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Parameterized Types for G+ +

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Type parameterization is the ability to define a type in terms of another,
unspecified, type. Versions of the parameterized type may then be created for
several particular parameter types. A language supporting type parameterization
allows specification of general container types such as list, vector, and associative
array where the specific type of the elements is left as a parameter. Thus, a
parameterized class specifies an unbounded set of related types; for example: list
of int, list of name, list of shape, etc. Type parameterization is one way of mak-
ing a language more extensible.

In the context of C++ , the problem are

[1] Can type parameterization be easy to use?

[2] Can objects of a parameterized type be used as efficiently as objects of a
“hand-coded” type?

[3] Can a general form of parameterized types be integrated into C++ ?

[4] Can parameterized types be implemented so that the compilation and
linking speed is similar to that achieved by a compilation system that
does not support type parameterization?

[S] Can such a compilation system be simple and portable?

A design is presented for which the answer to all of these questions is yes.
The implementation of this scheme is a fairly simple extension of current C++
implementations.

WARNING: The scheme for providing parameterized types described here is
not implemented. It is not part of the C++ language, nor is there any guarantee
that it ever will be.

1 Introduction

For many people, the largest single problem using C++ is the lack of an extensive standard
library. A major problem in producing such a library is that C++ does not provide a sufficiently
general facility for defining ‘‘container classes’ such as lists, vectors, and associative arrays. There
are two approaches for providing such classes/types:

[1] The Smalitalk approach: rely on dynamic typing and inheritance.

[2] The Clu approach: rely on static typing and a facility for arguments of type type.

The former is very flexible, but carries a high run-time cost, and more importantly defies attempts
to use static type checking to catch interface errors. The latter approach has traditionally given
rise to fairly complicated language facilities and also to slow and elaborate compile/link time
environments. This approach also suffered from inflexibility because languages where it was used,
notably Ada, had no inheritance mechanism.

Ideally we would like a mechanism for C++ that is as structured as the Clu approach with ideal
run-time and space requirements, and with low compile-time overheads. It also cught to be as
flexible as Smalltalk’s mechanisms. The former is possible; the latter can be approximated for
many important cases.
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Note that G++ appears to have sufficient expressive power to cope with the demands of library
writing provided there is a single basic kind of object, such as a character (for string manipulation,
pattern matching, character 1/O, etc.), a double precision floating point number (for engineering
libraries), or a bitmap (for graphics libraries). The “container class problem” is particularly seri-
ous, though, since container classes are needed to specify all but the simplest interfaces; they are
the “‘glue” for larger systems.

2 Class Templates

A C++ parameterized type will be referred to as a class template. A class template specifies
how individual classes can be constructed much like the way a class specifies how individual objects
can be constructed. A vector class template might be declared like this:

template<class T> class vector {
T* v;
int sz;
public:
vector(int);
T& operator[] (int);
T& elem(int i) { return v[i]; }
I/ ... .
};

The template <class T> prefix specifies that a template is being declared and that an argument
T of type type will be used in the declaration. After its introduction, T is used exactly like other
type names within the scope of the template declaration. Vectors can then be used like this:

vector<int> vl (20);
vector<complex> v2 (30);

typedef vector<complex> cvec; // make cvec a synonym for vector<complex>
cvec v3(40); // v2 and v3 are of the same type
v1i[3] = 7;

v2[3] = v3.elem(4) = complex(7,8);

Clearly class templates are no harder to use than classes. The complete names of instances of a
class template, such as vector<int> and vector<complex>, are quite readable. They might
even be considered more readable than the notation for ‘the built-in array type: int[] and
complex(]. When the full name is considered too long, abbreviations can be introduced using
typedef.

It is only trivially more complicated to declare a class template than it is to declare a class. The
keyword class is used to indicate arguments of type type partly because it appears to be an
appropriate word, partly because it saves introducing a new keyword. In this context, class
means ‘“‘any type” and not just “‘some user-defined type.”

The <...> brackets are used in preference to the parentheses (...) partly to emphasize the
different nature of template arguments (they will be evaluated at compile time) and partly because
parentheses are already hopelessly overused in G++ .

The keyword template is introduced to make template declarations easy to find, for humans
and for tools, and to provide a common syntax for class templates and function templates.

3 Member Function Templates

The operations on a class template must also be defined. This implies that in addition to class
templates, we need function templates. For example:
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template<class T> T& vector<T>::operator{] (int i)

{
if (i<0 || sz<=i) error("vector: range error");
return v{i};

}

A function template is a specification of a family of functions; template<class T> specifies that
T is a template argument (of type fype) that must somehow be supplied to specify a particular func-
tion.

Note that you don’t usually have to specify the template arguments to use a function template.
For example, the template argument for vector<T>::operator[] will be determined by the
vector to which the subscripting operation is applied:

vector<int> vl (20);
vector<complex> v2 (30);

v1i{3) = 7; // vector<int>::operator(] ()
v2(3] = complex(7,8); // vector<complex>::operator[] ()

Member functions of a class template are themselves function templates with the template argu-
ments specified in the class templates. Function templates and member function templates will be
discussed in greater detail in §9 and §12.

4 Outline of an Implementation

The basic idea for an implementation that incurs no additional costs in run-time or space com-
pared with “hand coding” is to “macro-expand” a template for each different set of template argu-
ments with which it is used. Naturally, template expansion is not really/just macro expansion; it
obeys proper scope and syntax rules. Names such as vector<int> can be encoded into compo-
site class names such as __ PTvector_int.

The example above expands into:

class _ PTvector_int {
int* v;
int sz;
public:
__PTvector_int (int);
int& operator(] (int);
int& elem(int i) { return v([i]; }
// ...
}:

class __ PTvector_complex {
complex* v;
int sz;
public:
__PTvector_complex(int) ;
complex& operator(] (int);
complex& elem(int i) { return v([i]; }
// ...
}:

_ _PTvector_int v1(20);
___PTvector_complex v2(30);
_ PTvector_complex v3(40);

vli([3] = 7:
v2[3] = v3.elem(4) = complex(7,8);

A compiler need not have a separate template expansion pass. Since the information to do such
an expansion exists in the compiler’s tables, the appropriate actions can simply be taken at the
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proper places in the analysis and code generation process.
In addition to this expansion mechanism, a facility is needed for detecting which member func-
tions have been used for which instances of a parameterized type. The example above used:

_ PTvector_int::_ PTvector_int(); // constructor
__PTvector_complex::_ PTvector_ complex(); // constructor
_ PTvector_int::operator(] (); // subscripting
__PTvector_complex::operator{] (); // subscripting

_ PTvector complex::elem();

Note that the full list of such functions for a program can be known only after examining every
source file. The linker provides a form of this list as part of its list of undefined objects and func-
tions.

The definition of an operation on a class template might look like this:

template<class T> T& vector<T>::operator(] (int i)

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}
From this, the following two function definitions will have to be generated:

int& _ PTvector_int::operator[] (int i)

{
if (i<0 || sz<=i) error("vector: range error");
return v{i];

}

complex& _ PTvector_complex::operatox([] (int i)

{
if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

This approach ensures that no run-time efficiency is lost compared to “hand-coding”. Code
space might wasted by creating separate copies of functions that could have shared implementation.
For example, vector<int> and vector<unsigned> need not have separate subscripting opera-
tions. Such waste can, if necessary, be reduced through suitable coding practices (see § 11) and/or
through a clever compile time environment,

A programmer can provide a definition for a particular version of an operation on a class by
specifying the template argument(s) in a function definition:

int& vector<int>::operator([](int i) { return v([i]; }

The general version of such a function as defined by its template will be used to create a function
for a particular argument type only when no user-provided version is specified for that type.

Replacing the default implementation of a function as defined by a template is useful where
implementations with greater precision, higher efficiency, etc. can be provided given some under-
standing of a particular type. It may also be useful for debugging and for supplying different ver-
sions of a function to different parts of a program (using static functions).

5 Some Design Considerations

Let us consider a few choices that were made to write the example above:
{1] Should all template arguments be of type type?
{2] Should a user be required to specify the set of operations that may be used for a template
argument of type type?
[3] Should a user be required to explicitly declare what versions of a template can be used in a
program?
~ [4] Should it be possible for a user to declare variables of type type?
The answer to all (in the context of C++ ) is no. Let us examine them in turn.
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Template Arguments

“Should all template arguments be of type fype?” No, there appear to be useful examples of
type parameters of “normal” types. For example, a vector template might be parameterized with
an error handling function:

typedef void (*PF) (char*);

template<class T, PF error> class vector {
T* V;
int sz;
public:
T& operator[] (int i) (
if (i<= || sz<=i) error("vector: range error"):;
return vi(i];

}:

void my error_fct() { ... }
vector<complex, &my_error_fct> v(10);

This example implies that default arguments might be useful:

template <class T, PF error=&standard error_fet> class vector { ... )
Another example is a buffer type with a size argument:

template<class T, int sz=128> class buffer {
T v[sz}:
// ...

}:

void £()

{
buffer<char> bufl;
buffer<complex, 20> buf2;
// ...

}

buffer<char*,1000> glob;

Making sz an argument of the template buffex itself rather than of its objects implies that the
size of a buffer is known at compile time so that a buffer can be allocated without use of free
store. It appears that default arguments will be at least as useful for template arguments as they
are for ordinary arguments. Default arguments of type type might even be useful:

template<class T, class TEMP = double> class store {
// ...
T sum() { TEMP sum = 0; ... return sum; }

}:

store<int, long> istore;
store<float> fstore;

These examples demonstrate that the range of templates with which a type can be parameter-
ized should be restricted only if there are compelling arguments that the restriction will signifi-
cantly ease the implementation of templates. I see no such argument.

Type Argument Attributes

“Should a user be required to specify the set of operations that may be used for a template
argument of type type?” For example:
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// The operations =, ==, <, and <=
// must be defined for an argument type T

template <
class T (
T& operator=(const T&);
int operator==(const T&, const T&);
int operator<=(const T&, const T&);
int operator<(const T&, const T&);
}i
>
class vector {
/] ...

};

No. Requiring the user to provide such information decreases the flexibility of the parameteriza-
tion facility without easing the implementation or increasing the safety of the facility.

Consider vector<T>. To provide a sort operation one must require that type T has some
order relation. This is not the case for all types. If the set of operations on T must be specified in
the declaration of vector one would have to have two vector types: one for objects of types with
an ordering relation and another for types without one. If the set of operations on T need not be
specified in the declaration of vector one can have a single vector type. Naturally, one still can-
not sort a vector of objects of a type glob that does not have an order relation. If that is tried,
the generated sort function vector<glob>: :sort () would be rejected by the compiler.

It has been argued that it is easier to read and understand parameterized types when the full set
of operations on a type parameter is specified. I see two problems with this: such lists list would
often be long enough to be de facto unreadable and a higher number of templates would needed
for many applications.

Should experience show a need for specifying the operations on a parameterized type then such
a facility can be easily and compatibly added later.

Source Code

There might be a more fundamental reason for requiring that the operations performed on a
template argument of type type should be listed in the template declaration. The implementation
technique outlined here achieves near optimal run-time characteristics by requiring the complete
source code of a template to be available to the compiler when processing a use of the template.
In some contexts, this is considered a deficiency and an implementation of templates that requires
only the object code for functions implementing the function templates would be preferable.

At first glance it would appear that requiring the full set of operations on a template argument
to be specified would make it significantly easier to produce such an implementation. In this case,
a function template would be implemented by code using calls through vectors of function pointers
to perform operations on template arguments of type type. The specification of the set of opera-
tions for a type argument would provide the definition for such vectors. Such an implementation
would trade run-time for compile and link time, but would be semantically equivalent to the imple-
mentation scheme presented here.

Could an implementation along these lines be provided without requiring the user to list the set
of operations needed for each function template argument of type type? I think so. Given a func-
tion template, the compiler can create a vector layout for the required set of operations without the
help of a user. Given the full set of function definitions for the members of a class, the compiler
can again create a vector layout for the required set of operations without the help of a user. If
the compile and link environment cannot provide such a list a less optimized scheme where each
member function has its own vector of operations can be used.

It thus appears that both implementation styles can be used even in the absence of template
argument attribute lists so that we need not require them to preserve the implementers’ freedom of
action. It might be noticed that a virtual function table is in many ways similar to a vector of
operations for a template so that the benefits of the vector of operations approach can often be
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achieved by a coding style relying on virtual functions rather than the expansion of function tem-
plates. Class pvector presented in §11 is an example of this.

Type Instantiation

“Should a user be required to explicitly declare what versions of a template can be used in a
program?” For example, should one require the use of an operation like Ada’s new? No. Such a
requirement would increase the size of the program text and decrease the flexibility of the template
facility without yielding any benefits to the prugrammer or the implementer.

Type Variables

“Should it be possible for a user to declare variables of type type?” For example:
type t = int;

void £ (type t)

switch (t) {
case int:

case char*:
case complex:
default:

}
}

Such a facility would be useful in many contexts, but does not appear suitable for G++ . In partic-
ular, it is not possible to assign integer values to represent constants of type type such as int,
line_module*, double (*) (complex*,int), and vector<complex> while maintaining the '
current style of separate compilation. Since the C++ type system is open such assignment of
values in general requires an unbounded number of bits to represent a type. In practice, even sim-
ple cases require lots of bits (the current cfront scheme for encoding function types in character
strings regularly uses dozens of characters) or some system of hashing involving a database of
types. Furthermore, the introduction of such variables would require an order of magnitude
greater changes to the C++ language and its implementations than the scheme (without type vari-
ables) described here. '

6 Type Inquiries

It would be possible to enable a programmer to inquire about properties of a template argument
of type rype. This would allow the programmer to write code that depends on specific properties
of the actual types used.

An Inquiry Operator

Consider providing a print function for a vector type that sorts the elements before printing if
and only if sorting is possible. A facility for inquiring if a certain operation, such as <, can be per-
formed on objects of a given type can be provided. For example:

template<class T> void vector<T>::print ()

{
if (?T::operatox<) sort(); // if (T has a <) sort_this_vector
for (int i=0; i<sz; i++) { ... }

}

Because the < operation is defined for inss, printing of a vector<int> gives rise to an expansion:
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void _ PTvector_int::print{)

{
sort(); // that is, this->sort ()
for (int i=0; i<sz; i++) { ... }

}

On the other hand, printing a vector<glob> where the < operation is not defined for globs
gives rise to an expansion:

void _ PTvector_glob::print ()
{

for (int i=0; i<sz; i++) { ... }
}

Tests on expressions of the form ?typ:.oper (“‘does type typ have an operation oper?’’) must be
evaluated at compile time and can be part of constant expressions.

It would probably be wise not to include such a type inquiry feature in the initial experimental
implementation but to wait and see what properties (if any) programmers would find useful.
Potentially every aspect of a type known to the compiler can be made available to the programmer;
sizeof is a most rudimentary version of this kind of facility.

The absence of a type inquiry facility will be compensated for by the ability to define a function
for a particular set of template arguments, thus overriding the generation of the ‘‘standard” version
from the template. Furthermore, it can sometimes be preferable to define separate templates to
represent the different concepts. For example, one might have both a vector<T> class and a
sorted_vector<T> class derived from it.

The typeof Operator

Writing code where the control flow depends of the properties of a type parameter doesn’t
appear to be necessary, but defining variables of types dependent on type parameters does. Given
a template argument of type type, T, one can express a variety of derived types using the declara-
tor syntax; for example, T*, T&, T[10], T(*) (T,T). One can also express types obtained by
template expansion such as vector<T>. However, this does not conveniently express all types
one might like. In particular, the ways of expressing types that depends on two or more template
arguments are weak. To compensate, one might introduce a typeof operator that yields the type
of its argument. For example:

template<class X, class Y> void £(X x, Y y)
{
typeof (x*y) temp = x*y;

}

It would probably be wise rot to introduce a typeof operator before gaining more experience.
The uses of typeof appears to be quite limited and the scope for misuses large. In particular,
typeof appears more suited for the writing of macros (which templates are designed to replace in
many contexts) than for templates and heavy use of typeof will reduce the compilers ability to pin-
point type errors,

7 More about Implementation

So how can we generate the proper code for definitions of operations on a template for a given
set of arguments? Assume that we know that versions of vector’s subscripting operation

template<class T> vector<T>::operator(](int) { ... }

are needed for T==int and T==complex. How can we create the proper expansions (as
prest - ied above)?

We might have a compiler option, -X, for creating such expansions. Assuming that the defini-
tions for vector’s member functions resides in a file called vector.c, one might call the
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compiler like this:

CC -X "vector<int>" vector.c
CC -X "vector<complex>" vector.c

and have the appropriate . o files created. This would create not only the required subscript opera-
tor functions but also functions for any other vector operation that has its definition stored in
vector.h. The strategy for splitting a program into separately compiled parts is in the hands of

. the programmer. Where a finer granularity is required of .o files for a library, the programmer
can handle it using standard C library techniques.

Note that an expansion using the template expansion option, -X, may give rise to a program
that uses an instance of a template that has not already been used in the program. This implies
that another stage of *‘missing template implementation detection” is required after each expan-
sion. Expansion is really a recursive activity. The depth of this recursion will typically be 1,
though. It will be necessary to have a mechanism protecting against recursive expansion. For
example:

template<class T> void £(T a) ( T* p; ... £(p); }

Naturally, one would try to ensure that C~ -X is used to generate .o files only for definitions
of templates when

[1] a new template was used, or

[2] a new set of template arguments was used, or

[3] the declaration of a template was changed.
I imagine that after a short startup period all. the necessary .o files for templates for a
program/project will reside in a library and not interfere with the compilation process. When a
program/project reaches this state the compilation overhead incurred by using templates becomes
negligible.

Tools for Ensuring Consistent Linking

Consider having the tools described above:

(1] a G++ compiler handling the expansion of class templates into class declarations, and

[2] a -X option on this compiler to handle the expansion of function templates into function

definitions.
One could then compile a C++ program using templates. A little manual intervention would be
needed to get a complete program to link and load.

What additional tools would be needed to

[1] guarantee consistent and complete expansion and linking?

[2] make programming reasonably convenient?

I conjecture that [1] is perfectly feasible, but non-trivial, where portability across operating sys-
tems, compile and link time efficiency, and flexibility are all required. I also conjecture that very
little is needed to achieve [2]). Experience using such a system is clearly needed, but it might well
be sufficient to modify a tool with access to the complete compiled program, such as munch or the
linker itself, to produce

[1] a list of function definitions required, or

[2] a list of files for which CC -X needs to be run (assuming some correspondence between type

names and file names), or

[3] a make script for running CC -X for an appropriate set of files.

It would also be important to ensure that CC produces readable error messages when an opera-
tion is applied to a particular template argument of type fype for which it is not defined. For
example:

"foo.c", line 144: error: operator<= applied to glob in vector<glob>::sort ()

This discussion of how one might provide a minimal and portable mechanism supporting tem-
plates in C++ should not be taken as an indication that such a mechanism provides the ideal pro-
gramming environment. On the contrary, it is exactly a minimal facility. Much better facilities
can be built (think of a smart make, an incremental compiler, a Smalltalk-like browser, etc.),
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However, a minimal facility must exist to ensure portability of C++ programs between all imple-
mentations since there is no hope that a single maximal programming environment will ever be
agreed on and implemented on every system supporting C++ .

8 Function Templates

In addition to providing class templates, it is necessary to provide function templates. Consider
providing a general sort function:

template<class T> void sort(vector<T>);
Given a vector v, one might call such a function like this:
sort (v);

The compiler can deduce the type of the sort function from the type of the vector. For exam-
ple, had v been declared

vector<int> v(10);

the sort function sort<int> would have been required. On the other hand had the declaration of
v been

vector<double> v (2000);

the sort function sort<double> would have been used.

Overloading

Declaring a function template is simply a way of declaring a whole bundle of overloaded func-
tions at one time. This implies that we can use functions with arguments that can be distinguished
by the overloaded function resolution mechanism only. The following function cannot be used
because it takes no argument:

template<class T> T* create() { return (T*) malloc(sizeof(T)): }

The C++ syntax could be extended to cope with this by allowing the full generality of the
name<type> notation so that template arguments could be supplied explicitly in a call:

int* pi = create<int>(); // create_int ()
char* pc = create<char>(): // create_char()

Unless programmers define templates sensibly this form of fesolution can become quite cryptic:

template<class X, class Y> £(Y,X); // template argument order differs
// from function argument order

f<char*,int> (1, "asdf");

I think it would be wise not to include any explicit resolution method in an initial implementation.
I suspect that the implicit resolution provided by the overloaded function resolution rules are suffi-
cient — and more elegant — in almost all cases and it is not obvious that a mechanism for explicit
overloading is worth the added complexity.

Allowing explicit resolution would imply that a C++ compiler should treat function template
names differently from other names and similarly to the way keywords and class names are
treated. For example, without special rules for template names the last expression above would be
parsed as two comparisons and a parenthesized comma expression:

(g<123) > (vv,10) ;

10
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A Problem

Consider writing a function apply () that applies another function to all the elements of a vec-
tor. A traditional first cut would look something like this:

template<class T> void apply (vector<T>& v, T& (*g) (T&))
{

for (int i = 0; i<v.size(); it++) v[i] = (*g) (V[i]);
}

This follows the C style of using a pointer to function. Potential problems with this are
[1] efficiency, because there can be no inline expansion of the applied function, and
[2] generality, because standard operations of built-in types such as - and ~ for ints cannot be
applied.
Naturally, these are not problems to all people. However, an ideal template mechanism will pro-
vide solutions.

A Solution

One might consider the function to be applied by apply () a template argument rather than a
function argument:

template<class T, T& (*g) (T&)> void apply(vector<T>& v)
{
for (int i = 0; i<v.size(); i++) v[i] = (*g) (v[i]):;

}

To call apply () one must specify the function to be applied. Since this version of apply () takes
only a single vector argument the syntax for disambiguating an overloaded function call using
<...> must be used:

class X { ... }:
vector<X> v2(200);

inline void hh(X&) { ... }:
void gg(X&); // not inline

apply<X,hh>(v2);
apply<X, gg>(v2);

Clearly, the X is redundant and not elegant. Since in principle each such call of apply () results

in writing a new function apply () inlining can be applied where sufficient information is avail-

able. Consequently, one would expect a CG++ compiler to inline hh () in the first call in the exam-
ple above and generate a standard function call of gg (). The fact that function pointers and not
functions are passed in C++ is at most a minor annoyance for the compiler writer.

Operators for built-in types can be considered inline functions in this context:

vector<int> v (100);
apply< int, &int::operator—-- >(v);

However, as for the explicit resolution scheme itself, it remains to be seen if this degree of sophis-
tication and complexity is actually needed.
9 Syntax Issues

Consider the declarations:

template<class T> class vector { ... }:
template<class T> T* index<class T>(vector<T>, int);

(1] Why use the template keyword?
[2] Why use <. ..> brackets and not parentheses?
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[3] Why use the class keyword?
[4] What is the scope of a template argument?

The template keyword

If a keyword is to be used template seems to be a reasonable choice, but it is actually not
necessary to introduce a new keyword at all. For class templates, the alternative syntax seems
more elegant at first glance:

class vector<class T> { // possible alternative class syntax

}

Here the template arguments are placed after the template name in exactly the way they are in the
use of a class template:

vector<int> wvi (200);
vector<char*> vpc (400);

The function syntax at first glance also looks nicer without the extra keyword:

T& index<class T>(vector<T> v, int i) { ... }

There is typically no parallel in the usage, though, since function template arguments are not usu-
ally specified explicitly:

int i = index(vi,10);

char* p = index(vpc,29);

However, there appears to be nagging problems with this “simpler” syntax. It is too clever. It is
relatively hard to spot a template declaration in a program because the template arguments are
deeply embedded in the syntax of functions and classes and the parsing of some function templates
is a minor nightmare, It is possible to write a C++ parser that handles function template declara-
tions where a template argument is used before it is defined, as in index () above. I know,
because I wrote one, but it is not easy nor does the problem appear amenable to traditional parsing
techniques. In retrospect, I think that not using a keyword and not requiring a template argument
to be declared before it is used would result in a set of problems similar to those arising from the
clever and convoluted C and C++ declarator syntax.

< 00> VS (o00)

But why use brackets instead of parentheses? As mentioned before, parentheses already have
many uses in C++. A syntactic clue (the <...> brackets) can be useful for reminding the user
about the different nature of the type parameters (they are evaluated at compile time). Further-
more, the use of parentheses could lead to pretty obscure code:

template (int sz = 20) class buffer {
buffer(sz) (int i = 10);
/7 ...

}:

buffer bl (100) (200);
buffer b2 (100); // b2(100) (10) or b2(20) (100) ?
buffer b3; // legal?

These problems would become a serious practical concern if the notation for explicit disambi-
guation of overloaded function calls were adopted. The chosen alternative seems much cleaner:

12
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template<int sz = 20> class buffer {
buffer(sz) (int i = 10);
/7 ...

}:

buffer bl<100>(200);

buffer b2<100>; // b2<100>(10)
buffer b3; // b3<20>(10)
buffer b4 (100); // b4<20>(100)

The class keyword

Unfortunately, the ideal word for introducing the name of a parameter of type fype, that is,
type cannot be used; type appears as an identifier in too many programs. Why use the class
keyword then? Why not? Classes are already types to the extent that the built-in types can be
considered second class citizens in some contexts (you cannot derive a class from a built in type,
you cannot take the address of an operation on a built-in type, etc.). What is done here is simply
to use class in a slightly more general form than is done elsewhere.

Scope of Template Argument Names

The scope of a template argument name is the template declaration and the template name
obeys the usual scope rules:

const int T;

template<class T> // hides the const int T
class vector {

int sz;
T* v;
public:

};

int T2 = T; // here const int T is visible again
Template declarations may not be declaration lists:

template<class T> £(T*), g(T); // error: two declarations
This restriction is made to avoid users making unwarranted assumptions about relations between
the template arguments in the different templates.

10 Templates and Typedef

The template concept is easily extended to cover all types. For example:

template<class T, int i> T array(i]:

array<int, 10> v; // array of 10 ints

This allows great freedom in defining type names. In particular, a template without arguments
is equivalent to a typedef. For example:

template<> int I1;
typedef int 12;

I1<> x; // ‘*x'’ is an int
I2 y; // *‘y’’ is an int
int z; // **z'’ is an int

For example, it follows that x and z in the example above are both of the same type (int) .
I1<> is simply a rather unusual way of writing int.
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11 Type Equivalence

Consider:
template<class T, int i> class X {
T vec[i];
// ...

}:

array<int, 10> x;
array<int, 10> y;
array<int, 11> z;

Here, x and y is of the same type, but z is of the different type. Since the template arguments
used in the declarations of x and y are identical they refer to the same class. Naturally, only a
single class declaration is generated by a C generating C++ compiler. On the other hand, the tem-
plate arguments used in the declaration of z differs and gives rise to a different class.

Different template arguments give rise to different classes even if the argument is used in a way
that does not affect the type of the generated class:

template<class T, int i> class Y {
public:

foo() { int buf[i]; ... }
}:

Y<int, 10> xx;
¥<int, 10> yy:
¥Y<int,1l1l> zz;

Template arguments must be types, constants, or integer expression that can be evaluated at
compile time.

12 Derivation and Templates

Among other things, derivation (inheritance) ensures code sharing among different types (the
code for a non-virtual base class function is shared among its derived classes). Different instances
of a template do not share code unless some clever compilation strategy has been employed. I see
no hope for having such cleverness available soon. So, can derivation be used to reduce the prob-
lemt of code replicated because templates are used? This would involve deriving a template from
an ordinary class. For example:

template<class T> class vector { // general vector type
T* v;
int sz;
public:
vector (int);
T& elem(int i) { return v[i]; }
T& operator[] (int i);
/7 ...

t If that really is a problem: memory is cheap, etc. I think it is a problem and will remain so for the foreseeable future.
People’s expectations of computers have consistently outstripped even the astounding growth in hardware performance.

14
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template<class T>
class pvector : vector<void#*> { // build all vector of pointers
// based on vector<void*>
public:
pvector(int i) : (i) {}
T*& elem(int i) ( return (T*&) vector<void*>::elem(i); }
T*& operator[] (int i) { return (T*&) vector<void*>::operator(] (i); }
// ...
}:

pvectoxr<int*> pivec (100) ;
pvector<complex*> icmpvec (200);
pvector<char*> pcvec (300);

The implementations of the three vector of pointer classes will be completely shared. They are all
implemented exclusively through derivation and inline expansion relying on the implementation of
vector<void*> The vector<void*> implementation is a good candidate for a standard
library.

I conjecture that many class templates will in fact be derived from another template. For exam-
ple:

template<class T> class D : B<T> {

};
This also ensures a degree of code sharing.

13 Members and Friends

Here are some more details:

Member Functions

A member function of a class template is implicitly a template with the template arguments of
its class. Consider:

template<class T> class C {

T p;

Tml() { T a = p; pt+; return a; }
};

C<int> el;
C<char*> c2;

int i = el.ml(); // int C<int>::ml() { int a = p; p++; return a; )}

char* s = c2.ml(); // char* C<char*>::ml() { char* a = p; p++; return a; }

These two calls of ml () gives rise to two expansions of the definition of m1 ().
Naturally a member template may also be declared:

template<class T> class C {
template<class TT> void m(TT*,T*);
}:

This case will be discussed below. However, explicit use of class template arguments in member
function names is unnecessary and illegal:
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template<class T> class C {

T m<T>(); // error
};
template<class T> C<T>::m<T>() { ... } // error
template<class T> C<T>::m() { ... } // correct

This also applies to constructors:

template<class T> class C {

Cc():; // correct, a constructor
C<T>(int); // error constructor

};

template<class T> C<T>::C() { ... } // correct

To avoid confusion it is not legal to define a template as a member with the same template argu-
ment name as was used for the class template:

template<class T> class C {
template<class T> T m(T*); // error
};

Friend Functions

A friend function differs from other functions only in its access to class members. In particu-
lar, a friend of a class template is not implicitly a template. Consider:

template<class T> class C {

friend £1(T a);

template<class TT> friend £2 (TT a);
}:

The definitions of £1 () and £2 () are legal, but clearly not equivalent.

The friend declaration of £1(T) specifies that for all types T, £1<T> is a friend of C<T>.
For example, fl<int> is a friend of C<int>. However, f£l<int> is not a friend of
C<double>. The definition of £1 () would probably look something like this:

template<class TT> £f1(TT a) { ... };

The friend £1 () need not be a template, but if it isn’t the programmer might have a tedious time
constructing the necessary set of overloaded functions “by hand.”
The declaration of £2 () specifies that for all types T and TT, £2<TT> is a friend of C<T>.
For example £2<int> is a friend of C<double>.
Note that a friend function of a parameterized class need not itself be parameterized:
template<class T> class C {

static int i;
friend £() ( i++; )

Static Members
Each version of a class template has its own copy of the static members of the class:
template<class T> class C { static T a; static int b; ... };
c<int> xx;

C<double> yy;

This implies allocation of the static variables:
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static int C<int>:
static int C<int>:

:a;
:b;
static double C<double>::a;
static int C<double>::b;

Similarly, each version of a parameterized function has its own copy of static local variables;
’ template<class T> £() { static T a; static int b; ... };

Friend Classes

Friend classes can (as usual) be declared as a shorthand for declaring all functions friends:
template<class T> class C {

friend template<class TT> class X; // all X<TT>s
friend class Y<T>; // only Y<T>
friend class Z<int>; // only Z<int>

14 Examples of Templates

Here are some more examples of potentially useful templates, Versions of many of the tem-
plates used as examples in this paper have been created using macros and actually used in real pro-
grams. “Faking” templates using macros have been a major design technique for the template
facilities. In this way the language facilities could be designed in parallel with the key examples
and techniques they were to support.

An associative array:

template<class E, class I> class Map {
// arrays of Es indexed by Is
// ...
E& operator([] (I):;

}:

A “record” stream; the usual stream of characters is a special case:

template<class R> class ostream {

/...

ostream<R>& operator<<(R&); // output an R
}:

An array for mapping information from files into primary memory:

template<class T, int bsz> class huge {
T in_core_buf [bsz];
/! ...
T& operator[] (int i);
seek (long) ;
/! ...

A linked list class:
template<class T> class List { ... };

’

A queue tail template for sending messages of various types:
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template<class T> class mtail : public gtail {
/7 ...
void send(T arg)
{

// bundle ‘‘arg’‘’ into a new message buffer
// and put than on the queue

}:
A counted pointer template (for user-defined automatic memory management):

template<class T> class CP {
/! ...
public:
CP();
CP (T);
CP (CP<T>&) ;
/...
};

15 Conclusions

A general form of parameterized types can be cleanly integrated into C++ . It will be easy to
use and easy to document. The implementation can be efficient in both run-time and space. It can
be implemented portably and efficiently (in terms of compiler and link time) provided some
responsibility for generating the complete set of definitions of function templates is placed on the
programmer. This implementation can be refined, but probably not without loss of either portabil-
ity or efficiency. The required compiler modifications are manageable. In particular, cfront can
be modified to cope with templates. Compatibility with C is maintained.

16 Caveat

The key thing to get right for a C++ template facility is assuring that basic parameterized
classes are implemented in an easy to use and efficient way for the relatively simple key examples.
The compilation system must be efficient and portable at least for these examples. The most rea-
sonable approach to building a template system for C++ would be to achieve this first, make the
inevitable changes in concepts based on that experience, and proceed with more advanced features
only as far as they makes sense then.
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Building Well-Behaved Type Relationships in C++
R. B. Murray

AT&T Bell Laboratories
Warren, New Jersey 07060

1. Introduction

The C++ programming languagel!l allows the designer of a new user-defined type to define the
conversions between that type and another type. When the arguments to a function call,
overloaded operator, or initialization don’t match a declaration exactly, the compiler can use
these conversions to coerce arguments to make them match. If exactly one declaration can be

matched using conversions, the compiler supplies the conversions automatically; otherwise it is a
compile time error.

These implicit type conversions can make it easier to write more concise code; however, they can
also create problems. The builder of a type structure is walking a thin line between supplying
enough conversions to avoid frequent explicit casts, and supplying so many conversions that
casts have to be added to resolve ambiguities. In addition, the type conversion rules of C++
make it possible for the addition of other declarations at a later time to break existing code. As
the use of C++ libraries grows, these interactions between different packages are hkely to
become more common.

This paper will begin by reviewing the existing behavior of implicit type conversions in C++.
We will then will suggest “rules of thumb” for avoiding unwanted interactions, both for the
type designer, and for the type user.

2. Review: type conversions sn C4++

In both C and C++, the compiler understands how to make certain type conversions, and will
quietly insert these conversions into the generated code when appropriate. For example, C and

C++ compilers know how to convert an int into a double; so if a compiler is presented with
the code fragment

double 4;

d = 2;
it will quietly convert the int 2 into a double before doing the assignment to d.
In C++, the designer of a user-defined type can specify conversions between that type and any
other type. This can either be a specification of how to the convert this type into some other

type, or how to convert some other type into this type. Either kind of conversion tells the

compiler how to make one type into another; the difference is in which of the two types involved
knows how to do the conversion.

2.1 Constructors

Conversion from another type From_type to a new type To_type is specified by supplying a
constructor that takes exactly one argument, either of type From_type or From_type&:
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class From_type {
//
3

class To_type {
/...
public:
To_type();
To_type(From_type&) ;

’

To_type::To_type(From_type& o)

//Do what it takes to make a From_type into this To_type
}

main(){

From_type other_thing;

To_type this_thing;

this_thing = other_thing; //To_type(From_type&) called
} .

2.2 Conversion operators

Conversion fo another type To_type from a type From_type is specified by supplying a
member function (called a conversion operator) of the form operator To_ type:

"class To_type {
/...
3

class From_type {

//

public:

operator To_type();
3

From_type::operator To_type()

//Do what it takes to make this From_type into a To_type
//This function returns the new To_type
}

main(){

From_type other_thing;

To_type this_thing;

this_thing = other_thing; //From_type::operator To_type() called
3

2.8 Function matching

The CH++ compiler will attempt to use implicit type conversions when the arguments supplied to
a function, overloaded operator, or initialization do not match any existing declaration exactly.
(For the remainder of this paper, the term “function” will be used to include overloaded
operators and initializations). The compiler may supply implicit type conversions in order to
coerce one or more of the arguments to the types expected by the function.

20
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For instance, if the function 8qrt expects an argument of type double, but the call passes an
int, the generated code will include a conversion of the int into a double and pass the

result to sqrt. This is also true in Draft Proposed ANSI Cl?; however, C++ extends this
behavior to include user defined types.

The C++ compiler will only call implicit type conversions if:
e no declaration for the function matches the argument list exactly, and
o there is exactly one such declaration for the function such that each argument either:
— matches the corresponding argument in the function declaration exactly; or

— has exactly one direct conversion that will change the argument into the type specified
by the function declaration.

If there are no function declarations that can be made to match by adding conversions, or there
are two or more, it is a compile time error.

For example:

class Orange {
//
};

class Apple {
// ...
public:
Apple();
Apple(Orange&); //convert Orange to Apple

’

overload cross;
void cross(Orange,Apple);
void cross(Apple,Apple);

nain() {
Orange navel;
Apple mcintosh;
cross(navel,mcintosh) ; //calls cross(Orange,Apple);
cross(mcintosh,mcintosh); //calls cross(Apple,Apple);

cross(mcintosh,navel); //converts navel and calls cross(Apple, Apple);

cross(navel,navel); //error: two possible conversions

};

The first two calls to cross match a declaration exactly, so no type conversions are called.
Since the third call does not match any declaration exactly, and there is no way to make an
Apple into an Orange, the third call can only be resolved by converting navel to an Apple
and calling cross(Apple,Apple). The fourth call also does not match any declaration
exactly. The compiler could convert only the second argument (which would match
cross(Orange,Apple), or it could convert both arguments (which would match
cross (Apple,Apple). Since there is no exact match, and there is not exactly one declaration
that can be made to match by supplying conversions, it is a compile time error.

8. Type conversion pitfalls

Implicit conversions can be convenient. However, if the class designer doesn’t put some thought
into their structure, they can cause troubles (in the form of compile-time errors) later. This
section looks at some of the most common problems and describes ways to avoid them.
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8.1 Multiple owner problem

This problem occurs when a conversion from S to T is necessary, and both T::T(S) (or
T::T(S&)) and S::operator T exist. We call this the multiple owner problem because there
are two ‘“‘owners’’ for the conversion S — T:

T::T(8)

> T
8::operator T()

S

(In this picture, each arrow from type S to type T indicates that an implicit type conversion
from S to T is declared.) It is never correct for both of these routines to exist.

This problem is minor because it cannot be introduced after the fact, since it requires that each
class involved knows about the other. Normally this is only true when the same set of people is
maintaining both classes, and it is therefore easily fixed by removing one of the conversions.

8.2 Ambiguous Type Structure

This error occurs when there is more than one possible set of conversions that will match the
function being called:

class Ti;
class T2;

overload func;
void func(T1);
void func(T2);

class S {

/7 ...

public:

operator T1();
operator T2();
}.

main () {
S s8;
func(s); //Error: two possible conversions
// (8->T1 or S->T2)
b
In this case, there is no func(S), and the type structure of the application allows either of two
conversions to resolve the function call:

T1 T2

S

Avoiding the structural problem is harder, because it can be introduced after the fact. The

later addition of a new type can cause existing code that depends on an implicit type conversion
to no longer compile:

22
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class Apple {
/...
public:
Apple(int);

void peel(Apple);

nain(){
peel(2); //calls peel(Apple(2));
b

The above code works, but if we later add another class that also defines peel we get a
problem:

class Orange {
// ... :
public:
Orange(int);
};

void peel(Orange);

When the new declarations (which are probably buried in a new header file) are added, all the
calls to peel that depend on the implicit conversion int — Apple will no longer compile.

This problem will become more common in the future. As software development moves toward
more aggressive reuse of code (as economics dictates that it must)’sl, the percentage of code in
an application that consists of libraries written by someone other than the application developer
will grow. This both increases the chances of an accidental name collision and reduces the
power of the victim to do anything about it (particularly if the victim does not have access to
the library source). A lot of trouble can be avoided if some thought about type structures goes
into the library design.

4. Rules for designing type structures

The structure problem arises when there are two or more conversions from the same type. If we
define the number of types that a type T can be implicitly converted to as the fanout of T, the
number of opportunities for collision from structural problems is O(fanout(T)?) . This is
because a function name collision between any two types in the fanout is a possible structure
error. So our first rule of thumb is:

Minimizge the fanout in the type structure.

By avoiding multiple implicit conversions from a given type, the chances that ambiguities will
be created are minimized. This does not mean that it should be impossible for users to convert
a given type to more than one other type; the point is that no more than one of these
conversions should be smplicit. Other conversions should be normal member functions. For
example, this type structure has high fanout:
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class Thing {

/7 ...

public:

operator Another_thing();
operator Still_another_thing();
operator Yet_another_thing();

I

Rather than have implicit conversions to three other types, at most one of the types should be
chosen for implicit conversions. In this case, suppose Another_ thing was the most common
of the types involved; we should only supply a conversion operator for Another_thing:

class Thing {

/...

public:
operator Another_thing();
Still_another_thing cvt_Still another_thing();
Yet_another_ thing cvt_Yet_another_thing();

3

Conversions to Still_another_thing and Yet_another_thing will now require an
explicit call to the appropriate member function.

4.1 Simplifying conversions

Implicit type conversions are especially useful when one of the classes is an extension of the
other. This may be an extension of the domain (e.g. Complex is an extension of double), or
of the concepts (String is an extension of char#*). In these cases, the implicit conversion
between the two classes should be from the extension to the simpler class; we call this a no-
value-added conversion.

Why are no-value-added conversions better? In general, there will be more than one extension
for a given simpler class. Implicit conversions from the extensions to the simpler class will fan
in to the simpler class, which doesn’t cause ambiguities:

T_with_bell T_with_whistle T_with_widget

T

On the other hand, implicit conversions from the simpler class to the extensions (value-added)

will fan out; there can be an ambiguity as to which extension the simpler type should be
converted to:

T_with_bell T_with_whistle T_with_widget

T

Since the simpler type should not know about the extension, no-value-added conversions will be
‘conversion operators (as opposed to constructors). So the rule of thumb is:

24
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Conversion operators should provide unique conversions to simpler types (no “value
added").

4.2 Mutual conversions are OK

It may not always be obvious when one type is an extension of another. For example, consider
the relationship between a type Rational, which implements rational numbers as the quotient
of a pair of arbitrary precision integers, and the type double. Conceptually, the set of real
numbers represented by double includes all rationals. However, since the implementation of
most doubles is a fixed sized mantissa and a fixed size exponent, the set of data representable
by Rational may in fact include all the data representable by double!

For situations like this, it is often simplest to use mutual conversions; each type can be
implicitly converted to the other:

Rational::Rational (double)

-
Lt

Rational double

-

Rational::operator double()

Surprisingly enough, this structure is not necessarily bad. If a function f accepts either a
Rational or a double, any use of Rational or double will match exactly; if the function
only accepts one of these types, the conversion will be called for the other type.

4.8 If in doubt, leave it out

Every automatic type conversion opens up a new opportunity for error, either from multiple
conversions requiring an explicit cast to be added, or (more sinister) from an unintended
conversion causing the wrong function to be called when the right function declaration was
missing. The most important rule of thumb is therefore:

If an implicit conversion is not obviously necessary, leave it out.

5. Implicit conversions in user code

The user of a library needs to be aware that constructors often break the rule that implicit
conversions should be unique, no-value-added conversions. Often, at least one form of the
constructor for an extension will take, as its sole argument, the simpler type:

class T {
//
};

class T_with_bell {

//

public:
T_with_bell(T);

3

The constructor T_with_bell::T_with_bell(T) defines an implicit value-added
conversion. The designers of T_with_bell may not have intended their users to depend on
this implicit conversion; it may simply exist because there is no way to specify a constructor of
this form without also declaring an implicit conversion.

This is particularly common with constructors that take built in types. For example, a class
that provides a buffer pool might have an integer parameter to the constructor that specifies an
initial size of the pool:
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class Buffer pool {
/...
public:
Buffer_pool(int);
3

The fact that this defines an implicit conversion from 1int to Buffer_pool is just an
accident; users’ code should not depend on it. For example, if there is a function

void flush(Buffer_pool);
which fills a Buffer_pool with available things, users should not call

flush(5);

with the intention of throwing away the next five things. This code depends on the conversion
int — Buffer_pool to construct a temporary Buffer_ pool of size 5, pass it to flush,
and destroy it after the call returns. A compilation error can be introduced by the later
addition of a constructor that takes int as its only argument if there is also a name collision on
flush:

class Toilet {
// ...
public:
Toilet(int);
};

void flush(Toilet);

Now, flushing an 1int no longer works. The second example in section 3.2, where code
stopped working because an implicit conversion from 1nt to Apple was broken by the
subsequent addition of a conversion from int to Orange, is another example of this. So the
rule of thumb here is:

Avoid the use of value-added conversions, even if they happen to be available. This
is especially important for conversions from built in types.
5.1 Repairing a broken type structure

If the user of a type gets bitten by a problem in the type structure, there are two ways to repair
the problem in the users’ code.

5.1.1 Provide ezplicit conversions An ambiguity can be resolved by providing an explicit
conversion in each function call:
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class Orange {
/...
public:
Orange(int);
};

class Apple {
/...
public:
Apple(int);

»

overload peel;
void peel(Orange) ;
void peel(Apple);

nain(){
peel(Apple(2));

This has the advantage of making explicit an operation that may not have been obvious
beforehand; but it also may clutter up the code, and can be a big effort. If there are few lot of
calls involved this is probably the simplest and clearest solution.

5.1.2 Provide disambiguators An alternative is to provide a disambiguator for the function
involved:

inline void
peel(int 1)
{

peel (Apple(1));
}

Since the disambiguator is inline, there is no additional run time cost. This allows a fix to be
made in one place, as opposed to being scattered throughout the code. However, we have added
yet another inline function declarator to our headers. If there are many calls involved this is
probably the easiest solution.

6. An Ezample

As an example, we’ll consider a type structure for various kinds of numbers. The types involved
will be: '

— 1int;

— Big_1int, supporting integers of arbitrary length;

— Rational, rational numbers (implemented as a pair of Big_ints);
— double;

-— Complex, a complex number implemented as a pair of doubles.

We’ll build this type structure in two steps. The first step is to figure out what conversions
must exist, either because they are implied by constructors, or because they already exist:
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Rational Complex
A

Big int

rr

int < double

int and double are mutually convertible by the rules of C. We clearly need to initialize
Big int from an int, and it makes sense to initialize Complex from a double.

How do we initialize Rational? This is a little harder. The fact that Rational is
implemented using Big_int is really an implementation detail; you should not require the user
of Rational to know about Big_int in order to use the package. However, we can imagine
that a Rational could be initialized by ints, doubles, or Big_ints, and we supply
constructors for this:

Rational Complex

A A

Big int

=

int - double

Having understood the conversions that exist because of constructors, the second step is to
decide what simplifying (no-value-added) implicit conversions (using conversion operators) we
should supply. We avoid implicit conversions when there are points in the domain that do not
obviously map to the range; e.g. it’s not obvious how to convert a Complex to a double when
there is a nonzero imaginary part. However, there is a clear way to convert a Rational to a
double (although we should be aware of possible loss of precision or range errors). So we add
Rational: :operator double to our type structure:

Rational Complex
A
Big int
o
int double

28
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We don’t add any other downward conversions, since that would increase the fanout from
Rational. The high fanout from int and double is unavoidable (and is characteristic of
built in types).

Suppose we want to convert a Rational to an 1int or a Big int? Adding implicit
conversions from Rational would increase the fanout; but we can imagine times when these
conversions would be useful. The answer is to provide conversions that are normal member
functions, without defining an implicit conversion:

class Rational {

//

public:
Big int cvt Big int();
int cvt_int();

3.

these allow users of Rationals to get the Big_int and int equivalents by making an
explicit call.

We’ve avoided conversions between Complex and int or Big_int because we don’t imagine
this conversion happening very often (if it does, perhaps a version of Complex that uses int or
Big ints would be more appropriate), and can easily be done by converting to or from a
double first. Since the conversion is not obviously necessary, we leave it out.

7. Summary

The moral of the story is: use implicit type conversions carefully, and with restraint. Every
implicit type conversion has the potential for causing problems down the line. Think about the
type structure as a whole, and look for ways to avoid fanout. The use of implicit type
conversions from a simpler to a more complex type, even if the conversions are available, should
be avoided; this is especially true if the simpler type is a built in such as int.

As software economics drives us toward more ambitious reuse of code, larger and larger parts of
an application will consist of libraries written by someone other than the developer of the
application. It is the responsibility of the library developer to make sure that the type structure
provided by the library is as simple and small as is practical.
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Porting from Common Lisp with Flavors to C++
Joseph Eccles
AT&T Bell Laboratories (Cap Gemini America)

ABSTRACT

While Lisp workstations provide a wonderfully productive
development environment, they are expensive, often forcing the
choice of another target machine for deployment.” This paper
describes some of the concerns and problems faced when porting a
large (20000 line) system from the Texas Instrument Explorer
workstation to a SUN/3. In each case an object oriented language
was used, Common Lisp with Flavors on the TI and C++ on the SUN.

The emphasis here is on the differences between the two
language systems. This paper addresses the translation of Flavors
into C++ classes, the semantics of Lisp lists, and the mimicing of Lisp
dynamic binding in C++. It deals only briefly with some other
differences, such as multitasking and window systems.

1. Introduction

During the late 1970’s and early 1980’s researchers at the MIT Laboratory for
Computer Science developed a Lisp based workstation that was later commercially
developed by several companies. The highly integrated and tool rich environment
provided by these workstations makes them attractive alternatives as development
environments, especially for prototyping. These systems include capabilities for
incremental compilation or interpretation of code, the intermixing of compiled and
interpreted code, powerful tracing, debugging, and data inspection facilities, and
flexible window systems. With all their advantages, though, the expense of these
machines makes them less than ideal delivery vehicles. In addition, since several
companies are now independently continuing development of the workstations, the
programming environments are diverging, especially in the area of extensions to the
windowing system. These divergences will tend to lock an application into a single
manufacturer’s hardware.

On the other hand, UNIX has become a standard software platform for
graphics workstations, and there are several such systems with computing power
and bit-mapped graphics capability comparable to the Lisp machines. With the
addition of a portable graphics/windowing environment such as the X Window
System and the object oriented capabilities of C++ these are becoming cheaper and
more standardized alternatives.

For these reasons, we have undertaken to convert a large existing application
from the Common Lisp/Flavors language to C++ running on a UNIX workstation.
The application in question is a graphics based user interface for a network moni-
toring and control system, consisting of about 20,000 lines of code running on a
Texas Instruments Explorer II color workstation.

The remainder of this paper will focus on the differences in the two language
environments, and the difficulties encountered as a result of these differences.
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2. C++ Replacements for Common Lisp Types

The standard data types of Common Lisp are easily replaced with C++ classes
or basic data types. Simple types such as integers and characters are as easily han-
dled by either language. Other important Lisp data types require class extensions
to C++, either from existing class libraries, or specifically constructed to mimic the
Lisp programming environment. Examples of such data types are

e strings
e hash-tables
o lists.

2.1 Strings

Common Lisp has a large set of routines available for handling string and
other array like data, and user interface applications are likely use these routines
heavily. C++ can easily provide such functionality by creating a sub-class of an
existing string class!!! with the extra member functions added. Such an approach is
preferable to adding more member functions into an existing class definition, since
the changes are then cleanly layered on top of the public interface of a base class.

2.2 Hash-tables

Within Lisp applications hash tables are commonly used to map properties to
key values. They are important in Common Lisp particularly when the key values
are not integers, or when the key values are sparse. An example of the first case is
the use of string keys, where a hash table will give a great performance advantage
over exhaustive string comparisons. We are currently using a class of hash tables
with string keys'?! to handle such mappings.

2.3 Lists

While there is existing C++ support for linked list classes!!), these are not con-
sistent with the Lisp concept of a list. The biggest difference is that list classes
mentioned above are implemented as doubly linked lists. This makes both nested
lists and shared sub-lists, both of which are commonly used in Lisp programming,
impossible. As a result, we have implemented our own singly-linked list classt?l,

The singly-linked class that we created was a list of pointers, which was
necessary because the objects in the lists could potentially belong to more than one
list. Another consequence of this is that destroying a list or removing an element
should not destroy the object being pointed to; it is left to the programmer to
ensure that an object is destroyed before all references to it vanish.

Incorporated into the definition of the singly-linked list class are equivalents
of many of the Lisp list functions, such as car, cdr, and so on. As in Lisp, making
a copy of a list creates a new list pointing to the original contents: only the top
level is normally duplicated.
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3. An overview of Common Lisp/Flavors

Common Lisp/Flavors is an object oriented programming environment built
on top of Common Lisp. In addition to the standard Lisp types, such as integers,
characters, arrays, and lists, the Flavors extension allows for user defined abstract
data types. Each abstract data type, or flavor has associated with it zero or more
private data members and a public interface consisting of one or more associated
functions, or methods. A flavor may be built on top of one or more base flavors,
and will inherit all data members from these flavors.

The interaction of methods in the derived and base classes can be controlled
by the programmer to a large extent. In the default, and most commonly used
scheme, each method is divided into three components, the before method, the
primary method, and the after method. For a method defined directly for a single
class, the before, primary, and after methods are executed in order. For a derived
class that overrides the base class methods, however, things are more complex, and
the flow of execution proceeds as follows.

e The before method of the derived flavor is called, followed by that of the
parent flavor if one is defined, and so on, until all before methods in the
hierarchy have been called.

e Next the primary method for the derived flavor is executed. If none has been
explicitly defined for this flavor, it will be inherited from the parent flavor.

e Finally, the after methods are executed in the reverse order of the before
methods.

For flavors derived from several base flavors (multiple inheritance) the
sequence is more complex, but again the primary method will be inherited from the
first base flavor for which it is defined, unless it redefined for the derived flavor.
The Flavors system also provides other schemes for invoking methods, giving the
programmer control over how inheritance functions. For example, the or combina-
tion calls the method for the derived flavor if it exists, then calls the method for
its base flavor only if the first call has returned false, and so on until some method
finally returns true or it runs out of base classes. In addition to the standard com-
binations, a mechanism is also provided to allow the user to specify arbitrary com-
binations of inherited methods. While these combinations add to the power of the
language, we found that they were not necessary for our application.

4. Differences between Flavors and C++

This section is not intended to be a complete discussion of C++, but rather a
comparison of C++ with the features of Flavors discussed above. There are several
differences in the semantics of Flavors methods and C++ member functions, but
these have generally not been a problem.

e All methods act like C++ virtual member functions, that is the binding of the
function is done dynamically at run time.

e Flavors allows methods to be broken into before, primary, and after
components, while C++ has no such concept.
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e When multiple base flavors would create an ambiguity in the definition of an
inherited (primary) method, Flavors resolves the conflict by choosing the
method from the base class that was lexically first in the flavor definition. In
C++ such an ambiguity generates a syntax error at the spot where the refer-
ence was used, and all such usages must be explicitly qualified by the
programmer using the :: scope operator.

e While C++ handles the inheritance of member functions by allowing a class
to inherit an existing function from its parent class or to redefine it, Flavors
has a wide variety of ways in which a class’s methods can be combined with
those from its base flavors.

In creating the Lisp version of the user interface, we found that full power of
methods combination in flavors was largely unused. With rare exceptions only the
default daemon combination was used, and the exceptions were invariably tied to
the TI window system and mouse interface, which had to be rewritten in any case.
Few of the methods used had before or after methods, and of these, most fell into
three groups that are easily dealt with.

e :after :init — This is a special method that is called when a flavor is instan-
tiated, after storage for the object has been allocated and after variables have
been initialized. This is almost identical with a C++ constructor, except that a
constructor is also responsible for explicitly initializing member variables.

e :before :delete — It is common to define cleanup routines that deal explicitly
with a particular flavor within an objects inheritance hierarchy. This is like a
C++ destructor, which is invoked before the space for the object is reclaimed.

e :before :set-variable / :after :set-variable — Methods are often placed around
such variable setting routines to validate the operation or its results, or to do
additional processing implied by the operation, for instance, after setting a
background color, we might want to force a window to redraw itself. The
reason such constructs are common in Flavors, however, it that the set
methods are often automatically generated, and do nothing other than change
the value of a single variable. In C++ such functions are always explicitly
coded, and so it makes more sense to write the entire before/set/after opera-
tion as a single routine. '

In these cases the processing done in the before or after method can be
conveniently incorporated into the body of a C++ member function — into the
constructor, the destructor or another routine.

5. Lisp Control Structures

Some of the control structures provided by Common Lisp proved to be partic-
ularly difficult to deal with, because of the basic differences with the C++ language.
Of particular concern were several constructs that were heavily used in the Lisp
implementation of our system, including

e error and condition handling
e UNWIND-PROTECT clauses
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e dynamic variable scoping and binding (the LET clause).
5.1 Error and Condition Handling

The Lisp environment on the MIT derived workstations provides a powerful
error handling facility based on Lisp’s non-local branching, or THROW capability,
which is similar to the longjmp() routine in C or C++. Within this scheme an error
type is a flavor derived from the error or ferror (fatal error) flavors, which in turn
are derived from the condition flavor. The programmer may declare a handler for
a condition or set of conditions, which is in effect until the flow of control exits the
stack frame in which it is declared. When an error is detected during the execution
of a Lisp expression, an object of the appropriate flavor is instantiated, and the
stack is unwound until an appropriate handler is found. The handler may do some
local processing, and then resume execution just after the point where it was
established, or use a non-local branch to unwind the stack further.

The main problem with trying to replicate this scheme in a C++ environment
is that C++ does not interact well with the setjmp/longjmp mechanism. While the
use of the stack for automatic variable storage ensures that the memory for local
objects will be reclaimed by a longjmp, it does not allow destructors to be called,
nor does it help for objects dynamically created with the new operator. In a recent
article W. M. Miller has discussed this problem[“], and has proposed a partial solu-
tion.

The alternative to such a scheme is to propagate error conditions back from
function calls to a level where they can be intelligently handled. To do this one
must always be able to recognize an error value returned from any function. This
can be done, but it is cambersome and is a potential source of errors, and requires a
reorganization of the code from that of the original Lisp program.

There are several problems with the approach described by Miller.

e Since destructors can not be directly called by the programmer, all destruc-
tors must simply call the virtual function cleanup that does the real work.
This means that it is impossible to handle existing class libraries without

modifying them. For example, the Strings class could not be used without
changing its source.

e The constructor must be able to distinguish between automatic and dynamic
objects, so that the destructor will know when the space is not on the stack,
and so must be freed.

e The cleanup mechanism should probably not delete objects that were created
dynamically. This can be left to the programmer, with the aid of the protect
facility described in the next section.

To avoid these problems a class Clean was created as an alternative to Miller's
cleanup_obj. It maintains a stack of objects to be cleaned up, but rather than act-
ing as a base class for other objects, each Clean object keeps a pointer of type Base,
which has a virtual destructor. The only function of Base it to allow delete to
function on the pointer in the Clean object. The constructor for Clean accepts one
argument of type Base*. Thus when an objects are discarded from the stack, the
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objects pointed to are deleted, and the proper destructors are called. The destruc-
tor for Clean will also delete the object.

Objects of class Clean should always be automatic, since they do not know
how to release their own storage. The objects to be cleaned are always created
dynamically, but should not be deleted explicitly. They will be deleted when the
clean object goes out of scope. It is up to the programmer to decide which objects
should be cleaned up. Hopefully in the future error handling will be more com-
pletely integrated in with the C++ language.

5.2 UNWIND-PROTECT

The UNWIND-PROTECT mechanism is widely used in Common Lisp to han-
dle cleanup of the running environment, especially in handling error conditions.
When execution flow exits the scope of the UNWIND-PROTECT, a list of user
supplied expressions are guaranteed to be executed, whether the exit is normal or
by way of a non-local branch, including when a condition handler is invoked.

Protect is a simple class that provides a part of the UNWIND-PROTECT
functionality. Its only public interface is through a constructor and a destructor,
and thus the only legal operation is initialization. The class definition is

class protect {
void (*function)(void *[]):
void **params;
public:
protect‘void (*f)(void *[]). void *pl[])
function = f; params = p;
protect() { (*function)(params); }

The destructor for this class calls a user supplied routine with a user supplied

argument when the scope of the variable is exited. A simplified example of using
class protect follows.
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#include <iostream.h>
#include "protect.h”

char *p[] = { g
"The second parameter is the integer %d .,
(char *)5

k:

// This program will declare a protect handler within a block,
// and then exit the block. This will cause the handler to

/[ execute.
main()
{
protect(doprotect, p);
cout << "Ready to exit inner block ;
}

cout << "Done ;

void
?rotect(void *args|])

char buf[80]:

sprintf(buf, (char *)args[0]. args[1]):
cout << buf;

This is of course overly simplified since in the absence of non-local jumps such
cleanup could be handled much more directly. Obviously this mechanism is only
useful with the condition handling mechanism described above or a similar one in
place, since if the normal longjmp is used the destructor will never be called. The
example above shows how the class would generally be used, that is, for
anonymous declarations. This is possible since the object created will never be
referenced by the programmer, and since keeping a temporary variable around to
reference it would simply clutter the program and make it less readable. There
would also never be a reason to allocate such objects dynamically using the new
and delete operators, since the power of the construct lies in the automatic call of
the destructor.

There are some deficienclies with this scheme when compared with the Lisp
UNWIND-PROTECT mechanism. While UNWIND-PROTECT can execute an
arbitrary collection of Lisp expressions with access to all the variables within the
scope of its definition, the protect class executes a function with access to only
those variables in its argument array or those that are global.
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5.3 Dynamic Binding — LET

The most profound way in which Lisp differs from C or C++ is in its han-
dling of variable binding. In Lisp a symbol is treated as a run-time object that can
be manipulated, while for most other compiled language symbols are replaced in
the execution environment with constant addresses. Thus for C++ it is not possible
to change the binding of a symbol, that is, to cause a symbol to reference a
different address. In Lisp code a symbol is in effect accessed by name, and its
contents are accessed by evaluating it. The LET statement in Lisp allows the
programmer to create a new value binding by placing a new symbol with the same
name on the run-time stack, masking the original definition. The new binding is in
effect until control exits from the level at which the new binding was made, and
the stack is unwound.

Dynamic bindings are often used in Lisp for much the same purposes as
pointers are used in C or C++, and the use of symbol bindings tends to make
pointer (or LOCF') references rare in Lisp programs.

Other uses of LET are harder to deal with, though. Lisp supports scoping of
variables dynamically as well as lexically. That is, while C or C++ define the
scope of a variable to be the block in which it was defined, and all nested blocks
within that block lexically (as read), a dynamically scoped, or special Lisp variable
may be accessed by any code that runs while the symbol is on the stack. In a
single-tasking environment this is equivalent to temporarily changing the value of
a global variable, although the "global" variable may not be accessible to all parts
of the program. In a multitasking system the effect is like having a separate set of
global variables for any execution stack that declares one.

Frequently the programmer will use this to avoid passing extra arguments to
functions. For example, when a task is associated with a particular window, that
window is bound to the symbol *standard-out put*, which is the default target for
the common output routines. Often such a usage can be eliminated by replacing
ordinary function definitions with method or member function definitions for an
appropriate class.

It would certainly be possible to create a replacement for Lisp dynamic bind-
ing in a C++ environment — for instance using a symbol class with the appropriate
properties — it is not clear that the gains would be sufficient to justify the added
complexity.

6. Other Problems

There are two additional sets of differences that had to be dealt with in the
process of accomplishing this port. The first is multitasking, which was exten-
sively used in the Lisp version, and the second is the programming interface to the
window system. These two areas are strongly interconnected.

38

1988 USENIX C++ Conference



6.1 Window System

For a user interface the window system is a primary concern, since it
provides all interaction with the user — both output and input. Unfortunately,
window systems also tend to be the least portable part of the environment for any
program that uses one. While this is starting to change with the development of
standards such as X11, the window system dependent code is still hardest part to
move from one target environment to another. X11 is the target window system
for this application, in part because of its growing status as an industry standard.

The window system provided by the Lisp machine environment is tightly
integrated with the operating system and all standard applications. It is built on
top of Flavors, with each type of window defined as a flavor, and options, such as
title bars and scrolling, defined as a mix-in flavor which can be added to another
window type. The set of predefined flavors is rich, and user defined window types
are most often just trivial combinations of these.

Compared with this, X11 is poor in features, providing just the basic support
for manipulation of simple windows. To use X11 effectively it is necessary to have
additional layers of functionality built on top as a toolkit. Unfortunately the Xt
toolkit provided with X11 has several problems. It is cuambersome to extend and
use, largely because it tries to provide an object oriented interface using C. This
results in code that is difficult to read and debug.

6.2 Multitasking

A multiwindow user interface requires something akin to multitasking opera-
tion, since there are multiple input sources, each of which can independently
require processing. In the Lisp machine environment it is common to provide a
separate running process for each window displayed, so that operations in one win-
dow won't interfere with the functioning of other windows. However, the Lisp
concept of a process is different from the UNIX one. A Lisp process is lightweight,
that is it shares a global address space with all other processes, and maintains a
separate stack for local variables. In the UNIX case, processes have completely
separate address spaces, and communication between processes occurs only through
well defined facilities, such as shared memory and message queues.

The task library for C++ by J. E. Shopirol®! provides the capability to create
multiple tasks, or execution control threads, within a single UNIX' process.
Unfortunately, the real time task system did not interact well with X11, and was
abandoned.

While multitasking seems like a natural approach to handling multiple
sources of input, it is not really necessary for the implementation of a multiwin-
dow user interface. In an event driven system like X11, handling routines can be
called to process each event as it is detected. As long as no handler retains control
for to long a period of time the effect is like multitasking. It is only necessary then
to allow the reading of other input sources, such as IPC messages from other
processes, to be intermixed with window events. This approach is now being
investigated.
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7. Summary

To date the port of the Lisp version of the user interface is currently about 30
percent complete. Those parts dealing with the creation and initialization of the
major internal data structure — a directed graph[“] — and those for the parsing and
execution of keyboard commands have been recoded in C++. If we ignore the extra
C++ support needed to define Lisp lists, and so on, there seems to be little

difference in source code size for the two versions. The most troublesome part
remaining is the interface to X11.
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Abstract

There are many 4GLs on the market which allow interfacing with C in order to provide added
functionality. This paper describes the author’s experiences in developing a prototype for a shift
management and time recording system ( STMS ), which has been completed and delivered,
using the combination of C++ and a 4GL (in this case Seachange). The paper describes the
use of classes and inheritance to abstract the functionality provided by the 4GL. The first part
of this paper illustrates how the hybrid of C++ and a 4GL allows development of the final
product by a system of incremental replacement. Incremental replacement is a systematic
method of re-implementing the abstract classes which interface with the 4GL features, in C++
in order to remove dependencies on the 4GL. This allows the development of a final C++
product as a further development of the prototype rather than a lengthy rewrite. The next part
of the paper describes the use of the concepts of services, sets, inheritance, interaction objects
and interface classes to produce an abstraction of the 4GL. This section is illustrated with
examples from the shift management system. The final part of the paper briefly discusses the
performance constraints giving some metrics of using C++ with a 4GL.

1. INTRODUCTION

This paper is based on the prototype development of a rota management system STMS.
STMS is a shift and time management system for use in a hospital working environment.
The system is used for keeping employee information, planning and scheduling work
rotas and also for daily updates of information such as absences, changes to shifts,
overtime and pay calculation by way of data transfer to other systems. The target hospital
environments are characterized by large numbers of employees with differing jobs,
working schedules and in many cases, employees work in more than one department during
a single day. In addition to this several working weeks were in operation for the hospitals
concerned - Five and a half day week, six day week and five day week.
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Several constraints were to be taken into account when choosing the means of
development for the prototype.

> The prototype was to be completed and delivered in two months. This meant
that development time was of prime importance.

> Also due to time constraints it would not be possible to produce a 'throw-away’
prototype - a prototype with the look and feel of the end product but which would
be re-coded for speed and space optimization.

> Secondly it should be possible to extend the system to work with various windows
packages and other user oriented interfaces. It should also be possible to
reimplement sections and add extra functionality without requiring changes to
existing functionality.

> Finally certain implementation restrictions were applied. It should be portable
among the range of machines used in the hospitals - mainly pc’s running Dos or
Unix.

Due to these restrictions and others to be described later a hybrid of C++ and a Fourth
Generation Language (or 4GL), in this case Seachange from Thomson Computers of
England, were chosen as the means of development for this prototype.

In the next section I will discuss the merits and demerits of using 4GLs and C++.

2. PROTOTYPING WITH 4GLS.

There are no standard definitions for the various generations of languages,
however here is a simple explanation. ‘

Martin [1] defines a Fourth Generation Language or 4GL as a non-procedural end-user
oriented language. Programming is achieved by specifying the solution directly rather than
as a set of functions or procedures giving an algorithm to find the solution. ( For a good
overview and comparison of 4GL’s see ref. [2]). The knowledge required to find a
solution is built into the 4GL itself and the effectiveness of this solution relies on the scope
and efficiency of the 4GL’s set of predefined functions, which tend to be directed toward
a narrow range of problems. This form of programming was intended to give the power of
a conventional language to non technical computer end-users allowing applications to be
produced in fractions of the development time required by conventional languages.

4GL systems currently in commercial use tend to be a set of tools comprising a database
management system, screen and report generators and some limited form of procedural
language allowing procedures to be composed from the 4GL’s set of functions.

4GL’s- usually allow some form of interactive task specification in addition to
programming through the language supplied. Common examples of 4GL systems
include dBase, Focus, Oracle, Ramis II and Seachange.

The main advantages of using a 4GL are speed of development time and small learning
curves. Interactive generators allow the building of the overall structure of the application
and its associated data representation in a matter of hours. The development time advantage
however, quickly deteriorates as the programmer desires to achieve some effect outside of
the range of the 4GL.
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Other inherent disadvantages include :-

> Royalties and runtime license costs. Unlike conventional languages it is
customary to for developers intending to market the application to have to pay a
run time license fee to the 4GL distributor for each copy sold.

> Runtime Limitations. Applications produced by 4GL'’s are generally a lot slower
than those produced from conventional languages.[2] Other runtime limitations are
enforced by the 4GL system itself - the use of certain keys in the application,
the enforcement of certain screen styles and in some cases (dBase & Seachange)
only records from one file may be displayed on the screen at time.

> Language constraints. The 4GL systems supplied, due to their market, tend to be
intuitive rather than concise, rigorously defined languages. Procedural
components are often lacking in functionality or resort to old structure forms
(such as single line conditional branches etc.) As the language is often proprietary
to the company developing it, 4GL’s don’t have the advantages of conventional
languages with their larger user bases, independent research and conferences,
and the competitive multi-company language development. This reason also
contributes to the performance failings of 4GL’s. With a lower user base, there is less
incentive to provide complex optimisations in the application generators provided
with these packages.

> A major problem for developers is that of disposable prototypes. For
commercial or performance reasons, software developers may wish to develop
their final product in a general purpose programming language such as C or C++.
There are two common approaches to this task. One alternative is to convert the
4GL application to the target language using one of the 4GL converter products
available such as the 4GL to C converters. However the source code produced by
these is not easily maintained.
The other approach is to rewrite the system from scratch with the prototype being
used solely as a guide to the appearance of the final product. This approach is
wasteful of the time spent developing the original prototype.

In order to resolve some of these problems, many 4GL's allow interfacing with a
conventional language such as C. Seachange is one such 4GL and this was a major
consideration for its choice. ‘

3. PROTOTYPING WITH C++

Object-oriented programming in general, and C++ in particular has many features
which hasten the development time of large systems. Data hiding, data abstraction and
inheritance allow a modular implementation and a close mapping of design to
implementation. Using the data abstraction features allows rewriting and extension of
features without a rippling of the changes required throughout the system. C++ in
particular has the advantage of combining the philosophy of object-oriented programming
with speed and space efficient executables. The advantages of using C++ are obvious to
proponents of Object-Oriented programming.
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However development time for C++ systems, although fast, is of several orders of
magnitude greater than that using a 4GL.

4. PROTOTYPING WITH A HYBRID OF C++ AND 4GL.

Using a hybrid of C++ and a 4GL provides a compromise which removes many of
the problems associated with prototyping solely by 4GL’s or C++. By combining the
speed of development of a 4GL and the object-oriented features of C++, a prototyping
system is obtained which produces easily maintained and extended prototypes. The
modularity and maintainability of C++ allows the production of an easily maintained
and extended system. Production of a prototype can be tailored to available time and
functional requirements. Time critical or frequently used portions of the application may
be coded in C++ for efficiency, while large portions of the application may be developed
speedily through the use of screen generators etc.

One may argue that interfacing a language such as C to a 4GL would produce the
same effect. However the concepts of object-oriented programming allow the production
of a system which is independent of the quirks of the particular 4GL.

By using data abstraction and inheritance, it is possible to design a set of interface
classes which abstract the dependencies on the 4GL. Each service required from the 4GL
is interfaced to C++ by a clearly defined class (or class hierarchy) representing the service.
All dependencies on the 4GL are hiddenin these interface classes, and subsequent changes
require only the modification of these classes. All further usage of a 4GL feature is provided
by the associated interface classes. Specialized handling of particular files and other
application objects can be provided by inheritance from these classes.

This system of interfacing allows the extension or re-lmplementanon of the
apphcaﬂon by incremental replacement. Any particular service can be re-implemented or
extended in isolation without affecting the overall product. Services can be replaced on
a service by service basis eventually , if so desired, leading to a production version system
implemented totally in C++. In particular each change may be made while maintaining an
up to date working product. Other possibilities are adding on different types of user
interface (such as windows packages), natural language interfaces or replacing file
systems or structure.

This system of incremental replacement ensures that prototypes can be developed
as a working starting point for the final product rather than as an initial disposable
imitation.

5. STMS DEVELOPMENT

STMS was implemented using the hybrid scheme described above. In order to
explain how Seachange interfaces to C++ it is necessary to understand the organization of
this 4GL.

5.1 Seachange organisation.

Seachange, following the typical organization for 4GL’s, provides a set of tools in
an integrated environment. These tools consist of a database generator, screen generator,
menu generator and report generator with a Quick C style environment surrounding this.
Each of the components for an application may be specified through interactive sessions
with Seachange which in turn generates 4GL language files and compiles them, or by
writing the 4GL. language files directly. These files include ways of specifying fields in
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records, options available in forms, actions to be taken on certain menu options being
chosen, and screen layout. In addition to these components ’trigger’ files may be
specified - files of actions to be taken upon certain events happening. An example follows
overleaf.

when removing with employee.s

remove from absences.f index absence_key =
absence_key: employee_number

remove from hours.f index hours_key =
hours_key: employee_number

adjust
display "Removing cross references”

This set of actions causes the records of a particular employee for attendance hours
and absences to be removed from their associated file whenever the employee is removed
from the database.

At certain points C functions may be called from within Seachange either directly,
as in menu options or form options, or indirectly - by way of triggers, upon moving
form one field to another or as a set of actions to call when starting or finishing a form
or menu. Within the C program the current menu, form, records etc. may be
interrogated or modified through a setof C libraries provided with Seachange.

From the C or C++ end functions are called by way sending a message to a message
handler associated with the given form or menu. The message, organized as three null
terminated strings is dispatched to the associated handler with the strings representing
the name of the form or menu, the name of the function to call and a single string as a
parameter to the function. From the C++ or C programmers point of view, this is quite
similar to message handling in MS-Windows.

From the C end it is also possible to modify a function table which contains pointers
to functions for the standard operations - validation of data types in fields, adding arecord
etc.

5.2 Interface Classes.

The C++ interface to Seachange was organized as a system of several fundamental
services, each being represented as an interface class hierarchy. These services represented
as a file interface, a database interface, a screen interface (at low level - e.g. fonts, boxes
etc.), a form interface and menu and trigger interfaces. The database interface, as distinct
from the file service provides meansto locate global Seachange variables, to which file
a certain key refers and other non-file specific actions and operations. All interface
classes use constructors and destructors where necessary. This avoids the need to call
any library functions directly for cleanup or initialization. The following example is
taken from the menu service.
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class menu {
char name[13];
int is_loaded;

DB_VALUE (*old_dispatcher)(char*,char* char*);

public:

menu(char *); // Create menu from menu file.

~menu();
void run();

void set_dispatcher(auto DB_VALUE (*)(char* char* char*));

void restore_dispatcher();
)i

StartUp(Q)
{

menu main_menu("title"); // Load top level menu

main_menu.set_dispatcher(main_processing);

main_menu.run(); // Run menu

}

class form {
protected:

struct SCF_subform fdef;
struct SCF_functions *ffns;
struct SCF_footnote *fft;

public:

form(char *, dispatch_fn_ptr);
form(); // Current form being run
~form();

void set_rmfn{remove_fn_ptr);
char *run(); //Run form

k

This simple service provides all menu handling required by applications. The menu
is created using the 4GL menu file, the dispatcher is set up and the menu is run. By
re- implementing the menu constructor it would be possible to replace the user input with
a windowing system or a natural language interface without requiring changes to the rest
of the program.

In another example, this time taken from the form service, it is possible to see the role
of inheritance in interface classes. Note: types prefixed with the letters "SC" refer to
Seachange underlying types.
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// Inside the menu dispatcher

if (strcmp(menu_message,"run_form") == 0)
{

form frm(param,form_processing);
frm.set_rmfn(delete_func);

frm.run();

return;

]

In this example all Seachange constructs are hidden within the private and protected
parts of the class. Two constructors are provided :- the first constructor supplying the
pointer to the dispatcher function and a string representing the environment in which
the form is to be run, which is subsequently parsed by the form constructor. (This is
necessary as Seachange only allows one parameter to be passed through the dispatcher.)
The second constructor, when called within the dispatcher environment, gives a object
representing the current form. A more specialized form is derived from this providing one
constructor, only for use as within the dispatched environment. This autosrc_form forces
the form, upon startup to locate all the records in the associated file and display the first
one.

class autosrc_form : form {
public:

autosrc_form();

|

// Inside the form dispatcher

if (strcemp(form_message,"automatic_search”) == 0)
{
autosrc_form cr_form;
return 1;

)

5.3 Interaction objects

In many cases communication between distinct interface classes of a given service,
thatis interface classes belonging to the sane service which are not derived from a common
base class, takes place through the use of interaction objects based on underlying

Seachange types.
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What are interaction objects ?

It is often desirable for two or more classes to communicate some of their private
information. This can be achieved by making one class a friend of another or by providing
member access functions for one or more of the classes. However under either of these
two methods, the consumer of the information must know about all the types which
will communicate with it. An alternative to this is to allow the creation and consumption
of interaction objects. One class produces an object for consumption by another class as
ameans to communicate information. The objects themselves have no functionality
except to serve as packets for information passing. The scheme basically goes as follows:-

> Object Producer knows how to produce objects of type L
> Object Consumer uses objects of type I to produce some service.

> Therefore any new class introduced to the system can use Consumer’s services by
providing objects of type L.

In the case of STMS these interaction objects can be provided by some of
Seachange’s underlying types. Some of the underlying types provide ready-made
interaction objects which are created and returned by the 4GL C interface functions (
and hence available to the interface classes). As long as the restriction that only the interface
classes manipulate these objects is applied , system flexibility is maintained.

The following examples are taken from the file service which consists of a record, file
and index classes. In each case the interaction objects SC_record and SC_file are passed
as pointers. Each class can be constructed from the appropriate interaction object and may
also be cast to the interaction object.

class record

{

protected:

SC_record *rec_ptr;

short create_flag;

public:

record(SC_file*);

record(SC_record *);

~record();

void set_field(int ,long );  // Overloaded functions
void set_field(int , double ); // To set field values
void set_field(int , char* );

void get_field(int, long& ); // Overloaded functions
void get_field(int , double& ); // To get field values
void get_field(int , char* );

operator SC_record*() { return rec_ptr; }
|

48

1988 USENIX C++ Conference



A record may be constructed from the underlying Seachange types SC_record, or
SC_file, and may be cast to a SC_record*. Constructing a record from a
(SC_record*) creates an object representing the database record and allows easy access
through the set_field and get_field functions. Creating a record with an SC_file* creates
arecord ( and allocates space for it) compatible with the file or index which generates the
SC_file*.

class file
(
protected:
struct SC_file * file_ptr;
int reference_count; // Number of references to this file
int *reference_addr;
file( file &); // create a reference to existing file
SCreckey this_key;
public:
file(SC_file *);
file(char * , iomode );
~file();
operator SC_file*();
B
In the case of files, a file can be constructed from the interaction object SC_file, or
by specifying the filename and mode of i/o. A third constructor is provided for use by
objects derived from file.

An index is considered to be a file with a particular index. This index corresponds to
searching a file in a given order based on some key. A file object may have several indexes,
hence the need for reference counting within the file object.

Each of these objects can be constructed from a SC_file*, or cast to a SC_file*.

class index : public file
(
SC_scanstate *scst;
SC_index *inx;

public: .
record kval; // record for key value
" index(file& rtf,int inxno = 0);
index(char* nm,iomode iom,int inxno = 0);
index(SC_file * fl, int inxno = 0);
~index();
int find(FINDCOND);  // finds record for reading,updating etc.
int firstrec();
int nextrec(); // failure returns zero
perator SC_file*() ( return file_ptr; )
b
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In these cases interaction objects narrows the dependencies between the interface
classes of a service. Construction of files, indexes and records takes place on the basis of
a subset of the available information. In addition to tais messages received and returned
by the dispatchers are passed in the form of these interaciion objects. This allows for a more
efficient solution for the application. L.e. files, indexes and records only need to be
created if the information and services given by the interface class are to be used. In all
other cases the smaller interaction object pointer is passed around.

5.4. Sets.

The concept of sets allows collections of anonymous objects to be manipulated, either
individually or as a collection.

In STMS a variant on sets is used to manipulat: a group of records retrieved from
searching an index, entry into a form or querying a form. Sets of records can be opened
for navigation, application of functions to the current item or all items, and for inspection.
In STMS an initial action is supplied to the working set indicating whether the current set
is to be used, discarded or a copy of the current set is to be used. The set may be extended
or reduced by addition or deletion of keys to the respective records.

A function can be applied to the current object with a "vararg" style parameter list.
This parameter list is a list of arguments which are passed to every invocation of the
function on a set object. The return value from this function is dictates the movement
within the set - whether the next invocation of the function is applied to the next, previous,
first or last item. If the movement cannot be achieved or a SET_QUIT message is
passed back, the collective processing finishes.

class working_set {

public:

working_set(wks_init wki); //Initial action

~working_set(); .

void to_all(auto set_move (*f)(formé& record&,SCreckey* PRMLIST), ...);
void exec(auto set_move (*f)(form& record&,SCrecky* PRMLIST), ...);
// Insertion and deletion

void add_all(index&); // Add all keys retrieved by a index

void add(SCreckey& rk);

void del();

// Current status

void current_record(recordé&);

// Navigation
int first();
int lastQ);

|5
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For example displaying all records in the set in sequence on a form could be
accomplished as follows.

show_item(formé& cr_form, record& rec, SCreckey *key_ptr)

{
;;'_fonn.show( rec);
(

form current_form;
working_set wk;

wk.to_all( show_item );
)

In producing a prototype for STMS other C++ features such as references and function
and operator overloading also proved to be of value, resulting in a neater product.

6. PERFORMANCE CONSTRAINTS AND METRICS

The hybrid of C++ and 4GL proved to be effective for prototyping this type of
application. The resulting design is maintainable, flexible and extendible. The following are
a few points worth mentioning.

> Code size. The sources ranto 90K of C++and 88K of 4GL script for the completed
application.

> Development time. The project was completed and delivered with two person
months, with no overrun.

> Learning curve. The learning curve from scratch for the 4GL and its C interface ran
to about one week.

> Performance. The gain in performance was slight in many cases. This is
attributable to two things. Firstly the interface classes all eventually use 4GL
features resulting in the overall system being constrained by the 4GL
performance. Secondly the application itself is mainly i/o bound both in terms of
disk manipulation and user i/o.

> Extensibility. In several cases, forms and reports were re-implemented in C++. These
cases proved to be speedy to re-implement (several hours) and gave large
performance gains in the respective cases.

7. CONCLUSIONS

This project was by no means perfect. Several areas could be improved. One particular
area is sets. These are currently restricted to Form environments, however by generalising
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the concept of sets, a further data abstraction could be provided for filing systems etc.
However these misgivings aside, I believe this strategy provides a speedy, efficient means
for providing extensible, flexible prototypes.

It is worth noting that it proved to be quite trivial to interface C++ to systems designed
for C. By implementing all package dependencies through interface classes, all further
coding was achieved in C++ with no dependencies on outside libraries and packages.

Finally experiences showed that C++ with its rich set of constructs is as much at home
producing applications which were formerly the domain of languages such as COBOL, as
it is for producing systems software. This hybrid development provides a useful
compromise between using application generators for prototyping and prototyping in a
conventional language.
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Open Dialogue:
Using an Extensible Retained Object Workspace to Support a UIMS

Andrew Schulert and Kate Erf
Apollo Computer Inc.!

Introduction

Open Dialogue (TM) is a User Interface Management System (UIMS) written in C++. In general, its
object-oriented design maps well onto the features of its implementation language. However, the goals
of Open Dialogue required us to introduce features outside of the language that would more naturally
have been incorporated into the language. The most significant of these were the ability to save and
restore a collection of objects (retained object workspace) and the ability for application developers to
add behavior to objects without recompiling existing binaries (extensibility). This paper discusses the
goals of Open Dialogue, explains the difficulties in realizing these goals, and describes how they were
addressed in the design. It concludes with a summary of possible implications for C++.

Open Dialogue Overview

Open Dialogue is based on a previous product, Domain/Dialogue (TM), that is written in Pascal, and
runs only on Apollo systems [7]. The two primary of goals of Open Dialogue above and beyond
Domain/Dialogue were that it be portable and that it be extensible. We considered C as an implemen-
tation language because of the need for portability. However, C was not adequate. Both
Domain/Dialogue and Open Dialogue have an object-oriented design. We were able to maintain that
design when implementing Domain/Dialogue, but only because there was a small group of developers,
all of whom understood the conventions to be followed. This was not the case with Open Dialogue,
since customers had to be able to extend it themselves. We chose C++ as an implementation language
because of the additional support it provided for object-oriented programming.

A user interface management system allows a user interface to be described separately from its associ-
ated application. Encapsulating the interaction between the user and the application in the UIMS has
several advantages as follows:

o It is possible to provide tools for defining the user interface that are more appropriate than
conventional programming languages.

o It is possible to define multiple interfaces to a single application.

! Andrew Schulent is now at On Technology, Inc.
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o Rapid prototyping is encouraged by allowing the user interface to be changed without
affecting the application.

Other advantages of this approach and issues related to it are given in other papers [5, 9].

Open Dialogue allows a user interface to be described declaratively, as a set of interrelated objects that
cooperate to interact with the user, transform the data passing between the user and application, and
coordinate the sharing of control with the application. Developing an application with Open Dialogue
involves following a sequence of steps to design, implement and refine the interface. We will illustrate
this process with a simple example called "square.”

The first step in creating the interface is to determine how it will look and behave. Square displays a
field into which the user can enter a number, an area called a label where the square of the number is
displayed, and a button that can be selected to exit the application. Figure 1 shows this interface.

field 4.3

1abel | |18.490000

button EXIT

Figure 1. SQUARE -- A Program for Computing Squares.

The second step is to define the set of objects that are needed to support this interface. It is useful to
divide Open Dialogue objects into three categories. Inferaction objects interact with the user to
acquire commands and data, and to display results. The interaction objects in square are the field into
which the user types, the label that displays the result, and the exit button. Application objects manage
the passing of control and data between Open Dialogue and the application. Square has two applica-
tion objects: one of these objects calls an application subroutine to compute the square of a number,
and the other returns to the application when the user wishes to exit from it. Finally, it is often the case
that the form of data that is most convenient for the user is not the form that is most convenient for the
application. Transformation objects transform data from a type convenient for the user to a type more
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suited for the application. In the case of square, the user enters and expects to see strings, but the
application expects floating point numbers. There are two transformation objects to convert the data
appropriately-- one to convert a string to a double and one to convert a double to a string.

Each Open Dialogue object takes a set of input values and provides a set of output values. An inter-
face is constructed by connecting appropriate input and output values. Figure 2 shows a schematic of
the set of objects used in the interface for square.

]
'
String_to_Double )y,

F—
X1l = +—Double_to_String YA Application

: :
| !

~-Gued— Ry —
: |
| L}
] ]

Interaction : Transformer ' Application
Objects Objects Objects

Figure 2. Schematic Representation of Square.

Figure 3 shows the development environment provided by Open Dialogue. This figure is drawn
to show the similarity between Open Dialogue and the model given by Tanner and Buxton [9).

1988 USENIX C++ Conference

55



Applicgitiion- Interface
P?;uc'::ivi s Specification
Cot Open Dialogue

Parser

Application

Open Dialogue
un-time Libr

. Compiled
Plxji%nmve Interface
rary Specification
|
Pre-processor X
1

Run Time

Figure 3. Development Environment Provided by Open Dialogue.

Open Dialogue comes with a standard set of primitives (primitive library) implemented as C++
classes. The user interface designer describes the primitives needed for a specific interface in a textual
interface specification. This is compiled by the Open Dialogue parser into a compiled interface
specification. At run time the application uses the run-time library to display and manage the user

interface.

The set of primitives provided by Open Dialogue may not be sufficient for all applications. For exam-
ple, in square the application writer might prefer an altemate way of having the user enter a number,
such as a graphical dial. The application could achieve this by calling X library routines directly, but
that would preclude the advantages of a UIMS. Consequently Open Dialogue allows customers to
extend the standard set of primitives by creating new classes. So, for instance, a dial primitive can be
added by the developer and used not only in square, but also in other interfaces.
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In addition to defining new classes it may be desirable in some cases to implement new behavior for
existing graphic object classes. For instance, Open Dialogue graphic objects, such as menus and fields,
have member functions that return the amount of screen space they would like. However, they cannot
request that the space be in a particular aspect ratio. One could imagine adding a new layout manager
that took aspect ratio into account. In addition to adding the new layout manager class, one would also
like to implement a default implementation of the aspect ratio member function for all existing classes.

A second type of extensibility within Open Dialogue is the ability to add new interface definition tools.
One can imagine many alternatives to the parser for defining interfaces. For this reason, Open Dialo-
gue allows the construction of new tools that can either generate new or modify existing compiled
interface definitions. One possibility is a schematic editor that displays an interface in a form similar to
Figure 2 and allows the user to establish connections visually.

A new interface definition tool might also require adding behavior to existing classes. For instance, in
the case of a schematic editor, one might want a class-specific visual representation of the object. The
editor can provide defaults for existing classes (e.g. a box with input and output arrows) and then allow
new classes that are aware of the editor to implement their own representations that look more realis-
tic.

There are two aspects of Open Dialogue that were difficult to implement in C++. Allowing an inter-
face to be defined separately from the application requires a retained object workspace. Second,
allowing developers to add new primitives and tools requires extensibility, including the ability to add
new behavior for existing classes without access to the source code for those classes.

Open Dialogue Design
This section discusses how Open Dialogue was designed to address the issues raised above.

Retained Object Workspace

We considered three alternatives for saving and restoring objects. The first was the use of save and
restore member functions. This requires each class to supply its own procedures for saving to a file
and restoring from a file. This allows the member function for a specific class to recursively copy all
referenced objects by invoking their respective save and restore member functions. This is the
approach taken by Andrew [6] and by OOPS [4]. It is also the approach we took with
Domain/Dialogue.

The advantage of this approach is that it is very general. It places no restrictions on the format of
object data. It also allows the save and restore procedures to take into account the semantics of the
data. Gorlen, in his discussion of OOPS, gives the example of a hash table that compacts itself when
being saved. The disadvantage of this approach is that it requires these two member functions to be
implemented for all classes and to be updated with each change to the object structure. Adding a new
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member variable requires updating three different places: the class definition, the save member func-
tion, and the restore member function, This is tedious and error-prone.!

The other alternatives we considered both avoid the need for class-specific save and restore procedures
by proposing that a single procedure be written to handle all objects. This can be done if the procedure
can determine the length of the object and the type and location of its member variables.

The second alternative considered was self-describing object data. With this approach, all objects are
represented in such a way that no information other than an object reference, not even the object’s
class, is necessary to determine its structure. This is true of most implementations of Smalltalk and
Lisp. For instance, in most Smalltalk implementations [3] each object contains a length field. Within
each object, each member variable has a bit that indicates whether it is an in-line value or a pointer.
On conventional machines (those without tag bits and with only even addresses) this is done by shift-
ing in-line values left one bit and setting the low bit. This allows a machine-dependent object
workspace to be easily created by saving the in-line values directly to the file. A machine-independent
object workspace would require further information about the type of the in-line values (e.g., floating
point vs. char) so that they could be stored in a machine-independent form.

The advantage of self-describing object data is that it requires no class-specific information, simplify-
ing the definition of new classes. However, there is a problem with taking this approach with C++. It
requires adding a lot of mechanism for the manipulation of in-line values, since the values must be
decoded (e.g., shifted right) before use and encoded before storage. This added mechanism is also
inefficient if the target machine does not have tag bits.

The third approach was the use of class-specific object descriptors. This is similar to self-describing
object data, except that the object layout is determined not by examining the object directly, but by
accessing a class-specific data structure that describes the layout. Objective C uses this approach [1].

Class-specific object descriptors retain the disadvantage of save and restore member functions, since
adding a new instance variable requires editing both the class definition and the object descriptor. It
does minimize the problem, though, since only two places must be updated instead of three.? As with
self-describing object data, there needs to be som. representation of the type of in-line values if there
is to be a machine-independent save and restore.

If our only concern were a retained object workspace, then we probably would have used save and
restore member functions. However, there are many additional advantages to having a standard object
layout. Stroustrup gives the examples of debugging and printing routines. Others include:

! Stroustrup suggests that these member functions could be generated automatically by the compiler or a preprocessor [8).
We discuss this briefly in the section on implications for C++.

7'I.ikeuvelmdmwumembm‘fum:timn,lht..- data descriptor could be generated automatically by the compiler or a
preprocessor.
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o garbage collection -- A fundamental part of garbage collection is copying a live object from
memory that is about to be reclaimed into a fresh area. This is similar to saving an object to a
file. In most cases a single procedure could perform the copy automatically if it knew which
member variables referred to other objects.
o analysis of space usage -- For performance reasons, it would be useful to know which
objects were most heavily used and how much they contributed to the overall size of an object
workspace. This analysis could be done automatically with the use of object descriptors.
For this reason, we took a combination of the first and third approaches above. Open Dialogue classes
are required to have save and restore member functions. However, we provide a default implementa-
tion of these member functions that makes use of a class-specific object descriptor. Most classes sim-
ply define the object descriptor. A few of them, like hash tables, override the default behavior, imple-
menting their own save and restore member functions.
The object descriptor contains:
o The name of the object (for debugging purposes).
o The length of the object.
0 A record for each member variable within the object.
The record for each member variable contains:
o The name of the member variable (for debugging purposes).
o The length of the member variable.
o The kind of data in the member variable. This is one of:

-- Explicitly typed data -- the data is a "real" object, and has its type embedded
within it.

-- Implicitly typed data -- the data is a primitive object. Its type is not embedded
within it, but is indicated within the object descriptor.

-- Data described elsewhere - the data is described by some other object descriptor
that is referenced by this object descriptor.

o0 How the data is referenced. This is one of:
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-- an in-line variable - the object contains the data directly.
-- a pointer - the object contains a pointer to the data.
-- an array - the object contains a pointer to an array of data elements.

(This field is only for efficiency and simplicity. We could have mtmduced new primitive
types for pointers and arrays.)

The object descriptors rely on the existence of what we term primitive objects. These are not to be
confused with the primitives that the user interface designer works with. These are the primitive
values out of which other objects are composed, and have no embedded object type. Examples of
primitive objects include strings and integers. Something like this is needed as the basis for any
object-oriented system; C++ relies more heavily on them to avoid the overhead of typed objects.
While the type of a primitive object is not stored with the object, it is stored in the object descriptor of
any object that contains the primitive object. This allows a form of polymorphic function invocation
on primitive objects. In other words, primitive classes can have their own save and restore member
functions. A procedure that is processing an object by making use of the object descriptor can invoke
the appropriate function for a primitive object by using the type stored in the object descriptor.

In addition to using object descriptors for save and restore, we use them for a simple form of garbage
collection. Open Dialogue does not have a general purpose garbage collector. However, we have
implemented a separate "copy to new heap” member function that we use to collect garbage and com-
pact the retained object workspace before saving it to a file.

Extensibility

As described above, adding new primitives and tools requires the ability to add new behavior to exist-
ing classes. Because all extensions are not developed by the same person or institution there is the
additional constraint of not requiring existing classes to be recompiled. In other words, we give custo-
mers a header file containing a class definition and an object (.0) file that implements its behavior. The
customer has to be able to define extensions to the class behavior in a separate header file and provide
an implementation of those extensions for that class, for subclasses that s/he develops and for subc-
lasses that are developed elsewhere.

Virtual functions work well when all behavior in the class hierarchy can be predetermined. However it
is not possible to add new virtual functions for existing classes without recompiling all modules that
use these classes. We use traits to achieve this capability. Our trait model is adapted from the Apollo
trait system, which was designed to handle polymorphic operations on files. (Apollo files are typed

objects.) We adapted this design to apply to smaller grained objects, objects within files as opposed to
the files themselves.!

1OurmiumalsotimﬂarwlheuailfacﬂhyusedintheimplememmimonheXmSw. The emphasis in that work
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Traits are a collection of related operations that describe a particular behavior. The operations for a
trait are implemented as member functions. A given class either implements all of the operations for a
given trait or none of the operations. For instance, the graphic object trait is supported by all classes
that can be displayed on the screen. This trait has operations for accepting input events, requesting
screen real estate and drawing to the display. Some operations, such as drawing an object, need to be
implemented for every graphic object class because all objects appear differently. However, as with
virtual functions, other operations, such as dealing with mouse input, may be inherited from the base
class if the default implementation is sufficient.

Unlike virtual functions, traits are not correlated with the class hierarchy, i.e. two classes can support
the same trait even though their common parent does not.' For instance, the context trait is supported
by all classes that accept keyboard input. This trait has operations for accepting and giving up the typ-
ing focus. It is supported by a subset of the graphic objects classes, but those classes are scattered
throughout the class hierarchy.

The implementation of traits uses a class member variable in each object. This contains a small integer
that identifies an object’s class.’ Each Each class has a trait binding record for each trait it supports.
The trait binding record is a table of pointers to member functions for the operations required by that
trait. The trait binding records are accessed through trait vectors, one for each trait. A trait vector is
indexed by class type. For example, if menu had a class type of 4, then the 4th index in the graphic
object trait vector would hold a pointer to menu’s trait binding record for the graphic object trait. This

is shown in Figure 4. _
. graphic object menu graphic object
menu object trait vector trait binding record
4
redraw [———s menu::redraw( ... )
2
4 ]

Figure 4. Implementation of Trait Bindings.

was on supporting multiple inheritance rather then extensibility [2].
! Traits describe behavioral abstractions. They say nothing about how that behavior is implemented. This is different from
a conventional single-inheritance object oriented system such as C++ or Smallialk. In those systems a class cannot inherit
the behavior of another class without also inheriting its member variables.

To maintain unigueness across classes, class has a universal unique identifier which is 128 bils-- this gets hashed into the
small integers stored in each object. This allows an application writer to use classes developed at two different locations
without risk of collision.
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Traits provide all the features we need to support extensibility. New behavior can be added to
an existing class by creating a new trait and a new trait binding record. By default, a class’s
entry in a trait vector is set to the same as its base class. This can be overridden for both new
and pre-existing classes. Invoking a trait operation is not as simple as invoking a virtual func-
tion, (by convention macros are used) but it does maintain type checking.

Implications for C++

This section discusses the implications of the design of Open Dialogue on the design of C++.
We realize that, while the issues discussed previously might be better addressed within the
context of a programming language, it isn’t necessarily the case that what is best for Open
Dialogue is best for C++. This section makes no explicit recommendations for C++. It sim-
ply proposes some alternatives that could be considered, briefly discussing their implications.

Retained Object Workspace

There are three alternatives for better integrating save and restore into the language. The first
is to give developers access to an automatically generated object descriptor (either through
self-describing object data or class-specific object descriptors). While this would have utility
beyond just save and restore, it is difficult to argue for its inclusion into the language, since it
subverts type abstractions. More importantly, it requires the reification of classes (classes as
objects) to allow the type of a member variable to be given as part of the object descriptor.
This would have a major impact on the language.

A second alternative is to take Stroustrup’s suggestion and automatically generate member
functions that recurse over an object’s member variables, passing each member variable the
same arguments that the member function has received. This fits the language model much
better, but has two drawbacks. The first is that it requires that all member variables support
the member function being invoked. This means, for instance, creating explicit types for all
pointer variables. The second problem is that it isn’t clear how generally applicable the
approach is. It is clear how it would work for save and restore, where the arguments passed
to each member variable are the same (e.g., a file descriptor). It is less clear how this would
work for, say, a deep copy operation used as part of garbage collection. In this case, each
member variable is passed the address of the variable it is copying itself to; this will be dif-
ferent for each member variable.

The third alternative is to embed save and restore explicitly into the language. This could be
done by introducing standard member functions that are analogous to constructors and des-
tructors. The advantage of explicit language support is that it allows C++ to automatically
generate reasonable default behavior. The only apparent disadvantage to this alternative is
that it is not more generally applicable. It requires separate solutions for other problems, such
as garbage collection and debugging.
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Extensibility

The problem with integrating extensibility is not with the language model, as one can imagine
extensions to the language for expressing this. The problem is how to implement it
efficiently. Extensibility means that there is no way to know the complete set of virtual func-
tions at compile time. There has to be an extension-specific database that can be used at run
time to map from some representation of the object’s type to the appropriate implementation
of the extension. Open Dialogue does this by using the trait vector to map from the object’s
class member variable to its trait binding record. As currently implemented, C++ relies on
there being only a single record of virtual functions, and short circuits the database by having
a field in each object point directly to that record. Changing to a model like that of Open
Dialogue would make virtual function invocation less efficient. Another possibility would be
to retain the current model for behavior defined with the class, and embed an object type in
the virtual function record for use by extensions. This would impose no penalty on existing
systems, but would impose a greater penalty on extensions.

Summary

There are two major facilities that we incoporated into Open Dialogue that would have
benefited from greater language support. These are saving and restoring objects and the abil-
ity to extend the behavior of the system by adding new behavior to existing classes.

Saving and restoring objects is a fundamental operation of any object management system.
Because this feature is so tightly linked to the layout of objects as they are defined in C++,
this could be most naturally implemented within the objects themselves as a standard member
function similar to or combined with constructors.

Extensibility of behavior cannot be completely implemented through virtual functions. There
needs to be a mechanism within C++ that allows new virtual functions to be added to existing
base classes without having to recompile the code. Open Dialogue was able to work around

this with the trait mechanism, but this required additional work that could be handled within
the implementation language.
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Abstract

Class hierarchical object-oriented programming languages like C++ facilitate the
construction of organized libraries of related data structures and algorithms. In op-
erating systems research, it is convenient to build such libraries to support system
abstractions. In our Choices [3| parallel operating systems research, we have been
experimenting with new and existing file system facilities in an attempt to design an
object-oriented file system implementation.

This paper describes a classification of the data structures and algorithms used
in UNIX-like file systems and an implemention of them using C++. We present a
class hierarchical organization for the System V [8] and 4.2 BSD [4] file systems that
reflects the common subcomponents, abstractions, and interfaces that these systems
share. Because of the flexibility afforded by designing such systems in an object-
oriented language, new specializations of the abstract file system can mix and match
components from existing implementations forming hybrid systems.

We conclude by discussing the performance of our system and the influence of C++
on our design and organization.

1 Introduction

This paper describes an experiment in the classification and implementation of data struc-
tures and algorithms used in UNIX-like file systems. Our long-term purpose is to provide

*This work was supported in part by NSF grant CISE-1-5-30035, by NASA grant NSG1471, and by
AT&T ISEP.
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a foundation for further research into object-oriented file systems; however, the immedi-
ate goal is to combine the UNIX philosophy of file systems and the Choices philosophy of
object-oriented operating system components.

In the following three subsections we will describe Choices, the System V file system, and
the 4.2 BSD file system extensions.

1.1 Choices

Choices is a family of operating systems that can be customized to a particular multipro-
cessor or parallel application 1] [2]. Object-oriented programming and class hierarchies are
used to facilitate the building and customization of the family. C++ was adopted as the
programming language because it provides an efficient implementation of objects and classes
Kk

A Choices system is an object-oriented operating system that uses persistent objects to
provide facilities and services to client processes. Choices persistent objects have lifetimes
independent of user processes. Many of these subsystem facilities and services would belong
in the kernel of a more “traditional” operating system. However, persistent objects allow
an application to load only those subsystems that it needs. Persistent objects can provide
secure services because Choices uses virtual memory protection mechanisms to restrict access
to the objects.

The file system is one of the more important subsystems provided in an operating system.
In Choices, we have chosen to implement the file system as a collection of persistent objects;
each persistent object implements an independent component of the file system. Using this
technique, an application may use a file system composed of many different components, each
tailored to improve the performance of the application, to optimize the use of the storage
technology, or to provide compatibility with file systems of other operating systems.

Currently, we have completed two different UNIX file systems: the 4.2 BSD file system
[4] and the System V [8] file system. The classes of the two file systems are specialized
from one, abstract, UNIX-based file system class hierarchy. However, many of the concrete
classes realizing the two systems are very different from one another. Further, it is possible
to combine file system components from UNIX BSD and System V implementations to
produce hybrid systems that combine the features of both. For example, the efficient BSD
disk allocation methods and larger block sizes can be combined with the System V directory
structure to yield a system with higher throughput without having to rewrite any user level
code that relied on a System V record structure for directories. Alternately, individual
features such as symbolic links or disk quotas may be added to the System V file system, as
needed.

C++ has been . 1 aid in developing our file system implementations. The language was
useful because it d cectly supported the development of the abstract classes that formed
the framework for « ur systems. The abstract interfaces permitted concurrent development
and debugging of t e various components of each file system. The virtual function feature
allowed us to simplify much code. The ease of developing and reusing C++ classes led to
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much code reuse, both within a file system and between different file systems.

1.2 System V

The System V [8] file system is the standard file system model found in today’s commercially
available UNIX systems. Its design is dominated by simplicity.

Basically a user program can view a UNIX file as a sequence of randomly accessible
bytes. All files can be accessed via the same standard interface: read, write, and lseek.
This interface conceals hardware device dependencies and hides block allocation and block
mapping. Because the operating system does not impose record structures on files, the
output of most UNIX tools can be the input of others. Nevertheless, any tool can impose
a structure on a file. Efficient implementation of random access allows even complex record
structures, such as ISAM, to be imposed on specific files when needed.

Disk drives in UNIX systems are divided into logical sub-devices, called partitions, each
of which contains one file system. A file system consists of a header for the system called a
superblock, information about which disk blocks are available for allocation, and an array of
inodes that describe individual files. While file systems cannot span disk partitions, a single
directory tree contains all the files on all the file systems. The directory tree hides individual
disks and partitions from the user.

The inode is a structure that describes an individual file and and manages access that
file. Within a UNIX system, a file can be uniquely identified by specifying its partition and
the inode array index number, called the inumber. An inode contains its file’s size, reference
count, ownership, access rights, timestamps, and the numbers of the blocks which hold the
file’s data.

Directories are sequences of records that contain (name, inumber) pairs. Because directo-
ries contain inumbers instead of complete inodes, files can appear in more than one directory
at a time. Files are only deleted when their reference count reaches zero.

The System V file system’s performance is marked by two impressive characteristics:
high disk space utilization and low CPU overhead per block transferred. However, there are

some deficiencies in both its performance and feature set that have been addressed by the
design of the 4.2 BSD file system.

1.3 BSD

The 4.2 BSD file system [4] maintains the same basic interface as System V and adds opti-
mizations and extensions.

The penalty incurred by the System V file system per individual block transferred is
small. Its overall throughput is dominated by disk latency. To minimize the disk latency
and thereby improve overall throughput, the 4.2 BSD file system increased file block sizes
and improved inode and disk block allocation policies.

An 8192 byte block improves throughput almost sixteen times when compared to a 512
byte block. To maintain the high disk space utilization of System V, 4.2 BSD added the
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capability to fragment the last block in a file. The improved disk block and inode allocation
policies minimize both disk head seek time and rotational latency.

Three of the major extensions provided by the BSD file system are symbolic links, long
file names, and per-user disk quotas. Symbolic links allow users to create directory entries
which refer to files on different file systems. In System V, file names are restricted to 14
characters because of the fixed-size record structure used for directory entries. The 4.2 BSD
file system uses a variable-size record which allows file names to be up to 255 characters
long. Disk quotas allow system administrators to restrict individual users to using only a
portion of the space in a file system.

The following sections discuss the class and instance hierarchies in our system and are
followed by discussion of performance and directions for future work.

2 A Class Hierarchy for File Systems

The use of class hierarchies has been proposed as a solution to some of the traditional design
and engineering problems in today’s software development lifecycle [6] [5] [7]. In particular,
class hierarchies support code reuse and the sharing of common interfaces among different
implementations. A class in a class hierarchy encapsulates an interface and a possibly empty
implementation. The interface, or signature, of a class is defined by the set of methods
or operations the class defines for its instances. The implementation of the methods of a
class can either be defined by the class itself or can be defined by other classes that are
derived from the class through class inheritance. ! A class in a hierarchy can define or
augment an interface, an implementation, or both. Classes that define only an interface and
have subclasses that supply implementation are abstract classes. Subclasses that define an
implementation for a particular interface are termed concrete classes. Most classes are neither
concrete nor abstract; they often redefine only a portion of an implementation or augment
an interface with a few additional methods. A subclass can customize an implementation of
a superclass for specific applications and may share all, some, or none of its implementation
with its superclass. Class derivation provides a framework for changing specific parts of a
system without altering the whole structure.

The following sections describe the majority of the classes in a hierarchy to implement
UNIX-like file systems. Figure 2 shows this hierarchy.

1The classes that have methods that are inherited are usually termed parent or super classes. The classes
that inherit methods are usually termed derived or sub classes.
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View

Figure 2: MemoryObject Hierarchy

2.1 MemoryObject

The superclass MemoryObject abstracts both the Choices file system and memory manage-
ment systems. It defines an interface which permits access to a block of data that may
either reside on permanent storage or be generated dynamically. The interface uses a read-
unit/write-unit protocol. The units used for reading and writing are all the same size within
an individual MemoryObject, and this size must be an integer power of two. Subclasses of
MemoryObject augment the protocol and provide various implementations of the methods
involved.

In Choices, MemoryObjects are most often accessed by mapping them into a process’
virtual address space. The system caches portions of the MemoryObject into physical mem-
ory and provides the address translation mechanisms necessary for the process to address it
with the read/write instructions of the CPU. A MemoryObject can, however, be accessed
directly by its read/write interface.
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Class Common Public Methods
MemoryObject read | write | close | open | create | synchronize
T Disk read | write | - - - -
TInode read | write | close | — - -
T1BSDInode 1 write | | - - -
11SVInode i 1 1 - - -
{MemoryObjectView || read | write | - - - -
11 DiskPartition read | write | - - - -
TTInodeSystem T 1 - open | create | synchronize
TT1BSDInodeSystem T 1 - open | create | synchronize
171SVInodeSystem T 1 - open | create | synchronize
Class Protected Methods
[Inode mapUnit | getDirect | getIndirect | setDirect | setIndirect
TIBSDInode || 1 getDirect | getIndirect | setDirect | setIndirect
171SVInode i getDirect | getIndirect | setDirect | setIndirect
Class Protected Methods
T1InodeSystem get | put | free | allocate | readDinode | writeDinode | getFreelnode
111BSDInodeSystem || T i free | allocate | | I} getFreelnode
111SVInodeSystem 1 1 free | allocate | T 1 getFreelnode
[ Legend ]
Symbol Meaning

Boldface || Abstract class.
Italics Abstract definition of method.
Roman Concrete class or method.
T Subclass or inherited method.
- Undefined method.

Table 1: MemoryObject Class Hierarchy.
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2.2 MemoryObject Subclasses

The following paragraphs discuss individual subclasses of MemoryObject and their particular
functionality. Table 1 and Table 2 show the class hierarchy using the format introduced in
(3]

The Disk subclass of MemoryObject represents the physical disk devices in a system. It
provides an abstract interface and access protocol to these disks. It is further subclassed for
specific hardware architectures and devices.

It is usually inconvenient or inefficient to copy a MemoryObject into virtual memory.
The MemoryObjectView subclass of MemoryObject provides a window into another Mem-
oryObject. The size of this window can range up to the size of the MemoryObject being
viewed. The window may be offset from the start of the MemoryObject. Its purpose is to
restrict access to the MemoryObject under the window. Several MemoryObjectViews may
exist for the same MemoryObject.

A DiskPartition is simply an instance of MemoryObjectView that windows a sub-range
of a Disk. The size and offset of the window is defined by the Disk’s hardware partition
table.

The InodeSystem class is derived from MemoryObjectView and inherits its read and
write methods. One InodeSystem exists per DiskPartition and contains a UNIX file system.
The InodeSystem is an abstract class definition that provides the framework for UNIX-like
file systems. It contains the code for all methods that have the same implementation in the
derived classes. All common methods are implemented in this class to reduce the overall code
size and programming effort. The other methods defined here are needed by the subclasses,
but since they will be different, they cannot be inherited.

The two major subclasses of InodeSystem implemented are BSDInodeSystem and SVIn-
odeSystem. Many of the methods of BSDInodeSystem and SVInodeSystem perform identical
functions but use different data structures or algorithms. The class InodeSystem contains
the code common to both the BSDInodeSystem and the SVInodeSystem. It also provides
virtual functions for methods that are implemented differently in these subclasses. For ex-
ample, inumbers must be mapped to physical blocks by the readDinode and writeDinode
methods. A mapInumber method is defined as a virtual function in the InodeSystem. Each
subclass implements this method in a different way. However, both the readDinode and
the writeDinode methods can be implemented in the InodeSystem and this implementation
can be inherited by the subclasses. The readDinode and writeDinode methods of BSDIn-
odeSystem and SVInodeSystem use the implementation of mapInumber that is appropriate
to the subclass of the instance upon which the methods are invoked. Similarly the get and
put methods are inherited but need a variable containing the fragment-to-sector conversion
factor to be appropriately initialized by the derived class. Such techniques move general
code up into the base class where it can be reused instead of requiring it to be rewritten for
each new implementation.

Those methods that are sufficiently different between various subclasses of InodeSystem
(types of UNIX file systems) are simply defined as empty virtual functions in InodeSystem
and redefined by all subclasses. For example, the System V superblock contains a free list for
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| File Class Hierarchy

Class Methods
T File read | write | seek | close | - - -
1T Directory read | - - - put | locate | remove
TTTBSDDirectory || read | - - - put | locate | remove
TTTSVDirectory read | - - - put | locate | remove

Table 2: File Class Hierarchy.

both free data blocks and free disk inodes while the BSD system uses bitmaps. Allocate,
free, and getUnusedInode have sufficiently different implementations that they cannot
share code, only an interface.

The Inodeis an abstract class that provides a framework for a UNIX-like in-memory inode
object. As in the InodeSystem, common code is moved into the base class and inherited by
the BSD and System V derived classes. These methods are mostly private methods used
to calculate disk block pointers and and manage internal caches of indirect blocks. There
is also a method, mapUnit, that maps logical block numbers to physical file system block
numbers and can be inherited by both derived classes. The remainder of the class defines
the framework to be used by the derived classes.

The BSDInode and SVInode subclasses implement the Inode framework according to
their particular needs. The differences are due to the ways in which data block pointers are
stored, and the other fields in the disk inode structure. For example, methods to set and
retrieve the direct and indirect pointers are implemented by each subclass. System V has
10 direct pointers, a single, a double, and a triple indirect pointer. Each of these is stored
in three bytes in the disk inode and must be converted to and from an integer. BSD, on the
other hand, has 12 direct pointers, a single, a double, and a triple indirect pointer. Each of
these is stored as a four byte integer requiring no conversion.

From the user’s perspective, an important subclass of MemoryObject is File. The File
class is both a concrete class used for interaction with any UNIX disk file and an abstract
class from which the Directory class is derived. The unit size for the File class is one byte.
The File class adds the concept of a current file location pointer to the MemoryObject
interface and adds the seek method to position this pointer. The read and write methods
update this file pointer as well. These methods together provide a byte-oriented interface to
user level programs. Each instance of File communicates with a corresponding Inode object
which reads and writes blocks instead of bytes.

The Directory class is an abstract subclass of File which adds a directory-entry record
structure on top of the blocks supplied by the Inode object. It also provides methods to
simplify the insertion, retrieval, and removal of directory entries. Since directories in BSD
and System V are different, the methods of this class: read, put, locate, and remove, must
be defined by each subclass and cannot be inherited.
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3 An Instance Hierarchy for File Systems

In this section, we describe the instance hierarchy for a complete working file system.

UserLibrary
Interface

User Space

- - - w o e - e e ww wwwesme e o ow o I I R e e e

UserFileSystem File(s)

Persistent

Object

1 —» many

Choices Kernel

InodeSystem(s) [+ > Inode(s)
_ J 1 —» many

1—+>1

.........

Figure 3: File System Instance Hierarchy

When performing operations on files, user programs must invoke the methods of the
User Library Interface. These methods will in turn invoke methods on several other objects
in order to perform the requested action. Figure 3 shows the objects involved in these
operations and the basic data flow between them. Some sets of objects have a one to one
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correspondence; for example, there is one Inode object for each File object. Other sets of
objects have a one to many relationship, such as the UserFileSystem which can communicate
with several InodeSystem objects.

A user program gains access to all file systems and files via persistent object calls. This
can be likened to the system calls used to gain access to a UNIX file system. These calls will
be translated into the appropriate method invocations in either the UserLevelFileSystem or
a File object. In Figure 3 the set of these calls is referred to as the User Library Interface.

The UserFileSystem object views all active file systems as a single tree. A reference is
maintained for each InodeSystem in this tree. The UserFileSystem also contains instance
variables for pathname resolution that maintain references to the root directory and the
current directory. These are needed to correctly implement the operations required of the
UserFileSystem.

The public methods of the UserFileSystem are similar to several of the UNIX file system
calls including: open, creat, link, unlink, mkdir, chdir, and stat. These methods operate
on and return references to File objects and Directory objects which may in turn be used by
the User Library Interface to perform operations on File objects.

The File object corresponds to a UNIX open file table entry and provides a generic
interface to open files for user level programs. Its methods support operations similar to the
set of UNIX system calls that operate on open files including: read, write, seek, and close.
The File object communicates directly with its corresponding Inode object and maintains a
current byte offset for implementing seek and sequential read and write.

An instance of Directory is used to impose the directory record structure on a file. Direc-
tory methods include read, put, locate, and remove. Read returns a directory entry and
is used by programs such as Is. Directory entries are added and removed from the Directory
object’s underlying file via the put and remove methods. The locate method finds the
inumber of an indicated file name in a directory. All of these methods are invoked by the
directory methods of the UserFileSystem. User programs are prevented from executing the
put and remove methods on a directory. The protection is provided by setting the file access
mode as opposed to using protected C++ functions.

An instance of an InodeSystem is used for each active file system. Creation of a new
instance is similar to the UNIX mount system call. The UserFileSystem communicates with
the InodeSystem when requesting operations on new and existing Inodes. The InodeSys-
tem communicates with the DiskPartition to read and write disk blocks. It also manages
the superblock fields, disk inode allocation, and disk data block allocation. It creates and
provides the Inode objects when requested and keeps track of in-memory versions of the
corresponding disk inode structures.

The public interface to the InodeSystem includes methods that operate on and return
references to Inodes. These are open and create. The interface also includes methods to
maintain the data blocks of the DiskPartition for use by the Inodes. These methods are
allocate, free, get and put. The synchronize method is used to write the modified su-
perblock and in-memory versions of disk inodes to the DiskPartition to maintain consistency.
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The Inode object contains the UNIX disk inode structure and the methods used to operate
on it. These include all information needed to access the file such as size, mode, protection,
ownership, and disk block pointers. Once this object is created by the InodeSystem, it may
be referenced by a File or Directory object to perform actions on blocks of data stored within
the InodeSystem’s DiskPartition.

The DiskPartition object maintains the size and starting block location of the partition
it represents. It performs disk read and write requests for its corresponding InodeSystem
object and checks these requests to ensure that they only access blocks within the range that
it manages. '

3.1 Choice’ing a File System

Choices supports the concept of customizable operating systems. The file system class hier-
archies presented allow a system designer to choosé and easily integrate existing, modified,
or new concrete components to create new customized file systems.

This mix-and-match approach leads to the following orthogonal “choices” when designing
a new file system:

¢ Fixed or variable-sized file names.

e Per user disk quotas.

¢ Optimized inode and disk block allocation.
o Large block sizes and fragmented blocks.

e Symbolic links.

Some of these choices involve the selection of a complete specialized subclass, while others
simply require creating new concrete subclass with methods from two existing subclasses.
The following section presents performance data measured from our implementation.

4 Performance

The performance of our systems can be characterized in three ways. First, we measured
the overhead incurred by all of the Inode and InodeSystem methods as opposed to raw disk
reads and writes of the same disk blocks. Second, we checked to make sure that our BSD
implementation did not reduce or remove the effectiveness of the BSD optimizations. Third,
we observed the effect of altering certain parameters and algorithms used in the Inode class
methods.

To calculate the amount of CPU-time needed by all of the Inode and InodeSystem method
code, we measured the time to copy a 17 Megabyte file, and then measured the time it took
to do a raw disk copy of the same blocks using a simple iterative loop. Both copies were
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performed in the kernel. The raw disk copy took 127 seconds, whereas the copy that used
the Inode and InodeSystem code took 133 seconds. Therefore, only 5% of the time spent.
in the kernel while copying a file accounts for all of the block allocation and block mapping
code in the Inode and InodeSystem class methods. This corresponds to the System V design
goal of low overhead per block transferred.

When designing the interface between the Inode and InodeSystem classes, we took care
to ensure that both the BSD block and inode allocation policies were fully supported. We
also fully implemented the large block size and the block fragment features of the BSD file
system. Therefore, the performance improvements that the BSD optimizations brought to
UNIX will also be realized when using the BSD specialized classes under Choices.

After developing the file system code, we measured the effects of altering the block size
on the time it took to copy files. Each time the block size was doubled from 512 bytes up to
8192 bytes, the time to copy a file was almost halved. These results confirm those found by
the developers of the BSD file system.

Since Choices currently has no disk buffer cache, we added an index block cache to the
Inode class. For copies of large files, those between one and sixteen megabytes long, we
found the index block cache tripled the speed of file copying operations.

5 Experiences with C++

While building the file system class library, the use of C++ not only enabled but also
encouraged an object-oriented programming style. This style in turn helped us to specify
object interfaces and to enforce data encapsulation, which usually allowed us to perform
independent development and debugging. While all the authors contributed as a group to
the designs of each class, we were able individually and simultaneously to work on the
implementation of the disk class methods, the BSD and System V details, and the user level
file and file system methods. Furthermore, by classifying the objects into hierarchies, we
were able to achieve both code and design reuse.

The features of C++ that we found most useful were classes, inheritance and virtual
functions. A good example is the Inode class, and more specifically its private method
called mapUnit. The implementation of mapUnit needs no information about whether either
the Inode object or its containing InodeSystem object conforms to the BSD or System
V standard. Once its code has been debugged, it automatically functions equally well for
either of Inode’s concrete subclasses; in fact, the file containing the code for the abstract class
doesn’t even need recompilation in order to support additional concrete classes of Inodes.
The primary difference between a BSDInode and a SystemVInode is the details of the disk
inode representation. In order to allow functions like mapUnit to be inherited by concrete
subclasses of Inode, virtual functions were defined for disk inode access routines. At run-
time, calls to these methods are translated into appropriately redefined concrete subclass
methods.

We did find it necessary to make restricted use of friends. Sometimes objects belonging
to different classes need more access to information stored in an object of yet another class.
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For example, Inodes use the protected InodeSystem methods: get, put, allocate, free,
and close, while the UserLevelFileSystem uses only the public InodeSystem methods: open,
create, and synchronize. Even though InodeSystem declares Inode as a friend, an Inode
object still never directly accesses any data member of an InodeSystem object. Hence, we
do have a suggested enhancement for C++: instead of giving another class access to all the
private data and methods of a class via the friend mechanism, it would be useful to make
just certain private or protected methods accessible to another class.

In retrospect, the MemoryObject hierarchy suggests the need to use the multiple inheri-
tance feature of C++. Some MemoryObjects, such as InodeSystems, are collections of other
MemoryObjects. They should inherit methods open, create, and synchronize from an
abstract class MemoryObjectCollection instead of class MemoryObject.

Our systems also benefited from other, somewhat unrelated C++ features such as inline
functions and type-checking. When procedure call overhead is eliminated, one no longer has
to consider a tradeoff between code modularity and speed.

The lint-style type-checking of C++ invariably flags either coding errors or questionable
practices, we do not recall it ever getting in the way of code development.

In general, we always felt that the use of C++ provided the same speed and more
expressive power than would the use of C.

6 Future Work

We plan to add support for additional existing file systems, including other UNIX file systems
such as that of the Ninth Edition UNIX system, and some non-UNIX file systems, such as
the MS-DOS file system. Adding MS-DOS classes to the hierarchy will be more challenging,
but they will still fit into our existing class hierarchy.

We also plan on implementing experimental file system components to further support
our research. In particular, we are developing an object-oriented file system that propagates
its object-oriented structure up into the user interface.

7 Conclusions

In Choices, we have used C++ to develop new operating system mechanisms and policies
based on object-oriented design. However, C++ may also be used to recode existing sys-
tems in an object-oriented manner. In this paper, we discussed the development of a class
hierarchy that captures the design of two existing, well-known file systems. Although data
encapsulation has been used in the design of these systems, the ease with which we have been
able to design a class hierarchy to capture the similarities between the systems also reflects
the adherence of the implementation of those systems to the UNIX standard file interfaces.

Our implementation contributes to our understanding of the design of class hierarchical,
object-oriented systems in several ways.

e We demonstrated that system programs can be coded as efficiently in C++ as in C.
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o We showed that by careful choice of the methods defined and inherited in the class
hierarchy, much code and design can be reused even though the implementations may
at first sight, appear to be different.

o The class hierarchy we described in this paper defines a family of file systems, and
this family provides an insight into new file systems that are not only constructed as
object-oriented systems but are also object-oriented in operation.

o The library of file system components that we built allows hybrid file systems to be
constructed that use particular components to provide a customized file system.

o The System V and BSD implementations we built are independent of UNIX and could,
potentially, be ported to many other systems in addition to Choices.

Throughout the implementation we have been impressed with the ease with which object-
oriented design can be expressed in C++ code. This had many major benefits, particularly
in code maintenance, debugging, and modification. '

To conclude, this paper describes a complete, efficient implementation of 4.2 BSD and
System V file systems as a portable package written in C++. Our next step is to build
object-oriented file systems for Choices based on our experience of building UNIX-like file
systems.
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Abstract

Structured graphics is useful for building applications that use a direct manipulation metaphor.
Object-oriented languages offer inheritance, encapsulation, and runtime binding of operations to
objects. Unfortunately, standard structured graphics packages do not use an object-oriented model,
and object-oriented systems do not provide general-purpose structured graphics, relying instead on
low-level graphics primitives. An object-oriented approach to structured graphics can give applica-
tion programmers the benefits of both paradigms.

We have implemented a two-dimensional structured graphics library in C++ that presents an object-
oriented model to the programmer. The graphic class defines a general graphical object from
which all others are derived. The picture subclass supports hierarchical composition of graphics.
Programmers can define new graphical objects either statically by subclassing or dynamically by
composing instances of existing classes. We have used both this library and an earlier, non-object-
oriented library to implement a MacDraw-like drawing editor. We discuss the fundamentals of the
object-oriented design and its advantages based on our experiences with both libraries.

1 Introduction

Many software packages have been developed that support device-independent interactive graphics
[1,3,4,6,7]. These packages provide various ways to produce graphical output. In immediate-mode,
a graphical element such as a line appears on the screen as soon as it is specified. Several packages
provide procedures for adding graphical elements to a display list; the elements appear on the screen
after an explicit call to draw the display list. Graphical elements in the list can be stored as data or
as procedural specifications. Structured graphics packages allow elements in a display list to be lists
themselves, making it possible to compose hierarchies of graphical elements.

Application programs designed for workstations make extensive use of graphics in their user inter-
faces. Many programs such as drawing and schematics editors let the user manipulate graphical
representations of familiar objects. Structured graphics can simplify the implementation of such ap-
plications because much of the functionality required is already implemented in the graphics package.
For example, drawing editor operations for translating and scaling geometric shapes, enlarging and
reducing the drawing, and storing its representation are supported by most structured graphics
packages. Graphical hierarchies could be used to compose and manipulate groups of notes on staves
in a music editor. A project management system could define the elements of bubble charts using
graphical primitives and allow structural changes to be made interactively using display list editing
operations.

However, there are drawbacks to using structured graphics. The library of procedures that comprises
such packages is often large and monolithic, rich in functionality but difficult for the programmer
to extend. Extensibility usually requires access to and manipulation of internal data structures, but
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such access is dang. 13 and can compromise the reliability of the system. Also, it is often difficult
to edit and manipul  the display list, particularly when its elements are represented procedurally,
because there is no v .y to refer to graphic and geometric attributes directly. Editing the display list
may be inefficient a: well. For example, if the display list is compiled into a more quickly executed
form, then the list r ust be recompiled following editing before it can be drawn. These deficiencies
make it likely that .he structure provided by the package will not map well to that required by
the application, forcing the programmer to define data structures and procedures that parallel the
library’s.

An object-oriented design offers solutions to these problems. Intrinsic to object-oriented languages
are facilities for data hiding and protection, extensibility and code sharing through inheritance,
and flexibility through runtime binding of operations to objects. However, existing object-oriented
programming environments [5,9] rely on immediate-mode graphics, and object-oriented user interface
packages [2,11] do not support general-purpose structured graphics. Ida [15] uses an object-oriented
framework that decomposes structured graphics into a set of building blocks that communicate via
message passing. Ida supports high-level functionality such as scrolling, though it does not provide
some graphical capabilities that structured graphics systems usually have, such as rotations and
composite transformations. ‘

We have developed a C++ [12] library of graphical objects that can be composed to form two-
dimensional pictures. The library is a part of the InterViews graphical interface toolkit [8] and runs
on top of the X window system [10]. Our aim was to learn how inheritance and encapsulation could
be used in the design of a structured graphics library. A base class graphic is defined from which
all other structured graphics objects are derived. We show how a hierarchy of these primitives can
be composed to form more complex graphics and how features such as hit detection and incremental
screen update are incorporated into the model. We also compare this library to an earlier, non-
object-oriented structured graphics library implemented in Modula-2, relating experiences we had
in using each library to implement a MacDraw-like drawing editor.

2 Class Organization

The graphic class and derived classes collectively form the Graphic library. The class hierarchy is
shown in Figure 1. Its design was guided by the desire to share code as much as possible without
compromising the logical relationships between the classes.

The derived classes define the following graphical objects:

e Point, Line, MultiLine: a point, a line, and a number of connected lines
e Rect, FillRect: open and filled rectangles
e Ellipse, FillEllipse: open and filled ellipses

e Circle, FillCircle: open and filled circles

Polygon, FillPolygon: open and filled polygons

BSpline, ClosedBSpline, FillBSpline: open, closed and filled B-splines
Label: a string of text

Picture: a collection of graphics

e Instance: a reference to another graphic

All graphics maintain graphics state and geometry information. Graphics state parameters are de-
fined in separate base classes. These include transformer (transformation matrix), color, pattern
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| Picture l Label Ellipse | Point I Line MultiLine Rect | Instance I
FillBllipse l Circle I BSpline Polygon I | FillRect I
FillCircle ClosedBSpline FillPolygon I

FillBSpline

I

__I:

Figure 1: Graphic library class hierarchy

(for stippled area fills), brush (for line drawing), and font. Each graphics state class implements
operations for defining and modifying its attributes. For example, transformers have translation,
scaling, rotation, and matrix multiplication operations, and colors allow their component intensities
to be varied.

A structured graphics package should be able to transfer its graphical representations to and from
disk. GKS uses “metafiles” for this purpose. The files PHIGS uses are called “archives.” Both
packages provide procedures for saving and retrieving structures, for querying structures by name,
and for deleting structures from the file.

The approach used by these packages requires the programmer to save and retrieve structures explic-
itly. The Graphic library uses persistent objects to automatically manage the storage of graphics.
The graphic class and graphics state classes are derived from a persistent class that provides trans-
parent access to objects whether they are in memory or on disk. Persistent objects are faulted in
from disk when they are first referenced, and “dirty” objects are written to disk when the client
program exits.

3 Graphic

The graphic base class contains a minimal set of graphics state including a transformer and fore-
ground/background colors. Derived classes maintain additional graphics state according to their
individual semantics. For example, the label class includes a font in addition to inherited state,
filled objects maintain a pattern, and outline objects include a brush.

3.1 Operations
All graphics implement a set of operations defined in the base class. These include operations for

e drawing and erasing, optionally clipped to a rectangle,
o setting and retrieving graphics state values,

e translating, scaling, and rotating,
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virtual boolean Contains(PointObj&);
virtual boolean Intersects(BoxDbjk);

Figure 2: Interface to operations supporting hit detection

virtual void Draw(Canvas#*);
virtual void Drav(Canvas*, Coord, Coord, Coord, Coord);
virtual void DrawClipped(Canvas*, Cooxrd, Coord, Coord, Coord);

virtual void Erase(Canvass);
virtual void Erase(Canvas®, Coord, Coord, Coord, Coord);
virtual void EraseClipped(Canvas*, Coord, Coord, Cooxd, Coord);

Figure 3: Interface to drawing operations

e obtaining a bounding box, and

o ascertaining whether the graphic contains a point or intersects a rectangle.

The Contains and Intersects operations are useful for hit detection. Their definitions are shown
in Figure 2. PointObj and BoxObj are classes that serve as shorthand for specifying a point and
a rectangular region, respectively. Contains can be used to detect an exact hit on a graphic;
Intersects can be used to detect a hit within a certain tolerance.

3.2 Drawing Operations

Figure 3 lists the set of drawing and erasing operations defined on graphics. InterViews defines
canvas objects and the coord type. A canvas represents a region of the display in which to draw.
Canvases are rectangular and may overlap. A coord is a integer coordinate.

The graphic base class implements each erasing operation in terms of the corresponding drawing
operation. An erase operation first sets the foreground color to the background color, then calls the
drawing operation, and finally resets the foreground color to its original value.

The operations taking a single parameter draw and erase the graphic in its entirety. The coordinate
parameters are used to specify a rectangular region. Bounded Draw and Erase operations use the
rectangular region as a hint to the graphic’s visibility. Graphics may perform optimizations based
on this information. For example, because canvases do not permit drawing outside their boundaries,
bounded draw and erase operations can cull parts of the graphic that fall outside the canvas.!

DrawClipped and EraseClipped clip during drawing or erasing. They are useful when drawing must
be strictly limited to a portion of the canvas. For example, DrawClipped is often used to redraw
portions of a graphic that had been obscured by an overlapping canvas.

1The bounded operation could obtain the rectangular region directly from the canvas. For generality, however, the
region is specified explicitly.

1988 USENIX C+ Conference



4 Composite Graphics

Picture and instance are composite graphics. A picture composes other graphics into a single
object, while an instance is a reference to another graphic. Both rely on a notion of graphics state
concatenation to define how they are drawn.

4.1 Graphics State Concatenation

Composite graphics are like other graphics in that they maintain their own graphics state infor-
mation, but they do not have their own geometric information. Composition allows us to define
how the composite’s state information affects its components. The graphic base class implements
a mechanism for combining, or concatenating, graphics state information. The default behavior for
concatenation is described below. Derived classes redefine the concatenation operations as needed.

Given two graphics states A and B, we can write their concatenation as A @ B = C, where C
is the resultant graphics state. Concatenation associates but is not commutative; B is considered
“dominant.” C receives attributes defined by B. Attributes that B does not define are obtained
from A. An exception is the transformation matrix; C’s transformer is defined by postmultiplying
A’s transformer by B’s. B thus dominates A in that C inherits B’s attributes over A’s, and C’s
coordinate system is defined by A’s transformation with respect to B’s.

A graphic might not define a particular attribute either because it is not meaningful for the graphic
to do so (a filled rectangle does not maintain a font, for instance) or because the value of the attribute
has been set to nil explicitly. Defined attributes propagate through successive concatenations without
being overridden or modified by undefined attributes. For example, suppose graphics state A defines
a font but B does not. Moreover, C maintains a font but its value has been set to nil. Then
D = A® B @ C will receive A’s font attribute. If A’s transformer is nil but B and C’s are non-nil,
then D will receive a transformer that is the product of B’s and C’s. f D = C & A® B, then D
will receive a transformer that is the product of C’s and B’s.

The semantics for concatenation as defined in the base class are useful for describing how composite
graphics are drawn, but derived graphics can implement their own concatenation mechanism. This
creates the potential for concatenation semantics that are more powerful than the default precedence
relationship. For example, the concatenation operation could be redefined so that concatenating two
colors would yield a third that is the sum or difference of the two. Two patterns could combine to
form a pattern corresponding to an overlay of the two. This behavior could be used to define how
to draw overlapping parts of a VLSI layout.

The ability to redefine concatenation semantics demonstrates how inheritance lets the programmer
extend the graphics library easily. Flexibility is thus achieved without complicating or changing the
library.

4.2 Picture

Pictures are the basic mechanism for building hierarchies of graphics. Each picture maintains a list
of component graphics. A picture draws itself by drawing each component with a graphics state
formed by concatenating the component’s state with its own. Thus, operations on a picture affect
all of its components as a unit. Contains, Intersects, and bounding box operations are redefined
to consider all the components relative to the picture’s coordinate system. The picture class defines
the operations shown in Figure 4 for editing and traversing its list of components. Pictures have a
notion of a “current” component, which aids in the traversal by acting as a position marker in the
list of components.

Pictures also define operations for selecting graphics they compose based on position. These opera-
tions are shown in Figure 5. The .. .Containing operations return the graphic(s) containing a point;
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void Append(Graphics);
void Prepend(Graphics);
void Remove(Graphics);

void InsertAfterCur(Graphice);
void InsertBeforeCur (Graphics#);
void RemoveCur();

void SetCurrent(Graphice);
Graphic* GetCurrent();

Graphice First();
Graphics Last();
Graphic* Next();
Graphic* Prev();
boolean IsEmpty();
boolean AtEnd()

Figure 4: Picture editing operations

Graphic* FirstGraphicContaining(PointObjg);
Graphice¢ FirstGraphicIntersecting(BoxObjk);
Graphic* FirstGraphicWithin(Box0bj&);

Graphic* LastGraphicContaining(Point0Obj&);
Graphic# LastGraphicIntersecting(Box(bjt);
Graphics LastGraphicWithin(BoxObjk);

int GraphicsContaining(PointObj&, Graphics+k);
int GraphicsIntersecting(BoxObj&, Graphicssk); -
int GraphicsWithin(Box(Ubjk, Graphicesk);

Figure 5: Picture operations for selection

...Intersecting operations return the graphic(s) intersecting a rectangle; ...Within operations
return the graphic(s) falling completely within a rectangle.

Pictures draw their components starting from the first component in the list. The Last... opera-
tions can be used to select the “topmost” graphic in the picture, while First... operations select
the “bottommost.” The Graphics... operations return as a side-effect an array of all the graphics
that satisfy the hit criterion. These operations also return the size of the array.

The following example demonstrates how concatenation can be used and extended using pictures.
Consider a what-you-see-is-what-you get text editor that implements paragraphs using a subclass
of picture called paragraph and words using a subclass of label called word. Both pictures and
labels maintain a font attribute. Thus, each word can define its own appearance, and the para-
graph can override the appearance of all the words through concatenation. For instance, defining a
font attribute on the paragraph would cause all words to appear in that font independent of their
individual attributes.

86

1988 USENIX C++ Conference



void Incur(Graphics);
void Incur(BoxObjk);
void Repair();

void Reset();
boolean Incurred();

Figure 6: Interface to damage class

By deriving paragraph from picture, we can change the concatenation semantics; for example, the
concatenation of an italic font with a bold font could yield a bold italic font. Defining an italic font
attribute on the paragraph would thus italicize the paragraph without ignoring the font of individual
words. Alternatively, paragraphs could rely on words to define the concatenation semantics. Thus,
instances of different word subclasses could respond differently to formatting changes within the
same paragraph. ‘

4.3 Instance

An instance is a reference to another graphic (the target). Graphic library instances are functionally
equivalent to instances in Sketchpad [14]. The concatenation of the instance’s and target’s graphics
states is used when the instance is drawn or erased. An instance can thus redefine any aspect of the
target’s graphics state, but it cannot change the target’s geometric information.

Instances are useful for replicating “prototype” graphics. Once the prototype is defined, it can
appear at several places in a drawing without copying. Also, structural and graphics state modifi-

cations made to the prototype will affect its instances, thus avoiding the need to change instances
individually.

5 Incremental Update

Structured graphics can be used to represent and draw arbitrarily complicated images. Many images
(and most interesting ones) cannot be drawn instantaneously. Incremental techniques can be used
to speed the process of keeping the screen image consistent with changes in the underlying graphical
structure. Such techniques will be effective if the user makes small changes most of the time, and
experience with interactive graphics editors shows this to be the case.

To support incremental update, the Graphic library includes a damage base class. A damage object
is used to keep the appearance of graphics consistent with their representation. Damage objects try
to minimize the work required to redraw corrupted parts of a graphic. The base class implements a
simple incremental algorithm that is effective for many applications. The algorithm can be replaced
with a more sophisticated one by deriving from the base class.

5.1 Interface

The interface to the damage class appears in Figure 6. When a damage object is created it is passed
a graphic (usually a picture) for which it is responsible. The Incur operation is called by the client
program whenever the graphic is “damaged.” The graphic is incrementally updated when Repair
is called. Reset discards accumulated damage without updating the graphic. Clients can determine
whether any damage has been incurred using the Incurred operation.
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5.2 Implementation

The damage class implements a simple algorithm for incremental update. Each damage object
maintains zero, one, or two non-overlapping rectangles. A damage object must be notified whenever
the graphic’s appearance changes by calling the Incur operation with either a region of the canvas
or a graphic as a parameter. If a graphic is supplied, its bounding box determines the extent of the
damaged region.

Incur either stores the new rectangle representing the damaged region or merges it with one or
both of the rectangles it has stored. Merging replaces a stored rectangle with the smallest rectangle
circumscribing the rectangles being merged. Repair calls DrawClipped on the graphic for each
stored rectangle.

The number of rectangles maintained by damage objects is limited to two because successive increases
in the number of rectangles bring diminishing returns. This is a result of the overhead associated
with drawing a graphic clipped; for complicated graphics this involves significant computation. We
found that the limiting value of two yielded subjectively the quickest screen update on average in an
object-oriented drawing editor based on the Graphic library. Typically the user either transforms
an object in place (producing a single damaged rectangle) or moves an object (producing one or
two rectangles). Assuming that drawing editors represent a fair benchmark for interactive graphics
applications, the two-rectangle limitation offers advantages in both performance and implementation
simplicity.

6 Experience

The design of the Graphic library was based on experience with an earlier structured graphics
library we implemented in Modula-2. The Modula-2 design emphasized high drawing speed over
low latency. It also tried to handle incremental update completely automatically; that is, it had no
operation comparable to Incur. The extent of damage was inferred from the operations performed
on each graphical object. Though the package attempted to provide an object-oriented interface,
the implementation language’s lack of inheritance resulted in a monolithic library that could not be
extended easily.

We have developed two versions of an object-oriented drawing editor called idraw, shown in Figures 7
and 8. The first version uses the Modula-2 graphic library, while the second version uses the C++
Graphic library. This gives us a good opportunity for comparing the two libraries based on actual
usage.

6.1 Graphics State Propagation versus Concatenation

A difference between the Graphic and Modula-2 libraries is in the way they manage graphics state.
Modula-2 graphical elements propagate their graphics state to the leaves of the graphics hierarchy
as part of the modification operation. Graphic library objects defer the propagation until they are
drawn, relying on the concatenation mechanism to do the job. The rationale behind propagation
was to make drawing as fast as possible. It was believed that on-the-fly concatenation would slow
drawing unnecessarily. Thus, as much work as possible was done before the drawing routine was
called.

We realized that propagation was a mistake as we used the Modula-2 library to implement idraw.
Propagating graphics state each time an operation is called precludes amortizing many changes over
a few draws. That is, if several state-modifying operations are made before the graphic is drawn,
we can avoid traversing the structure if we defer propagation to draw time, when we must traverse
it anyway.
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Figure 7: The idraw drawing editor, Modula-2 version

® (nterviewe/Picte/Chvnultidriver wag 1x
File Edit Structure Font DBrush Pattern Align
° . Reduce it .
R 4y Enlarge .
Iy 1 Nornel Size n
tove L Reduce To Fit =
Contor Page / 1
Scale = R 11 -
4 4 2 Cravity on/off |,
Seretch _[—M— :ld o/off ? 1
. .
= X ‘B. Y#_.'tlm_ =
ey : b :
. [ .
Ry = R
System A
L] L]

Figure 8: The idraw drawing editor, C++ version
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Having made propagation an integral part of the Modula-2 library, there was no practical way
for users to modify the library to use concatenation. An object-oriented design would have used
inheritance to facilitate the modification of the library to use concatenation. In comparison, it
would be straightforward to derive a new sort of picture and redefine its graphic state modification
operations to propagate attributes immediately.

6.2 Incremental Update

The Modula-2 graphics library implemented an automatic incremental update feature. The library
kept track of changes to objects by storing lists of rectangles with each object. Newly-added rectan-
gles were merged with any rectangles in the list they intersected. The list of rectangles was ultimately
limited by the object’s bounding box; when a rectangle in the list became large enough to subsume
the bounding box, the incremental update mechanism was disabled and the object would be drawn
in its entirety.

The Redraw procedure was used to initiate incremental redraw of a graphical object. Redraw erased
the regions defined by the rectangles in the object and redrew the object clipped to each rectangle.
Any nested objects would be redrawn recursively.

This approach worked—the screen was never left in an inconsistent state following incremental
redraw—but it did not always perform the update in an efficient way. The generality of the algorithm
coupled with the lack of a way for the programmer to influence the redraw mechanism often rendered
the facility useless; the programmer would bypass the mechanism and redraw damaged objects
explicitly.

To illustrate, consider the case where a drawing is restructured so that an object obscured by other
objects is brought to the top. A simple way to update the screen is simply to draw the object; nothing
else need be redrawn. However, the incremental algorithm did not consider this optimization, and
Redraw proceeded to redraw all the obscured objects as well.

The more serious problem arose because damaged rectangle information was always accumulated,
since Redraw could be called at any time. This added overhead to every appearance-modifying
operation. The overhead remained even if the programmer decided to bypass automatic redraw
and perform the update manually. The addition of a Disable procedure that turned off rectangle
accumulation complicated the use of the package and presented problems of its own: What should
happen when automatic redraw is enabled again? Should old damage information be eliminated?
How do we know the screen is still consistent?

The lesson we learned was that it is important not to exclude the programmer from the update
process. Damage objects do not in any way interfere with the normal operation of graphics. They
incur no overhead unless they are used, and they encapsulate the incremental update algorithm,
making it easy to enhance or replace. In contrast, the update mechanism pervaded the older library.
Damage objects give programmers the option of performing tricks of their own when updating the
screen without paying for mechanisms they do not use.

6.3 Persistence

We have mixed feelings about having used persistent objects in the Graphic library. On one hand
they are convenient because they free the programmer from worrying about storage. On the other
hand, objects created by a program live in their own world analogous to the address space in which
they were created. Thus, objects cannot communicate across program or machine boundaries easily,
nor is there provision for moving objects from one world to another.

Persistent objects are useful for preserving the state of a program transparently across execution:,
but they are not suitable for communicating the state between processes. We expect that a lat« -
version of the Graphic library will incorporate a more conventional storage mechanism.
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Modula-2 | C++

structured | common code 3600 | 3500
graphics incremental update 500 100
library hit detection 400 | 1500
persistence 600 | 1300

comments 700 300

total lines 5800 | 6700

idraw common code 13000 | 14000
user interface 2000 0

comments 1000 | 2000

total lines 16000 | 16000

Table 1: Comparison of Modula-2 and C++ source code (in lines)

6.4 Cached Bounding Boxes

To improve performance, the more complex graphics such as multilines, polygons, splines, and
pictures cache their bounding box once it is calculated. Caching can save substantial time, especially

for large pictures, because the bounding box is needed whenever a graphic is drawn clipped or
bounded.

The object-oriented approach makes it easy to add this optimization to classes that can use it without
penalizing other classes. The graphic base class declares operations for caching, invalidating, and
retrieving a bounding box. These are null operations by default; derived classes can redefine them if
they use caching. Thus, individual graphics can define their own caching and invalidation criteria.
Furthermore, since the base class does not allocate storage for the bounding box, no overhead .is
incurred on subclasses that do not require caching.

6.5 Quantitative and Qualitative Comparisons

This section presents quantitative and qualitative comparisons of the Modula-2 and C++ struc-
tured graphics libraries and versions of idraw. Note that any direct comparisons are necessarily
crude because of differences in design criteria, in our experience level at the start of each library’s
implementation, and in the implementation languages themselves. Nevertheless, we offer these com-
parisons to add insight into the relative merits of the Modula-2 and C++ implementations.

Table 1 shows the source code sizes for both libraries and both versions of idraw. The library code
is divided into five components: common code (that is, code that implements the same functionality
in both libraries), code for incremental update, code for storing graphical objects on disk, code for
hit detection, and comments. The idraw code is divided into common code, user interface code, and
comments.

This partitioning lets us take into account different capabilities and levels of commenting when com-
paring code sizes. For example, the Graphic library has a general persistent object facility, whereas
the Modula-2 library supports only manual read/write of graphical objects. Graphic subclasses im-
plement fine-grain hit detection, while the Modula-2 library can detect hits only within an object’s
bounding box. The Modula-2 library uses a more complicated incremental update mechanism and
is commented more heavily than the Graphic library. Modula-2 idraw implements scroll bars, pull-

down menus, and rubberbands explicitly, while InterViews provides this functionality in the C++
version.

From the information in Table 1, we conclude only that the C++ and Modula-2 code is comparable
in size. The amount of common code in the structured graphics libraries is about the same, and
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Drawing Test Modula-2 | C++
car.6 zoom #1 18 8.3
(82 objects) | zoom #2 12 6.3

rotation 15 4.5
multidriver | zoom #1 ‘ 24 12
(361 objects) | zoom #2 18 8.3

rotation 11 6.7

Table 2: Comparison of Modula-2 and C++ idraw drawing performance (in seconds)

the C++ version has proportionally more code to implement added functionality. The Modula-2
idraw is somewhat smaller than the C++ version, taking into account that C++ idraw relies
on InterViews to implement its user interface. However, C++ idraw provides more functionality,
including arbitrary-level undo (versus single-level for Modula-2 idraw), more sophisticated text
editing, and user customizability.

A possible disadvantage of an object-oriented implementation is a runtime performance penality
because of overhead such as method lookup. In the implementation of C++ we used, the overhead
amounts to three or four extra memory references per virtual function call [13]. To see whether
this overhead has a significant impact on the performance of idraw, we measured how long it took
each version of idraw to do three different operations on two different drawings, car.6 (shown in
Figure 7) and multidriver (shown in Figure 8). These are representative of two common types
of drawings: artistic drawings with many complex, overlapping polygons and splines, and technical
drawings consisting mainly of rectangles, lines, and text with little or no overlap. We timed the
following operations:

1. In the “zoom #1” test, the drawing is zoomed from half size to quarter size and back. The
drawing is fully visible throughout the test.

2. In “zoom #2,” the drawing is zoomed from half size to full size and back. The drawing is
clipped when drawn at full size so that only half is visible.

3. In “rotation,” the (top-level) object in the drawing is rotated 90°.

Table 2 shows the average of ten trials for each test. The C++ version outperforms the Modula-2
version in every test. The difference in speed is greatest for the rotation test on car.6, but this
difference is exaggerated because of a bug in the Modula-2 library’s incremental update routine that
caused redundant redraws of two subcomponents. In general, the Modula-2 library is handicapped
by the extra traversals associated with graphic state propagation and incremental update. The
results would be more comparable if the Modula-2 library were modified to use concatenation and
the simpler incremental update algorithm of the damage class.

The last quantitative comparison involves the object code sizes for each library and idraw version.
These values are shown in Table 3. The C++ sizes are larger mainly because of the added function-
ality of both the Graphic library and C++ idraw, constructor, destructor, and inline code, and the
overhead associated with virtual pointer tables.

From a qualitative standpoint, the Graphic library and the corresponding version of idraw are both
significantly better structured, more understandable, and “cleaner” overall than their Modula-2
counterparts. One could argue that the lessons learned in the Modula-2 implementation efforts led
to superior C++ versions. However, the versions of idraw were developed by two different people.
In fact, the Modula-2 version was its author’s second attempt at a drawing editor, while the C++
version was its author’s first attempt. The object-oriented paradigm simply invites good program
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: Modula-2 | C++
structured graphics library 40 110
idraw , 130 280

Table 3: Comparison of Modula-2 and C++ object code sizes (in kilobytes)

structuring through inheritance, encapsulation, and late binding, all of which promote modularity
and flexibility.

7 Conclusion

A striking aspect of graphics packages such as CORE, GKS, and PHIGS is their size and complexity.
These packages are intended as standards that provide machine independence, extensive functional-
ity, and generality, and they largely succeed in these respects. However, all reflect their procedural
implementation in their interface. Programmers cannot extend primitives through inheritance to
modify their semantics. The result is a substantial complexity penalty for every increase in flexibility.

For example, some packages bind graphics state attributes statically to graphical objects when the
objects are created. Others provide a simple form of state inheritance by allowing graphics to
reference other graphics in a manner similar to instances in the Graphic library. These facilities are
significantly less flexible than the graphics state concatenation mechanism, the semantics of which
can be changed on a per-class basis. In an object-oriented package, generality can be achieved
through class inheritance instead of supporting a broad range of behaviors explicitly.

Another advantage of the object-oriented approach is the ability to treat graphical objects generically,
relying on the runtime system to determine the correct method for a particular object. The virtual
mechanism accomplishes this in C++. Thus, functionality such as hit detection can be implemented
in a simple way without identifying objects with element pointers and labels. Furthermore, escape
mechanisms for exploiting special hardware facilities are unnecessary; subclasses can be derived that
reimplement key operations such as Draw to take advantage of unique capabilities.

In our experience, structured graphics is useful for applications that allow the user to manipulate
graphical objects interactively. Structured graphics is less useful for implementing the appearance
of the user interface. It is unnecessary to define scroll bars, menus, and buttons using structured
graphics because they are simple to draw procedurally and their structure rarely changes. Thus,
structured graphics is not a replacement for immediate-mode graphics.

We are interested in using the Graphic library for animating graphics. Structured graphics is appro-
priate for animation if the hardware is fast enough to support it. Also, the current implementation
does not provide three-dimensional capabilities. Extending the library to support three dimensional
graphics would require significant additions to base class functionality, for example, to incorporate
operations governing lighting models and point of view, three-dimensional analogs of Contains and
Intersects, and additional information when clipping.

Of more immediate interest is the introduction of version 2.0 of C++ [13] with multiple inheritance,
among other enhancements. Though single inheritance is very useful, it often forces the programmer
to derive from one of two equally attractive classes. This limits the applicability of predefined classes,
often making it necessary to duplicate code. For example, there is no way to derive a graphic that is

both a circle and a picture; one must derive from one or the other and reimplement the functionality
of the class that was excluded.

The availability of multiple inheritance will undoubtedly change the class hierarchy shown in Fig-
ure 1. Classes such as filled and open could be defined to simplify the relationships between filled
and non-filled graphics, which are currently derived as they are to maximize code sharing. Persis-
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tence could be implemented as a separate class from which to inherit. Thus, non-persistent classes
can avoid the small space overhead caused by deriving graphic from a persistent class.
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Abstract

This paper reports on a project to port an interpreter written in C for a
subset of the Scheme language, to C++. The primary advantage of such a mi-
gration is the greatly improved internal structure of the interpreter, increasing
modularity and decreasing the effort required to maintain and extend it. A sec-
ondary advantage is that the C++ interpreter is somewhat faster. We briefly
overview Scheme, discuss the implementation of the two interpreters, and give
performance data. We compare the two systems from the ease of maintenance,
extension, and performance viewpoints.

1 Introduction

Scheme [7] is a dialect of Lisp, with static scoping, full function abstraction, and the
ability to treat all objects in the language (including functions and continuations) as
first-class objects. These features, along with its simple syntax, make it an excellent
language both for teaching and research. As part of the Garp (6] [5] project, we are
investigating extensions to Scheme that support explicit parallelism. Implementation
of such extensions require that we modify an existing Scheme interpreter. Scheme
interpreters are usually written in C [1]. Because of C’s poor abstraction support,
the resulting code is usually difficult to modify and maintain.

To try to solve these problems, we have reimplemented the SIOD Scheme inter-
preter (3] in C++. This paper reports on our experience with the reimplementation.
For the purpose of this paper, we are not concerned with Scheme per se; rather we
view Scheme as an application, reimplemented in C++, and comment on the advan-
tages of migrating an interpreter from C to C++.

*This work supported in part by NSF grants CCR-88-09479 and CISE-1-5-30035 and grants from
AT&T, ,

1988 USENIX C++ Conference

95



A Scheme interpreter is an interesting candidate for such a migration because of
its internal structure. The interpreter loops continuously through the following three
phases:

e Read. Issue a prompt. Read an expression from the terminal.

e FEval. Evaluate the expression just read. This may mutate the state of the
interpreter by introducing new or modifying existing bindings.

e Print. Print out the result of the evaluation.

The read phase produces a data structure representing the expression read; the eval-
uator then traverses this data structure, and produces a new structure representing
the result. This is in turn traversed by the printer.

In a traditional C implementation, the cornerstones of the implementation are a
discriminated union representing components of expressions and a large evaluation
procedure which interprets instances of this structure depending on the tag value
of each instance, i.e. the procedure body is essentially a giant switch statement.
This means that the logical structure of the interpreter is lost, and one ends up
with two large objects, the union and the code for the evaluator, both of which
must be consistent during modification or extension of the code. This makes the
interpreter difficult to write, maintain and understand. By switching to an object-
oriented implementation in C++ we distribute both the union and the evaluator over
the classes representing the elements of the union. This:

.o makes the code modular. Classes are orthogonal, and the interpreter can be
extended by adding new (sub)classes.

o reduces maintenance effort. A particular part of the interpreter (for example
closures or cons nodes) can be understood independently of other parts.

o speeds up the interpreter. We were not looking for an efficiency improvement,
but found one anyway. This has to do with the change from a discriminated
union and switched evaluator to an explicit object-based approach and using
C++ virtual functions to implicitly store the type information.

We should emphasize at this point that the performance figures reflect a simple change
from a C to a C++ based implementation. There were some poor design decisions in
the original C implementation which affect performance. To give a fair comparison, we
have not corrected these defects in our C++ implementation; therefore our speedup
reflects differences between C++ and C, not “superior hacking skill”. Of course,
correcting the design defects will result in an even greater speed improvement.

The remainder of the paper is structured as follows. Section 2 discusses the
Scheme language, and identifies the subset which we have implemented. Section 3 first
overviews how a Scheme implementation is structured, then discusses the C and C++
implementations chosen, and then compares the implementations. Section 5 gives
comparative performance figures and discusses them. We end by offering conclusions
and directions for future work.
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2 Scheme

This section of the paper discusses the Scheme language, and the subset of Scheme
implemented in the SIOD interpreter.

2.1 Scheme Overview

Scheme is a dialect of Lisp. Its full, formal definition can be found in [7]. An excellent
introduction is [2]. The salient features of the language are:

e Few syntactic features. These include binding (define and let), assignment
(set!) conditional (if and cond), function abstraction (lambda) and continu-
ation access (call/cc) constructs.

o Library of standard functions. These include mathematical, logical, symbol,
string and list operators. There is also a collection of array manipulation op-
erators. Note that in Scheme operators are not a part of the syntax of the
language, but part of a standard library.

e All objects in the language are first-class, iricluding procedures and continua-
tions. This means that these may be passed as arguments to or returned from
other procedures.

o Arithmetic is performed using infinite-precision numbers represented according
to the rules in (7], not in the native machine floating point representation.

e Quasiquotation. This is a way of elegantly constructing data objects where
some parts are literals and some are results of function applications. It is most
often used in macro definitions and syntactic extensions.

Following are three sample Scheme function declarations. The performance of
them is analyzed later in the paper. The forms shown bind a name (for example
fact) to a value - the procedure, declared by a 1ambda expression. Note the prefix
polish notation for function (including predefined operator) application. The form of
an if expression allows three expressions: condition, then and else parts. Parentheses
surround function applications and the lambda-expressions.

The first computes the fibonacci number of its argument:

(define fib (lambda (x)
(if (¢ x 2) x (+ (£fib (- x 1)) (£fib (- x 2))))))

The second and third compute the factorial and fictorial of their arguments.

(define fact (lambda (x) (if (= x0) 1 (*x x (fact (- x 1))))))
(define fict (lambda (x) (if (= x 0) 1 (* 1 (fict (- x 1))))))

Fictorial is like factorial, but always multiplies by one in order to prevent numeric
overflow for large arguments. We will discuss these examples in more detail below.
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2.2 SIOD Subset of Scheme

SIOD is a simple experimental interpreter and as such does not implement the entire
language. Significant exclusions and differences are:

e Omission of quasiquotation and the continuation construct.

e Use of native machine floating point arithmetic instead of the formal arithmetic
model.

¢ Omission of array types.

We should note that we do want to extend the interpreter to handle the full language,
and that in our C++ version this is easy to do, given the natural abstraction barriers
induced by the object-oriented paradigm.

3 Interpreter Structures

This section of the paper describes the implementation of the interpreters. It is
broken into four subsections. We first discuss an abstract model of the interpreter,
then its realization in SIOD and the C++ interpreter, and finally compare the two
implementations from a software engineering viewpoint. Discussion of performance
implications is deferred to the following section.

3.1 An Abstract View

The interpreter consists of three major components: the reader, which reads an ex-
pression and builds an internal representation for it; the evaluator, which traverses
this internal structure and “interprets” it, possibly modifying the state of the inter-
preter in the process; and the printer, which displays the result of the evaluation.

The building block of any dialect of LISP"is an S-expression. Numbers, sym-
bols and lists (of numbers, symbols and other lists) are all S-expressions. From the
viewpoint of the interpreter there are four classes of data object:

e Numbers.
¢ Symbols.
e Null. A literal constant analogous to a NULL pointer in C.

e Pairs. A pair is the building-block for constructing lists of data objects; the
first element, or car is a data object, and the second element, or cdr is also
a data object. Any complex structure can be constructed out of collections of
such pairs. Pairs are sometimes referred to as cons nodes.

The reader builds an internal tree representation of an S-expression and passes it on
to the evaluator.
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The evaluator traverses the tree and takes appropriate action depending on the
contents of each node of the tree. It has two arguments: the root of the (sub)tree being
traversed (which allows recursive traversing), and an environment pointer that points
to a structure holding bindings of variables to values. An environment is created
for each scope (lambda-expression or let-expression). Each environment points to
its enclosing scope, creating a tree of environments. The environment pointer points
to some element of a tree that can be traversed to identify variables visible in that
environment.

If the node is a number node, the evaluator just returns the number stored there.

If the node is a symbol node, the evaluator looks up an identifier using the envi-
ronment pointer, and returns the value bound to the identifier. If no binding is found
the evaluation fails.

If, however, the node is a cons node, then the following action depends on the
car field of the node. We evaluate the contents of the car field, and then switch:

o If the car field is a reserved symbol (eg if, define, set!, lambda,etc) then
we interpret that form. For example, for an if this would mean evaluating the
car of the cdr field (the location of the condition part), and if that is true then
evaluating the car of the cdr of the cdr (the location of the then part) and
otherwise the else part.

For a 1lambda-expression, its evaluation results in the construction of a closure,
which consists of the code for the expression (the arguments and body of the
procedure) together with a pointer to the environment in which the expression
is being evaluated so that the evaluator can resolve free variables correctly
according to the rules of static scope. The closure is returned as the result of
the evaluator for the lambda-expression.

o Ifit is not a reserved symbol, then the expression must be a function application
and the result of the evaluation must have been a closure or a primitive operator.

Each argument is evaluated and its result stored on a runtime stack. A new
environment is created, and linked to the environment pointer in the closure
for resolution of free variables. The formal parameters are bound to the argu-
ment results on the runtime stack in the new environment just created and the
function body is evaluated in this environment.

The application of most functions requires the allocation of more space for
the results of the applications. For example, the result of the application of
the primitive procedure cons is a new pair holding the two arguments to the
function.

o There are special cases, especially concerning quotation and quasiquotation,
that complicate this model and are beyond the scope of the paper.

As the evaluator executes, it destroys references to existing data and creates new
data structures. Another part of the evaluation process is to garbage collect space
that is no longer accessible when memory fills up.
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Once execution of the evaluator is complete, the printer traverses the structure
representing the result of the computation and displays the result in human-readable
form.

The following sections discuss the realization of this model in the C and C++
interpreters, highlighting their differences and the advantages of the object-oriented
approach.

3.2 SIOD Implementation Details

In SIOD a discriminated union, named obj, is used to represent all the data objects.
This union contains an enumerated type field indicating whether the object in ques-
tion is a cons, number, symbol, primitive or a closure node. If it is a cons node,
the union contains two pointer to the car and the cdr of the list. If it is a number, t..e
union stores the value of the number in a C double. If it is a symbol, the union stores
a C char pointer to the symbol’s string representation and a pointer to the symbols
value. If it is a primitive, the union stores a pointer to the name of the primitive (for
debugging and printing purposes), and a pointer to the C builtin function that is the
body of the primitive. Finally if it is a closure, the union contains pointers to the
environment of the closure and to the body of the code. The body of the code is
stored just like any other S-expression. The reason for using a single data structure

is mainly to simplify garbage collection by making all elements in the heap the same
size.

3.2.1 The Reader

In SIOD, the reader scans individual tokens from the input stream and builds up the
internal representation of the input S-expressions, numbers and symbols as trees of
objs. The reader sets the type code for each obj that it creates. Symbol names are
added to the global environment and their values are set to NIL. Numbers are parsed
and stored internally as C doubles. All other expressions are stored internally in the
forms described above.

3.2.2 The Evaluator

The evaluator is the most complex phase of the interpreter. Overall it inspects the
type code of each obj passed into it, evaluates the obj (possibly involving recursive
calls to itself), and then returns the value in the form of another obj. For all arguments
except symbols and cons nodes, the evaluator simply returns the argument. If the
argument is a symbol, the symbol is looked up in the environment and its value is
returned. If the argument is a cons node the car is split off and evaluated in the
environment. Usually it will be a symbol and its value will resolve to a primitive or
a closure. Other values are errors. If the symbol resolves to a primitive, a builtin C
function is called to evaluate the primitive and return a result in the form of another
obj. This result is then returned from the evaluator. If the symbol resolves to a
closure, the environment is extended to include the closures environment, and the
code is evaluated in the new environment by calling the evaluator tail recursively.
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3.2.3 The Printer

Of all the phases of the interpreter, the printer is the simplest. Cons nodes are
printed as regular LISP S-expressions, numbers are printed as their values, symbols
are printed as their string representations, primitives print as #<SUBR primname>
and closures print as #<CLOSURE body environment> (where both body and environ-
ment are also S-expressions).

3.2.4 Miscellaneous

The remaining portions of the interpreter consist of the code to evaluate all the Scheme
primitives implemented, the initial startup code which constructs the initial global
environment containing the names of all the primitives, the top level read-eval-print
loop and the garbage collector.

3.3 C++ Reimplementation Details

When recoding the SIOD interpreter in C++, every attempt was made to keep the
essential algorithms of the C and C++ implementation identical. The C++ imple-
mentation attempts to replace all the uses of the type information and case statements
in the interpreter with C++ virtual functions. For example, in the C implementation,
the printer is coded with the following skeleton.

print( o )
struct obj * o;
{
switch( o->type ) {
case ConsNode:

case Symbol:
printf( "%s", ((Symbol *) o)->name );
break;
case Number:
printf( "Yg", ((Number *) o)->value );
case Primitive:

case Closure:

}

The more complex cases are elided to save space. Given a pointer to an object o, the
print routine would be invoked simply as:

print( &o );

1988 USENIX C++ Conference 101



In the C+4 version of the interpreter this can be restructured by creating class
Object (much like the obj struct in the C version) and subclassing it to represent the
various members of the discriminated union in SIOD. Printing an object would be
performed by the simple syntactic transformation of the above to:

o->print();
But, by making print a virtual function in class Object, each subclass of object
(i.e. Symbol, Number, ConsNode, etc) can redefine how to print its value.

For example:

Symbol: :print ()

{
}

printf( "¥%s", name );

or

Number: :print ()

{
}

The obvious advantage to this methodology is the removal of the need for explicit
type information to be kept with each Object and the grouping of all the code related
to a particular subclass of object together. The net effect is that the C++ complier
becomes responsible for keeping the type field (in the form of the pointer to the object
virtual function table) and for selecting which routine to execute for each action.

printf( "Yg", value );

3.3.1 Major Classes in the Interpreter

The major class in the C++ implementation of the interpreter is the class Object.
Object defines virtual functions to implement all the major portions of the read, eval
and print phases of the interpreter. Object is subclassed into 5 subclasses. The class
Number represents numbers, the class Symbol represents symbols, the class ConsNode
represents pairs, the class Primitive represents builtin Scheme primitives, and finally,
the class Closure represents Scheme closures.

In Scheme, any operation can be applied to any data object. For this reason
all interpreter operations are defined as virtual functions which perform no function,
or are errors, by class Object and redefined, by the subclasses in which they make
sense, to do the proper actions. For example, class Object defines the car and cdr
operations to return an empty pair. The ConsNode subclass redefines them to return,
respectively, the car or cdr of the data element. The list below names each of the
virtual functions defined by class Object and gives a brief description.

e Object * print() — Print the value of the object in a human readable form.
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o Object * gcRelocate() - Relocate the object to a new heap (used in garbage
collection).

o void gcRelocateComponents() — Relocate any objects the current object ref-
erences to a new heap by invoking their gcRelocate() function.

o Object * eval( Object * environment ) - Evaluate the object in the en-
vironment passed as an argument.

e Object * car() - Return the LISP car of the object.

e Object * cdr() - Return the LISP cdr of the object.

¢ Object * setcar( Object * newcar ) - Set the car of the object to newcar.
¢ Object * setcdr( Object * newcdr ) - Set the cdr of the object to newcdr.
e Object * pairp() - Test if the object is a ConsNode or not.

e double value() — Return the numeric value of the object in a C double.

® Object * symbolp() - Test is the object is a Symbol or not.

¢ Object * symbolBound( obj * environment ) - If the object is a Symbol
test whether it is bound in the environment.

)

]

¢ Object * symbolValue( obj * environment ) - If the object is a Symbol
return its value in the current environment.

e Object * nullp() - Test whether the object is the null pair.

4 Comparison of the Implementations

The original interpreter contained no data abstractions per se; rather, all data types
were implemented as instances of a discriminated union with an enumerated type
field as discriminant. Most internal functions in the interpreter consist of a large
case statement to interpret the various types. Thus there was no modularity in type
handling. Adding a new type is difficult, and requires modifying many different parts
of the code. In the re-implementation of the interpreter, abstractions are introduced
and implemented by C++ classes that are subclassed from a new “Object” class.
By using virtual functions defined for “Object” to implement the primitive opera-
tions on each type, all explicit type information was removed from the interpreter’s
implementation. This eliminated the case statements, and simplifies adding new ab-
stractions. The implementation demonstrates the expressive power of class hierarchies
and object-oriented programming.

As an example, consider an attempt to modify both interpreters to extend Number
to Integer and Real. In the original C interpreter, almost every part of the interpreter
would need to be explicitly rewritten. New cases would have to be added to the
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case statements where ever Number was used. In the C++ version, we would simply
subclass Number into Integer and Real, and redefine the relevant operations on the
subclasses.

The print routines would become:

class Integer : public Number {
void print() { printf( "%d", value ); }

}

class Real : public Number {
void print() { printf( "%g", value ); }

5 Performance

The three scheme functions shown earlier were used to compare the two interpreters.
Data were gathered on an Encore Multimax using NS532332 processors running UNIX
in single user mode and averaged over 10 separate runs.

Figure 1 shows the runtime of £ib versus its argument. As can be seen from the
graph, the C++ interpreter outperforms the C version. Figures 2, and 3 show the
relative performance of the two interpreters on the fact and fict functions. Both
functions show a linear relation between their arguments and their runtimes. The
fict function multiplies repeatedly by 1 rather than by x, to get the effect of the
multiplications without overflows. This allows it to run for a much larger argument
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value. The performance data show that the larger the argument the greater the speed
difference between the two interpreters.

5.1 Analysis of Performance Data

The C++ version is consistently faster than the C version of the interpreter. This
can most likely be credited t- the use of virtual functions. There invocation is faster
than checking an explicit ty; code and executing a case statement. This is encour-
aging because it indicates th: there is actually a performance bonus to be gained by
properly structuring code acc .rling to accepted object-oriented program development
guidelines [4].

In all three of the test cases, the amount of cons work (a rough measure of the
number of data structure traversals and evaluations performed by the interpreter),
rises proportionally to the argument (see figures 4, 5 and 6), but the runtime for the
C version rises faster than that of the C++ version.
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6 Conclusions

We have reported on the reimplementation of an interpreter for Scheme in C++. We
found that the C++ version is:

e More modular. The structure of the code is improved because, rather than
having a monolithic discriminated union and equally large switch to evaluate
instances of the union, we use a collection of small, orthogonal objects.

® More easily extended. Because each type in the system is implemented as an
independent (sub)class, code modification during extension to the system is
minimized.

o More reliable. Better code structure leads to a more robust implementation.

o Faster. Simply restructuring a traditional C program into a class hierarchy, and
using an efficient object-oriented language for the implementation eliminates
costly switches based on discriminants and speeds up the interpreter.

Object-oriented programming is well-known for its improvement to program struc-
ture, but programming mythology suggests that there is a performance price to be
paid for this improvement. Our results debunk this myth.

Our performance figures are not the last word on the speedup that can be gained
from a change to the object-oriented approach. There are several design flaws in
the initial C implementation which were highlighted by the change to C++; we have
ignored fixing these in this paper in order to get a fair comparison of performance

data, but we are currently working on extensions to the interpreter to correct these
flaws.
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Abstract

GPIO is a library of object-oriented data structures developed at Data General
for use in building internal Computer Aided Design / Computer Aided Engineering
(CAD/CAE) tools. The goal of GPIO was to provide a software platform on which to
build these tools that included: efficient storage and retrieval of design objects into/from
a filing system; the ability for application programs to extend the data in the objects
without modifying GPIO itself; and the ability for application programs to determine the
implementation of GPIO’s most important data structuring entity - the Collection.
GPIO is implemented entirely in C++4 [1] and makes extensive use of virtually all
C++ features including inheritance, virtual functions, data hiding, inline functions,
constructors and destructors, overloading, pointers to (virtual) member functions, static
members, and global objects with constructors and destructors.

This paper will discuss the system of classes that comprise GPIO, the techniques
GPIO uses for storing and retrieving structured data, the techniques used to allow ap-
plications to extend GPIO objects, and the details of the collection abstraction used
within GPIO. Along the way, applications of various C++ features will be noted, on-
going open issues will be discussed, and the benefits of hindsight will be applied. A
number of perceived C++ deficiencies will also be discussed, including the need for ‘pa-
rameterized’ types, multiple inheritance, and class ‘meta objects’. Developers have built

several application programs using GPIO and this paper will describe their experiences
using this sophisticated class library.

1 Introduction

GPIO was originally conceived as a means of assuring that different application programs in
our internal CAD/CAE system would agree on both the format and the meaning of the files

*now affiliated with Valid Logic Systems, Inc. San Jose, CA
'now affiliated with Valid Logic Systems, Inc. San Jose, CA
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stored in our design database. The problem of sharing data among an assortment of CAD
tools is among the most important that CAD system builders face, and is not new. Tradi-
tional approaches to this problem fall into two categories. The first is ‘no solution’, where
each application independently locates, reads, parses, and interprets the data files. With this
approach only discipline and luck provide coherence. The second is a procedural interface
to the database, often in the form of an ‘access library’. This scheme provides much greater
assurance of coherency, but still requires that each application design data structures from
scratch and then manually bridge the gap between those data structures and the procedural
interface. GPIO is an attempt to apply the full power of Object Oriented Programming [2]
to the CAD database problem. The result is the logical next step from procedural interfaces:
a library of object oriented data structures for use in building CAD/CAE applications—an
object interface.

The design of the file formats and the design of the data structure abstraction were very
closely tied. Both follow a very simple model of fixed form aggregates, or structures, and
collections. The grammar of the file format is completely predictive, so, given an object
as a starting point, generating the file (when writing) and parsing the file (when reading)
are both trivial tasks. In fact, throughout most of GPIO reading and writing are unified
operations. Because the structures are fixed form and the collections are homogeneous, we
have managed to keep ‘synchronization’ overhead to a minimum in GPIO files.

Because different applications place different requirements on their data structures, typ-
ically choosing widely spaced points on the time-space tradeoff continuum, we had to defer
to GPIO’s ‘customers’ as many data structure design decisions as possible if it was to be
widely accepted. We initially adopted a very conservative design style which called for the
GPIO data structures to closely mirror the file formats, producing, in effect, an unannotated
parse tree. The intention was that any annotation of the the tree would be done by each
application as it saw fit. We recognized that this might turn out to be lower than the lowest
common denominator of the applications, but we reasoned that it would be easier to build
up GPIO over time to meet common needs than it would be to remove excesses that resulted
in unacceptable overhead for some applications. Over time we have recognized additional
common needs and incorporated these in GPIO; this paper describes its current state.

2 The Class System

GPIO is actually an application-specific class library built on top of a general purpose class
library. Because the general library is used extensively in the implementation of GPIO, it
will be described first.

2.1 DG Library

The DG C++ library is an assortment of general purpose classes that provides convenient
ready-made solutions to many common programming problems. It currently includes a
rudimentary string package, a sophisticated hash table/set package, two sizes of bit array
based sets-of-integers, an exception handling system , and an easy-to-use symbol table class.
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2.1.1 String

Our String class’s main purpose is to eliminate one of the most common sources of errors
in C programs—string storage mismanagement. By starting with a very conservative ‘allo-
cate space and copy’ strategy we have nearly eliminated problems with shared strings and
permanent data structures pointing to temporary strings or literal strings. The inclusion of
appropriate constructors and type conversion operators makes String objects interchange-
able with ‘const char *’s.

2.1.2 Set

Our Set class provides a very general set of pointers to objects capability. An object can
simultaneously be an element of multiple Sets, and the same object can participate in more
than one kind of set. Sets support a full compliment of set-theoretical operations, plus the
ability to look up an element given a pointer to an object.

Class Set is implemented with a pointer to a (variable sized) HashTable object and
a counter that holds the set’s cardinality. Class HashTable contains an array of pointers
to HashTableElement objects. Class HashTableElement contains nothing but a trivial
virtual destructor!. HashTable: :Slot(HashTableElement *, PHashMember, PEqMember)
is the core of the hashing and set implementation. It returns the address of the slot in a hash
table that either does contain or would contain a (pointer to a) given HashTableElement.
The key to the generality of this method? is found in the second and third arguments, which
are method variables (pointers to member functions of HashTableElement) that are used
to compute a hash function of an object and to compare two objects for ‘equality’. In
practice, these are never actually members of HashTableElement, but rather members of
classes derived from it.

To date the only direct user of class HashTable / HashTableElement is class Set /
SetElement. SetElement is derived from HashTableElement, and adds virtual func-
tions Hash() and Eq(), whose default implementations are based solely on object addresses.
Class Set includes two virtual member functions, HashFct() and EqFct(), that return
method variables that are supplied to HashTable: :Slot(...) by Set::Slot(...). The
default implementation of Set: :HashFct() [Set: :EqFct ()] is to return SetElement: :Hash
[SetElement: :Eq]. Because SetElement: :Hash() and SetElement: :Eq() are virtual, many
different kinds of Sets can be created by deriving from SetElement and reimplementing
Hash() and Eq(). HashFct() and EqFct() only need to be reimplemented if you want to
have the same object occurring in more than one kind of set at a time. This degree of
generality in Set is a fairly recent addition whose positive implications have not really been
pursued in GPIO.

Sets use a dynamic hash table sizing scheme similar to that described in [3] except that
our table sizes are always prime and we do not allocate tables for empty Sets. HashTables

include reference counting features that are used to implement copy-on-write optimization
of assignment and initialization of Sets.

lwe almost always make destructors virtual so that delete can safely be used in cases where a pointer
may point to a derived-class object
2this paper will use the terms method and member function interchangeably
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Because Sets do not have a natural ordering to their elements, we provide a SetEnu-
merator class that can be used to enumerate the elements of a Set. By use of the reference
counting feature of HashTable we have made it safe to modify a Set while enumerat-
ing it—a feature whose earlier absence was the source of some obscure bugs in application
programs.

2.1.3 Setl16, Set32

Class Set16 provides for sets of integers between 0 and 15 (typically enums) that are im-
plemented as bit vectors stored in short words. Set32 is similar except for being larger (0
to 31, stored in long words). Both support a full compliment of set theoretical operations,
almost all of which are implemented with inline functions that generate code identical to
that resulting from the ‘equivalent’ C ‘bit twiddling’ expressions.

2.1.4 Exception, Handler

Our exception handling package is pretty much yet another setjmp()/longjmp()-based
implementation. We allow for nested handlers and re-raising of exceptions. We do not
address the problem of destructors for local objects being skipped, except with a caveat in
the documentation.

2.2 GPIO Proper

GPIO itself consists of a group of non-application specific classes, and a few groups of
application specific classes.

2.2.1 Core classes

Class Class performs a function similar to the Smalltalk-80 [4] class Class—it describes
GPIO classes that can be redefined by application programs. It consists of virtual functions
to identify the class, allocate an object of that class, allocate a collection of objects of that
class for general use, and to allocate a collection of objects of some other class suitable for
use as a member of an object of this class (this last one will be explained in section 3.2).
Unlike Smalltalk-80 (or OOPS [5]) GPIO does not want to know about all application-
defined classes—it only wants to know which GPIO classes have been derived from by an
application—thus it is not fully general like these other systems.

Class Object, as in so many systems, is the root of the application-level GPIO class
hierarchy. In the absence of multiple inheritance (hereafter, m.i.) Object is derived from
SetElement so Set can be used to implement some GPIO collections. Object contains a
static member that points to the current quasi-global IOHandle that is to be used to write
or read GPIO objects. Since many GPIO objects participate in collections that distinguish
objects by a String ‘name’, Object includes a virtual function KeyString() that can be
implemented in derived classes to return this ‘name’. Object reimplements Hash() and Eq()
from SetElement based on KeyString(). Object also defines virtual functions IdI0(),
PageI0(), I0(), and GIO() which are used to implement the non-virtual functions 0I0()
and 0GIO() in a ‘parameterized’ manner. Id10(), whose default implementation is a noop, is
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implemented by those classes whose instances are pointed to by other objects, in conjunction
with class PointerMap. PointerMap is an associative array (again derived from Set) that
allows us to store actual pointer values in files for those object relationships that are not
reasonably expressible as collections. This is achieved by arranging the file formats such
that objects pointed to always occur before objects that point to them and then having the
‘pointed to’ objects store their memory address when written. When such object are read,
their file ‘address’ and their current memory address are stored in the pointer map in the
current IOHandle. When an object that points to it is read it reads the old pointer value
from the file, looks it up in the pointer map, and stores the resulting memory address in
the pointer member. Both sides of this operation are encapsulated in member functions of
Object: IdIOAction() for implementing IdI0(), and I0AndBind(...) for doing I/O on
pointers. While it is a nuisance for objects to have to ‘know’ that they may be pointed to,
it saves a lot of space in the files and in the pointer map if most objects do not have to store
their address, and this has been observed to be the case in GPIO.

I0() and GIO() are the non-graphical and graphical object I/O routines, respectively,
that are reimplemented in each derived class. Implementations of GI0O() always call the same
class’s I0() routine; in the case of fundamentally non-graphical objects, this is all they do.

Class IOHandle is a vaguely Stream(1]-like entity that encapsulates all of the low-level
details of how files are written and read. It understands some simple types and allows for a
fairly compact file format. It is currently based on stdio operations, because we were most
familiar with them. In addition to maintaining the state necessary for file I/O, IOHandle
also contains a PointerMap for use when reading an object and a method variable that is
the appropriate kind of collection I/O for objects to do. Encoding this state in a method
variable is another example of the ‘data-driven’ style that GPIO is written in—we tried
to minimize the use of explicit flow-of-control constructs. The result, in conjunction with
extensive use of virtual functions, is code with very few if statements and almost no switch
statements.

Collection and CollectionEnu are abstract classes that define the interface GPIO
expects all derived collection and collection enumerator classes to support. Collection
specifies virtual functions to add and remove Objects, to remove all elements, to determine
the cardinality of the collection, to generate an appropriate enumerator object, and to get
the Class object that describes the objects that are contained in a collection. In addition,
Collection provides a number of (for now) non-virtual functions built from these opera-
tions to do such things as add and subtract collections and delete all of the elements of a
collection. The most important Collection methods from GPIO’s perspective are 10() and
GIO(), which perform I/O (non-graphical and graphical) on each element of a collection.
Both are implemented by calls to the ‘parameterized’ inline function _I0() as follows [most
global identifiers in GPIO start with GP; error checking has been omitted for brevity]:

inline

void

GPCollection::_IO0(int G) {
void (GPObject: :*piof)();
piof = G ? &GPObject::0GIO : &GPObject::0I0;
GPIOHandle *h = GPObject::I0OHandle;
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GPClass *klass = Class();
GPeRecord br = klass->Identifier();
if (h->writing()) {
// if writing non-graphical objects, map the collection
// ‘type’ to its non-graphical equivalent
GPeRecord rec = G ? br : GPUnG[br];
GPBaseRecord base(rec, Cardinality()); // a collection descriptor
h->Write(&base, BASERECORD);
GPCollectionEnu *en = newEnu();
GPObject *p;
while (p = en->next())
(p->*piof)(); // call via pointer to member function to write it
delete en;
} else {
GPBaseRecord base;
h->Read(&base, BASERECORD);
int i;
for (i = base.RecordLength; --i >= 0; ) {
// allocate an object of the appropriate class
GPObject *p = klass->NewObject();
(p->*piof)(); // to read it
add(p);

}

void

GPCollection::I0() {
-1000);

}

void

GPCollection::GIO() {
2I0(1);

}

Class CollectionEnu defines virtual next() and init() functions that are used to
advance through a collection and to reset an enumerator, respectively. The CollectionEnu
returned by Collection: :newEnu() will always be set up to enumerate the Collection that
generated it.

Class GPSet and class SList are implementations of Collection employing Set and
singly-linked lists of pointers, respectively. Unfortunately, neither of these are purely imple-
mentations of the Collection interface—both affect semantics in subtle and not-so-subtle
ways. For instance, GPSets also support operator[String] for looking up objects by
name, and GPIO assumes this capability in some places that it really should not (without
making the need for this feature explicit).
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One of these two classes is the default implementation of every application-level collection
in GPIO. Because we firmly believe in type-secure interfaces we derive type-specific collection
classes from one of these two for all application-level GPIO classes. This process of adding
an implementation to a functional interface and then adding a type-specific interface to that
is one area where the reality of C++ does not live up to the promise; we will revisit this issue
in the ‘problems encountered’ section. All GPIO collections are homogeneous; we did not
feel that our objects were sufficiently purely object-oriented for heterogeneous collections to
be workable.

The design objects that are stored as files are referred to as named objects and are rep-
resented in the GPIO class hierarchy by class NamedObject. Examples of named objects
are schematic drawings, schematic symbols, and connectivity files, or ‘netlists’. NamedOb-
Ject is derived from Object and contains a member of class Name that is a structured,
application-specific name for that design object. This Name is used by the named object
locator to locate the file representation of the object in our filing system. The details of the
operation of the named object locator system, an interesting GPIO-based C++ application
itself, are outside the scope of this paper. From an application perspective, classes derived
from NamedObject are the lowest-level entities involved in I/O operations; NamedOb-
Ject provides Read(...) and Write(...) methods that entirely encapsulate the lower-level
details of object and file I/O. Both routines call a common, private RW(...) method that
sets up exception handling, asks IOHandle to open the file for the object’s Name, calls
the object’s (virtual) I0() function, and cleans up. RW() also takes care of stacking IO-
Handles when nested I/O operations are required. NamedObject: :Read/Write() take an
optional method variable argument that is actually the function called by RW() and is ei-

ther Object::I0 or Object: :GIO. The purpose of this generality will be apparent when we
discuss Conn and Schematic. :

2.2.2 Overview of Application Level Objects

The application level objects in GPIO represent the components of one level of a hierarchical
electronic design. GPIO currently supports three levels of representational detail: abstract,
where only the interface to a block or cell is specified; connectivity, where the electrical
connections among the interfaces of subcomponents of a block and between the interface
to the block itself and its subcomponents is specified ‘graph theoretically’; and schematic,
where connectivity information is augmented with graphical information and cosmetic data
to produce a representation suitable for viewing and editing with a graphical editor. An
interesting feature of GPIO is that it recognizes the distinction between graphical and non-
graphical versions of objects at a very low level. This allows it to process graphical objects
as if they were non-graphical, a capability whose usefulness will be demonstrated below.

2.2.3 abstract

The most abstract of the three representations of an electronic design is what we call the
abstract. It consists of class Abstract, which is a NamedObject and contains a collection
of Ports. An Abstract is much like the declaration of a function in a programming language,
and a Port is much like a formal parameter. Class Pageltem is a semi-abstract class that
is derived from Object and is the base class for all application-level classes whose instances
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(can) occur on individual pages of a schematic drawing. Class Port is a Pageltem (again,
only due to lack of m.i.) and consists of a name, a type, a width (for multi-bit signals), and
a collection of NameVals, or name-value pairs, which is essentially a property list.

2.2.4 connectivity

The intermediate level representation is connectivity. It is analogous to an abstract syntax
tree for a function in a programming language in that it contains all of the essential infor-
mation and no incidental information. It is embodied in class Conn, which is derived from
Abstract and contains a collection of Abstracts, a collection of SymInsts, a collection of
PortInsts, and a collection of Nets. The Abstracts are essentially declarations of other
blocks, or designs, that are used in this design. The SymInsts are symbolic instances of
these other designs. Abstracts are the first example of an object that is pointed to by other
objects and thus implements IdI0() with IdIOAction().

Class SymInst is a Pageltem plus a pointer to the Abstract of the design of which
it is an instance, an instance-specific name, a time stamp, a collection of PortInsts, and
a collection of NameVals. SymlInsts are the first example of an object that points to
another object and thus uses I0AndBind(). Class PortInst is derived from Object and
contains a pointer to the Port of which it is an instance (either on an Abstract, when
a PortInst is within a SymlInst, or on a Conn, when it is directly part of a Conn), a
pointer to the Net, if any, that is connected to this port, a ‘back’ pointer to the SymInst
this PortInst is part of (or nil), and a collection of NameVals. As is apparent, PortInsts
serve different purposes depending upon whether you are looking ‘down’ the hierarchy (from
Conn to SymlInst) or ‘up’ (at the interface to a Conn, from within it). PortInsts are
similar to actual parameters in a programming language.

Class Net is a PageIltem plus a name, a ‘back’ collection of PortInsts that it connects
to, and a collection of NameVals. The ‘back’ collection of PortInsts associated with a
Net is an example of annotation of the ‘parse tree’—it is redundant information that is
not stored in the files, but rather it is constructed on-the-fly as a Conn is being read.
This is a natural consequence of the fact that PortInsts automatically maintain this ‘back’
relationship whenever their Net pointer is modified. This collection, and the ‘back’ pointer
from PortInsts to SymlInsts, are both essential for efficient traversal of connectivity, thus
their inclusion in the basic GPIO data structures.

2.2.5 schematic

The least abstract representation currently supported by GPIO is schematic. Schematic
objects are used in our CAD system to store schematic drawings for both logical and cir-
cuit level electronic designs. Continuing the programming language analogy, schematics are
analogous to the source code for a function. They are a human-readable representation of
information that is meaningful to a computer program plus cosmetic details that may be
helpful to humans but are ignored by computer programs. Many of the classes at this level
are graphical versions of classes at the connectivity level. Classes that are in this relationship
have names beginning with ‘G’, such as GAbstract, GSymInst, GPort, GPortInst, and
GNet. Along these same lines you might think of a Schematic as a ‘GConn’. All of these
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‘G’ classes implement both I0() and GIO() The schematic level contains two named objects
derived from Abstract: Schematic and Symbol.

Class Schematic, which is derived from Conn, redefines all of Conn’s collections and
adds two of its own. The Ports from Abstract become GPorts; the Abstracts, SymInsts,
PortInsts, and Nets from Conn become GAbstracts, GSymlInsts, GPortInsts, and
GNets, respectively. Additionally, there is a collection of Shapes, which are cosmetic .
graphics such as lines, polygons, and arcs, and a collection of Texts, which are graphical
strings with an assortment of display attributes.

Class GPort is derived from Port and implements the port’s name as a Text object
rather than a String. GPort adds a Location member to describe the port’s position
on a page and a collection of NameVallnsts, which are graphical instances of NameVals
containing a pointer to the NameVal of which it is an instance and a collection of Strin-
gInsts, which are instances of Strings containing a pointer to the String of which it is an
instance and a few members that hold display attributes. Class GAbstract is derived from
Abstract and adds only a pointer to the graphical Symbol of whose design it is the ab-
stract. GAbstract: :GIO() performs the additional function of maintaining a global Symbol
table that is shared among all Schematics. Class GSymlInst is derived from SymInst.
It redefines SymInst’s PortInsts to be GPortInsts, redefines the Abstract pointer to
be a GAbstract pointer, adds a Location member that specifies the position at which an
instance of a Symbol is to be drawn on a page, and adds a collection of NameVallnsts.
Class GPortInst is derived from PortInst. It redefines the Port pointer to be a GPort
pointer, the Net pointer to be a GNet pointer, and the SymInst ‘back’ pointer to be a
GSymlInst pointer. It also adds a collection of NameVallnsts.

Class GNet is derived from Net. It redefines the PortInsts to be GPortInsts and
adds a collection of Wires. Class Wire is derived from Pageltem and contains a collection
of Segments and a collection of NameVallInsts that are instances of the NameVals that
are attached to GNets. Class Segment is derived from Object and consists of two Points.

Class Symbol is derived from Abstract. It, like Schematic, redefines the Ports to be
GPorts and adds collections of NameVals, NameVallnsts, Shapes, and Texts.

Classes NameVallnst, StringInst, Location, Text, Shape, Wire, and Segment
are purely graphical and do not even bother to implement 10(). Consequently, they are
completely avoided by the I0() routines of the other schematic classes.

2.2.6 connectivity from schematics

Just as the source code for a program must be parsed before it can be compiled or interpreted,
so must a schematic drawing be processed to extract the connectivity information that
is needed by most CAD tools. Because GPIO’s schematic level data structures are all
derived from its connectivity level structures, a GPIO-based application could just read in a
Schematic object and ignore the derived class information that is not needed. There are two
related problems with this: first, the schematic files are much larger than the connectivity
files and thus take longer to read; and second, the unneeded information in the graphical
structures can require an unacceptable amount of space in some applications.

GPIO addresses this problem by providing Schematic with a method called WriteConn()
that writes out the Schematic as if it were a Conn. This is where the parallel 10()
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and GIO() Object and Collection methods come in, as well as the optional argument to
NamedObject: :Read/Write(). Since GIO() routines are always implemented as calls to I0()
routines plus I/O of the additional graphical data, the result of performing non-graphical
I/0 on all the schematic level objects is identical to the result of performing it on the cor-
responding connectivity level objects. A description of exactly how this is implemented is
too involved for this paper, but it involves manipulation of the quasi-global method variable
that controls which Collection I/O method objects use on their member collections.

WriteConn() is used by Schematic::Write(...) to produce a separate file containing
only connectivity information. Applications that only want connectivity for a design can
then create a Conn object for that design and Read() it in. Because it was created from
the schematic data at the same time that the schematic data was written, it is guaranteed
to be synchronized with it.

3 Extensibility

One of GPIO’s goals was to allow application programs to extend its data structures to suit
their needs without having to change GPIO itself. Since GPIO data structures are defined
in terms of objects (aggregates) and collections, these are the things that an application
can extend. Both of these entities are represented in GPIO by C++ classes, so the natural
mechanism for extending them is C++ class derivation, or inheritance.

3.1 Application-derived classes

Since the original purpose of GPIO was to ensure agreement between different applications
as to the form and content of data files, we decided early on that the ‘default’ GPIO objects
would completely define the information content of the files. The intention of extensibility
was not to allow applications to add information to the objects, at least not information
that would be stored in the files. Instead, the intention was to allow data (i.e., redundant
information) and application-specific information to be added to the objects for run time
use only. .

The implementation of this capability has taken several forms, but all of them were
trying to simulate ‘virtual’ constructors. The current scheme uses class Class to encode
knowledge of how to construct an object of each of the application-redefinable classes. When
an application derives from a GPIO class, say from SymInst to MySymInst, it also derives
from the corresponding descendent of class Class, SymInstClass to MySymInstClass,
and creates a single static object of this new meta-class. As part of the derivation process,
the application will reimplement newObject() to return a new instance of its derived class,
MySymlnst. The constructor for the default GPIO meta-classes is designed so that the
global pointer-to-meta-class-object that GPIO knows about, SymInstCls in this case, will
end up pointing to this instance of the application-derived meta-class, MySymInstClass.
Internally, GPIO never news application redefinable classes; instead it invokes the NewObject
method of the appropriate meta-class object:

SymInst *si = SymInstCls->NewObject(); // when we know the type
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Class *cls = ...;
Object *p = cls->newObject(); // when we don’t [see Collection::_I0()]

3.2 Application-derived collections

Collections are the one area where GPIO is purely object oriented; class Collection contains
nothing but methods, many of them virtual. GPIO defers implementation decisions about
collections to applications in two ways. First, it allows applications to redefine the default
collection implementation for each application-redefinable class, for instance, all collections
of PortInsts. Second, it allows applications to control what type of collection is used for
a given class for each case where such a collection occurs as a member of another object,
for instance, the PortInsts collection in a SymInst can be different than the PortInsts
collection in a Net. The purpose of this generality is to give applications as much control
as possible over the time-space tradeoffs. In a space-critical application the less frequently
used collections could be reimplemented to use minimal space (or non at all, theoretically).

The implementation issues for application-redefinable collections were very similar to
those for redefinable objects. GPIO always invokes methods of the meta-class objects when
creating collections. Recall that class Class has a method newCollection() and a method
newCollection(Class *ofClass). The first of these allocates the ‘default’ collection of
the class described by the meta-class, e.g. SymInstClass: :newCollection() creates a new
instance of the default SymInsts collection. The second of these allocates a collection of the
class described by its argument, o£Class, suitable for use as a member of the class described
by the meta-class, e.g.

SymInst::SymInst(...) {

portInsts = SymInstCls->NewCollection(PortInstCls);

The default implementation of newCollection(Class *ofClass) simply returns
ofClass->newCollection(), so that all member collections of the same type of object are
the same.

All of this deriving, reimplementing, and declaring of objects can get rather tedious,
especially since within GPIO, and for most applications, the process is very mechanical. In
an attempt to alleviate these problems, GPIO provides several horrendous token-splicing pre-
processor macros for generating both declarations and implementations of derived classes.

4 Experience

GPIO has so far been used for four different sorts of applications. It was used to replace the
database portion of our existing CAD system, while leaving the remaining portions largely
intact. This was an interesting exercise, because most of the system was written in PL/1.
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C++ actually turned out to be more helpful than not in the integration task. Because the
goal of this project was not to build new applications based on GPIO’s objects, but rather
to build existing PL/1 data structures from GPIO’s objects, this was less than an ideal
showcase for GPIO’s capabilities. It did, however, demonstrate that GPIO worked and that
it was efficient enough in execution speed, memory usage, and data file sizes, to be practical
even when used in this rather twisted way.

Some of the tools in the system were rewritten from scratch in light of GPIO. One of
these is a browser/librarian program that does not actually operate on the contents of the
design data files to any appreciable extent. Consequently, it was able to use GPIO ‘as is’
and it did not stress any of GPIO’s more sophisticated extensibility-related features. One
‘substantial’ tool that was rewritten was our schematic verifier—a program that is something
like a ‘lint’ for schematics. It performs a fairly detailed semantic analysis of a drawing and
reports a number of common errors. In order to do the degree of analysis it does it needs
more powerful objects than the ones provided by default in GPIO, so it was a reasonably
good test case. It derives off of most of the ‘G’ versions of the connectivity objects; in fact,
it turns out that if you want type-secure interfaces and you don’t want to end up casting
everywhere you are forced to derive from all members of a ‘related’ set of classes if you derive
from any of them.

The fourth use to which GPIO was put was to build a brand new utility that would
allow textual descriptions of connectivity (e.g., SPICE net lists) to be stored in our CAD
database. This application was not particularly demanding, but it was the first program to
build GPIO structures ‘from scratch’. The developers of this program were not affiliated
with the developers of GPIO at all, so they faced a steep learning curve.

So far we have not had any applications reimplement the default collection for any GPIO
object type, let alone exploit the capability of using different collection types in different
contexts. There are several possible explanations for this, but it is quite possible that some
of these features are excessively general.

5 Problems Encountered

By far the most difficult problem we faced was getting used to C++ and object-oriented
design. Early versions of GPIO were little more than glorified C structs with trivial Set
and Get methods for each member. The present library is the result of a year of nearly
constant refinement and redesigning. In the search for solutions to our problems, we left no
stone unturned in C++. This was at once an interesting and frustrating mode to operate
in, since C++, being a new language, had (and still has) numerous little-explored areas.

Perhaps the biggest impediment to a clean conceptual design is the problem of creating
type-secure interfaces to implementations of abstract classes. We would very much like the
hierarchy of our collection classes, at some level, to mirror the hierarchy of the classes of
the objects in those collections. Unfortunately, in order to do this today and still retain
independent control over how each collection is implemented we would be forced to replicate
the implementation for every type of collection. We are not certain, but we suspect that one
of the ‘parameterized class’ schemes being bandied about might solve this problem.

An implementation problem that we faced was how to construct objects whose members
require different initialization in derived classes than in base classes. The most common
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case of this in GPIO is the connectivity-level classes that contain collection members. These
members are not actually collections, but pointers to collection objects. The schematic-
level (G) objects derived from these use the same pointers to point to different collection
objects, but we would like to only initialize those pointers once. Our initial ‘solution’ was
to use virtual functions to initialize these pointers, but this does not work because during
the execution of a base class constructor the virtual type of the object is the base class, not
the derived class (although the analogous situation is not true for destructors). As things
stand, there appears to be no good way to solve this problem. For now we are allocating the
collections in the base class constructor, then deleteing them in the derived class constructor
and allocating the derived class’s collections.

Another recurring problem has been the lack of m.i. Its absence has forced us to define
common methods at lower levels in the class hierarchy than really makes sense in order to
have them available in all of the right derived classes. We have done some exploratory work
with an experimental m.i. version of C++. Our initial impression is that m.i. can provide a
very high degree of conceptual elegance, but it can also be very expensive in terms of object
size when used extensively.

It might be useful to have meta-classes built into C++ so that such things as the name,
size, constructors, and destructors for a class would be explicitly available as ‘first class’
entities. This would also open up some interesting opportunities for programs to control the
‘dynamic’ type of objects themselves.

It should be mentioned that C++ significantly overtaxes the functionality of most linkers
that we have used. Features such as static object construction/destruction and sharing of
virtual function tables which depend on linker support are very difficult to use. Qur suspicion
is that before too long C++ will needs its own compilation and linking paradigm not built
out of the simple tools used for C programs. Once this program building environment is in
place C++ will be free to clean up some of the current problem areas.
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C+: From Research to Practice

S. B. Lippman
B. E. Moo

AT&T Bell Laboratories
‘Warren, New Jersey 07060

1. Introduction

Research into language design has continued apace essentially since the inven-
tion of high level languages in the fifties. Each year sees yet another new language
vie for inclusion into the much more restricted set of languages used for serious
development. Few succeed.

At one level, of course, C++ is being used in practice because it is a very
pleasant language in which to program. But, other new languages exist that are
pleasant to program in and other languages have facilities that mesh cleanly and
support programming at higher levels of abstraction. Yet we are here at a C++
conference and few other languages have generated interest sufficient to justify
such a gathering. Why C+?

For the past two years, we have been involved in the effort to support C+:
initially in the development organization that supports and distributes the AT&T
C+ Translator, more recently focusing on spreading the use of C+ on major
development projects within AT&T Bell Laboratories. Through this experience we
have come to believe that much of the success of C++ is due to what we call the
"meta-lingual” aspects of the language. By this we mean those aspects of C++ that
transcend the language itself: the portability of its initial implementation, its
compatibility with C and its pragmatic evolution. Interestingly, these very aspects
of C+ that seem to have contributed to its ready acceptance have also contributed
greatly to the complications of providing and supporting C+.

2. C++ Acceptance

C++ in its present form was first made available to internal AT&T projects
and to universities in early 1985. This initial implementation of the language was
Stroustrup’s cfront Release E which compiled C+ source into C. Early use inside
AT&T, as well as in the universities, was mostly in small, experimental projects.
With some minor enhancements to the language and many bug fixes, that imple-
mentation of C+ was released by AT&T as the AT&T C++ Translator in the fall of
1985. Until earlier this year, this implementation formed the basis for all C+
implementations of which we are aware.

The formal release of the AT&T C+ product paralleled the first uses of C++
in actual development projects. The first products written in C+ at AT&T were
initiated at about the time of the 1.0 Release of the C+ Translator. With each
subsequent release of the C++ Translator the number of users, both inside and out-

side of AT&T, and the size and complexity of products being written in C++ have
grown.

Today, C++ is rapidly becoming the de facto standard language within AT&T
Bell Laboratories for development of new features and products. The primary use
of C+ has been the development of new, mid-size (500,000 lines of code or less)
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systems to support specialized network applications. Typically, new users of C++
have been programming in C and often the initial use of C+ is to provide some
distinct new functionality to an existing system written in C. Users migrating to
C++ are concerned about the expected things: support, training, documentation, ease
of use for C programmers and ease of integration with existing C code. Experience
on these projects has demonstrated the productivity gains expected from strong
type checking and data abstraction.

A few projects ‘have been in the field long enough to include maintenance
releases produced by developers other than the original implementors. Experience
on these projects has demonstrated the promise of data abstraction and object-
oriented design in allowing modifications and additions to the system without
requiring complete understanding of the whole application.m

On the whole, our experience in using C++ has been very positive. For our
user community, the ease of migration from C to C+ has been especially
important. Its availability on a wide variety of systems has also been key.

3. Portability

The greatest reason for the success of C+ is its availability on essentially any
system. Most new languages must go through a relatively long period during
which compilers for the language are available only on a restricted set of machines.
Languages then must go through an uncomfortable "chicken and egg" period where
potential new users, who might like to try the language, will only do so if a
compiler exists for their system, but software vendors can only justify the
relatively high costs of making a compiler available on those systems for which
demand already exists.

This ready availability of C+ comes directly from the deliberate design deci-
sion in Stroustrup’s initial implementation to generate C rather than object or
assembly code. This has meant that C+ can be made available reasonably easily
for any machine for which a C compiler exists. In essence, by generating C, the
problem of porting the compiler is reduced from the tricky and expensive one of
providing a code generator for each supported machine to the relatively straight-
forward problem of porting a roughly 20,000 line program. In practice, this has
allowed people interested in C++ to use the language at a heretofore unprecedented
low cost for a new language.

Likewise, once commercially available, C++ could be ported and made avail-
able more quickly than has been true of other languages. For example, within 6
months of its first commercial release from AT&T, implementations of C+ based
on the AT&T Translator were available from other vendors for the PC market and
several major mini-computers. It is today commercially available on over 24
different systems. Interestingly, it is only within the last several months that
machine specific compilers, generating object code directly, are being made avail-
able. Surely the large and growing number of users of the C++ Translator helped
these compiler writers justify the risk of introducing a new language into their
product lines. It is interesting to speculate whether these products would ever
have been written if C+ had been available only on the small set of machines that
would have been possible had the initial implementation not generated C. Would
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sufficient users of C+ have existed to justify such a great investment? Would
sufficient users of C+ have existed to justify last year’s USENIX C+ Workshop or
this USENIX C+ Conference?

While this ready availability of C+ means that one can decide to use C+ on
its own merits, without migrating to a new system or getting locked into a particu~-
lar configuration, it does not come without cost. Distributing and supporting any
large program on a wide variety of systems is a non-trivial task. As a general rule
of thumb, any assumption one makes about the operating environment will be
violated by at least one system.

Portability of the C+ Translator has been a consistent and explicit design
goal. At times this has required sacrificing the best solution for a particular system
to a general solution that, with possibly minor modifications, is applicable to all
systems. In other cases, the goal of portability for the implementation has simply
meant dealing, somehow, with the numerous system idiosyncrasies that invariably
complicate programs intended to port to a wide variety of machines and operating
systems.

The handling of static constructors presents a good example of the first
problem: the tradeoff between implementing a feature with the most general
approach for all machines rather than the best approach for a given machine. A
static constructor is a constructor that must be called prior to the start-up of the
program. Failure to do so will likely result in a run-time core dump of the
program. For example,

#include <iostream.h>

class Buf {
public:
Buf( int len = BUFSIZ );

' /]

Buf inBuf( 4096 ); // requires a static constructor

main() {
// inBuf must be initialized at this point
/| otherwise, this will write into hyperspace!!
while ( cin >> inBuf )

cou-;<< inBuf:
}
}

The problem is as follows. All C and C++ programs start execution in main().
However, if the first statement in main() is executed prior to the constructor call
for inBuf, the program will fail. The program is composed of separately compiled
modules and a set of libraries. The compiler has no way of knowing what
constructors the executable requires. Generally available link-editor technology
does not help. Any solution is going to be a hack.
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One aspect of a solution is when to invoke the constructors. Here are two
reasonable alternatives:

a. have crt0.s, the start-up routine, execute the constructors. ctr0.s, however, is
written in assembly. This strategy requires a non-trivial amount of expertise
from an individual wishing to port the Translator.

b. insert a function, _main(), into main() as the first executable statement. Then
create a _main() function to execute the static constructors. An individual
porting the Translator need not even be aware of _main()’s existence.

A second aspect of a solution is how to collect the set of static constructors
that need to be called. The simplest approach would be to gather together the
static constructors into a canonical function for each object module within the
executable. These functions then would need to be invoked from _main(). Again,
there are two possible alternatives:

a. Patch the executable directly. Read and modify the a.out directly, threading
a list of initialization functions through which _main() could then iterate.
This strategy requires intimate knowledge of the system’s object file format.
The individual porting the Translator would have to provide a new instance
of patch.

b. Munch the symbol table. Dump the symbol table names, keeping track of all
initialization functions. Build a table of function pointers and link with the
executable. _main() can then walk through the table. This strategy requires
some tool which can print out the symbol table strings. Under the UNIX®
Operating System, the nm command is sufficient. An individual porting to
any UNIX System need not even be aware of the existence of munch.

In each solution set, choice (b) clearly provides maximum system
independence, while choice (a) is cleaner and likely to be faster. The ease of imple-
menting case (b) so dominates the knowledge that would be needed to implement
(a) on a new machine that the munch version was developed and distributed. To
gain the speed advantages for a large class of machines, a patch version of the
Translator for System V machines is also distributed with the product. Most ports
to non-System V machines have, however, initially been done using the munch
approach. munch versions of the C++ Translator have been ported from
mainframes and super computers to PCs. Once a user community for a particular
system develops, an optimized solution for that system can be implemented.

Our experience indicates that the C+ Translator is surprisingly easy to port
to a new system. Design choices such as generating C and taking implementation
tradeoffs that favor system independence have helped to restrict the porting effort
to changes to header files, and establishing the target machine’s size and alignment
requirements. However, there remains a second, nittier class of portability deci-
sions driven by the idiosyncrasies of this or that particular machine. Here too, our
experience and the experience of our users in earlier porting efforts have helped
shape the current implementation of the Translator. For example,

e Trouble-shooting the first port of Release 1.1 to a Control Data Cyber-160
turned into a transcontinental process of problem isolation between one
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system which did not exhibit the problem but which had debugging facilities,
and a second system which exhibited the problem and as a result did not have
a working system capable of helping in the debugging process.

As it happens, the high bits of a pointer were being used to set protection
rings. Internally, the Translator would cast integer constants into pointers
for storage then cast them back into integers for later processing. That
proved rather disastrous on the Cyber in question. The constant 8, for exam-
ple, suddenly measured the distance between Earth and the nearest galaxy.

In Release 1.2, the internal data structure had a new derived class for
storing integer constant values; explicit integer/pointer casts were removed.
This also helped simplify porting to the Intel 80286 processor.

e A second example of an unexpected system idiosyncrasy occurred during a
port of Release 1.2 to a Hewlett Packard 9000 series machine. In this case,
everything worked fine, except that static destructors for class objects were
not being invoked. Moreover, the same code executed correctly on an AT&T
3B20, Sun 3/60, VAX 8550 and Amdahl.

Static destructors pose the same class of problem as static constructors.
They must be invoked following completion of the program, but before the
_cleanup() library call. The Translator’s solution is to provide its own ver-
sion of exit(). This version in libC.a executes the table of static destructors
built up by munch, then in turn calls _cleanup() and _exit(). The only way
not to invoke the static destructors is by not invoking exit() (for example, a
dire(ct call of abort()). Or, as it happens, by invoking the libc.a instance of
exit().

The Translator presumes that an unresolved symbol will bind to the
first instance found in an archive. Therefore, to replace the libc.a’s exit() with
that defined in libC.a, the command line is fed the libraries in the order libC.a
libc.a.

As it happens, unless an explicit call to exit() is made within the
program code, the link-editor on our HP9000 bound exit() to the libc.a
instance regardless of the archive’s placement on the command line. The sim-
ple fix of having the Translator insert a call to exit() within main() solves the
problem. However, programs that correctly return from main() are likely to
generate a spurious statement not reached warning message. A clean system
level solution to this problem has as yet not been determined.

4. C Compatibility

Another important factor in the rapid spread of C++ has been the ease of using
C++ with C. There are two aspects to this compatibility: the ability to use C+
with existing C based systems and the ease with which C programmers can learn
and make effective use of C+.

In all cases, our user community is migrating to C+ from C. Some of what
we have learned from their experience in melding C and C+ includes:
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e Keep the interface between the C and C+ parts clear and clean.

e "If it ain’t broke, don’t fix it"2k that is, there isn’t likely to be sufficient payoff
to justify converting an existing system unless you are also doing some
substantial new development at the same time.

o Use the new features of C++ gradually rather than all at once. You can get
spaghetti classes just as you can have spaghetti code.

e Effective use of C+ comes with better design. You will get big payoffs from
having a couple of the more experienced people spend the time to design a few
classes that are fundamental to your application.

e Most users can start with a minimal knowledge of C++ and yet make effective
use of general purpose or application specific class libraries.

While the close relationship C+ maintains with C is one of its greatest
strengths, it can also be a source of tension in the language. The C declarator syn-
tax is a case in point. Here maintaining compatibility with C results in some
unavoidable ambiguity in the language which can only be resolved by explicitly
defining the ambiguity resolution within the language. Maintaining the old-style C
syntax is likely to be the design choice for which Stroustrup’s name will be most
taken in vain by compiler writers to come!

Explicit conversions in C+ may take the form of either C-style casts, such as
(X) i
or function-style casts, such as
X (i):
Function style casts are necessary to provide support for casts (constructors)
of user defined types which require more than a single argument, for example:
z = complex(x.y):
Using C style casting is not possible since
z = (complex)(x.y):

would be interpreted as casting the result of the comma operation (x.y)! However,
at local scope, the function style cast syntax introduces parsing ambiguities. The
conflict occurs when a statement begins with a type name. Lookahead can usually
resolve the ambiguity. For example,

typedef int (*PFI)():
class X {
public:

PFi f;

/] ..
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typedef X *PX;
void **p, **q, **r;

f
0 PX( *p )->f = 0:

Until the member selection operator (->) is seen, it is equally possible for
PX(*p) to be evaluated as

e the declaration of a local instance of p.
p would be of type pointer to a pointer of X. This is possible because C per-
mits extraneous parentheses in declarations! The following two declarations
are equivalent.

// equivalent declarations of p

e an expression involving the global instance of p.
p is first dereferenced. Its void* value is then cast to a pointer to X.

The member selection operator disambiguates the statement. Global p is
dereferenced and cast to a pointer to X.

Here is a second statement requiring lookahead:

"0 PFI( *q)(int);

Until the closing right parenthesis following the keyword int is seen, it is
equally possible for PFI(*q)(int... to be evaluated as

e an expression involving the global instance of q.
q is first dereferenced. Its void* value is then cast to a pointer to a function
returning an int. That function is then invoked through q. q is passed a sin-
gle argument which begins with the letters int.

e the declaration of a local instance of q.
q would be a pointer to a function with a return type PFI.

The closing parenthesis disambiguates the statement. int evaluates as a type,
not identifier. A local instance of q is being declared.

These are instances in which the ambiguity can be resolved by lookahead.
This is not always the case. For example, .

f3() {
PFI( *r )():

It is equally possible for the parser to interpret this as
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e a declaration statement of a local instance of r.
r is a pointer to a function taking no arguments and returning a PFI.

e an expression statement involving the global instance of r.
r is first dereferenced. Its void* value is then cast to a pointer of type PFI,
which is then invoked.

The resolution is a meta-rule. Whenever a declaration and an expression are
equally possible, the statement is taken to be a declaration.

C++ is not a formal superset of C, and there do exist one or two fundamental
differences between the two languages. These differences are generally a result of
the greater functionality of C+ and in our experience, have not caused difficulties
for our user community.

The C language maintains separate name spaces for user-defined tag names
and identifiers. This permits the same name to be used both as a tag name and an
identifier at the same scope. This has given rise to C code such as the following:

struct stat { /* ... */ };
struct stat stat;

struct mallinfo { /* }
struct mallinfo mallmfo

The tag name instances are indicated by prefixing the tag name with the struct,
enum or union keyword.

C+, on the other hand, maintains a single name space for both user-defined
tag names and identifiers. Were C++ not to have a single name space, programming
with classes would need to look something like the following:

// a hypothetical syntax were C4+ to maintain two name spaces
classB{ /*..*/ L
class X : public class B {

class B b;

operator class B *():

class X( const class X& ):

class X(inti=0,intj=0);

class X& operator=( const class X& ):

class X& operator+( class X& ):
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class X::class X( const class X& x ) { /* ... */ }
class X& class X::operator=( const class X& ) { /* ... */ }

class X *xp = new class X():

// an explicit invocation of conversion operator
class B *bp = xp->operator class B *():

// an explicit constructor is required
class X x = *xp + class X (1.2):

In a sense, by breaking name-space compatibility, C+ maintains C’s legacy of
lexical elegance. '

Certain small incompatibilities are the result of deliberate, often difficult,
decisions. They are not made lightly, and in general reflect a trade-off between
breaking compatibility with the older language or losing valuable functionality. A
case in point is the scope of enumerations declared within a class type.

In C+, enumerations are local to the class in which they are declared.
Private and protected enumerations are encapsulated as are the other private and
protected members of a class. For example,

class ZooAnimal {

friend feedingHours( ZooAnimal& );

protected:
enum Status { ONLOAN, ONDISPLAY };
Status status;

' /] ..

class Bear : private ZooAnimal {
protected:

ZooAnimal::status;
public:

isOnDisplay();

L

/[ ok: these are permitted access to ZooAnimal::ONDISPLAY
Bear::isOnDisplay() { return( status == ONDISPLAY ); }

feedingHours( ZooAnimal& z ) {
if ( z.status == ZooAnimal::ONDISPLAY )
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/[ error: these are not permitted access to ZooAnimal::ONDISPLAY
class TeddyBear : private Bear {
friend playingHours( TeddyBear& );
public:
isOnDisplay() { return( status == ONDISPLAY ); } // error

}

playingHours'( TeddyBear& t ) {
if ( t.status == ZooAnimal::ONDISPLAY ) // error

} / ..

In C++, each class maintains an associated scope. Members within that scope
may be referenced directly using the class scope operator. ZooAnimal::ONDISPLAY
accesses the element ONDISPLAY within the scope of ZooAnimal. The global name
space is not cluttered with element names only of interest to ZooAnimal and its
derivations. The possibility that including a new class containing an enumeration
will cause name collisions which break existing code is eliminated.

There is nothing analogous with regard to the C struct. There is no permissi-
ble syntax to allow access of elements within a struct, if structs in fact maintained
their own scope, which they do not. Of course, in the draft proposed ANSI C stan-
dard!®), enumerations declared within a struct assume the same scope as that
enclosing the struct. What other meaningful choice is there in C?

5. A New Language and A New Way to Program

Throughout its evolution, users of C+ have influenced its definition. Various
features have been added to the language as a direct result of user feedback. Obvi-
ously for many of its early users, this ability to help move the language in a direc-
tion that made solving their problems easier was a real boon. Others, who've never
suggested a change, benefit more indirectly as the language evolved to better meet
specific needs that have occurred in real development.

The rule of thumb to date has been that requests for extensions to the
language must result from a genuine need encountered by two unrelated users in
trying to implement solutions to real problems. This has meant that changes in the
language have tended to be designed to provide a better way of doing something
people really have wanted to do. Once a feature or ability is requested, a process is
undertaken to understand how the change fits with the existing language, to apply
theory and engineering approaches to determine a clean solution and finally to
provide a prototypical implementation to test the applicability of the solution to
the original problem. Some enhancements to the language have resulted from
requests for feature additions which would make particular classes of problems
easier to solve. Others came from what were initially reported as bugs in the
implementation. A few others resulted from natural extensions of existing
features in the language. Here are some examples:

e Prior to Release 2.0, the base part of a derived class could only be initialized
with the specified arguments of its constructors. An attempt to initialize it
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with another base class object resulted in a compile-time type violation. For

example,

class Base {

public:

Y

Base( int ):
Base( char *):

class Derived : public Base {

public:

k:

/[ ok

Derivedé inti):(i){}
Derived( char *s ) : (s) {}

// not ok prior to Release 2.0

Derived( Base& b ) : Base(b) {}:
Derived( Derived *d ) : Base(*d) {}:

/] -

One source of this change came from an active user of C++. The argu-
ment was that object with object initialization was permitted for non-derived
and member class objects. In these cases, a default bitwise copy was applied.
It was only in this case that bitwise copy was not being applied. The argu-
ment was not theoretical, he claimed; his application needed this.

A second source of this change came from problems with default bitwise
copy itself. (Bitwise copy has been replaced with memberwise initialization
and assignment. A discussion of this can be found in [41)

e Prior to Release 2.0, the order of initialization of member and base classes was
undefined. This order is now fixed. (A discussion of this can be found in [41)

One impetus for this change was another active user of C++. He was
speaking about extending his current work to incorporate multiple inheritance
during an internal AT&T C+ user group conference. There was, he said, one
obstacle he saw no solution to; that is, the undefined initialization order. His
application allows for arbitrarily complex user-defined class types to be
written out and read from disk. To insure the integrity of this process, the
order of initialization must be guaranteed.

A second impetus for this change comes from the proliferation of C++
compilers. Without a specified initialization order, uniformity across imple-
mentations cannot be guaranteed.

A particularly interesting example of the pragmatic basis for the evolution of
C++ is the design of type safe linkage.m We had received several related concerns
about the existing mechanism for overloading functions. The solution which
emerged came to provide more than a simple fix to these problems. As alternatives
to the existing mechanism were discussed and dismissed, the ultimate solution
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evolved in such a way as to provide a natural and useful inter-module extension of
the type checking features of C+. Beta users of this new type safe implementation
report finding latent bugs in existing software. Incorrect function references
between files which had previously gone unnoticed were now being caught.

Again, these advantages come at some cost. Here the issues are not for the
implementation, but for our users. Because C+- is a new language, the implemen-
tation tends to be less stable than compilers for older languages. Documentation
tends to be scarce and often incomplete or out of date. Because C+ provides
support for new approaches to programming, new ways of organizing develop-
ments and designing programs are evolving. This results in users getting started
and moving forward while a culture and common wisdom is still being developed.

Conferences such as this one, and publications of user experiences have begun
the process of creating a C++ style. Tutorials and papers at this conference have
ranged from introductions to C+ to techniques for advanced uses of the language.
With time, these ideas will gel into a set of conventional approaches. Until then
users are left more on their own than in other, more established languages. Infor-
mal mechanisms for spreading these notions have been surprisingly effective. The
C+ netnews group (comp.lang.c++) has turned out to be a simple mechanism for
quickly disseminating statements about what the language says and for discussions
of what techniques are useful. More formal mechanisms are also beginning to
appear. Many C++ books are either now hitting the book stores or will appear
within the next six months. A C+ Newsletter is rumored to be in the planning
stages and formal training courses are now available from a variety of vendors.

Internally, we have initiated a C+ user group which acts as a focal point for
information about C+. We publish a more or less bimonthly newsletter which in
addition to details about availability of software, includes a column focused on
C++ technique. Additionally, we have put in place a set of people to help our user
community. We have a hotline for questions about C+ as well as C++ consultants
who work closely with specific projects participating in design discussions, provid-
ing suggestions for better ways of exploiting C+, and providing a general C++
resource to project personnel. As we develop new class libraries, in addition to the
traditional UNIX System manual pages and tutorial material, we go out to the pro-
jects to present the new classes and discuss ways of using them within the user’s
application. Each of these activities is helping us understand useful ways of
applying C++ to real world applications and is allowing us to help shape and
subsequently document the ways in which C++ is being used in practice.

Perhaps most intriguing about the use of C++ in substantial development pro-
jects is the potential for the evolution of new styles of programming organization.
In the simplest case, our experience already has been that C++ really does encourage
the hitherto elusive goal of concentrating on upfront design as opposed to leaping
directly into implementation. Several projects have reported that they have found
it natural in C+ to start with the fundamental classes for the application, thus
setting the overall design in place early. Related to this, has been a shift in
organizing the staff on these projects. Several of our projects have been able to
assign relatively experienced staff to design and implementation of the key classes
for the application and been able to use more inexperienced people to develop
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application code based on these libraries. This is giving us the ability to bring peo-
ple on board more quickly, but also giving them the opportunity to concentrate on
understanding the application before having to deal with the intricacies of the
implementation.

As we look further to the future, we see even more pervasive changes in
development organizations. As C+ libraries proliferate, we expect to see dramatic
reductions in the amount of new code required to solve a particular problem. For
simple, but uncontrived, test cases, we have seen code reductions of as much as
four to one to implement the same functionality in C++ rather than in clélIf this
scales and holds even to a two to one reduction, we should be able to cut develop-
ment staffs dramatically for a given application size. Additionally, we expect the
modularity which C+ supports to allow us to subdivide problems more cleanly so
that the overhead of communications can be reduced via use of clean well thought
out interfaces. Both these forces should allow smaller application teams to be
formed. Smaller teams in turn will lead to more productive software develop-
ment. It is well known that current software development cycles are greatly com-
plicated by project size. Intuitively as software developers we know it from our
own experience: the larger the project, the more time is spent on project communi-
cation and ensuring consistency among the parts of the application. More for-
mally, even early studies!”] have borne out this increase in overhead with size of
project. If we can cut development project size, we can cut this overhead as well.

6. Conclusion

There are many reasons why any system and especially why any program-
ming language gets used. Our experience in supporting C++ for use on real develop-
ment projects leads us to value certain aspects of the implementation that go
beyond the actual features of the language. In the case of C++, we believe that its
portability, its compatibility with C and its pragmatic evolution have been funda-
mental in its rapid and widespread user acceptance.
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. NAPS - A C++ Project Case Study

C. Berman
R. Gur

AT&T Bell Laboratories
Middletown, New Jersey 07748

1. INTRODUCTION

Object-oriented Programming (OOP) promises to be one of the major advances in software
methodology in the next decade. C++ is one of the first languages that offers a cost-effective
execution environment for OOP. Yet the decision to use C++ in a production environment
should be made on the basis of business rather than on "philosophical” considerations. The
costs, and therefore risks, incurred in software development are too high to use a new
language without an analysis of its costs and benefits.

Network Application Programming System (NAPS) is an application programming
environment written in C++ using OOP, and supporting forty programmers writing large
applications. End user products written using NAPS as a foundation will be coming to market
in the near term. In the proposal and request-for-funding stage for NAPS, C++ and OOP
were cited as means of implementing increased complexity with less code and greater
reliability, and therefore with lower cost and greater quality. When asked if we have achieved
these goals the real answer is, of course, both yes and no. This paper describes our
experiences building NAPS and its applications as a case study in the use of C++ and object-
oriented design and programming in a production environment.

2. NAPS DESCRIPTION

NAPS is a system written in C++, using OOP, supporting network management applications
on a multi-processor networked environment. NAPS uses a transaction model for
programming and provides a graphical user interface. Using UNIX* System V Release 3, X
Windows V11 and INFORMIX** as its current software base, NAPS provides a stable
software interface to application programmers during a period of expected changes in the
base software.

A single object hierarchy provides base objects for inheritance in applications. Part of this
hierarchy is shown below.

3. PROJECT HISTORY

NAPS was prototyped in several phases using small groups of designers and programmers
over a period of a year before it was fleshed out into a production environment. This
prototyping had several goals. First to experiment with the technologies of OOP, windowing
systems, and networking, and to research existing designs in those areas. The second was to
translate the former into a design that could be easily learned and utilized by a larger group of
programmers. The common part of the system to be used by all applications was called the
platform. Finally the facilities of the platform were compared with application feature
requirements to ensure that all features could be implemented.

Over a shorter subsequent period of six to eight months, a second phase evolved NAPS from
a prototype to a production programming environment. The prototype objects were
formalized into an architecture description and object descriptions. In parallel with this

* UNIX s a trademark of AT&T
** INFORMIX is a trademark of INFORMIX Software, Inc.
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Figure 1. NAPS Class Hierarchy
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activity was the setting up of a development environment providing the necessary compilers,
debuggers, source code control, and problem tracking facilities. The prototype was then
substantially reimplemented to meet the formal specifications. A subset of applications was
implemented simultaneously with the platform to provide a sanity check from the application
point of view. A skeletal "NAPS Developer’s Guide" showed how to write sample
applications using the NAP objects. At the conclusion of this phase, a subset of the NAPS
platform, along with the development environment and how-to documents were made
available to the development population at-large.

In the following eight months to the present time the cycle ‘of applications development and
testing has been in full swing. New platform features are being developed in parallel.

4. PROTOTYPING

Prototyping was an invaluable tool for testing out concepts and technologies in a small and
risk-free environment before committing to them in a larger and therefore less flexible setting.
During the course of the prototyping period several object-oriented systems both in C++ and
in other languages were investigated.

4.1 The First C++ Program

The first small prototypes involved three programmers initially testing C++ itself, and loosely
translating object-oriented designs from Smalltalk-80!!) to C++ and SunView!? on Sun 3
workstations. A month of coding produced about 5000 source lines resulting in a single
process showing a graphical representation of a network and visually simulating network
control. The participants were new to C++, but agreed that the learning experience was
relatively painless coming from a C language background, and that this new language added
great power to C while seeming to add little run-time penalty. A second observation was that
the C++ language/UNIX environment had very fundamental incompatibilities with the
Smalltalk-80 environment: Smalltalk-80 is interpreted, not compiled; it runs in a single
address space, not in the multiple address spaces of UNIX processes; it is dynamically
extensible, not statically linked. Herein lies one of the challenges of designing UNIX-based,
object-oriented systems in C++: tapping the power and elegance of the interpreted object-
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oriented systems in an efficient implementation that runs under the UNIX Operating System.

4.2 The OOPS Based Prototype

Before the next iteration of prototyping, we acquired the Object-Oriented Programming
Support (OOPS) packagel®.. OOPS provides an implementation of a portion of the Smalltalk-
80 object hierarchy in C++. For the prototype team this was like getting the answers to the
test questions at the end of the book! In addition to providing the Collection hierarchy
and Class system, OOPS was like a textbook in C++ techniques for operator overloading,
static initializations of lists. It also had useful documentation including UNIX-style manual
pages for many of the objects.

The next user-interface prototype was based on the OOPS object hierarchy. It made use of
its class identity facilities, such as Object::isaA() and Object::isKindOf(), which
respectively identify the Class corresponding to an object instance, or whether an object is a
instance of a derived class. Other features used from OOPS were the ClassDictionary,
storing and reading in of objects, and the rich set of Collection classes. The time span to

complete this prototype was also approximately a month, and resulted in about 8000 lines of
source code. »

4.3 The Client/Server/ Transaction Prototype

The last prototype was greatly increased in scope. It was to encompass a multi-process
software architecture; perform real, not simulated, network control; and support discrete,
packageable user commands called "transactions”. A team of 10 programmers worked two
and a half months to design and implement a system that would approximate the performance
of the target end-user system.

In moving out of the user interface arena and into a distributed client/server process
structure, however, there were fewer sources of object-oriented design to draw from. Some
designs changed the semantics of the language, such as a C++ member function call to
sending an Inter-Process Communication (IPC) messagel), or defined new languages to
specify message interfacesl). With the C++ version in use, however, this involved changes to

the translator itself or using an unsupported language, and were rejected as strategies for
NAPS.

Another question that came into play when dealing with multiple processes was whether
objects should be passed in descriptive form from one process to another. Like Smalltalk,
OOPS provided through its Object: :readFrom() and Object::writeTo() functions and
ClassDictionary object the ability to read or write object descriptions to or from a file
stream. The file stream could easily have been extended to a network device or IPC
mechanism. However, the sending of objects between processes for the prototype was
rejected both for performance reasons: it seemed unsuitable for real-time message passing,
and because it required a run-time class system which was not planned for NAPS. Instead,
only a Message object could be passed between processes. For this concept, of course,
many non object-oriented designs were available to draw from. One source, that was
available was the Sun RPC/XDR package!® for server applications and processor-independent
data formatting. The Message object could encapsulate the machine independent data
formatting as well as its contents. These Message objects must be compiled into both
sender and receiver processes.

The application abstraction was a Transaction object that resided in a
TransactionServer, and that was input-driven. Invoked as a result of a user command, it
would make a series of low-level requests to various other servers. While waiting for the
result of these requests it would return control so the server could respond to new
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commands. A state variable allowed the Transaction to continue when it was called with
the result of the pending request.

The user interface, derived from the first two prototypes was the end client for the
TransactionServer. The graphical and user interface objects were ported from SunView!?]
to the X-ray Toolkit”! running on X Windows Version 10.4.

4.4 Prototype Results

The final prototype was important not only for the design validation, but for the testing of the
interaction among a group of ten people programming inter-dependent objects.

In most ways, the programming environment was like a traditional C language environment.
A central node contained the most recent version of the headers and libraries containing the
class definitions. It became obvious immediately that the dependence on header files was
much greater than in C. This has been noted in single person efforts!®. More of the structure
and design of a program was contained in header files in C++ than in C. With software in
flux, programmers were more likely to conflict with each other through the headers. It
seemed that two or three was the maximum number of people that could work together at one
time in a single directory tree.

In the review of the application development environment, it came out that the transaction
programmers were unhappy with the idea of event-driven programming. Existing subroutine
libraries had to be taken apart to handle the state machine. The more conventional
sequential programming model was more understandable and adaptable to existing software.

5. METHODOLOGY

After a working prototype was constructed the next task was to try and adapt it to a larger
community of programmers. Since the introduction of a new language was a major risk, we
looked for a conservative approach to the design and coding standards. With an eye towards
the warnings strewn through the C++ literature about how dangerous C programmers are
when they are let loose in C++ we stayed with more "C-Like" syntax, for example, staying
away from operator overloading, and using pointers instead of references.

The platform was to be implemented first. In addition to providing functionality, the
platform code would be a coding model for the application designers and programmers who
were new to the language. The applications that followed would be extensions of the platform
code.

5.1 C++ Programming Style

Style considerations in C++ were important to the success of the project. Strict discipline,
with respect to style, needs to be used in order to make efficient use of the C++ programming
language, especially for new C++ programmers.

5.1.1 Resource Allocation in Constructors Constructors in C++ can execute code.
Constructors cannot return error codes. This is a problem however when errors are
encountered in a constructor that does non-trivial initializations. How do errors propagate
back to the caller?

In NAPS we mandated that constructors could do things that had fatal errors, i.e. errors that
would cause the termination of the process. These include errors such as memory allocation,
window allocation or other allocation that would cause the system to fail. However, non-fatal
errors could not be produced in constructors. This allowed programmers to call new of an
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object and if the call returned then the program would be guaranteed the object was allocated
without checking for an error. This meant that constructors could not do initializations that
would result in non-fatal errors such as opening a file. These were done in member fuctions
that returned error codes.

5.1.2 Recursive Headers The use of recursive headers makes programming in C++ easier.
Using recursive header files programmers just need to know the name of the header file
containing an object. Without recursive headers all objects and recursively all sub-objects
must be included.

There are usually two ways to implement recursive headers. By using a conventional system of
preprocessor ifdefs and defines such as the following:

#ifndef MYOBJECT H
#define MYOBJECT_H

class header definition

#endif

The second method, used by NAPS, is to use the nmake!® preprocessor that recognizes
multiple includes and only uses the first include. Recursive headers were mandated in NAPS
and proved to make the programming task much easier.

5.2 Documentation

Documentation of objects was a key aspect of the project. The interfaces between objects is
defined in NAPS by an interface document, similar to a UNIX style man page. This allowed
easy update and maintenance of object interfaces. It is important to note that the initial
strategy was to design the objects and write the interface documents first and then code the
objects. Then if any interfaces changed as a result of the coding the plan was to fold those
changes back into the interface documents.

This initial plan evolved into: define the headers for objects, review the headers, code the
objects and then write the interface document. This strategy saves time and allows room for
reviews. An example NAPS interface document for the SysLog object is presented at the
end of this paper.

6. NAPS PROGRAMMING MODEL

NAPS provides these basic units for application development: services, transactions, and user
interfaces.

6.1 Services

Services provide the basic functions required for servicing end-user requests such as database
records, network control, or real-time input using a client-server model. Services are
implemented in server processes, and are accessed by clients using Service objects, which

- implement message protocol or IPC internally. Servers also allow event-driven and timer
activated actions.

A service programmer creates an object derived from Server whose pseudo-code is as
follows:
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Figure 2. NAPS Programming Model
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class Server : public Object {
// private stuff
protected:
// stores connections to clients
IpcAccount* clientList [NUMBER_OF_CLIENTS] ;
public: .
// advertises a server name on the network
int advertise(char* advertiseName);

// associates request code with a message and function
int registerService(int code, Message* msg, RPC_FUNCTION func);

// waits for inputs and dispatches request messages
int waitForInput(int timeout =-1);

}i

as well as an object derived from Service object:

class Service : public IpcAccount |
// private stuff
protected:
int connectTo(char* serverName);
int sendMessage(Message* msg);
Message* receiveMessage();
public:
Service(int fileDescriptor);

}i

However the Service provided to the client shows only application-specific requests. No
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message protocol is revealed to the client.

class DataService : public Service {
// private stuff
public:
status closeCircuit(char* circuitName);
status openCircuit(char* circuitName);
status rerouteCircuit(char* circuitName, int oldRouteId, int newRouteId);
NetworkService(char* networkName);

}:

6.2 Transactions

A transaction groups together low-level Service requests into an end user level command
similar one that would appear in the product user manual. Transactions lack the full flexibility
of a server in control, but provide a sequential programming model that a Server lacks. All
NAPS transactions are derived from a base Transaction object:

class Transaction : public Object [
// private stuff
public:
int run(Collection* argumentvValues);
int exit():
int deferSignal();
int restoreSignal();

void outputRecord(Collection *outputValues);
void setOutputFormat(char *formName);
}:

Each Transaction is like an autonomous program having its own input arguments, start,
exit, and software interrupt handling routines. Its output is displayed record-by-record using
a form name. Forms are also created by the transaction writer using a form language. Many
transactions are grouped together into Transaction Server processes.

6.3 User Interfaces

User interface processes invoke transactions on behalf of users. They interpret forms, send
transaction requests to transaction servers and display transaction output. All current user
interfaces are part of the platform. In the future applications may develop their own user
interfaces using the display library objects.

7. DEVELOPMENT ENVIRONMENT AND TOOLS

The C++ development environment is an incremental, not sudden, change from a C language
development environment. Other than cfront, the C++ translator, no other new tools are
strictly necessary. The NAPS development environment is transitional in that it is has a thin,
growing layer of tools for C++.

7.1 nmake

As stated earlier, C++ forces greater reliance on header files than C. The UNIX tool make
does not provide implicit header dependency rules. Additionally, to preserve the data
encapsulation of class definitions NAPS headers contain nested includes of other header files.
Nmake and its associated preprocessor simplify the bookkeeping of these nested headers both
by automatically eliminating duplicate includes, and by searching through header files itself to
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determine dependencies. An nmake Makefile for a C++ file is far easier to read than a
corresponding make Makefile, and more reliable than some of the other methods such as
Imake for maintaining up to date object files.

7.2 Debugging

Source level debugging is possible either with dbx in a BSD environment or sdb, but
requires the user to be familiar with the C++ to C name translations. Sdb++, a C++
enhanced version of the System V sdb, is a welcome convenience since it knows some of the
C++ syntax and naming conventions.

7.3 Needed Tools

NAPS programmers work without a browser. No tool shows the inheritance hierarchy of the
system, or all the members of a certain class including those of the parent classes. This has
the psychological effect of limiting the use of inheritance because it can’t be seen easily on a
terminal or printout when looking at class definitions. The programming environment should
encourage the definition of deep inheritance trees with the maximum reuse of member
functions of parent classes. Browsers and browser-like tools would make inheritance more
accessible and easy to use.

7.4 Alternate Run-Time Strategies

The price of the greater efficiency of a compiled language C++ when compared with Smalltalk
is a longer compile/test/debug cycle. The compile-time behavior of C++ is helpful during the
initial coding phase of an object. It forces type-checking and catches many errors before the
program is ever run. During debugging however, each small incremental change requires a
long re-link, and tweaking the base objects can force long re-compiles and re-links. This
problem is certainly not peculiar to NAPS, or C++ itself,!% and is due both to the potentially
large size of each object file and of each executable. Below are some areas for investigation
in creating a better environment for C++ programming.

7.4.1 Shared Libraries UNIX System V Release 3 supports shared libraries of C code.
Shared libraries are useful in decreasing object code size, and in allowing wholesale updating
of system software libraries for applications without re-linking. The NAPS project has yet to
devote the effort to making a C++ shared library, but it is not considered to be a difficult
technical problem. However shared libraries, while they reduce the run-time size of a
process, are restrictive in a debugging environment. In System V breakpoints cannot be set
in a shared library, and stack traces don’t work. Shared libraries in their current form are
probably most useful for end-user software distribution rather than for software development.

7.4.2 Dynamic Loading of Objects Dynamic loading of objects allows objects to be compiled
incrementally and brought into a running process when it is referenced. The Andrew
System('!) has implemented this for several processors including VAX*, Sun, and IBM RT.
In addition to providing a possible solution to the compile time problem it is potentially
powerful from an application design point of view as well.

8. TRAINING
8.1 Learning C++

An implicit expectation of the C++ language is to have an easy transition from C both in
software reuse and "personnel reuse". In the near future, however, any project using C++ has
to deal with the language learning curve. For example, on our project out of forty
programmers not one had prior experience with C++. Newcomers to NAPS were handed the

* VAX is a trademark of Digital Equipment
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C++ text book!'Z] and sent to a one week course. In retrospect, the language itself was not as
much of a problem as we might have feared, because a lot of the NAPS code "looked like" C
because of the style guidelines.

8.2 Learning Object-Oriented Design

While the concept of data-hiding is very strongly enforced in the corporate R&D
environment, other object-oriented concepts such as inheritance are much harder to grasp.
Most application programmers did not define their own class sub-hierarchies but preferred to
program in straight-line code and use predefined classes. As stated above, some of this is to
be blamed on a primitive development environment that makes it difficult to see the
inheritance hierarchy. More importantly, however, is the lack of object-oriented design
material currently available for C++. This situation will undoubtedly improve over the
coming years as more literature in C++ is published.

9. LANGUAGE ISSUES
9.1 Virtual Destructors

In the NAPS transaction system and user interface library, heterogeneous lists of related
objects are maintained and deallocated using pointers to a common base class. Graphics
objects such as in the following hierarchy are a common example of this construct.

Object
DisplayObject
DisplayBitmap
DisplayShape
DisplayLine
DisplayPolygon

The classes derived from DisplayObject allocate additional resources. However, when the
following code is executed:

DisplayObject* op = new DisplayBitmap;
delete op;

only the base DisplayObject destructor is called, leaving dangling resources if any calls to
delete are required in the derived destructor. The most glaring example of this behavior is a

"memory leak" caused by not freeing some memory as a result of the correct destructor not
being called.

A virtual destructor allows the correct derived class destructor to be determined and called at
run-time. This works the same way as other virtual functions in C++. The example below
shows two related classes with a virtual destructor.
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class DisplayObject : public Object {
public:
// the destructor is declared virtual
virtual “DisplayObject():

}i

class DisplayBitmap : public DisplayObject {

public: ,
// all derived classes have virtual destructor
“DisplayBitmap();

}i

There are several strategies for using virtual destructors. The one we opted for in NAPS was
to declare the destructor for the base class Object to be virtual.

9.2 Task Library

The task library supplied with C++ is used in NAPS as a configuration option for Transaction
Servers. If transactions are to be invoked often, and require relatively few database requests,
there could be a performance improvement in not having to fork and possibly exec a UNIX
process. Nevertheless, the tasking system is not a reliable environment to debug programs
from scratch. NAPS Transaction Servers can be derived from a base class that runs in a
single-threaded mode, or forks and execs for debugging, but derived from a different base
class for production that uses the C++ task library. This is made possible by restrictions on
transaction coding to not use UNIX system calls or signals, and not use static data. The
member functions of the Transaction and Service class can be implemented either with
streams or task queues, signals or task messages.

Unfortunately, the switch to the task library often brings up problems that would not occur in
a fork/exec situation such as stack overflow, which does not occur on a single UNIX process
stack, and "memory leaks" on task termination which would be cleaned up automatically on
UNIX process exit. These problems are handled in NAPS, but nevertheless, switching from
a process based transaction model to a task based one is time consuming to debug for the
application programmer.

9.3 Exception Handling

One opportunity for reduction of code si: that NAPS has not attempted is an exception
handling package. Although NAPS has . jects to report error conditions, it does so by
reporting the line number and a text strin; lescribing the problem. Much of the transaction
code reads like the following:

if ((result = devicevView .Juery(name)) == ERROR)
// weport error
return ERROR;

The above method of coding is tedious and error prone. Most production code has close to
half of the non-commented source lines devoted to catching these error conditions. An
elegant solution to this problem is to provide member functions in the task objects that are
called for a given exception. This would mean that most application level programmers would
never have to check for error returns from functions. Instead they would inherit an exception
handier from the base Transaction class to do application-specific cleanup.

146 1988 USENIX C+- Conference



9.4 Problems with Software Reuse

Although software reuse is a commonly cited advantage of object-oriented programming, the
use of a single object namespace has negative influence on the use of libraries of objects in
C++ from outside sources. The object namespace problem stems from the early work in
object-oriented systems. where all programming was done within a single namespace.
Libraries of objects cannot be used in a process unless the names of the objects in the library
do not conflict with any object names within the process namespace.

One price projects using C++ will pay until the language matures is the lack of available
sample source code. One of the best features of UNIX has always been the ability to browse
through the source code at will to look for examples. C++ just does not have that body of
code yet. In fact, C++ makes it harder to have a body of available code to look at because of
the various coupling mechanisms that inheritance forces. However, several publicly
distributed source packages such as OOPSP?, Andrew!!!) and Interviews!!¥ have been valuable
sources of OOP code. None of these packages has provided objects that would fit into our
class hierarchy without modification. C++ comes standard now with String and task
classes. These packages do not integrate into our system because they make their own
assumptions. For example the standard task library prints errors to standard out, but in
NAPS there is no standard out and the only way to provide error output is to use the NAPS
SysLog object.

9.5 Field Maintenance

Since private object data is defined in the header files, and determines an object instance’s
size, binary compatibility between different versions of NAPS will be more difficult to
maintain in C++ than in a C language product. A one byte change in a base class of NAPS
will render the entire release incompatible with an earlier version.

9.6 Callbacks vs Command Objects

The first version of the User Interface class hierarchy was a set of classes that interfaced with
the X Window Xt toolkit. These classes implemented an event driven control mechanism for
these classes. The control portion was implemented via callback routines (i.e. routines that
are called when a specific event occurs) that were pointers to class member functions. These
were error-prone to program because the syntax was difficult, and it required disabling type-
checking. Also virtual functions, whose addresses cannot be taken, could not be specified as
callback functions.

The new version of the User Interface class hierarchy uses a Command class for handling user
driven actionsl!l. The callback mechanism is handled instead by a virtual Command: : doIt ()
member function. Each derived doit() makes use of the instance data in the derived object
rather than using arguments.

9.7 Multiple Inheritance

The most recent version of C++ has implemented multiple inheritance. Multiple inheritance
was not considered when NAPS was being prototyped and implemented, since C++ did not
support it at the time. In looking back over the the NAPS Class hierarchy, there are a few

key places where it would have been easier to make use of multiple inheritance rather than
single inheritance.

10. METRICS

In this section we present some metrics that are valid for the current state of NAPS. Since

NAPS is not completed yet these are preliminary figures and must be taken in the context of
the comments in this paper.

The total number of classes in NAPS is currently about 350 and growing. The number of
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classes per process ranges from a low of 22 to a high of 135. On a 3B2 an average
Transaction Server contains 74 classes and has a static size of 190 Kbytes. An average Server
contains 38 classes with a size of 125 Kbytes. Both of these sizes are about 25% greater than
what they should be because NAPS is still compiled using C++ 1.2 options which makes all
class virtual tables static in each file. Version 2.0 should bring an automatic reduction in
process size. Below are some non-commented source line counts for NAPS sub-systems.

Figure 3. Non-Commented Source Lines in NAPS

Sub-system | Headers | Code
Platform 4593 61235
Database Applications 1426 8808
Network Application 1 548 19744
Network Application 2 368 4743

Total 6935 94530

This translates into an average of about 300 lines per class throughout the system.

11. EFFECTIVENESS OF OBJECT-ORIENTED PROGRAMMING IN C++
11.1 Graphical User-Interfaces

Among the different software applications, graphical user-interfaces have perhaps the most
examples of OOP in both academic or commercially available systems. Some of these include
Smalltalk-80l"), MacApp[**l, Andrew!'V, InterMedial'”, and InterViewsl!?. With this depth of
sources, it is easy to model the problem ourselves using OOP, or stated another way, more
difficult to design without OOP.

11.2 Working in a Non Object-Oriented World

The strength of the C++ language is its ability to implement object-oriented facilities on
conventional software and hardware architectures. Application designs such as NAPS have
the same requirement. The lower levels on which NAPS is built such as the operating
system, relational database, windowing system, and perhaps previously written applications
code are not object-oriented. One of the first decisions in coming up with a design was to
decide which entities should not be modeled as objects. NAPS has non-object
representations of many entities. For example, fundamental types such as int, long, and
double are not defined as instances of classes. The database contains tables and records
rather than objects. Tables and records are represented using a data abstraction model, in
which load and store operations are virtual and redefined for each table type. Existing
application code also made it difficult to use a Network Device object from which
applications would inherit specific models.

11.3 OOP as an Implementation Tool

Although NAPS has not been modeled entirely with objects, data encapsulation and
inheritance are powerful implementation techniques even when used in a portion of the
system. The Server and Transaction systems make heavy use of inheritance, and
guarantee that the rest of the system, which is largely derived from them, will follow the same
low-level protocols.

12. CONCLUSIONS

Unfortunately we do not have the "magic metrics” in hand to show that the job has been done
better in half the lines of code. NAPS still suffers from many of the common problems
associated with other efforts its size. However, NAPS is a more modular and extensible
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system under C++ than it would have been using C. The language requires more human
discipline at the design level and less at the programming level. This benefit is seen especially
in a larger setting. On the negative side NAPS cannot be shown to be a significantly smaller
system than its predecessor. Like several other implementors in C++ we feel that it is the
“better” way to do things while we lack hard measurements to back up our case. We have
found, however, that C++ is a reasonable platform for programming of real, production
software in a medium size environment.
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NAME
SysLog - System Log

SYNOPSIS
#include "SysLog.h"

typedef long IMask;

extern SysLog* Sy;
class SysLog : public Object {
public:

void setMask(IMask mask);
void  print(IMask mask, const char * moduleName, char* format ...);

SysLog();
SysLog(IMask mask);
, ~8ysLog();

DESCRIPTION
SysLog is an object that takes "printf(3)" style format specifications and arguments, composes
the resulting text and stores the result into a log file. A mask is compared against a global
mask to determine candidacy for logging and to determine which types of messages to be
logged.

There is usually only one SysLog per process. The global SysLog pointer, *Sy, is used to
access the global SysLog. All NAPS processes have a preallocated SysLog pointed at by Sy.

PUBLIC MEMBER FUNCTIONS
void setMask(IMask mask)

Set the mask for this SysLog. There is normally only one SysLog object per process.
This routine sets the mask for this process. The list of possible values for mask and
their usage is:

SY_ENTER entering a function or process
SY_EXIT exiting a function or process
SY_NEW allocating memory
SY_DELETE | deallocating memory
SY_INFO general information
SY_ERROR | error

The default setting for the mask is all possible values enabled.
SetMask should only be used for debugging a process. In a running system the mask will

be set by an external process. The mask can be changed dynamically in a running pro-
cess.

void print(IMask mask, const char * moduleName, char* format ...)
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Outputs the given arguments into the default system log. The mask is and’ed with the
global mask and if the result is non-zero the message is output. If the result is zero this
functions returns without outputing the message.

The define FILEID should be used for the moduleName argument. This define expands
to the current filename and current source line number.

If Sy is a pointer to a SysLog object and i is an integer and str is a string then the follow-
ing is legal:

Sy->print(SY_DEBUG, FILEID,
"This is a variable %10x with a good string %s", i, str);
CONSTRUCTORS/DESTRUCTORS
SysLog()
Initialize a SysLog object with default values. There is a constructor of this type called at
the beginning of any NAPS process to initialize the global Sy pointer.
SysLog(IMask mask)

Initialize a SysLog with the given mask.

~SysLog()

Delete a SysLog.

USAGE
include file  SysLog.h
library SysLog.a
module platform/SysLog
SEE ALSO :
NAPS: System Logging Manual
* WARNINGS

Syslog cannot be called in object constructors that may be static.
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Data Level Parallel Programming in C++

Thomas M. Breuel *

Abstract

“We describe the design and implementation of a programming system for data level
parallel programming in C++.

C++ is particularly suited to implementing data level parallel programs because it
allows us to extend the syntax of the language to new data types, because it provides
operator overloading, and because it allows us to use a reference counting memory al-
location scheme. Furthermore, C++ encourages the use of abstract data types. which
makes it easy to provide efficient implementations of the programming system with iden-
tical software interfaces on both serial and parallel machines. To allow us to formulate
algorithms largely independent of the specific implementation of the communication
primitives for specific parallel machines, we take advantage of C++ function and oper-
ator overloading. )

We present examples of data level parallel programs written in our embedded lan-
guage to demonstrate the expressive power and elegance of using C++ for data level
parallel programming.

A serial implementation of our language exists. We compare it to other data level
parallel languages such as APL, *Lisp and C*. We will also discuss a number of idioms
and techniques that we used, and point out issues in C+ + language design that came
up during the implementation.

We see our work as an interesting case study in using C++ as a tool for building
embedded programming languages, and as providing a useful and practical tool for data
level parallel programming. We are currently working on improving the serial imple-
mentation and writing a parallel version of the embedded language for the Thinking
Machine Connection Machine.

1 Introduction

With the advent of fine grained SIMD (“Single Instruction, Multiple Data”) machines has
come a renewed interest in a form of programming that has come to be called “data level
parallel programming”, but whose origins can be traced back to languages such as APL
(Ive62]. In particular, for the Connection Machine, a SIMD machine with a hypercube
interconnection network and up to 2'® one bit processors, several libraries and programming
language extensions exist to allow a programmer to make use of the hardware.

. From our point of view, these existing programming systems have several major disad-
vantages. Low-level libraries such as the Paris library[Thi86a; for CommonLisp or C are too
inconvenient to use for the application programmer. Language extensions for CommonLisp
and C, called “*Lisp” and “C*”[Thi86c|[Thi86b!, respectively, are non-standard and rely to
a significant extent on vendor-specific hardware features.

‘Auth;t's address: MIT Artificial Intélligence Laboratory, Room 711, 545 Technology Square, Cambridge,
MA 02139, USA. The author was supported by a fellowship from the Fairchild foundation.
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Programming languages such as CommonLisp’Ste84; and C{KR 78, require language ex-
tensions to accomodate data types and operations for data level parallel programming be-
cause they either do not give the programmer sufficient control over storage allocation and
de-allocation to make efficient use of the limited per-processor resources on highly paral-
lel machines, or because their syntax is so inflexible that specifying parallel operations is
cumbersome and counterintuitive.

For example, if we wanted to introduce a quaternions data type (a kind of number that
can be represented by four real numbers) into CommonLisp, we could extend the syntax of
the language to make arithmetic operations on quaternions appear syntactically identical
to operations on, say, integers[ll. However, we could not avoid the run-time overhead of
type dispatching and of storage allocation and de-allocation every time we carry out arith-
metic with quaternions. Conversely, in C, we would have no trouble making sure that not
a single byte of storage gets lost; however, we would have to use function call syntax to ex-
press arithmetic operations on our quaternions and handle memory allocation/deallocation
explicitly everywhere.

The programming language C++{Str86!, a derivative of C, remedies these problems. It
allows the programmer to extend the existing syntax of the language to new data types,
and gives him complete control over all aspects of storage allocation and de-allocation. It
is therefore ideally suited to implementing a data level parallel programuning library.

Our primary goal has been to develop a useful tool for data level parallel progranuning
and to provide a system that encourages experimentation with new data level parallel
primitives. Qur approach has been influenced significantly by the design of the Connection
Machine. This is not only because we will be using our programming system to program
the Connection Machine, but also because the Connection Machine is the prototypical data
level parallel machine.

2 What is Data Level Parallel Programming?

Data level parallelism is a restricted form of parallelism in which (conceptually) different
processors carry out identical, independent operations on the elements of large, uniform
data structures(see also{Thi86b/[HS86]). An example of a data level parallel algorithm is
the component-wise addition of two vectors.

Data level parallel algorithms are easier to design than general parallel algorithms be-
cause they do not require any explicit synchronization. Rather, synchronization is implicit
at the completion of each primitive operation. The existence of a good data level parallel
algorithm to solve a particular problem is a problem intrinsic property; data level paral-
lelism is not a panacea for parallel programming. It is, however, one of a number of useful
conceptual tools in the design of parallel a.lgorithmsm.

A machine designed specifically for executing data level parallel programs is the Con-
nection Machine[Hil85][Thi87]. The Connection Machine is a fine grained SIMD machine,
meaning that a single instruction stream is broadcast to all the processors in the machine
and operates in parallel on data in each of the processors’ memories. In the CM-2, the
latest model of the Connection Machine, each processor is a bit-serial one-bit processor. In

IWith some difficulties. We find that the Common Lisp language is significantly flawed in that it dis-
courages extending the existing syntax and functions to new data types.

21 Other useful concepts are those of pipelining and independent branches of computations. These tend to
come into play at the level of larger functional units of algorithms than data level parallelism.
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addition, groups of 32 processors share a single 32bit floating point co-processor.

However, while a fine grained SIMD machine is perhaps the most obvious and straightfor-
ward design for a machine built to execute data level parallel programs, it is not necessarily
the most economical. In particular, when the data types to be used in data level parallel
algorithms are larger than the word size of the individual processors, it is probably more
efficient to use a smaller number of more complex processors and simulate several “virtual
processors” with each physical processor, in order to give the programmer a programming
model of a large uniform machine. Once virtual processors are used, an implementation of
a data level parallel algorithm can benefit further from a MIMD architecture because oper-
ations in individual simulated processors may take different amounts of time, and a MIMD
architecture executing a data level parallel algorithm can defer synchronization until the
end of each data level primitive operation.

Data level parallel programming can also have significant benefits when used on vector

~architectures like the Cray series of computers, or, due to instruction caching and data
prefetch effects, even on conventional serial microprocessors. An extreme example of a
serial machine specifically designed to execute data level parallel programs efficiently is the
cellular automata machine (CAM) designed by Toffoli{Tof84](,

But apart from issues of efficiency, data level parallel programming also enforces certain
kinds of abstractions that are analogous to the use of operator notation in favor of index
notation in mathematics. Rather than operating on large collections of data by iterating
over index sets, data level parallel programming requires the use of operators that “operate
on all the data at once"l4l,

3 The Library

Regardless of whether a data level parallel algorithm runs on a fine grained machine with one
physical processor per data element, on a coarse grained machine with many data elements
per physical processor, or on a serial machine, we will use the following terminology. The
basic data structure of data level parallel programming is a “pvar” I, A pvar is a data
structure very much like a vector, i.e. a collection of items of identical type indexed by a
subset {0,1,...,n} of the integers. A “processor” is an element of the index set.

Each pvar has associated with it a length which specifies the range of elements of ele-
ments that take part in operations involving this pvar. Operations involving several pvars
check whether the pvars participating in the operation have compatible lengths.

Pvars come in several types that correspond to C++ data types. The library defines
the types pbool, pbyte, pshort, pint, and pfloat. It is guaranteed that each of the data
types pbool, pbyte, pshort, and pint is at least as large as the preceeding one in the list.
Furthermore, a pbyte is at least 8 signed bits large, a pshort is at least 16 signed bits large,
and a pint is at least 32 signed bits large. An element of a pint is guaranteed to be able

(1The next generation of CAM[TM85] will use 256 processors in parallel and is expected to execute data
level parallel programs that operate on individual bits with grid communication at speeds comparable to
the CM-2, at a fraction of the cost.

Ui This abstraction is certainly not a benefit that is exclusive to the use of data level parallel programming
tools. Index free computation over arrays has been the main attraction of the APL programming language.
Modern introductions to programming such as Abelson and Sussman[AS85] and modern approaches to
numerical methods as presented in Halfant and Sussman{HS87] encourage similar abstractions.

Blour terminology is similar to that used with the *Lisp language and APL programming languages.
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to hold the index of an element of a pvar. Corresponding C data types are provided under
the names Bool, Byte, Short, Int, and Float.
Pvars are declared and initialized as follows:

// pvar of length 0
pint vi;

// pvar of length 8
pint v2(8);

pvars can also be assigned and converted easily as follows:

// set every element in vi to 3
vi=3;

// convert apfloat to a pint
vi=pint(apfloat);

/! set every element in vi to
// its processor number
v2=address(8);

The contents of a pvar can be examined and changed using the set, ref, and print
member functions. (These member functions can even be used interactively in a debugger
such as gdb+).

x.print();

<pint: 3 19 2>
x.set(2,77);
x.print();

<pint: 3 1 77 2>
print£("%d\n",x(0));

3

Pvars can be used as components of structures, can be assigned to, and can be sub-
scripted like arrays. All the arithmetic and logical operations of the C++ programming
language have counterparts for pvars that operate componentwise on the elements of the
pvars. Pvars and scalars can be combined freely in expressions. A number of communica-
tion primitives to move data between processors are also supported. These are described in
more detail in Sections 5.3 and 7.2. Here are some simple examples:

struct pcomplex {
pfloat real,imag;
h

pcomplex operator*(pcomplex x,pcomplex y) {
pcomplex r;
r.real=x.real*y.real-x.imag*y.imag;
r.imag=x.real*y.imag+x.imag*y.real;

}

pfloat scale(pfloat x) {
float s=(x*x).reduce(op_sum);
return x/s;
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}

pfloat fiota(int n) {
pfloat x(n);
for(int i=0;i<n;i++) x[il=(float)i;
return x;

Two control structures are provided, “where(pboo!l) statement” and “all statement”.
These restrict operations on pvars occurring dynamically withing the statement to those
processors in which the pbool is TRUE, or all processors in the case of all. While these
constructs are useful on occasion, we encourage the use of compression operations (see
section 5.3) and the operator?: to replace them whenever possible.

4 The Implementation

The data level parallel programming system described here is implemented in GNU C+ +
iTie88; using the M4 macro preprocessor[KR77]. The output of the M4 preprocessor is a
set of C++ source files and header files. Programs using the data level parallel library do
not need to use the M4 preprocessor; they can include the header files generated by the M4
preprocessor using the standard C++ preprocessor.

All pvar data types (pbool, pbyte, pshort, pint, pfloat) are derived from a base class
pvar that implements allocation and deallocation and declares a number of virtual member
functions. An object of type pvar is actually just a structure containing a pointer to the
data and reference count associated with the pvar'®. We will discuss this in more detail in
Sections 5.1 and 6.2.

We used the M4 macro preprocessor to write code templates for classes of operations
such as “binary arithmetic operators” and instantiated these code templates for specific
data types and operators. This use of the M4 macro preprocessor reduced the amount of
work involved in recreating for pvars all the arithmetic and logical operators of C+ + that
work on scalars significantly. See Appendix B for an example.

The when and all control structures are implemented as C++ preprocessor macros.
Essentially, they have to modify a variable, the €SS (“Currently Selected Set”), before and
after executing a statement. They expand into the head of a complicated for statement.
This trick allows us to use the same syntax for these new control structures as for built-in
control structures like if.

5 Where C++ Helped

5.1 Per-processor Memory is Limited

Per-processor memory tends to be limited in data parallel programming. Efficient and
immediate reclamation of unreferenced data structures (“garbage”) is therefore very impor-
tant. Indeed, one of our main motivations for writing a data level parallel programming
language in C++ was that storage management in *Lisp, the data level parallel program-
ming language most commonly used at MIT, is very cumbersome. *Lisp cannot use the

(8] This implementation of reference counting is similar to the one described in Section 6.9 of {Str8s).
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CommonLisp garbage collection facilities to reclaim storage because garbage collections
would occur very frequently (due to the limited amount of per-processor memory on the
Connection Machine). The overhead of a invoking full Lisp garbage collection to reclaim
data structures residing in the Connection Machine’s memories is unacceptably high.

*Lisp attempts to solve this problem by providing a number of macros to be used instead
of standard Common Lisp special forms in an attempt to implement a form of mark and
release type memory allocation. This solution is, however, very unsatisfactory. Common
Lisp does not really support the notion of providing replacements for standard operations
like copy-on-return, assignment, or initialization, and the *Lisp user is forced to live with
two different sets of language primitives that interact in non-obvious ways. For example, to
define functions that use pvars as arguments or return a pvar, the *defun macro must be
used, otherwise the Common Lisp defun special form is permissible. To introduce variable
names that will hold pvars, the macro *1et must be used, whereas for non-pvar bindings,
the let special form is permissible.

*Lisp violates several of the principles of the Lisp programming language. It introduces
the notion that types are lexically associated with variable names'™, it uses ob jects with dy-
namic lifetime, and it requires the programmer to use explicit calls to memory management
functions for data structures that cannot be allocated on the stack.

In our implementation, we use reference counting for management of the per-processor
memory. A reference counting memory management strategy can be implemented transpar-
ently in C+ +—, without introducing new constructs or primitives foreign to the language. As
in the *Lisp language, the programmer is required to allocate and deallocate pvars explicitly
when they are used in contexts where the compiler cannot determine their lifetime easily.
However, as opposed to *Lisp, this is entirely analogous to the allocation and deallocation
of any other complex data structure in C or C++ and therefore does not break with the
conventions of the language.

5.2 Assignment by Copying is Expensive

Reference counting also allows us to implement shallow assignment. Shallow assignment
improves performance significantly on a serial implementation. However, one might object
that shallow assignment is a break with the conventions of the C+ + programming language
and may lead to un-obvious behavior from the programmer’s point of view. We have found
so far that in most cases shallow assignment can replace assignment by copying without
changes to the meaning of the program, since most operations on pvars will produce new
pvars anyway.

In principle it is possible to implement a “copy-when-needed” scheme that provides the
semantics of copy-on-assignment but avoids unnecessary copy operations. So far, we have
not experienced the need for this, and we fear that the overhead might be noticeable.

5.3 Machine Dependence of Communication Primitives

Data level parallel programming relies on a number of communication primitives[LLM™* 88]
[Thi86b]. Our library provides primitives for moving data around between different proces-
sors, implemented by the operator[], and for scanningls] and reduction oprations, imple-
mented by the member functions scan and reduce. The operator([] takes either a pbool

INote that optional declarations are lexically associated with identifiers even in Common Lisp.
(8] Also referred to as “parallel prefix”. Our terminology agrees largely with APL's.
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or a pint as an argument. When a pvar is subscripted by a pbool, a pvar of the same type
is constructed consisting only of those items stored in processors where the pbool is TRUE.
We refer to this operation as “compression”. When a pvar is subscripted by a pint, a pvar
of the same type is constructed whose length is the same as the subscripting pint, and in
which each element is selected from the processor specified by each element of the pint. We
refer to this operation as “indexing”.

Here are some straightforward examples of the use of compression and indexing:

// permute the variable x
// with a fixed, given permutation

try(pfloat x) {
pint perm(3);
int p1(]1={3,2,1};
perm=p1;
return x[perm];

// determine how many applications
// of the permutation perm it takes
// to get back the original variable ind

order(pint ind,pint perm) {

int n=0;

pint last_ind;

do { last_ind=ind; ind=ind[perm]; n++; } while(ind'!'=last_ind);
. return n;

}
// sum the values of the 4nhd

pint sumnhd(pint v) {
// north &c. are either special address classes or
// global constants of type pint
return v[north]l +vlsouthl+v[east]+v[west]+v;

On many parallel machines, some communication patterns are more efficient than oth-
ers. For example, on the Connection Machine, communication that takes place on a two
dimensional grid is significantly faster than general permutations. Often, it is also advanta-
geous to pre-compute some additional information about a specific communication pattern
and associate this additional information with the communication pattern itself: for ex-
ample, it is frequently desirable to replace a particular communication step by two steps
with randomly chosen intermediates in order to obtain good expected performance of an
algorithm.

To simplify experimentation with different kinds of communication primitives in a data
level parallel program, the operator[] is overloaded for different kinds of arguments that
represent different communication patterns. The algorithm itself, formulated in terms of
the operator[], remains unchanged then when the types of the arguments that describe
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the communication operation are changed. Thus, to change an algorithm to use a user-
defined distributor class instead of the built-in send primitive, it is sufficient to change
the definition of the pvar used for the distribution, not the algorithm itself:

oldAlgorithm(pint x) {
pint distribution=makeDistribution(x);
// some algorithm involving distribution follows

e 0

}

newAlgorithm(pint x) {
distributor distribution=makeDistribution(x);
// some algorithm involving distribution follows

Overloading of operator[] could also be used to eliminate the explicit definition of a
scan member function from the library.

5.4 Assigning to Subscripted Pvars

It is convenient to treat pvars syntactically like arrays. Unfortunately, it is difficult on
some parallel machines to treat references to per-processor memory as pointers; i.e. the
per-processor memories are not mapped into the host machine’s address space. We provide
some syntactic sugar that lets us write expressions such as:

pint temp(10);
temp=0;
temp[3]=1;
temp[9]=1;

This is implemented by having the operator [] (int) return an object of type 1value_pvar
and overloading the assignment operator.

A generalization of this method allows assignment to pvars with indexinglg]. For exam-
ple:

pint rp=random_permutation();
ylrp.inverse()]=x;
assert(y==x{rpl);

Le. if rp is a permutation of the processors, the expressions “y [rp.inverse()]=x" and
“y=x[rp]” are entirely equivalent(!%, However, the assignment form allows collisions. How
these are handled depends on the type of the argument to operator[]. By default, the
behavior is unspecified. The implementation of permuted pvars on the left-hand side of
assignment operators is entirely equivalent to the implementation of subscripted pvars on
the left-hand side of assignment operators.

(% This operation is equivalent to the Paris send primitive
{10/The member function inverse returns the inverse of a permutation.
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6 Where C++ Didn’t Help

6.1 Compiler Optimization

Perhaps the conceptually most displeasing disadvantage of our approach is that because op-
erations are implemented as library subroutines (regardless of the syntactic sugar provided
for them), the C++ compiler cannot perform optimizations that a dedicated compiler could.
A C++ compiler can perform constant folding, move expressions from loops, or eliminate
dead expressions, to name only a few optimizations, for arithmetic expressions involving,
say, the data type “int”, because it knows a great deal about the properties of 32 bit, two's
complement numbers. It has no such knowledge about user-defined arithmetic data types.
A dedicated compiler for a data level parallel language could know about such properties
and take advantage of them.

Practically, this objection is of little significance, since most special purpose languages,
such as C*, tend to lack good optimiziers anyway, simply because not as many resources go
into their development. Nevertheless, it would be desirable if the programmer could declare
to the compiler that a user defined data type behaves “just like a built-in type”, in our
case, that the arithmetic properties of, say, pint’s are the same as the properties of ints.
Less promiscuous declarations would state that certain functions or operators are side-effect
free, that arguments are not modified or are “constant references”, or that certain algebraic
properties such as commutativity or associativity hold for a given operator.

In passing, we would like to mention that two particular kinds of optimization would
probably improve performance of the serial implementation of our library significantly:
elimination of index variables and loop merging. While the former is straightforward to
implement (and will be included in upcoming versions of the GNU C++ compiler), the

. latter requires considerably more sophistication and global optimization strategies.

6.2 Storage Allocation

Currently, the storage for pvars is allocated using the operator new in the serial imple-
mentation, and a general, malloc-like storage allocator in the parallel implementation™!.
In principle, the overhead of calling a general storage allocator could be avoided in many
cases and a stack allocation scheme be used instead. A stack allocation strategy would also
reduce memory fragmentation, which is particularly important in the parallel implementa-
tion where per-processor memory is limited. Unfortunately, the C++ language definition
does not specify how a constructor can determine when stack allocation can be used for
additional storage associated with a class object.

We also feel that the use of reference counting to achieve immediate de-allocation of
unreferenced per-processor memory and the use of double indirection to achieve reference
counting are not the best possible strategies for memory management. Experience with im-
plementations of Smalltalk has shown that using direct pointers and generation scavenging
storage reclamation are more efficient and can also be used to reclaim memory almost as

- soon as it has become garbage[UP84]{Ung87].

(111See also the string class defined in [Str86), Section 6.9.
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7 Some Unresolved Issues in Languages for Data Level Par-
allel Programming

7.1 Multidimensional Pvars

We would like to provide the same kind of general treatment for multidimensional pvars
in our library that multidimensional arrays receive in APL. Unfortunately, the ease with
which multidimensional arrays are manipulated in APL derives largely from its specialized
syntax. C++ does not even provide multidimensional forms of the subscripting operator’:”?.

More importantly, in APL, most operations on multidimensional arrays have a straight-
forward and obvious implementation. Arrays can simply be represented as vectors with
some associated information about their shape; reshaping a 3 x 5 array into a 3 x 3 array
does not require any actual data to be moved. However, the same approach does not work
on parallel machines. If we assign an n-tuple of integers as a multidimensional address to
each processor, reshaping an array actually involves inter-processor communication in or-
der to assure that data items with the same multidimensional addresses reside in the same
processor.

We are not sure yet how to support multidimensional pvars cleanly. Support in the
*Lisp language is rather ad hoc and machine specific. By making multidimensional pvars
derived classes of pvars, and using the methods described in Section 3.3, the same kind of
functionality can be provided easily and more cleanly as an extension to our library.

7.2 Efficient Communications

A great variety of interconnection schemes for the processors in parallel and massively paral-
lel computers has been proposed. Complete networks, hypercube interconnection networks,
shuffle-exchange networks, fat-trees, two- and three-dimensional grids, and multigrids are
just a few other favorites.

Once a particular data level parallel algorithm has been chosen to solve a given problem,
the programmer’s task is to implement the communication patterns required by the algo-
rithm as efficiently as possible in terms of the underlying hardware. As in the case of serial
programming languages, he can do best by programming the data level parallel computer
in “machine language”. However, as in the case of serial programming languages, this is
undesirable because it requires considerable effort and is highly machine specific.

The solution is, of course, to provide a small set of abstract operations that can be
implemented reasonably efficiently on a variety of different machines (13, By including more
specialized abstract operations, an implementer can provide more efficient implementations
for specific cases, at the cost of increasing the complexity of the language.

We do not know yet what a good and reasonably complete set of abstract communi-
cation primitives for data level parallel programming is. The classes of communication
patterns that we have encountered in practice are: arbitrary communication patterns with
collisions, arbitrary communication patterns without collisions, and low-dimensional com-
munication patterns without collisions (e.g. communication on a two-dimensional grid).

(12lwe would like to see multidimensional subscripting added to the C++ language, i.e. to allow the
programmer to overload operator[] with multiple arguments. This would require the programmer to
parenthesize expressions containing the “,” operator inside the subscripting operator, an incompatible but
minor change in the syntax of the language. :

3y, many cases, the programmer can also give optional declarations that don't change the meaning of
the program, but allow the implementer to use shortcuts to improve performance on specific machines.

162 1988 USENIX C+ Conference



Two basic classes of operations that occur frequently for all communication patterns are
send operations (that simply move data around), and scan operations (that combine data
with binary associative operators as it is moved; see in particular{Ble86] for a discussion
of the use of the scanning primitive in data level parallel programming). Finally, for each
operation and class of communication pattern, both uncompiled and compiled forms are
useful; the uncompiled form is used for communication patterns that change often, whereas
communication patterns that are used for many communication operations benefit from
compilation. 4

But as important as a set of primitives is the expectations of the programmer of how
“fast” or “slow” each primitive will be. Primitives for the high-dimensional uncompiled
communication patterns and scanning primitives cannot be expected to execute quickly
in general on data level parallel hardware that has only low-dimensional communication
networks. Programming experience will show whether there are useful abstractions of classes
of communication patterns intermediate in power between the high and low dimensional
patterns.

These issues can be addressed and studied in our embedded data level parallel program-
ming library because new communication primitives are easily added and easily tried with
existing algorithms. More complex are questions of compile-time optimization of commu-
nication patterns. If some communication patterns are known at compile time, a compiler
for a data level parallel programming language could in principle allocate elements of pvars
to processors in such a way as to optimize the performance of the communication primi-
tives. In cases such as the following, the compiler might, for example, decide to “renumber”
the elements of pvar b globally to minimize the amount of inter-processor communication
required during the execution of the program:

pint x=address(10),y=10-address(10);
pfloat a,b;

pfloat fun() {
return alx]+blyl*b[yl;
}

However, at the very least, optimizations like these require the compiler to evaluate constant
expressions involving pvars.

8 Conclusions

C++ has proven to be a very useful tool for designing and implementing a programming
system that lets us experiment with data level parallel programming. The ability to overload
functions and operators allowed us to implement a reference counting memory allocation
scheme, to specify data level parallel algorithms independently of what communication prim-
itives are actually used, and to write expressions involving pvars and/or scalars concisely
and in standard arithmetic notation. Virtual functions permit us to use communication
primitives independent of the type of arguments they operate on.

The advantages to our approach are quite clear. Because our data level programming
system is implemented as a library in a widely-used programming language, a programmer
or user is already familiar with the syntax and semantics of the language. Both serial
and parallel versions of the library can be implemented quickly and ported to a variety of
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machines easily (since only library source code and not translator source code, as in the
case of language extensions, needs to be transported).

There are also certain disadvantages to our approach. In principle, a dedicated compiler
can perform better optimizations than the C++ compiler can, since a dedicated compiler
“knows” more about the properties of specific language primitives. In practice, this is
not a significant argument, since dedicated compilers tend to have poorer optimizers than
compilers for general purpose languages, since significantly more development effort has
been expended on the latter. We also hope that including new optional declarations in the
C++ language will allow the C++ compiler to be able to perform optimizations that up to
now only a dedicated compiler could perform. A dedicated compiler can also provide useful
syntactic extensions to the base language. However, we feel that the C++ language syntax
is powerful enough to let the programmer express his algorithms clearly and concisely.

A more serious practical argument against our approach is that by trying to be general
and vendor-independent, a programmer may be forced to write less efficient code than if he
were using a machine specific programming system. The answer is the same as in the case
of the dualism of assembly language and high-level languages: use the latter for specifying
and testing your algorithm, and if speed is of utmost importance, implement a few critical
sections in assembly language. A Connection Machine implementation of our library still
allows the programmer to use Paris instructions whenever speed is critical.

Altogether, we believe that our system is a useful and efficient alternative to existing
programming systems for data level parallel programming. We expect that it will be of
great utility in experimenting with different data level parallel programming primitives and
in writing applications for artificial intelligence and vision research.
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A Examples

The sieve is a nice example of how the C++ operator notation lets us express a data level
parallel algorithm concisely. The idea is that the variable sieve represents those numbers
whose primality has not beed decided yet, whereas primes holds numbers that are definitely
prime. At each step the lowest number in sieve is obtained, which must be a prime, it is
added to primes, and it and its multiples are removed from sieve. After \/n iterations,
sieve contains all primes greater than n, and primes all primes less than n. The union of
both variables is the answer.
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//

// Compute the n lowest primes using the sieve method.
//

#include "pvar.hh"

void puts(char#);

double ceil(double);

double sqrt(double);

const n=20000;

int lowest(pbool% b) {
pint adr=address(n);
return adr[b] [0];

}

main() {
pint adr=address(n);
pbool sieve(n),primes(n);
int sqrtn=ceil(sqrt(n)),j;

sieve=1; .

where(adr<2) sieve=0;

primes=0;

vhile((j=lowest(sieve))<sqrtn) {
sieve&=((adr’j) 1=0);
primes[jl=1;

}

adr[primes|sieve] .print();

B Code Templates

The following example illustrates the use of code templates in M4 to generate a complete
set of operators corresponding to the operators that exist for standard scalar data types in

C++:

// OP(returnType1l,classType2,argumentType3,name4,op5)
define (0P,
p$1 pd$2::34(p$32 other) {
int n=min(box->size,other.box->size);
p$1 result(n);
if(!selection) {
for(int i=0;i<n;i++)
result.box->contents$1[i]=
(box->contents$2[i] $5 other.box->contents$3[il);
} else {
bool *psel=selection->box->contentsbool;
for(int i=0;i<n;i++)

166 1988 USENIX C++ Conference



D

if(psellil)

result.box->contents$1[il=

}

shallowret(result);

define(ARITH,

// arith $1
UNARY($1,$1,0perator++,++)
UNARY($1,$1,0perator--,--)
0P($1,81,31,0perator+,+)
0rP($1,$1,$1,0perator-,-)
0P($1,81,81,0perator=,*)
0P($1,31,$1,0perator/,/)
ced)

define(BOOLARITH,

// boolarith $1

0P($1,$1,81,0peratorg, &)
0P($1,%1,8%1,0peratorl,||)
0P($1,$1,31,0perator",!=)
corP($1,31,81,0peratort, &)

Tead)

(box->contents$2(i] $5 other.box->contents$3[il);

We can now define groups of operators and use these to generate all operators for a
particular data type as follows:
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Abstract

This paper describes a multiprocessor operating system simulator that was developed
by the authors in the Fall semester of 1987. The simulator was built in response to the
need to provide students with an environment in which to build and test operating
system concepts as part of the coursework of a third-year undergraduate operating
systems course.

Written in C++ [1], the simulator uses the co-routine style task package [2] that
is distributed with the AT&T C++ Translator to provide a hierarchy of classes that
represents a broad range of operating system software and hardware components. The
class hierarchy closely follows that of the Choices [3] family of operating systems for
loosely- and tightly-coupled multiprocessors. During an operating system course, these
classes are refined and specialized by students in homework assignments to facilitate
experimentation with different aspects of operating system design and policy decisions.

The current implementation runs on the IBM RT PC! under 4.3bsd UNIX.?

1 Introduction

The principles of low-level operating system design have implications that are difficult to
appreciate without the practical experience gained by programming such systems. Multi-
processor systems present even more problems. However, it is difficult to provide university
students with such a learning experience. Hardware resources are too expensive to allow
each student single user access to a multiprocessor workstation. Low level parallel process-
ing systems software, as an instructional resource, is usually poorly organized and difficult
to understand. In addition, there is little support for the debugging and testing of low-level
systems programs on multiprocessors. This paper describes a multiprocessor operating
system simulator we have constructed in C++ to overcome these problems. The current
implementation is used in the department’s instructional laboratory and runs on 30 IBM
RT PCs which were donated to the university by the IBM Corporation.

The simulator is modeled on the Choices multiprocessor operating system family (3]
(4] [5]. It includes classes to model both the processes, schedulers, and exception handling

*This work was supported in part by NSF grant CISE-1-5-30035, by NASA grant NSG1471, and by
AT&T ISEP.

IRT PC is a trademark of IBM.

2UNIX is a trademark of AT&T.
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mechanisms of Choices and the processors, I/O devices, traps, interrupts, timers, and other
hardware components of a typical multiprocessor like the Encore Multimax.?

The simulator was designed for a third- or fourth-year undergraduate course on oper-
ating systems that is taught in the department. The goal of the course is to introduce
students to the principles of operating systems and to reinforce those principles with prac-
tical experiments and projects involving the design of operating system mechanisms and
policies.

Using the simulator, experimentation is conducted within the framework of the class
hierarchy and object-oriented programming mechanisms afforded by C++. Many of the
practical design exercises involve specializing an abstract class into a concrete class that
implements a particular policy or mechanism. Policy exercises include process scheduling,
real memory management, page replacement, and disk scheduling. Mechanism exercises
include synchronization primitives, I/O queues, paging mechanisms, exception handling
schemes, and message passing primitives.

The operating system course benefitted from the use of C++ in several ways. The
language allows an efficient simulation of the operating system while providing a level of
type checking that aids debugging of student programs. Debugging and tracing aids are
built into the base classes of the simulator and help the students implement their designs.
The class hierarchy organizes the components of the simulation into similar algorithms
and data structures. This organization is a useful aid to the student that is learning the
system. The class hierarchy enables fairly large simulations of an operating system to be
built incrementally by the students.

The remainder of this paper consists of four major sections. Section 2 describes the
model of the Choices operating system and class hierarchy supported by the simulator.
Section 3 discusses the design and implementation of the simulator. Section 4 describes
how the simulator was used, including descriptions of some of the projects. Finally, we
summarize our experience with the simulator in section 5.

2 Choices Overview \

Choices is a family of operating systems built using a class hierarchical object-oriented
approach to systems design and programming. A Choices operating system has been imple-
mented on an Encore Multimax and is being ported to an Intel iPSC/2* hypercube [6]. It
demonstrates that object-oriented design techniques are both appropriate and beneficial for
writing complete operating systems for multiprocessors and networks of multiprocessors.

In Choices, a class hierarchy represents the major components of a family of operating
system designs. Classes represent the interfaces and implementations of processes, virtual
memory, context switching, exception handling, scheduling, and synchronization. They are
also used to provide a hardware/software interface by encapsulating machine dependent
algorithms and data structures for the hardware entities such as the CPUs, MMUs, interval
timers, disks, and networks.

The goal of the system is to allow an operating system designer to select, refine, and
combine classes from the class hierarchy to build a custom operating system for a particular
hardware environment or a particular application. The resulting operating system is also
more easily modified or extended than one based on more “traditional” approaches [7].

3 Multimax is a trademark of Encore Computer Corporation
4iPSC is a trademark of Intel Corporation.
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| ' Choices Simulator Classes |

Class Methods
Object - - - -
TProcess - - - -
T11dleProcess - - - -
TProcessContainer add | remove | - -
T1CPU add remove | interrupt | trap
TTFIFOQueue add remove | - -
TTProcessQueue add remove | - -
TException raise | await handle -
T1InterruptException T 1 handle -
T1TResetException T 1 handle -
T11TimerException 1 1 handle -
T1SoftwareException raise | 1 handle -
T111dleException T 1 handle -
111 TerminateException | | T handle -
1T1SemaphoreException || | 1 handle -
7Semaphore P v - -

| Legend l

Symbol Meaning

method || Definition of method.
method | Redefinition of method.

T Subclass or inherited method.
- Undefined method.

Table 1: Choices Simulator Classes.

The ease of module substitution greatly facilitates prototypmg, a great benefit to practical
operating systems research and experimentation.

This section presents a brief overview of the Choices project and of the Choices class
hierarchy as implemented by the simulator. For more detail, see [3] [4] [5].

2.1 The Choices Class Hierarchy

The major classes of Choices as modeled by the simulator are shown in table 1. Class
Object is the root of the hierarchy. Subclasses are used to provide abstract interfaces and
concrete implementations for operating system mechanisms. They are used to encapsulate
data, policies, and alternative implementations or versions. Subclasses of Object define the
basic entities within an operating system. Further, subclasses of these classes add and/or

redefine methods in order to augment, specialize, or provide concrete implementations of
these classes.

2.1.1 Processes and ProcessContainers

Class Process provides the basic unit of execution within Choices. Process management in

the operating system is achieved by moving Processes between ProcessContainers. Sub-
classes of ProcessContainers represent processors and schedulers.
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An IdleProcess is associated with each simulated processor. It is executed only when
there are no other runnable Processes available. Each IdleProcess periodically checks the
scheduler and signals the processor when it detects that there is a Process which could be
executed.

Other Processes represent “user-level” processes. The behavior is redefined by the sim-
ulation designer as necessary. Usually user-level Processes are designed to simulate a “job
load” for the simulation.

The ProcessContainer class defines methods to add() and remove() Processes. These
methods are specialized by the subclasses CPU, FIFOQueue, and ProcessQueue.

The CPU subclass of ProcessContainer represents processors. Adding a Process to a
CPU specifies that it should be executed by a particular processor of the multiprocessor
system; that is, the Process is dispatched on the CPU. Removing a Process from a CPU
idles the processor, which represents preemption of the Process. Multiple instances of class
CPU represent multiple processors in a multiprocessor.

Facilities for scheduling and blocking Processes are provided by classes FIFOQueue and
ProcessQueue. A FIFOQueue acts as a simple “first-in-first-out” queue of Processes, while
a ProcessQueue is associated with a timeslice quantum. When a Process is removed from a
ProcessQueue, the timeslice quantum field of the Process is set to the quantum associated
with the ProcessQueue. This field is used by the CPU to determine the maximum amount
of time the Process should be allowed to execute before heing preempted. The quantum
associated with a ProcessQueue may be any value desired. The default quantum is a value
which means “run-to-completion.” These classes may be refined by other subclasses in order
to implement a wide range of policies. FIFOQueues can act as queues of blocked Processes.
Other subclasses of ProcessContainer can be defined and substituted to provide whatever
sorts of scheduling disciplines the system designer desires.

2.1.2 Exceptions

In Choices, most movement of Processes between ProcessContainers is by Ezception han-
dlers. In addition, the only way in which an executing Process can relinquish its CPU is by
the raising of an Exception. Relinquishing the CPU may be a voluntary, synchronous action
performed by the Process (i.e., a “trap”) or an involuntary, asynchronous action caused by
an external event (i.e., an “interrupt”).

-Class Exception itself is an abstract class.® An Exception provides the methods handle(),
raise(), and await(). The raising of an Exception causes its handler to be invoked (with
the possible side-effect of unblocking one or more Processes awaiting the Exception).

There are two abstract subclasses of Exception: InterruptEzception and SoftwareEz-
ception, each of which is further subclassed. An InterruptException is associated with an
interrupt vector which, when delivered to a CPU, causes the associated InterruptException
to be raised. Thus, InterruptExceptions occur asynchronously with the execution of Pro-
cesses. A SoftwareException is not associated with an interrupt vector. Instead, it is raised
directly by an executing Process and acts like a “trap.”

InterruptException subclasses include ResetEzception and TimerEzception. Each CPU
is associated with an instance of each of these. A ResetException provides the actions
to be taken when the CPU is “reset”. The TimerException handles the expiration of the
per-CPU interval timer.

®By abstract, we mean that no instances of the class ever exist. Rather, it is used as a base class from
which subclasses are derived in order to provide specialized behavior.
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Other SoftwareException subclasses include IdleEzception, SemaphoreEzception, and
Terminate Ezception. An IdleException is a software event that signifies that Processes are
available to the CPU for execution. An IdleException is raised by a CPU’s IdleProcess
when it detects that the CPU’s scheduler is non-empty. A TerminateException is raised to
remove the Process from the CPU and delete it. A SemaphoreException is raised when a
Process attempts to acquire a semaphore which is unavailable. The SemaphoreException
removes the Process from the CPU and adds it to the queue of Processes waiting for the
semaphore.

2.1.3 Semaphores

A Semaphore is the basic synchronization primitive within the simulator. It defines the
familiar P() and V() operations 8] for acquiring and releasing the Semaphore.

3 Implementation

The simulator provides a class hierarchy from which simulated multiprocessor operating
systems can be designed and studied, following the Choices model as closely as possible.
This section discusses the implementation of the simulator.

3.1 Microscheduling

Like Choices itself, the simulator is written in C++. In order to provide the required simu-
lated concurrency, the simulator uses the “coroutine-style task package” which accompanies
the AT&T C++ Translator [2].

The task package provides user-level coroutine-style tasks, but does not provide for
non-voluntary relinquishing of the virtual processor. That is, an executing task does not
block unless it explicitly calls a task package procedure (for example, delay() or sleep()).
While this is very useful for system simulation, it is inadequate to emulate a multiprocessor
programming environment realistically. A simulated user-level task executing an “infinite
loop” will prevent all the other simulated tasks from proceeding. This simple implementa-
tion of tasks is inadequate to emulate interrupts or preemptive scheduling policies such as
round-robin time-slicing, multi-level feedback queues, or “shortest job first.”

In addition, we wanted to simulate the nondeterminancy that must be dealt with by
programs using or implementing synchronization primitives and executing within a mul-
tiprocessor environment. Therefore, the basic task package was augmented with a “mi-
croscheduling” sub-system that time-slices between executable tasks preemptively. Note
that this involved only additions to the task package. The task package itself was not
modified.

The microscheduling mechanism implements a time-sliced round-robin mechanism un-
derneath the basic task package. This mechanism gives each executable (i.e., non-blocked)
task a “microquantum” equal to one virtual clock tick. At the end of the microquantum, the
task is delayed for one clock tick, and the next executable task is dispatched. In this manner,
executable tasks are preemptively time-multiplexed on the underlying UNIX process.

The 4.3bsd UNIX interval timer and signal mechanisms were used to implement the
actual preemption of tasks. At simulator initialization time, an interval timer is armed to
deliver a signal to the underlying UNIX process each time the timer expires. When the
signal is received, the signal handler executes in the context of the current task. The signal
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handler executes a call to the task package to delay the current task by one virtual clock
tick, thus relinquishing the underlying UNIX process to execute another runnable task. If
there are no more immediately runnable tasks, the virtual clock is incremented (by the
task system), allowing tasks which had delayed themselves during the previous clock tick
to become “ready” again. When a task that had previously delayed itself via the signal
handler becomes ready again, its invocation of the signal handler returns, thus restoring
that task’s context to that which was in effect when the signal was received. The task
then continues execution at the point where it was preempted. Thus, the microscheduling
effectively implements a round-robin scheduling policy underneath the existing task package.

The basic task package requires no explicit shared resource access control internally be-
cause there is no preemption. Provided that critical sections do not delay, they do not need
synchronization because, without preemption, races cannot occur. Once microscheduling
has been added, however, this is no longer the case. Within the Choices classes, mutual
exclusion primitives are used in order to ensure that critical sections are protected. In or-
der to support these primitives in the simulator, instances of two low-level task classes are
distinguished by the microscheduling mechanism and are not preempted.® Therefore, these
classes’ methods do not need to use explicit mutual exclusion primitives.

3.2 Class Hierarchies and Layering

The simulator is organized into two major class hierarchies: the augmented task package
class hierarchy (including the microscheduling mechanism) and the Choices class hierarchy
itself.

The basic task package provides the abstraction of a task, which is the primitive unit of
execution within a task package application. This hierarchy has been augmented by creat-
ing subclasses of the task class in order to provide more specialized behavior as needed by
the rest of the simulator. These classes are CPUManager, CPUTimer, and Process Task.
A CPUManager and a CPUTimer are associated with each simulated CPU. The CPU-
Manager simulates the activity of the CPU. This includes interrupt vector processing, trap
processing, and exception handling actions. The CPUTimer simulates a per-CPU interval
timer to provide support for preemptive time-slicing of simulated Processes. A ProcessTask
is associated with each simulated Process. The CPUManager associated with a CPU al-
lows the ProcessTask to execute (on behalf of the simulated Process) when the Process is
dispatched on that CPU,

The Choices simulator class hierarchy provides the classes that form the basis for oper-
ating system simulations: Process, ProcessContainer, CPU, Exception (and its subclasses),
etc. Table 1 shows this hierarchy. Figure 1 shows the arrangement in terms of layers.

3.3 Class CPU

A CPU contains a number of objects in addition to its CPUManager and CPUTimer. Each
CPU has a current Process and an IdleProcess. The current Process is the Process currently
being executed by that CPU. Since a CPU is a ProcessContainer, the current Process of a
CPU references a Process which has been added to the CPU. The IdleProcess is executed
only when the CPU is otherwise idle (e.g., when there are fewer Processes in the “system”
than there are CPUs").

4These classes are CPUManager and CPUTimer, discussed below.
"not including IdleProcesses, of course.
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CPUTimer Microscheduling.

ProcessTask

Task package.

Figure 1: Conceptual Layering in the Choices Simulator.

Next, a CPU contains a queue of pending interrupt vectors and a table that maps inter-
rupt vectors to InterruptExceptions. Incoming interrupt vectors and SoftwareExceptions
are detected by the CPUManager which then executes the InterruptException handlers.

Each CPU references a ProcessContainer that operates as the “ready queue” or sched-
uler. When an executable Process is removed from the CPU, it is added to this scheduler.
Also, a Process is removed from this scheduler when the CPU requires one. For example,
when an executing Process’ timeslice expires, it is removed from the CPU and added to this
scheduler. Then, another Process is removed from the scheduler and added to the CPU.,

In this way, several CPUs may be associated with a particular scheduler. There is no
reason why there can’t be more than one scheduler in the system, each associated with its
own set of CPUs. The simulation designer can change this association dynamically at any
time.

There are two groups of operations on a CPU: “private” routines intended for use by
“friends” (essentially CPUManagers and Exception handlers) and “public” routines in-
tended for use by the simulation writer. ,

The private routines include add(), and remove(), which are redefinitions of the su-
perclass ProcessContainer methods for adding/removing Processes to/from a ProcessCon-
tainer. Adding a Process to a CPU is effectively a “dispatch” of the Process, while removing
a Process from a CPU corresponds to a “preemption” of the Process.

Two other important private routines are remove Vector() and getEzception(). These are
used by the CPUManager to remove an interrupt vector from the incoming vector queue,
and to map a vector to an InterruptException, respectively.

The public operations include the constructor and destructor, routines to get and set
the CPU’s scheduler ProcessContainer, the interrupt() routine which is used to send an
interrupt vector to a CPU, the trap() method which is used when a SoftwareException is
raised, and the setEzception() routine which is used to associate an interrupt vector with
an InterruptException.

When a CPU is created it is empty, i.e., it contains no Process. The Exception table
(which maps interrupt vectors to InterruptExceptions) contains two default mappings: a
ResetException is associated with the ResetVector, and a TimerException is associated
with the TimerVector.

In the implementation, the CPU itself is passive; it is the CPUManager and the CPU-
Timer which are the active entities, controlling the activities of the CPU. These are discussed
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next.

3.4 CPUTimer

A CPU’s CPUTimer implements timed preemption of Processes. A CPUTimer is a task
that sends the TimerVector to the CPU when the time interval expires. If the CPUTimer
is stopped before it expires, then the residual time can be retrieved.

In general, when a Process that specifies a timeslice quantum is dispatched, the CPU-
Manager sets the CPUTimer to expire at the appropriate time. If the CPUTimer expires,
the TimerVector interrupt triggers the execution of the associated InterruptException’s
handler (usually a TimerException). If the Process is preempted for some reason other
than CPUTimer expiration, the CPUTimer is stopped and the residual is read and stored
in a field of the Process for possible use by the scheduler.

3.5 CPUManager Duties

The CPUManager handles asynchronous events in the system like interrupts, as well as
synchronous events such as traps, and invokes the Exception handlers associated with them.
The CPUManager is initially “asleep,” and the arrival of an interrupt or trap “wakes up”
the CPUManager. When a CPU’s interrupt() method is called, the vector is enqueued
on the CPU and its CPUManager is awakened. When a CPU’s trap() method is called,
the SoftwareException is saved on the CPU, the invoking Process is stopped, and the
CPUManager is awakened. The general control loop of the CPUManager is shown in
figure 2.

3.6 Processes and ProcessTasks

Each Process is implemented by a ProcessTask which executes when the Process is dis-
patched on a CPU. Each Process contains a timeslice quantum and a residual, which is
used for preemptive timeslicing. The residual field is set by the CPU when the Process is
preempted. This information is intended for use by schedulers. In addition, each Process
keeps run-time statistics.

The ProcessTask associated with a Process is the entity which is actually executed. It is
ProcessTasks that are multiplexed on the underlying UNIX process by the microscheduling
mechanism. The task methods are used by a CPUManager to start and stop the execution of
a Process’ ProcessTask. In order to provide low-level critical section protection, methods are
provided to disable and re-enable the preemption of a ProcessTask by the microscheduling
mechanism.

IdleProcess is the subclass of Process that is executed by a CPU when there are no other
Processes for it to run. There is one IdleProcess associated with each CPU. The IdleProcess
continually checks the scheduler ProcessContainer of its CPU. When it detects that this
scheduler is not empty, it raises an IdleException which causes a Process to be removed
from the scheduler and added to the CPU, suspending the IdleProcess until such time as
the CPU becomes idle again.

3.7 Exceptions

The Exception subclasses are the major means by which Processes are moved between Pro-
cessContainers. Each Exception subclass provides specialized handling. There are two sub-
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// A CPUManager’'s work is never donme...
for (;;) {

// Wait for am interrupt.

sleep();

// Stop and delete the CPUTimer, if there is one, saving the residual.
int residual = 0;
it ( cpu->timer != NULL ) {
rosidual = cpu->timex->stop();
delete cpu->timer;
cpu->timer = NULL;
}

// Handle and reset the pending trap (SoftwareException), if there is one.
// Otherwise, stop the current Process, if there is one.
Process * currentProcess = cpu->currentProcess;
it ( cpu->trap != NULL ) {

SoftwareException * trap = cpu->trap;

cpu->trap = NULL;

trap->handle( cpu );
} olse if ( currentProcess !'= NULL ) {

currentProcess->stop() ;

}

// Handle any pending interrupts (InterruptExceptions).
while ( ( int vector = cpu->removeVector() ) != NoVector ) {
/! Got the corresponding Exception.
// Call the Exception handler.
InterruptException * interrupt = cpu->getException( vector );
interrupt->handle( vector, cpu );
}

// Staxrt the current Process, if there is one.
// Note: The current Process we start here might very well not be
// the same one we stopped.
it ( cpu->currentProcess != NULL ) {
// Determine how much time the Process will get:

// If the current Process is the same as before,
// it gets the rest of its timeslice (i.e., the residual).
// Othorwise, it gots whatever its scheduler specifiad.

int time = (cpu->currentProcess == currentProcess) ?
residual :
cpu->currentProcess->getQuantum() ;

// Start the CPUTimer, unleas the Process is marked “run to completion."

if ( time != RunToCompletion )
cpu->timer = new CPUTimer( cpu, time );

Figure 2: Simplified CPUManager control loop.
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classes of Exception, InterruptException, and SoftwareException. Instances of subclasses
of InterruptException represent hardware interrupts. When an interrupt is delivered to a
CPU, it is mapped by the CPUManager to an InterruptException whose handler is then
called. Subclasses of InterruptException include:

ResetException: Associated with the ResetVector. It adds the CPU’s IdleProcess to the
CPU.

TimerException: Associated with the TimerVector which is sent when the CPU’s CPU-
Timer expires. It removes the current Process from the CPU and adds it to the

scheduler ProcessContainer associated with the CPU. It then removes a Process from
the scheduler and adds it to the CPU.

A SoftwareException is raised as a direct result of the execution of a Process. Software-
Exceptions are not associated with interrupt vectors; the raise method is invoked directly.
SoftwareException subclasses include: '

IdleException: Raised when a CPU’s IdleProcess detects that the CPU’s scheduler has
become non-empty. Its handler removes the IdleProcess from the CPU, and then
removes a Process from the scheduler and adds it to the CPU.

TerminateException: Raised when the current Process on the CPU is to be terminated.
It removes and deletes the current Process from the CPU, and then removes a Process
from the scheduler and adds it to the CPU.

SemaphoreException: Raised by a Semaphore when a P() operation detects that the
requesting Process must block (i.e., the resource is not available). It removes the
current Process from the CPU and adds it to the ProcessContainer associated with
the Semaphore. It then removes a Process from the CPU’s scheduler and adds it to
the CPU.

3.8 Semaphores

Each Semaphore contains a count and a FIFOQueue ProcessContainer which holds Pro-
cesses that have been blocked attempting to acquire the Semaphore. It also references a
SemaphoreException that is raised when a Process must block.

The P() operation decrements the count. If the count then indicates that the Process
must block, a SemaphoreException is raised. The SemaphoreException removes the Process
from the CPU and adds it to the queue of blocked Processses.

The V() operation increments the count. If there are blocked Processes, one is removed
from the queue and added to the scheduler.

4 Projects

The resulting simulator has proven to be very realistic. Several of the race conditions that
occurred as bugs in the development of the real Choices operating system were also en-
countered by students as they developed their own operating system components within
the simulator. During the course, the students developed semaphores, messages, supervisor
requests, scheduling policies, real storage management, virtual storage management, disk
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Figure 3: A Ring of Processes Connected by Pipes.

storage management and scheduling for the multiprocessor environment. This section dis-
cusses some of these projects and how they were implemented within the environment of
the simulator.

4.1 Multiple Concurrent Producers and Consumers

The object of this exercise was to give students experience in designing systems involv-
ing producer/consumer relationships among Processes, including deadlock detection and
recovery.

Initially, class Pipe had to be implemented to support a two-ended stream of Messages.
Methods were required to perform blocking, non-blocking, and synchronous send operations
(send_block(), send(), and send_sync(), respectively), as well as blocking and non-blocking
receive operations (receive.block() and receive(), respectively). Each Message essentially
consists of a string of data bytes and an identifier specifying the ultimate destination Pro-
cess.

In this exercise, Processes are connected by Pipes in a ring, as shown in figure 3. Each
Process executes a loop in which it repeatedly choses one of the send or receive operations
at random, and then performs this operation on one of its two Pipes. For send operations,
destinations are chosen at random. For receive operations, if a Message is received on a Pipe
whose destination does not specify the receiving Process, it is forwarded on the other Pipe.
Since the Processes are arranged in ring, all Messages eventually reach their destinations
(unless they are lost or cancelled).

In this situation, deadlocks can and do occur. Students implemented a centralized dead-
lock detection and recovery mechanism that consisted of a central Pipe Control information
object and an additional deadlock control Process that periodically examined the Control
information, discovering and breaking deadlock situations. The Pipe class was modified to

1988 USENIX C++ Conference 179



support this. Each send and receive operation on a Pipe would report its updated state to
the Control object, where it could then be used by the deadlock control Process.

4.2 Real Memory Management

This project involved the implementation of “Choices-like” real memory management. Two
major classes were implemented: RealMemoryObject and RealMemoryManager.

A RealMemoryObject represents a “segment” or contiguous range of memory organized
in fixed-size pages. The operations supported are read() and write(). Each operation spec-
ifies an offset into the RealMemoryObject at which the transfer is to begin, a length (in
bytes), and a destination/source buffer address. Initial reads from unwritten RealMem-
oryObject locations return zeros. The RealMemoryObject maintains a “dirty bit” for each
page which has been written. The constructor specifies the range of addresses which the
RealMemoryObject will represent.

The other major class required for this project was a RealMemoryManager. A Real-
MemoryManager represents the physical memory of the simulated machine, so only one
instance of this class is created. The RealMemoryManager allocates and deallocates Real-
MemoryObjects as requested by user Processes. Operations are allocate() and deallocate().

The allocate() operation specifies a number of bytes, and returns a RealMemoryObject.
The RealMemoryManager must find an unallocated range of memory that is at least as
large as the request. It then creates a RealMemoryObject to manage the range and returns
it. ‘

The deallocate() operation specifies a RealMemoryObject to be deleted. The RealMem-
oryManager deletes the RealMemoryObject, thus freeing the range of memory for possible
allocation in future allocate() requests.

RealMemoryObject and RealMemoryManager provide simulated system services, and
are not supposed to be directly accessible by the user Processes (although the simulator
cannot enforce this). Therefore, the students implemented a subclass of SoftwareException
called SVCEzception. This class provides a user program interface to the system. Mecha-
nisms for passing arguments into the “kernel” and for passing results back to the invoking
Process were also implemented.

Simulated user Processes were created to randomly allocate and deallocate RealMem-
oryObjects, and to read and write them randomly. Statistics about memory usage, frag-
mentation, and allocation routine times, etc. were collected. The allocation algorithms
commonly known as “first fit,” “best fit,” and “worst fit” were implemented and analyzed.

4.3 Virtual Memory Management

This project extended the ideas from the previous project in order to provide students with
experience in the various aspects of virtual memory management.

The idea of a RealMemoryObject was expanded to represent a Process’ virtual address
space. This is encompassed by class MemoryObjectCache. A MemoryObjectCache main-
tains the state of each page in the virtual address space it represents. In addition to the
“dirty bit” (which was maintained by the RealMemoryObject in the previous project), the
MemoryObjectCache must maintain a “referenced bit” and a bit indicating whether or not
the page is resident. If the page is non-resident, the location of the page in secondary storage
must be stored. A MemoryObjectCache supports the same read and write operations as
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described for a RealMemoryObject, except that pages may be moved to and from secondary
storage.

When a MemoryObjectCache must read or write a page that is marked non-resident,
that page must first be retrieved from secondary storage. To facilitate this, an instance
of class PageManager manages the physical memory of the machine and is responsible
for paging to and from secondary storage. The PageManager implements the pageFault()
method, which is invoked by a MemoryObjectCache when a non-resident page needs to
be brought in from secondary storage. The PageManager fetches the specified page from
secondary storage and marks it as resident.

Secondary storage is implemented with an instance of class DiskManager. The DiskMan-
ager responds to the messages readPage() and writePage().

Various page replacement algorithms were implemented and studied. These included
“least recently used,” “not recently used,” “first in, first out,” and “random.” In addition,
various disk scheduling strategies were used including “first come, first served,” “linear (or
unidirectional) scan,” and “circular (bidirectional) scan.” Finally, the page access patterns

of the Processes were varied in order to simulate different degrees of temporal and spatial
locality.

5 Conclusion

In this paper, we have described the use of C++ as a high-level language for describing
the system data structures and algorithms introduced in a university course in operating
systems. The students used a simulator programmed in C++ that emulated a system based
on Choices, an experimental multiprocessor operating system that we are building at the
University of Illinois. Class projects and exercises were chosen to give students practice at
systems design and programming. These projects and exercises were written in C++ and
refined or replaced classes in the simulator.

Most of the students in the course had programmed in C in a previous course on systems
programming and machine organization. The transition to C++ was orderly. The students
found the additional type checking in C++ an aid; however, many of the diagnostic messages
from the compiler required the students to seek help from their teaching assistants. The
debugging and tracing aids built into the simulator were found to be very useful as the
standard UNIX debugger cannot give accurate diagnostic messages in terms of the names
used in C++ programs. This is because the current C++ compiler generates C code which
is then compiled by the C compiler. A native C++ compiler would solve many of these
problems.

C++ was proved to be an efficient programming language for the simulator. Quite large
simulations (both in terms of size and length) could be done on a workstation during the
period of time permitted each student in the laboratory.

The use of a class hierarchical object-oriented description of an operating system was
instrumental in helping the students understand Choices. The class hierarchies organized
the common algorithms and data structures of an operating system and allowed students to
infer the properties of the simulator classes from the more abstract classes presented during
lecture. Unlike previous operating system courses that we have taught, we were able to
present multiprocessor operating system material couched in the general principles of oper-
ating system design. The more “traditional” single processor operating system algorithms
and data structures could be presented as degenerate cases of the multiprocessor ones.
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Currently, a simulator is the only practical approach to providing a large class of students
(approximately sixty) with a hands-on environment for multiprocessor operating system
design. Many of the problems that are encountered in multiprocessor operating system
design — deadlocks, races, unnecessary mutual exclusion and interrupt disabling, etc. —
were pointed out in lecture and successfully diagnosed by students during their exercises
on the simulator. In this and many other respects, the simulator provided a remarkably
accurate emulation of real multiprocessor system software development. The accuracy of
that emulation requires better diagnostic and tracing tools than we implemented in the
simulator. We believe some form of graphical visualization of the system is needed in order
to provide students with a better understanding of the utilization of resources, bottlenecks,
and communication flows. However, we do not see this as a drawback to the approach.
Rather, it points out a lack of necessary human interfaces and tools for designing complex
software. Such software tools would not only be useful in education, but they would have
application in the customization of Choices for particular applications and hardware. We
plan to incorporate such tools in the future revisions of the simulator.
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Abstract

This paper describes an interactive tool for modelling of control systems.
The focus is on practical experiences with C++ as a development tool,
and the need for multiple inheritance, parameterized types, and exception
handling, in this application. Experiences with a new graphics standard,
PHIGS, using an object-oriented programming style, are briefly covered.

1. Introduction

Modelling has traditionally been one of the main topics in control engineering. Control
systems are complex and require careful design and analysis, in particular, as errors in
control system design can become expensive. There exists today a great neéd for computer
aided design of control systems.

Our research is centered around tools for model development and simulation. The
objective is to design the basic concepts needed for structuring models, and to design
the internal computer representation of control system models. An experimental tool for
modelling and simulation has been developed in KEE, an expert system shell.

The experimental tool will form the basis of an engineering tool for the designer of
control systems. In such a product, flexible, efficient and affordable system software must
be used. We have therefore evaluated C++ as the future implementation language, and
PHIGS as the main graphics system. A simplified experimental tool has been implemented
in C++. Whereas the KEE version supports all essential parts of an engineering tool, the
C++ version only provides graphical interaction; the internal structure is quite similar, in
order to meet future needs.

2. Modelling of control systems

The model of a control system can be regarded as a hierarchy of components. One of
the fundamental ideas is to build libraries of component models, ranging from basic items
(for example, a pump) to more complex objects (for example, a distillation column). The
designer has the option of working bottom-up, putting predefined components together to
form a new component, or top-down, decomposing a complex object into manageable pieces,
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or most likely, a combination of bottom-up and top-down design [Nilsson, 1987]. The key
word is reuseability — of earlier designs and of standard components.

A single component can be described in many ways: graphically, textually, using
block diagrams (describing its structure), or mathematically (for example, in state-space
or transfer-function form). It is also necessary to use models with different degrees of
detail and complexity, for example, an efficient simulation model for normal operation, and
an extended model for analyzing error conditions. All these models are needed in different
stages of the design, and should be available in a model development tool. It should be noted
that the common “machine” view may be replaced by a “materials” view. For example, a
chemical compound may carry all knowledge in the model, while the stations in the refinery
only signal changes of state.

With our set of basic concepts, a model has three properties: it has terminals which
provide an interface to the outside world, parameters for adapting its behaviour, and at
least one realization that defines its behaviour. Only data in the terminals are available to
other components; there are no global data, except a time reference for simulation.

We currently support two types of realizations: primitive realizations using ordinary
differential equations, and structured realizations using block diagrams. A structured real-
ization consists of submodels and connections (between submodels, and between submodels
and the terminals of the enclosing model). Interaction between components is defined only
by connections.

Simulation is often used to analyze control systems, and the designer should be able
to simulate his/her model using this tool. Simulation introduces a number of interesting
mathematical problems, which will not be covered further in this paper [Mattsson, 1988b].
The connection concept also raises interesting questions: for example, what is a legal
connection, and how do you define compatibility between terminals [Mattsson, 1988a].

According to current trends, it is also necessary to throw in an expert system and a
couple of knowledge bases.

3. Direct model representation

Modelling of control systems maps nicely to the ideas in object-oriented programming.
It is natural to represent a model with a class in the programming language used for
implementing the design tool. It is then possible to develop new models using inheritance
and specialization of classes. ‘

Inheritance is not suitable for describing all kinds of relationships between models.
Multiple representations of a single model (textual or mathematical), and specialization (a
car is a special kind of vehicle), can be described with inheritance. Decomposition of a
model into its components is different. For example, that a car has tyres does not mean
that the car can be inflated, so inheritance is not the right mechanism; components are
represented by class members (Listing 1).

The direct way of representing models with classes is used in the experimental tool
developed in KEE. Instantiation is used, for example, to create objects that contain
simulation data. A necessary key feature of KEE (and object-oriented systems like Loops)
is the possibility to dynamically define new classes while the program is running.
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class vehicle {
char* owner;

};

class car : public vehicle {
tyre £1, fr, rl, rr;
engine e;

};

Listing 1. Direct representation of a car model, derived from vehicle.

4. Model representation in C++

If interactive model development is presumed, direct representation is not possible in C++,
simply because classes cannot be defined at runtime. Consequently, components cannot
be represented directly with class members, and inheritance cannot be used to derive new
models. To be able to interactively create models, we must implement a dynamic framework
for representing models, realizations, etc. This framework is similar to the class systems
commonly based on Lisp, but the implementation task is simplified by the structure of
control systems.

It should be noted that the engineer developing control systems will see an interactive
modelling tool; C++ is used only to implement the dynamic framework, not as a control
system description language. One can also say that the object-oriented aspects of model
representation have been separated from the object-oriented aspects of C4-+. Still, object-
oriented programming effectively supports the design and implementation of the framework.

Internal data structures

Now, let’s plunge straight into the internal data structures of the C++ program. The code
listed below is slightly simplified; constructors and destructors are not listed, and most
general purpose routines have been omitted. An example will be given below.

All objects are components; they have a name, and they can be inserted into lists
(Listing 2).

class component {
char* name;
link next;

public:
virtual void menuaction();
virtual void redraw();

};

Listing 3. Definition of the basic component class.

. Method redraw is a schoolbook virtual function in C++: every component has a
graphical representation, so all components must implement redraw in some way. Graphics
will be described further in Section 5.

When the user points at a component and presses a mouse button, some components
(e. g, models and realizations) will respond by displaying a menu. Other components
(e. g., terminals and connections) are not associated with a menu. In C++, which in its
present shape only supports single inheritance, method menuaction must be declared as a
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virtual function in the base class, component. When multiple inheritance becomes available
in C++, menuaction would more naturally be the property of a class associated purely
with the user interface; models and realizations would be derived from this class, but not
terminals and connections [Stroustrup, 1987a).

Generally speaking, multiple inheritance enables us to separate the user interface and
the modelling structure more effectively. There will be one “thread” of inheritance for
the user interface (drawing block diagrams, and menu actions when applicable), and one
thread of inheritance for the modelling of control systems (components, models, etc.). The
development of class libraries, in particular, will benefit from multiple inheritance. For
example, functions provided by the operating system and the window manager, will be
easier to describe and use in an object-oriented fashion with multiple inheritance.

The model contains terminals and realizations, in C++ represented with linked lists
(Listing 3). General purpose lists of components are used, which effectively corrupts the
type security in C++. In addition, the programmer must bother about explicit type
conversions. Alternatively, generic lists could be faked with macros. Future versions of
C++ may incorporate true generics, also called parameterized types [Stroustrup, 1987b].
The need is evident, even in this small example.

class model : public component {
list terminals;
list realizations;

void new_terminal();
void new_realization();

public:
void menuaction();
void redraw();
};
Listing 3. Definition of the model class.

There are two different kinds of model realizations: primitive realizations based on
equations, and structured realizations based on hierarchical block diagrams (Listing 5).
There is no “one-of” concept (for example, allowing a pointer to a set of classes) in C++,
so an additional class realization is needed (Listing 4). In this case, there are no real
problems; in other cases, an awkward data structure might be forced upon the programmer.
The one-of concept is available with full type checking in KEE, and has reduced the need
for common base classes.

class realization : public component {
};

Listing 4. The common part of all realizations.

A submodel establishes a relation between two models, one fully enclosed in the other
(Listing 6). With a structured realization, a model is described by the behaviour of its
submodels and by its connections. The submodel also has a graphical meaning. When
a model is simulated, the submodel must be “instantiated” by the model representation
framework. Although many submodels may refer to a single model (e. g., a pump), every
submodel requires a private data area to hold simulation variables.
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class eqn_realization : public realization {
list equations;

void new_equation();

public:
void menuaction();
void redraw();

};

class struct_realization : public realization {
list submodels;
list connections;

void new_submodel();
void nmew_connection();

public:
void menuaction();
void redraw();

};

Listing 5. Primitive and structured model realizations.

class submodel : public component {
point position, size;
model* parent;
model* sub;
void* data;

public:
void move();
void scale();
void instantiate();
void redraw();
};
Listing 6. Definition of the submodel class.

An example

A small example will demonstrate the data structures above: a servo built from a regulator
and a motor. On the screen, the engineer will see a block diagram as in Figure 1. Input to
the servo is the reference value, also called the setpoint. Qutput from the servo is the actual
position of the actuator. The regulator controls the motor, but the common feedback loop
has been left out to simplify the example.

The textual representation in Figure 2 reveals the most important C++ objects needed
for the servo. The servo object has two terminals and a realization (terminals and
connections will not be described in more detail). The realization is of course structured, and
contains two submodels. It also contains three connections: the reference value imported

to the regulator, the control signal from regulator to motor (shown in Figure 2), and the
exported actuator position.
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Servo

Regulator Motor

Figure 1. A servo with two submodels.

The submodel objects (for example, MotorSub) serve two purposes in this example.
Firstly, the graphical appearance of a structured realization is determined mainly by the
position and size of the submodels. This information cannot be stored in the model object;
a certain kind of motor can be used as a submodel in many different models. Secondly,
the submodels establish a relationship between the enclosing model (the servo), and the
model objects used as components (e.g., the motor). The two pointers in the submodel
object are used, for example, when defining connections. The references between models,
realizations and submodels are shown graphically in Figure 3. The role of the submodel
when simulating the control system is not discussed here.

The C++ objects used for representing the regulator and the motor are similar to
the servo objects. The main difference is that the regulator and the motor have primitive
realizations, probably expressed with differential equations.

Exception handling

Handling of exceptions (errors and similar uncommon events) is a problem in all software
systems. Ordinary programming techniques, using status flags and if-statements, lead either
to bad program structure and cluttered code, or to programs that take proper behaviour
for granted. A well designed exception handling mechanism (as in Ada), is an invaluable
asset in practical software development. Exceptions increase the readability of the program
and indicates the programmer’s assumptions about expected and unexpected events [Ghezzi
and Jazayeri, 1982, page 22].

The model development tool is quite complex, and many inconsistencies must be
checked step-by-step, at different times. Exception handling is useful for restoring the
internal data structures to a previous well-defined state. Storing as little redundant
information as possible makes this task easier, but may increase complexity in other areas.

The absence of exception handling is a serious flaw of C++. Ada style exception
handling, which is also available in C [Lee, 1983], is very effective, but a more flexible
scheme may be called for in C++. Some people say that exception handling is needed for
developing good class libraries. '

Finally, it should be noted that friend functions have been used sparingly (for example,
a connection needs free access to terminals and submodels), and proved to be extremely
useful. By bending the rules a little, a natural data structure has been maintained; ever-
expanding modules because of too strict encapsulation is often a problem with Modula-2
and Ada.
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Model: Servo
Terminals: [Ref, Pos]
Realizations: [ServoRealiz]

Struct-realization: ServoRealiz
Submodels: [RegSub, MotorSub]
Connections: [RegSub.u — MotorSub.u, ...]

Submodel: RegSub
Position: (—0.6,0)
Size: (0.5,0.5)
Parent: —Servo
Sub: —Regulator

Submodel: MotorSub
Position: (0.6,0)
Size: (0.5,0.5)
Parent: —Servo
Sub: —Motor

Model: Regulator
Terminals: [Ref, u]
Realizations: [RegRealiz]

Eqn-realization: RegRealiz
Equations: [---]

Model: Motor
Terminals: [u, Pos]
Realizations: [MotorRealiz]

Eqn-realization: MotorRealiz
Equations: [--‘]

Figure 3. Textual representation of the servo; terminals, connections and equations are not
shown, Square brackets denote a list, an arrow (—) a pointer reference.

5. Using PHIGS

PHIGS (Programmer’s Hierarchical Interactive Graphics Standard) is a new 3D graphics
standard, aimed at interactive CAE/CAD applications [Brown, 1985]. PHIGS should be
regarded as an extension and a complement to the Graphical Kernel Standard [Hopgood
et al., 1983], but not as a replacement.

The basic unit in PHIGS is the structure (cf. segment in GKS). A structure contains
elements for drawing, graphical attributes, and transformations. It is possible to build
hierarchies of structures (i. e., one structure may call another), and to edit the contents of
a structure; this is not possible in GKS. Application data may also be stored in a structure,
possibly a useful feature.
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¥ i
Servo 1 ServoRealiz RegSub MotorSub
Regulator = RegRealiz
Sub
Motor MotorRealiz

Figure 8. References between models, realizations and submodels of the servo. Terminals,
connections and equations are not shown.

In order to take maximum advantage of the hierarchical structures in PHIGS, one struc-
ture is associated with every object in the C++ program. This one-to-one correspondence is
very convenient; changes are normally localized to a single PHIGS structure, and complete
regeneration of the graphics can be avoided. As a typical example, consider changing a
pump model: the structure associated with the pump must be changed, but models using
the pump as a submodel only refer to a structure identifier, and need no changes. The
fine granularity of the graphics hierarchy causes an extra overhead at redraw, which is quite
tolerable in this application, though. It can be noted that the model development tool is not
a typical PHIGS application, in the sense that it uses the hierarchical features of PHIGS,
but not the 3D capabilities.

The correspondence between the object hierarchy and the PHIGS structure hierarchy
is shown in Figure 4. The object structure on the left is the same as in Figure 3, but the
regulator objects are not shown. A PHIGS structure is associated with each object, as
indicated by dashed arrows. The PHIGS structures on the right form a parallel hierarchy,
logically connected with “execute structure” primitives. The graphical representation of a
model is determined by the realization and its associated structure. The PHIGS structures
are in reality more complex, for example, to control picking (see below).

The problem of associating a C++ object with a structure, was solved by some fancy
programming. A C+4+ object can easily refer to a structure by storing the structure
identifier, but a problem arises when control must go from a structure to the associated
C++ object (for example, when the object’s menu action should be invoked). The solution
is to use the object’s this pointer as pick identifier, after conversion to an integer. When
the PHIGS system returns a pick identifier, the identifier is converted back to a “pointer to
component.” The exact nature of the object is not known, but all components implement
method menuaction (Listing 2).

PHIGS can display graphics on multiple “workstations,” which in a workstation envi-
ronment corresponds to multiple windows. By using so called filters, different graphical rep-
resentations can be displayed with a single structure hierarchy. Regrettably, multiple work-
stations are not yet supported by some PHIGS implementations. Event mode input and rub-
berband lines may also be missing in current implementations. Window management is not
available in the PHIGS standard, and may therefore cause considerable practical problems.
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Servo f-------------- =1 rectangle(...)
execute(ServoRealizStruct)
/
text(-1.1, 1, "Servo")

ServoRealiz [-=======-- <1  execute(RegSubStruct)

~ execute(MotorSubStruct)

scale(...)

MotorSub f-====-==-=---- > translate(...)
execute(MotorStruct)

y

Motor f-======-=-===~-- - rectangle(...)
execute(MotorRealizStruct)

MotorRealiz - e———— > text(0, O, "Motor")

Figure 4. Parallel hierarchies of C+4- objects (left) and PHIGS structures (right).

6. Conclusions

In our experience, a dynamic environment like KEE is the best choice for résearch and rapid
prototyping. An engineering tool requires a less expensive and more efficient implementation
tool that is available on many computers; in this case, C++ is superior. We have not made
a detailed evaluation of KEE versus C++, but the current work shows that programs and
data structures using the object-oriented parts of KEE can be implemented in C++ with
reasonable effort.

The major difficulty is that C++ does not support dynamic creation of classes. For
this reason, models of control systems cannot be directly expressed as classes in C++,
so an object-oriented framework must be implemented. The data abstraction and object-
oriented programming aspects of C++ provide good support for this framework, and a
good programming environment in general. Multiple inheritance, parameterized types and
exception handling are much needed extensions to C++.

PHIGS is a powerful new graphics standard, but current implementations need im-
provement. Window management remains a problem area.
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ABSTRACT

This paper describes the problems involved in generating names for overloaded
functions in G+ and in linking to C programs. It also discusses how these problems
relate to library building. It presents a solution that provides a degree of type-safe
linkage. This eliminates several classes of errors from Gi+ and allows libraries to be
composed more freely than has hitherto been possible. Finally the current encoding
scheme for G+ names is presented.

1 Introduction

This paper describes the type-safe linkage scheme used by the 2.0 release of G+ and the mechanism
provided to allow traditional (unsafe) linkage to non-Ci+ functions. It describes the problems with the
scheme used by previous releases, the alternative solutions considered, and the practicalities involved in
converting from the old linkage scheme to the new.

The new scheme makes the overload keyword redundant, simplifies the construction of tools
operating on GH object code, makes the composition of CH libraries simpler and safer, and enables reli-
able detection of subtle program inconsistencies. The scheme does not involve any run-time costs and
does not appear to add measurably to compile or link time.

The scheme is compatible with older G+ implementations for pure G+ programs but requires expli-
cit specification of linkage requirements for linkage to non-C+ functions.

2 The Original Problem

G+ allows overloading of function names; that is, two functions may have the same name provided
their argument types differ sufficiently for the compiler to tell them apart. For example,

double sqgrt (double);
complex sqrt (complex);

Naturally, these functions must have different names in the object code produced from a C+ program.
This is achieved by suffixing the name the user chose with an encoding of the argument types (the sig-
nature of the function). Thus the names of the two sqrt () functions become:

sqrt_ Fd // the sqrt that takes a double argument
sqrt__ F7complex // the sqrt that takes a complex argument

Some details of the encoding scheme are described in Appendix A.

When experiments along this line began five years ago it was immediately noticed that for many sets
of overloaded functions there was exactly one function of that name in the standard C library. Since C
does not provide function name overloading there could not be two. It was deemed essential for G+ to
be able to use the C libraries without modification, recompilation, or indirection. Thus the problem
became to design an overloading facility for G+ that allowed calls to C library functions such as
sqrt () even when the name sqrt was overloaded in the G+ program.
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3 The Original Solution

The solution, as used in all non-experimental G+ implementations up to now, was to let the name
generated for a G+ function be the same as would be generated for a C function of the same name
whenever possible. Thus open () gets the name open on systems where C doesn’t modify its names
on output, the name _open on systems where C prepends an underscore, etc.

This simple scheme clearly isn’t sufficient to cope with overloaded functions. The keyword
overload was introduced to distinguish the hard case from the easy one and also because function
name overloading was considered a potentially dangerous feature that should not be accidentally or
implicitly applied. In retrospect this was a mistake.

To allow linkage to C functions the rule was introduced that only the second and subsequent ver- .
sions of an overloaded function had their names encoded. Thus the programmer would write

overload sqrt;
double sqrt (double) ; // sqrt
complex sqrt (complex); // sqrt__Flcomplex

and the effect would be that the G+ compiler generated code referring to sqrt and
sqrt__F7complex. This enabled a G+ programmer to use the C libraries. This trick solves the
problems of name encoding, linkage to C, and protection against accidental overloading, but it is clearly
a hack. Fortunately, it was documented only in the BUGS section of the G+ manual page.

4 Problems with the Original Solution

There are at least three problems with this scheme:

— How to name overloaded functions so that one may be a C function,

— How to detect errors caused by inconsistent function declarations.

- How to specify libraries so that several libraries can be easily used together.

The overload Linkage Problem

. Consider a program that uses an overloaded function print () to output globs and widgets.
Naturally globs are defined in glob.h and widgets in widget .h. A user writes

// filel.c:
#include <glob.h>
#include <widget.h>

but this elicits an error message from the G+ compiler since print () is declared twice with different
argument types. The user then modifies the program to read

// filel.c:
overload print;
#include <glob.h>
#include <widget.h>

and all is well until someone in some other part of the program writes

// file2.c:
overload print;
#include <widget.h>
#include <glob.h>

This fails to link since the object code file produced from filel.c refers to print (meaning
print (glob)) and print__ F6éwidget, whereas the output from file2.c refers 10 print
(meaning print (widget)) and print__F4glob.

This is of course a nuisance, but at least the program fails to link and the programmer can — after
some detective work based on relatively uninformative linker error messages — fix the problem, The
nastier variation of this will happen to the conscientious programmer who knows that print () is over-
loaded and inserts the appropriate overload declarations, but happens to use only one variation of
print () in each of two source files:
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// filel.c:
overload print;
#include <glob.h>

// file2.c:
overload print;
#include <widget.h>

The output from filel.c and £ile2.c now both refer to print. Unfortunately, in the output from
filel.c print means print (glob) whereas print refers to print (widget) in the output from
file2.c. One might expect linkage to fail because print () has been defined twice. However, on most
systems this is not what happens in the important case where the definitions of print (glob) and
print (widget) are placed in libraries. Then, the linker simply picks the first definition of
print () it encounters and ignores the second. The net effect is that calls (silently) go to the wrong
version of print (). If we are lucky, the program will fail miserably (core dump); if not, we will sim-
ply get wrong results.

The requirement that the overload keyword must be used and the non-uniform treatment of over-
loaded functions (*‘the first overloaded function has C linkage’’) is a cause of complexity in G+ com-
pilers and in other tools that deal with G+ program text or with object code generated by a G+ com-
piler.

The General Linkage Problem

This problem of inconsistent linkage is a variation of the general problem that C provides only the
most rudimentary facilities for ensuring consistent linkage. For example, even in ANSI C and in G+
(until now) the following example will compile and link without warning:

#include <stdio.h>
extern int sqgrt (int);

main ()
{

printf ("sqrt (%d) == %d\n",2,sqrt(2));
}

and produce output like this
sqrt (2) == 0

because even though the user clearly specified that an integer sqrt () was to be used, the C
compiler/linker uses the double precision floating point sqrt () from the standard library. This prob-
lem can be handled by consistent and comprehensive use of correct and complete header files. How-
ever, that is not an easy thing to achieve reliably and is not standard practice. The traditional C and C+
compiler/linker systems do not provide the programmer with any help in detecting errors, oversights, or
dangerous practices.

These linkage problems are especially nasty because they increase disproportionally with the size of
programs and with the amount of library use.

Combining Libraries

The standard header complex.h overloads sqrt ():

// complex.h:
overload sqgrt;
#include <math.h>
complex sqgrt (complex);

Some other header, 3d.h, declares sqrt () without overloading it:

// 3d.h:
#include <math.h>
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Now a user wants both the 3d and the complex number packages in a program:

#include <3d.h>
#include <complex.h>

Unfortunately this does not compile because of this sequence of operations:

double sqrt (double); // from <math.h> via <3d.h>
overload sqrt; // from <complex.h>

A function that is to be overloaded must be explicitly declared overloaded before its first declaration is
processed. So the programmer, who really did not want to know about the internals of those headers,
must reorder the #include directives to get the program to compile:

#include <complex.h>
#include <3d.h>

This will work unless 3d.h overloads some function, say atan (), that complex.h does not. Even

in that case the programmer can cope with the problem by adding sufficient overload declarations
where 3d.h and complex.h are included:

overload sqrt;
overload atan;
#include <3d.h>
#include <complex.h>

This reordering and/or adding of overload declarations is imrelevant to the job the programmer is
trying to do. Worse, if the extra overload declarations were placed in a header file the programmer
has now set the scene for the users of the new package to have exactly the same problems when they try
combining this new library with other libraries. It becomes tempting to overload all functions or at least
to provide header files that overload all interesting functions. This again defeats any real or imagined
benefits of requiring explicit overload declarations.

5 A General Solution

The overloading scheme used for G+ (until now) interacts with traditional C linkage scheme in ways
that bring out the worst in both. Overloading of function names, which was introduced to provide nota-
tional convenience for programmers, is becoming a noticeable source of extra work and complexity for
builders and users of libraries. Either the idea of overloading is bad or else its implementation in Ci+ is
deficient. The insecure C linkage scheme is a source of subtle and not-so-subtle errors. In summary:

[1] Lack of type checking in the linker causes problems.

[2] Use of the overload keyword causes problems.

[3] We must be able to link G+ and C program fragments.

A solution to 1 is to augment the name of every function with an encoding of its signature. A solution
to 2 is to cease to require the use of overload (and eventually abolish it completely). A solution to 3
is to require a G+ programmer to state explicitly when a function is supposed to have C-style linkage.

The question is whether a solution based on these three premises can be implemented without notice-
able overhead and with only minimal inconvenience to G+ programmers. The ideal solution would

— require no G+ language changes;

~ provide type-safe linkage;

- allow for simple and convenient linkage to C;

— break no existing G+ code;

— allow use of (ANSI style) C headers;

-~ provide good error detection and error reporting;

— be a good tool for library building;

— impose no run-time overhead;

— impose no compile time overhead;

— impose no link time overhead.

We have not been able to devise a scheme that fulfills all of these criteria strictly, but the adopted
scheme is a good approximation.
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Type-safe C++ Linkage

First of all, every G+ function name is encoded by appending its signature, This ensures that a pro-
gram will load only provided every function called has a definition and that the argument types specified
in declarations used to compile calls are the same as the types specified in the function definition. For
example, given:

£(int i) { ... } // £_Fi
£(int i, char* j) ( ...} // £__FiPc

These examples will cause correct linkage:

extern f(int); // £_Fi - links to £ (int)
£(1);
extern f(int,char*); // £__FiPc - links to f(int,char*)

£(1,"asdf");

These examples will cause linkage errors independent of where in the program they occur because no
£ () with a suitable signature has been defined:

// no declaration of £() in this file
// (this is legal only in C programs)

£(1); // £ - links to 2?27
extern £ (char*); // £__FPc - links to ???
£ ("asdf");

extern f(int ...); // £__Fie - links to 22?2

£(1,"asdf");

One might consider extending this encoding scheme to include global variables, etc., but this does
not appear to be a good idea since that would introduce at least as many problems as it would solve.
For example:

// filel.c:
int aa = 1;
extern int bb;

//file2.c:
char* aa = "asdf"; // error: aa is declared int in filel.c
extern char* bb; // error: bb is declared int in filel.c

Under the current C scheme, the double definition of aa will be caught and the inconsistent declarations
of bb will not. Using an encoding scheme, the double definition of aa would not be caught since the
difference in encoding would cause two differently named objects to be created — contrary to the rules
of C and G+. The fact that the inconsistent declarations of bb would be caught by some linkers (not
all) does not compensate for the incorrect linkage of aa. Consequently only functions are encoded
using their signatures.

For a similar reason function argument types are not encoded (except for pointer to argument types):

// hypothetical encoding using return types:

// filel.c:
int £() { ... }; o/ £_Fv i
//file2.c:
char* £(); // £__Fv Pc

Here a linker would report £ () undefined because of the name mismatch. This could be quite confus-
ing.
The adopted linkage scheme is much safer than what is currently used for C, but it cannot detect all
linkage problems. For example, if two libraries each provides a function £ (int) as part of their public
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interface there is no mechanism that allows the compiler to detect that there are supposed to be two dif-
ferent £ (int)s. If the .o files are loaded together the linker will detect the error, but when a library
search mechanism is employed the error may go undetected.

Note that this linking scheme simply enforces the C+ rules that every function must be declared
before it is called and that every declaration of an external name in G+ must have exactly the same
type.

In essence, we use the name encoding scheme to “‘trick”’ the linker into doing type checking of the
separately compiled files. More comprehensive solutions can be achieved by modifying the linker to
understand G+ types. For example, a linker could check the types of global data objects and the return
types of functions. It might also provide features for ensuring the consistency of global constants and
classes. However, getting an improved linker into use is typically a hard and slow process. The scheme

- presented here is portable across a great range of systems and can be used immediately.

Implicit Overloading

If a function is declared twice with different argument types it is overloaded. For example:

double sqgrt (double) ;
complex sqgrt (complex) ;

is accepted without any explicit overload declaration. Naturally, overload declarations will be
accepted in the foreseeable future; they are simply not necessary any more. _

Does this relaxation of the G+ rules cause new problems? It does not appear to. For example, ori-
ginally I imagined that obvious mistakes such as

double sqrt (double); // sqrt__Fd
double 4 = sqrt(2.3):;

double sqrt(int d) { ... } // sqrt_ Fi

would cause hard-to-find errors. It certainly would with the traditional C linkage rules, but with type-
safe linkage the program simply will not link because there is no function called sqrt__Fd defined
anywhere. Even the standard library function will not be found because its name is as always *‘plain’’
sgrt.

Another imagined problem was that a call

fix);

would suddenly change its meaning when a function became overloaded by the inclusion of a new
header file containing the declaration of another function £ (). The only case where £ (x) can have its
meaning changed by the introduction of a new declaration £ (T) is where T is the type of x. In this
case the meaning of £ (x) ought to change. In all other cases, the C+ ambiguity rules ensure that the
introduction of a new £ () will either leave the meaning of £ (x) unchanged (when the new £ () is
unrelated to the type of x) or will cause a compile time error (when an ambiguity is introduced).

C Linkage

This leaves the problem of how to call a C function or a G+ function ‘‘masquerading’’ as a C func-
tion. To do this a programmer must state that a function has C linkage. Otherwise, a function is
assumed to be a G+ function and its name is encoded. To express this an extension of the ‘‘extern”’
declaration is introduced into G+:

extern "C" { .
double sqrt (double); // sqrt (double) has C linkage
}

This linkage specification does not affect the semantics of the program using sqrt () but simply
tells the compiler to use the C naming conventions for the name used for sqrt () in the object code.
This means that the name of this sqrt () is sqrt or _sqrt or whatever is required by the C linkage
conventions on a given system. One could even imagine a system where the C linkage rules were the
type-safe G+ linkage rules as described above so that the name of sqrt () was sqrt__ Fd.
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Linkage specifications nest, so that if we had other linkage conventions, such as Pascal linkage, we
could write:

// default: C++ linkage here
extern "C" {
// C linkage here
extern “"Pascal" {
// Pascal linkage here
extern "C++" {(
// C++ linkage here

}
// Pascal linkage here

// C linkage here

// C++ linkage here

Such nestings will typically occur as the result of nested #includes.

The {} in a linkage specification does not introduce a new scope; the braces are simply used for
grouping. This use of {) strongly resembles their use in enumerations.

The keyword extern was chosen because it is already used to specify linkage in C and C+.
Strings (for example, "C" and "C++") were chosen as linkage specifiers because identifiers (e.g. C
and Cplusplus) would de facto introduce new keywords into the language and because a larger alpha-
bet can be used in strings.

Naturally, only one of a set of overloaded functions can have C linkage, so the following causes a
compile time error:

extern "C" {
double sqgrt (double) ;
complex sqgrt (complex);

}

Note that C linkage can be used for G+ functions intended to be called from C programs as well as for
C functions. In particular, it is necessary to use C linkage for G+ functions written to implement stan-
dard C library functions for use by C programs. However, using the encoded C+ name from C
preserves type-safety at link time. This technique can be valuable in other languages too. I have
already seen an example of the G+ scheme applied to assembly code to prevent nasty link errors for
low level routines. One might consider using this G+ linkage scheme for C also, but I suspect that the
sloppy use of type information in many C programs would make that too painful.

In an “‘all G#’’ environment no linkage specifications would be needed. The linkage mechanism is
intended to ease integration of G+ code into a multi-lingual system.

Caveat

One could extend this linkage specification mechanism to other languages such as Fortran, Lisp, Pas-
cal, PL/1, etc. The way such an extension is done should be considered very carefully because one
*‘obvious” way of doing it would be to build into a G+ compiler the full knowledge of the type struc-
ture and calling conventions of such “‘foreign’’ languages. For example, a G+ compiler might handle
conversion of zero-terminated G- strings into Pascal strings with a length prefix at the call point of a
function with Pascal linkage and might use Fortran call by reference rules when calling a function with
Fortran linkage, etc.

There are serious problems with this approach:

— The complexity and speed of a G+ compiler could be seriously affected by such extensions.

— Unless an extension is widely available and accepted programs using it will not be portable.

- Two implementations might ‘‘extend’’ G+ with a linkage specification to the same ‘‘foreign”’
language, say Fortran, in different ways so as to make identical G+ programs have subtly dif-
ferent effects on different implementations.

Naturally, these problems are not unique to linkage issues or to this approach to linkage specification.
I conjecture that in most cases linkage from C+ to another language is best done simply by using a

1988 USENIX C++ Conference 199



common and fairly simple convention such as ‘‘C linkage' plus some standard library routines and/or
rules for argument passing, format conversion, etc., to avoid building knowledge of non-standard calling
conventions into G+ compilers. This ought to be simpler from G+ than from most other languages.
For example, reference type arguments can be used to handle Fortran argument passing conventions in
many cases and a Pascal string type with a constructor taking a C style string can trivially be written,
Where extension are unavoidable, however, CH now provides a standard syntax for expressing them.

6 Experience

The natural first reaction to this scheme is to look for a way of handling linkage and overloading
without requiring explicit linkage specifications. We have not been able to come up with a system that
enabled C linkage to be implicit without serious side effects. I will summarize the advantages of the
adopted scheme here and discuss several possible objections to it. Section 7 below describes alternative
schemes that were considered and rejected.

Making Linkage Specifications Invisible

One obvious advantage of this scheme is that it allows a programmer to give a set of functions C
linkage with a single linkage specification without modifying the individual function declarations. This
is particularly useful when standard C headers are used. Given a C header (that is, an ANSI C header
with function prototypes, etc.),

// C header:
// C declarations

one can trivially modify the header for use from G
// C++ header:

extern "C" {

// C header:

// C declarations
}

This creates a G+ header that cannot be shared with C.
Sharing with C can be achieved using #ifdef:

// C and C++ header:

#ifdef _ cplusplus
extern "C" {
#endif

// C header:

// C declarations
#ifdef _ cplusplus

}
#endif

where ___cplusplus is defined by every G+ compiler.
In cases where one for some reason cannot or should not modify the header itself one can use an
indirection:
// C++ header:

extern "C" {
#include "C_header"
}

Fortunately, such transformations can be done by trivial programs so that most of the effort in convert-
ing C headers need not be done by hand.

It was soon discovered that even though programmers tend to scatter function declarations
throughout the G+ program text, most C functions actually come from well-defined C libraries for
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which there are — or ought to be — standard header files.

Placing all of the necessary linkage specifications in standard header files means that they are not
seen by most users most of the time. Except for programmers studying the details of C library inter-
faces, programmers installing headers for new C libraries for G+ users, and programmers providing G+
implementations for C interfaces, the linkage specifications are invisible.

.Error Handling

The linker detects errors, but reports them using the names found in the object code. This can be
compensated for by adding knowledge about the G+ naming conventions to the linker or (simpler) by
providing a filter for processing linker error messages. This output was produced by such a filter:

C++ symbol mapping:

PathListHead: :~PathListHead () __dt__12PathListHeadFv
Path list::sepWork () sepWork__SPath_listFv
Path: :pathnorm() pathnorm__4PathFv
Path: :operator& (Paths) __ad_ 4PathFR4Path
Path::first () first__ 4PathFv
Path::last () last__ 4PathFv
Path::rmfirst () rmfirst__4PathFv
Path::rmlast () rmlast__ 4PathFv

Path: :rmdots () rmdots__ 4PathFv
Path::findpath(Stringé&) findpath__ 4PathFR6String
Path::fullpath() . fullpath__4PathFv

Introducing this filter had the curious effect of replacing the usual complaint about ‘‘ugly G+ names’’
with complaints that the linker didn’t provide enough information about C functions and global data
objects.

The reason for presenting the encoded and unencoded names of undefined functions side by side is
to help users who use tools, such as debuggers, that haven’t yet been converted to understand Cw
names,

A plain C debugger such as sdb, dbx, or codeview can be used for G+ and will correctly refer to
the G+ source, but it will use the encoded names found in the object code. This can be avoided by
employing a routine that ‘‘reverses’’ the encoding, that is, reads an encoded name and extracts informa-
tion from itf. The encoding scheme is described in Appendix A. A G+ name decoder should be gen-
erally available for use by debugger writers and others who deal directly with object code. Until such
decoders are in widespread use the programmer must have at least a minimal understanding of the
encoding scheme.

Upgrading Existing C+ Programs

Decorating the standard header files with the appropriate linkage specifications had two effects. The
first phenomenon observed was that most of the declarations scattered in the program text that were
referring to C functions were either redundant (because the function had already been declared in a
header) or at least potentially incorrect (because they differed from the declaration of that header file on
some commonly used system). The second phenomenon observed was that every non-trivial program
converted to the new linkage system contained inconsistent function declarations. A noticeable number
of declarations found in the program text were plain wrong, that is, different from the ones used in the
function definition. This was caused in part by sloppiness, for example, where a programmer had
declared a function

char* £(int ...);

to suppress compiler warnings instead of looking up the type of the second argument. A more common
problem was that the ‘‘standard’’ header files had changed since the function declaration was placed in

1 Naturally, this would be the same function as was used to write the linker output filter. The examples here are based on the
name decoding routine written by Steve Brandt and used to modify the UNIX System V C debugger sdb into sdb++.
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the text so that the ‘‘local” declaration didn’t match any more; this often happens when a file is
transferred from one system to another, say from a BSD to a System V.

In summary, introducing the new linkage system involved adding linkage specifications. Typically,
these linkage specifications were only needed in standard header files. The process of introducing link-
age specifications invariably revealed errors in the programs — even in programs that had been con-
sidered correct for years. The process strongly resembles trying 1int on an old C program.

As was expected, some programmers first tried to get around the requirements for explicit C linkage
by enclosing their entire program in a linkage directive. This might have been considered a fine way of
converting old G+ programs with minimum effort had it not had the effect of ensuring that every pro-
gram that uses facilities provided by such a program would also have to use the unsafe C linkage. To
achieve the benefits from the new linkage scheme most G+ programs must use it. The requirement that
at most one of a set of overloaded functions can have C linkage defeats this way of converting pro-
grams. The slightly slower and more involved method of using standard header files (already containing
the necessary linkage specifications) and adding a few extra linkage specifications in local headers where
needed must be used. This also has the benefit of unearthing unexpected errors.

7 Details

The scope of C function declarations has always been a subject for debate. In the context of CH
with linkage specifications and overloaded functions it seems prudent to answer some variations of the
standard questions.

Default Linkage
Consider:

extern "C" {
int f£(int):;
}

int £(int); // default (C++ linkage) overruled: £() has C linkage

Is it the same £ () that was defined with C linkage above and does it have C or G+ linkage? It is the
same £ () and it does (still) have C linkage. The first linkage specification ‘‘wins’’ provided the second
declaration has ‘“‘only’’ default (that is, G+) linkage.

Where linkage is explicitly specified for a function, that specification must agree with any previous
linkage. For example: '

extern "C" {

int £(int); // £() has C linkage
}
int g{); // default: g() has C++ linkage
int £(int); // fine: default overruled, f() has C linkage

extern "C" {
int f£(int); // fine
int g(); // error: inconsistent linkage specification

}

The reason to require agreement of explicit linkage specifications is to avoid unnecessary order depen-
dencies. The reason to allow a second declaration with implicit C+ linkage to take on the linkage from
a previous explicit linkage specification is to cope with the common case where a declaration occurs
both in a . c file and in a standard header file.
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Declarations in Different Scopes
Consider:

extern "C" {
int f£(int);
}

void gl ()

{
int £(int);
£(1);

}

Is the £() declared local to g1 the same as the global £ () and does the function called in g1 () have
C linkage? It is the same £ () and it does have C linkage.
Consider:

extern "C" (
int £(int);
}

void g2 ()

{
int £ (char*);
£(1);
f ("asdf");

}

Does the local declaration of £ () overload the global £ () or does it hide it? In other words, is the call
£(1) legal? That call is an error because the local declaration introduces a new £ () that hides the glo-
bal £ (). In the tradition of C, the declaration of £ (char*) also draws an warning.

Consider:

void g3()
{

int ££f(int);
}:

void g4 ()
{

int ff(char*);
££("asdf");
££(1);

}:

Does the second declaration of ££ () overload the first? In other words, is the call ££ (1) legal? The
call is an error and a warning is issued about the two declarations of ££ () because (as in the example
above) overloading in different scopes is considered a likely mistake.

Local Linkage Specification
Linkage specifications are not allowed inside function definitions. For example:
void g5 ()
{
extern "C" { // error: linkage specification in function

int h():
}
}

The reason for this restriction is to discourage the use of local declarations of C functions and to sim-
plify the language rules.
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8 Alternative Solutions

So, the linkage specification scheme works, but isn’t there a better way of achieving the benefits of
that scheme? Several schemes were considered. This section presents the first two or three alternatives
people usually come up with and explains why we rejected them, Naturally, we also considered more
and weirder solutions, but all the plausible ones were variations of the ones presented here.

The Scope Trick

The first attempt to provide type-safe linkage involved the use of overload and the GH scope
rules. All overloaded function names were encoded, but non-overloaded function names were not. This
scheme had the benefit that the linkage rules for most functions were the C linkage rules — and had the
problem that those rules are unsafe. The most obvious problem was that at first glance there is no way
of linking an overloaded function to a standard C library function. This problem was handled using a
*‘scope trick’’:

overload sqrt;
complex sqgrt (complex);

inline double sqrt (double d)
{

extern double sqgrt (double); // A completely new sqrt ()
// not overloaded

return sqrt(d); // not a recursive call
// but a call of the C function
// sqrt

}

In effect, we provided a G+ calling stub for the C function sqrt (). The snag is that having thus
defined sqrt (double) in a standard header a user cannot provide an alternative to the standard ver-
sion. The problems with library combination in the presence of overload are not addressed in this
scheme, and are actually made worse by the proliferation of definitions of overloaded functions in
header files. In particular, if two *‘standard’’ libraries each overload a function then these two libraries
cannot be used together since that function will be defined twice: once in each of the two standard
headers.

There is also a compile time overhead involved. In retrospect, I consider this scheme somewhat
worse than the original ‘‘the first overloaded has C linkage’’ scheme.

C ““storage class’’

It is clear that the definitions providing a calling stub are redundant. We could simply provide a
way of stating that a member of a set of overloaded functions should be a C function. For example:

complex sqrt (complex):
cdecl double sqrt (double); // sqrt (double) has C linkage

This is equivalent to

complex sqrt (complex);
extern "C" {

double sqgrt (double);
}

but less ugly. However, it involves complicating the G+ language with yet another keyword. Functions
from other languages will have to be called too and they each have separate requirements for linkage so
the logical development of this idea would eventually make ada, fortran, 1isp, pascal, el., key-
words. Using a keyword also requires modification of the declarations of the C functions and those are
exactly the declarations we would want not to touch since they will typically live in header files shared
with an ANSI C compiler. In some cases we would even like not to touch a file in which such declara-
tions reside.
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Overload ‘‘storage class”’

The use of a keyword to indicate that a function is a C function is logically very similar to the link-
age specification solution, though inferior in detail. An alternative is to have a keyword indicate that a
function should have its signature added. The keyword overload might be used. For example:

overload complex sqrt (complex): // use C++ linkage
double sqrt (double); // C linkage by default

This has the disadvantage that the programmer has to add information to gain type safety rather than
having it as default and would de facto ensure that the Gi+ type-safe linkage rules would be used only
for overloaded functions. Furthermore, this would mean that libraries could be combined only if the
designers of these libraries had decorated all the relevant functions with overload. This scheme also
invalidates all old G+ programs without providing significant benefits.

Calling Stubs

One way of dealing with C linkage would be rot to provide any facilities for it in the CH language,
but to require every function called to be a G+ function. To achieve this one would simply re-compile
all libraries and have one version for C and another for C+. This is a lot of work, a lot of waste, and
not feasible in general. In the cases where recompilation of a C program as a G+ program is not a rea-
sonable proposition (because you don’t have the source, because you cannot get the program to compile,
because you don’t have the time, because you don’t have the file space to hold the result, etc.) you can
provide a small dummy G+ function to call the C function. Such a function would be written in C (for
portability) or in assembler (for efficiency). For example:

double sqrt_Fd(d) double d; /* C calling stub for sqrt (double): */
{

extern double sgrt():

return sqgrt(d);
}

A program can be provided to read the linker output and produce the required stubs.

This scheme has the advantage that the user works in what appears to be an ‘‘all G+’ environment
(but so does the adopted scheme once a few C libraries have been recompiled with G+ and/or a few
header files have been decorated with linkage specifications). It does, however, also suffer from a few
severe disadvantages. A ‘‘C calling stub maker’’ program cannot be written portably. Therefore, it
would become a bottleneck for porting G+ implementations and G+ programs and thus a bottleneck for
the use of Gi+. It is also not clear that this approach can be implemented everywhere without loss of
efficiency since it requires large numbers of functions to have two names (a C name and a G+ name).
This takes up code space and introduces large numbers of extra names that would slow down programs
reading object files such as linkers, loaders, debuggers, etc. The C calling interfaces would also be ubi-
quitous and available for anyone to use by mistake, thus re-introducing the C linkage problems in a new
guise,

Encode only G+ Functions

The fundamental problem with all but the last scheme outlined above is that they require the pro-
grammer to decorate the source code with directives to help the compiler determine which functions are
C functions. Ideally, the compiler would simply look at the program and determine the linkage neces-
sary for each individual function based on its type. Could the compiler be that smart? Unfortunately,
no. There is no way for the compiler to know whether

extern double sqrt (double):

is written in C or C+. However, one might handle most cases by the heuristic that if a function is
clearly a G+ function it gets G+ linkage and if it isn’t it geis C linkage. For example:

complex sqrt(complex); // clearly C++: sqrt__ F7complex
double sqrt (double); // could be C: sgrt
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Since complex is a class, sqrt (complex) is clearly a G+ function and it is encoded. The other
sqrt () might be C so it isn't.

Applying this heuristic would mean that most functions would not have type-safe linkage — but we
are used to that. It would also mean that overloading a function based on two C types would be impos-
sible or require special syntax:

int max(int,int);
double max(double,double) ;

Such overloading must be possible because there are many such examples and several of those are

important, especially when support for both single and double precision floating point arithmetic
becomes widespread:

float sqgrt(float);
double sqrt (double);

This implies that either overload or linkage specifications must be introduced to handle such
cases. The heuristic nature of the specification of where these directives are needed will lead to confu-
sion, overuse, and errors.

If overload is re-introduced, the cautious programmer will use it systematically wherever a rela-
tively simple class is used (in case a revision of the system should turn it into a plain C struct), wher-
ever an argument is typedef’d (because that typedef might some day refer to a plain C type), and
wherever there is any doubt. This will lead to the now well known problems of combining libraries.
Similarly, if linkage specifications are required anywhere, they will proliferate because of doubts about
where they are needed.

It does not seem wise to refrain from checking linkage in a large number of cases and to introduce a
rather arbitrary heuristic into the linking rules for G+ without being able to reduce the complexity of the
language or to reduce the burden on the programmer somewhere.

Nothing

Naturally, while considering these alternative schemes the easy option of doing nothing was regularly
re-considered. However, the original scheme still suffers from the problems described in section 4:
insecure linkage, spurious overload declarations, overloading rules that complicate the life of library
writers and library users, and unnecessary complexity for tools builders.

9 Syntax Alternatives

The scheme of giving all G+ functions type-safe linkage and providing a syntax for expressing that a
given function is to have C linkage was thus chosen and tried. However, there were still several alterna-
tives for expressing C linkage for this general scheme.

Why extern?

Instead of employing the existing keyword extern we might have introduced a new one such as
linkage or foreign. The introduction of a new keyword always breaks some programs (though
usually not in any serious way and for a well chosen new keyword not many programs) and extern
already has the right meaning in C and G+. In almost all cases extern is redundant since external
linkage is the default for global names and for locally declared functions. When used, extern simply
emphasizes the fact that a name should have external linkage. The use of extern introduced here
merely allows the programmer to tag an extern declaration with information of how that linkage is to
be established.

Linkage for Individual Functions

One obvious altemnative is to add the linkage specification to each individual function:
extern "C" double sqrt(double); // sqrt (double) has C linkage
The advantage of this scheme is that the linkage is obvious from looking at an individual function
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declaration. The problem with this is that it does not serve the need to be able to give a set of C func-
tions C linkage with one declaration and requires the declaration of every C function to be modified. In
particular, it does not allow a C header (that is, an ANSI C header) to be used from a C+ program in
such a way that all the functions declared in it get C linkage.

This notation for linkage specification of individual functions is not just an alternative to the linkage
““block’* adopted but also an obvious extension to the adopted syntax. After observing the use of link-
age blocks for a while and listening to the comments from users this extension was adopted.

extern "C" double sqrt (double); // sqrt (double) has C linkage
is by definition equivalent to

extern "C" { double sqrt(double); }// sqrt (double) has C linkage
Naturally, a linkage specification applies to all members of a declaration list:

extern "C" double sin(double), cos(double); // sin and cos have C linkage

Linkage Pragmas
The original implementation of the linkage specifications used a #pragma syntax:

#pragma linkage C
double sqrt (double); // sqrt(double) has C linkage
#pragma linkage

This was considered too ugly by many but did appear to have significant advantages. For example, it
can be argued that linkage to *‘foreign languages®’ is not part of the language proper. Such linkage can-
not be specified once and for all in a language manual since it involves the implementations of two
languages on a given system. Such implementation specific concepts are exactly what pragmas were
introduced into Ada and ANSI C to handle. The #pragma syntax was trivial to implement and easy to
read. It was also ugly enough to discourage overuse and to encourage hiding of linkage specifications in
header files. :

* There are problems with this view, though. For example, it is most often assumed that any
#pragma can be ignored without affecting the meaning of a program. This would not be the case with
linkage pragmas. Another problem is that for the moment many C implementations do not support a
pragma mechanism and it is not certain that those that do can be relied upon to *‘do the right thing”* for
linkage pragmas used by a C generating G+ compiler.

Linkage to a particular foreign language does not belong in G+ because such linkage will in princi-
ple be local to a given system and non-portable. However, the fact that linkage to other languages
occurs is a general concept that can and ought to be supported by a language intended to be used in
multi-language environments. In practice, one can assume that at least C and Fortran will be available
on most systems where G+ is used and that a large group of users will need to call functions written in
these languages. Consequently, one would expect C+ implementations to support C and Fortran link-
age.

The fact that C (like most other languages) does not provide a concept of linkage to program frag-
ments written in other languages led to the absence of an explicit linkage mechanism in G+ and to the
problems of link safety and overloading.

Special Linkage Blocks

Another approach would be to introduce a new keyword, say linkage, and use it to specify both
the start and the end of a linkage block:

linkage ("C");
double sqrt (double); // sqrt(double) has C linkage
linkage (""):

This avoids introducing yet another meaning for {}, allows setting and restoring of linkage to be
two separate operations, allows all linkage directives to be found by simple pattern matching in a line
oriented editor, and allows all linkage directives to be suppressed by a single macro
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#define linkage (a)

The problem with this seems to be that it tempts people to think of as linkage as a compiler “‘mode’’
that can be switched on and off at random times and doesn’t obey block structure. For example:

linkage ("C");
double sqrt (double); // sqrt (double) has C linkage

£0 |

extern g(); // g() has C linkage
linkage ("");
extern h(); // h() has C++ linkage

}

It also becomes hard to convince people that linkage specifications come in pairs and can be nested.
The same approach, with the same educational problems, can be tried without introducing a new key-
word:

extern "C";
double sqgrt (double); // sqrt (double) has C linkage
extern “""; .

Note that whatever syntax was chosen, linkage specifications were intended to obey block structure to fit
cleanly into the language. In particular, if linkage ‘‘blocks’ and ordinary blocks were not obliged to
nest, the job of writers of tools manipulating G+ source text, such as a G+ incremental compilation
environment, would be needlessly complicated.

10 Conclusions

The use of function name encodings involving type signatures provides a significant improvement in
link safety compared to C and earlier C+ implementations. It enables the (eventual) abolition of the
redundant keyword overload and allows libraries to be combined more freely than before. The use of
linkage specifications enables relatively painless linkage to C and eventually to other language as well.
The scheme described here appears to be better than any alternative we have been able to devise.
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Appendix A: The Function Name Encoding Scheme

The (revised) C+ function name encoding scheme was originally designed primarily to allow the
function and class names to be reliably extracted from encoded class member names. It was then modi-
fied for use for all C+ functions and to ensure that relatively short encodings (less than 31 characters)
could be achieved reliably for systems with limitations on the length of identifiers seen by the linker.
The description here is just intended to give an idea of the technique used, not as a guide for imple-
menters.

The basic approach is to append a function’s signature to the function name. The separator __is
used so a decoder could be confused by a name that contained ___ except as an initial sequence, so don’t
use names such as a__b__c in a G+ program if you like your debugger and other tools to be able to
decompose the generated names.

The encoding scheme is designed so that it it easy to determine

— if a name is an encoded name;
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- what (unencoded) name the user wrote;

- what class (if any) the function is a member of;
~ what are the types of the function arguments.
The basic types are encoded as

void

char

short

int

long

float
double
long double

<

O R QHMKFPF®GO

A global function name is encoded by appending _ F followed by the signature so that
f (int,char,double) becomes £__Ficd. Since £() is equivalent to f(void) it becomes
f Fwv.

Names of classes are encoded as the length of the name followed by the name itself to avoid termi-
nators. For example, x::£() becomes f_1xFv and rec::update(int) becomes
update__ 3recFi,

Type modifiers are encoded as
unsigned U
const o]
volatile v
signed S

so f (unsigned) becomes £__FUi. If more than one modifier is used they will appear in alphabeti-
cal order so £ (const signed char) becomes £__FCSc.
The standard modifiers are encoded as

pointer * P
reference & R
array [10] Al0_
function () F

ptr to member S::* M1sS

So £ (char*) becomes £__FPc and printf(const char* ...) becomes printf__FPCce.
Function return types are encoded for arguments of type pointer fo function. The return type
appears after the argument types preceded by a single underscore; for example, £ (int(*)(char*))
becomes £__FPFPc_i. The re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>