
$10.00

PASCAL USERS GROUP

Pascal News
Communications about the Programming Language Pascal by Pascalers

• APL Scanner

• Computer Generated Population Pyramids

• Path Pascal

• Introduction to Modula-2

• Validation Suite Reports

• Announcements

Number

26
JULY 83

POLICY: PASCAL NEWS (Jan. 83)

• Pascal News is the official but informal publication of the User's Group.

Purpose:

Membership:

The Pascal User's Group (PUG) promotes the use of the programming language Pascal as
well as the ideas behind Pascal through the vehicle of Pascal News. PUG is intentionally de
signed to be non political, and as such, it is not an "entity" which takes stands on issues or
support causes or other efforts however well-intentioned. Informality is our guiding principle;
there are no officers or meetings of PUG.

The increasing availability of Pascal makes it a viable alternative for software production and
justifies its further use. We all strive to make using Pascal a respectable activity.

Anyone can join PUG, particularly the Pascal user, teacher, main
tainer, implementor, distributor, or just plain fan. Memberships from
libraries are also encouraged. See the COUPON for details.

• Pascal News is produced 4 times during a year; January, April, July October.

• ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a virtue) for Pascal News single
spaced and camera-ready (use dark ribbon and 15.5 cm lines!)

• Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO THE
CONTRARY.

• Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the editor together with changes
in the mechanics of PUG operation, etc.

APPLICATIONS - presents and documents source programs written in Pascal for various algorithms, and
software tools for a Pascal environment; news of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance, style, output convenience, and general
design.

ARTICLES - contains formal, submitted contributions (such as Pascal philosophy, use of Pascal as a teaching
tool, use of Pascal at different computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among members which is of
interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts for maintainers, implemen
tors, distributors, and documentors of various implementations as well as where to send bug reports. Qualitative
and quantitative descriptions and comparisons of various implementations are publicized. Sections contain
information about Portable Pascals, Pascal Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

VALIDATION SUITE REPORTS - reports performance of various compilers against standard Pascal
ISO 7185.

Charles Gaffney Publisher and Editor

The Pascal Newsletter is published by the
Pascal Users Group, 2903 Huntington Rd.,
Cleveland, Ohio 44120. The Pascal Newsletter
is a direct benefit of membership in PUG.

Membership dues in PUG are $25.00 US
regular, other forms of membership please in
quire. Inquiries regarding membership should
be sent to the above address. Newsletter cor
respondence and advertising should be sent to
the editor at the aforementioned address.

Advertising Rates: $300.00 Full Page. Please
give your preference of magazine location: front,
center, or back.

Pascal News
Communications about the Programming Language Pascal b~ Pascalers

JULY 1983

2 EDITOR'S NOTES

5 OPEN FORUM

SOFTWARE TOOLS
11 Program APL Scanner

NUMBER 26

By Vincent Dichristofano, Alan Kaniss, Thomas Robinson and John Santini

ARTICLES
26 "Don't Fail Me Now" By Srully Blotnick
27 Computer Generated Population Pyramids Using Pascal By Gerald R. Pitzl
32 Path Pascal - A Language for Concurrent Algorithms By W. Joseph Berman
37 An Introduction to Modula-2 for Pascal Programmers

By Lee Jacobson and Bebo White

BOOK REPORT
41 Data Structures Using Pascal

ANNOUNCEMENTS
42 SBB Announces Pascal Compiler for IBM PC
42 Sage Opens Boston Division
42 New 16 Bit Sage IV
43 New Modula-2 Manual
44 USUS Fall Meeting
44 Text Editor Interest Group
44 Modula-2 Users Group
45 USUS San Diego Meeting
46 Volitions Modula-2 for IBM PC

47 IMPLEMENTATION REPORT

VALIDATION SUITE REPORT
48 OmegaSoft Pascal Version 2

51 SUBSCRIPTION COUPON

53 VALIDATION SUITE COUPON

55 USUS MEMBERSHIP COUPON

Hello,

Well, this is the third issue I am involved with and
there have been many changes. I would like to write of
Pascal first.

Pascal has enjoyed a jump in attention in the last
year. One reason is that there are Pascal compilers
available for many machines and, I am tempted to say,
they are available for any machine. Most of the major
main frames have Pascal either directly or from a third
party.

One step down in size, I know of only one machine,
the Tandem computer which is without a Pascal imple
mentation. A Tandem representative here in Cleveland
informed me they have a language called "TAL" and
in many cases will execute a Pascal program with no
changes.

A couple more steps down in size are the small Dig
ital Equipment machines and compilers are available
from about four sources. IBM has the Display writer
and Datamaster. These were released without our lan
guage, but in the last year, UCSD Pascal has been made
available through IBM. Apple Computer has been a
strong and long supporter of Pascal. TRS 80 has UCSD
Pascal.

The smallest machine with Pascal is the TI 99/4A.
In this size, Commodore has promised Pascal for this
summer on the "64" and" 128" machines.

The small computer, that is, the home computers
and small business computers, have exceeded $10 mil
lion in sales. This is according to Future Computing, a
Richardson, Texas research firm.

With a guess, I would say that Pascal is imple
mented on at least 25% of these machines. If only 1%
of these were being used to learn and program Pascal,
then 25,000 people are presently involved. This is a lot
of people looking for the best books from which to learn.

I am making an appeal to our members to submit
comments and reviews of text books so that we all may
benefit from your experience. I get calls from authors
requesting information on Pascal. To these people, the
best I can do is to send complete sets of Pascal News!
With your comments and criticism, perhaps we could
influence future text books.

Herb Rubenstein of Budget Computer in Golden,
Colorado has sent a small article from Popular Com
puting. It seems that advanced placement test in com
puter science will use structure programming and the
Pascal language. These tests allow up to one year of
college level credits in computer science. The author of
this article, Dan Watt, believes that the choice of Pascal
in the testing may lead to Pascal as a <.lefacto standard
in high schools preparing students for college. Let me
quote the last paragraph:

2

"This situation illustrates the power of the
testing establishment to influence the lives of stu
dents and teachers. Although the vast majority of
high schools now offer Basic as the standard com
puter language for most programming and com
puter science classes, this action by the College

Board may lead to the establishment of Pascal as
a defacto standard for high school teaching and
spawn an entire mini industry of curriculum to
meet the new requirements. It may also offer sig
nificant school marketing advantages to micro
computer companies that already support Pascal
- such as Apple, IBM and Texas Instruments."

I would like to see comments from you regarding
this use of Pascal in a rite of passage.

In this issue, you will find a reprint of Dr. Srully
Blotnick's column from Forbes magazine. I like this
column because of the clever way he has made our
economy dependent on you learning Pascal.

I enjoy Forbes magazine. They- emphasize com
mon sense and illustrate proven business practices.
Forbes also takes a pulse of industries, and small com
puters is a fast growing industry. In a column called
"Technology", edited by Stephen Kindel, on March
28, 1983, he noted that 2% of the households in the
U.S.A. own computers of one form or another. There
had been predicitions of 40% of households by 1990.
This has been reduced to 20% in 1990 because there
doesn't seem to be software that is useful in households.

Mr. Kindel ends this article with a quote from Sey
mour Papert, an MIT professor:

"The real purpose of learning how com
puters work should be to improve human logic and
thought processes, to make people more creative,
not simply more dependent on machines."

Maybe this would be a good issue to review the
tools available in our back issues. This issue contains
the APL scanner. I am embarrassed to print this, not
because of the program's quality, but becauS'e it was
submitted four years ago. Well, no time like the present.

In issue #17 (yellow), Arthur Sale submitted "Re
ferencer", a procedural cross reference. This program
provides a printout of the heading of each procedure
and function with indentation showing nesting. In issue
#25, Mr. Yavner has improved on this program with
"A Better Referencer" . Mr. Yavner claims that Pascal
News has been his sole source of instruction in Pascal.
I believe this is a compliment to Andy Mickel and Rick
Shaw for their efforts to maintain this newsletter. We
should also thank our contributors, Mr. Sale for in
stance, for outstanding generosity. These people will
appreciate your complements, criticisms and gifts of
money. (Ho! Ho!)

Andrew Tandenbaum, in issues 21 and 22/23, pro
vided us with" The EM 1 Compiler' '. This is a good look
at all that is necessary for a pseudo 32-bit machine pas
cal compiler.

The UCSD Pascal Project started with a 16-bit
pseudo machine portable compiler. It was called P4 out
of Zurich, Switzerland by Vrs Ammann, Kesav Nori
and Christian Jacobi. I mentioned this because it has
been published with critical commentary by S. Pem
berton and M.C. Daniels in 1982. It is presented as a

Editor's Notes

case study of compiler design and is very interesting to
read.

Pascal Implementation
S. Pemberton and M.C. Daniels
Ellis Horwood Limited Publishers
Distributed by:

John Wiley & Sons
605 Third A venue
NY, NY 10016
USA

In #21 you will find Jeff Pepper's fine implemen
tation of extended precision arithmetic.

Nicklaus Wirth, Pascal's creator, wrote Pascal S
and we have it in # 19 (mislabeled # 17). This is a subset
of Pascal and was intended as a teaching aid.

Also in # 19 is a Lisp interpreter written in Pascal.
"MAP", a Pascal macro preprocessor for large

program development, is published in # 17.
Issue # 16 contains the Validation Suite version 2.2.

This is the compiler checker that Arthur Sale and Brian
Wickman have now revised to version 3. This new ver
sion is available by using the Validation Suite coupon
in the rear of this issue.

"Prose", a text formatter, by John Strait is the ma
jor program available in # 15. A disclaimer in the in
structions manual admits that it doesn't do everything,
but I must say, it has a lot of capability.

In # 13, two programs were printed that performed
the same work. A sort of "Battle of Algorithms".
"Pretty Print" and "Format" used any Pascal pro
grams as input and printed it in a consistent style.

For those of you looking for other Pascal periodi
cals, there are four of which I know. "Pascal Market
News", 30 Mowry Street, Mt. Carmel, CT. 06518. This
is a nice quarterly for $9.

Another quarterly for Oregon Software users is the
"Pascal Newsletter". Maybe this is too narrow in con
tent, but you will know what Oregon Software is up to.
Their address is 2340 SW Canyon Rd., Portland, OR.
97201.

A very slick magazine with good design is" Journal
of Pascal and Ada. " You can contact them at West Pu b
lishing Company, 898 South State Street, Orem, UT.
84057. The cost is $14 for six issues.

The USUS News and Report is more a system
user's journal, but the system is based on Pascal. They
also have a software library, seventeen floppy disks full,
and all in source code and written in Pascal.

Now to the business of Pascal News. Pascal News,
as the Pascal periodical granddaddy published since
January 1974, has had its ups and downs. In 1979 our
circulation was 7,000; now it is 3,600. Our biggest prob
lem has been irregular pUblication. I am committed to
four issues this year and I am considering six issues next
year. I believe that regularity will supply us with growth
and members and more software tools.

As I mentioned in the last issue, PUG (AUS) has
stopped and I, in the USA, have taken over their area.
Unfortunately, they have not sent me their mailing list
and I fear that I have lost touch with our members there.
This issue will be sent to those members listed as of
1979 and I hope they will "spread the word" and the
subscription coupons!

Open Forum

Our PUG (EUR) has performed very nicely and I
thank Helmut Weber and friends for their good work.
But they have a problem concerning money. They have
not charged enough for subscriptions and were pressed
to send our #24. As a result, I will mail all issues di
rectly and I hope you will not be inconvenienced. Please
keep in touch with them as they are a strong group.

I have saved the worst for last. In November, 1982,
I sent 300 copies of issue #24 to Nick Hughes in care
of PUG (UK), Post Office Box 52, Pinnen, Middlesex
HA5 3FE, United Kingdom. Using the phone number
866-3816, the air express shipper delivered these issues
by mid-November. All well and good. The issues ar
rived before the cover date with plenty of time to post
them to our English members. I called Nick at this num
ber many times, but spoke to him only after many
months. It was late April and I asked ifl should use the
same procedure in shipping #25 to him.

Nick said that the issues arrived properly and that
method was efficient but wanted to know what was in
#25. He told me that he did not like issue #24 and from
the sound of it, did not like issue #25. He had disliked
#24 so much, he decided not to send any of them out.
Need I say more?

Nick will not supply his mailing list so I am sending
this issue and #25 directly to the members ofrecord in
the United Kingdom as of 1979. If you feel a need to
find out why Nick Hughes did not like issue #24 or
would like to see it yourself, please call or write Nick
at the above address and ask for your copy. He has 300
and I am sure he can spare one.

As a result of these difficulties, I will receive and
service all subscriptions from here in Cleveland, Ohio.
From now on, there will be only one person to blame
if you have a complaint.

As of this issue, a year's subscription is raised in
price to $25 a year and $50 for three years. These rep
resent two sets of costs; production and organization.
Production costs are typesetting, printing and mailing.
Other activities of production are editing, reviewing,
quality assurance and formatting. These tasks are per
formed by "yours truly" and presently I do them for
free. (I'm real smart!)

Organization is a cOst of servicing you and other
members satisfactorily. This includes collecting and re
viewing the mail, depositing checks, updating the mail
ing list, sending back issues to fill new subscriptions and
sending sets of previous years back issues. In order to
do this correctly, and in a timely fashion, I don't do it.
I pay a firm to perform "fulfillment" and it takes one
or two days per week. This cost is small compared to
the bad feelings generated if not done correctly and
quickly.

These are costs of which you are totally respon
sible. This newsletter has been a beneficiary of volun
teerism. There are no volunteers now (save me). In many
magazines, advertisements will pay for all production
and organizational costs plus provide profits, some
times large profits.

The costofafullpage adinByte or PC or PC World
is over $2,000 and these are publications with 500 pages!

Now we may be able to keep our costs down and
publish more often if we accept advertising. Three
hundred dollars per page is not expensive. I will pursue

3

advertisers and I am asking for your help. If you are
writing a book, have your publisher advertise with Pas
cal News. If you are making software packages, influ
ence your boss in the virtues of an ad in Pascal News.
If you manufacture or sell computers, sell your product
from the pages of Pascal News. This is the oldest Pascal
publication and, I proudly say, the most influential.

This newsletter help spread Pascal and our mem
bers were most influential in the standard efforts.

I believe Pascal News' new mission is to enable
Pascal to be taught in the easiest way. This is in many
forms. For instance, reviews of books and texts, dis
cussion of what features to teach first as a foundation,
how to teach advanced courses, discussions of exten
sions or standard program tools to include in every well
written program as it is appropriate.

By the way, Andy Mickel tells me that the "Pascal
User's Manual and Report" by Jensen and Wirth has
sold 150,000 copies in 1982. This is interesting consid
ering that in the previous seven years, it sold 175,000
copies. A very sharp jump in interest.

A new text book has been sent to me, "Pascal" by
Dale/Orshalik, 1983 DC Heath. A nice title, short and
to the point. The preface states a philosophy that I would
like you to comment on.

4

"In the past there have been two distinct ap
proaches used in introductory computer science
texts. One approach focused on problem solving
and algorithm design in the abstract, leaving the
learning of a particular language to a supplemental
manual or a subsequent course. The second ap
proach focused on the syntax of a particular pro
gramming language, and assumed that the
problem-solving skills would be learned later
through practice.

We believe that neither approach is ade
quate. Problem solving is a skill that can and should

be taught - but not in the abstract. Students must
be exposed to the precision and detail required in
actually implementing their algorithms in a real
programming language. Because of its structured
nature, Pascal provides an effective vehicle for
combining these two approaches. This book
teaches problem-solving heuristics, algorithm de
velopment using top-down design, and good pro
gramming style concurrently with the syntax and
semantics of the Pascal language. "

One of the letters mentions high resolution graph
ics. I know of two texts that use Pascal as the illustra
tive language of their algorithms. They are "Principles
ofInteractive Computer Graphics" by Williams New
man and Robert Sproull, 1979 McGraw-Hill and "Fun
damentals ofInteractive Computer Graphics" by James
Foley and Andries Van Dam, 1982 Addison-Wesley.

Two notes from members:
Steven Hull of Campbell, California, received a

notice from me that # 22/23 had been returned to us be
cause the postal service will not forward bulk mail. His
reply:

"I guess this will teach me to move from
Lakewood (a suburb of Cleveland, Ohio). Didn't
know bulk mail wasn't forwardable. The Postal
Diservice has been re-routing every piece of junk
mail for a full year ... I might have to file suit to
stop it all!

And from Eric Eldred of New Hampshire who re
warded Pascal News with a three year subscription and
dutifully filled the coupon with name and address and
arrived at a request for "Date". Eric filled in "No!
Married!". Thanks Eric, I needed that!

Charlie

Open Forum

To Charlie Gaffney,

I'm glad you have taken on Pascal News. I hope
it works.

Perhaps, I should say what I would like to see pub
lished in Pascal News. The most valuable things are
1) Tools, and 2) Info on the various implementations.
In my job we are using many computers. It is very help
ful to know which compilers work well, meet stand
ards, and produce efficient code. Apple Pascal is nearly
bug free, and works as specified (with UCSD quirks).
IBM Pascal VS is good - extensions are large pre
senting conversion problems if they are used. It has a
good interface to FORTRAN. VAX Pascal is plain va
nilla, appears to work well but we have not tested it in
difficult situations. HP PascallOOO works fine but does
not have a stack architecture and seems to compile
slowly. Recent tests on HP Pascal 1.0 for the HP 200
computers seem to indicate it derives from UCSD al
though it is a native code 68000 compiler. It seems to
work very well. We are interested in Pascal for the Data
General Eclipse.

Gentlemen:

Good luck,
Dennis Ehn

215 Cypress Street
Newton Centre, MA 02159

Would you be so kind as to send information on
the Pascal User's Group (PUG) and its official publi
cation Pascal News. Recently we have acquired a mi
crocomputer Pascal compiler and are very much
interested in keeping up with current developments in
Pascal.

Our system is based upon a SouthWest Technical
Products Corporation S/09 computer, running the
UniFLEX Operating System (similar to UNIX). If spe
cific information is available for this unit, please let us
know.

Additionally, the college has several (approxi
mately 18) Apple computers which are capable of run
ning the UCSD Pascal System. Once again, any special
information here would be very helpful.

We look forward to hearing from you and hope that
we can make a positive contribution to the Pascal User's
Group.

Dear Sir,

Yours Truly,
Lawrence F. Strickland

Dept. of Engineering Technology
St. Petersburg Jr. College

P.O. Box 13489
St. Petersburg, FL 33733

Ijust received issue number 25 of Pascal News and
was surprised to find an implementation note for our

Open Forum

Pascal compiler. What makes it surprising is that to the
best of my knowledge I have never sent in an entry, and
the information provided is about a year and a half out
of date.

In case you would like to provide your readers with
valid information, I have enclosed an implementation
note for the currently available compiler. I have also
enclosed a copy of the ISO validation suite report from
our language manual.

Work is currently being done on moving this com
piler to the 68000 family of processors and should be
available by the end of 1983.

On another note, I have received issues number 21,
22/23, and 25, but not issue 24. I am also enclosing a
check for a 3 year membership - please see if you can
determine what happened to number 24.

December 1, 1982

Sincerely,
Robert Reimiller

Owner, OmegaSoft
5787 Brandywine Ct.
Camarillo, CA 93010

I hope the letter referring to the possible end of the
P.U.G. is wrong! I can be of some help if needed.

January lO, 1983

Dear Mr. Gaffney:

Allen Duberstein
Pine Instrument Co.

3345 Industrial Blvd.
Bethel Park, PA 15102

Enclosed is a check covering both the remailing
cost of Pascal News #24 ($5) plus my membership re
newal for two years ($18).

My apologies for getting out of synchronization with
the Pascal Users Group. As the post office informed
you, I recently moved to the address noted. Frankly, I
hadn't received aPascal News in so long that I simply
forgot about it. It appears that I won't miss any issues
- the enclosed All-Purpose Coupon is from issue #23.

Interestingly, after a long period (3 years) of not
using Pascal, it looks like I will be using it once again.
We have a couple of Convergent Technologies work
stations in my office. These are very nice 8086-based
machines; Burroughs sells them as the B-20s, and NCR
sells them as WorkSavers. We will probably be getting
a Pascal compiler, and I am looking forward to getting
back into Pascaling in the near future.

Sincerely,

Read T. Fleming
144 Irving Avenue # B-3

Providence, RI02906

5

November 30, 1982

I was surprised and pleased to receive issue num
ber 24 of Pascal News. Thanks for taking it over. I do
have one question, however, which you might be able
to help me with. What year is it? My address label in
cludes [82] on it but the previous issue I received was
dated September, 1981. I notice that this issue is dated
January, 1983. Should I send in another year's sub
scription money now? What happened to 1982? I never
have managed to figure our Pascal News' SUbscription
scheme. Maybe a note in the issues towards the end of
a year saying "if your address label says [82] it's time
to send in a renewal" would help.

Thanks for your help.

8 February 1983

Dear Sir,

Richard Furuta
Computer Science, FR-35
University of Washington

Seattle, WA 98195

I received your notification of renewal in the mail
yesterday. I am slightly concerned that you may not
have received the check which I mailed to you in De
cember. I hope that it has only been a slight mix-up,
and in fact, my subscription has been renewed for 3
years, as I requested.

I am currently using the Pascal implemented by
Microsoft for the IBM Personal Computer. It has some
non-standard features which were provided in order to
allow programmers to access the full capabilities of the
machine. This implementation is quite flexible, and was
designed to allow users to produce systems programs,
as well as application programs.

The greatest shortcoming to this product, how
ever, is its lack of usable documentation. Even some
one like myself, who has been programming in Pascal
for 8 years, has difficulty in trying to locate the appro
priate material in the 'reference manual'. Once this is
overcome, the user is able to use this version for the
production of some very powerful software.

I continue to look forward to the delivery of your
fine newsletter. I enjoy tht1 articles, and realize how dif
ficult a task you have. Keep up the good work.

November 30, 1982

Regards,

Robert A. Gibson
1609 Lake Park Dr.
Raleigh, NC 27612

Pascal is being used for process control of laser
trimming systems. We use Oregon Software Pascal.

6

Barbara Huseby, Training Dept.
Electro Scientific Industries

13900 N. W. Science Park Drive
Portland, OR 97229

March 3, 1983

Dear Mr. Gaffney:

I'm writing to let you know why I am not renewing
my subscription to Pascal News. The main reason is
that the price is now too high for the utility of the prod
uct (at least to me). I appreciate your efforts to keep
PUG and Pascal News going, but I'm afraid they may
have outlived their usefulness. Pascal is not really in
need of promotion as it was when PUG was formed.
The Journal of Pascal & Ada may be an appropriate
successor.

As a long-time subscriber and occasional contrib
utor, I wish you luck in your efforts.

January 7, 1983

Richard Leklanc
Assistant Professor

Georgia Institute of Technology
Atlanta, GA 30332

Hang in there, Charlie!

December 9, 1982

Dear Sirs:

Andy Mickel
106 SE Arthur Avenue

Minneapolis, MN 55414

Could you provide us with information on mem
bership in your organization, both personal and insti
tutional, as well as the subscription cost of your journal.

We are also interested in a rigorous comparison of
the various PASCAL versions implemented by mini and
microcomputer vendors. Do you know of any such
comparative research? We are making plans to offer
Advanced Placement Computer Science in the fall term
of 1983, and wish to select an effective computer.

December 25, 1982

Very truly yours,

Charles McCambridge
Director

Instructional Materials Services
Niskayuna High School

1626 Balltown Rd.
Schenectady, NY 12309

Merry Xmas! Good luck, Charlie! Is your "acqui
sition" of PUG a sign that PUG and USUS will some
day merge? I'm not sure I'd like that, but let's see.

December 24, 1982

Jim Merritt
P.O. Box 1087

Morro Bay, CA 93442

Please send me information on joining the Pascal

Open Forum

User's Group, I am a software project engineer at Gen
eral Electric in Syracuse. I am currently in the process
of selecting a high level language for internal program
ming of a 1024 x 1280 resolution raster display. Pascal
is the leading candidate, therefore, I am very interested
in the latest information regarding the language which
I feel a user's group could provide.

My interest does transcend my work however as I
do own a Commodore Super PET which includes the
University of Waterloo software package consisting of
Pascal, APL, Fortran, Basic and a 6809 Assembler.

2/5/83

To Whom It May Concern:

Sincerely,

Douglas W. MacDonald
4303 Luna Course

Liverpool, NY 13088

I just received your notice to inform me that my
membership is about to expire and that I should renew
now.

I would like to tell you that I would consider re
newing if I could be assured of getting my money's worth
- this time!

When I first joined in 1981, I didn't hear from Pas
cal News for almost a year. Then a few months ago, I
received a second issue, but that's been it.

Now I am a convicted Pascaler. I understand the
difficulties of operating a non centralized club, but $20
should buy some kind of organization for things I feel.

Can you assure me of a better value this time
around?

Cordially,

David Abate
Micro People

116 S. Bowdion St.
Lawrence, MA 01843

P.S. Question: Do you intend anything on UCSD-Pas
cal? This is my greatest interest.

7 January 1983

Hi,

This is a note in a bottle to: 1) find out if you're still
out there, and 2) what's happening with Pascal. It
doesn't seem to be taking the bite (or is that byte) out
of Basic I thought it would.

We will start covering Pascal as soon as we have
finished Basic programming - about five weeks from
now. The extension program from Hocking Technical
College in Nelsonville has provided seven Apple II and
Apple III computers and two printers. By the end of the
year, they will have installed a winchester disc and either
a modem or a microwave link to their main campus
computer. We'll need it by then to cover the Cobol and
Fortran IV programs we'll be writing.

Most of my practical computer experience is in as
sembler language. I used it at Cincinnati Milacron's

Open Forum

Process Controls Division (Mater's of the controls for
the T3 Industrial Robot).

I am interested in any literature you have to send
me. In particular, I would like the titles of the books
you consider best for teaching Pascal - either on the
Apple II or on computers in general. Apple, Inc., sent
me the Pascal Reference Manual (just a bit or a nibble
over my head). I've also read copies of the DOS 3.2
Reference Manual and their Basic Programming Man
ual. I covered all these before classes started and wound
up tutoring two other student/inmates.

Sincerely,

Brian Appleman 166-767
15802 St. Rt. 104

P.O. Box 5500
Chillicothe, OH 45601

P.S. If you need more on my background, just ask.

83-02-24

Dear Charlie:

I am a member of PUG (AUS) which hasjustfolded,
and I would like to re-enroll through PUG (US).

I don't share Arthur Sales view that PUG and PN
have no purpose now that there is an ISO standard. The
world still needs cheap, good software and PN (in a
modest way) supplies some of it. Also, some organi
zation is needed to defend and develop good program
ming language and style.

PUG (AUS) says I have a credit of 12 (old) issues
and that the funds have been sent to you. Please will
you accept my re-enrollment and advise me how many
(new) issues I am now entitled to?

Finally, I, and I'm sure, many others appreciate
your offer to keep PUG/PN going.

Thanks again.

December 3, 1982

Yours sincerely,

Peter Edwards
40 Davison St.
Mitcham, Vic.
Australia 3132

Best wishes in this venture, Charlie. I agree that
Pascal News and P. U.G. are worth saving.

February, 1983

John W. Baxter
750 State Street, Apt. #224
San Diego, California 92101

You people have ripped me off for the last time!
By your own back order form (attached) you show

that my renewal in 1981 paid for 3 issues mailed in 1982.
But then, WHAT OF MY RENEWAL PAID IN 1982?
ONLY ONE ISSUE #24 COUNTS??? AND THAT
HAD TWO PREVIOUSLY PUBLISHED PRO-

7

GRAMS!! (That is, programs I had ALREADY re
ceived.) If you ran a decent organization, you'd make
my 1982 renewal count for 1983 also.

December 24, 1982

David S. Bakin
Softech Inc.

360 Totten Pond Road
Waltham, MA 02154

We're indebted to you, Charlie!

February 17, 1983

Dear Mr. Gaffney,

Wayne N. Overman
3522 Rockdale Ct.

Baltimore, MD 21207

I am one of those folks who does not have a cur
rently correct address with Pascal News.

Enclosed is a check for $5 for a copy of issue 19
which was returned to you.

Thank you on behalf of all the members of the user's
group for the effort you are putting out. It is very much
appreciated.

March 14, 1983

Dear Sir or Ms.:

Tom Bishop
P.O. Box A

Kenmore, W A 98028

We plan to offer Pascal at our school. I would ap
preciate receiving information on your group and, if
possible, a sample copy of Pascal News.

Any suggestions or information you could send
would be appreciated. We are particularly concerned
that the new Apple 2-E does not support Pascal with
one disk drive. We had hoped tht UCSD Pascal with
one drive would work on the Apple 2-E.

Thanks for your help.

February 11, 1983

Hi!

Sincerely,

Harold Baker
Director, Computer Science

Litchfield High School
Litchfield, CT 06759

Here's my renewal. I really enjoy Pascal News and
have been upset about what has happened with it the
past 18 months or so. It has been of substantive value
to me, partiCUlarly in the area of the style of Pascal cod
ing among the community that have submitted articles.

I would like to see more articles on Modula 2,

8

Wirth's follow on to Pascal and Ada in parallel. To me,
this would seem a way of keeping PUG alive as well as
providing a growth path to these languages for Pascal
programmers.

I use PascaliVS extensively at work and I have
found its extensions the best of any other Pascal com
piler for S/370 compatible machines. Almost all of its
extensions are within the "spirit" of Pascal and uses a
very good extension to STRING data. Of particular
convenience is its READSTR and WRITESTR func
tions (they are procedures actually -unfortunately). I
force the concept of function upon them by embedding
their invocation within a function when required.

I never received issues 20 and 21 of Pascal News
during the confusion, although I did mention this at
times. I would certainly purchase them separately, but
I am not prepared to purchase two sets to get them.
Please advise.

November 12, 1982

Dear Pascal User's Group:

Thanks for your work,

Bob Dinah
630 Alvarado St. #207

San Francisco, CA 94114

The only source of information that I have on the
Pascal User's Group came from "The BYTE Book of
Pascal", according to an article written by Kenneth
Bowles. An editor's note of July 1, 1979 listed the an
nual newsletter as $6.00 per year. I am enclosing $12.00
in case things have increased since that date. If this
amount is insufficient, please make it up on back issues.

I am currently using an Apple III with Apple com
puter's version of UCSD Pascal. There does not seem
to be more than a dozen books written on Pascal, and
just a few on UCSD.

I am an ex-electrical engineer, turned to building
construction. Previously, I worked for Westinghouse
Research Center in Pittsburgh, and used the Burroughs
B6500 main frame computer with ALGOL language.
The B6500 used a number of formats and types that I
miss; the Fixed Format was especially useful since it
allowed the user to specify the number of total digits
and the number of decimal digits combined. I would like
to use this format in UCSD Pascal.

Thanks for taking the time to help me.

18 March 1983

Dear Sirs,

Very truly yours,

Larry J. Moorhead
5207 - 32nd Street East

Bradenton, Florida 33508

For the first time we have received a copy of Pas
cal News, and it has been read with great interest.

We would like tojoin your User Group but cannot
find either a price or contact address for our region.

Please send us this information as soon as possible,

Open Forum

so that we can become members and start receiving your
journal on a regular basis.

We have taken note of your abhorrance of paper
work (and endorse the sentiment) and will send the nec
essary prepayment once we receive the information.

20 April 1983

Dear Mr. Shaw:

Yours sincerely,

Bette Kun
Librarian

Control Data
P.O. Box 78105

Sandton, South Africa 2146

Enclosed is a check for $10.00 for a one-year sub
scription to the PASCAL Users' Group Newsletter. We
have just recently acquired PASCAL-2 here at Villa
nova and our students are using it on LSI-II systems
running RT-ll V4.0 for applications involving real-time
control, data acquisition, and computer communica
tions.

15th February, 1983

Dear Mr Gaffney,

Sincerely yours,

Richard J. Perry, Ph.D.
Villanova University

Dept. of Electrical Engineering
Villanova, PA 19085

As a long PUG user the demise of PUG-AUS is a
blow. Anyhow, as you can see from the attached letter
I would love to continue and thus need your help.

Could you please detail the fees for 1983 for us
"down under" for surface mail and air mail and as you
can see I'm afraid I've not got issue number 21. Can
you help?

For interest I use:
UCSD Pascal/p-System ERA-50 Computer

(8-bit. 8085 base)
Pascal MT+ under CP/M ERA-50 Computer

(8-bit, 8085 base)
and MP/M ERA-50 Computer

(8-bit, 8085 base)
Pascal MT+86 under CP/M-86 ERA-80 Computer

(16 bit, 8086/8087 based)
and MP/M-86 ERA-80 Computer

1-8-82

Dear Sir/Madam,

(16 bit, 8086/8087 based)

Regards,
Dr. William J. Caelli, F.A.C.S.

President
ERACOM Group of Companies

P.O. Box 5488, G.C.M.C.
Qld. 4217, Australia

This is the first letter I write to contact you. Let

Open Forum

me introduce myself first. I am a student pursuing a
computer course in the Hong Kong Polytechnic - a
licensed user of your OMSI-PASCAL-2 V1.2. I don't
know what your definition of user may be. May it be
my Polytechnic or any student or programmer who use
your OMSI PASCAL-l under the Polytechnic, I ven
ture to call myself a user in this letter, and would like
to join the Pascal Users' Group and receive the
newsletter.

In the past few months, I have been doing exten
sive programming using PASCAL, and find it very
handy, especially in writing structured programs. How
ever, until recently when I develop some system pro
grams, I find problems. I discover that there is no source
listing or documentation on the OMSI PASCAL-l run
time system (possibly in file FPP.RTS) and its relation
ship with RSTS/E, and I cannot interface with the low
level 110 trap handlers without knowing their details. I
find some problems on the RESET ODT mode, but I
cannot deal with it in assembly level.

All in all, my problem is highly personal and does
not in any way bear relation with the Hong Kong Po
lytechnic. However, as a student on computing, I don't
want to leave problem unsolved. So, please send me
any informational help, if possible.

Included please find a bank draft of $6 for
subscription.

May I state once more my request. I need infor
mation on OMSI PASCAL-l run time system espe
cially the EMT trap handling.

Thank you very much in advance.

6th November, 1982.

Dear Mr. Mickel,

Yours faithfully,

Mr Kam Man-Kai
Flat 8

3/F Ting Yin House
Siu On Court

Tuen Mun - N.T.
Hong Kong

I am a student of computing studies in the H.K.
Polytechnic. Recently, I got a chance to buy a Chinese
version of ' A Practical Introduction to Pascal' by Wil
son & Addyman from which I was informed that there
is a PUG in States.

Briefly understanding the objectives ofthe PUG, I
find myself in great interest in joining the group. Would
youb be so kind as to provide me with further infor
mation as far as the PUG is concerned. I am eagerly
looking forward to your reply.

Yours sincerely,

Alan Kwong
12, Boundary St.

Po Hing Bldg.
8/F, Block 'c'

Kin., H.K.

9

December 23, 1982

We have been using Oregon Software's RT-ll Pas
cal implementations for over three years with excellent
results and complete satisfaction; Pascal is used for sci
entific "number crunching" , program development, al
gorithm testing, etc.

December 30, 1982

A worthwhile journal.

March 22, 1983

Dear Mr. Gaffney:

Bob Schor
The Rockefeller University

1230 York A venue
New York, NY 10021

George Williams
Union College

Schenectady, NY 12308

~have previously received Pascal News through
Universit}j of Tasmania. Is it still published? If so, do
I have anycredit on my subscription dues? I would also
be interested in information about USUS.

10

Yours sincerely,

M.J. Palmer
CSIRO

Private Bag
P.O. Wembley, W.A. 6014

February 3, 1983

Good job, Charlie! and good luck to the renewed
Pascal News!

May 1,1983

Norman W. Molhant
320 Principale

Tres-Saint-Redempteur, P.Q.
Canada JOP lPO

A professor in Ithaca, NY told me there exists a
public domain UCSD Pascal available for micro's.

I have a 60K Z-80 which uses memory map video,
and a 63K 8085/8088 (both machines S-100 bus) which
uses a TVI 950. I also have a H-29 terminal (like Z-19
but with a detached keyboard).

Is there really any way of getting this UCSD Pascal
running on one of my systems? (I have UCSD on the
Sage also Modula-2. Good stuff.)

Thanks,
J. E. Pournelle, Ph.D.
12051 Laurel Terrace

Studio City, CA 91604

Open Forum

~ .r~ y~ .r~ y~ .r~ y~ .r~ y~ .r~ y~ .r~ Y~.r~ .9

Program APLscanner
By Vincent Dichristofano, Alan Kaniss, Thomas Robinson, and John Santini

NADC, Philadelphia, PA

1 program APLscanner(;nput { + TERMINAL

2

• Purpose:

}, output , APLflle

3
4
5
6

This program is an implernentation of APL in Pascal.

7 • Authors:
8 Vincent Dichristofano
9 Alan Kaniss

10
11
12
13
14

Thorn as Rob i n son
John Santini

authors ' affiliation - NADC

Phll. PA.

project leader: Dr. Joseprl ~tezzarobd

USA

15
16
17
18
19
20

This program was written as part of an :ndependent study
course at Villanova University.

21 • Submitted and accepted for Pascal News. C'EC 197c.

)
LabeL
----;00;

const
---prefix1 ;;; 60;

prefix2 = 62 (prefix
MaxVa rNameLeng th ;;; 10;
MaxINputLine = 132;
InputArraySize;;; 134;
NumberOfMessages = 100;
MessageLength = 80;

type

for CDC ASCII 12-ht codes);

),

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

---packedString = packed array [1 •• MaxVarNameLengthJ of 0 •• 8191;
TokenNoum = --- ---

(FormRes, FormArg, GlobVa r, MonadOper, ReductOper, DyadOper,
SpecOper, constant, StatEnd);

43
44
45

vaL ues = record

VarTab

~Val: real;
NextValue: Avalues

end;
record

46 ----var-Name: PackedString { v1 };
47 FuncTabPtr: ~ FuncTab { v2 - ftab ;;
48 VaLTabPtr: "ValTab { v3 - vtab);
49 OeferedVa L TabPt r: - FPa rmTab;

50 en~~xtVarTabPtr: "VarTab

~~ Va L Tab record
S3 ---rnt"'ermedResuLt: Boolean;
54 dimensions: integer;
55 FirstDimen: "Dimenlnfo;

ForwardOrder: Boolean;
;~ FirstVaLue: "vaLues;

58 en~;xtValTabLink: "VaLTab

59 TokenTabLe = record
60
61

~Token: ATokenTable;
TokenNoum ~ p case noun:

62
63

FormArg, GlobVar: { vtab ~rmRes,

64
65
66
67
68
69
70

~~ vfun c

73
74
75

end;
record

(Va rTabPt r: AVa rTab);
MonadOper: (Monlndex: integer);
ReductOper: CRedlndx: integer);
DyadOper: (DOplndx: integer);
SpecOper: (Charlndx: integer);
constant: (ValTabPtr: AValTab);
StatEnd: (EndAdj: integer)

~Stmnt: ATokenTable;
NextVFunPrt: Avfunc;
StatLabel: PackedString

end;
76
77
78
79

OperatorTypr;;; (niladic, monadic, dyadic);
FuncTab ;;; record

80
81
82
83

----rw;cName: PackedString f1);

arity: OperatorType { f2 };
result: Boolean { f3
ResultName: PackedString

true
f4

}; LeftArg: PackedString (f5

Software Tools

explicit
};

};

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

FParmTab

Dimenlnfo

OpRecord

RightArg: PackedString (
Fi rstStatement: Avfunc;
NextFuncTabPtr: "FuncTab;
NumOfStatements: integer

end;
record

f6);

-----pt,:VaL: "VaL Tab (sdl and sd2);
LastParm: '"FParmTab { link to last

end;
record

(sd 1 or sd 2)

~Dimen: '"Dimenlnfo;
dimenlength: integer

end;
record
---opTildex: integer;

DpSymboL: integer
end;

OperandTab ~ecord
--ope;:-Ptr: "VaLTab (sval);

LastOper: '"OperandTab link to last sval

SubrTab
end;

record { sf
---carredSubr: "FuncTab (s 1);

TokenCaLLingSubr: "TokenTabLe (
StatemCaLLingSubr: "vfunc (s3
LastSubrPtr: "SubrTab { link to

OpTable = array [1 •• 16J 9..!. OpRecord;
VarTabPtrType = AVarTab;
TypeVa L TabPt r = AVa L Tab;
TokenPtr = "'TokenTable;
PtrFuncTab = "'FuncTab;
TypeValuesPtr = "'values;
APLcharSet =

32
);

) ;

last sf

Casymbol, BsymboL, CSymboL, DSymboL, ESymboL, FSymbol, GSymbol,
HSymbol, ISymboL, JSymbol, KSymbol, LSymbol, MSymbol, NSymboL,
OSymboL, PSymbol, QSymbol, RSymbol, SSymbol, TSymbol, USymbol,
VSymbol, INSymbol, XSymbol, YSymbol, lSymbol, OneSymbol, TwoSymbol,
Th ree Symbo l, Fa ur Symbo l, F i veSymbo l, Six Symbo L, SevenSymbo L,
EightSymbol, NineSymbol, ZeroSymboL, colon, RightArrow, LeftArrow,
SmallCircle, period, LeftParen, RightParen, LeftBracket,
RightBracket, semicolon, quadrangle, space, plus, minus, times,
divide, asterisk, iota, rho, comma, tilde, equals, NotEqual,
LessThne, LessOrEquaL, GreaterOrEqual, GreaterThan, AndSymbol,
OrSymboL, ceiling, floor, LargeCircle, ForwardSlash, DoubLeQuote,
negative, QuestionMark, omega, epsiLon, UpArrokoJ, DownArrow, alpha,
UnderScore, del, delta, SinqLeQuote, EastCap, WestCap, SouthCap,
NorthCap, ibeam, TBeam, VerticalStroke, BackwardSlash);

text = file of char;

136 var
137XCoLonSym, XRightArrokoJ, XLeftArrokoJ, XLittLeCircte, XPeriod, XLeftPar,
138 XRightPar, XLeftBracket, XRightBracket, XSemicolon, XQuadSym:
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

integer;
character: array [APLcharSetJ of integer;
APLstatement: array [1 a. InputArraySi zeJ of integer;

digits: array [OneSymbol •• ZeroSymbotJ of integer;
ErrorMsgs: packed array [1 •• NumberOfMessages, 1 aa MessageLengthJ of

char;
APLfile: text;
MOpTab, DOpTab, RedTab, CharTab, SpecTab: OpTabLe;
SaveLabel: PackedSt ring;
name: PackedString;
NekoJTokenPtr, OldTokenPtr, HoldTokenPtr, SaveTokenPtr:
Test FuncPt r, NekoJFuncTabPt r, OLdFuncTabPt r: '" FuncTab;
NekoJVarTabPtr, OldVarTabPtr: "'VarTab;
LeftValPtr, RightVaLPtr, VaLPtr: "'values;
NekoJValues, NekoJValPtr: "'values;
NekoJDim: "'Dimenlnfo;
DimPtr, NekoJPtr, LeftDimPtr, RigthDimPtr: "'Dimenlnfo;
VarPointer: "VarTab;
OldVFuncPtr, NekoJVFuncPtr: "'vfunc;
NekoJVaLTabLink, OLdValTabLink: "'VaLTab;
position: integer;
LineLength: integer;
code, CoLCnt: integer;
FuncStatements: integer;
TokenError, Fi-rstFunction: Boolean;

"'TokenTable;

LineTooLong, HasLabeL: Boolean;
switch, FunctionMode, TokenSkoJitch, ItsAnldentifier: Boolean;
OperTabPt r: "OperandTab { sv };

11

167
168
169
170
171
172
173
174
175
176
177
178
179
180,
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Pt rLastOper: "OperandTab;
SubrTabPtr: "SubrTab;
RParmPtr: "FParmTab I pl);
LParmPtr: "FParmTab I p2);
VFuncPtr: "vfunc [n1 }i
hold: "TokenTable I holds last symbol);

procedure InitParseri

begin
OperTabPtr := niL; SubrTabPtr:= nil; LParmPtr:= nil;
RParmPtr := nil; VFuncPtr := .. ~ .. :! .. ~)-hold := nil; XColonSym:= 1;
XRightArrow := 2; XLeftArrow:= 3; XLittlefucLe:= 4;
XPeriod := 5; XLeftPar:= 6; XRightPar:= 7;
XLeftBracket := 8; XRightBracket:= 9; XSemicoLon:= 10;
XQuadSym := 11; new(OperTabPt r); OperTabPt r'" • LastOper := ni Li
PtrLastOper ::;: OperTabPtr;

end { initparser };

procedure Initial izeCharacterSet
{ read installation character set from file};

var
TestForPrefix: integer;

Fi leC~aracter: char;
SymbolIndex: APLcharSet;

begin
----;;Set (APL f i l e);

for SymbolIndex := asymbol !2. BackwardSlash do
begin

read(APLf i le, Fi leCharacter>;

The following code would be removed for non-CDC installations

Test ForPrefix := ord(Fi leCharacter);
if (TestForPrefix = prefix1) or (TestForPrefix prefixZ)
then
~gin

--read (APLf i le, Fi leCharacter);
character[SymboLIndex] := 100 • TestForPrefix + ordC

Fi leCharacter);
end

else

character[SymboLIndex] := ordCFi leCharacter)

end
end {initializecharacterset };

procedure ReadInErrorMsgs;

var
MsgRow, MsgCol: integer;

begin
read LnCAPL file);
for MsgRow := 1 to NumberOfMessages do
--ror MsgCoL := 1to MessageLength do

ErrorMsgs(MsgRow, MsgCoLJ := I r-{ blank out error messages
for MsgRow := 1 to NumberOfMessages do
begin { read Tn error messages fr~ file
~Col := 0;

while not eoln(APLfile) do
begin -

MsgCol := MsgCol + 1;
readCAPLfiLe, ErrorMsgs[MsgRow, MsgCol]);

end;
readlnC APL file);

end
end {read inerrormsgs };

procedure Fi llUpTables;

monadic operators

MOpT.b[1]. OpSymbo l := character[plus];
MOpTab[2]. OpSymbo l := cha racter(minus];
MOpTab[3]. OpSymbo l := cha ract erCt ; mes];

MOpTab[1]. OpIndex
MOpTab[2l. Op Index
MOpTab[3]. Op Index

:= 2;
:= 3;
:= 4;

MOpTab[4]. OpSymbo l := cha racter[div ide]; MOpTab[4]. OpIndex := 5;

);

MOpTab[5]. OpSymbo l := cha racter(asteri skJ; MOpTab[5]. OpIndex := 6;

12

MOpTab[6]. OpSymbo l
MOpTab[7J. OpSymbo l
MOpTab[8]. OpSymbo l
MOpTab[9]. OpSymbo l

dyad ic

DOpTab[1]. OpSymbo l
DOpTab[2]. OpSymbo l
DOpTab[3]. OpSymbo L
DOp Tab[4]. OpSymbo l
DOpTab[5]. OpSymbo L
DOpTab[5]. OpIndex
DOpTab[6]. OpIndex
DOpTab[7]. OpIndex

:= cha racter(iota];
:= cha racter(rho];
:= cha racter(comma];
:= character[ti lde];

operators

:= character(plus];
:= character(minus];
:= character[times];

MOpTab[6]. OpIndex := 21;
MOpTab[7]. OpIndex := 22;

MOpTab[8]. OpIndex := 23;
MOpTab[9]. Op Index := 1;

DOpTab[1].OpIndex := 52;
DOpTab[2].OpIndex := 53;
DOpTab[3].OpIndex := 54;

DOpTab[4].OpIndex := 55; := character(divide];
:= character[asterisk];
= 56; DOpTab[6]. OpSymbo l

87; DOpTab[7].OpSymbol
= 88; DOpTab[8].OpSymboL

character[iota];
character[rho];
cha racter(comma];

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
J'O
331
332
333
334
335
336
337
338
339
340
341
342

DOpTab[8].OpIndex := 89; DOpTab[9].OpSymbol:= character[equaLs];
DOpTab[9].Oplndex := 71;
DOpTab[10].OpSymboL := character[NotEqual];
DOpTab[10].OpIndex := 72;
DOpTab[11J.OpSymbol := character[LessThne];
DOpTab[11J.OpIndex := 73;
DOpTab[12].OpSymboL := character[LessOrEqual];
DOpTab[12].OpIndex := 74;
DOpTab[13]. OpSymbo l := cha racter[GreaterOr Equa l];
DOpTab[13].0p.Index := 75;
DOpTab[14].OpSymbol := character[GreaterThan];
DOpTab[14].OpIndex := 76;
DOpTab[15].OpSymboL := character[AndSymboLJ;
DOpTab[15].OpIndex := 77;
DOpTab[16].OpSymbol := character[OrSymbol];
DOpTab[16].OpIndex := 78;

special character

CharTab[1].OpSymboL := character[colon];
CharTab[2].OpSymbol := ch.racter[RightArrow];
CharTab[3].OpSymboL := character[LeftArrow];
CharTab[4]. OpSymbo l := cha racter[Smal L Ci rele];
CharTab[5].OpSymbol := character[period];
CharTab[6].OpSymbol := character[LeftParen];
CharTab[7].OpSymbol := character[RightParen];
CharTab[8].OpSymbol := character[LeftBracket];
CharTab[9]. OpSymbo L := cha racter[Ri ghtBracket];
CharTab[1OJ.OpSymboL := character[semicolon];
CharTab[11].OpSymboL := character[quadrangle];
CharTab[12].OpSymbol := character[space];
SpecTab[1].OpSymbol := character[colon];
SpecTab[2].OpSymboL := character[RightArrow];
SpecTab[3].OpSymbol := character[LeftArrow];
SpecTab[4].OpSymboL := character[LeftParen];
SpecTab[5].OpSymboL := character[semicolon];
SpecTab[6].OpSymboL := character[LeftBracket];

reduction operator

RedTab[1].OpIndex := 2;
RedTab[2].OpIndex := 3;
RedTab[3].OpIndex := 4;
RedT.b[4].OpIndex := 5;

RedTab[5].OpIndex := 6;
RedTab[6].OpIndex := 21;

RedTab[1J. OpSymbo l := cha racter[p lus];
RedTab[2].OpSymbol := character[minus];
RedTab[3].OpSymbol := character[times];
RedTab[4].OpSymbol := character[divide];
RedTab[5].OpSymboL := character[asterisk];
RedTab[6].OpSymbol := character[equaLs];
RedTab[7].OpSymbol := character[NotEqual];
RedTab[7].Oplndex := 22;
RedTab[8].OpSymbol := character[LessThne];
RedTab[8].Oplndex := 23;
RedTab[9].OpSymboL := character[LessOrEquaLJ;
RedTab[9].Oplndex := 24;
RedTab[10]. OpSymbo L := cha racter[GreaterOrEqua LJ;
RedTab[10].OpIndex := 25;
RedTab[11].OpSymboL := character[GreaterThan];
RedTab[11].OpIndex := 26;
RedTab[12].OpSymbol := character[AndSymboL];
RedTab[12].Oplndex := 27;
RedTab[13]. OpSymboL := character[OrSymbol];
RedTab[13].Oplndex := 28;
RedTab[14].OpSymboL := character[cei Ling];
RedTab[14].OpIndex := 29; RedTab[15].OpSymbol:= char.cter[floor];
RedTab[15].OpIndex := 30;
RedTab[16]. OpSymbo l := c haracter[La rgeCi rele];
RedTab[16].OpIndex := 31; digits[OneSymbol]:= 1·
digits[TwoSymboLJ := 2; digits[ThreeSymbol]
digits[FourSymbol] := 4; digits[FiveSymbol]
digits[SixSymboLJ := 6; digits[SevenSymbol]
digits[EightSymbol] := 8; digits[NineSymbol]
digits[ZeroSymbol] := 0;

end { filluptables);

= 3;
= 5;
= 7;
:= 9;

343 Irocedure Pr; nt APLSt atement;
344---
345 var
346 prefix, nurn: integer;
347 index: integer;

begin
for ; ndex := 1 to L i neLength do
begin - -

---;T""APLstaternent[index] > 6000
then

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

begin
prefix := APLstatement[index] div 100; write(chr(~refix»;
num := APLstatement[index] - 1ffij-* prefix;
write(chr(nun»

end
e lsewr; t e(chr (APLs tatement [i ndex]»

en~
writeln

end { pr in tapl statemen t };

364
365)rocedure SError(ErrorIndex: integer) ;

366
367 var
368 MsgCo l: integer;

369
370 begin

Software Tools

TokenError := true;
for MsgCoL := 1 to MessageLength do
wr i te (Er rorMsg ScE r ror Index, MsgCOLJ);
writeln; PrintAPLStatement, echo statement to user };

371
372
373
374
375
376
377
378

for MsgCol := 1 to(position - 1) do write(' I);

rnteLn(chr(character(UpArrowJ») {print pointer to user error };
end { error } ;

procedure Sk i pSpaces;

begin

379
380
381
382
383
384
385
386
387

whi le (APLstatement(positionJ
-----cTneLength) do

character(spaceJ) and (position <=

388

position := position + 1
end { ski pspaces };

389 procedure GetAPLstatement;

var
--rnputChar: char;

TestForPrefix: integer;
Fl rstTry: Boolean;

begi n
for LineLength := 1 to MaxINputLine do

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438 '

APLstatement[LineLengthJ := character[space], blank out line };
LineLength := 0; FirstTry:= true; position:= 1;
LineTooLong := faLse;
APLstatementClnputArrayS; zeJ := character[omega];
APLstatement[lnputArraySize - 1J := character[space]

, set end-of-line };
repeat
~n
~not FirstTry then getseg(1nput) { test for *cr* only};

ITr"'S""tTry := false;
while (not eoln(;nput)) and (not LineTooLong) do
-,-'f-LineLength < MaxINp'U"tLine

then
~g;n

Lfr1eLength := LineLength + 1; read (Input Cha r);

The following code would be removed for non-CDC installations
TestForPrefix := ord(InputChar);
if (TestForPrefix = prefix1> or (TestForPrefix = prefix2)
then
~g;n

--read(InputChar) ;
APLstatement[LineLengthJ :=

InputChar);
100 * TestForPrefix + ord(

q"
441
442
443
444
445
446
447
448
449

end
eLse

APLstatement[LineLengthJ := ordCInputChar)
end

else LineTooLong := true
end

until LineLength <> 0 reject null lines };
if L;neTooLong then SError(71)

end' getapl statemeri't };

function ItsADigitCTestChar: integer): Boolean;

var
Digitlndex: APLcharSet;

begin' test to see if input character is a digit
----rtSADigit := false;

for Oigitlndex := OneSymboL to ZeroSymbol do
if TestChar = character[OivtlndexJ then ItsADigit :=

end t itsadigit };

function ItsALetter(TestChar: integer): Boolean;

450 var
451 Letterlndex: APLcharSet;
452
453 begin' test to see if input character 1S a letter
454 ---rtsALetter:= faLse;
455 for LetterIndex := asymboL to ZSymbol do

true

456 if TestChar = character[Letterlndex] then ItsALetter := true
457 end {itsaletter };
458
459
460 function CharToNum{TestChar: integer): integer;
461
462
463
464
465
466
467
468
469
470
471

var
Digitlndex: APLcharSet;

begin { chage a character to a number
---ror Digitlndex := OneSymbol to ZeroSymboL do

-;-f TestChar = character[OigltlndexJ
then CharToNum := digits[OigitlndexJ

end {Chartonurn };

472' function NamesMatch(NameOne, NameToo: PackedString): BooLean;

Software Tools

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
5~
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

var
index: integer;

begin [see if two names (identifiers) are the same
NamesMatch := true;
for index := 1 to MaxVarNameLength do
if NameOne[index] <> NameToo[indeXJ then NamesMatch := faLse

end r namesmatch };

procedure TableLooklJp(TestCh.ar, TableLength: integer; tabLe: OpTabLe;
var TableIndex: integer);

var
lndex: integer;

begin [check for membership in a given table
----raDlelndex := 0;

for ; ndex := 1 to Tab L eLeng th do
,f TestChar =tabLe(indexJ.O,:)S·ymboL ~ TabLeIndex := index

end r tablelookup };

procedure identifier(var name: PackedString; var ItsAnldentifier:
BooLean); -

var
----riameLength: integer;

NameTooLong: Boolean;

begin
ItSAnldentifier := false; SkipSpaces;

if It sALett er (APLs tatement Cpos i t i onJ)
tilen
~gin
~eTooLong := faLse; ItsAnldenti fier := true;

for NameLength := 1 to MaxVarNameLength do { blank out name
name[NameLeng th] :? c ha ract ere spaceJ;
NameLength := 0;
whiLe (ItsALetter(APLstatement[positionJ) or (ItsADigit(
--;\;j5'Lstatement[pos it i onJ)) do

begin { build identifier }"
~eLeng th : = NameLeng th + 1;

if NameLength <= MaxVarNameLength
"tFlen name[NameLengthJ := APLstatement[position]
erse NameTooLong := true;
position := position + 1

end;
i fNameTooLong
t'fi"en SError(70) name greater than max length

en-d-
end tidenti fier };

procedure MakeNumber(var RealNumber: real; var ItsANumber: Boolean);

var
sign, DigitCount: integer;

begin { convert character input string to numerical representation
ItSANumber := faLse; SkipSpaces; sign:= 1; DigitCount:= 0;

ReaLNumber := 0.0;
if (APLstatement[posi t ion] = character[negat ive]) or (It sAOi 9 it (
- APLstatement[position])
then
""tiegin

ItSANumber := true;
if APlstatement[positionJ = character(negative]
tFien begin sign := - 1; position:= position + 1 end;
"iT""no~AOi 9 it (APLstatement[posi t ion])
tilen
---neg in

----sE'rror(1) { digit must follow a minus sign I;
ItsANumber := false;

end
else

begin form whole number portion

whiLe ItsADigit(APLstatement(posit;on]) do
beg i n

RealNumber := 10.0 * RealNumber + CharToNum(APLstatement
[position]);

position := position + 1
end;

if""""APLstatement[p'ositionJ = character[periodJ
then

begin
position := position + 1;
while ItsAOigit(APLstatement[position]) do

begin { form fractional portion }
ReaLNumber := ReaLNumber + CharToNum(APLstatement[

position]) * exp«- 1.0 - DigitCount) * 2.3025851
).

DigitCount := DigitCount + 1;
position := position + 1;

end"
i.!..D;~itCount 0 then

begin
----sE"'rror(2) digits must follow a decimal point I;

ItsANumber := false;
end

end;-

13

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
.5'1 ",,0
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

end

RealNumber := RealNumber * sign
end

end {make an umber };

function MonadicReference: Boolean:

var
SubPosi t ion, Tablelndex: integer;

begin { see if operator is monadic within context of input line
MonadicReference := false;
if NewToken?t r" .NextToken'" .noun StatEnd
then MonadicReference := true
eLSe'

begin
SubPosition := position - 1:
while (SubPosition > 0) and (APLstatemenHSubPosition]
----character(space) do -

SubPosition := SubPosition - 1 { get last non-blank }:
if SubPosition <> 0 then
-Tabl eLookUp (APLstateiiienHSubPo sit ion], 6, Spec Tab, TableIndex)

if <Table Index <> 0) or (SubPosition = 0)
ttlen MonadicReference:= true
eTse
-rr <NewTokenPt roo .NextToken'" .noun <> FormRes) and (NewTokenPt r

- ... NextToken" .noun <> FormArg) and (NewTokenPtr'" .NextToken ..
.noun <> GLobVar) and (NewTokenPtr" .NextToken" .noun <>
constant) and (APLmtement[SubPositionJ <> character[
periodJ) ari'd"(APLstatemenHSubPositionJ <> characterC
RightPareill and (APLstatement[SubPositionJ <> character[
Ri ghtBracketJ)
~ MonadicReference := true

end
end imonad icreference };

procedure DyadicOpCheck;

var
TabLelndex: integer;

begin
TableLookUp(APLstatementCpositionJ, 16, DOpTab, TableIndex);
if TableIndex = a
tilen

begin
TableLookUp(APLstatement[positionJ, 12, CharTab, TabLelndex);
if TableIndex = a
then

.i.:!.. APLstatement[positionJ = character[SouthCapJ
then

begin
OLdTokenPtr := SaveTokenPtr; dispose(NewTokenptr);
NewTokenPtr := SaveTokenPtr; position:= LineLength + 1;

end { this was a comment - ignore remainder of line
else SError(4) { invalid character encountered }

else

end
else

be~in { special character encountered
ewTokenPtr" .noun := SpecOper;

NewTokenPtr" .Charlndx := TabLelndex
end

~ MonadicReference
tii"en SError(74) { monadic reference to dyadic operator}
eLSe

begin { operator is dyadic }
NewTokenPt r" .noun := DyadOper;
NewTokenPtr" oDOplndx := TableIndex

end
end { dyadicopcheck };

procedure Chee kOt herTabl es;

var
Tablelndex: integer;

Chklndex: integer;

function NextNonBlank: integer;

begin

Chklndex := position + 1;
while (ChkIndex < LineLength) and (APLstatemenHChklndexJ
-cli"aracter[spaceJ) do

ChkIndex := ChkIndex+ 1;
NextNonBlank := APLstatemenHChklndexJ;

end { nextnonblank };

begin { checkothertables }
--:rr-NextNonBlank = character[ForwardSlash]

tilen

14

"tiegin
----ra6'leLookUp (APLs taternent[pos it; on], 16, RedTab, Tab L elndex);

if TableIndex = a
t'Fien SError(72) { invalid reduction operator

676 else
677 --rr not MonadicReference
676 tnen SError(73) { dyadic reduction reference
679 else
680 begin { operator is valid reduction operator
681 NewTokenPtr" .noun := ReductOper;
682 NewTokenPtr" oRedl~dx := Tablelndex;
683 end;
684 position := Chklndex + 1;
685 end
686 else
687 "tiegin
688 ----ra6'leLookUp(APLstatementCpositionJ, 9, MOpTab, Tablelndex);
689 if TableIndex = a then DyadicOpCheck
690 else --
691 iT not MonadicReference then DyadicOpCheck
692 else
693 begin { operator is monadic J
694 NewTo kenPt r" .noun : = MonadOpe r;
695 NewTokenPtr" .Monlndex := Tablelndex;
696 end;
697 position := position + 1;
698 end
699 end {checkothertables };
700
701
702 procedure TryToGetANumbe r;

703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

var
NumberCot..rlt: integer;

RealNumber: reaL;
ItsANumber: Boolean;

begin
~erCot..rlt := 0; MakeNumber(RealNumber, ItsANumber);

if not ItsANumber then CheckOtherTables
else
--regin { store values in value table

ne;j(NewVal TabLi nk);
NewValTabLink"oNextValTabLink := OldValTabLink;
OldValTabLink := NewValTabLink;
NewVal TabLink" .ForwardOrder := true;
if FunctionMode then NewVaLTabLinkR.lntermedResult := faLse
else NewVal TabLink"'"":TritermedResult := true;
"S'WTtch := true;
whi le ItsANumber do

begin -
NumberCount := NumberCount + 1;
if switch
tilen
~gin

----sw:itch := false;

new(NewVa lues);

NewVal TabLink" .FirstValue := NewValues
end

else-NewValPtr" .NextVaLue := NewVaLues;
NewValues".RealVaL := RealNumber; NewVaLPtr:= NewValues;
Make'"-'mbe r(Rea l Number, It sANumber)

end;
NewValues" .NextValue := ~;
if NumberCount > 1
tilen
"t;igin

Ne"WValTabLink".dimensions := 1 { number is a vector }:
new(NewDim); NewVaLTabLink".FirstDimen:= NewDim;
NewDim" .dimenLength := NumberCount;
NewDim" .NextDimen := ni L

end -
else
"t;igin

Ne"WVal TabLink" .dimensions := 0 { number is a scalar };
NewVal TabLink'" .Fi rstDimen := ~

end;
NewTokenPtr" .noun := constant;
NewTokenPtr" .Val TabPtr := NewVal TabLink;

end
end (trytogetanumber);

~~! flllction NamelnVarTable(name: PackedString; var VarPointer:
755 --vai'TabPt rType; TestFuncPt r: Pt rFuncTab): Boolean;

756

757 :!!found: 800 Lean;
758
759
760
761
762
763
764
765
766
767
768
769
770

begin
found := false; VarPointer:= OldVarTabPtr;
whi le (VarPointer <> ni LJ and (not found) do

begin - - - -
if (NamesMatch(name, VarPointer".VarName» and (VarPointer".
- FuncTabPt r = Test FuncPt r) { test for global var
then found := true
'iTii VarPointer := VarPointer".NextVarTabPtr

encr;--
NameInVarTable := found;

end { nameinvartable };

773 procedure AddNameToVarTable(name: PackedString);
774
775
776
777
778

begin { new variable name encountered
ne;j(NewVarTabPtr); NewVarTabPtr".NextVarTabptr:= OLdVarTabptr;

OLdVarTabPtr := NewVarTabPtr; NewVarTabPtr".VarName:= name;
NewVarTabPtr".VaLTabPtr := ~;

Software Tools

779 if NewTokenPtr <> niL
780 then -
781 --:rf (NewTokenPt rA .noun = FormRes) ~ (NewTokenPt rA .noun FormArg
782 -)
783 then NewVarTabPt rA. FuncTabPt r NewFuncTabPt r
784 eLSe NewVarTabPt rA. FuncTabPt r := ni L
785 end {"';ddnametovartable };
786
787
788 function FunctionALreadyDefined(var NewFuncName: PackedString; var
789 ~ndex: Pt rFuncTab): BooLean;
790
791 var
792 found: BooLean;
793
794 begin
795 ----:rOund:= faLse; FuncIndex:= OLdFuncTabPtr;
796 whiLe (FuncIndex <>~) and (not found) and (NewFuncTabPtr <>
797 -----rilL) do
798 iTNamesMatch(FuncIndex A .FuncName, NewFuncName)
799 th'"en found : = true
800 eTS"e Funclndex := FuncIndex".NextFuncTabPtr;
801 FunctlonALreadyDefined := found
802 end (functionalreeadydefined);
804
803
805 procedure Ma keTokenL i rrk;
806
807 begin
808 new(NewTokenPt r); NewTokenPt r A .NextToken := OLdTokenPt r;
809 SaveTokenPtr := OldTokenPtr; OldTokenPtr:= NewTokenPtr
810 end (maketokenl ink l;
811
812
813 procedu re Proce ss Funt i onHeader;

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

var
DummyPt r: A FuncTab;

name1, name2, name3: PackedString;
ItsAnldentifier, FuncHeadError: Boolean;
AriTylndex: integer;

beg in
~cHeadError := false;

FuncStatements := - 1;
FunctionMode := true;

if Fi rst Funct ion
then begin FuncStatements := 0; Fi rstFunction := false; end;
~ylndex := 1; position:= position + 1;
identifier(name1, ItsAnldentifier);
if not ItsAnldentifier
then

beg in
SError(7) I unrecognizable function'argument name);
FunctionMode := false { exit function mode);
FuncHeadError := true

end
else

beg i n
~(NewFuncTabPt r); Sk i pSpaces;

if APLstatement[positionJ = character[LeftArrow]
then

beg i n
~FuncTabPtrA.resuLt := true { explicit result };

NewFuncTabPtrA.ResuLtName := name1;
position := position + 1;
identifier(name1, ItsAnldentifier);
.if. ~ ItsAnldentifier ~

end

begin
~ror(6)

{ unrecognizable name to right of explicit res};
FuncHeadError := true

end

eLS'e'"NewFuncTabPtrA.result :; faLse { no explicit result };
Sk i pSpaces;
if (position <= LineLength) and (not FuncHeadError)
then - -
--oegin

identifier<nameZ, ItsAnldentifier);
if not ItsAnldentifier
then-
-segin

------sE"'rror(7) invalid function/argument name };
FuncHeadError :; true

end
eLSeAriTylndex :;

encr:---
Sk i ps~aces;
if (position <; LineLength) and (not FuncHeadError)
then

beg in
identifier(name3, ItsAnldentifier);
if not ItsAnIdentifier
then-

begin
SError(9) invalid function right argument name };
FuncHeadError := true

end
el~AriTylndex := 3

en-a;-
SkipSpaces;

Software Tools

eeo
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

if (position (; LineLength) and (not FuncHeadError) then

beg in
----sError (3)

{ extraneous characters to right of function header l;
FuncHead:::rror := true

end;
case-Ar i Ty Index of
-1-;

begin
~FuncTabPtr".arity := niladic;

NewFuncTabPt rA. FuncName := name1;
end;

2;-

begin
~FuncTabPtr".ar;ty := monadic;

NewFuncTabPtr A .FuncName := name1;
NewFuncTabPtr A .RightArg := name2;
AddNameTova rTab l e (nameZ);
NewVarTabPtr A .FuncTabPtr := NewFuncTabPtr;

end;
3;-

begin
~FuncTabPtrA.arity := dyadic;

NewFuncTabPtr A .LeftArg := name1;
NewFuncTabPt rA. FuncName :; name2;
NewFuncTabPtr A .RightArg := name3;
AddNarneToVa rTab L e (name1);
NewVarTabPt rA • FuncTabPt r := NewFuncTabPt r;
AddNameToVa rTab L e (name3);
NewVarTabPtr A .FuncTabPtr := NewFuncTabPtr;

end
end ~case };
lfFunc t ionAL ready De f; ned (Ne w Func TabPt rA • Func Name I DummyPt r)
then

begin
SError(S) function already defined l;
FuncHeadError := true;

end;
ifFuncHeadError then
-begin --

----c.IT'Spose(NewFuncTabPtr) header no good l;
FunctionMode := false (exit function Mode l;
NewFuncTabPtr :; OldFuncTabPtr;

end
end

end r-processfuncheader };

procedure DestroyStatement;

var
-oumTokenPtr: "'TokenTable;

AuxSubrTabPt r: A SubrTab;

begin
-----rTSubrTabPt r <> ni L

tIlen
~gin
~Le SubrTabPtrA.LastSubrPtr <> nil do
~in
~SubrTabPtr :; SubrTabPtr;

SubrTabPtr :; SubrTabPtr A .LastSubrPtr;
di spo se (Aux Subr TabPt r);

end;
di spose (SubrTabPt r);

end;
DumTokenPtr := OldTokenPtr;
whi Le DumTokenPtr <> HoldTokenPtr do

begin
OLdTokenPtr :; OLdTokenPtrA.NextToken; dispose(DumTokenPtr);
DurnTokenPtr :; OldTokenPtr

end;
NewTokenPtr := HOLdTokfnPtr;
OldTokenPt r ;= Ho LdTokenPt r

{ return pointer to end of last good line
end { destroystatement };

procedure ReverseLinkList(var ArgPtr: TypeVaLTabPtr);

var
~old, TemPtr: "values;

begin { reverselinklist
----vaTPtr := ArgPtr".FirstVaLue;

while TemPtr <> nil do
--o.gin --
~d :; TemPtr" .NextValue;

ValPtr :; TemPtr; TemPtr

TemPtr := ValPtr A .. NextValue;

TemPtr".NextVaLue := ValPtr;
;= ho Ld

end·
Argpt;" .Fi rstValue" .NextValue := ~;
ArgPtr".FirstValue :; VaLPtr;
if ArgPtr".ForwardOrder
tlen ArgPtr A .. ForwardOrder :; faLse
erse ArgPtr".ForwardOrder :; true { toggle list order switch

encr--r- reverselinklist };

procedure parser<~ TokenTabPtr: TokenPtr; var PtrToDa: TypeVal TabPtr);

15

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

VFuncHold: "vfunc { hold while searching I;
Au.OperTabPt r: "OperandTab;
Au.SubrTabPt r: "SubrTab;
Au.RParmPtr: "FParmTab;
Au.LParmPtr: "FParmTab;
Val idE.p: Boolean { true if valid expression I;
cnt: ; nteger;
npv: integer { number of indices I;
assign, assign1: Boolean assign.in progress);
DoneSuccessor: BooLean;
DoneParse: Boolean;

procedure error<Errorlndex: ; nteger);

var
MsgCol: integer;

begin
--w-rrte(' " Errorlndex, I I);

for MsgCol := 1 to MessageLength do
wr; te(ErrorMsg5[ErrorIndex, MsgColJ);
writeln; gate 100 { return to scanner };

end I error 1;

procedure release;

begin { releaseopertab
OperTabPtr := PtrLastOper;
while OperTabPtr" .LastOper <> ~ ~
~;n

-ruxOperTabPt r := OperTabPt r;
OperTabPt r := OperTabPt r" .LastOper;

end;
end treleaseopertab };

dispose CAuxOperTabPt r);

procedure express;on(var VaLidExp: Boolean);
forward; -

procedure ReturnToCa II ; ng Subr;

var
Name?tr: "VarTab;

begin { returntocallingsubr
if SubrTabPt r" .Ca lledSubr" .resul t
then

begin { place explicit result in opertab }
i.!. .'l2.!. NamelnVa rTableCSubrTabPt r" • Ca lledSubr" • Resu l tName,

NamePt r, SubrTabPt r" • Ca lledSubr)
then errod11) { 'symbol not found'
erse
~gin

-ruxOperTabPt r := OperTabPt r; new(OperTabPt r);
OperTabPtr" .LastOper := AuxOperTabPtr;
PtrLastOper := OperTabPtr;
OperTabPtr".OperPtr := NamePtr".ValTabPtr;

end"
end;-'

return to calling function
VFuncPt r := SubrTabPt r" • StatemCa II ingSubr;
To kenTabPt r : = SubrTabPt r" • TokenCa II i ngSubr" • NextToken;
if SubrTabPtr" .CalledSubr" .arity <> niladic
then

beg i n { monad ic or dyad ic
AuxRP&rmPtr := RParmPtr; RParmPtr:= RParmPtr".LastParm;
di spose (Aux RPa rmPt r);
if SubrTabPtr".CalledSubr".arity = dyadic then
-begin { dyadic only I --

AuxLParmPtr := LParmPtr;
LParmPtr := LParmPtr".LastParm; dispose(AuxLParmPtr);

end;
end;-

AuxSubrTabPtr := SubrTabPtr;
SubrTabPtr := SubrTabPtr LastSubrPtr;

end { returntocallingsubr };
di sposeCAuxSubrTabPt r);

function SpecSymbol(sym: integer): Boolean;

var
ValidSym: BooLean;

beg i n { specsymbol
----vaL"idSym := false;

if TokenTabPt r" .noun = SpecOper
then
--rr TokenTabPt r" .Charlndx = sym then

-begin
hold := TokenTabPtr;
TokenTabPtr := TokenTabPtr".NextToken; ValidSym:= true;

end;
Spec"SYmbol := Va l idSym;

end { spec symbol I;

procedure CaLlSubr;

16

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

var
PtrToVarTab: "VarTab;

begin { callsubr I
if SubrTabPtr" .CalledSubr" .arity <> niladic
tilen

begin
i.!. not NamelnVa rTableCSubrTabPt r" • Ca lledSubr" • Ri ghtArg,

Pt rToVa rTab, SubrTabPt r" • Ca lledSubr)
then error(32);
TT'Pt rToVa rTab". FuncTabPt r <> SubrTabPt r" .Ca lledSubr
then error(32) { program logic error, variable name of };

function argument not found in symbol table }
AuxRParmPtr := RParmPtr; new(RParmPtr);
RParmPtr".LastParm := AuxRParmPtr;
Pt rToVa rTab" • OeferedVa l TabPt r := RPa rmPt r;
if SubrTabPtr".CalledSubr".arity = dyadic
then

begin { if dyadic

if not NamelnVarTableCSubrTabPtr" .CalledSubr" .LettArg,
- PtrToVarTab, SubrTabPt r" • Ca lledSubr)
then error(33);
TIPt rToVa rTab" • FuncTabPt r <> SubrTabPt r" • Ca lledSubr
then error(33) { same as error(32) I;
AuxLPa rmPt r : = LPa rmPt r; new(LPa rmPt r);
LParmPtrA.LastParm := AuxLParrnPtr;
PtrToVarTab" .0eferedVal TabPtr := LParmPtr;
LParmPtr".PtrVal := OperTabPtr".OperPtr;
AuxOperTabPtr := OperTabPtr;
OperTabPtr := OperTabPtr" .LastOper;
dispose(AuxOperTabPtr); PtrLastOper:= OperTabPtr;

end;
RParmPtr".PtrVal := OperTabPtr".OperPtr;
AuxOperTabPt r := OperTabPt r;
OperTabPt r := OperTabPt r" • Last Oper; d i spo se CAuxOperTabPt r);
PtrLastOper := OperTabPtr;

end;
TokenTabPt r := SubrTabPt r" • Ca lledSubr" • Fi rs t Stat ement" • Nex tStmnt;
VFuncPtr := SubrTabPtr".CalledSubr".FirstStatement;

end { callsubr };

function FunctCall: BooLean;

var
---p't rToFuncTab: "FuncTab;

NameOfFunc: PaekedString;
ValidFn: Boolean;

beg in { functcall
----vaTidFn := faLse;

if TokenTabPtr" .noun GlobVar
tilen

begin
NameOfFunc := TokenTabPtr" .VarTabPtr'" .VarName;
if Funct ionAL readyDef i ned(NameOf Func, Pt rTo FuneTab)
tilen
~gin

-ruxSubrTabPtr := SubrTabPtr; new(SubrTabPtr);
SubrTabPt r" . Last SubrPt r := AuxSubrTabPt r;
SubrTabPtr" .CalledSubr := PtrToFuncTab;
SubrTabPtr".TokenCallingSubr := TokenTabPtr;
SubrTabPtr".StatemCallingSubr := VFuncPtr;
hold := TokenTabPtr;
TokenTabPtr := TokenTabPtr" .NextToken; VaL idFn := true;

end;
end;-

FunctCall := ValidFn;
end { functcall I;

procedure NunWrite(ReaLNo: reaL>;

var
prefix, root: integer;

SigDig, CoLCnt: integer;

begin { output a number
---rr-RealNo >= 0.0

tlen write(' I, RealNo: 12: 2) { output positive number
erse
--,;egin { output negative nlll1ber
~lNo := - 1.0 • RealNo;

SigOig := trunc((lnCRealNo» I ClnC10.0»);
for ColCnt := 1 toC7 - SigOig) do writeC' ');
Fcharacter[negativeJ < 6000
then wri tee ehr (cha rae ter[negat; ve]»
erse

begin
prefix := character[negat;ve] div 100;
root := character[negative] - ""(";00 * prefix);
wri te(chr (pref ix), e hr (root»;

end;
SigOig := SigOig + 5; writeCRealNo: SigOig: 2);

end
end r-numwri te };

procedure OUtPutVa l;

Software Tools

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

var
----Cnt: integer;

AuxValuesPtr: "values;
DimHold, dimen1, dimen2, dimen3: integer;
OutCnt1, OutCnt2, OutCnt3: integer;
idimens: integer;

begin { outputval
cnt := 0; writeln; writeLn;
if not OperTabPtr"'.OperPtr".ForwardOrder
theri'R'everseL; nkL; st (OperTabPt r" • Ope rPt r);
AuxValuesPtr := OperTabPtr".OperPtr".FirstValue;
idimens := OperTabPtr" .OperPtr" .dimensions;
if not (idimens in [0 •• 3])
then- -
--""beg in

---ror ColCnt := 1 to MessageLength do
wri te(Er rorMsgSC60, Co Lent]);
writelni

end
else-
if AuxVaLuesPtr nil

end

then
~gin
~ CalCnt := 1 to MessageLength da

write(ErrorMsgs[61, Calent]);
writeln;

end
else

if idimens ::::; 0
then begin NunWrite(AuxVaLuesPtr" .RealVaL); writeln; end
eLse

begin
dimen1 : = OperTabPt r". OperPt r". Fi rstDi men'"' .d imenLength;
if idimens >= 2
then
----cITmen2 := OperTabPtr~ .OperPtr" .Fi rstDimen'" .NextDimen

"'.dimenlength
else dimen2 .= 1·
iTld ;m.ens ='3 '
then
~men3 : = OperTabPt r"'. OperPt r" • Fi rstOi men'" .NextDi men

'" .NextDimen~ .dimenlength
else dimen3 := 1:
Tfidimens = 3 then
-begin (rotate dimensions

DimHold := dimen1; dimen1:= dimen2;
dimen2 := dimen3: dimen3:= DimHold:

end;
foroutCnt3 := 1 to dimen3 do

begin - -
for OUtCnt2 := 1 to dimen1 do
begin -
~ Outent1:= to dimen2 do

begin
cnt := cnt + 1;
if «(cnt - 1) mod 5) = 0) and (cnt <> 1)

then begin writeIfi"; write~ I); end;
NunWr i te(AuxVa l uesPt r" • Rea LVa l):
AuxValuesPtr := AuxVaLuesPtr"'.NextValue;

end:
; fidimens >= 2
then begin writeLn;
en~--

cnt := O' end;

wrheLn; writeLn;
end;

writeln; }
end;

outputval };

function variabLe: BooLean:

var
gLobOrDummy: Boo Lean (

PassedAdj: "VarTab I k
rarg: BooLean { rd };
ParmPtr: "ValTab I pt
VaLidVar: BooLean;
Va L id Index: 800 Lean;

procedure InputVa L:

var

gord
);

);

AuxPt rToDa: "Va L Tab;
AuxValuesPtr: "vaLues;
Aux2VaLuesPtr: ~values;

ReaLV: reaL;
booLv: BooLean;
ccntr, cnt: integer;
AuxOimenFoPtr: "DimenInfo;

begin (inputval

);

cnt := 0; position:= 1; AuxPtrToDa:= PtrToDa;
new(Pt rToDa); AuxPt rToDa" .NextVa l TabLi nk := Pt rToDa;
AuxOperTabPtr := OperTabPtr; new(OperTabPtr);
PtrLastOper := OperTabPtr:
OperTabPtr".LastOper := AuxOperTabPtr;
OperTabPt r'" • OperPt r := Pt rToDa; new(Aux2Va LuesPt r);
PtrToDa'" .FirstVaLue := Aux2VaLuesPtr;

Software Tools

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383

~ ccntr := 1 ~ MessageLength £'.£. write(ErrorMsgs[63, ccntr]);
writeLn; readLn: GetAPLstatement:
repeat
Mai<'eNumber<ReaLV, booLv); SkipSpaces:

if not booLv
then

begin
for Cotent := 1 to MessageLength do
wr; te(Er rorMsgs(62, Co LCnt]) i
writeLni position:= 1; cnt:= 0;
Aux2VaLuesPtr := OperTabPtr".OperPtr".FirstVaLuei
for ccntr := 1 to MessageLength do
write(ErrorMsgst63, ccntr]): -
writeLn; readLn; GetAPLstatement

end
else

begin
cnt := cnt + 1: AuxValuesPtr:= Aux2VaLuesPtr;
new(Aux2VaLuesPtr); AuxVaLuesPtr".RealVaL:= ReaLV;
AuxVaLuesPtr".NextVaLue := Aux2VaLuesPtr;

end;
untiLPosition> LineLength;
d;spose(Aux2VaLuesPtr); AuxValuesPtr".NextValue·= nil·
PtrToDa" .IntermedResuLt := faLse; PtrToDa" .dimen~ions-~= 1;
Pt rToDa" .ForwardOrder := true;
PtrToDa"'.NextVaLTabLink := nil; new(AuxDimenFoPtr)i
PtrToDa"'.FirstDimen := AuxDimenFoPtr;
AuxDimenFoPtr" .dimenLength := cnt;
AuxDimenFoPtr" .NextDimen := nil;

end (inputval }; -

procedure GetArrayPosition(.!'.!.!: VaLuesPtr: TypeValuesPtr);

var
lndice: real;

kcnt: ; nteger;
sl: integer;

AuxDimenFoPtr: "'Dimenlnfo;

begin { getarrayposition
---:;-fnpv <> ParmPtr".dimensions then error(3S);

t 'wrong man. of subscr~pts' }--
sl := 0; AuxOperTabPtr:= OperTabPtr;
AuxDimenFoPtr := ParmPtr" .FirstDimen;
for kcnt := 1 to npv do
begin - -

-i-f-AuxOperTabPtr'" .OperPtr'" .dimensions <> a
t"hen error(3S) ('non-scaler indices');
1nd1ce : = AuxOperTabPt r" • Ope r Pt r" • Fi rs t Va L ue" • Real Va L:
if indice - 1.0 * trunc(indice) <> 0.0
then error(37) { 'non-integer indices' };
i"'f"""not (trunc(indice) in [1 •• AuxDimenFoPtr".dimenLength
-J)" -

then error(38) { 'out of range index' J;
S"l!= (sL * AuxOimenFoPtr'" .dimenLength) + trunc(indice) -

1 ;
AuxOperTabPt r := AuxOperTabPt r" .LastOper;
dispose(OperTabPtr); OperTabPtr:;;;:; AuxOperTabPtr;
AuxDimenFoPtr := AuxDimenFoPtr".NextDimen;

end;
VaTUe"sPtr := ParmPtr'" .FirstVaLue;
while sl <> 0 do (determine which value in
--{- ptE sval(sv)][sval (sv-1) J ••• [sval(sv-npv+ 1) J

{ := sval(sv-npv) }
begin ValuesPtr := VaLuesPtr".NextValue; sL:= sL - 1; end;

end {getarraypo si tion };

procedure LinkResuLts;

var
PtrTovaLues: "'vaLues;

begin { linkresults
if npv 0
then
--segin

ifnot gLobOrDummy
then -rr rarg then RParmPtr".PtrVaL := OperTabPtr" .OperPtr

else LParm~.PtrVaL := OperTabPtr".OperPtr
el"S"e"'PassedAdj'" .Val TabPtr := OperTabPtr'" .OperPtr

en-d-
eLse
--""beg in

-rr-globOrDummy then ParmPtr := PassedAdj" .VaLTabPtr
else ParmPtr := PassedAdj'" .DeferedVaLTabPtr'" .PtrVaL;
GetAr rayPos it ion (Pt rToVa lues);
if OperTabPtr" .OperPtr" .dimensions <> 0
then errod36) { 'assigned expression not a scalar' }.
PtrToVaLues".RealVaL := OperTabPtr"'.OperPtr".FirstVaLue ..

.RealVaL;
end;

AuxOperTabPt r := OperTabPt r;
OperTabPtr := OperTabPt r'" .LastOper;
PtrLastOper := OperTabPtr:

end { linkresults };

procedure StackPointers;

di spo se (Aux Oper TabPt r):

17

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

var
AuxPt rToOa: "VaL Tab;

PtrToVaLues, AuxValuesPtr: "values;

begin { stackpointers
,
if npv 0
ITen
"l>e"gin
~OperTabPt r := OperTabPt r; new(OperTabPt r);

OperTabPt r" oLastOper := AuxOperTabPt r;
OperTabPtr"oOperPtr := ParmPtr;
Pt rLastOper := OperTabPt r

end
else
"l>e"gin
~PtrToDa := PtrToDa; new(PtrToDa):

PtrToDa" oNextVaLTabLink := AuxPtrToDa;
PtrToDa- .IntermedResult := true:
PtrToOa".dimensions := 0; PtrToDa".FirstO;men:=~;
PtrToDa".ForwardOrder := true: newCAuxValuesPtr);
PtrToDa".FirstValue := AuxValuesPtr:
GetArrayPosi t ion CPt rloVa lues);
PtrToDa"oFirstVaLue"oReaLVaL := PtrToVaLues"oReaLVaL;
PtrToDa".FirstValue".NextValue := nil:
AuxOperTabPtr := OperTabPt r; new(OperTabPt r);
OperTabPt r" • LastOper := AuxOperTabPt r;
OperTabPt r" oOperPt r := Pt rToOa;
Pt rLastOper := OperTabPt r;

~
end { stackpointers };

function SimpleVariable: Boolean:

var
VaLidSv: BooLean;

begin (simplevariable
ValidSv := false; rarg:= false: gLobOrDummy := faLse;
if assign
tilen
~gin

----rf"(TokenTabPt r" onoun FormRes) or (TokenTabPtr" .noun
- GLobVar)
then

begin
gLobOrDummy := true:
PassedAdj := TokenTabPt r'"' • VarTabPt r;
hoLd := TokenTabPtr;
TokenTabPt r := TokenTabPt r'"' .NextToken;
Va L idSv := true

end
eL~
--:rr TokenTabPt r" .noun = FormArg

then
begin

ii. NamesMa tc h <TokenTabPt r" 0 Va rTabPt r" 0 FuncTabPt r" 0

LeftArg, TokenTabPt r" • Va rTabPt r'" • Va rName)
then rarg := true;
i'aSSedAdi := TokenTabPtr"oVarTabPtr

end
end

else
begin

if (TokenTabPt r'" .noun
- GLobVar)

FormRes) or (TokenTabPt r" .noun

then
begin

Pa rmPt r := TokenTabPt r" • Va rTabPt r" • Va l TabPt r;
if ParmPtr <> nil then
-begin

hoLd := TokenTabPtr;
TokenTabPtr := TokenTabPtr" .NextToken;
ValidSv := true

end
end

el~
begi~

if TokenTabPt r" .noun = FormArg
tilen

begin
if NamesMatch(TokenTabPtr"oVarTabPtr"oFuncTabPtr "

- 0 LeftArg, TokenTabPt r" 0 Va rTabPt r" 0 Va rName)
then Pa rmPt r : = LPa rmPt r" • Pt rVa l
erse ParmPtr := RParmPtr".PtrVal;
iiOTd := TokenTabPtr;
TokenTabPtr := TokenTabptr" .NextToken;
ValidSv := true;

end;
end;

end;-
SimpleVariabLe := ValidSv;

end { simple variable };

procedure index(var ValidI: BooLean);

var
validE1, ValidE2: Boolean;

18

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587

begin { index
ValidI := false; expression(ValidE1);
if VaLidE1
then

begin
npv := 1 { no. of index expressions };
while SpecSymboL(XSemicoLon) do

begin -
npv := npv + 1; expression(Val idEZ);
if not VaLidE2 then error(39);
----r-inval id index expression ' }

end'
Valid! := true;

end;
end {index };

begin { variable
ValidVar := false; npv:= 0;
if not assign
tilen
--rr SpecSymbo L (XQuadSym)

then begin InputVal; ValidVar:= true end
else
~gin

----rf"SpecSy~bo L (XRi ghtBrac ket)
t'fien

begin
index (Va l idIndex);
if (not VaL idlndex) or (not SpecSymboL(XLeftBracket))
tFi"en-error(34) { innlidlndex expression }i

end;
i f---simp leVa ri ab le
then begin StackPointers; ValidVar:= true end

end
else-
--rr SpecSymboL(XQuadSym)

then begin OutPutVal; ValidVar:= true end
e1Se--
~gin

----rf"SpecSymbo L (XRi ghtBrac ket)
tilen

begin
index (Va l id Index);
if (not VaL idlndex) or (not SpecSymboL(XLeftBracket))
thenerror(34) { in;alidindex expression };

encr:--
i fST~pleva riab le
then begin LinkResults; ValidVar:= true; end;

end;
variable := VaLidVar;

end { variable };

procedure primaryC~ valid: Boolean) { recursive entry};
var
ValidX: Boolean;

assign: Boolean;

function vector: Boolean;

var
vec: Boolean;

beg in { vector
vec := false;
if TokenTabPt r" .noun constant
ITen
"l>e"gin

----;;;UXOperTabPt r := OperTabPt r; newCOperTabPt r>;
PtrLastOper := OperTabPtr;
OperTabPt r" • Las tOper := AuxOperTabPt r;
OperTabPtr" oOperPtr := TokenTabPtr" oVaLTabPtr;
hoLd := TokenTabPtr;
TokenTabPtr := TokenTabPtr" .NextToken; vec:= true;

end;
vector := vee;

end { vector };

beg in { primary
----vaT"id := true;

if not vector
tilen
"l>e"g in

---assign := false;
if not variable
ITen
--;-r SpecSymbol(XRightPar)

tilen
begin

express;onCVal idX);
if not VaLidX
then-error(14) { 'non-valid exp within parens I
erse
--rr not SpecSymboL(XLeftPar)

tilen
-';:-ror(15)

{ I right paren not bal anced wi th 1 eft paren I
else val id := true

Software Tools

1588
1589
159C
15~1

end
else-
---n- not FunctCall then valid := false

else begin CallSubr-; -primary(val id); end;
1592 end;
1593 end tpr imary };
1594
1595
1596 procedure expression
1597

recursive };

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636,
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664

var
DoneExp, ValidPri, ValidFunc, ValidAssn: BooLean:

code: integer:

procedure assignment (~ vaL ida: Boolean);

beg in { assignment
valida := false:
if SpecSymbol(XLeftArrow)
then

begin
assign := true: assign1:= true:
if variabLe then vaLida := true
eTse error(S) r-r:-esul t of an assn
valida := true; assign:= false;

end:
end tassignment }.

~ mop: Boolean:

var
Val idM: Boolean;

begie (mop)
Va idM := false;

not a valid variable

if (TokenTabptr" "noun
- ReductOper)

MonadOper) or (TokenTabPt r" .noun

then

be~~n
, TokenTabPtr" .noun = MonadOper
tnen code := MOpTab[To kenTabPt r" .Monlndex]. Op Index
erse code := RedTab[TokenTabPt r" • Red Indx]. Op Index;
hold := TokenTabPtr;
TokenTabPtr := TokenTabPtr".NextToken; ValidM:= true:

~ .
mop := Va l,dM;
~ (mop);

~ dop: Boolean:

var
Val idO: Boolean;

begin (dop)
ValidO := false;
if TokenTabptr" .noun = DyadOper
then
"l;egin

COde := OOpTab[TokenTabpt r" .OOplndxJ. Oplndex;
hold := TokenTabPtr;
TokenTabPtr := TokenTabPtr" .NextToken;
if (code> 80l then ValidO := true
else
-n TokenTabPt r" .noun = SpecOper

then
---n- Sp.ecSymbol(XPeriod)

then
begin

if TokenTabPt r" .noun ;: DyadOper
then

begin
if OOpTab[TokenTabPt r" • OOp Indx]. Op Index <= 80
then

begin

I;

1665 code := code + (100 • OOpTab[TokenTabptr-.

1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688

end;

OOplndxJ. Oplndex);
hold := TokenTabPtr;
TokenTabPtr := TokenTabPtr" .NextToken;
ValidD := true

end
el~error(27) 'invalid inner product exp

en-d-

else
---:rt TokenTabPt r" .noun = SpecOper

then

end

begin
if SpecSymbo l (XL itt leCi rc le)
then

begin code := 10 * code; VaLidD:= true
end

e Lse-error(26) { 'inval outer prod exp'
en-d-

eLse error(26) same as above

elS;-ValidD := true
elSeValidD := true;

dop:= ValidO;

Software Tools

1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788

end (dop);

funct ion It sBooleanC test: reaL): BooLean;

begin
if (test = 1.0) or (test 0.0) then ItsBoolean := true
eTse ItsBoolean ~ false

end! i tsboolean } ;

procedure DyadComp(var SFLoat: reaL; value: reaL; code: integer);
compute resul t onyadic operation }

begin
case code of
--{ left codes

2, 52: SFloat
3, 53: SFloat
4, 54: SFloat
5, 55:

- reduction ops I

:= value + SHoat
:= value - SHoat
:= value * SFloat

if SFloat = 0.0

right codes - dyad ic
{ addi tion };
{ subtraction};
{ multiplication};

then error(20) { attempted division by zero
erse SFLoat := value I SFLoat { division};

6,56:'
; f value> 0.0
then
---sFloat := exp(SFloat • In(value))

{ nL.lTlber raised to a power}

ops }

else SFloat := 1.0./ (exp(SFloat • In(abs(value))));
21~:

if value = SFloat (equality)
else SFloat := 0.0;

then SFloat := 1.0

22-;72:
if value <> SFLoat { inequality
else SFloat := 0.0;

23~:
if value < SFloat (less than)
else SFloat := 0.0;

24-;74:

then SFloat

then SFloat :=

if value <= SFLoat { less than or equal to }
then SFloat := 1.0 erse SFloat := 0.0;

25;75':
if vaLue >=
ITen SFloat
erse SFloat

SFloat { greater than or equal to }
:= 1.0
:= 0.0;

26;-7'6:
if vaLue> SFLoat { greater than}
else SFloat := 0.0;

27;77:

then SFloat

if (ItsBoolean(value)) and <ItsBoolean(SFloat))
then
----,-:r (vaLue = 1.0) and (SFloat = 1.0) (

1.0 then SFloat
erse SFloat := 0.0

eL~rror(19) { value not boolean };
28-;78:

and

if (ItsBoolean(value» and <ItsBoolean(SFloat»
then -
---n- (value = 1.0) or (SFloat = 1.0) (or

then SFloat := 1.0
erse SFloat := 0.0

else-error(19) { value not boolean };
29-:-

if value> SHoat { maximum or ceiling
then SHoat := value;

30-:-

if value < SHoat { minimum or floor}
then SHoat := value;

31-:-
if (value. SFloat) < 0.0

:= 1.0

1.0

:= 1.0

then error(SO) { number and base of different sign
erse
--snoat := (In(abs(SFloatJ)) I (In(abs(value)))

(log to a base)
end (case)

enn dyad camp };

procedure IndexGenerator(arg: TypeVa l TabPt r);
{ monadic iota operator }

var
iotalndex, TopValue: integer;

begin
----:rtarg" .dimensions <> a

tnen error(21) { argument not a scalar
erse
---:rr arg" .Fi rstValue" .RealVal < 0.0

then error(22) { argument is negative
eLSe
---n- (arg" .Fi rstValue" .RealVall - (1.0 • trundarg".

- FirstValue".RealVal)) <> 0.0
then error(23) { argument is not an integer}
erse
~gin

--ne;(NewVa l TabL ink);
OldVal TabLink- .NextVal TabLink := NewVal TabLink;

19

1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

NewVaLTablink".NElxtVaLTablink := nil;
NewVal TabLink" .ForwardOrder := true;
NewVaLTabLink" .IntermedResult := true;
NewVaLTablink".dimensions := 1 { result is a vector};
new(NewDim); NewVaLTabLink".FirstDimen:= NewDim;
TopVaLue := trunc(arg".FirstValue".ReaLVaL)

{ last index generd };
NewDim'" .dimenLength := TopValue;
NewDim".NextDimen := nil; iotalndex:= 1"
switch := true; -
while iotalndex <= TopValue do

begin
new(NewValues); NewVaLues".RealVal:= ;otalndex;
if switch
then
~g;n

--switch := false;
NewVaLTabLink".FirstVaLue := NewVaLues

end
else-NewValPtr" .NextValue := Ne\o/Valuesi
NewValPtr := NewValues;
iotalndex := iotalndex + 1

end"
i(·switch
then
""N"'ewValTabLink".FirstVaLue := nil

{ result is vector of leng~O
eLse NewVaLues~.NextVaLue := niL

en-d-

end index generator } ;

rrocedure raveL(arg: TypeValTabPtr);
monadic comma operator }

var
elements: integer;

begin
new(NewVaLTablink);
OLdVaLTablink".NElxtVaLTablink := NewVaLTablink;
NewVaLTablink" .NElxtVaLTablink :=!!2.l;
NewVaLTabLink".IntermedResuLt := true;
NewVaL TabLink" .ForwardOrder := arg~ .ForwardOrder;
NewVaLTabLink".dimensions := 1 { result is a vector}·
new(NewDim); NewVaLTabLink" .FirstDimen := NewDim;
NewDim" .NextDimen := niL; switch:== true;
VaLPtr := arg".FirstVaLUe; elements:= 0;
while VaLPtr <> nil do
begin { duplicate values into result}

--;;ew(NewValues); NewVaLues".ReaLVaL:= ValPtr"'.RealVal;
eLements := elements + 1;
if switch
then
~gin

----swi"tch := faLse;
NewValTabLink"'.FirstVaLue := NewVaLues

end
el'S'e""NewValPtr".NextValue := NewVaLues;
NewValPtr := NewVaLues; VaLPtr:= VaLPtr" .NextVaLue

end'
NewDi~" .dimenlength := eLements;
if switch then NewValTabLink".FirstValue := niL
else NewValu~NextVaLue := ni L

end{ ravel }; -

procedure ShapeOf(arg: TypeVaLTabPtr);
{ monadic rho operator }

begin
--;;e;;(NewVa L Tabl ink);

20

OLdVaLTablink".NElxtVaLTablink := NewVaLTablink;
NewVaLTablink".NElxtVaLTablink := nil;
NewVaLTabLink".IntermedResult := true;
NewVal TabLink" .ForwardOrder := true;
NewVaLTabLink".dimensions := 1 { result is a vector };
new(NewDim); NewDim" .dimenLength := arg'" .dimensions;
NewVal TabLink'" .FirstDimen := NewDim;
NewDim".NextDimen := nil; switch:= true;
DimPtr := arg".FirstDimen;
while DimPtr <> !!2.l it?

begin { argument dimensions become resul t values
new(NewVa Lues);
NewValues".ReaLVal := DimPtr".dimenlength;
if switch
then
~gin

----swi"tch := false;
NewValTabLink"'.FirstValue := NewValues

end
else-NewValPtr".NextVaLue := NewValues;
NewVaLPtr := NewValues; DimPtr:= DimPt·r'" .NextDimen

end;
ifswitch
then
--riewValTabLink~.FirstValue := nil

{ result is a vector of length 0)
else NewValues".NextValue := nil

end{ shapeof j;

1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

procedure reduction(arg: TypeVal TabPtr);

var
counter, RowLength: integer;
SFLoat: real;

begin
-i-f-(arg" .dimensions = 0) ~ (arg'" .Fi rstValue == ~)

then
---error (24) { argument is a scalar or vector of length zero}
eLse
-rr (arg~.dimensions = 1) and (arg".FirstDimen".dimenLength

-=1) -

then error(S1) { argument is a vector of length one}
et:'S"e

begin
new(NewVa L TabLi nkJ;
OldValTabLink".NextValTabLink := NewValTabLink;
NewValTabLink".NextVaLTabLink := niL;
NewVal TabLink" .IntermedResuLt := true;
if arg".ForwardOrder then ReverseLinkList(arg);
NewVal TabLink" .ForwardOrder := false;
NewVa L TabL ink" .d imens ions := arg"'.d ;mens ions - 1;
OimPtr := arg~.FirstDimen; switch:= true;
while DimPtr".NextD;men <> nil do

begin { build dimensions ~result }
new(NewOi m);
if switch
then

beg in
----swi"tch := faLse;

NewVaLTabLink" .Fi rstDimen := NewDim
end

e Lse-NewPt r'" • Nex tDi men := NewDi m;
N"eWDim" .dimenlength := DimPtr".dimenlength;
NewPtr := NewDim; OimPtr:= OimPtr"'.NextDimen

end;
if--S;i tch
then
----r:iewVaLTabLink".FirstDimen := nil

I arg is vector,result is scalar
else NewDim~ .NextOimen := ni L;
RowLength := DimPtr" .dimenTe'ngth;
VaLPtr := arg"'.FirstValue; switch:= true;
while ValPtr <> nil do
~in { performredUction }

--sTloat := VaLPtr".ReaLVaL
{ sfloat gets last value in row};

ValPtr := VaLPtr~ .NextValue;
for counter := 2 to RowLength do
"begin - -

DyadComp(SFLoat, ValPtr'" .ReaLVal, code);
VaLPtr := VaLPtr".NextValue

end;
neW<NewVaLues); NewValues".ReallJal:= SFloat;
if switch
then

begin
-switch := faLse;

Ne\olValTabL;nk~.F;rstVaLue := NewVaLues
end

else--NewValPtr".NextValue := NewValues;
NewValPtr := NewValues

Ne :~~i ues '" • Nex tVa l ue
end;

:= n; l

end (reduction);

procedure monadic(arg: TypeValTabPtr; token: TokenPtr);
{ operations wi th codes between 1 and 31 }

begin
-i-f-token" .noun ReductOper then reduction(arg)

else
if code> 20

then
---case code of

--zT: Inde-;Generator(arg);
22: ShapeOf(arg);
23: raveL (arg)

end { case }
eLse-
"begin

--;;e;;(NewVa l TabL ink);
OLdVaLTablink".NextVaLTablink := NewVaLTablink;
NewValTabLink".NextValTabLink := nil;
NewValTabLink".IntermedResult := trUe;
NewVa l TabL; nk" • ForwardOrder := arg" .ForwardOrder;
NewValTabLink"'.dimensions := arg".dimensions;
switch := true; DimPtr:= arg".FirstDimen;
while DimPtr <> nil do
begin [dupl icate dimensions of arg into resul t

--;;e;;(NewDim) ;
NtwD;m".dimenLength := DimPtr".dimenLength;
if switch
then

begin
switch := false;
NeW'VaLTabLink".FirstDimen := NewDim

end

Software Tools

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092

else NewPtr" .NextDimen := NewDim;
NewPtr := NewDim: DimPtr:= DimPtr" .NextOimen

end'
ifswi tch
tiien
~wVaLTabLink".FirstDimen := nil { result l5 a scalar}
else NewDim".NextOimen := nil;
switch := true; ValPtr := arg".FirstVaLue;
while ValPtr <> nil do
~in --

----;;-ewCNewVa lues);
if switch = true
tiien

begin
sW1tch := faLse;
NewVal TabLink" .FirstValue := NewValues

end
el-s-e-NewValPtr".NextValue := NewValues:
NewValPtr := NewValues;
case code of --;-: -

2:

3:

4:

5:

if ItsBoolean(ValPtr" "RealVal)
- { logical negation }
then
~wValues""RealVal := 1"0 - ValPtr""RealVal
~ error(19) { value not boolean };

NewValues""RealVal := ValPtr" "RealVal
no-op };

NewValues""RealVal := 0"0 - ValPtr""RealVal
{ negation };

if ValPtr""RealVal > 0.0 { signum
tii"en NewValues" .RealVaL := 1.0
erse
--:rr ValPtr" .RealVal < 0.0

then NewValues".RealVal := - 1.0;

if ValPtr" .RealVal = 0.0 { reciprocal
then error(54) { attempted inverse of zero
else
~wValues".ReaLVal := 1.0 / ValPtr" .RealVal:

6: NewValues" .RealVal := exp(ValPtr" .RealVal)
end { case };
ValPtr := ValPtr".NextValue

end;
it"switch then NewValTabLink" .FirstValue := nil
el"se NewVaLues=-:-Ne)(tVaLue := niL

enr-
end {monadic };

procedure catenate(LeftArg, Ri ghtArg: TypeVa l TabPt r);
{ dyadic comma operator - joins 2 arguments }

var
ResuLtLength: integer;

begin { catenate}
1T(RightArg".dimensions> 1) or (LeftArg".dimensions > 1)

"tilen error(53) { argument(s} with rank greater than 1
eLSe
"tJegin

----;;-ew(NewVa L TabL ink);
OldValTabLink".NextValTabLink := NewValTabLink;
NewVal TabLink" .NextVal TabLink := nil;
NewVal TabLink" .IntermedResult := trUe;
if not LeftArg" .ForwardOrder
thenR"everseL i nkL i st (LeftArg);
iT"not RightArg" .ForwardOrder
tiienR"everseL i nkL i st (Ri ghtArg);
NewVal TabLink" .ForwardOrder := true;
NewVal TabLink" .dimensions := 1 { result is a vector };
new(NewDim); NewValTabLink".FirstDimen:= NewDimi
NewDim" .Ne)(tDimen := nil; ResultLength:= 0;
if LeftArg" .dimensions = 0
tiien
--"ResultLength := ResultLength + 1 { left arg is a scalar
else
--"ResultLength := ResultLength + LeftArg".FirstDimen".

dimenlength;
if RightArg" .dimensions = 0
then
--"ResultLength := ResultLength + 1 { right arg is a scalar
else
--"Resul tLength := Resul tLength + R;ghtArg". Fi rstDimen".

dimenlength;
NewDim" .dimenlength := ResultLength; switch:= true;
if Resul tLength = 0
then
~wValTabLink".FirstVaLue := nil

{ resul t is vector of lengthO
else
~gin { transfer values to resul t }

--c.!ftValptr := LeftArg".FirstValue;
while LeftValPtr <> nil do
~in { transfer left arg values (if any)

--ne;(NewVa lues);
if switch
then

Software Tools

2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194

begin
switch := false;
NewVa l TabLi nk'". Fi rstVa lue := NewVa lues

end
elSeNewValPtr".Ne)(tValue := NewValues;
NewValues".RealVal := LeftValPtr".RealVal;
NewVa lPt r := NewVa lues;
LeftVa lPt r := LeftVa lPt r" • NextVa lue

end;
RigiitvalPtr := RightArg".FirstValue;
while RightValPtr <> nil do

begin { transfer right ;rg values (if any)
new(NewVa Lues);
if swi tc h
then
--segin

---swTtch := false;
NewVal TabLink" .Fi rstValue := NewValues

end
elSeNewVaLPtr".Ne)(tValue := NewValues;
NewValues".RealVal := RightValptr".RealVal;
NewValPtr := NewVaLues;
RightValPtr := RightValPtr".NextValue

end;
NewValues Ne)(tValue := nil

end { transfer of values }
end

end {catenate };

procedure IndexOf(LeftArg, RightArg: TypeValTabPtr);
dyad ic iota operator }

var
~aplnde)(, icount, TestLength, OneMore: integer;

begin { index of }
if LeftArg" .dimensions <> 1
ITen error(29} { left argument is not a vector erse

begin
new(NewVa l TabL ink);
OldValTabLink".NextValTabLink := NewValTabLink;
NewValTabLink".NextValTabLink := nil;
NewVaLTabLink'".IntermedResult := "t"rUe;
if not LeftArg". ForwardOrder
"'t"'heri""ReverseL i nkL i st (Left Arg);
NewVa l TabL ink" • Forwa rdOrder := R i ghtArg" • Fo rwa rdOrder;
NewVa l TabLi nk" .d imens ; ons := Ri ghtArg" .d imens ions;
if RightArg" .dimensions = 0
ITen
~wValTabLink".FirstDimen := nil

{ right argument is a sca!"a;:-}
else
~gin { build dimensions of resul t

----swTtch := true; DimPtr:= RightArg".FirstDimen;
whi le Di mPt r <> nil do

begin --
new(NewDi m);
if switch
then

begin
switch := false;
NewVaLTabLink".FirstDimen := NewDim

end
eL~NewPtr" .Ne)(tDimen := NewDim;
NewDi m" .d imen length := Di mPt r" .d imen length;
NewPtr := NewDim; DimPtr:= DimPtr" .Ne)(tDimen

end-
NewDi;" .Ne)(tDimen := ~

end;
swT"t'Ch := true; RightValPtr:= RightArg".FirstValue;
while RightValPtr <> ~ ~

begin
new(NewVa lues);
if switch
tiien

begin
switch := false;
NewValTabLink".FirstValue := NewValues

end
else-NewValPtr" .Ne)(tValue := NewValues;
icount := 1; LeftValPtr:= LeftArg".FirstValue;
TestLeng th : = LeftArg". Fi rstDi men'" .d imenlength

{ length of left arg };
OneMore := TestLength + 1

{ length of left arg plus one};
Maplnde)(:= OneMore;
while (icount <= TestLength) and (Maplndex = OneMore) ~

begin
try to match value in right arg with one in left arg

if LeftValPtr".RealVal = RightValptr".RealVal
then Maplnde)(:= icount { value match};
icount := icount + 1;
LeftVa lPt r := LeftVa lPt r" • NextVa lue

end'
NewValues'" .RealVal := Maplnde)(;
NewVaLPtr := NewValues;
RightValPtr := RightValPtr".NextValue

end
if no match. index becomes one more than length of left arg }

21

2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296

NewVaLues".NextVaLue := nil
end

end {indexof };

procedure reshape(leftArg, Ri ghtArg: TypeVa l TabPt r);

dyadic rho operator - change dimensions of

22

var
ResultLength, elements: integer;

DimPtr: "Dimenlnfo;
NewPtr: "vaLues;

begin { reshape
-i-f-LeftArg" .dimensions > 1

then error(S6) { left argument not a vector or a seal ar
else
----seg; n

---rieW(NewVa L TabL i ok);
OLdVal TabLink" .NextVal TabLink := NewVaLTabLink;
NewVaLTabLink" .NextVaLTabLink :=~;
NewVaLTabLink".IntermedResuLt := true;
if not LeftArg" .ForwardOrder
"tFierlReverseL i nkLi st (Left Arg);
ITnot RightArg'" .ForwardOrder
thenRev,erseL; nkL is t (R i ght Arg);
~al TabLink" .ForwardOrder := true;
if LeftArg" .FirstOimen = niL
then NewVaLTabLink" .dimenSTOns := 1
erse
~wValTabLink~.d;mens;ons := LeftArg~.F;rstDimen~.

dimenlength;
ResultLength := 1; LeftVaLPtr:= LeftArg~.FirstVaLue;
switch := true;
whiLe LeftVaLPtr <> nil do
--r-left arg values---areaimensions of resul t }

begin { build resul t dimensions}
~uLtLength := ResuLtLength * trunc(LeftValPtr~.

ReaLVal);
newCNewDi m);
NewDim~ .dimenLength := truncCLeftValPtr~ .RealVal);
LeftVaLPtr := LeftValPtr~ .NextValue;
if SOlI; tch
then
begin

-----switch := false;
NeOilVaLTabLink FirstDimen := NeOilDim

end
else---DimPtr'" .NextDimen .- NeOilDim;
DimPtr := NekolD;m

end;
NewDim NextDimen := niL;
RightValPtr := RightA;g:-.FirstValue; elements:= O·
switch := true;
while eLements < ResultLength do
be'9in { duplicate right arg values into result values}

---eLements := elements + 1; new(NeOilValues);
if RightValPtr ; nil
- { extend right---argument if necessary}
then RightValPtr := RightArg" .FirstValue;
NewValues RealVal := RightVaLPtr RealVal;
if skolitch
then

beg in
switch := faLse;
NewVaLTabLink FirstValue := NeOilValues

end
eLse-NewPtr NextVaLue := NeOilValues;
NewPtr := NewVaLues;
RightValPtr := RightVaLPtr" .NextValue

end;
NewVaLues'" .NextVaLue :=~;

end
end {reshape };

procedure InnerProductCLeftArg, RightArg: TypeVaLTabPtr);

var
Inpro1Code, Inpro2Code, LeftSkip, RightSkip: integer;

icount, jcount, kcount, lcount, mcount: integer;
LastLeftDim, FirstRightDim, CommonLength: integer;
lptr: "values;
hoLd: reaL;
SFLoat, value: real;

begin { inner product is matrix multiplication
-r>iiTiPtr := LeftArg~ .Fi rstD;men;

if LeftArg FirstDimen <> nil then
-whi Le DimPtr'" .NextDimen ~nTfCfo

o:fiTiPtr := DimPtr'" .NextDim~-
{ get last dimen of left arg(if any) };

if (DimPtr <> nil) and CRightArg".FirstDimen <> nil)
then - -
--:rr DimPtr'" .dimenLength <> RightArgA .Fi rstDimen'" .dimenlength

then
---.-r ro r (52)

{ last dim of left arg not = to first dim of right arg }
eL se
begin

----rriPr01Code := code div 100 { separate operators};
Inpr02Code := code =-Too * Inpro1 Code;

2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398

new(NewVal TabLi nk);
OldValTablink".NextValTablink :; Ne.ValTablink;
NewVaLTabLink'" .NextVaLTabLink :=~;
NewVaLTabLink".lntermedResult := true;
if not LeftArg" .ForwardOrder
'FFierl'"ReverseL i nkL i st (LeftArg);
iT"not RightArg". ForwardOrder
therl'"ReverseL i nkL i st (RightArg);
NewVaL TabLi nk'". ForwardOrder := true;
NewVaL TabLink" .dimensions := LeftArg" .dimensions +

RightArg'" .dimensions - 2;
if NewVaLTabLink" .dimensions < 0
then NewVal TabLink" .dimensions := 0;
SWitch := true; LastLeftDim:= 0;

if LeftArg" .F; rstDimen <> ni t
then -

begin { copy all but last of left arg dims into result
LeftSkip := 1; DimPtr:= LeftArgA.FirstDimen;
koIhiLe DimPtrA.NextDimen <> nil do

begin { copy left arg dimensiZ;:;-s }
new(NewDim);
NewD;m dimenlength :::: DimPtr" .dimenLength;
LeftSkip := LeftSkip * DimPtr'" .dimenlength;
if switch
then

beg i n

switch := faLse;
NewValTabLinkA.FirstDimen := NewDim

end
eLse-NewPtr~ .NextDimen := NewDim;
NewPtr := NewDim; DimPtr:= DimPtr".NextDimen

end;
LastLeftDim := DimPtr dimenLength

end;
i f~ghtArgA.F; rstDimen <> ni l
then
be"gin

--{-copy all but first of right arg dims into! result}
RightSkip :; 1;
DimPtr := RightArg".FirstDimen".NextDimen;
whi le DimPtr <> nil do
be'9in { copy rightarg dimensions}

-ne;(NewDim) ;
NekolDim~ .dimenlength := DimPtr A .dimenLength;
RightSkip :::: RightSkip * DimPtr'" .dimenLength;
if switch
then

beg; n
sOilitch := faLse;
NewValTabLink~.FirstDimen := NewDim

end
eLse-NekolPtr~ .NextDimen := NeOilDim;
NewPtr := NewDim; DimPtr:= D;mPtr~.NextDimen

end
end'

;(S-;~tch then NewVaLTabLinkA.FirstDimen := nil
else NewDim"'-:-N'eXtDimen := ni L;
TfLeftArg" .F; rstVaLue = nT then LeftSkip := 0;
if RightArg~-.F;rstValue =Ii'"iL then RightSkip := 0;
SWitch := true; -
if RightArg FirstDimen <> nil
then FirstRightDim :::: Right""Arg".FirstDimenA.dimenLength
eTS'e Fi rstRightDim := 0;
iTFi rstRightDim > LastLeftDim
then CommonLength := FirstRightDim
eLSe CommonLength := LastLeftDim;
lC'Oli"nt := 0; LeftValPtr:= LeftArg".FirstVaLue;
while icount < LeftSkip do

begin { loop for each row in left arg }
Lptr := LeftVaLptr { hold start of row position};
jcount := 0;
koIhile jcount < RightSk;p do
----;;gin { loop for each cOlumn in right arg

-----ce:ftValPtr := lptr;
RightValPtr := RightArgA.FirstVaLue;
Lcount := 0;
koIhiLe Lcount < jcount do

begin { skip to starting value in right arg
Ri ghtVa lPt r := Ri ghtVa LPt r" .NextVa Lue;
if RightVaLPtr = nil then
-Ri ghtVa LPt r := RightA"r"g~. Fi rstVa Lue

{ extend arg };
lcount := lcount + 1

end"
kcoun~ := 0;
while hount < CommonLength do

begin { loop for each element in row/column
SFLoat := RightVaLPtr~ .ReaLVaL;
DyadComp C S FL oa t, Le ft Va L Pt r'" • Rea L Va L,

Inpr02Code) ;
vaLue := SHoat;
if kcount = 0
then
set identity value for first time through

case Inpro1 Code of
-SZ, 53, 78: SFLOat :; 0.0;

54, 55, 56, 77: SHoat :; 1.0;
71, 72, 73, 74, 75, 76: { null case}

end { case }
eLse-SFloat := hold;
DyadCompCSFloat, vaLue, Inpro1Code);
hold := S Float { save summer result};

Software Tools

2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
243.5
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498

LeftVa lPt r := Left Va lpt r" 0 NextVa lue;
if LeftValptr = nil then
-LeftValPtr := leftAr"g""oFirstValue

{ extend arg);
mcount := 0:
while mcount < RightSkip do

begin { skip to next vaI;;"e' in right arg)
mcount := mcount .. 1;
RightValPtr := RightValptr"oNextValue;
if RightValPtr = nil
then RightValPtr := RightArg" oFi rstValue;
en~

kcount := kcount + 1
end:

new(NewValues); NewValues"oRealVal:= SFloat;
if switch
then

begin
switch := false:
NewValTabLink"oFirstValue := NewValues

end
else NewValptr" oNextValue := NewValues;

NewValPtr :: NewVaLues; j count := j count + 1 i

iCQUf·t := icount + 1
end;

if Switch then NewVaLTabLink".FirstValue := nil
else NewValu~NextVaLue := nil

en-d-
end """"i'nnerproduct };

procedure OuterProduce(LeftArg, RightArg: TypeVal TabPtr)i

var
OutProCode: integer;

SFloat: reaL;

begin
----outProCode := code d;v 10; newCNewVaLTabLink):

OldVal TabLink" o NextValTabLi nk := NewVal TabLink;
NewValTabLink NextValTabLink :; nil;
NewVaLTabLink".IntermedResuLt := tr'Ue;
if not LeftArg".ForwardOrder
tii'enReverseL; nkL; st (LeftArg);
TIri'ot RightArg" oForwardGrder
tFienR"everseL; nkL i st (Ri ght Arg);
NewVal TabLink".ForwardOrder :: true;
NewVal TabLink".dimensions := LeftArg'" .dimensions + RightArg".

dimensions;
switch := true; OimPtr:= LeftArg".FirstDimen;
whi le DimPtr <> n; l do

begin { copy left a-F"g dimensions to resul t }
new(NewDim): NewDim".dimenLength:= DimPtr".dimenlength:
if switch
then
~gin

--switch := false; NewVal TabLink" .Fi rstOimen := NewDim
end

else-NewPtr- .NextDimen := NewD;m:
NewPtr := NewOim: DimPtr:= DimPtr".NextDimen

end-
DimPt; := RightArg" .Fi rstO;men:
while DimPtr <> nil do

begin { copy dimenSions of right arg to resul t }
new(NewOim); NewD;m".dimenLength:= DimPtr".dimenlength;
if switch
then
~gin

----swrtch := false; NewVaLTabLink" .Fi rstDimen := NewDim
end

el"S"e"NewPtr" .NextOimen := NewDim;
NewPtr := NewDim; DimPtr:= DimPtr" .NextDimen

end;
if Switch then NewVaLTabLink".FirstDimen := nil
erse NewOim":Ne'XtO;men := ni l;
S"WITch := true; LeftVal~:= LeftArg" .Fi rstValue;
while LeftValptr <> nil do
~in --

Ri'ghtValptr := RightArg"oFirstValue;
while RightValptr <> nil do
~in --

--s-FToat := RightValPtr" .RealVal;
DyadComp(SFloat, LeftValPtr"oRealVal, OutProCode);
newCNewValues);
if switch
then
--segin

--switch := false;
NewValTabLink".FirstVaLue := NewVaLues

end
elSeNewValPtr" .NextValue := NewValues;
NewValues".RealVal := SFloat; NewVaLPtr:;:: NewVaLues;
RightValptr := RightValptr"oNextValue

end o
LeftV;lPtr := LeftValptr"oNextValue

end;
if Switch then NewValTabLink-.FirstValue :: nil
erse NewValu~NextValue :: nil

end"{ outerproduct };

Software Tools

2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2;89
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600

procedure dyadic(LeftArg, RightArg: TypeValTabPtr);
{ operators wi th codes of 52 and higher }

var
compatible: Boolean;

arg: TypeVa l TabPt r;
SFloat: real;

begin
if code> 1000 then InnerProduct(LeftArg, RightArg)
erse
--:rr code> 100 ~ OuterProduce(LeftArg, RightArg)

erse
--:rr code > 80

then
--case code of

---s'7: IndexOf (leftArg, Ri ghtArg);
88: reshape(LeftArg, Ri ghtArg);
89: catenate(LeftArg, RightArg)

end { ease)
else

begin { simple dyadies)
compatible := true;
if (LeftArg" odimensions >= 1) and (RightArg" 0

- dimensions >= 1)

then
---;-:r LeftArg- .dimensions <> RightArg'" .dimensions

then
-COmpatible := false

{ different ranks/neither scalar
eLse

begin { ranks match - check lengths}
LeftOimPtr :;:: LeftArg".FirstOimen;
RigthDimPtr :;:: RightArg" .Fi rstDimen;
whiLe LeftOimPtr <> nil do

begin --
if LeftDimPt r" .d ;men Length <> Ri gthOimPt r" •
- dimenlength
then
-COmpatible := false { different length(s));
LeftOimPtr :: LeftDimPtr".NextO;men;
Ri gthOimPt r :: Ri gthOimPt r" .NextDi men

end
end;

if compatibLe
{ arguments sui tible for dyadic operation}

then
~gin { build dimensions of result}

if RightArg" .dimensions > LeftArg" .dimensions
then arg := RightArg
erse
---arg := LeftArg { resul t has shape of large!! arg };
newCNewVa l TabL ink);
OldValTabLink"oNextValTabLink := NewValTablink;
NewVaLTabLink".NextValTabLink :;::!!..i.l;
NewVaLTabLink" .IntermedResuLt :;:: true;
if LeftArg" .ForwardOrder <> RightArg" .ForwardOrder
then ReverseL; nkL i st (LeftArg);
NewVaLTabLink" .ForwardOrder :;:: arg- .ForwardOrder;
NewVaLTabLink" .dimens;ons :;:: arg" .dimensions;
switch := true; DimPtr:;:: arg".FirstDimen;
while DimPtr <> nil do
~i n { copy d imenSTons to resul t }
~CNewDim);

NewDim- .dimenlength :;:: OimPtr" .dimenlength;
if switch
then

begin
switch :;:: faLse;
NewVal TabLink" .Fi rstOimen :;:: NewDim

end
eLse-NewPtr".NextDimen := NewDim;
NewPt r :;:: NewDim;
OimPt r :;:: Oi mPt r" .NextDimen

end;
if switch
then
~wValTabLink".FirstDimen :: nil

{ result is a scal }
else NewDim" .NextDimen :: n; L;
S"W1"tch := true; -
RightVaLPtr :;:: RightArg".FirstVaLue;
LeftValPtr := LeftArg"oFirstValue;
ValPtr :: arg-.FirstVaLue;
while VaLPtr <> nil do

begin { performoperation }
new(NewVa Lues);
SFloat := RightValPtr"oRealVal;
DyadComp(SFloat, LeftValptr" oRealVal, code);
NewValues".ReaLVaL := SFLoat;
; f swi tc h
then

begin
switch :;:: faLse;
NewVa L TabLi nk". Fi rstVa Lue :;:: NewVa lues

end
eLse NewVaLPtr".NextVaLue :;:: NewValues;
NewVaLPtr :: NewValues;
ValPtr :;:: ValPtr".NextVaLue;
LeftValptr := LeftValPtr" oNextValue;

23

2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
26.98
2699
2700

RightValPtr := RightValPtr".NextValue;
if LeftVa lPt r = nil then
-Le ft Va lPt r := LeftArQ"". Fi rstVa lue

{ extend arg };
if RightValPtr = nil then
-RightValPtr := RightArg".FirstValue

{ ex tend

if e:~~ tch
tilen
---""N'ewVal TabLink" .Fi rstValue := nil

{ vector of len 0 }
else NewValues".NextVaLue :=.!!il

en-d-
eLse-
-error(55)

{ arguments imcompatible for dyadic operation}
end

end dyadic};

procedure FunCaLL(~ ValidFunk: Boolean);

var
Val idPm: Boolean;

begin { funcall)
ValidFunk := false;
if FunctCall
tilen
~gin

"ifTokenTabPtr" .noun <> StatEnd
then .

begin
SubrTabpt r". TokenCa II ingSubr :;: TokenTabpt r;
primary(ValidPm); if not ValidPm then errod17>;

'leftarg of dyadic fun~all not a primary' }
end;

CallSubr; ValidFunk:= true;
end;

end { funcall);

begin expression
primary(Val idPri);
if not Va l idPr i
tilen

begin
if TokenTabPt r" .noun Stat End
"t'hen begin ValidExp := true; assign1:= true end
erse Val,dExp := false

encr
else

begin
DoneExp := false;
whi le not DoneExp do

begin
FunCa II (Va l idFunc);
if Val idFunc
tlen begin expression(VaLidExp); OoneExp:= true "end
e1Se--
--"'beg in

---assignment (Va l idAssn);
if ValidAssn and <TokenTabPtr· .noun = StatEnd)
then begin DoneExp := true; ValidExp:= true; end;
if not ValidAssn
then
--rr mop

end;
end;

end;-

then
~gin

----monad i c (OperTabPt r" . OperPt r, ho ld);
OperTabPtr" .OperPtr := NewVal TabLink

end
else----rr not dop

then begin ValidExp := true; DoneExp:= true end
else

begin
primary(Va l idPr i);
if not ValidPri
tilen
----.-r ro r (13)

{ dyad oper not preceded by a pr i
else
-"be"gin

end;

----ayad i c (OperTabPt r" • OperPt r, OperTabPt r" •
LastOper" .OperPt r);

AuxOperTabPt r := OperTabPt r;
OperTabPtr := OperTabPtr" .LastOper;
Pt rLastOper := OperTabPt r;
di spose (Aux OperTabPt r);
OperTabPtr" .OperPtr := NewVal TabLink;

end;

end (expression);

24

2701 begin { parser }
2702 assign:= false; assign1:= false; DonePa rse : = fa l se;
2703 repeat
2704 expression(ValidExp) { checks for valid expression);
2705 if not ValidExp then error(10) 'invalid expression'
2706 else --
2707 --rr SpecSymbol(XRightArrow)
2708 tilen
2709 --rr not «OperTabPtr".OperPtr".FirstValue = nil) and
2710 - OperTabPtr".OperPtr" .dimensions > 0»
2711 then { branch)
2712 tresul t of expression is at opertabptr
2713 if OperTabPtr".OperPtr".FirstValue".RealVal - 1.0 • trunc
2714 - <OperTabPtr" .OperPt r" • Fi rstVa lue" .RealVa II <> 0.0
2715 then error(12) { stmt.num.to branch to not an integer
2716 e1Se
2717 --rr SubrTabPt r = nil
2718 tilen -
2719 begin { function mode
2720 TokenTabPtr := hold; DonePa rse : = true
2721 end
2722 else
2723 --rr trundOperTabPt r" .OperPt r". Fi rstVa lue" • RealVa II in
2724 - [1 •• (SubrTabPtr" .CalledSubr ".~mOfStatements)r
2725 then
2726 --cegin
2727 VFuncHold := SubrTabPtr".CalledSubr".FirstStatement;
2728 for cnt := 1 to trundOperTabPtr" .OperPtr".
2729 -Fi rstValue":"RealVall do
2730 begin -
2731 VFuncPt r := VFuncHo ld;
2732 TokenTabPtr := VFuncPtr" .NextStmnt;
2733 VFuncHold := VFuncPtr" .NextVFunPrt
2734 ~
2735 AuxOperTabPtr := OperTabPtr;
2736 OperTabPtr := OperTabPtr" .LastOper;
2737 dispose(AuxOperTabPtr); PtrLastOper:= OperTabPtr;
2738 TokenTabPtr := VFuncPtr" .NextStmnt
2739 end
2740 elseReturnToCall ingSubr
2741 else {--;';ccessor)
2742 else(successor)
2743 begin
2744 if not assign1 then OutPutVa l;
2745 17 SU6'rTabPt r = n~
2746 then -
2747 -"be"g;({ interpretive
2748 ho d := TokenTabPtr;
2749 TokenTabPtr := TokenTabPtr" .NextTokeri;

assign1 := fa l se;

2750 DoneParse := true
2751 end
2752 e l se-{ function
2753 begin
2754 VFuncPtr := VFuncPtr" .NextVFunPrt;
2755 DoneSuccessor := false;
2756 repeat
2757 if VFuncPt r <> ni l
2758 then
2759 begin
2760 TokenTabPt r := VFuncPt r" .NextStmnt;
2761 DoneSuccessor := true
2762 end
2763 else-
2764 begin
2765 ReturnToCallingSubr;
2766 if TokenTabPtr" .noun = StatEnd
2767 then DoneSuccessor := true;
2768 en-;r;-
2769 untiLDoneSuccessor;
2770 end;
2771 end
2772 until DoneParse;
2773 release { release memory };
2774 end { parser);
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800

begin { scanner
In it; ali ze Ch a racterSet; ReadInEr rorMsgs;
InitParser { initialize tables etc. }; FillUpTables;
FunctionMode := false; Fi rstFunction := true;
OldValTabLink := nil; OldFuncTabPtr:= nil; OldVarTabPtr:=!!i!J
OldTokenPtr := niV NewTokenPtr :=!!i.!.; NewFuncTabPtr:=!!iJ.;
NewVFuncPtr := ii'iT; HoldTokenPtr:=!!i.!.i TokenError:= false;
NewValTabLink :;-r;'il; NewVarTabPtr:= nil; GetAPLstatement;
whi le (APLstatemenH1] <> character[ForwardSlash]) or (APLstatelftenH2J
---0 character[asterisk]) do { '* ends program r

begin -
SkipSpaces; TokenSwitch:= true;
while (position <= LineLength) and (not TokenError) and (not
--c:rneTooLong) do

beg i n { sc ann iilg
if APLstatement[position]
- { function del imi ter }
then { del encountered }
--:rt Funct ionMode

then

characterCdel]

begin { end of current function
if NewFuncTabPt r <> nil
"then NewFuncTabPt r" . NumOf Statements := FuncStatements;
ITF"uncstatements > a

Software Tools

2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837 .
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894

then
begin

NewFuncTabPt r" .NextFuncTabPt r :=
OLdFuncTabPtr := NewFuncTabptr;
NewVFuncPtr'" .NextVFunPrt := nil

end -

OLdFuncTabptr;

else
--sError(75) function defined wi th no statements};
Funct ionMode :=

end
false; position:= position + 1

elSeProcessFuntionHeader { start of a new function
e l5eT not a del encountered }

begin
; f TokenSwi tch
then

begin { this is start of a new statement
TokenSwitch := false;
HoldTokenPtr := OldTokenPtr { save starting position

MakeTokenLink; NewTokenPtr" .noun := StatEnd;
NewTokenPtr" .EndAdj := 0; HasLabeL:= false

end"
MakeT~kenLink; identifier(name, ItsAnldentifier);
if not ItsAnldentifier then TryToGetA~mber
else

begin { process identifier
Sk; pSpaces;
if (APLstatemenHpositionJ character[colonJ) and (
- NewTokenPt r" .NextToken" .noun = StatEnd)
then
---""begin { process statement label

----saveLabeL := name; HasLabel:= true;
position := position + 1

end
else
--segin process variable name
~not FunctionMode

t'iienNewTokenPtr" .noun := GlobVar

end

erse ---n- NamesMatch(name, NewFuncTabpt r" • Resul tName)
then NewTokenPt r" .noun := FormRes
erse ---n- (NamesMatch(name, NewFuncTabpt r" .LeftArg»

- or (NamesMatch{name, NewFuncTabPt r".
iITghtArg))

then NewTokenPt r" .noun := FormArg erse NewTokenPtr" .noun := GlobVar;
if NewTokenptr" .noun <> GLobVar
Then TestFuncPtr := NewFuncTabptr
eLSe Test FuncPt r := nil;
"fffi"ot NamelnVarTablecname, VarPointer,
- Test FuncPt r)
then

begin
AddNameToVa rTable(name);
NewTokenpt r" • VarTabpt r := NewVa rTabpt r

end
elseNewTokenptr" .VarTabptr := VarPointer

encr-

end;
Ski""PSpaces;

end;
ifNewTokenPtr <> nil
then --rr (TokenError) or (NewTokenPtr R .noun StatEnd)

tii"en Destroystatement
eLSe
---:rr Funct ionMode

Then
--""'beg in

---runcStatements := FuncStatements + 1;
if FuncStaternents > 0
then
----segin { catalog function statement

----new(NewVFuncPt r);
.!!.. FuncStaternents ;: 1

then NewFuncTabPt r" • Fi rst St at ernent : = NewVFunc Pt r
erse OLdVFuncPtr" .NextVFunPrt := NewVFuncPtri
OLdVFuncPt r := NewVFunCPt r;
if HasLabeL
then NewVFuncPt r". StatLabel := SaveLabel;
NewVFuncPt r" .NextStrnnt := NewTokenPt r

end
end

eLse
--rr APLstatement[1 J <> character[deL] then

-begin
pa r ser(Ne wTo kenPt r, NewVa l TabL ink);

100: DestroyStatement
end;

readLn; TokenError:= faLse; GetAPLstatement;
end;

end I scanner J.

Contents of APLfil(>

ABCDEFGHIJKlJ>INOPQRSTUVWXYZ 1234067a90: - o. - ll·';. > +- •• * I,'. -(. :" >'VI i.oi

?tL'f t t ~~ V,~

'c=>nuITI\
INVALID CHARACTER FOLLOWS NEGATIVE 5;·;.\'

Software Tools

DIGIT MUST FOLLOW A DE:C IMAL KiINT
EXTRANEOUS CHARS, FOLLOW FUNC71O,~ Hi. A;'.' .'
INV ALID CHARACTE'R F:NCOUNTf.Itl:I,
FUNCTION ALREADY DF:FINOD
ILLEGAL NAME TO frIGHT OF o·X/'[.lc'l)' f.!.,;~::r

INVALID FUNCTION/AhGUMfo.'NT NAME
RESULT OF ASSIGNMENT NOT VALID VAAlA";.'·
INVALID FUNCTION RIGHT AhGUMo'NT NAP..'
INV ALID EXPRF:SSION
SYMBOL NOT FOUND
STATEMENT NO, TO BRANCH TO NOT INTI,'GI.h
DYADIC OPERATOR NOT PRI,CE:DW BY PFtI.'fAhY
INVALID EXPRE:SSION WITHIN PARI,NTHI,S;;S
MISMATCHED PARF:NTHF:SI:S
NOT USED
LEFT ARG OF DYADIC FUNCT, NOT A fA IMA.IY
NOT USED
VALUE NOT BOOLEAN
ATTEMPfISD DIVISION BY ZERO
ARGUMENT NOT A SCALAR
ARGUMENT IS NEGATIVE'
ARGUMENT IS NOT AN INTEGo'h'
ARGUMENT IS A SCALAJi Oli EMPfY VECTOh
NOT USED
INVALID OUTU PRODUCT EXPhES'S'ION
INV ALID INNER PJi'ODUCT EXPRESSION
NOT USED
LEFT ARGUMENT IS NOT A V tCTOn
NOT USE'D
NOT USED
ERROR IN FUNCTION ARGUMENT
ERROR IN FUNCTION AJiGUMENT
INVALID INDEX EXPRESSION
NON-SCALAR INDICES
ASSIGNED EXPRESSION NOT A SCALAR
NON-INTEGER INDICES
INDEX OUT OF RANGE
INVALID INDEX EXPRESSION
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NUMBER AND BASE OF DIFFERENT SIGN
ARGUMENT IS A VECTOR OF LENGTH ONE
ARGS. NOT COMPATIBLE FOR INNER PRODUCT
ARGUMENT-S] WITH RANK GREATER THAN ONE
ATTEMPfED INVERSE OF ZERO
ARGS, INCOMPATIBLE FOR DYADIC OPERATION
LEFT ARGUMENT NOT A VECTOR
NOT USED
NOT USED
NOT USED
GREATER THAN THREE DIMENSIONS

NIL
RE"ENTER LAST LINE
INPUT
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
IDENTIFIER TOO LONG
INPUT LINE TOO LONG
INVALID REDUCTION OPERATOR
DYADIC REDUCTION REFERENCE
MONADIC REFERENCE TO DYADIC OPERATOR
FUNCTION DEFINED WITH NO STATEMENTS
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
VARIABLE NOT ASSIGNED A VALUE

PUG

25

"Don't Fail Me Now"
By Srully Blotnick

The government imposed a 55-mph speed limit on
cars, not computers. Why, then, are computer owners
going so slowly?

Are we in the early stages of a technology bust?
Strange as this may sound at a time when the nation
seems to have gone computer crazy, a good many sci
entists are starting to worry about just that.

Their concern stems from the massive switch in the
computer business from a customer base consisting of
a handful of large institutional buyers to millions of
smaller ones. The computer finally has become a piece
of mass-market electronics, much like video recorders.
Why is that a problem? A basic rule of business is that
risk accompanies opportunity. In this instance, the risk
affects not only the companies in the field, but the entire
country, thanks to the expanding economic importance
of this industry. Its health will soon playa decisive role
in determining the U. S.' international competitive
position.

The risk in dealing with the mass market is always
a simple one: The mob is fickle. What intrigues it today
may leave it indifferent tomorrow. This time the fickle
ness could produce a national disaster. The U.S. has
unwittingly invested a major portion of its capital- and
even more important, its hopes - in this area. That's
why some thoughtful workers in the field are beginning
to pray quietly: "Don't fail me now."

How, specifically, do they see a failure occurring?
The consensus view is as follows: "A Ferrari is excit
ing, but how exciting would it continue to be if the only
place you could use it were your driveway? Well, that's
exactly what is happening with way too many of the
computers now being bought. Car or computer, people
are eventually going to get tired of just looking at the
thing and bragging about it to their friends. Then, the
fad will pass. Computer manufacturing plants will close.
Only a minuscule proportion of computer buyers are
making good use of the machine's capabilities. They
don't know enough about programming to make the
machine really perform."

"Well, suppose everyone learned BASIC?" I
asked.

The overwhelming majority had a better idea:
"BASIC is a very easy language to learn, but it would
be enormously better, a dream come true, if everyone
learned Pascal, which is far superior and just as easy to
master."

Dr. Srully Blotnick is a research psychologist and au
thor of Getting Rich Your Own Way and Winning: The
Psychology of Successful Investing.

Reprinted by permission of Forbes magazine,
February 28, 1983.

26

Since last summer I, therefore, have been collect
ing the opinions of everyone, from teachers and hob
byists to investors and small business owners, who know
Pascal to see which books they consider best. A tally
of the nearly 1,600 replies shows the following:

For people who know nothing at all about com
puters or computer programming, the best place to be
gin is R. Pattis' Karel the Robot: A Gentle Introduction
to the Art of Programming (John Wiley, $8.95). You
don't need a computer to read this book (or the others
about to be mentioned). By learning how to move a ro
bot through the streets of a small town, you come to
understand how programming instructs a computer to
do what you want it to.

Pattis' book is about programming but doesn't ac
tually teach the language. The elementary text that re
ceived the top rating in out survey was Arthur Keller's
A First Course in Computer Programming with Pascal
(McGraw-Hill, $14.95). The book received high praise
("Very clear and easy to read") from everyone from 17
to 70. It is suitable even as a high school text.

After Keller's book, the next step should be A
Primer on Pascal by Conway, Gries and Zimmerman
(Little, Brown, $20). The consensus view: "This book
will help you deepen your understanding of the lan
guage once you've learned the elements." For those
who already know BASIC, a good way to learn Pascal
fast is Quick Pascal by D. Matuszek (John Wiley,
$11.95).

One work that was highly rated by advanced stu
dents was the second edition of Pascal - User's Man
ual and Report (Springer-Verlag, $10.50) by K. Jensen
and N. Wirth. That is hardly surprising since one of the
coauthors, Nikolaus Wirth, invented the language.

To see what the language can really do, serious stu
dents will want to learn about data structures - that is
such things as lists, stacks, queues, trees, sets, records:
recursion, sorting and searching. The three top-rated
texts, all very well written, are: Data Structures and
Algorithms by A. Aho, et al. (Addis ion-Wesley, $28.95);
Advanced Programming and Problem Solving with
Pascal by G. Schneider and S. Bruell (John Wiley,
$26.95); and Data Structures Using Pascal by A. Te
nenbaum and M. Augenstein (Prentis-Hall, $25.95). As
the authors of the first work comment, "The only pre
requisite we assume is familiarity with some high-level
programming language such as Pascal."

Finally, people with a background in probability
theory rated the second edition of R. Cooper's Intro
duction to Queueing Theory (North-Holland Publishing
Co., $27) the best - clearest and most user-friendly
book on the subject.

Summing up: Buying a computer and not learning
to program it properly not only wastes money, it also
stands agood chance of eventually harming the nation's
economy. PUG

Articles

Computer Generated Population Pyramids
Using Pascal

Gerald R. Pitzl
Geography Department

Macalester College
St. Paul, Minnesota

Background

During the past twenty years the development of
computer applications in geography has been exten
sive. Hundreds of programs have been written and many
are available to users through various dispensing insti
tutions, particularly the Geography Program Exchange
located at Michigan State University. 1 Virtually all of
the programs, however, are writen in FORTRAN and
are suitable for easy installation primarily on large
mainframe computers.2

A similar situation exists in cartographic computer
program development. Although the number and va
riety of programs written is extensive, the FORTRAN
language is used almost exclusively, and the software
is designed for use on large systems. A recent textbook
in computer-assisted cartography provides only pass
ing mention of microcomputer graphics in the field of
cartography. 3

As a consequence of this situation, computer ap
plications in geography and cartography are limited pri
marily to the larger colleges and universities that have
mainframes and the faculty within the departments to
teach the sUbjects. As a geographer in a small liberal
arts college teaching not only introductory cartography
but a course in micro-based computer mapping, I feel
somewhat like a pioneer trying to make a clearing in the
wood without the proper tools. The situation is further
exacerbated because liberal arts colleges have not been
as highly revered by the computer industry as have the
high technology learning centers and are consequently
not receiving anywhere near the number of equipment
grants or the same degree of personnel support.

Yet, more than one writer has commented on the
need for a closer association between the computer in
dustry and the liberal arts college. In a recent editorial
in Datamation, John L. Kirkely stated the following:

We urge our industry to work with the lib
eral arts colleges to develop courses of study
that combine the humanities and the sciences.
A merging of these artificially separated dis
ciplines could be a powerful tonic for both our
colleges and our corporations. 4

I believe that, in time, changes will be made which
will result in the liberal arts colleges receiving their fair
share of industry support. In the meantime, however,
individuals in those colleges will continue to make con
tributions to the furtherance of computer applications
in what would be considered today to be non-traditional
disciplines. The set of programs included in this paper
are suggestive of the kinds ofthings faculty can produce

Articles

and which 1) are effective vehicles for developing the
understanding of key concepts in a discipline (demog
raphy in this case); 2) are produced with a cost factor
reflecting only the programmer's time; 3) can be easily
implemented on any system, micro to mainframe; and
4) are written in the programming language of the day,
Pascal.

The Population Pyramid (Age Structure) Diagram

It is abundantly clear that world population con
tinues to grow at a less than acceptable rate, and that
some regions, particularly those with countries exhib
iting low levels of economic development, have excep
tionally high rates of growth. 5 The population pyramid
is a useful diagram to study the composition of the pop
ulation of any country or region.

In the diagram, age groupings of five years each
(0-4, 5-9, 10-14, ... , up to 75+) are presented for both
male and female segments of the population. The scale
along the horizontal axis reports the percentage of the
total population in each of the age groups. Generally a
pyramid shape wide at the bottom (young age groups)
is representative of a fast growing population while an
age structure more evenly represented along the year's
axis identifies a population that is stabilizing and that
does not have a high rate of increase. The industrialized
and urbanized countries in the developed world would
fall into the later category; the less developed in the
former.

The Programs

Three programs have been deVeloped for student
use in an introductory human geography course. 6 It is
not necessary that the students know the Pascal lan
guage in order to run the programs. Introduction is given
in class on login/logoff procedures and how to access
the programs. The student need only find suitable in
formation in the appropriate statistical source for each
of the age groups for a particular region, round these
values to a whole number, and enter the numbers in the
sequence described in the program prompts.

The programs developed include:
1) pyramicLfile - This program is used to create

an external file of information including the region
names, year of the data, and the percentages of male
and female in each age group. Following the input, pro
cedure echo-data publishes all the information entered
for verification. If there were no input errors, the stu
dent selects the appropriate key and the program stores
the information in an external file in the student's ac
count. The listing of program pyramicLfile follows:

27

proor.'" l"yre",ld.fl1eC In!:ll1t. outOllt) I

(e proQraftl to C'r.ate .'1'1 fxtfl!"""ll ttl," ('It
POPulit 10'1'1 pyra", Id <1.t.,)

const
se".rdtor = " •••••••••••••• -------- .. --.--.--- .. - •• ---- ... -.----- .. -

ty.e
Ii,ta =

record
('ountrYI paCked arrrw rl",,,1 ("of cr-arl
yean 'PaCl(tod drray {t,.4] Of el'ldTl
"'.le~erc~nt, fe~alererce~tl array fl.,1bl nt lrtprl~r

end,
ldfntlflfrs K file of ("!at~)I

var

28

tefllpi data,
Infol lde"t!f!pr.,
filename I packed aTrlly [1 .. 1"'1 of cr..,r:
an r I cnarl

var
11 InteQerl

healn'
~rltf'lnl
~r1te(' pnter filE' na"'el '11
readll'lCfl1enarre)I
wrltell'1'
wr i teit'll
writeC' enter !:llecp !"81r.e -- US" 1'> co 1 Ill1\f"I 5 I '),
read 1 n (tP'Y'll'. count rv);
wri tt"lnl
writeln;
wrltfC' enter tne ye8r of the ~ata: ');
readIn(temp,v~ar} I
wrlteIn,
wrlteIn(' now, ent"r ~~le enl1 fe~ale rprce~taQe5 t~r')1
""rlteln(' todC~ tlQ' QrO\l~1 tonter "'ale r'rcer'lt,.",,.s flrst",
wrlteln(" fro" tne niQhest aoe Qroup to t~. lo*est,'),
wrlteInC' you !!'ust nave 1f.> ef"ltrles f('lr teen orour,'):
wrlte-In("entf'r as inteners all on tn" sa"e Un!','"
wrlt@lnl
for 1 1= 1 to I b dO

read (temD,lTIe 1 ent r cent r I} 11
writeln(' neyt, ent@r the fe~ale r"rce~t8QeS,'"
for 1 ,. 1 to tb do
feed(te~~,'e~alerercent(l}"

fead 1" I
end (reatl.data) r

vor
II IntOQU'

heflin
writeln,
wr 1 telr (Se!'ar,Hor),
~r1teln,
.. r1te-lr'l(' tne followlnQ lntt)r.,,~tlon was entere-d.')1
.. r 1 teln;
writell'l(' ,tef!'t"l,colJr'ltrv)r
wr 1 tell'll
wr1tel!'~(" " tell't',vear),
wr i tf'l 1"11
.. rlte(' rrale I ""
for 1 := 1 to 1 f.> do

wrltP(te"'p,rral~(.1ercert{111 J)'
\ilir 1 tell'l;
wr 1 t"l~1
\l;r1tf'(' fell'81p I 'll
for I := 1 tn t b 1(1

wrlte(te"'lJ,te lt altr.ercentf111)):
wrlteln,
_rlteln,
.. r1telnCseoar~tor)'
wrlteln(' Is tnt lrt~rll'atlnn correct?'),
"'ritf'lr(' if yes, entpr a "'y", If not, etlt.r"),
... r i t4!'(' ",," I '):
readlr(al"ls"fI'r),
wr 1 tell'll
writel!"

fond 4eC~O_l1ata) ,

t--eQin
re.,;rttf'(fnfo, fllef"la"'e);
lf1fo·,country :c t@lTc,countrv,
rut(t",fo);
if'lfo·,year I. t."'~,yejllr,

put (Info);
for 1 ,&: 1 to t t- do

beain
tnfo·,rrale[lereent(ll 1= telll~,,.,al.~efCel'ltrl)'
~ut (info)
.nd,

for I I K 1 to t b do
r-~all'1

Info-,fe"'aler'lercllnt[tl I. tell'tI,telTlal.ptlreent(I)'
put (info)
ef\dl

closectnf(J)
enrt fstore_"at")

be"in
read_dllltlll
pc~o_dllta ,
if (anslttPr = 'v') (lr (anS'lier = "V") then

t-eain
store_l1t1ta;
"rit@ln(' ••••• t')~f'Tat!Or'l C'o"'pletet1 ••••• '),
writeln{' Infor'TI"tiol"l stor'(l !r the ftlea " fl1en •••)
.nd

else
.rlteln(" invdllc1 dAtil: r'Jn tn. C'lrt')Qral'l' 80811'1')

2) geLpycfile - An editing program which the
student may use to access an external file, display the
contents, and make any necessary changes. This pro
gram would come in handy if more recent data is re
ceived and the file is to be updated. The listing or
program geLpycfile and an example run of informa
tion contained in the external file, SWEDEN .PYR,
follow:

(a program to examine tnt" I!"xterT'lal data ftle
creat@d oy ttle prngra"'. 'pyra",ld_fl Ie', aTld
to "'Ike chanQ's 1f necessary.

type
data •

record
country. packed array rl •• l!)l (If chari
year a pacl(ed array {J,. 41 (If char I
",pet, fpct: arr~y (1 .. 1bl of ir.tegllf

end,
Id@nttf!er. =- tile of datdl

var
telTlp r data,
info, IdentlflersJ
flle"nalTler paclCt"" drray n,.tn) of crar,

procedure skiPl!nel'

var
1, int@Q@rl

beoln
for 1 1= 1 to 10 0(1

wrlteln
end (skl.lIne.1

begIn
writelnl
wrlte(' enter file ne~e: '):
read In (f iIenaR!e) I
reset(lnfo, fl1ena!!'e),
temp, country ;. info·,country,
get(lnt.l,
temp,year 1= Info·,yearl
get (Int.l,
for 1 ,. 1 to ttl do

beQln
temp,mpctltl ,. !nfo·,,,,pct[ll,
oet(lnt.l
@ndl

for 1 I II: 1 to 1 b 00
begin
temp,fPcttll la Info·,fpC'tUl,
get (lnt.l
OM,

clOlOClnt.l
end I.cee •• _tlle_data, ,

const
leparator K " - ••• _~~~",,-.--- •• -".---••••••• - ••• ---',

vor
11 1nteQer I

bea1n
Skipl1nes,
""r 1 trln (ser'lar~tor)'
"'rltell'll
~rlteln(' tne follo~t~" 1nformatl('1f"1 II'"
",ritf'l,,(' eontair'led tr'! " fl1t'na~e, ",')1
wr1t.lrQ
wrlteln(' , te",~,e-oul"trV)'
wrltf'ln;
~r1tell'\(' , terrp,Veolr):
wrltelnl
wrlteC' lI'ale I""' .. rcent:'),
tor 1 :: 1 to lb do

wrltt"(tefl'l~,~ect{1}t 1),
"'r ltelT'l'
... rUe(' fell'dle ~@tcentl")'
for 1 1= 1 to ttl do

write-(teIllP.fret (ill lH
wr 1 tell';
wr It.ll''ll

Articles

lII'r 1 t! Ir (s!r:larlltor)
end (pul:ll1sn.o.-Jt,.) ,

~rocedu re "'cU< e.t 1 I p.C'hanoes:

VaT
1: 1I'1tPQPr:
5r1ectorl charr

bea1n
... rl t.1 r'll
~rltell'lJ
""rltpll'l(' YOIl rrav If'ake aT'lV nUl'IIl:Ier of c.,anges')1
... rltelI"lC' l"Iy s!lectlP'1Q ttle at'l~ropriate IYIf,bol')1
writelnC' for the data to t-e cha"aed,')1
wrlt"ln;
wrlteln(' usp. tnf' followino set tit .eolectorSS')I
writeolnl
wrttelrC' area na",e -- "a'''')1
.,..rttelnC' year -- "y"')1
writelnC' lI'·ale percent -- "'11\'''')1

writelnC' female percef'\t -- "'f''''''
wrlteln;
writelnC' enter the selector, thPn (cr>, and'"
llirltelnC' YOIl w111 ". prol"pted tCl enter thr",
~rltelnC' ne~ data,')1
wrlteln,
writelnC' when you have C'o",pletett t.ne chanoes,'H
wrtteln(' enter an "f" to pn~ th@ leaston,'),
.. rltell"lJ
wrlte(' enter a selecton ">r
readl n C Ie lrctor) I
repeat

case Sflector of
'A', 'a'i

beolr1
wrltelP'lC' enter r'\e ... arra n~rr",'lI

~ritplr(' 115! 1~ colU~I'\SI "31
read 1 n (tll!l""t. cOllnt rv)
pnrtl

beq1"
wrlteC" enter tl"'P nelll· yearl '"
read In C telT'tI, year)
end,

'/II', '''''I
!"Ieoin
writflnC' eT'lter fill sh'tp,!," fl'c"lle r~rce"t v".lnes
Wlrit@ln(' 1'!1or'lfst a'1f' ornups to lo'~e!lit:');

for 1 1= 1 to 1 ~ do
read Ctfl~C.1T pet r 1]):

reartln
p.nd:

'F', 'f'l
bl!Qln
writeln(' f'ntp.r all slli'tp.el"l ferrdlp fPl("('"t
writell"l(' hiqnpst aile QrolJrs teo 10w€,sU'l:
for t := 1 to I t del

re~d(temr.,fpct r I)},
readln
~T'ld,

end (cast') :
~rttp.ln(' ~~~e a~ntner 5~1f'ctil"l~:

reed 1 n (select or)
until (sell!'ctor = "~") or {splectnr
rfwritt'(1nto, tl1enarre':
info".countcv := te.Tc,country;
put (infoll
info",year := teIl'P.year:
put(Il'\fo):
for t := 1 to 16 do

beglT'1
lnfo",",petr11 := tflIfiP.,,"pctfl1;
put (info)

'en""
for 1 :a I tn ie, dt:l

bec;lJ'1
info",tpct[11 := tf'lT'p,fpctf11:
put(infol
fnd,

closeCinfo),

',:

writeln(' new data stoT~ti I" fl1el'\arr-e)l
~rlteln,
puhlis.,.data

end (maKe.flle.chanaes. :

procedure ft'Cdify.ttle.cI"'Cliee,

var
chOice I char I

beQin
wr 1 tt!!ln,
wrltelnl
wrttelnC' 110 you '4i!1nt to II'011fy n· .. .-1ata? --')1
wrlteln(' It la, ef'ltPr a "y''')J
writeC" If r'lot, .. "ter an "n"l '),
readlnCct'lolce) I
if Cc",olce = 'V') or (cnoie! = 'v') tr'lf'F'I

make.file.chanoes
elle

_rlteln(' no ChanQPs tl"l tne file.')
end (modify.flle.Choice) ;

B.UI:!_
accesl.! iie.dat a I
PUblish_dateJ
!fOd I f y_f lH'_ChO 1 ce

pnt1,

3) drawpyramid - The final program accesses the
information stored in the external file and produces a

Articles

pseudo-graphic on a line printer. The program can pro
duce a single plot, as shown in the BERLIN example,
or a double plot of either one region in two time periods
or two different regions. The student selects single or
double plot and enters the file names. The program takes
over from there and produces the output. A double plot
of SWEDEN and MEXICO illustrates the age struc
tures of a country with a low rate of growth and one
which is high.
run getpyr

enter file name: sweden. pyr

the following information is
contained in sweden.pyr:

sweden

1970

male percent:
female percent:

2 2
2 2

do you want to modify the data? -
if so, enter a 'y'
if not, enter an 'n':

no changes to the file.

Ready

DrOQrerr dra""yralJlld(Inr:lut, outeut):

const
blInk = ' "

type

record
countrY: Do1ckert array rt,.IS) nt chdr;
yetlr: r'J4cl(e.., array [1,,'.1 nf C/"cH,
"'dIe, fell'dle: oI1rrdY (l,,1!)) of intp(,Ier,

end,
identlflers = file of .., .. tal
filfnaTl'e = paclced array (1 •• 10) Clf chari

Vor
choice I C'h"r,
tell'PI riatal
l?1atrh:: array rl •• 4~, l.,o]} of charI
pyra"'lri I ident I f leTS;
ftlet, tl11!2: fllenall'el

4 4
4 4

procerJurp InJtiallze.rtrrolVI (slOt all arrey ele",erts to t'lank)

Var
i, 1: inteaer;

bealr
for 1 := 1 to 42 ('0

for 1 := t tl') "j ~o

'IIat.r1xrl, 11 := r-lllrk,
end (fnltlal1z".arrdv) :

prncedure rl.ot.cnolc", ~SlT'1'llf' Dl!H or sup~rllf~osel"1 rIot}

l"eQIn
writpln,
writelnC' pnteT i!t "11" ff t~ls 15 ill dout-le rlot,')1
wrltel,.c' enter "s" tC'lr ., slrHlle plotr ')1
readinCchotcfl;
"·ritfl'lf'

pnt1 (plot_C'holce)

heqin
if (c!'",oice.; 'r,') er (rohC'lice :I "ri') then (ttouble ~lot)

heatn
"ritelnC" ~nter pach filP Ma~e tin a lepar8tP line;'):
_ritelr(' UlP. ten colu~ns for ~~ch' rote thp Merker,""":'),
'tJriteln(' It yOll dre at tne lIre prll'1t~r,');

writel"C' posit10n the IfI'rlti"q nead to tl"le"lI
wrltell'l(" ldst line ot tl"lp paper before·"
wr1tf'lnC' enterlno (Cr> lIfter thf' seeof'd file name,'"
IJiritelni
writel"C""": In,.
readlr,Cf1iel),
reaoln(fIle~)

29

eM
.1 •• 4s11"~le plot)

t>fQ'ir'l

_rit~ll"'(" tnt.r tn. f11. n~mf' uI1nc ter'l COlu",,,,.,',,
¥Prittl"'(" note t"' • .,.ark'er • .. ' ..),
wrftl!'lr'l(" tt you IIrt' at tne 11,.., prlf'1ter,'),
writf'l!"(" t'nslUC'n ttl •• r1tlI"1Q "'flad to the"),
.vrltf'lrC' last l1n. ~t t"" pal'f'r bptore'),
wrfttl"'C" f'nterir'l<:i <cr>.')1
\liT Hf'll"ll
wr 1 tflr. ('.", 1 {l) J
rea rl lnCfllf'l)
I!'nri

end (~nt~r_ttl~_n~~~l I

vor
1, j, 11"1 If'1tf'Qerl
shorttitlel packPr1 arrl!ly 11 .. 11:11 otctJlr'
lonqt1tlel paclCed l!lrrdV rl .. 1~1 of charI
aQ@'QfouPSI paCked !rraV (l,,~5) of ch.r;
rrenWOfTIflnl I"acked arrey [1,,1('1) ot enar,

beQin
tor 1 Iz 2 to 42 ClO

bealr-
rratrh,[l, 11 II:: "!~:

",atrlx{l, fill 1= 'I',
endJ

tor 1 Ie 1 to ~3 dO
~eaI"
~at r Ix r 1, 1) : I: ;

mdtrh;[42, 1J 1= ,
end 1

for I II: b to 37 "'0
l!Iatrlxrl, 27] pi "t',

for 1 := 7 to 47 !'lC!

I'I'atrlx(J7, 11 := '.',
If (ernic@' = 'n') or (cholC'E' • "d') th.n

bt"oin
lonatltlt' 1= "porulo!tlnr'l pvre1l1!.11 lu~ertlT',~oled"
for 1 1= ,) to n ~o

lTIatrlxfJ, 1J Z= lonqtlt1eo[1 - 2]
oM

.1s'
t'leOln
shorttitle :1: ~"O"ulat1or'l r-yra"'1rl~,
for j la 3 to '0 ('If.!

lIIatrlxr3, 1l 1= S!lorttltlerj .. 2)
erlC1,

rre,,_olTlen :z "lI'll.telYlale',
for 1 IS 13 to 16 do

I""trixfll, j] 1= IYIl!'nwofllen[1 .. 1211
for j 1= 3111 to 41 110

JT!atr1xf13, 11 1= !1'p"Wo1l'eT'l(1 - 'OJ,
",atrIx[4, SJ} IZ 'a"
ft'.8tr1x(4, ~ .. l ,. '0",
rr8trixr4, t;!)} 1= 'e",
",atrlx[b, 53} 1= "''''
IT'atrlx(6, 54) := 'S",
ft'atrix(6, 551 := '+',
aO@'groups 1=

·70-74.5-6960-b4~5-~.~O-54.5-'940_4435_3930_3425

-'920-2415-19! 0-14

t II:: 1,
k ,_ B J

wh!l' ! <= b5 do
"'felin
tor j ,I:: 52 to ~f, do

beat n
matrix[k, 11 1= 1I~,.oroIJPs[1lr
1 Ie 1 + 1
enrt;

Ie 1= It •

end;
fIIatrh(J4, ~3) := '5',
Ifatrlx()4, 54) ;= '-';
lI'atrh[34, 51!11 1= '9':
tl'8tr1x(3fl, ~11 1= '0";
IT'atrtx[3fo, ~4l 1= '-':
rratr1x£36, ~~J := '4',
j 1= 7J
IIroIhile 1 <1: 47 do

t'leoir'l
II'dtrh:{3!a, 11 := ,.,.,
1 : = j • 4
tonti,

rr"trlx[3P, oIl7] := 'r.":
lI'atrlxf3 C , 1] := '1"
IT'atrlxfJQ, I:tl ;: 'r,',
rratrlx(jQ, 111 := '~',
rratr1xU Q , lr;J ::1: 'b',
lI"etrhrl9, lqJ &= '4';
""arrbd39, 23j := '2',
l'I'atrlx[J9, 31) := '2',
~atr1x()9, l~j := '4',
fTlatrlx[)Q, lQl := 'b';
",atrlx[lc;, 43] := '8",
lI"atrlx(3Cl, 4ft] := '1",
rratrlx[JCl, 4il ;: 'O"J
rr4trhr41, 24] := 'p',
lfatrbd4t, 2SJ PI: 'e':
If'4trh(41, 2f1j := "r";
lI"atr1x(41, 27} := "c';
rratrlxf41, 2R) ;: 'e';
rratrix[4t, 2qj := 'n':
rratrhf41, j(',j := 't';

@'nd {lat-els}

30

var
1, j, k: lntf'Qer:
tllearray: array [1,,2] of ttlpr'I"'It",

beain
If (C/"Iolce = '0') or (choicp = "('I'" tt'l@n (t'louble plot.)

be-01'''
IlloarrayllJ 1= f!lol,
fll .. rravl2J := 1110"
t. or t ,;; t to 2 do

b@'l1in
If1=lthpn

k := 43
else

k I = III,
reset (pyrdn"1"', tl1earray r 11) J
temp, country ,= Dyrarr!d-,country,
Qf't(pyran"1d) ,
!LL!"_.~ tl>~
for 1 1:1 1 to 1~ dO

",atrIx[4, 1 + 171 1= te!fltl.cout\try(1)
else

tor 1 1= 1 to 15 do
rratrlx[4, 1 + '1 := tell'p,C"C'lul"ltryrjll

te",p,year 1:1 pvrarrSd-,ve"r,
qet (pyrdll"ld)'
If i = :2 t~en

for 1 1 = 1 to 4 ('10
II""trIx(S, 1 + 171 := tt''''J''!.veftr{Jl

else
for j f= 1 to 4 110

IT'atrlxrS, 1 + '1 IZ te"o,y~arl1l'
for 1 1= 1 to It! ,jn

beQln
te"p,mau't1) 1= pYTall'1d"',mI'l1"'l11 r
o"t(pyra"'lt1) J
If matrix{2 * 1 • 4, :.t' • "} * tt''''r,1T1'I1,,[1)] (> ,'lank thpn

lI'atrtx{2 '* j + 4, 7' • 2 '* ten~,lTa]t'rj1l := '="
else

matrlx[2 '* j • 4, 21 • 2 * tell'tI.II',altf11l := ("tlT(Ie)
@'n~1

for j r= 1 to 1 b cH'I
beQln
t@'n'p,fe,.,ele(j] := r:yrd'TIld"','fpIT181Pt1J;
Q'et(pyralf'ld)'
If llIatrlx('2 • 1 + 1, 11 + "} * telll~,f"I'I'ale(1)l (> blank. tt'len

,.,atr1x{2' j .. 4, '17 + • tPIT,~.felf'al('rjll := "=~

tlse
",,,trix[2'* j + 4, 21 + 2 • ten'l'P,ftrri!!llfd1l1 := C'hr(k)

end,
close(pyrCl!'l'1d)
.nO

.00
else (s1nQ]e I='lot)

t-oeQln
rtset(ryramlt1, ftlp1):
temp,couf'ltry := pyrdrrid",cn,lntry:
Ott (pyralf'1t1)'
for j tz 1 to 15 ,",0

lI'atrlx[4, 1'" 7] := tp.lT'c,cotJ1'Itryf)1;
temp,year IZ pvrarrld-,yeen
Qet(pyraIl'1r1),
t.or 1 ,. 1 to 4 "'0

IT'atrjx(~, 1" 2} 1= t.ell'p,y" .. r{1}:
for 1 := 1 to 1~ ~o

beain
tefl'p,male(1) := r,yri!!lmId-,'~a1f1'(1]'
Qet (pyramId),
"'atrix{2 • j + 4, 27 .. 2 • tprrt"l,lIIdlflfj11 := ~."
end;

for 1 .= 1 trl 1 t- ()O

beqir'l
telfp,tem .. le(1J := nvra"'1~"'.fplTi'Jlp[11'
Qet (Dyral'l'Id);
l"atrix(2 •) + 4, 7' + 1 • tP or r,fel'l'dlefjlJ :=
enl'll

elose-(!:lvramld)
eM

e~d {r.tri@v._an~_~SS10n_d8t~)

proeedu re Iyrrbol_ex~ 1 anat Ion:

va.
Cheekl, cneck21 data.

beql n
"r 1 t'lr;
rf'set(pyrarrlr4, ftlf'l),
cl"ec:kl,cf'lu1'1try 1= pyrdll"lrl"'.coul"ltrv:
aet(f'!yraIfId)J
C'htcIC1.y.ar I: ~vr"''1't.,-,ve~r,

elosp(pyrslI'lrl)'
reset (rYT'dlT'lt1. til"]);
ehpc:k2,ceuntry := ryrtS"'lrl"',cnl.lntry:
apt (pyrarrit1):
cneck2,year ::; ~yrarrld·.ytar;
closeCllyramlr1)1
it cMeC:l(l.collntrv = et'l~ck7.,courtry tl"lel" {SI!!III'P. I!!Ir'8 for botn plots)

Clealn
ilrltel~('

"'r 1 ('In ('
IIrHelnC'
.M

", Checlel,vp.ara 4, ••• • ")1
., cnpCk:J,y@'ar: ot, , -- 0'),
''':'''1 SdlT'e v,lJll1e tor 'l!!Ich veAr')

plse {rHftf!'rll!'l"t
~eoln

wr i til!' 11"1 (..
'Ar 1tll!'lM (.
wr 1tel,., (..
.M

eneclc'l,co'Jn(ry, ' -- +~)J
, ("rec\t2.coul"I(ry, , -- 0'),

.. .. = .. 1 Sitfl'le vt!llue tor Dotro areas')

flnrl (sYIf~ol_exrl~natic". I

var
11 1 nt e~flr,

Articles

beat T"

tor t 1= 1 tn 12 do
"r1tell'l

~nc1 ($lr(i~l1n"ll I

Vir
1,) I t "tf.'''~r:

t-ta11"'1
Iktr'lll'1~s:
for t 1= 1 to 42 no

for 1 1= 1 to "3 dr.l
t-ea ir.
".-rite(IT'<!trtld1, 1]);

1t j = td tt'lpn
llir t tel,..

end;
if (ct:cice :& "r.') or (choiC'e = "d", thel"l

sy"'rol.exp 1 <!r"lat 10n I
Ilttrl1res

rnn (pro".,JC'e .. pYr~r,-tl'n J

beol r
1I"1ft1alizp.arrav:
rlClt_crolc4";
("nter.file.l'll""";
latelSI

!
! populatinn pyramid
! sweden
! 1970

10 8

Conclusion

:nale

• ! *

percent

female

8 10

age

75+

70-74

65-69

60-64

55-59

50-54

45-49

40-44

35-39

30-34

25-29

20-24

15-19

10-14

5-9

0-4

The inclusion of exercises such as this one in social
science classes has proven to be valuable in a number
of ways. It allows students with little or no program
ming background to get over their tentativeness about
approaching a computer. In addition, I believe that such
exposure to computers, howev~r limited, contributes
to the overall computer literacy of students. Finally, the
experience may spur a student to want to take a course
in computer programming or to learn other uses of the
computer.

There is absolutely no reason why students in all
divisions of the liberal arts setting should not benefit by

Articles

.,------------------------------ --- -- -- ---- - -- ---
populat ion pyramids -- superimposer!
sweden rnex i~o
1970 1975

male

10 8

: ! =

... ('I ! ('I +
!

... (') ! ('I +
!

... ('I ! ('I

I
o ! (')

o ! ('I

percent

femalt"

-0-111

?O_?ll

10-111

8 10

sweden
mexico -- 0

I: I: same value for both areas

the opportunities available in the field of computer
science.

Notes

1. The Geography Program Exchange assists uni
versities and other non-profit organizations with the in
terchange of computer software which relates to
problems of a geographic nature. The address is:

Geography Program Exchange
Department of Geography
Michigan State University
East Lansing, Michigan 45824

2. One of only a few books written on the general
topic of computer applications in geography is Paul M.
Mather, Computers in Geography: A Practical Ap
proach (Oxford: Basic Blackwell, 1976); it contains four
chapters, one of which is an introduction to the FOR
TRAN language.

3. Mark S. Mormonier, Computer-Assisted Car
tography: Principles and Prospects (Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1982), p. 22.

4. John L. Kirkley, Editor, "Our Industry Could
Lead a Liberal Arts Renaissance," Datamation, March,
1983, p. 29.

5. Brian J. L. Berry, et al, The Geography of Eco
nomic Systems (Englewood Cliffs, New Jersey: Pren
tice-Hall, Inc., 1976), p.36.

6. The programs in this paper were prepared using
Oregon Software Pascal, Version 2.0, and run on a DEC
PDP 11170. PUG

31

Path Pascal
A Language for Concurrent Algorithms

By W. Joseph Berman
Advanced Programming Techniques, Inc.

704 Village Road, Charlottesville, VA 22903

1. Introduction

This paper is intended to provide an overview of
the Path Pascal programming language. Rather than in
troduce the language by studying its definition, the ap
proach taken here is to explore a moderately complex
example. While any detailed understanding of Path
Pascal must be based upon the formal definition of the
language, this paper will present the most important
concepts embodied in the language.

After a brief history of the development of Path
Pascal, the problem to be solved by the example pro
gram will be presented. Using this example, three major
concepts of Path Pascal will be explored. With these
major concepts, the operation of the program can be
understood. Finally, a summary of the present status
and anticipated future of Path Pascal are discussed.

2. Background

Path Pascal was originally developed at the Uni
versity of Illinois in 1978 by Dr. Roy Campbell. Details
of the original Path Pascal compiler project are avail
able from the University of Illinois as a series of Re
search Reports. In addition, the definition of the
language has appeared in SIGPLAN Notices [1].

The University of Illinois implementation of Path
Pascal was for the LSI-11123 processor. Path Pascal has
now been implemented on a variety of machines in
cluding the M68000 (by NASA-LaRC), AMAC-80 (by
Martin-Marietta) and V AX-ll/780 (by NASA-God
dard). This report is based upon experience gained with
Path Pascal as part of NASA Contract N AS 1-16985
during 1982 using the M68000-based Path Pascal com
pilerdeveloped by Dr. Ed Foudriat at NASA's Langley
Research Center.

Path Pascal is based upon "Path Expressions" first
described by Campbell and Habermann in 1974 [2]. The
key concept is that coordination among a collection of
concurrent processes should be expressed in a language
designed especially for that purpose. "Path Expres
sions" conveniently and succinctly specify the central
concepts of "mutual exclusion" (protecting "critical
sections" of code) and of "synchronization" (waiting
for information to be computed by other processes). In
Path Pascal, the primary unit for mutual exclusion and
synchronization is the subroutine, allowing the use
symbolic names in the Path Expressions.

In Path Pascal, "counting semaphores" are used
to implement both mutual exclusion and synchroniza
tion. By specifying the Path Expression prior to the
subroutines that it controls, the compiler can generate
appropriate initialization, P-operation and V-operation
at the beginning and ending of each subroutine.

32

2.1 The Island

Before discussing the example Path Pascal pro
gram, it may be useful to understand that this program
is a simple event-driven simulation. The simulation in
volves an island and its inhabitants.

The island of this program is a very special island.
It consists of a 25 x 17 grid, each element of which can
either be empty (displayed as a blank), contain a wolf
(designated by a 'W'), or contain a rabbit (designated
by a 'R'). Initially, there are 17 wolves (all in column
10) and 17 rabbits (all in column 16).

Each wolf begins with a user-specified "energy".
This energy is used on an "annual" basis to remain alive,
looking for rabbits to eat or other wolves with which to
mate. Each "year" the wolf looks around his position
on the grid, determining if there are any rabbits or wolves
in his neighborhood. Ifthere are any rabbits, the wolfs
energy is increased by eating them. If, on the other hand,
there are too many wolves in the neighborhood, the wolf
loses excess energy due to overcrowding. Only if there
are a reasonable number of neighbor wolves and this
wolf is "fertile" does the wolf attempt to produce an
offspring. Ifthe wolf s energy is reduced to zero, it dies.

Each rabbit also begins with a user-specified "en
ergy". This energy is affected in a manner similar to a
wolf, except that a rabbit is considered to have been
"eaten" if there are any wolves in its immediate neigh
borhood and that rabbits gain energy by overcrowding
rather than losing it.

Finally, the user may wish to "repopulate" the is
land, assigning new energy and lifetime specifications.
This is done by pressing any key on the keyboard.

3. Path Pascal Constructs

The example program, ISLAND, is primarily writ
ten in standard Pascal. It makes use of only three new
constructs - OBJECTs, PROCESSes and Wait-for-Son
processing.

3.1. OBJECTs

Of the several extensions to standard Pascal, the
OBJECT construct is the most important to under
standing Path Pascal. An OBJECT is a Path Pascal
TYPE with several properties similar to a RECORD.
As with a RECORD, each variable of an OBJECT TYPE
allocates stack space and NEW of a pointer to an OB
JECT TYPE allocates heap space. The space required
for a OBJECT TYPE is that for the semaphores implied
by the OBJECT's Path Expression and for any varia
bles explicitly declared within the OBJECT. Unlike
RECORDs, OBJECTs contain subroutines (PROCE-

Articles

DURESs, FUNCTIONs and PROCESSes). Those
subroutines that are included in the Path Expression are
termed "ENTRY" routines and may be accessed from
outside of the OBJECT using the RECORD-like nota
tion "object.entry(parameters)" (e.g., line 436 or line
444).

Lines 16-52,71-95,96-183 and 186-200 indicate four
common kinds of OBJECTs. These examples will be
discussed in the following sections.

3.1.1. OBJECT CRTOBj (lines 16-52)

This OBJECT is an example of an "interprocess
buffer" OBJECT. Since processes run concurrently (see
Section 4), they must be synchronized in order to trans
fer information. Unlike ADA in which processes must
"rendezvous", Path Pascal facilitates the concept of
"interprocess buffers" that contain data to be trans
ferred from one process to another. This allows the
"sending" process to continue execution after gener
ating the information for the other process.

The Path Expression on lines 19-21 has both mu
tual exclusion and synchronization expressions. the first
two expressions simply state that the operations PUSH
and POP are atomic (only one PUSH at a time and only
one POP at a time). The last expression specifies the
synchronization between PUSH and POP. It states that
a call to POP may not proceed until a call to PUSH has
completed and, furthermore, at most CRTSZ calls to
PUSH can be honored before at least one call to POP
occurs.

This last implication of the Path Expression, that
at most CRTSZ calls to PUSH can proceed without at
least one call to POP, is the key to understanding the
data structures (lines 24-27) and code (lines 29-51) of
CRTOBJ. Since at most CRTSZ calls to PUSH can oc
cur without a call to POP, all that is required is space
for CRTSZ "messages". Since the "interprocess mes
sage" in this case is just a character, BUF is simply an
ARRAY ofCRTSZ characters. INPTR specifies where
PUSH is to put its character, and OUTPTR specifies
where POP is to get its character. This code works be
cause the Path Expression controls access to the rou
tines PUSH and POP, and, therefore, controls access
to the BUF ARRAY.

3.1.2. OBJECT CREATOR (lines 71-95)

This OBJECT is also an interprocess buffer; how
ever, the buffer has only a single entry (the V ARs XX,
YYand EE). This form of the interprocess buffer is very
similar to the ADA "rendezvous".

3.1.3. OBJECT SCREEN (lines 96-183)

This OBJECT is used to control access to the INFO
ARRAY, the inmemory representation of the island. The
Path Expression on line 99 simply states that one and
only one of the allowed operations may be progress at
any given instant.

The routines in this OBJECT include SETUP (for
reinitialization), KILL (for termination), LOOK (for
examining the "neighborhood" of a wolf or rabbit),
ASSIGN (for direct control ofINFO), CHANGE (a test
and-set operation) and DONE (a set-and-test opera-

Articles

tion). The routine WRITES (update terminal screen) is
available only within this OBJECT.

3.1.4. OBJECT SHUTUP (lines 186-200)

This OBJECT is used to synchronize the termi
nation of the simulation. Since Path Pascal does not al
low "preemptive termination" of process (see Section
4), care must be taken when writing processes that must
eventually terminate.

This OBJECT acts essentially as a binary sema
phore. The call to SHUTUP. WAIT on line 376 will cause
the calling process (SHUTDOWN) to suspend opera
tion until the call to SHUTUP.SIGNAL is made on line
364.

3.2. PROCESSes

The second major addition of Path Pascal to stand
ard Pascal is the PROCESS. Conceptually, a PRO
CESS is a PROCEDURE that, after it is called, executes
in parallel with its caller. In Path Pascal, all processes
that are not waiting due to a Path Expression, a DOlO
(see below) or a DELAY are competing for the hard
ware processor(s). Also note that each call to a PRO
CESS creates a new process, as in lines 311-317.

PROCESSes in Path Pascal can either be normal
or INTERRUPT PROCESSes. An INTERRUPT PRO
CESS has two special attributes not associated with
normal PROCESSes. The PRIORITY and VECTOR
information are used to control the interrupt hardware
such that the DOlO statement (lines 213-237) acts as a
"wait-for-interrupt" . In addition, as shown on lines 211,
216, 234, 239, it is sometimes necessary to enter "su
pervisor state" in order to access device controllers.

3.2.1. INTERRUPT PROCESSDLVjIN (lines 201-221)

This process is an "infinite loop", waiting for an
interrupt from the terminal input hardware. When such
an input occurs, the character is forwarded to the ap
propriate interprocess buffer.

3.2.2. INTERRUPT PROCESS DL VjOUT
(lines 224-241)

This process is also an "infinite loop". It waits for
a character to be placed into the appropriate interpro
cess buffer, transfer the character to the terminal, and
waits for the completion interrupt.

3.2.3. PROCESS WOLF (lines 242-270)

This process corresponds to a wolf in the simula
tion; it is called when a wolf is to be created. The pro
cess is a loop corresponding to the lifetime of the wolf.
In the loop, the ENERGY of the wolf (a local variable)
is constantly updated until it is reduced to zero and the
wolf dies.

3.2.4. PROCESS RABBIT (lines 273-302)

This PROCESS is similar to PROCESS WOLF,
except that it corresponds to a rabbit. As with the wolf,
the ENERGY of the rabbit is constantly updated until
it is reduced to zero and the rabbit dies.

33

3.2.5. PROCESS SHUTDOWN (lines 366-380)

This PROCESS is used to wait for input from the
user (any input will do). When this input occurs, it is
necessary to notify the screen monitor (line 374) and the
main program (line 375). However, at thia point it is
necessary to wait for the main program (actually, PRO
CEDURE PROCREATE) to complete its processing
(line 376). Finally, SHUTDOWN "absorbs"any extra
attempts to create rabbits or wolves. This is completed
when the special message having an ENERGY of zero
is encountered, and SHUTDOWN is terminated.

3.3. Wait-for-Sons Processing

When a PROGRAM, PROCEDURE, FUNC
TION or PROCESS calls a PROCESS, it is necessary
that this "son" process terminate before the "father"
can terminate. This is logically necessary due to the
scope rules of Path Pascal. Furthermore, this "wait
for-sons" processing is a useful tool for coordinating
the termination of a system.

Except for "wait-for-sons" processing, there is no
reason that the code in PROCEDURE PROCREATE
could not be part of the main program. Note, however,
that all of the WOLF and RABBIT processes are ini
tiated by PROCREATE. Hence, PROCREATE cannot
continue until all of these processes have terminated.
This fact is critical to the coordination between PRO
CREATE and SHUTDOWN when the simulation is
being terminated.

4. PROGRAM ISLAND

Having looked at the special features of Path Pas
cal that are used by this program, it is now possible to
step through a typical execution of the program.

The main program begins (lines 430-433) by allo
cating heap-space for CRTIBUF and CRTOBUF, by
initiating the input/output processes DLJVIN and
DLVJOUT, and associating DLJVIN with CRTIBUF
and DLJVOUT with CRTOBUF.

The driving loop of the program (lines 435-445)
clears the terminal's screen (using DEC-VT52 proto
col), prompts the user for parameters (P ARAMS), rein
itializes the simulation (SCREEN. SETUP), initiates a
process to look for terminal input (SHUTDOWN), and
calls PROCEDURE PROCREATE.

PROCEDURE PROCREATE (lines 303-365) be
gins by initiating 17 wolves and 17 rabbits. It then enters
a loop waiting for requests for creation. When such a
request occurs, it is first tested to see ifit was generated
by SHUTDOWN, indicating that termination should
begin. If this is not a SHUTDOWN request, it is a re
quest for the creation of a wolf (ENERGY> 0) or a rab
bit (ENERGY<O). Each direction (UP, DOWN, LEFT
and RIGHT) is tested to see if it is available. If all di
rections are occupied, creation is not possible. If a free
position on the island is found, the SCREEN.CHANGE
call updates the simulation and the rabbit or wolf is cre
ated (lines 358-361). When the special SHUTDOWN
request is encountered, PROCREATE signals SHUT
DOWN that it has completed processing, and waits for
all of the wolf and rabbit processes to terminate.

Once all of the wolf and rabbit processes termi
nate, PROCREATE returns to the main program (line

34

444). The main program now signals the SHUTDOWN
process that no more requests for creation will be gen
erated, and the master control loop iterates.

5. Summary and Conclusions

While a single example cannot cover all of the con
structs and uses of those constructs, the ISLAND pro
gram is representative of the important capabilities that
Path Pascal has that are not found in standard Pascal.
These capabilities include multiple processes (PRO
CESS), interprocess coordination (OBJECT), and pro
cess termination coordination (Wait-for-Son).

Having programmed in Path Pascal for several
months, it is clear that these new capabilities are useful.
Many of the PROCESSes and OBJECTs that have been
written have been found to be highly reuseable since
they "encapsulate" and entire concept or function
within the program. However, it is equally clear that
these new capabilities do not "solve" the concurrent
programming problem. DeVeloping the Path Expres
sions is a tedious, error-prone undertaking. Nonethe
less, once a Path Expression is finally "correct" , it is
usually clear to anyone reading the code exactly what
will occur when the program is executed.

One of the goals of the current research with Path
Pascal is to identify various "prototype" Path Expres
sions. The "interprocess buffer" is a good example. If
a few such prototypes can be found to be sufficient for
most situations, a "macro OBJECT" facility might be
added to Path Pascal to make these prototypes readily
available to the average programmer.

PROGRAM ISLAND; (" WOLf" AND RABBIT SIMULATION PROGRAM ..)
CONST

BEL 7; (* ASCI r FOR TERMINAL BELL")
CR 1"; (* ASCI I FOR TERMINAL ENO- OF' INPtrr .)
F.sr n; (" ASCI I FOR TERMINAL CREATOR .)

CR'1'5Z 120: (. SIZF. OF TERMINAL BUFFER .)

XMAX 7f,; (' ISLAND SIZE: COLS+l .)
YMAX 18; I:~LAN[) SIZE: ROWS+l ~)

XWO!,F]0; (. INITIAL COLUMN FOR WOLVE:-; .)
XRARRIT If,; (. INITIAL COLUMN FOR RABAITS 'j

TYPF

rRTOR,T OA,TFCT (. :JYNCHRONIZF. TERMINAL INPtrr/otITPlIT .)

VAR

PATH

1: (P(J.'!!-i), (. ONE AT A TIME .)
l:(POP), (. ONE-AT-A TIME 'j

(~RT:;Z: (PW-iH; POP) (. PUSH THEN POP .)
END;

VAP

AlIF : ARRAY [1"" CR'I'SZ J OF CHAR;
INPTR INTEGER;
OUTPTR : INTEGER;

ENTRY PROCEDURE PUSH(CH; CHAR);
BEGIN

RUF[INPTR 1 CH;
IF' INPTR-'CRTSZ THEN

INPTR
E.LSE

INPTR INPTR 11 ;

END: I' PROCEDURE PDSH ')

t:NTRY PROCE:!)lIRE POP(VAR ("H: CHAR):
RHiIN

("1/: BlJF[OUTPTRj;
1 F mTTPTR rRT:;Z THEN

OlJTPTH" 1

ELSE
OUTPTR OUTPTR + j "

END; (. PROCEDURE POP .)

INIT:
BEGIN

INPTR 1;

otrrPTR - 1;
END;

END; (~OBJECT CRTOB,J ~)

CRTIBUF : CRTPTR; (~INPUT BUFPER .)
CRTOBUF : CRTPTR; (. mrrptrr BUFFER ~")

WINIT INTEGER; (~WOLF: INITIAL, ENERGY')

Articles

WYRS INTEGER (• WOLf': NORMAL LIFETIME ~)

WANNUAI, INTFGER (. WOLF: ANNUAL ENERGY USAGE .)
WFERTrLE: INTEGER (. WOLF: ENERGY FOR FERTILITY')
WCJ(OWD

WMAX

RINJT
RYRS

INTEGER (. WOLF: MAX ENERGY OF NEIGHBOR.S .)
INTFGER (. WOI,r: MAX ENERGY FOR AN INDIVIDUAL ~-)

INTEC.iER; (. RAFlFlIT: INITIAL ENERGY')
INTEGER; (. RAFIBIT: NORMAL LIFETIME')

RANNIJAI, INTEGER; (. RABBIT: ANNUAL ENERGY USAGE')
RFFRTILE: INTEGER; (. RABBIT; ENERGY FOR FERTILITY')
RnIOWl) INTEGER; (. RABBIT: MAX ENERGY OF NEIGHROR.."'i .-)
RMAX lNTFGER; (. RA8AJT: MAX ENERGY POR AN INDIVIDUAL

CREATOR OFUIT'T' I' :lYN('HRONIZE WOLF/RAAAIT CREATION')

SCREEN

Articles

PATH
) ; ('REATE; :lTARTlJP)

END;

VAR

xx
yy

EE

INTEGER;
INTEGER;
INTEGER;

ENTRY PROCEDURE CREATE(X, y, E: INTEGER l;

BEGIN
XX X:
YY Y:
Ef. E:

END; (. PROCEDURE (~REATE .)

ENTRY PROCEDURE STARTUP(VAR X, Y, F.: INTEGER):
~~El; I N

X XX·
Y YY;

EE;
END; (. PROCEDURE STARTUP .)

ENlJ; (. OR,]J::eT ('REA'I'OR .)

OBJECT (. COORDINATE SCREEN .)

PATH
1: (SETUP, KILL, LOOK ASSIGN, CHANGE, DONE)

END;

VAR

STOP BOOI..EAH;
INFO ARRAY [O .. XMA.X O .. ¥MAX 1 OF INTEGER:

ENTRY PROCEDURE SETUP; (~(RE)INITIALIZATION')

VAR

BEGIN

INTEGER;
INTEGER;

STOP FALSE;
FOR X : = 0 TO XMAX 00 (. RESET ENERGIES .)

FOR Y 0 TO YMAX 00

INFO[X,Yl 0:
END; (. PROCEDURE SETUP 0-)

ENTRY PROCEDURE KILL; (0- BEGIN TERMINATION')
AEGIN

STOP TRUE:
END: (0- PROCEDURE KILL .)

ENTRY PROCEDURE LOOK (X . Y : INTEGER: VAR ER, EW : INTEGER) ;

PROCEDURE TEST(ENERGY: J NTEGER);

BEGIN
I F ENERGY < 0 THEN

ER ER+ENERGY
EL:;f.

EW EW+ ENERGY;
END· (0- PROCEDURE TEST .)

REGIN
ER (. SURROUNDING RABBIT ENERGIES • \
EW 0; (. SURROUNDING WOLF ENERGIES .)
TEST(INFO [X 1, Y 1);

TE::>T(INFO! X+ 1, Y 1):
TES1'(INFO[X,Y 11);
TEST(INFO[X,Y-tl1);

END: (. PROCEDURE LOOK .)

PROCEDURE WR[TES(X,Y,F.:INTEGER); (. WRITE TO SCREEN')
RFGIN

CR'T'ORUF - . PU::;H(CHR(ESC)): (" V'I'52 ,JUMP .)

CRTOBUF-. PUSH(• Y');
CRTOBUF - . PUSH(CHR(Y+:ll));
CRTOBUF-. PUSH(CHR(X+31));
IF E=O THEN

ELSF

CRTOBUF- . PUSH(' ')

IF E<O THEN
CRTOBUF - . PUSH('R')

ELSE
CRTOBUF h

• PUSH('W');
END; (0- PROCEDURE WRITES 0-)

(0- EMPTY .)

(0- RABBIT .)

(0- WOLF 0-)

ENTRY PROCEDURE ASSIGN(X, Y, E: INTEGER);
BEGIN

INFO[X,Y] := E; (0- UPDATE IN-MEMORY 0-:)

WRITES(X, Y, E); (0- UPDATE SCREEN 0-)

END; (0- PROCEDURE ASSIGN 0-)

ENTRY FUNCTION CHANGE (X, Y, E: INTEGER) :'BOOLEAN;
BEGIN

CHANGE : ~ FALSE;
IF (INFO[X,Y)-=O) AND NOT STOP THEN (. PREE •.)

BEGIN
INFOrX,YJ := E: (~UPDATE IN-MEMORY')
WRITES(X, Y, E); (0- UPDATE SCREEN 0-:)

CHANGE : -= TRUE;
END;

t:NfJ; (~FUNCTION CHANGE .)

ENTRY FUNCTION DONE(X,Y,E:INTEGER):BooLEAN;

BEGIN
INFO[X.Y1 :-= E; (0- UPDATE IN-MEMORY -)
DONE FALSE;
IF' (E-O) OR STOP THEN (~TERMINATE WOLF/RABBIT 0-:)

BEGIN
WR I TE~,(X, Y, 0);

DONE

END;
TRUE:

END; (. FUNCTION OONE .,)

END: (. OB.TEeT SCREEN .)

(~ UPDATE SCREEN ~,)

:>Hlrr!JP OR,JECT (. SYNCHRONIZE TERMINATION 0-)

PATH
1: (SIGNAL;WAIT)

END;

ENTRY PROCEDURE SIGNAL;
BEGIN
END; (0- PROCEDURE SIGNAL ~)

ENTRY PROCEDURE WAIT;
REGIN
END; (* PROCEDURE WAIT .-)

END; (0- OBJECT SHUTUP 0-)

INTERRUPT PROCESS DLVJIN [PRIORITY=l,VECTOR-,,#1001 (IRUF:CRTPTR);
(. DEFAULT VF:C'TOR II 100 .)

(. OEFAULT ADDRESS #77777560 t)

VAR
l;,R[#7777750;,0) INTEGER;
RUFI 1I-77777Sf,;I 1 INTEGER;
(-HRUP INTEGER;
CH CHAR;

BEGIN
REPEAT

.')UPSET;
("SR 64:

\)010:

(-HRlJF R1W·

'·SF\. CSR 64·

~,lJF'RTN :
IF ("HAUF· () THEN

IRIJF~ PIJSHiCHR(ESC));
lRUF' ,PlrSH((-HR(CHRUF MOD llA));

!lNTTL FALSE;

f.N[); I' !NTf.RRIJPT PROCF.SS DLV,JIN .)

J NTFRR1JPT f-JROC"F.:-;.'; D].V.1OUT[PRIORITY -1 VEn'oR II ·l2.() I (()HUF: CRTPTR)

VAF

(. DF.F'AIJLT VF:CTOR
IlFFA1Jl.T An[lRF.:~'

II ~ 20 .)

(':~Rr #"/·1)'17'",41 IN'rEC;r:R;

A1Wi1P777"I',nh I INTEGER;
(·H ('HAR·

RFI ;IN

REPEAT

fd

AUF ORIl(('H)

I;()IO:

.';IJPRTN·
l1NTlr, FAr.;;F.·

PROCESS WOLF! X. Y. I ENFRGY: I NTE(~ER); ONE I N~;TANrE PER WOLF .)
VAR

FNF.R(~Y

ER

EW

INTF:(;ER;
TNTf.(;ER;
INT}-:C;PR:
INTf.(;EF< .

(,'lJRRf~N'I' ENER(~Y LEVEL '\
I' ENf:pr;y LEVEL OF NEIGHBO'RINC; RAHBITS .)
I' ENFRr;y LFVEl. ()F NFI<;!lArl'RINI; WOLVES')

·'RE:;T" TIMF kF1'WF.EN Ar'TTVITIES .)
HFt;rN

ENERI;Y
PEP EAT

I ENERCY·

ENERt;Y ENEI<I;Y WANN1JAI,:
"[REEN j'()()YIX Y.EH.EWI
1 F ER, () THEN

ENFR<;Y EN!-:R,;Y 4'ER
Fi.,(;F

ALWAY:; ,n .)

(. ANNWI.J. ENERI;Y lJ.';AI;F
I' ('!lEt-Y NFII~HRIl!<.';

l"Af~H 11" TO £::A1

IF EW· wr·ROW[) THI::N I' T()() MANY W()J,V}::;
ENERI;Y ENER(;Y WANN1IAL

U,.' F

If' (EW,()) ANI' IENER(;Y WFFRTj[,FI TIIEN I·RIIII<EATI-
,'HEAT(Jf' I f<EATJ-'/ X Y r;Nl",W;Y \.

J} FNE1':;Y· THEN AV(JIII HI'" ()MINi; A hAHl\I'l' '1
FN:-:RI ;Y

1 F ENER(;Y. WMAX 'J'HEN
FNER(;Y WM1IX·

I JLY WHAX FNl::F,;y

lJ :!j,Y· I-~NFh'(_;Y THEN
I,LY ENEf<';Y

)IELAYi IH,.Y 'I; RF.:;T
:INTIL ';(-kEEN j)()NHX.Y ENfRCjY); [JEt-TDF WlIETHER STILL "ALIV1::" ~)

ENI); I' PR(WF.';'; W(1LF

IF

\-'AR

kAhKITl1. 'r

f- NFPI;'y'

ER

FW
[1[,]"

F~FlI\ ,v

!-'I:I·l<A'1'

; NT!- ;f:H

[~T~ ;F:F

N'i'F .i- \,'.

;'-.JTI- ;!T

, • 11NY IN:;TANIT PER RAHH IT

·'f.,'RYNT ~,'NFR Y ;'1-;\1).'[,

I:N~:RI.y :,J-:'';YL 'JF NE 1 (;I-!ROR I Nl.; R/l.HR I '1':;

I·,NER\;Y (iF NFI',~IlHtlf..1N':, ·W"OJ,VE:-;

·r.-! ·:'lMl H)-TWFFN A,';-',V;TIE:; ')

I-:NEI"I;Y ENFl< ,)" FANNIIAL: ANNtJAI. ENFR(:Y U:;;\(,r
, I !I: , r N!-_ll,lmiIR.L; •

)-:[,1 EN llY W(ILl"' .)

"I-TN 1.1 I' If< (;: . Y)-,1,'. EW 1

i\N)J I ENI-:P(;Y· RFEI,'!'l LF THEN \' I·P()CREATF

35

HECJN
('REAT(If(, (REATE(X, Y, ENER(;Y);
IF' ER, R("R(lWT) THEN (. RARA ITf, I,OVF. A rROW[) ~)

r:Nr:R{jYf-2 'RANNJ1AI,;

END:
If' fNER(;Y, () THI;:N (. AVOID RfCOMING A WOLF·)

ENER(iY 0;

I f' ENERGY < RMAX THf:N (. CANNOT {};,F. EXCESS ENERGY .,..)

ENERGY RMAX;

OLY: ENERGY RMAX; (. REST BASED UPON ENERGY .)

IF [)l,Y (- ENERGY THEN
DJ,Y -ENERGY:

DELAY(DLY): (* REST"")
!INTli, SCREEN,OONE{X,Y,ENERGY); (. DECIDE WHETHER STILL "ALIVE" ")

END: (.,.. PROCESS RABBIT .,..)

PROCEDURE PROCREATE 1 (" CREATE RABBITS AND WOLVES ")
VAl<

x INTEGER;
Y INTEGER;
ENERGY INTEGER;
OIR (UP,OOWN,LEPT,RIGHT);
DIRS INTEGER;

(" CREATOR'S CURRENT POSITION ")

(.,.. CREATED' 5 INITIAL ENERGY -)
(.,.. CURRENT DIRECTION ...)
(- DIRECTION COUNTER ..)

BEGIN
POR Y - 1 TO ¥MAX 1 DO (. INITIALIZE SCREEN .,)

BEGIN
srREEN. ASSIGN(XWOLF, Y. WINIT);
WOI,F(XWOLF, Y. WINIT):

(. A COLUMN OF WOLVES .)

srREEN .ASSIGN(XRABBIT, Y, RINIT);
RABBIT(XRABBIT, y, RINIT);

(. A ("()LOMN OF RABAI1'S • \

END:
rJTR t1P: (. CREATION DIRECTION')
REPEAT (.,.. rREATE OFFSPRING AS REQUIRED .)

rREATOR,STARTUP(X,Y,ENERGY): (. OBTAIN OPERATION REQUEST')
I F ENERGY,) 0 THEN (. REQUEST FOR ("REATION .)

BEGIN

DIRS 4; (. TRY ALL FOUR 1)1 RF.CTI ONS .)
REPEAT

TF DIR-RIGHT THEN (' ('ONSIDER NEXT DIRECTION')
orR UP

nIR !}flCC(DIR);
('A;,E PIR OF"

Ill' If' Y, I THEN
IF SC"REEN, (-HANGF.(X, Y 1, ENERGY) THEN

REt;IN
OIR:; (); (' SET fLAG .)

Y 1: (* UPDATE DIRECTION')
END,

POWN IF YI2,YMAX THEN
IF" ::CREEN (-HANGE(X Y+ 1. ENERGY) THEN

AE(jIN
fJIR:; 0: (. ;,ET FLAG')
Y YII: (' UPDATE fd RE(,TION .)

EN!):

LEFT If'" X,I THEN
1 F' ~WRF.1:::N, CHANGf:(x I, y, r:Nt:R(;Y) THEN

BE(;IN
III W; ():

X Xl: I' UPDATE flIRE('TIIIN • I
ENI)

R;I;H'J' If" XI'2. XMAX THEN
if" :;("RF.I::N, CHAN(~fo:(X t 1 , y, f:NER(jY \ '1'HEN

AEriIN
{' :;£'1' FLA(; '\

XI I: (' UP[lATf III R.E('TION .)
EN!)'

I)! R:' [II R;; I;

IlNTI J. I)IR~;< 0;

IF nIR:;'O THEN (. If' 0, ("ANNOT !)(l ('REATION

r F r:NER(;Y, () THEN I ' "HEA'I'E NEW RAHH I 'T' • I

RAHAl 1'(X, y, !':NElo:, iY I
rr.';E (REATF NEW WoLF ' i

WOLFI X. '(.r~NEH(;Y):
EN!);

IINTII. r:Nf:R(iY 0: (' :aHJ'l'floWN ptmVIIJr::; :;I'F.('IAL ('ODE FOR TERMINATH,N
.';HIITtJP,: J (;NAL' (. :;HtJ1'Il()WN HANrJl,r:~; Ex'rRANF()!J:; ('Rf:AT I ()N Rr:()tJf':m'~;

ENrI' I' PR()CF:t)llTH: PR()('JU:A'rr: .)

36

PROCESS SHUTDOWN: (" HANDLE TERMINATION ...)
VAl<

CH
X

Y
ENERGY

CHAR: (" INPUT CHARACTER ..)
INTEGER: (... ABSORB EXCESS ATTEMPTS TO PROCREATE ...)

INTEGER:
INTEGER;

BEGIN
CRTIRUFA,POP(CH); (I< WAIT POR TERMINA.L INPUT 1<)

SCREEN,KILl,; (I< NOTIFY SCREEN MONITOR 1<)

rREATOR, CREATE(0, (l, 0); (. TERMINATE PROCEATION .,..)
,<;HI1TtTP,WAIT:
REPEAT (. HANDLE ANY EXTRANEOUS ATTEMPTS AT CREATION ~)

rRF.AToR , .":TARTlJP(X y, ENERGY);
IINTII, ENF.RGY-O:

f:NrJ: (. PR()('F..s~; SHIITDOWN .)

PR()c:EII1JRE PARAM:';; (. PROMPT U::ifo;R f'OR INPlrr .)

'l'YPF.
~;TRJN(;f, l'A('KEIJ Af<RAY 11 ,bl OF ('HAR:

I'R()(-f':fJtlRf' i'AR:I\Mr~(X,Y:INTE{jER: M!i(;::-;"RINGf,: VAH VAT,:INTEGER);

VAfI

C"fl ('HAR:
HEr; IN

'-R'I'()H[JF~ ,PIJ:;H(('IIR(r::OC'));

n<'T'(H~ITY' ,P(I;;U('Y');
('f~'T'()A!1F~ ,f'!!:-iH(l-HR(Yt II) I;
,'RTI)HIW' !-,(J;;II('HR(XI 11 I);

,"'(IT< J I TO f, DO
('R'l'(HHW' ,P\J~;H(M!;G/ 1 1);

VAL Ci;

(. V'rt.,2 ,Tl1MP • \

REf-'fAT HEAl) AND pT-TonE VAI.UF. • \
('l<TIHUF" \'(11)(("U);

I r' {("Ii, '()' \ I\NTl {(-H· "j' I THEN

l-W(; IN

VAl, VAl.'IO+(ORI)(('U) nIHI('()' I):

q~T(JHIW' ,P!)::IH eH);

EN[l
f:i:;f'

!F ('H, ,('HR(("RI THEN (' tJNRE('(l(;NIZEIJ • ~

('U1'()AUP" I'IJ:;II('HRI BEl,',):
IIN':'lI, ,vr\l, '.',1'1\ (IT< (("H CHR('R)):

f.NI" i' T'fI:j' FI,trFr: !'l\RAMIN .)

I'ARAMINIXMAX+H,l, 'WIN!T: .WINIT): (' I N I 1'1 AI. ENF.RGY FOR WOLVES ')
INTTIAL ENER(";Y F()H RARHITS .)
N(,HMAJ. L'FETIME FIlR WClI.,'JES .)

N(,I':MAJ. LIFETIME F()R RAHRIT~j • I

T'Ai<AM 1 NI XMAX-+ R

PARAMTNI XMAXIH
t'ARAM1N(XMAX~~

'RINT,.: ,RIN!T'!:
WYR:;: WYR:;

j,'YW; RYR:;

WANNilAi, W:N; T'jV WYR'-;

WFFRTJ i.F ~ • Wf..NNI'AL ,

WI R(IWT: l'WiN:T'

WMAX ;' 'WIN!T

R1NI,. !,!NIT:

J:JANNIJAl. lHNIT llIV RYR~~:

RFER'!'! I.E '2' RANNllAr.:
F«'F/(IWII ,'HINiT:

f<'Mf,X 7'RINIT:
~:N1I' .. ' PR(WF.[lI/F<r: PARAMS .)

HFI,!N " i'l." ';]'AM :"LANI
NEW(l R'I'l HtW):
IlLV,) IN (('HTIRIW):
NEW(("RTOHtrF) ;
f)J,V,/()lfT((-RT()f!IW);

Rl-:Pf:AT
('RT(}H[]P' ,PIJ:;!l(('HR(F::;c"));
("flTOHIW' ,r!J~->H('H'):
rRTOHUJ-" ,PW,H(('HR(ESC')) ;
("RTOAI1F' P[JSH(' ,J');

PARAMS;
SCREEN. SETUP;
SHtfTDOWN :
PROCREATE;
rRF.ATOR, CREATE(0, (), (l):

lIN'I'II. FAI.SE;
END, (. PROGRAM I :lLANO .)

WIIT.F VTl.I,m: A.RE POSITIVE')

(. RABRIT VAl,t1f:~; ARE NEt;ATIVF. .)

(• {'HEA'rE INP!rr HIIFfo'ER .)
(' ~;1'ARTtJP I N}l!1'1' PRorESS .)
(, ('REATE OII'1'PI/1' RIJf'FER .)
(' ;;TAI~TUP OI1TPIT'T' PRo("l'::-,!-; .)

(. V'1"J2 HOMF. (JPr:RATION ~ I

(. VT'):l rLEAR., SCREEN OPE RAT I ON .)

(' ASK lISER FOR PARAMETERS .)
(. INITIALIZE INTERNAL SCREEN -)
(. SETUP FOR EVENTUAL TERMINATION ..)
(. RETURNS WHEN ALI, TASKS COMPLETED .,..)
(. TERMI NATE SHUTDOWN .)

PUG

Articles

An Introduction to Modula-2
for Pascal Programmers

By Lee Jacobson and Bebo White
Jacobson, White, & Associates

San Francisco, CA

THE BACKGROUND AND HISTORY
OF MODULA-2

Modula-2 (like Pascal) was developed at the ETH
Zurich under the direction of Niklaus Wirth (lnstitut fur
Informatik). Its development grew largely from a prac
tical need for a general purpose, efficiently implement
able systems programming language. The first
production use of Modula-2 occurred in 1981. Dr.
Wirth's book, 'Programming in Modula-2' was pub
lished by Springer-Verlag in 1982.

It is virtually impossible to examine Modula-2
without recognizing its roots in Pascal. In its original
design, Pascal was intended to be a language suitable
for teaching programming as a systematic discipline
based on certain fundamental concepts clearly and nat
urally reflected within it. These concepts were largely
centered around stepwise refinement of problem solu
tions and structured programming.

Inasmuch as Pascal is basically an academic lan
guage, its widespread use for a variety of applications
has clearly exceeded its design intention. Hence, many
extensions to the original Pascal definition have been
designed. Likewise, it has attracted as many critics as
it has disciples.

Modula-2 has assumed all of the positive features
of Pascal, and has attempted to address its commonly
recognized shortcomings. The result is a structured,
modular, portable, readable, efficient, machine inde
pendent, flexible language.

This paper will address the primary differences be
tween Modula-2 and Pascal with particular emphasis on
some ofthose features which the authors consider quite
significant. Programming examples will be given in both
Modula-2 and Pascal.

MODULA-2'S DIFFERENCES FROM PASCAL

The Role of Modules in Modula-2

Modules are the most important feature distin
guishing Modula-2 from Pascal. Relying heavily upon
the concepts of scope and block, modules address the
problem, usually found in large programs, of separating
visibility from existence. In block-structured lan
guages, the range in which an object (e.g. a variable or
procedure) is known is called the object's scope, and
therefore, defines its visibility. However, an object's
visibility also binds its existence, in that objects are cre
ated when the block in which they reside is entered and
destroyed when the block is exited. It should be pos
sible to declare variables that maintain their values, but
are visible only in a few parts of a program. Concur
rently, there is also a need for closer control of visibil
ity. A procedure should not be able to access every

Articles

object declared outside of it when it only needs to ac
cess a few of them.

Syntactically, modules closely resemble proce
dures, but they have different rules about visibility and
the existence of their locally declared objects. Consider
the following declarations:

PROCEDURE Outside,
VAR x,y,z, INTEGER,

MODULE Mod,
IMPOQT x,
EXPORT Q, P1;
VAR a,b,c, INTEGER,

PROCEDURE P1,
BEGIN
a:=a+1~

K : = a;

END P1,

END Mod;

END Outside;

PROCEDURE Outside,
VAR x,y.z: INTEGER;

(* no module here *)

a,b.c: INTEGER;

PROCEDURE 'P 1;
BEGIN

a : = a ... 1;
K : = a;

END; (* PI *1

END; (* Outside *1

The only syntactic difference between the module
Mod and a normal Pascal procedure declaration are the
reserved word beginning the declaration (MODULE
instead of PROCEDURE) and the presence of IM
PORT and EXPORT declarations following the module
heading.

The semantic differences are more interesting. The
objects declared within Mod (a, b, c) exist at the same
time as the variables x, y, and z, and remain so as long
as Outside is active. The objects named in Mod's IM
PORT list are the only externally declared objects vis
ible within Mod (x but not y or z). The objects declared
in Mod's EXPORT list are the only locally declared ob
jects visible outside Mod. Thus, a and PI are accessible
from Outside, but band c remain hidden inside Mod.

Specifically, a module can be thought of as a syn
tactically opaque wall protecting its enclosed objects,
be they variables or procedures. The export list names
identifiers defined inside the module that are also to be
visible outside. The import list names the identifier de
fined outside the module that is visible inside. Gener
ally, the rules for modules are:

1. Locally declared objects exist as long as the en
closing procedure remains activated;

2. Locally declared objects are visible inside the
module and if they appear in the module's export list,
they are also visible outside;

3. Objects declared outside of the module are vis
ible inside only if they appear in the module's import
list;

The following example demonstrates the essence
of modularity:

37

MODULE MainProgram; PROGRAM nainProgra.;

MODULE RandomNumbers:
IMPORT TimeOIDay.
EXPORT Random;
CONST Modulus = 2345.

Increment = 7227;

VAR Seed INTEGER:

VAR Seed • INTEGER, FUNCTION Rando •• INTEGER,
CONST Modulus a 2345.

PROCEDURE RandomC) • INTEGER. Incre.ent = 7227.
BEGr~ BEGIN
Seed .= CSeed+Increment) Seed .= CSeed+Incre.ent)

MOD Modulus. MOD Modulus.
RETURN Seed; Rando. ;= Seed;

END Random. END. C* Rando. *)

BEGIN (* RandomHumber *)
Seed := TimeOfDay;

END RandomHumber;

BEGIN (* MainProgram *)

WriteIntCRandomC). 7).

END MainProgram.

BEGIN C* MainProgr •• *)
Seed ;= TiaeOfDay.

Writeln(Rando., 7).

END. C* MainProgra. *)

The random number generator in these examples
uses a seed variable to generate the next random num
ber. Thus, the seed must maintain its value across func
tion calls. The program on the right shows the classical
Pascal solution. Notice that Seed's declaration is at the
top of the program, while its initialization is forced to
the bottom. Two obvious disadvantages arise from the
scattering of Seed across the face of the program:

1. Its occurences become hard to find, especially
in a large program;

2. It becomes accessible to every other procedure
in the program even though it is used only by Random;

The example on the left demonstrates the useful
ness of the module structure. The only object visible to
the ouside world is the procedure Random, while all
objects pertaining to the random number generator are
contained in one place. Note that the module
RandomNumber contains both declarations and a
statement part. Module bodies are the (optional) out
ermost statement parts of module declarations and serve
to initialize a module's variables. Although subject to
the module's restrictive visibility rules, module bodies
conceptually belong to the enclosing procedure rather
than the modules themselves. Therefore, module bod
ies are automatically executed when the enclosing pro
cedure is called.

Relaxed Declaration Order

New Pascal users are often frustrated and con
fused by the enforced declaration and definition block
structure required within the program skeleton. De
spite the emphasis on modules, blocks still play an im
portant part in Modula-2: implementation modules,
program modules, internal modules, and procedures are
all declared as blocks. Differences from Pascal include
relaxed order of declarations, termination of all blocks
by a procedure or module identifier, and the optional
nature of block bodies.

Pascal imposes a strict order on the declaration of
objects; within any given block, labels must be declared

38

before constants, constants before types, and so on.
Modula-2 eliminates this restriction - declarations can
appear in any order. Programs containing a large num
ber of declarations are easier to read and understand
when related declarations are grouped together (re
gardless of their kind).

The following is an example of relaxed declaration
order:

MODULE Xlator.
CONST MaxsSym = 1024.

TYPE Sy~Buller = ARRAY! 1 .. MaxSym! OF CHAR.
VAR SymBuffl. SymBuff2. SymBuffer.

CONST MaxCode = 512.
TYPE CodeBuffer = ARRAY!I .. MaxCodel OF BYTE.
VAR CodeBuff. CodeBuffer.

END Xlator.

This example easily demonstrates how various re
lated declarations may be placed together in a Modula-
2 program, whereas in a Pascal program they may be
scattered due to strict block ordering. Relaxed decla
ration order not only improves readability but enables
a logical ordering which may be very important in large
programs.

GOTO-Iess Programming In Modula-2

Inasmuch as structured programming is often
equated with elimination of the use of unconditional
transfers, Pascal was designed to de-emphasize use of
the GOTO statement. Still the GOTO statement and the
LABEL 'type' were supported to allow programming
cases where the Pascal logical structures were insuffi
cient. This meant that a GOTO statement was available
for use in a situation which would otherwise have forced
restructuring of the program logic.

For example, consider the following two program
segments:

Remainder := Alpha MOD Beta;
WHILE Remainder <> 0 DO

BEGIN

10. Remainder .= Alpha MOD Bet.,
IF Remainder = 0 THEN

GOTO .20.
Alpha • = Beta. Al pha • = Beta.
Beta := Remainder; Beta := ReaainderJ
Remainder .= Alpha MOD Beta GOTO 10.

EHD. 20.

The example on the left avoids use of a GOTO by
duplicating an operation. The example on the right,
while using GOTOs is actually more explicit.

Modula-2 does not support Pascal GOTO and LA
BEL. Instead it provides transfer mechanisms for uses
under particular controlled circumstances. One of these
mechanisms is the EXIT statement which permits pre
mature exiting of a loop. The following is a program
segment in Modula-2 performing the same operation:

LOOP
Remainder .= Alpha MOD Beta.
IF Remainder .= 0 THEN EXIT.
Alpha := Beta;

Beta : = Remainder
EHD.

This example also illustrates the Modula-2 LOOP
construct which operates as a Loop-Forever structure.
When the EXIT statement is executed, program control

Articles

will transfer to the statement following the END state
ment which terminates the range of the LOOP.

Additional examples of unconditional transfers
supported by Modula-2 include the RETURN state
ment which is used to prematurely exit a procedure,
and the HALT standard procedure which terminates
the current program.

Dynamic Array Parameters

Another important distinction between Modula-2
and Pascal involves the capability to declare dynamic
array parameters. Modula-2 allows formal parameter
types of the form:

ARRAY OFT

where T is an arbitrary base type. Note that the array
bounds are omitted defining a dynamic array type which
is compatible with all (one dimensional) arrays having
the same base type T.

The ramifications of this feature are widespread.
through it, procedures are able to pass to other proce
dures (functions, etc.) arrays of unspecified size. (Index
checking is accomplished by means of a new standard
procedure HIGH).

Perhaps the most important way in which dynamic
array perameters may be used is in the area of string
processing. This feature lifts the rigid Pascal restriction
concerning the value assignment and comparison of
string variables. No longer is it necessary that opera
tions may only be performed on strings which have the
same length.

Separate Compilation

Separate compilation is allowed by the Modula-2
compiler through the use of the compilation unit. Mod
ula-2 programs are constructed from two kinds of com
pilation units: program modules and library modules.
Program modules are single compilation units and their
compiled forms constitute executable programs. They
are analogous to standard Pascal programs.

Library modules are a different animal and form
the basis for the Modula-2Iibrary. They are divided into
a definition module and an implementation module. Def
inition modules contain declarations ofthe objects which
are exported to other compilation units. Implementa
tion modules contain the code implementing the library
module. Both always exist as a pair and are related by
being declared with the same module identifier.

To understand the rationale behind dividing a li
brary module into separate definition and implemen
tation modules, consider the design and development
of a large software system, such as an operating system.
The first step in designing such a system is to identify
major subsystems and design interfaces through which
the subsystems communicate. Once this is done, actual
development of the subsystems can proceed, with each
programmer responsible for developing one (or more)
of the subsystems.

Now consider the project requirements in terms of
Modula-2's separate compilation facilities. Subsystems
will most likely be composed of one or more compila
tion units. Defining and maintaining consistent inter
faces is of critical importance in ensuring error-free

Articles

communication between subsystems. During the de
sign stage, however, the subsystems themselves do not
yet exist. They are known only by their interfaces.

The concept of a subsystem interface corresponds
to the definition module construct. Thus, interfaces can
be defined as a set of definition modules before sub
system development (i.e., design and coding ofthe im
plementation modules) begins. These modules are
distributed to all members of the programming group,
and it is through these modules that inter-subsystem is
defined. Interface consistency is automatically en
forced by the compiler.

Modula-2 Libraries

The library is a collection of separately compiled
modules that forms an essential part of most Modula-2
implementations. It typically contains the following
kinds of modules:

1. Low-level system modules which provide ac
cess to local system resources;

2. Standard utility modules which provide a con
sistent system environment across all Modula-2
implementations;

3. General-purpose modules which provide useful
operations to many programs;

4. Special-purpose modules which form part of a
single program;

The library is stored on one or more disk files con
taining compiled forms of the library module's compi
lation units. The library is accessed by both the compiler
and the program loader - the former reads the com
piled definition modules while compiling and the latter
loads the compiled implementation modules when ex
ecuting the program that imports library modules.

A dependency arises between library modules and
the modules that import them. Consider the example of
a single library module. The compiler must reference
the module's symbol file (a compiled definition module)
in order to compile the implementation module. There
fore, the definition module must be compiled first. Once
an implementation module has been compiled, its ob
ject file is tied to the current symbol file, as the object
code is based on procedure and data offsets obtained
from the symbol file. Similarly, when a program im
ports a library module, it is assumed that the symbol
file offsets are accurate reflections ofthe corresponding
object file.

The Modula-2 language contains no standard pro
cedures for I/O, memory allocation, or process sched
uling. Instead, these facilities are provided by standard
utility modules stored in the library. Standard utility
modules are expected to be available in every Modula-
2 implementation. Thus, by using only standard mod
ules, Modula-2 programs become portable across all
implementations.

The advantages of expressing commonly-used
routines as library modules (rather than part of the lan
guage) include a smaller compiler, smaller run-time
system, and the ability to define alternative facilities
when the standard facilities prove insufficient. Disad
vantages include the need to explicitly import and bind

39

library modules, and occasionally a less flexible syntax
imposed by expressing standard routines as library
modules (as opposed to their being handled specially
by the compiler).

REFERENCES

1. Niklaus Wirth, Programming in Modula-2, Sprin
ger-Verlag, 1982

CONCLUSION
The examples cited above can only provide a clue

as to the power and flexibility of the Modula-2Ianguage.
It is the hope of the authors that they can pique signif
icant curiosity and interest into this amazing new pro
gramming tool.

2. Niklaus Wirth, MODULA-2, ETH Institut fur In
formatik Report No. 36, reprinted by Volition Sys
tems, Del Mar, CA, 1980

3. Rich Gleaves, Modula II User's Manual, Volition
Systems, 1982

4. Roger Sumner and Rich Gleaves, Modula-2 -A So
lution to Pascal's Problems, Volition Systems, 1982

PUG

40

AVAILABLE ON
MICROFICHE

DIRECT INQUIRIES TO:

miCRO PHOTO Olvlslon

~ BELL E. HOWELL
OLD MANSFIELD ROAD
WOOSTER OH 44691

Contact Christine Ellis
Call tOil-free (800) 321-9881

In Ohio, call (216) 264-6666 collect

Articles

Data Structures Using Pascal
by A.M. Tenenbaum and M.J. Augenstein
Prentice-Hall, 1981

This book is intended as a text for a first course in
data structures that is also a second course in program
ming. It presents all of the major data structures in
cluding stacks, queues, lists, trees, and graphs and
describes recursion, list processing, sorting, and
searching. An appendix provides a brieftutorial on Pas
cal. The emphasis is on practical techniques as opposed
to theoretical concepts. All algorithms and examples
are presented in Pascal.

This book is excellent both for students and for
practicing programmers who want to learn how to apply
algorithms and data structures, whether or not they use
Pascal. However it would not be appropriate, nor was
it intended to be, for those merely wishing to learn
Pascal.

The authors employ several pedagogical tech
niques which others would do well to emulate. First nu
merous examples and sample programs are presented;
the authors do not merely rely on textual explanations.
In spite of this, there are very few typographical or al-

Book Report

gorithmic errors as so often is the case with multiple
figures. Second, the same basic figure is repeated sev
eral times with each version successively updated to
show the intermediate results of an algorithm. For ex
ample, an array is listed after each pass of a sorting al
gorithm so the reader can follow how the sort
progresses. Third, algorithms are often presented as a
combination of Pascal and pseudocode, thus highlight
ing the key points and not confusing the reader with
such irrelevancies as initialization or 110. Fourth, al
gorithms are presented several times with each new
version a refinement of the previous one.

My only criticisms would be that some of the al
gorithms could be simplified, frequently by more ap
propriate tests in "while" statements; and more use
should be made of enumeration types - certain algo
rithms had a Fortran ring to them. However these are
nitpicks: the book is excellent and is highly recom
mended to all PUG'ers.

Arthur Salwin
1405 Homeric Ct.

McLean, VA 22101

41

SOFTWARE BUILDING BLOCKS, INC.
ANNOUNCES PASCAL COMPILER FOR THE

IBM PERSONAL COMPUTER®

ITHACA, NY - A new company, Software
Building Blocks, Incorporated, has been formed in Ith
aca, New York. The founders of the company are Jeff
Moskow, author of the popular, highly acclaimed Pas
callZ@) compiler marketed by Ithaca InterSystems, Inc.;
Laurie Hanselman Moskow, formerly Software Prod
ucts Manager at InterSystems; and William Kellner, a
software engineer who has worked extensively with
Moskow on the PascallZ compiler.

The first product to be released by Software Build
ing Blocks, Inc. is a two-pass, locally optimizing Pascal
compiler for the IBM Personal Computer. The initial
release will run under PC-DOS@); and a CP/M-86@) ver
sion is planned for the near future. Based on the Pascali
Z compiler, the Software Building Blocks implemen
tation, SBB Pascal@) , closely follows the Jensen & Wirth
definition of the language, with extensions designed to
aid the professional programmer in serious software de
velopment. Extensions will include: variable length
strings, direct file access, arbitrary precision BCD
numbers for business arithmetic, functions returning
structured values, separate compilation, exterenal rou
tines, include files, symbolic I/O of enumeration types,
an ELSE clause for the CASE statement, overlays and
chaining.

The compiler package includes a sophisticated in
teractive Pascal debugger, written in SBB Pascal, de
signed to aid in isolating and correcting faults in Pascal
programs. Features ofthe debugger include the abilities
to set and display both absolute and conditional break
points; set watches on variables, procedures or func
tions; display and modify both global and local variables;
display the procedure/function stack, current state
ment and module numbers, current run-time require
ments, and the last ten statements executed; trace
through a program by statement number and proce
dure/function entry/exit; and more.

Also included in the package is a screen editor,
provided in SBB Pascal source. The editor's capabili
ties include: insertion and deletion of lines and char
acters, finding and/or replacing of strings, copying lines
oftext, autoindent for entering structured programs, and
many other features. The editor makes use ofthe func
tion keys on the IBM PC to make editting as easy and
efficient as possible. The editor is provided in source as
an example of the advantages of programming in SBB
Pascal. The library routines are also provided in 8086
assembly language source, and many other example
programs are included as well.

Software Building Blocks, I",c. intends to release
the PC-DOS version of the compiler in June. For more
information, contact Laurie Moskow, Software Build
ing Blocks, Inc., P.O. Box 119, Ithaca, New York,
14851-0119, (607) 272-2807.

@) CP/M-86 is a trademark of Digital Research, Inc.

42

® IBM and IBM Personal Computer are registered
trademarks of International Business Machines
Corporation

@) PascallZ is a trademark ofIthaca InterSystems, Inc.
@) PC-DOS is a trademark of International Business

Machines Corporation
@) Software Building Blocks and SBB Pascal are trade

marks of Software Building Blocks, Inc.

SAGE OPENS BOSTON DIVISION

Sage Computer Technology, headquartered in
Reno, Nevada, has announced the opening of its Bos
ton division.

The purpose of the new facility is to provide re
gional support for dealers and users of the Sage line of
16-bit microcomputers, and to expedite delivery of new
units throughout the Eastern United States.

A complete inventory of Sage II's, Sage IV's, parts
and literature is stocked, and a fully-equipped and
staffed service department is maintained on the
premises.

According to Rod Coleman, Sage president, plans
call for a total of nine such offices to augment the com
pany's domestic sales and support activities. "Regional
support for our dealers and OEMS is a critical part of
our marketing plan. "

Sage's Boston office is now open to dealers &
OEMS, and is located at 15 New England Executive
Park, Suite 120, Burlington, MA 01803. The telephone
number is (617) 229-6868.

More information about Sage micros is available
from either Boston office or corporate office at 4905 En
ergy Way, Reno, Nevada 89502. Telephone (702) 322-
6868.

If agency contact is required, phone or write The Schraff
Group, 18226 W. McDurmott, Suite E, Irvine, CA
92714. Telephone (714) 540-8977.

NEW, 16-BIT SAGE IV
HAS WINCHESTER PLUS

MULTI-USER CAPABILITY

RENO, NEVADA - Sage Computer Technology
has announced availability of the Sage IV, 16-bit (68000)
supermicro.

The new multi-user computer, which accommo
dates up to 6 simultaneous users, surpasses the consid
erable capabilities of the Sage II introduced in March,
1982.

Both machines are based on the 8 MHz 68000 pro
cessor, and both are capable of performing 2-million
operations per second. According to Rod Coleman, Sage
president, they offer performance comparable to that
of high-end mini-computers at a mid-range to high-end
business micro price.

The Sage IV comes standard with 128K of main

Announcements

memory which is expandable, optionally to a mega
byte. This represents an enormous jump from the 128K
to 512K expandability of the Sage II, which in turn of
fers far greater capacity than the typical 64K, 8-bit
computer.

In addition, a 5 to 30Mb Winchester disk, either
fixed or removable, is built into the Sage IV next to a
5~ inch floppy backup. Since there are no wait states,
a 20K program loads from the floppy in 1 second, and
from the hard disk in 1/10 second.

The cabinet, though about 1 Yz. inches taller than
that of the Sage II, is still deceptively small, measuring
only 6W' high, 12W' wide and 16%/1 deep.

"There aren't any tradeoffs with either of these
machines, said Coleman, "the user doesn't have to give
up software support to get high performance, because
the Sages' p-System standard operating system is able
to run hundreds of popular programs deVeloped for 8-
bit micros."

More information may be had by contacting Sage
Computer Technology, 35 North Edison Way, Suite 4,
Reno, Nevada 89502. Telephone (702) 322-6868.

If agency contact is required, phone or write The Schraff
Group, 1325 Airmotive Way, Suite 175, Reno, Nevada
89502. Telephone (702) 348-7339.

NEW MODULA-2 MANUAL FEATURES
TUTORIALS, STANDARD LIBRARY

DEL MAR, CA, Jan. 21 - A 264-page Modula-2
user's manual, featuring a language tutorial and stand
ard library definitions, is now available from Volition
Systems here.

Modula-2 is a new programming language designed
by Niklaus Wirth to replace his earlier language, Pas
cal, in a wide range of real-world applications. Together
with Wirth's own specifications of the language, this
manual provides a complete description of Volition's
implementation of Modula-2, according to its author
Richard Gleaves of Volition Systems.

The manual is designed to be used with Wirth's 48-
page monograph which defines Modula-2 in a concise
but informal style. The monograph is included with the
manuaL Wirth's newly published book Programming
in Modula-2 is also available from Volition.

The manual contains a tutorial for Pascal program
mers that can make them comfortable with the language
within a few hours and proficient within a week, Gleaves
said.

The name Modula-2 comes from MODUlar LAn
guage. It uses modules to facilitate the development and
maintenance of large, complex systems. The language
is especially useful in large industrial and commercial
applications where it can save software developers both
time and money.

Modula-2 is designed to utilize standard software
modules, which are defined in the new manual. These
modules provide access to the facilities normally pro-

Announcements

vided by an operating system, such as program and pro
cess control; console and file 110, including random
access files and disk directory operations; and storage
management. The standard software modules also in
clude utility routines for format conversion, strings, 19
digit BCD arithmetic, and other facilities.

The manual is divided into six sections. The Mod
ula-2 tutorial for Pascal programmers comprises about
one-third of the book.

In addition, there is an introductory section and
sections defining the standard library modules, the util
ity library, a system document that describes the im
plementation of Modula-2 for UCSD Pascal@) and a
machine-specific implementation guide which includes
information on machine specific library modules, in
terrupt handling, and machine-level data representation.

The Modula-2 User's Manual, including Wirth's
Modula-2 report, is immediately available from Voli
tion Systems, P.O. Box 1236, Del Mar, CA 92014 for
$35 per copy. Wirth's book, Programming in Modula-
2, published in 1982 by Springer-Verlag, can be ordered
for $16. Further information about the programming
language is also available from Volition Systems.

Volition Systems concentrates on systems soft
ware development and on research and development in
hardware and sotware. Since the company was founded
in 1980, it has been a leader in the implementation and
dissemination of the Modula-2language and other high
level languages and in the design and development of
advanced computer architectures.

For further information, contact:

Volition Systems
P.O. Box 1236, Del Mar, CA 92014
(619) 481-2286

@) UCSD Pascal is a trademark of the Regents of the
University of California.

MODULA-2 USER'S MANUAL from Volition
Systems (Del Mar, CA) describes Niklaus Wirth's new
programming language in a 264-page loose-leaf format.
document contains a complete tutorial for Pascal pro
grammers, sections defining the standard library mod
ules and the utility library, and an implementation guide.
The manual comes with a copy of Wirth's 48-page tech
nical report on Modula-2.

Modula-2 is particularly useful in large industrial
and commercial applications where using standard
modules facilitates development oflarge, complex sys
tems, according to Volition, which has pioneered in
commercial implementations of the new language. The
Modula-2 User's Manual is immediately available from
Volition Systems, P.O. Box 1236, Del Mar, CA 92014
for $35.

For further information, contact:

A. Winsor Brown
(714) 891-6043

43

USUS FALL MEETING SET
FOR WASHINGTON,D.C.

WASHINGTON, D.C., June 3 - USUS, Inc., the
UCSD Pascal User's Society, will hold its semi-annual
national meeting at the Crystal City Hyatt Hotel here
October 14-16, according to Robert Peterson, USUS
president.

In conjunction with the meeting, USUS will spon
sor two free tutorials - an introduction to the p-System
and an introduction to UCSD Pascal, including Apple
Pascal. *

The meeting will feature technical presentations,
hardware and software demonstrations, language tu
torials, special interest group meetings and software li
brary exchange. Also planned are expert user and major
vendor panels. Election of officers will be held.

"Non-USUS members are welcome to register and
attend any or all of the meeting programs," Peterson
noted.

USUS (pronounced use-us) represents users of the
UCSD Pascal System and its derivatives including the
UCSD p-System and Apple Pascal. It is the most widely
used, machine-independent software system. The so
ciety is non-profit and vendor independent.

The UCSD Pascal System has more than 100,000
users and is capable of running on nearly any computer.
It was developed at the University of California San
Diego to facilitate software portability.

Among the special interest group meetings sched
uled for the Washington meeting are those for users of
IBM Personal Computers, Apple, DEC, Texas Instru
ments, NEC Advanced Personal Computer, the IBM
display writer and Sage Computer Technology
computers.

Also meeting will be those interested in application
development, graphics, communications, file access,
Modula-2, UCSD Pascal compatibility and the Ad
vanced System Editor.

The software library, with significant recent ac
quisitions, will be available for reproduction on various
diskette formats. Members at the meeting will be able
to copy the library onto their own disks for $1.00 each.

Those registering for the meeting before Septem
ber 23 will qualify for the pre-registration price of $25.
Checks should be made payable to USUS and mailed
to USUS Meeting Committee, P.O. Box 1148, La Jolla,
CA 92038. Registration at the door will be $35 and will
begin at 10 a.m. Friday, October 14.

Hotel reservations should be made directly with
the Crystal City Hyatt hotel (adjacent to Washington
National Airport), 2799 Jefferson Davis Highway, Ar
lington, VA 22202, (703) 486-1234. Additional meeting
information is available from Thomas Woteki, Infor
mation Systems Inc., 3865 Wilson Blvd., Suite 202, Ar
lington, VA 22203, (703) 522-8898.

USUS was created to promote and influence the
development of the UCSD Pascal System and to pro
vide users and vendors with a forum for education and
information exchange about it. Annual membership in
the society is $25 for individuals and $500 for institutions.

* Apple Pascal is a trademark of Apple Computer, Inc.

44

UCSD PASCAL USERS FORM
TEXT EDITOR INTEREST GROUP

SAN FRANCISCO, CA, June 15, 1983 - A spe
cial interest group (SIG) for users of the Advanced Sys
tem Editor (ASE) for the UCSD Pascal System has been
formed by USUS, the UCSD Pascal System User's So
ciety, according to Robert W. Peterson, president of
the society.

The new SIG will be chaired by Sam Bassett, of
San Francisco, CA. "The ASE SIG will be open to any
USUS member who is using or thinking about getting
the Advanced System Editor." Peterson said.

The new ASE SIG allows members to share com
mon problems and solutions and will serve as a clearing
house for information relating to implementation, op
timization and use of ASE on a variety of systems which
have the UCSD p-System installed.

The SIG has established a liaison with Volition
Systems of Del Mar, CA, the creators of ASE. It will
coordinate relevant contributions to the USUS Soft
ware Exchange Library and to USUS News, the soci
ety's quarterly newsletter, Bassett said. Furthermore,
SIG members may communicate via electronic mail un
der USUS sponsorship.

The next ASE SIG meeting will take place at the
USUS semi-annual national meeting in Washington,
D.C., October 14-16. In addition to the ASE and other
SIG sessions, the USUS meeting will feature tutorials
on UCSD Pascal and the UCSD p-System. Also on the
agenda are technical presentations, software exchange,
hardware and software demonstrations and an expert
user panel.

Membership in the ASE SIG is free of charge to
any member of USUS, the vendor-independent, non
profit user's group for the UCSD Pascal System. An
nual membership in the society is $25 for individuals
and $500 for institutions.

USUS (pronounced use-us) was founded in 1980
to promote and influence the development of the UCSD
Pascal System and to provide a forum for education and
information exchange about it. Further information on
USUS is available from the Secretary, USUS, P.O. Box
1148, La Jolla, CA 92038.

PASCAL USER'S SOCIETY
FORMS MODULA-2 GROUP

SAN DIEGO, CA, May 26 - USUS, the UCSD
Pascal System User's Society, has formed a special in
terest group (SIG) for users of the new Modula-2 pro
gramming language, according to Robert W. Peterson,
USUS president.

The new SIG will be chaired by David Ramsey of
Corvus Systems, Inc. (San Jose,CA). The group was
formed when USUS held its semi-annual national meet
ing here last month. Modula-2 runs on Version II based
UCSD Pascal Systems.

"The Modula-2 SIG will be open to any USUS
member using or wanting to investigate this language,"
Ramsey said. "It is, to my knowledge, the first user's
group devoted to communication about Modula-2."

Announcements

The new language was created by Niklaus Wirth
to answer difficulties encountered with his earlier lan
guage, Pascal. "As people discover the benefits of
working in this new language, we expect this SIG to
expand repidly," Ramsey said.

Implementations of the Modula-2 programming
language are available for the Apple II, lie and III com
puters, the IBM Personal Computer, the 68000-based
Sage 2 and 4, the Texas Instruments 9900, the Scenic
One and Z80/8080-based systems, according to Joel J.
McCormack of Volition Systems (Del Mar, CA).

Volition is the only current supplier of the language
for use on microcomputers and supplies systems as well
as the Modula-2language to run on them.

"Because the language is modular, users spend less
time writing and maintaining code," McCormack said.
"Standard library modules provide Modula-2 with a
standard operating environment, and programs created
within it are portable across all Modula-2 systems."

The new Modula-2 SIG will enable users to share
experiences with others using the language or devel
oping applications in it, Ramsey said. "We expect to
serve as a clearing house for user information in this
fast-changing area."

One of the first goals of the SIG is creation of a
user's library of Modula-2 programs that will be in
cluded in the USUS library, Ramsey noted. It will be
compiled by Curt Snyder of Allergan Pharmaceuticals
(Irvine, CA).

Membership in the Modula-2 SIG is free of charge
to any member of USUS, which is the vendor-inde
pendent, non-profit user's group for the UCSD Pascal
System. Annual membership in the society is $25 for
individuals and $500 for institutions. Further informa
tion on USUS is available from the Secretary, USUS,
P.O. Box 1148, La Jolla, CA 92038.

For those wanting to know more about the Mod
ula-2 SIG, Ramsey can be reached at Corvus Systems,
2029 O'Toole Avenue, San Jose, CA 95131, (408) 946-
7700, extension 267.

Volition Systems has pioneered in the implemen
tation and dissemination of the Modula-2 language.
Further information about Modula-2 and available im
plementations may be obtained from Tracy Barrett,
Volition Systems, P.O. Box 1236, Del Mar, CA 92014,
(619) 481-2286.

PASCAL USERS, VENDORS GATHER
FOR USUS SAN DIEGO MEETING

SAN DIEGO, CA, May 2 - USUS, the UCSD Pascal
System User's Society, formed five new special inter
est groups (SIG's) and made plans for a first regional
chapter at its well-attended, semi-annual national meet
ing here last week, according to Robert W. Peterson,
USUS president.

In addition, two vendors ofUCSD Pascal products
- Apple Computer, Inc. and Volition Systems - chose
the occasion to reveal new offerings.

"Record meeting attendance reflects the users'
commitment to increased knowledge about use of the
UCSD Pascal System," Peterson said. "More than 240

Announcements

attended and actively participated in special interest
group and committee meetings, panel discussions and
the four tutorials."

Keynote speaker for the event was Andrew Green
berg, designer and co-author of the popular Wizardry
games. He told how he had solved the challenge of put
ting a very large program like Wizardry on a microcom
puter with limited disk and main memory storage.

"Greenberg offered members valuable insights into
program design, structure and implementation," Pe
terson noted.

The new special interest groups are for application
developers and for users of the NEC Advanced Per
sonal Computer, the IBM Display Writer, the Ad
vanced System Editor from Volition Systems, and the
Modula-2 programming language. In addition, plans for
the national organization's first local group in Southern
California were discussed.

USUS already has SIG's for users of Apple, DEC,
Texas Instruments and Sage computers, the IBM Per
sonal Computer and for those interested in communi
cations, word processing and UCSD Pascal
compatibility.

Of particular interest to those attending the meet
ing was the demonstration area, where the latest ad
vances in UCSD Pascal hardware, software and
applications were demonstrated on 20 different ma
chines, Peterson said.

At the meeting, Apple Computer, Inc., which has
an installed base of some 82,000 Pascal development
systems on its Apple II and Apple III computers, an
nounced that updates of Apple II Pascal and Apple III
Pascal will be available this year.

Apple revealed that Version 1.2 of Apple II Pascal
will be available in the fourth quarter of 1983 and will
provide support for all features of the Apple lIe includ
ing extended memory support for the 128K lIe. Version
1.2 also makes available facilities for integrating into
the UCSD Pascal environment in a natural way addi
tional mass storage devices such as hard disks.

Apple also confirmed that Version 1.1 of Apple III
Pascal will be available at the end ofJune 1983. Its most
notable feature is the Standard Apple Numeric Envi
ronment that fully implements the IEEE standard for
floating point arithmetic.

Volition Systems demonstrated the new Modula-2
programming language running for the first time on an
IBM Personal Computer. USUS members formed a
Modula-2 SIG at the meeting to exchange information
about the language. It will be chaired by Dave Ramsey,
Corvus Systems (San Jose, CA).

The chairman of the newly formed application de
veloper's SIG is Dennis Gallinat, Apple Computer (Cu
pertino, CA), and Samuel Bassett, Bassett Information
Processing (San Francisco, CA) is chairing the Ad
vanced System Editor SIG.

Lane Sharman, Resource Systems Group (Del Mar,
CA) will head the Special Interest Group for the IBM
Display Writer, and the NEC Advanced Personal Com
puter SIG will be chaired by George Symons, TICOM
Systems, Inc. (Marina del Ray, CA).

The fall USUS meeting will be held in Washington,
D.C., at the Hyatt Regency Crystal City, October 14-
16, 1983. Further information is available from the Sec-

45

retary, USUS, P.O. Box 1148, La Jolla, CA 92038.
USUS (pronounced use-us) is a vendor-independ

ent, non-profit user's group for the most widely used,
machine-independent software system - the UCSD
Pascal System, and its successors such as the Apple
Pascal System and the UCSD p-System.

USUS was created to promote and influence the
development of the UCSD Pascal System and to pro
vide a forum for education and information exchange
about it. USUS has institutional as well as individual
members in more than 20 countries. Annual member
ship in the society is $25 for individuals and $500 for
institutions.

VOLITION DEMONSTRATES
MODULA-2 FOR IBM PC

DEL MAR, CA, May 3 - Volition Systems here
has demonstrated Niklaus Wirth's new Modula-2 pro
gramming language running for the first time on the IBM
Personal Computer.

The new implementation was demonstrated for
members of USUS, the UCSD PascaP System User's
Society, at its semi-annual national meeting in San Diego
last week. Modula-2 will be included as part of Voli
tion's complete software development system.

"Modula-2 is proving especially valuable in large
industrial and commercial applications where standard
software modules can save time and money in program
development and maintenance," according to Joel J.
McCormack of Volition Systems.

"Now our new implementation will make these
savings possible on the IBM PC. Our software devel
opment system will even run efficiently on 64K PC's,"
he continued. "And the availability of Modula-2 on the
IBM PC should make the language even more attractive
to application developers."

46

The IBM PC implementation will significantly ex
pand the availability of Modula-2. Current Volition ver
sions are based on the 6502 (including Apple IF and
Apple III computers), the 8080/Z80, TI 9900, and the
68000.

Niklaus Wirth developed Modula-2 (from MOD
ular LAnguage) to replace his earlier language, Pascal.
Whereas Pascal was intended as"a teaching language,
Modula-2 is expressly designed for use in a wide range
of real-world applications, and it offers great flexibility
in the development oflarge, complex systems.

The implementation for the IBM PC is expected to
be available in the third quarter of 1983, McCormack
said. The system will include Modula-2 and Pascal
compilers, the modula library, the powerful ASE text
editor, V-NI)(@> command shell (that provides a UNIX3-
like programming environment), and a complete set of
utility programs for file manipulation and electronic mail
communication.

Volition Systems concentrates on systems soft
ware development and on research and development in
hardware and software. Since the company was founded
in 1980, it has led in the implementation and dissemi
nation of the Modula-2 language and other high-level
languages and in the design and development of ad
vanced computer architectures.

For further information, contact:
V olition Systems
P.O. Box 1236, Del Mar, CA 92014
(619) 481-2286

1 UCSD Pascal is a trademark of the Regents of the
University of California.

2 Apple II and Apple III are trademarks of Apple Com
puter, Inc.

3 UNIX is a trademark of Bell Laboratories.
PUG

Announcements

O. DATE Apr. 28,1983

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (0 Give a person. address and phone number 0,
Robert Reimiller
OMegaSoft
p.O. Box 842
CaMarillo, CA 93010
(805) 987-6426

2. MACHI NE ISYSTEM CON FIGURATION (0 Any known limits on the configuration or support software required, e.g.

··1C (i 8 09 P race s so r oper.ting system. OJ

Running Moos, 05-9, or Flex OS
Requires 48K to 5fiK (RecoMmended)

3. DISTRIBUTION (0 Who to ask. how it comes. in what options. and at what price OJ

;\Iorth America: Fron OMega Soft
International: FroM OmcqaSoft or distrihutors in GerMrtny, Switzer
land, Great Britain, Australia, Sweden, and the Netherlands. Price
is $425 to $475 for Compiler, Dehuqqer, and Runtime.
Relocatable AsseMbler/Linker available ~or $125 to $150.

4. DOCUMENTATION (0 What is available and where OJ

220 Per. Pascal manurtl with complete syntax and installation
instructions.

5. MAINTENANCE (0 Is it unmaintained. fully maintained. etd OJ

Yearly Maintenance is $100 to $125

6. STANDARD (0 How does it measure up to standard Pas caP Is it a subset) Extended? How. °1

Cornnlete ISO standard except packed variables and procedural para
meters. Scored 92% on conformance section of validation suite.
ISO report in manual. Extended for real tiMe and industrial
control applications.

7. MEASUREMENTS (0 Of its speed or space. °1
Warshalls AlgorithM: procedure size=270 hyt~s,
J';xecution time=9. 7 seconds

8. R E LlABI LlTY (0 Any information about field use or sites installed OJ

Over 400 sites installed.
Over 4000 sites installed.

9. DEVELOPMENT METHOD 1° How was it developed and what was ir wntten in) 0'
FrOM scratch in asseMble language.

, 0 LIBRARY SUPPORT (0 Any other support for cOn-Jpder In the form of Ilni<ages to other languages source IIbranes. etc oJ

Optional libraries to handle AMD9511 APU CHIP, ·:md ~1ulti-Taskinq
PriI'latives.

Implementation Reports 47

~ !/aih ~ r~!/aih ~ r~!/aih ~ r~!/aih ~ r~ .~

OmegaSoft Pascal Version 2

Pascal Processor Identification

Host Computer: Smoke Signal Broadcasting Chief
tain 9522812WI0 running the OS-9 operating system.

Host Computer Requirements: MC6809 processor,
minimum of 48K bytes of memory, 2 or more disk drives,
running the OS-9, MDOS, XDOS, DOS69, or FLEX
operating system.

Processor: OmegaS oft pascal version 2.10

Test Conditions

Tester: R. D. Reimiller
Date: June 1982
Validation Suite Version: 3.0

General Introduction to the OmegaSoft Implementation

The OmegaSoft Pascal compiler was developed to
provide the users of the 6809 processor with a fast and
efficient way to develop code capable of running on the
host development system or installed into a target system.
The compiler is aimed primarily at industrial applica
tions such as process control and instrumentation. Due
to the nature of these applications many extensions were
added such as byte arithmetic, long integers, dynamic
length strings, modular compilation, and versatile vari
able addressing. As a secondary requirement it was de
sired that the compiler be able to accept a Pascal program
written in ISO standard Pascal wherever possible.

CONFORMANCE TESTS

Number of tests passed = 144
Number of tests failed = 12 (9 reasons)

Details of Failed Tests

Test 6.4.2.3-3: If an enumerated type is defined in
the index declaration part of an array its values cannot
be referenced until the array declaration is complete.

Test 6.4.2.3-4: If an enumerated type is defined in
a record its values cannot be referenced until the record
declaration is complete.

Tests 6.6.3.1-4, 6.6.3.4-1, 6.6.3.4-2, and 6.6.3.5-1:
Procedures and functions cannot be passed as
parameters.

Test 6.6.5.4-1: Pack and Unpack procedures are not
supported.

Test 6.7.2.2-3: Failed on MOD using a negative
dividend. The Jenson/Wirth "remainder after divi
sion" method is used rather than the method specified
in the ISO standard.

Test 6.8.2.4-1: Non-local GOTO' s are not allowed.
Test 6.8.3.9-1: Assignment to the control variable

of a FOR loop occurs after the evaluation of the first
expression.

48

Test 6.9.3-1: Standard I/O devices may not be re
defined if declared.

Test 6.9.3.5.1-1: Real numbers written out in float
ing point format always have six digits to the right of
the decimal point.

DEVIANCE TESTS

Number of deviations correctly detected = 83
Number of tests showing true extensions = 45 (22
reasons)
Number of tests not detecting erroneous deviations =
9 (6 reasons)

Details of Extensions

Test 6.1.5-4: No digits are needed after the decimal
point in a real number.

Tests 6.1.6-4 and 6.1.6-5: Labels may be a positive
integer constant.

Tests 6.1.7-5, 6.4.3.1-3, 6.4.3.1-4, 6.6.3.3-5, 6.9.3.2-
2: All variables are packed at the byte level, the re
served word "Packed" is ignored in any type
declaration.

Tests 6.1.7-6, 6.1.7-7, 6.1.7-8, 6.4.3.2-5: Strings,
characters, and arrays ofless than 127 elements are all
compatible.

Tests 6.1.7-11 and 6.4.5-12: Strings are dynamic
length, allowable length is from 0 (null string) to 126.

Tests 6.2.1-8 and 6.2.1-10: Label, const, type, and
var declaration sections can be in any order and re
peated mUltiple times until a procedure/function dec
laration or "begin" is encountered.

Test 6.3-9: In any context where a constant is ac
ceptable an expression with a constant value may be
used.

Test 6.4.2.3-5: All enumerated type values are
compatible.

Test 6.4.3.3-8: The values of the case constants in
a record variant declaration are not used, access is pro
vided to all variants at all times.

Test 6.4.5-7: All subranges of the same type are
compatible.

Tests 6.4.5-8 and 6.4.5-13: Arrays of the same size
are compatible.

Tests 6.4.5-9 and 6.4.6-7: Records ofthe same size
are compatible.

Test 6.4.5-10: All pointers are compatible with other
pointers or the type "Hex".

Test 6.6.2-5: Any type with a size of less than 128
bytes can be used as a function return type.

Test 6.6.6.3-2: Trunc and round can have integer
or longinteger parameters.

Test 6.7.2.3-2: Logical operators are valid for char
acter and integer expressions.

Test 6.7.2.5-6: Arrays of the same size can be com
pared. Records of the same size can be compared.

Validation Suite Reports

Test 6.8.2.4-2: Goto between branches of an If
statement are allowed.

Test 6.8.2.4-3: Goto between branches of a Case
statement are allowed.

Tests 6.8.3.5-7 and 6.8.3.5-8: Subrange Case state
ment constants are allowed.

Tests 6.8.3.9-5, 6.8.3.9-6, 6.8.3.9-7, 6.8.3.9-10,
6.8.3.9-12,6.8.3.9-13,6.8.3.9-14, 6.8.3.9-15, 6.8.3.9-16,
and 6.8.3.9-17: No restrictions are placed on For state
ment control variable.

Tests 6.8.3.9-8 and 6.8.3.9-9: If a For statement is
entered and exited normally the control variable will be
valid and contain the final value. If a For statement is
not entered then the control variable will be valid and
contain the initial value.

Details of Deviations

Test 6.1.8-5: A number can be terminated by a letter.
Tests 6.2.1-5 and 6.2.1-6: MUltiple siting for labels

is not checked, nor are labels required to be sited at all.
Tests 6.2.2-8, 6.3-6, and 6.4.1-3: Error in scope

rules.
Test 6.6.1-7: Unresolved forward function or pro

cedure declaration is not detected.
Test 6.6.3.3-4: Use of a field selector as a parameter

is not detected.
Test 6.10-4: No check is made for duplication of

program parameters.

. ERROR-HANDLING

Number of errors correctly detected = 19
Number of errors not detected = 31 (13 reasons)

Details of Errors Not Detected

Tests 6.2.1-11, 6.4.3.3-11, 6.4.3.3-12, 6.4.3.3-11,
6.5.4-2, and 6.6.2-9: No checking is made to verify
whether or not a variable is accessed that has an un
defined value. Instead the variables are guaranteed to
contain garbage unless initialized.

Tests 6.4.3.3-1,6.6.5.3-8,6.6.5.3-9, and 6.6.5.3-10:
Any tagfields or selector variables in a record variant
are irrelevant to which variants can be accessed.

Test 6.4.6-10: No subrange checking on parameter
passing.

Tests 6.4.6-12, 6.4.6-13, and 6.7.2.4-4: Overflow
checking is done on sets based on byte count - not per
element.

Tests 6.5.4-1, 6.6.5.3-4, 6.6.5.3-5, and 6.6.5.3-11:
Pointer value is not checked before use.

Tests 6.5.5-2,6.5.5-3, 6.6.5.3-6, and 6.6.5.3-7: There
are no restrictions on the use of pointers or file buffer
variables which are currently parameters or elements
of a with statement. _

Test 6.6.5.2-5: To support random files a "get" is
not executed until called as a procedure or when ac
cessing the file buffer without a valid element - not at
the time of "reset".

Test 6.6.6.4-7: Char and Hex variables "roll over"
from maximum value to zero - it is not considered an
error.

Test 6.6.6.5-7: If eof is true - so is eoln - it is not

Validation Suite Reports

considered an error to check eoln if eof is true.
Tests 6.8.3.5-10 and 6.8.3.5-11: Ifno match in case

statement, falls through with no error.
Test 6.8.3.9-18: No restrictions on the control var

iable of a For loop.
Test 6.8.3.9-1: At the completion of a For loop the

control variable is valid and has the final value.
Tests 6.9.3.2-5 and 6.9.3.2-5: Writing of real num

bers with no digits past the decimal point is permissible.

QUALITY MEASUREMENT

Number of tests run = 52
Number of tests incorrectly handled = 5

Results of Tests

"Synthetic Benchmark" - execution time 1 min
ute, 10 seconds.

"GAMM measure" - execution time 1 minute, 40
seconds for N = 1000

procedure calls - execution time 40 seconds
identifiers are significant up to 120 characters.
source lines may be up to 120 characters.
no reasonable limit on number of real literals

allowed.
no reasonable limit on number of strings allowed.
if a line of code is incorrectly part of an unclosed

comment the compiler will signal that no code was gen
erated for the line.

at least 50 types may be declared in a program .
no reasonable limit on number of labels, but there

can be a maximum of 8 forward referenced goto's in a
block.

at least 128 constant definitions are allowed per
constant declaration part.

at least 128 procedures are permitted in a program.
maximum size for an array or record or for any var

iable section is 32750 bytes.
at least 8 index types can appear in an array type.
at least 128 case-constant values are permitted in

a variant record.
at least 50 record-sections can appear in the fixed

part of a record.
at least 30 distinct variants are permitted in a record.
"Warshall's algorithm" procedure size = 270

bytes, execution time = 9.7 seconds.
considerably less than 300 indentifiers are allowed

in a declaration list (actual number depends on length
of identifier).

at least 8 dimensional array is allowed.
procedures may be nested to at least 15 levels.
at least 30 formal parameter sections can appear in

one parameter list.
the dispose in the standard heap manager is a

dummy, a more complex heap manager is available.
deeply nested function calls are allowed (at least

6).
deeply nested compound statements are allowed

(at least 25).
a procedure may have at least 300 statements.
deeply nested if statements are allowed (at least

25).
at least 256 case constants are allowed.

49

at least 300 constants are allowed in a case-con-
stant list.

case statements can be nested to at least 15 deep.
repeat loops can be nested to at least 15 deep.
while loops can be nested to at least 15 deep.
for loops can be nested to at least 15 deep.
with statements can be nested to at least 15 deep.
recursive 110 can be used with the same file for the

second 110 action.
at least 30 variable-accesses can appear in a read

or readln parameter list.
at least 30 write-parameters can appear in a write

or writeln parameter list.
data written on the output field appears regardless

of the omission of a line marker.

IMPLEMENTATION-DEFINED
Number of tests run = 12
Number of tests incorrectly handled = 1

Details of Implementation-Defined Features

Tests 6.1.9-5 and 6.1.9-6: alternate symbols are
available for comments, array indices, and pointers.

Test 6.4.2.2-10: Maxint is 32767
Test 6.4.3.4-5: maximum range of set elements is

0 .. 1007
Test 6.6.6.2-11: Base = 2, Bits of mantissa = 24,

not rounding, minimum value = 2.710506E-20, maxi
mum value = 9.223372E+ 18

Tests 6.7.2.3-3 and 6.7.2.3-4: Boolean expressions

50

are fully evaluated.
Tests 6.8.2.2-1 and 6.8.2.2-2: In an assignment

statement evaluation of the expression is done before
the selection of the variable.

Test 6.8.2.3-2: When a procedure is called the pa
rameters are evaluated in forward order.

Test 6.9.3.2-6: Default field widths are: Integers =
10, Boolean = 6, Real = 16, Longinteger = 16, Hex =
6.

Test 6.9.3.5.1-2: Real values written in floating point
format have 2 exponent digits.

Test 6.9.3.6-1: Boolean values written in the de
fault fieldwidth have the format as shown (between
quotes) " TRUE" and" FALSE".

Details of Tests Incorrectly Handled

Tests 6.6.6.1-1: Functions are not allowed to be
passed as parameters to a procedure.

Levell Tests - Not applicable

EXTENSIONS

Extension present = 1

Result of Extension

Test 6.8.3.5-16: An otherwise clause is allowed on
a case statement.

PUG

Validation Suite Reports

Membership

Please enter my

o New or

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

o Renew

July 1983

membership in Pascal Users Group. I understand I will receive "Pascal News" whenever it is published in this
calendar year.

Pascal News should be mailed
1 yr. 0 in USA $25 o outside USA $35 o AirMail anywhere $60
3 yr. 0 in USA $50 o outside USA $80 o AirMail anywhere $125

(Make checks payable to: "Pascal Users Group," drawn on USA bank in US dollars)

Enclosed please find US $ __ .
on check number __ _

(Invoice will be sent on receipt of purchase or
ders. Payment must be received before news
letter will be sent. Purchase orders will be billed
$10 for additional work.)

(I have difficulty reading addresses. Please forgive me and type or print clearly.)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

o This is an address correction here is myoid address label:

Coupons 51

52

JOINING PASCAL USER GROUP?

• Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor,
or just plain fan.

• Please enclose the proper prepayment (check payable to "Pascal User's Group").

• When you join PUG any time within a year: January 1 to December 31, you will receive all issues Pascal
News for that year.

• We produce Pascal News as a means toward the end of promoting Pascal and communicating news of
events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves
and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work
to do.

RENEWING?

• Please renew early (before November) and please write us a line or two to tell us what you are doing with
Pascal, and tell us what you think of PUG and Pascal News.

ORDERING BACK ISSUES OR EXTRA ISSUES?

• Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year
means that we eliminate many requests for backissues ahead of time, and we don't have to reprint important
information in every issue - especially about Pascal implementations!

• Issues 1 .. 8 (January, 1974 - May 1977) are out of print.

• Issues 9 .. 12, 13 .. 16, & 17 .. 20, 21 .. 23 are available from PUG(USA) all for $25.00 a set.

• Extra single copies of new issues (current academic year) are: $10 each - PUG(USA).

SENDING MATERIAL FOR PUBLICATION?

• Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con
ference announcements, reports, implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 15.5 cm. wide) form.

• All letters will be printed unless they contain a request to the contrary.

Coupons

Back Issues

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

Back issues are requested and sent in sets

$25 D set 1 Issues 9 ... 12 (September 1977 - June 1978)

$25 D set 2 Issues 13 ... 16 (December 1978 - October 1979)

$25 D set 3 Issues 17 ... 20 (March 1980 - December 1980)

$25 D set 4 Issues 21 ... 23 (April 1981 [mailed January 1982] -
September 1981 [mailed March 1982])

Requests from outside USA please add $5 per set.

All memberships entered in 1983 will receive issue 24 and all other issues published in that year.

Make check payable to: "Pascal Users Group," drawn on USA bank in US dollars.

Enclosed please find US $ __ ._
on check number __ _

(I have difficulty reading addresses. Please forgive me and type or print clearly)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

Coupons

1983

53

54

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:

(Company name if requestor is a company)

Phone Number:

Name and address to which information should

be addressed (write "as above" if the same):

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the case of a company, the requestor agrees
that:

a) The Validation Suite is recognized as being the copyrighted, proprietary property of The British Standards
Organization and A. H. J. Sale, and
b) The requestor will not distribute or otherwise make available machine-readable copies of the Validation
Suite, modified or unmodified, to any third party without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and documentation contained in the Validation
Suite for the purpose of compiler validation, acceptance tests, benchmarking, preparation of comparative reports and
similar purposes, and to make available the listings of the results of compilation and execution of the programs to third
parties in the course of the above activities. In such documents, reference shall be made to the original copyright notice
and its source.

Distribution Charge: $300.00
Make checks payable to:

Software Consulting Services
in US dollars drawn on a US bank.

Remittance must accompany application.

Mail Request and Check To:
Software Consultin~ Services

901 Whittier Dr.
AllentownJ... P A. 18103 USA

Attn: 1\. J. Cichelli

SOURCE CODE DELIVERY MEDIUM SPECIFICATION

I Mapnelic Ilpe
9-Tnck, odd parily, 1I2"x600'. Selecl Densily:

(I 800 bpi (I 1600 bpi
I ANSI"STANDARD. Each logical record is an

80 character card image. Each physical

record has I block size of 40 logical

records. Select Character. Code:

(I ASCII (I EBCDIC

I Special DEC Syslem Allernale Formals:

(I RSX-IAS PIP (requires ANSI MAGlape RSX SYSGENI.

(I DOS-RSTS FLX.

Office Use Only

Signed:

Date:

Richard J. Cichelli

On Behalf of A. H. J. Sale and B. S. I.

I 8" Diskllle

(I Si.gle DI.sily

(I Double Daslly

Formal

I CP/M

I UCSD II, IV

I DEC-RSX Files 11

Special Formal

I Inlerleave (1-261

I Skew (0-251

I UCSD III (W. D. Mlcroe.ginel

I DEC-RT (Si.gll Dasilyl

I IBM 3740 (Singll De.slly EBCDICI

Coupons

UCSD Pascal System User's Society

us na
UCSD p-System User's Society

GET MORE FROM YOUR PASCAL SYSTEM
.... JOIN USUS TODAY

USUS is the USER'S GROUP for the most widely used, machine-independent
software system.

If you use UCSD Pascal*, Apple Pascal** or the UCSD p-System, USUS wililink you
with a community of users that share your interests.

USUS was formed to give users an opportunity to promote and influence the development of
UCSD Pascal and the UCSD p-System and to help them learn more about their systems. USUS is non
profit and vendor-Independent.

Members get access to the latest UCSD p-System information and to extensive Pascal expertise.
In USUS, you have formal and Informal opportunities to communicate with and learn from other
users via:

• NATIONAL MEETINGS • SOFTWARE LIBRARY
• USUS NEWS AND REPORT • SPECIAL INTEREST GROUPS
• ELECTRONIC MAIL

'UCSD Pascal and the UCSD p-System are trademarks ollhe Regents 01 the University 01 Caillornla.

~ ___ ... __ .. ________ .. _____ .. _ ·"AP~~~!!.~~?~~~':'.~~~.:.~~~~ .. ;:~:':?£~: .. ~~~E.~.~.! .. ~~ __ ._._ .. ___ .. ________ ._ .. _ ___ .

USUS MEMBERSHIP APPLICATION
IPlease complete both sides)

I am applying for $25 individual membership
$500 organization membership
$ __ air mail service surcharge

Rates are for 12 months and cover surface mailing of the newsletter. If you reside outside North
America. air mail service is available for a surcharge. It is as follows: $5.00 annually for those in the
Caribbean. Central America and Columbia and Venezuela; $1 0.00 annuallyforthose in South America,
Turkey and North Africa; and $15.00 for all others. Check or money order should be drawn on a U. S.
bank or U.S. office.

Name/Title

Affiliation

Address __ _

Phone \-(_______ . ________ TWX/Telex

Coupons

Option: Do not print my phone number In USUS rosters
Option: Print only my name and country In USUS rosters
Option: Do not release my name on mailing lists

55

56

USUS MEMBERSHIP BENEFITS

* * * * *
• NATIONAL MEETINGS twice a year let you learn from experts and tryout the newest products.
Meetings feature hardware and software demonstrations, tutorials, technical presentations and
information. reduced-cost software library access, special interestgroup(SIG) meetings. and a chance
to query "major" vendors.

• USUS NEWS AN D RE PORT brings you news and information about your operating system fourtimes
a year. It contains technical articles and updates, library catalog listings, SIG reports, a software
vendor directory and organizational news.

• ELECTRON IC MAl L puts USUS subscribers in touch with a nationwide network of users. Compu
Serve MUSUS SIG is for data bases and bulletin board communications. GTE Telemail accommo
dates one-to-one messages.

• SOFTWARE EXCHANGE LIBRARY offers an extensive collection of tools, games, applications,
and aides in UCSD Pascal source code at nominal prices.

• SPECIAL I NTEREST GROUPS zero in on specific problems, represent member interests with
manufacturers.

For more information. contact: Secretary, USUS, P. O. Box 1148, La Jolla, CA 92038, USA.

Computer System:
__ Z-80 __ 8080 __ PDP/LSI-11 __ 6502/Apple __ 6800 __ 6809
__ 9900 __ 8086/8088 __ Z8000 __ 68000 __ MicroEngine __ IBM PC
Other __ ___

I am interested in the following Committees/Special Interest Groups (SIGs):

____ Advanced System Editor SIG
__ AppleSIG
__ Application Developer'S SIG
__ Communications SIG
__ DEC SIG
__ File Access SIG
__ Graphics SIG
__ IBM Display Writer SIG
__ !BM PCSIG

__ Meetings Committee
__ Modula-2 SIG
____ N EC Advanced PC SIG
____ Publications Committee
__ SageSIG
__ Software Exchange Library
____ . Technical Issues Committee
__ . Texas Instruments SIG
__ UCSD Pascal Compatability SIG

Mail completed application with check or money order payable to USUS and drawn on a U.S. bank or
U.S. office, to Secretary, USUS, P.O. Box 1148, La Jolla. CA 92038, USA.

Coupons

Membership

Please enter my

o New or

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

o Renew

July 1983

membership in Pascal Users Group. I understand I will receive "Pascal News" whenever it is published in this
calendar year.

Pascal News should be mailed
1 yr. 0 in USA $25 o outside USA $35 o AirMail anywhere $60
3 yr. 0 in USA $50 o outside USA $80 o AirMail anywhere $125

(Make checks payable to: "Pascal Users Group," drawn on USA bank in US dollars)

Enclosed please find US $ __ .
on check number __ _

(Invoice will be sent on receipt of purchase or
ders. Payment must be received before news
letter will be sent. Purchase orders will be billed
$10 for additional work.)

(I have difficulty reading addresses. Please forgive me and type or print clearly.)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

o This is an address correction here is myoid address label:

Coupons 57

58

JOINING PASCAL USER GROUP?

• Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor,
or just plain fan.

• Please enclose the proper prepayment (check payable to "Pascal User's Group").

• When you join PUG any time within a year: January 1 to December 31, you will receive all issues Pascal
News for that year.

• We produce Pascal News as a means toward the end of promoting Pascal and communicating news of
events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves
and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work
to do.

RENEWING?

• Please renew early (before November) and please write us a line or two to tell us what you are doing with
Pascal, and tell us what you think of PUG and Pascal News.

ORDERING BACK ISSUES OR EXTRA ISSUES?

• Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year
means that we eliminate many requests for backissues ahead of time, and we don't have to reprint important
information in every issue - especially about Pascal implementations!

• Issues 1 .. 8 (January, 1974 - May 1977) are out of print.

• Issues 9 .. 12, 13 .. 16, & 17 .. 20, 21 .. 23 are available from PUG(USA) all for $25.00 a set.

• Extra single copies of new issues (current academic year) are: $10 each - PUG(USA).

SENDING MATERIAL FOR PUBLICATION?

• Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con
ference announcements, reports, implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 15.5 cm. wide) form.

• All letters will be printed unless they contain a request to the contrary.

Coupons

Back Issues

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

Back issues are requested and sent in sets

!:II:li.!.!'I.~ •• [tl!!!~:\fl::~!I;i..I.i~llr~!.i.'1::I.*i ® [illu ® ~ ~OO~~u
$25 0 set 1 Issues 9 ... 12 (September 1977 - June 1978)

$25 0 set 2 Issues 13 ... 16 (December 1978 - October 1979)

$25 0 set 3 Issues 17 ... 20 (March 1980 - December 1980)

$25 0 set 4 Issues 21 ... 23 (April 1981 [mailed January 1982] -
September 1981 [mailed March 1982])

Requests from outside USA please add $5 per set.

All memberships entered in 1983 will receive issue 24 and all other issues published in that year.

Make check payable to: "Pascal Users Group," drawn on USA bank in US dollars.

Enclosed please find US $ __ . _
on check number __ _

(I have difficulty reading addresses. Please forgive me and type or print clearly)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

Coupons

1983

59

Back Issues

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

Back issues are requested and sent in sets

I Ii @illllJ @~ [?OOmmr

$25 0 set 1 Issues 9 ... 12 (September 1977 - June 1978)

$25 0 set 2 Issues 13 ... 16 (December 1978 - October 1979)

$25 0 set 3 Issues 17 ... 20 (March 1980 - December 1980)

$25 0 set 4 Issues 21 ... 23 (April 1981 [mailed January 1982] -
September 1981 [mailed March 1982])

Requests from outside USA please add $5 per set.

All memberships entered in 1983 will receive issue 24 and all other issues published in that year.

Make check payable to: "Pascal Users Group," drawn on USA bank in US dollars.

Enclosed please find US $ __ ._
on check number __ _

(I have difficulty reading addresses. Please forgive me and type or print clearly)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

60

1983

Coupons

UCSD Pascal System User's Society

us na
UCSD p-System User's Society

GET MORE FROM YOUR PASCAL SYSTEM
.... JOIN USUS TODAY

USUS is the USER'S GROUP for the most widely used, machine-independent
software system.

If you use UCSD Pascal*, Apple Pascal** orthe UCSD p-System, USUS wililink you
with a community of users that share your interests.

USUS was formed to give users an opportunity to promote and influence the development of
UCSD Pascal and the UCSD p-System and to help them learn more about their systems. USUS is non
profit and vendor-independent.

Members get access to the latest UCSD p-System information and to extensive Pascal expertise.
In USUS, you have formal and informal opportunities to communicate with and learn from other
users via:

• NATIONAL MEETINGS • SOFTWARE LIBRARY
• USUS NEWS AND REPORT • SPECIAL INTEREST GROUPS
• ELECTRON IC MAl L

'UCSD Pascal and the UCSD p-System are trademarks of 1he Regents of the University of California .
• ___ • _______________ ··App.'.:!~~~~~!...~~.~~:!:..?~.:.!'g;~.~?~E..:'..~:!.: • .!..~:: __ ... ____ .. __ • __ • __ •• _. ______ •

USUS MEMBERSHIP APPLICATION
(Please complete both stdes)

I am applying for $25 individual membership
$500 organization membership
$ __ air mail service surcharge

Rates are for 12 months and cover surface mailing of the newsletter. If you reside outside North
America. air mail service is available for a surcharge. It is as follows: $5.00 annually for those in the
Caribbean. Central America and Columbia and Venezuela; $1 0.00 annually for those in South America,
Turkey and North Africa; and $15.00 for all others. Check or money order should be drawn on a U. S.
bank or U.S. office.

Name/Title

Affiliation
Address __ _

Phone \-(___ . ____________ TWX/Telex

Coupons

Option: Do not print my phone number in USUS rosters
Option: Print only my name and country on USUS rosters
Option: Do not release my name on mailing lists

61

UCSD Pascal System User's Society UCSD p-System User's Society

us na
GET MORE FROM YOUR PASCAL SYSTEM

.... JOIN USUS TODAY

USUS is the USER'S GROUP for the most widely used, machine-independent
software system.

If you use UCSD Pascal*, Apple Pascal** or the UCSD p-System, USUS will link you
with a community of users that share your interests.

USUS was formed to give users an opportunity to promote and influence the development of
UCSD Pascal and the UCSO p-System and to help them learn more about their systems. USUS is non
profit and vendor-independent.

Members get access to the latest UCSD p-System information and to extensive Pascal expertise.
In USUS, you have formal and Informal opportunities to communicate with and learn from other
users via:

• NATIONAL MEETINGS • SOFTWARE LIBRARY
• USUS NEWS AND REPORT • SPECIAL INTEREST GROUPS
• ELECTRON IC MAl L

'UCSD Pascal and Ihe UCSD p·System are trademarks of the Regents of the Un,vers,ty of California.
"Apple Pascal IS a trademark of Apple Computer Inc ._------------------. __ .. _._. __ _ ... _ -................. _ .. ------_ __ -.. -----_ -.... _-.. _----------_ .. _----_ .. _-_ .. -

USUS MEMBERSHIP APPLICATION
(Please complete both sides)

I am applying for $25 individual membership
$500 organization membership
$ __ air mail service surcharge

Rates are for 12 months and cover surface mailing of the newsletter. If you reside outside North
America. air mail service is available for a surcharge. It is as follows: $5.00 annually for those in the
Caribbean, Central America and Columbia and Venezuela; $1 0.00 annually for those in South America,
Turkey and North Africa; and$1 5.00 for all others. Check or money order should be drawn on a U. S.
bank or U.S. office.

Name/Title

Afti I iation

Address __ _

Phone (\-_______ -______________ TWX/Telex

62

Option: Do not print my phone number in USUS rosters
Option: Print only my name and country In USUS rosters
Option: Do not release my name on mailing lists

Coupons

Membership

Please enter my

o New or

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

o Renew

July 1983

membership in Pascal Users Group. I understand I will receive "Pascal News" whenever it is published in this
calendar year.

Pascal News should be mailed
1 yr. 0 in USA $25 o outside USA $35 o AirMail anywhere $60
3 yr. 0 in USA $50 o outside USA $80 o AirMail anywhere $125

(Make checks payable to: "Pascal Users Group," drawn on USA bank in US dollars)

Enclosed please find US $ __ .
on check number __ _

(Invoice will be sent on receipt of purchase or
ders. Payment must be received before news
letter will be sent. Purchase orders will be billed
$10 for additional work.)

(I have difficulty reading addresses. Please forgive me and type or print clearly.)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

o This is an address correction here is myoid address label:

Coupons 63

64

JOINING PASCAL USER GROUP?

• Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor,
or just plain fan.

• Please enclose the proper prepayment (check payable to "Pascal User's Group").

• When you join PUG any time within a year: January 1 to December 31, you will receive all issues Pascal
News for that year.

• We produce Pascal News as a means toward the end of promoting Pascal and communicating news of
events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves
and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work
to do.

RENEWING?

• Please renew early (before November) and please write us a line or two to tell us what you are doing with
Pascal, and tell us what you think of PUG and Pascal News.

ORDERING BACK ISSUES OR EXTRA ISSUES?

• Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year
means that we eliminate many requests for back issues ahead of time, and we don't have to reprint important
information in every issue - especially about Pascal implementations!

• Issues 1 .. 8 (January, 1974- May 1977) are out of print.

• Issues 9 .. 12, 13 .. 16, & 17 .. 20, 21 .. 23 are available from PUG(USA) all for $25.00 a set.

• Extra single copies of new issues (current academic year) are: $10 each - PUG(USA).

SENDING MATERIAL FOR PUBLICATION?

• Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con
ference announcements, reports, implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 15.5 cm. wide) form.

• All letters will be printed unless they contain a request to the contrary.

Coupons

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not aI/-purpose) programming language possessing
algorithmic and data structures to aid systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:

• teaching programming concepts
• developing reliable "production" software
• implementing software efficiently on today's machines
• writing portable software

Pascal implementations exist for more than 105 different computer systems, and this number increases every
month. The "Implementation Notes" section of Pascal News describes how to obtain them.

The standard reference ISO 7185 tutorial manual for Pascal is:

Pascal- User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There" section of Pascal News.

The programming language, Pascal, was named after the mathematician and religious fanatic Blaise Pascal
(1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently have more than 3500 active
members in more than 41 countries.

Return to:

Pascal News
2903 Huntington Rd .• Cleveland, Ohio 44120
Return postage guaranteed Address Correction requested

This is your last issue if you have not renewed for 1983!

BULK RATE
U.s. POSTAGE

PAID
WILLOUGHBY, OHIO

Permit No. 58

