
also refrain from sending any error indication to the source of unforwardable packets. Gate
ways with only a single interface are assumed to have missing or broken interfaces, and will
return ICMP unreachable errors to hosts sending them packets to be forwarded.

TCP _COMPAT_42
This option forces the system to limit its initial TCP sequence numbers to positive numbers.
Without this option, 4.3BSD systems may have problems with TCP connections to 4.2BSD sys
tems that connect but never transfer data. The problem is a bug in the 4.2BSD TCP; this
option should be used during the period of conversion to 4.3BSD.

IPFORWARDING
Normally, 4.3BSD machines with multiple network interfaces will forward IP packets received
that should be resent to another host. If the line "options IPFORWARDING=''O"" is in the
system configuration file, IP packet forwarding will be disabled.

IPSENDREDIRECTS
When forwarding IP packets, 4.3BSD IP will note when a packet is forwarded using the same
interface on which it arrived. When this is noted, if the source machine is on the directly
attached network, an ICMP redirect is sent to the source host. If the packet was forwarded
using a route to a host or to a subnet, a host redirect is sent, otherwise a network redirect is
sent. The generation of redirects may be inhibited with the configuration option "options
IPSENDREDIRECTS= "O" ."

SUBNETSARELOCAL
TCP calculates a maximum segment size to use for each connection, and sends no datagrams
larger than that size. This size will be no larger than that supported on the outgoing interface.
Furthermore, if the destination is not on the local network, the size will be no larger than 576
bytes. For this test, other subnets of a directly-connected subnetted network are considered to
be local unless the line "options SUBNETSARELOCAL= "O"" is used in the system
configuration file.

COMPAT_42
This option, intended as a catchall for 4.2BSD compatibility options, has only a single function
thus far. It disables the checking of UDP input packet checksums. As the calculation of UDP
packet checksums was incorrect in 4.2BSD, this option allows a 4.3BSD system to receive UDP
packets from a 4.2BSD system.

The following options are supported by the Xerox NS protocols:

NSIP
This option allows NS IDP datagrams to be encapsulated in Internet IP packets for transmission
to a collaborating NSIP host. This may be used to pass IDP packets through IP-only link layer
networks. See nsip(4P) for details.

THREEWAYSHAKE
The NS Sequenced Packet Protocol does not require a three-way handshake before considering a
connection to be in the established state. (A three-way handshake consists of a connection
request, an acknowledgement· of the request along with a symmetrical opening indication, and
then an acknowledgement of the reciprocal opening packet.) This option forces a three-way
handshake before data may be transmitted on Sequenced Packet sockets.

Using ADB to Debug the UNIXt Kernel

Samuel J. Leffler and William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California_ 94 720

ABSTRACT

This document describes the facilities found in the 4.3BSD version of the
VAX* UNIX debugger adb which may be used to debug the UNIX kernel. It
discusses how standard adb commands may be used in examining the kernel and
introduces the basics necessary for users to write adb command scripts which can
augment the standard adb command set. The examination techniques described
here may be applied both to running systems and the post-mortem dumps automati
cally created by the savecore(8) program after a system crash. The reader is expected
to have at least a passing familiarity with the debugger command language.

Revised June 3, 1986

1. Introduction

Modifications have been made to the standard VAX UNIX debugger adb to simplify examina
tion of post-mortem dumps automatically generated following a system crash. These changes may
also be used when examining UNIX in its normal operation. This document serves as an introduc
tion to the use of these facilities, and should not be construed as a description of how to debug the
kernel.

I.I. Invocation

When examining post-mortem dumps of the UNIX kernel the -k option should be used, e.g.

% adb -k vmunix.? vmcore.?

where the appropriate version of the saved operating system image and core dump are supplied in
place of "?". This flag causes adb to partially simulate the VAX virtual memory hardware when
accessing the core file. In addition the internal state maintained by the debugger is initialized from
data structures maintained by the kernel explicitly for debuggingt. A running kernel may be exam
ined in a similar fashion,

% adb -k /vmunix /dev/mem

tUNIX is a Trademark of Bell Laboratories.
*DEC and VAX are trademarks of Digital Equipment Corporation. * If the -k flag is not used when invoking adb the user must explicitly calculate virtual addresses. With the
-k option adb interprets page tables to automatically perform virtual to physical address translation.

SMM:3-2 Using ADB to Debug the Kernel

1.2. Establishing Context

During initialization adb attempts to establish the context of the "currently active process" by
examining the value of the kernel variable masterpaddr. This variable contains the virtual address of
the process context block of the last process which was set executing by the Swtch routine. Master
paddr normally provides sufficient information to locate the current stack frame (via the stack
pointers found in the context block). By locating the process context block for the process adb may
then perform virtual to physical address translation using that process's in-core page tables.

When examining post-mortem dumps locating the most recent stack frame of the last currently
active process can be nontrivial. This is due to the different ways in which state may be saved after a
nonrecoverable error. Crashes may or may not be "clean" (i.e. the top of the interrupt stack contains
a pointer to the process's kernel mode stack pointer and program counter); an "unclean" crash will
occur, for instance, if the interrupt stack overflows. When adb is invoked on a post-mortem crash
dump it tries to automatically establish the proper stack frame. This is done by first checking the
stack pointer normally saved in the restart parameter block at rpb+ lfc (or scb-4). If this value does
not point to a valid stack frame, adb searches the interrupt stack looking for a valid stack frame.
Should this also fail adb then searches the kernel stack located in the user structure associated with
the last executing process. If adb is able to locate a valid stack frame using this procedure the com
mand

Sc

will generate a stack trace from the last point at which the kernel was executing on behalf of the user
process all the way to the top of the user process's stack (e.g. to the main routine in the user process).
Should adb be unable to locate a valid stack frame it prints a message and the current state is left
undefined. When a stack trace of a particular process (other than that which was currently executing)
is desired, an alternate method, described in §2.4, should be used.

Additional information may be obtained from the kernel stack. Discussion of that subject is
postponed until command scripts have been introduced; see §2.2.

2. Command Scripts

2.1. Extending the Formatting Facilities

Once the process context has been established, the complete adb command set is available for
interpreting data structures. In addition, a number of adb scripts have been created to simplify the
structured printing of commonly referenced kernel data structures. The scripts normally reside in the
directory lusrllibladb, and are invoked with the "$<" operator. (A later table lists the standard
scripts distributed with the system.)

As an example, consider the following listing which contains a dump of a faulty process's state
(our typing is shown emboldened).

% adb -k vmunix.175 vmcore.175
sbr 5868 slr 2770
pObr SaOO pOLr 236 p1br 6600 p1Lr fffO
panic: dup biodone
$c
_boot() from _boot+f3
_boot(O,O> from -panic+3a
_panicC800413d0> from _biodone+17
_biodoneC800791e8) from _rxpurge+23
_rxpurgeC80044754> from _rxstart+Sa
_rxstartC80044754> from 80031df8
_rxintrCO> from _xrxintr0+11
_Xrxintr0C45b01,3aaf4) from 457f
_syssizeC3aaf4) from 365a

Using ADB to Debug the Kernel SMM:3-3

_syssizeC> from 19a8
? O from 2ff3
_Syssize(4,7fffe834> from 9cf3
_syssizeC4,7fffe834,7fffe848> from 37
?()

u$<u
_u:
_u: ksp usp

7fff ff94 7fffe24c
rO r1 r2 r3
12e000 80044e60 800661bc
r4 r5 r6 r7
13 4 80065114 16544
r8 r9 r10 r11

15fd1

aO 80066de8 15a08 80000000
ap fp pc psl
7fffffe8 7fffffa4 80029ed2 180000
pObr pOLr p1br p1Lr
802f5a00 4000236 7f af6600 1ffff0
szpt cmap2 sswap
6 94000e59 0

_u+80: procp arO comm
80066de8 80000000 ccomA@A@A@A@A@A@A@A@A@A@A@A@

_u+9c: argO arg1 arg2
46bfc 3aefc 0

_u+bc: uap qsave
7fffec9c 7fffffa4 8002a11a

_u+f8: rv1 rv2 error eosys
0 3aafa 0 03

7fffed02: uid ruid gid rgid
2025 2025 10 10

7fffed0a: groups
10 0 2 3 11 79 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1

7fffed2c: tsize dsize ssize
aa 18c 6

7fffeff0: odsize assize outime
52 40 0

7fffeffc: signal
0 0 0 0
0 0 0 0
7a10 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
sigmask
0 4000 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

SMM:3-4 Using ADB to Debug the Kernel

0 0 0 0
0 0 0 0
0 0 0 0

7ffff0fc: onstack sigintr oldmask
0 0 80002

7ffff108: code sigstack onsigstack
0 0 0

7ffff 114: of i le
80063e40 80063e58 80064ce0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

pofile
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

7ffff254: lastfi le
2

7ffff258: cdir rdir ttyp ttyd cmask
80060f 80 0 80056be8 106 02

ru
7f ff f 268: utime stime

1 15f90 cf850
7ffff278: maxrss ixrss idrss isrss

432 28250 79590 0
7ffff288: minflt majflt nswap

64 7 0
7ffff294: inblock oublock msgsnd msgrcv

12 19 0 0
7ffff2a4: nsignals nvcsw nivcsw

0 12 22
7ffff2b0: cru
7ffff2b0: utime stime

0 0 0 0
7ffff2c0: maxrss ixrss idrss isrss

Using ADB to Debug the Kernel SMM:3-5

0 0 0 0
7ffff2d0: minfl t majfl t nswap

0 0 0
7ffff2dc: inblock oublock msgsnd msgrcv

0 0 0 0
7ffff2ec: nsignals nvcsw nivcsw

0 0 0
7ffff2f8: itimers

0 0 0 0
0 0 0 0
0 0 0 0

7ffff328: xxx
0 0 0

7ffff334: start acflag
1985 Nov 1 21:27:18 0

7ffff340: pr_base pr-size pr_off scale
0 0 0 0

7ffff350: Limits
7fffffff 7fffffff 7fffffff 7fffffff
600000 1000000 80000 1000000
7fffffff 7fffffff 123000 123000

7ffff380: quota qflags
80074a18 0

7ffff388: nc_off nc_inum nc_dev nc_time
284 2 8 1985 Nov 1 21:27:19

7ffff398: nLdirp nameiop nLerr nLpdir nLbp
7fffe8a8 41 0 200 800606c4

7ffff3a8: ni_base nLcount nL iovec nLiovcnt
0 92 7ffff3a8 1

7ffff3b8: nLoffset nLsegflg nLresid
284 0 0

7ffff3c4: ni_dent.d_inum rec Len namlen name
19 72 9 ctm110435A@cA@A@A@

80066de8$<proc
80066de8: Link rl ink next prev

80044e50 0 80067dec 8004e198

80066df8: addr upri pri cpu stat time
802f65d8 0150 0150 0330 03 04

80066e01: nice slp cursig sig
0 0 0 0

80066e08: mask ignore catch
0 0 80

80066e14: flag uid pgrp pid ppid
1008001 2025 11019 11045 11043

80066e20: xstat ru poip szpt tsize
0 0 0 6 aa

80066e30: dsize ssize rssize maxrss
18c 6 13c 918

80066e40: swrss swaddr wchan textp
0 6d8 0 8006b400

80066e50: pObr xl ink ticks
802f5a00 0 0

80066e5c: %cpu ndx idhash pp tr

SMM:3-6 Using ADB to Debug the Kernel

+O.OOOOOOOOOOOOOOOOe+OO
80066e68: cptr osptr

80067dec 0 0
80066e74: real itimer

3ea4
ysptr

106a

0 0 0 0
80066e84: quota 0
8006b400$<text
8006b400: forw back

1f30 0
daddr
0 0 0 0
0 0 0 0
0 0 2c2 aa

ptdaddr size caddr iptr
80066de8 8005f4a0 74 10001

rssize swrss count ccount flag
22 0 0100 031 0 0 0

2e

slptim poip

The cause of the crash was a "panic" (see the stack trace) due to an inconsistency recognized inside the
biodone routine. The majority of the dump was done to illustrate the use of two command scripts used
to format kernel data structures. The "u" script, invoked with the command "u$<u", is a lengthy series
of commands which pretty-prints the user structure. Likewise, "proc" and ''text" are scripts used to for
mat the obvious data structures. Let's quickly examine the "text" script (the script has been broken
into a number of lines for convenience here; in actuality it is a single line of text) .

. /"forw"16t"back"n2Xn\
11daddr"n12Xn\
"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn\
"rssize"8t"swrss"8t"count"8t"ccount"8t"f lag"8t"slptim"8t"poip"n2x4bx++n

The first line displays the pointers associated with the doubly linked list used in managing text seg
ments. The second line produces the list of disk block addresses associated with a swapped out text
segment. The "n" format forces a new-line character, with 12 hexadecimal integers printed immediately
after. Likewise, the remaining two lines of the command format the remainder of the text structure.
The expression "16t" causes adb to tab to the next column which is a multiple of 16. The last two plus
operators are present to round "." to the end of the text structure. This allows the user to reinvoke the
format on consecutive text structures without having to be concerned about proper alignment of".".

The majority of the scripts provided are of this nature. When possible, the formatting scripts
print a data structure with a single format to allow subsequent reuse when interrogating arrays of
structures. That is, the previous script could have been written

./"forw"16t"back"n2Xn
+/"daddr"n12Xn
+/"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn
+/"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2x4bx++

but then reuse of the format would have invoked only the last line of the format.

2.2. Locating stack frames

It is frequently desirable to locate stack frames in order to examine local and register variables.
In particular, frames created by a trap include saved values of all registers and the trap context, and
all registers are saved upon a panic as well. Two scripts are provided for tracing stack frames. The
first is capable of tracing through multiple frames, printing the information common to each. The
second prints all of the information available in the stack frame after a trap. The following example

Using ADB to Debug the Kernel

illustrates their use.

% adb -k vmunix.188 vmcore.188
sbr 7068 slr 2770
pObr SaOO pOlr 74 p1br SeOO p1lr fffO
panic: Segmentation fault
$c
_boot() from 80029ddb
_bootC0,0> from _panic+3a
_panicC800447a8> from _trap+ac
_trap() from _Xtransflt+1d
_Xtransflt() from _Xsyscall+c
_XsyscallC7fffe7ac,1b6) from 514
?C7fffe7ac) from 4ac
?O from 196
?C2,7fffe810,7fffe81c) from 3d
?()

1000$s
*(rpb+ lfc),4$<frame
7ffffe74: handler

0 0
ap fp
7ffffec0

7ffffe9c: handler
0 0
ap fp
7fffff14

7ffffed0: handler
0 0
ap fp
7fffff70

7fffff2c: handler
0 0
ap fp
7fffffe8

<1$<trapframe
7fffff2c: handler

0 0
ap f p

psr
2101
pc

7ffffe9c

psr
2f OO
pc

7ffffed0

psr
2fff
pc

7fffff2c

psr
2fff
pc

7fffffa4

psr
2fff

mask

80029ddb

mask

80012de2

mask

8002a408

mask

80001031

mask

7fffffe8
rO
0

pc
7fffffa4

r1 r2
80046988

80001031
r3

80046a00
r4 rs
800728b0
r8 r9

r6
80054158

r10
80041b80 8

r7
80063a60
r11

7fffe578

_boot+103

-panic+3a

_trap+ac

_Xtransflt+1d

_xtransflt+1d

800728db

80066ee0

80000000
7fffff70: nargs sp type code

0 7fffe560 8 2a50b6ca
pc Cpc) ps
80001651 _swtch+2b d80008

80001651?i

SMM:3-7

SMM:3-8

_swtch+2b: remque *0Cr1>,r2
80046988/X
_qs:
_qs: 2a50b6ca

Using ADB to Debug the Kernel

The example shows a panic due to a segmentation fault. The command "1000$s" expands the
range over which addresses will be displayed symbolically. The back trace indicates that the trap
occurred four frames from the end; as the frame pointer is stored at rpb 1 fc, the command
"*(rpb+lfc),4$<frame" prints the last four stack frames; "*(rpb+lfc)" is the initial frame pointer,
and the count determines the number of frames to print. Having located the stack frame after the
trap (the frame with a return PC of XtransOt+ 1 d), that frame may be displayed again using the script
for a trap frame. The previous frame pointer was left in register 1 by the previous script, and thus
"<1$<trapframe" displays the state at the time of the trap. The PC at the time of the fault is shown
on the last line from the script, with the faulting address listed as the code in the previous line. The
instruction that caused the fault can then be examined. In this example, the instruction was a
remque that used a displacement addressing mode indirecting through RI. The location to which the
register points is the first of the process run queues, and its first element can be seen to be corrupted;
its forward pointer, 2a50b6ca, is invalid and is the address that caused the fault.

2.3. Traversing Data Structures
The adb command language can be used to traverse complex data structures. One data struc

ture, a Jinked list, occurs quite often in the kernel. By using adb variables and the normal expression
operators it is a simple matter to construct a script which chains down a list printing each element
along the way.

For instance, the queue of processes awaiting timer events, the callout queue, is printed with the
following two scripts:

callout:
calltodo/"time"16t"arg"16t"func"12+
*+$<callout.next

callout.next :
./Opp
*+>l
,#<l$<
<l$<callout.next

The first line of the script callout starts the traversal at the global symbol ca/ltodo and prints a set of
headings. It then skips the empty portion of the structure used as the head of the queue. The second
line then invokes the script callout.next moving"." to the top of the queue("*+" performs the indirec
tion through the link entry of the structure at the head of the queue).

callout.next prints values for each column, then performs a conditional test on the link to the
next entry. This test is performed as follows,

*+>I Place the value of the "link" in the adb variable"<!".
,#<!$< If the value stored in "<!" is non-zero, then the current input stream (i.e. the script

callout.next) is terminated. Otherwise, the expression "#<!" will be zero, and the "$<" will
be ignored. That is, the combination of the logical negation operator "#", the adb variable
"<!", and the "$<" operator creates a statement of the form,

if C ! L ink> exit;
The remaining line of callout.next simply reapplies the script on the next element in the
linked list.

A sample ca/101.!t dump is shown below.

Using ADB to Debug the Kernel SMM:3-9

% adb -k /vmunix /dev/mem
sbr 8001f864 slr d9c
pObr 800efa00 pOlr Se p1br 7f8efe00 p1l r 1ffff2
$<callout
_calltodo:
_calltodo: time arg func
8004ecfc: 26 0 _dz scan
8004ed0c: 8 0 _upwatch
8004ed1c: 0 0 _ip_timeo
8004ed5c: 0 0 _tcp_timeo
8004ed6c: 0 0 _rkwatch
8004ecfc: 52 0 _dzscan
8004ed2c: 68 _syssize+70 _tmtimer
8004ed3c: 2920 0 _memenable

2.4. Supplying Parameters

If one is clever, a command script may use the address and count portions of an adb command
as parameters. An example of this is the setproc script used to switch to the context of a process with
a known process-id;

Ot99S<setproc

The body of setproc is

.>4
*nproc>l
*proc>f
S<setproc.nxt

while setproc.nxt is

C*C<f+Ot52>>&0xffff="pid "D
,#CC*C<f+Ot52>&0xffff >-<4>S<setproc.done
<L-1>L
<f+Ot164>f
,#<LS<
S<setproc.nxt

The process-id, supplied as the parameter, is stored in the variable "<4", the number of processes is
placed in "<I", and the base of the array of process structures in "<r'. setproc.nxt then performs a
linear search through the array until it matches the process-id requested, or until it runs out of pro
cess structures to check. The script setproc.done simply establishes the context of the process, then
exits.

2.S. Standard Scripts

The following table summarizes the command scripts supplied with 4.3BSD; these scripts are
found in the directory /usrllibladb.

Standard Command Scripts
Name Use Description
buf add/$<buf format block 1/0 buffer
callout $<callout print timer queue
clist add/$<clist format character 1/0 linked list
dino add/$<dino format directory inode
dir add/$<dir format directory entry
dirblk add/$<dirblk scan directory entries

SMM:3-IO Using ADB to Debug the Kernel

Standard Command Scripts
Name Use Description
dmap addr$<dmap format a disk-map structure
dmcstats $<dmcstats dump statistics for dmcO
file addr$<file format open file structure
filsys addr$<filsys format in-core super block structure
findinode inum$<findinode find an inode in the in-core inode table
findproc pid$<findproc find process by process id
frame addr,count$ <frame trace count stack frames starting at addr
hosts addr$<hosts format IMP host table entries
hosttable addr$<hosttable show all IMP host table entries
ifaddr addr$<ifaddr format a network interface address structure
ifnet addr$<ifnet format network interface structure
ifuba addr$<ifuba format UNIBUS resource structure
imp addr$<imp format an IMP interface state structure
in_ifaddr addr$<in_ifaddr format internet network addresses for an interface
inode addr$<inode format in-core inode structure
inpcb addr$<inpcb format internet protocol control block
iovec addr$ <iovec format a list of iov structures
ipreass addr$ <ipreass format an ip reassembly queue
ma ct addr$<mact show "active" list of mbufs
mba_device addr$ <mba_device format an MBA device structure
mba_hd addr$<mba_hd format an MBA queue head
mbstat $<mbstat show mbuf statistics
mbuf addr$<mbuf show "next" list of mbufs
mbufchain addr$<mbufchain display a chain of mbufs queued at a socket
mbufs addr$<mbufs show a number of mbufs
mount addr$<mount format mount structure
nameidata addr$<nameidata format a namei parameter block
packetchain addr$<packetchain format a chain of packets
pcb addr$<pcb format process context block
proc addr$<proc format process table entry
protosw addr$<protosw format a protocol switch entry
quota addr$<quota format a disk quota structure
rawcb addr$<rawcb format a raw protocol control block
rtentry addr$<rtentry format a routing table entry
rusage addr$<rusage format a resource usage structure
setproc pid$<setproc switch process context to pid
socket addr$<socket format socket structure
stat addr$<stat format a stat structure
tcpcb addr$<tcpcb format TCP control block
tcpip addr$<tcpip format a TCP/IP packet header
tcpreass addr$<tcpreass show a TCP reassembly queue
text addr$<text format text structure
trace all $<traceall show stack trace for all processes
trapframe addr$<trapframe format a stack frame generated by a trap
tty addr$<tty format tty structure
u addr$<u format user vector, including pcb
ubadev addr$<ubadev format a UBA device structure
ubahd addr$<ubahd format a UNIBUS header structure
unpcb addr$<unpcb format a UNIX domain protocol control block

Using ADB to Debug the Kernel SMM:3-l 1

3. Summary

The extensions made to adb provide basic support for debugging the UNIX kernel by eliminat
ing the need for a user to carry out virtual to physical address translation and by automatically locat
ing the stack frame after a system crash. A collection of scripts have been written to format the
major kernel data structures and aid in switching between process contexts. These facilities have
been implemented with only minimal changes to the debugger. While the symbolic debugger dbx
provides facilities similar to those described here it is not yet a viable alternative to adb because dbx
takes too long to read in the symbol table. As soon as this problem is corrected there will be only
limited need for the facilities provided by adb.

Disc Quotas in a UNIX* Environment

Robert Elz

Department of Computer Science
University of Melbourne,

Parkville,
Victoria,
Australia.

ABSTRACT

In most computing environments, disc space is not infinite. The disc
quota system provides a mechanism to control usage of disc space, on an indi
vidual basis.

Quotas may be set for each individual user, on any, or all filesystems.

The quota system will warn users when they exceed their allotted limit,
but allow some extra space for current work. Repeatedly remaining over
quota at logout, will cause a fatal over quota condition eventually.

The quota system is an optional part of VMUNIX that may be included
when the system is configured.

I. Users' view of disc quotas
To most users, disc quotas will either be of no concern, or a fact of life that cannot be

avoided. The quota(!) command will provide information on any disc quotas that may have
been imposed upon a user.

There are two individual possible quotas that may be imposed, usually if one is, both
will be. A limit can be set on the amount of space a user can occupy, and there may be a
limit on the number of files (inodes) he can own.

Quota provides information on the quotas that have been set by the system administra
tors, in each of these areas, and current usage.

There are four numbers for each limit, the current usage, soft limit (quota), hard limit,
and number of remaining login warnings. The soft limit is the number of IK blocks (or files)
that the user is expected to remain below. Each time the user's usage goes past this limit, he
will be warned. The hard limit cannot be exceeded. If a user's usage reaches this number,
further requests for space (or attempts to create a file) will fail with an EDQUOT error, and
the first time this occurs, a message will be written to the user's terminal. Only one message
will be output, until space occupied is reduced below the limit, and reaches it again, in order
to avoid continual noise from those programs that ignore write errors.

Whenever a user logs in with a usage greater than his soft limit, he will be warned, and
his login warning count decremented. When he logs in under quota, the counter is reset to its
maximum value (which is a system configuration parameter, that is typically 3). If the warn
ing count should ever reach zero (caused by three successive logins over quota), the particular
limit that has been exceeded will be treated as if the hard limit has been reached, and no

• UNIX is a trademark of Bell Laboratories.

SMM:4-2 Disc Quotas in a UNIX Environment

more resources will be allocated to the user. The only way to reset this condition is to reduce
usage below quota, then log in again.

1.1. Surviving when quota limit is reached
In. most cases, the only way to recover from over quota conditions, is to abort whatever

activity was in progress on the filesystem that has reached its limit, remove sufficient files to
bring the limit back below quota, and retry the failed program.

However, if you are in the editor and a write fails because of an over quota situation,
that is not a suitable course of action, as it is most likely that initially attempting to write the
file will have truncated its previous contents, so should the editor be aborted without correctly
writing the file not only will the recent changes be lost, but possibly much, or even all, of the
data that previously existed.

There are several possible safe exits for a user caught in this situation. He may use the
editor ! shell escape command to examine his file space, and remove surplus files. Alterna
tively, using csh, he may suspend the editor, remove some files, then resume it. A third possi
bility, is to write the file to some other filesystem (perhaps to a file on /tmp) where the user's
quota has not been exceeded. Then after rectifying the quota situation, the file can be moved
back to the filesystem it belongs on.

2. Administering the quota system
To set up and establish the disc quota system, there are several steps necessary to be

performed by the system administrator.
First, the system must be configured to include the disc quota sub-system. This is done

by including the line:

options QUOTA

in the system configuration file, then running config(8) followed by a system configuration·.

Second, a decision as to what filesystems need to have quotas applied needs to be made.
Usually, only filesystems that house users' home directories, or other user files, will need to be
subjected to the quota system, though it may also prove useful to also include /usr. If possi
ble, /tmp should usually be free of quotas.

Having decided on which filesystems quotas need to be set upon, the administrator
should then allocate the available space amongst the competing needs. How this should be
done is (way) beyond the scope of this document.

Then, the edquota(8) command can be used to actually set the limits desired upon each
user. Where a number of users are to be given the same quotas (a common occurrence) the -p
switch to edquota will allow this to be easily accomplished.

Once the quotas are set, ready to operate, the system must be informed to enforce quo
tas on the desired filesystems. This is accomplished with the quotaon (8) command. Quotaon
will either enable quotas for a particular filesystem, or with the -a switch, will enable quotas
for each filesystem indicated in /etc/fstab as using quotas. See fstab(5) for details. Most sites
using the quota system, will include the line

/etc/quotaon -a

in /etc/re.local.

Should quotas need to be disabled, the quotaofl{S) command will do that, however,
should the filesystem be about to be dismounted, the umount (8) command will disable quotas
immediately before the filesystem is unmounted. This is actually an effect of the umount (2)
system call, and it guarantees that the qu9ta system will not be disabled if the umount would

• See also the document "Building 4.2BSD UNIX Systems with Config".

Disc Quotas in a UNIX Environment SMM:4-3

fail because the filesystem is not idle.
Periodically (certainly after each reboot, and when quotas are first enabled for a filesys

tem), the records retained in the quota file should be checked for consistency with the actual
number of blocks and files allocated to the user. The quotachk(8) command can be used to
accomplish this. It is not necessary to dismount the filesystem, or disable the quota system to
run this command, though on active filesystems inaccurate results may occur. This does no
real harm in most cases, another run of quotachk when the filesystem is idle will certainly
correct any inaccuracy.

The super-user may use the quota(!) command to examine the usage and quotas of any
user, and the repquota (8) command may be used to check tht; usages and limits for all users
on a filesystem.

3. Some implementation detail.
Disc quota usage and information is stored in a file on the filesystem that the quotas are

to be applied to. Conventionally, this file is quotas in the root of the filesystem. While this
name is not known to the system in any way, several of the user level utilities "know" it, and
choosing any other name would not be wise.

The data in the file comprises an array of structures, indexed by uid, one structure for
each user on the system (whether the user has a quota on this filesystem or not). If the uid
space is sparse, then the file may have holes in it, which would be lost by copying, so it is best
to avoid this.

The system is informed of the existence of the quota file by the setquota (2) system call.
It then reads the quota entries for each user currently active, then for any files open owned by
users who are not currently active. Each subsequent open of a file on the filesystem, will be
accompanied by a pairing with its quota information. In most cases this information will be
retained in core, either because the user who owns the file is running some process, because
other files are open owned by the same user, or because some file (perhaps this one) was
recently accessed. In memory, the quota information is kept hashed by user-id and filesystem,
and retained in an LRU chain so recently released data can be easily reclaimed. Information
about those users whose last process has recently terminated is also retained in this way.

Each time a block is accessed or released, and each time an inode is allocated or freed,
the quota system gets told about it, and in the case of allocations, gets the opportunity to
object.

Measurements have shown that the quota code uses a very small percentage of the sys
tem cpu time consumed in writing a new block to disc.

4. Acknowledgments
The current disc quota system is loosely based upon a very early scheme implemented at

the University of New South Wales, and Sydney University in the mid 70's. That system
implemented a single combined limit for both files and blocks on all filesystems.

A later system was implemented at the University of Melbourne by the author, but was
not kept highly accurately, eg: chown's (etc) did not affect quotas, nor did i/o to a file other
than one owned by the instigator.

The current system has been running (with only minor modifications) since January 82
at Melbourne. It is actually just a small part of a much broader resource control scheme,
which is capable of controlling almost anything that is usually uncontrolled in unix. The rest
of this is, as yet, still in a state where it is far too subject to change to be considered for distri
bution.

For the 4.2BSD release, much work has been done to clean up and sanely incorporate
the quota code by Sam Leffler and Kirk McKusick at The University of California at Berke
ley.

Fsck - The UNIXt File System Check Program

Marshall Kirk McKusick

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document reflects the use of fsck with the 4.2BSD and 4.3BSD file
system organization. This is a revision of the original paper written by T. J.
Kowalski.

File System Check Program (fsck) is an interactive file system check and
repair program. Fsck uses the redundant structural information in the UNIX
file system to perform several consistency checks. If an inconsistency is
detected, it is reported to the operator, who may elect to fix or ignore each
inconsistency. These inconsistencies result from the permanent interruption
of the file system updates, which are performed every time a file is modified.
Unless there has been a hardware failure, fsck is able to repair corrupted file
systems using procedures based upon the order in which UNIX honors these
file system update requests.

The purpose of this document is to describe the normal updating of the
file system, to discuss the possible causes of file system corruption, and to
present the corrective actions implemented by fsck. Both the program and the
interaction between the program and the operator are described.

Revised July 16, 1985

tUNIX is a trademark of Bell Laboratories.
This work was done under grants from the National Science Foundation under grant MCSS0-05144, and
the Defense Advance Research Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval
Electronic System Command under Contract No. N00039-82-C•0235.

SMM:5-2 The UNIX File System Check Program

TABLE OF CONTENTS

1. Introduction

2. Overview of the file system
2.1. Superblock
2.2. Summary Information
2.3. Cylinder groups
2.4. Fragments
2. 5. Updates to the file system

3. Fixing corrupted file systems
3.1. Detecting and correcting corruption
3.2. Super block checking
3.3. Free block checking
3.4. Checking the inode state
3.5. Inode links
3.6. Inode data size
3.7. Checking the data associated with an inode
3.8. File system connectivity

Acknowledgements

References

4. Appendix A
4.1. Conventions
4.2. Initialization
4.3. Phase 1 - Check Blocks and Sizes
4.4. Phase I b - Rescan for more Dups
4.5. Phase 2 - Check Pathnames
4.6. Phase 3 - Check Connectivity
4.7. Phase 4 - Check Reference Counts
4.8. Phase 5 - Check Cy! groups
4.9. Cleanup

The UNIX File System Check Program SMM:5-3

1. Introduction
This document reflects the use of feck with the 4.2BSD and 4.JBSD file system organiza

tion. This is a revision of the original paper written by T. J. Kowalski.
When a UNIX operating system is brought up, a consistency check of the file systems

should always be performed. This precautionary measure helps to insure a reliable environ
ment for file storage on disk. If an inconsistency is discovered, corrective action must be
taken. Fsck runs in two modes. Normally it is run non-interactively by the system after a
normal boot. When running in this mode, it will only make changes to the file system that
are known to always be correct. If an unexpected inconsistency is found fsck will exit with a
non-zero exit status, leaving the system running single-user. Typically the operator then runs
feck interactively. When running in this mode, each problem is listed followed by a suggested
corrective action. The operator must decide whether or not the suggested correction should
be made.

The purpose of this memo is to dispel the mystique surrounding file system inconsisten
cies. It first describes the updating of the file system (the calm before the storm) and then
describes file system corruption (the storm). Finally, the set of deterministic corrective
actions used by feck (the Coast Guard to the rescue) is presented.

2. Overview of the file system
The file system is discussed in detail in [Mckusick84]; this section gives a brief overview.

2.1. Superblock
A file system is described by its super-block. The super-block is built when the file sys

tem is created (newfs(8)) and never changes. The super-block contains the basic parameters
of the file system, such as the number of data blocks it contains and a count of the maximum
number of files. Because the super-block contains critical data, newfs replicates it to protect
against catastrophic loss. The default super block always resides at a fixed offset from the
beginning of the file system's disk partition. The redundant super blocks are not referenced
unless a head crash or other hard disk error causes the default super-block to be unusable.
The redundant blocks are sprinkled throughout the disk partition.

Within the file system are files. Certain files are distinguished as directories and contain
collections of pointers to files that may themselves be directories. Every file has a descriptor
associated with it called an inode. The inode contains information describing ownership of
the file, time stamps indicating modification and access times for the file, and an array of
indices pointing to the data blocks for the file. In this section, we assume that the first 12
blocks of the file are directly referenced by values stored in the inode structure itselft. The
inode structure may also contain references to indirect blocks containing further data block
indices. In a file system with a 4096 byte block size, a singly indirect block contains I 024
further block addresses, a doubly indirect block contains I 024 addresses of further single
indirect blocks, and a triply indirect block contains 1024 addresses of further doubly indirect
blocks (the triple indirect block is never needed in practice).

In order to create files with up to 2t32 bytes, using only two levels of indirection, the
minimum size of a file system block is 4096 bytes. The size of file system blocks can be any
power of two greater than or equal to 4096. The block size of the file system is maintained in
the super-block, so it is possible for file systems of different block sizes to be accessible simul
taneously on the same system. The block size must be decided when newfs creates the file
system; the block size cannot be subsequently changed without rebuilding the file system.

tThe actual number may vary from system to system, but is usually in the range 5-13.

SMM:5-4 The UNIX File System Check Program

2.2. Summary information
Associated with the super block is non replicated summary information . The summary

information changes as the file system is modified. The summary information contains the
number of blocks, fragments, inodes and directories in the file system.

2.3. Cylinder groups
The file system partitions the disk into one or more areas called cylinder groups. A

cylinder group is comprised of one or more consecutive cylinders on a disk. Each cylinder
group includes inode slots for files, a block map describing available blocks in the cylinder
group, and summary information describing the usage of data blocks within the cylinder
group. A fixed number of inodes is allocated for each cylinder group when the file system is
created. The current policy is to allocate one inode for each 2048 bytes of disk space; this is
expected to be far more inodes than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be
on the top platter. A single hardware failure that destroyed the top platter could cause the
loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping infor
mation begins at a floating offset from the beginning of the cylinder group. The offset for the
i+ I st cylinder group is about one track further from the beginning of the cylinder group than
it was for the ith cylinder group. In this way, the redundant information spirals down into
the pack; any single track, cylinder, or platter can be lost without losing all copies of the
super-blocks. Except for the first cylinder group, the space between the beginning of the
cylinder group and the beginning of the cylinder group information stores data.

2.4. Fragments

To avoid waste in storing small files, the file system space allocator divides a single file
system block into one or more fragments. The fragmentation of the file system is specified
when the file system is created; each file system block can be optionally broken into 2, 4, or 8
addressable fragments. The lower bound on the size of these fragments is constrained by the
disk sector size; typically 512 bytes is the lower bound on fragment size. The block map asso
ciated with each cylinder group records the space availability at the fragment level. Aligned
fragments are examined to determine block availability.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file
is represented by zero or more 4096 byte blocks of data, and possibly a single fragmented
block. If a file system block must be fragmented to obtain space for a small amount of data,
the remainder of the block is made available for allocation to other files. For example, con
sider an 11000 byte file stored on a 4096/1024 byte file system. This file uses two full size
blocks and a 3072 byte fragment. If no fragments with at least 3072 bytes are available when
the file is created, a full size block is split yielding the necessary 3072 byte fragment and an
unused 1024 byte fragment. This remaining fragment can be allocated to another file, as
needed.

2.5. Updates to the file system
Every working day hundreds of files are created, modified, and removed. Every time a

file is modified, the operating system performs a series of file system updates. These updates,
when written on disk, yield a consistent file system. The file system stages all modifications of
critical information; modification can either be completed or cleanly backed out after a crash.
Knowing the information that is first written to the file system, deterministic procedures can
be developed to repair a corrupted file system. To understand this process, the order that the
update requests were being honored must first be understood.

When a user program does an operation to change the file system, such as a write, the
data to be written is copied into an internal in-core buffer in the kernel. Normally, the disk

The UNIX File System Check Program SMM:5-5

update is handled asynchronously; the user process is allowed to proceed even though the
data has not yet been written to the disk. The data, along with the inode information
reflecting the change, is eventually written out to disk. The real disk write may not happen
until long after the write system call has returned. Thus at any given time, the file system, as
it resides on the disk, lags the state of the file system represented by the in-core information.

The disk information is updated to reflect the in-core information when the buffer is
required for another use, when a sync(2) is done (at 30 second intervals) by letc/update(8), or
by manual operator intervention with the sync(8) command. If the system is halted without
writing out the in-core information, the file system on the disk will be in an inconsistent state.

If all updates are done asynchronously, several serious inconsistencies can arise. One
inconsistency is that a block may be claimed by two inodes. Such an inconsistency can occur
when the system is halted before the pointer to the block in the old inode has been cleared in
the copy of the old inode on the disk, and after the pointer to the block in the new inode has
been written out to the copy of the new inode on the disk. Here, there is no deterministic
method for deciding which inode should really claim the block. A similar problem can arise
with a multiply claimed inode.

The problem with asynchronous inode updates can be avoided by doing all inode deallo
cations synchronously. Consequently, inodes and indirect blocks are written to the disk syn
chronously (i.e. the process blocks until the information is really written to disk) when they
are being deallocated. Similarly inodes are kept consistent by synchronously deleting, adding,
or changing directory entries.

3. Fixing corrupted file systems
A file system can become corrupted in several ways. The most common of these ways

are improper shutdown procedures and hardware failures.

File systems may become corrupted during an unclean halt. This happens when proper
shutdown procedures are not observed, physically write-protecting a mounted file system, or a
mounted file system is taken off-line. The most common operator procedural failure is forget
ting to sync the system before halting the CPU.

File systems may become further corrupted if proper startup procedures are not
observed, e.g., not checking a file system for inconsistencies, and not repairing inconsistencies.
Allowing a corrupted file system to be used (and, thus, to be modified further) can be disas
trous.

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on
a disk pack, or as blatant as a non-functional disk-controller.

3.1. Detecting and correcting corruption
Normally feck is run non-interactively. In this mode it will only fix corruptions that are

expected to occur from an unclean halt. These actions are a proper subset of the actions that
feck will take when it is running interactively. Throughout this paper we assume that feck is
being run interactively, and all possible errors can be encountered. When an inconsistency is
discovered in this mode, fsck reports the inconsistency for the operator to chose a corrective
action.

A quiescent; file system may be checked for structural integrity by performing con
sistency checks on the redundant data intrinsic to a file system. The redundant data is either
read from the file system, or computed from other known values. The file system must be in
a quiescent state when fsck is run, since fsck is a multi-pass program.

In the following sections, we discuss methods to discover inconsistencies and possible
corrective actions for the cylinder group blocks, the inodes, the indirect blocks, and the data

* I.e., unmounted and not being written on.

SMM:5-6 The UNIX File System Check Program

blocks containing directory entries.

3.2. Super-block checking

The most commonly corrupted item in a file system is the summary information associ
ated with the super-block. The summary information is prone to corruption because it is
modified with every change to the file system's blocks or inodes, and is usually corrupted after
an unclean halt.

The super-block is checked for inconsistencies involving file-system size, number of
inodes, free-block count, and the free-inode count. The file-system size must be larger than
the number of blocks used by the super-block and the number of blocks used by the list of
inodes. The file-system size and layout information are the most critical pieces of informa
tion for ftck. While there is no way to actually check these sizes, since they are statically
determined by newft, ftck can check that these sizes are within reasonable bounds. All other
file system checks require that these sizes be correct. If ftck detects corruption in the static
parameters of the default super-block, ftck requests the operator to specify the location of an
alternate super-block.

3.3. Free block checking

Fsck checks that all the blocks marked as free in the cylinder group block maps are not
claimed by any files. When all the blocks have been initially accounted for, ftck checks that
the number of free blocks plus the number of blocks claimed by the inodes equals the total
number of blocks in the file system.

If anything is wrong with the block allocation maps, ftck will rebuild them, based on the
list it has computed of allocated blocks.

The summary information associated with the super-block counts the total number of
free blocks within the file system. Fsck compares this count to the number of free blocks it
found within the file system. If the two counts do not agree, then ftck replaces the incorrect
count in the summary information by the actual free-block count.

The summary information counts the total number of free inodes within the file system.
Fsck compares this count to the number of free inodes it found within the file system. If the
two counts do not agree, then ftck replaces the incorrect count in the summary information
by the actual free-inode count.

3.4. Checking the inode state

An individual inode is not as likely to be corrupted as the allocation information. How
ever, because of the great number of active inodes, a few of the inodes are usually corrupted.

The list of inodes in the file system is checked sequentially starting with inode 2 (inode
0 marks unused inodes; inode I is saved for future generations) and progressing through the
last inode in the file system. The state of each inode is checked for inconsistencies involving
format and type, link count, duplicate blocks, bad blocks, and inode size.

Each inode contains a mode word. This mode word describes the type and state of the
inode. Inodes must be one of six types: regular inode, directory inode, symbolic link inode,
special block inode, special character inode, or socket inode. !nodes may be found in one of
three allocation states: unallocated, allocated, and neither unallocated nor allocated. This last
state suggests an incorrectly formated inode. An inode can get in this state if bad data is writ
ten into the inode list. The only possible corrective action is for f5ck is to clear the inode.

3.5. lnode links

Each inode counts the total number of directory entries linked to the inode. Fsck
verifies the link count of each inode by starting at the root of the file system, and descending
through the directory structure. The actual link count for each inode is calculated during the

The UNIX File System Check Program SMM:5-7

descent.
If the stored link count is non-zero and the actual link count is zero, then no directory

entry appears for the inode. If this happens, fsck will place the disconnected file in the
lost+found directory. If the stored and actual link counts are non-zero and unequal, a direc
tory entry may have been added or removed without the inode being updated. If this hap
pens, ftck replaces the incorrect stored link count by the actual link count.

Each inode contains a list, or pointers to lists (indirect blocks), of all the blocks claimed
by the inode. Since indirect blocks are owned by an inode, inconsistencies in indirect blocks
directly affect the inode that owns it.

Fsck compares each block number claimed by an inode against a list of already allo
cated blocks. If another inode already claims a block number, then the block number is
added to a list of duplicate blocks. Otherwise, the list of allocated blocks is updated to
include the block number.

If there are any duplicate blocks, ftck will perform a partial second pass over the inode
list to find the inode of the duplicated block. The second pass is needed, since without exa
mining the files associated with these inodes for correct content, not enough information is
available to determine which inode is corrupted and should be cleared. If this condition does
arise (only hardware failure will cause it), then the inode with the earliest modify time is usu
ally incorrect, and should be cleared. If this happens, fsck prompts the operator to clear both
inodes. The operator must decide which one should be kept and which one should be
cleared.

Fsck checks the range of each block number claimed by an inode. If the block number
is lower than the first data block in the file system, or greater than the last data block, then
the block number is a bad block number. Many bad blocks in an inode are usually caused by
an indirect block that was not written to the file system, a condition which can only occur if
there has been a hardware failure. If an inode contains bad block numbers, fsck prompts the
operator to clear it.

3.6. !node data size

Each inode contains a count of the number of data blocks that it contains. The number
of actual data blocks is the sum of the allocated data blocks and the indirect blocks. Fsck
computes the actual number of data blocks and compares that block count against the actual
number of blocks the inode claims. If an inode contains an incorrect count fsck prompts the
operator to fix it.

Each inode contains a thirty-two bit size field. The size is the number of data bytes in
the file associated with the inode. The consistency of the byte size field is roughly checked by
computing from the size field the maximum number of blocks that should be associated with
the inode, and comparing that expected block count against the actual number of blocks the
inode claims.

3.7. Checking the data associated with an inode

An inode can directly or indirectly reference three kinds of data blocks. All referenced
blocks must be the same kind. The three types of data blocks are: plain data blocks, symbolic
link data blocks, and directory data blocks. Plain data blocks contain the information stored
in a file; symbolic link data blocks contain the path name stored in a link. Directory data
blocks contain directory entries. Fsck can only check the validity of directory data blocks.

Each directory data block is checked for several types of inconsistencies. These incon
sistencies include directory inode numbers pointing to unallocated inodes, directory inode
numbers that are greater than the number of inodes in the file system, incorrect directory
inode numbers for"." and" .. ", and directories that are not attached to the file system. If the
inode number in a directory data block references an unallocated inode, then ftck will remove
that directory entry. Again, this condition can only arise when there has been a hardware

SMM:5-8 The UNIX File System Check Program

failure.

If a directory entry inode number references outside the inode list, then feck will remove
that directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for "." must be the first entry in the directory data
block. The inode number for"." must reference itself; e.g., it must equal the inode number
for the directory data block. The directory inode number entry for " •• " must be the second
entry in the directory data block. Its value must equal the inode number f'lr the parent of the
directory entry (or the inode number of the directory data block if the directory is the root
directory). If the directory inode numbers are incorrect, feck will replace them with the
correct values. If there are multiple hard links to a directory, the first one encountered is con
sidered the real parent to which " .. " should point; feck recommends deletion for the subse
quently discovered names.

3.8. File system connectivity

Fsck checks the general connectivity of the file system. If directories are not linked into
the file system, then feck links the directory back into the file system in the lost+ found direc
tory. This condition only occurs when there has been a hardware failure.

Acknowledgements
I thank Bill Joy, Sam Leffler, Robert Elz and Dennis Ritchie for their suggestions and

help in implementing the new file system. Thanks also to Robert Henry for his editorial input
to get this document together. Finally we thank our sponsors, the National Science Founda
tion under grant MCS80-05 I 44, and the Defense Advance Research Projects Agency (DoD)
under Arpa Order No. 4031 monitored by Naval Electronic System Command under Con
tract No. N00039-82-C-0235. (Kirk Mckusick, July 1983)

I would like to thank Larry A. Wehr for advice that lead to the first version of feck and
Rick B. Brandt for adapting ftck to UNIX/TS. (T. Kowalski, July 1979)

References

[Dolotta78]

[Joy83)

[McKusick84)

[Ritchie78]

[Thompson78]

Dolotta, T. A., and Olsson, S. B. eds., UNIX User's Manual, Edition
1.1, January 1978.

Joy, W., Cooper, E., Fabry, R., Leffler, S., McKusick, M., and Mosher,
D. 4.2BSD System Manual, University of California at Berkeley, Com
puter Systems Research Group Technical Report #4, 1982.

McKusick, M., Joy, W., Leffler, S., and Fabry, R. A Fast File System
for UNIX, ACM Transactions on Computer Systems 2, 3. pp. 181-197,
August 1984.

Ritchie, D. M., and Thompson, K., The UNIX Time-Sharing System,
The Bell System Technical Journal 57, 6 (July-August 1978, Part 2), pp.
1905-29.

Thompson, K., UNIX Implementation, The Bell System Technical Jour
nal 57, 6 (July-August 1978, Part 2), pp. 1931-46.

The UNIX File System Check Program SMM:S-9

4. Appendix A - Fsck Error Conditions

4.1. Conventions
Fsck is a multi-pass file system check program. Each file system pass invokes a different

Phase of the fsck program. After the initial setup, fsck performs successive Phases over each
file system, checking blocks and sizes, path-names, connectivity, reference counts, and the
map of free blocks, (possibly rebuilding it), and performs some cleanup.

Normally fsck is run non-interactively to preen the file systems after an unclean halt. While
preen'ing a file system, it will only fix corruptions that are expected to occur from an unclean
halt. These actions are a proper subset of the actions that fsck will take when it is running
interactively. Throughout this appendix many errors have several options that the operator
can take. When an inconsistency is detected, fsck reports the error condition to the operator.
If a response is required, fsck prints a prompt message and waits for a response. When
preen'ing most errors are fatal. For those that are expected, the response taken is noted. This
appendix explains the meaning of each error condition, the possible responses, and the related
error conditions.

The error conditions are organized by the Phase of the fsck program in which they can occur.
The error conditions that may occur in more than one Phase will be discussed in initializa
tion.

4.2. Initialization

Before a file system check can be performed, certain tables have to be set up and certain
files opened. This section concerns itself with the opening of files and the initialization of
tables. This section lists error conditions resulting from command line options, memory
requests, opening of files, status of files, file system size checks, and creation of the scratch
file. All the initialization errors are fatal when the file system is being preen'ed.

C option?
C is not a legal option to fsck; legal options are -b, -y, -n, and -p. Fsck terminates on this
error condition. See the fsck(B) manual entry for further detail.

cannot alloc NNN bytes for blockmap
cannot alloc NNN bytes for freemap
cannot alloc NNN bytes for statemap
cannot alloc NNN bytes for lncntp
Fsck's request for memory for its virtual memory tables failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can't open checklist file: F
The file system checklist file F (usually letc/fstab) can not be opened for reading. Fsck ter
minates on this error condition. Check access modes of F.

Can't stat root
Fsck 's request for statistics about the root directory "/" failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can't stat F
Can't make sense out of name F
Fsck's request for statistics about the file system F failed. When running manually, it ignores
this file system and continues checking the next file system given. Check access modes of F.

SMM:5-JO The UNIX File System Check Program

Can't open F
Fsck's request attempt to open the file system F failed. When running manually, it ignores
this file system and continues checking the next file system given. Check access modes of F.

F: (NO WRITE)
Either the -n flag was specified or fsck's attempt to open the file system F for writing failed.
When running manually, all the diagnostics are printed out, but no modifications are
attempted to fix them.

file is not a block or character device; OK
You have givenfsck a regular file name by mistake. Check the type of the file specified.

Possible responses to the OK prompt are:

YES ignore this error condition.

NO ignore this file system and continues checking the next file system given.

UNDEFINED OPTIMIZATION IN SUPERBLOCK (SET TO DEFAULT)
The superblock optimization parameter is neither OPT_ TIME nor OPT _SPACE.

Possible responses to the SET TO DEFAULT prompt are:

YES The superblock is set to request optimization to minimize running time of the system.
(If optimization to minimize disk space utilization is desired, it can be set using
tunefs(8).)

NO ignore this error condition.

IMPOSSIBLE MINFREE=D IN SUPERBLOCK (SET TO DEFAULT)
The superblock minimum space percentage is greater than 99% or less then 0%.

Possible responses to the SET TO DEFAULT prompt are:

YES The minfree parameter is set to 10%. (If some other percentage is desired, it can be set
using tunefs(8).)

NO ignore this error condition.

One of the following messages will appear:
MAGIC NUMBER WRONG
NCG OUT OF RANGE
CPG OUT OF RANGE
NCYL DOES NOT JIVE WITH NCG*CPG
SIZE PREPOSTEROUSLY LARGE
TRASHED VALUES IN SUPER BLOCK
and will be followed by the message:
F: BAD SUPER BLOCK: B
USE-b OPTION TO FSCK TO SPECIFY LOCATION OF AN ALTERNATE
SUPER-BLOCK TO SUPPLY NEEDED INFORMATION; SEE fsck(8).
The super block has been corrupted. An alternative super block must be selected from among
those listed by newfs (8) when the file system was created. For file systems with a blocksize
less than 32K, specifying -b 32 is a good first choice.

INTERNAL INCONSISTENCY: M
Fsck's has had an internal panic, whose message is specified as M. This should never happen.
See a guru.

The UNIX File System Check Program SMM:5-l 1

CAN NOT SEEK: BLK B (CONTINUE)
Fsck 's request for moving to a specified block number B in the file system failed. This should
never happen. See a guru.
Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however the problem will per
sist. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to re-check this file system. If the block was part of the vir
tual memory buffer cache, fsck will terminate with the message "Fatal I/O error".

NO terminate the program.

CAN NOT READ: BLK B (CONTINUE)
Fsck 's request for reading a specified block number B in the file system failed. This should
never happen. See a guru.
Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. It will retry the read and print out the
message:
THE FOLLOWING SECTORS COULD NOT BE READ: N
where N indicates the sectors that could not be read. If fsck ever tries to write back one
of the blocks on which the read failed it will print the message:
WRITING ZERO'ED BLOCK N TO DISK
where N indicates the sector that was written with zero's. If the disk is experiencing
hardware problems, the problem will persist. This error condition will not allow a com
plete check of the file system. A second run of fsck should be made to re-check this file
system. If the block was part of the virtual memory buffer cache, fsck will terminate
with the message "Fatal I/O error".

NO terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)
Fsck 's request for writing a specified block number B in the file system failed. The disk is
write-protectyd; check the write protect lock on the drive. If that is not the problem, see a
guru.
Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. The write operation will be retried
with the failed blocks indicated by the message:
THE FOLLOWING SECTORS COULD NOT BE WRITTEN: N
where N indicates the sectors that could not be written. If the disk is experiencing
hardware problems, the problem will persist. This error condition will not allow a com
plete check of the file system. A second run of fsck should be made to re-check this file
system. If the block was part of the virtual memory buffer cache, fsck will terminate
with the message "Fatal I/O error".

NO terminate the program.

bad inode number DDD to ginode
An internal error has attempted to read non-existent inode DDD. This error causes fsck to
exit. See a guru.

4.3. Phase 1 - Check Blocks and Sizes

This phase concerns itself with the inode list. This section lists error conditions result
ing from checking inode types, setting up the zero-link-count table, examining inode block
numbers for bad or duplicate blocks, checking inode size, and checking inode format. All
errors in this phase except INCORRECT BLOCK COUNT and PARTIALLY TRUNCATED

SMM:S-12 The UNIX File System Check Program

INODE are fatal ifthe file system is being preen'ed.

UNKNOWN FILE TYPE I=/ (CLEAR)
The mode word of the inode I indicates that the inode is not a special block inode, special
character inode, socket inode, regular inode, symbolic link, or directory inode.

Possible responses to the CLEAR prompt are:
YES de-allocate inode I by zeroing its contents. This will always invoke the UNALLO

CATED error condition in Phase 2 for each directory entry pointing to this inode.
NO ignore this error condition.

PARTIALLY TRUNCATED INODE I=/ (SALVAGE)
Fsck has found inode I whose size is shorter than the number of blocks allocated to it. This
condition should only occur if the system crashes while in the midst of truncating a file.
When preen'ing the file system, fsck completes the truncation to the specified size.
Possible responses to SALVAGE are:

YES complete the truncation to the size specified in the inode.
NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)
An internal table for fsck containing allocated inodes with a link count of zero cannot allocate
more memory. Increase the virtual memory for fsck.
Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the
file system. A second run of fsck should be made to re-check this file system. If another
allocated inode with a zero link count is found, this error condition is repeated.

NO terminate the program.

BBAD I=/
Inode I contains block number B with a number lower than the number of the first data block
in the file system or greater than the number of the last block in the file system. This error
condition may invoke the EXCESSIVE BAD BLKS error condition in Phase I (see next para
graph) if inode I has too many block numbers outside the file system range. This error condi
tion will always invoke the BAD/DUP error con<lition in Phase 2 and Phase 4.

EXCESSIVE BAD BLKS I=/ (CONTINUE)
There is more than a tolerable number (usually I 0) of blocks with a number lower than the
number of the first data block in the file system or greater than the number of last block in
the file system associated with inode /.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in
the file system. This error condition will not allow a complete check of the file system.
A second run of fsck should be made to re-check this file system.

NO terminate the program.

BAD STATE DDD TO BLKERR
An internal error has scrambled fsck's state map to have the impossible value DDD. Fsck
exits immediately. See a guru.

The UNIX File System Check Program SMM:S-13

B DUP I=/
Inode I contains block number B that is already claimed by another inode. This error condi
tion may invoke the EXCESSIVE DUP BLKS error condition in Phase I if inode I has too
many block numbers claimed by other inodes. This error condition will always invoke Phase
I b and the BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE DUP BLKS I=/ (CONTINUE)
There is more than a tolerable number (usually I 0) of blocks claimed by other inodes.
Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in
the file system. This error condition will not allow a complete check of the file system.
A second run of ftck should be made to re-check this file system.

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)
An internal table in ftck containing duplicate block numbers cannot allocate any more space.
Increase the amount of virtual memory available to ftck.

Possible responses to the CONTINUE prompt are:
YES continue with the program. This error condition will not allow a complete check of the

file system. A second run of ftck should be made to re-check this file system. If another
duplicate block is found, this error condition will repeat.

NO terminate the program.

PARTIALLY ALLOCATED INODE I=/ (CLEAR)
!node I is neither allocated nor unallocated.

Possible responses to the CLEAR prompt are:
YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

INCORRECT BLOCK COUNT I=/ (X should be Y) (CORRECT)
The block count for inode I is X blocks, but should be Y blocks. When preen'ing the count is
corrected.
Possible responses to the CORRECT prompt are:

YES replace the block count of inode I with Y.

NO ignore this error condition.

4.4. Phase IB: Rescan for More Dups

When a duplicate block is found in the file system, the file system is rescanned to find
the inode that previously claimed that block. This section lists the error condition when the
duplicate block is found.

B DUP I=/
!node I contains block number B that is already claimed by another inode. This error condi
tion will always invoke the BAD/DUP error condition in Phase 2. You can determine which
inodes have overlapping blocks by examining this error condition and the DUP error condi
tion in Phase I.

SMM:S-14 The UNIX File System Check Program

4.5. Phase 2 - Check Pathnames
This phase concerns itself with removing directory entries pointing to error conditioned

inodes from Phase 1 and Phase 1 b. This section lists error conditions resulting from root
inode mode and status, directory inode pointers in range, and directory entries pointing to
bad inodes, and directory integrity checks. All errors in this phase are fatal if the file system
is being preen'ed, except for directories not being a multiple of the blocks size and extraneous
hard links.

ROOT INODE UNALLOCATED (ALLOCATE)
The root inode (usually inode number 2) has no allocate mode bits. This should never hap
pen.
Possible responses to the ALLOCATE prompt are:

YES allocate inode 2 as the root inode. The files and directories usually found in the root
will be recovered in Phase 3 and put into lost+found. If the attempt to allocate the root
fails, fsck will exit with the message:
CANNOT ALLOCATE ROOT INODE.

NO fsck will exit.

ROOT INODE NOT DIRECTORY (REALLOCATE)
The root inode (usually inode number 2) is not directory inode type.

Possible responses to the REALLOCATE prompt are:

YES clear the existing contents of the root inode and reallocate it. The files and directories
usually found in the root will be recovered in Phase 3 and put into lost+ found. If the
attempt to allocate the root fails, fsck will exit with the message:
CANNOT ALLOCATE ROOT INODE.

NO fsck will then prompt with FIX

Possible responses to the FIX prompt are:

YES replace the root inode's type to be a directory. If the root inode's data blocks are not
directory blocks, many error conditions will be produced.

NO terminate, the program.

DUPS/BAD IN ROOT INODE (REALLOCATE)
Phase 1 or Phase lb have found duplicate blocks or bad blocks in the root inode (usually
inode number 2) for the file system.

Possible responses to the REALLOCATE prompt are:

YES clear the existing contents of the root inode and reallocate it. The files and directories
usually found in the root will be recovered in Phase 3 and put into lost+ found. If the
attempt to allocate the root fails, fsck will exit with the message:
CANNOT ALLOCATE ROOT INODE.

NO fsck will then prompt with CONTINUE.

Possible responses to the CONTINUE prompt are:
YES ignore the DUPS/BAD error condition in the root inode and attempt to continue to run

the file system check. If the root inode is not correct, then this may result in many other
error conditions.

NO terminate the program.

NAME TOO WNG F
An excessively long path name has been found. This usually indicates loops in the file system

The UNIX File System Check Program SMM:S-15

name space. This can occur if the super user has made circular links to directories. The
offending links must be removed (by a guru).

I OUT OF RANGE I=/ NAME=F (REMOVE)
A directory entry F has an inode number I that is greater than the end of the inode list.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

UNALLOCATED I=/ OWNER=O MODE=M SIZE=S MTIME=T type=F (REMOVE)
A directory or file entry F points to an unallocated inode I. The owner 0, mode M, size S,
modify time T, and name Fare printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

DUP/BAD I=/ OWNER=O MODE=M SIZE=S MTIME=T type=F (REMOVE)
Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with directory or
file entry F, inode I. The owner 0, mode M, size S, modify time T, and directory name F are
printed.

Possible responses to the REMOVE prompt are:

YES the directory entry Fis removed.

NO ignore this error condition.

ZERO LENGTH DIRECTORY I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
(REMOVE)
A directory entry F has a size S that is zero. The owner 0, mode M, size S, modify time T,
and directory name Fare printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed; this will always invoke the BAD/DUP error condition
in Phase 4.

NO ignore this error condition.

DIRECTORY TOO SHORT I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
(FIX)
A directory F has been found whose size S is less than the minimum size directory. The
owner 0, mode M, size S, modify time T, and directory name F are printed.

Possible responses to the FIX prompt are:

YES increase the size of the directory to the minimum directory size.
NO ignore this directory.

DIRECTORY F LENGTHS NOT MULTIPLE OF B (ADJUST)
A directory F has been found with size S that is not a multiple of the directory blocksize B.

Possible responses to the ADJUST prompt are:

YES the length is rounded up to the appropriate block size. This error can occur on 4.2BSD
file systems. Thus when preen'ing the file system only a warning is printed and the
directory is adjusted.

SMM:5-16 The UNIX File System Check Program

NO ignore the error condition.

DIRECTORY CORRUPTED I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
(SALVAGE)
A directory with an inconsistent internal state has been found.
Possible responses to the FIX prompt are:

YES throw away all entries up to the next directory boundary (usually 512-byte) boundary.
This drastic action can throw away up to 42 entries, and should be taken only after
other recovery efforts have failed.

NO skip up to the next directory boundary and resume reading, but do not modify the direc
tory.

BAD INODE NUMBER FOR '.' I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
(FIX)
A directory I has 5een found whose inode number for'.' does does not equal/.

Possible responses to the FIX prompt are:
YES change the inode number for'.' to be equal to I.
NO leave the inode number for'.' unchanged.

MISSING '.'I=/ OWNER=O MODE=M SIZE=S MTIME= T DIR=F (FIX)
A directory I has been found whose first entry is unallocated.
Possible responses to the FIX prompt are:

YES build an entry for'.' with inode number equal to I.
NO leave the directory unchanged.

MISSING '.' I=/ OWNER=O MODE=M SIZE=S MTIME= T DIR=F
CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS F
A directory I has been found whose first entry is F. Fsck cannot resolve this problem. The
file system should be mounted and the offending entry F moved elsewhere. The file system
should then be unmounted and fsck should be run again.

MISSING'.' l=/OWNER=O MODE=MSIZE=SMTIME=TDIR=F
CANNOT FIX, INSUFFICIENT SPACE TO ADD'.'
A directory I has been found whose first entry is not '.'. Fsck cannot resolve this problem as
it should never happen. See a guru.

EXTRA '.'ENTRY I=/ OWNER=O MODE=M SIZE=S MTIME= T DIR=F (FIX)
A directory I has been found that has more than one entry for'.'.
Possible responses to the FIX prompt are:
YES remove the extra entry for'.'.

NO leave the directory unchanged.

BAD INODE NUMBER FOR' . .' I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
(FIX)
A directory I has been found whose inode number for' .. ' does does not equal the parent of/.
Possible responses to the FIX prompt are:
YES change the inode number for ' .. ' to be equal to the parent of I(" .. " in the root inode

points to itself).

The UNIX File System Check Program

NO leave the inode number for' . .' unchanged.

MISSING' •. ' I=/ OWNER=O MODE=M SIZE=S MTIME= T DIR=F (FIX)
A directory I has been found whose second entry is unallocated.
Possible responses to the FIX prompt are:

SMM:5-17

YES build an entry for ' . .'with inode number equal to the parent of I(" . .'' in the root inode
points to itself).

NO leave the directory unchanged.

MISSING' .. ' I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS F
A directory I has been found whose second entry is F. Fsck cannot resolve this problem. The
file system should be mounted and the offending entry F moved elsewhere. The file system
should then be unmounted and fsck should be run again.

MISSING ' .. ' I=/ OWNER=O MODE=M SIZE=S MTIME= T DIR=F
CANNOT FIX, INSUFFICIENT SPACE TO ADD' .. '
A directory I has been found whose second entry is not' . .'. Fsck cannot resolve this problem.
The file system should be mounted and the second entry in the directory moved elsewhere.
The file system should then be unmounted and fsck should be run again.

EXTRA ' . .' ENTRY I=/ OWNER=O MODE=M SIZE=S MTIME= T DIR=F (FIX)
A directory I has been found that has more than one entry for' . .'.
Possible responses to the FIX prompt are:

YES remove the extra entry for' . .'.
NO leave the directory unchanged.

N IS AN EXTRANEOUS HARD LINK TO A DIRECTORY D (REMOVE)
Fsck has found a hard link, N, to a directory, D. When preen'ing the extraneous links are
ignored.
Possible responses to the REMOVE prompt are:

YES delete the extraneous entry, N.

NO ignore the error condition.

BAD INODE S TO DESCEND
An internal error has caused an impossible state S to be passed to the routine that descends
the file system directory structure. Fsck exits. See a guru.

BAD RETURN ST ATE S FROM DESCEND
An internal error has caused an impossible state S to be returned from the routine that des
cends the file system directory structure. Fsck exits. See a guru.

BAD STATES FOR ROOT INODE
An internal error has caused an impossible state S to be assigned to the root inode. Fsck
exits. See a guru.

SMM:5-18 The UNIX File System Check Program

4.6. Phase 3 - Check Connectivity

This phase concerns itself with the directory connectivity seen in Phase 2. This section
lists error conditions resulting from unreferenced directories, and missing or full lost+ found
directories.

UNREF DIR I=/ OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT)
The directory inode I was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of directory inode I are printed.
When preen 'ing, the directory is reconnected if its size is non-zero, otherwise it is cleared.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode I to the file system in the directory for lost files (usually
lost+ found). This may invoke the lost+ found error condition in Phase 3 if there are
problems connecting directory inode I to lost+found. This may also invoke the CON
NECTED error condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in
Phase 4.

NO lost+found DIRECTORY (CREATE)
There is no lost+found directory in the root directory of the file system; When preen'ingfack
tries to create a lost+ found directory.

Possible responses to the CREA TE prompt are:

YES create a lost+ found directory in the root of the file system. This may raise the message:
NO SPACE LEFT IN I (EXPAND)
See below for the possible responses. Inability to create a lost+ found directory generates
the message:
SORRY. CANNOT CREATE lost+found DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error
condition in Phase 4.

lost+found IS NOT A DIRECTORY (REALLOCATE)
The entry for lost+ found is not a directory.

Possible responses to the REALLOCATE prompt are:

YES allocate a directory inode, and change lost+ found to reference it. The previous inode
reference by the lost+ found name is not cleared. Thus it will either be reclaimed as an
UNREF'ed inode or have its link count ADJUST'ed later in this Phase. Inability to
create a lost+ found directory generates the message:
SORRY. CANNOT CREATE lost+found DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error
condition in Phase 4.

NO SPACE LEFT IN /lost+found (EXPAND)
There is no space to add another entry to the lost+ found directory in the root directory of the
file system. When preen'ing the lost+ found directory is expanded.

Possible responses to the EXP AND prompt are:

YES the lost+ found directory is expanded to make room for the new entry. If the attempted
expansion fails fack prints the message:

The UNIX File System Check Program SMM:S-19

SORRY. NO SPACE IN lost+found DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4. Clean out unnecessary entries in lost+found. This error is
fatal if the file system is being preen'ed.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error
condition in Phase 4.

DIR 1=11 CONNECTED. PARENT WAS 1=12
This is an advisory message indicating a directory inode 11 was successfully connected to the
lost+found directory. The parent inode 12 of the directory inode 11 is replaced by the inode
number of the lost+ found directory.

DIRECTORY F LENGTH SNOT MULTIPLE OF B {ADJUST)
A directory F has been found with size S that is not a multiple of the directory blocksize B
{this can reoccur in Phase 3 if it is not adjusted in Phase 2).
Possible responses to the ADJUST prompt are:

YES the length is rounded up to the appropriate block size. This error can occur on 4.2BSD
file systems. Thus when preen'ing the file system only a warning is printed and the
directory is adjusted.

NO ignore the error condition.

BAD IN ODE S TO DESCEND
An internal error has caused an impossible state S to be passed to the routine that descends
the file system directory structure. Fsck exits. See a guru.

4.7. Phase 4 - Check Reference Counts
This phase concerns itself with the link count information seen in Phase 2 and Phase 3.

This section lists error conditions resulting from unreferenced files, missing or full lost+found
directory, incorrect link counts for files, directories, symbolic links, or special files, unrefer
enced files, symbolic links, and directories, and bad or duplicate blocks in files, symbolic
links, and directories. All errors in this phase are correctable if the file system is being
preen'ed except running out of space in the lost+ found directory.

UNREF FILE I=/ OWNER=O MODE=M SIZE=S MTIME=T {RECONNECT)
Inode I was not connected to a directory entry when the file system was traversed. The owner
0, mode M, size S, and modify time T of inode I are printed. When preen'ing the file is
cleared if either its size or its link count is zero, otherwise it is reconnected.
Possible responses to the RECONNECT prompt are:
YES reconnect inode I to the file system in the directory for lost files (usually lost+found).

This may invoke the lost+ found error condition in Phase 4 if there are problems con
necting inode I to lost+ found.

NO ignore this error condition. This will always invoke the CLEAR error condition in
Phase 4.

(CLEAR)
The inode mentioned in the immediately previous error condition can not be reconnected.
This cannot occur if the file system is being preen'ed, since lack of space to reconnect files is a
fatal error.
Possible responses to the CLEAR prompt are:

SMM:S-20 The UNIX File System Check Program

YES de-allocate the inode mentioned in the immediately previous error condition by zeroing
its contents.

NO ignore this error condition.

NO lost+found DIRECTORY (CREATE)
There is no lost+ found directory in the root directory of the file system; When preen'ing fsck
tries to create a lost+found directory.
Possible responses to the CREATE prompt are:
YES create a lost+found directory in the root of the file system. This may raise the message:

NO SPACE LEFf IN I (EXPAND)
See below for the possible responses. Inability to create a lost+ found directory generates
the message:
SORRY. CANNOT CREATE lost+found DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error
condition in Phase 4.

lost+found IS NOT A DIRECTORY (REALLOCATE)
The entry for lost+found is not a directory.
Possible responses to the REALLOCATE prompt are:
YES allocate a directory inode, and change lost+found to reference it. The previous inode

reference by the lost+found name is not cleared. Thus it will either be reclaimed as an
UNREFed inode or have its link count ADJUST'ed later in this Phase. Inability to
create a lost+ found directory generates the message:
SORRY. CANNOT CREATE lost+found DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error
condition in Phase 4.

NO SPACE LEFf IN /lost+found (EXPAND)
There is no space to add another entry to the lost+ found directory in the root directory of the
file system. When preen'ing the lost+found directory is expanded.
Possible responses to the EXPAND prompt are:
YES the lost+ found directory is expanded to make room for the new entry. If the attempted

expansion fails fsck prints the message:
SORRY. NO SPACE IN lost+found DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF
error condition in Phase 4. Clean out unnecessary entries in /ost+found. This error is
fatal if the file system is being preen'ed.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error
condition in Phase 4.

LINK COUNT type l=I OWNER=O MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST)
The link count for inode /, is X but should be Y. The owner 0, mode M, size S, and modify
time Tare printed. When preen'ing the link count is adjusted unless the number of refer
ences is increasing, a condition that should never occur unless precipitated by a hardware
failure. When the number of references is increasing under preen mode, fsck exits with the

The UNIX File System Check Program

message:
LINK COUNT INCREASING

Possible responses to the ADJUST prompt are:

YES replace the link count of file inode I with Y.
NO ignore this error condition.

UNREF type I=/ OWNER=O MODE=MSIZE=S MTIME=T(CLEAR)

SMM:5-21

!node /, was not connected to a directory entry when the file system was traversed. The
owner 0, mode M, size S, and modify time T of inode I are printed. When preen'ing, this is
a file that was not connected because its size or link count was zero, hence it is cleared.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

BAD/DUP type I=/ OWNER=O MODE=M SIZE=S MTIME= T (CLEAR)
Phase I or Phase lb have found duplicate blocks or bad blocks associated with inode /. The
owner 0, mode M, size S, and modify time T of inode I are printed. This error cannot arise
when the file system is being preen'ed, as it would have caused a fatal error earlier.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

4.8. Phase S - Check Cyl groups

This phase concerns itself with the free-block and used-inode maps. This section lists
error conditions resulting from allocated blocks in the free-block maps, free blocks missing
from free-block maps, and the total free-block count incorrect. It also lists error conditions
resulting from free inodes in the used-inode maps, allocated inodes missing from used-inode
maps, and the total used-inode count incorrect.

CG C: BAD MAGIC NUMBER
The magic number of cylinder group C is wrong. This usually indicates that the cylinder
group maps have been destroyed. When running manually the cylinder group is marked as
needing to be reconstructed. This error is fatal if the file system is being preen'ed.

BLK(S) MISSING IN BIT MAPS (SALVAGE)
A cylinder group block map is missing some free blocks. During preen'ing the maps are
reconstructed.

Possible responses to the SALVAGE prompt are:

YES reconstruct the free block map.

NO ignore this error condition.

SUMMARY INFORMATION BAD (SALVAGE)
The summary information was found to be incorrect. When preen'ing, the summary informa
tion is recomputed.

Possible responses to the SALVAGE prompt are:

YES reconstruct the summary information.

NO ignore this error condition.

SMM:S-22 The UNIX File System Check Program

FREE BLK COUNT(S) WRONG IN SUPERBLOCK (SALVAGE)
The superblock free block information was found to be incorrect. When preen'ing, the super
block free block information is recomputed.

Possible responses to the SALVAGE prompt are:

YES reconstruct the superblock free block information.

NO ignore this error condition.

4.9. Cleanup

Once a file system has been checked, a few cleanup functions are performed. This sec
tion lists advisory messages about the file system and modify status of the file system.

V files, W used, X free (Y frags, Z blocks)
This is an advisory message indicating that the file system checked contained V files using W
fragment sized blocks leaving X fragment sized blocks free in the file system. The numbers in
parenthesis breaks the free count down into Y free fragments and Z free full sized blocks.

***** REBOOT UNIX *****
This is an advisory message indicating that the root file system has been modified by fsck. If
UNIX is not rebooted immediately, the work done by fsck may be undone by the in-core
copies of tables UNIX keeps. When preen'ing, fsck will exit with a code of 4. The standard
auto-reboot script distributed with 4.3BSD interprets an exit code of 4 by issuing a reboot
system call.

***** FILE SYSTEM WAS MODIFIED *****
This is an advisory message indicating that the current file system was modified by fsck. If
this file system is mounted or is the current root file system, fsck should be halted and UNIX
rebooted. If UNIX is not rebooted immediately, the work done by fsck may be undone by
the in-core copies of tables UNIX keeps.

4.3BSD Line Printer Spooler Manual

Ralph Campbell

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

This document describes the structure and installation procedure for the line
printer spooling system developed for the 4.3BSD version of the UNIX* operating
system.

Revised May 14, 1986

I. Overview

The line printer system supports:

• multiple printers,

• multiple spooling queues,

• both local and remote printers, and

• printers attached via serial lines that require line initialization such as the baud rate.

Raster output devices such as a Varian or Versatec, and laser printers such as an Imagen, are also
supported by the line printer system.

The line printer system consists mainly of the following files and commands:

/etc/printcap
/usr/lib/lpd
/usr/ucb/lpr
/usr/ucb/lpq
/usr/ucb/lprm
/etc/I pc
/dev/printer

printer configuration and capability data base
line printer daemon, does all the real work
program to enter a job in a printer queue
spooling queue examination program
program to delete jobs from a queue
program to administer printers and spooling queues
socket on which !pd listens

The file /etc/printcap is a master data base describing line printers directly attached to a machine and,
also, printers accessible across a network. The manual page entry printcap(S) provides the authorita
tive definition of the format of this data base, as well as specifying default values for important items
such as the directory in which spooling is performed. This document introduces some of the infor
mation that may be placed printcap.

* UNIX is a trademark of Bell Laboratories.

SMM:6-2 4.3BSD Line Printer Spooler Manual

2. Commands

2.1. !pd - line printer daemon
The program lpd(8), usually invoked at boot time from the /etc/re file, acts as a master server for

coordinating and controlling the spooling queues configured in the printcap file. When /pd is started
it makes a single pass through the printcap database restarting any printers that have jobs. In normal
operation /pd listens for service requests on multiple sockets, one in the UNIX domain (named
"/dev/printer") for local requests, and one in the Internet domain (under the "printer" service
specification) for requests for printer access from off machine; see socket(2) and services(5) for more
information on sockets and service specifications, respectively. Lpd spawns a copy of itself to process
the request; the master daemon continues to listen for new requests.

Clients communicate with !pd using a simple transaction oriented protocol. Authentication of
remote clients is done based on the "privilege port" scheme employed by rshd(8C) and rcmd(3X).
The following table shows the requests understood by !pd. In each request the first byte indicates the
"meaning" of the request, followed by the name of the printer to which it should be applied. Addi
tional qualifiers may follow, depending on the request.

Request
• Aprinter\n
"Bprinter\n
·cprinter [users ...] [jobs ...]\n
"Dprinter [users ...] [jobs ...]\n
"Eprinter person [users ...] [jobs ...]\n

Interpretation
check the queue for jobs and print any found
receive and queue a job from another machine
return short list of current queue state
return long list of current queue state
remove jobs from a queue

The !pr(I) command is used by users to enter a print job in a local queue and to notify the local
/pd that there are new jobs in the spooling area. Lpd either schedules the job to be printed locally, or
if printing remotely, attempts to forward the job to the appropriate machine. If the printer cannot be
opened or the destination machine is unreachable, the job will remain queued until it is possible to
complete the work.

2.2. lpq - show line printer queue

The /pq(I) program works recursively backwards displaying the queue of the machine with the
printer and then the queue(s) of the machine(s) that lead to it. Lpq has two forms of output: in the
default, short, format it gives a single line of output per queued job; in the long format it shows the
list of files, and their sizes, that comprise a job.

2.3. lprm - remove jobs from a queue

The !prm(I) command deletes jobs from a spooling queue. If necessary, /prm will first kill off a
running daemon that is servicing the queue and restart it after the required files are removed. When
removing jobs destined for a remote printer, lprm acts similarly to lpq except it first checks locally for
jobs to remove and then tries to remove files in queues off-machine.

2.4.)pc - line printer control program

The /pc(8) program is used by the system administrator to control the operation of the line
printer system. For each line printer configured in /etc/printcap, !pc may be used to:

• disable or enable a printer,

• disable or enable a printer's spooling queue,

• rearrange the order of jobs in a spooling queue,

• find the status of printers, and their associated spooling queues and printer daemons.

4.3BSD Line Printer Spooler Manual SMM:6-3

3. Access control

The printer system maintains protected spooling areas so that users cannot circumvent printer
accounting or remove files other than their own. The strategy used to maintain protected spooling
areas is as follows:
G The spooling area is writable only by a daemon user and daemon group.

• The /pr program runs set-user-id to root and set-group-id to group daemon. The root access per
mits reading any file required. Accessibility is verified with an access(2) call. The group ID is used
in setting up proper ownership of files in the spooling area for /prm.

e Control files in a spooling area are made with daemon ownership and group ownership daemon.
Their mode is 0660. This insures control files are not modified by a user and that no user can
remove files except through /prm.

• The spooling programs, /pd, /pq, and /prm run set-user-id to root and set-group-id to group daemon
to access spool files and printers.

• The printer server, /pd, uses the same verification procedures as rshd(8C) in authenticating remote
clients. The host on which a client resides must be present in the file /etc/hosts.equiv or
/etc/hosts.lpd and the request message must come from a reserved port number.

In practice, none of /pd, /pq, or /prm would have to run as user root if remote spooling were not
supported. In previous incarnations of the printer system /pd ran set-user-id to daemon, set-group-id
to group spooling, and /pq and /prm ran set-group-id to group spooling.

4. Setting up

The 4.3BSD release comes with the necessary programs installed and with the default line
printer queue created. If the system must be modified, the makefile in the directory
/usr/src/usr.lib/lpr should be used in recompiling and reinstalling the necessary programs.

The real work in setting up is to create the printcap file and any printer filters for printers not
supported in the distribution system.

4.1. Creating a printcap file

The printcap database contains one or more entries per printer. A printer should have a
separate spooling directory; otherwise, jobs will be printed on different printers depending on which
printer daemon starts first. This section describes how to create entries for printers that do not con
form to the default printer description (an LP-11 style interface to a standard, band printer).

4.1.1. Printers on serial lines

When a printer is connected via a serial communication line it must have the proper baud rate
and terminal modes set. The following example is for a DecWriter III printer connected locally via a
1200 baud serial line.

lplLA-180 DecWriter III:\
:lp=/dev /lp:br# 1200:fs#06320: \
:tr= \f:of=/usr/lib/lpf:lf=/usr/adm/lpd-errs:

The Ip entry specifies the file name to open for output. Here it could be left out since "/dev/lp" is the
default. The br entry sets the baud rate for the tty line and the fs entry sets CRMOD, no parity, and
XTABS (see tty(4)). The tr entry indicates that a form-feed should be printed when the queue emp
ties so the paper can be tom off without turning the printer off-line and pressing form feed. The of
entry specifies the filter program /pf should be used for printing the files; more will be said about
filters later. The last entry causes errors to be written to the file "/usr/adm/lpd-errs" instead of the
console. Most errors from /pd are logged using sys/ogd (8) and will not be logged in the specified file.
The filters should use sys/ogd to report errors; only those that write to standard error output will end
up with errors in the If file. (Occasionally errors sent to standard error output have not appeared in
the log file; the use of syslogd is highly recommended.)

SMM:6-4 4.3BSD Line Printer Spooler Manual

4.1.2. Remote printers
Printers that reside on remote hosts should have an empty Ip entry. For example, the following

printcap entry would send output to the printer named "Ip" on the machine "ucbvax".

Ip I default line printer:\
:lp=:rm=ucbvax:rp=lp:sd=/usr/spool/vaxlpd:

The rm entry is the name of the remote machine to connect to; this name must be a known host
name for a machine on the network. The rp capability indicates the name of the printer on the
remote machine is "Ip"; here it could be left out since this is the default value. The sd entry specifies
"/usr/spool/vaxlpd" as the spooling directory instead of the default value of "/usr/spool/Jpd".

4.2. Output filters
Filters are used to handle device dependencies and to do accounting functions. The output

filtering of of is used when accounting is not being done or when all text data must be passed through
a filter. It is not intended to do accounting since it is started only once, all text files are filtered
through it, and no provision is made for passing owners' login name, identifying the beginning and
ending of jobs, etc. The other filters (if specified) are started for each file printed and do accounting if
there is an af entry. If entries for both of and other filters are specified, the output filter is used only
to print the banner page; it is then stopped to allow other filters access to the printer. An example of
a printer that requires output filters is the Benson-Varian.

va I varian I Benson-Varian:\
:lp=/dev/vaO:sd=/usr/spool/vad:of=/usr/lib/vpf:\
:tf=/usr/lib/rvcat:mx#2000:pl#58:px=2112:py= 1700:tr=\f:

The tf entry specifies "/usr/lib/rvcat" as the filter to be used in printing troff(!) output. This filter is
needed to set the device into print mode for text, and plot mode for printing troff files and raster
images (see va (4V)). Note that the page length is set to 58 lines by the pl entry for 8.5" by 11 .. fan
fold paper. To enable accounting, the varian entry would be augmented with an af filter as shown
below.

va I varian I Benson-Varian:\
:lp=/dev/vaO:sd=/usr/spool/vad:of=/usr/lib/vpf:\
:if=/usr/lib/vpf:tf=/usr/lib/rvcat:af=/usr/adm/vaacct:\
:mx#2000:pl#58:px=2112:py= 1700:tr= \f:

4.3. Access Control
Local access to printer queues is controlled with the rg printcap entry.

:rg=lprgroup:

Users must be in the group lprgroup to submit jobs to the specified printer. The default is to allow
all users access. Note that once the files are in the local queue, they can be printed locally or for
warded to another host depending on the configuration.

Remote access is controlled by listing the hosts in either the file /etc/hosts.equiv or
/etc/hosts.lpd, one host per line. Note that rsh(I) and rlogin(I) use /etc/hosts.equiv to determine which
hosts are equivalent for allowing logins without passwords. The file /etc/hosts.lpd is only used to con
trol which hosts have line printer access. Remote access can be further restricted to only allow
remote users with accounts on the local host to print jobs by using the rs printcap entry.

:rs:

4.3BSD Line Printer Spooler Manual SMM:6-5

5. Output filter specifications

The filters supplied with 4.3BSD handle printing and accounting for most common line printers,
the Benson-Varian, the wide (36") and narrow (11 ") Versatec printer/plotters. For other devices or
accounting methods, it may be necessary to create a new filter.

Filters are spawned by !pd with their standard input the data to be printed, and standard output
the printer. The standard error is attached to the If file for logging errors or syslogd may be used for
logging errors. A filter must return a 0 exit code if there were no errors, I if the job should be
reprinted, and 2 if the job should be thrown away. When lprm sends a kill signal to the /pd process
controlling printing, it sends a SIGINT signal to all filters and descendents of filters. This signal can
be trapped by filters that need to do cleanup operations such as deleting temporary files.

Arguments passed to a filter depend on its type. The of filter is called with the following argu
ments.

filter -wwidth -llength

The width and length values come from the pw and pl entries in the printcap database. The if filter is
passed the following parameters.

filter [-c] -wwidth -llength -iindent -n login -h host accounting_file

The -c flag is optional, and only supplied when control characters are to be passed uninterpreted to
the printer (when using the -1 option of /pr to print the file). The -w and -I parameters are the same
as for the of filter. The -n and -h parameters specify the login name and host name of the job owner.
The last argument is the name of the accounting file from printcap.

All other filters are called with the following arguments:

filter -xwidth -ylength -n login -h host accounting_file

The -x and -y options specify the horizontal and vertical page size in pixels (from the px and py
entries in the printcap file). The rest of the arguments are the same as for the if filter.

6. Line printer Administration

The !pc program provides local control over line printer activity. The major commands and
their intended use will be described. The command format and remaining commands are described
in /pc(8).

abort and start

Abort terminates an active spooling daemon on the local host immediately and then disables
printing (preventing new daemons from being started by !pr). This is normally used to forcibly
restart a hung line printer daemon (i.e., !pq reports that there is a daemon present but nothing is
happening). It does not remove any jobs from the queue (use the lprm command instead).
Start enables printing and requests !pd to start printing jobs.

enable and disable

Enable and disable allow spooling in the local queue to be turned on/off. This will allow/prevent
!pr from putting new jobs in the spool queue. It is frequently convenient to turn spooling off
while testing new line printer filters since the root user can still use !pr to put jobs in the queue
but no one else can. The other main use is to prevent users from putting jobs in the queue
when the printer is expected to be unavailable for a long time.

restart

stop

Restart allows ordinary users to restart printer daemons when /pq reports that there is no dae
mon present.

Stop halts a spooling daemon after the current job completes; this also disables printing. This is
a clean way to shutdown a printer to do maintenance, etc. Note that users can still enter jobs in
a spool queue while a printer is stopped.

SMM:6-6 4.3BSD Line Printer Spooler Manual

topq

Topq places jobs at the top of a printer queue. This can be used to reorder high priority jobs
since !pr only provides first-come-first-serve ordering of jobs.

7. Troubleshooting

There are several messages that may be generated by the the line printer system. This section
categorizes the most common and explains the cause for their generation. Where the message implies
a failure, directions are given to remedy the problem.

In the examples below, the name printer is the name of the printer from the printcap database.

7.1. LPR

lpr: printer: unknown printer

The printer was not found in the printcap database. Usually this is a typing mistake; however,
it may indicate a missing or incorrect entry in the /etc/printcap file.

lpr: printer: jobs queued, but cannot start daemon.

The connection to !pd on the local machine failed. This usually means the printer server started
at boot time has died or is hung. Check the local socket /dev/printer to be sure it still exists (if
it does not exist, there is no !pd process running). Usually it is enough to get a super-user to
type the following to restart [pd.

% /usr/lib/lpd

You can also check the state of the master printer daemon with the following.

% ps)'cat /usr/spool/lpd.lock'

Another possibility is that the /pr program is not set-user-id to root, set-group-id to group dae
mon. This can be checked with

% Is -lg /usr/ucb/lpr

)pr: printer: printer queue is disabled

This means the queue was turned off with

% lpc disable printer

to prevent /pr from putting files in the queue. This is normally done by the system manager
when a printer is going to be down for a long time. The printer can be turned back on by a
super-user with /pc.

7.2. LPQ

waiting for printer to become ready (offline ?)

The printer device could not be opened by the daemon. This can happen for several reasons, the
most common is that the printer is turned off-line. This message can also be generated if the
printer is out of paper, the paper is jammed, etc. The actual reason is dependent on the mean
ing of error codes returned by system device driver. Not all printers supply enough information
to distinguish when a printer is off-line or having trouble (e.g. a printer connected through a
serial line). Another possible cause of this message is some other process, such as an output
filter, has an exclusive open on the device. Your only recourse here is to kill off the offending
program(s) and restart the printer with /pc.

4.3BSD Line Printer Spooler Manual SMM:6-7

printer is ready and printing

The /pq program checks to see if a daemon process exists for printer and prints the file status
located in the spooling directory. If the daemon is hung, a super user can use /pc to abort the
current daemon and start a new one.

waiting for host to come up

This implies there is a daemon trying to connect to the remote machine named host to send the
files in the local queue. If the remote machine is up, /pd on the remote machine is probably
dead or hung and should be restarted as mentioned for /pr.

sending to host
The files should be in the process of being transferred to the remote host. If not, the local dae
mon should be aborted and started with /pc.

Warning:.printer is down

The printer has been marked as being unavailable with /pc.

Warning: no daemon present

The /pd process overseeing the spooling queue, as specified in the "lock" file in that directory,
does not exist. This normally occurs only when the daemon has unexpectedly died. The error
log file for the printer and the sys/ogd logs should be checked for a diagnostic from the deceased
process. To restart an /pd, use

o/o !pc restart printer

no space on remote; waiting for queue to drain

This implies that there is insufficient disk space on the remote. If the file is large enough, there
will never be enough space on the remote (even after the queue on the remote is empty). The
solution here is to move the spooling queue or make more free space on the remote.

7.3. LPRM

lprm: printer: cannot restart printer daemon

This case is the same as when /pr prints that the daemon cannot be started.

7.4. LPD
The /pd program can log many different messages using sys/ogd (8). Most of these messages are

about files that can not be opened and usually imply that the printcap file or the protection modes of
the files are incorrect. Files may also be inaccessible if people manually manipulate the line printer
system (i.e. they bypass the /pr program).

In addition to messages generated by /pd, any of the filters that /pd spawns may log messages
using sys/ogd or to the error log file (the file specified in the If entry in printcap).

7.5. LPC

couldn't start printer

This case is the same as when /pr reports that the daemon cannot be started.

SMM:6-8 4.3BSD Line Printer Spooler Manual

cannot examine spool directory
Error messages beginning with "cannot ... " are usually because of incorrect ownership or protec
tion mode of the lock file, spooling directory or the /pc program.

SEND MAIL

INSTALLATION AND OPERATION GUIDE

Eric Allman
Britton-Lee, Inc.

Version 5.8

Sendmail implements a general purpose internetwork mail routing facility under the
UNIX* operating system. It is not tied to any one transport protocol - its function may be
likened to a crossbar switch, relaying messages from one domain into another. In the process,
it can do a limited amount of message header editing to put the message into a format that is
appropriate for the receiving domain. All of this is done under the control of a configuration
file.

Due to the requirements of flexibility for sendmail, the configuration file can seem some
what unapproachable. However, there are only a few basic configurations for most sites, for
which standard configuration files have been supplied. Most other configurations can be built
by adjusting an existing configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it has a number
of features that may be used to monitor or adjust the operation under unusual circumstances.
These features are described.

Section one describes how to do a basic sendmail installation. Section two explains the
day-to-day information you should know to maintain your mail system. If you have a rela
tively normal site, these two sections should contain sufficient information for you to install
sendmail and keep it happy. Section three describes some parameters that may be safely
tweaked. Section four has information regarding the command line arguments. Section five
contains the nitty-gritty information about the configuration file. This section is for maso
chists and people who must write their own configuration file. The appendixes give a brief
but detailed explanation of a number of features not described in the rest of the paper.

The references in this paper are actually found in the companion paper Sendmail - An
Internetwork Mail Router. This other paper should be read before this manual to gain a basic
understanding of how the pieces fit together.

*UNIX is a trademark of Bell Laboratories.

Sendmail Installation and Operation Guide SMM:07-1

SMM:07-2 Sendmail Installation and Operation Guide

TABLE OF CONTENTS

I. BASIC INSTALLATION ... 4
1.1. Off-The-Shelf Configurations ... 4
1.2. Installation Using the Makefile .. 5
1.3. Installation by Hand .. 5

1.3.1. lib/libsys.a .. 5
1.3.2. /usr/lib/sendmail .. 5
1.3.3. /usr/lib/sendmail.cf .. 6
1.3.4. /usr/ucb/newaliases .. 6
1.3.5. /usr/spool/mqueue .. 6
1.3.6. /usr/lib/aliases* ... 6
1.3.7. /usr/lib/sendmail.fc .. 6
1.3.8. /etc/re.. 6
1.3.9. /usr/lib/sendmail.hf .. 7
1.3.10. /usrnib/sendmail.st ... 7
1.3.11. /usr/ucb/newaliases .. 7
1.3.12. /usr/ucb/mailq .. 7

2. NORMAL OPERATIONS... 7
2.1. Quick Configuration Startup .. 7
2.2. The System Log .. 8

2.2.1. Format.. 8
2.2.2. Levels ... 8

2.3. The Mail Queue ... 8
2.3.1. Printing the queue ... 8
2.3.2. Format of queue files ... 8
2.3.3. Forcing tbe queue .. 9

2.4. The Alias Database I 0
2.4.1. Rebuilding the alias database .. I 0
2.4.2. Potential problems ... 11
2.4.3. List owners ... 11

2.5. Per-User Forwarding (.forward Files).. 11
2.6. Special Header Lines .. 12

2.6.1. Return-Receipt-To: .. 12
2.6.2. Errors-To: ... 12
2.6.3. Apparently-To: ... 12

3. ARGUMENTS ... 12
3.1. Queue Interval.. 12
3.2. Daemon Mode .. 12
3.3. Forcing tbe Queue .. 12
3.4. Debugging ... :... 12
3.5. Trying a Different Configuration File .. 13
3.6. Changing the Values of Options .. 13

4. TUNING .. 13
4.1. Timeouts 13

Sendmail Installation and Operation Guide SMM:07-3

4.1.1. Queue interval 14
4.1.2. Read timeouts 14
4.1.3. Message timeouts ... 14

4.2. Forking During Queue Runs ... 14
4.3. Queue Priorities ... 14
4.4. Load Limiting ... 15
4.5. Delivery Mode .. 15
4.6. Log Level .. 15
4.7. File Modes .. 16

4. 7. I. To suid or not to suid? ... 16
4.7.2. Temporary file modes .. 16
4.7.3. Should my alias database be writable? .. 16

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE 16
5.1. The Syntax.. 17

5.1.1. R and S - rewriting rules .. 1 7
5.1.2. D - define macro .. 1 7
5.1.3. C and F - define classes ... 1 7
5.1.4. M - define mailer .. 18
5.1.5. H - define header .. 18
5.1.6. 0 - set option ... 18
5.1. 7. T - define trusted users .. 19
5.1.8. P - precedence definitions .. 19

5.2. The Semantics .. 19
5.2.1. Special macros, conditionals ... 19
5.2.2. Special classes .. 21
5.2.3. The left hand side .. 21
5.2.4. The right hand side .. 21
5.2.5. Semantics of rewriting rule sets ... 22
5.2.6. Mailer flags etc. 23
5.2.7. The "error" mailer... 23

5.3. Building a Configuration File From Scratch ... 23
5.3.1. What you are trying to do ... 23
5.3.2. Philosophy .. 24

5.3.2.1. Large site, many hosts - minimum information 24
5.3.2.2. Small site - complete information ... 25
5.3.2.3. Single host .. 25

5.3.3. Relevant issues ... 25
5.3.4. How to proceed .. 25
5.3.5. Testing the rewriting rules - the -bt flag ... 26
5.3.6. Building mailer descriptions .. 26

Appendix A. COMMAND LINE FLAGS ... 29
Appendix B. CONFIGURATION OPTIONS ... 30
Appendix C. MAILER FLAGS .. 32
Appendix D. OTHER CONFIGURATION.. 34
Appendix E. SUMMARY OF SUPPORT FILES ... 38

SMM:07-4 Sendmail Installation and Operation Guide

1. BASIC INSTALLATION

There are two basic steps to installing sendmail. The hard part is to build the
configuration table. This is a file that sendmail reads when it starts up that describes the
mailers it knows about, how to parse addresses, how to rewrite the message header, and
the settings of various options. Although the configuration table is quite complex, a
configuration can usually be built by adjusting an existing off-the-shelf configuration. The
second part is actually doing the installation, i.e., creating the necessary files, etc.

The remainder of this section will describe the installation of sendmail assuming you
can use one of the existing configurations and that the standard installation parameters are
acceptable. All pathnames and examples are given from the root of the sendmail subtree,
normally /usr!src!usr.lib!sendmail on 4.3BSD.

I.I. Off-The-Shelf Configurations

The configuration files are all in the subdirectories cfnamed and cfhosttab/e of
the sendmail directory. The directory cf named contains configuration files that have
been tailored for the name server named (8). These are the configuration files currently
being used at Berkeley. The configuration files in cfhosttable are some typical ones and
the old Berkeley versions from before the name server was being used. You should
create a symbolic link from cf to the directory that you are going to use. For example,
to use the name server:

In -s cf.named cf

The ones used at Berkeley are in m4(1) format; files with names ending ".m4" are m4
include files, while files with names ending ".me" are the master files. Files with names
ending ".cf' are the m4 processed versions of the corresponding ".me" file.

Three off the shelf configurations are supplied to handle the basic cases:

(I) Arpanet (TCP) sites not running the name server can use
cfhosuable!arpaproto.cf For simple sites, you should be able to use this file
without modification. This file is not in m4 format.

(2) UUCP sites can use cf hosttab/e/uucpproto.cf If your UUCP node name is not
the same as your system name (as printed by the hostname(I) command) you
may have to modify the U macro. This file is not in m4 format.

(3) A group of machines at a single site connected by an ethernet with (only) one
host connected to the outside world via UUCP is represented by two
configuration files: cfhosttablel/anroot.mc should be installed on the host with
outside connections and cfhos1tab/e//anleafmc should be installed on all other
hosts. These will require slightly more configuration. First, in both files the D
macro and D class must be adjusted to indicate your local domain. For exam
ple, if your company is known as "Muse" you will want to change both of those
accordingly. (As distributed, they are called XXX.) Second, in lanleafmc you
will have to change the R macro to the name of the root host, that is, the host
that runs lanroot.mc. For example, they might appear as:

e.g.,

DD Muse
CDLOCAL Muse

DRErato

Internally, the root host will be known as "Erato.Muse" and other hosts will be
known as "Thalia.Muse", "Clio.Muse", etc.

The file you need should be copied to a file with the same name as your system,

Sendmail Installation and Operation Guide SMM:07-5

cp uucpproto.cf ucsfcgl.cf

This file is now ready for installation as /usrlliblsendmail.cf

1.2. Installation Using the Makefile

A makefile exists in the root of the sendmail directory that will do all of these
steps for a 4.3BSD system. It may have to be slightly tailored for use on other systems.

Before using this makefile, you should create a symbolic link from cf to the direc
tory containing your configuration files. You should also have created your
configuration file and left it in the file "cf/system.cf' where system is the name of your
system (i.e., what is returned by hostname(I)). If you do not have host name you can
use the declaration "HOST=system" on the make(!) command line. You should also
examine the file mdlconfig.m4 and change the m4 macros there to reflect any libraries
and compilation flags you may need.

The basic installation procedure is to type:

make
make install
make installcf

in the root directory of the sendmail distribution. This will make all binaries and
install them in the standard places. The second and third make commands must be
executed as the superuser (root).

1.3. Installation by Hand

Along with building a configuration file, you will have to install the sendmail
startup into your UNIX system. If you are doing this installation in conjunction with a
regular Berkeley UNIX install, these steps will already be complete. Many of these
steps will have to be executed as the superuser (root).

1.3.1. lib/libsys.a

The library in lib/libsys.a contains some routines that should in some sense be
part of the system library. These are the system logging routines and the new direc
tory access routines (if required). If you are not running the 4.3BSD directory code
and do not have the compatibility routines installed in your system library, you
should execute the command:

(cd lib; make ndir)

This will compile and install the 4.3 compatibility routines in the library. You
should then type:

(cd lib; make)

This will recompile and fill the library.

1.3.2. /usr/lib/sendmail

The binary for sendmail is located in /usr/Iib. There is a version available in
the source directory that is probably inadequate for your system. You should plan
on recompiling and installing the entire system:

SMM:07-6

cd src
make clean
make
cp sendmail /usr/lib
chgrp kmem /usr/lib/sendmail

1.3.3. /usr/lib/sendmail.cf

Sendmail Installation and Operation Guide

The configuration file that you created earlier should be installed in
/usr/lib/sendmail.cf:

cp cf/system.cf /usr/lib/sendmail.cf

1.3.4. /usr/ucb/newaliases

If you are running delivermail, it is critical that the newaliases command be
replaced. This can just be a link to sendmai/:

rm -f /usr/ucb/newaliases
In /usr/lib/sendmail /usr/ucb/newaliases

1.3.5. /usr/spool/mqueue

The directory /usrlspool!mqueue should be created to hold the mail queue.
This directory should be mode 777 unless sendmail is run setuid, when mqueue
should be owned by the sendmail owner and mode 755.

1.3.6. /usr/Iib/aliases*

The system aliases are held in three files. The file "/usr/lib/aliases" is the mas
ter copy. A sample is given in "lib/aliases" which includes some aliases which must
be defined:

cp lib/aliases /usr/lib/aliases

You should extend this file with any aliases that are apropos to your system.

Normally sendmail looks at a version of these files maintained by the dbm (3)
routines. These are stored in "/usr/lib/aliases.dir" and "/usr/lib/aliases.pag." These
can initially be created as empty files, but they will have to be initialized promptly.
These should be mode 666 if you are running a reasonably relaxed system:

cp /dev/null /usr/lib/aliases.dir
cp /dev/null /usr/lib/aliases.pag
chmod 666 /usr/lib/aliases. *
newaliases

1.3. 7. /usr/lib/sendmail.fc

If you intend to install the frozen version of the configuration file (for quick
startup) you should create the file /usr/lib/sendmail.fc and initialize it. This step
may be safely skipped.

cp /dev/null /usr/lib/sendmail.fc
/usr/lib/sendmail -bz

1.3.8. /etc/re

It will be necessary to start up the sendmail daemon when your system
reboots. This daemon performs two functions: it listens on the SMTP socket for

Sendmail Installation and Operation Guide SMM:07-7

connections (to receive mail from a remote system) and it processes the queue
periodically to insure that mail gets delivered when hosts come up.

Add the following lines to "/etc/re" (or "/etc/re.local" as appropriate) in the
area where it is starting up the daemons:

if [-f /usr/lib/sendmail]; then

fi

(cd /usr/spool/mqueue; rm -f [lnx]f"')
/usr/lib/sendmail -bd -q30m &
echo -n ' sendmail' >/dev/console

The "cd" and "rm" commands insure that all lock files have been removed;
extraneous lock files may be left around if the system goes down in the middle of
processing a message. The line that actually invokes sendmail has two flags: "-bd"
causes it to listen on the SMTP port, and "-q30m" causes it to run the queue every
half hour.

If you are not running a version of UNIX that supports Berkeley TCP/IP, do
not include the -bd flag.

1.3.9. /usr/lib/sendmail.hf

This is the help file used by the SMTP HELP command. It should be copied
from "lib/sendmail.hf':

cp lib/sendmail.hf /usr/lib

1.3.10. /usr/lib/sendmail.st

If you wish to collect statistics about your mail traffic, you should create the
file "/usr/lib/sendmail.st":

cp /dev/null /usr/lib/sendmail.st
chmod 666 /usr/lib/sendmail.st

This file does not grow. It is printed with the program "aux/mailstats."

1.3.11. /usr/ucb/newaliases

If sendmail is invoked as "newaliases," it will simulate the -bi flag (i.e., will
rebuild the alias database; see below). This should be a link to /usr/lib/sendmail.

1.3.12. /usr/ucb/mailq

If sendmail is invoked as "mailq," it will simulate the -hp flag (i.e., sendmai!
will print the contents of the mail queue; see below). This should be a link to
/usr/lib/sendmail.

2. NORMAL OPERA TIO NS

2.1. Quick Configuration Startup

A fast version of the configuration file may be set up by using the -bz flag:

/usr/lib/sendmail -bz

This creates the file /usrllib!sendmai!fc ("frozen configuration"). This file is an image
of sendmaiI's data space after reading in the configuration file. If this file exists, it is
used instead of /usr!lib!sendmai!.cf sendmai!fc must be rebuilt manually every time
sendmail.cfis changed.

SMM:07-8 Sendmail Installation and Operation Guide

The frozen configuration file will be ignored if a -C flag is specified or if sendmail
detects that it is out of date. However, the heuristics are not strong so this should not
be trusted.

2.2. The System Log

The system log is supported by the syslogd(8) program.

2.2.l. Format

Each line in the system log consists of a timestamp, the name of the machine
that generated it (for logging from several machines over the ethernet), the word
"sendmail:", and a message.

2.2.2. Levels

If you have sys/ogd(8) or an equivalent installed, you will be able to do log
ging. There is a large amount of information that can be logged. The log is
arranged as a succession of levels. At the lowest level only extremely strange situa
tions are logged. At the highest level, even the most mundane and uninteresting
events are recorded for posterity. As a convention, log levels under ten are con
sidered "useful;" log levels above ten are usually for debugging purposes.

A complete description of the log levels is given in section 4.6.

2.3. The Mail Queue

The mail queue should be processed transparently. How.:ver, you may find that
manual intervention is sometimes necessary. For example, if a major host is down for
a period of time the queue may become clogged. Although sendmail ought to recover
gracefully when the host comes up, you may find performance unacceptably bad in the
meantime.

2.3.1. Printing the queue

The contents of the queue can be printed using the mai/q command (or by
specifying the -bp flag to sendmail):

mailq

This will produce a listing of the queue id's, the size of the message, the date the
message entered the queue, and the sender and recipients.

2.3.2. Format of queue files

All queue files have the form xfAA99999 where AA99999 is the id for this file
and the x is a type. The types are:

d The data file. The message body (excluding the header) is kept in this file.

The lock file. If this file exists, the job is currently being processed, and a
queue run will not process the file. For that reason, an extraneous If file can
cause a job to apparently disappear (it will not even time out!).

n This file is created when an id is being created. It is a separate file to insure
that no mail can ever be destroyed due to a race condition. It should exist for
no more than a few milliseconds at any given time.

q The queue control file. This file contains the information necessary to process
the job.

Sendmail Installation and Operation Guide SMM:07-9

A temporary file. These are an image of the qf file when it is being rebuilt. It
should be renamed to a qf file very quickly.

x A transcript file, existing during the life of a session showing everything that
happens during that session.

The qf file is structured as a series of lines each beginning with a code letter.
The lines are as follows:

D The name of the data file. There may only be one of these lines.

H A header definition. There may be any number of these lines. The order is
important: they represent the order in the final message. These use the same
syntax as header definitions in the configuration file.

R A recipient address. This will normally be completely aliased, but is actually
realiased when the job is processed. There will be one line for each recipient.

S The sender address. There may only be one of these lines.

E An error address. If any such lines exist, they represent the addresses that
should receive error messages.

T The job creation time. This is used to compute when to time out the job.

P The current message priority. This is used to order the queue. Higher
numbers mean lower priorities. The priority changes as the message sits in the
queue. The initial priority depends on the message class and the size of the
message.

M A message. This line is printed by the mailq command, and is generally used
to store status information. It can contain any text.

As an example, the following is a queue file sent to "mckusick@calder" and
"wnj":

DdfA13557
Serie
T404261372
Pl32
Rmckusick@calder
Rwnj
H?D?date: 23-0ct-82 15:49:32-PDT (Sat)
H?F?from: eric (Eric Allman)
H?x?full-name: Eric Allman
Hsubject: this is an example message
Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA>
Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22/82])

id Ai3557; 23-0ct-82 15:49:32-PDT (Sat)
HTo: mckusick@calder, wnj

This shows the name of the data file, the person who sent the message, the submis
sion time (in seconds since January 1, 1970), the message priority, the message
class, the recipients, and the headers for the message.

2.3.3. Forcing the queue

Sendmail should run the queue automatically at intervals. The algorithm is to
read and sort the queue, and then to attempt to process all jobs in order. When it
attempts to run the job, sendmail first checks to see if the job is locked. If so, it
ignores the job.

SMM:07-IO Sendmail Installation and Operation Guide

There is no attempt to insure that only one queue processor exists at any time,
since there is no guarantee that a job cannot take forever to process. Due to the
locking algorithm, it is impossible for one job to freeze the queue. However, an
uncooperative recipient host or a program recipient that never returns can accumu
late many processes in your system. Unfortunately, there is no way to resolve this
without violating the protocol.

In some cases, you may find that a major host going down for a couple of days
may create a prohibitively large queue. This will result in sendmail spending an
inordinate amount of time sorting the queue. This situation can be fixed by moving
the queue to a temporary place and creating a new queue. The old queue can be
run later when the offending host returns to service.

To do this, it is acceptable to move the entire queue directory:

cd /usr/spool
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be processing in the old
queue directory) and create a new daemon.

To run the old mail queue, run the following command:

/usr/lib/sendmail -oQ/usr/spool/omqueue -q

The -oQ flag specifies an alternate queue directory and the -q flag says to just run
every job in the queue. If you have a tendency toward voyeurism, you can use the
-v flag to watch what is going on.

When the queue is finally emptied, you can remove the directory:

rmdir /usr/spool/omqueue

2.4. The Alias Database

The alias database exists in two forms. One is a text form, maintained in the file
/usr!lib!aliases. The aliases are of the form

name: name I, name2, ...

Only local names may be aliased; e.g.,

eric@mit-xx: eric@berkeley.EDU

will not have the desired effect. Aliases may be continued by starting any continuation
lines with a space or a tab. Blank lines and lines beginning with a sharp sign ("#") are
comments.

The second form is processed by the dbm (3) library. This form is in the files
/usr!lib!aliases.dir and !usr!libla!iases.pag. This is the form that sendmail actually uses
to resolve aliases. This technique is used to improve performance.

2.4.1. Rebuilding the alias database

The DBM version of the database may be rebuilt explicitly by executing the
command

newaliases

This is equivalent to giving sendmail the -bi flag:

/usr/lib/sendmail -bi

If the "D" option is specified in the configuration, sendmail will rebuild the
alias database automatically if possible when it is out of date. The conditions under

Sendmail Installation and Operation Guide SMM:07-11

which it will do this are:

(1) The DBM version of the database is mode 666. -or-

(2) Sendmail is running setuid to root.

Auto-rebuild can be dangerous on heavily loaded machines with large alias files; if it
might take more than five minutes to rebuild the database, there is a chance that
several processes will start the rebuild process simultaneously.

2.4.2. Potential problems

There are a number of problems that can occur with the alias database. They
all result from a sendmai/ process accessing the DBM version while it is only par
tially built. This can happen under two circumstances: One process accesses the
database while another process is rebuilding it, or the process rebuilding the data
base dies (due to being killed or a system crash) before completing the rebuild.

Sendmail has two techniques to try to relieve these problems. First, it ignores
interrupts while rebuilding the database; this avoids the problem of someone abort
ing the process leaving a partially rebuilt database. Second, at the end of the
rebuild it adds an alias of the form

@:@

(which is not normally legal). Before sendmail will access the database, it checks to
insure that this entry exists'. Sendmail will wait for this entry to appear, at which
point it will force a rebuild itself2•

2.4.3. List owners

If an error occurs on sending to a certain address, say "x", sendmail will look
for an alias of the form "owner-x" to receive the errors. This is typically useful for
a mailing list where the submitter of the list has no control over the maintenance of
the list itself; in this case the list maintainer would be the owner of the list. For
example:

unix-wizards: eric@ucbarpa, wnj@monet, nosuchuser,
sam@matisse

owner-unix-wizards: eric@ucbarpa

would cause "eric@ucbarpa" to get the error that will occur when someone sends to
unix-wizards due to the inclusion of "nosuchuser" on the list.

2.5. Per-User Forwarding (.forward Files)

As an alternative to the alias database. any user may put a file with the name
".forward" in his or her home directory. If this file exists, sendmail redirects mail for
that user to the list of addresses listed in the .forward file. For example, if the home
directory for user "mckusick" has a .forward file with contents:

mckusick@ernie
kirk@calder

then any mail arriving for "mckusick" will be redirected to the specified accounts.

1The "a" option is required in the configuration for this action to occur. This should normally be specified un
less you are running deliver mail in parallel with sendmail.

2Note: the "D" option must be specified in the configuration file for this operation to occur. If the "D'' option
is not specified, a warning message is generated and sendmail continues.

SMM:07-12 Sendmail Installation and Operation Guide

2.6. Special Header Lines

Several header lines have special interpretations defined by the configuration file.
Others have interpretations built into sendmai/ that cannot be changed without chang
ing the code. These builtins are described here.

2.6.1. Return-Receipt-To:

If this header is sent, a message will be sent to any specified addresses when
the final delivery is complete, that is, when successfully delivered to a mailer with
the I flag (local delivery) set in the mailer descriptor.

2.6.2. Errors-To:

If errors occur anywhere during processing, this header will cause error mes
sages to go to the listed addresses rather than to the sender. This is intended for
mailing lists.

2.6.3. App~rently-To:

If a message comes in with no recipients listed in the message (in a To:, Cc:,
or Bee: line) then sendmail will add an "Apparently-To:" header line for any reci
pients it is aware of. This is not put in as a standard recipient line to warn any
recipients that the list is not complete.

At least one recipient line is required under RFC 822.

3. ARGUMENTS
The complete list of arguments to sendmail is described in detail in Appendix A.

Some important arguments are described here.

3.1. Queue Interval

The amount of time between forking a process to run through the queue is
defined by the -q flag. If you run in mode f or a this can be relatively large, since it
will only be relevant when a host that was down comes back up. If you run in q mode
it should be relatively short, since it defines the maximum amount of time that a mes
sage may sit in the queue.

3.2. Daemon Mode
If you allow incoming mail over an IPC connection, you should have a daemon

running. This should be set by your !etc/re file using the -bd flag. The -bd flag and the
-q flag may be combined in one call:

/usr/lib/sendmail -bd -q30m

3.3. Forcing the Queue

In some cases you may find that the queue has gotten clogged for some reason.
You can force a queue run using the -q flag (with no value). It is entertaining to use
the -v flag (verbose) when this is done to watch what happens:

/usr/lib/sendmail -q -v

3.4. Debugging

There are a fairly large number of debug flags built into sendmail. Each debug
flag has a number and a level, where higher levels means to print out more

Sendmail Installation and Operation Guide SMM:07-13

information. The convention is that l~vels greater than nine are "absurd," i.e., they
print out so much information that you wouldn't normally want to see them except for
debugging that particular piece of code. Debug flags are set using the -d option; the
syntax is:

debug-flag: -d debug-list
debug-list: debug-option [, debug-option)
debug-option: debug-range [. debug-level)
debug-range: integer I integer - integer
debug-level: integer

where spaces are for reading ease only. For example,

-dl2 Set flag 12 to level 1
-d 12.3 Set flag 12 to level 3
-d3-17 Set flags 3 through 17 to level 1
-d3-17.4 Set flags 3 through 17 to level 4

For a complete list of the available debug flags you will have to look at the code (they
are too dynamic to keep this documentation up to date).

3.5. Trying a Different Configuration File

An alternative configuration file can be specified using the -C flag; for example,

/usr/lib/sendmail -Ctest.cf

uses the configuration file test.cf instead of the default lusrllib!sendmail.cf If the -C
flag has no value it defaults to sendmail.cf in the current directory.

3.6. Changing the Values of Options

Options can be overridden using the -o flag. For example,

/usr/lib/sendmail -oT2m

sets the T (timeout) option to two minutes for this run only.

4. TUNING

There are a number of configuration parameters you may want to change, depending
on the requirements of your site. Most of these are set using an option in the
configuration file. For example, the line "OT3d" sets option "T" to the value "3d" (three
days).

Most of these options default appropriately for most sites. However, sites having
very high mail loads may find they need to tune them as appropriate for their mail load.
In particular, sites experiencing a large number of small messages, many of which are
delivered to many recipients, may find that they need to adjust the parameters dealing
with queue priorities.

4.1. Timeouts

All time intervals are set using a scaled syntax. For example, "!Om" represents
ten minutes, whereas "2h30m" represents two and a half hours. The full set of scales
is:

SMM:07-14 Sendmail Installation and Operation Guide

seconds
m minutes
h hours
d days
w weeks

4.1.1. Queue interval

The argument to the -q flag specifies how often a subdaemon will run the
queue. This is typically set to between fifteen minutes and one hour.

4.1.2. Read timeouts

It is possible to time out when reading the standard input or when reading
from a remote SMTP server. Technically, this is not acceptable within the pub
lished protocols. However, it might be appropriate to set it to something large in
certain environments (such as an hour). This will reduce the chance of large
numbers of idle daemons piling up on your system. This timeout is set using the r
option in the configuration file.

4.1.3. Message timeouts

After sitting in the queue for a few days, a message will time out. This is to
insure that at least the sender is aware of the inability to send a message. The
timeout is typically set to three days. This timeout is set using the T option in the
configuration file.

The time of submission is set in the queue, rather than the amount of time left
until timeout. As a result, you can flush messages that have been hanging for a
short period by running the queue with a short message timeout. For example,

/usr/lib/sendmail -oTld -q

will run the queue and flush anything that is one day old.

4.2. Forking During Queue Runs

By setting the Y option, sendmail will fork before each individual message while
running the queue. This will prevent sendmai/ from consuming large amounts of
memory, so it may be useful in memory-poor environments. However, if the Y option
is not set, sendmail will keep track of hosts that are down during a queue run, which
can improve performance dramatically.

4.3. Queue Priorities

Every message is assigned a priority when it is first instantiated, consisting of the
message size (in bytes) offset by the message class times the "work class factor" and the
number of recipients times the "work recipient factor." The priority plus the creation
time of the message (in seconds since January I, 1970) are used to order the queue.
Higher numbers for the priority mean that the message will be processed later when
running the queue.

The message size is included so that large messages are penalized relative to small
messages. The message class allows users to send "high priority" messages by including
a "Precedence:" field in their message; the value of this field is looked up in the P lines
of the configuration file. Since the number of recipients affects the amount of load a
message presents to the system, this is also included into the priority.

Sendmail Installation and Operation Guide SMM:07-15

The recipient and class factors can be set in the configuration file using the y and
z options respectively. They default to 1000 (for the recipient factor) and 1800 (for the
class factor). The initial priority is:

pri = size - (class * z) + (nrcpt * y)

(Remember, higher values for this parameter actually mean that the job will be treated
with lower priority.)

The priority of a job can also be adjusted each time it is processed (that is, each
time an attempt is made to deliver it) using the "work time factor," set by the Z
option. This is added to the priority, so it normally decreases the precedence of the
job, on the grounds that jobs that have failed many times will tend to fail again in the
future.

4.4. Load Limiting

Sendmail can be asked to queue (but not deliver) mail if the system load average
gets too high using the x option. When the load average exceeds the value of the x
option, the delivery mode is set to q (queue only) if the Queue Factor (q option)
divided by the difference in the current load average and the x option plus one exceeds
the priority of the message - that is, the message is queued iff:

. QF
prz> LA -x+ 1

The q option defaults to 10000, so each point of load average is worth 10000 priority
points (as described above, that is, bytes + seconds + offsets).

For drastic cases, the X option defines a load average at which sendmail will
refuse to accept network connections. Locally generated mail (including incoming
UUCP mail) is still accepted.

4.5. Delivery Mode

There are a number of delivery modes that sendmail can operate in, set by the
"d" configuration option. These modes specify how quickly mail will be delivered.
Legal modes are:

i deliver interactively (synchronously)
b deliver in background (asynchronously)
q queue only (don't deliver)

There are tradeoffs. Mode "i" passes the maximum amount of information to the
sender, but is hardly ever necessary. Mode "q" puts the minimum load on your
machine, but means that delivery may be delayed for up to the queue interval. Mode
"b" is probably a good compromise. However, this mode can cause large numbers of
processes if you have a mailer that takes a long time to deliver a message.

4.6. Log Level

The level of logging can be set for sendmail. The default using a standard
configuration table is level 9. The levels are as follows:.

0 No logging.

Major problems only.

2 Message collections and failed deliveries.

3 Successful deliveries.

SMM:07-16 Sendmail Installation and Operation Guide

4 Messages being deferred (due to a host being down, etc.).

5 Normal message queueups.

6 Unusual but benign incidents, e.g., trying to process a locked queue file.

9 Log internal queue id to external message id mappings. This can be useful for
tracing a message as it travels between several hosts.

12 Several messages that are basically only of interest when debugging.

16 Verbose information regarding the queue.

4.7. File Modes

There are a number of files that may have a number of. modes. The modes
depend on what functionality you want and the level of security you require.

4.7.l. To suid or not to suid?

Sendmail can safely be made setuid to root. At the point where it is about to
exec(2) a mailer, it checks to see if the userid is zero; if so, it resets the userid and
groupid to a default (set by the u and g options). (This can be overridden by setting
the S flag to the mailer for mailers that are trusted and must be called as root.)
However, this will cause mail processing to be accounted (using sa(8)) to root rather
than to the user sending the mail.

4.7.2. Temporary file modes

The mode of all temporary files that sendmail creates is determined by the "F"
option. Reasonable values for this option are 0600 and 0644. If the more permis
sive mode is selected, it will not be necessary to run sendmail as root at all (even
when running the queue).

4.7.3. Should my alias database be writable?

At Berkeley we have the alias database (/usr/lib/aliases"') mode 666. There are
some dangers inherent in this approach: any user can add him-/her-self to any list,
or can "steal" any other user's mail. However, we have found users to be basically
trustworthy, and the cost of having a read-only database greater than the expense of
finding and eradicating the rare nasty person.

The database that sendmail actually used is represented by the two files
aliases.dir and aliases.pag (both in /usr/lib). The mode on these files should match
the mode on /usr/lib/aliases. If aliases is writable and the DBM files (a!iases.dir and
aliases.pag) are not, users will be unable to reflect their desired changes through to
the actual database. However, if aliases is read-only and the DBM files are writable,
a slightly sophisticated user can arrange to steal mail anyway.

If your DBM files are not writable by the world or you do not have auto
rebuild enabled (with the "D" option), then you must be careful to reconstruct the
alias database each time you change the text version:

newaliases

If this step is ignored or forgotten any intended changes will also be ignored or for
gotten.

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE

This section describes the configuration file in detail, including hints on how to write
one of your own if you have to.

Sendmail Installation and Operation Guide SMM:07-17

Th·:re is one point that should be made clear immediately: the syntax of the
configuration file is designed to be reasonably easy .to parse, since this is done every time
sendmai/ starts up, rather than easy for a human to read or write. On the "future project"
list is a configuration-file compiler.

An overview of the configuration file is given first, followed by details of the seman-
tics.

5.1. The Syntax

The configuration file is organized as a series of lines, each of which begins with a
single character defining the semantics for the rest of the line. Lines beginning with a
space or a tab are continuation lines (although the semantics are not well defined in
many places). Blank lines and lines beginning with a sharp symbol ('#') are comments.

5.1.1. R and S - rewriting rules

The core of address parsing are the rewriting rules. These are an ordered pro
duction system. Sendmail scans through the set of rewriting rules looking for a
match on the left hand side (LHS) of the rule. When a rule matches, the address is
replaced by the right hand side (RHS) of the rule.

There are several sets of rewriting rules. Some of the rewriting sets are used
internally and must have specific semantics. Other rewriting sets do not have
specifically assigned semantics, and may be referenced by the mailer definitions or
by other rewriting sets.

The syntax of these two commands are:

Sn

Sets the current ruleset being collected to n. If you begin a ruleset more than once
it deletes the old definition.

Rlhs rhs comments

The fields must be separated by at least one tab character; there may be embedded
spaces in the fields. The /hs is a pattern that is applied to the input. If it matches,
the input is rewritten to the rhs. The comments are ignored.

5.1.2. D - define macro

Macros are named with a single character. These may be selected from the
entire ASCII set, but user-defined macros should be selected from the set of upper
case letters only. Lower case letters and special symbols are used internally.

The syntax for macro definitions is:

Dxval

where x is the name of the macro and val is the value it should have. Macros can
be interpolated in most places using the escape sequence $x.

5.1.3. C and F - define classes

Classes of words may be defined to match on the left hand side of rewriting
rules. For example a class of all local names for this site might be created so that
attempts to send to oneself can be eliminated. These can either be defined directly
in the configuration file or read in from another file. Classes may be given names
from the set of upper case letters. Lower case letters and special characters are
reserved for system use.

SMM:07-18

The syntax is:

Cc word I word2 ...
Fe file

Sendmail Installation and Operation Guide

The first form defines the class c to match any of the named words. It is permissi
ble to split them among multiple lines; for example, the two forms:

and

CHmonet ucbmonet

CHmonet
CHucbmonet

are equivalent. The second form reads the elements of the class c from the named
file.

5.1.4. M - define mailer

Programs and interfaces to mailers are defined in this line. The format is:

Mname, (field= value}*

where name is the name of the mailer (used internally only) and the "field= name"
pairs define attributes of the mailer. Fields are:

Path The pathname of the mailer
Flags Special flags for this mailer
Sender A rewriting set for sender addresses
Recipient A rewriting set for recipient addresses
Argv An argument vector to pass to this mailer
Eol The end-of-line string for this mailer
Maxsize The maximum message length to this mailer

Only the first character of the field name is checked.

5.1.5. H - define header

The format of the header lines that sendmail inserts into the message are
defined by the H line. The syntax of this line is:

H[?mflags?]hname: htemplate

Continuation lines in this spec are reflected directly into the outgoing message. The
htemplate is macro expanded before insertion into the message. If the mflags (sur
rounded by question marks) are specified, at least one of the specified flags must be
stated in the mailer definition for this header to be automatically output. If one of
these headers is in the input it is reflected to the output regardless of these flags.

Some headers have special semantics that will be described below.

5.1.6. 0 - set option

There are a number of "random" options that can be set from a configuration
file. Options are represented by single characters. The syntax of this line is:

Oovalue

This sets option o to be value. Depending on the option, value may be a string, an
integer, a boolean (with legal values "t", "T", "f', or "F"; the default is TRUE), or
a time interval.

Sendmail Installation and Operation Guide SMM:07-19

5.1.7. T - define trusted users

Trusted users are those users who are permitted to override the sender address
using the -f flag. These typically are "root." "uucp," and "network." but on some
users it may be convenient to extend this list to include other users. perhaps to sup
port a separate UUCP login for each host. The syntax or this line is:

Tuserl user2 ...

There may be more than one or these lines.

5.1.8. P - precedence definitions

Values for the "Precedence:" field may be defined using the P control line.
The syntax or this field is:

Pname=11111n

When the name is found in a "Precedence:" field, the message class is set to num.
Higher numbers mean higher precedence. Numbers less than zero have the special
property that error messages will not be returned. The default precedence is zero.
For example, our list or precedences is:

Pfirst-class=O
Pspecial-deli very= 100
Pjunk=-100

5.2. The Semantics

This section describes the semantics or the configuration file.

5.2.1. Special-macros, conditionals

Macros are interpolated using the construct $x, where x is the name or the
macro to be interpolated. In particular, lower C'.!se letters are reserved to have spe
cial semantics, used to pass information in or out or sendmail, and some special
characters are reserved to provide conditionals, etc.

Conditionals can be specified using the syntax:

$?x text! $1 text2 $.

This interpolates text I if the macro $x is set, and text2 otherwise. The "else" ($1)
clause may be omitted.

The following macros must be defined to transmit information into sendmai/:

e The SMTP entry message
The "official" domain name for this site
The format of the UNIX from line

n The name of the daemon (for error messages)
o The set of "operators" in addresses
q default format of sender address

The $e macro is printed out when SMTP starts up. The first word must be the $j
macro. The $j macro should be in RFC821 format. The $1 and $n macros can be
considered constants except under terribly unusual circumstances. The $0 macro
consists of a list of characters which will be considered tokens and which will
separate tokens when doing parsing. For example, if "@" were in the $0 macro,
then the input "a@b" would be scanned as three tokens: "a," "@," and "b."
Finally, the $q macro specifies how an address should appear in a message when it
is defaulted. For example, on our system these definitions are:

SMM:07-20

De$j Sendmail $v ready at $b
DnMAILER-DAEMON
DIFrom $g $d
Do.:%@r~1
Dqg?x ($x)$.
Dj$H.$D

Sendmail Installation and Operation Guide

An acceptable alternative for the $q macro is "$?x$x $.<$g>". These correspond to
the following two formats:

eric@Berkeley (Eric Allman)
Eric Allman <eric@Berkeley>

Some macros are defined by sendmail for interpolation into argv's for mailers
or for other contexts. These macros are:

a The origination date in Arpanet format
b The current date in Arpanet format
c The hop count
d The date in UNIX (ctime) format
f The sender (from) address
g The sender address relative to the recipient
h The recipient host

The queue id
p Sendmail's pid
r Protocol used
s Sender's host name
t A numeric representation of the current time
u The recipient user
v The version number of sendmail
w The hostname of this site
x The full name of the sender
z The home directory of the recipient

There are three types of dates that can be used. The $a and $b macros are in
Arpanet format; $a is the time as extracted from the "Date:" line of the message (if
there was one), and $b is the current date and time (used for postmarks). If no
"Date:" line is found in the incoming message, $a is set to the current time also.
The $d macro is equivalent to the $a macro in UNIX (ctime) format.

The $f macro is the id of the sender as originally determined; when mailing to
a specific host the $g macro is set to the address of the sender relative to the reci
pient. For example, if I send to "bollard@matisse" from the machine "ucbarpa"
the $f macro will be "eric" and the $g macro will be "eric@ucbarpa."

The $x macro is set to the full name of the sender. This can be determined in
several ways. It can be passed as flag to sendmail. The second choice is the value
of the "Full-name:" line in the header if it exists, and the third choice is the com
ment field of a "From:" line. If all of these fail, and if the message is being ori
ginated locally, the full name is looked up in the letclpasswd file.

When sending, the $h, $u, and $z macros get set to the host, user, and home
directory (if local) of the recipient. The first two are set from the $@ and $: part of
the rewriting rules, respectively.

The $p and $t macros are used to create unique strings (e.g., for the
"Message-Id:" field). The $i macro is set to the queue id on this host; if put into
the timestamp line it can be extremely useful for tracking messages. The $v macro

Sendmail Installation and Operation Guide SMM:07-21

is set to be the version number of sendmail; this is normally put in timestamps and
has been proven extremely useful for debugging. The $w macro is set to the name
of this host if it can be determined. The $c field is set to the "hop count," i.e., the
number of times this message has been processed. This can be determined by the
-h flag on the command line or by counting the timestamps in the message.

The $r and $s fields are set to the protocol used to communicate with send
mail and the sending hostname; these are not supported in the current version.

5.2.2. Special classes

The class $=w is set to be the set of all names this host is known by. This can
be used to delete local hostnames.

5.2.3. The left hand side

The left hand side of rewriting rules contains a pattern. Normal words are
simply matched directly. Metasyntax is introduced using a dollar sign. The
metasymbols are:

$* Match zero or more tokens
$+ Match one or more tokens
$- Match exactly one token
$=x Match any token in class x
$"x Match any token not in class x

If any of these match, they are assigned to the symbol $n for replacement on the
right hand side, where n is the index in the LHS. For example, if the LHS:

$-:$+

is applied to the input:

UCBARPA:eric

the rule will match, and the values passed to the RHS will be:

$1 UCBARPA
$2 eric

5.2.4. The right hand side

When the left hand side of a rewriting rule matches, the input is deleted and
replaced by the right hand side. Tokens are copied directly from the RHS unless
they begin with a dollar sign. Metasymbols are:

$n Substitute indefinite token n from LHS
$[name$) Canonicalize name
$>n "Call" ruleset n
$#mailer Resolve to mailer
$@host Specify host
$:user Specify user

The $n syntax substitutes the corresponding value from a$+,$-,$*,$=, or$"
match on the LHS. It may be used anywhere.

A host name enclosed between $[and $) is looked up using the gethostent(3)
routines and replaced by the canonical name. For example, "$[csam$]" would
become "lbl-csam.arpa" and "$[[128.32.130.2]$]" would become
"vangogh.berkeley.edu."

SMM:07-22 Sendmail Installation and Operation Guide

The $>n syntax causes the remainder of the line to be substituted as usual and
then passed as the argument to ruleset n. The final value of ruleset n then becomes
the substitution for this rule.

The $# syntax should only be used in ruleset zero. It causes evaluation of the
ruleset to terminate immediately, and signals to sendmail that the address has com
pletely resolved. The complete syntax is:

$#mailer$@host$:user
This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the
mailer is local the host part may be omitted. The mailer and host must be a single
word, but the user may be multi-part. ·

A RHS may also be preceded by a $@ or a $: to control evaluation. A $@
prefix causes the ruleset to return with the remainder of the RHS as the value. A $:
prefix causes the rule to terminate immediately, but the ruleset to continue; this can
be used to avoid continued application of a rule. The prefix is stripped before con
tinuing.

The $@ and $: prefixes may precede a $> spec; for example:

R$+ $:$>7$1

matches anything, passes that to ruleset seven, and continues; the $: is necessary to
avoid an infinite loop.

Substitution occurs in the order described, that is, parameters from the LHS
are substituted, hostnames are canonicalized, "subroutines" are called, and finally
$#, $@, and $: are processed.

5.2.5. Semantics of rewriting rule sets

addr

There are five rewriting sets that have specific semantics. These are related as
depicted by figure 2.

Ruleset three should turn the address into "canonical form." This form should
have the basic syntax:

resolved address

Figure 2 - Rewriting set semantics
D - sender domain addition
S - mailer-specific sender rewriting
R - mailer-specific recipient rewriting

msg

Sendmail Installation and Operation Guide SMM:07-23

local-part@host-domain-spec

If no "@" sign is specified, then the host-domain-spec may be appended from the
sender address (if the C flag is set in the mailer definition corresponding to the send
ing mailer). Ruleset three is applied by sendmail before doing anything with any
address.

Ruleset zero is applied after ruleset three to addresses that are going to actu
ally specify recipients. It must resolve to a {mailer, host, user) triple. The mailer
must be defined in the mailer definitions from the configuration file. The host is
defined into the $h macro for use in the argv expansion of the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses respec
tively. They are applied before any specification in the mailer definition. They
must never resolve.

Ruleset four is applied to all addresses in the message. It is typically used to
translate internal to external form.

5.2.6. Mailer flags etc.

There are a number of flags that may be associated with each mailer, each
identified by a letter of the alphabet. Many of them are assigned semantics inter
nally. These are detailed in Appendix C. Any other flags may be used freely to
conditionally assign headers to messages destined for particular mailers.

5.2.7. The "error" mailer

The mailer with the special name "error" can be used to generate a user error.
The (optional) host field is a numeric exit status to be returned, and the user field is
a message to be printed. For example, the entry:

$#error$:Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated if the LHS
matches. This mailer is only functional in ruleset zero.

5.3. Building a Configuration File From Scratch

Building a configuration table from scratch is an extremely difficult job. For
tunately, it is almost never necessary to do so; nearly every situation that may come up
may be resolved by changing an existing table. In any case, it is critical that you
understand what it is that you are trying to do and come up with a philosophy for the
configuration table. This section is intended to explain what the real purpose of a
configuration table is and to give you some ideas for what your philosophy might be.

5.3.1. What you are trying to do

The configuration table has three major purposes. The first and simplest is to
set up the environment for sendmail. This involves setting the options, defining a
few critical macros, etc. Since these are described in other places, we will not go
into more detail here.

The second purpose is to rewrite addresses in the message. This should typi
cally be done in two phases. The first phase maps addresses in any format into a
canonical form. This should be done in ruleset three. The second phase maps this
canonical form into the syntax appropriate for the receiving mailer. Sendmail does
this in three subphases. Rulesets one and two are applied to all sender and reci
pient addresses respectively. After this, you may specify per-mailer rulesets for both
sender and recipient addresses; this allows mailer-specific customization. Finally,

SMM:07-24 Sendmail Installation and Operation Guide

ruleset four is applied to do any default conversion to external form.

The third purpose is to map addresses into the actual set of instructions neces
sary to get the message delivered. Ruleset zero must resolve to the internal form,
which is in turn used as a pointer to a mailer descriptor. The mailer descriptor
describes the interface requirements of the mailer.

5.3.2. Philosophy

The particular philosophy you choose will depend heavily on the size and
structure of your organization. I will present a few possible philosophies here.

One general point applies to all of these philosophies: it is almost always a
mistake to try to do full name resolution. For example, if you are trying to get
names of the form "user@host" to the Arpanet, it does not pay to route them to
"xyzvax!decvax!ucbvax!c70:user@host" since you then depend on several links not
under your control. The best approach to this problem is to simply forward to
"xyzvax!user@host" and Jet xyzvax worry about it from there. In summary, just get
the message closer to the destination, rather than determining the full path.

5.3.2.1. Large site, many hosts - minimum information

Berkeley is an example of a large site, i.e., more than two or three hosts
and multiple mail connections. We have decided that the only reasonable philo
sophy in our environment is to designate one host as the guru for our site. It
must be able to resolve any piece of mail it receives. The other sites should have
the minimum amount of information they can get away with. In addition, any
information they do have should be hints rather than solid information.

For example, a typical site on our local ether network is "monet." When
monet receives mail for delivery, it checks whether it knows that the destination
host is directly reachable; if so, mail is sent to that host. If it receives mail for
any unknown host, it just passes it directly to "ucbvax," our master host.
U cbvax may determine that the host name is illegal and reject the message, or
may be able to do delivery. However, it is important to note that when a new
mail connection is added, the only host that must have its tables updated is
ucbvax; the others may be updated if convenient, but this is not critical.

This picture is slightly muddied due to network connections that are not
actually located on ucbvax. For example, some UUCP connections are currently
on "ucbarpa." However, monet does not know about this; the information is hid
den totally between ucbvax and ucbarpa. Mail going from monet to a UUCP
host is transferred via the ethernet from monet to ucbvax, then via the ethernet
from ucbvax to ucbarpa, and then is submitted to UUCP. Although this
involves some extra hops, we feel this is an acceptable tradeoff.

An interesting point is that it would be possible to update monet to send
appropriate UUCP mail directly to ucbarpa if the load got too high; if monet
failed to note a host as connected to ucbarpa it would go via ucbvax as before,
and if monet incorrectly sent a message to ucbarpa it would still be sent by
ucbarpa to ucbvax as before. The only problem that can occur is loops, for
example, if ucbarpa thought that ucbvax had the UUCP connection and vice
versa. For this reason, updates should always happen to the master host first.

This philosophy results as much from the need to have a single source for
the configuration files (typically built using m4 (I) or some similar tool) as any
logical need. Maintaining more than three separate tables by hand is essentially
an impossible job.

Sendmail Installation and Operation Guide SMM:07-25

5.3.2.2. Small site - complete information

A small site (two or three hosts and few external connections) may find it
more reasonable to have complete information at each host. This would require
that each host know exactly where each network connection is, possibly includ
ing the names of each host on that network. As long as the site remains small
and the the configuration remains relatively static, the update problem will prob
ably not be too great.

5.3.2.3. Single host

This is in some sense the trivial case. The only major issue is trying to
insure that you don't have to know too much about your environment. For
example, if you have a UUCP connection you might find it useful to know about
the names of hosts connected directly to you, but this is really not necessary
since this may be determined from the syntax.

5.3.3. Relevant issues

The canonical form you use should almost certainly be as specified in the
Arpanet protocols RFC8 l 9 and RFC822. Copies of these RFC's are included on
the sendmail tape as doc!rfc819.lpr and doc!~(c822.lpr.

RFC822 describes the format of the mail message itself. Sendmail follows this
RFC closely, to the extent that many of the standards described in this document
can not be changed without changing the code. In particular, the following charac
ters have special interpretations:

<>()"\

Any attempt to use these characters for other than their RFC822 purpose in
addresses is probably doomed to disaster.

RFC8 l 9 describes the specifics of the domain-based addressing. This is
touched on in RFC822 as well. Essentially each host is given a name which is a
right-to-left dot qualified pseudo-path from a distinguished root. The elements of
the path need not be physical hosts; the domain is logical rather than physical. For
example, at Berkeley one legal host might be "a.CC.Berkeley.EDU"; reading from
right to left, "EDU" is a top level domain comprising educational institutions,
"Berkeley" is a logical domain name, "CC" represents the Computer Center, (in
this case a strictly logical entity), and "a" is a host in the Computer Center.

Beware when reading RFC8 I 9 that there are a number of errors in it.

5.3.4. How to proceed

Once you have decided on a philosophy, it is worth examining the available
configuration tables to decide if any of them are close enough to steal major parts
of. Even under the worst of conditions, there is a fair amount of boiler plate that
can be collected safely.

The next step is to build ruleset three. This will be the hardest part of the job.
Beware of doing too much to the address in this ruleset, since anything you do will
reflect through to the message. In particular, stripping of local domains is best
deferred, since this can leave you with addresses with no domain spec at all. Since
sendmail likes to append the sending domain to addresses with no domain, this can
change the semantics of addresses. Also try to avoid fully qualifying domains in
this ruleset. Although technically legal, this can lead to unpleasantly and unneces
sarily long addresses reflected into messages. The Berkeley configuration files define

SMM:07-26 Sendmail Installation and Operation Guide

ruleset nine to qualify domain names and strip local domains. This is called from
ruleset zero to get all addresses into a cleaner form.

Once you have ruleset three finished, the other rulesets should be relatively
trivial. If you need hints, examine the supplied configuration tables.

5.3.5. Testing the rewriting rules - the -ht flag

When you build a configuration table, you can do a certain amount of testing
using the "test mode" of sendmail. For example, you could invoke sendmail as:

sendmail -bt -Ctest.cf

which would read the configuration file "test.cf' and enter test mode. In this mode,
you enter lines of the form:

rwset address

where rwset is the rewriting set you want to use and address is an address to apply
the set to. Test mode shows you the steps it takes as it proceeds, finally showing
you the address it ends up with. You may use a comma separated list of rwsets for
sequential application of rules to an input; ruleset three is always applied first. For
example:

1,21,4 monet:bollard

first applies ruleset three to the input "monet: bollard." Ruleset one is then applied
to the output of ruleset three, followed similarly by rulesets twenty-one and four.

If you need more detail, you can also use the "-d2 l" flag to turn on more
debugging. For example,

sendmail -bt -d21.99

turns on an incredible amount of information; a single word address is probably
going to print out several pages worth of information.

5.3.6. Building mailer descriptions

To add an outgoing mailer to your mail system, you will have to define the
characteristics of the mailer.

Each mailer must have an internal name. This can be arbitrary, except that
the names "local" and "prog" must be defined.

The pathname of the mailer must be given in the P field. If this mailer should
be accessed via an IPC connection, use the string "[IPC]" instead.

The F field defines the mailer flags. You should specify an "f' or "r" flag to
pass the name of the sender as a -f or -r flag respectively. These flags are only
passed if they were passed to sendmai/, so that mailers that give errors under some
circumstances can be placated. If the mailer is not picky you can just specify "-f
$g" in the argv template. If the mailer must be called as root the "S" flag should be
given; this will not reset the userid before calling the mailer3• If this mailer is local
(i.e., will perform final delivery rather than another network hop) the "l" flag should
be given. Quote characters (backslashes and ·· marks) can be stripped from
addresses if the "s" flag is specified; if this is not given they are passed through. If
the mailer is capable of sending to more than one user on the same host in a single
transaction the "m" flag should be stated. If this flag is on, then the argv template

3Sendmai/ must be running setuid to root for this to work.

Sendmail Installation and Operation Guide SMM:07-27

containing $u will be repeated for each unique user on a given host. The "e" flag
will mark the mailer as being "expensive," which will cause sendmail to defer con
nection until a queue run4•

An unusual case is the "C" flag. This flag applies to the mailer that the mes
sage is received from, rather than the mailer being sent to; if set, the domain spec of
the sender (i.e., the "@host.domain" part) is saved and is appended to any
addresses in the message that do not already contain a domain spec. For example,
a message of the form:

From: eric@ucbarpa
To: wnj@monet, mckusick

will be modified to:

From: eric@ucbarpa
To: wnj@monet, mckusick@ucbarpa

if and only if the "C" flag is defined in the mailer corresponding to "eric@ucbarpa."

Other flags are described in Appendix C. -

The S and R fields in the mailer description are per-mailer rewriting sets to be
applied to sender and recipient addresses respectively. These are applied after the
sending domain is appended and the general rewriting sets (numbers one and two)
are applied, but before the output rewrite (ruleset four) is applied. A typical use is
to append the current domain to addresses that do not already have a domain. For
example, a header of the form:

From: eric

might be changed to be:

From: eric@ucbarpa

or

From: ucbvax!eric

depending on the domain it is being shipped into. These sets can also be used to do
special purpose output rewriting in cooperation with ruleset four.

The E field defines the string to use as an end-of-line indication. A string con
taining only newline is the default. The usual backslash escapes (\r, \n, \f, \b) may
be used.

Finally, an argv template is given as the E field. It may have embedded
spaces. If there is no argv with a $u macro in it, sendmail will speak SMTP to the
mailer. If the pathname for this mailer is "[IPC]," the argv should be

IPC $h [port]

where port is the optional port number to connect to.

For example, the specifications:

Mlocal, P=/bin/mail, F=rlsm S=IO, R=20, A=mail-d $u
Mether,P=[IPC], F=meC, S= 11, R=21, A=IPC $h, M=IOOOOO

specifies a mailer to do local delivery and a mailer for ethemet delivery. The first is
called "local," is located in the file "/bin/mail," takes a picky -r flag, does local
delivery, quotes should be stripped from addresses, and multiple users can be

'The "c" configuration option must be given for this to be effective,

SMM:07-28 Sendmail Installation and Operation Guide

delivered at once; ruleset ten should be applied to sender addresses in the message
and ruleset twenty should be applied to recipient addresses; the argv to send to a
message will be the word "mail," the word "-d," and words containing the name of
the receiving user. If a -r flag is inserted it will be between the words "mail" and
"-d." The second mailer is called "ether," it should be connected to via an IPC
connection, it can handle multiple users at once, connections should be deferred,
and any domain from the sender address should be appended to any receiver name
without a domain; sender addresses should be processed by ruleset eleven and reci
pient addresses by ruleset twenty-one. There is a I 00,000 byte limit on messages
passed through this mailer.

APPENDIX A

COMMAND LINE FLAGS

Arguments must be presented with flags before addresses. The flags are:

-f addr The sender's machine address is addr. This flag is ignored unless the real user
is listed as a "trusted user" or if addr contains an exclamation point (because
of certain restrictions in UUCP).

-r addr

-h cnt

-Fname

-n
-t

-bx

-qtime

-Cfile

-di eve I

-ox value

An obsolete form of -f.

Sets the "hop count" to cnt. This represents the number of times this message
has been processed by sendmail (to the extent that it is supported by the
underlying networks). Cnt is incremented during processing, and if it reaches
MAXHOP (currently 30) sendmail throws away the message with an error.

Sets the full name of this user to name.

Don't do aliasing or forwarding.

Read the header for "To:", "Cc:'', and "Bee:" lines, and send to everyone
listed in those lists. The "Bee:" line will be deleted before sending. Any
addresses in the argument vector will be deleted from the send list.

Set operation mode to x. Operation modes are:

m Deliver mail (default)
a Run in arpanet mode (see below)
s Speak SMTP on input side
d Run as a daemon

Run in test mode
v Just verify addresses, don't collect or deliver

Initialize the alias database
p Print the mail queue
z Freeze the configuration file

The special processing for the ARPANET includes reading the "From:" line
from the header to find the sender, printing ARPANET style messages (pre
ceded by three digit reply codes for compatibility with the FTP protocol
(Neigus73, Postel74, Postel77]), and ending lines of error messages with
<CRLF>.

Try to process the queued up mail. If the time is given, a sendmail will run
through the queue at the specified interval to deliver queued mail; otherwise,
it only runs once.

Use a different configuration file. Sendmail runs as the invoking user (rather
than root) when this flag is specified.

Set debugging level.

Set option x to the specified value. These options are described in Appendix
B.

There are a number of options that may be specified as primitive flags (provided for
compatibility with de/ivermai[). These are the e, i, m, and v options. Also, the f option may
be specified as the -s flag.

Sendmail Installation and Operation Guide SMM:07-29

APPENDIX B

CONFIGURATION OPTIONS

The following options may be set using the -o flag on the command line or the 0 line in
the configuration file. Many of them cannot be specified unless the invoking user is trusted.

Afile Use the named file as the alias file. If no file is specified, use aliases in the
current directory.

aN If set, wait up to N minutes for an "@:@" entry to exist in the alias database
before starting up. If it does not appear in N minutes, rebuild the database (if
the D option is also set) or issue a warning.

Be

c

dx

D

ex

Fn

f

gn

Hfile

Ln

Mxva/ue

m
Nnetname

SMM:07-30

Set the blank substitution character to c. Unquoted spaces in addresses are
replaced by this character.

If an outgoing mailer is marked as being expensive, don't connect immedi
ately. This requires that queueing be compiled in, since it will depend on a
queue run process to actually send the mail.

Deliver in mode x. Legal modes are:

i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

If set, rebuild the alias database if necessary and possible. If this option is not
set, sendmail will never rebuild the alias database unless explicitly requested
using -bi.

Dispose of errors using mode x. The values for x are:

p Print error messages (default)
q No messages, just give exit status
m Mail back errors
w Write back errors (mail if user not logged in)
e Mail back errors and give zero exit stat always

The temporary file mode, in octal. 644 and 600 are good choices.

Save Unix-style "From" lines at the front of headers. Normally they are
assumed redundant and discarded.

Set the default group id for mailers to run in to n.

Specify the help file for SMTP.

Ignore dots in incoming messages.

Set the default log level to n.

Set the macro x to value. This is intended only for use from the command
line.

Send to me too, even if I am in an alias expansion.

The name of the home network; "ARPA" by default. The the argument of an
SMTP "HELO" command is checked against "hostname.netname" where

Sendmail Installation and Operation Guide

Sendmail Installation and Operation Guide SMM:07-31

0

Qdir

q(actor

rtime

Sfile

Ttime

tS,D

un

v

xLA

XLA

yfact

y

zfact

Zfact

hos/name is requested from the kernel for the current connection. If they do
not match, "Received:" lines are augmented by the name that is determined
in this manner so that messages can be traced accurately.

Assume that the headers may be in old format, i.e., spaces delimit names.
This actually turns on an adaptive algorithm: if any recipient address contains
a comma, parenthesis, or angle bracket, it will be assumed that commas
already exist. If this flag is not on, only commas delimit names. Headers are
always output with commas between the names.

Use the named dir as the queue directory.

Use factor as the multiplier in the map function to decide when to just queue
up jobs rather than run them. This value is divided by the difference between
the current load average and the load average limit (x flag) to determine the
maximum message priority that will be sent. Defaults to 10000.

Timeout reads after time interval.

Log statistics in the named file.

Be super-safe when running things, i.e., always instantiate the queue file, even
if you are going to attempt immediate delivery. Sendmail always instantiates
the queue file before returning control the the client under any circumstances.

Set the queue timeout to time. After this interval, messages that have not
been successfully sent will be returned to the sender.

Set the local time zone name to S for standard time and D for daylight time;
this is only used under version six.

Set the default userid for mailers to n. Mailers without the S flag in the
mailer definition will run as this user.

Run in verbose mode.

When the system load average exceeds LA, just queue messages (i.e., don't try
to send them).

When the system load average exceeds LA, refuse incoming SMTP connec
tions.

The indicated factor is added to the priority (thus lowering the priority of the
job) for each recipient, i.e., this value penalizes jobs with large numbers of
recipients.

If set, deliver each job that is run from the queue in a separate process. Use
this option if you are short of memory, since the default tends to consume
considerable amounts of memory while the queue is being processed.

The indicated factor is multiplied by the message class (determined by the
Precedence: field in the user header and the P lines in the configuration file)
and subtracted from the priority. Thus, messages with a higher Priority: will
be favored.

The factor is added to the priority every time a job is processed. Thus, each
tiine a job is processed, its priority will be decreased by the indicated value.
In most environments this should be positive, since hosts that are down are
all too often down for a long time.

APPENDIX C

MAILER FLAGS

The following flags may be set in the mailer description.

f The mailer wants a -f from flag, but only if this is a network forward operation (i.e., the
mailer will give an error if the executing user does not have special permissions).

Same as f, but sends a -r flag.

S Don't reset the userid before calling the mailer. This would be used in a secure environ
ment where sendmail ran as root. This could be used to avoid forged addresses. This
flag is suppressed if given from an "unsafe" environment (e.g, a user's mail.cf file).

n Do not insert a UNIX-style "From" line on the front of the message.

This mailer is local (i.e., final delivery will be performed).

Strip quote characters off of the address before calling the mailer.

m This mailer can send to multiple users on the same host in one transaction. When a $u
macro occurs in the argv part of the mailer definition, that field will be repeated as neces
sary for all qualifying users.

F This mailer wants a "From:" header line.

D This mailer wants a "Date:" header line.

M This mailer wants a "Message-Id:" header line.

x This mailer wants a "Full-Name:" header line.

P This mailer wants a "Return-Path:" line.

u Upper case should be preserved in user names for this mailer.

h Upper case should be preserved in host names for this mailer.

A This is an Arpanet-compatible mailer, and all appropriate modes should be set.

U This mailer wants Unix-style "From" lines with the ugly UUCP-style "remote from
<host>" on the end.

e This mailer is expensive to connect to, so try to avoid connecting normally; any necessary
connection will occur during a queue run.

X This mailer want to use the hidden dot algorithm as specified in RFC821; basically, any
line beginning with a dot will have an extra dot prepended (to be stripped at the other
end). This insures that lines in the message containing a dot will not terminate the mes
sage prematurely.

L Limit the line lengths as specified in RFC82 l.

P Use the return-path in the SMTP "MAIL FROM:" command rather than just the return
address; although this is required in RFC821, many hosts do not process return paths
properly.

This mailer will be speaking SMTP to another sendmail - as such it can use special pro
tocol features. This option is not required (i.e., if this option is omitted the transmission
will still operate successfully, although perhaps not as efficiently as possible).

Sendmail Installation and Operation Guide

Sendmail Installation and Operation Guide SMM:07-33

C If mail is received from a mailer with this flag set, any addresses in the header that do not
have an at sign ("@") after being rewritten by ruleset three will have the "@domain"
clause from the sender tacked on. This allows mail with headers of the form:

From: usera@hosta
To: userb@hostb, userc

to be rewritten as:

From: usera@hosta
To: userb@hostb, userc@hosta

automatically.

E Escape lines beginning with "From" in the message with a '>' sign.

APPENDIX D

OTHER CONFIGURATION

There are some configuration changes that can be made by recompiling sendmail. These
are located in three places: '

md/config.m4 These contain operating-system dependent descriptions. They are interpo
lated into the Makefiles in the src and aux directories. This includes informa
tion about what version of UNIX you are running, what libraries you have to
include, etc.

src/conf.h Configuration parameters that may be tweaked by the installer are included in
conf.h.

src/conf.c Some special routines and a few variables may be defined in conf.c. For the
most part these are selected from the settings in conf.h.

Parameters in md/config.m4

The following compilation flags may be defined in the m4CONFIG macro in
mdlconfig.m4 to define the environment in which you are operating.

V6 If set, this will compile a version 6 system, with 8-bit user id's, single charac
ter tty id's, etc.

VMUNIX If set, you will be assumed to have a Berkeley 4BSD or 4.IBSD, including the
vfork(2) system call, special types defined in <sys/types.h> (e.g, u_char), etc.

If none of these flags are set, a version 7 system is assumed.

You will also have to specify what libraries to link with sendmail in the m4LIBS macro.
Most notably, you will have to include if you are running a 4.lBSD system.

Parameters in src/conf.h

Parameters and compilation options are defined in conf.h. Most of these need not nor
mally be tweaked; common parameters are all in sendmail.cf. However, the sizes of certain
primitive vectors, etc., are included in this file. The numbers following the parameters are
their default value.

MAXLINE [1024] The maximum line length of any input line. If message lines exceed this
length they will still be processed correctly; however, header lines,
configuration file lines, alias lines, etc., must fit within this limit.

MAXNAME [256]The maximum length of any name, such as a host or a user name.

MAXFIELD [2500)
The maximum total length of any header field, including continuation
lines.

MAXPV [40) The maximum number of parameters to any mailer. This limits the
number of recipients that may be passed in one transaction.

MAXHOP [17) When a message has been processed more than this number of times, send
mail rejects the message on the assumption that there has been an aliasing
loop. This can be determined from the -h flag or by counting the number

SMM:07-34 Sendmail Installation and Operation Guide

Sendmail Installation and Operation Guide SMM:07-35

of trace fields (i.e, "Received:" lines) in the message header.

MAXATOM [toO]The maximum number of atoms (tokens) in a single address. For example,
the address "eric@Berkeley" is three atoms.

MAXMAILERS (25]
The maximum number of mailers that may be defined in the configuration
file.

MAXRWSETS [30]
The maximum number of rewriting sets that may be defined.

MAXPRIORITIES (25]
The maximum number of values for the "Precedence:" field that may be
defined (using the Pline in sendmail.cO.

MAXTRUST (30] The maximum number of trusted users that may be defined (using the T
line in sendmail.cO.

MAXUSERENVIRON (40]
The maximum number of items in the user environment that will be
passed to subordinate mailers.

QUEUESIZE (600]
The maximum number of entries that will be processed in a single queue
run.

A number of other compilation options exist. These specify whether or not specific code
should be compiled in.

DBM If set, the "DBM" package in UNIX is used (see dbm(3X) in [UNIX80]). If
not set, a much less efficient algorithm for processing aliases is used.

NDBM

DEBUG

LOG

QUEUE

SMTP

DAEMON

UGLYUUCP

NOTUNIX

If set, the new version of the DBM library that allows multiple databases will
be used. "DBM" must also be set.

If set, debugging information is compiled in. To actually get the debugging
output, the -d flag must be used.

If set, the syslog routine in use at some sites is used. This makes an informa
tional log record for each message processed, and makes a higher priority log
record for internal system errors.

This flag should be set to compile in the queueing code. If this is not set,
mailers must accept the mail immediately or it will be returned to the sender.

If set, the code to handle user and server SMTP will be compiled in. This is
only necessary if your machine has some mailer that speaks SMTP.

If set, code to run a daemon is compiled in. This code is for 4.2 or 4.3BSD.

If you have a UUCP host adjacent to you which is not running a reasonable
version of rmail, you will have to set this flag to include the "remote from
sysname" info on the from line. Otherwise, UUCP gets confused about where
the mail came from.

If you are using a non-UNIX mail format, you can set this flag to turn off spe
cial processing of UNIX-style "From " lines.

Configuration in src/conf.c

Not all header semantics are defined in the configuration file. Header lines that should
only be included by certain mailers (as well as other more obscure semantics) must be
specified in the Hdrlnfo table in confc. This table contains the header name (which should be
in all lower case) and a set of header control flags (described below), The flags are:

SMM:07-36 Sendmail Installation and Operation Guide

H_ACHECK Normally when the check is made to see if a header line is compatible with a
mailer, sendmail will not delete an existing line. If this flag is set, sendmail
will delete even existing header lines. That is, if this bit is set and the mailer
does not have flag bits set that intersect with the required mailer flags in the
header definition in sendmail.cf, the header line is always deleted.

H_EOH If this header field is set, treat it like a blank line, i.e., it will signal the end of
the header and the beginning of the message text.

H_FORCE Add this header entry even if one existed in the message before. If a header
entry does not have this bit set, sendmail will not add another header line if a
header line of this name already existed. This would normally be used to
stamp the message by everyone who handled it.

H_ TRACE If set, this is a timestamp (trace) field. If the number of trace fields in a mes
sage exceeds a preset amount the message is returned on the assumption that
it has an aliasing loop.

H_RCPT If set, this field contains recipient addresses. This is used by the -t flag to
determine who to send to when it is collecting recipients from the message.

H_FROM This flag indicates that this field specifies a sender. The order of these fields
in the Hdrlnfo table specifies sendmai/'s preference for which field to return
error messages to.

Let's look at a sample Hdrlnfo specification:

struct hdrinfo Hdrlnfo[] =

(
!* originator fields, most to least significant */

"resent-sender", H_FROM,
"resent-from", H_FROM,
"sender", H_FROM,
"from", H_FROM,
"full-name", H_ACHECK,

!* destination fields *I
"to", H_RCPT,
"resent-to", H_RCPT,
cc, H_RCPT,

!* message identification and control */
"message", H_EOH,
"text", H_EOH,

!* trace fields *I
"received", H_TRACEIH_FORCE,

NULL, 0,
};

This structure indicates that the "To:", "Resent-To:", and "Cc:" fields all specify recipient
addresses. Any "Full-Name:" field will be deleted unless the required mailer flag (indicated in
the configuration file) is specified. The "Message:" and "Text:" fields will terminate the
header; these are specified in new protocols [NBS80] or used by random dissenters around the
network world. The "Received:" field will always be added, and can be used to trace mes
sages.

There are a number of important points here. First, header fields are not added
automatically just because they are in the Hdrlnfo structure; they must be specified in the
configuration file in order to be added to the message. Any header fields mentioned in the
configuration file but not mentioned in the Hdrlnfo structure have default processing

Sendmail Installation and Operation Guide SMM:07-37

performed; that is, they are added unless they were in the message already. Second, the
Hdrlnfo structure only specifies cliched processing; certain headers are processed specially by
ad hoc code regardless of the status specified in Hdrlnfo. For example, the "Sender:" and
"From:" fields are always scanned on ARPANET mail to determine the sender; this is used to
perform the "return to sender" function. The "From:" and "Full-Name:" fields are used to
determine the full name of the sender if possible; this is stored in the macro $x and used in a
number of ways.

The file confc also contains the specification of ARPANET reply codes. There are four
classifications these fall into:

char Arpa_lnfo[] = "050"; I* arbitrary info */
char Arpa_TSyserr[] = "455"; I* some (transient) system error*/
char Arpa_PSyserr[] = "554"; I* some (permanent) system error*/
char Arpa_Usrerr[] = "554"; I* some (fatal) user error*/

The class Arpa_Info is for any information that is not required by the protocol, such as for
warding information. Arpa_TSyserr and Arpa_PSyserr is printed by the syserr routine.
TSyserr is printed out for transient errors, that is, errors that are likely to go away without
explicit action on the part of a systems administrator. PSyserr is printed for permanent
errors. The distinction is made based on the value of errno. Finally, Arpa_ Usrerr is the result
of a user error and is generated by the usrerr routine; these are generated when the user has
specified something wrong, and hence the error is permanent, i.e., it will not work simply by
resubmitting the request.

If it is necessary to restrict mail through a relay, the checkcompat routine can be
modified. This routine is called for every recipient address. It can return TRUE to indicate
that the address is acceptable and mail processing will continue, or it can return FALSE to
reject the recipient. If it returns false, it is up to checkcompat to print an error message (using
usrerr) saying why the message is rejected. For example, checkcompat could read:

boo!
checkcompat(to)

register ADDRESS *to;

if(MsgSize > 50000 && to->q_mailer != Loca!Mailer)
{

}

usrerr("Message too large for non-local delivery");
NoReturn = TRUE;
return (FALSE);

return (TRUE);

This would reject messages greater than 50000 bytes unless they were local. The NoReturn
flag can be sent to suppress the return of the actual body of the message in the error return.
The actual use of this routine is highly dependent on the implementation, and use should be
limited.

Configuration in src/daemon.c

The file src!daemon.c contains a number of routines that are dependent on the local net
working environment. The version supplied is specific to 4.3 BSD.

The routine maphostname is called to convert strings within $[... $) symbols. It can be
modified if you wish to provide a more sophisticated service, e.g., mapping UUCP host
names to full paths.

APPENDIX E

SUMMARY OF SUPPORT FILES

This is a summary of the support files that sendmail creates or generates.

/usr/lib/sendmail
The binary of sendmail.

/usr/bin/newaliases
A link to /usr/lib/sendmail; causes the alias database to be rebuilt. Running
this program is completely equivalent to giving sendmail the -bi flag.

/usrlbin/mailq Prints a listing of the mail queue. This program is equivalent to using the -bp
flag to sendmail.

/usr/lib/sendmail.cf
The configuration file, in textual form.

/usr/lib/sendmail.fc
The configuration file represented as a memory image.

/usr/lib/sendmail.hf
The SMTP help file.

/usr/lib/sendmail.st
A statistics file; need not be present.

/usr/lib/aliases The textual version of the alias file.

/usr/lib/aliases. { pag,dir}
The alias file in dbm (3) format.

/usr/spool/mqueue
The directory in which the mail queue and temporary files reside.

/usr/spool/mqueue/qf*
Control (queue) files for messages.

/usr/spool/mqueue/df*
Data files.

/usr/spool/mqueue/lf*
Lock files

/usr/spool/mqueue/tf*
Temporary versions of the qf files, used during queue file rebuild.

/usr/spool/mqueue/nf*
A file used when creating a unique id.

/usr/spool/mqueue/xf*
A transcript of the current session.

SMM:07-38 Sendmail Installation and Operation Guide

Introduction

Timed Installation and Operation Guide

Riccardo Gusella, Stefano Zatti, James M. Bloom

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

Kirk Smith

Engineering Computer Network
Department of Electrical Engineering

Purdue University
West Lafayette, IN 47906

The clock synchronization service for the UNIX 4.3BSD operating system is composed of a col
lection of time daemons (timed) running on the machines in a local area network. The algorithms
implemented by the service is based on a master-slave scheme. The time daemons communicate with
each other using the Time Synchronization Protocol (TSP) which is built on the DARPA UDP proto
col and described in detail in [4].

A time daemon has a twofold function. First, it supports the synchronization of the clocks of
the various hosts in a local area network. Second, it starts (or takes part in) the election that occurs
among slave time daemons when, for any reason, the master· disappears. The synchronization
mechanism and the election procedure employed by the program timed are described in other docu
ments [1,2,3). The next paragraphs are a brief overview of how the time daemon works. This docu
ment is mainly concerned with the administrative and technical issues of running timed at a particu
lar site.

A master time daemon measures the time differences between the clock of the machine on which
it is running and those of all other machines. The master computes the network time as the average
of the times provided by nonfaulty clocks. I It then sends to each slave time daemon the correction
that should be performed on the clock of its machine. This process is repeated periodically. Since
the correction is expressed as a time difference rather than an absolute time, transmission delays do
not interfere with the accuracy of the synchronization. When a machine comes up and joins the net
work, it starts a slave time daemon which will ask the master for the correct time and will reset the
machine's clock before any user activity can begin. The time daemons are able to maintain a single
network time in spite of the drift of clocks away from each other. The present implementation keeps
processor clocks synchronized within 20 milliseconds.

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the Na
val Electronics Systems Command under contract No. N00039-84-C-0089, and by the CSELT Corporation
of Italy. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the Defense Research Projects
Agency, of the US Government, or of CSELT.

I A clock is considered to be faulty when its value is more than a small specified interval apart from the
majority of the clocks of the other machines (1,2].

SMM:S-2 Timed Installation and Operation

To ensure that the service provided is continuous and reliable, it is necessary to implement an
election algorithm to elect a new master should the machine running the current master crash, the
master terminate (for example, because of a run-time error), or the network be partitioned. Under
our algorithm, slaves are able to realize when the master has stopped functioning and to elect a new
master from among themselves. It is important to note that, since the failure of the master results
only in a gradual divergence of clock values, the election need not occur immediately.

The machines that are gateways between distinct local area networks require particular care. A
time daemon on such machines may act as a submaster. This artifact depends on the current inabil
ity of transmission protocols to broadcast a message on a network other than the one to which the
broadcasting machine is connected. The submaster appears as a slave on one network, and as a mas
ter on one or more of the other networks to which it is connected.

A submaster classifies each network as one of three types. A slave network is a network on
which the submaster acts as a slave. There can only be one slave network. A master network is a net
work on which the submaster acts as a master. An ignored network is any other network which
already has a valid master. The submaster tries periodically to become master on an ignored net
work, but gives up immediately if a master already exists.

Guidelines
While the synchronization algorithm is quite general, the election one, requiring a broadcast

mechanism, puts constraints on the kind of network on which time daemons can run. The time dae
mon will only work on networks with broadcast capability augmented with point-to-point links.
Machines that are only connected to point-to-point, non-broadcast networks may not use the time
daemon.

If we exclude submasters, there will normally be, at most, one master time daemon in a local
area internetwork. During an election, only one of the slave time daemons will become the new mas
ter. However, because of the characteristics of its machine, a slave can be prevented from becoming
the master. Therefore, a subset of machines must be designated as potential master time daemons. A
master time daemon will require CPU resources proportional to the number of slaves, in general,
more than a slave time daemon, so it may be advisable to limit master time daemons to machines
with more powerful processors or lighter loads. Also, machines with inaccurate clocks should not be
used as masters. This is a purely administrative decision: an organization may well allow all of its
machines to run master time daemons.

At the administrative level, a time daemon on a machine with multiple network interfaces, may
be told to ignore all but one network or to ignore one network. This is done with the -n network and
-i network options respectively at start-up time. Typically, the time daemon would be instructed to
ignore all but the networks belonging to the local administrative control.

There are some limitations to the current implementation of the time daemon. It is expected
that these limitations will be removed in future releases. The constant NHOSTS in
/usr/src/etc/timed/globals.h limits the maximum number of machines that may be directly controlled
by one master time daemon. The current maximum is 29 (NHOSTS - I). The constant must be
changed and the program recompiled if a site wishes to run timed on a larger (inter)network.

In addition, there is a pathological situation to be avoided at all costs, that might occur when
time daemons run on multiply-connected local area networks. In this case, as we have seen, time
daemons running on gateway machines will be submasters and they will act on some of those net
works as master time daemons. Consider machines A and B that are both gateways between net
works X and Y. If time daemons were started on both A and B without constraints, it would be pos
sible for submaster time daemon A to be a slave on network X and the master on network Y, while
submaster time daemon B is a slave on network Y and the master on network X. This loop of master
time daemons will not function properly or guarantee a unique time on both networks, and will cause
the submasters to use large amounts of system resources in the form of network bandwidth and CPU
time. In fact, this kind of loop can also be generated with more than two master time daemons, when
several local area networks are interconnected.

Timed Installation and Operation SMM:8-3

Installation
In order to start the time daemon on a given machine, the following lines should be added to

the local daemons section in the file /etclrc.local:

if [-f /etc/timed]; then
/etc/timed flags & echo -n' timed' >/dev/console

fi

In any case, they must appear after the network is configured via ifconfig(8).

Also, the file /etc/services should contain the following line:

timed 525/udp timeserver

The flags are:
-n network to consider the named network.
-i network to ignore the named network.
-t to place tracing information in lusrladmltimed.log.

-M to allow this time daemon to become a master. A time daemon run without this option
will be forced in the state of slave during an election.

Daily Operation
Timedc(B} is used to control the operation of the time daemon. It may be used to:

• measure the differences between machines' clocks,

• find the location where the master timed is running,
• cause election timers on several machines to expire at the same time,

• enable or disable tracing of messages received by timed.

See the manual page on timed(8) and timedc(8) for more detailed information.
The date(l) command can be used to set the network date. In order to set the time on a single

machine, the -n flag can be given to date(l).

SMM:S-4 Timed Installation and Operation

References
1. R. Gusella and S. Zatti, TEMPO: A Network Time Controller for Distributed Berkeley UNIX Sys

tem, USENIX Summer Conference Proceedings, Salt Lake City, June 1984.

2. R. Gusella and S. Zatti, Clock Synchronization in a Local Area Network, University of Califor
nia, Berkeley, Technical Report, to appear.

3. R. Gusella and S. Zatti, An Election Algorithm for a Distributed Clock Synchronization Program,
University of California, Berkeley, CS Technical Report #275, Dec. 1985.

4. R. Gusella and S. Zatti, The Berkeley UNIX 4.3BSD Time Synchronization Protocol, UNIX
Programmer's Manual, 4.3 Berkeley Software Distribution, Volume 2c.

Installation and Operation of UUCP
4.3BSD Edition

D. A. Nowitz

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Carl S. Gutekunst

Communications Software Research and Development
Pyramid Technology Corporation
Mountain View, California 94039

ABSTRACT

UUCP is a series of programs designed to permit communication between
UNIXt systems using a variety of communications links. UUCP provides batched,
error free file transfers and remote command execution. It is well suited for tasks
such as electronic mail, public news networks, and software distribution, particularly
when only slow, low-cost communication links are available (e.g., 1200 baud dial
up).

This document describes the 4.3BSD version of UUCP. This is a distant but
direct descendent of the "second implementation" of UUCP developed by D. A.
Nowitz at AT&T Bell Laboratories. A number of other UUCP versions are in com
mon usage; these are discussed only to the extent that they affect administration of
4.3BSD systems.

Revised August 24, 1986

1. UUCP OVERVIEW

UUCP is a batch-type operation. Users issue commands that are queued in a spool directory for
processing by background daemons.

Uucp (UNIX-to-UNIX Copy) and uux (UNIX-to-UNIX Execution) provide the user interface to
UUCP. Uucp has syntax and semantics similar to the standard UNIX utility cp(1), with the added
ability to prefix filenames with system names. Similarly, 1111x mimics the conventions of sh(I), and
allows commands to be prefixed with system names.

Uucico (Copy-In, Copy-Out) is the primary UUCP daemon. It processes the requests queued by uucp
and uux, initiates calls to remote systems, transfers files, and forks other daemons to execute m1x
requested commands. Uucico also acts as the UUCP "shell" when remote systems call in to requests
transfers.

Three types of files are used in UUCP operation. Control files describe the UUCP environment, includ
ing known remote hosts, available devices, and remote file access permissions. Control files are rela
tively static; they are generally changed only by the system administrator. Spool files (also called
Queue files) contain transfer requests and data; they are created and deleted as necessary by uucp,
uux, and uucico. Log files accumulate a history of UUCP activity; these tend to grow forever if not

t UNIX is a trademark of AT&T Bell Laboratories.

SMM:9-2 Installation and Operation of UUC'P

periodically cleaned up.

Spool files arc further divided into three types: ll'ork jile.1· contain directions for file transfers between
systems. Every invocation of 1111cp or 1111x creates one or more work files. Data Jiles contain data for
transfer to or from remote svstcms. l:'xec111io11 files contain directions for UNIX command executions
which involve the resources ~f!onc or more sysiems. Execution files arc created only by 1111x.

2. USER UTILITIES

UUCP includes a total of ten "primary" utilities. that is. ten utilities for general users. All reside
in the /usr/bin directory. where they arc easily accessible. This section provides detailed implementa
tion descriptions for the more important commands: sec the corresponding man pages for additional
information.

The following two commands queue transfer requests:

uucp(! C') UNIX-to-UNIX File C'opy. One of more cont ml Jiles are created. contammg
names of files to be transferred. When necessary. local files are copied into data
.files for transmission.

uux(I C') Execute command. An ex£'C11te .file is created. containing a UNIX command to
be executed and its arguments. A contml Jile is created that includes all files
that must be transferred to execute the command. including the execute .file
itself. When necessary, local files are copied into data .files for transmission.
Any output from the command will also be written to data Jiles.

The following four commands provide UUCP status information:

uulog(IC') Display selected information from the UUCP log.

uuname(IC')

uusnap(SC')

uuq(IC')

Display the names of all remote hosts that are directly accessible via UUCP.

Provide a snapshot of the current queue, including the number of work files,
data files. and execute files for each site.

A variant of 1111.rnap, lists files and 1111.r commands queued for each site. Uuq
also permits the UUCP administrator to delete jobs.

The following four commands provide miscellaneous support services:

uudecode(l C) The decoder for files created by 1111encode, below.

uuencode(l C). A filter to convert binary files into printable ASCII. This is useful when
transferring object files over communications links that do not support 8-bit
transfers.

uupoll(SC)

uusend(IC)

A user utility to conveniently fork the UUCP daemon, 1111cico.

A utility to send files to remote sites more than one "hop" distant.

2.1. Uucp - UNIX to UNIX File Copy

The 1111cp command is the user's primary interface with the system. The uucp command was
designed to look like cp to the user. The syntax is

u11cp [option) ... source ... destination

where the source and destination may contain the prefix system-name! which indicates the system on
which the file or files reside or where they will be copied.

The options interpreted by 11ucp are:

-f Don't make directories when copying the file. The default is to make the necessary
directories.

-C Copy source files to the spool directory. The default is to use the specified source
when the actual transfer takes place.

-ggrade Put grade in as the grade in the name of the work file. This is a single character in
the range [0-9J[A-Z)[a-z). The grade will be used by uucico to establish the priority of

Installation and Operation of UUCP SMM:9-3

requests. 0 is the highest (hest) grade: z is the lowest (worst). The default grade for
1111cp is n.

-m Send mail on completion of the work.

-nuser Notify user on the destination system that a file was sent.

The following options arc used primarily for debugging. or when 1111cp is invoked from other
programs:

-r

-sdir

-XIII/Ill

Queue the joh hut do not start 1111cico. The assumption is that 1111cico will he started
at a later time. perhaps hy cm11(8) or 11111)()//.

Use directory dir for the top level spool directory.

N11111 is the level of debugging output desired. This option requires the user to have
read permission to the UUCP control file L..1ys.

The destination may be a directory name. in which case the file name is taken from the last part of
the source's name. The source name may contain special shell characters such as "?*(I": these and
other shell characters such as "!<> .. will need to he quoted or escaped. If a source argument has a
.1ys1em-11ame! prefix for a remote system. the file name expansion will be done on the remote system.

The command

uucp *.c usg!/usr/dan

will set up the transfer of all files whose names end with ".c" to the "/usr/dan .. directory on the "usg"
machine.

The source and/or destination names may also contain a ·user prefix. This translates to the login
directory on the specified system. A lone· prefix is expanded to the name of the specified system's
public access directory. usually /usr/spool/uucppublic. For names with partial path-names, the current
directory is prepended to the file name. File names with .. / are not permitted.

The command

uucp usg!"dan/* .h "dan

will set up the transfer of files whose names end with ".h" in dan's login directory on system "usg" to
dan's local login directory.

For each source file. the program will check the source and destination file-names and the system-part
of each to classify the work into one of five types:

[l] Copy source to destination on local system.

[2] Receive files from a remote system.

[3] Send files to a remote system.

[4] Send files from remote system to another remote system.

[5] Receive files from remote system when the source pathname contains special shell charac
ters as mentioned above.

After the work has been set up in the spool directories, the UUCP daemon 1111cico is started to try to
contact the other machine to execute the work (unless the -r option was specified).

Type I

Uucp makes a copy of the file. The -m option is not honored in this case.

Type 2

A one line work file is created for each file requested and put in the C. spool directory with the fol
lowing fields, each separated by a blank. (All work files and execute files use a blank as the field
separator.)

(!] R

SMM:9-4 Installation and Operation of UUCP

[2] The full path-name of the source or a 'user/path-name. The 'user part will be expanded
on the remote system.

[3] The full path-name of the local destination tile. If the 'user notation is used. it will be
immediately expanded to be the login directory for the user.

[4] The user's login name.

[5] A·-· followed by an option list.

Type 3

For each source tile. a ll'ork .file is created. A -C option on the 1111cp command will cause the data
file to be copied into the spool directory and the file to be transmitted from the copy: the copy is
deleted when the transfer completes. The fields of each entry are given below.

[I] S

[2] The full-path name of the source tile.

[3] The full-path name of the destination or 'user/tile-name.

[4] The user's login name.

[5] A ·-· followed by an option list.

[6] The full path-name of the local source file. If the '11sa notation is used. it will be immedi
ately expanded to be the login directory for the user. If the -C option was used. this will
be the name of a data .file in the spool directory.

[7] The file mode bits of the source file in octal print format (e.g. 0666).

[8] The user to notify on the remote system that the transfer has completed.

Type 4 and Type 5

Uucp generates a 1111cp command and sends it to the remote machine: the remote 1111cico executes the
1111cp command.

2.2. Uux - UNIX To UNIX Execution

The 1111x command is used to set up the execution of a UNIX command where the execution machine
and/or some of the files are remote. The syntax of the uux command is

lll/X [- I [option I ... command-string

where the command-string is made up of one or more arguments. All special shell characters such as
"<>I*?!" must be quoted either by quoting the entire command-string or quoting the character as a
separate argument. Within the command-string, the command and file names may contain a system
name! prefix. All arguments which do not contain a "!" will not be treated as files. (They will not be
copied to the execution machine.) The '-' is used to indicate that the standard input for command
s/ring should be inherited from the standard input of the 1111x command.

The options, used mostly for debugging and by other programs, are:

-aname Use name as the requestor of the 1111x command, instead of the real system and login
names. Unlike most other UUCP arguments, name may consist of a chain of system
names separated by '!' characters, as in:

uux - -r -aihnp4!decwrl!pyramid!csg seismo!rmail rick

-C Copy source files to the spool directory. Same as for uucp.

-ggrade Put grade in as the grade in the name of the work file. Same as for uucp. The
default grade for tlllX is A.

-n Do not mail an acknowledgement to the requestor of the command. Normally the
execution daemon, 1111xql, will mail a message to the user who entered the lll/X com
mand. This message includes the status return value that the program exited with.
The -n option requests that this message not be sent.

Installation and Operation of UUCP SMM:9-5

-r

-Xll//111

Do not start the UucPcp daemons uucico(SC) or uuxqt(SC) after queuing the job.

Num is the level of debugging output desired.

-z Mail an acknowledgement to the requestor only if the command fails, that is, the
command exits with a non-zero status.

The command

pr abc I uux - usg!lpr

will set up the output of "pr abc" as standard input to an !pr command to be executed on system
"usg".

Uux generates an execute .file which contains the names of the files required for execution (including
standard input). the user's login name, the destination of the standard output, and the command to
be executed. This file is either put in the X. spool directory for local execution, or in the
D.'10.1·111a111eX directory for transfer to the remote system.

For required files which are not on the execution machine, uux will generate receive command files
(type 2 above). These command-files will be put on the execution machine and executed by uucico.
(This will work only if the local system has permission to put files in the remote spool directory as
controlled by the remote USERF!LE.)

The execlllefile will be processed by the uuxqt(SC) program on the execution machine. It is made up
of several lines. each of which contains an identification character and one or more arguments. The
order of the lines in the file is not relevant and some of the lines may not be present. Each line is
described below.

User Line

U user system

where the user and system are the requestor's login name and system.

Required File Line

F file-name real-name

where the .file-name is the generated name of a file for the execute machine and real-name is the
last part of the actual file name (contains no path information). Zero or more of these lines may
be present in the execl//e file. The 1mxqt program will check for the existence of all required
files before the command is executed.

Standard Input Line

I file-name

The standard input is either specified by a '<' in the command-string or inherited from the stan
dard input of the 1111x command if the '-' option is used. If a standard input is not specified,
/dev/null is used.

Standard Output Line

0 file-name system-name

The standard output is specified by a '>' within the command-string. If a standard output is
not specified, /dev/null is used. (Note - the use of">>" is not implemented.)

Status Return Line

N

Normally 1111xqt mails an acknowledgement message to the requestor after the command com
pletes. The message includes the status return value that the program exited with. This line
inhibits mailing of the acknowledgement message. It is generated by the -n option of uux; it is
also quietly assumed by 1111xqt on the command rmail.

SMM:9-6 Installation and Operation of UUCP

Error Status Return Line

z
A variant of the Status Return line, this line indicates that an acknowledgement should be
mailed only if the command's status return is non-zero, i.e., the program exited with an error.
This line is generated by the -z option of 1111x. It is also quietly assumed by uuxqt on the com
mand mews. If both the Z and N lines appear, the Z line has precedence.

Requestor Line
R requestor

where requestor is a complete return mailing address to the original requestor. This line is gen
erated by the -a option of 1111x, and is used to override the mail return address implied by the
User line. This is commonly used by mailers and programs like uusend that know how to "hop"
a file from system to system.

Command Line

C command (arguments I ...
The arguments are those specified in the command-string. The standard input and standard
output will not appear on this line. All required files will be moved to the execution directory (a
subdirectory of the spool directory) and the UNIX command is executed using the Shell specified
in the uucp.h header file (usually /bin/sh). In addition, a shell "PATH" statement is prepended
to the command line.
After execution, the temporary standard output file is copied to or set up to be sent to the
proper place.

3. SYSTEM AND ADMINISTRATIVE UTILITIES
UUCP includes four system utilities; these are not normally referenced by users. All except uucpd
reside in the UUCP administrative directory, /usr/Iib/uucp. These include:

uucico(8C) Copy In, Copy Out. This is the primary UUCP daemon.

uuclean(SC) A handy utility to clean up the UUCP spool directories.

uucpd

uuxqt(SC)

The UUCP TCP/IP daemon. This daemon "answers" the connection request
from a remote uucico to a TCP/IP socket. It is functionally a stripped-down
version of rlogind(8) that provides full 8-bit communication. (Note: this utility
does not have a man page.)

Execution Daemon. This is forked by uucico to interpret execution files
transferred from a remote system.

3.1. Uucico - Copy In, Copy Out (UUCP Daemon)
Uucico is the "heart" of the UUCP system. The program performs the following major functions:

- Scan the spool directory for work.
- Place a call to a remote system.
- Negotiate a line protocol to be used.
- Execute all requests from both systems.
- Log work requests and work completions.

Uucico may be started in several ways;
a) by a system daemon (such as cron(8)),
b) by one of the llUCJ!. uux, uuxqt or uupoll programs,
c) directly by the user (this is usually for testing),

Installation and Operation of UUCP SMM:9-7

d) by a remote system. (The uucico program should be specified as the "shell" field in the
/etc/passwd file for the Uucp logins.)

When started by method a, b or c, the program is considered to be in MASTER mode. In this mode,
a connection will be made to a remote system. If started by a remote system (method d), the program
is considered to be in SLAVE mode.

The MASTER mode will operate in one of two ways. If no system name is specified (-s option not
specified) the program will scan the spool directory for systems to call. If a system name is specified,
that system will be called, and work will only be done for that system.
The uucico program is generally started by another program. There are several options used for exe
cution:

-ggrade Set the minimum grade of this uucico run to grade. Only files of this grade or better
will be transferred.

-rl Start the program in MASTER mode. This is used when uucico is started by a pro
gram or cron shell.

-ssys Do work only for system sys. If -s is specified, a call to the specified system will be
made even if there is no work for system sys in the spool directory. This is useful
for polling systems which do not have the hardware to initiate a connection.

The following options are used primarily for debugging:

-ddir Use directory dir for the top level spool directory.
-xnum Nwn is the level of debugging output desired.

The next part of this section will describe the major steps within the uucico program.

Scan For Work
The names of the work related files in a spool subdirectory have format

type . system-name grade number

where:
Type is an upper case letter, (C - work (copy command) file, D - data file, X - execute file);
System-name is the remote system;

Grade is a character in the range (0-9)[A-Z)[a-z);
Number is a four digit, padded sequence number.

The file
C.res45n0031

would be a work file for a file transfer between the local machine and the "res45" machine.

The scan for work is done by looking through the appropriate spool directory for work files (files with
prefix C.). A list is made of all systems to be called. Uucico will then call each system and process all
work files.

Call Remote System
The call is made using information from the control files that reside in the /usr/Iib/uucp directory. At
the start of the call process, a lock is set to forbid multiple conversations between the same two sys
tems.
The system name is found in the L.sys control file. The information contained for each system is;

[I] system name,

[2] times to call the system (days-of-week and times-of-day),
[3] the caller, that is, the type of device to be used for the call,

SMM:9-8 Installation and Operation of UUCP

[4] the line speed or network number (as appropriate),

[5] telephone number or device name (as appropriate),

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be made.

The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into dial
sequences using the L-dialcodes file.

The L-devices file is scanned using fields [3] and [4] from the L.sys file to find an available device for
the call. The program will try all devices which satisfy [3] and [4] until the call is made or no more
devices can be tried. If a device is successfully opened, a lock file is created so that another copy of
uucico will not try to use it. If the call is complete, the login information (field [6] of L.sys) is used to
login.

The conversation between the two uucico programs begins with a handshake started by the called,
SLAVE, system. The SLAVE sends a message to let the MASTER know it is ready to receive the
system identification and conversation sequence number. The response from the MASTER is verified
by the SLAVE and if acceptable, protocol selection begins. The SLAVE can also reply with a "call
back required" message in which case, the current conversation is terminated.

Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol.

The calling program checks the proto-list for a letter corresponding to an available line protocol and
returns a use-protocol message. The use-protocol message is

Ucode

where code is either a one character protocol letter or N which means there is no common protocol.

The following protocols are implemented in 4.3BSD UUCP:

g General. Default for dialup or hardwired lines, supported by all versions of UUCP. This
protocol employs small (64 byte) data packets with checksums and packet-by-packet
retransmission. This ensures reliable and efficient transfers over slow and noisy links like
1200-baud dial-up lines. These same characteristics make the g protocol bulky and slow
over error free links, and very expensive on public data-switched networks.

f Optimized for use on X.25 PAD public data-switched networks. The protocol employs
larger (256 byte) data packets, passes no control characters except CR, and uses only a 7-
bit data path. (Note that the files transferred may still contain full 8-bit data.) It assumes
that the link is "mostly" error-free, calculating a checksum for the entire file only. When
an error is detected, the entire file is retransmitted.

Optimized for use on TCP/IP networks and other completely error free links. It employs
large (1024 byte) packets, and uses the full 8-bit data path.

Note: AT&T System VR2 UUCP supports the x (X.25) and e (Error Free) protocols, which provide
functionality similar to the 4.3BSD f and t protocols, respectively. They are incompatible, however.
Thus when attempting to connect two systems via X.25 or an local area network, it is not adequate
for both systems to simply "support X.25" or "support error free transfers." Both must support the
same UUCP protocols.

Work Processing

The initial roles (MASTER or SLAVE) for the work processing are the mode in which each pro
gram starts. (The MASTER has been specified by the -rl uucico option.) The MASTER program
does a work search similar to the one used in the "Scan For Work" section.

Installation and Operation of UUCP SMM:9-9

There are five messages used during the work processing, each specified by the first character of the
message. They are;

S send a file,

R receive a file,

C copy complete,

X execute a uucp command, and

H hangup.

The MASTER will send R, S or X messages until all work from the spool directory is complete, at
which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN, XY,
XN, corresponding to yes or no for each request.

The send and receive replies are based on permission to access the requested file/directory using
USERFILE and read/write permissions of the file/directory. After each file is copied into the spool
directory of the receiving system, a copy-complete message is sent by the receiver of the file. The
message CY will be sent if the file has successfully been moved from the temporary spool file to the
actual destination. Otherwise, a CN message is sent. (In the case of CN, the transferred file will be
in the TM. spool subdirectory.) The requests and results are logged on both systems.

The hangup response is determined by the SLAVE program by a work scan of its spool directory. If
work for the MASTER 's system exists in the SLAVE's spool directory, an HN message is sent and
the programs switch roles. If no work exists, an HY response is sent.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the protocols
are turned off. Each program sends a final "00" message to the other. The original SLAVE program
will clean up and terminate. The MASTER will proceed to call other systems and process work as
long as possible or terminate if a -s option was specified.

3.2. Uuxqt - Uucp Command Execution

The uuxqt program is used to execute execute files generated by uz1x. The uuxqt program may be
started by either the uucico or uux programs. The program scans the X. spool directory for execute
files. Each one is checked to see if all the required files are available and if so, the command line or
send line is executed.

The execute file is described in the ZlllX section above.

Command Execution
The execution is accomplished by executing a sh -c of the command line after appropriate standard
input and standard output have been opened. If a standard output is specified, the program will
create a send command or copy the output file as appropriate.

3.3. Uuclean - Uucp Spool Directory Cleanup

This program is typically started by the cron(8) daemon, once a day. Its function is to remove files
from the spool directories which are more than 3 days old. These are usually files for work which can
not be completed.

The options available are:

-ddir The directory to be scanned is dir.

-m Send mail to the owner of each file being removed. (Note that most files put into the
spool directory will be owned by the owner of the uucp programs since the setuid bit
will be set on these programs. The mail will therefore most often go to the owner of
the uucp programs.)

SMM:9-l 0 Installation and Operation of UUCP

-nhours Change the aging time from 72 hours to hours hours.

-ppre Examine files with prefix pre for deletion. (Up to 10 file prefixes may be specified.)

-xnum This is the level of debugging output desired.

4. SYSTEM CONTROL FILES

Seven Control Files are referenced by the Uucp utilities. All live in the UUCP administrative
directory, /usr/lib/uucp. These are ASCII files, and can be modified using standard text editors such
as vi and ex. Lines beginning with a '#' character are comments; lines ending with a '\' are continued
on the next input line.

L-devices(5) Declares all devices that are available to uucico for calling out.

L-dialcodes(5) Phone number prefixes. Used to map alphabetic prefixes on phone numbers
from L.sys to real phone numbers. Also useful to keep a phone number data
base outside of L.sys.

L.sys(5)

L.aliases(5)

L.cmds(5)

SQ FILE

Systems. Declares all "adjacent" UUCP hosts, with directions on how to reach
them.

Contains aliases used to map obsolete or truncated bost names to the correct
names.

Commands Permissions. Declares those commands for which remote ui1x exe
cution is permitted.

Sequence-number check file. (Optional)

USERFILE(5) Directory Tree Permissions. Specifies the set of directory trees that a particular
user or host may reference.

A general description of each file follows; see the man pages for complete information. Examples of
the six standard files are included in the distribution in the /usr/lib/uucp/UUAIDS directory.

4.1. L-devices - UUCP Devices File

This file declares all devices that are available to uucico for calling out. The special device files are
assumed to be in the !dev directory. The format for each entry is

where;

caller

line

caller line call-unit class dialer [chat....]

is the caller mechanism, that is, the type of device to be used. This can be one of
ACU (for Automatic Call Units (modem)), DIR (direct hardwired), PAD
(X.25/PAD), and others.

is the device for the link. For example, culO for a modem, ttylO for a hardwired
line.

call-unit is the automatic call unit associated with device. This is used on autodialers such
as the Racal-Vadic MACS and the DEC DN-11 that use one device for data, and a
second device for dialing. If unused, this field must contain a placeholder such as
"unused" or "O". Some modems use this field to specify tone or pulse dialing.

class

dialer

chat

is the line speed, plus an optional alphabetic prefix. The prefix can be used to dis
tinguish among different devices that have identical caller and line speed.

applies to ACU devices only; this is the type or brand name of the modem. Sup
ported modems include DNll (DEC DN-11), hayes (Hayes Smartmodem), vadic
(Racal-Vadic 3451), ventel (Ven Tel 2 l 2A), and others.

refers to an expect/send script, similar to that provided in L.sys. The difference is
that the script in L-devices is executed before the connection is established, while
the script in L.sys is executed afterwards.

Installation and Operation of UUCP SMM:9-11

The line
ACU tty47 unused 1200 hayes

would be set up for a system which had device tty4 7 wired to a Hayes "Smartmodem 1200" for use
at 1200 baud.

4.2. L-dialcodes - Phone Number Prefix File

This file contains entries with location abbreviations used in the L.sys file (e.g. py, mh, boston). The
entry format is

where;

abb
dial-seq

The line

abb dial-seq

is the abbreviation,
is the dial sequence to call that location.

PY 165-
would be set up so that entry py7777 would send 165-7777 to the dial-unit.

4.3. L.aliases - Hostname Aliases File

This file defines mapping (aliasing) of remote host names. This is intended for compensating for sys
tems that have changed names, or do not provide their entire machine name (like most USG sys
tems). It is also useful when a machine's name is not obvious or commonly misspelled.

Each line is of the form
real-name alias-name

where real-name is the full, correct name for the host, and alias-name is the old or truncated name.

4.4. L.sys - UUCP Systems File

Each entry in this file represents one system which can be called by the local uucp programs. The for
mat for each entry is

system times caller class device/phone-number [login]
where;

system
times

caller

class

phone

login

is the hostname of the remote system.

is a keyword-encoded string that indicates the days-of-the-week and times-of-day
when the system may be called. For example MoTuThOS00-1730 would denote
Monday, Tuesday, and Thursday, between 8 a.m. and 5:30p.m.
The day portion may be a list containing any of Su, Mo, Tu, We, Th, Fr, Sa, or
Wk for any week-day or Any for any day.

The time should be a range of times (as in 0800-1230). If no time portion is
specified, any time of day is assumed to be acceptable for the call.
is one of the caller device-types listed in L-devices.
is the line speed for the call (e.g., 300, 1200, 9600), plus an optional alphabetic
prefix. Network devices use this field for the network port number.

is the the phone number to call (for ACU devices) or the device filename. A phone
number is made up of an optional alphabetic abbreviation and a numeric part.
The abbreviation is one which appears in the L-dialcodes file (e.g. mh5900, bos
ton995-9980).
is a script describing how to log in to the remote host. It is expressed as a series of
fields and subfields in the format

SMM:9-12 Installation and Operation of UUCP

expect send [expect send] ...

where; expect is the string expected to be read and send is the string to be sent
when the expect string is received. The send string is normally terminated with
carriage-return; an empty send string will send only a carriage-return.
The expect field may be made up of subfields of the form

expect[-send-expect] ...

where the send is sent if the prior expect is not successfully read and the expect
following the send is the next expected string.

A typical entry in the L.sys file would be

sys Any ACU 1200 mh7654 login:--login: uucp ssword: word
The expect algorithm looks at the last part of the string as illustrated in the password field.

4.5. L.cmds - Commands Permissions File
This file contains a list of commands, one per line, that are permitted for remote execution via uux.
This list should be chosen with great care, since commands that take filenames as arguments will
allow users to easily circumvent Uucp's security. For most sites, L.cmds should only include the
lines:

rm ail
ruusend

4.6. SQFILE - Sequence Check File (Optional)
This file contains an entry for each remote system with which this site agrees to perform conversation
sequence checks. The initial entry is just the system name of the remote system. The first conversa
tion will add two items to the line, the conversation count, and the date/time of the most resent
conversation. These items will be updated with each conversation. If a sequence check fails, which
could indicate that an unauthorized connection has been attempted, the entry will have to be
adjusted.

This facility is technically no longer supported in 4.3BSD UUCP, since it was hardly ever used and
consumed precious memory space on PDP-11 systems. The compile-time #define GNXSEQ can be
set to enable sequence checking should it be needed.

4.7. USERFILE - Pathnames Permissions File

This file contains user accessibility information. It specifies four types of constraint;
[I] which files can be accessed by a normal user of the local machine,

[2] which files can be accessed from a remote computer,
[3] which login name is used by a particular remote computer,

[4] whether a remote computer should be called back in order to confirm its identity.
Each line in the file has the following format

login,sys [c] path-name [path-name] ...
where;

login

sys

c
path-name

is the login name for a user or the remote computer,
is the system name for a remote computer,

is the optional call-back required flag,
is a path-name prefix that is acceptable for user.

The constraints are implemented as follows.

Installation and Operation of UUCP SMM:9-13

(l) When the program is obeying a command stored on the local machine, MASTER mode,
the path-names allowed are those given for the first line in the USERFILE that has a login
name that matches the login name of the user who entered the command. If no such line
is found, the first line with a null login name is used.

(2) When the program is responding to a command from a remote machine, SLAVE mode,
the path-names allowed are those given for the first line in the file that has the system
name that matches the system name of the remote machine. If no such line is found, the
first one with a null system name is used.

(3) When a remote computer logs in, the login name that it uses must appear in the USER
FILE. There may be several lines with the same login name but one of them must either
have the name of the remote system or must contain a null system name. Note: This con
straint, although stated in the original Nowitz UUCP document, was not implemented in
Version 7 UUCP. For all practical purposes, a remote computer's login was not validated
by UUCP. This is still the case in 4.3BSD. Remote login checking is implemented in
AT &T's System VR2.2 release, and in the Uucp provided with Digital Equipment
Corporation's ULTRIX. HoneyDanBer analogously requires all remote logins to be listed
in its Permissions file.

(4] If the line matched in ((3)) contains a "c", the remote machine is called back before any
transactions take place.

The line

u,m /usr/xyz

allows machine m to login with name 11 and request the transfer of files whose names start with
"/usr/xyz".

The line
dan, /usr/dan

allows the ordinary user dan to issue commands for files whose name starts with "/usr/dan".

The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u, but if its system name is not m, it can only ask to
transfer files whose names start with "/usr/spool".

The lines

root, I
, /usr

allows any user to transfer files beginning with "/usr" but the user with login root can transfer any
file.

5. SPOOL FILES
Spool Files contain Uucp transfer requests and data. Most have been described in detail earlier

in this document.
All spool files live in the /usr/spool/uucp directory tree. To keep the spool directory from becoming
hopelessly cluttered, each type of spool file is kept in its own subdirectory. The name of the directory
is the same as the common prefix of the filename. For example, work files (files beginning with C.)
are kept in the C. directory; execute files (which begin with X.) are kept in the X. directory, and so on.

A total often spool subdirectories are used, one of which is optional:

C. Work files.

CORRUPT Corrupted work and execute files. Uucico and uuxqt will deposit C. and X. files
here when they are unable to parse them. A notice will also be placed in the

SMM:9-14

D.

D.hostname
D.hostnameX
LCK

STST

TM.

x.
XTMP

Installation and Operation of UUCP

UUCP log.

Data files received from remote hosts.

Data files to be sent to remote hosts.

Execution files to be sent to remote hosts.

Per-device and per-site lock (LCK.) files. (Optional)

Per-site system status files.

Temporary files used in data transfer. When the transfer is complete, the file is
typically mv'ed to the D. or X. directory.

Execution files received from remote sites.

Temporary files and home directory for uuxqt.
The following sections describe only those spool files that were not discussed earlier.

5.1. LCK - lock files

Lock files are created for each device in use (except for TCP/IP sockets) and each system conversing.
This prevents duplicate conversations and multiple attempts to use the same devices. The f9rm of
the lock file name is

LCK .. str

where str is either a device or system name. The files may be left in the spool directory if uucico
aborts. They will be ignored (reused) after 90 minutes. When runs abort and calls are desired before
the time limit expires, the lock files should be removed. If the LCK. subdirectory is used, it's access
mode can be set to 777, thus allowing normal users to remove dead lock files when necessary.

5.2. STST - system status files

These files are created in the STST subdirectory by uucico. They contain information of failures such
as login, dialup, or sequence check, and will contain a TALKING, RECEIVING, or SENDING status
when two machines are conversing. The file name is STST/system, where system is the host name of
the remote machine.

For ordinary failures (dialup, login), the file indicates the time of the last failure; this allows 1111cico to
avoid retrying the failed call too soon. For sequence check failures, the file must be removed before
any future attempts to converse with that remote system.

If the file is left due to an aborted run, it may contain a TALKING status. In this case, the file must
be removed before a conversation is attempted. The easiest way to do this is to use the uupoll com
mand to force uucico to start up.

5.3. TM - temporary data files

These files are created in the /usr/spool/uucp/TM. directory while files are being copied from a
remote machine. Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number starting at zero for each invoca
tion of uucico and incremented for each file received. After the entire remote file is received, the TM
file is moved to the requested destination, often the X. or D. directory. If processing is abnormally
terminated or the move fails, the file will remain in the TM. directory.

The stranded files should be periodically removed; the 1111clean program is useful in this regard. The
command

uuclean -d/usr/spool/uucp/TM. -pTM.

Installation and Operation of UUCP SMM:9-15

will remove all TM files older than three days.

6. LOG FILES

The following files provide a history of UUCP activities. All live in the spool directory.
/usr/spool/uucp. They grow forever. and must he periodically trimmed or deleted: this is usually done
weekly (or daily) via mm.

AUDIT This is a directory of audit trail files. one file per site. L'ucico uses an audit file for
debugging output whenever it is run with debug enabled (via the -x option or a
SIGFPE signal). but the standard message output file stderr is not available.

ERRLOG This is an oft-forgotten log of Uucp ··Assert" errors. An Assert error is a catas
trophic and unrecoverahle failure of the Uucp system. These include spool direc
tories or control files that cannot be opened. an unexpected error return from a sys
tem call. or an "impossible case" in a utility's control flow.

Utilities that abort with an Assert error return a status code of -1. If a user reports
1111cp or 1111.\· dying with a message like "uux failed. status -1." then the ERRLOG
file should be checked.

LOGFILE This is the primary UUCP log. All UUCP activity is recorded here. including queue
requests from uucp and 1111x. attempted connections. file transfers. and communica
tions failures.

SYSLOG This is a log of file transfer statistics: number of bytes. time required. and number
of packet retries. The effective data rate can he calculated simply by dividing the
number of bytes by the time; low data rates or a large number of retries implies
that the communication link may marginal.

Optionally, one LOGFILE per site may he maintained in the LOG subdirectory. This option can be
selected at UUCP compile time via the LOGBYSITE #define in uucp.h.

7. ADMINISTRATION AND SYSTEM SECURITY

7.1. UNIX System Files

/etc/passwd

UUCP requires a login in /etc/passwd; at its simplest the entry would be

uucp::66: I :UNIX-to-UNIX Copy:/usr/spool/uucppublic:/usr/lib/uucp/uucico

This user should own all the UUCP files and utilities. Remote sites wishing to call in for UUCP
transfers would login to uucp (with the correct password, if any), and get 1111cico as their "shell." Since
uucico would be called without any options, it would run in SLAVE mode, thus responding correctly
to the remote system, which would be in MASTER mode.

The directory /usr/spool/uucppublic should be created with 777 access modes, owned by uucp. In
addition to serving as the home directory for UUCP remote logins, uucppublic provides a "public
access" directory where any user can read, write, or transfer files.

There are a number of security problems with using a single login, not the least of which is that
superuser permission would be necessary to edit the control files. A better arrangement would be:

uucp::66: I :UUCP Administrator:/usr/lib/uucp:
nuucp::67: I :UNIX-to-UNIX Copy:/usr/spool/uucppublic:/usr/lib/uucp/uucico

This provides one login for the UUCP administrator (which must be kept secure!) and a second for
remote machines to use for login. A still more elaborate setup would use a separate login for each
remote site, and possibly provide the administrator with a choice of shells:

SMM:9-16 Installation and Operation of UUCP

uucp::66: I :UUCP Administrator:/usr/lib/uucp:
UUCP::66: I :UUCP Administrator:/usr/lib/uucp:/bin/csh
Uhosta::600 I: I :UNIX-to-UNIX Copy:/usr/spool/uucppublic:/usrllib/uucp/uucico
Uhostb::6002: I :UNIX-to-UNIX Copy:/usr/spool/uucppublic:/usr/lib/uucp/uucico
Uhostc::6003: I : UN IX-to-UNIX Copy:/usr/spool/uucppubl ic:/usr/lib/uucp/uucico

It is assumed that the login name used by a remote computer to dial in is not the same as the login
name of a normal user of the machine. However. several remote computers may employ the same
login name.

Note that uucppublic is 1101 used as the home directory for uucp when it logs into a regular shell. This
would be an extreme security hazard. since anyone could slip a "Trojan horse" into a .profile or
.cshrc file. which would be automatically executed when the UUCP administrator logged in.

/etc/re
The system startup file. /etc/re. should clean up any stray lock files with the line

rm -f /usr/spool/uucp/LCK.*

. or. if the LCK subdirectory is being used.

rm -f /usr/spool/uucp/LCK/LCK.*

/etc/services

If UUCP is to be used over TCP/IP links. then an entry for Uucp's port number should be added to
/etc/services:

uucp 540/tcp uucpd # UUCP TCP/IP

7.2. Shell Scripts For Periodic Cleanup
The UUCP system has a fairly large number of activities that must occur periodically. These include
starting 1111cico to process queued requests, running 1111clea11 to remove old spool files, and shuffling
the boundlessly-growing log files. Some sites will also want to poll other sites periodically.

While it's possible to put all the necessary commands into cron's control file /usr/Iib/crontab, this
would be extremely awkward. The usual technique is to use three separate shells scripts, one each for
hourly, daily, and weekly operations. Examples are provided in the UUAIDS directory; the following
sections provide some specific recommendations.

Hourly

Activities that should occur hourly include:

Daily

- Polling of selected sites. Sites that have no dial-out capability will need to be periodically
polled. The uupoll command works well for this.

- Start 1111cico to complete all unfinished work. This can be as simple as:

uucico -rl &

The daily script should be started by cron in the wee hours, around 4 a.m. Activities that should
occur daily include:

- Call uuclean to remove old spool files. The preferred technique is something like the follow
ing:

Installation and Operation of UUCP SMM:9-17

Weekly

cd /usr/lih/uucp
dcadtimc='cxpr 24 7"
uuclcan -d/usr/spool/uucp/ AUDIT -n 72
uuclcan -d/usr/spool/uucp/LCK -pLCK. -pl TMP. -n24
uuclcan -d/usr/spool/uucp/STST -n72
uuclcan -d/usr/spool/uucp/TM. -pTM. -n72
uuclcan -d/usr/spool/uucp/XTMP -n72
uuclcan -d/usr/spool/uucp/X. -pX. -n$dcadtime
uuclcan -d/usr/spool/uucp/C -pC -n$deadtime
uuclean -d/usr/spool/uucp/D. -pD. -n$dcadtimc
uuclean -d/usr/spool/uucp/D.'uuname -1' -pD. -n$dcadtime
uuclean -d/usr/spool/uucp/D.'uuname -l'X -pD. -n$deadtime

In this example. Audit files. Lock files. System Status files. temp files. and 1111xq1 output files
arc cleaned up every 72 hours (3 days). (LTMP. files are temporary files created hy the lock
mechanism: they are rarely around for more than a few seconds. Note. the above assumes
that the LCK suhdirectory is heing used.) All normal data files are cleaned up every 24 * 7
hours. or every 7 days.

Shuffie the log files. At the very least. LOGFILE should he moved to LOGFILE.old. and SYS
LOG moved to SYSLOG.old. Busy sites may want to use rnmpress(1) to squeeze down the
old files.

Use .find(1) to clean up the /usr/spool/uucppublic directory. If left unattended. garbage will
gradually accumulate there until it fills the file system.

Small sites with very little traffic may chose to shuftle the log files once per week. instead of once per
day. The weekly script should. like the daily script, be run early in the morning.

7.3. Connecting new systems

When first connecting a new machine to a UUCP network. it is useful to try and establish a connec
tion with lip or rn first. The UUCP administrator will quickly become aware of any special facilities
that are going to be required. for example: What lines and modems are to be used? Is the connection
through different hardware and carriers? Does the remote system care about parity? What speed
lines are being used and do they cycle through several speeds? Is there a line switch front end that
will require special login dialogue in L.sys?

Once a successful login is achieved "by hand," the administrator should have enough information to
allow the correct setup of the con/ro/ files in

The UUCP administrator should then negotiate with the remote site's UUCP administrator as to who
(if anyone) will do polling and when. Both administrators must set up the relevant accounts and
passwords. The local administrator should decide on what permissions and security precautions are
to be observed. Testing time and facilities will need to be arranged to complete initial connection
testing between the systems.

7.4. Miscellaneous Security Issues

The UUCP system, left unrestricted, will let any outside user execute any commands and copy any
files that are accessible to the uucp login user. It is up to the individual sites to be aware of this and
apply the protections that they feel are necessary.

There are several security features available aside from the normal file mode protections. These
must be set up by the installer of the UUCP system.

The login for uucp does not get a standard shell. Instead, 1111cico is started. Therefore, the only
work that can be done is through uucico.

SMM:9-18 Installation and Operation of UUCP

A path check is done on file names that are to be sent or received. USERFILE supplies the infor
mation for these checks. USERFJ LE can also be set up to require call-back for certain login-ids.
(See the description of USERFJLE above.)

A conversation sequence count can be set up so that the called system can be more confident that
the caller is who he says he is.

U11xq1 is restricted via the L.cmds file to a small list of commands that it will execute. A
"PATH" shell statement is prepended to the command line as specified in the L.cmds file. The
administrator may modify the list or remove the restrictions as desired.

All the utilities except uudecode, uuencode, and uusend should be owned by the uucp login with
the "setuid" bit set and only execute permissions (e.g. mode 04111). This will prevent outsiders
from modifying the programs to get at a standard shell with a uucp login. Optionally, the utilities
may belong to group daemon and be given "setgid" permissions (mode 06111). Uuxqt should only
permit other UUCP programs to execute it; its mode should be 04100 or 06110.

The control tiles L.sys, USERFILE, and SQFILE contain highly sensitive information. They
should be owned by the uucp login, with read and write permission granted only to the owner
(mode 0600).

8. INSTALLING THE UUCP SYSTEM

The source for the UUCP system resides in the /usr/src/usr.bin/uucp directory. The README
file includes complete instructions on how to rebuild the UUCP system from source.

For most environments, only two files will need to be modified: uucp.h includes a large number of
tunable system-dependent parameters, including operating system type, devices to be supported, and
a variety of optional features. The Makefile may also have to be modified, particularly if you chose
to keep certain files in different directories from usual.

9. ACKNOWLEDGEMENTS

4.3BSD UUCP was a group development effort, involving the contributed work of over one
hundred members of the USENET community. We're extremely grateful to them all.

Special thanks go to the following individuals, whose contributions were especially valuable:

Rick Adams (Center for Seismic Studies) coordinated the 4.3BSD UUCP release, incorporat
ing (and often correcting) hundreds of bug fixes that were posted on the USENET and mailed
to him directly. Rick also managed to find time to add many enhancements and corrections
of his own.

Tom Truscott (Research Triangle Institute) and Bob Gray (then with PAR Tech Corp, now at
Univ of Colorado) coordinated the 4.2BSD UUCP release, which was also a group effort.
Tom has continued to provide enhancements and fixes in 4.3BSD.

- Guy Harris (then with Computer Consoles, Inc., now with Sun Microsystems) contributed
many general bug fixes; in particular, he was the first to isolate the infamous 4.2BSD
"TIMEOUT" bug.

- Lou Salkind (New York University) wrote the uuq utility.

James Bloom (U.C. Berkeley) isolated a major day-one bug in the g-protocol driver that had
eluded many people's attempts to squash it.

Piet Beertema (Centrum voor Wiskunde en Informatica, Amsterdam) wrote the f-protocol to
support "mostly error-free links"; Robert Elz (University of Melbourne) modified the protocol
specifically for X.25/PAD.

Peter Honeyman (Princeton) assisted Rick by providing information on the facilities provided
in HoneyDanBer UUCP; Rick then added many HOB-compatibility features and HDB-like
extensions to 4.3BSD UUCP.

- Ross Green (U.C. Berkeley) produced the first revision of this chapter, updating the aging
Nowitz document to more closely reflect reality.

Thanks again to everyone who contributed. Berkeley UUCP continues to be a product of its own
users, and would not exist as it does today without them.

1. Introduction

USENET Version B Installation

Matt Glickman
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, California 94720

Revised by Mark Horton for version 2.10
Revised by Rick Adams for version 2.10.3

This document is intended to help a USENET site install and maintain the network news
software. Please ask questions of Rick Adamst; such questions will help to point out areas that need
to be addressed here.

The overall order of things to do is:
(a) Find somebody to link up with. You need a network connection of some kind, for example,

ARPANET or UUCP. If you must use UUCP and have no connections, you must have at least
a dialup and preferably a dialer, and find someone willing to call your machine. The USENET
directory may be helpful in finding some other site geographically near yours to hook up to.

(b) Create a localize.sh script to make local changes to the makefile and defs.h files. (Section 2 gives
more details about creating localize.sh.) Once you're finished editing localize.sh, create a defs.h
and Makefile tailored for your site with the command

sh localize.sh
Inspect defs.h and Makefile to ensure that all your local customizations got into your final ver
sions. If you saw a "?" when you ran localize.sh, one or both of the files is certainly wrong. It's a
good idea to anchor the patterns in localize.sh's ed(I) scripts, especially in its Makefile-editing
lines. For instance, use rUUXFLAGS/ instead of /UUXFLAGS/.

(c) Compile the software using the make(l) command.
(d) Su(!) and type "make install". This will copy the files out to the right place and make direc

tories containing most of the important files. It will configure you in with a connection to
oopsvax via UUCP links. This is undoubtedly wrong, so you will have to configure links as
needed. If you are upgrading from a version older than 2.10.3, do "make update". This will
cause various checks to be performed on important files in LIBDIR. The results will be report
ed to you. If you are not sure if you should do "make update'', do it. It will not hurt anything
if you have already done it.

(e) After editing the configuration table, get your contact at the other end of the link to add you to
their netnews sys file.

(I) Post a message to the to.sysname newsgroup which should be set up to go only to the site you
are linked to, as a test. Have the other person send a message to your system using the same

t ARPANET: rick@seismo.CSS.GOV, UUCP: seismo!rick

USENET Version B Installation SMM:l0-1

SMM:l0-2 USENET Y ersion B Installation

mechanism. If this doesn't work, find the problem and fix it. (Please don't use net.test unless
there is no alternative. It is almost always possible to use test, or to.sysname or some local.test
group, instead of net.test.)

(g) Fill out a USENET directory form (the file dirform in the misc directory). Post a copy to the
USENET newsgroup net.news.newsite and mail a copy to cbosgd!uucpmap.

(h) Format the document "How to Read the Network News" (the file howto.mn in the doc directory),
the document "How to Use USENET Effectively" (the file manner.mn in the doc directory) and
the document "Copyright Law" (the file copyright.mn in the doc directory) and post them to
your general newsgroup with a long expiration date. You can use inews(l) or postnews(l) to do
this.

(i) It will probably be necessary to fix your uucp commands to allow mews and to support the -z
and -n options (if you are lucky enought to have the source).

2. Installation

2.1. Configuration
Local configuration of the USENET version B software requires you to edit a few files. Most

importantly, the defs.h and Makefile files must be created from their templates deft.dist and
Makefile.dst. You should create a shell script called localize.sh which copies the files and makes local
changes to the copies. Even for a completely vanilla site, some changes will be necessary. For exam
ple, your script should start with localize.v7 or localize.usg. You should include the name of the local
organization (MYORG) and the uid of the local news super user (ROOTID). You should also choose
how your hostname will be determined. If you are a USG site, define UNAME in defs.h. If you are
running 4.[23] BSD, define GHNAME in defs.h. If you have your UUCP name in /etc/uucpname,
define UUNAME in defs.h. Otherwise, news will look in the file lusr/includelwhoami.h for a line of
the form

#define sysname your-sysname

If you are running System 3 or System 5, you are a USG site. Otherwise, unless you are in
AT&T, you are probably a Y7 site. The previously mentioned defines are the only modifications that
are necessary to install news at your site. However, you will probably want to change some of the
ones listed below. If your compiler does not accept "(void)'', the simplest thing to do is add
"-Dvoid=int" to the CFLAGS line in the Makefile.

A sample localize shell script can be found in localize.sample. The most important parameters
are:

2.1.1. ROOTID

The numerical uid of the person who is the news super user. This should not be set to 0. Nor
mally it is set to the uid of the news contact person for the site. If it is not defined, the uid of NOTI
FY will be looked up in /etc/passwd and used instead.

2.1.2. N_UMASK

Mask for umask(2) system call. Set it to something like 022 for a secure system. Unsecure sys
tems might want 002 or 000. This mask controls the mode of news files created by the software. In
secure modes would allow people to edit the files directly.

2.1.3. DFLTEXP

The default number of seconds after which an article will expire. Two weeks (1,209,600
seconds) is the default choice. If you wish to expire articles faster than two weeks, it is recommended
that you use the -e flag to expire instead of decreasing DFLTEXP.

USENET Version B Installation SMM:I0-3

2.1.4. HISTEXP
Articles which were posted more than HISTEXP ago are considered too old and are moved into

the junk directory. This is because they are too old to be in the history file, so it is impossible to tell
if they really should be accepted or are endlessly looping around the network. (This was theoretically
possible before this feature was added.) The articles are removed after DFLTEXP seconds, but a copy
of their "Message-ID" is kept in the history file for HISTEXP seconds (the default is 4 weeks).

2.1.5. DFLTSUB

The default subscription list. If a user does not specify any list of newsgroups, this will be used.
Popular choices are all and general,all.general.

2.1.6. TMAIL
This is the version of the Berkeley Mail(I) program that has the -T option. If left undefined,

the -M option to readnews(I) will be disabled.

2.1.7. ADMSUB

This newsgroup (or newsgroup list) will always be selected unless the user specifies a newsgroup
list that doesn't include ADMSUB on the command line. That is, as long as the user doesn't use the
-n flag to readnews on the command line, ADMSUB will always be selected. This is usually set to
general. (The intent of this parameter is to have certain newsgroups which users are required to sub
scribe to. A typical site might require general.)

2.1.8. PAGE

The default program to which articles should be piped for paging. This can be disabled or
changed by the environment variable PAGER. If you have it, the Berkeley more(I) command should
be used, since the + option allows the headers to be skipped.

2.1.9. NOTIFY

If defined, this character string will be used as a user name to send mail to in the event of cer
tain control messages of interest. (Currently these are newgroup, rmgroup, sendsys, checkgroups, and
senduuname.) As distributed, mail will be sent to user usenet. It is recommended you create such a
mailbox (have it forwarded to yourself) if possible, since this makes it easier for another site to con
tact the site administrator for your site. If you are unable to do this (e.g., you are not the super user)
you should change this name to yourself. Also, messages about missing or extra newsgroups are
mailed to this user by the checkgroups control message.

2.1.10. DFTXMIT

This is the default command to use to transmit news if no explicit command is given in the
fourth field of the sys file. It normally includes uux(I) with the -z option. You should install this
modification to UUCP at once; otherwise your users will start being bombarded with annoying uux
completion messages. However, you can turn this off to get news installed.

2.1.11. UXMIT

This is the default command used if the U flag is present in the flags portion of a sys file line.
In this case, the second "o/os" refers to the name of a file in the news spool area, not a temporary file.
It can usually only be used when local modifications are made to the uucp system, such as the -c op
tion to uux.

SMM:I0-4 USENET Version B Installation

2.1.12. DFfEDITOR
This is the full path name of the default editor to use during followups and replies. It should be

set to the most popular text editor on your system. As distributed, vi(!) is used.

2.1.13. UUPROG

If this is defined, it will be used as a command to run when the senduuname control message is
sent around. Otherwise the command uuname(I) will be run. Normally, this program should be
placed in LIBDIR.

2.1.14. MANUALLY
If this is defined, incoming rmgroup messages will not automatically remove the group. News

will instead mail a message to NOTIFY advising that the group should be removed. If you define
MANUALLY, you should have NOTIFY defined. MANUALLY is defined by default to protect you
against accidental or malicious removal of an important newsgroup.

2.1.15. NONEWGROUPS
If this is defined, incoming newgroup messages will not automatically create the group. News

will instead mail a message to NOTIFY advising that the group should be created. If you define
NONEWGROUPS, you should have NOTIFY defined. NONEWGROUPS is undefined by default
to make it easier to automatically maintain the news system.

2.1.16. BATCH
If set, this is the name of a program that will be used to unpack batched articles (those begin-

ning with the character"#".) Batched articles normally are files reading
#! mews 1234
article containing 1234 characters
#! mews 4321
article containing 4321 characters

Batching is strongly recommended for increased efficiency on both sides.

2.1.17. LOCALNAME
Most systems have a full name database on line somewhere, showing for each user what their

full name is. Most often this is in the gecos field of /etclpasswd. If your system has such a database,
LOCALNAME should be left undefined. If not, define LOCALNAME, and articles posted will only
receive full names from local user information specified in NAME or $HOME/.name by the user. If
you have a nonstandard gcos format (not finger(I) or RJE) it will be necessary to make local changes
to fullname.c as appropriate on your system.

2.1.18. INTERNET
If your system has a mailer that understands ARP A Internet syntax addresses

("user@site.domain") turn this on, and replies will use the "From" or "Reply-To" headers. Other
wise, leave it disabled and replies will use the "Path" header.

2.1.19. MYDOMAIN
When generating internet addresses, this domain will be appended to the local site name to form

mailing address domains. For example, on system ucbvax with user root, if MYDOMAIN is set to
".UUCP", addresses generated will read "root@ucbvax.UUCP". If MYDOMAIN is
".Berkeley.EDU", the address would be "root@ucbvax.Berkeley.EDU". If your site is in more than
one domain, use your primary domain. The domain always begins with a period, unless the local site

USENET Version B Installation SMM:l0-5

name contains the domain; in this case MYDOMAIN should be the null string.

2.1.20. CHEAP
Do not chown(l) spool files to news. This will cause the owner of the file to be the person that

started the inews process. This is used for obscure accounting reasons on some systems.

2.1.21. OLD
Define this if any of your USENET neighbors run 2.9 or earlier versions of B news. It will

cause all headers written to contain two extra lines, "Article-1.D." and "Posted", for downward com
patibility. Once all your neighbors have converted, you can save disk space and transmission costs by
turning this off. It is strongly encouraged that they convert. 2.10.3 is much faster than 2.9. The per
formance difference is dramatic.

2.1.22. UNAME
Define this if the uname(2) system call is available locally, even though you are not a USG sys

tem. USG systems always have uname(2) available and ignore this setting.

2.1.23. GHNAME
Define this if the 4.[23] BSD gethostname(2) system call is available. If neither UNAME or

GHNAME is defined, inews will determine the name of the local system by reading
/usr lincludelwhoami.h.

2.1.24. UUNAME
Define this if you keep your UUCP name in letcluucpname.

2.1.25. V7MAIL
Define this if your system uses V7 mail conventions. The V7 mail convention is that a mailbox

contains several messages concatenated, each message beginning with a line reading "From user date"
and ending in a blank line. If this is defined, articles saved will have these lines added so that mail
can be used to look at saved news.

2.1.26. SORTACTIVE
Define this if you want the news groups presented in the order of each person's .newsrc(S) in

stead of the active file.

2.1.27. ZAPNOTES
Define this if you want old style notesfile id's in the body of the article to be converted into

"Nf-Id" fields in the header.

2.1.28. DIGPAGE
If this is defined, vnews(1) will attempt to process the subarticles of a digest instead of treating

the article as one big file.

2.1.29. DOXREFS
Define this if you are using rn(l). Rn uses this option to keep from showing the same article

twice.

SMM:J0-6 USENET Version B Installation

2.1.30. MULTICAST
If your transport mechanism supports multi-casting of messages, define this. Currently

ACSNET is the only network that can handle this.

2.1.31. BSD4_2

Define this if you are running 4.2 or 4.3 BSD UNIXt.

2.1.32. BSD4_1C
Define this if you are running 4.1 C BSD UNIX.

2.1.33. SENDMAIL
Use this program instead of t'ecmail(S) for sending mail.

2.1.34. MMDF

Use MMDF instead of recmail for sending mail.

2.1.35. MYORG
This should be set to the name of your organization. Please keep the name short, because it will

be printed, along with the electronic address and full name of the author of each message. Forty
characters is probably a good upper bound on the length. If the city and state or country of your or
ganization are not obvious, please try to include them. If the organization name begins with a "/", it
will be taken as the name of a file. The first line in that file will be used as the organization. This
permits the same binary to be used on many different machines. A good file name would be
lusrlliblnews/organization. For example, an organization might read "AT&T Bell Labs, Murray
Hill", "U.C. Berkeley'', "MIT'', or "Computer Corp. of America, Cambridge, Mass".
2.1.36. HIDDENNET

If you want all your news to look like it came from a single machine instead of from every
machine on your local network, define HID DENNET to be the name of the machine you wish to pre
tend to be. Make sure that you have you own machine defined as ME in the sysfile or you may get
some unnecessary article retransmission.

2.1.37. NICENESS

If NICENESS is defined, mews does a nice(2) to priority NICENESS before processing news.

2.1.38. FASCIST

If this is defined, inews checks to see if the posting user is allowed to post to the given news
group. If the usemame is not in the file LIBDIR/authorized then the default newsgroup pattern in
the symbol FASCIST is used.

The format of the file authorized is:
user:allowed groups

For example:

root:net.all,mod.all
naughty _person:junk,net.politics
operator:!net.all,general,test,mod.unix

An open environment could have FASCIST set to all and then individual entries could be made
in the authorized file to prevent certain individuals from posting to such a wide area.

tUNIX is a trademark of AT&T Bell Laboratories.

USENET Version B Installation SMM:I0-7

Note that a distribution of all does not mean to allow postings only to local groups - all includes
all.all. Use all,!all.all to get that behavior

2.1.39. SMALL_ADDRESS_SPACE

Define this if your machine has 16 bit (or smaller) pointers. If you are on a PDP-11 t, this is au
tomatically defined.

2.2. Makefile

There are also a few parameters in the Makefile as well. These are:

2.2.1. OSTYPE

This is the type of UNIX system you are using. It should be either v7 or USG. Any BSD system
is v7. Any System 3 or System 5 system is USG. This is normally set by localize.sh.

2.2.2. NEWSUSR

This is the owner (user name) of inews. If you are a superuser, you should probably create a
new user id (traditionally news) and use this id. If you are not a superuser, you can use your own
user id. If you are able to, you should create a mail alias usenet and have mail to this alias forwarded
to you. This will make it easier for other sites to find the right person in the presence of changing
jobs and out of date or nonexistent directory pages. NEWSUSR and ROOTID do not need to
represent the same user.

2.2.3. NEWSGRP

This is the group (name) to which inews belongs. The same considerations as NEWSUSR ap-
ply.

2.2.4. SPOOLDIR

This directory contains subdirectories in which news articles will be stored. It is normally
/usr/spoo!lnews.

Briefly, for each newsgroup (say net.general) there will be a subdirectory
/usr/spool/newslnetlgeneral containing articles, whose file names are sequential numbers, e.g.,
lusrlspool/newslnet/generall l, etc.

Each article file is in a mail-compatible format. It begins with a number of header lines, fol
lowed by a blank line, followed by the body of the article. The format has deliberately been chosen to
be compatible with the ARPANET standard for mail documented in RFC 822.

You should place news in an area of the disk with enough free space to hold the news you in
tend to keep on line. The total volume of news in net.all currently runs about I Mbyte per day. If
you expire news after the default 2 weeks, you will need about 14 Mbytes of disk space (plus some ex
tra as a safety margin and to aliow for increased traffic in the future.) If you only receive some of the
newsgroups, or expire news after a different interval, these figures can be adjusted accordingly.

2.2.5. BATCHDIR

This directory will contain the list of articles to send to each system. It is normally
/usr/spool/batch.

tPDP-11 is a trademark of Digital Equipment Corporation.

SMM:l0-8 USENET Version B Installation

2.2.6. LIBDIR
This directory will contain various system files. It is normally lusrlliblnews.

2.2.7. BINDIR
This is the directory in which readnews, postnews, vnews, and checknews(l) are to be installed.

This is normally /usrlbin. If you decide to set BINDIR to a local binary directory, you should con
sider that the rnews and cunbatch commands must be in a directory that can be found by uuxqt,
which normally only searches !bin and /usrlbin.

2.2.8. UUXFLAGS
These are the flags uux will be called with.

2.2.9. LNRNEWS
This is the program used to link rnews and inews. If you have symbolic links, you can replace

the "In" with "In -s".

2.2.10. SCCSID
If this is defined, sccs ids will be included in each file. If you are short on address space, don't

define this.

3. FILES
This section lists the files in LIBDIR and comments briefly what they do.

3.1. active
A list of active newsgroups. It is automatically updated as new newsgroups come in. The order

here is the order news is initially presented by readnews, so you can edit this file to put important
newsgroups first. If you have SORT ACTIVE defined, after the first time the user invokes readnews, it
will be presented in the order of his .newsrc. Each line of the active file contains four fields, separated
by a space: the newsgroup name, the highest local article number (for the most recently receiyed arti
cle), the lowest local article number that has not yet expired, and a single character used to determine
if the user can post to that newsgroup. If the character is "y" the user is permitted to post articles to
that group. If the character is "n" the user is not permitted to post articles to that groups. (This field
takes the place of the ngfile in earlier versions of news. Local article numbers begin at 1 and count
sequentially within the newsgroup as articles are received. They do not usually correspond to local
article numbers on other sites. The article numbers are always stored as a five digit number (with
leading zeros) to allow updating of the file in place.

The active file should contain all active net-wide active newsgroups (net.alland mod.all). It is
important that they all be present, as they are used as a check for valid newsgroup names and invalid
newsgroup names are removed from any articles processed by inews. You should use the sys file to
keep out unwanted newsgroups.

3.2. aliases
This file is used to map bad newsgroup names to the correct ones. (For example,

net.unix.wizards is mapped into net.unix-wizards). Each line consists of two fields separated by a
space. If the first field is found in the newsgroup list of the incoming article, it is changed to the
second field. This change takes place in the,article before it is passed on to other systems, not just lo
cally.

USENET Version B Installation SMM:I0-9

3.3. batch

This program reads a list of filenames of articles and outputs the articles themselves. It is typi
cally used by the shell script sendbatch.

3.4. c7unbatch

This is used to decompress news that has been encoded for transmission over a network that
only supports 7-bit transfers (e.g X.25.)

3.5. caesar
This is a program to do Caesar decoding of rotated text, on a line by line basis. The standard

input is copied to the standard output, rotating each line according to a static single letter frequency
table. If an integer argument is given (e.g., 13), every line is rotated by that argument, without regard
to letter frequencies. This program is invoked by the D readnews command. It is also used by post
news with the "13" argument to encode selected material for posting.

3.6. checkgroups

Checkgroups is a shell file to aid in automatically checking the accuracy of your active file. It is
executed by the checkgroups control message and mails a list of out of date newsgroups to the person
defined by NOTIFY It also updates the newsgroups file that is used by postnews as a helpfile for news
group selection.

3. 7. compress

This program does a modified Lempel-Ziv data compression. It is used by the compressed
batching scheme. It averages 50% compression on a typical batch of news.

3.8. distributions

This is a list of distributions that are valid for your site. Each line has two fields separated by
the first space on the line. The first field is the name of the distribution (e.g., usa, na, etc.). The
second field is text describing the distribution. As distributed, this file is only correct for sites in the
USA. You should examine this file and add or delete the appropriate distributions.

3.9. encode

This program transforms an 8-bit binary file into a file suitable for sending over a link that only
allows 7-bit characters. It is used by sendbatch -c7.

3.10. errlog

This file contains the "important" error messages found in the log file. These errors usually in
dicate that something was wrong with an article. This file should be watched closely. The log file
contains much more verbose information and it is often difficult to detect errors in it.

3.11. expire

This program expires old articles and archives them if archiving is selected. It is typically run
once a day from cron(S).

3.12. help

This contains a list of commands printed when an illegal command is typed to readnews.

SMM:l0-10 USENET Version B Installation

3.13. history

A list of every article that has come in to your system. It is used to reject articles that come in
for the second time (presumably via a different path). This file will grow but is cleaned out by the ex
pird,8) command.

3.14. history.d

On USG systems, this directory contains 10 files (history.(0-9]) which are used as part of a sim
ple hashing algorithm to speed up history searches. Since V7 systems have DBM, this is not used on
V7 systems.

3.15. history.dir,history.pag

These two files are used on V7 systems as a hashed version of history, containing the message
id's of all articles in history. They are only used if -DDBM and -ldbm appear in Makefile.

3.16. inews

This is the program that actually sends and receives news. All other programs interface eventu
ally with it. It is not intended to be used directly by a human, so it is no longer in /usrlbin.

3.17. log

If present, a log of articles processed and error conditions is kept here. This file grows without
limit unless cleaned out periodically. The trimlib script in misc can be invoked from cron daily or
weekly to keep the log short.

3.18. moderators

This file contains a list of the moderators and their mailing addresses for each moderated news
group. Each line consists of two fields. the first is the name of the moderated group. The second is
the mailing address of the group's moderator. As distributed, they are almost certainly wrong. You
will need to modify the paths so they work from your site.

3.19. newsgroups

This file is displayed by postnews when a user hits ? in response to its request for newsgroups.
It is also used by vnews when it displays the newsgroup name. It is updated automatically by the
checkgroups control message.

3.20. notify

If this file is present, its contents will be taken as the name of the user to notify in case of a
problem. If the file is empty, nobody will be notified. (This overrides the NOTIFY option in defs.h).
Having a null file is useful if one person administers several systems and does not want multiple
copies of control message notifications.

3.21. oactive, ohistory, ohistory.dir, ohistory.pag

These are copies of the corresponding active, history, history.dir, and history.pag files before ex
pire ran. They are kept in case something happens to the originals.

3.22. recmail

This program can serve as a link between news and your local mailer. If you have sendmail(S),
don't use recmail. Sendmail is much more useful.

USENET Version B Installation SMM:I0-11

3.23. recnews

A program which allows you to send mail to get news posted. You usually need to run sendmai/
or delivermail(B) to be able to use this.

3.24. recording

A list of newsgroup classes and filenames to display recordings for. The recording feature is
analogous to the recordings played in some areas when you dial directory assistance, trying to be an
noying and make you think twice. Recordings on certain newsgroups are intended to remind the user
of the rules for the newsgroup, or, in the case of a company worried about letting proprietary infor
mation out, reminding authors that anything they say is seen outside the company and so proprietary
information should not be included.

The file contains one line per recording. The line contains two fields, separated by a space. The
first field is the newsgroup class (e.g., net.all), the second field is the name of the file containing the
recorded message. If the file name does not begin with a slash, it will be searched for in LIBDIR.
Sample recording files can be found in the misc directory.

3.25. rmgroup

This shell file should be used to remove any groups that are no longer used.

3.26. sendbatch

This shell file is used to send batched articles to other systems. It is typically run from cron.
See the manual page for more details.

3.27. sendnews

A program to send news internally from one computer to another. It is useful if you must use
mail links to transmit articles.

3.28. seq

This file contains the current sequence number for your system. It is used to generate unique
article id's.

3.29. sys

This file contains a list of all your neighbors, which newsgroups they get, and how to send news
to them. The format is documented below.

3.30. unbatch

This program is used to unbatch the incoming batched news and feed each article to inews. It's
horrible and will go away in the future.

3.31. users

A list of users that have read news on your system.

3.32. uurec

A program to receive news sent by sendnews(B).

3.33. vnews.help

This is the helpfile used by vnews.

SMM:l0-12 USENET Version B Installation

4. Setting Up Links

There are two basic types of links for exchanging news: those that use mail and those that don't.
The ones that use mail are more indirect. yet more versatile, while the ones that don't are simpler.
The default method does not use mail, so that is discussed first.

4.1. Non-mail Links

The basic theory behind a non-mail link is that the rnews program is invoked on the remote sys
tem with the article being transmitted as the standard input. This is possible on several networks, but
the most common implementation is via the UUCP network. Using the uux command, the com
mand which is forked to the shell looks like:

uux - -r -z remotesys!rnews < article

This is the default transmission method. In order to set up such a link, obviously a UUCP link with
the remote system must be in effect. In addition, rnews must be available and executable by uuxqt on
the remote machine. In most cases, this means that rnews must be in lusrlbin so uux can find it.
Also, the list of allowed UUCP commands (in lusrlsrclusr.binluucpluuxqt.c or lusr//ibluucp/L.cmds,
depending on the version of UUCP) should be checked to make sure that rnews is an allowed com
mand.

Other networks that allow remote execution include the BERKNET, BLICN (usend(I)), many
Ethernets, and the NSC hyperchannel (nusend(l)). It is important, however, that a spooling mechan
ism be available. Otherwise, if system A tries to send an article to system B via a remote execution
command, and B is down, the article could be lost. Spooling arranges that the system will try again
when B comes back up.

4.2. Mail Links

When_ using mail to transmit articles, two intermediary programs are necessary. These are send
news and uurec(8). The idea is that when system A wants to send an article to system B, the sys file
on system A has an entry for system B such as:

/usr/lib/news/sendnews -a rnews@B

which runs sendnews on the article. The -a option specifies that the mail should be formatted for the
ARPANET. Sendnews packages the article and mails it to "rnews@B". Somehow, the B system is
expected to make sure that all mail to user "mews" is fed as input to the program uurec. This pro
gram unpackages it and invokes rnews.

The best way to get mail to "mews" fed into uurec is to use sendmail or delivermail, if you are
on a system running them. Create an alias in /usrlliblaliases as follows:

mews: "I /usr/lib/news/uurec"

and sendmail will handle it. If you do not have a facility for forwarding mail to a program, you can
gimmick your mailer to watch for it (using popen(3S), this is easy) or, if you don't want to do any
programming, you can have cron invoke uurec every hour with /usr/spoo//maillrnews as standard in
put. This solution is messier because uurec must potentially deal with multiple messages, something
that has never been tested.

S. Format of the sys file

To set up a link to another site, edit the sys file in LIBDIR. This file is similar to the L.sys file
of UUCP. Each line contains four fields, separated by colons:

(!) The system name of a site to which you forward news. Normally all systems you have links to
will be included. You should also have a line for your own system. If this field is ME, it will be
used as if it were your local system name. If the system name is followed by a"/", the article
will not be forwarded to this system if it has already passwd through any of the (comma separat
ed) list of sites immediately following the "/". For example, if the sysline was:

USENET Version B Installation SMM:l0-13

yoursite/sitea,siteb,sitec:net,mod,na,usa,to.yoursite::
the incoming article would only be forwarded to yoursite if it had not already been to any of
sitea, siteb, or sitec. This is normally used to reduce the number of duplicate articles received at
a site that has multiple main newsfeeds.

(2) The newsgroups to be forwarded to them. This is a pattern of the same kind as a subscription
list. Generally, you will list classes of newsgroups, that is, using all for everything. A typical
forwarding list for a new site would be

net,mod,na,usa,to.sysname

where sysname is the name of the remote system. (Of course, if you are not in the USA or
North America, you would remove those distributions and replace them with the ones appropri
ate for you). In particular, you don't want to forward all since local newsgroups (those without
dots) should not be sent. For the line describing your own system, this field describes the news
groups your site will accept from remote sites. Thus, if another site insists on sending you a
newsgroup you don't want, for example net.jokes, include !net.jokes here.

(3) This field contains flags describing the connection. An A will indicate that the other site is run
ning an A version of netnews. A B indicates a B version. Leaving it empty defaults to B. If
you are reading this document, you have a B version. Some existing sites run A versions. If
you aren't sure, ask your contact at the other site, with whom you should be talking to set this
up anyway. The F flag indicates that the fourth field is the name of a file. The full path name
of a file containing the article in SPOOL will be appended to this file. The L flag prevents
transmission unless the article was created on this site. If a number follows the L (e.g., L3),
sites less than that number of hops away will be considered local. (It is recommended that you
feed an L link to a backbone site, to ensure that your submissions will be more likely to get to
the entire network, even in the event of a local problem. Please make sure that a mail link ex
ists too, so you can get replies.) The N flag can also be included here, indicating that mail
should be sent using the ihave!sendme protocol described below. The H flag can be used to in
terpolate the history file into the command. The S flags says to execute the transmission com
mand directly instead of forking a shell. The U field arranges that the parameter to the optional
"%s" in the command field to be filled in with a permanent file name from SPOOL instead of a
temporary customized file name. The M flag says to use multi-casting. Multi-casting is
described in an appendix.

(4) This field is the command to be run to send news to the remote site. The article will be on the
standard input. Leaving this field blank means an ordinary UUCP link is being used, that is,
the command defaults to

uux - -r -z sysname!rnews

The - option tells uux to expect input from the standard input. The -z option is nonstandard -
you should add it (see the minus.z* files in the uucp source directory.) It shuts off the annoying
message you would otherwise get mailed to you telling you that your article was broadcast suc
cessfully. To avoid using the -z option, change the source or put the uux command in the
fourth field. The -r option tells uux not to call the other system once the job is queued. This
turns out to ease the load on the system, at the expense of making news be transmitted a bit
slower. The news will be sent when the next call is made; usually this means the next time mail
is sent to or from your system. If this turns out to be unreasonably long, put a line in crontab to
run

/usr/lib/uucp/uucico -rl -ssystem

every hour or so.
Here is a sample sys file for a site myvax with connections to yourvax where myvax also passes

news on to downstream. We assume that myvax and downstream exchange a local newsgroup class
Ing.all as well as the network wide newsgroups. News to downstream is batched. We also assume
that myvax and yourvax are in the USA, while downstream is in Canada.

SMM:I0-14 USENET Version B Installation

myvax:net,mod,na,usa,lng,to::
yourvax:net,mod,na,usa,to.yourvax::
downstream:net,mod,na,lng,to.downstream:F:/usr/spool/batch/downstream

6. Posting Methods

The basic method is postnews. This program will prompt you for the title, newsgroups, and dis
tribution, then place you in the editor. (The system default EDITOR is used unless the environment
variable EDITOR is set, overriding the system default.) The text should be typed after the blank line.
The title and newsgroups are available for editing at the top of the buffer. Other header lines can be
added, such as an expiration date or a distribution. When you write out the file and exit from the ed
itor, you will be prompted for what to do next. Your choices are: write the message to a file, send the
message, list the message or edit it again.

Another method is to use mail. This can only be done on systems that allow mail to a given
name to be fed into an arbitrary program as input. This is easily done with the Berkeley delivermail
or sendmail program, and not with any other mailer the author is familiar with. (It may be possible
to painfully set this up with MMDF, provided the newsgroup name is no more than 8 characters
long.) To use mail, set up an alias such as the following:

net.general: "l/usr/lib/news/recnews net.general"

Whenever a user sends mail to net.general, this starts up the given shell command which calls recnews
with one argument, the name of the newsgroup. You need to create one alias for each newsgroup,
and to keep the list up to date as new newsgroups are created. Recnews(8) will in turn invoke inews.

Note that there are problems with recnews. There is no way to use it to post to multiple news
groups without creating separate articles (something frowned upon because it forces people to read
the same thing more than once.) Also, there is no way to make the recording feature (to remind peo
ple to not accidently divulge proprietary information) work when recnews is used.

7. Various considerations

7.1. Setuid bits

The current intended state of affairs is that inews runs setuid to NEWSUSR. The readnews pro
gram does not need to be setuid. This makes it possible to write your own interface to read news in
stead of using readnews. (As distributed, inews is also setgid. I know of no good reason for this.)

7 .2. Modes of Spool Directories

All the files should be writable by NEWSUSR. However, due to a glitch, you will probably have
to make the SPOOLDIR and its subdirectories mode 777. It could be 755 except for one problem.
When a new newsgroup comes in, inews will attempt to mkdir(I) a new subdirectory of SPOOLDIR
for the newsgroup. Since both inews and mkdir are setuid, mkdir will use the uid of the person who
ran inews instead of NEWSUSR when checking for permissions. If the directory mode isn't 777 the
check will fail. Here are several alternatives if you don't want a 777 directory around:

7.2.1. Fix Real Uid

If inews is always run by cron or as root, the real uid can be arranged to be root or NEWSUSR.
This is a poor solution since it makes the local creation of new newsgroups require super user permis
sions, and is a potential security hole. If this approach is taken, care must be taken to insure that the
owner of the created directory is NEWSUSR.

7.2.2. Change the Kernel

/news will do: setuid(geteuidO) (see setuid(2) and geteuid(2)) before it forks the mkdir. If your
system permits this call, there will.be no problem. In particular, Berkeley 4.0 UNIX and later systems
allow this. An alternative change to the kernel is to automatically stack uids: when a setuid program

USENET Version B Installation SMM:I0-15

is run, set the new real uid to the old effective uid.

7.2.3. Groups

You could have inews be setgid to NEWSGRP and all files writable by the group. This ap
proach has been tested and the problem turns out to be that the mkdir command uses the access(2)
system call to check permissions. Since access uses the real gid, you run into the same problem.

7.2.4. Another Mkdir

You could create a version of mkdir that does less checking and put it in a directory that can
only be accessed by NEWSUSR (mode 700, owned-by NEWSUSR). Have inews fork this mkdir.

7 .3. Expiration dates

To get articles to expire automatically, put a line in crontab to run
/usr/lib/news/expire

every night. This command deletes all expired news. The -a newsgroups option causes all expired
news to be archived under lusrlspoo//oldnews depending on which newsgroups are selected. (See ex
pire(&) for details.)

Sometimes news is not expired when it should be. Be sure to check that expire has permissions
to unlink files, and that it is properly setuid to NEWSUSR. You can manually invoke expire with the
-v (verbose) option to find out what it's doing. Adding levels of verbosity (e.g., -v6) will get more
and more output.

7.4. Version to Version

Version B will understand incoming news in either version A or B format, automatically
(presuming OLD is defined in defs.h.) Version B will generate either format, depending on the flag in
the third field of the sys line. Version A will not understand version B format. Thus, it is possible
for two version B sites to communicate using version A format. This will work but is not a good
idea, since the translation from B to A loses information (such as the expiration date) which will not
be there when translated back to version B.

News from versions A and 2.9 B do not conform to the USENET interchange standard. 2.10 B
supports the standard and will communicate with either A or 2.9 B news. A news is written (losing
other header information) if A is in the flags for the system. If OLD is defined, 2.10 will write out
headers with both standard ("Date" "Message-ID") and 2.9 ("Posted" "Article-I.D.") lines so that ei
ther B system will properly handle the article. Incoming news is recognized by the first letter (A for A
news), or the lack of an "@" in the "From" line (2.9). Missing fields are constructed as well as possi
ble from the available information.

7.5. Presentation Order

The order of the newsgroups listed in LIBDIR!active is the order the newsgroups will be
presented in initially. If SORT ACTIVE is defined in defs.h, after the first time news will be presented
in the order of the person's .newsrc. Initially this will be directory order, but you can edit important
newsgroups like general to the top.

A recommended order to maintain your active file in is this:

SMM:I0-16

net.announce.newusers
general
local.general
net.announce
local newsgroups in alphabetical order
mod.all newsgroups in alphabetical order
net.all newsgroups in alphabetical order
test
all.test
to.all
control
junk

8. Control Messages

USENET Version B Installation

Some news systems will send you articles that are not for human consumption. They. are mes
sages to your news system called control messages. Such messages contain the "Control" header.
Older systems use newsgroups matching all.all.ctl, and this will still work, although the "Control"
header is preferred. Since the newsgroup name is used for distribution only, and is not checked to
ensure it's in the active file, such newsgroup names can still be used. This makes it possible to post
network wide control messages with net.msg.ctl (or restricted broadcast such as btl.msg.ctl) or mes
sages for a particular system: to.ucbvax.ctl. Messages are canceled, however, with a "Control" line in
a message to the same newsgroup(s) as the original message.

A control message contains a command and zero or more arguments (much like a UNIX pro
gram). The subject of the article contains the command and arguments. The body of the article is
usually ignored, although some messages can use it for additional text information. Control messages
are not stored in SPOOL; rather, they are acted on and discarded at once.

8.1. ihave/sendme
Two control messages are ihave and sendme. These messages allow two participating sites to set

up a link so that one site will tell the other site it has a given article and wait for a request before it
actually sends it. The normal case is to send an entire article to a system, which consults the history
file to see if the article has already been seen, and then throws it away if it has been seen before.

Note that, since most messages are short anyway, experience has indicated that for ordinary
UUCP unhatched communication, all ihave/sendme does is triple the load and slow down forwarding.
We hope future code will allow ihave's with multiple message id's in the body, and existing code in
2.10 understands such messages, but does not generate them. So we advise that you don't use
ihave/sendme for now.

Use of these control messages can cut down on this wasted transmission, but if you have a
polled UUCP connection, they can slow down receipt of news due to polling delays. It is up to each
connected pair of sites whether they want to use this protocol. The choice is controlled by the N flag
in the sys file. In the case of a leaf node (one with only one neighbor) there is no advantage to this
protocol. Even if both sites are able to initiate a connection (have dialers or the link is hardwired)
the -r option on the uux can cause 2 hour or more delays in propagating news. Since this protocol
can triple the number of messages generated, you should carefully evaluate your situation when decid
ing whether to use it. If transmission time and phone bills dominate your costs, and you are sending
news to several sites, and large article bodies dominate the costs (rather than the headers and the time
spent by UUCP negotiating transmission) it is probably worthwhile to use ihavelsendme. If your
costs are dominated by CPU load from UUCP, or if you send news to a site that cannot get it from
anywhere else, you probably do not want to use this protocol. The decision can be made indepen
dently for each site in your sys file.

This pair works as follows: Site mysite receives article "<123@abc.UUCP>". It enters it locally
and then broadcasts it to its neighbors. One of its neighbors is site yoursite which has the N flag in

USENET Version B Installation SMM:l0-17

the sys file. So mysite sends an article on newsgroup to.yoursite.ctl with title "ihave
<123@abc.UUCP> mysite". This control message has two arguments the first
("<123@abc.UUCP>") is the article id of the article in question, the second ("mysite") is the name
of the site sending the article. The name of the newsgroup and the sys file control transmission of the
article. Normally the sys file will read something like

yoursi te:net.all,fa.all, to. yoursite:BN:

which will cause an article on to.yoursite.ctl to be transmitted.
Yoursite receives the message and looks to see if it has seen it before. If it has, it throws the

message away and stops. If it hasn't, it sends a message on to.mysite.ctl with title "sendme
<123@abc.UUCP> yoursite" which is transmitted to mysite. (The two arguments to sendme are the
article id requested and the site to send it to.) Then mysite gets this message and actually transmits
the article to yoursite.

8.2. newgroup
This message has one argument, the name of a newsgroup to be created. This allows special ac

tion to be taken locally when a new newsgroup is created. It is generated by the -C option to inews.
By default, the newsgroup is added to the active file, and mail is sent to the local contact advising
that this has happened. The directory will be created when a message for that newsgroup arrives. See
the routine "c_newgroup" in contro/.c if you want something different to happen. (Note that,
although the body of the message contains a brief description of the purpose of the group, this body is
usually thrown away by existing software.)

8.3. rmgroup

This message has one argument, the name of a newsgroup to be removed. It is used for
network-wide cancellation of a newsgroup. If MANUALLY is not defined, it will remove the articles,
directory, and active file line for the group. There is a shell script rmgroup that does essentially the
same thing as this message, but the shell script only removes the group locally. We recommend that
you leave MANUALLY defined, and when you receive mail advising you of the demise of the news
group, you run rmgroup by hand. This will prevent accidental or malicious removal of a good news
group.

8.4. cancel
This message cancels a given article. It takes one argument, the message id of the article to can

cel. It should be broadcast to the same newsgroup as the original article. If the article to be canceled
is not present, the control message will not be propagated to downstream sites.

8.5. sendsys
The sys file is mailed to the originator of the message. There are no arguments. This is used for

making maps. Since your sys file is public information, you should not remove or change this control
message.

8.6. senduuname
The uuname program is run and the output is mailed to the originator of the message. There

are no arguments. This is used for making UUCP maps. If you do not run UUCP or have sites in
your L.sys which are a secret, you may wish to edit this. Note that only the output of uuname is
mailed, not the contents of L.sys (which news does not have access to anyway). If you do make a
change, you should arrange that some mail still is sent out to the originator of the message, so he will
know your site received it. See the code in routine "c_senduuname" in contro/.c.

SMM:l0-18 USENET Version B Installation

8.7. version
The local version name/number of the netnews software is mailed back to the author of the con

trol message.

8.8. checkgroups
This control message is an attempt at semi-automatic maintenance of the list of active news

groups. This control messages takes the body of the article and pipes it into LIB!checkgroups. As
mentioned previously, LIB!checkgroups will update the newsgroups file, add any missing newsgroups,
and mail a message to NOTIFY about any old newsgroups that should be removed. It is expected
that the person who maintains the list of active newsgroups will broadcast this control message on a
regular basis.

8.9. Other Messages
Any unrecognized message will cause an error message to be mailed to the local site administra

tor. Additional messages may be defined as time goes on, such as messages to automatically update
directories or maps. You should be willing to go into the code (control.c) and add messages as they
become standardized.

9. Maintenance
There are some things you should do periodically to keep your news system running smoothly.

We hope to eventually automate all or most of this, but right now some of it must be done by hand.
The history and log files in your LIB directory will grow. You should make sure that they are

cleaned up periodically. The LIB/expire program will remove lines from history corresponding to
deleted articles, but it is a good idea to check the file every few months to make sure it is not going
wild. Be sure not to completely lose your history file when you clean it up, in case another neighbor
tries to send you an article you recently got. (If you only get news from one site it is safe to clean it
out completely.)

The log file is not automatically cleaned out by any netnews software, and will grow quickly.
The misc/trimlib script can be installed in UB/trimlib, and invoked weekly by cron.

You should also clean out old newsgroups that are no longer active. To remove a newsgroup
net.foo, you should run the shell script rmgroup with net.foo as the argument. That is,

/usr/lib/news/rmgroup net.foo
Note that clearing up UUCP constipation is another thing you'll have to do if you ii.ave flaky

hardware or phone lines. If you have more than one connection, chances are that UUCP will get
clogged up when one of your neighbors goes down for more than a few hours. Various spooling
schemes are being worked on to help make the news/uucp system more robust, but one thing you can
and should do, if you find your lusr /spool/uucp directory getting too big, is to install a subdirectory fix
to UUCP. A quick and dirty version of this is available from Duke, which traps the file-oriented sys
tem calls at the assembly language level and maps, for example, D.fooA1234 into D.foo/D.fooA1234.
Since the C. and D.local directories still get big, in practice this can still create some big directories,
but the directories tend to be a factor of 5 smaller, resulting in a factor of 25 improvement to speed
(since a directory traversal for all files is quadratic on UNIX). Right now, UUCP is the weak link in
netnews distribution, and you should certainly keep an eye on it.

10. Creating New Newsgroups
As system news administrator, you are able to create newsgroups. To create a newsgroup, first

make sure this is the right thing to do. Normally a suggestion is first posted to
net.news.group,net.relatedgroup for a net newsgroup net.relatedgroup(should be the group which you
are proposing to sub-divide. For instance, to propose creating net.tv.soaps, post the original article to
net.tv,net.news.group). Followups are made to net.news.group only. (You can force this by putting the

USENET Version B Installation SMM:l0-19

line:
Followup-To: net.news.group

in the headers of your original posting). If it is established that there is general interest in such a
group, and a name is agreed on, then someone creates it by typing the command

inews -C newsgroup
This will create the active entry locally. The directory will be created automatically when the first arti
cle for that newsgroup is received. It will also prompt you for a paragraph describing the group and
start up an inews to post a newgroup control message announcing the group. This control message
will be sent out on net.msg.ctl and other sites may have configured their systems to do something with
these messages. A human readable announcement is not made - you can post this to net.news.group
if necessary.

You must be the super user to use the -C option to inews. (That is, your uid must match
ROOTID. It is recommended that you change ROOTID to your own uid so you don't have to su to
create newsgroups.)

11. Conversion from A to B
If you are currently running version A on your system, note that B is incompatible with A. The

files are stored in a different format (headers have mail like field names now). The directory organi
zation is different (each newsgroup has a subdirectory of its own, and the file names are numbers
rather than site.id pairs). There are no bitmap, uindex, or nindex files to be trashed (which articles
have been read is stored in each users . news re file). The user interface is slightly different
(newslnetnews(l) is now called readnews, news is posted using inews, subscription is done by editing
.newsrc, the sense of the -c option is reversed, news is presented in newsgroup order, the -a and -t
options now probably need -x as well, and there are many minor changes).

We decided not to provide a program to convert from version A to version B. Rather, the fol
lowing strategy was adopted for conversion:
(1) Install the new news in a different spool directory from the old one. For example, you can use

lusr/spool!newnews. You can change to the standard name later if you want. Get it to work for
local messages.

(2) Post an article to newsgroup general with the old news announcing the change. Make available
documentation such as the accompanying paper How to Read the Network News to the users.
This article will be the last one in the old news.

(3) Chmod the old news directory to 555 to prevent any more news from being posted. (Actually,
this will prevent the bitfile from being updated, so it may not be a good idea.)

(4) Replace the old rnews program with the new rnews program.
(5) Test it by having your neighbor send you a message.

(6) Wait a reasonable period for everyone to have read the final article with the old news. Perhaps
a few weeks is right.

(7) Uninstall the old news.

Users will have to invoke readnews instead of netnews to read news. Depending on your old
method of posting, this could be changed too. (If you were using mail, it does not need to be
changed.) They will also have to fix their subscriptions. In general, they can type

netnews -s

to see what they subscribe to on the old system, and then create a file in their home directory called
.newsrc containing

options -n their subscription
The format of the subscription pattern matching is the same as in A except that ALL is replaced by
all (change to lower case). Something along the lines of this could be used to automate this:

SMM:I0-20 USENET Version B Installation

(echo -n "options -s" ; netnews -s I sed s/ALUall/) > .newsrc
12. Conversion from 2.9 to 2.10

Conversion from 2.9 to 2.10 is not nearly as involved as an A to B conversion. The user inter
face does not change much, and the user .newsrc files are not affected. However, it is. recommended
that you do the conversion during a time when no news is received, so that incoming news will not
get lost. One way to ensure this is to make /usrlbinlrnews be a shell script which saves the article in
/usr/spool/innews/$$ ($$ is the process id of the particular shell and will be unique for each article).

The first step to con version is to customize the sources. In the past, you had to take a fresh dis
tribution and edit the defe.h file and Makefile to suit local preferences. If you had many local
changes, or didn't record the local changes, upgrading could be annoying. 2.10 provides a mechanism
to automate these changes. Create a shell script in the src directory called localize.sh. (You can use
localize.sample as a template.) This shell script should copy deft.dist to defe.h, and copy either
Makefile.v7 or Makefile.usg to Makefile. It should chmod any files that need to be changed (often
Makefile and defe.h) to a writable mode. Then it should invoke ed(l) on the files, making any neces
sary local changes.

The next step is to compile the software, with make(1). It may be necessary to update the
localize.sh file until you are satisfied with the compilation. Note that after any change to the Makefile
in localize.sh, you should run localize.sh by hand. Otherwise, although make will run it for you, it
will then continue to do the make with the old Makefile.

When the software is compiled, you should run the cvt.active.sh shell script, with the lib and
spool directories as parameters. This will create a new active file in LIB/active. Then run cvt.links.sh
with the lib and spool directories as parameters. Then run cvt.names.sh with the lib and spool direc
tories as parameters. Old news will be linked into the new hierarchy while leaving links in the old
hierarchy. If you were using the default library and spool directories, you would do the following:

sh cvt.active.sh /usr/lib/news /usr/spool/news
sh cvt.links.sh /usr/lib/news /usr/spool/news
sh cvt.names.sh /usr/lib/news /usr/spool/news
The next step is to back up the old binaries:

mv /usr/bin/rnews /usr/bin/ornews

and to install 2.10 with

make install
Once it is installed, any incoming news will be placed into the new hierarchy but not the old one.
The critical time window is between running the three shell files and installing the new software - any
incoming news between these two points will appear in only the old hierarchy and be lost to the new
software. If any significant time elapses here, you should divert mews into a separate spool directory
as described above.

It is crucial that you run expire before any new news arrives. Expire will update several key files
automatically.

Finally, test things by posting articles to to.neighbor newsgroups and watching some incoming
news, and announce the change to your users.

When you are satisfied that the conversion was successful, run the shell file cvt.clean.sh which
will remove the old 2.9 news hierarchy.

USENET Version B Installation SMM:I0-21

Appendix A: Setting up a Compressed, Batched Newsfeed

First, BATCH must have been #define'd when you built the news system. To check, look in the
file defs.h in the news source directory. BATCH should be defined as a program name (by default,
unbatch). If it's undefined or commented out, define it, re-make the news system, and install the new
software.

You'll also need a working compress program .. Use the one shipped with this news distribution,
which is based on version 4.0. Your news neighbors should be running a compatible version of
compress. Versions 3.0 and 4.0 are compatible with each other, but both are incompatible with ver
sions 2.0 and before.

Update your sys file. First, add the F flag to the other news system's line. For instance, if your
compressed-and-batched news feed is named frobozz, and its sys file entry looks like:
frobozz:net,mod,na,usa,ca,to.frobozz:: then add the F flag as the third (colon-separated) field:
frobozz:net,mod,na,usa,ca,to.frobozz:F: Now the pathnames of articles to be sent will be stashed in a
file. This file is named in the fourth field of the sys entry; add it now. Use an entry of the form
BATCHDIR!system, where BATCHDIR is usually lusr/spoo/lbatch (the actual value is defined in the
news Makefile), and system is the name of the remote system, in this example frobozz. A name of
that form is necessary: the sendbatch script, which sends the batched news, looks for a file name of
this form to decide if there's news for the remote system.

Your completed sys file line should look something like:
frobozz:net,mod,na,usa,ca,to.frobozz:F:/usr/spool/batch/frobozz

In /usrllib!crontab, find or create at least two news lines: one that runs nightly, and one that
runs every hour or so. The nightly-run script should run expire, trim log files, and perhaps compile
weekly statistics that you post to a local-area newsgroup one day a week. The hourly-run script
should complete the transmitting task with a line like:

sendbatch -c frobozz

Make sure the script knows how to get to the directory in which sendbatch lives. You can either men
tion the directory in the script's PATH-setting line, or replace sendbatch with its full pathname.
Sendbatch reads the files mentioned in /usrlspoo/lbatchlfrobozz, batches them, optionally compresses
them, sends them to the remote system, and arranges for remote processing.

This remote processing is directed by another file in BATCHDIR. Make a file with a name of
the form BATCHDIR/system.cmd (for this example, /usrlspoo/lbatchlfrobozz.cmd). Put a line in it
specifying the command that the remote system should execute to unpack the news batches that your
system will send. An example frobozz.cmd would be:

uux - -r -z -n -gd frobozz!mews

Now your system will transmit compressed batches. The receiving side of the business is han
dled largely by a program called rnews, which will call other programs in LIBDIR to do additional
processing on the incoming batches.

Make sure there is an executable file called rnews in the BINDIR directory (check the Makefile
for its actual location). It must be reachable by UUCP or by whatever transport you'll use to transfer
the netnews. If you defined BINDIR as /usrlbin, you should have no problems because uuxqt can al
ready get there. If you defined it as a different directory, you may have to teach uuxqt to look in that
directory; accomplishing this varies from system to system. On 4.2BSD, add the directory to the
PATH= line of your UUCP L.cmds file. On System V, on the rnews line of your L.cmds file, add a
comma followed by the remote system's name on that line. If yours is in /usrlbinlnewslrnews, your
L.cmds file will look like:

[For 4.2BSD]
PA TH =lbin:/usr/bin:/usr/bin/news
mews

SMM:I0-22

[For System VJ
/usr/bin/news/mews,frobozz

USENET Version B Installation

Other systems have a similar file in the lusrllibluucp directory by which you can specify added· pro
grams and paths different from the defaults. HP-UX, for example, has a lusrllibluucp!COMMANDS
file which expands uuxqt's horizons. In more restrictive cases, paths are compiled into uuxqt. If you
can't modify any UUCP files, just put rnews in lusrlbin.

You must also have a cunbatch in LIBDIR (wherever your Makefile defines it), because rnews
will eventually try to exec that copy.

Tell the person at the other end of your newsfeed to use sendbatch -c to send you news. Once
that's in place, watch your UUCP LOGFILE and your news log and errlog files to ensure that news is
being correctly received and unpacked on your system.

Older compressed batching systems will try to exec cunbatch instead of rnews. If you are still
communicating with these, leave cunbatch in BINDIR until they have upgraded their software.

USENET Version B Installation SMM:I0-23

Appendix B: MUL Tl CAST
If this is defined (in def.i".h) then two new flag characters become defined in the sys file. The

first. and most important. of these is the M flag.

If the M flag is set on some line in the sys file, then the fourth field (transfer command) is
redefined to b.:come a multicast name. That is simply another system name, expected to be found in
the first field of some line in the sys file (textually following the line containing the M flag).

When a news item is being retransmitted, if it should (according to the subscription list) be sent
to a system that has the M flag set, then instead of a command being run immediately to transmit the
news, the news system remembers the system name, along with the multicast name (fourth field).

Eventually the multicast system name is found in first field of a sys file line. If its subscription
list allows transmission of this news item, then its command will be executed. This command may
have up to two "%s" substitutions in it. The second of those is replaced by the name of a file con
taining the news item (used with the U flag). The first is subjected to rather special treatment. The
whole "word" (delimited by white space) containing that "%s" is duplicated as many times as there
were systems with the M flag set that referenced this multicast name (which might be 0 times, causing
that "word" to be omitted). In each of these duplicates, the "%s" is replaced by the name of a sys
tem. Note the multicast system name itself is not included in this process. Then the command is ex
ecuted as usual.

The second flag available if the news system is built with MULTICAST defined is 0. If this flag
is set, then the sys file line will be ignored unless the system name is a multicast name from some ear
lier line with the M flag, and the news item is to be sent to that (earlier) system. This allows the sub
scription list for the multicast system name (which is likely to be a fake system name, invented just
for this purpose) to be given a very wide subscription list (like all) without any unusual effects.

Here is an example. Assume that you wish to forward net.unix to four people by mail. You
could do this as ...

fred:net.unix::mail fred
harry:net.unix::mail harry
jane:net.unix::mail jane
tony:net.unix::mail tony

however this causes the mail program to be started 4 times, once for each recipient. On some sys
tems starting the mail program is a very expensive operation. If MULTICAST is defined, an alterna
tive method is

fred:net.unix:M:tony
harry:net.unix:M:tony
jane:net. unix: M:tony
tony:net.unix::mail tony %s

This would cause just one command to be run: "mail tony fred harry jane". Note that "tony" must
still be explicitly included in the argument list to the mail command; the "o/os" does not expand to in
clude the multicast "system name" itself.

A more useful way of doing this, which does not assume that all the mail readers will want to
read the same newsgroups is as follows.

fred:net.unix:M:Mail
harry:net.physics,net.astro:M:Mail
jane:net.unix-wizards,net.women:M:Mail
tony:net.unix,net.unix-wizards,net.jokes:M:Mail
Mail:all:O:mail o/os

Now, if a news item in group net.unix was received, the command

mail fred tony

would be executed. If the news were in both net.unix and net.unix-wizards then the command would

SMM:I0-24 USENET Version B Installation

be
mail fred jane tony

If a newsitem in net.med (which no-one gets by mail) arrives, then the "Mail" line will be ig
nored, because of the 0 flag. "Mail" is a fake system invented just so its "transfer command" can be
used to send news to the other recipients.

The same kind of technique can be used for normal transfer of news to other systems if your
transport network supports a facility to send to many other systems in one command. (That is, if it
has a multicast facility.) Sunlll (the network used in Australia) has this ability, so a typical Australian
sys file looks like

emuvax:aus,net,mod,fa:M:FakeName
kremlin:aus,net,mod:M:FakeName
kanga:aus,net,!net.all,net.unix:M:FakeName
FakeName:all:OUS:/bin/sendfile -NRSareporter -d%s -x%s

A news item in aus.general causes the following command

/bin/sendfile -NRSareporter -demuvax -dkremlin -dkanga -x/usr/spool/ ...

to be executed. Just one command is run to send the news to three remote systems.

If a multicast system has the F flag set, then the name of a file containing the news is appended
to the file whose name is in the fourth field, as usual. But on the same line, separated by spaces, will
be appended the names of all the systems that referenced this multicast system.

For example, if the Australian site wanted to batch news, instead of sending it directly, it would
simply change the last line of its sys file to

FakeName:all:F:/usr/spool/batched/allsites

Then a news item in net.jobs would cause the following line to be appended to
/usr!spool!batched!al/sites

/usr/spool/news/net/jobs/5542 emuvax kremlin

This can then be processed later, in something like the normal manner. (Unfortunately no com
mands to do this processing are yet available).

Caution: when MULTICAST is defined, the first "%s" in all transfer commands is used for mul
ticast, regardless of whether or not the system name is ever used as the last field of some line with the
M flag set. To use the U flag in such a case, a dummy "%s" should be used, it will simply be omitted
from the command that is executed.

As an example, if a sys file line were

foovax:net,na,usa:U:uux - foovax!foonews <%s

without MULTICAST, it would need to be changed to

foovax:net,na,usa:U:uux - foovax!foonews %s <%s

if MULTICAST were defined.

Additional caution: The numbers of system names that may be used in this way are quite sever
ly restricted. Typically there may only be about I 0 multicast system names, and each of those is res·
tricted to sending to no more than about 20 systems. These limits are dynamic (that is, the numbers
counted are the number of multicast systems receiving any single news item, and the number of sys
tems that each of those will actually cause this particular news item to be sent to). These limits
should easily suffice for real news sending to remote systems; however they are not likely to suffice if
you want to mail news to everyone on your host.

I. Introduction

Name Server Operations Guide
for BIND
Release 4.3

Kevin J. Dunlap•

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley CA 94720

The Berkeley Internet Name Domain (BIND) Server implements the DARPA Inter
net name server for the UNIXt operating system. A name server is a network service that
enables clients to name resources or objects and share this information with other objects
in the network. This in effect is a distributed data base system for objects in a computer
network. BIND is fully intergrated into 4.3BSD network programs for use in storing and
retrieving host names and address. The system administrator can configure the system to
use BIND as a replacement to the original host table lookup of information in the network
hosts file /etc/hosts. The default configuration for 4.3BSD uses BIND.

2. Building A System with a Name Server

BIND is comprised of two parts. One is the user interface called the resolver which
consists of a group of routines that reside in the C library !/ib!/ibc.a. Second is the actual
server called named. This is a daemon that runs in the background and services queries
on a given network port. The standard port for UDP and TCP is specified in !etc/services.

2.1. Resolver Routines in Jibe

When building your 4.3BSD system you may either build the C library to use the
name server resolver routines or use the host table lookup routines to do host name
and address resolution. The default resolver for 4.3BSD uses the name server.

Building the C library to use the name server changes the way
gethostbyname(3N), gethostbyaddr(3N), and sethostent(3N) do their functions. The
name server renders gethostent (3N) obsolete, since it has no concept of a next line in
the database. These library calls are built with the resolver routines needed to query
the name server.

• The author is an employee of Digital Equipment Corporation's Ultrix Engineering Advanced Development
Group and is on loan to CSRG. Ultrix is a trademark of Digital Equipment Corporation.

tUNIX is a Trademark of AT&T Bell Laboratories

SMM:ll-2 Name Server Operations Guide for BIND

The resolver is comprised of a few routines that build query packets and exchange
them with the name server.

Before building the C library, set the variable HOSTLOOKUP equal to named in
/usrlsrcllib!libc!Makefile. You then make and install the C library and compiler and
then compile the rest of the 4.3BSD system. For more information see section 6.6 of
"Installing and Operating 4.3BSD on the VAXf'.

2.2. The Name Service

The basic function of the name server is to provide information about network
objects by answering queries. The specifications for this name server are defined in
RFC882, RFC883, RFC973 and RFC974. These documents can be found in
/usrlsrcletclnamed!doc in 4.3BSD or ftped from sri-nic.arpa. It is also recommeded that
you read the related manual pages, named(8), resolver(3), and resolver(5).

The advantage of using a name server over the host table lookup for host name
resolution is to avoid the need for a single centralized dearinghouse for all names. The
authority for this information can be delegated to the different organizations on the
network responsible for it.

The host table lookup routines require that the master file for the entire network
be maintained at a central location by a few people. This works fine for small networks
where there are only a few machines and the different organizations responsible for
them cooperate. But this does not work well for large networks where machines cross
organizational boundaries.

With the name server, the network can be broken into a hierarchy of domains.
The name space is organized as a tree according to organizational or administrative
boundaries. Each node, called a domain, is given a label, and the name of the domain
is the concatenation of all the labels of the domains from the root to the current
domain, listed from right to left separated by dots. A label need only be unique within
its domain. The whole space is partitioned into several areas called zones, each starting
at a domain and extending down to the leaf domains or to domains where other zones
start. Zones usually represent administrative boundaries. An example of a host address
for a host at the University of California, Berkeley would look as follows:

monet. Berkeley. EDU

The top level domain for educational organizations is EDU; Berkeley is a subdomain
of EDU and monet is the name of the host.

3. Types of Servers

There are three types of servers, Master, Caching and Remote.

3.1. Master Servers

A Master Server for a domain is the authority for that domain. This server main
tains all the data corresponding to its domain. Each domain should have at least two
master servers, a primary master and some secondary masters to provide backup ser
vice if the primary is unavailable or overloaded. A server may be a master for multiple
domains, being primary for some domains and secondary for others.

;v AX is a Trademark of Digital Equipment Corporation

Name Server Operations Guide for BIND SMM:ll-3

3.1.1. Primary

A Primary Master Server is a server that loads its data from a file on disk.
This server may also delegate authority to other servers in its domain.

3.1.2. Secondary

A Secondary Master Server is a server that is delegated authority and receives
its data for a domain from a primary master server. At boot time, the secondary
server requests all the data for the given zone from the primary master server. This
server then periodically checks with the primary server to see if it needs to update
its data.

3.2. Caching Only Server

All servers are caching servers. This means that the server caches the information
that it receives for use until the data expires. A Caching Only Server is a server that is
not authoritative for any domain. This server services queries and asks other servers,
who have the authority, for the information needed. All servers keep data in their
cache until the data expires, based on a time to live field attached to the data when it is
received from another server.

3.3. Remote Server

A Remote Server is an option given to people who would like to use a name
server on their workstation or on a machine that has a limited amount of memory and
CPU cycles. With this option you can run all of the networking programs that use the
name server without the name server running on the local machine. All of the queries
are serviced by a name server that is running on another machine on the network.

4. Setting up Your Own Domain

When setting up a domain that is going to be on a public network the site adminis
trator should contact the organization in charge of the network and request the appropri
ate domain registration form. An organization that belongs to multiple networks (such as
CSNET, DARPA Internet and BITNET) should register with only one network.

The contacts are as follows:

4.1. DARPA Internet

Sites that are already on the DARPA Internet and need information on setting up
a domain should contact HOSTMASTER@SRI-NIC.ARPA. You may also want to be
placed on the BIND mailing list, which is a mail group for people on the DARPA
Internet running BIND. The group discusses future design decisions, operational prob
lems, and other related topic. The address to request being placed on this mailing list
is:

bind-request@ucbarpa. Berkeley. EDU.

4.2. CSNET

A CSNET member organization that has not registered its domain name should
contact the CSNET Coordination and Information Center (CIC) for an application and
information about setting up a domain.

SMM:ll-4 Name Server Operations Guide for BIND

An organization that already has a registered domain name should keep the CIC
informed about how it would like its mail routed. In general, the CSNET relay will
prefer to send mail via CSNET (as opposed to BITNET or the Internet) if possible. For
an organization on multiple networks, this may not always be the preferred behavior.
The CIC can be reached via electronic mail at cic@sh.cs.net, or by phone at (617)
497-2777.

4.3. BITNET

If you are on the BITNET and need to set .llP a domain, contact INFO@BITNIC.

5. Files

The name server uses several files to load its data base. This section covers the files
and their formats needed for named.

5.1. Boot File

This is the file that is first read when named starts up. This tells the server what
type of server it is, which zones it has authority over and where to get its initial data.
The default location for this file is I etc I named. boot. However this can be changed by
setting the BOOTFILE variable when you compile named or by specifying the location
on the command line when named is started up.

5.1.1. Domain

The line in the boot file that designates the default domain for the server looks
as follows:

domain Berkeley. Edu

The name server uses this information when it receives a query for a name without
a ".". When it receives one of these queries, it appends the name in the second
field to the query name.

5.1.2. Primary Master

The line in the boot file that designates the server as a primary server for a
zone looks as follows:

primary Berkeley. Edu letclucbhosts

The first field specifies that the server is a primary one for the zone stated in the
second field. The third field is the name of the file from which the data is read.

5.1.3. Secondary Master

The line for a secondary server is similar to the primary except for the word
secondary and the third field.

secondary Berkeley. Edu 128.32.0.10 128.32.0.4

The first field specifies that the server is a secondary master server for the zone
stated in the second field. The rest of the line, lists the network addresses for the
name servers that are primary for the zone. The secondary server gets its data
across the network from the listed servers. Each server is tried in the order listed
until it successfully receives the data from a listed server.

Name Server Operations Guide for BIND SMM:ll-5

5.1.4. Caching Only Server

You do not need a special line to designate that a server is a caching server.
What denotes a caching only server is the absence of authority lines, such as secon
dary or primary in the boot file.

All servers should have a line as follows in the boot file to prime the name
servers cache:

cache /etc/named.ca

For information on cache file see section on Cache Initialization.

5.1.5. Remote Server

To set up a host that will use a remote server instead of a local server to
answer queries, the file I etc/ resolv. conj needs to be created. This file designates the
name servers on the network that should be sent queries. It is not advisable to
create this file if you have a local server running. If this file exists it is read almost
every time gethostbyname () or gethostbyaddr () is called.

5.2. Cache Initialization

5.2.1. named.ca

The name server needs to know the server that is the authoritative name
server for the network. To do this we have to prime the name server's cache with
the address of these higher authorities. The location of this file is specified in the
boot file. This file uses the Standard Resource Record Format covered further on in
this paper.

5.3. Domain Data Files

There are three standard files for specifying the data for a domain. These are
named. local, hosts and host. rev. These files use the Standard Resource Record Format
covered later in this paper.

5.3.1. named. local

This file specifies the address for the local loopback interface, better known as
loca/host with the network address 127 .0.0.1. The location of this file is specified in
the boot file.

5.3.2. hosts

This file contains all the data about the machines in this zone. The location of
this file is specified in the boot file.

5.3.3. hosts. rev

This file specifies the IN-ADDR.ARPA domain. This is a special domain for
allowing address to name mapping. As internet host addresses do not fall within
domain boundaries, this special domain was formed to allow inverse mapping. The
IN-AD DR. ARPA domain has four labels preceding it. These labels correspond to
the 4 octets of an Internet address. All four octets must be specified even if an
octets is zero. The Internet address 128 .32.0.4 is located in the domain
4. 0. 32. 128. IN-AD DR. ARPA. This reversal of the address is awkward to read
but allows for the natural grouping of hosts in a network.

SMM:ll-6 Name Server Operations Guide for BIND

5.4. Standard Resource Record Format

The records in the name server data files are called resource records. The Stan
dard Resource Record Format (RR) is specified in RFC882 and RFC973. The follow
ing is a general description of these records:

(name} (ttl} addr-class Record Type Record Specific data

Resource records have a standard format shown above. The first field is always the
name of the domain record. For some RR's the name may be left blank; in that case it
takes on the name of the previous RR. The second field is an optional time to live
field. This specifies how long this data will be stored· in the data base. By leaving this
field blank the default time to live is specified in the Start Of Authority resource record
(see below). The third field is the address class; there are currently two classes: IN for
internet addresses and ANY for all address classes. The fourth field states the type of
the resource record. The fields after that are dependent on the type of the RR. Case is
preserved in names and data fields when loaded into the name server. All comparisons
and lookups in the name server data base are case insensitive.

The following characters have special meanings:

A free standing dot in the name field refers to the current domain.

@ A free standing @ in the name field denotes the current origin.

Two free standing dots represent the null domain name of the root when used in
the name field.

\X Where X is any character other than a digit (0-9), quotes that character so that its
special meaning does not apply. For example, "\." can be used to place a dot
character in a label.

\DDD

()

*

Where each D is a digit, is the octet corresponding to the decimal number
described by DDD. The resulting octet is assumed to be text and is not checked
for special meaning.

Parentheses are used to group data that crosses a line. In effect, line terminations
are not recognized within parentheses.

Semicolon starts a comment; the remainder of the line is ignored.

An asterisk signifies wildcarding.

Most resource records will have the current origin appended to names if they are
not terminated by a ".". This is useful for appending the current domain name to the
data, such as machine names, but may cause problems where you do not want this to
happen. A good rule of thumb is that, if the name is not in of the domain for which
you are creating the data file, end the name with a".".

5.4.1. $INCLUDE

An include line begins with $INCLUDE, starting in column 1, and is followed
by a file name. This feature is particularly useful for separating different types of
data into multiple files. An example would be:

$INCLUDE /usr/named/data/mailboxs

The line would be interpreted as a request to load the file
/usrlnamedldatalmailboxes. The $INCLUDE command does not cause data to be
loaded into a different zone or tree. This is simply a way to allow data for a given
zone to be organized in separate files. For example, mailbox data might be kept

Name Server Operations Guide for BIND SMM:ll-7

separately from host data using this mechanism.

5.4.2. $ORIGIN

The origin is a way of changing the origin in a data file. The line starts in
column I, and is followed by a domain origin. This is useful for putting more then
one domain in a data file.

5.4.3. SOA - Start Of Authority

name
@

(tt/} addr-c/ass
IN

SOA
SOA
1. I
3600
300
3600000
3600)

Origin
ucbvax.Berkeley .Edu.
; Serial
; Refresh
; Retry
; Expire
;Minimum

Person in charge
kjd.ucbvax.Berkeley.E

The Start of Authority, SOA, record designates the start of a zone. The name is the
name of the zone. Origin is the name of the host on which this data file resides.
Person in charge is the mailing address for the person responsible for the name
server. The serial number is the version number of this data file, this number
should be incremented whenever a change is made to the data. The name server
cannot handle numbers over 9999 after the decimal point. The refresh indicates
how often, in seconds, a secondary name servers is to check with the primary name
server to see if an update is needed. The retry indicates how long, in seconds, a
secondary server is to retry after a failure to check for a refresh. Expire is the upper
limit, in seconds, that a secondary name server is to use the data before it expires
for lack of getting a refresh. Minimum is the default number of seconds to be used
for the time to live field on resource records. There should only be one SOA record
per zone.

5.4.4. NS - Name Server

(name} (tt/) addr-c/ass NS Name servers name
IN NS ucbarpa. Berkeley. Edu.

The Name Server record, NS, lists a name server responsible for a given domain.
The first. name field lists the domain that is serviced by the listed name server.
There should be one NS record for each Primary Master server for the domain.

5.4.5. A - Address

(name} (ttl)
ucbarpa

addr-c/ass
IN
IN

A address
A 128.32.0.4
A 10.0.0.78

The Address record, A, lists the address for a given machine. The name field is the
machine name and the address is the network address. There should be one A
record for each address of the machine.

5.4.6. HINFO - Host Information

(name) (tt/) addr-c/ass
ANY

HINFO
HINFO

Hardware
VAX-11/780

OS
UNIX

SMM:ll-8 Name Se"er Operations Guide for BIND

Host Information resource record, HINFO, is for host specific data. This lists the
hardware and operating system that are running at the listed host. It should be
noted that only a single space separates the hardware info and the operating system
info. If you want to include a space in the machine name you must quote the name.
Host information is not specific to any address class, so ANY may be used for the
address class. There should be one HINFO record for each host.

5.4.7. WKS-Well Known Semces
(name} {tt/} addr-c/ass WKS

IN WKS
IN WKS

address
128.32.0.10
128.32.0.10

protocol
UDP
TCP

list of services
who route timed domain
(echo telnet
discard sunrpc sftp
uucp-path systat daytime
netstat qotd nntp
link chargen ftp
auth time whois mtp
pop rje finger smtp
supdup hostnames
domain
nameserver)

The Well Known Services record, WKS, describes the well known services supported
by a particular protocol at a specified address. The list of services and port
numbers come from the list of services specified in !etc/services. There should be
only one WKS record per protocol per address.

5.4.8. CNAME - Canonical Name
aliases (ttl} addr-c/ass CNAME Canonical name
ucbmonet IN CNAME monet

Canonical Name resource record, CNAME, specifies an alias for a canonical name.
An alias should be unique and all other resource records should be associated with
the canonical name and not with the alias. Do not create an alias and then use it in
other resource records.

5.4.9. PTR - Domain Name Pointer

name (ttl}
7.0

addr-c/ass
IN

PTR
PTR

real name
monet. Berkeley. Edu.

A Domain Name Pointer record, PTR, allows special names to point to some other
location in the domain. The above example of a PTR record is used in setting up
reverse pointers for the special IN-ADDR.ARPA domain. This line is from the
example hosts.rev file. PTR names should be unique to the zone.

5.4.10. MB - Mailbox
name { tt/} addr-c/ass MB Machine
miriam IN MB vineyd.DEC.COM.

MB is the Mailbox record. This lists the machine where a user wants to receive
mail. The name field is the users login; the machine field denotes the machine to
which mail is to be delivered. Mail Box names should be unique to the zone.

Name Server Operations Guide for BIND

5.4.11. MR- Mail Rename Name

name (ttl} addr-c/ass
Postmistress IN

MR corresponding MB
MR rniriarn

SMM:ll-9

Main Rename, MR, can be used to list aliases for a user. The name field lists the
alias for the name listed in the fourth field, which should have a corresponding MB
record.

5.4.12. MINFO - Mailbox Information

name
BIND

(ttl) addr-class
IN

MINFO
MINFO

requests
BIND-REQUEST

maintainer
kjd. Berkeley. Edu.

Mail Information record, MINFO, creates a mail group for a mailing list. This
resource record is usually associated with a mail group Mail Group, but may be
used with a Mail Box record. The name specifies the name of the mailbox. The
requests field is where mail such as requests to be added to a mail group should be
sent. The maintainer is a mailbox that should receive error messages. This is par
ticularly appropriate for mailing lists when errors in members names should be
reported to a person other than the sender.

5.4.13. MG - Mail Group Member

(mail group name) (ttl) addr-class
IN

MG
MG

Mail Group, MG lists members of a mail group.

member name
Bloom

An example for setting up a mailing list is as follows:

Bind IN MINFO Bind-Request kjd. Berkeley. Edu.
IN MG Ralph. Berkeley. Edu.
IN MG Zhou. Berkeley. Edu.
IN MG Painter. Berkeley. Edu.
IN MG Riggle. Berkeley. Edu.
IN MG Terry. pa. Xerox. Corn.

5.4.14. MX - Mail Exchanger

name (Ill)
Munnari.OZ.AU.
*.IL.

addr-class
IN
IN

MX preference value
MX 0
MX 0

mailer exchanger
Seisrno. CSS. GOV.
RELAY.CS.NET.

Main Exchanger records, MX, are used to specify a machine that knows how to
deliver mail to a machine that is not directly connected to the network. In the first
example, above, Seisrno. CSS. GOV. is a mail gateway that knows how to deliver
mail to Munnari. OZ. AU. but other machines on the network can not deliver mail
directly to Munnari. These two machines may have a private connection or use a
different transport medium. The preference value is the order that a mailer should
follow when there is more then one way to deliver mail to a single machine. See
RFC974 for more detailed information.

Wildcard names containing the character "*" may be used for mail routing
with MX records. There are likely to be servers on the network that simply state
that any mail to a domain is to be routed through a relay. Second example, above,
all mail to hosts in the domain IL is routed through RELAY.CS.NET. This is done
by creating a wildcard resource record, which states that *.IL has an MX of

SMM:ll-10 Name Server Operations Guide for BIND

RELAY.CS.NET.

S.S. Sample Files

The following section contains sample files for the name server. This covers
example boot files for the different types of servers and example domain data base files.

S.S.l. Boot File

S.S.1.1. Primary Master Server

' ; Boot file for Primary Master Name Server

; type domain source file or host

domain Berkeley.Edu
primary Berkeley.Edu /etc/ucbhosts
cache /etc/named.ca
primary 32.128.in-addr.arpa /etc/ucbhosts.rev
primary 0.0.127.in-addr.arpa /etc/named.local

S.S.1.2. Secondary Master Server

' ; Boot file for Primary Master Name Server

; type

' domain
secondary
cache
secondary
primary

domain

Berkeley.Edu
Berkeley.Edu

32.128.in-addr.arpa
0.0.127 .in-addr.arpa

source file or host

128.32.0.4 128.32.0.10 128.32.136.22
/etc/named.ca
128.32.0.4 128.32.0.10 128.32.136.22
/etc/named.local

S.S.1.3. Caching Only Server

; Boot file for Primary Master Name Server

; type

domain
cache
primary

domain source file or host

Berkeley.Edu
/etc/named.ca

0.0.127 .in-addr.arpa /etc/named.local

Name Server Operations Guide for BIND

5.5.2. Remote Server

5.5.2.1. /etc/resolv.conf

domain Berkeley.Edu
nameserver 128.32.0.4
nameserver 128.32.0.10

5.5.3. named.ca

' ; Initial cache data for root domain servers.

99999999 IN NS
99999999 IN NS
99999999 IN NS
99999999 IN NS

; Prep the cache (hotwire the addresses).
SRI-NIC.ARPA. 99999999 IN A
USC-ISIB.ARPA. 99999999 IN A
USC-ISIC.ARPA. 99999999 IN A
BRL-AOS.ARPA. 99999999 IN A
BRL-AOS.ARPA. 99999999 IN A

5.5.4. named.local

USC-ISIC.ARPA.
USC-ISIB.ARPA.
BRL-AOS.ARPA.
SRI-NIC.ARPA.

10.0.0.51
10.3.0.52
10.0.0.52
128.20.1.2
192.5.22.82

@ IN SOA ucbvax.Berkeley.Edu. kjd.ucbvax.Berkeley.Edu. (
1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum

IN NS ucbvax.Berkeley.Edu.
IN PTR localhost.

SMM:ll-11

SMM:ll-12 Name Server Operations Guide for BIND

5.5.S. Hosts

@(#)ucb-hosts I.I (berkeley) 86/02/05

@

localhost
ucbarpa

arpa
ernie

ucbernie
mo net

ucbmonet
ucbvax

vax
toy box

toy box
miriam
postmistress
Bind

IN

IN
IN
IN
IN
IN
ANY
IN
IN
ANY
IN
IN
IN
ANY
IN
IN
IN
ANY
IN
IN

IN
IN
ANY
IN
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY

SOA

NS
NS
A
A
A
HINFO
CNAME
A
HINFO
CNAME
A
A
HINFO
CNAME
A
A
HINFO
WKS
WKS

CNAME
A
HINFO
MX
MB
MR
MINFO
MG
MG
MG
MG
MG

ucbvax.Berkeley.Edu. kjd.monet.Berkeley.Edu. (
I.I ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum
ucbarpa.Berkeley.Edu.
ucbvax.Berkeley.Edu.
127.1
128.32.4
10.0.0.78
VAX-111780 UNIX
ucbarpa
128.32.6
VAX-111780 UNIX
ernie
128.32.7
128.32.130.6
VAX-111750 UNIX
monet
10.2.0.78
128.32.10
VAX-11/750 UNIX
128.32.0.10 UDP syslog route timed domain
128.32.0.10 TCP (echo telnet
discard sunrpc sftp
uucp-path systat daytime
netstat qotd nntp
link chargen ftp
auth time whois mtp
pop rje finger smtp
supdup hostnames
domain
nameserver)
ucbvax
128.32.131.119
Pro350 RTll
0 monet.Berkeley.Edu
vineyd.DEC.COM.
Miriam
Bind-Request kjd. Berkeley. Edu.
Ralph. Berkeley. Edu.
Zhou. Berkeley. Edu.
Painter. Berkeley. Edu.
Riggle. Berkeley. Edu.
Terry. pa. Xerox. Com.

Name Server Operations Guide for BIND SMM:ll-13

5.5.6. host.rev

@(#)ucb-hosts.rev l. l (Berkeley) 86/02/05

@ IN SOA ucbvax.Berkeley.Edu. kjd.monet.Berkeley.Edu. (
l. l ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum

IN NS ucbarpa.Berkeley.Edu.
IN NS ucbvax.Berkeley.Edu.

4.0 IN PTR ucbarpa.Berkeley.Edu.
6.0 IN PTR ernie.Berkeley.Edu.
7.0 IN PTR monet.Berkeley.Edu.
10.0 IN PTR ucbvax.Berkeley.Edu.
6.130 IN PTR monet.Berkeley.Edu.

6. Domain Management

This section contains information for starting, controlling and debugging named.

6.1. /etc/re.local

The hostname should be set to the full domain style name in /etc/re.local using
hostname(J). The following entry should be added to /etc/re.local to start up named at
system boot time:

if [-f /etc/named}; then
/etc/named [options] & echo -n 'named' >ldev!console

fi
This usually directly follows the lines that start syslogd. Do Not attempt to run named
from inetd. This will continuously restart the name server and defeat the purpose of
having a cache.

6.2. /etc/named.pid

When named is successfully started up it writes its process id into the file
/etc!named.pid. This is useful to programs that want to send signals to named. The
name of this file may be changed by defining PIDFILE to the new name when compil
ing named.

6.3. /etc/hosts

The gethostbyname O library call can detect if named is running. If it is deter
mined that named is not running it will look in /etc/hosts to resolve an address. This
option was added to allow ifconfg (SC) to configure the machines local interfaces and to
enable a system manager to access the network while the system is in single user mode.

SMM:ll-14 Name Server Operations Guide for BIND

It is advisable to put the local machines interface addresses and a couple of machine
names and address in !rte/hosts so the system manager can rep files from another
machine when the system is in single user mode. The format of /etc/host has not
changed. See lwsts (5) for more information. Since the process of reading /etc/hosts is
slow, it is not advised to use this option when the system is in multi user mode.

6.4. Signals

There are several signals that can be sent to the named process to have it do tasks
without restarting the process.

6.4.1. Reload

SIGHUP - Causes named to read named.boot and reload the database. All
previously cached data is lost. This is useful when you have made a change to a
data file and you want named's internal database to reflect the change.

6.4.2. Debugging

When named is running incorrectly, look first in /usr!adm!messages and check
for any messages logged by sys/og. Next send it a signal to see what is happening.

SIGINT Dumps the current data base and cache to
/usr/tmp/named_dump.db This should give you an indication to whether the data
base was loaded correctly. The name of the dump file may be changed by defining
DUMPFILE to the new name when compiling named.

Note: the following two signals only work when named is built with DEBUG
defined.

SIGUSRI - Turns on debugging. Each following USRI increments the debug
level. The output goes to /usrltmplnamed.run The name of this debug file may be
changed by defining DEBUGFILE to the new name before compiling named.

SIGUSR2 - Turns off debugging completely.

For more detailed debugging, define DEBUG when compiling the resolver routines
into !lib!libc.a.

ACKNOWLEDGEMENTS

Many thanks to the users at U.C. Berkeley for falling into many of the holes involved
with integrating BIND into the system so that others would be spared the trauma. I would
also like to extend gratitude to Jim McGinness and Digital Equipment Corporation for per
mitting me to spend most of my time on this project.

Ralph Campbell, Doug Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike Muuss
and everyone else on the DARPA Internet who has contributed to the development of BIND.
To the members of the original BIND project, Douglas Terry, Mark Painter, David Riggle
and Songnian Zhou.

Anne Hughes, Jim Bloom and Kirk McKusick and the many others who have reviewed
this paper giving considerable advice.

This work was sponsored by the Defense Advanced Research Projects Agency (DoD),
Arpa Order No. 4871 monitored by the Naval Electronics Systems Command under contract
No. N00039-84-C-0089. The views and conclusions contained in this document are those of

Name Server Operations Guide for BIND SMM:ll-15

the authors and should not be interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency, of the US Government, or of Digital
Equipment Corporation.

SMM:ll-16

[Birrell]

[RFC819)

[RFC882)

[RFC883)

[RFC973]

[RFC974]

[Terry]

[Zhou]

Name Server Operations Guide for BIND

REFERENCES

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M.D., "Grapevine:
An Exercise in Distributed Computing." In Comm. A.C.M. 25, 4:260-274
April 1982.

Su, Z. Postel, J., "The Domain Naming Convention for Internet User Appli
cations." Internet Request For Comment 819 Network Information Center,
SRI International, Menlo Park, California. August 1982.

Mockapetris, P., "Domain Names - Concept and Facilities." Internet Request
For Comment 882 Network Information Center, SRI International, Menlo
Park, California. November 1983.

Mockapetris, P., "Domain Names - Implementation and Specification." Inter
net Request For Comment 883 Network Information Center, SRI Interna
tional, Menlo Park, California. November 1983.

Mockapetris, P., "Domain System Changes and Observations." Internet
Request For Comment 973 Network Information Center, SRI International,
Menlo Park, California. February 1986.

Partridge, C., "Mail Routing and The Domain System." Internet Request For
Comment 974 Network Information Center, SRI International, Menlo Park,
California. February 1986.

Terry, D. B., Painter, M., Riggle, D. W., and Zhou, S., The Berkeley Internet
Name Domain Server. Proceedings USENIX Summer Conference, Salt Lake
City, Utah. June 1984, pages 23-31.

Zhou, S., The Design and Implementation of the Berkeley Internet Name
Domain (BIND) Servers. UCB/CSD 84/177. University of California, Berke
ley, Computer Science Division. May 1984.

Bug Fixes and Changes in 4.3BSD

Bug Fixes and Changes in 4.3BSD

April 15, 1986

Marshall Kirk McKusick
James M. Bloorri
Michael J. Karels

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

SMM:12-1

This document briefly describes the changes in the Berkeley version of UNIXt
for the VAX:j: between the 4.2BSD distribution of July 1983 and this, its revision of
March 1986. It attempts only to summarize the changes that have been made.

Notable improvements

• The performance of the system has been improved to be at least as good as that of 4.1 BSD, and
in many instances is better. This was accomplished by improving the performance of kernel
operations, rewriting C library routines for efficiency, and optimization of heavily used utilities.

• Many programs were rewritten to do I/O in optimal blocks for the filesystem. Most of these
programs were doing their own I/O and not using the standard I/O library.

• The system now supports the Xerox Network System network communication protocols. Most
of the remaining Internet dependencies in shared common code have been removed or general
ized.

• The signal mechanism has been extended to allow selected signals to interrupt pending system
calls.

• The C and Fortran 77 compilers have been modified so that they can generate single precision
floating point operations.

• The Fortran 77 compiler and associated I/O library have undergone extensive changes to
improve reliability and performance. Compilation may, optionally, include optimization phases
to improve code density and decrease execution time. Many minor bugs in the C compiler have
been fixed.

• The math library has been completely rewritten by a group of numerical analysts to improve
both its speed and accuracy.

• Password lookup functions now use a hashed database rather than linear search of the password
file.

t UNIX is a trademark of AT&T Bell Laboratories. * DEC, VAX, PDP, MASSBUS, UNIBUS, Q-bus and ULTRIX are trademarks of Digital Equipment Corporation.

SMM:l2-2 Bug Fixes and Changes in 4.3BSD

• C library string routines and several standard 1/0 functions were recoded in VAX assembler for
greater speed. The C versions are available for portability. Standard error is now buffered
within a single call to perform output.

• The symbolic debugger, dbx, has been dramatically improved. Dbx works on C, Pascal and For
tran 77 programs and allows users to set break points and trace execution by source code line
numbers, references to memory locations, procedure entry, etc. Dbx allows users to reference
structured and local variables using the program's programming language syntax.

• A new internet name domain server has been added to allow sites to administer their name
space locally and export it to the rest of the Internet. Sites not using the name server may use a
static host table with a hashed lookup mechanism.

• A new time synchronization server has been added to allow a set of machines to keep their
clocks within tens of milliseconds of each other.

adb

arcv

as

at

awk

be

calendar

cat

cb

cc

Bug fixes and changes

Section l

Locates the stack frame when debugging the kernel. Slight changes were made to out
put formats.

Has been retired to /usrlold.

The default data alignment may now be specified on the command line with a -a flag.
A problem in handling filled data was fixed. Some bugs in the handling of dbx stab
information were fixed. ·

The user may now choose to run sh or csh. Mail can now be sent to the user after the
job has run; mail is always sent if there were any errors during execution. At now
runs with the user's full permissions. All spool files are now owned by "daemon".
The last update time is in seconds instead of hours. The problems with day and year
increments have been fixed.

Problems when writing to pipes have been corrected.

Be will continue reading from standard input, after failing to open a file specified from
the command line.

Now allows tabs as separators. A subject line with the date of the reminder is added
to each message.

Problems opening standard. input multiple times have been fixed. Cat now runs much
faster in the default (optionless) case.

No longer dumps core for unterminated comments or large block comments. For
most purposes, indent (1) is far superior to cb. · ·

The C compiler has some new features as well as numerous bug fixes. The principal
new feature is a -f flag that tells the compiler to compute expressions of type float in
single precision, following the ANSI C standard proposals. The C preprocessor has
been extended to generate the dependency list for source files. The output is designed
for inclusion in a makefile without modification.

The bug fixes are many and varied. Several fixes deal with type coercion and sign
extension. Signed char and short values are now properly sign-extended in comparis
ons with unsigned values of the same length. Conversion of a signed char value to
unsigned short now correctly sign-extends to 16 bits (on the VAX). Non-integer switch
expressions now elicit warnings and the appropriate conversions are emitted.
Unsigned longs were being treated as signed for the purpose of conversion to floating
types; the compiler now produces the appropriate complicated ,instruction sequence to

Bug Fixes and Changes in 4.3BSD SMM:l2-3

checknr

chfn

do this right. An ancient misunderstanding that caused i *= d to be treated as i = i *
(int) d instead of i = (double) i * d for int i and double d has been corrected. If a
signed integer division or modulus is cast to unsigned, the unsigned division or
modulus routine is no longer used to compute the operation.

Some problems with bogus input and bogus output are now handled better; more syn
tax errors are caught and fewer code errors are emitted. Many declarations and
expressions involving type void that used to be disallowed now work; some expressions
that were not supposed to work are now caught. A pointer to a structure no longer
stands a chance of being incremented by the size of its first element instead of the size
of the structure when the value of the element is used at the same time the pointer is
postincremented. Side effects in the left hand side of an unsigned assignment operator
expression are now performed only once. Hex constants of the form 01234x56789 are
now illegal. External declarations of functions may now possess arguments only if
they are also definitions of functions. Declarations or initializations for objects of
type structure where the particular structure was not previously defined used to result
in confusing messages or even compiler errors; it's now possible to deduce one's mis
take.
Some effort has been put into making the compiler more robust. Initializers contain
ing casts sometimes would draw complaints about compiler loops or other problems;
these now work properly. The register resource calculation now takes into account
implicit conversions from float to double type, so that the code generator will not
block by running out of registers. The compiler is more diligent about reducing struc
ture type arguments to functions and no longer gives up when it cannot reduce the
address to an offset from a register in only two tries. Programs that end in " \ n #" no
longer cause compiler core dumps. The compiler no longer dumps core for floating
point exceptions that occur during reduction of constant expressions. The compiler
expression tree table was enlarged so that it does not run out of space as quickly when
processing complex expressions such as putchar(c). The C preprocessor no longer uses
a statically allocated space for strings. The preprocessor also now handles # line direc
tives properly and correctly treats standard input from a terminal or a pipe. Two fen
cepost errors in the C peephole optimizer were adjusted and it now dumps core less
often.

Some minor code efficiency changes were made. An important change is that the com
piler now recognizes unsigned division and modulus operations that can be done with
masking and shifting; this avoids the usual subroutine call overhead associated with
these operations. The computation of register resources has improved so that the
number of registers required for an expression is not overestimated as often. Register
storage declarations for float variables now cause them to be put in registers if the -f
flag is used. The compiler itself is somewhat faster, thanks primarily to a change that
considerably reduces symbol table searches when entering and leaving blocks.

The compiler sources have been rearranged to make maintenance easier. The names
of some source files have been changed to protect the innocent; header files now end
in . h , and names of files reflect their functions. Configuration control has been
simplified, so that only a simple configuration include file and the makefile flags vari
able should have to be considered when putting the compiler together. Redundant
information has been eliminated from include files and the makefile, to reduce the
chance of introducing changes that will make data structures or defines inconsistent.
Values for opcodes are now taken from an include file pcc.h that is common to all the
compilers that use the C compiler back end. The peephole optimizer can now be com
piled without -w.

The .T& tbl directive was added to the list of known commands.

Has been merged into passwd (1).

SMM:l2-4

chgrp

ch mod

ch sh

clear

colrm
compact

compress

cp

crypt
csh'

ctags

date

dbx

dd

deroff

diff

diff3

echo

error

ex

Bug Fixes and Changes in 4.JBSD

An option has been added for recursively changing the group of a directory tree.

Can now recursively modify the permissions on a directory tree. The mode string was
extended to tum on the execute bit conditionally if the file is executable or is a direc
tory.

Has been merged into passwd(l).

Now has a proper exit status.

Line length limitations have been removed.

Has been retired to /usr/o/d.

Replaces compact as the preferred method to use in saving file system space.

No longer suffers problems when copying a directory to a nonexistent name or when
some directories are not writable in a recursive copy. The -p flag was added to
preserve modes and times when copying files.

Waits for makekey to finish before reading from its pipe.

Has a new flag to stop argument processing so set user id shell scripts are more secure.
File name completion may be optionally enabled. Csh keeps better track of the
current directory when traversing symbolic links. Some major work was done on per
formance.

Ctags was modified to recognize LEX and YACC input files .. Files ending· in .y are
presumed to be YACC input, and a tag is generated for each non-terminal defined,
plus a tag yyparse for the first %% line in the file. Files ending in ./ are checked to see
if they are LEX or Lisp files. A tag yylex is generated for the first %% line in a LEX
file. In addition, for both kinds of files, any C source after a second %% is scanned for
tags.

The date command can now be used to set the date on all machines in a network
using the timed(S) program. More information is logged regarding the setting of time.

Major improvements have been made to dbx since the 4.2BSD release. Large
numbers of bug fixes have made dbx much more pleasant to use; in particular many
pointer errors that used to cause dbx to crash have been caught. Some new features
have been installed; for instance it is now possible to search for source lines with regu
lar expressions. The Fortran and Pascal language support is much improved, and the
DEC Western Research Labs Modula-2 compiler is now supported.

Exit codes have been changed to correspond with normal conventions.

Deroff no longer throws out two letter words.

Context diffs merge nearby changes. New flags were added for ignoring white space
differences and for insensitivity to case.
The RCS version of diff3 has been merged into the standard diff3 under two new flags,
-E and-X.

No longer accepts -nanything in place of -n.

Support for the DEC Western Research Labs Modula-2 compiler has been added.
Error will now be able to run when there is no associated tty, so it may now be driven
from at(1), etc. If the -n and -t options are selected, error will not touch files.

Support for changing window size has been added, and terminals with many lines,
such as the WE5620, are now handled. Several small bug fixes were installed and vari
ous facilities have been made faster. Ex only reads the file .exrc if it is owned by the
user, unless the sourceany option is set. It only looks for "mode lines" if the modeline
option is set. If Lisp mode is set, it allows "-" to be used in "words". Expreserve
now provides a better description of what happened to a user's buffer when disaster
struck.

Bug Fixes and Changes in 4.3BSD SMM:12-5

eyacc
f77

eyacc is no longer a standard utility. It has been moved to the Pascal source directory.

The Fortran compiler has been substantially improved. Many serious bugs have been
fixed since the last release; the compiler now passes several widely used tests such as
the Navy Fortran Compiler Validation System and the IMSL and NAG mathematical
libraries. The optimizer is now trustworthy and robust; the many gruesome bugs that
it used to inflict on programs, such as resolving different variables in the same common
block into the same temporary for purposes of common subexpression elimination,
have been fixed. Do loops, which used to suffer from deadly problems where loop
variables, limit values and tests all managed to misfire even without the help of the
optimizer, now produce proper results. Many severe bugs with character variables and
expressions have been fixed; it is now possible to have variable length character vari
ables on either side of an assignment, and the lengths of concatenations are properly
computed. Several register allocation bugs have been fixed, among them the awful bug
that a = f(a) where a is in a register would not alter the value of a. Register alloca
tion, though significantly improved, is still pitifully naive compared with the methods
found in production Fortran compilers. Save statements cause variables to be
retained, even if a subroutine returns from inside a loop. It is no longer possible to
modify constants that are passed as parameters to subroutines and thus change all
future uses of the constant when it is used as a subroutine parameter. Multi-level
equivalences are no longer scrambled, and the cmplx intrinsic conversion function no
longer garbles its result. The compiler now generates integer move instructions where
it used to produce floating point move instructions, even when not optimizing, so that
non-standard use of equivalences between real and integer types work as on most
other systems. Assign statements now work with format statements. The "first char
acter" parameter of a substring is now evaluated only once instead of twice. Restric
tions on parameter variables are now enforced, and the compiler no longer aborts
while trying to make sense of impossible parameter variables. The restrictions on
array dimension declarators are much closer to the standard and much more stringent.
Statement ordering used to be much more flexible, and wrong; it is now strictly
enforced, leading to fewer compiler errors. The compiler now chides the user for
declaring adjustable length character variables that are not dummy arguments. The
compiler understands that subroutines and functions are different and prevents them
from being used interchangeably. The parser is no longer fooled by excess "positional
I/O control" parameters in 1/0 statements.

Several changes have been made to prevent the compiler itself from aborting; in par
ticular, computed gotos do not elicit compiler core dumps, nor do n,ultiplications by
zero, nor do unusual statement numbers. The compiler now recognizes and complains
about various kinds of hardware errors that can result from evaluating constant
expressions, such as integer and floating overflow; it no longer dies when it receives a
SIGFPE. Several memory management bugs that caused the compiler to dump core
for seemingly random things have met their demise. Some conversion operations used
to cause the code generator to emit impossible assembly language instructions that in
tum caused the assembler some indigestion; these are now fixed. Some symbol table
modifications were made to help out dbx(1), so that values of common and parameter
storage classes and logical types are now accessible from dbx. When the compiler does
abort, the error messages produced are now comprehensible to human beings and
messy core dumps are no longer left behind. Some effort has been made to improve
error reporting for program errors and to handle exceptional conditions in which the
old compiler used to punt.

Some improvements in optimization were added to the compiler. Offsets to static
data are now shorter than before; the compiler used to produce 32-bit offsets for all
local variables. Real variables may now be allocated to registers. Format strings in
format statements are compiled for considerable runtime savings; for various reasons,
format strings in character constants and variables in 1/0 statements are not.

SMM:12-6 Bug Fixes and Changes in 4.3BSD

Common subexpression elimination now reduces the re-evaluation of exponentiations
in polynomial expressions. Some problems with alignment of data that caused ghastly
performance degradation have been repaired.

Some changes have been made in the way the compiler is put together. The compiler
front end now uses the common intermediate code format established in the include
file pcc.h to communicate with the back end. The back end has been re-merged with
the C compiler sources, so that bug fixes to the C compiler are automatically pro
pagated to the Fortran back end. Similarly, the Fortran and C peephole optimizers
were re-merged.
Some new features were added to the compiler. There is now a -r8 flag to coerce real
and complex variables and constants to double precision and double complex types for
extended precision. There is a -q flag to suppress listing of file and entry names dur
ing compilation. Some foolproofing was added to the compiler driver; it is no longer
possible to wipe out a source file by entering "n7 -o foo.f', and it now complains
about incompatible combinations of options.
Many I/O library bugs were fixed. Auxiliary I/O has been fixed to be closer to the
standard: close is a no-op on a non-existent or unconnected unit; rewind and backspace
are no-ops on an unconnected unit; endfile opens an unconnected unit. Inquire returns
true when asked if units 0-MAXUNIT exist, false for other integers; it used to return
false for legal but unconnected file numbers and errors for illegal numbers. Inquire
now fills in all requested fields, even if the file or unit does not exist or is unconnected.
Inquire by unit now correctly returns the unit number. Most of the formatted I/O
input scanning has been rewritten to check for invalid input. For example, with an
fJO.O format term, the following all used to read as 12.345: "1+2.345", "12.3abc45",
"12.3.45", "12345el-"; they now generate errors. Conversely, the legal datum
"12345-2" for 12.345 used to be misread as -1234.52. The b format term is now
fixed, and bz now works for short records. Reads of short logical variables no longer
overwrite neighboring data in memory. Infinite loops in formatted output (an I/O list
but no conversion terms in the format) are now caught, printing multiple records after
the list is exhausted. In list directed reads, a repeat count, r, followed by an asterisk
and a space (and no comma) now follows the standard and skips r list items. Repeat
counts for complex constants now work. Tabs are now fully equivalent to spaces in
list directed input. There are two new formatting terms, x for hex and o for octal.
The library now attempts to get to the next record if doing an err= branch on error;
the standard does not require this, but it is undesirable to leave the system hanging in
mid record. After input errors, the I/O library now tries to skip to the next line. if
there is another read. This functionality is not required by the standard and is still
not guaranteed to work.
The Fortran runtime and 1/0 libraries have several new features. Many routines and
variables have been made static, cutting the number of symbols defined by the library
almost in half. Many source files have been reorganized to eliminate the loading of
extraneous routines; for example, the formatted read routines are not loaded if a pro
gram only performs formatted writes. Standard error is now buffered. All error pro
cessing is now centralized in a single routine, f77 _abort. The f77 _abort routine has
been separated from the normal Fortran main routine so that C code can call Fortran
subroutines. Fortran programs that abort normally get a core file only if they are
loaded with -g; the environment variable f77 _dump_flag may be used to override this
by setting it to y or n. The rindex routine now works as documented. The C library
malloc and random routines may now be accessed from Fortran.

The new VAX math library has been incorporated and some bugs in calling math
library routines have been fixed. The routine d_dprod was added for use with the -r8
flag. The sinh and tanh routines have been deleted as they are loaded directly from
the math library. The loglO routine from the math library is now used by r_lgJO and

Bug Fixes and Changes in 4.3BSD SMM:J2-7

fed

find

finger

file

from

ftp

gprof

groups

help

hostid

indent

install

iostat

d_/gJO. The pow routines now divide by zero when zero is raised to a negative power
so as to generate an exception. Complex division by zero now generates an error mes
sage.
Appropriately named environment variables now override default file names and
names in open statements; see "Introduction to the f77 I/O Library" for details. Unit
numbers may vary from 0 to 99; the maximum number that can be open simultane
ously depends on the system configuration limit (the library does not check this value).
Namelist I/O similar to that in VMS Fortran has been added to the compiler, and
library routines to implement it have been added to the I/O library. The documents
"A Portable Fortran 77 Compiler" and "Introduction to the f77 I/O Library" have
been revised to describe these changes. The new help system on the distribution tape
in the user contributed software section contains a large set of help files for f77.

Has been retired to /usrlo/d.

Some new options have been added. It is now possible to choose users or groups that
have no names by using the -nouser and -nogroup options. The -ls option provides a
built in Is facility to allow the printing of various file attributes; it is identical to "Is
-lgids". It is now possible to restrict find to the file system of the initial path name
with the -xdev option. A new type, -type s, for sockets has been added. Symbolic
links are now handled better. Globbing is now faster. Find supports an abbreviated
notation, "find pattern," which searches for a pattern in a database of the system's
path names; this is much faster than the standard method.

Despite numerous changes, finger still has Berkeley parochialisms. It has been
modified to provide finger information over the network. Control characters are
mapped to their printable equivalents (e.g. "X) to avoid trojan horses in .plan and
profile files.
File has been extended to recognize sockets, compressed files (.Z), and shell scripts.
When it determines that a file is a shell script, it tries to discover whether it is a
Bourne shell script or a C shell script. The special bits set user id, sticky, and
append-only are also noted. The value of a symbolic link is now printed.

An error message is printed if the requested mailbox cannot be opened.

Many bugs have been fixed. New features are: support for new RFC959 FTP features
(such as "store unique"), new commands that manipulate local and remote file names
to better support connections to non-UNIX systems, support for third party file
transfers between two simultaneously connected remote hosts, transfer abort support,
expanded and documented initialization procedures (the .netrc file), and a simple com
mand macro facility.

Uses setitimer to discover the clock frequency instead of looking it up in !devlkmem.
An alphabetical index printing routine has been added. A few changes were made to
the output format; a new column indicates milliseconds per call.

Now prints out the group listed in the password file in addition to the groups listed in
the groups file.

Has been superseded by the help facility included in the User Contributed Software.

Has been extended to take an Internet address or hostname.

Has been completely rewritten; its default mode now produces programs somewhat
more closely reflecting the local Berkeley style.

The chmod in the install script uses -f so that it does not complain if it fails. When
mv'ing and strip'ing a binary (-s and not -c), the strip is done before the mv to avoid
fragmentation on the destination file system.

Disk statistics are collected by an alternate clock, if it exists. Overflow detection has
been added to avoid printing negative times. A call to fflush was added so that iostat

SMM:12-8

kill

lastcomm

Id

learn

leave

lex

lint

lisp

In

lock

logger

login

lpr

mail

make

man

Bug Fixes and Changes in 4.3BSD

works through pipes and sockets. Code to handle additional disks was added in the
same way as in vmstat. The header is reprinted when iostat is restarted.

Signal 0 may now be used as documented.

Several bug fixes were installed. Lastcomm now understands the revised accounting
units.

A list of directories to search for libraries may now be specified on th.e command line.

The "files" lesson has been updated to reflect the default system tty conventions for
erase and kill characters. Learn now uses directory access routines so that trash files
can be removed properly between lessons.

Now ignores SIGTTOU and properly handles the +hhmm option.

The error messages have been made more informative.

Tests for negative or excessively large constant shifts were added. For -a, warnings
for expressions of type long that are cast to type void are no longer emitted. A bug
which caused lint to incorrectly report clashes for the return types of functions has
been fixed. Lint now understands that enums are not ints. The lint description for the
C library was updated to reflect sections two and three of the Programmers Manual
more accurately. Several more libraries in lusr/lib now have lint libraries. Changes
were made to accommodate the restructuring of the C compiler for common header
files.

The Berkeley version of Franz Lisp has not been changed much since the 4.2BSD
release. It has been updated to reflect changes in the C library.

Now prints a more accurate error message when asked to make a symbolic link into an
unwritable directory.

Lock now has a default fifteen minute timeout. The root password may be used to
override the lock. If an EOF is typed, it is now cleared instead of spinning in a tight
loop until the timeout period.

A new program that logs its standard input using syslog(3).

The environment may be set up by another process that calls login. It now uses the
new getttyent(3) routines to read /etc/ttys.

Now supports "restricted access" to a printer- printer use may be restricted to only
those users in a specific group-id.

Mail now expects RFC822 headers instead of the obsolete RFC733 headers. A retain
command has been added. If the PAGER variable is set in the environment, it is used
to page messages instead of more(I). The write command now deletes the entire
header instead of only the first line. An unread/Unread command (to mark messages
as not read) was added. If Replyall is set, the senses of reply and Reply are reversed.
When editing a different file, mail always prints the headers of the first few messages.
Flock(2) is used for mailbox locking. Commands "-"and"+" skip over deleted mes
sages; type user now does a substring match instead of a literal comparison. A -I flag
was added which causes mail to assume that input is a terminal.

A bug which caused make to run out of file descriptors because too many files and
directories were left open has been fixed. Long path names should not be a problem
now. A VPATH macro has been added to allow the user to specify a path of direc
tories to search for source files.

Support for alternate manual directories for man, apropos and whatis was added. A
side effect of this is that the whatis database was moved to the man directory. If the
source for a manual page is not available, man will display the formatted version.
This allows machines to avoid storing both formatted and unformatted versions of the
manual pages. The environment variable MANPATH overrides the default directory
lusr/man. The -t option is no longer supported. The printing process has been

Bug Fixes and Changes in 4.3BSD SMM:l2-9

mesg

mkdir

more

ms gs

mv
nets tat

nice

nroff

Pascal

passwd

plot

pr

print

prmail

prof

ps

pti

ptx

quota

ranlib

rep

streamlined by using "more -s ca(/i/e" instead of "cat -s catfile I ul I more -f'.
Searches of /usrlmanlmano are more lenient about file name extensions. The source
for man was considerably cleaned up; the magic search lists and commands were put
at the top of the source file and the private copy of system was deleted.

So that terminals need not be writable to the world, mesg only changes the group
"write" permission. (Terminals are now placed in group ti.I' so that users may restrict
terminal write permission to programs which are set-group-id llJ'.)

Prints a "usage" error message instead of an uninformative "arg count" message.

Now allows backward scanning. It will also handle window size changes. It simulates
"crt" style erase and kill processing if the terminal mode includes those options.

Will no longer update .msgsrc if the saved message number is out of bounds.

No longer runs cp (l) to copy a file; instead it does the copy itself.

Routes and interfaces for Xerox NS networks are now shown. The -I option has been
added to specify a particular interface for the default display. The -u option has been
added to show UNIX domain information. Several new mbuf types and statistics are
now displayed; subnetting is now understood.

Is relative as documented, not absolute.

No longer replaces single spaces with tabs when using the -h option.

The Pascal compiler and interpreter have been extensively rewritten so that they will
(nearly) pass through lint. In theory they have not changed from a semantic point of
view. A few bugs have been fixed, and undoubtedly some new ones introduced. The
Pascal runtime support has improved error diagnostics. Real number input scanning
now corresponds to standard Pascal conventions rather than those of scanf(3S).
The passwd program incorporates the functions of chfn and chsh under -f and -s flags.
Whenever information is changed passwd also updates the associated ndbm(3X) data
base used by getpwnam and getpwuid. Office room and phone numbers are less depen
dent on Berkeley's usage. Checks are made for write errors before renaming the pass
word file.

The output device resolution can now be specified using the -r option. Support has
been added for the Imagen laser printer and the Tektronix 4013.

The buffer is now large enough for 66 x 132 output.

Has been retired to lusrlold; use "!pr -p" instead.

Has been retired to /usrlold; use "Mail -u user" instead.

Uses setitimer to determine the clock frequency instead of assuming 60 hertz.

Saves static information for faster startup. It now l 'ints symbolic values for wait
channels.

Has been retired to /usrlold.
Cleans up after itself and exits with a zero status on successful completion.

Verifies that the system supports quotas before trying to interpret the quota files.

The -t option updates a library's internal time stamp without rebuilding the table of
contents. "Old format" and "mangled string table" are now warnings rather than fatal
errors. Memory allocation is done dynamically.

For the convenience of system managers, rep has moved from /usrlucb to !bin, hence
it can be used without mounting /usr. Remote user names are now specified as
user@host instead of host.user to support Internet domain hostnames that contain
periods (". "). A -p option has been added that preserves file and directory modes,
access time, and modify time. It now uses getservbyname instead of compile time con
stants.

SMM:l2-IO

rdist

refer

rlogin

rm

rmdir

rsh

ruptime

rwho

script

sed

send bug

sh

size

sort

spell

stty

SU

symorder

sysline

sys tat

tail

Bug Fixes and Changes in 4.3BSD

A new program that keeps files on multiple machines consistent with those on a mas
ter machine.

The key letter code was fixed so that control characters are not generated. Several
problems that caused the generation of duplicate citations, particularly with the -e and
-s options, have been fixed. EOF on standard input is now properly handled. Refer
folds upper and lower case when sorting.

Rlogin negotiates with rlogind to determine whether window size changes should be
passed through. If the remote end is running a 4.3BSD rlogind, it will agree to accept
and pass through SJGWJNCH signals to user processes under its control. The -8 flag
allows an 8-bit path on input. The -L flag allows an 8-bit path on output. The escape
character is now echoed as soon as a second non-command character is typed. A new
command character • Y has been added to suspend only the input end of the session
without stopping output from the remote end (unless tostop has been set). The ioctl
TJOCSPGRP has been changed to Jent/ F _SETOWN. Several changes have been
made to reduce the amount of data sent after an interrupt has been typed, and to
avoid flushing data when changing modes.

The -f option produces no error messages and exits with status 0. The problem of
running out of file descriptors when doing a recursive remove have been fixed.

Improved error messages, in the same fashion as mkdir.

The -L, -w, and -8 flags are ignored so that they may be passed along with -e to rlo
gin.

The -r flag has been added to reverse sort order.

Now allows hosts with long names (greater than 16 characters).

Now propagates window size changes.

No longer loops when the first regular expression is null.

Allows command line -D arguments to override built in defaults for name and host
address of the bugs mailing list. The "Repeat-By" field is now optional. Sendbug
now checks the EDITOR environment variable instead of assuming vi.

"#" is no longer considered a comment character when sh is interactive. The IFS
variable is not imported when sh runs as root or if the effective user id differs from
the real user id.

Now exits with the number of errors encountered.

Checks for and exits on write errors.

A couple of trouble-causing words have been removed from spelfs stoplist; e.g. "reus"
that caused "reused" to be flagged. A few words that spell would not derive have been
removed from the stoplist. Several hundred words that spell derives without difficulty
from existing words (e.g. "getting" from "get"), or that spell would accept anyway, e.g.
"!st, 2nd" etc., have been removed from lusrldict/words.

Has been extended to handle window sizes and 8-bit input data paths. "stty size"
prints only the size of the associated terminal.

Only members of group 0 may become root.

Now reorders the string table as well as the name list.

Now understands how to run in one-line windows and how to adjust to window size
changes. Numerous small changes have been made in the output format.

A new program that provides a cursed form of vmstat, as well as several other status
displays.

Makes use of a much larger buffer.

Bug Fixes and Changes in 4.3BSD SMM:12-11

talk The new version of talk has an incompatible but well-defined protocol that works
across a much broader range of architectures. The new talk rendezvouses at a new
port so that the old version can still be used during the conversion. Talkd looks for a
writable terminal instead of giving up if a user's first entry in /e/c/l//mp is not writ
able. Root may always interrupt. Talk now runs set-group-id to group If.I' so that it is
no longer necessary to make terminals world writable.

tar Preserves modified times of extracted directories. The -B option is turned on when
reading from standard input. Some sections were rewritten for efficiency.

tbl The hardwired line length has been removed.
tcopy A new program for doing tape to tape copy of multifile, arbitrarily blocked magnetic

tapes.

tee
telnet

tftp

tip

tn3270

tp

tr
trman

tset

users
uucp

vacation
vgrind

vlp

Tee's buffer size was increased.
Telnet first tries to interpret the destination as an address; if that fails, it is then
passed off to gethostbyname. If multiple addresses are returned, each is tried in turn
until one succeeds, or the list is exhausted. If a non-standard port is specified, the ini
tial "Suppress Go Ahead" option is not sent. Commands were added to escape the
escape character, send an interrupt command, and send "Are You There". Carriage
return is now mapped to carriage return, newline.
Has many bug fixes. It no longer loops upon reading EOF from standard input. Re
transmission to send was added, as well as an input buffer flush to both send and
receive.
Lock files are no longer left lying about after tip exits, and the uucp spool directory
does not need to be world writable. A new "-$" command sends output from a local
program to a remote host. Alternate phone numbers are separated only by ","; thus
several dialer characters that were previously illegal may now be used. Tip now
arranges to copy a phone number argument to a safe place, then zero out the original
version. This narrows the window in which the phone number is visible to miscreants
using ps or w. Also fixed was a bug that caused the phone number to be written in
place of the connection message. Carrier loss is recognized and an appropriate discon
nect action is taken. Bugs in calculating time and fielding signals have been fixed.
Several new dialers were added.
A new program for emulating an IBM 3270 over a telnet connection.

Memory allocation was changed to avoid realloc.
Checks for and exits on write errors.

Has been retired to lusr /old.
Can now set the interrupt character. The defaults have been changed when the inter
rupt, kill, or erase characters are NULL. Reset is now part of tset. The window size is
set if it has not already been set. Tset continues to prompt as long as the terminal
type is unknown.

Now much quieter if there are no users logged on.
Several fixes and changes from the Usenet have been incorporated. The maximum
length of a sitename has been increased from 7 to 14 characters. Uucp has been
changed to understand the new format of letclllys. Support for more dialers has been
added.
A new program that answers mail while you are on vacation.
Has been extended to handle the DEC Western Research Labs Modula-2 compiler and
yacc.

Now properly handles indented lines.

SMM:12-12 Bug Fixes and Changes in 4.JBSD

vmstat The -i flag was added to summarize interrupt activity. The -s listing was expanded to
include cache hit rates for the name cache and the text cache. The standard display
has been generalized to allow command line selection of the disks to be displayed. A
new header is printed after the program is restarted. If an alternative clock is being
used to gather statistics, it is properly taken into account.

vpr Has been retired to /usr /old.

w Users logged in for more than one day have login day and hour listed; users idle for
more than one day have their idle time listed in days.

wall Will now notify all users on large systems.

whereis Now also checks man!, mann, and mano.

which Now sets prompt before sourcing the user's .cshrc file to ensure that initialization for
interactive shells is done. ·

whoami Uses the effective user id instead of the real user id.
window A new program that provides multiple windows on ASCII terminals.

write Looks for a writable terminal instead of giving up if a user's first entry in /etclutmp is
not writable. Root may always interrupt. Non-printable escape sequences can no
longer be sent to an unsuspecting user's terminal. Write now runs set-group-id to
group tty so that it is no longer necessary to make terminals world writable.

xsend Notice of secret mail is now sent with a subject line showing who sent the mail. The
body of the message includes the name of the machine on which the mail can be read.

xstr Now handles multiple-line strings.

Section 2

The error codes for Section 2 entries have been carefully scrutinized to insure that the documen
tation properly reflects the source code. User-visible changes in this section He mostly in the area of
the interprocess communication facilities; the Xerox Network System communication procotocols
have been added and the existing communication facilities have been extended and made more
robust.

adjtime
fcntl

kill

ls eek

open

ptrace

readlink

A new system call which skews the system clock to correct the time of day.
The FASYNC option to enable the SIGIO signal now works with sockets as well as
with ttys. The interpretation of process groups set with F _SETOWN is the same for
sockets and for ttys: negative values refer to process groups, positive values to
processes. This is the reverse of the previous interpretation of socket process groups
set using ioctl to enable SIGURG.
The error returned when trying to signal one's own process group when no process
group is set was changed to ESRCH. Signal 0 can now be used as documented.

Returns an ESPIPE error when seeking on sockets (including pipes) for backward com
patibility.

When doing an open with flags O_CREAT and O_EXCL (create only if the file did
not exist), it is now considered to be an error if the target exists and is a symbolic link,
even if the symbolic link refers to a nonexistent file. This behavior was added for the
security of programs that need to create files with predictable names.

A new header file, <syslptrace.h>, defines the request types. When the process being
traced stops, the parent now receives a SIGCHLD.

Returns EINV AL instead of ENXIO when trying to read something other than a sym
bolic link.

Bug Fixes and Changes in 4.JBSD SMM:l2-13

rename

select

setsockopt

setpriority

setreuid

sigreturn

sigvec

socket

swapon

unlink

If the ISVTX (sticky text) bit is set in the mode of a directory, files in that directory
may not be the source or target of a rename except by the owner of the file, the owner
of the directory, or the superuser.

Now handles more descriptors. The mask arguments to select are now treated as
pointers to arrays of integers, with the first argument determining the size of the array.
A set of macros in <sys/types.h> is provided for manipulating the file descriptor sets.
The descriptor masks are only modified when no error is returned.
Options that could only be set in 4.2BSD (e.g. SO_DEBUG, SO_REUSEADDR) can
now be set or reset. To implement this change all options must now supply an option
value which specifies if the option is to be turned on or off. The SO_LINGER option
takes a structure as its option value, including both a boolean and an interval. New
options have been added: to get or set the amount of buffering allocated for the socket,
to get the type of the socket, and to check on error status. Options can be set in any
protocol layer that supports them; IP, TCP and SPP all use this mechanism.
The error returned on an attempt to change another user's priority was changed from
EACCES to EPERM.

Now sets the process p_uid to the new effective user ID instead of the real ID for con
sistency with usage elsewhere. This avoids problems with processes that are not able
to signal themselves.

Is a new system call designed for restoring a process' context to a previously saved one
(see setjmp//ongjmp).
Three new signals have been added, SIGWINCH, SIGUSRl, and SIGUSR2. The first
is for notification of window size changes and the other two have been reserved for
users.
The usage of the (undocumented) SIOCSPGRP ioctl has changed. For consistency
with Jent/, the argument is treated as a process if positive and as a process group if
negative. Asynchronous 1/0 using SIGIO is now possible on sockets.

The error returned for when requesting a device which was not configured as a swap
device was changed from ENODEV to EINVAL. In addition, swapon now searches
the swap device tables from from the beginning instead of the second entry.

If the ISVTX (sticky text) bit is set in the mode of a directory, files may only be
removed from that directory by the owner of the file, the owner of the directory, or
the superuser.

Section 3

The Section 3 documentation has been reorganized into just two sections. The first section con
tains everything previously in Section 3 except the Fortran library routines. The second section con
tains the Fortran library routines.

The routines memccpy, memchr, memcmp, memcpy, memset, strchr, strcspn, strpbrk, strrchr,
strspn, and strtok have been added for compatibility with System V. These routines are similar to the
string and block handling ones described in the bstring and string manual pages. The 4.JBSD string
and bstring versions should be faster than these compatibility routines on the VAX.

abort Sets SIGILL signal action to the default to avoid looping if SIGILL had been ignored
or blocked.

ctime Daylight savings time calculations have been fixed for Europe and Canada. Programs
making multiple calls to ctime will make fewer system calls. The include file has
moved from <sys/time.h> to <time.h>.

ctype iscntrl has been fixed to correspond to the manual page. Space is a printing character.
isgraph is a new function 'that returns true for characters that leave a mark on the

SMM:12-14

curses

dbm
disk tab

encrypt

execvp
frexp

gethost*

getopt

getpw*

gettty*

getusershell

Bug Fixes and Changes in 4.3BSD

paper. toupper, to!ower, and toascii have all been documented.

The library handles larger termcap definitions and handles more of the "funny"
termcap capabilities. The old crmode and nocrmode macros have been renamed
cbreak and nocbreak respectively; backwards compatible definitions for these macros
are provided. The erase and kill characters and the terminal's baudrate may be
accessed via erasechar, killchar, and baudrate macros defined in <curses.h>. A toucho
verlap function has been provided, and bugs in overlay and overwrite have been fixed.
Has been rewritten to use the multiple-database version of the library, ndbm.

Has added support for two new fields indicating the use of badl44-style bad sector for
warding and filesystem offsets specified in sectors.

Now works correctly when called directly.
No longer recognizes "-" as a path separator.

Now handles 0 and powers of 2 correctly. This routine is now written in assembly
language for the VAX.

gethostbyaddr and gethostbyname have been modified to make calls to the name
server. If the name server is not running, a linear scan of the host table is made.
With an optional C library configuration, these routines may instead use an ndbm
database for the host table. One of these lookup mechanisms must be specified when
compiling the C library. The default is to use the name server. gethostent has no
equivalent when using the routines calling the name server. The hostent structure has
been modified to support the return of multiple addresses. The external variable
h_errno has been added for returning error status information from the name server,
such as whether a transient error was encountered.

A new routine for parsing command line arguments. It is compatible with the System
V routine by the same name.
getpwnam and getpwuid use a hashed database using ndbm for faster lookups by user
name and id.
getttyent and getttynam are new routines for looking up entries in the new version of
/etc/ttys. The new header file <ttyent.h> describes the associated structures.

A new routine for retrieving shell names from a file listing the standard interactive
shells, /etc/shells, for the use of passwd(I) and servers providing remote host access.

getwd Getwd no longer changes directories in calculating the working directory; this elim
inates problems with return to the current directory, and results in fewer stat calls.

inet_makeaddr Properly handles INADDR_BROADCAST.
longjmp

malloc

math

mkstemp

On errors, longjmp calls the routine longjmperror. The default routine still prints
"longjmp botch" and exits; this may be replaced if a program wants to provide its
own error handler.

Mal/oc underwent a major rework. Memory requests of page size or larger are always
page aligned, and are now optimized for sizes that are a power of two. The debugging
code has been improved.

The math library has been rewritten to improve the speed and accuracy of the routines
on V AXen with D-format floating point support and machines that conform to the
IEEE standard 754 for double precision floating point arithmetic. The library also has
improved error detection and handling; for the VAX, the library generates reserved
operand faults for invalid operands. Many new functions have been added. Two
functions have changed their names; gamma is now !gamma and /mod is now modf
The old math library is available as -lorn.
Is a new routine similar to mktemp except that it returns an open file descriptor for a
temporary file. It is intended to replace mktemp in programs (run as root or setuid)

Bug Fixes and Changes in 4.3BSD SMM:l2-15

ndbm

nlist

perror

plot

po pen

psignal

random

rcmd

ruserok

scandir

setjmp

siginterrupt

signal

sleep

stdio

string

syslog

ttyslot

ualarm

usleep

that must be concerned with atomic creation of temporary files without the possibility
of having the temporary file relocated to an unexpected location by a symbolic link.

A new version of dbm that allows multiple databases to be open simultaneously.

Now returns -1 on error or the number ofunfound items.

A few of the error messages have been made more accurate.

Supports many new devices: Tektronix 4013, AED graphics terminal, BBN Bitgraph
terminal, terminals using the DEC GiGi protocol, HP 2648 terminals and 7221
plotters, and Imagen laser printers (240 or 300 dots per inch). Libraries also exist for
generating plot files from Fortran programs and for plotting on "dumb" devices such
as a standard line printer.

Dynamically allocates an array for file descriptors. The new signal interface is now
used.

New signals have been added to the list.

An initialization bug that messed up default generation was fixed.

Cleans up properly. A problem with doing multiple calls within one program was
fixed.

Now is more flexible about the format of .rhosts. Domain style hostnames do not
need full specification if they are a part of the local domain, as determined by host
name (1). Ruserok is more paranoid about ownership of .rhosts.

Handling of overflow has been fixed.

The signal stack status is now set correctly.

A new routine to set the signals for which system calls are not restarted after signal
delivery.

Keeps track of new features when changing signal handlers.

A couple of races have been fixed.

Has been modified to dynamically allocate slots for file pointers. Output on
unbuffered files is now buffered within a call to print! or fputs for efficiency. Fseek
now returns zero if it was successful. Fread and /write have been rewritten to improve
performance. On the VAX, Jgets, gets, fputs and puts were rewritten to take advantage
of VAX string instructions and thus improve performance. Line buffering now works
on any file descriptor, not just stdout and stderr. Putc is implemented completely
within a macro except when the buffer is full or when a newline is output on a line
buffered file. Some sign extension bugs with the return value of putc have been fixed.

The routines index, rindex, strcat, strcmp, strcpy, strlen, strncat, and strncpy have been
rewritten in VAX assembly language for efficiency. The C routines are included for
use on other machines. Only Makefiles need to be modified to select the version to be
used.

The third parameter to openlog is a "facility code" used to classify messages. Refer
ences to <syslog.h> should be replaced with references to <sys/syslog.h>.

Uses the new getttyent routine.

A simplified interface to setitimer, similar to alarm but with its argument in
microseconds.

A new routine which resembles sleep but takes an argument in microseconds.

Section 4

The system now supports the 64Kbit and 256Kbit RAM memory controllers for the VAX-
11/780 and VAX-11/785, the second UNIBUS adapter for the VAX-11/750, and the new VAX 8600

SMM:l2-16 Bug Fixes and Changes in 4.3BSD

with UNIBUS and/or MASSBUS peripherals. The Unibus management routines for network inter
faces have been generalized in 4.3BSD; this change requires stylized changes within most of the net
work drivers. A number of changes were made to each terminal multiplexor driver as well. See sec
tions 9 and 11 of the "Changes to the Kernel in 4.3BSD" document for details.

New manual entries in Section 4 have been created to describe the new communications proto
cols and network architectures that are supported. The most recent addition in 4.3BSD is the Xerox
Network System protocols.

arp

ddn

de

dhu
dmc

dmz

ec

ex

hdh

idp

ii

ip

ix
np

ns
nsip

ps

pty

spp

tcp

tty

Ioctls have been added to enter and delete entries in the Internet-to-Ethernett address
translation tables. Entries may be made permanent, and may be "published" to allow
a host to act as an ARP server.

A new DDN Standard Mode X.25 IMP interface driver.

A new DEC DEUNA I 0 Mb/s Ethernet interface driver.

A new DEC DHU-11 communications multiplexor driver.

The configuration flags may be used to specify how to set up the device. Multiple out
standing DMA requests can now be handled. A new encapsulation is used that allows
multiple protocols to be supported, but is incompatible with that used by 4.2BSD and
earlier Ultrix releases.

A new DEC DMZ-32 communications multiplexor driver.

Has a corrected backoff algorithm. Multiple units are supported by placing the Unibus
memory address in the device flags field.

A new Excelan 204 10 Mb/s Ethernet interface driver.

A new ACC IF-11/HDH IMP interface driver.

A description of the new Xerox Internet Datagram Protocol.

The driver has additional diagnostics and now supports Xerox NS.

Support for IP options was added.

A new Interlan NP 100 I 0 Mb/s Ethernet interface driver.

A new device for downloading microcode into the Interlan NPIOO 10 Mb/s Ethernet
interface driver.

A description of the new Xerox Network Systems protocol family.

A description of the new software network interface encapsulating NS packets in IP
packets.

The driver for the Picture System 2 has a small change in interrupt handling.

A new mode was added to allow a small set of commands to be passed to the pty mas
ter from the slave as a rudimentary type of ioctl, analogous to that of PKT mode.
Using this mode or PKT mode, a select for exceptional conditions on the master side
of a pty returns true when a command operation is available to be read. Select for
writing on the master side has been fixed.

A description of the new Xerox Sequenced Packet Protocol.

An option was added to disable small-packet avoidance under certain circumstances.

PASSS mode has been added to pass all 8 bits of input. New ioctls were added to sup
port the getting and setting of window size information for the terminal. A signal was
added to notify processes when the window size changes.

t Ethernet is a trademark of Xerox Corporation.

Bug Fixes and Changes in 4.3BSD SMM:l2-17

Section 5

A new subdirectory, /usrlinclude!protocols, has been created to keep header files that are shared
between user programs and daemons. Several header files have been moved here, including those for
rwhod, routed, timed, dump, talk, and restore.

Two new header files, <string.h> and <memory.h>, have been added for System V compatibil-
ity.

disktab

dump

gettytab

termcap

ttys

aardvark

battlestar

canfield

fortune

hunt

mille

robots

rogue

bier

me

words

Two new fields have been added to specify that the disk supports bad144-style bad sec
tor forwarding, and that offsets should be specified by sectors rather than cylinders.

The header file <dumprestor.h> has moved to <protocols!dumprestore.h>.

New entries have been added, including a 2400 baud dial-in rotation for modems, a
19200 baud standard line, and an entry for the xterm terminal emulator of the X win
dow system. New capabilities for automatic speed selection and setting strict xoff/xon
flow control (decctlq) were added.

Many new entries were added and older entries fixed.

The format of the ttys file, !etc/ttys, reflects the merger of information previously kept
in /etc/ttys, /etc/securetty, and /etc/ttytype. The new format permits arbitrary pro
grams, not just /etc/getty, to be spawned by init. A special window field can be used to
set up a window server before spawning a terminal emulator program.

Section 6

The "Dungeon Definition Language" processor has been updated to run on 4.3BSD,
so that games such as aardvark now work again.

A third generation adventure game.

The user interface has been improved so that one need not type so many carriage
returns between games. Players are charged a maximum of three minutes of think
time between moves should they put a game on hold for an extended period of time.

Has yet more adages (not better ones, just more).

The latest addition, a maze battle game for multiple players.

Now plays slightly more intelligently, and prevents discarding of safeties.

Much like the old game of chase, except different.

Has been made more of a scoundrel.

Section 7

Has been updated to reflect the reorganization to the user and system source.

Some new macros were added: .sm (smaller) and .bu (bulleted paragraph). The pie,
ideal, and gremlin preprocessors are now supported.

Two new word lists have been add to lusrldict. The 1935 Webster's word list is avail
able as web2 with a supplemental list in web2a.

Several hundred words have been added to lusr!dictlwords, both general words
("abacus, capsize, goodbye, Hispanic, ... ") and important technical terms (all the
amino acids, many mathematical terms, a few dinosaurs, ...). About 10 spelling errors
in /usr!dict/words have been corrected.

Several hundred words that spell derives without difficulty from existing words (e.g.
"getting" from "get"), or that spell would accept anyway, e.g. "1st, 2nd" etc., have
been removed from /usr!dictlwords.

SMM:12-18 Bug Fixes and Changes in 4.3BSD

Section 8

Major changes affecting system operations include:

• The format of the ttys file, /etc/ttys, has been changed to include information about terminal type.

• The crontab file used by cron has a new field in each line to specify the user ID to be used.
• A new Internet server-server, inetd, listens for service requests on a number of ports and spawns

the appropriate server upon demand. Fewer of the Internet services now require long-lived dae
mon processes.

• The bad144 program can now be used to add new bad sectors to the bad sector file. Replacement
sectors are rearranged as needed to sort the new sectors into the bad sector list. Reformat opera
tions to mark bad sectors to the bad sector table should still be done only with the system running
single user.

• Getty's description file, letc/gettytab, now describes what program should be run in addition to the
other information that it used to include.

arff

arp

bad144

catman

checkquota

ch own

comsat

con fig

cron

disk part

dump

edquota

Has been extended to understand multiple directory segments. This allows it to handle
the console RL02 pack on the VAX 8600.

A new program for examining and modifying the kernel Address Resolution Protocol
tables.
Bad144 has new options to add sectors to the bad sector table and to attempt to copy
sectors to their replacements before marking them bad. It verifies that the file is prop
erly sorted. Verbose and no-write options allow dry runs.

Now allows a list of manual directories. Links are properly set up so that the manual
source need not be kept on line on all machines.
Runs multiple filesystems in parallel. Quotas for users with zero blocks are left
around but they are deleted if the user-id no longer exists.

Was modified to be recursive. Chown accepts an owner.group syntax to change owner
and group simultaneously. The group-id will. be set correctly when dealing with sym
bolic links.
Comsat is now invoked by inetd. It reaps its child processes correctly. Large systems
with many terminal lines are now handled.

Swap size may be specified. Maxusers is no longer truncated. The name of the gen
erated Makefile is now capitalized. Object files may now be listed for inclusion in the
files file and will be added to the compilation properly. Optional files may be listed
multiple times if different options require their inclusion. Swapconf supports larger
unit numbers. Config builds a new file containing definitions for counting device
interrupts.

lusrlliblcrontab has a new format to specify the user-id under which the process
should be run.

Handles disks with either cylinder or sector offsets and that do not use bad144 bad
block forwarding.

When dumping at 6250 bpi, the tape is written in 32Kb records instead of 1 OKb
records. Efforts have been made to improve the consistency of dumps made on active
file systems (though the practice is still NOT recommended). The Caltech streaming
dump modifications using a ring of slave processes have been incorporated. Dump
makes a better estimate of the size of the dump by attempting to account for files with
holes. The error messages have been made less condescending.
Can edit quotas on filesystems where a user does not have any usage.

Bug Fixes and Changes in 4.3BSD SMM:l2-19

fingerd
fsck

ftpd

gettable
getty

htable

ifconfig

implog

inetd

in it

lpc

lpd

mkfs

mkhosts

mkpasswd

mount

named

A new daemon to return user information; it runs under inetd.

Fsck has been sped up considerably by eliminating one of the two passes across the
inodes. It has also been taught to create and grow directories so that it can now
rebuild the root of a file system as well as create and enlarge the lost+ found directory
as necessary.
Among the new facilities supported by the FfP server are: the ABOR command for
transfer abort, the PASV command for third party transfers, and the new RFC959
FfP commands (such as STOU, "store unique"). Ftpd now uses sys/og to Jog errors,
and is invoked by inetd.

Now has a flag for checking the version without retrieving the whole host table.

Getty supports automatic baud rate detection based on carriage return. Support for
window system startup has been added. The login banner can now include the termi
nal name. The environment is set up now and passed to login.

Some byte ordering problems have been fixed. It is more intelligent about gateway
handling. A looping problem with single character host names has been fixed.

Ifconfig has been augmented to allow different address families. The current families
understood are inet and ns. Ifconfig has additions to set up subnets of Internet net
works, change Internet broadcast addresses, and set destination addresses of point-to
point links.
Handles class B and class C networks.
A new program to spawn network servers on demand. Inetd listens on each port listed
in its configuration file /etclinetd.conf. When service requests arrive, it passes the ori
ginal socket or a newly accepted socket to the designated server for the service.
Several trivial services are implemented internally.
May run commands other than getty. Large systems are no longer a problem. Window
systems may be started.
A new command, down, disables queueing and printing, and, optionally, creates a
status message displayed by the /pq program. The up command reverses the effect of
the down command. The status command now displays the contents of the print
queue in addition to the status of the daemon process. The clean command does a
better job of removing incomplete queue entries.
A new capability, hi, may be used to print a job's banner after the contents of the job.
Error logging is now done with sys/og(3). Hosts permitting remote access may now be
specified in the file letclhosts./pd (in addition to /etc/hosts.equiv). A master Jock file is
now used so that /dev/printer can be automatically removed. Symbolic Jinks to spool
files are now checked carefully to close a security hole. All printing parameters are
now properly reset for each job. Remote spooling connections now time out if the
server crashes. Errors in spooling filters are now reported to users via mail. When
servicing a remote job, files are not transferred unless enough disk space is available.
Will print the filesystem information without creating the filesystem. Filesystem
optimization may be specified.
A new program to rebuild the /etc/hosts dbm database. Note that this database is not
used with the default name server configuration.
A new program to rebuild the /etclpasswd dbm database.
Better error messages are returned when mount fails. When checking letc/fstab to find
the device name of a file system when only the mount point is specified, it also checks
the type field to insure that the entry is rw, ro, or rq.
Is a new program implementing the Internet domain naming system. It is used to per
form hostname and address mapping functions for the standard C library functions,
gethostbyname and gethostbyaddr if named is running.

SMM:12-20 Bug Fixes and Changes in 4.3BSD

newfs Supports new options to mkfe.

pac Has a new option, -m, to cause machine names to be disregarded in merging account
ing information. The per-page cost is now taken from the printer description if it is
not specified on the command line with the -p option.

ping Is a new program for sending ICMP echo requests.
pstat Can handle kernel crash dumps and new terminal multiplexers. Core dumps should

be Jess frequent.
repquota Only prints entries for users that have files (or blocks) allocated.

restore The interactive mode of restore now understands globbing. Interrupting interactive
mode returns to the prompt. A new input path name may be specified on each
volume change. The tape block size is calculated dynamically unless it is specified
with the -b flag on the command line.

rexecd Now runs under inetd.

rlogind Propagates window size changes in a backward compatible way. This is negotiated at
startup time. lnetd now starts up the server.

rmt Uses large network buffers for better performance.
route Will handle subnets. Flags were added to specify whether a name is a host or a net

work. Multiple addresses are tried until an operation is successful or there are no
more addresses to try.

routed Is more strict about received packets' formats and values. Subnet routing is handled.
Point to point Jinks are handled. Gateways to external networks advertise a default
route instead of all networks. The loopback network number is no longer compiled in.
When a process is terminated, it tells its peers that its routes are no longer valid.

rshd Is started by inetd. The address is passed through if the host name for the address
cannot be determined.

rwhod Should be less expensive to run. Broadcasts are done Jess frequently and path lookups
are shorter. Large systems are handled better.

rxformat Will now operate if the standard input is not a terminal.

sa Supports alternate accounting files. The units of CPU time have changed.
savecore Works correctly when given an alternate system name. Dump partitions smaller than

the memory size are handled more gracefully.
sendmail Several bugs have been fixed. Upper case letters are allowed in file names and pro

gram arguments in the alias file. Multiple recipients sharing a receive program are not
collapsed into one delivery. List owners on queued jobs have been fixed. Commas in
quoted aliases work. Dollar signs in headers are no longer interpreted as macro
expansions. Underscores are allowed in login names.
Substantial performance enhancements have been made for large queues. If the Y
option is not set, all jobs in the queue will be run in one process, with host statuses
cached; this uses more memory but generally improves performance. The job priority
now includes creation time and number of recipients (the y option) as well as the mes
sage size (the q option) and the job precedence (the z option); this priority is modified
by the Z option whenever it fails to complete. No attempt is made to run large jobs if
the load average is too high.

The $(... $) syntax can be used on the RHS of a rewriting rule to canonicalize a host
name using gethostbyname. This is especially useful when running the version of
gethostbyname that calls the name server.
Error reporting has been improved. Some limits have been increased. Security holes
liave been plugged. Syslogd and vacation are now part of the standard system.

. Bug Fixes and Changes in 4.JBSD SMM:l2-21

shutdown

swapon

syslogd

talkd
telnetd

tftpd

timed

trpt

tuners

uucpd
vipw

XNSrouted

Minor changes have been made to the configuration file. The RHS of aliases are no
longer checked while the alias file is rebuilt unless the n option is set to improve per
formance. The character substituted for blanks in addresses is settable by the B option.
The default network name (formerly hardwired "ARPA") is settable with the N
option. The E mailer option escapes "From" lines with a '>' on delivery (formerly
the default to the local mailer).
Has flags to specify that it should not sync the· disks and that it should skip the disk
checks after rebooting.
Error messages have been cleaned up and now specify the device to which they
correspond.
Formerly syslog, allows the classification of messages based on facilities. The
configuration file has been restructured.

Now runs under inetd. New version, new protocol.
Handles pty allocation better. Inetd now starts the server. Interpretation of carriage
return-newline now conforms with the standard, but is compatible with the 4.2BSD
telnet client.
Now works with other clients and is started by inetd.

A new program for maintaining time synchronization between machines on a local
network.
The trpt program to examine TCP traces now prints the traces in the correct order. It
has been extended to follow traces as a connection runs.

Supports the new filesystem optimization preferences.
A new server, invoked by inetd, for running uucp over network connections.

Builds the new hashed lookup table. letc/passwd will not be left unreadable if root
has a restrictive umask.

A new daemon, similar to routed, that implements the Xerox NS routing protocol.

Appendix A - User Contributed Software

Several new programs have been contributed to the Berkeley distribution.

ansitape

B
cpm
di press

emacs

help

hyper

icon
jove
kermit

mh

mkmf

Is a new program for handling tapes in ANSI format and for transferring files between
UNIX and VMS.
Yet another new language.

Is a file transfer protocol between UNIX and CP/M.
A new program to convert ditrojf output to Xerox Interpress format.
Is a public domain version of emacs.

An extensive new UNIX help facility.
A router and log program for the Hyperchannel.

The latest and greatest version from Arizona.
Is a simplified emacs-style editor.

A file transfer protocol between UNIX and microcomputers.

This release includes MH Version 6.3, with Berkeley modifications. It has been
rewritten numerous times since the original version release with 4.2BSD. Each utility
is now infinitely programmable.
Has been separated from SPMS.

SMM:12-22

ntmdf

news

nplOO

patch

pathalias

pup

rn

sumacc

sunrpc

tac

umodem

x

xns

Bug Fixes and Changes in 4.3BSD

Is a new set of mail reading and transport programs.

The latest revision of the Usenet news programs. B news 2.10.3 beta.

Utilities to download the Interlan NPIOO Ethernet board.

Is a new program designed for taking diffs and applying them to the source file. If you
only look at one new program, this is the one!

A new program that attempts to discover uucp path routing.

An implementation of the Xerox PUP protocols and several useful programs that use
them.

A new interface for reading (or ignoring) news.

A C compiler set of programs for doing Macintosh software development.

Yet another RPC protocol.

Is a program that displays a file in reverse line order.

Another file transfer protocol between UNIX and microcomputers.

A new window system that was developed at MIT. This distribution supports the
DEC VSIOO, the Sun and the DEC b/w VAXStation II (QVSS).

A courier RPC mechanism that runs on Xerox NS, and many useful applications
developed at Cornell University.

Changes to the Kernel in 4.3BSD

Changes to the Kernel in 4.3BSD

April 16, 1986

Michael J. Karels

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

SMM:l3-l

This document summarizes the changes to the kernel between the September 1983 4.2BSD dis
tribution of UNIXt for the VAX:j: and the March 1986 4.3BSD release. It is intended to provide
sufficient information that those who maintain the kernel, have local modifications to install, or who
have versions of 4.2BSD modified to run on other hardware should be able to determine how to
integrate this version of the system into their environment. As always, the source code is the final
source of information, and this document is intended primarily to point out those areas that have
changed. ·

Most of the changes between 4.2BSD and 4.3BSD fall into one of several categories. These are:

• bug fixes,
• performance improvements,

• completion of skeletal facilities,
• generalizations of the framework to accommodate new hardware and software systems, or to

remove hardware- or protocol-specific code from common facilities, and

• new protocol and hardware support.
The major changes to the kernel are:

• the use of caching to decrease. the overhead of filesystem name translation,
• a new interface to the namei name lookup function that encapsulates the arguments, return

information and side effects of this call,
• removal of most of the Internet dependencies from common parts of the network, and

greater allowance for the use of multiple address families on the same network hardware,

• support for the Xerox NS network protocols,
• support for the VAX 8600 and 8650 processors (with UNIBUS and MASSBUS peripherals,

but not with CI bus or HSC50 disk controllers),

• new drivers for the DHUl 1 and DMZ32 terminal multiplexors, the TU81 and other TMSCP
tape drives, the VSlOO display, the DEUNA, Excelan 204, and Interlan NPlOO Ethernet*
interfaces, and the ACC HDH and DDN X.25 IMP interfaces, and

• full support for the MS780-E memory controller on the VAX 11/780 and 111785, using 64K
and 256K memory chips.

This document is not intended to be an introduction to the kernel, but assumes familiarity with
prior versions of the kernel. Other documents may be consulted for more complete discussions of the

t UNIX is a trademark of AT&T Bell Laboratories.
+ DEC, VAX, PDP, MASSBUS, UNIBUS, Q-bus and ULTRIX are trademarks of Digital Equipment Corporation.
• Ethernet is a trademark of Xerox Corporation.

SMM:I3-2 Changes to the Kernel in 4.3BSD

kernel and its other subsystems. For more complete information on the internal structure and inter
faces of the network subsystem. refer to "4.3BSD Networking Implementation Notes."

The author gratefully acknowledges the contributions of the other members of the Computer
Systems Research Group at Berkeley and the other contributors to the work described here. Major
contributors include Kirk McKusick, Sam Leffler, Jim Bloom, Keith Sklower, Robert Elz, and Jay
Lepreau. Sam Leffler and Anne Hughes made numerous suggestions and corrections during the
preparation of the manuscript.

I. General changes in the kernel

This section details some of the changes that affect multiple sections of the kernel.

I.I. Header files

The kernel is now compiled with an include path that specifies the standard location of the com
mon header files, generally /sys/h or . .lb, and all kernel sources have had pathname prefixes removed
from the #include directives for files in . .lb or the source directory. This makes it possible to substi
tute replacements for individual header files by placing them in the system compilation directory or
in another directory in the include path.

1.2. Types

There have been relatively few changes in the types defined and used by the system. One
significant exception is that new typedefs have been added for user ID's and group !D's in the kernel
and common data structures. These typedefs, uid_t and gid_t, are both of type u_short. This change
from the previous usage (explicit short ints) allows user and group ID's greater than 32767 to work
reasonably,

1.3. Inline

The inline expansion of calls to various trivial or hardware-dependent operations has been a
useful technique in the kernel. In prior releases this substitution was done by editing the assembly
language output of the compiler with the sed script asm.sed. This technique has been refined in
4.3BSD by using a new program, inline, to perform the in-line code expansion and also optimize the
code used to push the subroutine's operands; where possible, inline will merge stack pushes and pops
into direct register loads. Also, this program performs the in-line code expansion significantly faster
than the general-purpose stream editor it replaces.

1.4. Processor priorities

Functions to set the processor interrupt priority to block classes of interrupts have been used in
UNIX on all processors, but the names of these routines have always been derived from the priority
levels of the PDP 11 and the UNIBUS. In order to clarify both the intent of elevated processor prior
ity and the assumptions about their dependencies, all of the functions sp!N, where N is a small
nonzero integer, have been renamed. In each case, the new name indicates the group of devices that
are to be blocked from interrupts. The following table indicates the old and new names of these func
tions.

new name devices blocked old name VAX IPL
sp!O none sp!O 0
splsoftclock software clock interrupts none Ox08
spinet software network interrupts spinet OxOc
spltty terminal multiplexors spl5 Oxl5
splbio disk and tape controllers spl5 Oxl5
splimp all network interfaces splimp Oxl6
splclock interval timer spl6 Ox!8
splhigh all devices and state transitions spl7 Ox31

Changes to the Kernel in 4.3BSD SMM:13-3

For use in device drivers only, UNIBUS priorities BR4 through BR7 may be set using the functions
spl4, spl5, spl6 and spl7. Note that the latter two now correspond to VAX priorities Ox16 and Ox! 7
respectively, rather than the previous Ox 18 and Ox! f priorities.

2. Header files

This section details changes in the header files in /sys/h.

acct.h

buf.h

cmap.h

dmap.h

domain.h

errno.h

fs.h

inode.h

ioctl.h

mbuf.h

mtio.h

namei.h

param.h

proc.h

protosw.h

Process accounting is now done in units of l/AHZ (64) seconds rather than seconds.

The size of the buffer hash table has been increased substantially.

The core map has had a number of fields enlarged to support larger memories and
filesystems. The limits imposed by this structure are now commented. The current
limits are 64 Mb of physical memory, 255 filesystems, I Gb process segments, 8 Gb
per filesystem, and 65535 processes and text entries. The machine-language support
now derives its definitions of these limits and the cmap structure from this file.

The swap map per process segment was enlarged to allow images up to 64Mb.

New entry points to each domain have been added, for initialization, externalization
of access rights, and disposal of access rights.

A definition of EDEADLK was added for System V compatibility.

One spare field in the superblock was allocated to store an option for the fragment
allocation policy.

New fields were added to the in-core inode to hold a cache key and a pointer to any
text image mapping the file. A new macro, !TIMES, is provided for updating the
timestamps in an inode without writing the inode back to the disk. The inode is
marked as modified with the !MOD flag. A flag has been added to allow serialization
of directory renames.

New ioctl operations have been added to get and set a terminal or window's size.
The size is stored in a winsize structure defined here. Other new ioctls have been
defined to pass a small set of special commands from pseudo-terminals to their con
trollers. A new terminal option, LPASS8, allows a full 8-bit data path on input. The
two tablet line disciplines have been merged. A new line discipline is provided for
use with IP over serial data lines.

The handling of mbuf page clusters has been broken into macros separate from those
that handle mbufs. MCLALLOC(m, i) is used to allocate i mbuf clusters (where i is
currently restricted to I) and MCLFREE(m) frees them. MCLGET(m) adds a page
cluster to the already-allocated mbuf m, setting the mbuf length to CLBYTES if suc
cessful. The new macro M_HASCL(m) returns true if the mbuf m has an associated
cluster, and MTOCL(m) returns a pointer to such a cluster.

Definitions have been added for the TMSCP tape controllers and to enable or disable
the use of an on-board tape buffer.

This header file was renamed, completed and put into use.

Several limits have been increased. Old values are listed in parentheses after each
item. The new limits are: 255 mounted filesystems (15), 40 processes per user (25),
64 open files (20), 20480 characters per argument list (I 0240), and 16 groups per user
(8). The maximum length of a host name supported by the kernel is defined here as
MAXHOSTNAMELEN. The default creation mask is now set to 022 by the kernel;
previously that value was set by login, with the effect that remote shell processes used
a different default. Clist blocks were doubled in size to 64 bytes.

Pointers were added to the proc structure to allow process entries to be linked onto
lists of active, zombie or free processes.
The address family field in the protosw structure was replaced with a pointer to the
domain structure for the address family. Definitions were added for the arguments to

SMM:13-4

signal.h

socket.h

socketvar.h

syslog.h

tablet.h
text.h

time.h

tty.h

types.h

uio.h

un.h

unpcb.h

user.h

Changes to the Kernel in 4.3BSD

the protocol ct/output routines.
New signals have been defined for window size changes (SIGWINCH) and for user
defined functions (SIGUSRI and SIGUSR2). The sv_onstack field in the sigvec struc
ture has been redefined as a flags field, with flags defined for use of the signal stack
and for signals to interrupt pending systems calls rather than restarting them. The
sigcontext structure now includes the frame and argument pointers for the VAX so
that the complete return sequence can be done by the kernel. A new macro, sigmask,
is provided to simplify the use of sigsetmask, sigblock, and sigpause.
Definitions were added for new options set with setsockopt. SO_BROADCAST
requests permission to send to the broadcast address, formerly a privileged operation,
while SO_SNDBUF and SO_RCVBUF may be used to examine or change the
amount of buffer space allocated for a socket. Two new options are used only with
getsockopt: SO_ERROR obtains any current error status and clears it, and SO_ TYPE
returns the type of the socket. A new structure was added for use with SO_LINGER.
Several new address families were defined.
The character and mbuf counts and limits in the sockbuf structure were changed from
short to u_short. SB_MAX defines the limit to the amount that can be placed in a
sockbuf The sosendallatonce macro was corrected; it previously returned true for
sockets using non-blocking 1/0. Soreadable and sowriteable now return true if there
is error status to report.
The system logging facility has been extended to allow kernel use, and the header file
has thus been moved from /usr/include.
A new file that contains the definitions for use of the tablet line discipline.

Linkage fields have been added to the text structure for use in constructing a text
table free list. The structure used in recording text table usage statistics is defined
here.
The time.h header file has been split. Those definitions relating to the gettimeofday
system call remain in this file, included as <sysltime.h>. The original <time.h> file
has returned and contains the definitions for the C library time routines.

The per-terminal data structure now contains the terminal size so that it can be
changed dynamically. Files that include <sysltty.h> now require <sys/ioctl.h> as
well for the winsize structure definition.
The new typedefs for user and group ID's are located here. For compatibility and
sensibility, the size_t, time_t and ojf_t types have all been changed from int to long.
New definitions have been added for integer masks and bit operators for use with the
select system call.

The offset field in the uio structure was changed from int to ojf_t. Manifest constants
for the uio segment values are now provided.

The path in the Unix-domain version of a sockaddr was reduced so that use of the
entire pathname array would still allow space for a null after the structure when
stored in an mbuf.

A Unix-domain socket's own address is now stored in the protocol control block
rather than that of the socket to which it is connected. Fields have been added for
flow control on stream connections. If a stat has caused the assignment of a dummy
inode number to the socket, that number is stored here.

The user ID's, group ID's and groups array are declared using the new types for these
ID's. A new field was added to handle the new signal flag avoiding system call res
tarts. The index of the last used file descriptor for the process is maintained in
u.u_lastfile. The global fields u_base, u_count, and u_offeet have been eliminated,
with the new nameidata structure replacing their remaining function. The a.out
header is no longer kept in the user structure.

Changes to the Kernel in 4.3BSD SMM:13-5

vmmac.h

vmmeter.h

Several macros have been rewritten to improve the code generated by the compiler.
New macros were added to lock and unlock cmap entries, substituting for mlock and
munlock.
All counters are now uniformly declared as long. Software interrupts are now
counted.

3. Changes in the kernel proper

The next several sections describe changes in the parts of the kernel that reside in /sys/sys. This
section summarizes several of the changes that impact several different areas.

3.1. Process table management

Although the process table has grown considerably since its original design, its use was largely
the same as in its first incarnation. Several parts of the system used a linear search of the entire table
to locate a process, a group of processes, or group pf processes in a certain state. 4.2BSD maintained
linkages between the children of each parent process, but made no use of these pointers. In order to
reduce the time spent examining the process table, several changes have been made. The first is to
place all process table entries onto one of three doubly-linked lists, one each for entries in use by
existing processes (al/proc), entries for zombie processes (zombproc), and free entries (freeproc). This
allows the scheduler and other facilities that must examine all existing processes to limit their search
to those entries actually in use. Other searches are avoided by using the linkage among the children
of each process and by noting a range of usable process ID's when searching for a new unique ID.

3.2. Signals

One of the major incompatibilities introduced in 4.2BSD was that system calls interrupted by a
caught signal were restarted. This facility, while necessary for many programs that use signals to
drive background activities without disrupting the foreground processing, caused problems for other,
more naive, programs. In order to resolve this difficulty, the 4.2BSD signal model has been extended
to allow signal handlers to specify whether or not the signal is to abort or to resume interrupted sys
tem calls. This option is specified with the sigvec call used to specify the handler. The sv _onstack
field has been usurped for a flag field, with flags available to indicate whether the handler should be
invoked on the signal stack and whether it should interrupt pending system calls on its return. As a
result of this change, those system calls that may be restarted and that therefore take control over sys
tem call interruptions must be modified to support this new behavior. The calls affected in 4.3BSD
are open, read/write, ioctl, flock and wait.

Another change in signal usage in 4.3BSD affects fewer programs and less kernel code. In
4.2BSD, invocation of a signal handler on the signal stack caused some of the saved status to be
pushed onto the normal stack before switching to the signal stack to build the call frame. The status
information on the normal stack included the saved PC and PSL; this allowed a user-mode rei
instruction to be used in implementing the return to the interrupted context. In order to avoid
changes to the normal runtime stack when switching to the signal stack, the return procedure has
been changed. As the return mechanism requires a special system call for restoring the signal state,
that system call was replaced with a new call, sigreturn, that implements the complete return to the
previous context. The old call, number 139, remains in 4.3BSD for binary compatibility with the
4.2BSD version of longjmp.

3.3. Open file handling

Previous versions of UNIX have traditionally limited each process to at most 20 files open
simultaneously. In 4.2BSD, that limit could not be increased past 30, as a 5-bit field in the page table
entry was used to specify either a file number or the reserved values PGTEXT or PGZERO (fill from
text file or zero fill). However, the file mapping facility that previously used this field no longer
existed, and its replacement is unlikely to require this low limit. Accordingly, the internal virtual
memory system support for mapped files has been removed and the number of open files increased.
The standard limit is 64, but this may easily be increased if sufficient memory for the user structure is

SMM:13-6 Changes to the Kernel in ·4.3BSD ·

provided. In order to avoid searching through this longer list of open files when the actual number in
use is small, the index of the last used open file slot is maintained in the field u.u_lastfile. The rou
tines that implement open and close or implicit close (exit and exec) maintain this field, and it is used
whenever the open file array u.u_ofi/e is scanned.

3.4. Niceness
The values for nice used in 4.2BSD and previous systems ranged from 0 though 39. Each use of

this scheduling parameter offset the actual value by the default, NZERO (20). This has been changed
in 4.3BSD to use a range of -20 to 20, with NZERO redefined as zero.

3.5. Software interrupts and terminal multiplexors

The DH! I and DZ! I terminal multiplexor handlers had been modified to use the hardware's
received-character silo when those devices were used by the Berknet network. In order to avoid stag
nation of input characters and slow response to input during periods of reduced input, the low-level
software clock interrupt handler had been made to call the terminal drivers to drain input. When the
clock rate was increased in 4.2BSD, the overhead of checking the input silos with each clock tick was
increased, and the use of specialized network hardware reduced the need for this optimization.
Therefore, the terminal multiplexors in 4.3BSD use per-character interrupts during periods of low
input rate, and enable the silos only during periods of high-speed input. While the silo is enabled, the
routine to drain it runs less frequently than every clock tick; it is scheduled using the standard
timeout mechanism. As a result, the software clock service routine need not to be invoked on every
clock tick, but only when timeouts or profiling require service.

3.6. Changes in initialization and kernel-level support
This section describes changes in the kernel files in /sys/sys with prefixes init_ or kern_.

init_main.c Several subsystems have new or renamed initialization routines that are called by
main. These include pqinit for process queues, xinit for the text table handling rou
tines, and nchinit for the name translation cache. The virtual memory startup setup
c/ock has been replaced by vminit, that also sets the initial virtual memory limits for
process 0 and its descendants. Process I, init, is now created before process 2,
pagedaemon.

init_sysent.c In addition to entries for the two system calls n,ew in 4.3BSD, the system call table
specifies a range of system call numbers that are reserved for redistributors of
4.3BSD. Other unused slots in earlier parts of the table should be reserved for future
Berkeley use. Syscall 63 is no longer special.

kern_acct.c The process time accounting file in 4.2BSD stored times in seconds rather than clock
ticks. This made accounting iii.dependent of the clock rate, but was too large a granu
larity to be useful. Therefore, 4.3BSD uses a smaller but unvarying unit for account
ing times, 1164 second, specified in acct.h as its reciprocal AHZ. The compress func
tion converts' seconds and microseconds to these new units, expressed as before in
16-bit pseudo-floating point numbers.

kern_clock.c The hardware clock handler implements the new time-correction primitive adjtime
by skewing the rate at which time increases until a specified correction has been
achieved. The bµmptime routine used to increment the time has been changed into a
macro. The overhead of software interrupts used to schedule the softc/ock handler
has been reduced by noting whether any profiling or timeout activity requires it to
run, and by calling softclock directly from hardclock (with reduced processor priority)
if the previous priority was sufficiently low.

kern_descrip.c Most uses of the get.fr) function have been replaced by the GETF macro form. The
dup calls (including that from fcntl) no longer copy the close-on-exec flag from the
original file descriptor. Most of the changes to support the open file descriptor high
water mark, u.u_lastfi/e, are in this file. The flock system call has had several bugs

Changes to the Kernel in 4.3BSD SMM:13-7

fixed. Unix-domain file descriptor garbage collection is no longer triggered from
close/, but when a socket is torn down.

kern_exec.c The a.out header used in the course of exec is no longer in the user structure, but is
local to exec. Argument and environment strings are copied to and from the user
address space a string at a time using the new copyinstr and copyoutstr primitives.
When invoking an executable script, the first argument is now the name of the inter
preter rather than the file name; the file name appears only after the interpreter name
and optional argument. An iput was moved to avoid a deadlock when the executable
image had been opened and marked close-on-exec. The setregs routine has been
split; machine-independent parts such as signal action modification are done in
execve directly, and the remaining machine-dependent routine was moved to
machdep.c. Image size verification using chksize checks data and bss sizes separately
to avoid overflow on their addition.

kern_exit.c Instead of looping at location Ox 13 in user mode if letclinit cannot be executed, the
system now prints a message and pauses. This is done by exit if process I could not
run. The search for child processes in exit uses the child and sibling linkage in the
proc entry instead of a linear search of the proc table. Failures when copying out
resource usage information from wait are now reflected to the caller.

kern_fork.c One of the two linear searches of the proc table during process creation has been
eliminated, the other looks only at active processes. As the first scan is needed only
to count the number of processes for this user, it is bypassed for root. A comment
dating to version 7 ("Partially simulate the environment so that when it is actually
created (by copying) it will look right.") has finally been removed; it relates only to
PDP-I I code.

kern_mman.c Chksize takes an extra argument so that data and bss expansion can be checked
separately to avoid problems with overflow.

kern_proc.c The spgrp routine has been corrected. An attempt to optimize its O(n 2) algorithm
(multiple scans of the process table) did so incorrectly; it now uses the child and
sibling pointers in the proc table to find all descendents in linear time. Pqinit is
called at initialization time to set up the process queues and free all process slots.

kern_prot.c A number of changes were needed to reflect the type changes of the user and group
ID's. The getgroups and setgroups routines pass groups as arrays of integers and thus·
must convert. All scans of the groups array look for an explicit NOGROUP termina
tor rather than any negative group. For consistency, the setreuid call sets the process
p_uid to the new effective user ID instead of the real ID as before. This prevents the
anomaly of a process not being allowed to send signals to itself.

kern_resource.c Attempts to change resource limits for process sizes are checked against the max
imum segment size that the swap map supports, maxdmap. The error returned when
attempting to change another user's priority was changed from EACCESS to EPERM.

kern_sig.c The sigmask macro is now used throughout the kernel. The treatment of the sigvec
flag has been expanded to include the SV _INTERRUPT option. Kill and killpg have
been rewritten, and the errors returned are now closer to those of System V. In par
ticular, unprivileged users may broadcast signals with no error if they managed to kill
something, and an attempt to signal process group 0 (one's own group) when no
group is set receives an ESRCH instead of an EINVAL. SIGWINCH joins the class
of signals whose default action is to ignore. When a process stops under ptrace, its
parent now receives a SIGCHLD.

kern_synch.c The CPU overhead of schedcpu has been reduced as much as possible by removing
loop invariants and by ignoring processes that have not run since the last calculation.
When long-sleeping processes are awakened, their priority is recomputed to consider
their sleep time. Schedcpu need not remove processes with new priorities from their
run queues and reinsert them unless they are moving to a new queue. The sleep

SMM:l3-8 Changes to the Kernel in 4.3BSD

queues are now treated as circular (FIFO) lists, as the old LIFO behavior caused
problems for some programs queued for locks. Sleep no longer allows context
switches after a panic, but simply drops the processor priority momentarily then
returns; this converts sleeps during the filesystem update into busy-waits.

kern_time.c Gettimeofday returns the microsecond time on hardware supporting it, including the
VAX. It is now possible to set the timezone as well as the time with settimeofday. A
system call, adjtime, has been added to correct the time by a small amount using gra
dual skew rather than discontinuous jumps forward or backward.

kern_xxx.c The 4.1-compatible signal entry sets the signal SV_INTERRUPT option as well as
the per-process SOUSIG, which now controls only the resetting of signal action to
default upon invocation of a caught signal.

subr_log.c This new file contains routines that implement a kernel error log device. Kernel mes
sages are placed in the message buffer as before, and can be read from there through
the log device !devlklog.

subr_mcount.c The kernel profiling buffers are allocated with calloc instead of wmemall to avoid the
dramatic decrease in user virtual memory that could be supported after allocation of
a large section of usrpt.

subr_prf.c Support was added for the kernel error log. The log routine is similar to print/but
does not print on the console, thereby suspending system operation. Log takes a
priority as well as a format, both of which are read from the log device by the system
error logger syslogd. Uprintf was modified to check its terminal output queue and to
block rather than to use all of the system clists; it is now even less appropriate for use
from interrupt level. Tprintf is similar to uprintfbut prints to the tty specified as an
argument rather than to that of the current user. Tprintf does not block if the output
queue is overfull, but logs only to the error log; it may thus be used from interrupt
level. Because of these changes, putchar and printn require an additional argument
specifying the destination(s) of the character. The tablefull error routine was changed
to use log rather than print/.

subr_rmap.c An off-by-one error in rmget was corrected.
sys_generic.c The select call may now be used with more than 32 file descriptors, requiring that the

masks be treated as arrays. The result masks are returned to the user if and only if
no error (including EINTR) occurs. A select bug that caused processes to disappear
was fixed; selwakeup needed to handle stopped processes differently than sleeping
processes.

sys_inode.c Problems occurring after an interrupted close were corrected by forcing ino_c/ose to
return to close/ even after an interrupt; otherwise, /_count could be cleared too early
or twice. The code to unhash text pages being overwritten needed to be protected
from memory allocations at interrupt level to avoid a bogus "panic: munhash." The
internal routine implementing flock was reworked to avoid several bad assumptions
and to allow restarts after an interruption.

sys_process.c Procxmt uses the new pt race. h header file; hopefully, the next release will have neither
ptrace nor procxmt. The text XTRC flag is set when modifying a pure text image,
protecting it from sharing and overwriting.

sys_socket.c The socket involved in an interface ioctl is passed to ifioctl so that it can call the pro
tocol if necessary, as when setting the interface address for the protocol. It is now
possible to be notified of pending out-of-band data by selecting for exceptional condi
tions.

syscalls.c The system call names here have been made to agree with reality.

Changes to the Kernel in 4.3BSD SMM:l3-9

3. 7. Changes in the terminal line disciplines

tty.c The kernel maintains the terminal or window size in the tty structure and provides
ioctls to set and get these values. The window size is cleared on final close. The
sizes include rows and columns in characters and may include X and Y dimensions
in pixels where that is meaningful. The kernel makes no use of these values, but they
are stored here to provide a consistent way to determine the current size. When a
new value is set, a SIGWINCH signal is sent to the process group associated with the
terminal.

tty_conf.c

tty_pty.c

tty_subr.c

tty _tablet.c

The notions of line discipline exit and final close have been separated. Ttyclose is
used only at final close, while tty/close is provided for closing down a discipline.
Modem control transitions are handled more cleanly by moving the common code
from the terminal hardware drivers into the line disciplines; the !_modem entry in
the linesw is now used for this purpose. Ttymodem handles carrier transitions for the
standard disciplines; nullmodem is provided for disciplines with minimal require
ments.

A new mode, LPASS8, was added to support 8-bit input in normal modes; it is the
input analog of LLITOUT. An entry point, checkoutq, has been added to enable
internal output operations (uprintf, tprintf} to check for output overflow and option
ally to block to wait for space. Certain operations are handled more carefully than
before: the use of the TIOCSTI ioctl requires read permission on the terminal, and
SPGRP is disallowed if the group corresponds with another user's process. Ttread
and ttwrite both check for carrier drop when restarting after a sleep. An off-by-one
consistency check of uio_iovcnt in ttwrite was corrected. A bug was fixed that caused
data to be flushed when opening a terminal that was already open when using the
"old" line discipline. Select now returns true for reading if carrier has been lost.
While changing line disciplines, interrupts must be disabled until the change is com
plete or is backed out. If changing to the same discipline, the close and reopen (and
probable data flush) are avoided. The t_delct field in the tty structure was not used
and has been deleted.

The line discipline close entries that used ttyclose now use tty/close. The two tablet
disciplines have been combined. A new entry was added for a Serial-Line link-layer
encapsulation for the Internet Protocol, SLIPDISC.

Large sections of the pseudo-tty driver have been reworked to improve performance
and to avoid races when one side closed, which subsequently hung pseudo-terminals.
The line-discipline modem control routine is called to clean up when the master
closes. Problems with REMOTE mode and non-blocking 1/0 were fixed by using the
raw queue rather than the cannonicalized queue. A new mode was added to allow a
small set of commands to be passed to the pty master from the slave as a rudimen
tary type of ioctl, in a manner analogous to that of PKT mode. Using this mode or
PKT mode, a select for exceptional conditions on the master side of a pty returns
true when a command operation is available to be read. Select for writing on the
master side has been corrected, and now uses the same criteria as ptcwrite. As the
pty driver depends on normal operation of the tty queues, it no longer permits
changes to non-tty line disciplines.

The clist support routines have been modified to use block moves instead of getc/putc
wherever possible.

The two line disciplines have been merged and a number of new tablet types are sup
ported. Tablet type and operating mode are now set by ioctls. Tablets that continu
ously stream data are now told to stop sending on last close.

SMM:l3-IO Changes to the Kernel in 4.3BSD

4. Changes in the filesystem
The major change in the filesystem was the addition of a name translation cache. A table of

recent name-to-inode translations is maintained by namei, and used as a lookaside cache when
translating each component of each file pathname. Each namecache entry contains the parent
directory's device and inode, the length of the name, and the name itself, and is hashed on the name.
It also contains a pointer to the inode for the file whose name it contains. Unlike most inode
pointers, which hold a "hard" reference by incrementing the reference count, the name cache holds a
"soft" reference, a pointer to an inode that may be reused. In order to validate the inode from a
name cache reference, each inode is assigned a unique "capability" when it is brought into memory.
When the inode entry is reused for another file, or when the name of the file is changed, this capabil
ity is changed. This allows the inode cache to be handled normally, releasing inodes at the head of
the LRU list without regard for name cache references, and allows multiple names for the same inode
to be in the cache simultaneously without complicating the invalidation procedure. An additional
feature of this scheme is that when opening a file, it is possible to determine whether the file was pre
viously open. This is useful when beginning execution of a file, to check whether the file might be
open for writing, and for similar situations.

Other changes that are visible throughout the filesystem include greater use of the ILOCK and
IUNLOCK macros rather than the subroutine equivalents. The inode times are updated on each
irele, not only when the reference count reaches zero, if the IACC, IUPD or ICHG flags are set. This
is accomplished with the ITIMES macro; the inode is marked as modified with the new IMOD flag,
that causes it to be written to disk when released, or on the next sync.

The remainder of this section describes the filesystem changes that are localized to individual
files.
ufs_alloc.c

ufs_bio.c

ufs_inode.c

ufs_mount.c

The algorithm for extending file fragments was changed to take advantage of the
observation that fragments that were once extended were frequently extended again,
that is, that the file was being written in fragments. Therefore, the first time a given
fragment is allocated, a best-fit strategy is used. Thereafter, when this fragment is to
be extended, a full-sized block is allocated, the fragment removed from it, and the
remainder freed for use in subsequent expansion. As this policy may result in
increased fragmentation, it is not used when the filesystem becomes excessively frag
mented (i.e. when the number of free fragments falls to 2% of the minfree value); the
policy is stored in the superblock and may be changed with tunefs. The fserr routine
was converted to use log rather than printf
1/0 operations traced now include the size where relevant.
The size of the buffer hash table was increased substantially and changed to a power
of two to allow the modulus to be computed with a mask operation. !get invalidates
the capability in each inode that is flushed from the inode cache for reuse. The new
igrab routine is used instead of iget when fetching an inode from a name.cache refer
ence; it waits for the inode to be unlocked if necessary, and removes it from the free
list if it was free. The caller must check that the inode is still valid after the igrab. A
bug was fixed in itrunc that allowed old contents to creep back into a file. When
truncating to a location within a block, itrunc must clear the remainder of the block.
Otherwise, if the file is extended by seeking past the end of file and then writing, the
old contents reappear.
The mount system call was modified to return different error numbers for different
types of errors. Mount now examines the superblock more carefully before using size
field it contains as the amount to copy into a new buffer. If a mount fails for a rea
son other than the device already being mounted, the device is closed again. When
performing the name lookup for the mount point, mount must prevent the name
translation from being left in the name cache; umount must flush all name transla
tions for the device. A bug in getmdev caused an inode to remain locked if the
specified device was not a block special file; this has been fixed.

Changes to the Kernel in 4.3BSD SMM:13-1 l

ufs_namei.c This file was previously called ufs_nami.c. The namei function has a new calling
convention with its arguments, associated context, and side effects encapsulated in a
single structure. It has been extensively modified to implement the name cache and
to cache directory offsets for each process. It may now return ENAMETOOLONG
when appropriate, and returns EINV AL if the 8th bit is set on one of the pathname
characters. Directories may be foreshortened if the last one or more blocks contain
no entries; this is done when files are being created, as the entire directory must
already be searched. An entry is provided for invalidating the entire name cache
when the 32-bit prototype for capabilities wraps around. This is expected to happen
after 13 months of operation, assuming 100 name lookups per second, all of which
miss the cache.
A change in filesystem semantics is the introduction of "sticky" directories. If the
ISVTX (sticky text) bit is set in the mode of a directory, files may only be removed
from that directory by the owner of the file, the owner of the directory, or the
superuser. This is enforced by namei when the lookup operation is DELETE.

ufs_subr.c The strategy for syncip, the internal routine implementing fsync, has been modified
for large files (those larger than half of the buffer cache). For large files all modified
buffers for the device are written out. The old algorithm could run for a very long
time on a very large file, that might not actually have many data blocks. The update
routine now saves some work by calling iupdate only for modified inodes. The C
replacements for the special VAX instructions have been collected in this file.

ufs_syscalls.c When doing an open with flags O_CREAT and O_EXCL (create only if the file did
not exist), it is now considered to be an error if the target exists and is a symbolic
link, even if the symbolic link refers to a nonexistent file. This behavior is desirable
for reasons of security in programs that create files with predictable names. Rename
follows the policy of namei in disallowing removal of the target of a rename if the
target directory is "sticky" and the user is not the owner of the target or the target
directory. A serious bug in the open code which allowed directories and other
unwritable files to be truncated has been corrected. Interrupted opens no longer lose
file descriptors. The /seek call returns an ESPIPE error when seeking on sockets
(including pipes) for backward compatibility. The error returned from read/ink when
reading something other than a symbolic link was changed from ENXIO to EINV AL.
Several calls that previously failed silently on read-only filesystems (chmod, chown,
fchmod, fchown and utimes) now return EROFS. The rename code was reworked to
avoid several races and to invalidate the name cache. It marks a directory being
renamed with IRENAME to avoid races due to concurrent renames of the same
directory. Mkdir now sets the size of all new directories to DIRBLKSIZE. Rmdir
purges the name cache of entries for the removed directory.

ufs_xxx.c The routines uchar and schar are no longer used and have been removed.
quota_kern.c The quota hash size was changed to a power of 2 so that the modulus could be com

puted with a mask.

quota_ufs.c If a user has run out of warnings and had the hard limit enforced while logged in, but
has then brought his allocation below the hard limit, the quota system reverts to
enforcing the soft limit, and resets the warning count; users previously were required
to log out and in again to get this affect.

4.1. Changes in Interprocess Communication support

uipc_domain.c The skeletal support for the PUP-1 protocol has been removed. A domain for Xerox
NS is now in use. The per-domain data structure allows a per-domain initialization
routine to be called at boot time.

The pjfmdproto routine, used in creating a socket to support a specified protocol,
takes an additional argument, the type of the socket. It checks both the protocol and

SMM:l3-12

uipc_mbuf.c

Changes to the Kernel in 4.3BSD

type, useful when the same protocol implements multiple socket types. If the type is
SOCK_RA W and no exact match is found, a protosw entry for raw support and a
wildcard protocol (number zero) will be used. This allows for a generic raw socket
that passes through packets for any given protocol.

The second argument to pfctlinput, the generic error-reporting routine, is now
declared as a sockaddr pointer.

The mbuf support routines now use the wait flag passed to m_get or MGET. If
M_ WAIT is specified, the allocator may wait for free memory, and the allocation is
guaranteed to return an mbuf if it returns. In order to prevent the system from
slowly going to sleep after exhausting the mbuf pool by losing.the mbufs to a leak, the
allocator will panic after creating the maximum allocation of mbufs (by default,
256K). Redundant sprs have been removed; most internal routines must be called at
splimp, the highest priority at which mbuf and memory allocation occur.

When copying mbuf chains m_copy now preserves the type of each mbuf. There
were problems in m_adj, in particular assumptions that there would be no zero
length mbufs within the chain; this was corrected by changing its n-pass algorithm for
trimming from the tail of the chain to either one- or two-pass, depending on whether
the correction was entirely within the last mbuf. In order to avoid return business,
m_pu/lup was changed to pull additional data (MPULL_EXTRA, defined in mbufh)
into the contiguous area in the first mbuf, if convenient. m_pullup will use the first
mbuf of the chain rather then a new one if it can avoid copying.

uipc_pipe.c This "temporary" file has been removed; pipe now uses socketpair.
uipc_proto.c New entries in the protocol switch for externalization and disposal of access rights

are initialized for the Unix domain protocols.

uipc_socket.c The socreate function uses the new interface to pjfmdproto described above if the pro
tocol is specified by the caller. The soconnect routine will now try to disconnect a
connected socket before reconnecting. This is only allowed if the protocol itself is
not connection oriented. Datagram sockets may connect to specify a default destina
tion, then later connect to another destination or to a null destination to disconnect.
The sodisconnect routine never used its second argument, and it has been removed.

The sosend routine, which implements write and send on sockets, has been restruc
tured for clarity. The old routine had the main loop upside down, first emptying and
then filling the buffers. The new implementation also makes it possible to send zero
length datagrams. The maximum length calculation was simplified to avoid problems
trying to account for both mbufs and characters of buffer space used. Because of the
large improvement in speed of data handling when large buffers are used, sosend will
use page clusters if it can use at least half of the cluster. Also, if not using nonblock
ing 1/0, it will wait for output to drain. if it has enough data to fill an mbuf cluster
but not enough space in the output queue for one, instead of fragmenting the write
into small mbufs. A bug ;illowing accc;!ss rights to be sent more than. once when using
scatter-gather 1/0 (sendmsg) was fixed. A race that occurred when uiomove blocked
during a page fault was corrected by allowing the protocol send routines to report
disconnection errors; as with disconnection detected earlier, sosend returns EPIPE
and sends a SIGPIPE signal to the process.

The receive side of socket operations, soreceive, has also been reworked. The major
changes are a reflection of the way that datagrams are now queued; see
uipc_socket2.c for further information. The MSG_PEEK flag is passed to the
protocol's usrreq routine when requesting out-of-band data so that the protocol may
know when the out-of-band data has been consumed. Another bug in access-rights
passing was corrected here; the protocol is not called to externalize the data when
PEEKing.

Changes to the Kernel in 4.3BSD SMM:13-13

The sosetopt and sogetopt functions have been expanded considerably. The options
that existed in 4.2BSD all set some flag at the socket level. The corresponding
options in 4.3BSD use the value argument as a boolean. turning the flag off or on as
appropriate. There are a number of additional options at the socket level. Most
importantly, it is possible to adjust the send or receive buffer allocation so that higher
throughput may be achieved, or that temporary peaks in datagram arrival are less
likely to result in datagram loss. The linger option is now set with a structure includ
ing a boolean (whether or not to linger) and a time to linger if the boolean is true.
Other options have been added to determine the type of a socket (eg,
SOCK_STREAM, SOCK_DGRAM), and to collect any outstanding error status. If
an option is not destined for the socket level itself, the option is passed to the proto
col using the ct/output entry. Getopt's last argument was changed from mbuf * to
mbuf ** for consistency with setopt and the new ct foll/put calling convention.

Select for exceptional conditions on sockets is now possible, and this returns true
when out-of-band data is pending. This is true from the time that the socket layer is
notified that the OOB data is on its way until the OOB data has been consumed.
The interpretation of socket process groups in 4.2BSD was inconsistent with that of
ttys and with the Jent/ documentation. This was corrected; positive numbers refer to
processes, negative numbers to process groups. The socket process group is used
when posting a SIGURG to notify processes of pending out-of-band data.

uipc_socket2.c Signal-driven I/O now works with sockets as well as with ttys; sorwakeup and
sowwakeup call the new routine sowakeup which calls sbwakeup as before and also
sends SIGIO as appropriate. Process groups are interpreted in the same manner as
for SIGURG.
Larger socket buffers may be used with 4.3BSD than with 4.2BSD; socket buffers
(sockbufs) have been modified to use unsigned short rather than short integers for
character counts and mbuf counts. This increases the maximum buffer size to
64K-1. These fields should really be unsigned longs, but a socket would no longer fit
in an mbuf. So that as much as possible of the allotment may be used, sbreserve
allows the high-water mark for data to be set as high as 80% of the maximum value
(64K), and sets the high-water mark on mbuf allocation to the smaller of twice the
character limit and 64K.
In 4.2BSD, datagrams queued in sockbufs were linked through the mbuf m_next
field, with m_act set to I in the last mbuf of each datagram. Also, each datagram
was required to have one mbuf to contain an address, another to contain access
rights, and at least one additional mbuf of data. In 4.3BSD, the mbufs comprising a
datagram are linked through m_next, and different datagrams are linked through the
m_act field of the first mbuf in each. No mbuf is used to represent missing com
ponents of a datagram, but the ordering of the mbufs remains important. The com
ponents are distinguished by the mbuf type. Any address must be in the first mbuf.
Access rights follow the address if present, otherwise they may be first. Data mbufs
follow; at least one data buffer will be present if there is no address or access rights.
The routines sbappend, sbappendaddr, sbappendrights and sbappendrecord are \lSed to
add new data to a sockbuf. The first of these appends to an existing record, and is
commonly used for stream sockets. The other three begin new records with address,
optional rights, and data (sbappendaddr), with rights and data (sbappendrights), or
data only (sbappendrecord). A new internal routine, sbcompress, is used by these
functions to compress and append data mbufs to a record. These changes improve
the functionality of this layer and in addition make it faster to find the end of a
queue.
An occasional "panic: sbdrop" was due to zero-length mbufs at the end of a chain.
Although these should no longer be found in a sockbuf queue, sbdrop was fixed to
free empty buffers at the end of the last record. Similarly, sbfree continues to empty

SMM:13-14 Changes to the Kernel in 4.3BSD

a sockbuf as long as mbufs remain, as zero-length packets might be present.
Sbdroprecord was added to free exactly one record from the front of a sockbuf queue.

uipc_syscalls.c Errors reported during an accept call are cleared so that subsequent accept calls may
succeed. A failed attempt to connect returns the error once only, and SOISCON
NECTING is cleared, so that additional connect calls may be attempted. (Lower
level protocols may or may not allow this, depending on the nature of the failure.)
The socketpair system call has been fixed to work with datagram sockets as well as
with streams, and to clean up properly upon failure. Pipes are now created using
connect2. An additional argument, the type of the data to be fetched, is passed to
sockargs.

uipc_usrreq.c The binding and connection of Unix domain sockets has been cleaned up so that
recvfrom and accept get the address of the peer (if bound) rather than their own. The
Unix-domain connection block records the bound address of a socket, not the address
of the socket to which it is connected. For stream sockets, back pressure to imple
ment flow control is now handled by adjusting the limits in the send buffer without
overloading the normal count fields; the flow control information was moved to the
connection block. Access rights are checked now when connecting; the connected-to
socket must be writable by the caller, or the connection request is denied. In order to
test one previously unused routine, the Unix domain stream support was modified to
support the passage of access rights. Problems with access-rights garbage collection
were also noted and fixed, and a count is kept of rights outstanding so that garbage
collection is done only when needed. Garbage collection is triggered by socket shut
down now rather than file close; in 4.2BSD, it happened prematurely. The
PRU_SENSE usrreq entry, used by stat, has been added. It returns the write buffer
size as the "blocksize," and generates a fake inode number and device for the benefit
of those programs that use fstat information to determine whether file descriptors
refer to the same file. Unimplemented requests have been carefully checked to see
that they properly free mbufs when required and never otherwise. Larger buffers are
allocated for both stream and datagram sockets. A number of minor bugs have been
corrected: the back pointer from an inode to a socket needed to be cleared before
release of the inode when detaching; sockets can only be bound once, rather than los
ing inodes; datagram sockets are correctly marked as connected and disconnected;
several mbuf leaks were plugged. A serious problem was corrected in unp_drop: it
did not properly abort pending connections, with the result that closing a socket with
unaccepted connections would cause an infinite loop trying to drop them.

4.2. Changes in the virtual memory system
The virtual memory system in 4.3BSD is largely unchanged from 4.2BSD. The changes that

have been made were in two areas: adapting the VM substem to larger physical memories, and optim
ization by simplifying many of the macros.

Many of the internal limits on the virtual memory system were imposed by the cmap structure.
This structure was enlarged to increase those limits. The limit on physical memory has been changed
from 8 megabytes to 64 megabytes, with expansion space provided for larger limits, and the limit of
15 mounted file systems has been changed to 255. The maximum file system size has been increased
to 8 gigabytes, number of processes to 65536, and per-process size to 64 megabytes of data and 64
megabytes of stack. Configuration parameters and other segment size limits were converted from
pages to bytes. Note that most of these are upper bounds; the default limits for these quantities are
tuned for systems with 4-8 megabytes of physical memory. The process region sizes may be adjusted
with kernel configuration file options; for example,

options MAXDSIZ=33554432

increases the data segment to 32 megabytes. With no option, data segments receive a hard limit of

Changes to the Kernel in 4.3BSD SMM:l3-15

roughly I 7Mb and a soft limit of 6Mb (that may be increased with the csh limit command).

The global clock page replacement algorithm used to have a single hand that was used both to
mark and to reclaim memory. The first time that it encountered a page it would clear its reference
bit. If the reference b.it was still clear on its next pass across the page, it would reclaim the page. (On
the VAX, the reference bit was simulated using the valid bit.) The use of a single hand does not work
well with large physical memories as the time to complete a single revolution of the hand can take up
to a minute or more. By the time the hand gets around to the marked pages, the information is usu
ally no longer pertinent. During periods of sudden shortages, the page daemon will not be able to
find any reclaimable pages until it has completed a full revolution. To alleviate this problem, the
clock hand has been split into two separate hands. The front hand clears the reference bits, and the
back hand follows a constant number of pages behind, reclaiming pages that have have not been
referenced since the front hand passed. While the code has been written in such a way as to allow the
distance between the hands to be varied, we have not yet found any algorithms suitable for determin
ing how to dynamically adjust this distance. The parameters determining the rate of page scan have
also been updated to reflect larger configurations. The free memory threshold at which pageout
begins was reduced from one-fourth of memory to 512K for machines with more than 2 megabytes of
user memory. The scan rate is now independent of memory size instead of proportional to memory
size.

The text table is now managed differently. Unused entries are treated as a cache, similar to the
usage of the inode table. Entries with reference counts of 0 are placed in an LRU cache for potential
reuse. In effect, all texts are "sticky," except that they are flushed after a period of disuse or overflow
of the table. The sticky bit works as before, preventing entries from being freed and locking text files
into the cache. The code to prevent modification of running texts was cleaned up by keeping a
pointer to the text entry in the inode, allowing texts to be freed when unlinking files without linear
searches.

The swap code was changed -to handle errors a bit better (swapout doesn't do swkills, it just
reflects errors to the caller for action there). During swapouts, interrupts are now blocked for less
time after freeing the pages of the user structure and page tables (as explained by the old comment
from swapout, "XXX hack memory interlock"), and this is now done only when swapping out the
current process. The same situation existed in exit, but had not yet been protected by raised priority.

Various routines that took page numbers as arguments now take cmap pointers instead to
reduce the number of conversions. These include mlink, mun/ink, m/ock, mun/ock, and mwait.
Mlock and munlock are generally used in their macro forms.

The remainder of the section details the other changes according to source file.

vm_mem.c

vm_page.c

vm_proc.c

Low-level support for mapped files was removed, as the descriptor field in the page
table entry was too small. Callers of munhash must block interrupts with sp/imp
between checking for the presence of a block in the hash list and removing it with
munhash in order to avoid reallocation of the page and a subsequent panic.

When filling a page from the text file, pagein uses a new routine, fodkluster, to bring
in additional pages that are contiguous in the filesystem. If errors occur while read
ing in text pages, no page-table change is propagated to other users of the shared
image, allowing them to retry and notice the error if they attempt to use the same
page. Virtual memory initialization code has been collected into vminit, which
adjusts swap interleaving to allow the configured size limits, set up the parameters for
the clock algorithm, and set the initial virtual memory-related resource limits. The
limit to resident-set size is set to the size of the available user memory. This change
causes a single large process occupying most of memory to begin random page
replacement as memory resources run short. Several races in pagein have been
detected and fixed. Most of the pageout code was moved to checkpage in implement
ing the two-handed clock algorithm.

The setjmp in procdup was changed to savectx, which saves all registers, not just those
needed to locate the others on the stack.

SMM:I3-16

vm_pt.c

vm_sched.c

vm_subr.c

vm_sw.c

vm_swap.c

vm_swp.c

vm_text.c

Changes to the Kernel in 4.3BSD

The setjmp call in ptexpand was changed to savectx to save all registers before initiat
ing a swapout. Vrelu does an splimp before freeing user-structure pages if running on
behalf of the current process. This had been done by swapout before, but not by exit.
The swap scheduler looks through the allproc list for processes to swap in or out. A
call to remrq when swapping sleeping processes was unnecessary and was removed.
If swapouts fail upon exhaustion of swap space, sched dcies not continue to attempt
swapouts.
The ptetov function and the unused vtopte function were recoded without using the
usual macros in order to fold the similar cases together.
The error returned by swapon when the device is not one of those configured was
changed from ENODEV to EINVAL for accuracy. The search for the specified dev
ice begins with the first entry so that the error is correct (EBUSY) when attempting to
enable the primary swap area.
The swapout routine now leaves any swkill to its caller. This avoids killing processes
in a few situations. It uses xdetach instead of xccdec. Several unneeded spfs were
deleted.
The swap routine now consistently returns error status. Physio was modified to do
scatter-gather I/O correctly.

The text routines use a text free list as a cache of text images, resulting in numerous
changes throughout this file. Xccdec now works only on locked text entries, and is
replaced by xdetach for external callers. Xumount frees unused swap images from all
devices when called with NODEV as argument. It is no longer necessary to search
the text table to find any text associated with an inode in xrele, as the inode stores a
pointer to any text entry mapping it. Statistics are gathered on the hit rate of the
cache and its cost.

5. Machine specific support

The next several sections describe changes to the VAX-specific portion of the kernel whose
sources reside in /sys/vax.

5.1. Autoconfiguration
The data structures and top level of autoconfiguration have been generalized to support the

VAX 8600 and machines whose main I/O bosses are not similar to an SBI. The percpu structure has
been broken into three structures. The percpu structure itself contains only the CPU type, an approx
imate value for the speed of the CPU, and a pointer to an array of I/O bus descriptions. Each of
these, in tum, contain general information about one I/O bus that must be configured and a pointer
to the private data for its configuration routine. The third new structure that has been defined
describes the SBI and the other interconnects that emulate it. At boot time, configure calls probeio to
configure the I/O bus(ses). Probeio looks through the array of bus descriptions, indirecting to the
correct routine to configure each bus. For the VAXen currently supported, the main bus is configured
by either probe_Abus (on the 8600 and 8650) or by probenexi, that is used on anything resembling an
SBI. Multiple SBI adaptors on the 8600 are handled by multiple calls to probenexi. (Although the
code has been tested with a second SBI, there were no adaptors installed on the second SBI.) This
structure is easily extensible to other architectures using the BI bus, Q bus, or any combination of
busses.

The CPU speed value is used to scale the DELAY macro so that autoconfiguration of old dev
ices on faster CPU's will continue to work. The units are roughly millions of instructions per second
(MIPS), with a value of I for the 780, although fractional values are not used. When multiple CPU's
share the same CPU type, the largest value for any of them is used.

UNIBUS autoconfiguration has been modified to accommodate UNIBUS memory devices
correctly. A new routine, ubameminit, is used to configure UNIBUS memory before probing other

Changes to the Kernel in 4.3BSD SMM:13-17

devices, and is also used after a UNIBUS reset to remap these memory areas. The device probe or
attach routines may then allocate and hold UNIBUS map registers without interfering with these dev
ices.

5.2. Memory controller support

The introduction of the MS780-E memory controller for the VAX 780 made it necessary to
configure the memory controller(s) on a VAX separately from the CPU. During autoconfiguration,
the types of the memory controllers are recorded in an array. Memory error routines that must know
the type of controller then use this information rather than the CPU type. The MS780-E controller is
listed as two controllers, as each half reports errors independently. Both !Mb and 4Mb boards using
64K and 256K dRAM chips are supported.

Locore.c

autoconf.c

conf.c

cons.h

crl.h,crl.c

flp.c

genassym.c

in_cksum.c

inline

locore.s

For lint's sake, Locore.c has been updated to include the functions provided by inline
and the new functions in locore.s.
Most of the changes to autoconfiguration are described above. Other minor changes:
UNIBUS controller probe routines are now passed an additional argument, a pointer
to the uba_ctlr structure, and similarly device probe routines are passed a pointer to
the uba_device structure. Ubaaccess and nxaccess were combined into a single rou
tine to map 1/0 register areas. A logic error was corrected so that swap device sizes
that were initialized from information in the machine configuration file are used
unmodified. Dumplo is set at configuration time according to the sizes of the dump
device and memory.

Several new devices have been added and old entries have been deleted. A number
of devices incorrectly set unused UNIBUS reset entries to nodev; these were changed
to nulldev. An entry was added for the new error log device. Additional device
numbers have been reserved for local use.

New definitions have been added for the 8600 console.
New files for the VAX 8600 console RL02 (our third RL02 driver!).
It was discovered that not all VAXen that are not 780's are 750's; the console floppy
driver for the 780 now checks for cpu == 780, not cpu != 750. An error causing the
floppy to be locked in the busy state was corrected.

Several new structure offsets were needed by the assembly language routines.
It was discovered that the instruction used to clear the carry in the checksum loops
did not actually clear carry. As the carry bit was always off when entering the check
sum loop, this was never noticed.

This directory contains the new inline program used to edit the assembly language
output by the compiler.
The assembly language support for the kernel has a number of changes, some of
which are VAX specific and some of which are needed on all machines. They are
simply enumerated here without distinction.

The doadump routine sometimes faulted because it changed the page table entry for
the rpb without flushing the translation buffer. In order to reconfigure UNIBUS
memory devices again after UNIBUS resets, badaddr was reimplemented without the
need to modify the system control block. The machine check handler catches faults
predicted by badaddr, cleans up and then returns to the error handler. The interrupt
vectors have each been modified to count the number of interrupts from their respec
tive devices, so that it is possible to account for software interrupts and UBA inter
rupts, and to determine which of several similar devices is generating unexpected ·
interrupt loads. The config program generates the definitions for the indices into this
interrupt count table. Software clock interrupts no longer call timer entries in the dz
and dh drivers, The processing of network software interrupts has been reordered so
that new interrupts requested during the protocol interrupt routine are likely to be

SMM:l3-18 Changes to the Kernel in 4.3BSD

handled before return from the software interrupt. Additional map entries were
added to the network buffer and user page table page maps, as both use origin-I
indexing. The memory size limit and the offsets into the coremap are both obtained
from cmap.h instead of inline constants. The signal trampoline code is all new and
uses the sigreturn system call to reset signal masks and perform the rei to user mode.
The initialization code for process I, icode, was moved to this file to avoid hand
assembly; it has been changed to exit instead of looping if letclinit cannot be exe
cuted, and to allow arguments to be passed to init. The routines that are called with
jsb rather than calls use a new entry macro that allows them to be profiled if profiling
is enabled.
Several new routines were added to move data from address space to address space a
character string at a time; they are copyinstr, copyoutstr, and copystr. Copyin and
copyout now receive their arguments in registers. Setjmp and longjmp are now simi
lar to the user-level routines; setjmp saves the stack and frame pointers and PC only
(all implemented in line), and !ongjmp unwinds the stack to recover the other regis
ters. This optimizes the common case, setjmp, and allows the same semantics for
register variables as for stack variables. For swaps and alternate returns using
u.u_save, however, all registers must be saved as in a context switch, and savectx is
provided for that purpose.
Redundant context switches were caused by two bugs in swtch. First, swtch cleared
runrun before entering the idle loop. Once an interrupt caused a wakeup, runrun
would be set, requesting another context switch at system call exit. Also, the use of
the VAX AST mechanism caused a similar problem, posting AST's to one process
that would then swtch (or might already be in the idle loop), only to catch the AST
after being rescheduled and completing its system service. The AST is no longer
marked in the process control block and is cancelled during the context switch. The
idle loop has been separated from swtch for profiling.

machdep.c The startup code to calculate the core map size and the limit to the buffer cache's vir
tual memory allocation was corrected and reworked. The number of buffer pages was
reduced for larger memories (10% of the first 2 Mb of physical memory is used for
buffers, as before, and 5% thereafter). The default number of buffers or buffer pages
may be overridden with configuration-file options. If the number of buffers must be
reduced to fit the system page table, a warning message is printed. Buffers are allo
cated after all of the fully dense data structures, allowing the other tables allocated at
boot time to be mapped by the identity map once again. The new signal stack call
and return mechanisms are implemented here by sendsig and sigreturn; sigcleanup
remains for compatibility with 4.2BSD's longjmp. There are a number of
modifications for the VAX 8600, particularly in the machine check and memory
error handlers and in the use of the console flags. On the VAX-111750 more
translation-buffer parity faults are considered recoverable. The reboot routine flushes
the text cache before initiating the filesystem update, and may wait longer for the
update to complete. The time-of-day register is set, as any earlier time adjustments
are not reflected there yet. The microtime function was completed and is now used;
it is careful not to allow time to appear to reverse during time corrections. An
initcpu routine was added to enable caches, floating point accelerators, etc.

machparam.h The file vax/param.h was renamed to avoid ambiguity when including "param.h".

ns_cksum.c This new file contains the checksum code for the Xerox NS network protocols.

pcb.h The aston() and astojf() macros no longer set an AST in the process control block (see
locore.s).

pte.h The pg_blkno field was increased to 24 bits to correspond with the cmap structure;
the pg_ji1eno field was reduced to a single bit, as it no longer contains a file descrip
tor.

Changes to the Kernel in 4.3BSD SMM:l3-19

swapgeneric.c Dumpdev and argdev are initialized to NODEV, preventing accidents should they be
used before configuration completes. DEL is now recognized as an erase character by
the kernel gets.

tmscp.h A new file which contains definitions for the Tape Mass Storage Control Protocol.

trap.c Syscall 63 is no longer reserved by syscall for out-of-range calls. In order to make
wait3 restartable, syscall must not clear the carry bit in the program status longword
before beginning a system call, but only after successful completion.

tu.c There were several important fixes in the console TU58 driver.
vm_machdep.c The chksize routine requires an additional argument, allowing it to check data size

and bss growth separately without overflow.

vmparam.h The limits to user process virtual memory allow nondefault values to be defined by
configuration file options. The definition of DMMAX here now defines only the
maximum value; it will be reduced according to the definition of MAXDSIZ. The
space allocated to user page tables was increased substantially. The free-memory
threshold at which pageout begins was changed to be at most 5 I 2K.

6. Network
There have been many changes in the kernel network support. A major change is the addition

of the Xerox NS protocols. During the course of the integration of a second major protocol family to
the kernel, a number of Internet dependencies were removed from common network code, and struc
tural changes were made to accommodate multiple protocol and address families simultaneously. In
addition, there were a large number of bug fixes and other cleanups in the general networking code
and in the Internet protocols. The skeletal support for PUP that was in 4.2BSD has been removed.

The link layer drivers were changed to save an indication of the incoming interface with each
packet received, and this information was made available to the protocol layer. There were several
problems that could be corrected by taking advantage of this change. The IMP code needed to save
error packets for software interrupt-level processing in order to fix a race condition, but it needed to
know which interface had received the packet when decoding the addresses. ICMP needed this infor
mation to support information requests and (newly added) network mask requests properly, as these
request information about a specific network. IP was able to take advantage of this change to imple
ment redirect generation when the incoming and outgoing interfaces are the same.

6.1. Network common code
The changes in the common support routines for net:working, located in /sys/net, are described

here.
if_arp.h This new file contains the definitions for the Address Resolution Protocol (ARP) that

are independent of the protocols using ARP.
if.c

if.h

Most of the if_ifwith* functions that returned pointers to ifnet structures were con
verted to ifa_with* equivalents that return pointers to ifaddr structures. The old
if_ifonnetof function is no longer provided, as there is no concept of network number
that is independent of address family. A new routine, ifa_ifivithdstaddr, is provided
for use with point-to-point interfaces. Interface ioctls that set interface addresses are
now passed to the appropriate protocol using the PRU_CONTROL request of the
pr _usrreq entry. Additional ioctl operations were added to get and set interface
metrics and to manipulate the ARP table (see netinetlif_ether.c).
In 4.2BSD, the per-interface structure ifnet held the address of the interface, as well
as the host and network numbers. These have all been moved into a new structure,
ifaddr, that is managed by the address family. The ifnet structure for an interface
includes a pointer to a linked list of addresses for the interface. The IFF _ROUTE
flag was also removed. The software loopback interface is distinguished with a new
flag. Each interface now has a routing metric that is stored by the kernel but only

SMM: 13-20 Changes to the Kernel in 4.3BSD

interpreted by user-level routing processes. Additional interface ioctl operations
allow the metric or the broadcast address to be read or set. When received packets
are passed to the receiving protocol, they include a reference to the incoming inter
face; a variant of the IF_DEQUEUE macro, IF_DEQUEUEIFP, dequeues a packet
and extracts the information about the receiving interface.

if_loop.c The software loopback driver now supports Xerox NS and Internet protocols. It was
modified to provide information on the incoming interface to the receiving protocol.
The loopback driver's address(es) must now be set with ifconfig.

if_sl.c This file was added to support a customized line discipline for the use of an asyn
chronous serial line as a network interface. Until the encapsulation is changed the
interface supports only IP traffic.

raw_cb.c Raw sockets record the socket's protocol number and address family in a sockproto
structure in the raw connection block. This allows a wildcard raw protocol entry to
support raw sockets using any single protocol.

raw_cb.h A sockproto description and a hook for protocol-specific options were added to the
raw protocol control block.

raw_usrreq.c A bug was fixed that caused received packet return addresses to be corrupted periodi
cally; an mbuf was being used after it was freed. Routing is no longer done here,
although the raw socket protocol control block includes a routing entry for use by the
transport protocol. The SO_DONTROUTE flag now works correctly with raw sock
ets.

route.c The routing algorithm was changed to use the first route found in the table instead of
the one with the lowest use count. This reduces routing overhead and makes
response more predictable. The load-sharing effect of the old algorithm was minimal
under most circumstances. Several races were fixed. The hash indexes have been
declared as unsigned; negative indices worked for the network route hash table but
not for the host hash table. (This fix was included on most 4.2BSD tapes.) New
routes are placed at the front of the hash chains instead of at the end. The redirect
handling is more robust; redirects are only accepted from the current router, and are
not used if the new gateway is the local host. The route allocated while checking a
redirect is freed· even if the redirect is disbelieved. Host redirects cause a new route
to be created if the previous route was to the network. Routes created dynamically
by redirects are marked as such. When adding new routes, the gateway address is
checked against the addresses of point-to-point links for exact matches before using
another interface on the appropriate network. Rtinit takes arguments for flags and
operation separately, allowing point-to-point interfaces to delete old routes.

route.h The size of the routing hash table has been changed to a power of two, allowing
unsigned modulus operations to be performed with a mask. The size of the table is
expanded if the GATEWAY option is configured.

7. Internet network protocols

There are numerous bug fixes and extensions in the Internet protocol support (/sys/netinet).
This section describes some of the more important changes with very little detail. As many of the
changes span several source files, and as it is very difficult to merge this code with earlier versions of
these protocols, it is strongly recommended that the 4.3BSD network be adopted intact, with local
hacks merged into it only if necessary.

7.1. Internet common code

By far, the most important change in IP and the shared Internet support layer is the addition of
subnetwork addressing. This facility is used (and required) by a number of large university and other
networks that include multiple physical networks as well as connections with the DARPA Internet.
Subnet support allows a collection of interconnected local networks to share a single network number,

Changes to the Kernel in 4.3BSD SMM:13-21

hiding the complexity of the local environment and routing from external hosts and gateways. The
subnet support in 4.3BSD conforms with the Internet standard for subnet addressing, RFC-950. For
each network interface, a network mask is set along with the address. This mask determines which
portion of the address is the network number, including the subnet, and by default is set according to
the network class (A, B, or C, with 8, 16, or 24 bits of network part, respectively). Within a subnet
ted network each subnet appears as a distinct network; externally, the entire network appears to be a
single entity.

Another important change in IP addressing is a change to the default IP broadcast address. The
default broadcast address is the address with a host part of all ones (using the definition
INADDR_BROADCAST), in conformance with RFC-919. In 4.2BSD, the broadcast address was the
address with a host part of all zeros (INADDR_ANY). To facilitate the conversion process, and to
help avoid breaking networks with forwarded broadcasts, 4.3BSD allows the broadcast address to be
set for each interface. IP recognizes and accepts network broadcasts as well as subnet broadcasts
when subnets are enabled. Such broadcasts normally originate from hosts that do not know about
subnets. IP also accepts old-style (4.2) broadcasts using a host part of all zeros, either as a network or
subnet broadcast. An address of all ones is recognized as "broadcast on this network," and an
address of all zeros is accepted as well. The latter two are sometimes used in broadcast infonn,ation
requests or network mask requests in the course of starting a diskless workstation. ICMP includes
support for the Network Mask Request and Response. A new routine, in_broadcast, was added for
the use of link layer output routines to determine whether an IP packet should be broadcast.

Network numbers are now stored and used unshifted to minimize conversions and reduce the
overhead associated with comparisons. 4.2BSD shifted network numbers to the low-order part of the
word. The structure defining Internet addresses no longer includes the old IMP-host fields, but only a
featureless 32-bit address.

in.h

in_pcb.h

in_var.h

in.c

in_pcb.c

The definitions of Internet port numbers in this file were deleted, as they have been
superceded by the getservicebyname interface. A definition was added for the single
option at the IP level accessible through setsockopt, IP _OPTIONS.

The Internet protocol control block includes a pointer to an optional mbuf containing
IP options.
This new header file contains the declaration of the Internet variety of the per
interface address information. The in_ifaddr structur_e includes the network, subnet,
network mask and broadcast information.
The if_* routines which manipulate Internet addresses were renamed to in_*.
in_netof and in_lnaof check whether the address is for a directly-connected network,
and if so they use the local network mask to return the subnet/net and host portions,
respectively. in_loca/addr determines whether an address corresponds to a directly
connected network. By default, this includes any subnet of a local network; a
configuration option, SUBNETSARELOCAL=O, changes this to return true only for
a directly-connected subnet or non-subnetted network. Interface ioctls that get or set
addresses or related status information are forwarded to in_control, which imple
ments them. in_iaonnetof replaces if_ifonnetof for Internet addresses only.

The destination address of a connect may be given as INADDR_ANY (0) as a short
hand notation for "this host." This simplifies the process of connecting to local
servers such as the name-domain server that translates host names to addresses.
Also, the short-hand address INADDR_BROADCAST is converted to the broadcast
address for the primary local network; it fails if that network is incapable of broad
cast. The source address for a connection or datagram is selected according to the
outgoing interface; the initial route is allocated at this time and stored in the protocol
control block, so that it may be used again when actually sending the packet(s). The
in_pcbnotify routine was generalized to apply any function and/or report an error to
all connections to a destination; it is used to notify connections of routing changes
and other non-error situations as well as errors. New entries have been added to this

SMM:l3·22

in_proto.c

7.2. IP

Changes to the Kernel in 4.3BSD

level to invalidate cached routes when routing changes occur, as well as to report pos
sible routing failures detected by higher levels.
The protocol switch table for Internet protocols includes entries for the ct/output rou
tines. ICMP may be used with raw sockets. A raw wildcard entry allows raw sockets
to use any protocol not already implemented in the kernel (e.g., EGP).

Support was added for IP source routing and other IP options (partly derived from BBN's
implementation). On output, IP options such as strict or loose source route and record may be set by
a client process using TCP, UDP or raw IP sockets. IP properly updates source-route and record
route options when forwarding (and leaves them in the packet, unlike 4.2 which stripped them out
after updating). IP input preserves any source-routing information in an incoming packet and passes
it up to the receiving protocol upon request, reversing it and arranging it in the same way as user
supplied options. Both TCP and ICMP retrieve incoming source routes for use in replies. Most of
the option-handling code has been converted to use bcopy instead of structure assignments when
copying addresses, as the alignment in the incoming packet may not be correct for the host. This is
not required on the VAX, but is needed on most other machines running 4.2BSD.
ip.h The IP time-to-live field is decremented by one when forwarding; in 4.2BSD this

value was five.
ip_var.h Data structures and definitions were added for storing IP options. New fields have

been added to the structure containing IP statistics.
ip_input.c

ip_output.c

raw_ip.c

The changes to save and present incoming IP source-routing information to higher
level protocols are in this file. The identity of the interface that received the packet
is also determined by ip_input and passed to the next protocol receiving the packet.
To avoid using uninitialized data structures, IP must not begin receiving packets
until at least one Internet address has been set. A bug in the reassembly of IP pack
ets with options has been corrected. Machines with only a single network interface
(in addition to the loopback interface) no longer attempt to forward received IP pack
ets that are not destined for them; they also do not respond with ICMP errors unless
configured with the GATEWAY option. This change prevents large increases in net
work activity which used to result when an IP packet that was broadcast was not
understood as a broadcast. A one-element route cache was added to the IP forward
ing routine. When a packet is forwarded using the same interface on which it
arrived, if the source host is on the directly-attached network, an ICMP redirect is
sent to the source. If the route used for forwarding was a route to a host or a route
to a subnet, a host redirect is used, otherwise a network redirect is sent. The genera
tion of redirects may be disabled by a configuration option, IPSENDREDIRECTS=O.
More statistics are collected, in particular on traffic and fragmentation. The
ip_ctlinput routine was moved to each of the upper-level protocols, as they each have
somewhat different requirements.
The IP output routine manages a cached route in the protocol control block for each
TCP, UDP or raw IP socket. If the destination has changed, the route has been
marked down, or the route was freed because of a routing change, a new route is
obtained. The route is not used if the IP _ROUTETOIF (aka SO_DONTROUTE or
MSG_DONTROUTE) option is present. Preformed IP options passed to ip_output
are inserted, changing the destination address as required. The ip_ctloutput routine
allows options to be set for an individual socket, validating and internalizing them as
appropriate.
The type-of-service and offset fields in the IP header are set to zero on output. The
SO_DONTROUTE flag is handled properly.

Changes to the Kernel in 4.3BSD SMM:13-23

7.3. ICMP

There have been numerous fixes and corrections to ICMP. Length calculations have been
corrected, allowing most ICMP packet lengths to be received and allowing errors to be sent about
smaller input packets. ICMP now uses information about the interface on which a message was
received to determine the correct source address on returned error packets and replies to information
requests. Support was added for the Network Mask Request. Responses to source-routed requests
use the reversed source route for the return trip. Timestamps are created with microtime, allowing
I-millisecond resolution. The icmp_error routine is capable of sending ICMP redirects. When pro
cessing network redirects, the returned source address is converted to a network address before pass
ing it to the routing redirect handler. The translation of ICMP errors to Unix error returns was
updated.

7.4. TCP

In addition to bug fixes, several performance changes have been made to TCP. Several of these
address overall network performance and congestion avoidance, while others address performance of
an individual connection. The most important changes concern the TCP send policy. First, the
sender silly-window syndrome avoidance strategy was fixed. In 4.2BSD, the amount that could be
sent was compared to the offered window, and thus small amounts could still be sent if the receiver
offered a silly window. Once this was fixed, there were problems with peers that never offered win
dows large enough for a maximum segment, or at least 512 bytes (e.g., the peer is a TAC or an IBM
PC). Code was then added to maintain estimates of the peer's receive and send buffer sizes. The
send policy will now send if the offered window is at least one-half of the receiver's buffer, as well as
when the window is at least a full-sized segment. (When the window is large enough for all data that
is queued, the data will also be sent.) The send buffer size estimate is not yet used, but is desired for a
new delayed-acknowledgement scheme that has yet to be tested. Another problem that was exposed
when the silly-window avoidance was fixed was that the persist code didn't expect to be used with a
non-zero window. The persist now lasts only until the first timeout, at which time a packet is sent of
the largest size allowed by the window. If this packet is not acknowledged, the output routine must
begin retransmission rather than returning to the persist state.

Another change related to the send policy is a strategy designed to minimize the number of
small packets outstanding on slow links. This is an implementation of an algorithm proposed by
John Nagle in RFC-896. The algorithm is very simple: when there is outstanding, unacknowledged
data pending on a connection, new data are not sent unless they fill a maximum-sized segment. This
allows bulk data transfers to proceed, but causes small-packet traffic such as remote login to bundle
together data received during a single round-trip time. On high-bandwidth, low-delay networks such
as a local Ethernet, this change seldom causes delay, but over slow links or across the Internet, the
number of small packets can be reduced considerably. This algorithm does interact poorly with one
type of usage, however, as demonstrated by the X window system. When small packets are sent in a
stream, such as when doing rubber-banding to position a new window, and when no echo or other
acknowledgement is being received from the other end of the connection, the round-trip delay
becomes as large as the delayed-acknowledgement timer on the remote end. For such clients, a TCP
option may be set with setsockopt to defeat this part of the send policy.

For bulk-data transfers, the largest single change to improve performance is to increase the size
of the send and receive buffers. The default buffer size in 4.3BSD is 4096 bytes, double the value in
4.2BSD. These values allow more outstanding data and reduce the amount of time waiting for a win
dow update from the receiver. They also improve the utility of the delayed-acknowledgement stra
tegy. The delayed acknowledgment strategy withholds acknowledgements until a window update
would uncover at least 35% of the window; in 4.2BSD, with 1024-byte packets on an Ethernet and
2048-byte windows, this took only a single packet. With 4096-byte windows, up to 50% of the ack
nowledgements may be avoided.

The use of larger buffers might cause problems when bulk-data transfers must traverse several
networks and gateways with limited buffering capacity. The source-quench ICMP message was pro
vided to allow gateways in such circumstances to cause source hosts to slow their rate of packet

SMM:l3-24 Changes to the Kernel in 4.3BSD

injection into the network. While 4.2BSD ignored such messages, the 4.3BSD TCP includes a
mechanism for throttling back the sender when a source quench is received. This is done by creating
an artificially small window (one which is 80% of the outstanding data at the time the quench is
received, but no less than one segment). This artificial congestion window is slowly opened as ack
nowledgements are received. The result under most circumstances is a slow fluctuation around the
buffering limit of the intermediate gateways, depending on the other traffic flowing at the same time.

A final set of changes designed to improve network throughput concerns the retransmission pol
icy. The retransmission timer is set according to the current round-trip time estimate. Unfor
tunately, the round-trip timing code in 4.2BSD had several bugs which caused retransmissions to
begin much too early. These bugs in round trip timing have been corrected. Also, the retransmission
code has been tuned, using a faster backoff after the first retransmission. On an initial connection
request where there is no round-trip time estimate, a much more conservative policy is used. When a
slow link intervenes between the sender and the destination, this policy avoids queuing large numbers
of retransmitted connection requests before a reply can be received. It also avoids saturation when
the destination host is down or nonexistent. During a connection, when the retransmission timer
expires, only a single packet is sent. When only a single packet has been lost, this avoids resending
data that was successfully received; when a host has gone down or become unreachable, it avoids
sending multiple packets at each timeout. Once another acknowledgement is received, the transmis-
sion policy returns to normal. ·

4.2BSD offered a maximum receive segment size of 1024 for all connections, and accepted such
offers whenever made. However, that size was especially poor for the Arpanet and other 1822-based
IMP networks (sorry, make that PSN networks) where the maximum packet size is 1007 bytes. This
was compounded by a bug in the LH/DH driver that did not allow space for an end-of-packet bit in
the receive buffer, and thus maximum size packets that were received were split across buffers. This,
in turn, aggravated a hardware problem causing small packets following a segmented packet to be
concatenated with the previous packet. The result of this set of conditions was that performance
across the Arpanet was sometimes abominably slow. The maximum size segment selected by 4.3BSD
is chosen according to the destination and the interface to be used. The segment size chosen is some
what less than the maximum transmission unit of the outgoing interface. If the destination is not
local, the segment size is a convenient small size near the default maximum size (512 bytes). This
value is both the maximum segment size offered to the sender by the receive side, and the maximum
size segment that will be sent. Of course, the send size is also limited to be no more than the receiver
has indicated it is willing to receive.

The initial sequence number prototype for TCP is now incremented much more quickly; this
has exposed two bugs. Both the window-update receiving code and the urgent data receiving code
compared sequence numbers to 0 the first time they were called on a connection. This fails if the ini
tial sequence number has wrapped around to negative numbers. Both are now initialized when the
connection is set up. This still remains a problem in maintaining compatibility with 4.2BSD systems;
thus an option, TCP_COMPAT_42, was added to avoid using such sequence numbers until 4.2 sys
tems have been upgraded.

Additional changes in TCP are listed by source file:
tcp_input.c The common case of TCP data input, the arrival of the next expected data segment

with an empty reassembly queue, was made into a simplified macro for efficiency.
Tcp_input was modified to know when it needed to call the output side, reducing
unnecessary tests for most acknowledgement-only packets. The receive window size
calculation on input was modified to avoid shrinking the offered window; this change
was needed due to a change in input data packaging by the link layer. A bug in han
dling TCP packets received with both data and options (that are not supposed to be
used) has been corrected. If data is received on a connection after the process has
closed, the other end is sent a reset, preventing connections from hanging in
CLOSE_ WAIT on one end and FIN_WAIT_2 on the other. (4.2BSD contained code
to do this, but it was never executed because such input packets had already been
dropped as being outside of the receive -window.) A timer is now started upon

Changes to the Kernel in 4.3BSD SMM:13-25

tcp_output.c

tcp_timer.c

7.5. UDP

entering FIN_ WAIT _2 state if the local user has closed, closing the connection if the
final FIN is not received within a reasonable time. Half-open connections are now
reset more reliably; there were circumstances under which one end could be rebooted,
and new connection requests that used the same port number might not receive a
reset. The urgent-data code was modified to remember which data had already been
read by the user, avoiding possible confusion if two urgent-data signals were received
close together. Another change was made specifically for connections with a TAC.
The TAC doesn't fill in the window field on its initial packet (SYN), and the apparent
window is random. There is some question as to the validity of the window field if
the packet does not have ACK set, and therefore TCP was changed to ignore the win
dow information on those packets.

The advertised window is never allowed to shrink, in correspondence with the earlier
change in the input handler. The retransmit code was changed to check for shrinking
windows, updating the connection state rather than timing out while waiting for ack
nowledgement. The modifications to the send policy described above are largely
within this file.

The timer routines were changed to allow a longer wait for acknowledgements. (TCP
would generally time out before the routing protocol had changed routes.)

An error in the checksumming of output UDP packets was corrected. Checksums are now
checked by default, unless the COMPAT_42 configuration option is specified; it is provided to allow
communication with the 4.2BSD UDP implementation, which generates incorrect checksums. When
UDP datagrams are received for a port at which no process is listening, ICMP unreachable messages
are sent in response unless the input packet was a broadcast. The size of the receive buffer was
increased, as several large datagrams and their attached addresses could otherwise fill the buffer. The
time-to-live of output datagrams was reduced from 255 to 30. UDP uses its own ct/input routine for
handling of ICMP errors, so that errors may be reported to the sender without closing the socket.

7 .6. Address Resolution Protocol
The address resolution protocol has been generalized somewhat. It was specific for IP on I 0

Mb/s Ethernet; it now handles multiple protocols on 10 Mb/s Ethernet and could easily be adapted to
other hardware as well. This change was made while adding ARP resolution of trailer protocol
addresses. Hosts desiring to receive trailer encapsulations must now indicate that by the use of ARP.
This allows trailers to be used between cooperating 4.3 machines while using non-trailer encapsula
tions with other hosts. The negotiation need not be symmetrical: a VAX may request trailers, for
example, and a SUN may note this and send trailer packets to the VAX without itself requesting
trailers. This change requires modifications to the 10 Mb/s Ethernet drivers, which must provide an
additional argument to arpreso/ve, a pointer for the additional return value indicating whether trailer
encapsulations may be sent. With this change, the IFF _NOTRAILERS flag on each interface is inter
preted to mean that trailers should not be requested. Modifications to ARP from SUN Microsystems
add ioctl operations to examine and modify entries in the ARP address translation table, and to allow
ARP translations to be "published." When future requests are received for Ethernet address transla
tions, if the translation is in the table and is marked as published, they will be answered for that host.
Those modifications superceded the "oldmap" algorithmic translation from IP addresses, which has
been removed. Packets are not forwarded to the loopback interface if it is not marked up, and a bug
causing an mbuf to be freed twice if the loopback output fails was corrected. ARP complains if a
host lists the broadcast address as its Ethernet address. The ARP tables were enlarged to reflect larger
network configurations now in use. A new function for use in driver messages, ether_sprintf, formats
a 48-bit Ethernet address and returns a pointer to the resulting string.

SMM:13-26 Changes to the Kernel in 4.3BSD

7.7. IMP support
The support facilities for connections to an 1822 (or X.25) IMP port (/sys/netimp) have had

several bug fixes and one extension. Unit numbers are now checked more carefully during
autoconfiguration. Code from BRL was installed to support class B and C networks. Error packets
received from the IMP such as Host Dead are queued in the interrupt handler for reprocessing from a
software interrupt, avoiding state transitions in the protocols at priorities above spinet. The host
dead timer is no longer restarted when attempting new output, as a persistent sender could otherwise
prevent new output from being attempted once a host was reported down. The network number is
always taken from the address configured for the interface at boot time; network I 0 is no longer
assumed. A timer is used to prevent blocking if RFNM messages from the IMP are lost. A race was
fixed when freeing mbufs containing host table entries, as the mbuf had been used after it was freed.

8. Xerox Network Systems Protocols
4.3BSD now supports some of the Xerox NS protocols. The kernel will allow the user to send

or receive IDP datagrams directly, or establish a Sequenced Packet connection. It will generate Error
Protocol packets when necessary, and may close user connections if this is the appropriate action on
receipt of such packets. It will respond to Echo Protocol requests. The Routing Information Protocol
is executed by a user level process, and sufficient access has been left for other protocols to be imple
mented using IDP datagrams. It would be possible to set the additional fields required for the Packet
Exchange format at user level, to provide a daemon to respond to time-of-day requests, or conduct an
expanding ring broadcast to discover clearinghouses.

Wherever possible, the algorithms and data structures parallel those used in Internet protocol
support, so that little extra effort should be required to maintain the NS protocols. There has not yet
been much effort at tuning.

8.1. Naming
A machine running 4.3 is allowed to have only one six-byte NS host address, but is permitted to

be on several networks. As in the Internet case, an address of all zeros may be used to bind the host
address for an offered service. Unlike the Internet case, an address of all zeros cannot be used to con
tact a service on the same machine. (This should be changed.)

There is only one name space of port numbers, as opposed to the Internet case where each pro
tocol has its own port space.

Several point-to-point connections can share the same network number. The destination of a
point-to-point connection can have a different network number from the local end.

The files ns.h, ns__pcb.h, ns.c, ns__pcb.c and ns__proto.c are direct translations of similarly named
files in the netinet directory. Ns__pcbnotify differs a little from in__pcbnotify in that it takes an extra
parameter which it will pass to the "notification" routine argument indirectly, by stuffing it in each
NS control block selected.

This header file ns_if.h contains the declaration of the NS variety of the per-interface address
information, like netinetlin_var.h.

8.2. Encapsulations
The stipulation that each host is allowed exactly one 6 byte address implies that each 10 Mb/s

Ethernet interface other than the first will need to reprogram its physical address. All the IO Mb/s
Ethernet drivers supplied with 4.3BSD perform this. The 3 Mb/s Ethernet driver does not perform
any address resolution, but uses the 6th byte of the NS host address as a PUP host number, making it
largely incompatible with altos running XNS. In a system with both 3 Mb/sand 10 Mb/s Ethernets,
one should configure the 3 Mb/s network first.

The file ns_ip.c contains code providing a mechanism for sending XNS packets over any
medium supporting IP datagrams. It builds objects that look like point-to-point interfaces from the
point of view of NS, and a protocol from the point of view of IP. Each of these pseudo interface

Changes to the Kernel in 4.3BSD SMM:l3-27

structures has extra IP data at the end (a route, source and destination), and fits exactly into an mbuf.
If the (fnel structure grows any larger, the extra data will have to be put in a separate mbuf, or the
whole scheme will have to be reworked more rationally.

8.3. Datagrams

The files ns_inpu/.c and ns_olllput.c contain the base level routines which interact with network
interface drivers. There is a kernel variable idp_cksum, which can be used to defeat checksums for all
packets. (There ought to be an option per socket to do this). The NS output routine manages a
cached route in the protocol control block of each socket. If the destination has changed, the route
has been marked down, or the route was freed because of a routing change, a new route is obtained.
The route is not used if the NS_ROUTETOIF (aka SO_DONTROUTE or MSG_DONTROUTE)
option is present.

The files idp.h, idp_var.h, and idp_usrreq.c are the analogues of udp.h, udp_var.h, and
udp_usrreq.c.

8.4. Error and Echo protocols

Routines for processing incoming error protocol packets are in ns_error.c. They call ct/input
routines for IDP and SPP to maintain structural similarity to the Internet implementation. The ker
nel will generate error messages indicating lack of a listener at a port, incorrectly received checksum,
or that a packet was thrown away due to insufficient resources at the recipient (buffer full). The echo
protocol is handled as a special case. If there is no listener at port number 2, then the routine that
generates the "no listener" error message will inspect the packet to see if it was an echo request, and
if so, will echo it. Thus, the user is free to construct his own echoing daemon if he so chooses.

8.5. Sequenced Packet Protocol

In general, this code employs the Internet TCP algorithms where possible. By default, a three
way handshake is used in establishing connections. There is a compile time option to employ the
minimal two way handshake. Incoming connections may multiplexed by source machine and port, as
in the Internet case. It will switch over ports when establishing connections if requested to do so.

The retransmission timing and strategies are much like those of TCP, though recent perfor
mance enhancements have not yet migrated here. There has not yet been much opportunity to tune
this implementation. The code is intended to generate keep-alive packets, though there is some evi
dence this isn't working yet. The TCP source-quench strategy hasn't been added either. The default
nominal packet size is 576 bytes, and the default amount of buffering is 2048. It is possible to raise
both by setting appropriate socket options.

9. VAX Network Interface drivers

Most of the changes in the network interfaces follow common patterns that are summarized in
categories. In addition, there are a number of bug fixes. The change that was made universally to the
interface handlers was to remove the ioctl routines that set the interface address and flags, replacing
them by simpler routines that merely initialize the hardware if this has not already been done.
Several of the drivers notice when the !FF _UP flag is cleared and perform a hardware reset, then
reinitialize the interface when !FF _UP is set again. This allows interfaces to be turned.off, and also
provides a mechanism to reset devices that have lost interrupts or otherwise stopped functioning.
The handling of the other interface flags has been made more consistent. !FF _RUNNING is used
uniformly to indicate that UNIBUS resources have been allocated and that the board has been initial
ized. The reset routines clear this flag before reinitializing so that both operations will be repeated.

9.1. Interface UNIBUS support

The UNIBUS common support routines for network interfaces have been modified to support
multiple transmit and receive buffers per device. A set of macros provide a nearly-compatible inter
face for devices using a single buffer of each type. When placing received packets into mbufs,

SMM:l3-28 Changes to the Kernel in 4.3BSD

({_ubaget prepends a pointer to the receiving interface to the data; this requires that the interface
pointer be passed to (f_ubaget or if_rubaget as an additional argument. When removing the trailer
header from the front of a packet, interface receive routines must move the interface pointer which
precedes the header; see one of the existing drivers for an example. When received data is larger than
half of an mbuf cluster, the data will be placed in an mbuf cluster rather than a chain of small mbufs.
Similarly, in !f_11bap11t, clusters may be remapped instead of copied if they are at least one-half full
and are the last mbuf of the chain. For devices like the DEC DEUNA that wish to perform receive
operations on a transmit buffer, the transmit buffers are marked. Receive operations from transmit
buffers force page mapping to be consistent before attempting to read data or swap pages from them.

9.2. 10 Mb/s Ethernet

The lOMb/s Ethernet handlers have been modified to use the new ARP interfaces. They no
longer use arpallach, and the call to arpreso/ve contains an additional argument for a second return, a
boolean for the use of trailer encapsulations. Input and output functions were augmented to handle
NS IDP packets. For hosts using Xerox NS with multiple interfaces, the drivers are able to repro
gram the physical address on each board so that all interfaces use the address of the first configured
interface. The hardware Ethernet addresses are printed during autoconfiguration.

9.3. Changes specific to individual drivers

if_acc.c An additional word was added to the input buffer to allow space for the end-of
message bit on a maximum-sized message without segmentation. This avoids a
hardware problem that sometimes causes the next packet to be concatenated with the
end-of-message segment.

if_ddn.c A new driver from ACC for the ACC DDN Standard mode X.25 IMP interface.

if_de.c

if_dmc.c

if_ec.c

if_en.c

if_ex.c

if_hdh.c

if_hy.c

if_il.c

A new driver for the DEC DEUNA 10 Mb/s Ethernet controller. The hardware is
reset when ifconfiged down and reinitialized when marked up again.

The DMC-11/DMR-l l driver has been made much more robust. It now uses multi
ple transmit and receive buffers.· A link-layer encapsulation is used to indicate the
type of the packet; this driver is thus incompatible with the 4.2BSD DMC driver.
(The driver is, however, compatible with current ULTRIX drivers.)

The handler for the 3Com 10 Mb/s Ethernet controller is now able to support multi
ple units. The address of the UNIBUS memory is taken from the flags in the
configuration file; note that address 0 is still the default. The UNIBUS memory is
configured in a separate memory-probe routine that is called during autoconfiguration
and after a UNIBUS reset. This allows the 3Com interface reset to work correctly.
The collision backoff algorithm· was corrected so that the maximum backoff is within
the specification, rather than waiting seconds after numerous collisions. The private
ecget and ecput routines were modified to correspond with the if_uba routines. The
hardware is reset when ifconfiged down and reinitialized when marked up again.

The 3 Mb/s Experimental Ethernet driver now supports NS IDP packets, using a sim
ple algorithmic conversion of host to Ethernet addresses. The enswab function was
corrected.

A new driver for the Excelan 204 10 Mb/s Ethernet controller, used as a link-layer
interface.

A new driver for the ACC HDH IMP interface.

A new version of the Hyperchannel driver from Tektronix was installed. It is
untested with 4.3BSD.

The Interlan 10 I 0 and 10 JOA driver now resets the interface and checks the result of
hardware diagnostics when initializing the board. The hardware is reset when
ifconfiged down and reinitialized when marked up again.

Changes to the Kernel in 4.3BSD SMM:13-29

if_ix.c

if_uba.c

if_vv.c

A new driver for using the Interlan NPIOO 10 Mb/s Ethernet controller as a link-level
interface.

In addition to the major changes in UNIBUS support functions, there were several
bug fixes made. Interfaces with no link-level header are set up properly. A variable
was reused incorrectly in if_wubaput, and this has been corrected.

The driver for the Proteon proNET has been reworked in several areas. The ela
borate error handling code had several problems and was simplified considerably.
The driver includes support for both the 10 Mb/sand 80 Mb/s rings. The byte order
ing of the trailer fields was corrected; this makes the trailer format incompatible with
the 4.2BSD driver.

10. VAX MASSBUS device drivers

This section documents the modifications in the drivers for devices on the VAX MASSBUS,
with sources in /syslvaxmba, as well as general changes made to all disk and tape drivers.

JO.I. General changes in disk drivers

Most of the disk drivers' strategy routines were changed to report an end-of-file when attempting
to read the first block after the end of a partition. Distinct errors are returned for nonexistent drives,
blocks out of range, and hard 1/0 errors. The dkblock and dkunit macros once used to support disk
interleaving were removed, as interleaving makes no sense with the current file system organization.
Messages for recoverable errors, such as soft ECC's, are now handled by log instead of print/.

10.2. General changes in tape drivers

The open functions in the tape drivers now return sensible errors if a drive is in use. They save
a pointer to the user's terminal when opened, so that error messages from interrupt level may be
printed on the user's terminal using tprintf

10.3. Modifications to individual MASSBUS device drivers

hp.c Error recovery in the MASSBUS disk driver is considerably better now than it was.
The driver deals with multiple errors in the same transfer much more gracefully.
Earlier versions could go into an endless loop correcting one error, then retrying the
transfer from the beginning when a second error was encountered. The driver now
restarts with the first sector not yet successfully transferred. ECC correction is now
possible on bad-sector replacements. The correct sector number is now printed in
most error messages. The code to decide whether to initiate a data transfer or
whether to do a search was corrected, and the sdistlrdist parameters were split into
three parameters for each drive: the minimum and maximum rotational distances
from the desired sector between which to start a transfer, and the number of sectors
to allow after a search before the desired sector. The values chosen for these parame
ters are probably still not optimal.

There were races when doing a retry on one drive that continued with a repositioning
command (recal or seek) and when then beginning a data transfer on another drive.
These were corrected by using a distinguished return value, MBD_REPOSITION,
from hpdtint to change the controller state when reverting to positioning operations
during a recovery. The remaining steps in the recovery are then managed by hpus
tart. Offset commands were previously done under interrupt control, but only on the
same retries as recals (every eighth retry starting with the fourth). They are now
done on each read retry after the 16th and are done by busy-waiting to avoid the race
described above. The tests in the error decoding section of the interrupt handler
were rearranged for clarity and to simplify the tests for special conditions such as for
mat operations. The hpdtint times out if the drive does not become ready after an
interrupt rather than hanging at high priority. When forwarding bad sectors, hpecc

SMM:13-30

mba.c

mt.c

Changes to the Kernel in 4.3BSD

correctly handles partial-sector transfers; prior versions would transfer a full sector,
then continue with a negative byte count, encountering an invalid map register
immediately thereafter. Partial-sector transfers are requested by the virtual memory
system when swapping page tables.

The top level MASSBUS driver supports the new return code from data-transfer
interrupts that indicate a return to positioning commands before restarting a data
transfer. It is capable of restarting a transfer after partial completion and adjusting
the starting address and byte count according to the amount remaining. It has also
been modified to support data transfers in reverse, required for proper error recovery
on the TU78. Mbustart does not check drives to see that they are present, as dual
ported disks may appear to have a type of zero if the other port is using the disk; in
this case, the disk unit start will return MBU_BUSY.
The TU78 driver has been extensively modified and tested to do better error recovery
and to support additional operations.

11. VAX UNIBUS device drivers
This section includes changes in device drivers for UNIBUS peripherals other than network

interfaces. Modifications common to all of the disk and tape drivers are listed in the previous section
on MASSBUS drivers. Many of the UNIBUS drivers were missing null terminations on their lists of
standard addresses; this has been corrected.

11.1. Changes in terminal multiplexor handling

There are numerous changes that were made uniformly in each of the drivers for UNIBUS ter
minal multiplexors (DHll, DHUI I, DMF32, DMZ32, DZ! I and DZ32). The DMA terminal boards
on the same UNIBUS share map registers to map the c/ists to UNIBUS address space. The initializa
tion of ttys at open and changes from ioctls have been made uniform; the default speed is 9600 baud.
Hardware parameters are changed when local modes change; these include LLITOUT and the new
LPASS8 options for 8-bit output and input respectively. The code conditional on PORTSELECTOR
to accept characters while or before carrier is recognized is the same in all drivers. The processing
done for carrier transitions was line discipline-specific, and has been moved into the standard tty
code; it is called through the previously-unused !_modem entry to the line discipline. This routine's
return is used to decide whether to drop DTR. DTR is asserted on lines regardless of the state of the
software carrier flag. The drivers for hardware without silo timeouts (DHI I, DZI I) dynamically
switch between use of the silo during periods of high input and per-character interrupts when input is
slow. The timer routines schedule themselves via timeouts and are no longer called directly from the
softc/ock interrupt. The timeout runs once per second unless silos are enabled. Hardware faults such
as nonexistent memory errors and silo overflows use log instead of print/to avoid blocking the system
at interrupt level.

11.2. Changes in individual drivers

dmf.c

dmfdmz.c

dmz.c
idc.c

The use of the parallel printer port on the DMF32 is now supported.
Autoconfiguration of the DMF includes a test for the sections of the DMF that are
present; if only the asynchronous serial ports or parallel printer ports are present, the
number of interrupt vectors used is reduced to the minimum number. The common
code for the DMF and DMZ drivers was moved to dmfdmz.c. Output is done by
DMA. The Emulex DMF emulator should work with this driver, despite the
incorrect update of the bus address register with odd byte counts. Flow control
should work properly with DMA or silo output.
This file contains common code for the DMF and DMZ drivers.

This is a new device driver for the DMZ32 terminal multiplexor.
The ECC code for the Integral Disk Controller on the VAX 11/730 was corrected.

Changes to the Kernel in 4.3BSD SMM:13-31

kgclock.c

lp.c

ps.c

rk.c

rl.c

rx.c

tm.c
tmscp.c

ts.c

uba.c

ubareg.h

ubavar.h

uda.c

up.c

vs.c

The profiling clock using a DLl 1 serial interface can be disabled by patching a global
variable in the load image before booting or in memory while running. It may thus
be used for a profiling run and then turned off. The probe routine returns the correct
value now.
A fix was made so that slow printers complete printing after device close. The sprs
were cleaned up.
The handler for the E & S Picture System 2 has substantial changes to fix refresh
problems and clean up the code.

Missing entries in the RK07 size table were added.
A missing partition was added to the RL02 driver. Drives that aren't spun up during
autoconfiguration are now discovered.
It is no longer possible to leave a floppy drive locked if no floppy is present at open.
Incorrect open counts were corrected.
Hacks were added for density selection on Aviv triple-density controllers.

This is a new driver for tape controllers using the Tape Mass Storage Control Proto
col such as the TUS 1.

Adjustment for odd byte addresses when using a buffered data path was incorrect and
has been fixed.
The UBA_NEED 16 flag is tested, and unusable map registers are not allocated for
16-bit addressing devices. Optimizations were made to improve code generation in
ubasetup. Zero-vector interrupts on the DW780 now cause resets only when they
occur at an unacceptably high rate; this is appreciated by the users who happen to be
on the dialups at the time of the 250000th passive release since boot time. UNIBUS
memory is now configured separately from devices during autoconfiguration by
ubameminit, and this process is repeated after a UNIBUS reset. Devices that consist
of UNIBUS memory only may be configured more easily. On a DW780, any map
registers made useless by UNIBUS memory above or near them are discarded.

Definitions were added to include the V AX8600.
Modifications to the uba_hd structure allow zero vectors and UNIBUS memory allo
cation to be handled more sensibly. The uba_driver has a new entry for configuration
of UNIBUS memory. This routine may probe for UNIBUS memory, and if no
further configuration is required may signify the completion of device configuration.
A macro was added to extract the UNIBUS address from the value returned by
ubasetup and uballoc.
This driver is considerably more robust than the one released with 4.2BSD. It
configures the drive types so that each type may use its own partition tables. The
partitions in the tables as distributed are much more useful, but are mostly incompa
tible with the previously released driver; a configuration option, RACOMPAT, pro
vides a combination of new and old filesystems for use during conversion. The
buffered-data-path handling has been fixed. A dump routine was added.

Entries were added for the Fujitsu Eagle (2351) in 48-sector mode on an Emulex
SC31 controller.
This is a driver for the VSlOO display on the UNIBUS.

12. Bootstrap and standalone utilities
The standalone routines in /sys/stand and /sys/mdec have received some work. The bootstrap

code is now capable of booting from drives other than drive 0. The device type passed from level to
level during the bootstrap operation now encodes the device type, partition number, unit number,
and MASSBUS or UNIBUS adaptor number (one byte for each field, from least significant to most
significant). The bootstrap is much faster, as the standalone read operation uses raw 110 when

SMM:IJ-32 Changes to the Kernel in 4.3BSD

possible.
The formatter has been much improved. It deals with skip-sector devices correctly; the previous

version tested for skip-sector capability incorrectly, and thus never dealt with it. The formatter is
capable of formatting sections of the disk, track by track, and can run a variable number of passes.
The error retry logic in the standalone disk drivers was corrected and parameterized so that the for
matter may disable most corrections.

A Fast File System for UNIX*

Marshall Kirk McKusick, William N. Joyf,
Samuel J. Lefjler:j:, Robert S. Fabry

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

A reimplementation of the UNIX file system is described. The reimplementa
tion provides substantially higher throughput rates by using more flexible allocation
policies that allow better locality of reference and can be adapted to a wide range of
peripheral and processor characteristics. The new file system clusters data that is
sequentially accessed and provides two block sizes to allow fast access to large files
while not wasting large amounts of space for small files. File access rates of up to
ten times faster than the traditional UNIX file system are experienced. Long needed
enhancements to the programmers' interface are discussed. These include a mechan
ism to place advisory locks on files, extensions of the name space across file systems,
the ability to use long file names, and provisions for administrative control of
resource usage.

Revised February 18, 1984

CR Categories and Subject Descriptors: D.4.3 (Operating Systems]: File Systems Management - file
organization, directory structures, access methods; D.4.2 [Operating Systems]: Storage Management -
al/ocationldeallocation strategies, secondary storage devices; D.4.8 [Operating Systems]: Performance -
measurements, operational analysis; H.3.2 [Information Systems]: Information Storage - file organiza
tion

Additional Keywords and Phrases: UNIX, file system organization, file system performance, file sys
tem design, application program interface.

General Terms: file system, measurement, performance.

• UNIX is a trademark of Bell Laboratories.
t William N. Joy is currently employed by: Sun Microsystems, Inc, 2550 Garcia Avenue, Mountain View,
CA 94043
i Samuel J. Leftler is currently employed by: Lucasfilm Ltd., PO Box 2009, San Rafael, CA 94912
This work was done under grants from the National Science Foundation under grant MCSS0-05144, and
the Defense Advance Research Projects Agency (DoD) under ARPA Order No. 4031 monitored by Naval
Electronic System Command under Contract No. N00039-82-C-0235.

SMM:14-2

I. Introduction

2. Old file system

3. New file system organization
3.1. Optimizing storage utilization
3.2. File system parameterization
3.3. Layout policies

4. Performance

TABLE OF CONTENTS

5. File system functional enhancements
5.1. Long file names
5.2. File locking
5.3. Symbolic links
5.4. Rename
5.5. Quotas

References

I. Introduction

A Fast File System for UNIX

This paper describes the changes from the original 512 byte UNIX file system to the new one
released with the 4.2 Berkeley Software Distribution. It presents the motivations for the changes, the
methods used to effect these changes, the rationale behind the design decisions, and a description of
the new implementation. This discussion is followed by a summary of the results that have been
obtained, directions for future work, and the additions and changes that have been made to the facili
ties that are available to programmers.

The original UNIX system that runs on the PDP-I It has simple and elegant file system facili
ties. File system input/output is buffered by the kernel; there are no alignment constraints on data
transfers and all operations are made to appear synchronous. All transfers to the disk are in 512 byte
blocks, which can be placed arbitrarily within the data area of the file system. Virtually no con
straints other than available disk space are placed on file growth [Ritchie74], [Thompson78].*

When used on the VAX-II together with other UNIX enhancements, the original 512 byte
UNIX file system is incapable of providing the data throughput rates that many applications require.
For example, applications such as VLSI design and image processing do a small amount of processing
on a large quantities of data and need to have a high throughput from the file system. High
throughput rates are also needed by programs that map files from the file system into large virtual
address spaces. Paging data in and out of the file system is likely to occur frequently [Ferrin82b].
This requires a file system providing higher bandwidth than the original 512 byte UNIX one that pro
vides only about two percent of the maximum disk bandwidth or about 20 kilobytes per second per
arm [White80], [Smith81b].

Modifications have been made to the UNIX file system to improve its performance. Since the
UNIX file system interface is well understood and not inherently slow, this development retained the
abstraction and simply changed the underlying implementation to increase its throughput. Conse
quently, users of the system have not been faced with massive software conversion.

Problems with file system performance have been dealt with extensively in the literature; see
[Smith81a] for a survey. Previous work to improve the UNIX file system performance has been done
by [Ferrin82a]. The UNIX operating system drew many of its ideas from Multics, a large, high

t DEC, PDP, VAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.
• In practice, a file's size is constrained to be less than about one gigabyte.

A Fast File System for UNIX SMM:l4-3

performance operating system [Feiertag71]. Other work includes Hydra [Almes78], Spice [Thomp
son80], and a file system for a LISP environment [Symbolics81]. A good introduction to the physical
latencies of disks is described in [Pechura83].

2. Old File System

In the file system developed at Bell Laboratories (the "traditional" file system), each disk drive
is divided into one or more partitions. Each of these disk partitions may contain one file system. A
file system never spans multiple partitions. t A file system is described by its super-block, which con
tains the basic parameters of the file system. These include the number of data blocks in the file sys
tem, a count of the maximum number of files, and a pointer to the free list, a linked list of all the free
blocks in the file" system.

Within the file system are files. Certain files are distinguished as directories and contain
pointers to files that may themselves be directories. Every file has a descriptor associated with it
called an inode. An inode contains information describing ownership of the file, time stamps mark
ing last modification and access times for the file, and an array of indices that point to the data blocks
for the file. For the purposes of this section, we assume that the first 8 blocks of the file are directly
referenced by values stored in an inode itself"'. An inode may also contain references to indirect
blocks containing further data block indices. In a file system with a 512 byte block size, a singly
indirect block contains 128 further block addresses, a doubly indirect block.contains 128 addresses of
further singly indirect blocks, and a triply indirect block contains 128 addresses of further doubly
indirect blocks.

A 150 megabyte traditional UNIX file system consists of 4 megabytes of inodes followed by 146
megabytes of data. This organization segregates the inode information from the data; thus accessing a
file normally incurs a long seek from the file's inode to its data. Files in a single directory are not typ
ically allocated consecutive slots in the 4 megabytes of inodes, causing many non-consecutive blocks
of inodes to be accessed when executing operations on the inodes of several files in a directory.

The allocation of data blocks to files is also suboptimum. The traditional file system never
transfers more than 512 bytes per disk transaction and often finds that the next sequential data block
is not on the same cylinder, forcing seeks between 512 byte transfers. The combination of the small
block size, limited read-ahead in the system, and many seeks severely limits file system throughput.

The first work at Berkeley on the UNIX file system attempted to improve both reliability and
throughput. The reliability was improved by staging modifications to critical file system information
so that they could either. be completed or repaired cleanly by a program after a crash [Kowalski78].
The file system performance was improved by a factor of more than two by changing the basic block
size from 512 to 1024 bytes. The increase was because of two factors: each disk transfer accessed
twice as much data, and most files could be described without need to access indirect blocks since the
direct blocks contained twice as much data. The file system with these changes will henceforth be
referred to as the old file system.

This performance improvement gave a strong indication that increasing the block size was a
good method for improving throughput. Although the throughput had doubled, the old file system
was still using only about four percent of the disk bandwidth. The main problem was that although
the free list was initially ordered for optimal access, it quickly became scrambled as files were created
and removed. Eventually the free list became entirely random, causing files to have their blocks allo
cated randomly over the disk. This forced a seek before every block access. Although old file systems
provided transfer rates of up to 175 kilobytes per second when they were first created, this rate

t By "partition" here we refer to the subdivision of physical space on a disk drive. In the traditional file
system, as in the new file system, file systems are really located in logical disk partitions that may overlap.
This overlapping is made available, for example, to allow programs to copy entire disk drives containing
multiple file systems.
• The actual number may vary from system to system, but is usually in the range 5-13.

SMM:l4-4 A Fast File System for UNIX

deteriorated to 30 kilobytes per second after a few weeks of moderate use because of this randomiza
tion of data block placement. There was no way of restoring the performance of an old file system
except to dump, rebuild, and restore the file system. Another possibility, as suggested by [Maru
yama76], would be to have a process that periodically reorganized the data on the disk to restore
locality.

3. New file system organization
In the new file system organization (as in the old file system organization), each disk drive con

tains one or more file systems. A file system is described by its super-block, located at the beginning
of the file system's disk partition. Because the super-block contains critical data, it is replicated to
protect against catastrophic loss. This is done when the file system is created; since the super-block
data does not change, the copies need not be referenced unless a head crash or other hard disk error
causes the default super-block to be unusable.

To insure that it is possible to create files as large as 232 bytes with only two levels of indirec
tion, the minimum size of a file system block is 4096 bytes. The size of file system blocks can be any
power of two greater than or equal to 4096. The block size of a file system is recorded in the file
system's super-block so it is possible for file systems with different block sizes to be simultaneously
accessible on the same system. The block size must be decided at the time that the file system is
created; it cannot be subsequently changed without rebuilding the file system.

The new file system organization divides a disk partition into one or more areas called cylinder
groups. A cylinder group is comprised of one or more consecutive cylinders on a disk. Associated
with each cylinder group is some bookkeeping information that includes a redundant copy of the
super-block, space for inodes, a bit map describing available blocks in the cylinder group, and sum
mary information describing the usage of data blocks within the cylinder group. The bit map of
available blocks in the cylinder group replaces the traditional file system's free list. For each cylinder
group a static number of inodes is allocated at file system creation time. The default policy is to allo
cate one inode for each 2048 bytes of space in the cylinder group, expecting this to be far more than
will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be on the
top platter. A single hardware failure that destroyed the top platter could cause the loss of all redun
dant copies of the super-block. Thus the cylinder group bookkeeping information begins at a varying
offset from the beginning of the cylinder group. The offset for each successive cylinder group is calcu
lated to be about one track further from the beginning of the cylinder group than the preceding
cylinder group. In this way the redundant information spirals down into the pack so that any single
track, cylinder, or platter can be lost without losing all copies of the super-block. Except for the first
cylinder group, the space between the beginning of the cylinder group and the beginning of the
cylinder group information is used for data blocks. t

3.1. Optimizing storage utilization
Data is laid out so that larger blocks can be transferred in a single disk transaction, greatly

increasing file system throughput. As an example, consider a file in the new file system composed of

t While it appears that the first cylinder group could be laid out with its super-block at the "known" loca
tion, this would not work for file systems with blocks sizes of 16 kilobytes or greater. This is because of a
requirement that the first 8 kilobytes of the disk be reserved for a bootstrap program and a separate re
quirement that the cylinder group information begin on a file system block boundary. To start the cylinder
group on a file system block boundary, file systems with block sizes larger than 8 kilobytes would have to
leave an empty space between the end of the boot block and the beginning of the cylinder group. Without
knowing the size of the file system blocks, the system would not know what roundup function to use to find
the beginning of the first cylinder group.

A Fast File System for UNIX SMM:I4-5

4096 byte data blocks. In the old file system this file would be composed of I 024 byte blocks. By
increasing the block size, disk accesses in the new file system may transfer up to four times as much
information per disk transaction. In large files, several 4096 byte blocks may be allocated from the
same cylinder so that even larger data transfers are possible before requiring a seek.

The main problem with larger blocks is that most UNIX file systems are composed of many
small files. A uniformly large block size wastes space. Table 1 shows the effect of file system block
size on the amount of wasted space in the file system. The files measured to obtain these figures
reside on one of our time sharing systems that has roughly 1.2 gigabytes of on-line storage. The
measurements are based on the active user file systems containing about 920 megabytes of formatted
space.

Space used % waste Organization
775.2 Mb 0.0 Data only, no separation between files
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary
828.7 Mb 6.9 Data+ inodes, 512 byte block UNIX file system
866.5 Mb 11.8 Data + inodes, 1024 byte block UNIX file system
948.5 Mb 22.4 Data + inodes, 2048 byte block UNIX file system
1128.3 Mb 45.6 Data + inodes, 4096 byte block UNIX file system

Table I - Amount of wasted space as a function of block size.

The space wasted is calculated to be the percentage of space on the disk not containing user data. As
the block size on the disk increases, the waste rises quickly, to an intolerable 45.6% waste with 4096
byte file system blocks.

To be able to use large blocks without undue waste, small files must be stored in a more efficient
way. The new file system accomplishes this goal by allowing the division of a single file system block
into one or more fragments. The file system fragment size is specified at the time that the file system
is created; each file system block can optionally be broken into 2, 4, or 8 fragments, each of which is
addressable. The lower bound on the size of these fragments is constrained by the disk sector size,
typically 512 bytes. The block map associated with each cylinder group records the space available in
a cylinder group at the fragment level; to determine if a block is available, aligned fragments are
examined. Figure I shows a piece of a map from a 409611024 file system.

Bits in map
Fragment numbers
Block numbers

xxxx
0-3
0

xxoo
4-7

ooxx
8-11

2

0000
12-15

3

Figure I - Example layout of blocks and fragments in a 4096/1024 file system.

Each bit in the map records the status of a fragment; an "X" shows that the fragment is in use, while
a "O" shows that the fragment is available for allocation. In this example, fragments 0-5, I 0, and 11
are in use, while fragments 6-9, and 12-15 are free. Fragments of adjoining blocks cannot be used as
a full block, even if they are large enough. In this example, fragments 6-9 cannot be allocated as a
full block; only fragments 12-15 can be coalesced into a full block.

On a file system with a block size of 4096 bytes and a fragment size of I 024 bytes, a file is
represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block. If a
file system block must be fragmented to obtain space for a small amount of data, the remaining frag
ments of the block are made available for allocation to other files. As an example consider an 11000
byte file stored on a 4096/1024 byte file system. This file would uses two full size blocks and one
three fragment portion of another block. If no block with three aligned fragments is available at the
time the file is created, a full size block is split yielding the necessary fragments and a single unused
fragment. This remaining fragment can be allocated to another file as needed.

Space is allocated to a file when a program does a write system call. Each time data is written to
a file, the system checks to see if the size of the file has increased*. If the file needs to be expanded to

• A program may be overwriting data in the middle of an existing file in which case space would already
have been allocated.

SMM:14-6 A Fast File System for UNIX

hold the new data, one of three conditions exists:
I) There is enough space left in an already allocated block or fragment to hold the new data. The

new data is written into the available space.
2) The file contains no fragmented blocks (and the last block in the file contains insufficient space

to hold the new data). If space exists in a block already allocated, the space is filled with new
data. If the remainder of the new data contains more than a full block of data, a full block is
allocated and the first full block of new data is written there. This process is repeated until less
than a full block of new data remains. If the remaining new data to be written will fit in less
than a full block, a block with the necessary fragments is located, otherwise a full block is
located. The remaining new data is written into the located space.

3) The file contains one or more fragments (and the fragments contain insufficient space to hold
the new data). If the size of the new data plus the size of the data already in the fragments
exceeds the size of a full block, a new block is allocated. The contents of the fragments are
copied to the beginning of the block and the remainder of the block is filled with new data. The
process then continues as in (2) above. Otherwise, if the new data to be written will fit in less
than a full block, a block with the necessary fragments is located, otherwise a full block is
located. The contents of the existing fragments appended with the new data are written into the
allocated space.
The problem with expanding a file one fragment at a a time is that data may be copied many

times as a fragmented block expands to a full block. Fragment reallocation can be minimized if the
user program writes a full block at a time, except for a partial block at the end of the file. Since file
systems with different block sizes may reside on the same system, the file system interface has been
extended to provide application programs the optimal size for a read or write. For files the optimal
size is the block size of the file system on which the file is being accessed. For other objects, such as
pipes and sockets, the optimal size is the underlying buffer size. This feature is used by the Standard
Input/Output Library, a package used by most user programs. This feature is also used by certain
system utilities such as archivers and loaders that do their own input and output management and
need the highest possible file system bandwidth.

The amount of wasted space in the 409611024 byte new file system organization is empirically
observed to be about the same as in the I 024 byte old file system organization. A file system with
4096 byte blocks and 512 byte fragments has about the same amount of wasted space as the 512 byte
block UNIX file system. The new file system uses less space than the 512 byte or 1024 byte file sys
tems for indexing information for large files and the same amount of space for small files. These sav
ings are offset by the need to use more space for keeping track of available free blocks. The net result
is about the same disk utilization when a new file system's fragment size equals an old file system's
block size.

In order for the layout policies to be effective, a file system cannot be kept completely full. For
each file system there is a parameter, termed the free space reserve, that gives the minimum accept
able percentage of file system blocks that should be free. If the number of free blocks drops below
this level only the system administrator can continue to allocate blocks. The value of this parameter
may be changed at any time, even when the file system is mounted and active. The transfer rates that
appear in section 4 were measured on file systems kept less than 90% full (a reserve of I 0%). If the
number of free blocks falls to zero, the file system throughput tends to be cut in half, because of the
inability of the file system to localize blocks in a file. If a file system's performance degrades because
of overfilling, it may be restored by removing files until the amount of free space once again reaches
the minimum acceptable level. Access rates for files created during periods of little free space may be
restored by moving their data once enough space is available. The free space reserve must be added
to the percentage of waste when comparing the organizations given in Table I. Thus, the percentage
of waste in an old 1024 byte UNIX file system is roughly comparable to a new 4096/512 byte file sys
tem with the free space reserve set at 5%. (Compare 11.8% wasted with the old file system to 6.9%
waste + 5% reserved space in the new file system.)

A Fast File System for UNIX SMM:l4-7

3.2. File system parameterization

Except for the initial creation of the free list. the old file system ignores the parameters of the
underlying hardware. It has no information about either the physical characteristics of the mass
storage device, or the hardware that interacts with it. A goal of the new file system is to parameterize
the processor capabilities and mass storage characteristics so that blocks can be allocated in an
optimum configuration-dependent way. Parameters used include the speed of the processor. the
hardware support for mass storage transfers. and the characteristics of the mass storage devices. Disk
technology is constantly improving and a given installation can have several different disk technolo
gies running on a single processor. Each file system is parameterized so that it can be adapted to the
characteristics of the disk on which it is placed.

For mass storage devices such as disks. the new file system tries to allocate new blocks on the
same cylinder as th~ previous block in the same file. Optimally. these new blocks will also be rotation
ally well positioned. The distance between "rotationally optimal" blocks varies greatly; it can be a
consecutive block or a rotationally delayed block depending on system characteristics. On a processor
with an input/output channel that does not require any processor intervention between mass storage
transfer requests, two consecutive disk blocks can often be accessed without suffering lost time
because of an intervening disk revolution. For processors without input/output channels. the main
processor must field an interrupt and prepare for a new disk transfer. The expected time to service
this interrupt and schedule a new disk transfer depends on the speed of the main processor.

The physical characteristics of each disk include the number of blocks per track and the rate at
which the disk spins. The allocation routines use this information to calculate the number of mil
liseconds required to skip over a block. The characteristics of the processor include the expected time
to service an interrupt and schedule a new disk transfer. Given a block allocated to a file, the alloca
tion routines calculate the number of blocks to skip over so that the next block in the file will come
into position under the disk head in the expected amount of time that it takes to start a new disk
transfer operation. For programs that sequentially access large amounts of data, this strategy minim
izes the amount of time spent waiting for the disk to position itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary infor
mation includes a count of the available blocks in a cylinder group at different rotational positions.
Eight rotational positions are distinguished, so the resolution of the summary information is 2 mil
liseconds for a typical 3600 revolution per minute drive. The super-block contains a vector of lists
called rotational la_volll tables. The vector is indexed by rotational position. Each component of the
vector lists the index into the block map for every data block contained in its rotational position.
When looking for an allocatable block, the system first looks through the summary counts for a rota
tional position with a non-zero block count. It then uses the index of the rotational position to find
the appropriate list to use to index through only the relevant parts of the block map to find a free
block.

The parameter that defines the minimum number of milliseconds between the completion of a
data transfer and the initiation of another data transfer on the same cylinder can be changed at any
time, even when the file system is mounted and active. If a file system is parameterized to lay out
blocks with a rotational separation of 2 milliseconds, and the disk pack is then moved to a system
that has a processor requiring 4 milliseconds to schedule a disk operation, the throughput will drop
precipitously because of lost disk revolutions on nearly every block. If the eventual target machine is
known, the file system can be parameterized for it even though it is initially created on a different
processor. Even if the move is not known in advance, the rotational layout delay can be reconfigured
after the disk is moved so that all further allocation is done based on the characteristics of the new
host.

3.3. Layout policies

The file system layout policies are divided into two distinct parts. At the top level are global
policies that use file system wide summary information to make decisions regarding the placement of
new inodes and data blocks. These routines are responsible for deciding the placement of new direc
tories and files. They also calculate rotationally optimal block layouts, and decide when to force a

SMM:14-8 A Fast File System for UNIX

long seek to a new cylinder group because there are insufficient blocks left in the current cylinder
group to do reasonable layouts. Below the global policy routines are the local allocation routines that
use a locally optimal scheme to lay out data blocks.

Two methods for improving file system performance are to increase the locality of reference to
minimize seek latency as described by [Trivedi80). and to improve the layout of data to make larger
transfers possible as described by [Nevalainen77]. The global layout policies try to improve perfor
mance by clustering related information. They cannot attempt to localize all data references, but
must also try to spread unrelated data among different cylinder groups. If too much localization is
attempted. the local cylinder group may run out of space forcing the data to be scattered to non-local
cylinder groups. Taken to an extreme. total localization can result in a single huge cluster of data
resembling the old file system. The global policies try to balance the two conflicting goals of localiz
ing data that is concurrently accessed while spreading out unrelated data.

One allocatable resource is inodes. lnodes are used to describe both files and directories.
!nodes of files in the same directory are frequently accessed together. For example, the "list direc
tory" command often accesses the inode for each file in a directory. The layout policy tries to place
all the inodes of files in a directory in the same cylinder group. To ensure that files are distributed
throughout the disk, a different policy is used for directory allocation. A new directory is placed in a
cylinder group that has a greater than average number of free inodes, and the smallest number of
directories already in it. The intent of this policy is to allow the inode clustering policy to succeed
most of the time. The allocation of inodes within a cylinder group is done using a next free strategy.
Although this allocates the inodes randomly within a cylinder group, all the inodes for a particular
cylinder group can be read with 8 to 16 disk transfers. (At most 16 disk transfers are required
because a cylinder group may have no more than 2048 inodes.) This puts a small and constant upper
bound on the number of disk transfers required to access the inodes for all the files in a directory. In
contrast, the old file system typically requires one disk transfer to fetch the inode for each file in a
directory.

The other major resource is data blocks. Since data blocks for a file are typically accessed
together, the policy routines try to place all data blocks for a file in the same cylinder group, prefer
ably at rotationally optimal positions in the same cylinder. The problem with allocating all the data
blocks in the same cylinder group is that large files will quickly use up available space in the cylinder
gro·up, forcing a spill over to other areas. Further, using all the space in a cylinder group causes
future allocations for any file in the cylinder group to also spill to other areas. Ideally none of the
cylinder groups should ever become completely full. The heuristic solution chosen is to redirect block
allocation to a different cylinder group when a file exceeds 48 kilobytes, and at every megabyte
thereafter.• The newly chosen cylinder group is selected from those cylinder groups that have a
greater than average number of free blocks left. Although big files tend to be spread out over the
disk, a megabyte of data is typically accessible before a long seek must be performed, and the cost of
one long seek per megabyte is small.

The global policy routines call local allocation routines with requests for specific blocks. The
local allocation routines will always allocate the requested block if it is free, otherwise it allocates a
free block of the requested size that is rotationally closest to the requested block. If the global layout
policies had complete information, they could always request unused blocks and the allocation rou
tines would be reduced to simple bookkeeping. However, maintaining complete information is costly;
thus the implementation of the global layout policy uses heuristics that employ only partial informa
tion.

If a requested block is not available, the local allocator uses a four level allocation strategy:

• The first spill over point at 48 kilobytes is the point at which a file on a 4096 byte block file system first
requires a single indirect block. This appears to be a natural first point at which to redirect block alloca
tion. The other spillover points are chosen with the intent of forcing block allocation to be redirected when
a file has used about 25% of the data blocks in a cylinder group. In observing the new file system in day to
day use, the heuristics appear to work well in minimizing the number of completely filled cylinder groups.

A Fast File System for UNIX SMM:l4-9

1) Use the next available block rotationally closest to the requested block on the same cylinder. It
is assumed here that head switching time is zero. On disk controllers where this is not the case.
it may be possible to incorporate the time required to switch between disk platters when con
structing the rotational layout tables. This. however. has not yet been tried.

2) If there are no blocks available on the same cylinder. use a block within the same cylinder
group.

3) If that cylinder group is entirely full. quadratically hash the cylinder group number to choose
another cylinder group to look for a free block.

4) Finally if the hash fails. apply an exhaustive search to all cylinder groups.

Quadratic hash is used because of its speed in finding unused slots in nearly full hash tables
[Knuth75). File systems that are parameterized to maintain at least 10% free space rarely use this
strategy. File sys:ems that are run without maintaining any free space typically have so few free
blocks that almost any allocation is random: the most important characteristic of the strategy used
under such conditions is that the strategy be fast.

4. Performance

Ultimately, the proof of the effectiveness of the algorithms described in the previous section is
the long term performance of the new file system.

Our empirical studies have shown that the inode layout policy has been effective. When run
ning the "list directory" command on a large directory that itself contains many directories (to force
the system to access inodes in multiple cylinder groups), the number of disk accesses for inodes is cut
by a factor of two. The improvements are even more dramatic for large directories containing only
files, disk accesses for inodes being cut by a factor of eight. This is most encouraging for programs
such as spooling daemons that access many small files, since these programs tend to flood the disk
request queue on the old file system.

Table 2 summarizes the measured throughput of the new file system. Several comments need to
be made about the conditions under which these tests were run. The test programs measure the rate
at which user programs can transfer data to or from a file without performing any processing on it.
These programs must read and write enough data to insure that buffering in the operating system
does not affect the results. They are also run at least three times in succession; the first to get the sys
tem into a known state and the second two to insure that the experiment has stabilized and is repeat
able. The tests used and their results are discussed in detail in [Kridle83Jt. The systems were run
ning multi-user but were otherwise quiescent. There was no contention for either the CPU or the
disk arm. The only difference between the UNIBUS and MASSBUS tests was the controller. All
tests used an AMPEX Capricorn 330 megabyte Winchester disk. As Table 2 shows, all file system
test runs were on a VAX 1117 50. All file systems had been in production use for at least a month
before being measured. The same number of system calls were performed in all tests; the basic sys
tem call overhead was a negligible portion of the total running time of the tests.

Unlike the old file system, the transfer rates for the new file system do not appear to change
over time. The throughput rate is tied much more strongly to the amount of free space that is main
tained. The measurements in Table 2 were based on a file system with a I 0% free space reserve.
Synthetic work loads suggest that throughput deteriorates to about half the rates given in Table 2
when the file systems are full.

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of the
disk by the file system. An upper bound on the transfer rate from the disk is calculated by multiply
ing the number of bytes on a track by the number of revolutions of the disk per second. The

t A UNIX command that is similar to the reading test that we used is "cp file /dev/null", where "file" is
eight megabytes long.

SMM:14-10 A Fast File System for UNIX

Type of Processor and Read
File System Bus Measured Speed Bandwidth %CPU

old 1024 750/UNIBUS 29 Kbytes/sec 29/983 3% 11%
new 4096/1024 750/UNIBUS 221 Kbytes/sec 221/983 22% 43%
new 8192/1024 750/UNIBUS 233 Kbytes/sec 233/983 24% 29%
new 4096/1024 750/MASSBUS 466 Kbytes/sec 466/983 47% 73%
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466/983 47% 54%

Table 2a - Reading rates of the old and new UNIX file systems.

Type of Processor and Write
File System Bus Measured Speed Bandwidth %CPU

old 1024 750/UNIBUS 48 Kbytes/sec 48/983 5% 29%
new 409611024 750/UNIBUS 142 Kbytes/sec 142/983 14% 43%
new 8192/1024 750/UNIBUS 215 Kbytes/sec 215/983 22% 46%
new 4096/1024 750/MASSBUS 323 Kbytes/sec 323/983 33% 94%
new 819211024 750/MASSBUS 466 Kbytes/sec 466/983 47% 95%

Table 2b - Writing rates of the old and new UNIX file systems.

bandwidth is calculated by comparing the data rates the file system is able to achieve as a percentage
of this rate. Using this metric, the old file system is only able to use about 3-5% of the disk
bandwidth, while the new file system uses up to 47% of the bandwidth.

Both reads and writes are faster in the new system than in the old system. The biggest factor in
this speedup is because of the larger block size used by the new file system. The overhead of allocat
ing blocks in the new system is greater than the overhead of allocating blocks in the old system, how
ever fewer blocks need to be allocated in the new system because they are bigger. The net effect is
that the cost per byte allocated is about the same for both systems.

In the new file system, the reading rate is always at least as fast as the writing rate. This is to be
expected since the kernel must do more work when allocating blocks than when simply reading them.
Note that the write rates are about the same as the read rates in the 8192 byte block file system; the.
write rates are slower than the read rates in the 4096 byte block file system. The slower write rates
occur because the kernel has to do twice as many disk allocations per second, making the processor
unable to keep up with the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them. This is
because the write system call is asynchronous and the kernel can generate disk transfer requests much
faster than they can be serviced, hence disk transfers queue up in the disk buffer cache. Because the
disk buffer cache is sorted by minimum seek distance, the average seek between the scheduled disk
writes is much less than it would be if the data blocks were written out in the random disk order in
which they are generated. However when the file is read, the read system call is processed synchro
nously so the disk blocks must be retrieved from the disk in the non-optimal seek order in which they
are requested. This forces the disk scheduler to do long seeks resulting in a lower throughput rate.

In the new system the blocks of a file are more optimally ordered on the disk. Even though
reads are still synchronous, the requests are presented to the disk in a much better order. Even
though the writes are still asynchronous, they are already presented to the disk in minimum seek
order so there is no gain to be had by reordering them. Hence the disk seek latencies that limited the
old file system have little effect in the new file system. The cost of allocation is the factor in the new
system that causes writes to be slower than reads.

The performance of the new file system is currently limited by memory to memory copy opera
tions required to move data from disk buffers in the system's address space to data buffers in the
user's address space. These copy operations account for about 40% of the. time spent performing an
input/output operation. If the buffers in both address spaces were properly aligned, this transfer
could be performed without copying by using the VAX virtual memory management hardware. This

A Fast File System for UNIX SMM:14-11

would be especially desirable when transferring large amounts of data. We did not implement this
because it would change the user interface to the file system in two major ways: user programs would
be required to allocate buffers on page boundaries, and data would disappear from buffers after being
written.

Greater disk throughput could be achieved by rewriting the disk drivers to chain together kernel
buffers. This would allow contiguous disk blocks to be read in a single disk transaction. Many disks
used with UNIX systems contain either 32 or 48 512 byte sectors per track. Each track holds exactly
two or three 8192 byte file system blocks, or four or six 4096 byte file system blocks. The inability to
use contiguous disk blocks effectively limits the performance on these disks to less than 50% of the
available bandwidth. If the next block for a file cannot be laid out contiguously, then the minimum
spacing to the next allocatable block on any platter is between a sixth and a half a revolution. The
implication of this is that the best possible layout without contiguous blocks uses only half of the
bandwidth of any given track. If each track contains an odd number of sectors, then it is possible to
resolve the rotational delay to any number of sectors by finding a block that begins at the desired
rotational position on another track. The reason that block chaining has not been implemented is
because it would require rewriting all the disk drivers in the system, and the current throughput rates
are already limited by the speed of the available processors.

Currently only one block is allocated to a file at a time. A technique used by the DEMOS file
system when it finds that a file is growing rapidly, is to preallocate several blocks at once, releasing
them when the file is closed if they remain unused. By batching up allocations, the system can reduce
the overhead of allocating at each write, and it can cut down on the number of disk writes needed to
keep the block pointers on the disk synchronized with the block allocation [Powell79]. This tech
nique was not included because block allocation currently accounts for less than 10% of the time
spent in a write "System call and, once again, the current throughput rates are already limited by the
speed of the available processors.

S. File system functional enhancements
The performance enhancements to the UNIX file system did not require any changes to the

semantics or data structures visible to application programs. However, several changes had been gen
erally desired for some time but had not been introduced because they would require users to dump
and restore all their file systems. Since the new file system already required all existing file systems to
be dumped and restored, these functional enhancements were introduced at this time.

S.l. Long file names
File names can now be of nearly arbitrary length. Only programs that read directories are

affected by this change. To promote portability to UNIX systems that are not running the new file
system, a set of directory access routines have been introduced to provide a consistent interface to
directories on both old and new systems.

Directories are allocated in 512 byte units called chunks. This size is chosen so that each alloca
tion can be transferred to disk in a single operation. Chunks are broken up into variable length
records termed directory entries. A directory entry contains the information necessary to map the
name of a file to its associated inode. No directory entry is allowed to span multiple chunks. The
first three fields of a directory entry are fixed length and contain: an inode number, the size of the
entry, and the length of the file name contained in the entry. The remainder of an entry is variable
length and contains a null terminated file name, padded to a 4 byte boundary. The maximum length
of a file name in a directory is currently 255 characters.

Available space in a directory is recorded by having one or more entries accumulate the free
space in their entry size fields. This results in directory entries that are larger than required to hold
the entry name plus fixed length fields. Space allocated to a directory should always be completely
accounted for by totaling up the sizes of its entries. When an entry is deleted from a directory, its
space is returned to a previous entry in the same directory chunk by increasing the size of the

SMM:14-12 A Fast File System for UNIX

previous entry by the size of the deleted entry. If the first entry of a directory chunk is free, then the
entry's inode number is set to zero to indicate that it is unallocated.

5.2. File locking
The old file system had no provision for locking files. Processes that needed to synchronize the

updates of a file had to use a separate "lock" file. A process would try to create a "lock" file. If the
creation succeeded, then the process could proceed with its update; if the creation failed, then the
process would wait and try again. This mechanism had three drawbacks. Processes consumed CPU
time by looping over attempts to create locks. Locks left lying around because of system crashes had
to be manually removed (normally in a system startup command script). Finally, processes running
as system administrator are always permitted to create files, so were forced to use a different mechan
ism. While it is possible to get around all these problems, the solutions are not straight forward, so a
mechanism for locking files has been added.

The most general schemes allow multiple processes to concurrently update a file. Several of
these techniques are discussed in [Peterson83]. A simpler technique is to serialize access to a file with
locks. To attain reasonable efficiency, certain applications require the ability to lock pieces of a file.
Locking down to the byte level has been implemented in the Onyx file system by [Bass81]. However,
for the standard system applications, a mechanism that locks at the granularity of a file is sufficient.

Locking schemes fall into two classes, those using hard locks and those using advisory locks.
The primary difference between advisory locks and hard locks is the extent of enforcement. A hard
lock is always enforced when a program tries to access a file; an advisory lock is only applied when it
is requested by a program. Thus advisory locks are only effective when all programs accessing a file
use the locking scheme. With hard locks there must be some override policy implemented in the ker
nel. With advisory locks the policy is left to the user programs. In the UNIX system, programs with
system administrator privilege are allowed override any protection scheme. Because many of the pro
grams that need to use locks must also run as the system administrator, we chose to implement
advisory locks rather than create an additional protection scheme that was inconsistent with the
UNIX philosophy or could not be used by system administration programs.

The file locking facilities allow cooperating programs to apply advisory shared or exclusive locks
on files. Only one process may have an exclusive lock on a file while multiple shared locks may be
present. Both shared and exclusive locks cannot be present on a file at t.he same time. If any lock is
requested when another process holds an exclusive lock, or an exclusive lock is· requested when
another process holds any lock, the lock request will block until the lock can be obtained. Because
shared and exclusive locks are advisory only, even if a process has obtained a lock on a file, another
process may access the file.

Locks are applied· or removed only on open files. This means that locks can be manipulated
without needing to close and reopen a file. This is useful, for example, when a process wishes to
apply a shared lock, read some information and determine whether an update is required, then apply
an exclusive lock and update the file.

A request for a lock will cause a process to block if the lock can not be immediately obtained.
In certain instances this is unsatisfactory. For example, a process that wants only to check if a lock is
present would require a separate mechanism to find out this information. Consequently, a process
may specify that its locking request should return with an error if a lock can not be immediately
obtained. Being able to conditionally request a lock is. useful to "daemon" processes that wish to ser
vice a spooling area. If the first instance of the daemon locks the directory where spooling takes
place, later daemon processes can easily check to see if an active daemon exists. Since locks exist
only while the locking processes exist, lock files can never be left active after the processes .exit or if
the system crashes.

Almost no deadlock detection is attempted. The only deadlock detection done by the system is
that the file to which a lock is applied must not already have a lock of the same type (i.e. the second
of two successive calls to apply a lock of the same type will fail).

A Fast File System for UNIX SMM:l4-13

S.3. Symbolic links
The traditional UNIX file system allows multiple directory entries in the same file system to

reference a single file. Each directory entry "links" a file's name to an inode and its contents. The
link concept is fundamental; inodes do not reside in directories, but exist separately and are refer
enced by links. When all the links to an inode are removed, the inode is deallocated. This style of
referencing an inode does not allow references across physical file systems, nor does it support inter
machine linkage. To avoid these limitations symbolic links similar to the scheme used by Multics
[Feiertag7 l] have been added.

A symbolic link is implemented as a file that contains a pathname. When the system encounters
a symbolic link while interpreting a component of a pathname, the contents of the symbolic link is
prepended to the rest of the pathname, and this name is interpreted to yield the resulting pathname.
In UNIX, pathnames are specified relative to the root of the file system hierarchy, or relative to a
process's current working directory. Pathnames specified relative to the root are called absolute path
names. Pathnames specified relative to the current working directory are termed relative pathnames.
If a symbolic link contains an absolute pathname, the absolute pathname is used, otherwise the con
tents of the symbolic link is evaluated relative to the location of the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a pathname that
they are using. However certain system utilities must be able to detect and manipulate symbolic
links. Three new system calls provide the ability to detect, read, and write symbolic links; seven sys
tem utilities required changes to use these calls.

In future Berkeley software distributions it may be possible to reference file systems located on
remote machines using pathnames. When this occurs, it will be possible to create symbolic links that
span machines.

S.4. Rename
Programs that create a new version of an existing file typically create the new version as a tem

porary file and then rename the temporary file with the name of the target file. In the old UNIX file
system renaming required three calls to the system. If a program were interrupted or the system
crashed between these calls, the target file could be left with only its temporary name. To eliminate
this possibility the rename system call has been added. The rename call does the rename operation in
a fashion that guarantees the existence of the target name.

Rename works both on data files and directories. When renaming directories, the system must
do special validation checks to insure that the directory tree structure is not corrupted by the creation
of loops or inaccessible directories. Such corruption would occur if a parent directory were moved
into one of its descendants. The validation check requires tracing the descendents of the target direc
tory to insure that it does not include the directory being moved.

S.S. Quotas
The UNIX system has traditionally attempted to share all available resources to the greatest

extent possible. Thus any single user can allocate all the available space in the file system. In certain
environments this is unacceptable. Consequently, a quota mechanism has been added for restricting
the amount of file system resources that a user can obtain. The quota mechanism sets limits on both
the number of inodes and the number of disk blocks that a user may allocate. A separate quota can
be set for each user on each file system. Resources are given both a hard and a soft limit. When a
program exceeds a soft limit, a warning is printed on the users terminal; the offending program is not
terminated unless it exceeds its hard limit. The idea is that users should stay below their soft limit
between login sessions, but they may use more resources while they are actively working. To
encourage this behavior, users are warned when logging in if they are over any of their soft limits. If
users fails to correct the problem for too many login sessions, they are eventually reprimanded by
having their soft limit enforced as their hard limit.

SMM:l4-14 A Fast File System for UNIX

Acknowledgements
We thank Robert Elz for his ongoing interest in the new file system, and for adding disk quotas

in a rational and efficient manner. We also acknowledge Dennis Ritchie for his suggestions on the
appropriate modifications to the user interface. We appreciate Michael Powell's explanations on how
the DEMOS file system worked; many of his ideas were used in this implementation. Special com
mendation goes to Peter Kessler and Robert Henry for acting like real users during the early debug
ging stage when file systems were less stable than they should have been. The criticisms and sugges
tions by the reviews contributed significantly to the coherence of the paper. Finally we thank our
sponsors, the National Science Foundation under grant MCS80-05144, and the Defense Advance
Research Projects Agency (DoD) under ARPA Order No. 4031 monitored by Naval Electronic Sys
tem Command under Contract No. N00039-82-C-0235.

References

[Almes78]

[Bass81]

[Feiertag7 I]

[Ferrin82a]

[Ferrin82b]

[Kridle83]

[Kowalski78]

[Knuth75]

[Maruyama76]

[Nevalainen 77]

[Pechura83]

[Peterson83]

[Powell79]

[Ritchie74]

Almes, G., and Robertson, G. "An Extensible File System for Hydra" Proceed
ings of the Third International Conference on Software Engineering, IEEE, May
1978.

Bass, J. "Implementation Description for File Locking'", Onyx Systems Inc, 73
E. Trimble Rd, San Jose, CA 95131 Jan 1981.

Feiertag, R. J. and Organick, E. I., "The Multics Input-Output System",
Proceedings of the Third Symposium on Operating Systems Principles, ACM,
Oct 1971. pp 35-41

Ferrin, T.E., "Performance and Robustness Improvements in Version 7 UNIX",
Computer Graphics Laboratory Technical Report 2, School of Pharmacy,
University of California, San Francisco, January 1982. Presented at the 1982
Winter Usenix Conference, Santa Monica, California.

Ferrin, T.E., "Performance Issuses of VMUNIX Revisited", ;login: (The Usenix
Association Newsletter), Vol 7, #5, November 1982. pp 3-6

Kridle, R., and McKusick, M., "Performance Effects of Disk Subsystem Choices
for VAX Systems Running 4.2BSD UNIX", Computer Systems Research
Group, Dept ofEECS, Berkeley, CA 94720, Technical Report #8.

Kowalski, T. "FSCK - The UNIX System Check Program", Bell Laboratory,
Murray Hill, NJ 07974. March 1978

Kunth, D. "The Art of Computer Programming", Volume 3 - Sorting and
Searching, Addison-Wesley Publishing Company Inc, Reading, Mass, 1975. pp
506-549

Maruyama, K., and Smith, S. "Optimal reorganization of Distributed Space
Disk Files", CACM, 19, 11. Nov 1976. pp 634-642

Nevalainen, 0., Vesterinen, M. "Determining Blocking Factors for Sequential
Files by Heuristic Methods", The Computer Journal, 20, 3. Aug 1977. pp 245-
247
Pechora, M., and Schoeffler, J. "Estimating File Access Time of Floppy Disks",
CACM, 26, 10. Oct 1983. pp 754-763

Peterson, G. "Concurrent Reading While Writing", ACM Transactions on Pro
gramming Languages and Systems, ACM, 5, I. Jan 1983. pp 46-55

Powell, M. "The DEMOS File System", Proceedings of the Sixth Symposium
on Operating Systems Principles, ACM, Nov 1977. pp 33-42

Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System", CACM
17, 7. July 1974. pp 365-375

A Fast File System for UNIX SMM:14-15

[Smith8Ja]

[Smith81b]

[Symbolics8 i]

[Thompson78]

[Thompson80)

[Trivedi80]

[White80)

Smith, A. "Input/Output Optimization and Disk Architectures: A Survey'', Per
formance and Evaluation I. Jan 1981. pp 104-117
Smith, A. "Bibliography on File and 1/0 System Optimization and Related
Topics'', Operating Systems Review, 15, 4. Oct 1981. pp 39-54
"Symbolics File System", Symbolics Inc, 9600 DeSoto Ave, Chatsworth, CA
91311Aug1981.
Thompson, K. "UNIX Implementation", Bell System Technical Journal, 57, 6,
part 2. pp 1931-1946 July-August 1978.
Thompson, M. "Spice File System", Carnegie-Mellon University, Department
of Computer Science, Pittsburg, PA 15213 #CMU-CS-80, Sept 1980.

Trivedi, K. "Optimal Selection of CPU Speed, Device Capabilities, and File
Assignments", Journal of the ACM, 27, 3. July 1980. pp 457-473
White, R. M. "Disk Storage Technology", Scientific American, 243(2), August
1980.

Networking Implementation Notes
4.3BSD Edition

Samuel J. Leffler, William N. Joy, Robert S. Fabry, and Michael J. Karels

Computer Systems Research Group
Computer Science Division

Department of. Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

This report describes the internal structure of the networking facilities
developed for the 4.3BSD version of the UNIX* operating system for the VAXt.
These facilities are based on several central abstractions which structure the external
(user) view of network communication as well as the internal (system) implementa
tion.

The report documents the internal structure of the networking system. The
"Berkeley Software Architecture Manual, 4.3BSD Edition" (PSJ:6) provides a
description of the user interface to the networking facilities.

Revised June 5, 1986

"' UNIX is a trademark of Bell Laboratories.
t DEC, VAX, DECnet, and UNIBUS are trademarks of Digital Equipment Corporation.

SMM:15-2

1. Introduction

2. Overview

3. Goals

4. Internal address representation

5. Memory management

6. Internal layering
6.1. Socket layer
6.1.1. Socket state
6.1.2. Socket data queues
6.1.3. Socket connection queuing
6.2. Protocol layer(s)
6.3. Network-interface layer
6.3.1; UNIBUS interfaces

7. Socket/protocol interface

8. Protocol/protocol interface
8.1. pr _output
8.2. pr_input
8.3. pr_ctlinput
8.4. pr_ctloutput

9. Protocol/network-interface interface
9.1. Packet transmission
9.2. Packet reception

10. Gateways and routing issues
I 0.1. Routing tables
I 0.2. Routing table interface
I 0.3. User level routing policies

1 I. Raw sockets
11.1. Control blocks
11.2. Input processing
11.3. Output processing

12. Buffering and congestion control
12.1. Memory management
12.2. Protocol buffering policies
12.3. Queue limiting
12.4. Packet forwarding

13. Out of band data

14. Trailer protocols

Acknowledgements

References

Networking Implementation Notes

TABLE OF CONTENTS

Networking Implementation Notes SMM:15-3

1. Introduction
This report describes the internal structure of facilities added to the 4.2BSD version of the

UNIX operating system for the VAX, as modified in the 4.3BSD release. The system facilities pro
vide a uniform user interface to networking within UNIX. In addition, the implementation intro
duces a structure for network communications which may be used by system implementors in adding
new networking facilities. The internal structure is not visible to the user, rather it is intended to aid
implementors of communication protocols and network services by providing a framework which pro
motes code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system interface, as
described in the Berkeley Software Architecture Manual, 4.JBSD Edition [Joy86]. Basic understanding
of network communication concepts is assumed; where required any additional ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding, when
possible, those portions which are utilized only by the interprocess communication facilities.

2. Overview
If we consider the International Standards Organization's (ISO) Open System Interconnection

(OSI) model of network communication [IS081] [Zimmermann80], the networking facilities
described here correspond to a portion of the session layer (layer 3) and all of the transport and net
work layers (layers 2 and I, respectively).

The network layer provides possibly imperfect data transport services with minimal addressing
structure. Addressing at this level is normally host to host, with implicit or explicit routing optionally
supported by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and service
addressing are normally included. Reliability is usually managed by explicit acknowledgement of data
delivered. Failure to acknowledge a transfer results in retransmission of the data. Sequencing may be
handled by tagging each message handed to the network layer by a sequence number and maintaining
state at the endpoints of communication to utilize received sequence numbers in reordering data
which arrives out of order.

The session layer facilities may provide forms of addressing which are mapped into formats
required by the transport layer, service authentication and client authentication, etc. Various systems
also provide services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility rou
tines, then examine the internal layering. The contents of each layer and its interface are considered.
Certain of the interfaces are protocol implementation specific. For these cases examples have been
drawn from the Internet [Cerf78] protocol family. Later sections cover routing issues, the design of
the raw socket interface and other miscellaneous topics.

3. Goals
The networking system was designed with the goal of supporting multiple protocol families and

addressing styles. This required information to be "hidden" in common data structures which could
be manipulated by all the pieces of the system, but which required interpretation only by the proto
cols which "controlled" it. The system described here attempts to minimize the use of shared data
structures to those kept by a suite of protocols (a protocol family), and those used for rendezvous
between "synchronous" and "asynchronous" portions of the system (e.g. queues of data packets are
filled at interrupt time and emptied based on user requests).

A major goal of the system was to provide a framework within which new protocols and
hardware could be easily be supported. To this end, a great deal of effort has been extended to create
utility routines which hide many of the more complex and/or hardware dependent chores of network
ing. Later sections describe the utility routines and the underlying data structures they manipulate.

SMM:l5-4 Networking Implementation Notes

4. Internal address representation
Common to all portions of the system are two data structures. These structures are used to

represent addresses and various data objects. Addresses, internally are described by the sockaddr
structure,

struct sockaddr {
short
char

};

sa_family;
sa_data[l 4];

/* data format identifier */
I* address */

All addresses belong to one or more address families which define their format and interpretation.
The saJamily field indicates the address family to which the address belongs, and the sa_data field
contains the actual data value. The size of the data field, 14 bytes, was selected based on a study of
current address formats.* Specific address formats use private structure definitions that define the for
mat of the data field. The system interface supports larger address structures, although address
family-independent support facilities, for example routing and raw socket interfaces, provide only 14
bytes for address storage. Protocols that do not use those facilities (e.g. the current Unix domain)
may use larger data areas.

s. Memory management
A single mechanism is used for data storage: memory buffers, or mbufs. An mbuf is a structure

of the form:

struct mbuf {
struct
u_long
short
short

};

u_char
struct

mbuf *m_next;
m_off;
m_len;
m_type;
m_dat[MLEN];
mbuf *m_act;

I* next buffer in chain */
/* offset of data */
/* amount of data in this mbuf */
I* mbuf type (accounting) */
I* data storage *I
/* link in higher-level mbuf list */

The m_next field is used to chain mbufs together on linked lists, while the m_act field allows lists of
mbuf chains to be accumulated. By convention, the mbufs common to a single object (for example, a
packet) are chained together with the m_next field, while groups of objects are linked via the m_act
field (possibly when in a queue).

Each mbuf has a small data area for storing information, m_dat. The m_len field indicates the
amount of data, while the m_off field is an offset to the beginning of the data from the base of the
mbuf. Thus, for example, the macro mtod, which converts a pointer to an mbuf to a pointer to the
data stored in the mbuf, has the form

#define mtod(x,1) ((l)((int)(x) + (x)->m_oft))

(note the t parameter, a C type cast, which is used to cast the resultant pointer for proper assign
ment).

In addition to storing data directly in the mbufs data area, data of page size may be also be
stored in a separate area of memory. The mbuf utility routines maintain a pool of pages for this pur
pose and manipulate a private page map for such pages. An mbuf with an external data area may be
recognized by the larger offset to the data area; this is formalized by the macro M_HASCL(m), which
is true if the mbuf whose address is m has an external page cluster. An array of reference counts on
pages is also maintained so that copies of pages may be made without core to core copying (copies
are created simply by duplicating the reference to the data and incrementing the associated reference
counts for the pages). Separate data pages are currently used only when copying data from a user
process into the kernel, and when bringing data in at the hardware level. Routines which manipulate

• Later versions of the system may support variable length addresses.

Networking Implementation Notes SMM:l5-5

mbufs arc not normally aware whether data is stored directly in the mhuf data array. or if it is kept in
separate pages.

The following may he used to allocate and free mhufs:

m = m_gct(wait. type):
MGET(m. wait. type):

The subroutine m_~et and the macro .\/<iET each allocate an mhuf. placing its address in m.
The argument 1rni1 is either M_ WAIT or M_DONTWAIT according to whether allocation
should block or fail if no mhuf is available. The /.l"/11' is one of the predefined mhuf types for
use in accounting of mhuf allocation.

MCLGET(m):
This macro attempts to allocate an mhuf page cluster to associate with the mhuf m. If success
ful. the length of the mhuf is set to CLSIZE. the size of the page cluster.

n = m_free(m):
MFREE(m.n):

The routine m_tree and the macro M FRE/o each free a single mbuf. m. and any associated
external storage area. placing a pointer to its successor in the chain it heads. if any. in n.

m_freem(m):
This routine frees an mbuf chain headed by m.

The following utility routines are available for manipulating mbuf chains:

m = m_copy(mO. off, Jen):
The m_copy routine create a copy of all. or part. of a list of the mbufs in mO. Len bytes of data,
starting 119· bytes from the front of the chain. are copied. Where possible. reference counts on
pages are used instead of core to core copies. The original mbuf chain must have at least off+
/en bytes of data. If /en is specified as M_COPYALL. all the data present, offset as before, is
copied.

m_cat(m. n);
The mbuf chain, 11, is appended to the end of m. Where possible, compaction is performed.

m_adj(m. dift):
The mbuf chain.mis adjusted in size by d(O"bytes. If d(ff"is non-negative, dijfbytes are shaved
off the front of the mbuf chain. If diO' is negative. the alteration is performed from back to
front. No space is reclaimed in this operation: alterations are accomplished by changing the
m_ll'n and m_ojf fields of mbufs.

m = m_pullup(mO, size):
After a successful call to m_p11//11p, the mbuf at the head of the returned list, m, is guaranteed to
have at least si::l' bytes of data in contiguous memory within the data area of the mbuf (allowing
access via a pointer, obtained using the mtod macro. and allowing the mbuf to be located from a
pointer to the data area using dtom, defined below). If the original data was less than size bytes
long, /en was greater than the size of an mbuf data area (I 12 bytes), or required resources were
unavailable, m is 0 and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception. For exam
ple, if a packet is received and only 8 of the necessary 16 bytes required for a valid packet
header are present at the head of the list of mbufs representing the packet, the remaining 8 bytes
may be "pulled up" with a single m_p11//11p call. If the call fails the invalid packet will have
been discarded.

By insuring that mbufs always reside on 128 byte boundaries, it is always possible to locate the
mbuf associated with a data area by masking off the low bits of the virtual address. This allows
modules to store data structures in mbufs and pass them around without concern for locating the ori
ginal mbuf when it comes time to free the structure. Note that this works only with objects stored in
the internal data buffer of the mbuf. The dtom macro is used to convert a pointer into an mbufs
data area to a pointer to the mbuf,

SMM:l5-6 Networking Implementation Notes

#define dtom(x) ((struct mbuf *)((inl)x & -(MSIZE-1)))

Mbufs are used for dynamically allocated data structures such as sockets as well as memory allo
cated for packets and headers. Statistics are maintained on mbuf usage and can be viewed by users
using the new at (I) program.

6. Internal layering
The internal structure of the network system is divided into three layers. These layers

correspond to the services provided by the socket abstraction. those provided by the communication
protocols. and those provided by the hardware interfaces. The communication protocols are normally
layered into two or more individual cooperating layers. though they are collectively viewed in the sys
tem as one layer providing services supportive of the appropriate socket abstraction.

The following sections describe the properties of each layer in the system and the interfaces to
which each must conform.

6.1. Socket layer

The socket layer deals with the interprocess communication facilities provided by the system. A
socket is a bidirectional endpoint of communication which is "typed" by the semantics of communi
cation it supports. The system calls described in the Berkefe.I' St!fill'l/re Architecture Manual [Joy86]
are used to manipulate sockets.

A socket consists of the following data structure:

struct socket {
short
short
short
short
caddr_t
struct
struct
struct
short
struct
short
short
struct
struct
short
u_short
u_short
short

};

so_type; /* generic type *I
so_options; /* from socket call */
so_linger; /* time to linger while closing */
so_state; /* internal state flags */
so_pcb; /* protocol control block */
protosw *so_proto; /* protocol handle */
socket *so_head; /* back pointer to accept socket */
socket *so_qO; /* queue of partial connections */
so_qOlen; /* partials on so_qO */
socket *so_q; /* queue of incoming connections */
so_qlen; /* number of connections on so_q */
so_qlimit; /* max number queued connections */
sockbuf so_rcv; I* receive queue */
sockbuf so_snd; /* send queue */
so_timeo; I* connection timeout */
so_error; /* error affecting connection */
so_oobmark; /* chars to oob mark */
so_pgrp; /* pgrp for signals */

Each socket contains two data queues, so_rcv and so_snd, and a pointer to routines which pro
vide supporting services. The type of the socket, so_type is defined at socket creation time and used in
selecting those services which are appropriate to support it. The supporting protocol is selected at
socket creation time and recorded in the socket data structure for later use. Protocols are defined by
a table of procedures, the protosw structure, which will be described in detail later. A pointer to a
protocol-specific data structure, the "protocol control block," is also present in the socket structure.
Protocols control this data structure, which normally includes a back pointer to the parent socket
structure to allow easy lookup when returning information to a user (for example, placing an error
number in the so_error field). The other entries in the socket structure are used in queuing connec
tion requests, validating user requests, storing socket characteristics (e.g. options supplied at the time
a socket is created), and maintaining a socket's state.

Networking Implementation Notes SMM:IS-7

Processes "rendezvous at a socket" in many instances. For instance. when a process wishes to
extract data from a socket's receive queue and it is empty. or lacks sufficient data to satisfy the
request. the process blocks. supplying the address of the receive queue as a "wait channel' to be used
in notification. When data arrives for the process and is placed in the socket's queue. the blocked
process is identified by the fact it is waiting "on the queue."

6.1.1. Socket state

A socket's state is defined from the following:

#define SS_NOFDREF
#define SS_ISCONNECTED
#define SS_ISCONNECTING
#define SS_ISDISCONNECTING
#define SS_CANTSENDMORE
#define SS_CANTRCVMORE
#define SS_RCV A TMARK

#define SS_PRIV
#define SS_NBIO
#define SS_ASYNC

OxOOI
Ox002
Ox004
Ox008
OxOIO
Ox020
Ox040

Ox080
OxlOO
Ox200

I* no tile table ref any more */
I* socket connected to a peer */
I* in process of connecting to peer */
I* in process of disconnecting*/
I* can't send more data to peer*/
I* can't receive more data from peer*/
I* at mark on input */

I* privileged */
/* non-blocking ops */
I* async i/o notify */

The state of a socket is manipulated both by the protocols and the user (through system calls).
When a socket is created. the state is defined based on the type of socket. It may change as control
actions are performed, for example connection establishment. It may also change according to the
type of input/output the user wishes to perform. as indicated by options set with .kntl. "Non
blocking" 1/0 implies that a process should never be blocked to await resources. Instead, any call
which would block returns prematurely with the error EWOULDBLOCK, or the service request may
be partially fulfilled, e.g. a request for more data than is present.

If a process requested "asynchronous" notification of events related to the socket, the SIGIO sig
nal is posted to the process when such events occur. An event is a change in the socket's state; exam
ples of such occurrences are: space becoming available in the send queue, new data available in the
receive queue, connection establishment or disestablishment, etc.

A socket may be marked "privileged" if it was created by the super-user. Only privileged sock
ets may bind addresses in privileged portions of an address space or use "raw" sockets to access lower
levels of the network.

6.1.2. Socket data queues

A socket's data queue contains a pointer to the data stored in the queue and other entries
related to the management of the data. The following structure defines a data queue:

struct sockbuf {
u_short
u_short
u_short
u_short
u_short
short

};

struct
struct
short

sb_cc;
sb_hiwat;
sb_mbcnt;
sb_mbmax;
sb_lowat;
sb_timeo;
mbuf *sb_mb;
proc *sb_sel;
sb_flags;

I* actual chars in buffer*/
I* max actual char count */
/* chars of mbufs used */
I* max chars of mbufs to use */
I* low water mark */
I* timeout *I
I* the mbuf chain */
I* process selecting read/write */
I* flags, see below *I

Data is stored in a queue as a chain of mbufs. The actual count of data characters as well as
high and low water marks are used by the protocols in controlling the flow of data. The amount of
buffer space (characters of mbufs and associated data pages) is also recorded along with the limit on

SMM:lS-8 Networking Implementation Notes

buffer allocation. The socket routines cooperate in implementing the flow control policy by blocking
a process when it requests to send data and the. high water mark has been reached, or when it
requests to receive data and less than the low water mark is present (assuming non-blocking 1/0 has
not been specified).*

When a socket is created, the supporting protocol "reserves" space for the send and receive
queues of the socket. The limit on buffer allocation is set somewhat higher than the limit on data
characters to account for the granularity of buffer allocation. The actual storage associated with a
socket queue may fluctuate during a socket's lifetime, but it is assumed that this reservation will
always allow a protocol to acquire enough memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing various
portions of the interprocess communications facilities and will not be described here.

Data queued at a socket is stored in one of two styles. Stream-oriented sockets queue data with
no addresses, headers or record boundaries. The data are in mbufs linked through the m_next field.
Buffers containing access rights may be present within the chain if the underlying protocol supports
passage of access rights. Record-oriented sockets, including datagram sockets, queue data as a list of
packets: the sections of packets are distinguished by the types of the mbufs containing them. The
mbufs which comprise a record are linked through the m_next field; records are linked from the
m_act field of the first mbuf of one packet to the first mbuf of the next. Each packet begins with an
mbuf containing the "from" address if the protocol provides it, then any buffers containing access
rights. and finally any buffers containing data. If a record contains no data, no data buffers are
required unless neither address nor access rights are present.

A socket queue has a number of flags used in synchronizing access to the data and in acquiring
resources:

#define SB_LOCK
#define SB_ WANT
#define SB_ WAIT
#define SB_SEL
#define SB_COLL

OxOl
Ox02
Ox04
Ox OS
Ox IO

I* lock on data queue (so_rcv only) */
I* someone is waiting to lock */
I* someone is waiting for data/space */
I* buffer is selected */
I* collision selecting*/

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket connection queuing

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two ends are considered
distinct. One end is termed active, and generates connection requests. The other end is called passive
and accepts connection requests.

From the passive side, a socket is marked with SO_ACCEPTCONN when a listen call is made,
creating two queues of sockets: so_qO for connections in progress and so_q for connections already
made and awaiting user acceptance. As a protocol is preparing incoming connections, it creates a
socket structure queued on so_qO by calling the routine sonewconn(). When the connection is esta
blished, the socket structure is then transferred to so_q, making it available for an accept.

If an SO_ACCEPTCONN socket is closed with sockets on either so_qO or so_q, these sockets are
dropped, with notification to the peers as appropriate.

6.2. Protocol layer(s)

Each socket is created in a communications domain, which usually implies both an addressing
structure (address family) and a set of protocols which implement various socket types within the
domain (protocol family). Each domain is defined by the following structure:

* The low-water mark is always presumed to be 0 in the current implementation.

Networking Implementation Notes

struct domain (

};

int dom_family; /* PF _xxx */
char *dom_name;
int (*dom_init)(); /* initialize domain data structures */
int (*dom_externalize)(); /* externalize access rights */
int (*dom_dispose)(); /* dispose of internalized rights */
struct protosw *dom_protosw, *dom_protoswNPROTOSW;
struct domain *dom_next;

SMM:l5-9

At boot time, each domain configured into the kernel is added to a linked list of domain. The
initialization procedure of each domain is then called. After that time, the domain structure is used
to locate protocols within the protocol family. It may also contain procedure references for externali
zation of access rights at the receiving socket and the disposal of access rights that are not received.

Protocols are described by a set of entry points and certain socket-visible characteristics, some
of which are used in deciding which socket type(s) they may support.

An entry in the "protocol switch" table exists for each protocol module configured into the sys
tem. It has the following form:

struct protosw (
short pr_type;
struct domain *pr_domain;
short pr_protocol;
short pr _flags;

I* protocol-protocol hooks */
int (*pr_input)();
int (*pr_output)();
int (*pr_ctlinput)();
int (*pr_ctloutput)();

/* user-protocol hook */
int (*pr_usrreq)();

!* utility hooks */
int (*pr_init)();
int (*pr_fasttimo)();
int (*pr_slowtimo)();
int (*pr_drain)();

};

I* socket type used for *I
!* domain protocol a member of*/
!* protocol number */
!* socket visible attributes */

!* input to protocol (from below) */
!* output to protocol (from above) */
/* control input (from below) */
/* control output (from above) */

!* user request */

!* initialization routine */
!* fast timeout (200ms) */
!* slow timeout (500ms) */
I* flush any excess space possible */

A protocol is called through the pr _init entry before any other. Thereafter it is called every 200
milliseconds through the prJasttimo entry and every 500 milliseconds through the pr_slowtimo for
timer based actions. The system will call the pr _drain entry if it is low on space and this should
throw away any non-critical data.

Protocols pass data between themselves as chains of mbufs using the pr _input and pr _output
routines. Pr _input passes data up (towards the user) and pr _output passes it down (towards the net
work); control information passes up and down on pr _ct/input and pr _ct/output. The protocol is
responsible for the space occupied by any of the arguments to these entries and must either pass it
onward or dispose of it. (On output, the lowest level reached must free buffers storing the arguments;
on input, the highest level is responsible for freeing buffers.)

The pr _usrreq routine interfaces protocols to the socket code and is described below.

The pr _j/ags field is constructed from the following values:

SMM:l5-10

#define PR_A TO MIC
#define PR_ADDR
#define PR_CONNREQUIRED
#define PR_ W ANTRCVD
#define PR_RIGHTS

OxOl
Ox02
Ox04
Ox OS
OxlO

Networking Implementation Notes

I* exchange atomic messages only *I
I* addresses given with messages */
I* connection required by protocol */
I* want PRU_RCVD calls*/
I* passes capabilities */

Protocols which are connection-based specify the PR~CONNREQUIRED flag so that the socket rou
tines will never attempt to send data before a connection has been established. If the
PR_ W ANTRCVD flag is set, the socket routines will notify the protocol when the user has removed
data from the socket's receive queue. This allows the protocol to implement acknowledgement on
user receipt, and also update windowing information based on the amount of space available in the
receive queue. The PR_ADDR field indicates that any.data placed in the socket's receive queue will
be preceded by the address of the sender. The PR_A TO MIC flag specifies that each user request to
send data must be performed in a single protocol send request; it is the protocol's responsibility to
maintain record boundaries on data to be sent. The PR_RIGHTS flag indicates that the protocol
supports the passing of capabilities; this is currently used only by the protocols in the UNIX protocol
family.

When a socket is created, the socket routines scan the protocol table for the domain looking for
an appropriate protocol to support the type of socket being created. The pr _type field contains one of
the possible socket types (e.g. SOCK_STREAM), while the pr _domain is a back pointer to the domain
structure. The pr _protocol field contains the protocol number of the protocol, normally a well-known
value.

6.3. Network-interface layer

Each network-interface configured into a system defines a path through which packets may be
sent and received. Normally a hardware device is associated with this interface, though there is no
requirement for this (for example, all systems have a software "loopback" interface used for debug
ging and performance analysis). In addition to manipulating the hardware device, an interface
module is responsible for encapsulation and decapsulation of any link-layer header information
required to deliver a message to its destination. The selection of which interface to use in delivering
packets is a routing decision carried out at a higher level than the network-interface layer. An inter
face may have addresses in one or more address families. The address is set at boot time using an
ioctl on a socket in the appropriate domain; this operation is implemented by the protocol family,
after verifying the operation through the device ioctl entry.

An interface is defined by the following structure,

Networking Implementation Notes

struct ifnet (
char
short
short
short
short
struct
struct
int
int
int
int
int
int
int
int
int
int
struct

};

*if_name;
if_ unit;
if_mtu;
if_flags;
if_ timer;
ifaddr *if_addrlist;
ifqueue if_snd;
(*if_init)();
(*if_output)();
(*if_ioctl)();
(*if_reset)();
(*if_ watchdog)();
if_ipackets;
if_ierrors;
if_opackets;
if_oerrors;
if_ collisions;
ifnet *if_next;

!* name, e.g. "en" or "lo" */
I* sub-unit for lower level driver */
I* maximum transmission unit */
I* up/down, broadcast, etc. *I
I* time 'ti! if_ watchdog called*/
I* list of addresses of interface */
I* output queue *I
I* init routine */
I* output routine *I
I* ioctl routine *I
I* bus reset routine *I
I* timer routine */
I* packets received on interface */
I* input errors on interface */
I* packets sent on interface *I
I* output errors on interface */
I* collisions on cs ma interfaces *I

Each interface address has the following form:

struct ifaddr (

};

struct sockaddr ifa_addr; /* address of interface *I
union (

struct sockaddr ifu_broadaddr;
sockaddr ifu_dstaddr; struct

} ifa_ifu;
struct ifnet *ifa_ifp;
struct ifaddr *ifa_next;

I* back-pointer to interface */
I* next address for interface *I

#define ifa_broadaddr ifa_ifu.ifu_broadaddr I* broadcast address *I
#define ifa_dstaddr ifa_ifu.ifu_dstaddr I* other end of p-to-p link*/

SMM:l5-l l

The protocol generally maintains this structure as part of a larger structure containing additional
information concerning the address.

Each interface has a send queue and routines used for initialization, if_init, and output,
if_output. If the interface resides on a system bus, the routine if_reset will be called after a bus reset
has been performed. An interface may also specify a timer routine, if_watchdog; if if_timer is non
zero, it is decremented once per second until it reaches zero, at which time the watchdog routine is
called.

The state of an interface and certain characteristics are stored in the if_Jlags field. The following
values are possible:

#define
#define
#define
#define
#define
#define
#define
#define

IFF_UP
IFF _BROADCAST
IFF_DEBUG
IFF _LOOPBACK
IFF _porNTOPOINT
IFF _NOTRAILERS
IFF _RUNNING
IFF_NOARP

Oxl
Ox2
Ox4
Ox8
OxlO
Ox20
Ox40
Ox80

I* interface is up */
I* broadcast is possible */
I* turn on debugging *I
I* is a loopback net */
I* interface is point-to-point link*/
I* avoid use of trailers */
I* resources allocated *I
I* no address resolution protocol */

If the interface is connected to a network which supports transmission of broadcast packets, the
IFF _BROADCAST flag will be set and the ifa_broadaddr field will contain the address to be used in

SMM:IS-12 Networking Implementation Notes

sending or accepting a broadcast packet. If the interface is associated with a point-to-point hardware
link (for example, a DEC DMR-11), the IFF _POINTOPOINT flag will be set and ifa_dstaddr will
contain the address of the host on the other side of the connection. These addresses and the local
address of the interface, if_addr, are used in filtering incoming packets. The interface sets
!FF _RUNNING after it has allocated system resources and posted an initial read on the device it
manages. This state bit is used to avoid multiple allocation requests when an interface's address is
changed. The IFF _NOTRAILERS flag indicates the interface should refrain from using a trailer
encapsulation on outgoing packets, or (where per-host negotiation of trailers is possible) that trailer
encapsulations should not be requested; zrai/er protocols are described in section 14. The
IFF _NOARP flag indicates the interface should not use an "address resolution protocol" in mapping
internetwork addresses to local network addresses.

Various statistics are also stored in the interface structure. These may be viewed by users using
the netstat(I) program.

The interface address and flags may be set with the SIOCSIFADDR and SIOCSIFFLAGS ioctls.
SIOCSIFADDR is used initially to define each interface's address; SIOGSIFFLAGS can be used to
mark an interface down and perform site-specific configuration. The destination address of a point
to-point link is set with SIOCSIFDSTADDR. Corresponding operations exist to read each value.
Protocol families may also support operations to set and read the broadcast address. In addition, the
SIOCGIFCONF ioctl retrieves a list of interface names and addresses for all interfaces and protocols
on the host.

6.3.1. UNIBUS interfaces

All hardware related interfaces currently reside on the UNIBUS. Consequently a common set of
utility routines for dealing with the UNIBUS has been developed. Each UNIBUS interface utilizes a
structure of the following form:

struct

);

ifubinfo {
short
short
struct
short

iff_uban;
iff_hlen;
uba_regs *iff_uba;
iff_flags;

!* uba number*/
/* local net header length *I
/* uba regs, in vm *I
/* used during uballoc's */

Additional structures are associated with each receive and transmit buffer, normally one each per
interface; for read,

struct ifrw {
caddr_t
short
short

#define IFRW_W

};

and for write,

int
int
struct

ifrw_addr;
ifrw_bdp;
ifrw_flags;
OxOI
ifrw_info;
ifrw_proto;
pte *ifrw _mr;

I* vi rt addr of header *I
I* unibus bdp */
I* type, etc. *I
/* is a transmit buffer */
/* value from ubaalloc *I
I* map register prototype */
I* base of map registers *I

Networking Implementation Notes

struct ifxmt {
struct
caddr_t
struct
struct
short
short

};
#define ifw_addr
#define ifw_bdp
#define ifw_flags
#define ifw_info
#define ifw_proto
#define ifw_mr

ifrw ifrw;
ifw_base;
pte ifw_wmap[IF_MAXNUBAMR];
mbuf *ifw_xtofree;
ifw_xswapd;
ifw_nmr;

ifrw.ifrw_addr
ifrw.ifrw _bdp
ifrw.ifrw _flags
ifrw.ifrw_info
ifrw.ifrw _proto
ifrw.ifrw_mr

SMM:l5-13

I* vi rt addr of buffer *I
I* base pages for output */
I* pages being dma'd out */
I* mask of clusters swapped *I
I* number of entries in wmap */

One of each of these structures is conveniently packaged for interfaces with single buffers for each
.direction, as follows:

struct ifuba {

};

struct
struct
struct

ifubinfo ifu_info;
ifrw ifu_r;
ifxmt ifu_xmt;

#define ifu_uban ifu_info.iff_uban
#define ifu_hlen ifu_info.iff_hlen
#define ifu_uba ifu_info.iff_uba
#define ifu_flags ifu_info.iff_flags
#define ifu_w ifu_xmt.ifrw
#define ifu_xtofree ifu_xmt.ifw _xtofree

The if_ubinfo structure contains the general information needed to characterize the 110-mapped
buffers for the device. In addition, there is a structure describing each buffer, including UNIBUS
resources held by the interface. Sufficient memory pages and bus map registers are allocated to each
buffer upon initialization according to the maximum packet size and header length. The kernel vir
tual address of the buffer is held in ifrw_addr, and the map registers begin at ifrw_mr. UNIBUS map
register ifrw_mr[-l] maps the local network header ending on a page boundary. UNIBUS data paths
are reserved for read and for write, given by ifrw _bdp. The prototype of the map registers for read
and for write is saved in ifrw_proto.

When write transfers are not at least half-full pages on page boundaries, the data are just copied
into the pages mapped on the UNIBUS and the transfer is started. If a write transfer is at least half a
page long and on a page boundary, UNIBUS page table entries are swapped to reference the pages,
and then the initial pages are remapped from ifw_wmap when the transfer completes. The mbufs
containing the mapped pages are placed on the ifw_xtofree queue to be freed after transmission.

When read transfers give at least half a page of data to be input, page frames are allocated from
a network page list and traded with the pages already containing the data, mapping the allocated
pages to replace the input pages for the next UNIBUS data input.

The following utility routines are available for use in writing network interface drivers; all use
the structures described above.

if_ubaminit(ifubinfo, uban, hlen, nmr, ifr, nr, ifx, nx);
if_ubainit(ifuba, uban, hlen, nmr);

if_ubaminit allocates resources on UNIBUS adapter uban, storing the information in the ifu
binfo, ifrw and ifxmt structures referenced. The ifr and ifx parameters are pointers to arrays of
ifrw and ifxmt structures whose dimensions are nr and nx, respectively. if_ubainit is a simpler,
backwards-compatible interface used for hardware with single buffers of each type. They are

SMM:15-14 Networking Implementation Notes

called only at boot time or after a UNIBUS reset. One data path (buffered or unbuffered,
depending on the ifu_Jlags field) is allocated for each buffer. The nmr parameter indicates the
number of UNIBUS mapping registers required to map· a maximal sized packet onto the
UNIBUS, while hlen specifies the size of a local network header, if any, which should be
mapped separately from the data (see the description of trailer protocols in chapter 14).
Sufficient UNIBUS mapping registers and pages of memory are allocated to initialize the input
data path for an initial read. For the output data path, mapping registers and pages of memory
are also allocated and mapped onto the UNIBUS. The pages associated with the output data
path are held in reserve in the event a write requires copying non-page-aligned data (see
if_ wubaput below). If if_ubainit is called with memory pages already allocated, they will be used
instead of allocating new ones (this normally occurs after a UNIBUS reset). A I is returned
when allocation and initialization are successful, 0 otherwise.

m = if_ubaget(ifubinfo, ifr, totlen, offO, ifp);
m = if_rubaget(ifuba, totlen, offO, ifp);

if_ubaget and if_rubaget pull input data out of an interface receive buffer and into an mbuf
chain. The first interface passes pointers to the ifubinfo structure for the interface and the ifrw
structure for the receive buffer; the second call may be used for single-buffered devices. tot/en
specifies the length of data to be obtained, not counting the local network header. If of!O is
non-zero, it indicates a byte offset to a trailing local network header which should be copied into
a separate mbuf and prepended to the front of the resultant mbuf chain. When the data amount
to at least a half a page, the previously mapped data pages are remapped into the mbufs and
swapped with fresh pages, thus avoiding any copy. The receiving interface is recorded as ifp, a
pointer to an ifnet structure, for the use of the receiving network protocol. A 0 return value
indicates a failure to allocate resources.

if_wubaput(ifubinfo, ifx, m);
if_ wubaput(ifuba, m); ·

if_ubaput and if_wubaput map a chain of mbufs onto a network interface in preparation for out
put. The first interface is used by devices with multiple transmit buffers. The chain includes
any local network header, which is copied so that it resides in the mapped and aligned 1/0
space. Page-aligned data that are page-aligned in the output buffer are mapped to the UNIBUS
in place of the normal buffer page, and the corresponding mbuf is placed on a queue to be freed
after transmission. Any other mbufs which contained non-page-sized data portions are copied
to the l/O space and then freed. Pages mapped from a previous output operation (no longer
needed) are unmapped.

Networking Implementation Notes SMM:IS-15

7. Socket/protocol interface
The interface between the socket routines and the communication protocols is through the

pr _usrreq routine defined in the protocol switch table. The following requests to a protocol module
are possible:

#define PRU_ATTACH 0 I* attach protocol *I
#define PRU_DETACH I I* detach protocol *I
#define PRU_BIND 2 I* bind socket to address */
#define PRU_LISTEN 3 I* listen for connection */
#define PRU_CONNECT 4 I* establish connection to peer *I
#define PRU_ACCEPT 5 I* accept connection from peer *I
#define PRU_DISCONNECT 6 I* disconnect from peer *I
#define PRU_SHUTDOWN 7 I* won't send any more data*/
#define PRU_RCVD 8 /* have taken data; more room now */
#define PRU_SEND 9 /* send this data */
#define PRU_ABORT 10 I* abort (fast DISCONNECT, DETATCH) */
#define PRU_CONTROL II I* control operations on protocol */
#define PRU_SENSE 12 I* return status into m */
#define PRU_RCVOOB 13 I* retrieve out of band data */
#define PRU_SENDOOB 14 I* send out of band data */
#define PRU_SOCKADDR 15 I* fetch socket's address */
#define PRU_pEERADDR 16 I* fetch peer's address */
#define PRU_CONNECT2 17 I* connect two sockets */
I* begin for protocols internal use *I
#define PRU_FASTTIMO 18 I* 200ms timeout*/
#define PRU_SLOWTIMO 19 I* 500ms timeout */
#define PRU_PROTORCV 20 /* receive from below *I
#define PRU_pRQTOSEND 21 /* send to below *I

A call on the user request routine is of the form,

error = (*protosw[].pr_usrreq)(so, req, m, addr, rights);
int error; struct socket *so; int req; struct mbuf *m, *addr, *rights;

The mbuf data chain m is supplied for output operations and for certain other operations where it is
to receive a result. The address addr is supplied for address-oriented requests such as PRU_BIND
and PRU_CONNECT. The rights parameter is an optional pointer to an mbuf chain containing
user-specified capabilities (see the sendmsg and recvmsg system calls). The protocol is responsible for
disposal of the data mbuf chains on output operations. A non-zero return value gives a UNIX error
number which should be passed to higher level software. The following paragraphs describe each of
the requests possible.

PRU_ATTACH
When a protocol is bound to a socket (with the socket system call) the protocol module is called
with this request. It is the responsibility of the protocol module to allocate any resources neces
sary. The "attach" request will always precede any of the other requests, and should not occur
more than once.

PRU_DETACH
This is the antithesis of the attach request, and is used at the time a socket is deleted. The pro
tocol module may deallocate any resources assigned to the socket.

PRU_BIND
When a socket is initially created it has no address bound to it. This request indicates that an
address should be bound to an existing socket. The protocol module must verify that the
requested address is valid and available for use.

PRU_LISTEN
The "listen" request indicates the user wishes to listen for incoming connection requests on the

SMM:l5-!6 Networking Implementation Notes

associated socket. The protocol module should perform any state changes needed to carry out
this request (if possible). A "listen" request always precedes a request to accept a connection.

PRU_CONNECT
The "connect" request indicates the user wants to a establish an association. The addr parame
ter supplied describes the peer to be connected to. The effect of a connect request may vary
depending on the protocol. Virtual circuit protocols, such as TCP [Postel8 lb], use this request
to initiate establishment of a TCP connection. Datagram protocols, such as UDP [Postel80],
simply record the peer's address in a private data structure and use it to tag all outgoing packets.
There are no restrictions on how many times a connect request may be used after an attach. If
a protocol supports the notion of multi-casting, it is possible to use multiple connects to estab
lish a multi-cast group. Alternatively, an association may be broken by a PRU_DISCONNECT
request, and a new association created with a subsequent connect request; all without destroying
and creating a new socket.

PRU_ACCEPT
Following a successful PRU_LISTEN request and the arrival of one or more connections, this
request is made to indicate the user has accepted the first connection on the queue of pending
connections. The protocol module should fill in the supplied address buffer with the address of
the connected party.

PRU_DJSCONNECT
Eliminate an association created with a PRU_CONNECT request.

PRU_SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the addr parameter indi
cates the direction of the shutdown, as encoded in the soshutdown system call). The protocol
may, at its discretion, deallocate any data structures related to the shutdown and/or notify a
connected peer of the shutdown.

PRU_RCVD
This request is made only if the protocol entry in the protocol switch table includes the
PR_ W ANTRCVD flag. When a user removes data from the receive queue this request will be
sent to the protocol module. It may be used to trigger acknowledgements, refresh windowing
information, initiate data transfer, etc.

PRU_SEND
Each user request to send data is translated into one or more PRU_SEND requests (a protocol
may indicate that a single user send request must be translated into a single PRU_SEND
request by specifying the PR_A TO MIC flag in its protocol description). The data to be sent is
presented to the protocol as a list of mbufs and an address is, optionally, supplied in the addr
parameter. The protocol is responsible for preserving the data in the socket's send queue if it is
not able to send it immediately, or if it may need it at some later time (e.g. for retransmission).

PRU_ABORT
This request indicates an abnormal termination of service. The protocol should delete any
existing association(s).

PRU_CONTROL
The "control" request is generated when a user performs a UNIX ioctl system call on a socket
(and the 'ioctl is not intercepted by the socket routines). It allows protocol-specific operations to
be provided outside the scope of the common socket interface. The addr parameter contains a
pointer to a static kernel data area where relevant information may be obtained or returned.
The m parameter contains the actual ioctl request code (note the non-standard calling conven
tion). The rights parameter contains a pointer to an ifnet structure if the ioctl operation pertains
to a particular network interface.

PRU_SENSE
The "sense" request is generated when the user makes an fstat system call on a socket; it
requests status of the associated socket. This currently returns a standard stat structure. It typi
cally contains only the optimal transfer size for the connection (based on buffer size, windowing

Networking Implementation Notes SMM:IS-17

information and maximum packet size). The m parameter contains a pointer to a static kernel
data area where the status buffer should be placed.

PRU_RCVOOB
Any "out-of-band" data presently available is to be returned. An mbuf is passed to the protocol
module, and the protocol should either place data in the mbuf or attach new mbufs to the one
supplied if there is insufficient space in the single mbuf. An error may be returned if out-of
band data is not (yet) available or has already been consumed. The addr parameter contains
any options such as MSG_PEEK to examine data without consuming it.

PRU_SENDOOB
Like PRU_SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to it. The address (with
protocol specific format) is returned in the addr parameter.

PRU_PEERADDR
The address of the peer to which the socket is connected is returned. The socket must be in a
SS_ISCONNECTED state for this request to be made to the protocol. The address format (pro
tocol specific) is ~eturned in the addr parameter.

PRU_CONNECT2
The protocol module is supplied two sockets and requested to establish a connection between
the two without binding any addresses, if possible. This call is used in implementing the system
call.

The following requests are used internally by the protocol modules and are never generated by
the socket routines. In certain instances, they are handed to the pr _usrreq routine solely for conveni
ence in tracing a protocol's operation (e.g. PRU_SLOWTIMO).

PRU_FASTTIMO
A "fast timeout" has occurred. This request is made when a timeout occurs in the protocol's
pr_Jastimo routine. The addr parameter indicates which timer expired.

PRU_SLOWTIMO
A "slow timeout" has occurred. This request is made when a timeout occurs in the protocol's
pr _slowtimo routine. The addr parameter indicates which timer expired.

PRU_PROTORCV
This request is used in the protocol-protocol interface, not by the routines. It requests reception
of data destined for the protocol and not the user. No protocols currently use this facility.

PRU_PROTOSEND
This request allows a protocol to send data destined for another protocol module, not a user.
The details of how data is marked "addressed to protocol" instead of "addressed to user" are
left to the protocol modules. No protocols currently use this facility.

8. Protocol/protocol interface
The interface between protocol modules is through the pr _usrreq, pr _inplll, pr _output,

pr _ctlinput, and pr _ctlolllput routines. The calling conventions for all but the pr _usrreq routine are
expected to be specific to the protocol· modules and are not guaranteed to be consistent across proto
col families. We will examine the conventions used for some of the Internet protocols in this section
as an example.

8.1. pr _output

The Internet protocol UDP uses the convention,

error = ildp_output(inp, m);
int error; struct inpcb *inp; struct mbuf *m;

where the inp, "internet protocol control block", passed between modules conveys per connection

SMM:IS-18 Networking Implementation Notes

state information. and the mbuf chain contains the data to be sent. UDP performs consistency
checks. appends its header. calculates a checksum. etc. before passing the packet on. UDP is based
on the Internet Protocol. IP [Postel8la]. as its transport. UDP passes a packet to the IP module for
output as follows:

error = ip_output(m. opt. ro. flags):
int error: struct mbuf •m. •opt: struct route *ro: int flags:

The call to IP's output routine is more complicated than that for UDP. as befits the additional
work the IP module must do. The m parameter is. the data to be sent. and the opt parameter is an
optional list of IP options which should be placed in the IP packet header. The ro parameter is is
used in making routing decisions (and passing them back to the caller for use in subsequent calls).
The final parameter . .flaK.1 contains flags indicating whether the user is allowed to transmit a broadcast
packet and if routing is to be performed. The broadcast flag may be inconsequential if the underlying
hardware does not support the notion of broadcasting.

All output routines return 0 on success and a UNIX error number if a failure occurred which
could be detected immediately (no buffer space available. no route to destination. etc.).

8.2. pr _input

Both UDP and TCP use the following calling convention.

(void) (*protosw[].pr_input)(m. ifp):
struct mbuf *m: struct ifnet *ifp;

Each mbuf list passed is a single packet to be processed by the protocol module. The interface from
which the packet was received is passed as the second parameter.

The IP input routine is a VAX software interrupt level routine, and so is not called with any
parameters. It instead communicates with network interfaces through a queue, ipintrq, which is
identical in structure to the queues used by the network interfaces for storing packets awaiting
transmission. The software interrupt is enabled by the network interfaces when they place input data
on the input queue.

8.3. pr_ctlinput

This routine is used to convey "control" information to a protocol module (i.e. information
which might be passed to the user, but is not data).

The common calling convention for this routine is,

(void) (*protosw[J.pr_ctlinput)(req, addr):
int req: struct sockaddr *addr;

The req parameter is one of the following,

Networking Implementation Notes

#define PRCIFDOWN 0
#define PRC _ROUTEDEAD I
#define PRCQUENCH 4
#define PRC _MSGSIZE 5
#define PRC _HOSTDEAD 6
#define PRCHOSTUNREACH 7
#define PRCUNREACH_NET 8
#define PRCUNREACH_HOST 9
#define PRCUNREACH_PROTOCOL 10
#define PRCUNREACH PORT 11
#define PRCUNREACH_NEEDFRAG 12
#define PRCUNREACH_SRCFAIL 13
#define PRCREDIRECT _NET 14
#define PRCREDIRECT _HOST 15
#define PRC_REDIRECT_TOSNET 14
#define PRC_REDIRECT_TOSHOST 15
#define PRC_ TIMXCEED_INTRANS 18
#define PRC_ TIMXCEED_REASS 19
#define PRCPARAMPROB 20

SMM:15-19

!* interface transition */
!* select new route if possible */
!* some said to slow down */
!* message size forced drop */
!* normally from IMP */
!* ditto */
!* no route to network */
!* no route to host */
!* dst says bad protocol */
!* bad port # *!
!* IP _OF caused drop */
!* source route failed */
!* net routing redirect */
!* host routing redirect */
!* redirect for type of service & net */
!* redirect for tos & host */
!* packet lifetime expired in transit */
!* lifetime expired on reass q */
!* header incorrect */

while the addr parameter is the address to which the condition applies. Many of the requests have
obviously been derived from ICMP (the Internet Control Message Protocol [Postel8 lc]), and from
error messages defined in the 1822 host/IMP convention [BBN78]. Mapping tables exist to convert
control requests to UNIX error codes which are delivered to a user.

8.4. pr _ctloutput

This is the routine that implements per-socket options at the protocol level for getsockopt and
se/sockop/. The calling convention is,

error= (*protosw[].pr_ctloutput)(op, so, level, optname, mp);
int op; struct socket *so; int level, optname; struct mbuf **mp;

where op is one of PRCO_SETOPT or PRCO_GETOPT, so is the socket from whence the call ori
ginated, and level and optname are the protocol level and option name supplied by the user. The
results of a PRCO_GETOPT call are returned in an mbuf whose address is placed in mp before
return. On a PRCO_SETOPT call, mp contains the address of an mbuf containing the option data;
the mbuf should be freed before return.

9. Protocol/network-interface interface
The lowest layer in the set of protocols which comprise a protocol family must interface itself to

one or more network interfaces in order to transmit and receive packets. It is assumed that any rout
ing decisions have been made before handing a packet to a network interface, in fact this is absolutely
necessary in order to locate any interface at all (unless, of course, one uses a single "hardwired" inter
face). There are two cases with which to be concerned, transmission of a packet and receipt of a
packet; each will be considered separately.

9.1. Packet tran!!,mission

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it transmits a fully for
matted packet with the following call,

error = (*ifp->iLoutput)(ifp, m, dst)
int error; struct ifnet *ifp; struct mbuf *m; struct sockaddr *dst;

The output routine for the network interface transmits the packet m to the dst address, or returns an
error indication (a UNIX error number). In reality transmission may not be immediate or successful;
normally the output routine simply queues the packet on its send queue and primes an interrupt

SMM:IS-20 Networking Implementation Notes

driven routine to actually transmit the packet. For unreliable media. such as the Ethernet. "success
ful" transmission simply means that the packet has been placed on the cable without a collision. On
the other hand. an 1822 interface guarantees proper delivery or an error indication for each message
transmitted. The model employed in the networking system attaches no promises of delivery to the
packets handed to a network interface. and thus corresponds more closely to the Ethernet. Errors
returned by the output routine arc only those that can be detected immediately. and arc normally
trivial in nature (no buffer space. address format not handled. etc.). No indication is received if
errors arc detected atier the call has returned.

9.2. Packet reception

Each protocol family must have one or more "lowest level" protocols. These protocols deal
with internetwork addressing and are responsible for the delivery of incoming packets to the proper
protocol processing modules. In the PUP model [Boggs78] these protocols are termed Level I proto
cols. in the ISO model. network layer protocols. In this system each such protocol module has an
input packet queue assigned to it. Incoming packets received by a network interface are queued for
the protocol module. and a VAX software interrupt is posted to initiate processing.

Three macros are available for queuing and dequeuing packets:

IF_ENQUEUE(ifq. m)
This places the packet m at the tail of the queue ifq.

IF _DEQUEUE(ifq. m)
This places a pointer to the packet at the head of queue ifq in /11 and removes the packet from
the queue. A zero value will be returned in 111 if the queue is empty.

IF _DEQUEUEIF(ifq. m. ifp)
Like IF _DEQUEUE, this removes the next packet from the head of a queue and returns it in 111.

A pointer to the interface on which the packet was received is placed in ifp, a (struct ifnet *).

IF _PREPEND(ifq, m)
This places the packet m at the head of the queue ifq.
Each queue has a maximum length associated with it as a simple form of congestion control.

The macro IF _QFULL(ifq) returns I if the queue is filled, in which case the macro IF _DROP(ifq)
should be used to increment the count of the number of packets dropped, and the offending packet is
dropped. For example, the following code fragment is commonly found in a network interface's input
routine,

if (IF _QFULL(inq)) {
IF _DROP(inq);
m_freem(m);

} else
IF _ENQUEUE(inq, m);

IO. Gateways and routing issues
The system has been designed with the expectation that it will be used in an internetwork

environment. The "canonical" environment was envisioned to be a collection of local area networks
connected at one or more points through hosts with multiple network interfaces (one on each local
area network), and possibly a connection to a long haul network (for example, the ARPANET). In
such an environment, issues of gatewaying and packet routing become very important. Certain of
these issues, such as congestion control, have been handled in a simplistic manner or specifically not
addressed. Instead, where possible, the network system attempts to provide simple mechanisms upon
which more involved policies may be implemented. As some of these problems become better under
stood, the solutions developed will be incorporated into the system.

This section will describe the facilities provided for packet routing. The simplistic mechanisms
provided for congestion control are described in chapter 12.

Networking Implementation Notes SMM:l5-21

JO. I. Routing tables

The network system maintains a set of routing tables for selecting a network interface to use in
delivering a packet to its destination. These tables are of the form:

struct rtentry {
u_long
struct
struct
short
short

rt_hash;
sockaddr rt_dst;
sockaddr rt_gateway;
rt_ flags;
rt_refcnt;

u_long rt_use;
struct ifnet *rt_ifp;

};

I* hash key for lookups */
I* destination net or host */
I* forwarding agent */
I* see below *I
I* no. of references to structure */
I* packets sent using route */
I* interface to give packet to */

The routing information is organized in two separate tables, one for routes to a host and one for
routes to a network. The distinction between hosts and networks is necessary so that a single
mechanism may be used for both broadcast and multi-drop type networks, and also for networks built
from point-to-point links (e.g DECnet [DEC80)).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calculated by
routines defined for each address family; one based on the destination being a host, and one assuming
the target is the network portion of the address. Each hash value is used to locate a hash chain to
search (by taking the value modulo the hash table size) and the entire 32-bit value is then used as a
key in scanning the list of routes. Lookups are applied first to the routing table for hosts, then to the
routing table for networks. If both lookups fail, a· final lookup is made for a "wildcard" route (by
convention, network 0). The first appropriate route discovered is used. By doing this, routes to a
specific host on a. network may be present as well as routes to the network. This also allows a "fall
back" network route to be defined to a "smart" gateway which may then perform more intelligent
routing.

Each routing table entry contains a destination (the desired final destination), a gateway to
which to send the packet, and various flags which indicate the route's status and type (host or net
work). A count of the number of packets sent using the route is kept, along with a count of "held
references" to the dynamically allocated structure to insure that memory reclamation occurs only
when the route is not in use. Finally, a pointer to the a network interface is kept; packets sent using
the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as "direct" or "indirect". The
host/network distinction determines how to compare the rt_dst field during lookup. If the route is to
a network, only a packet's destination network is compared to the rt_dst entry stored in the table. If
the route is to a host, the addresses must match bit for bit.

The distinction between "direct" and "indirect" routes indicates whether the destination is
directly connected to the source. This is needed when performing local network encapsulation. If a
packet is destined for a peer at a host or network which is not directly connected to the source, the
internetwork packet header will contain the address of the eventual destination, while the local net
work header will address the intervening gateway. Should the destination be directly connected, these
addresses are likely to be identical, or a mapping between the two exists. The RTF _GATEWAY flag
indicates that the route is to an "indirect" gateway agent, and that the local network header should be
filled in from the rt_gateway field instead of from the final internetwork destination address.

It is assumed that multiple routes to the same destination will not be present; only one of multi
ple routes, that most recently installed, will be used.

Routing redirect control messages are used to dynamically modify existing routing table entries
as well as dynamically create new routing table entries. On hosts where exhaustive routing informa
tion is too expensive to maintain (e.g. work stations), the combination of wildcard routing entries and
routing redirect messages can be used to provide a simple routing management scheme without the
use of a higher level policy process. Current connections may be rerouted after notification of the

SMM:lS-22 Networking Implementation Notes

protocols by means of their pr _ct/input entries. Statistics are kept by the routing table routines on the
use of routing redirect messages and their affect on the routing tables. These statistics may be viewed
using

Status information other than routing redirect control messages may be used in the future, but
at present they are ignored. Likewise, more intelligent "metrics" may be used to describe routes in
the future, possibly based on bandwidth and monetary costs.

I 0.2. Routing table interface
A protocol accesses the routing tables through three routines, one to allocate a route, one to free

a route, and 01:1e to process a routing redirect control message. The routine rtal/oc performs route
allocation; it is called with a pointer to the following structure containing the desired destination:

struct route {
struct
struct

};

rtentry *ro_rt;
sockaddr ro_dst;

The route returned is assumed "held" by the caller until released with an rtfree call. Protocols which
implement virtual circuits, such as TCP, hold onto routes for the duration of the circuit's lifetime,
while connection-less protocols, such as UDP, allocate and free routes whenever their destination
address changes.

The routine rtredirect is called to process a routing redirect control message. It is called with a
destination address, the new gateway to that destination, and the source of the redirect. Redirects are
accepted only from the current router for the destination. If a non-wildcard route exists to the desti
nation, the gateway entry in the route is modified to point at the new gateway supplied. Otherwise, a
new routing table entry is inserted reflecting the information supplied. Routes to interfaces and
routes to gateways which are not directly accessible from the host are ignored.

10.3. User level routing policies
Routing policies implemented in user processes manipulate the kernel routing tables through

two ioctl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing entries,
respectively; the tables are read through the /dev/kmem device. The decision to place policy deci
sions in a user process implies that routing table updates may lag a bit behind the identification of
new routes, or the failure of existing routes, but this period of instability is normally very small with
proper implementation of the routing process. Advisory information, such as ICMP error messages
and IMP diagnostic messages, may be read from raw sockets (described in the next section).

Several routing policy processes have already been implemented. The system standard "routing
daemon" uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain up-to
date routing tables in our local environment. Interaction with other existing routing protocols, such
as the Internet EGP (Exterior Gateway Protocol), has been accomplished using a similar process.

II. Raw sockets
A raw socket is an object which allows users direct access to a lower-level protocol. Raw sockets

are intended for knowledgeable processes which wish to take advantage of some protocol feature not
directly accessible through the normal interface, or for the development of new protocols built atop
existing lower level protocols. For example, a new version of TCP might be developed at the user
level by utilizing a raw IP socket for delivery of packets. The raw IP socket interface attempts to pro
vide an identical interface to the one a protocol would have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, (possibly) augmented by
protocol-specific processing routines. This section will describe the core of the raw socket interface.

Networking Implementation Notes

11. l. Control blocks
Every raw socket has a protocol control block of the following form:

struct rawcb {

};

struct
struct
struct
struct
struct
struct
caddr_
struct
struct
short

rawcb *rcb_next;
rawcb •rcb_prev;
socket •rcb_socket;
sockaddr rcb_faddr;
sockaddr rcb_laddr;
sockproto rcb_proto;
rcb_pcb;
mbuf *rcb_options;
route rcb_route;
rcb_flags;

I* doubly linked list */

I* back pointer to socket */
I* destination address */
I* socket's address */
I* protocol family, protocol */
I* protocol specific stuff *I
I* protocol specific options *I
I* routing information *I

SMM:l5-23

All the control blocks are kept on a doubly linked list for performing lookups during packet dispatch.
Associations may be recorded in the control block and used by the output routine in preparing pack
ets for transmission. The rcb_proto structure contains the protocol family and protocol number with
which the raw socket is associated. The protocol, family and addresses are used to filter packets on
input; this will be described in more detail shortly. If any protocol-specific information is required, it
may be attached to the control block using the rcb_pcb field. Protocol-specific options for transmis
sion in outgoing packets may be stored in rcb_options.

A raw socket interface is datagram oriented. That is, each send or receive on the socket requires
a destination address. This address may be supplied by the user or stored in the control block and
automatically installed in the outgoing packet by the output routine. Since it is not possible to deter
mine whether an address is present or not in the control block, two flags, RAW _LAD DR and
RAW _FADDR, indicate if a local and foreign address are present. Routing is expected to be per
formed by the underlying protocol if necessary.

11.2. Input processing

Input packets are "assigned" to raw sockets based on a simple pattern matching scheme. Each
network interface or protocol gives unassigned packets to the raw input routine with the call:

raw _input(m, proto, src, dst)
struct mbuf *m; struct sockproto *proto, struct sockaddr *src, *dst;

The data packet then has a generic header prepended to it of the form

struct raw _header (
struct sockproto raw _proto;
struct sockaddr raw_dst;
struct sockaddr raw _src;

};

and it is placed in a packet queue for the "raw input protocol" module. Packets taken from this
queue are copied into any raw sockets that match the header according to the following rules,
1) The protocol family of the socket and header agree.

2) If the protocol number in the socket is non-zero, then it agrees with that found in the packet
header.

3) If a local address is defined for the socket, the address format of the local address is the same as
the destination address's and the two addresses agree bit for bit.

4) The rules of 3) are applied to the socket's foreign address and the packet's source address.

A basic assumption is that addresses present in the control block and packet header (as constructed
by the network interface and any raw input protocol module) are in a canonical form which may be

SMM:15-24 Networking Implementation Notes

"block compared".

11.3. Output processing

On output the raw pr _usrreq routine passes the packet and a pointer to the raw control block to
the raw protocol output routine for any processing required before it is delivered to the appropriate
network interface. The output routine is normally the only code required to implement a raw socket
interface.

12. Buffering and congestion control
One of the major factors in the performance of a protocol is the buffering policy used. Lack of a

proper buffering policy can force packets to be dropped, cause falsified windowing information to be
emitted by protocols, fragment host memory, degrade the overall host performance, etc. Due to prob
lems such as these, most systems allocate a fixed pool of memory to the networking system and
impose a policy optimized for "normal" network operation.

The networking system developed for UNIX is little different in this respect. At boot time a
fixed amount of memory is allocated by the networking system. At later times more system memory
may be requested as the need arises, but at no time is memory ever returned to the system. It is pos
sible to garbage collect memory from the network, but difficult. In order to perform this garbage col
lection properly, some portion of the network will have to be "turned off" as data structures are
updated. The interval over which this occurs must kept small compared to the average inter-packet
arrival time, or too much traffic may be lost, impacting other hosts on the network, as well as increas
ing load on the interconnecting mediums. In our environment we have not experienced a need for
such compaction, and thus have left the problem unresolved.

The mbuf structure was introduced in chapter 5. In this section a brief description will be given
of the allocation mechanisms, and policies used by the protocols in performing connection level
buffering.

12.1. Memory management

The basic memory allocation routines manage a private page map, the size of which determines
the maximum amount of memory that may be allocated by the network. A small amount of memory
is allocated at boot time to initialize the mbuf and mbuf page cluster free lists. When the free lists
are exhausted, more memory is requested from the system memory allocator if space remains in the
map. If memory cannot be allocated, callers may block awaiting free memory, or the failure may be
reflected to the caller immediately. The allocator will not block awaiting free map entries, however,
as exhaustion of the page map usually indicates that buffers have been lost due to a "leak." The
private page table is used by the network buffer management routines in remapping pages to be logi
cally contiguous as the need arises. In addition, an array of reference counts parallels the page table
and is used when multiple references to a page are present.

Mbufs are 128 byte structures, 8 fitting in a !Kbyte page of memory. When data is placed in
mbufs, it is copied or remapped into logically contiguous pages of memory from the network page
pool if possible. Data smaller than half of the size of a page is copied into one or more 112 byte
mbuf data areas.

12.2. Protocol buffering policies

Protocols reserve fixed amounts of buffering for send and receive queues at socket creation time.
These amounts define the high and low water marks used by the socket routines in deciding when to
block and unblock a process. The reservation of space does not currently result in any action by the
memory management routines.

Protocols which provide connection level flow control do this based on the amount of space in
the associated socket queues. That is, send windows are calculated based on the amount of free space
in the socket's receive queue, while receive windows are adjusted based on the amount of data await
ing transmission in the send queue. Care has been taken to avoid the "silly window syndrome"

Networking Implementation Notes SMM:15-25

described in [Clark82] at both the sending and receiving ends.

12.3. Queue limiting

Incoming packets from the network are always received unless memory allocation fails. How
ever, each Level I protocol input queue has an upper bound on the queue's length, and any packets
exceeding that bound are discarded. It is possible for a host to be overwhelmed by excessive network
traffic (for instance a host acting as a gateway from a high bandwidth network to a low bandwidth
network). As a "defensive" mechanism the queue limits may be adjusted to throttle network traffic
load on a host. Consider a host willing to devote some percentage of its machine to handling network
traffic. If the cost of handling an incoming packet can be calculated so that an acceptable "packet han
dling rate" can be determined, then input queue lengths may be dynamically adjusted based on a
host's network load and the number of packets awaiting processing. Obviously, discarding packets is
not a satisfactory solution to a problem such as this (simply dropping packets is likely to increase the
load on a network); the queue lengths were incorporated mainly as a safeguard mechanism.

12.4. Packet forwarding

When packets can not be forwarded because of memory limitations, the system attempts to gen
erate a "source quench" message. In addition, any other problems encountered during packet for
warding are also reflected back to the sender in the form of ICMP packets. This helps hosts avoid
unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an early stage of
network development, broadcast packets were forwarded and a "routing loop" resulted in network
saturation and every host on the network crashing.

13. Out of band data
Out of band data is a facility peculiar to the stream socket abstraction defined. Little agreement

appears to exist as to what its semantics should be. TCP defines the notion of "urgent data" as in
Iine, while the NBS protocols [Burruss81] and numerous others provide a fully independent logical
transmission channel along which out of band data is to be sent. In addition, the amount of the data
which may be sent as an out of band message varies from protocol to protocol; everything from I bit
to 16 bytes or more.

A stream socket's notion of out of band data has been defined as the lowest reasonable common
denominator (at least reasonable in our minds); clearly this is subject to debate. Out of band data is
expected to be transmitted out of the normal sequencing and flow control constraints of the data
stream. A minimum of I byte of out of band data and one outstanding out of band message are
expected to be supported by the protocol supporting a stream socket. It ·is a protocol's prerogative to
support larger-sized messages, or more than one outstanding out of band message at a time.

Out of band data is maintained by the protocol and is usually not stored in the socket's receive
queue. A socket-level option, SO_OOBINLINE, is provided to force out-of-band data to be placed in
the normal receive queue when urgent data is received; this sometimes amelioriates problems due to
loss of data when multiple out-of-band segments are received before the first has been passed to the
user. The PRU_SENDOOB and PRU_RCVOOB requests to the pr_usrreq routine are used in send
ing and receiving data.

SMM:l5-26 Networking Implementation Notes

14. Trailer protocols
Core to core copies can br. expensive. Consequently, a great deal of effort was spent in minimiz

ing such operations. The VAX architecture provides virtual memory hardware organized in page
units. To cut down on copy operations, data is kept in page-sized units on page-aligned boundaries
whenever possible. This allows data to be moved in memory simply by remapping the page instead
of copying. The mbuf ar-cl network interface routines perform page table manipulations where
needed, hiding the complexities of the VAX virtual memory hardware from higher level code.

Data enters the system in two ways: from the user, or from the network (hardware interface).
When data is copied from the user's address space into the system it is deposited in pages (if
sufficient data is present). This encourages the user to transmit information in messages which are a
multiple of the system page size.

Unfortunately, performing a similar operation when taking data from the network is very
·difficult. Consider the format of an incoming packet. A packet usually contains a local network
header followed by one or more headers used by the high level protocols, Finally, the data, if any, fol
lows these headers. Since the header information may be variable length, DMA'ing the eventual data
for the user into a page aligned area of memory is impossible without a priori knowledge of the for
mat (e.g., by supporting only a single protocol header format).

To allow variable length header information to be present and still ensure page alignment of
data, a special local network encapsulation may be used. This encapsulation, termed a trailer protocol
[Leffier84], places the variable length header information after the data. A fixed size local network
header is then prepended to the resultant packet. The local network header contains the size of the
data portion (in units of 512 bytes), and a .new trailer protocol header, inserted before the variable
length information, contains the size of the variable length header information. The following trailer
protocol header is used to store information regarding the variable length protocol header:

struct {

};

short
short

protocol;
length;

I* original protocol no. */
I* length of trailer */

The processing of the trailer protocol is very simple. On output, the local network header indi
cates that a trailer encapsulation is being used. The header also includes an indication of the number
of data pages present before the trailer protocol header. The trailer protocol header is initialized to
contain the actual protocol identifier and the variable length header size, and is appended to the data
along with the variable length header information.

On input, the interface routines identify the trailer encapsulation by the protocol type stored in
the local network header, then calculate the number of pages of data to find the beginning of the
trailer. The trailing information is copied into a separate mbuf and linked to the front of the resultant
packet.

Clearly, trailer protocols require cooperation between source and destination. In addition, they
are normally cost effective only when sizable packets are used. The current scheme works because the
local network encapsulation header is a fixed size, allowing OMA operations to be performed at a
known offset from the first data page being received. Should the local network header be variable
length this scheme fails.

Statistics collected indicate that as much as 200Kb/s can be gained by using a trailer protocol
with lKbyte packets. The average size of the variable length header was 40 bytes (the size of a
minimal TCP/IP packet header). If hardware supports larger sized packets, even greater gains may be
realized.

Networking Implementation Notes SMM:lS-27

Acknowledgements
The internal structure of the system is patterned after the Xerox PUP architecture [Boggs79],

while in certain places the Internet protocol family has had a great deal of influence in the design.
The use of software interrupts for process invocation is based on similar facilities found in the VMS
operating system. Many of the ideas related to protocol modularity, memory management, and net
work interfaces are based on Rob Gurwitz's TCP/IP implementation for the 4.1 BSD version of UNIX
on the VAX [Gurwitz8 l]. Greg Chesson explained his use of trailer encapsulations in Datakit, insti
gating their use in our system.

References
[Boggs79]

[BBN78]

[Cerf78]

[Clark82]

[DEC80]

[Gurwitz8 I]

[IS08I]

[Joy86]

[Leffier84]

[Postel SO]

[Postel8 la]

[Postel8lb]

[Postel8 Ic]

[Xerox81]

[Zimmermann80]

Boggs, D.R., J. F. Shoch, E. A. Taft, and R. M. Metcalfe; PUP: An Internetwork
Architecture. Report CSL-79-10. XEROX Palo Alto Research Center, July
1979.

Bolt Beranek and Newman; Specification for the Interconnection of Host and
IMP. BBN Technical Report 1822. May 1978.

Cerf, V. G.; The Catenet Model for Internetworking. Internet Working Group,
!EN 48. July 1978.

Clark, D. D.; Window and Acknowledgement Strategy in TCP, RFC-813. Net
work Information Center, SRI International. July 1982.

Digital Equipment Corporation; DECnet DIGITAL Network Architecture -
General Description. Order No. AA-Kl 79A-TK. October 1980.

Gurwitz, R. F.; VAX-UNIX Networking Support Project - Implementation
Description. Internetwork Working Group, JEN 168. January 1981.

International Organization for Standardization. ISO Open Systems Interconnec
tion - Basic Reference Model. ISO/TC 97/SC 16 N 719. August 1981.

Joy, W.; Fabry, R.; Leffler, S.; McKusick, M.; and Karels, M.; Berkeley Software
Architecture Manual, 4.3BSD Edition. UNIX Programmer's Supplementary
Documents, Vol. 1 (PS1:6). Computer Systems Research Group, University of
California, Berkeley. May, 1986.

Leffler, S.J. and Karels, M.J.; Trailer Encapsulations, RFC-893. Network Infor
mation Center, SRI International. April 1984.

Postel, J. User Datagram Protocol, RFC-768. Network Information Center,
SRI International. May 1980.

Postel, J., ed. Internet Protocol, RFC-791. Network Information Center, SRI
International. September 1981.

Postel, J., ed. Transmission Control Protocol, RFC-793. Network Information
Center, SRI International. September 1981.

Postel, J. Internet Control Message Protocol, RFC-792. Network Information
Center, SRI International. September 1981.

Xerox Corporation. Internet Transport Protocols. Xerox System Integration
Standard 028112. December 1981.

Zimmermann, H. OSI Reference Model - The ISO Model of Architecture for
Open Systems Interconnection. IEEE Transactions on Communications. Com-
28(4); 425-432. April 1980.

SENDMAIL - An Internetwork Mail Router

Eric Allmant

Britton-Lee, Inc.
1919 Addison Street, Suite 105.

Berkeley, California 94704.

ABSTRACT

Routing mail through a heterogenous internet presents many new problems.
Among the worst of these is that of address mapping. Historically, this has
been handled on an ad hoc basis. However, this approach has become un
manageable as internets grow.

Sendmail acts a unified "post office" to which all mail can be submitted.
Address interpretation is controlled by a production system, which can parse
both domain-based addressing and old-style ad hoc addresses. The produc
tion system is powerful enough to rewrite addresses in the message header to
conform to the standards of a number of common target networks, including
old (NCP/RFC733) Arpanet, new (TCP/RFC822) Arpanet, UUCP, and
Phonenet. Sendmail also implements an SMTP server, message queueing,
and aliasing.

Sendmail implements a general internetwork mail routing facility, featuring aliasing and
forwarding, automatic routing to network gateways, and flexible configuration.

In a simple network, each node has an address, and resources can be identified with a
host-resource pair; in particular, the mail system can refer to users using a host-username
pair. Host names and numbers have to be administered by a central authority, but usernames
can be assigned locally to each host.

In an internet, multiple networks with different characterstics and managements must
communicate. In particular, the syntax and semantics of resource identification change. Cer
tain special cases can be handled trivially by ad hoc techniques, such as providing network
names that appear local to hosts on other networks, as with the Ethernet at Xerox PARC.
However, the general case is extremely complex. For example, some networks require point
to-point routing, which simplifies the database update problem since only adjacent hosts must
be entered into the system tables, while others use end-to-end addressing. Some networks use
a left-associative syntax and others use a right-associative syntax, causing ambiguity in mixed
addresses.

Internet standards seek to eliminate these problems. Initially, these proposed expanding
the address pairs to address triples, consisting of {network, host, resource} triples. Network
numbers must be universally agreed upon, and hosts can be assigned locally on each network.
The user-level presentation was quickly expanded to address domains, comprised of a local

tA considerable part of this work was done while under the employ of the INGRES Project at the University of
California at Berkeley.

SENDMAIL - An Internetwork Mail Router SMM:16-1

SMM:l6-2 SENDMAIL - An Internetwork Mail Router

resource identification and a hierarchical domain specification with a common static root.
The domain technique separates the issue of physical versus logical addressing. For example,
an address of the form "eric@a.cc.berkeley.arpa" describes only the logical organization of the
address space.

Sendmail is intended to help bridge the gap between the totally ad hoc world of net
works that know nothing of each other and the clean, tightly-coupled world of unique network
numbers. It can accept old arbitrary address syntaxes, resolving ambiguities using heuristics
specified by the system administrator, as well as domain-based addressing. It helps guide the
<;on version of message formats between disparate networks. In short, sendmail is designed to
assist a graceful transition to consistent internetwork addressing schemes.

Section 1 discusses the design goals. for sendmail. Section 2 gives an overview of the
basic functions of the system. In section 3, details of usage are discussed. Section 4 com
pares sendmail to other internet mail routers, and an evaluation of sendmail is given in sec
tion 5, including future plans.

I. DESIGN GOALS

Design goals for sendmail include:

(I) Compatibility with the existing mail programs, including Bell version 6 mail, Bell
version 7 mail [UNIX83], Berkeley Mail [Shoens79], BerkNet mail [Schmidt79],
and hopefully UUCP mail [Nowitz78a, Nowitz78b]. ARPANET mail [Crocker77a,
Postel77] was also required.

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or
at least brought to the attention of a human for correct disposal; no message
should ever be completely lost. This goal was considered essential because of the
emphasis on mail in our environment. It has turned out to be one of the hardest
goals to satisfy, especially in the face of the many anomalous message formats pro
duced by various ARPANET sites. For example, certain sites generate improperly
formated addresses, occasionally causing error-message loops. Some hosts use
blanks in names, causing problems with UNIX mail programs that assume that an
address is one word. The semantics of some fields are interpreted slightly
differently by different sites. In summary, the obscure features of the ARPANET
niail protocol really are used and are difficult to support, but must be supported.

(3) Existing software to do actual delivery should be used whenever possible. This
goal derives as much from political and practical ccmsiderations as technical.

(4) Easy expansion to fairly complex environments, including multiple connections to
a single network type (such as with multiple UUCP or Ether nets [Metcalfe76]).
This goal requires consideration of the contents of an address as well as its syntax
in order to determine which gateway to use. For example, the ARP ANET is bring
ing up the TCP protocol to replace the old NCP protocol. No host at Berkeley
runs both TCP and NCP, so it is necessary to look at the ARPANET host name to
determine whether to route mail to an NCP gateway or a TCP gateway.

(5) Configuration should not be compiled into the code. A single compiled program
should be able to run as is at any site (barring such basic changes as the CPU type
or the operating system). We have found this seemingly unimportant goal to be
critical in real life. Besides the simple problems that occur when any program gets
recompiled in a different environment, many sites like to "fiddle" with anything
that they will be recompiling anyway.

(6) Sendmail must be able to let various groups maintain their own mailing lists, and
let individuals specify their own forwarding, without modifying the system alias

SENDMAIL - An Internetwork Mail Router SMM:16-3

file.

(7) Each user should be able to specify which mailer to execute to process mail being
delivered for him. This feature allows users who are using specialized mailers that
use a different format to build their environment without changing the system, and
facilitates specialized functions (such as returning an "I am on vacation" message).

(8) Network traffic should be minimized by batching addresses to a single host where
possible, without assistance from the user.

These goals motivated the architecture illustrated in figure I. The user interacts with
a mail generating and sending program. When the mail is created, the generator calls
sendmail, which routes the message to the correct mailer(s). Since some of the senders
may be network servers and some of the mailers may be network clients, sendmail may be
used as an internet mail gateway.

2. OVERVIEW

2.1. System Organization

Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it
collects a message generated by a user interface program (UIP) such as Berkeley Mail,
MS [Crocker77b], or MH [Borden79], edits the message as required by the destination
network, and calls appropriate mailers to do mail delivery or queueing for network
transmission 1• This discipline allows the insertion of new mailers at minimum cost. In
this sense sendmail resembles the Message Processing Module (MPM) of [Poste179b].

Figure I - Sendmail System Structure.

'except when mailing to a file, when sendmail does the delivery directly.

SMM:J6-4 SENDMAIL - An Internetwork Mail Router

2.2. Interfaces to the Outside World

There are three ways sendmail can communicate with the outside world, both in
receiving and in sending mail. These are using the conventional UNIX argument
vector/return status, speaking SMTP over a pair of UNIX pipes, and speaking SMTP
over an interprocess(or) channel.

2.2.J. Argument vector/exit status

This technique is the standard UNIX method for communicating with the pro
cess. A list of recipients is sent in the argument vector. and the message body is
sent on the standard input. Anything that the mailer prints is simply collected and
sent back to the sender if there were any problems. The exit status from the mailer
is collected after the message is sent. and a diagnostic is printed if appropriate.

2.2.2. SMTP over pipes

The SMTP protocol [Postel82] can be used to run an interactive lock-step
interface with the mailer. A subprocess is still created, but no recipient addresses
are passed to the mailer via the argument list. Instead, they are passed one at a
time in commands sent to the processes standard input. Anything appearing on the
standard output must be a reply code in a special format.

2.2.3. SMTP over an IPC connection

This technique is similar to the previous technique, except that it uses a
4.2bsd !PC channel [UNIX83]. This method is exceptionally flexible in that the
mailer need not reside on the same machine. It is normally used to connect to a
sendmail process on another machine.

2.3. Operational Description

When a sender wants to send a message, it issues a request to sendmail using one
of the three methods described above. Sendmail operates in two distinct phases. In
the first phase, it collects and stores the message. In the second phase, message
delivery occurs. If there were errors during processing during the second phase, send
mail creates and returns a new message describing the error and/or returns an status
code telling what went wrong.

2.3.J. Argument processing and address parsing

If sendmail is called using one of the two subprocess techniques, the argu
ments are first scanned and option specifications are processed. Recipient addresses
are then collected, either from the command line or from the SMTP RCPT com
mand, and a list of recipients is created. Aliases are expanded at this step, includ
ing mailing lists. As much validation as possible of the addresses is done at this
step: syntax is checked, and local addresses are verified, but detailed checking of
host names and addresses is deferred until delivery. Forwarding is also performed
as the local addresses are verified.

Sendmail appends each address to the recipient list after parsing. When a
name is aliased or forwarded, the old name is retained in the list, and a flag is set
that tells the delivery phase to ignore this recipient. This list is kept free from
duplicates, preventing alias loops and duplicate messages deliverd to the same reci
pient, as might occur if a person is in two groups.

SENDMAIL - An Internetwork Mail Router SMM:I6-5

2.3.2. Message collection

Sendmail then collects the message. The message should have a header at the
beginning. No formatting requirements are imposed on the message except that
they must be lines of text (i.e .. binary data is not allowed). The header is parsed
and stored in memory. and the body of the message is saved in a temporary file.

To simplify the program interface. the message is collected even if no
addresses were valid. The message will be returned with an error.

2.3.3. Message delivery

For each unique mailer and host in the rec1p1ent list, sendmai/ calls the
appropriate mailer. Each mailer invocation sends to all users receiving the message
on one host. Mailers that only accept one recipient at a time are handled properly.

The message is sent to the mailer using one of the same three interfaces used
to submit a message to sendmail. Each copy of the message is prepended by a cus
tomized header. The mailer status code is caught and checked, and a suitable error
message given as appropriate. The exit code must conform to a system standard or
a generic message ("Service unavailable") is given.

2.3.4. Queueing for retransmission

If the mailer returned an status that indicated that it might be able to handle
the mail later, sendmail will queue the mail and try again later.

2.3.5. Return to sender

If errors occur during processing, sendmail returns the message to the sender
for retransmission. The letter can be mailed back or written in the file "dead.letter"
in the sender's home directory2•

2.4. Message Header Editing

Certain editing of the message header occurs automatically. Header lines can be
inserted under control of the configuration file. Some lines can be merged; for exam
ple, a "From:" line and a "Full-name:" line can be merged under certain cir
cumstances.

2.5. Configuration File

Almost all configuration information is read at runtime from an ASCII file,
encoding macro definitions (defining the value of macros used internally), header
declarations (telling sendmail the format of header lines that it will process specially,
i.e., lines that it will add or reformat), mailer definitions (giving information such as
the location and characteristics of each mailer), and address rewriting rules (a limited
production system to rewrite addresses which is used to parse and rewrite the
addresses).

To improve performance when reading the configuration file, a memory image
can be provided. This provides a "compiled" form of the configuration file.

'Obviously, if the site giving the error is not the originating site, the only reasonable option is to mail back to
the sender. Also, there are many more error disposition options, but they only effect the error message - the "return
to sender" function is always handled in one of these two ways.

SMM:16-6 SENDMAIL - An Internetwork Mail Router

3. USAGE AND IMPLEMENTATION

3.1. Arguments

Arguments may be flags and addresses. Flags set various processing options. Fol
lowing flag arguments. address arguments may be given. unless we are running in
SMTP mode. Addresses follow the syntax in RFC'822 [C'rocker82] for ARPANET
address formats. In brief. the format is:

(1) Anything in parentheses is thrown away (as a comment).

(2) Anything in angle brackets (" < > ") is preferred over anything else. This rule
implements the ARPANET standard that addresses of the form

user name <machine-address>

will send to the electronic "machine-address" rather than the human "user
nar:ne."

(3) Double quotes (") quote phrases: backslashes quote characters. Backslashes
are more powerful in that they will cause otherwise equivalent phrases to com
pare differently - for example, user and "user"' are equivalent, but \user is
different from either of them.

Parentheses, angle brackets, and double quotes must be properly balanced and
nested. The rewriting rules control remaining parsing3•

3.2. Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival
storage of messages, useful for project administration and history. Programs are useful
al; recipients in a variety of situations, for example, to maintain a public repository of
systems messages (such as the Berkeley msgs program, or the MARS system [Satt
ley78]).

Any address passing through the initial parsing algorithm as a local address (i.e,
not appearing to be a valid address for another mailer) is scanned for two special cases.
If prefixed by a vertical bar (" I ") the rest of the address is processed as a shell com
mand. If the user name begins with a slash mark("/") the name is used as a file name,
instead of a login name.

Files that have setuid or setgid bits set but no execute bits set have those bits
honored if sendmail is running as root.

3.3. Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding
allows each user to reroute incoming mail destined for that account. Inclusion directs
sendmail to read a file for a list of addresses, and is normally used in conjunction with
aliasing.

3.3.1. Aliasing

Aliasing maps names to address lists using a system-wide file. This file is
indexed to speed access. Only names that parse as local are allowed as aliases; this
guarantees a unique key (since there are no nicknames for the local host).

'Disclaimer: Some special processing is don.e after rewriting local names; see below.

SENDMAIL - An Internetwork Mail Router SMM:l6-7

3.3.2. Forwarding

After aliasing, recipients that are local and valid are checked for the existence
of a ".forward" file in their home directory. If it exists, the message is not sent to
that user, but rather to the list of users in that file. Often this list will contain only
one address. and the feature will be used for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For
example. forwarding to:

.. I /usr/local/newmail myname"

will use a different incoming mailer.

3.3.3. Inclusion

Inclusion is specified in RFC 733 [Crocker77a] syntax:

:Include: pathname

An address of this form reads the file specified by pathname and sends to all users
listed in that file.

The intent is not to support direct use of this feature, but rather to use this as
a subset of aliasing. For example, an alias of the form:

project: :include:/usr/project/userlist

is a method of letting a project maintain a mailing list without interaction with the
system administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :include:
list is changed.

3.4. Message Collection

Once all recipient addresses are parsed and verified, the message is collected. The
message comes in two parts: a message header and a message body, separated by a
blank line.

The header is formatted as a series of lines of the form

field-name: field-value

Field-value can be split across lines by starting the following lines with a space or a tab.
Some header fields have special internal meaning, and have appropriate special process
ing. Other headers are simply passed through. Some header fields may be added
automatically, such as time stamps.

The body is a series of text lines. It is completely uninterpreted and untouched,
except that lines beginning with a dot have the dot doubled when transmitted over an
SMTP channel. This extra dot is stripped by the receiver.

3.5. Message Delivery

The send queue is ordered by receiving host before transmission to implement
message batching. Each address is marked as it is sent so rescanning the list is safe.
An argument list is built as the scan proceeds. Mail to files is detected during the scan
of the send list. The interface to the mailer is performed using one of the techniques
described in section 2.2.

After a connection is established, sendmail makes the per-mailer changes to the
header and sends the result to the mailer. If any mail is rejected by the mailer, a flag is
set to invoke the return-to-sender function after all delivery completes.

SMM:16-8 SENDMAIL - An Internetwork Mail Router

3.6. Queued Messages

If the mailer returns a "temporary failure" exit status, the message is queued. A
control file is used to describe the recipients to be sent to and various other parameters.
This control file is formatted as a series of lines, each describing a sender, a recipient,
the time of submission, or some other salient parameter of the message. The header of
the message is stored in the control file, so that the associated data file in the queue is
just the temporary file that was originally collected.

3. 7. Configuration

Configuration is controlled primarily by a configuration file read at startup. Send-
mail should not need to be recomplied except

(I) To change operating systems (V6, V7/32V, 4BSD).

(2) To remove or insert the DBM (UNIX database) library.

(3) To change ARPANET reply codes.

(4) To add headers fields requiring special processing.

Adding mailers or changing parsing (i.e., rewriting) or routing information does not
require recompilation.

If the mail is being sent by a local user, and the file ".mailcf' exists in the
sender's home directory, that file is read as a configuration file after the system
configuration file. The primary use of this feature is to add header lines.

The configuration file encodes macro definitions, header definitions, mailer
definitions, rewriting rules, and options.

3.7.1. Macros

Macros can be used in three ways. Certain macros transmit unstructured tex
tual information into the mail system, such as the name sendmail will use to iden
tify itself in error messages. Other macros transmit information from sendmail to
the configuration file for use in creating other fields (such as argument vectors to
mailers); e.g., the name of the sender, and the host and user of the recipient. Other
macros are unused internally, and can be used as shorthand in the configuration file.

3.7.2. Header declarations

Header declarations inform sendmail of the format of known header lines.
Knowledge of a few header lines is built into sendmail, such as the "From:" and
"Date:" lines.

Most configured headers will be automatically inserted in the outgoing message
if they don't exist in the incoming message. Certain headers are suppressed by
some mailers.

3. 7 .3. Mailer declarations

Mailer declarations tell sendmail of the various mailers available to it. The
definition specifies the internal name of the mailer, the pathname of the program to
call, some flags associated with the mailer, and an argument vector to be used on
the call; this vector is macro-expanded before use.

3.7.4. Address rewriting rules

The heart of adilress parsing in sendmail is a set of rewriting rules. These are
an ordered list of pattern-replacement rules, (somewhat like a production system,

SENDMAIL - An Internetwork Mail Router SMM:16-9

except that order is critical), which are applied to each address. The address is
rewritten textually until it is either rewritten into a special canonical form (i.e., a
(mailer, host, user) 3-tuple, such as (arpanet, usc-isif, postel) representing the
address "postel@usc-isif'), or it falls off the end. When a pattern matches, the rule
is reapplied until it fails.

The configuration file also supports the editing of addresses into different for
mats. For example, an address of the form:

ucsfcgl!tef

might be mapped into:

tef@ucsfcgl. UUCP

to conform to the domain syntax. Translations can also be done in the other direc
tion.

3.7.5. Option setting

There are several options that can be set from the configuration file. These
include the pathnames of various support files, timeouts, default modes, etc.

4. COMPARISON WITH OTHER MAILERS

4.1. Delivermail

Sendmail is an outgrowth of delivermail. The primary differences are:

(I) Configuration information is not compiled in. This change simplifies many of
the problems of moving to other machines. It also allows easy debugging of
new mailers.

(2) Address parsing is more flexible. For example, de/ivermail only supported one
gateway to any network, whereas sendmail can be sensitive to host names and
reroute to different gateways.

(3) Forwarding and :include: features eliminate the requirement that the system
alias file be writable by any user (or that an update program be written, or that
the system administration make all changes).

(4) Sendmail supports message batching across networks when a message is being
sent to multiple recipients.

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immedi
ately but can potentially be delivered later is stored in this queue for a later
retry. The queue also provides a buffer against system crashes; after the mes
sage has been collected it may be reliably redelivered even if the system crashes
during the initial deli very.

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct
interface networks such as the ARPANET and/or Ethernet using SMTP (the
Simple Mail Transfer Protocol) over a TCP/IP connection.

4.2. MMDF

MMDF [Crocker79] spans a wider problem set than sendmail. For example, the
domain of MMDF includes a "phone network" mailer, whereas sendmail calls on
preexisting mailers in most cases.

MMDF and sendmail both support aliasing, customized mailers, message batch
ing, automatic forwarding to gateways, queueing, and retransmission. MMDF supports
two-stage timeout, which sendmail does not support.

SMM:l6-10 SENDMAIL - An Internetwork Mail Router

The configuration for MMDF is compiled into the code4•

Since MMDF does not consider backwards compatibility as a design goal, the
address parsing is simpler but much less flexible.

It is somewhat harder to integrate a new channel5 into MMDF. In particular,
MMDF must know the location and format of host tables for all channels, and the
channel must speak a special protocol. This allows MMDF to do additional
verification (such as verifying host names) at submission time.

MMDF strictly separates the submission and delivery phases. Although sendmail
has the concept of each of these stages, they are integrated into one program, whereas
in MMDF they are split into two programs.

4.3. Message Processing Module

The Message Processing Module (MPM) discussed by Postel [Postel79b] matches
sendmail closely in terms of its basic architecture. However, like MMDF, the MPM
includes the network interface software as part of its domain.

MPM also postulates a duplex channel to the receiver, as does MMDF, thus
allowing simpler handling of errors by the mailer than is possible in sendmail. When a
message queued by sendmail is sent, any errors must be returned to the sender by the
mailer itself. Both MPM and MMDF mailers can return an immediate error response,
and a single error processor can create an appropriate response.

MPM prefers passing the message as a structured object, with type-length-value
tuples6• Such a convention requires a much higher degree of cooperation between
mailers than is required by sendmail. MPM also assumes a universally agreed upon
internet name space (with each address in the form of a net-host-user tuple), which
sendmail does not.

5. EVALUATIONS AND FUTURE PLANS

Sendmail is designed to work in a nonhomogeneous environment. Every attempt is
made to avoid imposing unnecessary constraints on the underlying mailers. This goal has
driven much of the design. One of the major problems has been the lack of a uniform
address space, as postulated in [Postel79a] and [Poste179b].

A nonuniform address space implies that a path will be specified in all addresses,
either explicitly (as part of the address) or implicitly (as with implied forwarding to gate
ways). This restriction has the unpleasant effect of making replying to messages exceed
ingly difficult, since there is no one "address" for any person, but only a way to get there
from wherever you are.

Interfacing to mail programs that were not initially intended to be applied in an
internet environment has been amazingly successful, and has reduced the job to a manage
able task.

Sendmail has knowledge of a few difficult environments built in. It generates
ARPANET FTP/SMTP compatible error messages (prepended with three-digit numbers
[Neigus73, Postel74, Postel82]) as necessary, optionally generates UNIX-style "From"

'Dynamic configuration tables are currently being considered for MMDF; allowing the installer to select either
compiled or dynamic tables.

'The MMDF equivalent of a sendmail "mailer."
6This is similar to the NBS standard.

SENDMAIL - An Internetwork Mail Router SMM:l6-11

lines on the front of messages for some mailers, and knows how to parse the same lines on
input. Also, error handling has an option customized for BerkNet.

The decision to avoid doing any type of delivery where possible (even, or perhaps
especially, local delivery) has turned out to be a good idea. Even with local delivery, there
are issues of the location of the mailbox, the format of the mailbox, the locking protocol
used, etc., that are best decided by other programs. One surprisingly major annoyance in
many internet mailers is that the location and format of local mail is built in. The feeling
seems to be that local mail is so common that it should be efficient. This feeling is not
born out by our experience; on the contrary, the location and format of mailboxes seems
to vary widely from system to system.

The ability to automatically generate a response to incoming mail (by forwarding
mail to a program) seems useful ("I am on vacation until late August.. .. ") but can create
problems such as forwarding loops (two people on vacation whose programs send notes
back and forth, for instance) if these programs are not well written. A program could be
written to do standard tasks correctly, but this would solve the general case.

It might be desirable to implement some form of load limiting. I am unaware of any
mail system that addresses this problem, nor am I aware of any reasonable solution at this
time.

The configuration file is currently practically inscrutable; considerable convenience
could be realized with a higher-level format.

It seems clear that common protocols will be changing soon to accommodate chang
ing requirements and environments. These changes will include modifications to the mes
sage header (e.g., [NBS80]) or to the body of the message itself (such as for multimedia
messages [Postel80]). Experience indicates that these changes should be relatively trivial
to integrate into the existing system.

In tightly coupled environments, it would be nice to have a name server such as
Grapvine [Birrell82] integrated into the mail system. This would allow a site such as
"Berkeley" to appear as a single host, rather than as a collection of hosts, and would allow
people to move transparently among machines without having to change their addresses.
Such a facility would require an automatically updated database and some method of
resolving conflicts. Ideally this would be effective even without all hosts being under a sin
gle management. However, it is not clear whether this feature should be integrated into
the aliasing facility or should be considered a "value added" feature outside sendmail
itself.

As a more interesting case, the CSNET name server [Solomon8 I] provides an facility
that goes beyond a single tightly-coupled environment. Such a facility would normally
exist outside of sendmail however.

ACKNOWLEDGEMENTS

Thanks are due to Kurt Shoens for his continual cheerful assistance and good advice,
Bill Joy for pointing me in the correct direction (over and over), and Mark Horton for more
advice, prodding, and many of the good ideas. Kurt and Eric Schmidt are to be credited for
using delivermail as a server for their programs (Mail and BerkNet respectively) before any
sane person should have, and making the necessary modifications promptly and happily. Eric
gave me considerable advice about the perils of network software which saved me an unk
nown amount of work and grief. Mark did the original implementation of the DBM version
of aliasing, installed the VFORK code, wrote the current version of rmai/, and was the person
who really convinced me to put the work into delivermail to turn it into sendmail. Kurt
deserves accolades for using sendmail when I was myself afraid to take the risk; how a person
can continue to be so enthusiastic in the face of so much bitter reality is beyond me.

SMM:I6-12 SENDMAIL - An Internetwork Mail Router

Kurt, Mark, Kirk McKusick, Marvin Solomon, and many others have reviewed this
paper, giving considerable useful advice.

Special thanks are reserved for Mike Stonebraker at Berkeley and Bob Epstein at
Britton-Lee, who both knowingly allowed me to put so much work into this project when
there were so many other things I really should have been working on.

[Birrell82]

[Borden79]

[Crocker77a]

[Crocker77b]

[Crocker79]

[Crocker82]

[Metcalfe76]

[Feinler78]

[NBS80]

[Neigus73]

[Nowitz78a]

[Nowitz78b]

[Postel74]

[Postel77]

[Postel79a]

[Postel79b]

REFERENCES

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D.,
"Grapevine: An Exercise in Distributed Computing." In Comm.
A.C.M. 25, 4, April 82.

Borden, S., Gaines, R. S., and Shapiro, N. Z., The MH Message Han
dling System: Users' Manual. R-2367-PAF. Rand Corporation.
October 1979.

Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A. Jr.,
Standard for the Format of ARPA Network Text Messages. RFC 733,
NIC 41952. In [Feinler78]. November 1977.

Crocker, D. H., Framework and Functions of the MS Personal Message
System. R-2134-ARPA, Rand Corporation, Santa Monica, California.
1977.

Crocker, D. H., Szurkowski, E. S., and Farber, D. J., An Internetwork
Memo Distribution Facility - MMDF. 6th Data Communication
Symposium, Asilomar. November 1979.

Crocker, D. H., Standard for the Format of Arpa Internet Text Mes
sages. RFC 822. Network Information Center, SRI International,
Menlo Park, California. August 1982.

Metcalfe, R., and Boggs, D., "Ethernet: Distributed Packet Switching
for Local Computer Networks", Communications of the ACM 19, 7.
July 1976.

Feinler, E., and Postel, J. (eds.), ARPANET Protocol Handbook. NIC
7104, Network Information Center, SRI International, Menlo Park,
California. 1978.

National Bureau of Standards, Specification of a Draft Message For
mat Standard. Report No. ICST/CBOS 80-2. October 1980.

Neigus, N., File Transfer Protocol for the ARPA Network. RFC 542,
NIC 17759. In [Feinler78]. August, 1973.

Nowitz, D. A., and Lesk, M. E., A Dial-Up Network of UNIX Systems.
Bell Laboratories. In UNIX Programmer's Manual, Seventh Edition,
Volume 2. August, 1978.

Nowitz, D. A., Uucp Implementation Description. Bell Laboratories.
In UNIX Programmer's Manual, Seventh Edition, Volume 2.
October, 1978.

Postel, J., and Neigus, N., Revised FTP Reply Codes. RFC 640, NIC
30843. In [Feinler78]. June, 197 4.

Postel, J., Mail Protocol. NIC 29588. In [Feinler78]. November
1977.

Postel, J., Internet Message Protocol. RFC 753, IEN 85. Network
Information Center, SRI International, Menlo Park, California.
March 1979.

Postel, J.B., An Internetwork Message Structure. In Proceedings of the
Sixth Data Communications Symposium, IEEE. New York.

SENDMAIL - An Internetwork Mail Router SMM:16-13

SMM:16-14

[Poste180]

[Postel82]

[Schmidt79]

[Shoens79]

[Sluizer8 I]

[Solomon8 I]

[Su82]

[UNIX83]

SENDMAIL - An Internetwork Mail Router

November 1979.

Postel, J. B., A Structured Format for Transmission of Multi-Media
Documents. RFC 767. Network Information Center, SRI Interna
tional, Menlo Park, California. August 1980.

Postel, J. B., Simple Mail Transfer Protocol. RFC821 (obsoleting
RFC788). Network Information Center, SRI International, Menlo
Park, California. August 1982.

Schmidt, E., An Introduction to the Berkeley Network. University of
California, Berkeley California. 1979.

Shoens, K., Mail Reference Manual. University of California, Berke
ley. In UNIX Programmer's Manual, Seventh Edition, Volume 2C.
December 1979.

Sluizer, S., and Postel, J. B., Mail Transfer Protocol. RFC 780. Net
work Information Center, SRI International, Menlo Park, California.
May 1981.

Solomon, M., Landweber, L., and Neuhengen, D., "The Design of the
CSNET Name Server." CS-DN-2, University of Wisconsin, Madison.
November 1981.

Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for
Internet User Applications. RFC8 I 9. Network Information Center,
SRI International, Menlo Park, California. August 1982.

The UNIX Programmer's Manual, Seventh Edition, Virtual VAX-11
Version, Volume I. Bell Laboratories, modified by the University of
California, Berkeley, California. March, 1983.

On the Security of UNIX

Dennis M. Ritchie

Recently there has been much interest in the security aspects of operating systems and
software. At issue is the ability to prevent undesired disclosure of information, destruction of
information, and harm to the functioning of the system. This paper discusses the degree of
security which can be provided under the UNIXt system and offers a number of hints on how
to improve security.

The first fact to face is that UNIX was not developed with security, in any realistic sense,
in mind; this fact alone guarantees· a vast number of holes. (Actually the same statement can
be made with respect to most systems.) The area of security in which UNIX is theoretically
weakest is in protecting against crashing or at least crippling the operation of the system. The
problem here is not mainly in uncritical acceptance of bad parameters to system calls- there
may be bugs in this area, but none are known- but rather in lack of checks for excessive con
sumption of resources. Most notably, there is no limit on the amount of disk storage used,
either in total space allocated or in the number of files or directories. Here is a particularly
ghastly shell sequence guaranteed to stop the system:

while:; do
mkdir x
cd x

done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk
blocks will be consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number
of processes simultaneously, so unless users are in collusion it is unlikely that any one can
stop the system altogether. However, creation of 20 or so CPU or disk-bound jobs leaves few
resources available for others. Also, if many large jobs are run simultaneously, swap space
may run out, causing a panic.

It should be evident that excessive consumption of disk space, files, swap space, and
processes can easily occur accidentally in malfunctioning programs as well as at command
level. In fact UNIX is essentially defenseless against this kind of abuse, nor is there any easy
fix. The best that can be said is that it is generally fairly easy to detect what has happened
when disaster strikes, to identify the user responsible, and take appropriate action. In prac
tice, we have found that difficulties in this area are rather rare, but we have not been faced
with malicious users, and enjoy a fairly generous supply of resources which have served to
cushion us against accidental overconsumption.

The picture is considerably brighter in the area of protection of information from unau
thorized perusal and destruction. Here the degree of security seems (almost) adequate
theoretically, and the problems lie more in the necessity for care in the actual use of the sys
tem.

Each UNIX file has associated with it eleven bits of protection information together with
a user identification number and a user-group identification number (UID and GID). Nine of
the protection bits are used to specify independently permission to read, to write, and to

t UNIX is a trademark of AT&T Bell Laboratories.

SMM:l7-2 On the Security of UNIX

execute the file to the user himself, to members of the user's group, and to all other users.
Each process generated by or for a user has associated with it an effective UID and a real
UID, and an effective and real GID. When an attempt is made to access the file for reading,
writing, or execution, the user process's effective UID is compared against the file's UID; if a
match is obtained, access is granted provided the read, write, or execute bit respectively for
the user himself is present. If the UID for the file and for the process fail to match, but the
GID's do match, the group bits are used; if the GID's do not match, the bits for other users
are tested. The last two bits of each file's protection information, called the set-UID and set
GID bits, are used only when the file is executed as a program. If, in this case. the set-UID
bit is on for the file, the effective UID for the process is changed to the UID associated with
the file; the change persists until the process terminates or until the UID changed again by
another execution of a set-UID file. Similarly the effective group ID of a process is changed
to the GID associated with a file when that file is executed and has the set-GID bit set. The
real UID and GID of a process do not change when any file is executed, but only as the result
of a privileged system call.

The basic notion of the set-UID and set-GID bits is that one may write a program
which is executable by others and which maintains files accessible to others only by that pro
gram. The classical example is the game-playing program which maintains records of the
scores of its players. The program itself has to read and write the score file, but no one but
the game's sponsor can be allowed unrestricted access to the file lest they manipulate the
game to their own advantage. The solution is to turn on the set-UID bit of the game pro
gram. When, and only when, it is invoked by players of the game, it may update the score file
but ordinary programs executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since
executing a directory as a program is a meaningless operation, the execute-permission bit, for
directories, is taken instead to mean permission to search the directory for a given file during
the scanning of a path name; thus if a directory has execute permission but no read permis
sion for a given user, he may access files with known names in the directory, but may not
read (list) the entire contents of the directory. Write permission on a directory is interpreted
to mean that the user may create and delete files in that directory; it is impossible for any
user to write directly into any directory.

Another, and from the point of view of security, much more serious special case is that
there is a "super user" who is able to read any file and write any non-directory. The super
user is also able to change the protection mode and the owner UID and GID of any file and
to invoke privileged system calls. It must be recognized that the mere notion of a super-user
is a theoretical, and usually practical, blemish on any protection scheme.

The first necessity for a secure system is of course arranging that all files and directories
have the proper protection modes. Traditionally, UNIX software has been exceedingly per
missive in this regard; essentially all commands create files readable and writable by everyone.
In the current version, this policy may be easily adjusted to suit the needs of the installation
or the individual user. Associated with each process and "its descendants is a mask, which is
in effect and-ed with the mode of every file and directory created by that process. In this
way, users can arrange that, by default, all their files are no more accessible than they wish.
The standard mask, set by login, allows all permissions to the user himself and to his group,
but disallows writing by others.

To maintain both data privacy and data integrity, it is necessary, and largely sufficient,
to make one's files inaccessible to others. The lack of sufficiency could follow from the
existence of set-UID programs created by the user and the possibility of total breach of sys
tem security in one of the ways discussed below (or one of the ways not discussed below).
For greater protection, an encryption scheme is available. Since the editor is able to create
encrypted documents, and the crypt command can be used to pipe such documents into the
other text-processing programs, the length of time during which cleartext versions need be
available is strictly limited. The encryption scheme used is not one of the strongest known,

On the Security of UNIX SMM:l7-3

hut . t is judged adequate. in the sense that cryptanalysis is likely to require considerably more
effort than more direct methods of reading the encrypted files. For example. a user who
stores data that he regards as truly secret should he aware that he is implicitly trusting the sys
tem administrator not to install a version of the crypt command that stores every typed pass
word in a file.

Needless to say. the system administrators must he at least as careful as their most
demanding user to place the correct protection mode on the files under their control. In par
ticular. it is necessary that special files be protected from writing. and probably reading. by
ordinary users when they store sensitive files belonging to other users. It is easy to write pro
grams that examine and change files by accessing the device on which the files live.

On the issue of password security. UNIX is probably better than most systems. Pass
words are stored in an encrypted form which. in the absence of serious attention from special
ists in the field. appears reasonably secure. provided its limitations are understood. In the
current version. it is based on a slightly defective version of the Federal DES; it is purposely
defective so that easily-available hardware is useless for attempts at exhaustive key-search.
Since both the encryption algorithm and the encrypted passwords are available, exhaustive
enumeration of potential passwords is still feasible up to a point. We have observed that
users choose passwords that are easy to guess: they are short, or from a limited alphabet. or in
a dictionary. Passwords should be at least six characters long and randomly chosen from an
alphabet which includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For
example: write a program which types out "login:" on the typewriter and copies whatever is
typed to a file of your own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained.
The first thing to keep in mind is that a writable set-UID file can have another program
copied onto it. For example, if the super-user (su) command is writable, anyone can copy the
shell onto it and get a password-free version of su. A more subtle problem can come from
set-UID programs which are not sufficiently careful of what is fed into them. To take an
obsolete example, the previous version of the mail command was set-UID and owned by the
super-user. This version sent mail to the recipient's own directory. The notion was that one
should be able to send mail to anyone even if they want to protect their directories from writ
ing. The trouble was that mail was rather dumb: anyone could mail someone else's private
file to himself. Much more serious is the following scenario: make a file with a line like one
in the password file which allows one to log in as the super-user. Then make a link named
".mail" to the password file in some writable directory on the same device as the password
file (say /tmp). Finally mail the bogus login line to /tmp/.mail; You can then login as the
super-user, clean up the incriminating evidence, and have your will.

The fact that users can mount their own disks and tapes as file systems can be another
way of gaining super-user status. Once a disk pack is mounted, the system believes what is on
it. Thus one can take a blank disk pack, put on it anything desired, and.mount it. There are
obvious and unfortunate consequences. For example: a mounted disk with garbage on it will
crash the system; one of the files on the mounted disk can easily be a password-free version of
su; other files can be unprotected entries for special files. The only easy fix for this problem is
to forbid the use of mount to unprivileged users. A partial solution, not so restrictive, would
be to have the mount command examine the special file for bad data, set-UID programs
owned by others, and accessible special files, and balk at unprivileg~d invokers.

Password Security: A Case History

Password Security: A Case History

Roher/ Morri.I'

Ken Tlromp.1'011

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

SMM:l8-I

This paper describes the history of the design of the password security scheme
on a remotely accessed time-sharing system. The present design was the result of
countering observed attempts to penetrate the system. The result is a compromise
between extreme security and ease of use.

INTRODUCTION

Password security on the UNIXt time-sharing system [I] is provided by a collection of programs
whose elaborate and strange design is the outgrowth of many years of experience with earlier versions.
To help develop a secure system, we have had a continuing competition to devise new ways to attack
the security of the system (the bad guy) and, at the same time, to devise new techniques to resist the
new attacks (the good guy). This competition has been in the same vein as the competition of long
standing between manufacturers of armor plate and those of armor-piercing shells. For this reason,
the description that follows will trace the history of the password system rather than simply present
ing the program in its current state. In this way, the reasons for the design will be made clearer, as
the design cannot be understood without also understanding the potential attacks.

An underlying goal has been to provide password security at minimal inconvenience to the users
of the system. For example, those who want to run a completely open system without passwords, or
to have passwords only at the option of the individual users, are able to do so, while those who
require all of their users to have passwords gain a high degree of security against penetration of the
system by unauthorized users.

The password system must be able not only to prevent any access to the system by unauthorized
users (i.e. prevent them from logging in at all), but it must also prevent users who are already logged
in from doing things that they are not authorized to do. The so called "super-user" password, for
example, is especially critical because the super-user has all sorts of permissions and has essentially
unlimited access to all system resources.

Password security is of course only one component of overall system security, but it is an essen
tial component. Experience has shown that attempts to penetrate remote-access systems have been
astonishingly sophisticated.

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are threats
at the remote terminal, along the communications link, as well as at the computer itself. Although
the security of a password encryption algorithm is an interesting intellectual and mathematical prob
lem, it is only one tiny facet of a very large problem. In practice, physical security of the computer,
communications security of the communications link, and physical control of the computer itself
loom as far more important issues. Perhaps most important of all is control over the actions of ex
employees, since they are not under any direct control and they may have intimate knowledge about

t UNIX is a trademark of AT&T Bell Laboratories.

SMM:l8-2 Password Security: A Case History

the system. its resources. and methods of access. Good system security involves realistic evaluation
of the risks not only of delihcrate attacks hut also of casual unauthorized access and accidental disclo
sure.

PROLOGUE

The UNIX system was first implemented with a password file that contained the actual pass
words of all the users. and for that reason the password file had to he heavily protected against heing
either read or written. Although historically. this had heen the technique used for remote-access sys
tems, it was completely unsatisfactory for several reasons.

The technique is excessively vulnerable to lapses in security. Temporary loss of protection can
occur when the password file is heing edited or otherwise modified. There is no way to prevent the
making of copies by privileged users. Experience with several earlier remote-access systems showed
that such lapses occur with frightening frequency. Perhaps the most memorable such occasion
occurred in the early 60's when a system administrator on the CTSS system at MIT was editing the
password file and another system administrator was editing the daily message that is printed on
everyone's terminal on login. Due to a software design error, the temporary editor files of the two
users were interchanged and thus, for a time, the password file was printed on every terminal when it
was logged in.

Once such a lapse in security has been discovered. everyone's password must be changed, usu
ally simultaneously, at a considerable administrative cost. This is not a great matter, but far more
serious is the high probability of such lapses going unnoticed by the system administrators.

Security against unauthorized disclosure of the passwords was, in the last analysis, impossible
with this system because, for example, if the contents of the file system are put on to magnetic tape
for backup, as they must be, then anyone who has physical access to the tape can read anything on it
with no restriction.

Many programs must get information of various kinds about the users of the system, and these
programs in general should have no special permission to read the password file. The information
which should have been in the password file actually was distributed (or replicated) into a number of
files, all of which had to be updated whenever a user was added to or dropped from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and it is
not difficult to decide that this can be done by encrypting each user's password, putting only the
encrypted form in the password file, and throwing away his original password (the one that he typed
in). When the user later tries to log in to the system, the password that he types is encrypted and
compared with the encrypted version in the password file. If the two match, his login attempt is
accepted. Such a scheme was first described in (3, p.91ff.]. It also seemed advisable to devise a sys
tem in which neither the password file nor the password program itself needed to be protected against
being read by anyone.

All that was needed to implement these ideas was to find a means of encryption that was very
difficult to invert, even when the encryption program is available. Most of the standard encryption
methods used (in the past) for encryption of messages are rather easy to invert. A convenient and
rather good encryption program happened to exist on the system at the time; it simulated the M-209
cipher machine [4] used by the U.S. Army during World War II. It turned out that the M-209 pro
gram was usable, but with a given key, the ciphers produced by this program are trivial to invert. It
is a much more difficult matter to find out the key given the cleartext input and the enciphered out
put of the program. Therefore, the password was used not as the text to be encrypted but as the key,
and a constant was encrypted using this key. The encrypted result was entered into the password file.

Password Security: A Case History SMM:l8-3

ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and the
complete password file. Suppose also that he has substantial computing capacity at his disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a general
method of inverting the encryption algorithm. Very possibly this can be done, but few successful
results have come to light. despite substantial efforts extending over a period of more than five years.
The results have not proved to be very useful in penetrating systems.

Another approach to penetration is simply to keep trying potential passwords until one succeeds;
this is a general cryptanalytic approach called key search Human beings being what they are, there is
a strong tendency for people to choose relatively short and simple passwords that they can remember.
Given free choice. most people will choose their passwords from a restricted character set (e.g. all
lower-case letters). and will often choose words or names. This human habit makes the key search
job a great deal easier.

The critical factor involved in key search is the amount of time needed to encrypt a potential
password and to check the result against an entry in the password file. The running time to encrypt
one trial password and check the result turned out to be approximately 1.25 milliseconds on a PDP-
1 I /70 when the encryption algorithm was recoded for maximum speed. It is takes essentially no
more time to test the encrypted trial password against all the passwords in an entire password file, or
for that matter. against any collection of encrypted passwords, perhaps collected from many installa
tions.

If we want to check all passwords of length n that consist entirely of lower-case letters, the
number of such passwords is 26". If we suppose that the password consists of printable characters
only. then the number of possible passwords is somewhat less than 95". (The standard system "char
acter erase" and "line kill" characters are, for example, not prime candidates.) We can immediately
estimate the running time of a program that will test every password of a given length with all of its
characters chosen from some set of characters. The following table gives estimates of the running
time required on a PDP-11/70 to test all possible character strings of length n chosen from various
sets of characters: namely, all lower-case letters, all lower-case letters plus digits, all alphanumeric
characters, all 95 printable ASCII characters, and finally all 128 ASCII characters.

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII
n letters and digits characters characters characters

I 30 msec. 40 msec. 80 msec. 120 msec. 160 msec.
2 800 msec. 2 sec. 5 sec. 11 sec. 20 sec.
3 22 sec. 58 sec. 5 min. 17 min. 43 min.
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs.
5 4 hrs. 21 hrs. 318 hrs.
6 I 07 hrs.

One has to conclude that it is no great matter for someone with access to a PDP-I I to test all lower
case alphabetic strings up to length five and, given access to the machine for, say, several weekends,
to test all such strings up to six characters in length. By using such a program against a collection of
actual encrypted passwords, a substantial fraction of all the passwords will be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to use a
list of names. For example, a large commercial dictionary contains typicallly about 250,000 words;
these words can be checked in about five minutes. Again, a noticeable fraction of any collection of
passwords will be found. Improvements and extensions will be (and have been) found by a deter
mined bad guy. Some "good" things to try are:

The dictionary with the words spelled backwards.

A list of first names (best obtained from some mailing list). Last names, street names, and city
names also work well.

SMM:18-4 Password Security: A Case History

The above with initial upper-case letters.
All valid license plate numbers in your state. (This takes about five hours in New Jersey.)
Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to determine typical users' habits in the choice
of passwords when no constraint is put on their choice. The results were disappointing, except to the
bad guy. In a collection of 3,289 passwords gathered from many users over a long period of time;

15 were a single ASCII character;
72 were strings of two ASCII characters;
464 were strings of three ASCII characters;

477 were string of four alphamerics;
706 were five letters, all upper-case or all lower-case;

605 were six letters, all lower-case.
An additional 492 passwords appeared in various available dictionaries, name lists, and the like. A
total of 2,831, or 86% of this sample of passwords fell into one of these classes.

There was, of course, considerable overlap between the dictionary results and the character
string searches. The dictionary search alone, which required only five minutes to run, produced about
one third of the passwords.

Users could.be urged (or forced) to use either longer passwords or passwords chosen from a
larger character set, or the system could itself choose passwords for the users.

AN ANECDOTE

An entertaining and instructive example is the attempt made at one installation to force users to
use less predictable passwords. The users did not choose their own passwords; the system supplied
them. The supplied passwords were eight characters long and were taken from the character set con
sisting of lower-case letters and digits. They were generated by a pseudo-random number generator
with only 215 starting values. The time required to search (again on a PDP-11170) through all charac
ter strings of length 8 from a 36-character alphabet is 112 years.

Unfortunately, only 215 of them need be looked at, because that is the number of possible out
puts of the random number generator. The bad guy did, in fact, generate and test each of these
strings and found every one of the system-generated passwords using a total of only about one minute
of machine time.

IMPROVEMENTS TO THE FIRST APPROACH

1. Slower Encryption
Obviously, the first algorithm used was far too fast. The announcement of the DES encryption

algorithm (2) by the National Bureau of Standards was timely and fortunate. The DES is, by design,
hard to invert, but equally valuable is the fact that it is extremely slow when implemented in
software. The DES was implemented and used in the following way: The first eight characters of the
user's password are used as a key for the DES; then the algorithm is used to encrypt a constant.
Although this constant is zero at the moment, it is easily accessible and can be made installation
dependent. Then the DES algorithm is iterated 25 times and the resulting 64 bits are repacked to
become a string of 11 printable characters.

2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure passwords.
If the user enters an alphabetic password (all upper-case or all lower-case) shorter than six characters,
or a password from a larger character set shorter than five characters, then the program asks him to
enter a longer password. This further reduces the efficacy of key search.

Password Security: A Case History SMM:l8-5

These improvements make it exceedingly difficult to find any individual password. The user is
warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he is not
prevented from using his spouse's name if he wants to.

3. Salted Passwords
The key search technique is still likely to turn up a few passwords when it is used on a large col

lection of passwords, and it seemed wise to make this task as difficult as possible. To this end, when
a password is first entered, the password program obtains a 12-bit random number (by reading the
real-time clock) and appends this to the password typed in by the user. The concatenated string is
encrypted and both the 12-bit random quantity (called the salt) and the 64-bit result of the encryp
tion are entered into the password file.

When the user later logs in to the system, the 12-bit quantity is extracted from the password file
and appended to the typed password. The encrypted result is required, as before, to be the same as
the remaining 64 bits in the password file. This modification does not increase the task of finding <.u1y
individual password, starting from scratch, but now the work of testing a given character string
against a large collection of encrypted passwords has been multiplied by 4096 (2 12). The reason for
this is that there are 4096 encrypted versions of each password and one of them has been picked
more or less at random by the system.

With this modification, it is likely that the bad guy can spend days of computer time trying to
find a password on a system with hundreds of passwords, and find none at all. More important is the
fact that it becomes impractical to prepare an encrypted dictionary in advance. Such an encrypted
dictionary could be used to crack new passwords in milliseconds when they appear.

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible to find
out whether a person with passwords on two or more systems has used the same password on all of
them, unless you already know that.

4. The Threat of the DES Chip
Chips to perform the DES encryption are already commercially available and they are very fast.

The use of such a chip speeds up the process of password hunting by three orders of magnitude. To
avert this possibility, one of the internal tables of the DES algorithm (in particular, the so-called E
table) is changed in a way that depends on the 12-bit random number. The E-table is inseparably
wired into the DES chip, so that the commercial chip cannot be used. Obviously, the bad guy could
have his own chip designed and built, but the cost would be unthinkable.

5. A Subtle Point
To login successfully on the UNIX system, it is necessary after dialing in to type a valid user

name, and then the correct password for that user name. It is poor design to write the login com
mand in such a way that it tells an interloper when he has typed in a invalid user name. The
response to an invalid name should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done only if the
user name was valid, because otherwise there was no encrypted password to compare with the sup
plied password. The result was that the response was delayed by about one-half second if the name
was valid, but was immediate if invalid. The bad guy could find out whether a particular user name
was valid. The routine was modified to do the encryption in either case.

CONCLUSIONS
On the issue of password security, UNIX is probably better than most systems. The use of

encrypted passwords appears reasonably secure in the absence of serious attention of experts in the
field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX systems have
instituted what is called an "external security code" that must be typed when dialing into the system,
but before logging in. If this code is changed periodically, then someone with an old password will

SMM:l8-6 Password Security: A Case History

likely be prevented from using it.

Whenever any security procedure is instituted that attempts to deny access to unauthorized per
sons, it is wise to keep a record of both successful and unsuccessful attempts to get at the secured
resource. Just as an out-of-hours visitor to a computer center normally must not only identify him
self, but a record is usually also kept of his entry. Just so, it is a wise precaution to make and keep a
record of all attempts to log into a remote-access time-sharing system, and certainly all unsuccessful
attempts.

Bad guys fall on a spectrum whose one end is someone with ordinary access to a system and
whose goal is to find out a particular password (usually that of the super-user) and, at the other end,
someone who wishes to collect as much password information as possible from as many systems as
possible. Most of the work reported here serves to frustrate the latter type; our experience indicates
that the former type of bad guy never was very successful.

We recognize that a time-sharing system must operate in a hostile environment. We did not
attempt to hide the security aspects of the operating system, thereby playing the customary make
believe game in which weaknesses of the system are not discussed no matter how apparent. Rather
we advertised the password algorithm and invited attack in the belief that this approach would
minimize future trouble. The approach has been successful.

References
[l] Ritchie, D.M. and Thompson, K. The UNIX Time-Sharing System. Comm. ACM 17 (July

1974), pp. 365-375.

[2] Proposed Federal Information Processing Data Encryption Standard. Federal Register
(40FR12134), March 17, 1975

[3] Wilkes, M. V. Time-Sharing Computer Systems. American Elsevier, New York, (1968).
[4] U. S. Patent Number 2,089,603.

A Tour Through the Portable C Compiler

S. C. Johnson

AT&T Bell Laboratories

Donn Seeley

Department of Computer Science
University of Utah

ABSTRACT

Since its introduction, the Portable C Compiler has become the standard UNIX

C compiler for many machines. Three quarters or more of the code in the compiler
is machine independent and much of the rest can be generated easily using
knowledge of the target architecture. This paper describes the structure and organi
zation of the compiler and tries to further simplify the job of the compiler porter.

This document originally appeared with the Seventh Edition of UNIX, and has
been revised and extended for publication with the Fourth Berkeley Software Distri
bution. The new material covers changes which have been made in the compiler
since the Seventh Edition, and includes some discussion of secondary topics which
were thought to be of interest in future ports of the compiler.

Revised April, 1986

Introduction
A C compiler has been implemented that has proved to be quite portable, serving as the basis

for C compilers on roughly a dozen machines, including the DEC VAX, Honeywell 6000, IBM 370,
and Interdata 8/32. The compiler is highly compatible with the C language standard. 1

Among the goals of this compiler are portability, high reliability, and the use of state-of-the-art
techniques and tools wherever practical. Although the efficiency of the compiling process is not a pri
mary goal, the compiler is efficient enough, and produces good enough code, to serve as a production
compiler.

The language implemented is highly compatible with the current PDP-!! version of C. More
over, roughly 75% of the compiler, including nearly all the syntactic and semantic routines, is
machine independent. The compiler also serves as the major portion of the program lint, described
elsewhere.2

A number of earlier attempts to make portable compilers are worth noting. While on CO-OP
assignment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was the basis of his
Master's Thesis at M.l.T.3 This compiler was very slow and complicated, and contained a number of
rather serious implementation difficulties; nevertheless, a number of Snyder's ideas appear in this
work.

Most earlier portable compilers, including Snyder's, have proceeded by defining an intermediate
language, perhaps based on three-address code or code for a stack machine, and writing a machine
independent program to translate from the source code to this intermediate code. The intermediate
code is then read by a second pass, and interpreted or compiled. This approach is elegant, and has a

SMM:19-2 A Tour Through the Portable C Compiler

number of advantages, especially if the target machine is far removed from the host. It suffers from
some disadvantages as well. Some constructions, like initialization and subroutine prologs, are
difficult or expensive to express in a machine independent way that still allows them to be easily
adapted to the target assemblers. Most of these approaches require a symbol table to be constructed
in the second (machine dependent) pass, and/or require powerful target assemblers. Also, many
conversion operators may be generated that have no effect on a given machine, but may be needed on
others (for example, pointer to pointer conversions usually do nothing in C, but must be generated
because there are some machines where they are significant).

For these reasons, the first pass of the portable compiler is not entirely machine independent. It
contains some machine dependent features, such as initialization, subroutine prolog and epilog, cer
tain storage allocation functions, code for the switch statement, and code to throw out unneeded
conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C compiler
has roughly 600 machine dependent lines of source out of 4600 in Pass I, and 1000 out of 3400 in
Pass 2. In total, 1600 out of 8000, or 20%, of the total source is machine dependent (12% in Pass I,
30% in Pass 2). These percentages can be expected to rise slightly as the compiler is tuned. The per
centage of machine-dependent code for the IBM is 22%, for the Honeywell 25%. If the assembler for
mat and structure were the same for all these machines, perhaps another 5-10% of the code would
become machine independent.

These figures are sufficiently misleading as to be almost meaningless. A large fraction of the
machine dependent code can be converted in a straightforward, almost mechanical way. On the other
hand, a certain amount of the code requires hard intellectual effort to convert, since the algorithms
embodied in this part of the code are typically complicated and machine dependent.

To summarize, however, if you need a C compiler written for a machine with a reasonable
architecture, the compiler is already three quarters finished!

Overview

This paper discusses the structure and organization of the portable compiler. The intent is to
give the big picture, rather than discussing the details of a particular machine implementation. After
a brief overview and a discussion of the source file structure, the paper describes the major data struc
tures, and then delves more closely into the two passes. Some of the theoretical work on which the
compiler is based, and its application to the compiler, is discussed elsewhere.4 One of the major
design issues in any C compiler, the design of the calling sequence and stack frame, is the subject of a
separate memorandum.5

The compiler consists of two passes, pass I and pass2, that together turn C source code into
assembler code for the target machine. The two passes are preceded by a preprocessor, that handles
the #define and #include statements, and related features (e.g., #ifdef, etc.). The two passes may
optionally be followed by a machine dependent code improver. ·

The output of the preprocessor is a text file that is read as the standard input of the first pass.
This produces as standard output another text file that becomes the standard input of the second
pass. The second pass produces, as standard output, the desired assembler language source code.
The code improver, if used, converts the assembler code to more effective code, and the result is
passed to the assembler. The preprocessor and the two passes all write error messages on the stan
dard error file. Thus the compiler itself makes few demands on the 1/0 library support, aiding in the
bootstrapping process.

The division of the compiler into two passes is somewhat artificial. The compiler can optionally
be loaded so that both passes operate in the same program. This "one pass" operation eliminates the
overhead of reading and writing the intermediate file, so the compiler operates about 30% faster in
this mode. It also occupies about 30% more space than the larger of the two component passes. This
"one pass" compiler is the standard version on machines with large addre~s spaces, such as the VAX.

Because the compiler is fundamentally structured as two passes, even when loaded as one, this
document primarily describes the two pass version.

A Tour Through the Portable C Compiler SMM:l9-3

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also con
structs parse trees for expressions, and keeps track of the types of the nodes in these trees. Additional
code is devoted to initialization. Machine dependent portions of the first pass serve to generate sub
routine prologs and epilogs, code for switches, and code for branches, label definitions, alignment
operations, changes of location counter, etc.

The intermediate file is a text file organized into lines. Lines beginning with a right parenthesis
are copied by the second pass directly to its output file, with the parenthesis stripped off. Thus, when
the first pass produces assembly code, such as subroutine prologs, etc., each line is prefaced with a
right parenthesis; the second pass passes these lines to through to the assembler.

The major job done by the second pass is generation of code for expressions. The expression
parse trees produced in the first pass are written onto the intermediate file in Polish Prefix form: first,
there is a line beginning with a period, followed by the source file line number and name on which
the expression appeared (for debugging purposes). The successive lines represent the nodes of the
parse tree, one node per line. Each line contains the node number, type, and any values (e.g., values
of constants) that may appear in the node. Lines representing nodes with descendants are immedi
ately followed by the left subtree of descendants, then the right. Since the number of descendants of
any node is completely determined by the node number, there is no need to mark the end of the tree.

There are only two other line types in the intermediate file. Lines beginning with a left square
bracket ('[') represent the beginning of blocks (delimited by { ... } in the C source); lines beginning
with right square brackets (']') represent the end of blocks. The remainder of these lines tell how
much stack space, and how many register variables, are currently in use.

Thus, the second pass reads the intermediate files, copies the ')' lines, makes note of the infor
mation in the '[' and ']' lines, and devotes most of its effort to the '.' lines and their associated expres
sion trees, turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees contain information useful to both
logical passes. Instead of writing the trees onto an intermediate file, each tree is transformed in place
into an acceptable form for the code generator. The code generator then writes the result of compil
ing this tree onto the standard output. Instead of '[' and ']' lines in the intermediate file, the informa
tion is passed directly to the second pass routines. Assembly code produced by the first pass is simply
written out, without the need for ')' at the head of each line.

The Source Files
The compiler source consists of 25 source files. Several header files contain information which

is needed across various source modules. Manifest.h has declarations for node types, type manipula
tion macros and other macros, and some global data definitions. Macdefs.h has machine-dependent
definitions, such as the size and alignment of the various data representations. Config.h defines sym
bols which control the configuration of the compiler, including such things as the sizes of various
tables and whether the compiler is "one pass". The compiler conditionally includes another file,
onepass.h, which contains definitions which are particular to a "one pass" compiler. Ndu.h defines
the basic tree building structure which is used throughout the compiler to construct expression trees.
Manifest.h includes a file of opcode and type definitions named pcclocal.h; this file is automatically
generated from a header file specific to the C compiler named localdefs.h and a public header file
/usrlincludelpcc.h. Another file, pcctokens, is generated in a similar way and contains token
definitions for the compiler's Yacc6 grammar. Two machine independent header files, passl.h and
pass2.h, contain the data structure and manifest definitions for the first and second passes, respec
tively. In the second pass, a machine dependent header file, mac2defs.h, contains declarations of
register names, etc.

Common.c contains machine independent routines used in both passes. These include routines
for allocating and freeing trees, walking over trees, printing debugging information, and printing error
messages. This file can be compiled in two flavors, one for pass 1 and one for pass 2, depending on
what conditional compilation symbol is used.

SMM:19-4 A Tour Through the Portable C Compiler

Entire sections of this document are devoted to the detailed structure of the passes. For the
moment, we just give a brief description of the files. The first pass is obtained by compiling and load
ing cgram.y, code.c, common.c, local.c, optim.c, pfin.c, scan.c, stab.c, trees.c and xdefe.c. Scan.c is
the lexical analyzer, which provides tokens to the bottom-up parser which is defined by the Yacc
grammar cgram.y. Xdefe.c is a short file of external definitions. Pfin.c maintains the symbol table,
and does initialization. Trees.c builds the expression trees, and computes the node types. Optim.c
does some machine independent optimizations on the expression trees. Common.c contains service
routines common to the two passes of the compiler. All the above files are machine independent.
The files local.c and code.c contain machine dependent code for generating subroutine prologs, switch
code, and the like. Stab.c contains machine dependent code for producing external symbol table
information which can drive a symbolic debugger.

The second pass is produced by compiling and loading allo.c, common.c, loca/2.c, match.c,
order.c, reader.c and table.c. Reader.c reads the intermediate file, and controls the major logic of the
code generation. Allo.c keeps track of busy and free registers. Match.c controls the matching of code
templates to subtrees of the expression tree to be compiled. Common.c defines certain service rou
tines, as in the first pass. The above files are machine independent. Order.c controls the machine
dependent details of the code generation strategy. Loca/2.c has many small machine dependent rou
tines, and tables of opcodes, register types, etc. Table.c has the code template tables, which are also
clearly machine dependent.

Data Structure Considerations
This section discusses the node numbers, type words, and expression trees, used throughout

both passes of the compiler.
The file manifest.h defines those symbols used throughout both passes. The intent is to use the

same symbol name (e.g., MINUS) for the given operator throughout the lexical analysis, parsing, tree
building, and code generation phases. Manifest.h obtains some of its definitions from two other
header files, localdefe.h and pcc.h. Localdefe.h contains definitions for operator symbols which are
specific to the C compiler. Pcc.h contains definitions for operators and types which may be used by
other compilers to communicate with a portable code generator based on pass 2; this code generator
will be described later.

A token like MINUS may be seen in the lexical analyzer before it is known whether it is a unary
or binary operator; clearly, it is necessary to know this by the time the parse tree is constructed.
Thus, an operator (really a macro) called UNARY is provided, so that MINUS and UNARY MINUS
are both distinct node numbers. Similarly, many binary operators exist in an assignment form (for
example, -=), and the operator ASG may be applied to such node names to generate new ones, e.g.
ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary operator
(one descendant) or a binary operator (two descendants). The macro optype(o) returns one of the
manifest constants LTYPE, UTYPE, or BITYPE, respectively, depending on the node number o.
Similarly, asgop(o) returns true if o is an assignment operator number(=, +=, etc.), and logop(o)
returns true if o is a relational or logical (&&, 11, or !) operator.

C has a rich typing structure, with a potentially infinite number of types. To begin with, there
are the basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as UCHAR,
USHORT, UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a structure),
UNIONTY, and ENUMTY. Then, there are three operators that can be applied to types to make
others: if t is a type, we may potentially have types pointer to t, function returning t, and array of t's
generated from t. Thus, an arbitrary type in C consists of a basic type, and zero or more of these
operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold the
basic type, and the remaining bits are divided into two-bit fields, containing 0 (no operator), or one of
the three operators described above. The modifiers are read right to left in the word, starting with the
two-bit field adjacent to the basic type, until a field with 0 in it is reached. The macros PTR, FTN,

A Tour Through the Portable C Compiler SMM:I9-5

and ARY represent the pointer to, fimction returning, and array of operators. The macro values are
shifted so that they align with the first two-bit field; thus PTR +INT represents the type for an integer
pointer, and

ARY+ (PTR<<2) + (FTN<<4) + DOUBLE

represents the type of an array of pointers to functions returning doubles.

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t) gives the
basic type. ISPTR{I), !SARY(/), and ISFTN(t) ask if an object of this type is a pointer, array, or a
function, respectively. MODTYPE{t,b) sets the basic type oft to b. DECREF(t) gives the type
resulting from removing the first operator from t. Thus, if t is a pointer to t, a function returning t,
or an array oft, then DECREF(t) would equal t. INCREF(t) gives the type representing a pointer
to I. Finally, there are operators for dealing with the unsigned types. ISUNSIGNED(t) returns true if
t is one of the four basic unsigned types; in this case, DEUNSIGN(t) gives the associated 'signed'
type. Similarly, UNSIGNABLE(t) returns true if t is one of the four basic types that could become
unsigned, and ENUNSIGN{t) returns the unsigned analogue oft in this case.

The other important global data structure is that of expression trees. The actual shapes of the
nodes are given in ndu.h. The information stored for each pass is not quite the same; in the first
pass. nodes contain dimension and size information, while in the second pass nodes contain register
allocation information. Nevertheless, all nodes contain fields called op, containing the node number,
and type, containing the type word. A function called tal/oc() returns a pointer to a new tree node.
To free a node, its op field need merely be set to FREE. The other fields in the node will remain
intact at least until the next allocation.

Nodes representing binary operators contain fields, left and right, that contain pointers to the
left and right descendants. Unary operator nodes have the left field, and a value field called rva/.
Leaf nodes, with no descendants, have two value fields: Iva/ and rval.

At appropriate times, the function /check() can be called, to check that there are no busy nodes
remaining. This is used as a compiler consistency check. The function tcopy(p) takes a pointer p
that points to an expression tree, and returns a pointer to a disjoint copy of the tree. The function
walkf(p,f) performs a postorder walk of the tree pointed to by p, and applies the function f to each
node. The function fwalk{p,f.d) does a preorder walk of the tree pointed to by p. At each node, it
calls a function f, passing to it the node pointer, a value passed down from its ancestor, and two
pointers to values to be passed down to the left and right descendants (if any). The value d is the
value passed down to the root. Fwalk is used for a number of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be discussed
later.

Pass One

The first pass does lexical analysis, parsing, symbol table mainteriance, tree building, optimiza
tion, and a number of machine dependent things. This pass is largely machine independent, and the
machine independent sections can be pretty successfully ignored. Thus, they will be only sketched
here.

Lexical Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns the tokens
of the C language as it encounters them: names, constants, operators, and keywords. The conceptual
simplicity of this job is confounded a bit by several other simple jobs that unfortunately must go on
simultaneously. These include

• Keeping track of the current filename and line number, and occasionally setting this information
as the result of preprocessor control lines.

• Skipping comments.

SMM:19-6 A Tour Through the Portable C Compiler

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well as
character strings.

To achieve speed, the program maintains several tables that are indexed into by character value,
to tell the lexical analyzer what to do next. To achieve portability, these tables must be initialized
each time the compiler is run, in order that the table entries reflect the local character set values.

Parsing

As mentioned above, the parser is generated by Yacc from the grammar cgram.y. The grammar
is relatively readable, but contains some unusual features that are worth comment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The problem is to
keep track of the basic type and the storage class while interpreting the various stars, brackets, and
parentheses that may surround a given name. The entire declaration mechanism must be recursive,
since declarations may appear within declarations of structures and unions, or even within a sizeof
construction inside a dimension in another declaration!

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to handle
constructions where a lot of left context information must be kept around. The problem is that the
original PDP-I I compiler is top-down in implementation, and some of the semantics of C reflect this.
In a top-down parser, the input rules are restricted somewhat, but one can naturally associate tem
porary storage with a rule at a very early stage in the recognition of that rule. In a bottom-up parser,
there is more freedom in the specification of rules, but it is more difficult to know what rule is being
matched until the entire rule is seen. The parser described by cgram.y makes effective use of the
bottom-up parsing mechanism in some places (notably the treatment of expressions), but struggles
against the restrictions in others. The usual result is that it is necessary to run a stack of values "on
the side", independent of the Yacc value stack, in order to be able to store and access information
deep within inner constructions, where the relationship of the rules being recognized to the total pic
ture is not yet clear.

In the case of declarations, the attribute information (type, etc.) for a declaration is carefully
kept immediately to the left of the declarator (that part of the declaration involving the name). In
this way, when it is time to declare the name, the name and the type information can be quickly
brought together. The "$0" mechanism of Yacc is used to accomplish this. The result is not pretty,
but it works. The storage class information changes more slowly, so it is kept in an external variable,
and stacked if necessary. Some of the grammar could be considerably cleaned up by using some more
recent features of Yacc, notably actions within rules and the ability to return multiple values for
actions.

A stack is also used to keep track of the current location to be branched to when a break or con
tinue statement is processed.

This use of external stacks dates from the time when Yacc did not permit values to be struc
tures. Some, or most, of this use of external stacks could be eliminated by redoing the grammar to
use the mechanisms now provided. There are some areas, however, particularly the processing of
structure, union, and enumeration declarations, function prologs, and switch statement processing,
when having all the affected data together in an array speeds later processing; in this case, use of
external storage seems essential.

The cgram.y file also contains some small functions used as utility functions in the parser.
These include routines for saving case values and labels in processing switches, and stacking and pop
ping values on the external stack described above.

Storage Classes

C has a finite, but fairly extensive, number of storage classes available. One of the compiler
design decisions was to process the storage class information totally in the first pass; by the second
pass, this information must have been totally dealt with. This means that all of the storage allocation
must take place in the first pass, so that references to automatics and parameters can be turned into
references to cells lying a certain number of bytes offset from certain machine registers. Much of this

A Tour Through the Portahle C Compiler SMM:l9-7

transformation is machine dependent. and strongly depends on the storage class.

The classes include EXTERN (for externally declared. hut not defined variahles). EXTDEF (for
external definitions). and similar distinctions for USTATIC and STATIC. UFORTRAN and FOR
TRAN (for fortran functions) and ULABEL and LABEL. The storage classes REGISTER and AUTO
are obvious. as are STNAME. UNAME. and ENAME (for structure. union. and enumeration tags).
and the associated MOS. MOU. and MOE (for the memhers). TYPEDEF is treated as a storage class
as well. There are two special storage classes: PARAM and SNULL. SNULL is used to distinguish
the case where no explicit storage class has been given: before an entry is made in the symbol table
the true storage class is discovered. Similarly. PARAM is used for the temporary entry in the symbol
table made before the declaration of function parameters is completed.

The most complexity in the storage class process comes from bit fields. A separate storage class
is kept for each width bit field: a k bit bit field has storage class k plus FIELD. This enables the size
to be quickly recovered from the storage class.

Symbol Table Maintenance

The symbol table routines do far more than simply enter names into the symbol table: consider
able semantic processing and checking is done as well. For example, if a new declaration comes in. it
must be checked to see if there is a previous declaration of the same symbol. If there is. there are
many cases. The declarations may agree and be compatible (for example. an extern declaration can
appear twice) in which case the new declaration is ignored. The new declaration may add informa
tion (such as an explicit array dimension) to an already present declaration. The new declaration
may be different. but still correct (for example. an extern declaration of something may be entered,
and then later the definition may be seen). The new declaration may be incompatible, but appear in
an inner block: in this case, the old declaration is carefully hidden away, and the new one comes into
force until the block is left. Finally, the declarations may be incompatible, and an error message
must be produced.

A number of other factors make for additional complexity. The type declared by the user is not
always the type entered into the symbol table (for example, if a formal parameter to a function is
declared to be an array, C requires that this be changed into a pointer before entry in the symbol
table). Moreover, there are various kinds of illegal types that may be declared which are difficult to
check for syntactically (for example, a function returning an array). Finally, there is a strange feature
in C that requires structure tag names and member names for structures and unions to be taken from
a different logical symbol table than ordinary identifiers. Keeping track of which kind of name is
involved is a bit of struggle (consider typedef names used within structure declarations, for example).

The symbol table handling routines have been rewritten a number of times to extend features,
improve performance, and fix bugs. They address the above problems with reasonable effectiveness
but a singular lack of grace.

When a name is read in the input, it is hashed, and the routine lookup is called, together with a
flag which tells which symbol table should be searched (actually, both symbol tables are stored in one,
and a flag is used to distinguish individual entries). If the name is found, lookup returns the index to
the entry found; otherwise, it makes a new entry, marks it UNDEF (undefined}, and returns the index
of the new entry. This index is stored in the rval field of a NAME node.

When a declaration is being parsed, this NAME node is made part of a tree with UNARY MUL
nodes for each *, LB nodes for each array descriptor (the right descendant has the dimension), and
UNARY CALL nodes for each function descriptor. This tree is passed to the routine tymerge, along
with the attribute type of the whole declaration; this routine collapses the tree to a single node, by cal
ling tyreduce, and then modifies the type to reflect the overall type of the declaration.

Dimension and size information is stored in a table called dimtab. To properly describe a type
in C, one needs not just the type information but also size information (for structures and enumera
tions) and dimension information (for arrays). Sizes and offsets are dealt with in the compiler by giv
ing the associated indices into dimtab. Tymerge and tyreduce call dstash to put the discovered
dimensions away into the dimtab array. Tymerge returns a pointer to a single node that contains the

SMM:19-8 A Tour Through the Portable C Compiler

symbol table index in its /"\'{// field. and the size and dimension indices in fields csi:: and cdim,
respectively. This information is properly considered part of the type in the first pass. and is carried
around at all times.

To enter an clement into the symbol table. the routine dc'.fid is called: it is handed a storage
class. and a pointer to the node produced by 1_rme1xe. Dc'.fid calls /iXl)"flC'. which adjusts and checks
the given type depending on the storage class. and converts null types appropriately. It then calls
.fixc/a.u. which docs a similar job for the storage class: it is here, for example, that register declara
tions arc either allowed or changed to auto.

The new declaration is now compared against an older one, if present. and several pages of vali
dity checks performed. If the definitions arc compatible. with possibly some added information. the
processing is straightforward. If the definitions differ, the block levels of the current and the old
declaration are compared. The current block level is kept in hlew!I, an external variable; the old
declaration level is kept in the symbol table. Block level 0 is for external declarations. I is for argu
ments to functions. and 2 and above are blocks within a function. If the current block level is the
same as the old declaration. an error results. If the current block level is higher. the new declaration
overrides the old. This is done by marking the old symbol table entry "hidden", and making a new
entry. marked "hiding". Lookup will skip over hidden entries. When a block is left, the symbol table
is searched. and any entries defined in that block are destroyed: if they hid other entries, the old
entries are "unhidden".

This nice blork structure is warped. a bit because labels do not follow the block structure rules
(one can do a goto into a block, for example); default definitions of functions in inner blocks also per
sist clear out to the outermost scope. This implies that cleaning up the symbol table after block exit
is more subtle than it might first seem.

For successful new definitions, defid also initializes a "general purpose" field, c~lf~el, in the sym
bol table. It contains the stack offset for automatics and parameters, the register number for register
variables, the bit offset into the structure for structure members, and the internal label number for
static variables and labels. The offset field is set by .fal/oc for bit fields, and dclstruct for structures
and unions.

The symbol table entry itself thus contains the name, type word, size and dimension offsets,
offset value, and declaration block level. It also has a field of flags, describing what symbol table the
name is in, and whether the entry is hidden, or hides another. Finally, a field gives the line number
of the last use, or of the definition, of the name. This is used mainly for diagnostics, but is useful to
lint as well.

In some special cases, there is more than the above amount of informatfon kept for the use of
the compiler. This is especially true with structures; for use in initialization, structure declarations
must have access to a list of the members of the structure. This list is also kept in dimtab. Because a
structure can be mentioned long before the members are known, it is necessary to have another level
of indireccion in the table. The two words following the csiz entry in dimtab are used to hold the
alignment of the structure, and the index in dimtab of the list of members. This list contains the
symbol table indices for the structure members, terminated by a -1.

Tree Building

The portable compiler transforms expressions into expression trees. As the parser recognizes
each rule making up an expression, it calls buildtree which is given an operator number, and pointers
to the left and right descendants. Buildtree first examines the left and right descendants, and, if they
are both constants, and the operator is appropriate, simply does the constant computation at compile
time, and returns the result as a constant. Otherwise, buildtree allocates a node for the head of the
tree, attaches the descendants to it, and ensures that conversion operators are generated if needed,
and that the type of the new node is consistent with the types of the operands. There is also a consid
erable amount of semantic complexity here; many combinations of types are illegal, and the portable
compiler makes a strong effort to check the legality of expression types completely. This is done both
for lint purposes, and to prevent such semantic errors from being passed through to the code

A Tour Through the Portable C Compiler SMM:19-9

generator.

The heart of huildtree is a large table. accessed by the routine opacr. This routine maps the
types of the left and right operands into a rather smaller set of descriptors. and then accesses a table
(actuallv encoded in a switch statement) which for each operator and pair of types causes an action to
be retu~ned. The actions are logical or's of a number of separate actions. which may be carried out
by huildtree. These component actions may include checking the left side to ensure that it is an
lvalue (can be stored into). applying a type conversion to the left or right operand, setting the type of
the new node to the type of the left or right operand. calling various routines to balance the types of
the left and right operands. and suppressing the ordinary conversion of arrays and function operands
to pointers. An important operation is OTHER. which causes some special code to be invoked in
/111i/d1ree. to handle issues which are unique to a particular operator. Examples of this are structure
and union reference (actually handled by the routine .1·1re.f), the building of NAME. ICON, STRING
and FCON (floating point constant) nodes. unary * and &, structure assignment, and calls. In the
case of unary * and &. huildtree will cancel a * applied to a tree. the top node of which is &. and con
versely.

Another special operation is PUN: this causes the compiler to check for type mismatches, such
as intermixing pointers and integers.

The treatment of conversion operators is a rather strange area of the compiler (and of C!). The
introduction of type casts only confounded this situation. Most of the conversion operators are gen
erated by calls to rymarch and p1ma1d1. both of which are given a tree, and asked to make the
operands agree in type. Ptmarch treats the case where one of the operands is a pointer; tymatch
treats all other cases. Where these routines have decided on the proper type for an operand, they call
makelJ'. which is handed a tree, and a type word, dimension offset, and size offset. If necessary, it
inserts a conversion operation to make the types correct. Conversion operations are never inserted
on the left side of assignment operators, however. There are two conversion operators used; PCONV,
if the conversion is to a non-basic type (usually a pointer), and SCONV, if the conversion is to a basic
type (scalar).

To allow for maximum flexibility, every node produced by buildtree is given to a machine
dependent routine, c/oca/, immediately after it is produced. This is to allow more or less immediate
rewriting of those nodes which must be adapted for the local machine. The conversion operations are
given to cloca/ as well; on most machines, many of these conversions do nothing, and should be
thrown away (being careful to retain the type). If this operation is done too early, however, later calls
to bui/dtree may get confused about correct type of the subtrees; thus cloca/ is given the conversion
operations only after the entire tree is built. This topic will be dealt with in more detail later.

Initialization
Initialization is one of the messier areas in the portable compiler. The only consolation is that

most of the mess takes place in the machine independent part, where it is may be safely ignored by
the implementor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine structure;
one collection of programs reading constants from the input stream, while another, independent set of
programs places these constants into the appropriate spots in memory. The dramatic differences in
the local assemblers also come to the fore here. The parsing problems are dealt with by keeping a
rather extensive stack containing the current state of the initialization; the assembler problems are
dealt with by having a fair number of machine dependent routines.

The stack contains the symbol table number, type, dimension index, and size index for the
current identifier being initialized. Another entry has the offset, in bits, of the beginning of the
current identifier. Another entry keeps track of how many elements have been seen, if the current
identifier is an array. Still another entry keeps track of the current member of a structure being ini
tialized. Finally, there is an entry containing flags which keep track of the current state of the initiali
zation process (e.g., tell if a ')' has been seen for the current identifier).

SMM:l9-l0 A Tour Through the Portable C Compiler

When an initialization begins, the routine beginit is called; it handles the alignment restrictions,
if any, and calls instk to create the stack entry. This is done by first making an entry on the top of
the stack for the item being initialized. If the top entry is an array, another entry is made on the
stack for the first element. If the top entry is a structure, another entry is made on the stack for the
first member of the structure. This continues until the top element of the stack is a scalar. Instk then
returns, and the parser begins collecting initializers.

When a constant is obtained, the routine doinit is called; it examines the stack, and does what
ever is necessary to assign the current constant to the scalar on the top of the stack. gotscal is then
called, which rearranges the stack so that the next scalar to be initialized gets placed on top of the
stack. This process continues until the end of the initializers; endinit cleans up. If a '{' or '}' is
encountered in the string of initializers, it is handled by calling ilbrace or irbrace, respectively.

A central issue is the treatment of the "holes" that arise as a result of alignment restrictions or
explicit requests for holes in bit fields. There is a global variable, inojf, which contains the current
offset in the initialization (all offsets in the first pass of the compiler are in bits). Doinit figures out
from the top entry on the stack the expected bit offset of the next identifier; it calls the machine
dependent routine inforce which, in a machine dependent way, forces the assembler to set aside space
if need be so that the next scalar seen will go into the appropriate bit offset position. The scalar itself
is passed to one of the machine dependent routines fincode (for floating point initialization), incode
(for fields, and other initializations less than an int in size), and cinit (for all other initializations).
The size is passed to all these routines, and it is up to the machine dependent routines to ensure that
the initializer occupies exactly the right size.

Character strings represent a bit of an exception. If a character string is seen as the initializer
for a pointer, the characters making up the string must be put out under a different location counter.
When the lexical analyzer sees the quote at the head of a character string, it returns the token
STRING, but does not do anything with the contents. The parser calls getstr, which sets up the
appropriate location counters and flags, and calls lxstr to read and process the contents of the string.

If the string is being used to initialize a character array, /xstr calls putbyte, which in effect simu
lates doinit for each character read. If the string is used to initialize a character pointer, lxstr calls a
machine dependent routine, bycode, which stashes away each character. The pointer to this string is
then returned, and processed normally by doinit.

The null at the end of the string is treated as if it were read explicitly by lxstr.

Statements

The first pass addresses four main areas; declarations, expressions, initialization, and statements.
The statement processing is relatively simple; most of it is carried out in the parser directly. Most of
the logic is concerned with allocating label numbers, defining the labels, and branching appropriately.
An external symbol, reached, is 1 if a statement can be reached, 0 otherwise; this is used to do a bit
of simple flow analysis as the program is being parsed, and also to avoid generating the subroutine
return sequence if the subroutine cannot "fall through" the last statement.

Conditional branches are handled by generating an expression node, CBRANCH, whose left des
cendant is the conditional expression and the right descendant is an ICON node containing the inter
nal label number to be branched to. For efficiency, the semantics are that the label is gone to if the
condition is false.

The switch <tatement is compiled by collecting the case entries, and an indication as to whether
there is a default case; an internal label number is generated for each of these, and remembered in a
big array. The expression comprising the value to be switched on is compiled when the switch key
word is encountered, but the expression tree is headed by a special node, FORCE, which tells the
code generator to put the expression value into a special distinguished register (this same mechanism
is used for processing the return statement). When the end of the switch block is reached, the array
containing the case values is sorted, and checked for duplicate entries (an error); if all is correct, the
machine dependent routine genswitch is called, with this array of labels and values in increasing
order. Genswitch can assume that the value to be tested is already in the register which is the usual

A Tour Through the Portable C Compiler SMM:l9-ll

integer return value register.

Optimization

There is a machine independent file, optim.c, which contains a relatively short optimization rou
tine, optim. Actually the word optimization is something of a misnomer; the results are not
optimum, only improved, and the routine is in fact not optional; it must be called for proper opera
tion of the compiler.

Optim is called after an expression tree is built, but before the code generator is called. The
essential part of its job is to call clocal on the conversion operators. On most machines, the treat
ment of & is also essential: by this time in the processing, the only node which is a legal descendant
of & is NAME. (Possible descendants of* have been eliminated by buildtree .) The address of a static
name is, almost by definition, a constant, and can be represented by an ICON node on most
machines (provided that the loader has enough power). Unfortunately, this is not universally true; on
some machine, such as the IBM 370, the issue of addressability rears its ugly head; thus, before turn
ing a NAME node into an ICON node, the machine dependent function andable is called.

The optimization attempts of optim are quite limited. It is primarily concerned with improving
the behavior of the compiler with operations one of whose arguments is a constant. In the simplest
case, the constant is placed on the right if the operation is commutative. The compiler also makes a
limited search for expressions such as

(x+a)+b

where a and b are constants, and attempts to combine a and b at compile time. A number of spe
cial cases are also examined; additions of 0 and multiplications by 1 are removed, although the
correct processing of these cases to get the type of the resulting tree correct is decidedly nontrivial. In
some cases, the addition or multiplication must be replaced by a conversion operator to keep the
types from becoming fouled up. In cases where a relational operation is being done and one operand
is a constant, the operands are permuted and the operator altered, if necessary, to put the constant on
the right. Finally, multiplications by a power of 2 are changed to shifts.

Machine Dependent Stuff

A number of the first pass machine dependent routines have been discussed above. In general,
the routines are short, and easy to adapt from machine to machine. The two exceptions to this gen
eral rule are clocal and the function prolog and epilog generation routines, bfcode and efcode.

Clocal has the job of rewriting, if appropriate and desirable, the nodes constructed by buildtree.
There are two major areas where this is important: NAME nodes and conversion operations. In the
case of NAME nodes, clocal must rewrite the NAME node to reflect the actual physical location of
the name in the machine. In effect, the NAME node must be examined, the symbol table entry found
(through the rval field of the node), and, based on the storage class of the node, the tree must be
rewritten. Automatic variables and parameters are typically rewritten by treating the reference to the
variable as a structure reference, off the register which holds the stack or argument pointer; the stref
routine is set up to be called in this way, and to build the appropriate tree. In the most general case,
the tree consists of a unary * node, whose descendant is a + node, with the stack or argument register
as left operand, and a constant offset as right operand. In the case of LABEL and internal static
nodes, the rval field is rewritten to be the negative of the internal label number; a negative rval field
is taken to be an internal label number. Finally, a name of class REGISTER must be converted into
a REG node, and the rval field replaced by the register number. In fact, this part of the clocal rou
tine is nearly machine independent; only for machines with addressability problems (IBM 370 again!)
does it have to be noticeably different.

The conversion operator treatment is rather tricky. It is necessary to handle the application of
conversion operators to const;mts in clocal, in order that all constant expressions can have their
values known at compile time. In extreme cases, this may mean that some simulation of the arith
metic of the target machine might have to be done in a cross-compiler. In the most common case,
conversions from pointer to pointer do nothing. For some machines, however, conversion from byte

SMM:l9-12 A Tour Through the Portable C Compiler

pointer to short or long pointer might require a shift or rotate operation, which would have to be gen
erated here.

The extension of the portable compiler to machines where the size of a pointer depends on its
type would be straightforward, but has not yet been done.

Another machine dependent issue in the first pass is the generation of external "symbol table"
information. This sort of symbol table is used by programs such as symbolic debuggers to relate
object code back to source code. Symbol table routines are provided in the file stab.c, which is
included in the machine dependent sources for the first pass. The symbol table routines insert assem
bly code containing assembly pseudo-ops directly into the instruction stream generated by the com
piler.

There are two basic kinds of symbol table operations. The simplest operation is the generation
of a source line number; this serves to map an address in an executable image into a line in a source
file so that a debugger can find the source code corresponding to the instructions being executed. The
routine psline is called by the scanner to emit source line numbers when a nonempty source line is
seen. The other variety of symbol table operation is the generation of type and address information
about C symbols. This is done through the outstab routine, which is normally called using the FIX
DEF macro in the monster dejid routine in pftn.c that enters symbols into the compiler's internal
symbol table.

Yet another major machine dependent issue involves function prolog and epilog generation.
The hard part here is the design of the stack frame and calling sequence; this design issue is discussed
elsewhere. 5 The routine bfcode is called with the number of arguments the function is defined with,
and an array containing the symbol table indices of the declared parameters. Bfcode must generate
the code to establish the new stack frame, save the return address and previous stack pointer value on
the stack, and save whatever registers are to be used for register variables. The stack size and the
number of register variables is not known when bfcode is called, so these numbers must be referred to
by assembler constants, which are defined when they are known (usually in the second pass, after all
register variables, automatics, and temporaries have been seen). The final job is to find those parame
ters which may have been declared register, and generate the code to initialize the register with the
value passed on the stack. Once again, for most machines, the general logic of bfcode remains the
same, but the contents of the print/ calls in it will change from machine to machine. efcode is rather
simpler, having just to generate the default return at the end of a function. This may be nontrivial in
the case of a function returning a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as good a
place as any. The C language now supports structure assignment, and the passing of structures as
arguments to functions, and the receiving of structures back from functions. This was added rather
late to C, and thus to the portable compiler. Consequently, it fits in less well than the older features.
Moreover, most of the burden of making these features work is placed on the machine dependent
code.

There are both conceptual and practical problems. Conceptually, the compiler is structured
around the idea that to compute something, you put it into a register and work on it. This notion
causes a bit of trouble on some machines (e.g., machines with 3-address opcodes), but matches many
machines quite well. Unfortunately, this notion breaks down with structures. The closest that one
can come is to keep the addresses of the structures in registers. The actual code sequences used to
move structures vary from the trivial (a multiple byte move) to the horrible (a function call), and are
very machine dependent.

The practical problem is more painful. When a function returning a structure is called, this
function has to have some place to put the structure value. If it places it on the stack, it has difficulty
popping its stack frame. If it places the value in a static temporary, the routine fails to be reentrant.
The most logically consistent way of implementing this is for the caller to pass in a pointer to a spot
where the called function should put the value before returning. This is relatively straightforward,
although a bit tedious, to implement, but means that the caller must have properly declared the func
tion type, even if the value is never used. On some machines, such as the Interdata 8/32, the return

A Tour Through the Portable C Compiler SMM:19-13

value simply overlays the argument region (which on the 8/32 is part of the caller's stack frame). The
caller takes care of leaving enough room if the returned value is larger than the arguments. This also
assumes that the caller declares the function properly.

The PDP-I I and the VAX have stack hardware which is used in function calls and returns; this
makes it very inconvenient to use either of the above mechanisms. In these machines, a static area
within the called function is allocated, and the function return value is copied into it on return; the
function returns the address of that region. This is simple to implement, but is non-reentrant. How
ever, the function can now be called as a subroutine without being properly declared, without the
disaster which would otherwise ensue. No matter what choice is taken, the convention is that the
function actually returns the address of the return structure value.

In building expression trees, the portable compiler takes a bit for granted about structures. It
assumes that functions returning structures actually return a pointer to the structure, and it assumes
that a reference to a structure is actually a reference to its address. The structure assignment operator
is rebuilt so that the left operand is the structure being assigned to, but the right operand is the
address of the structure being assigned; this makes it easier to deal with

a=b=c

and similar constructions.

There are four special tree nodes associated with these operations: ST ASG (structure assign
ment), STARG (structure argument to a function call), and STCALL and UNARY STCALL (calls of
a function with nonzero and zero arguments, respectively). These four nodes are unique in that the
size and alignment information, which can be determined by the type for all other objects in C, must
be known to carry out these operations; special fields are set aside in these nodes to contain this infor
mation, and special intermediate code is used to transmit this information.

First Pass Summary
There are may other issues which have been ignored here, partly to justify the title "tour", and

partially because they have seemed to cause little trouble. There are some debugging flags which may
be turned on, by giving the compiler's first pass the argument

-X[flags]

Some of the more interesting flags are -Xd for the defining and freeing of symbols, -Xi for initializa
tion comments, and -Xb for various comments about the building of trees. In many cases, repeating
the flag more than once gives more information; thus, -Xddd gives more information than -Xd. In
the two pass version of the compiler, the flags should not be set when the output is sent to the second
pass, since the debugging output and the intermediate code both go onto the standard output.

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this reason
the second pass is far harder to discuss in a file by file manner. A great deal of the difficulty is in
understanding the issues and the strategies employed to meet them. Any particular function is likely
to be reasonably straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy in
the code generator, and will not get too intimate with the details.

Overview
It is difficult to organize a code generator to be flexible enough to generate code for a large

number of machines, and still be efficient for any one of them. Flexibility is also important when it
comes time to tune the code generator to improve the output code quality. On the other hand, too
much flexibility can lead to semantically incorrect code, and potentially a combinatorial explosion in
the number of cases to be considered in the compiler.

SMM:l9-14 A Tour Through the Portable C Compiler

One goal of the code generator is to have a high degree of correctness. It is very desirable to
have the compiler detect its own inability to generate correct code, rather than to produce incorrect
code. This goal is achieved by having a simple model of the job to be done (e.g., an expression tree)
and a simple model of the machine state (e.g., which registers are free). The act of generating an
instruction performs a transformation on the tree and the machine state; hopefully, the tree eventu
ally gets reduced to a single node. If each of these instruction/transformation pairs is correct, and if
the machine state model really represents the actual machine, and if the transformations reduce the
input tree to the desired single node, then the output code will be correct.

For most real machines, there is no definitive theory of code generation that encompasses all the
C operators. Thus the selection of which instruction/transformations to generate, and in what order,
will have a heuristic flavor. If, for some expression tree, no transformation applies, or, more seri
ously, if the heuristics select a sequence of instruction/transformations that do not in fact reduce the
tree, the compiler will report its inability to generate code, and abort.

A major part of the code generator is concerned with the model and the transformations. Most
of this is machine independent, or depends only on simple tables. The flexibility comes from the
heuristics that guide the transformations of the trees, the selection of subgoals, and the ordering of the
computation.

The Machine Model

The machine is assumed to have a number of registers, of at most two different types: A and B.
Within each register class, there may be scratch (temporary) registers and dedicated registers (e.g.,
register variables, the stack pointer, etc.). Requests to allocate and free registers involve only the tem
porary registers.

Each of the registers in the machine is given a name and a number in the mac2defs.h file; the
numbers are used as indices into various tables that describe the registers, so they should be kept
small. One such table is the rstatus table on file local2.c. This table is indexed by register number,
and contains expressions made up from manifest constants describing the register types: SAREG for
dedicated AREG's, SAREGIST AREG for scratch AREG's, and SB REG and SBREGISTBREG simi
larly for BREG's. There are macros that access this information·: isbreg(r) returns true if register
number r is a BREG, and istreg(r) returns true if register number r is a temporary AREG or BREG.
Another table, rnames, contains the register names; this is used when putting out assembler code and
diagnostics.

The usage of registers is kept track of by an array called busy. Busy[rj is the number of uses of
register r in the current tree being processed. The allocation and freeing of registers will be discussed
later as part of the code generation algorithm.

General Organization

As mentioned above, the second pass reads lines from the intermediate file, copying through to
the output unchanged any lines that begin with a ')', and making note of the information about stack
usage and register allocation contained on lines beginning with ')' and '['. The expression trees, whose
beginning is indicated by a line beginning with '.', are read and rebuilt into trees. If the compiler is
loaded as one pass, the expression trees are immediately available to the code generator.

The actual code generation is done by a hierarchy of routines. The routine delay is first given
the tree; it attempts to delay some postfix + + and - - computations that might reasonably be done
after the smoke clears. It also attempts to handle comma (' ,') operators by computing the left side
expression first, and then rewriting the tree to eliminate the operator. Delay calls codgen to control
the actual code generation process. Codgen takes as arguments a pointer to the expression tree, and a
second argument that, for socio-historical reasons, is called a cookie. The cookie describes a set of
goals that would be acceptable for the code generation: these are assigned to individual bits, so they
may be logically or'ed together to form a large number of possible goals. Among the possible goals
are FOREFF (compute for side effects only; don't worry about the value), INTEMP (compute and
store value into a temporary location in memory), INAREG (compute into an A register), INTAREG

A Tour Through the Portable C Compiler SMM:l9-15

(compute into a scratch A register), INBREG and INTBREG similarly, FORCC (compute for condi
tion codes), and FORARG (compute it as a function argument; e.g., stack it if appropriate).

Codgen first canonicalizes the tree by calling canon. This routine looks for certain transforma
tions that might now be applicable to the tree. One, which is very common and very powerful, is to
fold together an indirection operator (UNARY MUL) and a register (REG); in most machines, this
combination is addressable directly, and so is similar to a NAME in its behavior. The UNARY MUL
and REG are folded together to make another node type called OREG. In fact, in many machines it
is possible to directly address not just the cell pointed to by a register, but also cells differing by a
constant offset from the cell pointed to by the register. Canon also looks for such cases, calling the
machine dependent routine notojf to decide if the offset is acceptable (for example, in the IBM 370
the offset must be between 0 and 4095 bytes). Another optimization is to replace bit field operations
by shifts and masks if the operation involves extracting the field. Finally, a machine dependent rou
tine, sucomp, is called that computes the Sethi-Ullman numbers for the tree (see below).

After the tree is canonicalized, codgen calls the routine store whose job is to select a subtree of
the tree to be computed and (usually) stored before beginning the computation of the full tree. Store
must return a tree that can be computed without need for any temporary storage locations. In effect,
the only store operations generated while processing the subtree must be as a response to explicit
assignment operators in the tree. This division of the job marks one of the more significant, and suc
cessful, departures from most other compilers. It means that the code generator can operate under
the assumption that there are enough registers to do its job, without worrying about temporary
storage. If a store into a temporary appears in the output, it is always as a direct result of logic in the
store routine; this makes debugging easier.

One consequence of this organization is that code is not generated by a treewalk. There are
theoretical results that support this decision. 7 It may be desirable to compute several subtrees and
store them before tackling the whole tree; if a subtree is to be stored, this is known before the code
generation for the subtree is begun, and the subtree is computed when all scratch registers are avail
able.

The store routine decides what subtrees, if any, should be stored by making use of numbers,
called Sethi-Ullman numbers, that give, for each subtree of an expression tree, the minimum number
of scratch registers required to compile the subtree, without any stores into temporaries. 8 These
numbers are computed by the machine-dependent routine sucomp, called by canon. The basic
notion is that, knowing the Sethi-Ullman numbers for the descendants of a node, and knowing the
operator of the node and some information about the machine, the Sethi-Ullman number of the node
itself can be computed. If the Sethi-Ullman number for a tree exceeds the number of scratch registers
available, some subtree must be stored. Unfortunately, the theory behind the Sethi-Ullman numbers
applies only to uselessly simple machines and operators. For the rich set of C operators, and for
machines with asymmetric registers, register pairs, different kinds of registers, and exceptional forms
of addressing, the theory cannot be applied directly. The basic idea of estimation is a good one, how
ever, and well worth applying; the application, especially when the compiler comes to be tuned for
high code quality, goes beyond the park of theory into the swamp of heuristics. This topic will be
taken up again later, when more of the compiler structure has been described.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored, and
returns the subtree and the associated cookie in the external variables stotree and stocook. If a sub
tree has been selected, or if the whole tree is ready to be processed, the routine order is called, with a
tree and cookie. Order generates code for trees that do not require temporary locations. Order may
make recursive calls on itself, and, in some cases, on codgen; for example, when processing the opera
tors &&, II, and comma (','), that have a left to right evaluation, it is incorrect for store examine the
right operand for subtrees to be stored. In these cases, order will call codgen recursively when it is
permissible to work on the right operand. A similar issue arises with the ? : operator.

The order routine works by matching the current tree with a set of code templates. If a tem
plate is discovered that will match the current tree and cookie, the associated assembly language state
ment or statements are generated. The tree is then rewritten, as specified by the template, to
represent the effect of the output instruction(s). If no template match is found, first an attempt is

SMM:19-16 A Tour Through the Portable C Compiler

made to find a match with a different cookie; for example, in order to compute an expression with
cookie INTEMP (store into a temporary storage location), it is usually necessary to compute the
expression into a scratch register first. If all attempts to match the tree fail, the heuristic part of the
algorithm becomes dominant. Control is typically given to one of a number of machine-dependent
routines that may in tum recursively call order to achieve a subgoal of the computation (for example,
one of the arguments may be computed into a temporary register). After this subgoal has been
achieved, the process begins again with the modified tree. If the machine-dependent heuristics are
unable to reduce the tree further, a number of default rewriting rules may be considered appropriate.
For example, if the left operand of a + is a scratch register, the + can be replaced by a + = operator;
the tree may then match a template:

To close this introduction, we will discuss the steps in compiling code for the expression

a+= b

where a and b are static variables.

To begin with, the whole expression tree is examined with cookie FOREFF, and no match is
found. Search with other cookies is equally fruitless, so an attempt at rewriting is made. Suppose we
are dealing with the Interdata 8/32 for the moment. It is recognized that the left hand and right hand
sides of the + = operator are addressable, and in particular the left hand side has no side effects, so it
is permissible to rewrite this as

a= a+ b

and this is done. No match is found on this tree either, so a machine dependent rewrite is done; it is
recognized that the left hand side of the assignment is addressable, but the right hand side is not in a
register, so order is called recursively, being asked to put the right hand side of the assignment into a
register. This invocation of order searches the tree for a match, and fails. The machine dependent
rule for + notices that the right hand operand is addressable; it decides to put the left operand into a
scratch register. Another recursive call to order is made, with the tree consisting solely of the leaf a,
and the cookie asking that the value be placed into a scratch register. This now matches a template,
and a load instruction is emitted. The node consisting of a is rewritten in place to represent the
register into which a is loaded, and this third call to order returns. The second call to order now
finds that it has the tree

reg+ b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a + =
operator, since the left operand is a scratch register. When this is done, there is a match: in fact,

reg+= b

simply describes the effect of the add instruction on a typical machine. After the add is emitted, the
tree is rewritten to consist merely of the register node, since the result of the add is now in the regis
ter. This agrees with the cookie passed to the second invocation of order, so this invocation ter
minates, returning to the first level. The original tree has now become

a= reg

which matches a template for the store instruction. The store is output, and the tree rewritten to
become just a single register node. At this point, since the top level call to order was interested only
in side effects, the call to order returns, and the code generation is completed; we have generated a
load, add, and store, as might have been expected.

The effect of machine architecture on this is considerable. For example, on the Honeywell
6000, the machine dependent heuristics recognize that there is an "add to storage" instruction, so the
strategy is quite different; b is loaded in to a register, and then an add to storage instruction gen
erated to add this register in to a. The transformations, involving as they do the semantics of C, are
largely machine independent. The decisions as to when to use them, however, are almost totally
machine dependent.

A Tour Through the Portable C Compiler SMM:l9-17

Having given a broad outline of the code generation process, we shall next consider the heart of
it: the templates. This leads naturally into discussions of template matching and register allocation,
and finally a discussion of the machine dependent interfaces and strategies.

The Templates

The templates describe the effect of the target machine instructions on the model of computa
tion around which the compiler is organized. In effect, each template has five logical sections, and
represents an assertion of the form:

If we have a subtree of a given shape (1), and we have a goal (cookie) or goals to achieve (2),
and we have sufficient free resources (3), then we may emit an instruction or instructions (4),
and rewrite the subtree in a particular manner (5), and the rewritten tree will achieve the
desired goals.

These five sections will be discussed in more detail later. First, we give an example of a tem
plate:

ASG PLUS, INAREG,
SAREG,
SN AME,

TINT,
TINT,
0, RLEFT,

add AL,AR\n",

The top line specifies the operator (+ =) and the cookie (compute the value of the subtree into an
AREG). The second and third lines specify the left and right descendants, respectively, of the + =
operator. The left descendant must be a REG node, representing an A register, and have integer type,
while the right side must be a NAME node, and also have integer type. The fourth line contains the
resource requirements (no scratch registers or temporaries needed), and the rewriting rule (replace the
subtree by the left descendant). Finally, the quoted string on the last line represents the output to the
assembler: lower case letters, tabs, spaces, etc. are copied verbatim. to the output; upper case letters
trigger various macro-like expansions. Thus, AL would expand into the Address form of the Left
operand - presumably the register number. Similarly, AR would expand into the name of the right
operand. The add instruction of the last section might well be emitted by this template.

In principle, it would be possible to make separate templates for all legal combinations of opera
tors, cookies, types, and shapes. In practice, the number of combinations is very large. Thus, a con
siderable amount of mechanism is present to permit a large number of subtrees to be matched by a
single template. Most of the shape and type specifiers are individual bits, and can be logically or'ed
together. There are a number of special descriptors for matching classes of operators. The cookies
can also be combined. As an example of the kind of template that really arises in practice, the actual
template for the Interdata 8/32 that subsumes the above example is:

ASG OPSIMP, INAREGIFORCC,
SAREG, TINTITUNSIGNEDITPOINT,
SAREGISNAMEISOREGISCON, TINTITUNSIGNEDITPOINT,

0, RLEFTIRESCC,
OI AL,AR\n"",

Here, OPSIMP represents the operators +, -, I, &, and·. The OI macro in the output string expands
into the appropriate Integer Opcode for the operator. The left and right sides can be integers,
unsigned, or pointer types. The right side can be, in addition to a name, a register, a memory loca
tion whose address is given by a register and displacement (OREG), or a constant. Finally, these
instructions set the condition codes, and so can be used in condition contexts: the cookie and rewrit
ing rules reflect this.

SMM:l9-18 A Tour Through the Portable C Compiler

The Template Matching Algorithm

The heart of the second pass is the template matching algorithm, in the routine match. Match
is called with a tree and a cookie; it attempts to match the given tree against some template that will
transform it according to one of the goals given in the cookie. If a match is successful, the transfor
mation is applied; expand is called to generate the assembly code, and then reclaim rewrites the tree,
and reclaims the resources, such as registers, that might have become free as a result of the generated
code.

This part of the compiler is among the most time critical. There is a spectrum of implementa
tion techniques available for doing this matching. The most naive algorithm simply looks at the tem
plates one by one. This can be considerably improved upon by restricting the search for an accept
able template. It would be possible to do better than this if the templates were given to a separate
program that ate them and generated a template matching subroutine. This would make maintenance
of the compiler much more complicated, however, so this has not been done.

The matching algorithm is actually carried out by restricting the range in the table that must be
searched for each opcode. This introduces a number of complications, however, and needs a bit of
'sympathetic help by the person constructing the compiler in order to obtain best results. The exact
tuning of this algorithm continues; it is best to consult the code and comments in match for the latest
version.

In order to match a template to a tree, it is necessary to match not only the cookie and the
operator of the root, but also the types and shapes of the left and right descendants (if any) of the
tree. A convention is established here that is carried out throughout the second pass of the compiler.
If a node represents a unary operator, the single descendant is always the "left" descendant. If a node
represents a unary operator or a leaf node (no descendants) the "right" descendant is taken by con
vention to be the node itself. This enables templates to easily match leaves and conversion operators,
for example, without any additional mechanism in the matching program.

The type matching is straightforward; it is possible to specify any combination of basic types,
general pointers, and pointers to one or more of the basic types. The shape matching is somewhat
more complicated, but still pretty simple. Templates have a collection of possible operand shapes on
which the opcode might match. In the simplest case, an add operation might be able to add to either
a register variable or a scratch register, and might be able (with appropriate help from the assembler)
to add an integer constant (ICON), a static memory cell (NAME), or a stack location (OREG).

It is usually attractive to specify a number of such shapes, and distinguish between them when
the assembler output is produced. It is possible to describe the union of many elementary shapes
such as ICON, NAME, OREG, AREG or BREG (both scratch and register forms), etc. To handle at
least the simple forms of indirection, one can also match some more complicated forms of trees:
ST ARNM and ST ARREG can match more complicated trees headed by an indirection operator, and
SFLD can match certain trees headed by a FLD operator. These patterns call machine dependent
routines that match the patterns of interest on a given machine. The shape SW ADD may be used to
recognize NAME or OREG nodes that lie on word boundaries: this may be of some importance on
word addressed machines. Finally, there are some special shapes: these may not be used in conjunc
tion with the other shapes, but may be defined and extended in machine dependent ways. The spe
cial shapes SZERO, SONE, and SMONE are predefined and match constants 0, I, and -1, respec
tively; others are easy to add and match by using the machine dependent routine special.

When a template has been found that matches the root of the tree, the cookie, and the shapes
and types of the descendants, there is still one bar to a total match: the template may call for some
resources (for example, a scratch register). The routine a/lo is called, and it attempts to allocate the
resources. If it cannot, the match fails; no resources are allocated. If successful, the allocated
resources are given numbers 1, 2, etc. for later reference when the assembly code is generated. The
routines expand and reclaim are then called. The match routine then returns a special value,
MDONE. If no match was found, the value MNOPE is returned; this is a signal to the caller to try
more cookie values, or attempt a rewriting rule. Match is also used to select rewriting rules, although
the way of doing this is pretty straightforward. A special cookie, FORREW, is used to ask match to

A Tour Through the Portable C Compiler SMM:19-19

search for a rewriting rule. The rewriting rules are keyed to various opcodes; most are carried out in
order. Since the question of when to rewrite is one of the key issues in code generation. it will be
taken up again later.

Register Allocation
The register allocation routines, and the allocation strategy, play a central role in the correctness

of the code generation algorithm. If there are bugs in the Sethi-Ullman computation that cause the
number of needed registers to be underestimated, the compiler may run out of scratch registers; it is
essential that the allocator keep track of those registers that are free and busy, in order to detect such
conditions.

Allocation of registers takes place as the result of a template match; the routine a/lo is called
with a word describing the number of A registers, B registers, and temporary locations needed. The
allocation of temporary locations on the stack is relatively straightforward, and will not be further
covered; the bookkeeping is a bit tricky, but conceptually trivial, and requests for temporary space on
the stack will never fail. -

Register allocation is less straightforward. The two major complications are pairing and shar
ing. In many machines, some operations (such as multiplication and division), and/or some types
(such as longs or double precision) require even/odd pairs of registers. Operations of the first type are
exceptionally difficult to deal with in the compiler; in fact, their theoretical properties are rather bad
as well.9 The second issue is dealt with rather more successfully; a machine dependent function called
szty(t) is called that returns 1 or 2, depending on the number of A registers required to hold an object
of type t. If szty returns 2, an even/odd pair of A registers is allocated for each request. As part of
its duties, the routine usable finds usable register pairs for various operations. This task is not as
easy as it sounds; it does not suffice to merely use szty on the expression tree, since there are situa
tions in which a register pair temporary is needed even though the result of the expression requires
only one register. This can occur with assignment operator expressions which have int type but a
double right hand side, or with relational expressions where one operand is float and the other double.

The other issue, sharing, is more subtle, but important for good code quality. When registers
are allocated, it is possible to reuse registers that hold address information, and use them to contain
the values computed or accessed. For example, on the IBM 360, if register 2 has a pointer to an
integer in it, we may load the integer into register 2 itself by saying:

L 2,0(2)

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing the
target register first, and then inserting the desired character:

SR 3,3
IC 3,0(2)

In the first case, if register 3 were used as the target, it would lead to a larger number of registers used
for the expression than were required; the compiler would generate inefficient code. On the other
hand, if register 2 were used as the target in the second case, the code would simply be wrong. In the
first case, register 2 can be shared while in the second, it cannot.

In the specification of the register needs in the templates, it is possible to indicate whether
required scratch registers may be shared with possible registers on the left or the right of the input
tree. In order that a register be shared, it must be scratch, and it must be used only once, on the
appropriate side of the tree being compiled.

The a/lo routine thus has a bit more to do than meets the eye; it calls freereg to obtain a free
register for each A and B register request. Freereg makes multiple calls on the routine usable to
decide if a given register can be used to satisfy a given need. Usable calls shareit if the register is
busy, but might be shared. Finally, shareit calls ushare to decide if the desired register is actually in
the appropriate subtree, and can be shared.

SMM:l9-20 A Tour Through the Portable C Compiler

Just to add additional complexity. on some machines (such as the IBM 370) it is possible to
havt> "double indexing" forms of addressing: these arc represented by OREG"s with the base and
index registers encoded into the register field. While the register allocation and deallocation per .H' is
not made more difficult by this phenomenon. the code itself is somewhat more complex.

Having allocated the registers and expanded the assembly language. it is time to reclaim the
resources: the routine reclaim docs this. Many operations produce more than one result. For exam
ple. many arithmetic operations may produce a value in a register. and also set the condition codes.
Assignment operations may leave results both in a register and in memory. Reclaim is passed three
parameters: the tree and cookie that were matched. and the rewriting field of the template. The
rewriting field allows the specification of possible results: the tree is rewritten to reflect the results of
the operation. If the tree was computed for side effects only (FOREFF), the tree is freed, and all
resources in it reclaimed. If the tree was computed for condition codes, the resources are also freed,
and the tree replaced by a special node type. FORCC. Otherwise, the value may be found in the left
argument of the root. the right argument of the root. or one of the temporary resources allocated. In
these cases, first the resources of the tree, and the newly allocated resources, are freed: then the
resources needed by the result are made busy again. The final result must always match the shape of
the input cookie: otherwise. the compiler error "cannot reclaim" is generated. There are some
machine dependent ways of preferring results in registers or memory when there are multiple results
matching multiple goals in the cookie.

Rrclaim also implements. in a curious way, C's "usual arithmetic conversions". When a value
is generated into a temporary register, reclaim decides what the type and size of the result will be.
Unless automatic conversion is specifically suppressed in the code template with the T macro, reclaim
converts char and short results to int, unsigned char and unsigned short results to unsigned int, and
float into double (for double only floating point arithmetic). This conversion is a simple type pun; no
instructions for converting the value are actually emitted. This implies that registers must always
contain a value that is at least as wide as a register, which greatly restricts the range of possible tem
plates.

The Machine Dependent Interface

The files order.c. /oca/2.c, and tah/e.c, as well as the header file mac2drfs, represent the machine
dependent portion of the second pass. The machine dependent portion can be roughly divided into
two: the easy portion and the hard portion. The easy portion tells the compiler the names of the
registers, and arranges that the compiler generate the proper assembler formats, opcode names, loca
tion counters, etc. The hard portion involves the Sethi-Ullman computation, the rewriting rules, and,
to some extent, the templates. It is hard because there are no real algorithms that apply; most of this
portion is based on heuristics. This section discusses the easy portion; the next several sections will
discuss the hard portion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy part is
indeed easy. In mac2di'.fs, the register numbers are defined, as well as various parameters for the
stack frame, and various macros that describe the machine architecture. If double indexing is to be
permitted, for example, the symbol R2REGS is defined. Also, a number of macros that are involved
in function call processing, especially for unusual function call mechanisms, are defined here.

In /oca/2.c, a large number of simple functions are defined. These do things such as write out
opcodes, register names, and address forms for the assembler. Part of the function call code is
defined here; that is nontrivial to design, but typically rather straightforward to implement. Among
the easy routines in order.c are routines for generating a created label, defining a label, and generating
the arguments of a function call.

These routines tend to have a local effect, and depend on a fairly straightforward way on the tar
get assembler and the design decisions already made about the compiler. Thus they will not be
further treated here.

A Tour Through the Portahle C Compiler SMM:l9-21

The Rewriting Rules

When a tree fails to match any template. it hecomes a candidate for rewriting. Before the tree is
rewritten. the machine dependent routine nexrmok is called with the tree and the cookie; it suggests
another cookie that might he a hetter candidate for the matching of the tree. If all else fails. the tem
plates are searched with the cookie FORREW. to look for a rewriting rule. The rewriting rules are of
two kinds; for most of the common operators. there are machine dependent rewriting rules that may
he applied; these are handled hy machine dependent functions that are called and given the tree to be
computed. These routines may recursively call order or rndgen to cause certain subgoals to be
achieved; if they actually call for some alteration of the tree. they return I, and the code generation
algorithm recanonicalizes and tries again. If these routines choose not to deal with the tree, the
default rewriting rules are applied.

The assignment operators. when rewritten. call the routine sera.w. This is assumed to rewrite
the tree at least to the point where there are no side effects in the left hand side. If there is still no
template match. a default rewriting is done that causes an expression such as

a+= h

to be rewritten as

a=a+b

This is a useful default for certain mixtures of strange types (for example, when a is a bit field and h
an character) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely by the
machine dependent routines. For historical reasons, the routines generating the calls return I on
failure, 0 on success, unlike the other routines.

The machine dependent routine sethin handles binary operators; it too must do most of the job.
In particular, when it returns 0, it must do so with the left hand side in a temporary register. The
default rewriting rule in this case is to convert the binary operator into the associated assignment
operator; since the left hand side is assumed to be a temporary register, this preserves the semantics
and often allows a considerable saving in the template table.

The increment and decrement operators may be dealt with with the machine dependent routine
setincr. If this routine chooses not to deal with the tree, the rewriting rule replaces

x ++

by

((x += I) - I)

which preserves the semantics. Once again, this is not too attractive for the most common cases, but
can generate close to optimal code when the type of x is unusual.

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The machine
dependent routine ojfstar is extremely important for the efficient generation of code. Ojfstar is called
with a tree that is the direct descendant of a UNARY MUL node; its job is to transform this tree so
that the combination of UNARY MUL with the transformed tree becomes addressable. On most
machines, ojfstar can simply compute the tree into an A or B register, depending on the architecture,
and then canon will make the resulting tree into an OREG. On many machines, ojfstar can
profitably choose to do less work than computing its entire argument into a register. For example, if
the target machine supports OREG's with a constant offset from a register, and ojfstar is called with a
tree of the form

expr + const

where const is a constant, then ojfstar need only compute expr into the appropriate form of register.
On machines that support double indexing, ojfstar may have even more choice as to how to proceed.
The proper tuning of ojfstar, which is not typically too difficult, should be one of the first tries at
optimization attempted by the compiler writer.

SMM: 19-22 A Tour Through the Portable C Compiler

The Sethi-Ullman Computation

The heart of the heuristics is the computation of the Sethi-Ullman numbers. This computation
is closely linked with the rewriting rules and the templates. As mentioned hefore. the Sethi-Ullman
numbers arc expected to estimate the numhcr of scratch registers needed to compute the subtrees
without using any stores. However. the original theory docs not apply to real machines. For one
thing. the theory assumes that all registers arc interchangeable. Real machines have general purpose.
floating point. and index registers. register pairs. etc. The theory also does not account for side
effects: this rules out various forms of pathology that arise from assignment and assignment operators.
Condition codes arc also undreamed of. Finally, the influence of types. conversions. and the various
addressability restrictions and extensions of real machines are also ignored.

Nevertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly useful in
a real compiler. The notion that one should attempt to estimate the resource needs of trees before
starting the code generation provides a natural means of splitting the code generation problem, and
provides a bit of redundancy and self checking in the compiler. Moreover. if writing the Sethi
Ullman routines is hard, describing, writing, and debugging the alternative (routines that attempt to
free up registers by stores into temporaries "on the fly") is even worse. Nevertheless. it should be
clearly understood that these routines exist in a realm where there is no "right" way to write them; it
is an art, the realm of heuristics, and, consequently, a major source of bugs in the compiler. Often,
the early, crude versions of these routines give little trouble: only after the compiler is actually work
ing and the code quality is being improved do serious problem have to be faced. Having a simple,
regular machine architecture is worth quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having different
kinds of registers, and the related problem of needing more than one register (frequently a pair) to
store certain data types (such as longs or doubles). There appears to be no general way of treating
this problem; solutions have to be fudged for each machine where the problem arises. On the
Honeywell 66, for example, there are only two general purpose registers, so a need for a pair is the
same as the need for two registers. On the IBM 370, the register pair (0,1) is used to do multiplica
tions and divisions; registers 0 and 1 are not generally considered part of the scratch registers, and so
do not require allocation explicitly. On the Interdata 8/32, after much consideration, the decision
was made not to try to deal with the register pair issue; operations such as multiplication and division
that required pairs were simply assumed to take all of the scratch registers. Several weeks of effort
had failed to produce an algorithm that seemed to have much chance of running successfully without
inordinate debugging effort. The difficulty of this issue should not be minimized; it represents one of
the main intellectual efforts in porting the compiler. Nevertheless, this problem has been fudged with
a degree of success on nearly a dozen machines, so the compiler writer should not abandon hope.

The Sethi-Ullman computations interact with the rest of the compiler in a number of rather sub
tle ways. As already discussed, the store routine uses the Sethi-Ullman numbers to decide which sub
trees are too difficult to compute in registers, and must be stored. There are also subtle interactions
between the rewriting routines and the Sethi-Ullman numbers. Suppose we have a tree such as

A-B

where A and B are expressions; suppose further that B takes two registers, and A one. It is possible
to compute the full expression in two registers by first computing B, and then, using the scratch regis
ter used by B, but not containing the answer, compute A. The subtraction can then be done, com
puting the expression. (Note that this assumes a number of things, not the least of which are
register-to-register subtraction operators and symmetric registers.) If the machine dependent routine
setbin, however, is not prepared to recognize this case and compute the more difficult side of the
expression first, the Sethi-Ullman number must be set to three. Thus, the Sethi-Ullman number for a
tree should represent the code that the machine dependent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as

*(p+i)

where p is a pointer and i an integer, this can probably be done in one register on most machines.

A Tour Through the Portable C Compiler SMM:19-23

Thus. its Sethi-Ullman number would probably be set to one. If double indexing is possible in the
machine. a possible way of computing the expression is to load both p and i into registers, and then
use double indexing. This would use two scratch registers; in such a case, it is possible that the
scratch registers might be unobtainable, or might make some other part of the computation run out of
registers. The usual solution is to cause offstar to ignore opportunities for double indexing that
would tie up more scratch registers than the Sethi-Ullman number had reserved.

In summary, the Sethi-Ullman computation represents much of the craftsmanship and artistry
in any application of the portable compiler. It is also a frequent source of bugs. Algorithms are
available that will produce nearly optimal code for specialized machines, but unfortunately most
existing machines are far removed from these ideals. The best way of proceeding in practice is to
start with a compiler for a similar machine to the target, and proceed very carefully.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, ral/o, that does register
allocation. if appropriate. This routine does relatively little, in general; this is especially true if the
target machine is fairly regular. There are a few cases where it is assumed that the result of a compu
tation takes place in a particular register; switch and function return are the two major places. The
expression tree has a field, rall, that may be filled with a register number; this is taken to be a pre
ferred register, and the first temporary register allocated by a template match will be this preferred
one, if it is free. If not, no particular action is taken; this is just a heuristic. If no register preference
is present, the field contains NOPREF. In some cases, the result must be placed in a given register,
no matter what. The register number is placed in rail, and the mask MUSTDO is logically or'ed in
with it. In this case, if the subtree is requested in a register, and comes back in a register other than
the demanded one, it is moved by calling the routine rmove. If the target register for this move is
busy, it is a compiler error.

Note that this mechanism is the only one that will ever cause a register-to-register move between
scratch registers (unless such a move is buried in the depths of some template). This simplifies
debugging. In some cases, there is a rather strange interaction between the register allocation and the
Sethi-Ullman number; if there is an operator or situation requiring a particular register, the allocator
and the Sethi-Ullman computation must conspire to ensure that the target register is not being used
by some intermediate result of some far-removed computation. This is most easily done by making
the special operation take all of the free registers, preventing any other partially-computed results
from cluttering up the works.

Template Shortcuts

Some operations are just too hard or too clumsy to be implemented in code templates on a par
ticular architecture.

One way to handle such operations is to replace them with function calls. The intermediate file
reading code in reader.c contains a call to an implementation dependent macro MYREADER; this
can be defined to call various routines which walk the code tree and perform transformations. On the
VAX, for example, unsigned division and remainder operations are far too complex to encode in a
template. The routine hardops is called from a tree walk in myreader to detect these operations and
replace them with calls to the C runtime functions udiv and urem. (There are complementary func
tions audiv and aurem which are provided as support for unsigned assignment operator expressions;
they are different from udiv and urem because the left hand side of an assignment operator expression
must be evaluated only once.) Note that arithmetic support routines are always expensive; the com
piler makes an effort to notice common operations such as unsigned division by a constant power of
two and generates optimal code for these inline.

Another escape involves the routine zzzcode. This function is called from expand to process
template macros which start with the character Z. On the VAX, many complex code generation prob
lems are swept under the rug into zzzcode. Scalar type conversions are a particularly annoying issue;
they are primarily handled using the macro ZA. Rather than creating a template for each possible
conversion and result, which would be tedious and complex given C's many scalar types, this macro

SMM:l9-24 .A Tour Through the Portable C Compiler

allows the compiler to take shortcuts. Tough conversions such as unsigned into double are easily han
dled using special code under ZA. One convention which makes scalar conversions somewhat more
difficult than they might otherwise be is the strict requirement that values in registers must have a
type that is as wide or wider than a single register. This convention is used primarily to implement
the "usual arithmetic conversions" of C, but it can get in the way when converting between (say) a
char value and an unsigned short. A routine named collapsible is used. to determine whether one
operation or two is needed to produce a register-width result.

Another convenient macro is ZP. This macro is used to generate an appropriate conditional
test after a comparison. This makes it possible to avoid a profusion of template entries which essen
tially duplicate each other, one entry for each type of test multiplied by the number of different com
parison conditions. A related macro, ZN, is used to normalize the result of a relational test by pro
ducing an integer 0 or 1.

The macro ZS does the unlovely job of generating code for structure assignments. It tests the
size of the structure to see what v AX instruction can be used to move it, and is capable of emitting a
block move instruction for large structures. On other architectures this macro could be used to gen
erate a function call to a block copy routine.

The macro ZG was recently introduced to handle the thorny issue of assignment operator
expressions which have an integral left hand side and a floating point right hand side. These expres
sions are passed to the code generator without the usual type balancing so that good code can be gen
erated for them. Older versions of the portable compiler computed these expressions with integer
arithmetic; with the ZG operator, the current compiler can convert the left hand side· to the appropri
ate floating type, compute the expression with floating point arithmetic, convert the result back to
integral type and store it in the left hand side. These operations are performed by recursive calls to
zzzcode and other routines related to expand. ·

An assortment of other macros finish the job of interpreting code templates. Among the more
interesting ones: ZC produces the number of words pushed on the argument stack, which is useful for
function calls; ZD and ZE produce constant increment and decrement operations; ZL and ZR pro
duce the assembler letter code (I, w or b) corresponding to the size and type of the left and right
operand respectively.

Shared Code

The lint utility shares sources with the portable compiler. Lint uses all of the machine indepen
dent pass 1 sources, and adds its own set of "machine dependent" routines, contained mostly in
lint.c. Lint uses a private intermediate file format and a private pass 2 whose source is lpass2.c.
Several modifications were made to the C scanner in scan.c, conditionally compiled with the symbol
LINT, in order to support lint's convention of passing "pragma" information inside special com
ments. A few other minor modifications were also made, e.g. to skip over asm statements.

The }77 and pc compilers use a code generator which shares sources with pass 2 of the portable
compiler. This code generator is very similar to pass 2 but uses a different intermediate file format.
Three source files are needed in addition to the pass 2 sources. fort.c is a machine independent
source file which contains a pass 2 main routine that replaces the equivalent routine in reader.c,
together with several routines for reading the binary intermediate file. fort.c includes the machine
dependent file fort.h, which defines two trivial label generation routines. A header file
/usrlinc/ude/pcc.h defines opcode and type symbols which are needed to provide a standard inter
mediate file format; this file is also included by the Fortran and Pascal compilers. The creation of
this header file made it necessary to make some changes in the way the portable C compiler is built.
These changes were made with the aim of minimizing the number of lines changed in the original
sources. Macro symbols in pcc.h are flagged with a unique prefix to avoid symbol name collisions in
the Fortran and Pascal compilers, which have their own internal opcode and type symbols. A sed(l)
script is used to strip these prefixes, producing an include file named pcc/ocal.h which is specific to
the portable C compiler and contains opcode symbols which are compatible with the original opcode
symbols. A similar sed script is used to produce a file of Y ace tokens for the C grammar.

A Tour Through the Portable C Compiler SMM:19-25

A number of changes to existing source files were made to accommodate the Fortran-style pass
2. These changes are conditionally compiled using the symbol FORT. Many changes were needed to
implement single-precision arithmetic; other changes concern such things as the avoidance of floating
point move instructions, which on the v AX can cause floating point faults when a datum is not a nor
malized floating point value. In earlier implementations of the Fortran-style pass 2 there were a
number of stub files which served only to define the symbol FORT in a particular source file; these
files have been removed for 4.3BSD in favor of a new compilation strategy which yields up to three
different objects from a single source file, depending on what compilation control symbols are defined
for that file. '

The Fortran-style pass 2 uses a Polish Postfix intermediate file. The file is in binary format, and
is logically divided into a stream of 32-bit records. Each record consists of an (opcode, value, type)
triple, possibly followed inline by more descriptive information. The opcode and type are selected
from the list in pcc.h; the type encodes a basic type, around which may be wrapped type modifiers
such as "pointer to" or "array of' to produce more complex types. The function of the value param
eter depends on the opcode; it may be used for a flag, a register number or the value of a constant, or
it may be unused. The optional inline data is often a null-terminated string, but it may also be a
binary offset from a register or from a symbolic constant; sometimes both a string and an offset
appear.

Here are a few samples of intermediate file records and their interpretation:

Opcode Type Value Optional Interpretation Data

ICON int flag=O binary=5 the integer constant 5
NAME char flag=! binary= I, a character*l element in a Fortran common

string="_foo_·· block Joo at offset I
OREG char reg=! I offset= I, the second element of a Fortran character*l

string="v.2-v.l" array, expressed as an offset from a static base
register

PLUS float a single precision add
FTEXT size=2 string= •. text o· an inline assembler directive of length 2 (32-

bit records)

Compiler Bugs

The portable compiler has an excellent record of generating correct code. The requirement for
reasonable cooperation between the register allocation, Sethi-Ullman computation, rewriting rules,
and templates builds quite a bit of redundancy into the compiling process. The effect of this is that,
in a surprisingly short time, the compiler will start generating correct code for those programs that it
can compile. The hard part of the job then becomes finding and eliminating those situations where
the compiler refuses to compile a program because it knows it cannot do it right. For example, a
template may simply be missing; this may either give a compiler error of the form "no match for op
... " , or cause the compiler to go into an infinite loop applying various rewriting rules. The compiler
has a variable, nrecur, that is set to 0 at the beginning of an expressions, and incremented at key
spots in the compilation process; if this parameter gets too large, the compiler decides that it is in a
loop, and aborts. Loops are also characteristic of botches in the machine-dependent rewriting rules.
Bad Sethi-Ullman computations usually cause the scratch registers to run out; this often means that
the Sethi-Ullman number was underestimated, so store did not store something it should have; alter
natively, it can mean that the rewriting rules were not smart enough to find the sequence that sucomp
assumed would be used.

The best approach when a compiler error is detected involves several stages. First, try to get a
small example program that steps on the bug. Second, turn on various debugging flags in the code
generator, and follow the tree through the process of being matched and rewritten. Some flags of

SMM:l9-26 A Tour Through the Portable C Compiler

interest are -e, which prints the expression tree, -r, which gives information about the allocation of
registers, -a, which gives information about the performance of rallo, and -o, which gives informa
tion about the behavior of order. This technique should allow most bugs to be found relatively
quickly.

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty arises
because a fix to the particular bug of interest tends to break other code that already works. Regres
sion tests, tests that compare the performance of a new compiler against the performance of an older
one, are very valuable in preventing major catastrophes.

Compiler Extensions
The portable C compiler makes a few extensions to the language described by Ritchie.

Single precision arithmetic. "All floating arithmetic in C is carried out in double-precision;
whenever a float appears in a an expression it is lengthened to double by zero-padding its fraction."
-Dennis Ritchie. 1 Programmers who would like to use C to write numerical applications often shy
away from it because C programs cannot perform single precision arithmetic. On machines such as
the VAX which can cleanly support arithmetic on two (or more) sizes of floating point values, pro
grams which can take advantage of single precision arithmetic will run faster. A very popular propo
sal for the ANSI C standard states that implementations may perform single precision computations
with single precision arithmetic; some actual C implementations already do this, and now the Berke
ley compiler joins them.

The changes are implemented in the compiler with a set of conditional compilation directives
based on the symbol SPRECC; thus two compilers are generated, one with only double precision
arithmetic and one with both double and single precision arithmetic. The cc program uses a flag -f to
select the single/double version of the compiler (lliblsccom) instead of the default double only version
(lliblccom). It is expected that at some time in the future the double only compiler will be retired
and the single/double compiler will become the default.

There are a few implementation details of the single/double compiler which will be of interest to
users and compiler porters. To maintain compatibility with functions compiled by the double only
compiler, single precision actual arguments are still coerced to double precision, and formal argu
ments which are declared single precision are still "really" double precision. This may change if func
tion prototypes of the sort proposed for the ANSI C standard are eventually adopted. Floating point
constants are now classified into single precision and double precision types. The precision of a con
stant is determined from context; if a floating constant appears in an arithmetic expression with a sin
gle precision value, the constant is treated as having single precision type and the arithmetic expres
sion is computed using single precision arithmetic.

Remarkably little code in the compiler needed to be changed to implement the single/double
compiler. In many cases the changes overlapped with special cases which are used for the Fortran
style pass 2 (!lib/fl). Most of the single precision changes were implemented by Sam Lefiler.

Preprocessor extensions. The portable C compiler is normally distributed with a macro prepro
cessor written by J. F. Reiser. This preprocessor implements the features described in Ritchie's refer
ence manual; it removes comments, expands macro definitions and removes or inserts code based on
conditional compilation directives. Two interesting extensions are provided by this version of the
preprocessor:

• When comments are removed, no white space is necessarily substituted; this has the effect of re
tokenizing code, since the PCC will reanalyze the input. Macros can thus create new tokens by
clever use of comments. For example, the macro definition "#define foo(a,b) a/**/b" creates a
macro foo which concatenates its two arguments, forming a new token.

• Macro bodies are analyzed for macro arguments without regard to the boundaries of string or
character constants. The definition "#define bar(a) "a\n"" creates a macro which returns the
literal form of its argument embedded in a string with a newline appended.

A Tour Through the Portable C Compiler SMM:l9-27

These extensions are not portable to a number of other C preprocessors. They may be replaced
in the future by corresponding ANSI C features, when the ANSI C standard has been formalized.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large number of
diverse machines, and for testing a number of theoretical constructs in a practical setting. It has
many blemishes, both in style and functionality. It has been applied to many more machines than
first anticipated, of a much wider range than originally dreamed of. Its use has also spread much fas
ter than expected, leaving parts of the compiler still somewhat raw in shape.

On the theoretical side, there is some hope that the skeleton of the sucomp routine could be
generated for many machines directly from the templates; this would give a considerable boost to the
portability and correctness of the compiler, but might affect tunability and code quality. There is also
room for more optimization, both within optim and in the form of a portable "peephole" optimizer.

On the practical, development side, the compiler could probably be sped up and made smaller
without doing too much violence to its basic structure. Parts of the compiler deserve to be rewritten;
the initialization code, register allocation, and parser are prime candidates. It might be that doing
some or all of the parsing with a recursive descent parser might save enough space and time to be
worthwhile; it would certainly ease the problem of moving the compiler to an environment where
Yacc is not already present.

Acknowledgements

I would like to thank the many people who have sympathetically, and even enthusiastically,
helped me grapple with what has been a frustrating program to write, test, and install. D. M. Ritchie
and E. N. Pinson provided needed early encouragement and philosophical guidance; M. E. Lesk, R.
Muha, T. G. Peterson, G. Riddle, L. Rosier, R. W. Mitze, B. R. Rowland, S. I. Feldman, and T. B.
London have all contributed ideas, gripes, and all, at one time or another, climbed "into the pits"
with me to help debug. Without their help this effort would have not been possible; with it, it was
often kind of fun. -S. C. Johnson

Many people have contributed fixes and improvements to the current Berkeley version of the
compiler. A number of really valuable fixes were contributed by Ralph Campbell, Sam Leffler, Kirk
McKusick, Arthur Olsen, Donn Seeley, Don Speck and Chris Torek, but most of the bugs were spot
ted by the legions of virtuous C programmers who were kind enough to let us know that the compiler
was broken and when the heck were we going to get it fixed? Thank you all. -Donn Seeley

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey, 1978.

2. S. C. Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65, 1978. updated
version TM 78-1273-3

3. A. Snyder, A Portable Compiler for the Language C, Master's Thesis, M.I.T., Cambridge, Mass.,
1974.

4. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on Principles
of Programming Languages, pp. 97-104, January 1978.

5. M. E. Lesk, S. C. Johnson, and D. M. Ritchie, The C Language Calling Sequence, 1977.

6. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Comp. Sci. Tech. Rep. No. 32, Bell
Laboratories, Murray Hill, New Jersey, July 1975.

SMM:l9-28 A Tour Through the Portable C Compiler

7. A. V. Aho and S. C. Johnson, "Optimal Code Generation for Expression Trees," J. Assoc.
Comp. Mach., vol. 23, no. 3, pp. 488-501, 1975. Also in Proc. ACM Symp. on Theory of Com
puting, pp. 207-217, 1975.

8. R. Sethi and J. D. Ullman, "The Generation of Optimal Code for Arithmetic Expressions," J.
Assoc. Comp. Mach., vol. 17, no. 4, pp. 715-728, October 1970. Reprinted as pp. 229-247 in
Compiler Techniques, ed. B. W. Pollack, Auerbach, Princeton NJ (1972).

9. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Code Generation for Machines with Multiregister
Operations," Proc. 4th ACM Symp. on Principles of Programming Languages, pp. 21-28, January
1977.

Writing NROFF 1:erminal Descriptions

1. INTRODUCTION

Eric Allman
Britton-Lee, Inc.

As of the Version 7 Phototypesetter release of UNIX,* NROFF has supported terminal
description files. These files describe the characteristics of available hard-copy printers. This
document describes some of the details of how to write terminal description files.

Disclaimer. This document describes the results of my personal experience. The effects
of changing some of the fields from the norms may not be well defined, even if it seems like it
"ought" to work given the descriptions herein. These tables are known to vary slightly for
different versions of UNIX. I have not seen UNIX 3.0 at this time, so this may be irrelevant in
that context.

2. GENERAL

When NROFF starts up, it looks for a -T flag describing the terminal type. For example,
if the command line is given as

nroff -T300s

NROFF prepares output for a DTCJOOS terminal. This terminal is described in the file
/usr/lib/term/tab300s on most systems.

If no -.T flag is given, the terminal type 37 (ASR 37 - a relic assumed for historical
humor only) is assumed.

The terminal description table is a stripped ".o" file generated from a data structure,
shown in figure one. This structure can be dealt with in two sections: the terminal capability
descriptor (everything to codetab), and the output descriptor.

3. TERMINAL CAPABILITIES

The section of the data structure up to but excluding codetab describes the basic func
tions and setup requirements of the terminal. Distances are measured in "units," which are
1/240 of an inch in NROFF. In general, NROFF assumes that there is a "plot mode" on the ter
minal that allows you to move in small increments. A terminal has a resolution when in plot
mode that is measured in units. This limits how well the terminal can simulate printing
Greek and special characters.

3. I. bset, breset

These fields define bits in a vanilla stty(2) word (sg_flags) to set and clear respectively
when NROFF starts. They are normally represented in octal, although you could include
<sgtty.h>. [Note: these fields are presumably different in UNIX 3.0.]

*UNIX is a trademark of Bell Laboratories.

SMM:20-2 Wdting NROFF Terminal Descriptions

#define INCH 240
struct

!* one inch in units */

{
int bset; /* stty bits to set *I
int breset; /* stty bits to reset */
int Hor; /* horizontal resolution in units */
int Vert; /* vertical resolution in units*/
int Newline; /* the distance a newline moves */
int Char; /* the distance one char moves *!
int Em; /* size of an Em */
int Halfline; /* the distance a halfline up/down moves *!
int Adj; /* default adjustment width */
char *twinit; /* string to init the terminal */
char *twrest; !* string to reset the terminal *I
char *twnl; /* string to send a newline (CR-LF) */
char *hlr; /* half line reverse string *I
char *hlf; /* half line forward string */
char *fir; /* full line reverse string */
char *bdon; /* string to turn boldface on *I
char *bdoff; /* string to turn boldface off*/
char *ploton; /* string to turn plot on */
char *plotoff; /* string to turn plot off *I
char *up; /* move up in plot mode */
char *down; /* move down in plot mode */
char *right; /* move right in plot mode */
char *left; /* move left in plot mode *!
char *codetab[256-32]; /* the codes to send for characters */
int zzz; /* padding *I

};

Figure I - the terminal descriptor data structure

3.2. Hor, Vert

These represent the horizontal and vertical resolution respectively of the terminal when
it is in plot mode. They are given in units.

3.3. Newline

This field describes the distance that the twnl field (below) will move the paper; it is
literally the size of a newline.

3.4. Char

This is the distance that a regular character will move the print head to the right.

3.5. Em

The "em" is a typesetting unit, approximately equal to the width of the letter "m". In
NROFF driver tables, this must be the distance a space or backspace character will move the
carriage.

Writing NROFF Terminal Descriptions SMM:20-3

3.6. Halfline

This is the distance that the hlr or hlf strings move the print head (reverse or forward
respectively).

3.7. Adj

This is the resolution that NROFF will normally adjust your lines to horizontally. Typi
cally this is the same as Char. If the -e flag is given to NROFF, output resolution will be to the
full device resolution.

3.8. twinit, twrest

These strings are output when NROFF starts and finishes respectively.

3.9. twnl
This string is output when NROFF wants to do a carriage return. Typically it will be

"\r\n". Remember, the terminal will normally have CRMOD turned off when this is set.

3.10. hlr, hlf

These strings are sent to move the carriage back or forward one half line respectively.
The actual amount that they moved is defined by Halfline. The carriage should be left in the
same column.

3.11. fir

The string to send to move a full line backwards. This should leave the carriage in the
same column.

3.12. bdon, bdoff

These strings are sent to turn boldface mode on and off respectively. Normally this will
set the terminal into overstrike mode. If they are not given, some newer versions of NROFF
will output the characters four times to force overstriking.

3.13. ploton, plotoff

These strings turn plot mode on and off respectively. In plot mode, the carriage moves
a very small amount, and only under specific control; i.e., characters do not automatically
cause any carriage motion.

3.14. up, down, right, left

These strings are only output in plot mode. They should move the carriage up, down,
left, and right respectively; they will move the carriage a distance of Hor or Vert as appropri
ate.

3.15. An Example

Consider the following table describing a DTC300S:

SMM:20-4

/*bset*/
/*breset*/
/*Hor*/
/*Vert*/
/*Newline*/
/*Char*/
/*Em*/
/*Halfline*/
/*Adj*/
/*twinit*/
/*twrest*/
/*twnl*/
/*hlr*/
/*hlf"'/
/*flr*/
/*bdon*/
/*bdoff*/
/*ploton*/
/*plotoff* I
/*up*/
/*down*/
/*right*/
/*left*/

0,
0177420,
INCH/60,
INCH/48,
INCH/6,
INCH/JO,
INCH/JO,
INCH/12,
INCH/JO,
"\033\006",
"\033\006",
"\015\n",
"\033H",
"\033h",
"\032",

' "\006",
"\033\006",
"\032",
"\n",

"\b",

Writing NROFF Terminal Descriptions

This describes a terminal that should have the A LLD ELA Y and CR MOD bits turned off,
1160" horizontal and 1/48" vertical resolution, six lines per inch and ten characters per inch,
including space, halfline takes 1/12" (one half of a full line), should send ESC-control-F to ini
tialize and reset the terminal (to insure that it is in a normal state), takes <CR><LF> to give
a newline, <ESC>H to move back one half line, <ESC>h to move forward one half line,
control-Z to move back one full line, has no bold mode, takes control-F to enter plot mode
and escape-control-F to exit plot mode, and uses control-Z, linefeed, space, and backspace to
move up, down, right, and left respectively when in plot mode.

4. CHARACTER DESCRIPTIONS

There is one character description for each possible character to be output. The easiest
way to find what character corresponds to what position is to edit an existing character table;
one is given in the appendix as an example. Character representations are represented as a
string per character.

The first character of the string is interpreted as a binary number giving the number of
character spaces taken up by this character. For regular characters this will always be "\001 ",
but Greek and special characters can take more. If the 0200 bit is set in this character, it
indicates that the character should be underlined if we are in italic (underline) mode. Thus,
alphabetic and numeric descriptions will begin "\201 ".

The remainder of the string is output to represent the character. If the first output char
acter (i.e., the second character in the total string) has the 0200 bit set, the character will be
output in plot mode so that fancy characters can be built up from existing characters. If
necessary, the "\200" character can be used as a null character to force NROFF to set the ter
minal into plot mode. All characters without the 0200 bit are output literally; characters with
the 0200 bit are not output, but are used to indicate local carriage movement. The next two
bits (0140 bits) represent direction:

Writing NROFF Terminal Descriptions

0200 right
0240 left
0300 down
0340 up

SMM:20-5

The bottom five bits represent a distance in terminal resolution units. This is rather confus
ing, but the e)(amples should make this much more clear.

4.1. Some Examples

The following e)(amples are from the DTC300S table:

.. \00 l .. , /*space*/

.. \001=... /*=*/

.. \201A .. , /*A*/

These entries show that all of these characters take one character width when output. The
letter A is underlined in italic mode. but neither space nor equal sign is .

.. \00 l o\b+ ... /*bullet*/

.. \002[]", /*square*/

.. \202fi... /*fi*/

The bullet character takes only one character position, but is created by outputing the letter
"o" and overstriking it with a plus sign. The square character is apprQ)(imated with two
brackets; it takes two full character positions when output. The "fi" ligature is produced
using the letters "f' and "i" (surprise!); it is underlined in italic mode .

.. \001 \24 lc\202(\241 '', /*alpha*/

.. \00 l \200B\242\302 I \202\342", /*beta*/

The letters alpha and beta both take a single character position. The alpha is output by enter
ing plot mode, moving left I terminal unit (1/60 .. if you recall), outputing the letter "c'', mov
ing right 2/60'', outputing a left parenthesis, and finally moving left 1/60 .. ; it is critical that the
net space moved be zero both horizontally and vertically. The beta first has a dummy 0200
character to enter plot mode but not output anything. It then outputs a "B", moves left
2160'', moves down 2/48 .. , outputs a vertical bar (which is designed to partically overstrike the
left edge of the "B", and finally move right 2/60 .. and up 2/48 .. to set us back to the right
place.

5. INSTALLATION

To install a terminal descriptor, make it up by editing an existing terminal descriptor.
Assuming your terminal name is term, call your new descriptor tabterm.c. Then, execute the
following commands:

cc -c tabterm.c
strip tabterm.c
cp tabterm.o /usr/lib/term/tabterm

The directory /usr/src/cmd/troff/term typically has a shell file to do this.

This table describes the DTC 300S.

#define INCH 240
I*
DASI300S
nroff driving tables
width and code tables
*I

struct (
int bset;
int breset;
int Hor;
int Vert;
int Newline;
int Char;
int Em;
int Halfline;
int Adj;
char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *fir;
char *bdon;
char *bdoff;
char *ploton;
char *plotoff;
char *up; ·
char *down;
char *right;
char *left;
char *codetab[256-32);
int zzz;
} t = (

/*bset*/O,
/*breset*/
/*Hor*/
/*Vert*/
/*Newline*/
/*Char*/
/*Em*/
/*Halfline* /
/*Adj*/

0177420,
INCH/60,
INCH/48,
INCH/6,
INCH/JO,
INCH/IO,
INCH/12,
INCH/IO,

SMM:20-6

APPENDIX

A Sample Table

Writing NROFF Terminal Descriptions

Writing NROFF Terminal Descriptions

/*twinit*/
/*twrest*/
/*twnl*/
/*hlr*/
/*hlf*/
/*flr*/
/*bdon*/
/*bdoff"/
/*ploton*/
/*plotoff"/
/*up*/
/*down*/
/*right*/
/*left*/ "\b",

"\033\006",
"\033\006",
"\015\n",
"\033H".
"\033h",
"\032",

"\006",
"\033\006".
"\032",
"\n",

/*codetab* I
"\001 ", /*space*/
"\001!",/*!*/
"\001\'"', /*"*/
"\001#", /*#*/
"\001$", /*$*/
"\001%", /*%*/
"\001&", /*&*/
"\001 '",/*'close*/
"\001(", /*(*/
"\001)", /*)*/
"\001*", 1•••1
"\00 I+", !*+*/
"\001,",/*,*/
"\001-",
"\00 I." ,1•. •1
"\001/",
"\2010",
"\2011",
"\2012",
"\2013",
"\2014",
"\2015",
"\2016",
"\2017",
"\2018",
"\2019",
"\001 :",/*:*/
"\00 I;",!*;*/
"\001<",
"\001=",
"\001>",
"\001?",
"\001@",
"\201A",
"\201B",
"\201C",
"\201D",
"\201E",

!*-hyphen•/

1•1•1
1•0•1
1•1 •1
1•2•1
/*3*/
/*4*/
!*5*1
1*6*1
1*7*1
/*8*/
1•9•1

l*>*I
!*?*!
/*@*/
/*A*/
l*B*I
l*C*!
l*D*I
/*E*/

SMM:20-7

SMM:20-8

"\20 IF", !*F*I
"\201G", !*G*I
"\20IH", /*H*/
"\2011", /*I*/
"\20IJ", /*J*/
"\20 I K", /*K*/
"\20 IL", /*L */
"\201M", /*M*/
"\201N", /*N*/
"\2010", !*0*!
"\20 IP", /*P*/
"\201Q", !*Q*/
"\20IR", /*R*/
"\201S", /*S*/
"\20 IT", !*T*!
"\20IU", /*U*/
"\20IV", /*V*/
"\201W", /*W*/
"\201X", !*X*I
"\201Y", /*Y*/
"\201Z", l*Z*I
"\001(", /*[*/
"\001\\", !**!
"\001]", /*]*/
"\00 I"', /*'*/
"\001_", !*_dash*/
"\001 '",/*' open*/
"\201a", /*a*/
"\201b", /*b*/
"\20Jc", !*c*!
"\201d", /*d*/
"\201e", l*e*!
"\201f', l*f*I
"\20lg", /*g*/
"\201h", /*h*/
"\201i", /*i*/
"\20 lj", /*j*/
"\201k", /*k*/
"\2011",/*I*/
"\201m",
"\201n",
"\2010",
"\201p",
"\201q",
"\201r",
"\201s",
"\201t",
"\201u",
"\201v",
"\201w",
"\201x",
"\201y",
"\201z",

l*m*I
/*n*/
!*o*!
/*p*/
/*q*/
/*r*/
/*s*/
!*t*I
/*u*/
/*v*/
/*w*/
/*x*/
/*y*/
/*z*/

Writing NROFF Terminal Descriptions

Writing NROFF Terminal Descriptions

"\001 {", /*(*/
"\0011'', /*I*/
"\001)", /*)*/
"\00 I""' /*"*/
"\000\0", /*narrow sp*/
"\001-", /*hyphen*/
"\OOlo\b+ ", /*bullet*/
"\002[)", /*square*/
"\001-", /*3/4 em*/
"\001_", /*rule*/
"\000\0", /*1/4*/
"\000\0", !* 1/2*/
"\000\0", !*314*/
"\001-", /*minus*/
"\202fi", /*fi*/
"\202fl", /*fl*/
"\202ff', /*ff*/
"\203ffi"' /*fli*/
"\203ffl", /*Ill*/
"\000\0", /*degree*/
"\000\0", /*dagger*/
"\000\0", /*section*/
"\001 '",/*foot mark*/
"\001 '",/*acute accent*/
"\001 '",/*grave accent*/
"\001_", /*underrule*/
"\00 I/", /*slash {longer)*/
"\000\0", /*half narrow space*/
"\001 ", /*unpaddable space*/
"\001\24Ic\202(\241 ",/*alpha*/
"\001 \200B\242\302 I \202\342", /*beta*/
"\00 I \200)\20 I /\241 ", /*gamma*/
"\00 I \2000\342<\302", /*delta*/
"\00 I <\b-", /*epsilon*/
"\001 \200c\201 \301,\241 \343<\302", /*zeta*/
"\00 I \200n\202\302 I \242\342", /*eta*/
"\0010\b-", /*theta*/
"\OOli", /*iota*/
"\00 I k", /*kappa*/
"\001\200\ \ \304\241 '\301 \241 '\345\202", /*lambda*/
"\001 \200u\242,\202", /*mu*/
"\001\241(\203/\242", /*nu*/
"\001 \200c\201 \301,\241 \343c\241 \30 I '\20 I \301 ", /*xi*/
"\OOlo", /*omicron*/
"\001 \341-\303\"\30 I \"\343", /*pi*/
"\001 \2000\242\302 I \342\202", /*rho*/
"\00 I \200o\30 I \202\341 \242", /*sigma*/
"\001 \200t\30 I \202"\243\20 I \341 ", /*tau*/
"\001 v", /*upsilon*/
"\0010\b/", /*phi*/
"\OOlx", /*chi*/·
"\00 I \200/-\302\202'\244'\202\34 '2", /*psi*/
"\001\241u\203u\242", /*omega*/

SMM:20-9

SMM:20-10 Writing NROFF Terminal Descriptions

"\001 \2421 \202\343-\303\202'\242", /*Gamma*/
"\001 \242/\303-\204-\343\\ \242", /*Delta*/
"\0010\b=", /*Theta*/
"\001\242/\204\\\242", /*Lambda*/
"\000\0", /*Xi*/
"\001 \242[]\204()\242\343-\303", /*Pi*/
"\001 \200> \302-\345-\303", /*Sigma*/
"\000\0"' , •• ,
"\OOlY", /*Upsilon*/
"\OOlo\b[\b]", /*Phi*/ .
"\001 \200()-\302\202'\244'\202\342", /*Psi*/
"\001\2000\302\241-\202-\241\342", /*Omega*/
"\000\0", /*square root*/
"\000\0", /*terminal sigma*/
"\000\0", /*root en*/
"\001>\b_", /*>=*/
"\001<\b_", /*<=*/
"\001 =\b_", /*identically equal*/
"\001-", /*equation minus*/
"\001 = \b-·, /*approx =*/
"\000\0", /*approximates*/
"\001=\b/", /*not equal*/
"\002->", /*right arrow*/
"\002<-", /*left arrow*/
"\001 l\b"", /*up arrow*/
"\000\0", /*down arrow*/
"\001=", /*equation equal*/
"\OOlx", /*multiply*/
"\00 II", /*divide*/
"\001+\b_ ", /*plus-minus*/
"\001 U", /*cup (union)*/
"\000\0", /*cap (intersection)*/
"\000\0", /*subset of*/
"\000\0", /*superset of*/
"\000\0", /*improper subset*/
"\000\0", I* improper superset*/
"\00200", /*infinity*/
"\00I\200o\201 \30 l '\241 \34 l '\241 \341 '\20 I \30 I", /*partial derivative*/
"\001 \242\ \ \343-\204-\303/\242", /*gradient*/
"\001\200-\202\341,\301 \242", /*not*/
"\001 \2001 '\202'\243\306'\241 '\202\346", /*integral sign*/
"\000\0", /*proportional to*/
"\000\0", /*empty set*/
"\000\0", /*member of*/
"\001 + ", /*equation plus*/
"\001 r\bO", /*registered*/
"\OOlc\bO", /*copyright*/
"\001 I", /*box rule*/
"\OOlc\b/", /*cent sign*/
"\000\0", /*dbl dagger*/
"\000\0", /*right hand*/
"\001 *", /*left hand*/
"\001*", /*math**/

Writing NROFF Terminal Descriptions

"\000\0",
"\001 I",
"\0010",
"\001 I",
"\001 I",
"\001 I
"\001 I
"\0011
"\001 I
"\0011
"\001 I
"\001 I ,
"\001 I'
"\001 I };

/*bell system sign* I
/*or (was star)*/
/*circle*/
/*left top (of big curly)*/
/*left bottom*/
/*right top*/
/*right bot*/
/*left center of big curly bracket*/
/*right center of big curly bracket*/

/*bold vertical*/
/*left floor (left bot of big sq bract)*/
/*right floor (rb of")*/
/*left ceiling (It of ")*I
/*right ceiling (rt of ")*I

SMM:20-ll

Dial-Up Network of UNIX Systems SMM:21-1

A Dial-Up Network of UNIXT" Systems

D. A. Nowitz

M. E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

A network of over eighty UNIXt computer systems has been established using
the telephone system as its primary communication medium. The network was
designed to meet the growing demands for software distribution and exchange.
Some advantages of our design are:

1. Purpose

The startup cost is low. A system needs only a dial-up port, but systems with
automatic calling units have much more flexibility.
No operating system changes are required to install or use the system.

The communication is basically over dial-up lines, however, hardwired com
munication lines can be used to increase speed.

The command for sending/receiving files is simple to use.

Keywords: networks, communications, software distribution, software mainte
nance

The widespread use of the UNIX system1 within Bell Laboratories has produced problems of
software distribution and maintenance. A conventional mechanism was set up to distribute the
operating system and associated programs from a central site to the various users. However this
mechanism alone does not meet all software distribution needs. Remote sites generate much software
and must transmit it to other sites. Some UNIX systems are themselves central sites for redistribution
of a particular specialized utility, such as the Switching Control Center System. Other sites have par
ticular, often long-distance needs for software exchange; switching research, for example, is carried on
in New Jersey, Illinois, Ohio, and Colorado. In addition, general purpose utility programs are written
at all UNIX. system sites. The UNIX system is modified and enhanced by many people in many places
and it would be very constricting to deliver new software in a one-way stream without any alternative
for the user sites to respond with changes of their own.

Straightforward software distribution is only part of the problem. A large project may exceed
the capacity of a single computer and several machines may be used by the one group of people. It
then becomes necessary for them to pass messages, data and other information back an forth between
computers.

Several groups with similar problems, both inside and outside of Bell Laboratories, have con
structed networks built of hardwired connections only.2• 3 Our network, however, uses both dial-up
and hardwired connections so that service can be provided to as many sites as possible.

t UNIX is a trademark of AT&T Bell Laboratories.

SMM:21-2 A Dial-Up Network of UNIX Systems

2. Design Goals
Although some of our machines are connected directly, others can only communicate over Iow

speed dial-up lines. Since the dial-up lines are often unavailable and file transfers may take consider
able time, we spool all work and transmit in the background. We also had to adapt to a community
of systems which are independently operated and resistant to suggestions that they should all buy par
ticular hardware or install particular operating system modifications. Therefore, we make minimal
demands on the local sites in the network. Our implementation requires no operating system
changes; in fact, the transfer programs look like any other user entering the system through the nor
mal dial-up login ports, and obeying all local protection rules.

We distinguish "active" and "passive" systems on the network. Active systems have an
automatic calling unit or a hardwired line to another system, and can initiate a connection. Passive
systems do not have the hardware to initiate a connection. However, an active system can be
assigned the job of calling passive systems and executing work found there; this makes a passive sys
tem the functional equivalent of an active system, except for an additional delay while it waits to be
polled. Also, people frequently log into active systems and request copying from one passive system
to another. This requires two telephone calls, but even so, it is faster than mailing tapes.

Where convenient, we use hardwired communication lines. These permit much faster transmis
sion and multiplexing of the communications link. Dial-up connections are made at either 300 or
1200 baud; hardwired connections are asynchronous up to 9600 baud and might run even faster on
special-purpose communications hardware.4• s Thus, systems typically join our network first as passive
systeins and when they find the service more important, they acquire automatic calling units and
become active systems; eventually, they may install high-speed links to particular machines with
which they handle a great deal of traffic. At no point, however, must users change their programs or
procedures.

The basic operation of the network is very simple. Each participating system has a spool direc
tory, in which work to be done (files to be moved, or commands to be executed remotely) is stored.
A standard program, uucico, performs all transfers. This program starts by identifying a particular
communication channel to a remote system with which it will hold a conversation. Uucico then
selects a device and establishes the connection, logs onto the remote machine and starts the uucico
program on the remote machine. Once two of these programs are connected, they first agree on a line
protocol, and then start exchanging work. Each program in turn, beginning with the calling (active
system) program, transmits everything it needs, and then asks the other what it wants done. Eventu
ally neither has any more work, and both exit.

In this way, all services are available from all sites; passive sites, however, must wait until
called. A variety of protocols may be used; this conforms to the real, non-standard world. As long as
the caller and called programs have a protocol in common, they can communicate. Furthermore,
each caller knows the hours when each destination system should be called. If a destination is una
vailable, the data intended for it remain in the spool directory until the destination machine can be
reached.

The implementation of this Bell Laboratories network between independent sites, all of which
store proprietary programs and data, illustratives the pervasive need for security and administrative
controls over file access. Each site, in configuring its programs and system files, limits and monitors
transmission. In order to access a file a user needs access permission for the machine that contains
the file and access permission for the file itself. This is achieved by first requiring the user to use his
password to log into his local machine and then his local machine logs into the remote machine
whose files are to be accessed. In addition, records are kept identifying all files that are moved into
and out of the local system, and how the requestor of such accesses identified himself. Some sites
may arrange to permit users only to call up and request work to be done; the calling users are then
called back before the work is actually done. It is then possible to verify that the request is legitimate
from the standpoint of the target system, as well as the originating system. Furthermore, because of
the call-back, no site can masquerade as another even if it knows all the necessary passwords.

Dial-Up Network of UNIX Systems SMM:21-3

Each machine can optionally maintain a sequence count for conversations with other machines
and require a verification of the count at the start of each conversation. Thus, even if call back is not
in use, a successful masquerade requires the calling party to present the correct sequence number. A
would-be impersonator must not just steal the correct phone number, user name, and password, but
also the sequence count, and must call in sufficiently promptly to precede the next legitimate request
from either side. Even a successful masquerade will be detected on the next correct conversation.

3. Processing

The user has two commands which set up communications, uucp to set up file copying, and uux
to set up command execution where some of the required resources (system and/or files) are not on
the local machine. Each of these commands will put work and data files into the spool directory for
execution by uucp daemons. Figure I shows the major blocks of the file transfer process.

File Copy

The uucico program is used to perform all communications between the two systems. It per-
forms the following functions:

Scan the spool directory for work.

Place a call to a remote system.

Negotiate a line protocol to be used.
Start program uucico on the remote system.

Execute all requests from both systems.

Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,
b) by one of the uucp or uux programs,

c) by a remote system.

Scan For Work

The file names in the spool directory are constructed to allow the daemon programs (uucico,
uuxqt) to determine the files they should look at, the remote machines they should call and the order
in which the files for a particular remote machine should be processed.

Call Remote System

The call is made using information from several files which reside in the uucp program direc
tory. At the start of the call process, a lock is set on the system being called so that another call will
not be attempted at the same time.

The system name is found in a "systems" file. The information contained for each system is:

[l] system name,

[2] times to call the system (days-of-week and times-of-day),

(3] device or device type to be used for call,

[4] line speed,

[5] phone number,

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be made. The phone
number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial sequences
using a "dial-codes" file. This permits the same "phone number" to be stored at every site, despite
local variations in telephone services and dialing conventions.

SMM:21-4 A Dial-Up Network of UNIX Systems

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find an available
device for the connection. The program will try all devices which satisfy [3] and [4] until a connec
tion is made, or no more devices can be tried. If a non-multiplexable device is successfully opened, a
lock file is created so that another copy of uucico will not try to use it. If the connection is complete,
the login information is used to log into the remote system. Then a command is sent to the remote
system to start the uucico program. The conversation between the two uucico programs begins with a
handshake started by the called, SLAVE, system. The SLAVE sends a message to let the MASTER
know it is ready to receive the system identification and conversation sequence number. The
response from the MASTER is verified by the SLAVE and if acceptable, protocol selection begins.

Line Protocol Selection
The remote system sends a message

Pproto-list
where proto-list is a string of characters, each representing a line protocol. The calling program
checks the proto-Iist for a letter corresponding to an available line protocol and returns a use-protocol
message. The use-protocol message is

Vcode
where code is either a one character protocol letter or a N which means there is no common protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp transmis
sion program. Other protocols may be added by individual installations.

Work Processing
During processing, one program is the MASTER and the other is SLAVE. Initially, the calling

program is the MASTER. These roles may switch one or more times during the conversation.
There are four messages used during the work processing, each specified by the first character of

the message. They are

S send a file,
R receive a file,
C copy complete,
H hangup.

The MASTER will send R or S messages until all work from the spool directory is complete, at
which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN,
corresponding to yes or no for each request.

The send and receive replies are based on permission to access the requested file/directory.
After each file is copied into the spool directory of the receiving system, a copy-complete message is
sent by the receiver of the file. The message CY will be sent if the UNIX cp command, used to copy
from the spool directory, is successful. Otherwise, a CN message is sent. The requests and results
are logged on both systems, and, if requested, mail is sent to the user reporting completion (or the
user can request status information from the log program at any time).

The hangup response is determined by the SLAVE program by a work scan of the spool direc
tory. If work for the remote system exists in the SLA VE's spool directory, a HN message is sent and
the programs switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure 2.

Conversation Termination
When a HY message is received by the MASTER it is echoed back to the SLAVE and the pro

tocols are turned off. Each program sends a final "'00" message to the other.

Dial-Up Network of UNIX Systems SMM:21-5

4. Present Uses
One application of this software is remote mail. Normally, a UNIX system user writes "mail

dan" to send mail to user "dan". By writing "mail usg!dan" the mail is sent to user "dan" on system
"usg".

The primary uses of our network to date have been in software maintenance. Relatively few of
the bytes passed between systems are intended for people to read. Instead, new programs (or new
versions of programs) are sent to users, and potential bugs are returned to authors. Aaron Cohen has
implemented a "stockroom" which allows remote users to call in and request software. He keeps a
"stock list" of available programs, and new bug fixes and utilities are added regularly. In this way,
users can always obtain the latest version of anything without bothering the authors of the programs.
Although the stock list is maintained on a particular system, the items in the stockroom may be ware
housed in many places; typically each program is distributed from the home site of its author. Where
necessary, uucp does remote-to-remote copies.

We also routinely retrieve test cases from other systems to determine whether errors on remote
systems are caused by local misconfigurations or old versions of software, or whether they are bugs
that must be fixed at the home site. This helps identify errors rapidly. For one set of test programs
maintained by us, over 70% of the bugs reported from remote sites were due to old software, and
were fixed merely by distributing the current version.

Another application of the network for software maintenance is to compare files on two different
machines. A very useful utility on one machine has been Doug Mcllroy's "diff" program which com
pares two text files and indicates the differences, line by line, between them. 6 Only lines which are not
identical are printed. Similarly, the program "uudiff" compares files (or directories) on two
machines. One of these directories may be on a passive system. The "uuditr' program is set up to
work similarly to the inter-system mail, but it is slightly more complicated.

To avoid moving large numbers of usually identical files, uudiff computes file checksums on
each side, and only moves files that are different for detailed comparison. For large files, this process
can be iterated; checksums can be computed for each line, and only those lines that are different actu
ally moved.

The "uux" command has been useful for providing remote output. There are some machines
which do not have hard-copy devices, but which are connected over 9600 baud communication lines
to machines with printers. The uux command allows the formatting of the printout on the local
machine and printing on the remote machine using standard UNIX command programs.

5. Performance

Throughput, of course, is primarily dependent on transmission speed. The table below shows
the real throughput of characters on communication links of different speeds. These numbers
represent actual data transferred; they do not include bytes used by the line protocol for data valida
tion such as checksums and messages. At the higher speeds, contention for the processors on both
ends prevents the network from driving the line full speed. The range of speeds represents the
difference between light and heavy loads on the two systems. If desired, operating system
modifications can be installed that permit full use of even very fast links.

Nominal speed
300 baud

1200 baud
9600 baud

Characters/sec.
27

100-110
200-850

In addition to the transfer time, there is some overhead for making the connection and logging in
ranging from 15 seconds to I minute. Even at 300 baud, however, a typical 5,000 byte source pro
gram can be transferred in four minutes instead of the 2 days that might be required to mail a tape.

Traffic between systems is variable. Between two closely related systems, we observed 20 files
moved and 5 remote commands executed in a typical day. A more normal traffic out of a single sys
tem would be around a dozen files per day.

SMM:21-6 A Dial-Up Network of UNIX Systems

The total number of sites at present in the main network is 82, which includes most of the Bell
Laboratories full-size machines which run the UNIX operating system. Geographically, the machines
range from Andover, Massachusetts to Denver, Colorado.

Uucp has also been used to set up another network which connects a group of systems in opera
tional sites with the home site. The two networks touch at one Bell Labs computer.

6. Further Goals

Eventually, we would like to develop a full system of remote software maintenance. Conven
tional maintenance (a support group which mails tapes) has many well-known disadvantages. 7 There
are distribution errors and delays, resulting in old software running at remote sites and old bugs con
tinually reappearing. These difficulties are aggravated when there are 100 different small systems,
instead of a few large ones.

The availability of file transfer on a network of compatible operating systems makes it possible
just to send programs directly to the end user who wants them. This avoids the bottleneck of negotia
tion and packaging in the central support group. The "stockroom" serves this function for new utili
ties and fixes to old utilities. However, it is still likely that distributions will not be sent and installed
as often as needed. Users are justifiably suspicious of the "latest version" that has just arrived; all
too often it features the "latest bug." What is needed is to address both problems simultaneously:

I. Send distributions whenever programs change.

2. Have sufficient quality control so that users will install them.

To do this, we recommend systematic regression testing both on the distributing and receiving sys
tems. Acceptance testing on the receiving systems can be automated and permits the local system to
ensure that its essential work can continue despite the constant installation of changes sent from else
where. The work of writing the test sequences should be recovered in lower counseling and distribu
tion costs.

Some slow-speed network services are also being implemented. We now have inter-system
"mail" and "diff," plus the many implied commands represented by "uux." However, we still need
inter-system "write" (real-time inter-user communication) and "who" (list of people logged in on
different systems). A slow-speed network of this sort may be very useful for speeding up counseling
and education, even if not fast enough for the distributed data base applications that attract many
users to networks. Effective use of remote execution over slow-speed lines, however, must await the
general installation of multiplexable channels so that long file transfers do not lock out short inquiries.

7. Lessons

The following is a summary of the lessons we learned in building these programs.

I. By starting your network in a way that requires no hardware or major operating system changes,
you can get going quickly.

2. Support will follow use. Since the network existed and was being used, system maintainers were
easily persuaded to help keep it operating, including purchasing additional hardware to speed
traffic.

3. Make the network commands look like local commands. Our users have a resistance to learning
anything new: all the inter-system commands look very similar to standard UNIX system com
mands so that little training cost is involved.

4. An initial error was not coordinating enough with existing communications projects: thus, the
first version of this network was restricted to dial-up, since it did not support the various
hardware links between systems. This has been fixed in the current system.

Acknowledgements

We thank G. L. Chesson for his design and implementation of the packet driver and protocol,
and A. S. Cohen, J. Lions, and P. F. Long for their suggestions and assistance.

Dial-Up Network of UNIX Systems SMM:21-7

References

I. D. M. Ritchie and K. Thompson. "The UNIX Time-Sharing System." Bell Sys. Tech. J., vol. 57,
no. 6. pp. 1905-1929. 1978.

2. T. A. Dolotta. R. C. Haight. and J. R. Mashey, "UNIX Time-Sharing System: The Programmer's
Workbench," Bell S.1·s. Tech. .!., vol. 57, no. 6, pp. 2177-2200. 1978.

3. G. L. Chesson. "The Network UNIX System," Operating S_rstems Rel'iell', vol. 9, no. 5. pp. 60-
66, 1975. Also in Proc. 5th Symp. on Operating Systems Principles.

4. A. G. Fraser. "Spider - An Experimental Data Communications System." Proc. IEEE Conf on
Communications, p. 21 F, June 1974. IEEE Cat. No. 74CH0859-9-CSCB.

5. A.G. Fraser. "A Virtual Channel Network," Datamation. pp. 51-56. February 1975.

6. J. W. Hunt and M. D. Mcilroy, "An Algorithm for Differential File Comparison," Comp. Sci.
Tech. Rep. No. 41, Bell Laboratories. Murray Hill. New Jersey, June 1976.

7. F. P. Brooks. Jr .. The M.rthical Man-Month. Addison-Wesley. Reading, Mass., 1975.

Introduction

The Berkeley UNIXt
Time Synchronization Protocol

Riccardo Gusella, Stefano Zatti, and James M. Bloom

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94 720

The Time Synchronization Protocol (TSP) has been designed for specific use by the program
timed, a local area network clock synchronizer for the UNIX 4.3BSD operating system. Timed is
built on the DARPA UDP protocol [4] and is based on a master slave scheme.

TSP serves a dual purpose. First, it supports messages for the synchronization of the clocks of
the various hosts in a local area network. Second, it supports messages for the election that occurs
among slave time daemons when, for any reason, the master disappears. The synchronization
mechanism and the election procedure employed by the program timed are described in other docu
ments [1,2,3].

Briefly, the synchronization software, which works in a local area network, consists of a collec
tion of time daemons (one per machine) and is based on a master-slave structure. The present imple
mentation keeps processor clocks synchronized within 20 milliseconds. A master time daemon meas
ures the time difference between the clock of the machine on which it is running and those of all
other machines. The current implementation uses ICMP Time Stamp Requests [5] to measure the
clock difference between machines. The master computes the network time as the average of the
times provided by nonfaulty clocks. 1 It then sends to each slave time daemon the correction that
should be performed on the clock of its machine. This process is repeated periodically. Since the
correction is expressed as a time difference rather than an absolute time, transmission delays do not
interfere with synchronization. When a machine comes up and joins the network, it starts a slave
time daemon, which will ask the master for the correct time and will reset the machine's clock before
any user activity can begin. The time daemons therefore maintain a single network time in spite of
the drift of clocks away from each other.

Additionally, a time daemon on gateway machines may run as a submaster. A submaster time
daemon functions as a slave on one network that already has a master and as master on other net
works. In addition, a submaster is responsible for propagating broadcast packets from one network to
the other.

t UNIX is a trademark of AT&T Bell Laboratories.
This work was sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the Na
val Electronics Systems Command under contract No. N00039-84-C-0089, and by the Italian CSELT Cor
poration. The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing official policies, either expressed or implied, of the Defense Research Projects
Agency, of the US Government, or of CSELT.

1 A clock is considered to be faulty when its value is more than a small specified interval apart from the
majority of the clocks of the machines on the same network. See [1,2] for more details.

SMM:22-2 The Berkeley UNIX Time Synchronization Protocol

To ensure that service provided is continuous and reliable. it is necessary to implement an elec
tion algorithm that will elect a new master should the machine running the current master crash. the
master terminate (for example, because of a run-time error). or the network be partitioned. Under
our algorithm. slaves are able to realize when the master has stopped functioning and to elect a new
master from among themselves. It is important to note that since the failure of the master results
only in a gradual divergence of clock values. the election need not occur immediately.

All the communication occurring among time daemons uses the TSP protocol. While some
messages need not be sent in a reliable way, most communication in TSP requires reliability not pro
vided by the underlying protocol. Reliability is achieved by the use of acknowledgements, sequence
numbers. and retransmission when message losses occur. When a message that requires acknowledg
ment is not acknowledged after multiple attempts, the time daemon that has sent the message will
assume that the addressee is down. This document will not describe the details of how reliability is
implemented, but will only point out when a message type requires a reliable transport mechanism.

The message format in TSP is the same for all message types; however, in some instances, one
or more fields are not used. The next section describes the message format. The following sections
describe in detail the different message types, their use and the contents of each field. NOTE: The
message format is likely to change in future versions of timed.

Message Format
All fields are based upon 8-bit bytes. Fields should be sent in network byte order if they are

more than one byte long. The structure of a TSP message is the following:

I) A one byte message type.

2) A one byte version number, specifying the protocol version which the message uses.

3) A two byte sequence number to be used for recognizing duplicate messages that occur when
messages are retransmitted.

4) Eight bytes of packet specific data. This field contains two 4 byte time values, a one byte hop
count, or may be unused depending on the type of the packet.

5) A zero-terminated string of up to 256 ASCII characters with the name of the machine sending the
message.

The following charts describe the message types, show their fields, and explain their usages. For
the purpose of the following discussion, a time daemon can be considered to be in one of three states:
slave, master, or candidate for election to master. Also, the term broadcast refers to the sending of a
message to all active time daemons.

The Berkeley UNIX Time Synchronization Protocol SMM:22-3

Adjtime Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type J Version No. l Sequence No.

Seconds of Adjustment
Microseconds of Adjustment

Machine Name
...

Type: TSP _ADJTIME (I)

The master sends this message to a slave to communicate the difference between the dock of the
slave and the network time the master has just computed. The slave will accordingly adjust the time
of its machine. This message requires an acknowledgment.

Acknowledgment Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _ACK (2)

Both the master and the slaves use this message for acknowledgment only. It is used in several
different contexts, for example in reply to an Adjtime message.

Master Request Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type J Version No. J Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MASTERREQ (3)

A newly-started time daemon broadcasts this message to locate a master. No other action is im
plied by this packet. It requires a Master Acknowledgment.

SMM:22-4 The Berkeley UNIX Time Synchronization Protocol

Master Acknowledgement

Byte I l Byte 2 l Byte 3 l Byte 4
Type l Version No. l Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MASTERACK (4)

The master sends this message to acknowledge the Master Request message and the Conflict
Resolution Message.

Set Network Time Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type I Version No. J Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name
...

Type: TSP _SETTIME (5)

The master sends this message to slave time daemons to set their time. This packet is sent to
newly started time daemons and when the network date is changed. It contains the master's time as
an approximation of the network time. It requires an acknowledgment. The next synchronization
round will eliminate the small time difference caused by the random delay in the communication
channel.

Master Active Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type } Version No. } Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MASTERUP (6)

The master broadcasts this message to solicit the names of the active slaves. Slaves will reply
with a Slave Active message.

The Berkeley UNIX Time Synchronization Protocol SMM:22-5

Slave Active Message

Byte 1 l Byte 2 l Byte 3 l Byte 4
Type J Version No. J Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _SLA VEUP (7)

A slave sends this message to the master in answer to a Master Active message. This message is
also sent when a new slave starts up to inform the master that it wants to be synchronized.

Master Candidature Message

Byte 1 l Byte 2 l Byte 3 l Byte 4
Type J Version No. J Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _ELECTION (8)

A slave eligible to become a master broadcasts this message when its election timer expires. The
message declares that the slave wishes to become the new master.

Candidature Acceptance Message

Byte 1 l Byte 2 l Byte 3 l Byte 4
Type } Version No. J Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _ACCEPT (9)

A slave sends this message to accept the candidature of the time daemon that has broadcast an
Election message. The candidate will add the slave's name to the list of machines that it will control
should it become the master.

SMM:22-6 The Berkeley UNIX Time Synchronization Protocol

Candidature Rejection Message

Byte 1 l Byte 2 l Byte 3 l Byte 4
Type J Version No. J Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _REFUSE (10)

After a slave accepts the candidature of a time daemon, it will reply to any election messages
from other slaves with this message. This rejects any candidature other than the first received.

Multiple Master Notification Message

Byte 1 l Byte 2 l Byte 3 J Byte 4
Type J Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _CONFLICT (11)

When two or more masters reply to a Master Request message, the slave uses this message to in
form one of them that more than one master exists.

Conflict Resolution Message

Byte 1 l Byte 2 l Byte 3 l Byte 4
Type J Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _RESOLVE (12)

A master which has been informed of the existence of other masters broadcasts this message to
determine who the other masters are.

The Berkeley UNIX Time Synchronization Protocol SMM:22-7

Quit Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type J Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP_QUIT (13)

This message is sent by the master in three different contexts: 1) to a candidate that broadcasts
an Master Candidature message, 2) to another master when notified of its existence, 3) to another
master if a loop is detected. In all cases, the recipient time daemon will become a slave. This mes
sage requires an acknowledgement.

Set Date Message

Byte 1 l Byte 2 l Byte 3 l Byte 4
Type I Version No. J Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name
...

Type: TSP _SETDATE (22)

The program date(!) sends this message to the local time daemon when a super-user wants to
set the network date. If the local time daemon is the master, it will set the date; if it is a slave, it will
communicate the desired date to the master.

Set Date Request Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type l Version No. J Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name
...

Type: TSP _SETDATEREQ (23)

A slave that has received a Set Date message will communicate the desired date to the master
using this message.

SMM:22-8 The Berkeley UNIX Time Synchronization Protocol

Set Date Acknowledgment Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type J Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _DATEACK (16)

The master sends this message to a slave in acknowledgment of a Set Date Request Message.
The same message is sent by the local time daemon to the program date(J) to confirm that the net
work date has been set by the master.

Start Tracing Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type J Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _TRACEON (17)

The controlling program timedc sends this message to the local time daemon to start the record
ing in a system file of all messages received.

Stop Tracing Message

Byte I l Byte 2 l Byte 3 l Byte 4
Type l Version No. _l Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP_ TRACEOFF (18)

Timedc sends this message to the local time daemon to stop the recording of messages received.

The Berkeley UNIX Time Synchronization Protocol SMM:22-9

Master Site Message

Byte 1 l Byte 2 l Byte 3 l Byte4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MSITE (19)

Timedc sends this message to the local time daemon to find out where the master is running.

Remote Master Site Message

Byte 1 l Byte 2 l Byte 3 l Byte 4
Type J Version No. J Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP _MSITEREQ (20)

A local time daemon broadcasts this message to find the location of the master. It then uses the
Acknowledgement message to communicate this location to timedc.

Test Message

Byte 1 l Byte 2 l Byte 3 l Byte 4
Type J Version No.} Sequence No.

(unused)
(unused)

Machine Name
...

Type: TSP_ TEST (21)

For testing purposes, timedc sends this message to a slave to cause its election timer to expire.
NOTE: timed is not normally compiled to support this.

SMM:22-10 The Berkeley UNIX Time Synchronization Pr9tocol

Loop Detection Message

Byte 1 Byte 2 I Byte 3 I Byte 4
Type Version No. T Sequence No.

Hop Count (unused)
(unused)

Machine Name
...

Type: TSP _LOOP (24)

This packet is initiated by all masters occasionally to attempt to detect loops. All submasters
forward this packet onto the networks over which they are master. If a master receives a packet it
sent out initially, it knows that a loop exists and tries to correct the problem.

References

1. R. Gusella and S. Zatti, TEMPO: A Network Time Controller for Distributed Berkeley UNIX Sys
tem, USENIX Summer Conference Proceedings, Salt Lake City, June 1984.

2. R. Gusella and S. Zatti, Clock Synchronization in a Local Area Network, University of Califor
nia, Berkeley, Technical Report, to appear.

3. R. Gusella and S. Zatti, An Election Algorithm for a Distributed Clock Synchronization Program,
University of California, Berkeley, CS Technical Report #275, Dec. 1985.

4. Postel, J., U~er Datagram Protocol, RFC 768. Network Information Center, SRI International,
Menlo Park, California, August 1980.

5. Postel, J., Internet Control Message Protocol, RFC 792. Network Information Center, SRI Inter
national, Menlo Park, California, September 1981.

URM

USO
USO:!
USD:2
USD:3
USD:4
USD:5
USD:6
USD:7
USD:8
USD:9
USD:lO
USD:ll
USD:l2
USD:l3
USD:14
USD:15
USD:16
USD:17
USD:18
USD:19
USD:20
USD:21
USD:22
USD:23
USD:24
USD:25
USD:26
USD:27
USD:28
USD:29
USD:30
USD:31
USD:32
USD:33
USD:34

PRM

PSl
PSl:l
PS1:2
PS1:3
PS1:4
PSl:5

UNIX Documents

User Reference Manual
man section 1 (commands)
man section 6 (games)
man section 7 (miscellaneous)
User Supplementary Documents
Unix for Beginners
Learn - Computer-Aided Instruction
Introduction to the UNIX Shell
Introduction to the C shell
DC - Interactive Desk Calculator
BC - Arbitrary Precision Desk-Calculator
Mail Reference Manual
MH Message Handling System
How to Read the Network News
How to Use USENET Effectively
Notesfile Reference Manual
Tutorial Introduction to "ed"
Advanced Editing on Unix
Edit: A Tutorial
Introduction to Display Editing with Vi
Ex Reference Manual (Version 3.7)
Jove Manual for UNIX Users
SEO - A Non-interactive Text Editor
A WK - Pattern Scanning/Processing Language
Using the -ms Macros with Troff and Nroff
Revised Version of -ms
Writing Papers with nroff using -me
-me Reference Manual
NROFF/TROFF User's Manual
TROFF Tutorial
Typesetting Mathematics (eqn)
Typesetting Mathematics - User's Guide
Tb! - A Program to Format Tables
Refer - A Bibliography System
Some Applications of Inverted Indexes ...
BIB - Bibliography Formatting Program
Writing Tools - STYLE and DICTION
A Guide to the Dungeons of Doom
Star Trek

Programmer Reference Manual
man sections 2 (system calls)
man sections 3 (library routines)
man sections 4 (devices, special files)
man sections 5 (file formats)
Programmer Supplementary Docs, part 1
C Language - Reference Manual
Fortran 77
f77 I/O Library
Berkeley Pascal User's Manual
Vax Assembler Reference Manual

PS1:6
PSl:7
PS1:8
PS1:9
PSl:!O
PSl:ll
PSl:l2
PS1:13
PS1:14
PS1:15
PS1:16
PS1:17
PS1:18

PS2
PS2:1
PS2:2
PS2:3
PS2:4
PS2:5
PS2:6
PS2:7
PS2:8
PS2:9
PS2:!0

SMM

SMM:I
SMM:2
SMM:3
SMM:4
SMM:5
SMM:6
SMM:7
SMM:8
SMM:9
SMM:lO
SMM:ll
SMM:l2
SMM:13
SMM:14
SMM:l5
SMM:l6
SMM:17
SMM:l8
SMM:19
SMM:20
SMM:21
SMM:22

Berkeley Software Architecture Manual (4.3 Edition)
Introductory 4.3BSD Interprocess Communication
Advanced 4.3BSD Interprocess Communication
Lint, A C Program Checker
ADB Tutorial
Debugging with dbx
Make
Revision Control System (RCS)
Source Code Control System (SCCS)
YACC: Yet Another Compiler-Compiler
LEX - A Lexical Analyzer Generator
M4 Macro Processor
curses library

Programmer Supplementary Documents, part 2
The Unix Time-Sharing System
UNIX 32/V - Summary
Unix Programming - Second Edition
Unix Implementation
The Unix 110 System
Programming Language EFL
Berkeley FP User's Manual
Ratfor - Preprocessor for Rational FORTRAN

The FRANZ LISP Manual
Ingres (Version 8) Reference Manual

System Manager's Manual
man section 8 (system administration)
Installing and Operating 4.3BSD
Building 4.3BSD Systems with Config
Using ADB to Debug the Kernel
Disc Quotas
Fsck - File System Check Program
Line Printer Spooler Manual
Sendmail Installation and Operation
Timed Installation and Operation
UUCP Implementation Description
USENET Version B Installation
Name Server Operations Guide
Bug Fixes and Changes in 4.3BSD
Changes to the Kernel in 4.3BSD
A Fast File System for UNIX
4.3BSD Networking Implementation Notes
Sendmail - An Internetwork Mail Router
On the Security of UNIX
Password Security - A Case History
A Tour Through the Portable C Compiler
Writing NROFF Terminal Descriptions
A Dial-Up Network of UNIX Systems
Berkeley Time Synchronization Protocol

