
PASCAL USERS GROUP

Pascal News
NUMBER 21

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

APR I l., 19.81

If this isn't APRIL ...

~(

does that mean we're late 7

' - ;

~ u ·-0
ll.

POLICY: PASCAL NEWS (15-Sep-80)

*Pascal News is the official but informal publication of the User's Group.

* Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately ~uccumb to the reality of:

l. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls ·or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do."

* Pascal News is produced 3 or 4 times during a year; usually in March, June,
September;-and December.

* ALL THE NEWS THAT 1 S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18.5 cm lines!) --

* Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

* Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews) ,
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION ~OTES -,reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descrip.t.icins and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

- - -

[

- - - - - - ALL~PURPOSE COUPON - - - - - -

Pascal users Group
P.O. Box 4406

Allentown, Pa. 18170-4406 USA

Note-

We will not accept purchace orders.

(l-Apr-81)

Make checks payable to: "Pascal U~ers Group", drawn on a U.S. bank
in U.S. dollars.
See the Policy section on the reverse side alternate address if
you are located in the Australasian Region.
Note the discounts below, for multi-year subscription and renewal.
The U. S. Postal Service does not forward Pascal News.

- -
USA Europe Aust.

l year $10. $14. A$ 8.
Enter me as a new member for:

[2 years $18. $25. A$ 15.
Renew my subscription for:

3 years $25. #35. A$ 20.

[] Send Back Issue (s)

My new address/phone is listed below

Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

NAME

ADDRESS

PHONE

DATE

ENCLOSED PLEASE FIND: A$
$

CHECK no.

JOINING PASCAL USERS GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

- Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.

- Please do not send us purchase orders; we cannot endure the paper work!
- When you join PUG any time within a year: January 1 to December 31, you will

receive all issues of Pascal News for that year.
- We produce Pascal News as a means toward the end of promoting Pascal and

communicating news~ events surrounding Pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do.

- American Region (North and South America), and European Region (Europe,
North Africa, Western and Central Asia): Join through PUGUSA

- Australasian Region (Australia, East Asia - incl. Japan): PUG (AUS). Send
$A10. 00 per year to: Pascal users Group, c/o Arthur Sale, Department of
Information Science, University ·of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

------------------------------~--~--

PUG (USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG (USA). Persons in the Australasian Region must
join through their regional representative. People in other places please
join through PUG(USA).

RENEWING?

- please renew early (before November and please write us a line or two to tell
us what you are doing with Pascal, and tell us what you think of PUG and
Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

- Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a year means that we eliminate many requests for
backissues ahead of time, and we don't have to reprint important information
in every issue--especially about Pascal implementations!

- Issues 1 .. 8 (January, 1974 - May 1977) are out of print.
- Issues 9 •• 12 (September, 1977 - June, 1978)--areavailable from PUG(USA) all

for $15.00 and from PUG(AUS) all for .$Al5.00
- Issues 13 16 are available from PUG(AUS) all for $Al5.00; and from

PUG(USA) all for $15.00.
Extra single copies of new issues (current academic year) are: $5.00 each -
PUG(USA); and $AS.00 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

- Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions (notices, news, articles, conference announcements, reports,
i~plementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm. wide) form.

- All letters will" be printed unless they contain a request to the contrary.

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requester:
(Company name if requester is a company)

Phone Number:

Name and address to which information should
be addressed (Write 11 as above" if the same) --------------

Signature of requester:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requester agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop
erty of R. A. Freak and A.H.J .. Sale, and

b) The requester will not distribute or otherwise make available machine-r~adable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur
poses, and to make available the listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc
uments, reference shall be made to the original copyright notice and its source.

~ Distribution charge: $50.00

x Make checks payable to ANPA/RI in US dollars drawn on a US bank.
Remittance must accompany application.

Source Code Delivery Medium Specification:
9-track, 800 bpi, NRZI, Odd Parity, 600 1 Magnetic Tape

() ANSI-Standard

a) Select character c.ode set~
- (): ASCII . () EBCDIC

b) gach logical record is an 80 character card image.
Select block size in logical records per block.

() 4.0 () 20 () 10

() Spec.ial DEC System Alternates:
() RSX-I AS PIP Format
() DOS-RSTS FLX Format

Office ase ~hlJ ·

Mail request to:

ANPA/RI ..
P.O. Box 598
Easton, Pa. 18042
USA
Attn~ R.J. Cichelli

Signed----~-~~----..____
Date

Richard J. Cichelli
On behalf of A.H.J._ Sale & R.A, Freak

Index
PASCAL NEWS #21

0

1

3
3
4
5
5
6

7
7
23

APRIL, 1981

POLICY, COUPONS, !~DEX, ETC.

EDITOR'S CONTRIBUTION

HERE AND THERE WITH Pascal
Book review: "The Pascal Handbook"
Book review: "Introduction to Pascal"
Tidbits

PUG PRESS ... our sister publication?
I'm not sure??

APPLICATIONS
The EMl compiler
Unreal Arithmetic

-- Andrew s. Tanenbaum.
-- Jeff Pepper.

27 ARTICLES

INDEX

27 "An extent ion to Pascal Read and Write Procedures"
-- by David Rowland.

28 "PDP-11 Pascal: The Swedish Compiler vs. OMS! Pascal-I"
-- by Margret Kules

40 OPEN FORUM FOR MEMBERS

43 PASCAL STANDARDS

85 ONE PURPOSE COUPON, POLICY

Contributors to this issue (#21) were:

EDITOR
Here & There
Books & Articles
Applications ...
Standards
Implementation Notes
Administration

Rick Shaw
John Eisenberg
Rich Stevens
Rich Cichelli, Andy Mickel
Jim Miner, Tony Addyman
Bob Dietrich, Greg Marshall
Moe Ford, Jennie Sinclair

PASCAL NEWS APRIL, 1980

Editor's Contribution

NEW ADDRESS

Yes, in my continued effort to bring you better service, (read
this as: I can not do all the work effectively!) I have found
someone else (read: sucker) to take over the PUG mailing list. I
am sure that this will increase the satisfaction level for this
task 100%. this will take a great load off of my back and allow me
to devote all of my time to editin~ and publishing Pascal News.

LATE

I thought April first (April Fools Day) was an appropriate target
date for this issue of Pascal News! I apologize for the tardiness,
but my work (I have a real Job that pays the bills) and the many
pressing problems and issues of PN got in the way. I had to solve
the PUG Europe problem, and try to gather as much as I could
concerning the final vote on the ISO standard.

FUTURE OF PUG IN EUROPE

It took me more than a few months to correct the festering
problems in Europe surrounding Pascal News. The previous
coordinator was sinking under the mire of ever increasing job
responsibilities as well as the editorship of clearly the best
journal dealing with practical software implementation. (SP&E) As
a result, the european region suffered from lack of attention.
This is over! PUG cares. Please send your "job well done' s" to
David in Southampton, and send your complaints to PUGUSA. We will
be handling all but the Australasia Region from the us. Please
read the new APC carefully for policy and price changes. We will
be mailing by surface mail to the UK and Europe, but I have been
assured by the USPS that it should take no more than a month. I
have been asked if I would mail by air for an extra surcharge. The
answer has to be no, at this time. PUG can just not afford the
special processing and handling that this would be required for
two different types of mail. Sorry!

STANDARDS

Another delay was the standards effort. There is so much going on
in the standards arena that we just could not afford to miss it. I
think it was worth it. Over half of this issue is devoted to the
vote on the ISO standard for Pascal (7185). Jim Miner has done
another fine job.

Page 1

PASCAL NEWS APRIL, 1980

THIS ISSUE

Now the good news! . We have another jam packed issue. I th ink you
will recognize out book reviewer this issue. He is an "occasional"
contributor to PN. And I hope you will get a chuckle from our
"sister" publication PUG PRESS. Andy Mickel brings this little gem
to us. The other HERE.and THERE article is a real puzzle. It came
to me just as you see it!?

The a pp 1 i cat ion for this i s sue was so good I could not mi s s
publishing it. It is a Pascal to EMl pseudo code compi 1 er by
Andrew Tanenbaum. Its a real beauty. But it was sooooo big I could
not publish it all ••• yet. This issue conta1ns the definition of
the assembler language that is output ahd also an interpreter
which serves as the EMl machine definition. Issue 22 will contain
the program text for the EMl Pascal compiler. I hope everyone
reviews the documentation and the· code, even if they do not need
the compiler. It is a fine example of ele-gant design and
implementation using the language Pascal. Also included in the
APPLICATIONS section is an article by Jeff Pepper om the
implementation of extended precision integer arithmetic. A fine
job.

The ARTICLES section contains a thought provoking extension to the
read/write subroutines by David Rowland. Lets hear a response from
the members. And finally Maragret Kulos has contributed a very
comprehensive article comparing OMSI-1 Pascal and The Swedish
Pascal compiler. There is a great deal of interest in these two
compilers for the PDP-11. I hope this provides some answers.

All in all, a great issue. More to come on EMl in issue #22.

Hope you like it!

Page 2

1

Here and There With
BOOK REVIEW

The Pascai Handbook by Jacques Tiberghien
500pp, 270 Illustrations, SYBEX, Berkeley
(1980) $US14.95 (paper edition only),
ISBN 0-89588-053-9.

Overview

Pascal

This is not a Pascal textbook; it is something very different. Perhaps the
most succint description is that it is a Pascal iexicon: a sort of
all-purpose reference manual. It is organized around entries keyed by an
appropriate Pascal word (eg if, scope, writeln) arranged in alphabetical
order. Each entry.takes up one or more whole pages, and tbe standard sub
headings are SYNTAX, DESCRIPTION, IMPLEMENTATION-DEPENDENT FEATURES and
EXAMPLE. The re~evance of the entry to Standard Pascal and a number of
particular implementations (HPlOOO, CDC, OMSI-1, Pascal/Z and UCSD Pascal) is
encoded into the entry.

Thus the book is meant to be used as a dictionary to look up difficult points
or to find out what some usage in a program you have received really means.
As such, it follows a lot of reference manuals which are similarly structured
(eg the B6700/7700 Pascal Reference Manual).

However, since Pascal is a small language with not very many things needing
to be remembered, it needs to be asked why a lexicon of 500 pages is needed?
Examination of the book ~ndicates that its main purpose seems to be to
document extensions and differences between implementations. Thus, since its
topic is the union of all the quirks of 5 implementations, it has grown to
this rather large size.

Target and reality

So much for the target' how does the book match up to it in reality? The
answer seems to be that it does a reasonably good job of documenting what
exists, but that it does not measure up to the very exacting standards that
such an ambitious project warrants. The standard of accuracy against which a
dictionary is judged is much higher than that appropriate for textbooks, in
which a few lapses can be tolerated or justified on t;p.e grounds that pedantic
accuracy would impede learning.

The slips in the book are far too numerous to detail (a list is being sent to
the author), and a few examples will have to suffice. Dipping into the entry
for the reserved word for is probably the richest source of examples.
Faults which should beli\entioned are:

(1) An "equivalent flow-chart" is given. The sense of defining a high
level construct such as while in flow-chart terms is questionable at
the best of times, but for the complex for-statement it is extremely
unfortunate in that it might make people think the flow-chart is right.
It isn't.

(2) The prohibition on changing the value of the count variable is not
mentioned.

(3) The limitations on what a count variable can be (only a local simple
variable) are not mentioned ..

(4) The correct restriction of the HP-1000 implementation is considered to
be an implementation-dependent feature, whereas the correSponding flaw
'in the J&W/CDC implementation is not mentioned.

(5) The failure of many of these implementations to enforce the
requirements of the for-statement is not mentioned; indeed for f6ur
implementations the entry is None known for implementation-dependent
features.

(6) The possibility of the statement failing to terminate (incorrectly) for
some limit values in the OMSI and UCSD implementations is not
documented. ,

(7) The statement is made that The A and B parameters may not be modified
by the statement in the Zoop. This is simply incorrect, though it is
true to say that the loop limits are determined on entry to the loop.

Perhaps this is the worst case to show, but a few more examples will suffice
to show that the problem is not isolated. The syntax for MARK sho~s. that
this non-standard procedure takes a parameter which is an integer
expression. MAXINT is incorrectly described as determining the positive
limit of representable integers (which it may be only coincidentally). The
syntax for CASE statements is incorrect. And so on.

General issues

There are two major deficiencies in this book which deserve comment. First
is the lack of formal definitions, and indeed the appearance of only a few
English descriptions that resemble the actual requirements of Pascal. The
author claims to be talking about Pascal (presumably the standard variety) as
well as the others, but there is simply no basis for comparison if the reader
cannot find out what sets, for example, are really supposed to be.

The second is the mystifying omission of any reference to the Pascal
Validation effort. If one of the purposes of the book is to aid programmers
who wish to write portable Pascal programs, then it is difficult to
understand why the author did not carry out validation tests on the five
compilers he regards as important, and print the results in a second section
of the book. It would have added significantly to the value of the book as a
reference.

Minor issues

Regrettably, once again it is necessary to point out that capitals were
designed for carving into stone, not for ease of reading. This book
perpetuates the habit of printing programs in capitals, with consequent
loss of legibility.

It is difficult to deduce the author's criteria for choosing which topics to
omit or include. To illustrate this, note that the UNIT feature of USCD
Pascal, together with the corresponding USES, INTERFACE and IMPLEMENTATION
reserved words, is not treated in the book, apart from a mention, despite
their undoubted importance in use. On the other hand, such trivia as a pre
defined function EXPlO in OMSI Pascal takes up 2 pages.

Directing another comment to the publisher rather than the author, one
wonders why the tremendous amount of white space in the book was tolerated.
A little care in layout (perhaps two entries per page; perhaps denser
printing) would have halved the number of pages, and perhaps reduced the
price.

--0
:J>
(/)

n
:J>
r
:z
rn
~
(/)

"" N
I-'

:J>
--0

""
['"'

I-'
LO
00
I-'

--0
)>

Gl
rn

'-"'

r

Summary view

Despite the criticisms made above·, I believe the book would be useful to
programmers who have to cope with Pascal programs which were developed on
different systems or in different dialects. The level of detail and accuracy
of information is not as high as it could be, but nevertheless the book has
n~ competitors.

I doubt that it will be of much use to
less beginners at programming, because
really Pascal and what is 11 extension 11 •

simply not meant to be read through.

programmers learning Pascal, still
it is too difficult to see what is

And of course, dictionaries are

BOOK REVIEW

INTRODUCTION TO PASCAL

- including UCSD Pascal

by Rodnay Zaks
320pp, 100 illustrations
Sybex, Berkeley (1980) US$12.95 (Paper Edition only)
ISBN 0-89588-050-4

Reviewed by A.H;J .. Sale, Sandy Bay, Tasmania.

Overview ----

A.H.J.Sale

On receiving a book which proclaims that it will teach you a programming
language, I conceive that most reviewers will groan and wonder what new there
is to say. The more so if the language is a popular one, such as BASIC,
Fortran, COBOL, or Pa3cal. For many educational book writers are
plagiarists, and after the fifth to tenth version of the same ideas, my eyes
get weary and the text fuzzy ...

To start with, then, it is a pleasure to be able to write that Rodnay Zaks
book is somewhat different frorn the run-of-the-mill Pascal books. Firstly it
has a definite i,arget readership, and is addressed to them. Dr ·zaks' book is
well-sui t.ed to iriicrocomputer enthusiasts and programmers who want to learn a
bit about Pascal but have no immediate intention of using it professionally.
The exposition is gentle, fairly easy to read, and liberally interlaced with
reading examples~

To enhance its value to such readers, Dr Zaks has decided to include material
on one popular variant of Pascal in the microcomputer field: UCSD Pascal.
This is interspersed throughout the boo!< in clearly labelled sub-sections.

Secondly, the book has a good collection of examples, and they are not
exact.1.y the same examples you find in other textbooks!' Learning a language
is always easier if you c~n read#it (and read a lot of it), since then you
discover samplers (or templates) that you can modify to your own purposes,
and thus gradually discover t:1pical. programming paradigms of that language.

The presentation is traditional, and there are no surprises. The chapter
headings are: lla::.c Concepts, Programming in Pascal, Scalar Types and
Operators, Expressions and Sta Lem en ts, ·Input. and Output, Control Structures,
Proceoures and Functions, Data Types, Arrays, Records and Variants, Files,
Sets, Pointers and Lists, UCSD and Other Pascals, Program Development (15 in
all) followed by 12 Appenc'ices including answers to selected exercises,

.e!'ortcomings

In my opinion, the book is not likely to be widely used as a text in
tertiary courses, for several reasons. Most importantly, it is very light ori.
the concepts of Pascal and Dr Zaks treats of the language simply as another
Fortran -orBASIC. Inetructors trying to get across the important advances in
knowledge about computing will not forgive the lack, whereas readers using it
as a self-tutorial almost certainly wouldn't notice the deficiency. Less
important, but still relevant, is the typical American verbosity in this
kind of book.

To illustrate the conceptual treatment, observe that 6 pages (pp135-140} deal
with enumerated types and subranges, and 11 pages (pp247-257) for sets.
Other data structuring methods seem to fare better, but this appearance
disappears on close exa~ination. For example the array chapter contains
39 pages, but 4 page5 are devot2d to a matrix addition program, 16 pages to
a sorting program, and 8 pages to UCSD features (including UCSD strings which
are not arrays at all!) , leaving 11 pages of discussion of the syntax and
semantics of array~. The low-level obsession with flow of control is very
obvious in this book.

A reviewer cannot pretend to check every program and statement in a book such
as this, but I was pleased to note few errors or half-truths in "Introduction
to Pascal 11 • Notable amongst the omissions, however 1 are references to the
axiomatic definition of Pascal (surely one of the most important sources!)
and to the draft ISO Standard for Pascal. These omissions seem to be related
to the book's orientation towards small computers and relatively naive
programmers.

In spite of the great care put into this book (its technical presentation is
excellent except for the blu~der of printing program text in capitals), I had
to come to the conclusion that the inclusion of UCSD Pascal in it is a
misLake. The book is predominantly about "Standard Pascal", and purchasers
who hope to learn something about UCSD Pascal that is not in the UCSD and
SofTech manuals will be disappointed. It seems that the UCSD material acts
as textual clutter, even if its inclusion on the cover sells more copies.

Summary

"Introduction to Pascal" by Dr Rodnay Zaks is a useful soft-cover book that
will probably be useful to people trying to learn Pascal by themselves, due
to the many examples. However, it will lead them up to the point of
programming usinc. Pascal, but thinking in traditional ways. Many of the
insights and productivity improvements ·will require extensive further
experience, but perhaps that is inevitable.

-0
:JO>
C/)

n
:JO>
r

= rn
:.0:
C/)

~
N
l-'

:JO>
-0
;o

r
'
l-'
<.D
00
l-'

-0
:J>
Ul
m

-""

1

~ 1l~.l3!:~ March 1980
*

Volume One

Publisher 1 Maryanne J"ohnson

510 Wheeler Drive
Editors Patti sue Selseth

(612)-474-7167
Excelsior. Minnesota 55JJ1

Even with all the snow on the ground, SPRING IS IN TRE AIR::::
This is a good time to remember to bring your dog's shots up to date
and don't forget about heartworm.

One of Marianne's Pug Family has passed away in early February.
Helen Landon had only had her PUGS for 2i years, but she truly loved
them. .Her love for all animals was a driving force in her life, and
she will ue missed. The family has ·requested memorials to Pet Raven
or .American Cancer Society.

-* ~~m..~u.tA.l{ol\-s - On.~oln' JJpw~~u.i-Yed. ~&
Tracy Cunningham has a new little girl PUG named Miss J"osie Posie

Penelope. The day before Christmas she was brought home at the tender
age of 2t weeks. (This should be a reminder that not all breeders are as
concerned for the dog's welfare as they should be. There is no excuse for
selling a dog at this age for monatary gain. Remind peopl~ who are looking
for puppies that they should be eating from a dish, and should be able to
get along without their Mama and litter mates before t~ey are taken home.)

Mr, and Mrs. Don Coen of South St. Paul are soon to be getting a new
baby boy PUG. They recently lost a lJ year old PUG,

Mr. and Mrs. Don Donaldson of River Falls, Wisc. became owners of
a male PUG at Christmas time. They bought him from Rachel Fishcher; he
was at the Pug Party last fall as a puppy.

Mr. and Mrs. J"oe J"enareo of Minot brought home a new female PUG in
December. They have an eight year old male and are also looking for
another male.

The John Kerschner Family recently bought an eight month old PUG
puppy from Dorothy.J"ustad. ·

» ~ --ru.s Y_o..~e c.o'R-test.
The J"qhn Healy Family would like to know some of the names that

have been given to the pugs, So we thought it would be fun to have a
"PUG NAME CONTEST." The contest will be based on the registered-and/or
call names our PUG people have named their PUGS (past and present).
Some of the catagories will bes most unusual, most beautiful, most
interesting, most common, and most·humerous. To enter the contest, please
write or call Maryanne before J"une 1, 1980. All entrants will be mentioned
in the next newsletter.

* -+lC\.-Ve ~o\L 1--le(\Y<i. -the ~te~l ((?
We have it on good authority that Pandy Wenz has visited Chipper

J"ustad at his home. Early May will tell the tail::::

·'

* 13irth. +nounc.eptef\ts Page 2

Dorothy J"ustad is proud to announce the arrival of 1

Woodcrofts Foster Fordyce arrived February 12th (the one and only)

Sires AXC & CKC ptd in Bermuda Ch. Sh~ffields Shortening Bread
(better known as Chipper)

Dams Sugar Plum J"en I \) ~ Wo.n.4: ~ds
WANTED - Small PUG Stud to breed with the Classiest Bitch in Town.

Stud must be experienced yet gentle, loving, and discreet. ·
Contac~ Ron or Marlys Hampe (612)-890-4141

" ;b
en
n
;b
r
:z:
rn
~

J"ohn G. Waltzr 184 Amherst, St. Paul 551051 is the manager at Sherwoc ~
Pet in St. Paul. Re would like a male pet PUG at a reasonable price. ..._.

Eunice Thorson; 5J6 1st St., P+octor, Mn. 558101 -recently lost her
fourteen year old PUG. She would like another girl puppy or older PUG.

>K /11nnK. Uott -})oyoth.lj -
Our thanks to Dorothy J"ustad for the wonderful article on getting

started in show biz. We know it will be useful to those of you interestec
in showing PUGS.

If you have any PUG..news that you would like to share with fellow
"PUG PEOPLE" please let us know. -Deadline for the next newsletter is
J"une 1, 1980, J"ust call or write Maryanne, and we'll get your news in
the next issue of' PUG PRESS.

RAVE A HAPPY SPRING : : : : : : : ,,/
q

/1("
Maryanne J"ohnson
Henrietta Wenz
Patti Sue Selseth

;b

" ::0
r

......
lD
00

")>
m
m

V1

r

Dear Newsletter enthusiast, the following is a list of subjects that are
likely to be examined in the upcoming newsletters. If you feel like
it, please respond to any of the subject matter, adding suggestions,
visions, or other comments. Bits of any incoming communication are
likely to be recycled into the newsletter at some date. This being the
first newsletters, the form may change from issue to issue, but my idea
initially is to have each letter be a theme examining some proponent. of
the hypothetical floating sea city, of which we can all be a part.

a~ the spiral method of accretion
b acquiring the necessary elements off the land: going into the

recycling aspects of the project, recycling of cars, refrigerators,
machines for the co~ducive-materials, and also papers and (liquified)
plant matter, for the papier mache structures.

c. A deeper tripping out on paper machait: how it can be used ·ta
invo~e peoples' minds as to the process of accretion, selecting
varieties of forms which scintillate. Drawings can be included of
terrestrial motifs, walls, time capsules, zoomorphic borders of
gardens, rises, walkways, spontaneous expressions of color and
form.

d. aspects of energy acquisition and usage: Solar, wind models, under
water exploits; sha)ing-concepts, valuation.

e. Plantlife likely tn evulve, and the natures of 1. ·~rgent ecosys i::mr
including overlappings, and new symbioses.

f. Food to be grown, produced, specialty items for shipping away, into
the land: Pickles, sweets, noted cheeses, pastries, modes of eating;
availability of different substances.

g. Separation of thirds of spaces: industrial/mercantile/co-operative;
common/state-owned; and home spaces, privately ruled and operated.

h. Varieties o.f social forms, explorations of likely· traditions to be
fused for propulsion into pyremusical ambidextrously mobile batteries.
Cultures to be examined including refugees, aliens, star-struck,
dropped out, mutating, ch!'illge-oriented.

i. Blasting of t"1e closed-ended systems, reiterating the expansive
potentials in~lerent in futuristic thinking: an invitation to
recent explosions.

j. The inner workings and displayed aspects ~f the water system in the
structure. Designs for waterfalls, ponds ;t pools, streams, bathing,
plant feeding, recirculation, distillation.

k. Art- and Extrapolitical-aspects of lifestyles emerging on the sea.
Options for peoples' expressions in career, craft, vocation, activities;

1. An examination of the effort to create groups of three melting, softing
tetras, to meet and merge on the high seas, protlucing the interior
lagoons and flatlands, Also known as triingu1ation, the tendencies of
groups of threes to balance and stability. 'I

m. Diagrammatic explanations of the various levels, including shipping
ports, flotation devices, fluxuating shores, and sky-high properties.
Proportions of spaces allotted'to playgrounds, bycicle loops,
orGgards, cottages, mist gardens, arboretum/terminal stands, geodescic
elevating modules, and sky light sculptures of varying densities
will be suggested, examined, detailed.

n. Something to attract transient visitors: vacation playgrounds.

o.

There are fantasy worlds open for exploration, and technological

and entertainment forms. Also perhaps, casino- and pub-like grottoes,
looking out to under the waves; and varieties of sports presentations
and activities. Contests, fairs, festivals, holidays, erections,
revampings, scribblings.
Communication with other life forms, and inviting them alqng for
the journey into spa~es high and blue. The idea of having a dolphin
embassy, a whale tavern in the sea (growing types of algae for
them), platforms and niches to support many sea travellers, and
those from the sky.

p.

q.

r.

s.

t.

u.

v.
w.

x.

y.
z.

A continuously building mural made by contributions from eqch
visitor in all the media. It will start from some initial point(s)
and spread as more and more visitors come, make, and go. (Thanx, Yoko)

The idea of "not letting an enemy rise on any level 11
, as Maharishi

so aptly puts it. The foreign relations applicable as: Ideologies
can be shared as love. Using the platform as" a museum, a carousel
of multiple nationalities and displays of bifurcate merging, develop
events which can be generally supported by nations, groups, and
factions. In them independent rovers can sniff around.
Examinations of the acoustics, the silent cave-likes, the public,
open, airy ampetheaters. Electronic and other forms of communication
running along its circuits, and extending fr.om its structure.
Visions, ideas for schools, markets, subjects to be taught: seems
likely there's to be a concentration of the space studies on board,
so examining some of the fields briefly: exo-ecology, iow gravity
motion., non-terrestrial physics, neurogenetj,c engineering.
Health, wholeness, holiness: attaining it and keeping it, some of
the newer medicinal statements have been waiting for somewhere like
this to display themselves, and from which to fly.
The idea as the project not just an end,. a new place, but as another
link on the roadway. What then is to come next? What first? What
has been encouraging this?
The extra-realist art movement, its principles and principals.
Tributes to those livers of the past who 1 ve sent good vibrations
into our present sphere~ Catacombs and hillsides.
The exposition and superimposition of the ideas of nakedness,
nudity, nets of reality, and masturbation. Techniques.
Proposal for direct access networks to stretch across the land.
'An animal 1 s or plant 1 s eye view of what we humans have been discussing,
sometimes grave, sometimes humorous.

In closing, I would like to add that all flowing waters lead to the sea.
for the initial interest~ Direct correspondance to me at: Kevin Switzer,
1534 Ford, Lincoln Park, Michigan 48146.

Thanks

~-
o:::..A~~A=-
;:;.rA~~:,.-1'"~~~ -

* ********* * ** * * **

?'Q.. ~ t Q..l \A st <'S
'Yo ~\t'<._~"-c.r...\o)
i~x <\\'\5~

f\'\\~ ~ I ~LO~f· t.. ~o·rs t

~~"[;
.. ~~;d

Cl
'.!>
(/)

n
'.!>
r

= rn
::E:
(/)

"" N ,_.

'.!>
Cl
;o

;,-
,_.
lD
00 ,_.

Cl
)>
U)

IT1

01

~
Applications

El't-1 ASSEJileLY LANGUAGE

11 • 1.. Introduction

An assembly Language pr.ogram consists of, a series of Lines, eac.h contain
ing 0 or 1 statements. A machine ·instruction may not be Labeled·. In other
words, the Label field on a machine instruction must be Left blank.. There are
two kinds of Labels, instruction and data Labels. Labels start in column 1.
Instruction Labels are unsigned positive integers, and each must appear alone
on a Line by itself. The scope of an instruction Label is its procedure.

The pseudoinstructions CON, R<Jol, and BSS may be Labeled with a 1-8 char
acter data Label, the first character of which is a Letter, period or under
score, followed by Letters, digits, periods. and underscores. CXily 1 Label per
Line is allowed. The use of the character"." followed by a number Ce.g •• 40)
is recommended for compiler generated programs, since these are considered as a
special case and handled more efficiently in compact assembly Language (see
below).

Each statement may contain an instruction mnemonic or pseudoinstruction.
These must begin in column Z or Later (not column 1) and must be followed by a
space, tab, semicolon or LF. Everything on the Line following a semicolon is
taken as a comment.

All constants are decimal unless started with a zero e.g. 0177, in which
case they are octal. In CON and ROM pseudoinstructions, floating point numbers
are distinguished by the presence of a decimal point or an exponent (indicated
by E or el, or both. Double precision Clang) integers are followed directly by
an L or L. ·

Also allowed as initializers in
rounded · by daub Le quotes and may
constant, e.g. CON "hello\012\000".
byte. Strings are padded at the end

CON and R<Jol are strings. Strings are sur
include \xxx, where xxx is a 3-digit octal
Each string element initializes a single
up to a multiple of the word size.

Local Labels are referred to as *1, *Z, etc. in CON and RCl'I pseudoin
structions (to distinguish them from constants), but without the asterisk in
branch instructions, e.g. BRF 3, not BRF *3.

The notation $procname is used to mean the descriptor number for the pro
cedure with the specifieci name.

An input file may contain many procedures. A procedure consists of zero or
more pseudoinstructions, a PRO statement, a (possibly empty) collection of in
structions and pseudoinstructions and finally an END statement. The very Last
statement on the input file must be EOF. The END directly preceding the EOF
may be omitted.

Input to the assemble{ is in Lower case, if available. Upper case is used
in this document merely to distinguish key words from th~ surrounding prose.

11.~. Ps~l:ldo instruct;OflS

First the ~otation used for the operands of the pseudo instructions.
<num> = an integer constant
<sym> = an identifier
<arg> = <num> or <sym>
<val> = <arg>, Long constant (ending with Lor L), real constant, string

< ••• >*
< .• .>+

constant (surrounded by double quotes), procedure number (starting
with $) or instruction Label (st;:irting with *).
zero or more of< .•• >
one or more of< ••• >

Four pseudo instructions request global data:

BSS <num>

Reserve <num> bytes, not explicitly initialized. <num> must be a multiple
of the word size.

HOL <num>

Idem, but all following absolute global data references will refer to
this blc;ck.

CON <val>+

Assemble global data words initialized with the <val> constants.

ROM <val>+
Idem, but the initialized data will never be changed.

Three pseudo instructions partition the input into procedures:

PRO <sym>,<num1>,<num2>

END

EOF

Start of procedure. <sym>
of bytes for arguments.
out of the current module,

End of Procedure.

End of module.

is the procedure name. <num1> is the number
<numZ> is 1 for procedure names to be exported
0 otherwise.

Besides the export flag in PRO, six other pseudo instructions are involved with
separate compilation and linking:

EXD <sym>
Export data. <sym> is exported out of this module.

IMA <sym>
lmp(1rt address. IMA allows global symbol <sym> to be used before it is

-0
;I>
(/)

n
;I>
r-
z;
rn
:o;:
(/)

~
N
1--'

;I>
-0
;;a

["'

1--'
lD
00
1--'

-0
)>
Gl
rn
.....,

r

IMC

defined. Note that <sym> may be defined in the same module.

<sym>
SimHar to IMA, but used for imported single word constants. These two
different forms are necessary, because the assembler must know how much
storage must be allocated if <sym> is used in CON or ROM.

FWA <sym>
Forward address. Notify the assembler that <sym> will be defined Later
on in this module, so that it may be used before being defined.

FWC <sym>
Similar to FWA, but for constants.

FWP <sym>
Forward procedure reference. FWP allows <sym> to be used before it is
defined. <sym> must be defined in the same module and must not be ex
ported. Normally, unknown procedure names are entered in the undefined
global reference table, so that their names will be known outside this
module. Procedure names introduced by FWP are treated differently, how
ever, to prevent their being exported.

Three other _pseudo instructions provide miscellaneous. features:

LET <sym> ,<arg>
Assembly time assignment of the second operand to the first one.

EXC <num1>,<num2>

MES

Two blocks of instructions preceding this one are interchanged before be
ing assembled. <num1> gives the number of Lines of the first block.
<num2> gives the number of Lines of the second one. Blank and pure com
ment Lines do not count.

<num>,<val>*
A special type of comment.
timizer, assembler, etc. as

Used by compilers to communicate with the op
follows:

MES 0 -
An error has occurred, stop assembly.

MES 1 -
Suppress optimization

MES 2 -
Use virtual memory (EM-2)

MES 3,<num1>,<num2> -
Indicates that a Local variable is
<num1> is offset in bytes from LB.
the variable.

MES 4 -

never referenced indirectly.
<num2> indicates the class of

Number of source Lines (for profiler).
MES 5 -

Floating point used.
MES 6,<val>* -

Comment. Usedtto provide comments in compact assembly language
(see below).

12. ASSEl!BLY LANGUAGE INSTRUCTION LIST

For each instruction in the List the range of operand values in the assem
bly Language is given. These ranges are all subranges of -32768 .. 32767 and are
indicated by Letters:

m: foll range, i.e. -32768 •• 32767
n: 0 •• 32767
x: 0 .. 32766 and even
y: 1 or (2 .• 32766 and even)
z: -32768 •. 32766 and even
p: 2 •. 32766 and even
r: O, 1 or 2

The Letters should not be confused with the Letters used in the EM-1 in
struction table in appendix 2. Instructions that check for undefined operands
and underflow or overflow are indicated by (*).

GR CUP 1: LOAD

LDC m - Load constant (i.e. push it onto the stack)
LNC m - Load negative constant
La. x - Load Local word x
LOE x - Load external word x
LOP x - Load word pointed to by x-th Local
LAI y - Load auto increment y bytes (address of pointer on stack)
LOF m - Load off setted. (top of stack + m yield address)
LAL x - Load address of Local
LAE x - Load address of external
LEX n - Load Lexical. (address of LB n static Levels back)
LOI y - Load indirect y bytes (address is popped from the stack)
LOS - Load indirect· (pop byte count, address;· count is 1 or even)
LDL x - Load double Local (two consecutive Locals are stacked)
LDE x - Load double external (two consecutive externals are stacked)
LDF m - Load double offsetted (top of stack + m yield address)

GRCUP 2: STORE

STL x - Store Local·
STE x - Store external
STP x - Store into word pointed to by x-th local
SAI y - Store auto increment y bytes (address of pointer on stack)
STF m - Store offsetted
STI y - Store indirect y bytes (pop address, then data)
STS - Store indirect (pop byte count, then address, then data)
SDL x - Store double Local
SDE x - Store double external
SDF m - Store double offsetted

GRCUP 3: SINGLE PRECISION INTEGER ARITHMETIC

ADD - Addition (*)
SUB - Subtraction (*)t
MUL - Multiplication (*)

"' >
(/)

n
>
r
z:
rn
:>;'.
(/)

"" N
!--'

>
"' ""' c-
!--'
lD
00
!--'

"')>

"' m

00

,
DIV - Division (*)
MOD - Modulo i.e.remainder (*)
NEG - Negate (two's complement) (*)
SHL - Shift left (*)
SHR - Shift right (*)

GROUP 4: DOUBLE PRECISION ARITHMETIC (format not defined)

DAD - Double add (*)
DSB - Double Subtract (*)
DMU - Double Multiply (*)
DOV - DoubL·e Divide (*)
DMD - Double Modulo (*)

GROUP 5: FLQO.TING POINT ARITHMETIC

Floating add (*)
Floating subtract (*)
Floating multiply(*).
Floating divide (*)

(Format not defined)

FAD
FSB
FMU
FDV
FIF
FEF

Floating multiply and split integer and fraction part (*)
- Split floating number in exponent and fraction part (*)

GROUP 6: POINTER ARITHMETIC

ADl m - Add the constant m to pointer on top of stack
PAD - Pointer add; pop integer, then pointer, push sum as pointer
PSS - Subtract two pointers (in same fragment) and push diff as integer

GROUP 7: INCREMENT/DECREMENT/ZERO

INC - Increment top of stack
INL x - Increment Local (*)
INE x - Increment external (*)
DEC - Decrement top of stack
DEL x - Decrement Local (*)
DEE x - Decrement external (*)
ZRL x - Zero Local
ZRE x - Zero external

GROUP 8: CONVERT

by 1 (*)

by 1 (*)

CID - Convert integer to double (*)
CDI - Convert double to integer (*)
CIF - Convert integer to floating (*)
CFI - Convert floating to integer (*)
CDF - Convert double to floating (~)
CFD - Convert floating to double (*)

GROUP 9: LOGICAL

AND p - ~oolean and on two groups of p bytes
ANS - Boolean and; num~er of bytes is first popped from stack·
IOR p - Boolean inclusive or on two groups of p bytes
IOS - Boolean inclusive or; nr of bytes is first popped from stack

XOR p - Boolean exclusive or on two groups of p bytes
XOS - Boolean exclusive or; nr of bytes is first popped from stack
CCT>I p - Complement Cone's complement of top p bytes)
COS - Complement; first pop number of bytes from stack
ROL - Rotate Left
Ra< - Rotate right

GROUP 10: SETS

INN p - Bit test on p byte set Cbit number on top of stack)
INS - Bit test first pop set size, then bit number
SET p - Creates ngleton p byte set with bit non Cn is'top of stack)
SES - Creates ngleton set; first pop set size, then bit number

GROUP 11: ARRAY

- Load array element
- Load array element; first pop ptr to descriptor from stack
- Store array element

LAR x
LAS
SAR x
SAS
AAR x
AAS

- Store array element; first pop ptr to descriptor from stack
- Load address of array element
- Load address; first pop pointer to descriptor from stack

GROUP 12: CCT'IPARE

CMl - Compare 2 integers. Push negative, zero, positive for <,
CMD - Compare 2 double integers
CMF - Compare 2 reals
CMU p - Compare 2 blocks of p bytes each
CMS - Compare 2 blocks of bytes; pop byte count
CMP - Compare 2 pointers

TU - True if Less, i.e. iff top of stack< 0
TLE - True if Less or equal, i.e. iff top of stack<= 0
T~ - True if equal, i.e. iff top of stack= 0
T~ - True if not equal, i.e. iff top of stack non zero
TGE - True if greater or equal, i.e. iff top of stack>= 0
TGT - True if greater, i.e. iff top of stack> 0

GROUP 13: BRANCH

BRF n - Branch forward unconditionally n bytes
BRB n - Branch backward unconditionally n bytes

BLT n - Forward branch Less (pop 2 words, branch if top > second)
BLE n - Forward branch Less or equal
BEQ n - Forward branch equal
BNE n - Forward branch not equal·
BGE n - Forward branch greater or equal
SGT n - Forward branch greater

ZLT n - Forward branch Less than zero (pop 1 word, branch negative)
ZLE n - Forward branch 4'ss or equal to zero
ZEQ n - Forward branch equal zero
ZNE n - Forward branch not. zero

or>·

CJ
'.:!>
(/)

n
'.:!>
r

= rn
~
(/)

"" N
f--'

'.:!>
CJ

""'
["'

f--'
LD
00
f--'

" :i>
Gl
m
LD

r

ZGE n - Forward .branch greater or equal zero
ZGT n - Forward branch greater than zero

GROUP 14: PROCEDURE CALL

MRK n - Mark stack <n.= change in static depth of nesting.- 1)
MRS - Mark stack; first pop the static Link from the stack
CAL n - ·Cal L procedure (with ·descriptor n)
CAS - Cdll indirect; first pop procedure number from stack
RET x - Return (funccion result consists of top x bytes)
RES - Like RET, but size of result on top of stack

GROUP 15: MISCELLANEOUS

BEG z - Begin ~rocedure (reserve z bytes for Locals)
BES - Like BEG, except first pop .z from stack
BLM x - Block move x bytes; fi rs.t pop destination addr, th.en source
BLS - Block move; Like BLM, exc.ept first pop x, then addresses
CSA - Case jump; address of jump table at top of stack
CSB - Table Lookup jump; address of jump table at top of stack
PUP p - Duplicate top p bytes
DUS - Like DUP, except first pop p
EXG - 6xchange top 2 words
HLT - Ha Lt the machine (Exit status on the stack)
LIN n - Line number (external 0 := n)
LNl - Line number increment
lOR r - Lo;id register CO=LB, 1=SP, 2=HP)
MON - Monitor call
NOP - No operation
RCK x - Range check; descriptor at ·Cexte.rnal) x; trap on error
RCS - Like RCK, except first pop x from st.ac,k
RTT - ·R.eturn from trap

addf

SIG - Trap errors to -proc nr on top of sta.ck (-2 resets default). Static
Link of procedure is below procedure number. Old ~alues returned

STR r - Store register (Q=LB, 1=SP, 2=HP)
TRP - c.,use trap to occur (Error number on .,;tack>

13. KERN!:L INSTRUCTION SET

Many 'of the instructions presented in the previous chapter are replace-
ments for a small sequence of b.asic instructions. The basic instructions form
Less than half of the complete instruction set. (Inly a few basic instructions
hav.e operands. Most of them fetch their arguments from.the stack. Very few
basic instructions are provided to Load and store objects.

For each of the groups of instructions.the basic ones are given:

GROUP 1: LOC, LAE, LEX, l,OS
GROUP 2: STS
GROUP 3: ADO, SUB, MUL, DIV, SHL, SHR
GROUP 4: DAD, DSB, OMLI, DOV
GROUP 5: FAD, FSB, FMU, FDV, FIF, FEF
GROUP 6: PAD, PSB
GROUP 7 -
GROUP 8 CID, CDI, CDF, CFO
GROUP 9 ANS, IOS, XOS, COS, ROL, ROR
GROUP 10 INS, SES
GROUP 11 AAS
GROUP 12 CMI, CMO, CMF, CMS, CMP, TGT, TLT, TEQ
GROUP 13 ORB, ZNE
GROIJP 14 MRS, CAS, RES
GROIJP 15 B·Es, BLS, CSA, CSB, DUS, EXG, HLT,. LOR, MON, NOP, RCS,

RTT, SIG, STR, TRP

Almost all the other instructions c.an be replaced in the assembly Language by a
short equiv~Lent .sequence of simpler instructions. By applying these replace
ments recursively a s.equence of basic ira.structions can be found.

GROUP 1:
.LNC m LOC -m
LOL x =
.LOE X

·LAL x + LOI 2
.1-AE x + LOI 2
LOI- x + LOI 2
:OUP.2 + OUP 2
A.DI m + LOI 2
:L.EX 0 + ;ADI .x
1-0C 11 + LOS
LAL x + LOI 4
.J,.AE x ·+ LOI 4
ADI m + LOI 4

LOP x
LAI Y
I-OF m
.LAL x =
LOI y
;LDL x
LOE x =
LDF m

GROUP .2:
ST).. x
STE x
.STP x
SAl y
STF m
·sn y
SD.L :X
•SOE .X
·soF m

LAL x ·+ STI 2
~ 1.1!\E x :t- STI 2

J_Ol. x + STI 2
.~ PUP 2 + OUP 2
= ADI m + STI 2

LQC y + STS
LAL x + STI 4
LAE x + STR (+
ADI m + STl .4

+ ·l..OI .2 + .ADI y + EXG + STI 2 + L·OI y

+ LOI .2 + 'A.'DI y + EXG + ~l 2 +· STI y

..,,
"" en
n

"" r

:z
rn
~
en

"" N ,__.

"" ..,,
;:o

r
' ,__.
:£>
·oo ,_.

..,,
)>
m
m
,__.
0

1

GRO\JP 3:
MOD
NEG

GROOP 4:
DMD

GROOP 6:
ADI m

GROUP 7:
INC
INL x
INE x
DEC
DE;L x
DEE X
ZRL X
ZRE x

GROUP 8:
CIF
CFI

GROUP 9:
ANO p
IOR p
XOR p
COM p

GROOP 10:
INN p
SET p

GROUP 11;
LAR x
SAR x
AAR x

GROUP 12:.
CMU p
Tl-E
TGE
TNE

GROUP 13:
BRF n
Bl-T n
BLE n
llEQ n
BNE n
BGE n
llGT n
ZLT n
ZLE n

=
=

=

=

=
=
=
=
=
=
=
=

=
=

=
=
=

=

-

=
=

=
=
=
=
=
=

DUP 4 + DlV
LOC b + EXG

PUP 8 + DDV

LOC m + PAD

Loe 1 + ADD
LOL. x + INC
LOE x + INC
LOC 1 + SUB
LOL x + DEC
LOE x + DEC
LOC 0 + sTl- x
LOC 0 + STE X

CID + CDF
CFO + CDI

LOC p + ANS
LOC p + IOS
LOC p + xos
LOC p + cos

LOC p + INS
LOC p + SES

LAE x + LAS
LAE x t SAS
LAE x + AAS

LOC p
TGT
TLT
TEQ

LOC 0
CMI
CMI
CMI
CMI
CMI
CMI
TLT
TLE

+ CMS
+ TEQ
+ TEQ
+ TEQ

+ ZEQ n
+ ZLT n
+ ILE n
+ ZEQ n
+ ZNE n
+ ZGE; n
+ Z.GT.n
+ ZNE ~
+ ZNE n

+ MUL + SUB
+ sUB

+ DMU + DSB

+ sTL x
+ STE X

+ STL X
+ STE X

ZEQ n = TEQ + ZNE n
ZGE n = TGE + ZNE n
ZGT n = TGT + ZNE n

GROOP 14:
MRK n = LOC n + MRS

-0
CAL n = Loe n + CAS

J>
C/)

RET p = Loe p + RES

" J>
r

GROOP 15:

:z:
BEG z = Loe z + BES

rn OLM p = Loe p + BLS
::e::
C/)

DUP p = Loe p + DUS
LIN n = Loe n + STE 0

'It
LNI = INE 0

N .__. RCK x = LM x + RCS

The replacements for LIN and LNI are only equivalent if they
precede the first H<l. in that assembly module.

The replacements for LAI and SAI are rather artificial. These instructions are most Likely preceded by a LAL or LAE in-st ruction. Then they replace the sequence:

LAL x + LAI y = LOL x + DUP 2 + ADI y + STL x + LOI y LAE x + LAI y = LOE x + DUP 2 + ADI y + STE x + LOI y LAL x + SAI y = LOL x + DUP 2 + ADI y + STL x + STI y LAE X + SAI y = LOE x + DUP 2 + ADI y + STE x + STI y
J>
-0

""' The replacements for LAS and SAS would even be Longer, because the size of
r the

object to be Loaded or stored must be fetched from the descriptor.
If the

f-'
size y is known, then LAS and SAS can be replaced by:

lD

"" .__. LAs = AAS + LOI y
SAS = AAS + STI y

-0
)>

"' rn
.__. .__.

r

'

APPENDIX 1 • OFFICIAL Elt-1 llACHINE DEFINITION.

{This is an interpreter for EM-1. It serves as the official macbine
definition. This interpreter must run on a machine which supports 3a
bit arithmetic.

Certain aspects of the definition are over specified. In particular:

1. The representation of an address on the stack need not be the
numerical value of the memory location'

2. The state of the stack is not defined after a trap has aborted
an instruction in the middle. For example, it is officially un
defined whether the second operand of an ADD instruction has
been popped or not if the first one is undefined (-32768).

3. The memory Layout is implementation dependent. Only the most
basic checks are performed whenever memory is accessed.

4. The format of the mark block is implementation dependent.

5. The format of the procedure descriptors is implementation
dependent.

6. The result of the compare operators CMI etc. are -1, 0 and 1
here, but other negative and positive values will do and they
need not be the same each time.

7. The shift count for SHL, SHR, ROL and ROR must be in the range 0
to 15. The effect of a count greater than 15 or Less than 0 is
undefined.

}

program em1(tables,prog,output);

Label 9999;

canst
t13 = 8192; { 2**13 }
t14 = 16384; { 2**14 }
t15 = 32768; { 2**15 }
t15m1 = 32767; { 2**15 -1 }
t16 = 65536; { 2**16 }
t16m1 = 65535; { 2**16 -1 }
t31m1 = 2147483647; { 2**31 -1 }

max code..= 8191; { highest byte in code address space }
maxdata = 81'9'1•; {highest byte in data address space·}

{ mark block format }
statd = 6; { how far is static Link from Lb·}
dynd =.4; {how far is dynamic Link from Lb}
reta = 2; { how far is the return address from Lb}
mrksize = 6; { size of mark block in bytes }

{ procedure descriptor format }
pdargs = O; { offset for the number of argument bytes }
pdbase = 2; { offset for the procedure base }
pdsize = 4; { size of procedure descriptor in bytes }

dsize = 4;
rsize = 4;
{ header words }
NTEXT = 1;
NDATA = 2;
NPROC = 3;
ENTRY = 4;
NLINE = 5;

escape = O;
undef = -32768;

{ error codes }
ESTA CK = O; EHEAP
ECASE = 4; ESET
EIOVFL = 8; EDOVFL
EIDIVZ = 12; EFDIVZ
EFUND = 16; ECFI
EFPP = 20; ELIN

{ size of double precision integers }
{ size of reals }

{ escape to secondary opcodes }
{ the range of integers is -32767 to +32767 }

= 1; EILLINS = 2; EODDZ = 3· ,
= 5; EARRAY = 6; ERANGE = 7· ,
= 9; EFOVFL = 10; EFUNFL = 11;
= 13; ElUND = 14; EDUND = 15;
= 17; ECFD
= 21; EMON

= 18; ECDI = 19;
= 22; ECAL = 23;

ELAE = 24; EMEMFLT = 25; EPTR = 26; EPROC = 27;
EPC = 28;

-0
):>
(/)

n
):>
r
:z:
rn
:e:
(/)

"!*'
N ,_....

):>
-0
:;o
~

r
' ,_....
lD
:xi ,_....

-0
)>
Ci)

m
,_....
N

1

{---}
{ Declarations }
{---}
type

bitval= 0 .. 1; { one bit }
bitnr= 0 .. 15; { bits in machine words are numbered 0 to 15 }
byte= 0 •. 255; { memory is an array of bytes }
offset= o .. t15m1; { positive integers are offsets }
adr= 0 .• t16m1; { a machine word interpreted as an address }
word= -t15 •• t15m1; { a machine word interpreted as a signed integer }
full= -t16m1 .. t16m1; {intermediate results need this range}
double=-t31m1 .. t31m1; {double precision range}
bftype= (andf,iorf,xorf); {tells which boolean operator needed}
iflags= (mini,short,xbit,ybit,zbit);
i fset= set of iflags;

mnem = C NON,

dispatch

var

AAR, AAS, ADD, ADI,XAND, ANS, BEG, BEQ, BES, BGE,
BGT, BLE, BLM, BLS, BLT, BNE, BRB, BRF, CAL, CAS,
CDF, CD!, CFO, CFI, CID, CIF, CMD, CMF, CMI, CMP,
CMS, CMU, Cil'l, COS, CSA, CSB, DAD, DDV, DEC, DEE,
DEL,XDIV, DMD, DMU, DSB, DUP, DUS, EXG, FAD, FDV,
FEF, FIF, FMU, FSB, HL T, INC, !NE, INL, INN, INS,
IOR, !OS, LAB, LAE, LAI, LAL, LAR, LAS, LOE, LDF,
LDL, LEX, LIN, LNC, LNI, LOC, LOE, LOf, LOI, L!X.,
LOP, LOR, LOS, LSA,XMOD, MON, MRK, MRS, MRX, MUL,
MXS, NEG, NOP, NUL, PAD, PSB, RCK, RCS, RES, RET,
ROL, ROR, RTT, SA!, SAR, SAS, SDE, SDF, SDL, SES,

XSET, SHL, SHR, SIG, STE, STF, STI, STL, STP, STR,
STS, SUB, TEQ, TGE, TGT, TLE, TLT, TNE, TRP, XOR-
XOS, ZEQ, ZGE, ZGT, ZLE, ZLT, ZNE, ZRE, ZRL);

record
iflag: if set;
instr: mnem;
implicit: word

end;

code: packed array[O .• maxcodeJ of byte; { code space }
data: packed array[O •. maxdataJ of byte; {data space}
pc,lb,sp,hp,pd: adr; { internal machine registers }
i: integer; {integer scratch variable}
s,t,k: word; { scratch variables }
j:offset; {scratch var{able used as index}
a,b:adr; { scratch variable used for addresses }
dt,ds:double; { scratch variables for double precision}
rt,rs,x,y:real; {scratch variables for real}
found:boolean; { scratch }
opcode: byte; { holds the opcode during execution }
escaped: boolean; { true for escaped opcodes }
cutoff: byte; { cJPcode of first call in alternate context}
dispat: array[boolean,byte] of dispatch;

{ holds the instructionnumber }
{ true except when in alternate context }
{ normally false. set to true by halt instruction }
{ parameter of HLT}
{static Link of error procedure}

insr: mnem;
normalmap: boolean;
halted: boolean;
exitstatus:word;
uerrorlb :adr;
uerrorproc :adr;
header: array[1 .. 8J

{ number of user defined error procedure }
of adr;

tables: text;
prog: file of byte;

{ description of EM-1 instructions }
{program and initialized data}

{---}
{ Various check routines }
{---}
{ Only the most basic checks are performed. These routines are inherently

implementation dependent. }

procedure trap(n:byte); forward;

procedure oddchkadr(a:adr);
begin if (a>maxdata) or ((a>sp) and (a<hp)) then trapCEPTR) end;

procedure chkadr(a:adr);
begin if oddCa) then trap(EPTR); oddchkadr(a) end;

procedure newpc(a:adr);
begin if (a<O) or (a>pd) then trap(EPC); pc:=a end;

procedure newsp(a:adr);
begin if (a<lb-2) or (a>=hp) or odd(a) then trap(ESTACK); sp:=a end;

procedure newlbCa:adr);
begin if (a>sp+2) or odd(a) then trap(ESTACK); lb:=a end;

procedure newhp(a:adrl;
begin if (a<=sp) or Ca>maxdata+1) or odd(a) then trap(EHEAP); hp:=a end;

function argiCw:word):word;
begin if w = undef then trap(EIUND); argi:=w end;

function argn(w:word):word;
begin if w<O then trap(EILLINSl; argn:=w end;

function argx(w:word):word;
begin if (w<O) or Cw>=t15) or odd(w) then trapCEILLINS); argx:=w end;

function argp(w:word):word;
begin if odd(w) or Cw<=O) or Cw>=t15) then trap(EILLINS); argp:=w end;

function argy(w:word):word;

" :P
(/)

n
:P
r

= rn
:E:
(/)

"" N ,__.

:P

" ;o
~

r

,__.
LD
00 ,__.

")>
G1
rn
,__.
'-"'

tleg:i'Fl' tf w=1: then a•rgy:=<1 else argy;=a-rgp·(w)· E!n.d·;

fun•ctfon· arg:z(w:wci'rdl'~word';
begin' t.t oerd(w)' or (w<-05)· or (w>=t1•5'} then trap(EILLINS); a.rgz:=w end;

funGti ori' ohf<ovf Cz :douhce)': w<:»fd';
b·egf,J<i it a'bs(z) >= t15 th·en trap(E!OVFLJ; chkovf:=<z end;

{--·--------------}
{ Memory access routi·nes }

{---}
{ rrrerrrw returns a mactri ne· word as a si gnecf integer: -3'276!(<= merrrw <= +32767

mema: returns a- machine word a:s art address· : 0 <= mem·a <=> 65535
memb returns a single byte as a positive· integer: a··<=< memb <=· 255
store (a,v) s·tores the word or addres.s v a:t mach·ine address. a
storeb(a:,b)' stores the byte b a·t machine ad'dreS·S a

memi returris a word from· the' instruct.ion space: Cl<= memi <= 65535
Note that the procedure aes·criptor·s are part of inst.ruction sp·ace·.

nextpc returns tile next byte addressed by pc, fncrementing pc

lino cllanges the Line number word.

ALL routines clleck to make sure the address is witltin range. The word
routines also check to see that the address is even. If an addressing
error is found, a trap occurs. }

function mema(a:adrJ:adr;
var b:adr<;
begin chkadr(a); b:=dataCa+1J'; mema:=256*b' + dataCa:I end;

function memw(a:arlrj :wofd;
var b: adr;
begin b:=me-ma(al; "it b>=t15 then memw:=b-t16 else rrremw:=b end;

function memb(a:adr):byte;
begin oadchkadr(a); memb:=dataCaJ end;

procedure store(a:adr; x:full);
begin chkadr(a);

if x < 0 then x ;=< x+t16; {equivalent value, but positive}
dataCaJ := x mod 256; dataCa+1J := x aiv 256

ertd;

procedure storeb(a:adr; b:byt~);
begin oddcltkadr(a>; dataCaJ:=b end;

function memi(a:adr):adr;

var b·:adr;
begtn

H odd(a) or (a>maxcode) then trap(EPTR);
b:=codeCa+1J; memi :=256*b + code[aJ

end;

function nextpc·:byte;
begin next pc :=code[pcJ; new pc (pc+1) end;

pro·cedure l ino(w:.word);
begin if (w<O) or (w>headerCNLINEJ) then trap(ElIN); store<O,w) end';

{--}
{ Stack Manipulation Routines }
{---}
{ push puts a word or address on the stack

popw removes a machine word from the stack and delivers it as a word
popa removes a machine word from the stack and delivers it as an address
pushd pushes a double precision number on the stack
popd removes 2 machine words and returns a double precision integer
pushr pushes a real (floatin·g point) number onto the stack
popr removes 2 machine words and returns a real number
pushx puts an object of arbitrary size on the stack
popx removes an object of arbitrary size

procedure push(x:fulll;
begin newsp(sp+2); store(sp,x) end;

function popw:word;
begin popw:=memw(sp); newsp(sp-2) end;

function popa:adr;
begin popa:=mema(sp); newsp(sp-2) end;

procedure pushd(y:double);
begin { push double integer onto the stack } newsp(sp+dsize) end;

function popd:double;
begin {pop double integer from the stack} newsp(sp-dsize); popd:=O end;

procedure pushr(z:real);
begin { Push a real onto the stack} newsp(sp+rsize) end;

function popr:real;
begin {pop real from the stack} newsp(sp-rsize); popr:=O.O end;

procedure pushx(size:offset; a:adr);
var i :integer;
begin

}

u
~
C/)

n
~

'
= rn
~
C/)

"" N
f--'

~
u
:;o

r-
f--'
l.D
co
f--'

u
)>
G')

rn

f--'
-"'

i'f si'ze=11

eAd1;,

the'ri' pu:sfrC.m:emb·(a):),
else ;if. olfclo(s:~ze) o'r' (s.f.ze·<=o1'i

t~en: trap{EO!iDZ:)I
e~se' f0•r i•~=1i t0: s:i!ze' d:f•v 2' db pash°(memlfl'(a•Z+Zil';\)~)l

pro'cedui"E!' p<lipX(s;;1:i;e-;o'ljffse't; a•~a'd'r'J!;;
v a r i 1 : fr1tegte·r ~
begin:

if Si·ze=1i

etid·;

then. 0e·g!l·n. sM·reei fa;rtremtil~sp)')i;: Jl\'E!'W'si§'Gsp-2} ei:l\:li
else ilf od'd1~sfa•e)1 ci'F' Es:;iz.e<""0·)'

tJ1'en. traµ'(iMD'~itji
Ef.~s:e 1'o·r· ;: ;=r-f, ta s:i•ze di'v t dO"• s1l6re'(a.ts.iize-Z*i•,popw:)l

-€-~--~~---~~--~~~~--=~--~~-~~~~--~=~~--~~=--~~-~---=~~~=-~~¥·
.C li'i't manii:ia1(a<tt:i'dn: rou1!ftreSI 'ex-r,r·a·ct.,. shift,. rot.ate» J
{---------------~-~---~-------~~~~~~·-~~~--~~-~~-..... --~------:r
P'~cfce'd:ur.e steft(va.r w>:.wor'dO•;: -€ 1l lb~·t teit s't\lHt);
11e9,fr'i', i•f. a-o•s(w-J• ~ t1i/f ti!ren' tr·a)!ll,ElloVl'IL) efi§e Iii• ~"' 2'*11· end;:

lii'r'aced\:Jr.e s:rigi\tCva·f. w>:w'6'Ji'd•Y; .C 1l li>~t r-fg.li:t: §fi1fft w:ftfl 5.;.911' exr1!.mS<i:on•).
lf>'E!'Qi"iilil• f<f w :>=< El' t~:eR w; ~=- I/I .c;Jlf.1)1 Z efiseo 11' ~= (liF1!)• dfv t ertd';:

p'l'o"Gedl:ffl!: r<[ef.t(Va'r W~w.or'd•)·; t 1\ l;;li•t nef.t rd•fi'.a'tte- r
liie'Q:tn• tf w. :>=· di

t·nen• ff. w> < t1i4· t~'E!l'i' w~=-- t*'ll· e[s<> w:~=< Z'*lil""t'f6
e~s.e i:1' Iii' ""' -t.1'4 tffeni w> ~=< 2'>til!IH'1\ eU.s~« w~"' 2~+t1:6+1'·

endi;

prc:n~e'd'l!lre r'dgih'ti:,V<i'r· 11•:11ro>r·cJi~;: { 1i bi't dgh.1! i'e:trte- :Y
b'e'g•iiri' ;If Oddi(1t)'

end;

tJilefl' H lll<!li th'eni 111:,.G111--1)' di111 i e~se 111· ~,. Iii' cf.fv t - t1'5
E!!l§E!' f.11 w<:l!)i t'fl8'n· w>t=<(w+t'F&J .d!tv t e~se· w·~=< w> d<i\v t

fon-c>tfcm• b'·~tC~~IO>ttrn•;: l/ltw01r·otJ>lii·f.t.va.~;: { rtrtu·r·rll l!i·ft b· 011 tile wo·rd! w>}
ila·r ~ ~b+tnr;
beg1iil'f. f.or' b., t t01 b> l!l\;f• r<rfgh:t(W'Jo;: li>•i't ::.=ordfo'dd,wH 1mcf.;:

fun:etiion b'f.C.ty:li'f.type';: w.1',"c~lfor'di)·~wor'd';; { r'<!tu·r'n' &oo~ea11 ·fon' of t wctrds }
var t~bftrtr"; j;ad'r-;.
begifn. j t""t!l•;:

friir' 'it=' ~S· dewn'te' O' dO
t>:e91fo Ji ~=> Z*fi;

~as!!' ty af ,
/jn&f~ H b'f~Gi:;lf.IY+~ft,~;ir2J => Z. then· j, ~='~+1:;
for:"f~ ff iift'(f.;urfi)'-flif;it,f.;wZ)- :i> i;J' th"eri :l~=j-1'1;

I·

end;;

xod~ if bit<i',w.1')+bit(i,wi!} = 1 tfien j :=j'+'I'.
end'

i•f 'j. <= t'f5m1 then bf ~=j, e Lse bf.~= j - t1.6·
en'd;

{--~-----~--·---------------------~----~--------------------------------}
{ Ar'r"a'Y fndex.i•ng:
-<:----~--------~~--------~---------·------------------------------}

fut:i'ctisn a·rr·ayca{cGC':adrhadr;: {subscript ca:Qci:i.tati•on :!>
va.f j ~word';; s>iize~dffset; a:ad'r.;
begin J== pdJ;!W ~ ntemv(c);

ff (j<ff.)' or 'j::»rrrl!liflf(c+2)) then- trapCEARRAY.>;:
s>fze := rill!l!fll(c+4)';
H (stze"<:til) o·r ((s:fre>1) an'd· od'd(s:i!ze)) then trap(EOODl);
a: := ji*S-i ze:+popa;·
a·rraycatc:=a.

ertd•;

<-~--~---------~------------~~------~--~· ·--------------------}
{ Double- and Real Arft.hnteti-c }

-Ii---~--~------}
{. 1Ht rdwtiries· for d'oubles and re<f~S are d'ummy routines, sfoce the format of

d'oub•lies al'!d. reals fs not defined: fo Efil'-1.
y

fliltlctfon dodiad'(.ds,dt •deubte)' :ddubh;
ti·e-gi·n· < add: two• cfl'lubles } dodad:=O end;

fonctfon dodsb·(ds.,dt ~d·oubleJ:doubLe:;
bt!'g.i'n { subtr'a:ct two doubles } d'odsb :=O end•;

funct.fofl dodml Cds,dt ~double)-: double;
ileg.tn' { mi:;~ttply two doubles.} dodntl~=Q' end;

f.ur:1ction dod'cfv(ds,dt :doub le)·:doubte;:
b'egin { di-vide tlilo· doub'les } doddv:=cr end;

foli'Ction· docfril'cHds,cft :double) :double;
b'egi:n { nto·dulo· of two cfoub tes } dddmd:=O end:;:

fonctfon dofad!Cx,y~r:"eaU':real;:
be:gfo { addi two reals } dof;id:=ff,O end;

f.urrcti on cfofsi>(x;y: real) : real;
be-y"in { subtract two reals } dofsb·:=O•,O' end·;

fon·cti on dO·fmuCx,ysre·al)':tea l;
beg.i.n { mu-ltiply twa reals } dofmu:=O •. o end;

...,,
:;c:.
en
("")•

:!=>'
r

= rn
::e::
U>

""' N ,__.

:;c:. ...,,
;:o
~

["'
,__.
LO
00 ,__.

-0
)>
Gl
m
,__.
\J'1

r

function dofdv(x,y:real):real;
begin { divide two reals } dofdv:=O.O end;

procedure dofif(x,y:real;var intpart,fraction:real);
begin { disme~ber X*Y into integer and fractional parts }

intpart:=O.O; {integer part of X*Y}
fraction:=D.O; { fractional part of X*Y }

end;

procedure dofef(x:real;var mantissa:real;var.exponent:integer);
begin { dismember x into mantissa and exponent parts }

mantissa:=O.O; { mantissa of x }
exponent:=O; { exponent of x }

end;

{ ---~·-----------------------------}

{ Trap }
{---}
procedure trap;
{ This routine is invoked for overflow, ·and other run time errors.

For non-fatal errors, trap returns to the calling routine
}

begin
if uerrorlb=O then

begin
writeln('error ', n:1, ' occurred without being caught');
goto 9999

end;
{ Deposit all interpreter variables that need to be saved on

the stack. This includes normalmap, all scratch variables that can
be in use at the moment and (not possible in this interpreter)
tne internal address of the interpreter where the error occurred.
This will make it possible to execute an RTT instruction totally
trdnsparent to the user program.
It can, for example, occur within an ADD instruction that both
operands are undefined and that the result overflows.
Although this will generate 3 error traps it must be possible
to ignore them all.

For simplicity just the normalmap flag will be stacked here}

push(ord(normalmap));
{ Now simulate the effect of an MRS instruction}
push(uerrorlb); { push static Link }
pusfi<Lb); {push dynamic Link }
push (pc); { push return addr.ess }
push(n); {push error number }
{ Now simulate the effect of a CAS instruction }
newlb(sp); newpc(memi(pd+pdsize*uerrorproc+pdbase));
if n in [ESTACK,EHEAP,EILLINS,EODDZ,ECASE,ECAL,El'IEMFLT,EPTR,

EPROC,EPCJ
then goto 9999;

end;

procedure dortt;
var s:adr;
begin

newpc(mema(Lb-reta)); s:=Lb-mrksize-2; newlb(mema(Lb-dynd)); newsp(s);
{ So far this was a plain ret 0}
normalmap := popw = 1;

~nd;

-0
:P
(/.)

n
:P
r

= rn
:i;:
(/.)

"" N
!--'

:P
-0
;;o

r
'
!--'
<D
00
!--'

-0
)>
G>

"' ,._,.
=

,
53

{--~~}
{ Initialization and debugging }
{------------------------------~--}·

procedure initialize; {start the ball rolling}
{ This is not part of the official machine definition }
canst tab = 1

var b:boolean;
I• ,

cset:set of char;
f :ifset;
nmini,mbase,nshort,sbase,obase,i,j~n:integer;
c:char;

function readword:word;
var b1,b2:byte; a:adr;
begin read(prog,b1,b2); a:=b2; a:=b1+256*a;

if a>=t15 then readword:=a-t16 else readword:=a
end;

function readdouble:double;
var a,b:adr;
begin a:=readword; b:=readword;

{ construct double out of a and b } readdouble:=O
end;

function readreal:real;
var b:byte; i:integer;

s:array[1 .. 100J of chsr;
begin i:=O;

repeat
read(prog,b); i:=i+1; s[iJ:=chrCb)

until b=O;
if odd(i) then read(prog,b); {skip padding byte}
{construct real out of character string s} readreal:=0.0

e~;

begin
normalmap:=true;
halted:=false;
exitstatus :=-1;
uerrorlb:=O;
uerrorproc :=D;

{initialize tables}
for i:=O to maxcode do code[iJ:=O;
for i:=O to maxdata do data[iJ:=O;
for b:=false to true do

for i:=O to 255 do
with dispat[bJ[iJ do

begin instr:=NON; iflag:=[zbitJ end;

{read instruction table file. see appendix
reset(tables); insr:=NON'
repeat readln(tables) until eoln(tables);
repeat readln(tables) until eoln(tables);

2 }

{skip until empty Line}
{skip until empty Line}

readln(tables); {skip empty Line}
repeat

insr:=succ<insr); cset:=[J; f:=[J;
read(tables,c,c,c,c);
while Cc=' ') or (c=tab) do read(tables,c);
repeat

cset :=cset+[c];
read(tables,c)

until (c=' ') or (c=t~b);
readln(tables,nmini,mbase,nshort,sbase,abase);
if 'x' in cset then f:=f+[xbitJ;
if 'y' in cset then f:=f+[ybitJ;
if 'z' in cset then

with dispat['s' in csetJ[obaseJ do
begin iflag:=f+[zbitJ; instr:=insr end

else
begin

with dispat['L' in csetJ[obaseJ do
begin iflag:=f; instr:=insr end;

for i:=O to nshort-1 do
with dispat['s' in csetJ[sbase+iJ do

begin iflag:=f+[shortJ; instr:=insr; implicit:=256*i end;
if insr=CAL then cutoff:=mbase else

end;

for i:=O to nmini-1 do
with dispat[falseJ[mbase+iJ do

begin iflag:=f+[miniJ; instr:=insr;
implicit:=i+ord('o' ih cset)

end;

until eoln(tables);

{ read in program text, data and procedure descriptors }
reset Cprog);
for i:=1 to 8 do n:=readword; {skip first header}
for i:=1 to 8 do header[iJ:=readword; {read second header}
Lb:=O; hp:=maxdata+1; sp:=O; lino(O);
{ read program text }
for i:=1 to header[NTEXTJ do read(prog, code[i-1J);
{ read data blocks }
for i:=2 to readword do push(undef); {ABS block}
for i:=2 to header[NDATAJ do

begin n:=readword;
if n>=O then

for j:=1 ton do pushCundef)
else

begin j :=(n+t15) div t13; n:=(n+t15) mod t13;
case j of
0, { words }
1: { pointers }

for j :=1 to n d.o push(readword);
2: { double integers }

for j :=1 to n do pushd(readdouble);
3: { reals as character strings }

for j :=1 to~ do pushr(readreal);
end

54

--0
:too
<YO
n
:too
r

= rn
:.;::

""·
"" N
f--'

:too
--0
:;o

r
f--'
<.D
00
f--'

--0
)>
GJ
rn

f--' ..__.,

r

end
end,;

{ read de.scriptor table J
pd:=header.[NTEXTJ;
fo,r i :=1 to heade.r'.CNPROC]*pdsiz.e do read(prng,code[pd+i-1 J);
{ calt the entry point routine }
push(maxdatal; { illegal static liAk }
push(maxdata); {_ Hlegal dynamic 'tink}
push{maxcode); { HLegal return ,addr.ess }
newlb(sp+2);
new pc (memHpd + pd:siz•e*headerIENTRYJ + pdbase)),;

end;

{--~-------------------------}
{ MAIN LOOP 'OF THE INTERPRETER }
{----------,,---}
{ It should be noted that the int,e.r.preter (mjcroprogram) for an '.EM-1

1ma,chine can be written i1n two fundamentaLLy differ,ent w,ays.' (1) the
inst,ruction operands are fetched in t'h.e ,main lo.op, pr (2) the fo
stru.ctio.n operands ar,e fetched after th.e 256 way branch, ,by the e.x,e
C'Ution irm.Jti<nes themselves. iln this interp:r.eter, method (1~ is us,ed
to simp'l ify the des,c,rip:tion ,af executi 9n rout foes. The· di spat.ch
t.ab'Le dispat is us,ed t,0 ,determine ho.w t'he ope.rand is .encoded. The.re
are ·4 .PO:S'sibil iHes:

D. Ther.e is no ,operand
1. if he operand and inst.r,ucti on ar,e
2. The op.erand is ,on.e byt.e 1.orag and
3. The •Operand 5s :t.wp by:te.s Lon.g and

together in ~ :byte {mini)
fo Llows the ·opc·ode byte (s)
fol:L.ows the opcod.e byte(sl

In this j,nte,rpr.et.er, :t:he .m.a·i.n Lo,ap determines the ,oper,and type,
fate.hes it, .and tea,w.es it in the gl,oba'l variabl·e. k for t:h.e executi,o.n
:routi,raes to .use. 1Conse,querat:Ly, fo.structi.orns s.u,c:h a.s L,OL, •.which us.e
three different formats, need "only •be described •On.c,e in the 'body of
th,e inte•rpreter.

However, for a pr.,du.ction i.nter,preter, •or a :hardwar.e EM-1
machine, H is prob.ably b.ette'r t,o u:s.e ,method (2), 1 .. •e. to ,Let th.e
execution routines themselves ·fetch their ,ow.n op,erands. The reaso.n
for tbis is :that each ,opcode .uniquely determir:ies t~e :0,pe•r,and :format,
so no tab,le loo·kup 1.n the disp.ati;:h t.able is ne,e.de.d. The w,hole tab,,Le
is not 1n.e.eded. Method c(2) therefore exec.utes muc,h f,)l\Ster.

However, separate .e.xecuti on :r,o.uti.nes wi U b.e ne.eded for LOL with
a .one .by:t.e ,offset, .and Ul. ,llith a two byte offs.et. It is to avoid
this additional c'lutter that m.e't:hod :(1) is •Us.e.d :her.e • .ln ,a p,r.oduc
tiora foterp:reter, H is .emlisfoned that th.e ·main Loop wiH fet.c.h the
next i.nstr,uct;ion byte, and use it . .as an ind.ex 'int,0 ,a 256 ,wpr.d tabLe
to find th.e .addre·ss 1of the lnt-e,rpr,eter ,r.o,utine to l!:Jmp tc0,. Th.e
ro.utine jumped :to .wiH b.egfo by fet'c'hi.ng its o,pe·rar.id, H any,.
,withoµt any t.ab'L.e Lookup, sfoce it kn.o,ws which format to ,expe.ct.
Aftu do~.ng the work, ;t r,etu:rns to t,he ,main fo_op :by j,umpang i.n
dfrectly to .a register that ,contafos the addre·ss of t:he ,m_ai.n '.l.oop .•
When the aU-e.r.nate ,context ~ s 'entered Caft . .e,r the 'l'IRX .o.r 'MXS i r-J

structions), thi,s register 5s r.el,0.aded so that an alte.rn,aite ·main
l.oop is ,used, with an alternate .bra.r.wh tab'Le,. A ·slight varillti.ora .o.r:i ·
this idea is to have the regi-stce:r contain t:~.e .addr.es.s ,of tb.e ;branch
~able, .rather than the· address of t.be .main :L-o,op,

Another issue is .whether t,he :execution ro1,rri·nes f:o1r L,OL ·0, Ul.
2, L·OL -4, etc. shpu.ld a L•L 'h.av,e diistinct .exec.u;l:].pn ,rout foes. Doing
so provides for the maxim"um spe .. ed,. ·si.A.c,e t:he ·aper.and is impHcit i.n
the rou:tin.e itself- The disadvantag.e is tb,at many ,raearly id,enti.c.a .. L
execution .rnutines .wi LL th.en be n.eeded.. IAllothe.r .way -of doing iii: ~·s
to ke.ep the inst nucti on byte fetched fr.om ,memory (LOL '0, L•OL :Z, L<l.
4, etc.) in some regist,e.r, ,and have all the LOL :mini •format 1n.str.uc
tfons :bran.ch i:o a common .routine. This routine ,can then .dete.rmi:ne
t-he operand by ·subtracting the .code for 'LOL '0 from t.he r,e_gist.er,
Leaving the t'.ue operand ,\n <t:be reg~ster (as .a ,wo.rd !lUan~Hy ._~;f
.oourse). ThJs .method makes the Jnterpr.e:t,e:r -smat:Ler, 'bu~ 1s a bit
s Lower. ·

"' Jo>
(/)

n
Jo>
r
;z:
rn
::E
(/)

* N
,f-'

Jo>

"' ""' -,,
'
I-'
U)

00
I-'

"')>
Ul
rn

I-'
00

1

To make this i•portant point a little clearer, consider how a
production interpreter for the PDP-11 might appear. Let us assume the
following _opcodes have been assigned:

30: LOL 0
31: LOL 2
32: LOL 4
33: LOL 6
34: LOL b
35: LOL w

(2 bytes, i.e. next word)

(format with a one byte offset) ,
(format with a one word,· i.e.· two byte offset)

Further assume that each of the 6 opcodes will have its own execution
routine, i.e. we are making a tradeoff in favor of fast execution and
a slightly Larger interpreter.

Register rS is the em1 program counter.
Register r4 is the em1 LB register
Register r3 is the em1. SP register (the stack grows toward high core)
Register r2 contains the interpreter address of the main loop

The main Loop Looks Like this:

movb (r5)+,r0
asl rO
jmp *table(r0)

/fetch the opcode into rO and increment rS
/shift rO left 1 bit. Now: -256<=r0<=+254
/jump to execution routine

Notice that no operand fetching has been done. The execution routines for
the 6 sample instructions given above might be as follows:

LoLO: mov (r4),(sp)+ /push local 0 onto stack
jmp <r2) Igo back to main Loop

Lol2: mov 2(r4),(sp)+ /push local 2 onto stack
jmp (r2) Igo back to main loop

Lol4: mov 4(r4),(sp)+ /push Local 4 onto stack
jmp (r2) Igo back to main Loop

Lol6: mov 6(r4),(sp)+ /push Local. 6 onto stack
jmp (r2) /go back to main Loop

lolb: clr rO /prepare to fetch the 1 byte pperand
bisb (r5)+,r0 /operand is now in rO
asl rO /rO is now offset from LB in bytes, not words
add r4,r0 /rO is now address of the needed local
mov (r0),(spl+ /push the local onto the stack
jmp (r2)

Lolw: clr rO /prepare to fetch the 2 byte operand
bisb (rSl+,rO /fetch high order byte first !!!
swab rO /insert high order byte in place
bisb (rSl+,rO /insert low order byte in place
asl rO /conver.t offset to bytes, frOtll words
add r4,r0 /rO is now address of needed Loca.L
mov (rO), (sp)+ /stack the Local
jmp (r2) /done

The important thing to notice is where and how the operand fetc.h occurred:
loLO, Lol2, Lol4, and Lol6, (the mini's) hav.e i.mplicit operands
Lolb knew it had to fetch one byte, and did so llithout any table Lookup
lolw knew it had to fetch a word, and did so, high order byte first }

{---~-----------------------------}
{ ~ain Loop }
{---------~---}

begin initiatize;
repeat

opcode := nextpc; {fetch the first byte of the instruction}
if normalmap or (opcode<cutoff) then

begin escaped:=opcode=escape;
if escaped then opcode := nextpc;
with dispat[escaped][opcodej do

begin insr:=instr;

end
else

if not (zbit in iflag) then
begin

end

if mini in iflag then k:=implicit else
if short in iflag then k:=implicit+nextpc e.Lse

begin k.:=nextpc; if k>=128 then k :=k-256;
k:=256*k + nextpc

end;
if xbit in iflag then k:=k*2 else
if ybit in iflag then

if k=O then k:=1 else k:=k*2
end

begin insr:=CAL; k:=opcode-cutoff end;

{---}
{ Routines for the individual instructions }
{---}
case insr of

NON: trap(EILLINS);

{ LUI\ D GR CIJP }
LOC: push(k);
LNC: push(-k);
LOL: push(memw(Lb+argx(k)));
LOE: push(memw(argx(k)));
LOP: push(memw(mema(Lb+argx(k))));
LAI: begin k.:=argy(k); a :=popa; b :=mema (a); store (a,b+k); pushx <k,b) end;
LOF: push(memw(popa+k));
LAL: push(Lb+argx(k));
LAE: push(argx (k));
LEX: begin a:=Lb; for j:=1 to argn(k) do a;= raema(a-statd); push(a) end;
LOI: pushx<argy(k) ,popa); ·
LOS: begin k:=popa; pushx(argy(k) ,popa) end;
LDL: begin k~=argx (k); p~sh (memw(Lb+k)); push(memw(Lb+k+2)) end-;
LDE: begin k:=argx(k); pllsh(memil(.k)); push(memw(k+2)) end;
LDF: begin a:=popa; push (memwCo+k)); push (memw(a+k+2)) end;

"""t:l
:c>
en
n
:c>
r

= rn
~
en

"" N
I-'

:c>
"""t:l
::0
~

r

I-'
<.D
00
I-'

"""t:l
)>
Gl
m

I-'
<.D

r

{ STORE GR CIJP } •
STL: store(Lb+arg.x(k),popwl;
STE: store(argx(k),popw);
STP: store(mema(Lb+argx(k)),popw);
SAI: begin <:=argy(k); a:=popa; b:=mema(a); store(a,b+k); popx(k,bl end;
STF: begin a:=popa; store(a+k,popw) end;
STI: popx(argy(k),popal;
STS: begin k:=popa; popx(argy(k),popa) end;
SOL: begin k:=argx(k); store(Lb+k+Z,popwl; store(Lb+k,popw),end;
SOE: begin k:=argx(k); store(k+Z,popw); st6re(k,popw) end;
SDF: begin a:=popa; store(a+Z+k,popw); store(a+k,popw) end;

{ SINGLE PRECISION ARITHMETIC }
ADD: begin t:=argi(popw); s:= argi(popw); push(chkovf(s+t)) end;
SUB: begin t:=argi(popw); s:= argi(popw); push<chkovf(s-t)) end;
MUL: begin t:=argi(popw); s:= argi(popw); push(chkovf(s*t)) end;

XDIV: begin t:= argi(popw); s:= argiCpopw);
if t=O then trap(EIDIVZ) else push(s div t)

end;
XMOD: begin t:= argi(popwl; s:=argi(popw);

if t=O then trap(EIDIVZ) else push(s - (s div t)*t)
end

NEG: beg n t:=argi(popw); push(-t) end;
SHL: beg n t:=argi(popw); s:=argi(popw);

for i:= 1 tot do sleft(s); push(s)
end;

SHR: begin t:=argi(popwl; s:=argi(popw);
for i:= 1 tot do sright(s); push(s)

~d; '

{ DCIJBLE PRECISION ARITHMETIC }
DAD: begin dt:=popd; ds:=popd; pushdCdodad(ds,dt)) end;
DSB: begin dt:=popd; ds:=popd; pushd(dodsb(ds,dt)) end;
DMU begin dt =popd; ds =popd; pushd(dodmd(ds,dt)) end;
DOV begin dt =popd; ds =popd; pushd(doddv(ds,dt)) end;
DMD begin dt =popd; ds =popd; pu_shdCdodmdCds,dt)) end;

{ FLOATING POINT ARITHMETIC }
FAD: begin rt:=popr; rs:=popr; pushrtdofad(rs,rt» end;
FSB: begin rt:=popr; rs:=popr; pushr(dofsb(rs,rt)) end;
FMU: begin rt:=popr; rs:=popr; pushrCdofmu(rs,rt)) end;
FDV: begin rt:=popr; rs:=popr; pushrCdofdv(rs,rt)) end;
FIF: begin rt:=popr; rs:=popr; dofif(rt,rs,x,y); pushr(y); pushr(x) end;
FEF: begin rt:=popr; dofef(rt,x,i>; pushr(x); push(i) end;

{ POINTER ARITHMETIC }
ADI: push(popa+k);
PAD: begin t:=popw; push(popa+t) end;
PSB: begin a:=popa; b:=pofa; push(chkovf(b-a)) end;

{ INCREMENT/DECREMENT/ZERO }
INC: push(chkovf(argi(popw)+1));
INL: begin. k:=argx(kl; t:=argi<memw<Lb+k)); store(Lb+k,chkovf(t+1))
INE: pegin k:=argx(k); t:=argi(memw(k)); store(k,chkovf(t+1)) end;
DEC: push(chkovf(argi(popw)-1));
DEL: begin k:=argx(k); t:=argi<memw(Lb+k)); store(Lb+k.,chkovf(t-1))
DEE: begin k:=argx(k); t:=argi(memw(k)); store(k,chkovf(t-1)) end;
ZRL: store(Lb+argx(k),0);
ZRE: store(argx(k),0);

{ CONVERT GRCIJP }
CID: pushd(popw);

end;

end;

CDI: begin dt:=popd; if abs(dt) > t15m1 then trap(ECDI) else push(dt) end;
CIF: pushr(popw);
CFI: begin rt:=popr;

if abs(rt)>t15m1-0.5 then trap(ECFI) else push(round(rt))
end;

CDF: begin dt:=popd; pushr(dt) end;
CFO: begin rt:=popr; if abs(rt) > t31m1-0.5 then trap(ECFD) ;

pushd(round(rt))
end;

{ LOGICAL GROUP }
XAND,ANS:

begin if insr=ANS then k:=popw; k:=argp(k);
for j := 1 to k div 2 do

begin t:=popw; a:=sp-k+Z; store(a,bf(andf,memw(a),t)) end;
end;

IOR,IOS:
begin if insr=IOS then k:=popw; k:=argp(kl;

for j := 1 to k div 2 do
begin t:=popw; a:=sp-k+2; store(a,bf'<iorf ,memw(a),t)) end; end; ·

XOR,XOS:
begin if insr=XOS then k:=popw; k:=argp(kl;

for j := 1 to k div 2 do
begin t:=popw; a:=sp-k+2; store(a,bfCxorf,memw(a),t)) end;

end;
CCl>l,COS:

begin if insr=COS then k:=popw; k:=argp(kl;
for j:= 1 to k div 2 do

begin store(sp-k+Z*j, bf(xorf,memw(sp-k+2*j), -1)) end
end

RQ: beg n t:=popw; s:=popw; for i := 1 to t do rleft(s); push(s) end;
RCR: beg n t:=popw; s:=popw; for i:= 1 tot do rright(s); push(s) end;

{ SET GRCIJP }
INN, INS:

begin if insr=INS then k:=popw; k:=argp(k);
t:=popw; if t<O then trap(ESET);
i := t mod 16; t:=ft div 16; if Z*t>=k then trap(ESETl;
s:=memw(sp-k+2+2*t); newsp(sp-k); push(bit(i,s));

-cJ
:i>
(/)

" :i>
r

= rn
:>:::
(/)

"" N
I-'

:i>
-cJ
;;o

;:--
I-'
<.D
00
I-'

-cJ
)>
Gl
rn

N
0

,

end
XSET ,SES

begin' if insr=SES then k:=popw; k:=argp(k);
t:=popw; if t<O then trap(ESET);
i := t mod 16; t := t div 16; if 2*t>=k then trap(ESETl
for j := 1 tot do push(Q);
s:=1; for j:= 1 to i do rleft(s); push(s);
for j := 1 to k div 2-t-1 do push(O)

end;

{ ARRAY GROUP }
LAR,LAS:

begin if insr=LAS then k:=popa; k:=argx(kl;
pushx(memw(k+4),arraycalc(k))

end;
SAR, SAS:

begin if insr=SAS then k:=popa; k:=argx(k);
popx(memw(k+4),arraycalc(k))

end;
AAR,AAS:

begin if insr=AAS then k:=popa; k:=argx(k);
push(arraycalc(k))

end;

{ C CM PARE GROUP }
CMI: begin t:=popw; s:=popw;

if s<t then push(-1) else if s=t then push(Q) else push(1)
end;

CNP: begin a:=popa; b:=popa;
if b<a then push(-1) else if b=a then push(Q) else push(1)

end; .
CMD: begin dt:=popd; ds:=popd;

if ds<dt then push(-1) else if ds=dt then push(O) else·push(1)
end;

CMF: begin rt:=popr; rs:=popr;
if rs<rt then push(-1) else if rs=rt then push(Q) else push<1l

end;
CMU,CMS:

begin if insr=CMS then k:=popw; k:=argp(k);
t:=O;j:=O;
while (j < k) and (t=O) do

begin a:= mema(sp-j); b:=mema(sp-k-j);
if b<a then t:= -1 else if b>a then t:= 1;
j:=j+2

end;
newsp(sp-2*k); push(t);

end;

TL T: if popw < a then push(1) else push<O);
TLE: if popw <= 0 then push(1) else push(O);
TEQ: if popw = 0 then p45h(1) else push(O);
TNE: if popw <> 0 then push(1) else push(O);
TGE: if popw >= 0 then push(1) else push(O);

TGT: if popw > 0 then push(1) else push(Ol;

{ BRANCH GROUP }
BRF: newpc(pc+argn(k));
BRB: newpc(pc-argn(k));

BLT: begin t:=popw; if popw < t then newpc(pc+argn(k)) end;
BLE: beyin t:=popw; if popw <= t then ne~pc(pc+argn(k)) end;
SEQ: begin t:=popw; if popw = t then newpc(pc+argn(k)) end;
BNE: begin t:=popw; if popw <> t then newpc(pc+argn(k)) end;
BGE: begin t:=popw; if popw >= t then newpc(pc+argn(k)) end;
BGT: begin t:=popw; if popw > t then newpc(pc+argn(k)) end;

ZLT: if popw < 0 then newpc(pc+argn(kll;
ZLE: if popw <= 0 then newpc(pc+argn(k));
ZEQ: if popw = 0 then newpc(pc+argn(k)l;
ZNE: if popw <> 0 then newpc(pc+argn(kl);
ZGE: if popw >= 0 then newpc(pc+argn(k)l;
ZGT: if popw > 0 then newpc(pc+argn(k));

{ PROCEDURE CALL. GROUP }

{There are four ways to mark the stack. The change in static depth can
be given as an immediate operand or the new static link can be provided
on the stack. Also, the instruction may switch into alternate context,
or not. ~Ly two of these have mnemonics, i.e. can be used by the prog
rammer. These mnemonics are MRK and MRS, corresponding to the immediate
and stacked forms respectively. The decision about using alternate con
text is made by the assembler. The four cases are:

}

MRK: immediate, normal context
MRX: immediate, alternate context
MRS: stacked, normal context
MXS: stacked, alternate context

MRK,MRS,MRX,MXS:
begin if (insr=MRS) or Cinsr=MXS) then k:=popw; k:=argn(k);

a:= Lb; for j:= 1 to k do a:= mema(a-statd);
push(a); push(Lb); push(O);
normalmap:=<insr=MRK) or (insr=MRS);

end;
CAL,CAS:

begin if insr=CAS then k:=popw; k:=argn(k);
a:=pd+pdsize*k; t:= memi(a+pdargs); store(sp+2-t-reta,pc);
newpc(memi(a+pdbase)); newlb(sp+2-t); normalmap:=true;

end;
RET,RES:

begin if insr=RES then k:=popw; k:=argx(k);
newpc(mema(Lb-reta)); a:=sp-k; b:=Lb-mrksize-2;
newlb(mema(Lb-dynd));
for j:= 1 to k dlv 2 do store(b+2*i,memw(a+2*j));
newsp(b+k);

end;

-0

"" C/J
n

·"" r

= rn
:E:
Ch

'lt
N
I-'

:I>
-0
;o

[""

I-'
lD
00
I-'

-0
l>
G>
rn

N
I-'

{ !'11SCELLANEOUS 1'ROUP }
BEG,BES:

begin if insr=BES then k:=popw; k.:=argz(k);
if 'k>=O

then for j := 1 to k div 2 do push (undef)
else newsp(sp+k);

end;
BLM,BLS;

begin if insr=BLS then k:=popw; k:=argx(k);
t :=popa; s :=popa;
for j := 1 to k div 2 do store{t-2+2*j,memw(s-.2+2*j))

end.;
CSA: begin k:=popa; b :=memi<pd+pdsize*memw(k) +pdbase);

t := popw - memw(k+4); s :=-1;
if (t>=O) and (t<=memw(k+6)) then s:=memw(k+8+2*t);
if s=-1 then s ;=memw(k+2);
if s=-1 then trap(ECASE) else newpc(b+s)

end; J

CSB; begin k:=popa; b:=memi<pd+pdsiz.e*memw(k)+pdbase);
t:=popw; i:=1; found:=false;
while (i<=memw(k+4)) and not found do

if t=memw (k+2+4*i) then found·:=true else i :=H1;
if found then s:=111emwCk+4+4*i) e:Lse s.:=memw(k+2);
if s=-1 then trap(ECASE) else newpc(b+s);

end;
DUP ,..DUS:

begin if insr=.DUS then k:=popw; k:=argp(k);
for i:=1 to k div 2 do push(memw(sp - k+ 2));

end;
EXG: begin t:=popw; s:=popw; push{t); push(s) end;
HLT: begin exi tstatus :=popw; halted .:= true end;
LIN: lino<argn(k));
LNI.: lino(memw<Dl+1);
LOR: begin i:=k;

case i .of O:push(Lb); 1 :push<sp); 2:pushChp) en'd;
end;

MON: ; { MON 11H l not be described here }
NOP: ;
RCK,RCS;

begin if rnsr=RCS then k:=popa; k:=argx(k);
if (memw(sp)<mem11(k)) or Cmemw{spl>mem1<(k+2)) then trap(ERANGE)

end;
RTT: dortt;
SIG: begin a:=popa; b:=popa; push(uerrortbl; push(uerrorpro.c);

uerrorpr.6c;=a; uerrorlb:=b
·end;

STR; begin i :=k;
case i of 0: newlb(popa); 1: newsp(popa); 2: ne11hpCpopa) end;

end;
TRP: trap(popw);

end { end of case statement }
untH halted;

9999:

writeln('halt with exit status:',exitstatusJ;
end.

-0
:I>
C/)

n
:I>

' = rn
;>;:'.
C/)

"" ::::

:I>
-0
:;o

r
1-'
LD
00
1-'

-0
:»
Gl
m
N
N

,
{········· ,., •• ~ ... - ,,. ••••••• , ,.,:ii"*** ,.. 111-........ *)
{ }
{ UNRE·Pil ARITHMET'lC -- extended precis~on foteger :ar·ithmeti.c }
{ routines for 16-:b~ t macMnes. }
{ }
{ Jeff Peppe•r }
{ Tttree .Riv.ers Computer 'Corporation)
{ 160 IN. Cr.aig Street }
{ •Pittsburgh, -PA 15.:!lB }
{ }
{ -written July 1980 }
{ ' }
{ •PURPOSE: }
{ Th.is module .provides .rouU.ne-s ·for per.foriming standard integer }
.{ arithmet:fc .functlf.o.ns .with .ax.tended ·precision. J:t is designed }
{ .for use on 16-bH ;mach-ines, where it effectively -extends MA~lNT }
{ from 32767 to .rough1y 256 trillfon ·(2•48 - 1). This is }
{ -particularly use1'u1 in financial .applicati.ons, whe·re you ·can }
{ ·store dol·lar amounts i.n tenths o·f a cent and st:fll keep traC'k }
{ of up to $266 billion. }
{ }
{ [MPLEMENT'ATION: }
{ Numbers are of type UNREAL, a Pascal r.ecord cpnta~·ning ·6 bytes }
{ (O •• 255} and a boolean indi·c.ating the sign. The precision· J
{ can ·be changed by .ch.anging the global .constant ·B~EMA·X, and }
.{ ·by changing code as noted in Uwrite .. Changing Uread i·s more }
{ difficult, but you probably newer want to read a decimal f
{ number larger than 15 digits anyway... }
{ }
{ 'EXCEPTIONS: . . }
{ The E1~rorTrap procedure is .called on a11 .a~cep;tions, whi-ch ar.a }
{ as fol lmvs: }
{ "input too long" -- too many -cha:r.s in input "String 1
{ ":input too large" -- value of i.nput .> .2'"'48 - -1]
{ "no number found" -- ·Uread encounters a nan-dig:ft ibefore}
{ finding a digit }
{ ''division .by zero" }
{ "addition ·ov-erflow 11 }

{ "mult o.ve;rflow" }
{ The values returned by a procbdur.e/function a·r.e undefined if an }
{ .exception is found. }
{ } {---··---------------------·}
{ The following operations are avai1able.: }
{ }
{ Unegate (a: unreal} a :=-a }
{ UUa'Jd (a,'.b: unreal; VAR c: unreal} ·C :=a+ ·b }
{ UUsub (a,b: unreal; VAR ·c: unreal} c :·=.a - b)
{ UUmJlt (a,=b: unreal; Y.AR c: unreal.} .c :=a* b }
{ UUdiv -(.a,.b: unr.enli VAR q,rem: unreal) q :==a DI-V-b; "}
{ •rem .:• a MOD b }
{ }
{ UUgreater (a;b: unreal): boolean .true iff a< b }
{ UUequal .(a,b: unreal): boolean true iff a = :.b }
{ Uzer-o 1{a: unreal): boolean true if.f a .. ·o }
{ }
{ Uread (VAR f: -text; VAR ·num: unrea·l.~ }
{ .reads a nur.iber .;n .dec·imal :form, .converts :to type un·real }
{ Uwrite (VAR .f: text; num: unreal; fieldwidth: integer) .)
{ converts from unreal to decimal form, .writes to f·H..e }
{ f, using fieldwidth specified .. Writes a.11 '*'s if }
{ f.ieldwidth is too small }
{ }
{ !Uconvert (a: integer; VAR b: unreal:) }
{ comrerts .integer to unreal }
{ Ulconvert (a: -unreal: V.AR b: -integ·er): boolean }
{ converts unreal to integer. ·The function returns .a false value }
{ iff a > maitint. }
{ }
{ *"'."' t<• ** "'*""** * * ** * * ** * * * *·* *** *"'"' * ** ** * *•** *'-* ***"*'**;.t'. "'* *"* **;.t'. ***** *"''***** *}

CONST bufmax··= 16:
byteMa-x = 5.;

TYPE byte = o •• 265:
unreal =·RECORD

{ size of .write buffer, - 1 }
{ size of ·byte array, - 1 }

byt: ARRAY [O •• l>yteMax] OF byte:
pas: boolean; { true if i-t's .non-negative~

EllD:

realAr.ray = ARRAY [O •• byteMax] OF integer;
.wrltoBu'f = ARRAY [O •• bufmax] OF integer;
digArray • ARRAY [O •• 2] OF o •• 9;
strtng =.PACKED ARRAY '[0 •• 19] ·OF char:

{=•-•====••••========•• .. === .. •==--===•=•••====.= .. ==••••====••••===x••••==)

,procedl>r.e UUSub •(a,b: .unreal: YllR 1:: •Unr-eal,): -FORWARD:

{---~---------------------}

p.rocedur.e •ErrorTrap (str: st.ring).;

BEGIN
writeln •(••••'UNREAL ARHHMETIC ERROR: str):
write1 n.i

END;

.{---}
procedure ,une,gate .(VAR a: unrea1 ") i

BEGIN
a.pas := NOT a.pas

-END:

{--·---·--------------)
'function Uzero .(num: unr.enl): .boolean;

VAR i: integer; .zi:p,: boo.1.e.an;

BEGIN
.z.ip :• TRUE:
FOR i :• o to byteM.ax DO zip ·:= zi.P AND (num.byt[i] = D): {test all bytes}
Uzero : "" zip

END:

{--}
function UUegual .(a,.b: unre.al.): boolean;

U'AR i: integer; eq: boolean;

·BEGIN
-eq :• TRUE:
FOR i :• 0 ·to byteMax DO ·eq := eq ·'.AND .(a.byt[·i] • b.byt[i]J:
Ha.pas<.> b.pos THEN eq :=·FALSE;
{just in case both are 0, but ·Pi' di.f.ferent sign ••• }
lF Uzero(a) .AND Uzero(b) THEN eq := TRUE:
kJUequal := eq

END.:

{---·--··--}
procedure lUcpnv-.e.rt (a: integer; VAR .u·: unrea-1).;

VAR i: .i.nt~gJ!r;

BEGIN
FOR i := 2 ·to _byteMax DO u.byt[i] :• o;
u.byt[1J :• .A8S(a) DIV 256;
u.byt[O] :•·ABS(a) MOD 256;
u.pos := .{a>= .0)

END:

{---·-·-}
function .Uicon.vert (u: unreal; VAR a: intE--ger): boolean;

{ rerturn:s TRUE .iff u is in rang.e -32767 •. 4:32767 }

VAR

BEGIN

small: ·boolean;
i: intege.r:

small := TRUE;
FOR 1 :• 2 to byteMax DO small := small AND (u.byt[i] = O):
Ulconvert := small:
a :• u.byt[l) • 266 + u.byt[O]:
IF HOT u. pos THEN a : • -a

"'):-
·(/)

n
;p
r

:z:
·rn
,,;::
en

'II:
N

;p

"' ;;o
~

r
' ,__.
.D
00 ,_..

-0
)>
Gl
m

N

""

flllJ:

(-------------------------- ----------------------··---------------------}
function UUGreater (a,b: unreal): boolean;

VAR lac: integer;
state: (bigger, same, smaller}:

BEGIN
IF Uzero(a) AND Uzero(b)
ELSE IF a.pos AND NOT b.pos
LLSE IF NOT a.pas ANO b.pos
ELSE

THEH UUGreater :"" FALSE
THEN UUGreater := TRUE
THEN UUGreater := FALSE

BEGIN {at this point, a and b must have same sign}
state := same;
loc := byteMax;
REPEAT

IF a.byt[loc] > b.byt[loc] THEN state := bigger
ELSE IF a.byt[loc] < b.byt[loc] THEN state := smaller;
lac := loc-1;

UNTIL (state <>same) OR (loc < O);
IF a.pas

THEN UUGreater : .. (state = bigger} {when both are pas.}
ELSE UUGreater : .. {state =smaller); {when both are neg.}

END;
END;

{--}
procedure Uread (VAR f: text: VAR num: unreal);

VAR i. s trlen: integer;
ttnp: realArray;
sl: array [O •. bufmax] of char:
s: writebuf;

BEGIN
(initialize} .
FOR i :• 0 to bufmax DO BEGIN s[i]

WHILE f• = ' ' DO get(f);
num.pos :=NOT (f" • '-');
IF f• IN['-','+"] THEN get(f);

O: s![i] := •o• EllD;

{skip leading spaces}
{look. for minus sign}
{edt leading sign}

strleh: := O;
Will~~; (f• IN ['O',. '9']) AND (strLen <= bufmax) DO

Bi!GIN
read (f, sl[strlen]); {read into a string of digits}
s tr Len : = strlen + 1;
END;

IF strlen > bufMax THEN ErrorTrap ('input too long •)
ELSE IF strLen = o THEN ErrorTrap (•input not found ')

ELSE
BEGIN
{now reverse the string and convert from chars to integers}
FOR i :=Oto strlen-1 DO s[i] :• ord(sl[strlen-i-1]) - ord('O');

{abracadabra ... convert the di'git array to base 256}
t.np[O] := s[O] + s[l] • 10 + s[2] • 100 + s[3] • 232 +

s[4] • 16 + s[5] • 160 + s[G] • 64 + s[7] • 12B;
tmp[!] := s[3] • 3 + s[4] • 39 + s[5] • 134 + s[6] • 66 +

s[7] • 150 + s[8] • 226 + s[9] • 202 + s[!O]• 22B +
16 + s[13]* 160 + s[14]' 64; s[!!]• 232 + s[12]*

tmp[2] :• s[5] + s[6] * 16 + s[7] • 152 + s[B] • 246 +
s[9] • 164 + s[!D]' 11 + s[11]* !!B + s[12]* 166 +
s[13]* 114 + s[14]' 122;

tmp[3] := s[8] • 5 + s[9] • 59 + s[10]*
7B + s[14]•

B4 + s[!l]•
16; s[12]• 212 + s[13]*

tmp[4] := s[10]' 2 + s[ll]• 23 + s[12]' 232 + s[13]•
s[14]' 243;

tmp[5] := s[13]' g + s[14]•

FOR i := 0 to byteMax - 1 DO
IF t.mp[i] <= 255

· THEN num.byt[i] := tmp[i]
ELSE

BEGlll

90;

tmp[i+l] :• tmp[i+l] + tmp[i] DIV 256;
nu01.byt[i] := tmp[i] MOD 256
lHD;

72 +

24 +

END;

{check for high byte overflow}
IF tmp[byteMax] <= 255

THEN num. byt[byteMax] : = tmp[byteMax]
ELSE ErrorTrap ('input too large ');

END;

{--}
procedure Uwrite (VAR f: text; num: unreal; fieldwidth: integer);

VAR s: writeBuf;

BEGIN

i ,j: integer;
digits: digArray;
started, goodsize: boolean;

{-------c. ------------------------------------ --.---}
procedure GetDigits (num: byte; VAR digs: digArray);
BEGIN
digs[2] := num DIV 100;
digs[l] := num MOD 100 DIV 10;
digs[O] := num MOD 10
END;
{--}.

FOR i := o to bufmax DO s[i] := O;

{0th byte}
GetDigits (num.byt[O], digits);
FOR i :• 0 to 2 DO s[i] := digits[i];

{!st byte -- multiply by 266, add to s}
GetDigits (num.byt[!], digits);
FOR i : = 0 to 2 DO

BEGIN
s[2+i] := s[2+i] + digits[i] • 2;
s[Hi] := s[!+i] + digits[i] • 5;
s[O+i] := s[O+i] + digits[i] • 6
END;

{2nd byte -- multiply by 65536, add to s}
GetDigits (num.byt[2], digits);
FOR i : = 0 to 2 DO

BEGIN
s[4+i] = s[4+i] + digits[i] • 6
s[3+i] =·s[3+i] + digits[i] • 5
s[2+i] = s[2+i] + digits[i] • 5
s[!+i] = s[l+i] + digits[i] •. 3
s[O•i] = s[O+i] + digits[i] • 6
END;

{3rd byte -- multiply by 16, 777 ,216 and add to s}
GetDigits (num.byt[3], digits);
FOR i : = 0 to 2 DO

BEGIN
s[7+i] = s[7+i] + digits[i] • 1
s[6+i] "' s[6+i] + digits[i] • 6
s[5+i] .. s[5+i] + digits[i] * 7
s[4+i] = s[4+i] + digits[i] • 7
s[3+i] = s[3+i] + digits[i] • 7
s[2+i] = s[2+i] + digits[i] • 2
s[l+i] = s[l+i] + digits[i] • 1
s[O+i] = s[O+i] + digits[i] • 6
END;

{4th byte -- multiply by 4, 294, 967, 296 and add to s}
IF mm. byt[4] > 0 THEN

Bi;GIN
GitDigits (num.byt[4], digits);
Fi)R i : • 0 to 2 DO

BEGIN
s[9+i] = s[9+i] + digits[i] • 4
s[B+i] = s[B+i] + digits[i] * 2
s[7+i] .. s[7+i] + digits(i] * 9
s[6+i] = s[6+i] + digits[i] • 4
s[5+i] = s[5+i] + digits[i] • g
s[4+i] .. s[4+i] + digits[i] • 6
s[3•i] = s[3+i] + digits[i] • 7
s[2+i] = s(Z+iJ + digits[i] * 2
s[!+i] • s[!+i] + digits[i] • 9

" > ,,,..,
r: ,,.
r
;;::
;T.
:>::
er.

"' "'

>
-0
;o

~
,.....
. .o
'.JC

v
)>

"' "'
N
-"'

END;

s[O+i] :• s[0+1] + digits[i] • 6
END;

{5th byte -- multiply by 1,099,511,627,776 (I hope) and add to s}
IF num.byt[5] > 0 THEN

BEGIN
GetDigits (num.byt[5],digits);
FOR i : • 0 to 2 DO

BEGIN
s[12+i]

{s[11+!]
s(lO+i]
s[9+i]
s[B+i]
s[7+i]
s[6+i]
s[5+i]
s[4+i]
s[3+i]
s[2+i] .
s[l+i]
s[O+i]
END;

:• s[12+i]
:• s[11+i]
:= s[lO+i]
:= s[9+i]
:• s[B+i]
:= s[7+i]
:= s[6+i]
:= s[5+i]
:• s[4+i]
:= s[3+i]
:= s[2+i]
:= s[1+i]
:• s[O+i]

+ digits[i]
+ digits[i] *
+ digits[i] •
+ digits[i] •
+ digits[i]
+ digits[i] •
+ digits[i] •
+ digits[i] •
+ digits[i] •
+ digits[i]
+ digits[i] *
+ digits[i] •
+ digits[i] •

END;

{*** IF YOU INCREASE THE NUMBER OF BYTES BEYOND o .. 5: repeat the process
as above for all higher-order bytes. using a multiplier that's
256 * the multiplier for the next lower byte u•}

{now reduce all values to range o .. 9}
FOR i : = 0 to bufmax DO

IF s[i] > 9 TllEN
BEGIN
s[i+l] := s[i+l] + s[i] DIV 10;
s[i] := s[i] MOD 10
END;

{check to see if any digits will be lost}
goodsize := TRUE;
FOR i :• fieldwidth TO bufmax DO

goodsize :• goodsize AND (s[i];,. O) i

IF NOT goodsize .

END;

THEN FOR i := fieldwidth-1 downto ODO write('•')
ELSE

BEGIN
IF fi.eldwidth > bufmax + 1 THEN {pad w/ spaces on right if needed}

BEGIN
write(' ':fieldwidth - (bufmax + l))i
fieldwidth := bufmax + 1;
END;

started := FALSE;
FOR i :"' fieldwidth-1 downto o DO

BEGIN
IF (s[i] = 0) AND (NOT started) AND (i > 0)

THEN IF (NOT num.pos) AND (s[i-1] > 0)
THEN write ('-') {leading minus sign)
ELSE write (' ') {leading space)

ELSE
BEGIN

END;
END;

write (s[i]:1); started :• TRUE
END;

{--· -------:---------------------}
procedure UUadd__(a, b: unreal; VAR ..c: unrEal);

VAR i: integer;
tmp: realArray;

BEGIN
{first, juggle the signs}
IF a. pos AND NOT b. pos

THEN BEGIN Unegate(b); UUSub (a,b,c) lND
ELSE IF ·NOl a.pas AND b.pos

THEN BEGIN Unegate(a); UUsub (b,a,c) fND

ELSE IF NOT a.pos AND NOT b.pos
THEN BEGIN Unegate(a); Unegate(b); UUadd(a,b,c); Unegate(c) END

ELSE

END;

BEGIN {now we know both are po.sitive}
FOR i := o to .byteMax DO tmp[i] :•· a.byt[iJ + b.byt[i];
FOR i :• 0 to byteMax - 1 DD

IF tmp[i] <• 255
THEN c.byt[i] :• tmp[i]
ELSE

BEGIN
c.byt[i] :• tmp[i] - 256;
tmp[i+1] :• tmp[i+l] + 1
END;

IF tmp[byteMax] <• 255
THEN c.byt[byteMax] :- tmp[byteMax]
ELSE ErrorTrap ('addition overflow ');

c.pos :• TRUE;
END;

{--~------------------------------------C------------------------------}

Procedure UUsub {a, b: unreal; VAR c: unreal};

VAR i: integer;
tmp: realArray;

BEGIN
{juggle the signs}
IF a.pos AND NOT b.pos

THEN BEGIN Unegate(b); UUAdd{a,b,c) ENO
ELSE IF NOT a.pos AND b.pos

THEN BEGIN Unegate(a); UUadd(a,b,c); Unegate(c) END
ELSE IF NOT a.pos AND NOT b.pos

THEN BEGIN Unegate(a); Unegate(b); UUsub(a, b, c); Unegate(c)

{now make sure a>•b}
ELSE IF UUGreater(b,a)

THEN BEGIN UUsub(b,a,c); Unegate(c) END
ELSE ·

END;

BEGIN
FOR i :- o to byteMax DO tmp[i] := a.byt[i];
FOR i !"' 0 to byteMax - 1 DO

IF tmp[i] >= b.byt[i]
THEN c.byt[i] := tmp[i] - b.byt[i]
ELSE

BEGIN
c.byt[i] := tmp[i] + 256 - b.byt[i];
tmp[i+l] := tmp[i+l] - 1
END;

c.byt[byteMax] :• tmp[byteMax] - b.byt[byteMax];
c.pos :• TRUE; {it better be!}
END;

END

{--}
procedure UUmult (a, b: unreal; VAR c: unreal);

VAR i, j: integer;
tmp: realArray;

BEGIN
FOR i : = byteMax DOWNTO 0 DO

BEGIN
tmp[i] :• O;
FOR j :• 0 to i DO tmp[i] :• ·tmp[i] + (a.byt[i-j] • b.byt[j]);
END;

FOR i := 0 to byteMax - 1 DO
IF tmp[i] <= 255

THEN c.byt[i] :• tmp[i]
ELSE

BEGIN
c.byt[i] := tmp[i] MOD 256;
tmp[i+1] :• tmp[i+l] + (tmp[i] DIV 256)
END;

IF tmp[byteMax] <• 255
THEN c.byt[byteMax] := tmp[byteMax]
ELSE ErrorTrap ('mul t overflow ') i

c.pos := (a.pos AND b.pos) OR NOT (a.pas OR b.pos);
END;

" J=>
(/)

n
J=>
r

?'iii ::e::
(/)

'l'I:
N
I-'

J=>

" ""'
["""

I-'
LO

"" I-'

")>

"' m

N
V1

I ,
(---------·----·---"-------------------------------------"---------------)
p'tocetfure UUD'iv; (a',·ti: unr"e!"a.l :·VAR q,· r'em:· unr·eal).;

VAR' sbif'tct.,- i ,.J: i_nt'eyer·;:
asiie, bs·ize: integer';

{-" ------~~-·-·---~·-·•U.-•·---~~--.-·----• """•--"-·-------}.
fun ct iorl Toofar (a.,.b'-: unrea•1Pf: boolean;

VAR i, j :: iri'teger·; Sh"1fted: u11rear:
BEGIN
asize_ :"'· byteMa~;-
WHitE ta.byt[asiZ'e!J = o} ANb' ('a:.S:i'ze > cf) ob asi:ze :·=: asiza· -· 1·;
frsize : = tiy-teMax-::
WHH'.E (b·. byf[bsiz'e} = o) Atitl1 (Jisiz'e ~· 0) DO. tisize := bsizii· - 1;:
IF Bsize = bs"i'ze

Tlil'N TodFar :• TRU~
ELSE

BEGiffl
FO~' i· := by~e'M~x downto 1' do sh·ifted,·bY~[i} := b.by.t[i-1];
shi'fted.byt[OJ := O;
ra·oFa~r : = UUGr'eate·r (Slt ifted ,· a:)::

BEGIN·

END~
E)ID;
{ ----------------·----- ------~-------- ---·---------·----}

IF U'zero(b)
THEN: Errori1rap" (' o;v;s·ion fjy· zero· ')'
([SE

BEGFN·
{fligU_r·e_ out quotient···s &·· r·em~·s signs.- nowi,. _then for·ce a an·d- b positive}
q.pos- := fa'.pos AND ti·.pos). OR NOT (a.pos OR b.pos);
renr'. pos; : = a:',·p·os';
••.pos := l'RU~;.
b;,pO<s: :~ fRUE'.;
FOR' i' := Q, fo• by.teM'ax' D·o q.byt(i]: :• O; {initialize· aq''l O's}·

ENO;

5,Hi'ftC.t'. : = 6,
WH'IL~ NOY. l'ooP•~ (a\ b)' DO·

a~G!J:N•
F.oR ,; ::= tiy.teM'ax DOWNTo· 1 DO b.byt[i]' :"' b.byt[i-:i];
b.byt[O} := O;
sh'i'·ftct :·= Shif-tc't + t;;
END• ;

F!'.lR i' :·= shif'tct odwN:ro·· Q) DO
atGrN'
WHILE NOT UUGreater (b,a) DO

BEGIN'
tj.byt(iJ '"" q'.byt[iJ + 1;
uO~ub (a\ti,.a};
END;.

IF i > 0 TH~N'
BEGIN
FDR' j := o' to' byteMiiX - 1 DO b.byt[j] := ti.byt[j->:i];
b.byt(by.teMax] :• O;
END"

END'; '
r~m 1,byt :·=· a.byt;
END;

{shift left}

{shift righf}

(-----------------------------"------""---------------------------------}'
pro·ce·dure Ma·i"rf;

VA'A. a,.i·, f: integer;
x,y,z,rem·:· un·re·a1;
c-1: char;
d;Jrilmy: bo01 eafr;

BEG'rN·
REPEfir

write! ('Enter" (l'robl'em in form' n~-op-n: '};
or·e,d' (input', x);
re# (ch);
ur.e}d' (inp.ut ,. y};
CAS~ ch OF

'>':IF UUgreater(x,y)' 1HEtl write ('greater')' ELSE wi<ite' C'not grtr').';·

»':IF UUequal(x,y) THEN write ('equal') ELSE write (.'not equal');
'c': BEGI'N·dummy := Olconvert(x,a); if dummy THEN write ('conv OK');

write (a:lO); IUconvert(a,z) END;
'+'.: UUadd (x,y,z);
'-': UUsuti ('x',y,z);'
,., : UUmµlt (x,y•,z);
'/': UUdiv- (x,y,z,rem);
END; {case}

write (·-----'------_--_"""-_--.... ----> •)';
IF ch Ill('+','-', '*','/','c'] IHEN Uwrite (outpot,z,15);

If ch='/' THEN' BEGIN write·(', rem~:~); Uwrite(output,rem,10)' END;
write1n·:

UNTIL false;.
END;

{=:o:====<=:=:::=::=m.,.;':::=======c=:='=:...,i.!==·:i:======="""'="'========================l.!}

BEGIN
Main

END.

"CJ
JO>
(/)

n
JO>
r
:z:
rn
::;:::
(/)

"" N ,_,

JO>
"CJ
:;o

r-
,_,
<.D
00 ,_,

"CJ
)>

"' m

N·
m

1

DDDDDD
Articles

AN EXTENSION TO PASCAL READ AND WRITE PROCEDURES

David A. Rowland
ReaT-Tlme Soft;iare Associates

2717 Hillegass Ave.
Berkeley, Calif. 94705

(415) 54ff-8095

Pascal READ and WRl.TE have several distinct actions.
They convert between Internal forms of data and their
representations as character strings, and they. direct the
character strings through files. They are also the only
p-rocedu.res in Pascal that allow an arbitrary number of
parameters of varying types .•

Sometimes It Is useful to have the properties of READ
and WRITE separate from the file structure., For example,
one may wish to convert an Integer to a character string and
store the string in an array. Or one may wish. to take i"npu.t
from a keyboard directly througfi Its input buffer address
rather than defining a system handler for It.

Files in READ and WRITE are specified by being named
first In the parameter list. If no file name appears, an
appropriate system ffle 1s implied. The extension Is to
allow the first parameter In the l (st to be ~he name of a
user-defined procedure.. Fo.r READ it must be a procedure
having a parameter list Ilka (VAR CH: CHAR). For WRITE it
must have a parameter Tlst like (CH: CHAR).

The actions are then: for READ, ever-y time
is sought, the user p.rocedure i.s cal led. lt
character in CH. For l~RITE, ·the user procedure
wfth the character provided as the parameter.

a character
returns the

is cal led

This extension is very much ln the spirit of Pascal,
which· elsewhere allows p,rocedures to be passed as
parnmeters. H may seem a slight convenience i:n s.tandard
Pascal, but it is an enormous ai"d. in the multi-tasking
version o·f Pascal which we have created. It allows. one the
fulT flexlbi,lfty and familiarity of READ and I/RITE in the
absence of any operating system. It might be considered for
other real-time and process control languages.

PASCAL INPUT/OUTPUT

In this example characters derived from the variable I
by l~RfTE are sent to the procedure CONVERT, which stores
them In an array.

VAR
CHARS: ARRAY(.1. .10. J OF CHAR;
C, I: INTEGER;

PROCEDURE CONVERT(CH:CHAR);
BEGIN

IF C <= CMAX
THEN

BEGIN
CHARS(•. C.) :=Cfl;
C:=C+l;

END;
END;

BEGIN
C:=l; 1:=437;
WRITE(CONVERT, I);

END.

The second example shows l1ow READ can read Integers
directly frbm a hardware Input buffer.

VAR
I', J:.INTEGER;

PROCEDURE GETCfl (VAR CH: CIJARJ.;
VAR

RCSR ORIGIN 1775GOB:INTEGER;
RBUF ORIGIN 1775G2B:CHAR;

BEGIN
/*Until a char Is ready, wait here*/
llH I LE RCSR = 0 no /*noth Ing*/
CH:=RBUF;

END;

BEGIN
READ (GETCfl, I, J);

END •.

CJ
:;,,,.
(/)

n
:;,,,.

' = rn
~
(/)

"" N ,_,

:;,,,.
-0
:=

c-
,_,
LO
:::0 ,__,

-0
)>
G)

m

N
'-.J

r

PDP-11 PASCAL: THE SWEDISH COMPILER

vs

OMSI PASCAL-1

Margaret A. Kulas
Naval Underwater Systems Center

New London, Connecticut

ABSTRACT

This paper presents a comparison of
Seved Torstendahl's Swedish Pascal
compiler and the Oregon Minicomputer
Software Inc. (OMSI) Pascal-1 compiler.

.A comparison of the results of
applying the Pascal Validation Suite
against both compilers is reported. A
discussion of the factors that need
consideration in transporting programs
wri tteri for one of the compilers to the
other, based on the results of the
validation suite, is presented.

'INTRODUCTION

This paper presents a comparison of two Pascal
compilers implemented on a .PDP-11/70 running the
RSX-11M-PLUS operating system.

A comparison of the results of applying the Pascal
Validation Suite against . Seved Torstendahl' s Swedish

·Compiler and the Oregon Mini.computer Software Inc. (OMS.I)
Pascal compiler is reported. Both compilers ar-e discussed
in relation to the requirements of the draft Pascal
standard. Spec·ific areas where programs wri tt·en for one
compiler may not be compatible with the other compiler are
highlighted. Thi!3 paper does Il'Ot discuss the differences in
the I/O handling by the two compilers except for pre.senting
the validation suite results .for tests that e·xamine I/O as

stated in the draft standard.

PASCAL STANDARDIZATION

The formal effort to produce a standard for the Pascal
programming language began in 1977 when a working group was
formed within the .British Standards Institution (BSI). In
October 1978, Pascal was listed as a International Standards
Organization (ISO) work item and a working draft was
circulated as the ISO document (1).

The current version of the standard (the 5th working
draft) is being circulated to ISO member bodies for comment.
In the United States, the cognizant bod;y is the joint ANSI
X3J9-IEEE Pascal Standards Committee (2).

THE PASCAL PROCESSOR VALIDATION SUITE

The Pascal processor validation suite by A.H.J. Sale
and R.A. Freak is a series of test programs written in
Pascal that are designed to support the draft standard
(3,4). This suite of programs may be used to validate a
compiler by presenting it with a series of programs which it
should or should not accept. The suite also contains a
number of tests that explore implementation defined features
and the quality of the processor. Processors that "pass"
all the tests are likely to be well designed and relatively
troub.le free; although they may not be error free.

Use of the validation suite provides an opportunity to
measure the quality of a processor and aids implementators
in providing a correct implementation of "standard" Pascal
in an effort to improve the portablity.of Pascal programs.

The six classes of tests in the validation suite are
conformance, deviance, impl.ementation defined, error
handling, quality, and extension.

Conformance programs are correct
programs that should compile and execute.

Btandard Pascal

Programs in the deviance class are Pascal programs that
differ in subtle ways from the standard. These detect
processors that:

(a) handle an extension of Pascal
(b) fail to check or limit some Pascal

feature appropriately, or

-0
JO>
(/)

n
JO>
r
:z:

~
(/)

~
N
>--'

JO>
-0
;;o

r-
>--'
lD
:x:>
>--'

-0
:»
Gl
m

N
'.Xl

~

(c) incorporate some common error.

Implementation defined programs detail features of the
processor that are implementation dependent.

The programs in the error handling category test
situations where an error should be detected. This enables
documentation of undetected error conditions.

Programs that explore the quality of an implementation
are classified as quality tests.

The final category of tests investigates the sjntax of
extensions to the language according to the conventions
cited in the standard.

All test programs are labeled with a test number
corresponding to the section in the standard which gives
rise to the test .followed by a dash and a serial number that
uniquely identifies each test written for that section. For
example, the test numbered 6 .10-3 is the thi"rd test in the
validation suite corresponding to that section of the
standard numbered 6.10.

SWEDISH COMPILER VALIDATION REPORT

The following is a report of results obtained by
running the Pascal Validation Suite against the Swedish
Compiler Version 6. The details-of the test results state
the actions demonstrated by the compiler for a particular
test rather than the requirements listed in the standard.
Examples of syntax constructs that will cause a test to fail
are provid.ed in the descriptions only for those tests that
are not self-explanatory.

Pascal Processor Identification

Computer: DEC PDP-11/70 running RSX-11M-PLUS V1 BL6

Processor; Swedish Pascal Compiler Version 6.01

Test Conditions

Tester: M.A. Kules

Date: September 1980

Validation Suite Version:

Conformance Tests

Number of tests passed: 118
Number of tests failed: 17

Details of ~ tests:

2.2

6.1.8-1 Comment is not considered to be a token
separator.

PROCEDURE(*comment*)ABC; is not a legal procedure
heading.

6.2.2-j Type identifier which specifies the domain
of a pointer type is not permitted to have its defining
occurrence anywhere in the type definition part in
which the pointer type occurs.

PROGRAM Name;
TYPE
node=real;

. PROCEDURE X;
TYPE

p=Anode;

6.4.3-3-1 Empty field-list in variant part of
record type definition is not allowed.

e = RECORD
CASE married OF
true: (svousename:string);
false: ()
END;

6.4.3.5-1 File of pointer to integer is not
allowed.·

TYPE
i=integer;

VAR
ptr:Ai;
filex:file of ptr;

" :J>
(/)

n
:J>
r

= rn
=E:
(/)

~
N
!--"

:J>

" ;o
~

["""

!--"
\D
00
!--"

")>
G)

rn

N
\D

r

r 6.4.3.5-3 The end of line marker is not inserted
at the end of a line, if not explicitly done in a
program,

6.6.3.1-5, 6.6.3,4-1 and 6.6.3.5-1 Procedure
declaration is not permitted as argument to a
procedure. Procedures and functions may not be passed
to other procedures and functions as parameters.

PROCEDURE Conforms(PROCEDURE abc(x:integer));

Note: Version 4 of the Swedish compiler would process
this statement correctly if procedure abc did not have
an argument--which goes along with the Jensen and Wirth
definition of a parameter list (5).

6.6.3.4-2 The environment of procedure parameters
does not conform to the requirements stated in the
standard. (This test did not compile because of the use
of a procedure as an argument to a procedure.)

6.6.5.2-3 "TRUE" is not assigned to "EOF" if the
file is empty when reset.

6.6.5.4-1 UNPACK is not
compiler. ·

implemented by the

6.6.6.2-3 The arithmetic function ARCTAN is not
implemented.

6.6.6.3-1 Transfer functions TRUNC and ROUND give
·error ... floating point number too large. (This error
is due to the failure of the function DIV on a negative
number rather than the implementation of the
functions.) ·

6.8.2.4-1 ~on-local GOTO statements
allowed.

are not

6.8.3-9-7 The use of extreme values in a FOR loop
causes wraparound (overflow), - leading to an infinite
loop.

FOR i:= MAXINT-10 to MAXINT DO something;

6.9.2-2 Read of a
equivalent to correctly
variable.

character variable
positioning the

is not
buff er

6;9.4-4 Real numbers are not correctly written to
text files due to the fact that when a real number does
not fit the format specified, or the fraction length is
not specified., the number is written to the text fil·e
in scientific notation.

Deviance Tests

Number of deviations correctly detected: 63
Number of tests showing true extensions:
Number of tests not detecting erroneous deviations: ·30

Details of extensions:

6 .1 . 5-6. Lower case "e" may be used· in real numbers
(e.g. 1.602e-20).

Details of deviations not detected:

6.1.2-1 NIL is not implemented as a reserved word
and may be redefined.

6.1.7-5 and 6.9.4-12 Packed is ignored so that
packed array of char is identical to array of char.

6.1.7-6 and
bounds other than
execute.

6.1.7-7
1 •• n,

Strings .are compatible with
allowing deviant programs to

TYPE
alpha = 'A' .. ' Z ' ;

VAR
a1 : array~1 .. 4l of a2: array 0 .. 3 of
a3: array 2 .. 5 of
a4: array 1 .. 4 of

JlEGIN

char;
char;
char;
alpha;

a1 :='AllCD';
(* the next three are not valid assignments*)

a2:='EFGH';
a3:=' IJKL';
a4:= 'MNGP';

" >
(/)
n
>
' :z:
rn
~
(/)

"" N ,_.

>
" :;o -'
,_.
LO
00 ,_.

")>

"' m

l..N
Cl

1

6 .1. 7-.8 Compatibility of subranges of char and
packed arrays o.:f char is not checked and the assignment
o:f e.rroneous values is allowed.

6 .10-3 The default file output is not
declared and it can be· redefined.

implicitly

6 ... 2 •. 2-4 Incorrect scope allows programs that are
i.ncorrect to compile.

(* 'red' is used in a local procedure
:before its .declaration. *)

PROGRAM Xxx;
CONST

red=1 ;
PROCEDURE Yyy;
CONST

m=rea
TYPE

colour: (yellow ,green, red);

6.2.2-9 A function identifi.er .may be as.signed
outsid:e of its block. ·

6 .. 3-5 Signed constants are permi ttea · in contexts
.other than CO.NST declarations ..

Wri t.eln(+TEN);

6. 3-6 Scope error constant may qe used in its
·OWn declaration.

PROGRAM Mainprogram;
CONST

ten=1 O;
PROCEDURE Lo.calprocedure;
CONST

ten=ten;

6. 4. J -3 Attempt to use- types in their own
de:finition when the type with the same i·aentifier is
available in an outer scope is not detected by the
compiler.

6.4.2.4-2 Real constants are permitted in a
subrange declaration.. (Should be limi tea to subra·nge of
another ordinal type.)

6.4.3.2-2
ordinal-types.

Index type should be limited to
Compiler allows real bounds.

te~tarray =array [1.5 .. 10.1] of real;

6.4.3.2-5 Strings are not required to
subrange of integers as an index type.

6.4.5-2 Var parameters which are compatible
not identical are allowed

PROGRAM
TYPE

colour

sub one
sub two

VAR

(red,pink,orange,yellow,
green, blue);

red .. yellow;
pink .. blue;

colour1 : subone;
colour2 : subtwo;

PROCEDURE test(VAR coll:subone);

END (*procedure*)
BEGIN (*main program*)

colour2:=pink;
test(colour2)

END.

have

but

(* Colour1 and colour 2 are compatible but
not identical. The call to proceau.re
test should fail in. this example. *)

6.4.5-3 Non-identical array types allowed as var
parameters ..

6.4.5-4 Non-identical record types
parameters.

allowed as var

'"")""
(/)

n
)""

' = rn
~
(/)

"" N
.......

""' " ;o

r-
.......
lO
00
.......

")>
Gl
rn

v.l
.......

r

6.4.5-5 Non-identical pointer types allowed as var
para.meters.

6.6.2-5 Function declaration with no assignment to
function identifier is permitted.

6.7.2.2-9 Unary operaonr plus is allowed to other
than numeric operands.

(e.g.) CONST
dot = I I. . '

BEGIN
WRITELN(+dot);

6.8.2-4-2 Jumps between branches
statement are allowed.

6.8.2.4-3 Jumps between branches
statement are allowed.

of an IF

of a CASE

6.8.3-9-2, 6.8.3-9-3, and 6;8.).9-4 Assignment to
a FOR·statement control variable within the FOR loop is
not detected by compiler.

6.8.3-9-9 Non-local variable at an intermediate
level can be used as a FOR statement control variable.

6.8.3-9-14 Global variable (at "the ·program level)
can be used as a control variable in a FOR statement.

6.8.3-9-19 Nested FOR statements using the same
control variable are not detected.

6.9.4-9 Attempt to output integers whose field
width para.meters are zero or negative are not detected
by compiler.

Error Handling Tests

Number ·of errors correctly detected: 35
Number of errors not detected: 31

Details. of Errors Not Detected

6.2.1-7 Local variables are not undefined at
beginning of statement part.

6.4.3.3-5, 6;4.3.3-6, 6.4.3.3-7, 6.4.3.3~8 Variant
un-definition is not detected, there is no checking on
the tag field of variant. records.

6.4.6-4· Value pf expression out of clos·ed interval
of destination in assignment statement is an error and
is detected at run time with a PASRUN error 12
(subscripting error) occurring. The program, however,
cont~nues to execute.

VAR
Answer: array[1 .. 5] of integer;
i : integer;

i:=5;
answer:=2*i;

6.4.6-6 Array subscript compatibility
checked.

is not

6.4.6-7 Members of a set expression not in the
closed interval specified by base type of assignment
destinatio_n are not detected as errors.

6.4.6-8 Assignment compatibility for sets passed
as para.meters is not checked.

6.5.4-1, 6.5.4-2 Pointer variable with undefined
value or value NIL when de-referenced is not detected.

6.6.2-6 Undefined function result is not detected.

6.6.5.2-1 Put operation on file when EOF is false
is not detected. This may occur when a file is reset
(opened for read only) and written to.

"' :z,.
(/)

n
:z,.
r

= rn
:E:
(/)

"" N ,......

:z,.

"' ;:o
~

• '
,......
lD
00 ,......

"')>
ID
rn
VJ
N

1

6 .. 6.5.2-6, 6.6.5.2-7 Changing current file
position while buffer variable is an actual parameter
to a procedure or an element of a record variable lis+.
does not produce an error message.

6.6.5.3-4, 6.6.5.3-5, 6.6.5.3-6 Dispose
is not ·implemented.

procedure

6.6.5.3-7 Variables from NEW used
assignment statement or actual
undetected. ·

as operand in
parameter pass

6.6.6.2-4, 6.6.6.2-5 Negative arguments passed to
LN or SQRT are not detected.

6.7.2.2-3 When the second operand of DIV is zero,
no error is detected.

6.7.2.2-6, 6.7.2.2-7 Result
operations not in range O .. MAXINT
not flagged as errors.

of binary integer
and o .. -MAXINT are

6.7.2.2-8 MOD zero is not detected as an error.

6 .. 8. 3. 5-5 CASE statement that does not contain a
constant of selected value produces no warning.

6.8.3.9-5, 6.8.3.9-6 The use of a
control variable after FOR statement
intervening assignment or, the use of
variable after a loop which is not entered
that is not detected.

FOR statement
without an
a control
is an error

6.8,3.9-17 Nested FOR statements using
control variable are not detected as errors.

saine

6.9.2-4, 6.9.2-5 Reading integers and reals from
file of text when the text is not a valid integer or
real number does not produce a diagnostic. For
example, the text string read as a real 'ABC123.456' is
not .detected as an error.

l a,

Implementation Defined Tests

The implementation
suite· demonstrated the
Swedish compiler:

defined
following

tests in the validation
characteristics of the

A rewrite is permitted o:ri. the output file.
Alternate comment delimiters are implemented.
Equivalent symbols for~ :, and :=are not allowed.
Equivalent symbol for [J is implemented (i.e., (..)
is allowed).
Alternate symbols for <,)., <=, >=, and <> are not
available.
The value of MAXINT is 32767.
Ordinal numbers of set elements must lie in the range
0 .. 63 or ' ' .. ' ' 'for characters.
A measure of time and space requirements of a program
which is an implementation of Warshall's algorithm
yields:

space = 370 bytes (2960 bl.ts)
time = 1 .066 seconds

(This is in comparison to 0.81646 seconds
and 143 bytes--6864 bits on a Burroughs
B6700 running the B6700 Pascal compiler
version 2. 9. 0.01 .) .

The characteristics of the floating-point arithmetic
system are determined to be:

24 bit mantissa.
Rounds on arithmetic.
EPS (smallest positive number such that

1.0+EPS <> 1 .O)is:
6.4604644E-08.

The. smallest positive floating point
number is: 2.9387357E-39.

The largest positive floating point
number is: 1 .7014119E+38.

The value of expressions are fully evaluated before the
boolean value is determined.
Index is selected before an expression is evaluated.
Expression is evaluated before a pointer is
de-referenced.
The output buffer is flushed at the end of program
.execution.
Real numbers are written with two exponent.digits.
Default field width values are:

Integer 8 characters
Boolean 6 characters

-0
:!>
Cf)

n
:!>
r
z:
rn
oe:
Cf)

'*" N
f--'

:!>
-0
;;o
~

r

f--'
LO
00
f--'

-0
)>

"' rn

l..N
l..N

r

Real 15 characters.

A total of 18 implementation defined tests were run.

Quality Tests

Twelve q_ualit.y tests were executed, producing the
following observations:

There are 10 significant characters in an ident.ifier.
The compiler does not assist in detecting unclosed
comments.
!fore than 50 types are allowed.
More than 50 labels permitted.
More than 1.00 variable declarations allowed.
Functions SQRT, EXP, SIN, COS, LN are implemented
co11sistently.
Function ARCTAN is not implemented.
Operator DIV does not handle negative values correctly.
Warnings are not generated for impossible cases in a
CASE statement·.
FOR statements may be nested at least 15 levels deep.
FOR otatement control variable may be accessed upon
. exit from loop (value is last value in loop).
Recursive I/O is allowed using the same file.
Large populated CASE statement (containing 255
constants) is allowed.

Extensions

Number of tests run = 1

The only extension test run ·demonstrated that the
OTHERWISE clause in a CASE statement has not been
implemented but has instead been modified to us·e the word
OTHERS as a case constant.

OMSI VALIDATION REPORT
~- -~~

The OMSI Pascal-1 compiler was tested against the
Pascal Validation Suite by Barry Smith, a member of the
Oregon Software implementation/maintenance team in September
1979 (6).

Conformance Tests

Of the 137 conformance tests attempted, 15 failed. The
major reasons were:

Comment delimeters not req_uired for pairwise matching.
Pointer scope not handled c'orrectly.
Assignment to function identifier within nested module
generates faulty code ..
Empty record types and cases.are not allowed.
Eq_ual, compatible sets. of different base types do not
compare.
Set of char is implemented as a 64 element set.
Procedural parameters do not conform to draft standard
proposal.
End of file on empty temporary file not checked .
Pack and unpack not implemented.
Empty field specifications not allowed in record
declarations.
Conversions on reading real numbers not identical to
the conversions performed by the compiler.
Writing boolean values is incorrectly right-justified.

Deviance Tests

Forty-one of the 95 deviance tests attempted in the
compiler test proved to be deviations to the standard. The
basic causes were:

Real number constants without digits after point
allowed.
Packed array of char identical to array of char
Req_uirements to be a string-type are not checked.
Empty string allowed.
Incorrect scope allows incorrect programs to compile
and execute.
Invalid programs where function identifier is
inaccessible.

u
:J>
C/)

n
:J>
r

:z
rn
:><'.
C/)

"" N

:J>
u
:;o

r

.....
LD
'.)()

u
)>
G)

m

\.N
.<=-

~
Function identifier may be assigned outside of its
block.
Packed scalars, subranges an~ type-identifiers are
allowed.
Non-integer subrange index types are allowed for string
types.
The use of a set of real is not detected.
Compatible but not identical var parameters are
allowed.
Non-identical array types and pointer types allowed as
var parameters.
File assignment and records containing file components
compiled as d~scriptor copy.
Functions without assignment to function identifier
allowed.
GOTO statements that transfer into structured statement
c'Omponents are allowed.
Controi variable in a FOR statement may be from any
level of the program and may be assigned a value within
the statement. The same variable may also be· used in
nested loops.
Use "of ext~rnal file (other than program parameters)
not ·stated.
The files input and output are not implicitly declared
at the program level, but at a lexically enclosing
level.
The entire program heading may be omitted.

Error tests

Of the forty-eight tests attempted, 11 detected
errors while 35 of the remaining tests compiled and
executed without detecting the areas where the code
deviates from the standard. The basic causes of
undetected errors were:

Use of un-defined values.
Variant undefinition.
Assignment compatibility (except index type in arrays).
NIL or undefined pointer de-referencing.
Undefined function result.
File buffer aliasing and use of file.
Some disposing conditions with undefined values or var
parameters.
Dynamic variant record used in expression or
assignment.
Succ or pred of limiting value in type.
Chr of very large integer.
Overflow of integer iype.

Assignment compatibility with overlapping sets.
Case expression with no matching label.
Use of for statement control variable after loop·
termination.
Nested loops using same control variable.

Implementation Defined Tests

The execution of the implementation defined tests
showed the following results:

The value of MAXINT is 32767.
The set of char is not implemented (but is equivalent
to the set of characters from underscore character to
the back-arrow character.
Se.t limits are 0 to 63.
Standard functions are not allowed as functional
parameters.
Real representation is as follows:

24 bit mantissa.
Rounds on arithmetic.
EPS = 5.96E08.
Minimum floating point number is:

2.393E-39·
Maximum floating.point number is:

1.70E+38.
Boolean expressions are evaluated fully.
Index to array selected before expression eva+uated
(e.g. a[i]:=exp).
Evaluation before dereferencing in the statement
pA:=exp.
Real numbers are written with two exponent digits.
Default field widths are:

Integer 7
Boolean 5
Real 13

A rewrite is permitted on the output file.
Alternate symbols are allowed only for comment
delimiters.

"' "" C/)

n

"" r
:z:
rn
:e:
C/)

"*' N

"" "' :;o

~
......
\D
00

"')>

"' m

\Joi
\Tl

r

Quality tests

Twenty-seven g_uality tests were attempted, with three
tests. failing for the following reasons:

Could not handle program with 50 labels (infinite
loop).
The use of a real expression in. the SIN/COS test
generated error for lack of register.
Fatal error when compiling 11 nested for loops.

The g_uality measurements resulting from the other 21
tests demonstrate the following:

Identifiers of any length are allowed, disallowing all
mis-spellings.
Unclosed comments take the remainder as comment with no
warnings.
More than 50 types are allowed.
Array[integer] is detected but diagnostic message
produced is not a applicable warning.
Record fields are allocated represe·ntation space in
declaration order .

. More than 100 variable declarations are allowed.
Less than 10 nested procedures are allowed.
Mod is inconsistent for negative operands.
No warnings generated for impossible CASE clauses.
More than 256 case constants are allowed.
Undefined (out-of-range) values of case expressions are
possible but do not cause damage.
No more· than 3 nested WITH statements permitted.
Textfile without EOLN at end is still printed.
Recursive I/O allowed on same file.

COMPARISON OF VALIDATION TEST RESULTS -· --
A comparison of the results of applying the Pascal

Validation Suite to both the Swedish compiler and the
OMSI Compiler produced the results shown in table 1.

CLASS

CONFORMANCE.

DEVIANCE

ERRORHANDLING

SWEDISH COMPitER

i I

I 87% I
I I
I I

I 68% I
I I
l ·76% l
I I I

Table 1

Percent of Test Results
Consistant with Draft Standard

OMSI COMPILER

89%

56%

76%

The results show that both compilers conform
relatively well to the standard definition in accepting
11 correct 11 pr.ograms. They are also comparable in error
detection.

The OMSI compiler appears to deviate in more cases
than the Swedish compiler in that it accepts more
syntax constructs that are not allowable according to
the definitions.

The following is a list of the areas where the two
compilers differed in the conformance and deviance
tests of the Pascal Validation Suite. The details for
each instance are available in the validation reports
for theae compilers. It is important to note that
these factors need consideration when trying to ensure
that programs written for one compiler may be
transported to the other.

The Swedish compiler allows redefinition of NIL.
The OMSI compiler allows a decimal point not
followed by a digit.

-0
:t>
(/)

n
. :t>
r
:z:
rn
=E
(/)

'lot
N
1--'

:t>
-0
:;<:>

["""

1--'
l.D
00
1--'

-0
;p
Gl
rn

\.N
01

~

Comments are not allowed as token separators in
the Swedish compiler.
The Swedish compiler permits lower case "e" to be
used in real numbers.
The OMSI compiler comment delimiters do not have
to be a pairwise match.
The OMSI compiler allows invalid programs with
inaccessible function identifiers and fUnctions
that attempt assignments outside their blocks.
Assignment to a function identifier from within a
nested procedure or function generates bad code.
The OMSI compiler allows signed characters,
strings, scalars, and enumerated types.
The Swedish compiler permits a constant to be used
in its own declaration.
Real constants are allowed in subrange
declarations by the Swedish compiler.
The OMSI compiler allows packed scalars, subranges
(i.e., not restr·icted to structures), and packed
type identifiers.
The S.wedish compiler allows real bounds as an
index type.
The Swedish compiler allows the use of undefined
variants in a record.
The OMSI compiler does not detect the use of a set
of reals as erroneous.
A file of pointer to integer is not allowed by the
Swedish compiler.
The Swedish compiler allows non-identical record
types as var parameters.
Compatability of.file types and records containing
file components is allowed by the OMSI compiler.
Equal compatible sets of different base types do
not compare as equal in:the OMSI compiler.
Unpack is not supported by the Swedish compiler.
The Swedish compiler does not support' the ARCTAN
function.
Non-local GOTO statements are not allowed by the
Swedish compiler.
In the Swedish compiler, the assignment does not
follow the expression evaluation in a FOR
statement.
The control variable in a FOR statement is allowed
as a formal parameter by the OMSI compiler.
Reading a character variable is not equivalent to
correctly positioning the buffer variable in the
Swedish compiler.
The Swedish compiler does not allow redefining the
default file at a iocal level.
Real numbers are not correctly written to text

files by the Swedish compiler because the format
defaults to scientific notation when· the real
number does not fit the format specified.
Negative field widths give undesired output and
issue no warning in the Swedish compiler. The·
OMSI compiler·uses the absolute value of the width
and gives an o.ctal interpretation of the number.
The OMSI compiler ignores program parameters,
allowing the use of an external file not declared.
The entire program heading may be omitted and not
detected by the OMSI compiler.

The Swedish compiler and the OMSI compiler
generated similar results in the validation suite tests
for standard implementation defined features and
quality. The following is a list of areas where the
two compilers differed. The reader is· again referenced
to the validation suite reports·for the details of the
test results for each compiler;

The Swedish compiler allows(..) as a substitute
for [].
The OMSI compiler default output.field width for
integers is 7 characters, whereas the Swedish
compiler default is 8.
The OMSI compiler default output field width for
boolean values is 5 characters, whereas the
Swedish compiler default is 6.
The OMSI compiler default output field width for
reals is 13 characters, whereas the Swedish
compiler· default is 15.
Identifiers are significant to 1-0 characters in
the Swedish compiler. The OMSI compiler' has no
limit. ·
The OMSI compiler MOD function is inconsistently
implemented for negative numbers.
The Swedish compiler DIV function is
inconsistently implemented for negative numbers.

ADDITIONAL NOTES

In further examination of the results of the tests
of the validation suite for the OMSI and Swedish
Compilers, it is important to note that there are areas
in which both compilers disagree with the proposals of
the draft standard. These items should also be
considered when writing programs for either compiler in
order to attain code that is reasonably compiler
independent. The following is a list of features found

" :i=-
Cr.>
n
:i=
r

= tn
::e::
Cr.>

"" N

:i=

" ;;o
~

r -
......
l.D
00

")>

"' rn

VJ
.......

r

in both compilers that do not agree with the draft
standard.

Empty strings are allowed.
Packed is ignored. A packed array of char is
identical to an array of char and similarly with
other structures.
String type requirements are not checked.
I/O files can be redefined (i.e., not implicitly
declared at the program level.
Pointer scope is not handled correctly.
A function identifier may be assigned a value
outside of its block.
The unary operat.or "+" is allowed with a constant
identifier.
String types are allowed to have non-integer
subrange index types.
Empty record types with semicolons and empty case
variants are not permitted.
Var parameters that are compatible but not
identical are allowed.
Non-identical array types and non-identical
pointer types are allowed as var parameters.
A function definition with.no assignment to the
function identifier is allowed.
Only the procedure parameters as· defined by Jensen
and Wirth are allowed.
End-of-file is not checked on an empty temporary
file.
GOTO statements are allowed to transfer into
structured statement components.
Assienment to a FOR control variable is allowed
within the FOR statement.
The FOR statement control variable is allowed to
be program global.
Nested loops using the same control variable
proquces an infinite loop.
The Swedish compiler allows an otherwise clause in
a case statement, using the word OTHERS as a case
constant (the standard proposes OTHERWISE). The
OMS! compiler, however, allows an ELSE clause
similar to the ELSE clause of an IF statement,
rather than a case label.

t

CONCLUSION

This paper has no conclusion. The s.tatistical
differences comparing both compilers to the draft
standard are not absolute measures of the 11 correctness"
of a compiler and should not be viewed as such. The
intent of this discussion has been to present the
differences between the Swedish Pascal Compiler and the
OMS! Pascal-1 Compiler from a user perspective,
considering what syntax construct are particular to a
certain compiler and should not be used in programs
that are intended to be transportable. It would be
diffi·cul t to say. that one compiler is better than the
other based solely on the information presented in this
paper.

" ~ en
n
~
r
:z:
rn
::e::
en

""' N ,_.

~

" ;;o

["""
,_.
tD

"" ,_.

")>
en
rn

\>l

""

,

REFERENCES

(1) Addyman, A.M., "Pascal Standardisation", Pascal
News, No. 18, 1.980.

(2) Addyman A.M., "A Draft Proposal for Pascal",
Pascal News, No. 18, 1980.

(3) Winchmann, J3.A., and Sale, A.H.J., "A Pascal
Processor Validation Suite", (document accompanying
Pascal Validation Suite).

(4) Sale, A.H.J., "The Pascal Validation Suite -
Aims and Methods 11 , Pascal News, No. 16, 1980.

(5) Jensen, Kathleen
User Manual and Report,
1974_-- - --

and Wirth, Niklaus, Pascal
Springer-Verlag, New ~

(6) "Three Sample Validation Reportstt, Pascal News,
No. 16, 1980. ~~~ ~~

ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance of
E. Wade Scannell of Shearwater, Inc., in analyzing the
results of the validation suite applied to the Swedish
Pascal compiler.

TEXT VERSION:2.50-01 INSTALLED AUG 1980
ON: MEAP 11/70 SYSTEM·

FOR HELP CALL:
STEPHEN P. PACHECO (4730) OR ROY E. TOZIER (4754)

START OF RUN: 16:03:38 26-0CT-80
END OF RUN 16:04:13 ELAPSED WALL TIME= 30.93 SECONDS.

COMMAND LINE SUPPLIED TO TEXT:
**TXT @PAPER/-SP

********* RUN STATISTICS **********
922 RECORDS READ 895 RECORDS WRITTEN

102 RECORDS USED IN TEMP FILE.

23 PAGES GENERATED

ONE OR MORE "SAVED STATE" RECORDS REMAIN STACKED.

MULTIPLE INPUT FILES USED:
abstract. txt
intro.txt
standard.txt
validate. txt
swedrpt.txt
omsirpt.txt
compare.txt
conclude. txt
ref.txt

-0
'.:t>
(/)

n
'.:t>
r
:z:
rn
oe:
(/)

"" N
I-'

'.:t>
-0
:;o

r
'
I-'
~

**"'"
I-'

-0
)>
Gl
m
l.N
u:o

r

Open Forum For Members

Rick,

Sl=e~Y=¢=UNNAC
P.O. Box ~2 MS-4162
SL Paul, Minne.ota 551&4

With all this talk about Ada replacing Pascal as the avant-garde language of the eighties, I

thought I would contribute these definitions from The Name for Your Baby, by Jane Wells and

Cheryl Adkins [Westover Publishing Company, Richmond, Virginia. 1972]:

ADA: (Aida, Eng.) 'Prosperous, happy"; Old English

PASCAL: Born of suffering; Hebrew

But then again, what's in a name?

MATHEMATIS CHES INSTITUT
DER LUDWIG-'.M'.AXIMlLTANB-UNIVERBITl..T

MtrNCHEN

Prof. Dr. Glinther Kraus

JMGi#L
Scott H. Costello

D 8 MtrNCHEN 2, DE!'(

TIIERESIENSTRASSE 30

TEL.I DURCil"'WAHL 2804/

<vERMITTLUNG 23041)

I am going to develop PASO.AL - programs for use in pure mathematics
(Complex Analytic Geometry, Algebraic Geometry, Algebraic Topology).

Who is interested to join ideas and experiences?
I am interested in commercial applications, too.

Glinther Kraus, Mathematisches Institut der Universitat Mlinchen,
Theresienstraf;le 39, D-8000 Mlinchen 2 (West Germany)

.fJ'lJJ D'JWnfJ llfJ'fJ 'W
52.1111 : J\.J ; oiJ\!Jll, ,'J ?lN\!J n~Jl

3405 .-r.n

Pascal Users Group
DEC
5775 Peachtree
Dunwoody Road
Atlanta, GA 30342

Sirs:

SHAI MICRO COtv1PUTERS LTD.
JERUSALEM, ISRAEL,GIVAT SHAUL B', TEL 521111, P.O.B 3405
CABLES: RIMCO, TELEX: 25387

Our firm has developed a Pascal based program generator called "MINIAC"
which makes possible an 80-9°0% reduction in the time required to write
typical business data processing programs.

I enclose a brochure describing MINIAC, which we have implemented in the
UCSD p-System, a microcomputer environment. We are planning a CP/M imple
mentation soon, and we forsee no special problems in implementing MINIAC
in any environment which provides a sufficiently powerful Pascal.

We have been using MINIAC for nine months to develop software for our
clients in Israel, and we feel that our initial expectations were fully
justified.

We are planning to market·MINIAC in the Utl1ted States, and it is for this
reason that we are contacting you. Perhaps MINIAC would be of interest to
some of your members.

If so, we would be pleased to answer any questions they may have.

Thanking you in advance for your consideratiop, I remain

ar/hs
enc

Sincerel&~'·

A~gen
General Man er

-0
;JO>
(/)

n
;JO>
r
:z:
rn
::E:
(/)

"" N
f-'

;JO>
-0
:;o

["'

f-'
LD
00
f-'

-0
)>
G'l
rn

-""
0

303-777-3638

southwest decision systems, inc.

30 west bayaud, suite 201
denver, colorado 80223

(text of notice for Pascal News)

Southwest Decision Systems, Inc. is a small software

house in Denver, Colorado, specializing in the writing

and installation of Pascal-based software on microcomputers.

We would welcome leads from university faculty, in the

u.s. or eisewhere, concerning exceptional students near

the M.S. (or equivalent) who might be suitable for

positions with S.D.S. starting late 1982. Demonstrated

ability to conceive and complete a substantial Pascal

programming project to a very high standard will be the

principal requisite. Replies (from faculty only,

please) to David P. Babcock, Southwest Decision Systems, Inc.,

30 West Bayaud Avenue, Suite 201, Denver, Colorado 80223.

Comment on A.Jl.J. Sale's Proposal to Extend Pascal

by Tom Pittman
P.O. Box 6539
San Jose: CA 95150

ref: SIGPLAN 16:4 p98-103

It seems to me that while the whi1 e-statement and the repeat-statement are
"similar" when considered throuuh the flow chart paradigm·. tl1ey actually have
significant differences, resulting {for example) in the fact that dominator
analysis requires only one pass if the only loop structure is repeat. but as
many passes as the deepest nesting of loops if wh1le-loops are used.

The point is that the repeat-statement performs a valuable service in clearly
representing a loop structure that is to be performed one or more times and
terminated on a condition generated by the execution of the body of the loop.
It is significant that Mr. Sale proposes to filter existing programs by
replacing the simple repeat-statement with either a duplication of the body
(offering opportunities-:ro-have differing versions of the code intended to be
the same) or the introduction of that dreaded goto. The repeat-statement
cannot be correctly simplified. -- ---

NOii°. I wi 11 grant that the repeat-statement may be easily misunderstood. The
goto-statement which is offered to replace it is surely no less misunderstood!
Mere 1 y the fact th at neither ~Ir. Sa 1 e's students nor the poor anonyr1ous
programmer whose code he set up for us to ridicule are able to grasp the
proper di sti net ion between repeat and while, is a poor excuse indeed for the
removal of that function from the langua0e. The problem in understanding that
gives rise both to the ill-conceived scanner and the terminal 1/0 excerpt is
one of not ful"ly thinking through the program flow. and such a fault will
result in incorrect code whether or not the repeat-statement is available to
be the butt of misdirected ridicule. ---

~Q,~~

" ~
(/)

n
~
r

= rn
:,;::
(/)

~
N ,__,

~

" :;o

["""
,__,
.D
'.)() ,__,

")>

"' m

.c
f-'

r

I•

1

COMPUTACIONES INFOTEC S.R.L.
APARTAOO 61125, CARACAS 1060A.VENEZUELA '.H

inrotce
~V. FRAN~ISCO DE MIRANDA, GA!.ERIAS MIRANDA, 39 PISO, CHACAO

·TELF.: (02) 333590 TLX: 23327 CENINVE

. . r. .i c:~ ::hi.l:,.
!":seal :..st::r 1 S G,roup,
:1.f1. ··,;j:~ ~ .. }J524,
.~.tl.:.ot5, r;t-orJia 3G33:·;,
'!. :.: ...

:~;.;,:;r .. r. :":ick s:·1cu:

I reccvccl the ALL-PLlr;?OSE CC·UPOi: and I am v1::ry interested in joining t:ie
~:roup. ! a1.; a Softru;re En:i nnecr and our Cor.ipany Itff!>TEC is represer.:ti ng j;fi cro
cor.:put;:.r equipi:,~nt in Venezue:la like ALTOS, TVI, M!ADEX, laCROPnO, etc. i;ll
our Zoftu;:;re is developed in PF1sc;.1_ o.:cso, pr,sc1,u;·,, PASCAL/<:T+). Ot:r compu
ters our Z-U~ oasecl ..

I 111.ll subr.lit in the future; so"'e .ideas or articles concerning our expe
.riC'ncc:. in Pi\SCi,L. ~:e hc::ve developed a General Purpose Data Dase i:an~gerJent
Systc1:1 ~enerator .. It is Hierarchical and ·;tis only necesary to generate
th; ;lcher.:a c.nc:: all the rest of the s_yster.i wi.Ll uork .. It includes a Data :Jase
:e,;itor for tleto ·~ntry, vie1dn!:; and editing, General purpose query syster.: used
to jJro~ucc sui.J-se.ts of the l·Jhole date:. :.:iasa, ta:;Les of information, reports/'
~tc. Tha tables ccin da l:'cnipulated 11ith cur Table Syster.t for r.terging, sortins,
joinin .. J, end stotistical analisis ·can be ceirried out ~-Ji th 01..:r Stat Puckage.
For t~1c ·schc:.1D generation there c:.re sevt;ral i:rogre:11is: Scheri;a editor, list, CP.T
c.nc! :>rinter forii?at editor, etc ..

The syster:: 11"s first dcvelcpec in UCSD PASCf;L but has been transfered to
P/•SCl.L/;JT+ running on CP/!: '12.xx, :1P/!·~ V1.xx, ect. It is nm~ a corr:plete rr.enu
driven syste:r..

Az to ti:e ,.;cr.i::iership you 11ill find enclose" a check for us::; 25.00 for a 3
y~·~r subscrirition. Please hurry r,;e the .issues.

s,

S.P..L.

Pascal Use~s' Group, c/o Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road ·
Atlanta, GA, 30342

Dear Mr.. Shaw,

For users of interactive systems a very simple
modification of the program, Referencer, by Arthur Sale
adds a very useful feature. This feature causes all
declaration parts to be printed out and thus provides a
very ~andy reference document when developing large
programs.

The modification ins~rts the following•

After line 0785
After line 0897
Line 609
Lin!' 610

printflag:=false;
printflafs=false;
remove
remove

Sincere~y, yours,. -~· _ .> _ .-i----
' r~ .J· <·, ,.f,:h11~~,

(."' \.. ,.e-,, .-t. j

Edgar S. qilchrist
218 Via Ithaca
Newport Beach, CA, 92663

Note: My system is AppleII+ and UCSD Pascal.

TRS-80 UCSD PASCAL b~ FMG

I would be interested in corresPondins with an~one who is
current!~ usin• the UCSD PASCAL packase modified for the
TRS-80 b~ FMG Corporat,ion. I have been us ins the s~s·~em ·fcH
Personal ProJects for over a ~ear and am ver~ satisfied with
i·~s capabili·~:les1 e>ecePt for one· Problem which I ·hoPe some
one else has encountered and solved!!! Prosrams which util
ize random access files Cusins GET and PUTl appear to ran
dom!~ destro~ blocks on the diskette in the write mode
Cusins PUT), It seems that a bus in the code Permits (ran
dom) overwrite of some of the diskette sector control infor
ma·~:i.on1 so :~ha·~ -~he sector is no lenser able to be ·forJnd.
If an~or1e els.e has e>:Perienced this Problem, Please set in
touch (especiall~I if ~ou have fi>:ed it. If a P-code disas
sembler is available for this UCSD PASCAL, I would be ver~
interested in settins a hold of it.

Richard J, Bonneau

6 Tanslewood Drive

Shrewsbur~' MA 01545

(617) 845-l.432

-0
:i=
C/J
n
:i=
r
:z::
rn
::E:
C/J

"" N ,__.

:i=
-0

"° -r
,__.
'° "" ,__.

-0
)>
Gl
rn

.J::
N

i
Pascal Standard: Progress Report

by Jim Miner (1981-07-31)

The second ISO Draft Proposal for Pascal (as printed in Pascal News #20)
has received strong support in the official vote this spring. The number of
countries disapproving has dropped from four to one.

Approving
Italy
Netherlands
Pol and *
Switzerland
United Kingdom

Second DP 7185
Approving
with comments
Australia
Austria
Canada
Czechoslovakia*
Finland
France
Germany
United States

Disapproving
Japan

* country is an 'O' member -- vote is advisory.

Some degree of compromise has been reached in the "conformant array parameter"
issue (see Pascal News #19, page 74). Because of the convergence of support
evidenced by this vote, it is likely that SGS (the ISO Programming Languages
committee) will approve the DP with a few changes at its October meeting in
London, Once it has done so, the draft will be a Draft International Standard
(DIS) to be voted on by a broader constituency. In short, nearly all of the
technical work has been done on the standard, freeing it to progress through
the remaining steps toward official adoption. The changes made to the DP will
result from the comments submitted by the member bodies with their votes.
Tony Addyman and Working Group 4 are presently developing those changes.

The official comments on the DP are quite voluminous, but we have gecided to
print them here. One reason is that you can get some idea of the amount of
effort that goes into each new draft. Remember that these comments are just
the output of national committees, and that these committees worked hard to
formulate the comments and to reject others. The work done by Tony Addyman at
each stage has been tremendous.

Another reason for printing tne comments is so you can appreciate the
difficulty of some of the technical issues,.and the tensions created by
conflicting goals of eliminating technical flaws, establishing the standard as
quickly as possible, and making the standard as readable as possible. For
example, the German comments regarding "denote" raise an issue that pervades
the entire document, but its resolution would require many more months and
might result in a less readable document.

Finally, note that not everyone is happy with conformant arrays. Both the
United States and Japan stress their dislike of including an extension to
Niklaus Wirth's Pascal in the first standard. The United States committee is
now preparing to put out a draft proposed American National Standard for
public comment which will not have any kind of conformant array parameters.
Many countries also have criticised certain details of the feature as "defined
by the second DP; most objected to the use of parentheses in the actual
(calling) parameter to specify it as a value (as opposed to "var") parameter.
Some changes will therefore be made in the final version.

atsl. american national standards institute, inc.
1430 broadway, newyork, n.y. 10018
(212) 354-3300

~SO/TC 97/SC 5 N 606
1981 May 08

I S 0
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/TC 97/SC 5

PROGRAMMING LANGUAGES

Secretariat: USA (ANSI)

Summary of Voting on 97/5 N 595 -
Second DP 7185 - Specification for the
Computer Programming Language - Pascal

The Secretariat issued this document for voting by 31 March 1981. To date
the following votes have been received:

'P' Members approve Italy, Netherlands, Switzerland, United
Kingdom

'P' Members approve
with comment

'P' Members disapprove l

'P' Members not Voting 6

'O' Members approve l

'O' Members approve
with comment l

Comments received :

Australia - Attachment A

Australia, Austria, Canada, Finland, France,
Germany, United States

Japan

China, Hungary, Norway, ~omania, Spain, Sweden

Poland

Czechoslovakia

Austria - Page 35, paragraph (e) (1) first line:
~~~- specifi~cation 

Specification instead of 

Canada - Attachment B 

Czechoslovakia - Attachment C 

Finland - Attachment D 

France - Attachment E 

Germany - Attachment F 

Japan - Attachment G 

USA - Attachment H - 2 parts 

-a 
;,:. 
en 
n 
;,:. 
r 
:z 
rn :s: 
en 

""' N ,_. 

;,:. 
-a 
;o 

[""' 
,_. 
..0 
00 ,_. 

-a 
)> 
G> 
IT1 

= 
"" 



r 

DOCUMENT ISO/TC 97/sc 5 N595 

ISO/DP 7185 - Specification for the 
Computer Programming Language PASCAL 

Co111111ent of Australian Member Body 

ATTACHMENT A 

In recording a vote of approval an the above ISO/DP, the 
Australian Member Body submits the fallowing comment: 

The Australian vote in favour of the adaption of DP7185.1 expresses the view 
that the cance?tual structure and definition of the DP are correct and 
a?prapriate far an International Standard, and takes into accoimt the delays 
that have already arisen in the preparation and approval of a Pascal Standard. 

However, examination of the DP has revealed a number of paints which are not 
adequately defined by the text, though the intent is well-imderstaod by those 
who have worked on this Standard. The following comments therefore represent 
our considered view of the editorial changes that must b.e made ta the Draft 
rraposal so that it does say what is meant,. We believe that the changes will 
be nan-controversial, and should be incorporated before the DP is sent for 
voting as a DIS. Generally the changes correct grammatical and ptmctuatian 
errors, poor English expression, or omissions. 

POSITIVE COMMENT 

Comment received an such documents is usually negative, since critical appraisal 
is sought. It should, however, be placed an record that comments received 
by the Australian Committee have praised two features of the definition which have 
raised controversy in the past: 

* the canfarmant-array-parameter, and * the restriction of a far-statement controlled-variable ta local 
simple variables. 

In addition, the improved formalism of the Draft Proposal was favaurab~y.r7ceived, 
and the view has been expressed·that an even greater use of formal def1n1t1ons 
wou~d have been welcome. 

TYPOGRAPHICAL COMMENT 

PROBLEM 
AUStralia draws attention ta the poor presentation of DP71BS, and in particular 
ta the fallowing features of the document: 

* The typefant (which is guessed ta be that of a Decwriter) is very difficult 
ta read in large quantities; its treatment of characters with descenders 
(far example p, q) is unacceptable in a professional document. 

* No underlining or italicising is used in the document, not even where such 
treatment would aid clarity by giving cues. Thus no headings are 
underlined or bald-faced, making it difficult ta find places in the 
document. Also, notes should be in a distinctive type-face if possible. 
Particularly bad examples can be'found in section 6.9, where the sense 
of the wards input and output are only determinable with difficulty: 

DP7185: ••• applied ta the required textfile output. 
better: ... applied ta the required textfile denoted by the required 

identifier output 
or: ..• applied ta the required textfile output. 

RECOMMENDATION 
While sympathising with the problems associated with the pre~aration of this 
document, it is recommended that before the DP is sent out for a further vote, 
or far voting as a DIS, it should either be typeset or it should be typed with an 
acceptable ward-processing system providing far good-quality typefants. 

INTRODUCTION & ZERO-~UMBERING 

PROBLEM 
It is barbarous to start the numbering of sections in this document from 
zero, and offends against normal practice. · 

In addition, the Introduction is nothing of the sort, but rather part of the 
prescription of section 1 (Scape of this Standard). 

RECOMMENDATION 
Delete the "O. INTRODUCTION" heading. 

Move the text contained in the now deleted Introduction to the end of paragraph 
1.1, pa~e 2. 

ERRORS 

PROBLEM 
The definition of B!'ror in section 3.1, page 3, is correct, but suffers from two 
defects. Firstly, the detection of errors is hardly ta be regarded as "optional" 
in accepted English usage; rather the detection of errors ~be elided by 
implementations which do not profess ta offer the highest quality of implementation. 
Unless the meaning is expressed correctly, implementors will take the wards in the 
most relaxing ·sense. 

The second flaw is mare serious: the philosophy of errors is nowhere stated. 
This is certain to cause confusion in future revisions of the StandaI"d, and has 
been ~llustrated with the rapid switching of positions an goto-statements in 
recent drafts. Clearly this is not part of the Standard, but could be in a NOTE. 

-0 
> en 
n 
> 
r 
:z 
rn 
.::;;: 
en 

"" N ,_. 

> 
-0 
;;c 

r-
,_. 
<.D 
00 ,_. 

-0 
)> 
en 
m 

-"' 
-"' 



RECOMMENDATION 
1. Alter the definition of error to: 

3.1 ~· A vio"lation by a progrom of a requirement of this standard 
which a processor is permitted to leave undetected, 

2. Between 3.1 and 3.2 add the following NOTEs: 

NOTE. If it is possible to construct a progrom in which the violation 
or non-violation of a requirement of this Standard requires knowledge 
of the data read by the progrom, or of the imp7,ementation definition 
of impl.ementation-defined or imp7,ementation-dependent features, then 
vio"lation of that requirement is o"lassed as an error. Processors may 
detect and report on some violations of the requirement without such 
know7,edge, but there always remain some oases which require execution 
or simuiated execution, or proof procedures with the required know7,edge. 
Requirements which may be verified without such know"l,edge are not 
classified as errors. 

NOTE. Processors should attempt the deteotidn of as many errors as possible, 
and to i:zs complete a degree as possible. Permission to omit detection is 
provided for implementations in which the detection would be an excessive 
burden, or which are not of the highest quality. 

DEFINITION OF PROCESSOR 

PROBLEM 
The definition of processor is incorrect. A processor can only be regarded 
as a complete system for processing Pascal programs, and parts of a complete 
system cannot be riegarded as a 11processor 11 • 

A partial processor (eg a compiler, as suggested by the DP) is free of all sorts 
of semantic constraints; even with a run-time system it can still shed responsibility 
to a host operating system, or even to hardware design. 

If validation of Pascal processors is to be possible, this definition must say 
what has been assumed all along: a Pascal processor is an entity that accepts 
Pascal programs, and 11 executes 11 them. 

RECOMMENDATION 
Replace definition 3.4, page 3, by: 

3.4 processor. A system o~ mechanism which accepts a progrom as input, 
prepares it for execution, and executes the process so defined with 
data to produce results. 

NOTE. A processor may consist of an interpreter, a compiler and 
run-time system, or other mechanism, together with an associated 
host computing machine and operating system, or other mechanism for 
achieving the some effect. A compiler in itself, for example, does 
not constitute a processor. 

REQUIRED, PREDEFINED & PREDECLARED 

PROBLEM 
There are a collection of problems with the terms required, predefined, and 
predeclared in the DP. These are detailed below. 

*The terms predefined and predeclared are not defined in the DP, and 
are not connnon English words. Their meaning in the context of the 
DP is thus uncertain, and only determined by Pascal tradition. 

* The term required is defined by 6.2.2.10 and nowhere else. A definition of 
the meaning of the term is necessary, especially as it does not mean 
predefined nor predeclared. 

* ln clause 4 an assumption relating to the denotations of required 
identifiers in program fragments in the DP is stated, but in terms 
of "predefined or predeclared". Not only are these not defined, but 
Pascal tradition would then exclude input or output from the set. 

RECOMMENDATIONS 

1. Replace the following sentence in section 4, page 3, lines 18-21: 

by: 

Any identifier that is defined in o"lause 6 as the identifier of i:z 
predeclared or predefined entity shall denote that entity by its 
occurrence in such a progrom fragtrent. 

Any identifier that is defined in oiause 6 as a required identifier 
shall denote the corresponding required entity by its occurrence in 
such a program fragment. 

2. Add at the end of the first paragraph of 6 .1. 3, page 6 : 
"Identifiers that are specified to be required shall have special 
significance in Pascal (see 6.2.2.10 and 6.10). 

3. Add the following sentence after the last paragraph of section 6.3, page 11: 
The required constant-identifiers are specified in 6.4.2.2 and 6.7.2.2. 

4. Replace the sentence following in section 6.4.1, page 12; 

by: 

The requi.red types shall be denoted by predefined type-identifiers 
(see 6.4.2.2 and 6.4.3.5). 

The requi.red type-identifiers and corresponding requi.red types are 
specified in 6.4.2.2 and 6.4.3.5. 

5. Replace the only paragraph of 6.6.4.1, page 38, by: 
The required procedure-identifiers and function-identifiers and 
the oorreaponding required procedures and functions shall be as 
specified in 6.6.5 and 6.6.6 respectively. 

6. Add at the end of section 6.2.2.10; p~ge 10: 
Set?- 6 .• 1.3, 6.4.1 and 6.6.4.1. 

NOTE: The requi.red identifiers input and output are not included, 
since these denote va.riab les. 

-u ,,. 
en 
n ,,. 
r 
:z: 
rn 
::e:: 
en 

'!lo 
N ...... 

,,. 
-u 
Al 

[""" 

...... 
lO 
00 ...... 

-u 
)> 
Ci) 

IT1 

.J::" 
\Jl 



r 

7, Replace the fir.st sen:\;:ence ·pf the second pi!P<!!µ'aph of section £, lO, p;;i.ge 69: 
Thg Qoguz>r?nQe of the identifiel' in:put op the identifieP output as a 
pPQfWam parameteP sha1..'l o91Ultitute it? 13.iafining-pQint fop the Pegion 
that is the pPagPam-bfook c+$ a va:t'iab'le-identifi!3!' Pf the nquired 

J>y 
type denoted by text. 

The aocrn+'Peno? of the !'.equil'e.d identifieP input op the Pequi!!ed 
:f,qentifie!' output a.s a pl'agroam paramete!' shat:/. oonstitutli it9 
defining-point fol' the ;r:oegil7Yl that ie the p:r:>ogpC11T1-bfook as a 
va:piab'le-identifiel' of the :r:oequil'ed type denoted by the :r:>equi;r:oed 
type-identifie:r text. 

8, The example at the end of 6.6.2 viol;;i.tes the vequivements of section 4 by 
using.the vequived identifiev new with a denotation that is not the vequired 
prooedµpe. Though the us;;i.ge is obvious, it is inconsistent, and the example 
shou+d be rewritten with the identifier new replaced by estimate, 

LANGUAGE LEVELS 

PROllLEM 
The DP defines two "levels" of the language, which it numbers. O and l, There are 
two objections to this scheme: 

* Numbering an enumerated set of objects 0 and 1 is a barbarism in the 
English language, howevev mathematically att!'active it might be. Levels 
1 and 2 woula be far preferable. 

* The level chosen to he level O is in fact close to what is popularly known 
as Standard Pascal, whereas level 1 contains an ~xtension whicb is at 
present not common. It would therefove be pveferable to pefer to the 
u1evels 11 by names which indicate their usage. 

The Austvalian vecommendation is to adopt the lattev course, using the names 
Standard Pascal and Extended Pascal to distinguish the levels. Not only does 
this make the distinction clear, it has the following advantages: 

* Vendovs of Pascal products can more readily identify their conformance 
as being to "Standard Pascal ;;is defined in IS07185" etc. 

* future revisions of the Sta~dard can retain Standard Pascal as a subset, 
by confining extensions to Extende~Pascal. 

* Implementors who choose not to implement the extension for conformant 
arrays will not be saddled with an implied deficiency ("only level 011 ). 

RECOMMENDATION 
Replace the phrases at 'leve'l 0 and at 'leve'l 1 in section 5.1, page 4, and in 
section 5.2, page 5 by as Stand=d Paaoa'l and as Extended Pasoa'l respectively. 

Replace the NOTE in section 5, page 4 by: 
N(J]'E. There are two 'leve'ls of oamp'lianoe, known as Standard Pascal and 
Extended Pascal, Standard Pascal does not ino'lude oanfo1'1T/ant array 
parameters. Extended Pascal does ino'lude aanfa1'1T/ant array paramete:r:>s. 

~epl~ce the several occurrences of 
[do] not app'ly ta 'level- 0 

in sections 6.6.3.6, page 35; 6,6.3.7, page 35; and 6.6.3.B, page 37 (and any othev 
occurrences) by: 

[dQ] not app'ly to Standard Pascal 

Wherever any further occurrences of levels 0 or 1 appear, replace them by appropriate 
text; a full cross-reference was not available to us to check that all have been 
detected. 

DETECTION OF VIOLATIONS 

PROllLEM 
Section 5.l(e) requires the detection of violations that are not errors. However, 
it does not require that the detection by the processor be reported to the user 
of the processor. 

Secondly, it is unreasonable for the Standard to insist on processors reporting 
all violations. Parasitic effects of one error may mas~ some violations and often 
do; other processors often have error-limits. Interpreters, of course, adopt a 
different approach to error-detection. The thinking ~n this section is confused: 
the appropriate vequirement is that the processor be able to classify programs 
into two· classes: 

1. The class of compliant programs, and 
2. The class of non-compliant programs, 

However, if the processor has not completely examined a program text, as ,occurs 
in processors with an error limit, processors which abort under some table overflow 
conditions, or direct execution or interpreter machines, then a third response 
is permissible: 

a. The-class of programs in which no non-compliant feature has yet been 
detected, but which has not yet been completely examined. 

Processors should report accordingly, and this should be the Standard's stance. 
More information about the source of non-compliance in such programs cannot be 
legislated for as it is heavily dependent on technique. 

RECOMMENDATION 
~-\i::.place section 5.l(e), page 4, by: 

(e) dete1'1Tline whether or not a p:r:>ogram vio'lates any requirement of this 
stand=d that is not designated an error and report the result of this 
determination ta the user of the processor. In the case whe:r:>e the 
processor does not examine the whole of the program, the user sha'l'l be 
notified that the dete1'1Tlination ~s inoamp'lete whenever no vio'lations have 
been detected in the prog:r:>am text examined. 

Add a NOTE at the end of Section 5.1, page 5: 

N(J]'E. No1'1Tla'l'ly a praaesao:r:> which aansists of a aompi'ler and anoi'l'lary 
components wi'l'l be ab'le to a'lassify programs into the compliant or 
non-camp'liant categoriei: in aooordanoe with a'lause 5.1(e) afte:r:> examining 
the pragPam text. Howeve:r:>, in oases whe:r:>e the oompi'latian is aborted 
due ta some 'limitation of tab'les, etc, an inoamp'lete determination 
of the kind "No vio'latians were detected, but the examination is 
incomplete" wi'l'l satisfy the requirements of o'lause 5.l(e). In a simi'lar 
manne:r:> an inte:r:opretive or di:r:oeat exec-ution processor may report an 
inoamp'lete dete1'1Tlination for a program of which a'l'l aspeats have not 
been examined. 

-u 
:P 
(/) 

n 
:P 
r 
z: 
rn 
;>;:; 
(/) 

* N ,__. 

:P 
-u 

"" 
r ' " 

,__. 
LO 
:::0 ,__. 

-u 
:» 
"' m 

.c
m 



1 

fRRQR~~[EPORHJ:IG 

PRO)l)j)::M 
The"):•egu.i.P.eme:nt st<''l:e.d il) §~HQ!') ii .;i...Cf) 4oes J'IO'!: veeuire ·that ;;i.;t.l t)le .statements 
pelating to epp9p~r.!!'?ol't;i.ng 1>e .easy l!:P f;i.a4, .2-ild" i11de"4 t})ey may .!?e obE;9ure:).y hidden 
;i.n ar) obsoU!'.e papt .Qf ·t~ do9um!'P.tat;i.ol). ;md wi~e;LY S-9.atte:r'e4, '.,l'h;i.s is Wldesiro.ble. 

RE~MMENDA'.,l'j[.Qlj' 

Md the fo;L:+ow;i.:ng j;q '\:)le "'1)4 of §.,,(fl, ;pege§ 4 .~ ?• 

lf p;n,M pio1,µtio'f11J ·that m'I? 4B1;i.gnq.terl, t+s f?PpOPJ3 lP'/il "f;ppatecl. in 1:h!J mc;mne;r 
~fi~"IJ{.]Jed in p.1{f)fl), 1:h.en 4 not/fl p,eft?Pen,ei'!!f{ e(l.eh sueh t:t'eatm?rJ.t s.'haZZ 
f1PP"~ in <1 tJep~t.e IJl?l!U~ 9f "(;fie @er:mrpf1.1P,!il1f! ifp<Jl!!Tl,<mt .• 

Ri:sTRICT!~NS ANP ·COMf'PANClt Of. PRoegssoRs 
.. - ...... ·--. ·-- . - ····-· . -· ............ -· .. 

;!'ROBLE)! 
'I'h0)J'g)l the PJ:' J')d<Wesses tibe ppc;>'b4!!ll§ ~f '1pec;;i.;fy;i.J.'lg e><:tel)§~nl'! .M'l section 5,l(g), 
l)c;>)'>'he;r'e is ;i.t state~ w)la'\: actioP :P"oc;essops lll\IJ>t t;;tke w;i.th r.e9pec;t t.9 i:'esw;i.ctions, 
;rt is ·pc;>ssib;l.e tQ ""gue that p.0 p,estp;i,ct;i.<ms PPe pos§:i.P..l"', .<>Pd proc;es.,or§ ·must comp;t.y 
wit)l ,el'). .Pe!l.uiir'.em6Jlt" .of the ;;t;i.p.~~ if t))ey ;µ>i? w c;laim "91J)plia!'lc;e with it, !Jut 
All.stp.alia cQl)si\4eps ;!;h"t ii;)l;i..s is uwee.Hlitic, l!p,QC<:§'i.91'§ wiJ.l co11tain pestr;i,ctiops, 
.eve" if 01'!;!.Y .._ f.ew. 

I:n e.<l.@i1;iop, :\.glJ.9P:il)~ tl).e .I'l'·o):>;l..em .eff.e1:t,i.ve;t.y p-r9))iJl;its any pew peserveij wopds, 5;i.pce 
t)le.ee 1"es1;ric;:t j::l)e set .o.f p.ep111;i.s1?i~J..e ~el)tifi.e:r:>s, tl)ul;l .e;n.g.oU'I'ag;i..µg ov,e:r:>loai)ing 
9f e11isti.1'lg eperq.topi>, wo.P!'ls, 911d otli.e:P ·'i!l<tel)siop mec;)lap.;i.sm.s, 

Aw;'!Q:'P.;l.;i.a ;i.p,g~es :tll<!t t)l.e PP 11)lo~d.i! i;:9ntaip "" st<11:em!'nt conl;r9;1.;Lil)g t)l.e us.e of 
eom.P;l.iap.c;e staj;em.elltl>, w)lic)l !'Vscifil's ~1;.i.on wit)l ;r<;!spect to pestr:i.etiol)s, 

Jl.ECQ!ojMEl'IPAnoN 
11dd ·.aiCJ;)J:e "ep.4 qff §.ec;'i:j.i>n ~, l-, p;i.g.e Q, J>mt nc;>t i)!'peµi!.ent op { i)-, tl)e fo:).low:i.ng 1 

4 pr.>oe!JJ3sOP t'Jig.t PMPP9:rts ·to comp"!-y, 1;i@'/,Y,y P1' pq:pt;f.aHy, with the 
'!'1<qi.1:{.remen;f;i; of thili {J"tt;ujdcµ>d f}hc{f,1, c1P sq only in the' fPlioi,iing t{JI'/TlS, 
A comria:nc;:.e statement mq.11 pe pPOd1J!Jed PY the prQ0{3880;1' 1;11; a consf!qu.ence 
<?f iifl i1fJ tlie-pi>MetJ~or, gp may Pf!i inc'/.;1Jil/ild in Mcompqnying dc;1ewnentatirm. 
:ff thr; pppet;!fllWI' ugrrrpUen in a"ll P!?Spf?.<Jtl> with the requi:rf!numts Pf this 
!Jttmt}p,ri4 the ar;mp'?iarig!J gtq.ternrmt s'li4iZ J;e: 

.<'.,l'l)i" V>'O<le!'s9p> G.Qlllp;J.ie1> wit)l the requip.ements gf <Stal)4q.;rij Pasc;al> 
as st#t.e<l. ip IS07l~P, i.ee~. 

lf t'/w p1'i;><1esso;r> oompUes !!If.th somf!i but rwt q.iz af thf! ppqu.iPernents Pf 
t'h'f.fl 1$t~d then. it tihl!Z"!,. nc;1t use the ab11Vf! llt<:itement, but s'haH inst?acl. 
11111? the .foJ,1,0bl'i,ng comp'l-iartfJB fltatement: 

.:')')lis ppqces§.c;>r> .gompJ.;i.es :with th!' l'.'equ.ireroents qf <~tandevd Pp.sc<>l> 
as .stated ~P I§O?lBS, lSa~, with tl!!i> fol;t.0wil)g e11cept.ions: 

<fqJ.;J.qwe4 by a refer.<:nc:e to, 0P e. e0mplet1> J,:i.st of, th!' pequirements 
of the PtJ')l)di!rd w;i.th wl)igh the pv9c;essov 4oes not comply,> 

In PQth cases the tB!IJt <'!'h:i." pP9cessop> mt:q/ be ;r>epZa:oed by an unambiguous 
name identifyirJ{J the pv9et?ssop, 4114 the te!!lt <StaPdaPd P;;i.scal> mt;q/ 
'be reptq<ieil by E11t~pded P.a.s<:<>l if o.ppp9ppiat;e to th!' Z.el?eZ. of impZementatiQn, 

.NOTl}. PpocessPP.s t;'figt dQ not fJ(JTlrpty fµ.1,7,y w#h the 'l'<llPJ.irements of the 
fltarJdcp>d a;rp rJPt Peqwf,rf!a t;o f!ivf, fµlZ. detqi'l,11 of theiP fai'f.:upf's tg eomply 
in th;} <1(Xlf[!iianc1T stu.t1?TTJmt1 q brief Pef?1'BT1Cf' to ac4orrrpqnying doaumenw:t;ion 
whie'h cqrrtain.s a compZ.!'te ii11t in suffici!'nt cl.etaiZ tp identify the 
defeat!} ip i;µfficien.t, 

COMPl,..YJNG PROGRAMS 

l'RP!lr.EM 
The l!O'..l'E at 1;he end o.f section 5, 2, page 5, i.s gvossly mis;J.eading. Tht> :t>esul ts 
produc;ed un4e.P the eondit;i.ons state4 c;erta;l.p).y ;ire re.qu;i.red to be the same for 
~ c:).ass of ppograrns, while othe'I' c;t.<1sses !)ave col)st;raints which permit d;i.ffepent 
:t>es\llltfl. The ;c>esu;l.tant con;fµs;i.op "e~1l:i.<'es th;;i.1: the Stal)d;ird say ppec;isely what is 
;i.m.Plied., not ;;!l) ·incor:t>ect 1;1tSlt1>ment. 

Jl.ECOMMEMPATION 
"i!)e4'te· the.NOTE at the end 9f 5,2, page 5 1 api) r!!pl-ace :i.t by th!' fo;l.lowing: 

If()']$, A p"Pogpam t;hat <1ompUes "'1,th the :re.qu.irements Pf this et.ause may 
;r>eZ'/1 .on paptf.cu7.a.Z' implementa#Pn~defined va'J,l.l?s or f?atu:t'.e;;, and f.t may 
contain .e:t',l'ors whieh wi7,7, only b.e evoked by pwticutaP data values • 

!l(Y,I'JfJ. The 7.'?qµirements f Pl! comp1..iant pr9fp;'ams and eompUarit pPoael;lsO!'s do 
not 1'f'qµi.'l'e that the resu"lt.s pPc;1ilJ.leecl. by a: compUant program aPe always 
the same i,ihen pPoeess?d by a compliant ppogesso!'. They may be, or they 
mq.y diff?I', oP potentic!.7- ?PPO"PfJ may Jn evoke4, tkpending on the program. 
'the f!impZest program to iZiusf;pq.f;f' this isr 

pr9grt!fll g;(outpµt); pegin "1l'ite1.n(maz1,nt div (md:I:int~32767)) end, 

CHARACTER-STRING~ 

PROllr.EM 
'.,!'be descPipt;iol) .of ch;iractep-strings al)d the denotation of stpjr)g-elements 
;i.l) 6,1,7, po,ge 7, is conflllling, apd omits 1;o give the apostrophe-image a value 
of chq.p~type, exc1>pt 'by i.111Pli.co.tion. /l:Lso the term "stx-ing of characters" is 
us'!!C! in a context where "ol!;i.1'.Bc;ter-string'' i:; 11Pre o.ppropPiate. 

RECOMMENDATION 
Iiel.°ete - tlle· text p11-1'.Bgraph ;i.n 6, 1, 7, page 7 , qnd replace by: 

6, 1. 7 Ch;irac;ter-strin£w A eh=rJ. t?r-st;r>ing eontaining a single 
s "f;;tling~ tement sh<i,it . te a vaiue 9f th!' :reqµired char-'f;ype 
(s!lle 6,4,8,8), A ah4:Paete;r>-st:t'ing e<;m.taini:n.g mope than one 
smng-eZement shall tknote a vq.Zue Pf a string-type (see 6,4.3.2) 
idth the s(:!171e nwOO!il1' of eomponents as the eh=eter-smng eontains 
s"f;ring-efoments. l!Jach 13t:t'ing-fi'1..ement sha7.:f, denote an impiementation
defined vaiue of thf! requ.i;r>ed eh4:P-type, subjeet to the rest:t'iction that 
no such vaiµe mq.y be denotecl. by mo:re than one smng-etement • 

NOTE. ConventionaUy, the apostrophe-i~ge is regq:pded as a substitute 
for f;he (!f)OBW'ophe eharacter, i,ihfoh ea:nnot be a string-ch(II'aeter. 

Sll!lSIDIARY NOTE 
'l'lJ,e 't>e!!1,1;i.red vi!l. ut>s of <;:h;ir-type ;ire : 

1:he ten digit-values denoted by 101 ,. '1', '2 1, •••• , 19 1 

the space-value denoted by ' ' 
the number-values denoted by 1+1, 1- 1, 1 •1 
the exponent-value denoted either by 1e' or 'E' 
whatever co.se letters ;ire re qui.Ped for 'True' and 'F.alse • 

6,4.2.2 
·s.4.a.5 
6,9.4,x 
6.9.4.5.x 
6.9.4.6 

"'O 
::P
·V> 
n 
:P
r 
;z: 
rn 
:>: 
(/) 

""' N 
I-' 

:P
"Q 
;:o 

~ 
I-' 
lO 
OD ...... 

-.:> 
)> 

"' m 
J::" ....., 



r 

In the preceding redraft, the value denoted by the.apostrophe-image is added 
as a required value,. but it need not tlenote a value whose graphical 
representation is indeed the ' character. This is exactly the same situation 
as exists with the other required values: the exte.t'Ilal graphical representations 
of the values are not controlled. 

LEXICAL ALTERNATIVES 

PROBLEM 1 
The second NOTE in section 6.11, page 68, is incorrect. The Standard does indeed 
exclude the existence of other symbols, since processors which accept them 
are probably (depending on the symbol) accepting programs which are not compliant 
Pascal programs, and therefore contain extensions. 

RECOMMENDATION 
Delete NOTE 2 on page 68, and the numeral 111 11 from the first NOTE. 

PROBLEM 2 
This whole section is at variance with section 6.1, which sets out the requirements 
for lexical tokens. Properly, it belongs there, not here at the end of the 
Standard, which is simply where Niklaus Wirth put it originally in the User Manual. 

RECOMMENDATION 
Delete section 6.11 and insert a new section 6.1.9 as follows: 

6.1.9 LexicaZ aZternatives. The representation for ZexicaZ tokens and 
separators g~ven ~n sections 6.1.1 to 6.1.8 constitutes a reference 
representation for these tokens and separators which shaZZ be used for 
program interchange. 

To faciZitate the use of PascaZ on processors which have a character set 
which wiZZ not support the reference representation, the foZZowing 
aZternatives are provided. AZZ processors which have the required characters 
in their character set shaZZ provide both the reference representations 
and the aZternative representations, and the corresponding tokens or 
separators shdZZ not be distinguished. 

The aZternative representations for tokens are given beZow: 

Reference token 

" [ 
] 

AZternative token 
@ 
(. 
. ) 

NOTE. The character + which appears in sane nationaZ variants of the ISO 
character set is regarded as identicaZ to the character "· 

The aZternative forms of C0/111lent are aU forms of c0/111lent where one or 
both of the foUowing substitutions are made: 

DeZimiting character AZternative deZimiting 
pair of characters 

(* 
*) 

NOTE. A carment may thus C01111lence with 11{ 11 and end with ''*) 11, or 
cannence with "(*" and end with 11 } 11 • 

IDENTIFIER AND LABEL TERMINOLOGY 

PROBLEM 
The following problem was drawn to Australia's attention by W.Price, but 
the solution differs slightly from that proposed. It is however based on the 
comments received, but modified to cope with labels. 

In section 6.2.2 the word identifier is used with at least four meanings. The 
one attached to the syntactic definition should be le~ untouched, but the 
others n.eed to be distinguished to clarify the DP. Labels are equally affected. 

RECOMMENDATION 

1. Change the second sentence of 6.1.3, page 6, to read: 
AU characters of an identifier shaU be significant in distingmshing 
bet>ueen identifiers. 

2. Replace clause 6.2.2.5 by: 
When an identifier or ZabeZ has a i/Jafining-point for region A 
and an ii/Jantifier or Zabe Z that cannot be distinguished from it 
(see 6.1.3 and 6.1.6) has a defining-point for some region B encZosed 
by A, then region B and aU regions encZosed by B shaU be excZuded 
from the scope of the defining-point for region A. 

3. Replace clause 6.2.2.7 by: 
The scope of a i/Jafining-point of an identifier or ZabeZ shaU 
incZude no defining-point of another ii/Jantifier or ZabeZ that 
cannot be distinguished from it (see 6. 1. 3 and 6 .1. 6). 

4. Change 
... aU occurrences of that identifier or ZabeZ shaU be designated 
app Zied occurrences . .. 

in clause 6.2.2.8 to read: 
... each occurrence of an ii/Jantifier or ZabeZ which is indistinguisabZe 
from the identifier or Zabe Z of the dB fining-point (see 6. 1. 3 and 6. 1. 6) 
shaU be designated an o:ppZied occurrence of that identifier ... 

s. change 
. .. a type-identifier may have an appZied occurrence in the 
domain-type . .. 

in clause 6.2.2.9 to read: 
•.. an ii/Jantifier may have an appZied occurrence in the type-identifier 
.of the domain-type . .. 

FUNCTION ~TVLISTICS 

PROBLEM 
An example of a procedure-and-function-declaration-part is given in section 6.6.2, 
pages 31 & 32. Amongst the examples is an example of functions using mutual 
recursion, and illustrating the forb)Cf.1'd, directive. This example is written with 
poor stylistics, in that: 

* the mutuality of the recursion is disguised by the layout, in which 
the two procedures are written differently; 

* Apart from the Standard-oriented comment at the top, the mutuality of 
the recursive references is not documented; and 

* a pseudo-repetition of the parameter li~t of ReadOperand suggests that 
this poor practice of repeating information (possibly .erroneously) be 
copied. 

-u 
;:r. 
(/> 

n 
;:r. 
r 
:z: 
rn 
:E: 
(/> 

""' N ,_. 

;:r. 
-u 
;o 
~ 

r 

,_. 
lO 
00 ,_. 

-u 
)> 

"' m 

.<=

"° 



1 

RECOMMENDATION 
Replace the text beginning "{This example of 11 to the end of the section by: 

{ The following two functions analyse a parenthesized expression and convert it 
to an internal form. They are declared forward since they are mutually recursive -
they call each other. } 
function ReadExpression : formula; 

forward; 
function ReadOperand : formula; 

forward; 

function ReadExpression; { See forward declaration of heading. } 
var 

this : formula; 
begin 

this := ReadOperand; 
while IsOperator(nextsym) do 

this := Makeformula(this, ReadOperator, ReadOperand); 
ReadExpression := this 

end; 

function ReadOperand; { See forward declaration of heading. } 
begin 

if IsOpenParenthesis(nextsym) then 
begin 

SkipSymbol; 
ReadOperand := ReadExpression; 
{ nextsym should be a close-parenthesis. 
SkipSymbol 

end 
else 

ReadOperand := ReadElement 
end; 

(ONFORMANT ARRAY SYNTAX 

PROBLEM 

The syntax for index-type-specification does not use bound-identifier. 

RECOMMENDATION 

Replace the syntax for this in section 6.6.3.7, page 36, lines 16-18, by: 

index-type-specification = 
bound-identifier 11 •• 11 bound-identifier 
11:" ordinal-type-identifier . 

FOR-STATEMENT SPECIFICATION 

PROBLEM 
In 6.8.3.9, pages 55 & 56, a circular argument is introduced. in following the 
consequences of making the limit expressions el and e2 11 compatible 11 rather than 
"assignment-compatible" with the control-variable. Firstly, the fourth sentence 
of the second paragraph states: 

The value of the final-variable shall be assiqnment-compatible with the 
control-variable when the initial-value is assigned to the control-variable. 

Later, the paragraph goes on: 
Apart from the restrictions -imposed by these requirements, the for-statement 

for v := el to e2 do body 
shaU be equivalent to 

and this shows that an over-riding restriction is specified in terms of a subsidiary 
specification (which is valid only where not in conflict with the previous 
rest.~ictions). Secondly, the similar restriction on el is not mentioned at a11, 
and is only implied hy the equivalent program-fragment. 

The problem is derived from the decision to abandon 11 assignment-compatibility11 

as the prime requirement for the limit expressions under all uses. However, if 
that decision is left, then it can readily be seen that the proper restriction is 
related to the execution or not of the controlled statement ("body"), not of 
components of a (virtual) equivalent fragment, and its execution-sequence. 

RECOMMENDATION 
Delete the sentence given above (first italicised entry) and replace it by: 

The initial-value and the final-value shall be assigrunent compatible 
with the type of the controlled-variable if the statement of the 
for-statement is executed. 

TRIVIAL MISTAKES 

PROBLEM 
The DP contains several trivial punctuation and grammatical mistakes. 

RECOMMENDATIONS 

1. Ielete second comma in second sentence of 6.4.4, page 21. 

2. Delete conma in NOTE on page 16 of 6.!f.3 .. 2. 

3. In 6.!f.3.!J, page 19, line 9, insert the word type so that the 'first sentence 
of the paragraph begins: 

For every ordinal-type S, there e:dsts an unpacked set type, 
designated ... 

!J. In 6.!f.3.2, page 16, replace charaeters by string-elements and left to right 
by textual in lines 7 and 8 respectively. 

5. In 6.5.1, page 24, line 3, delete the text 
(current) 

or remove the parentheses. 

"' ;JO> 
(/) 

n 
;JO> 

' :z: 
rn 
~ 
en 

"" N 
I-' 

;JO> 

"' "° 
r 
I-' 
lD 
00 
I-' 

"' )> 
Gl 
m 

-"" 
lD 



r 

ATTACHMENT B 

Canadian Standards Association 
Association Canadienne de Normalisation 

Rexdole, Ontario 

COMMITTEE CORRESPONDENCE 

cm Pleaie add,.,., reply lg writer al; 

Anthony Bickle 

"""' Sc.wil1fic.Compwng ~ 

011• Arlaly511 •nd Syt:tem11 Bianch 
CompvtinQ l Aprpi..d ~bsl.a: Ovtcior11ot 

~eVinc.ritMl.'M)I 
Dnawac.~ 
KIAIC7 

lli-lil&7-35.22 

March 6, 1981 

CAC/ISO/TC97/SC5 Position to 

CNC/ISO Secretariat Letter 

File No. sec ID 504 (97/5)-2 

DP 7185 

We approve DP 7185 as presented, though making 

the following comments of an editorial nature: 

COMMENT ON Error Handlins CS,lf) 
STATUS Edilorial 
PROBLEM STATEMENT 

Parts 2 and 3 of this section CS.lf) sa~ 

'2) t.he Processor shall have rerorted a prior warnin9 t.hal 
an occurrence of that. error was Possibler 
3) the processor shall report. t.he error durin9 Preparation 
of the Prosra~ for execution;• 

The l.ern1 "f'rior uarnins• f'resu111ablY- n1eans a uarnin9 Prior t.o 

execution; Thal is1 lhis \JarninS occurs durins preParat.ion of 
lhe ProSram for e>:ecution. Ret.1ordin9 part. 2 111akes it. clearer 
that parts 2 and 3 deal with distinct. but related1 issues, 

PROPOSED CHANGES 

Rer-l3ce 51lf part. 2 with 

'2) the ?rocesor shall ref'ort. durin9 f'ref'aration of the 
r-rosram for e}:ecution that an occurrence of t.hat error was 
possiblej • 

COMMENT OH Numbers C6.4.2.2) 
STATUS Editorial 
F'RIJBLEH STATEMENT 

Th1s seclion sa~s 'The values shall be a subset of the whole 
nun1bers1 denoted as Sf'ecified in 6.1+5 b!::! lhe sisr1ed-int.eser 
values (see also 6.712.2),• The values are denoted r'1ol b!::I 
values, but bY lhe ssnlactic class siS:ned-inleSer. 

PROPOSE[! CHANGES 

In section 6,4,2,2, replace • •• ,by the siSned-1nle9er 
values.,,• b':::I '+,,by si9ned-inteSer.,, • and ref' lace • •• ib!::I 
the si9ned-real values 1' by ',,, b~ si9ned-real ,, •, 

COMMENT OH File-t,;pes (6,4.3.S) 
STATUS Error 
f'ROBLEH STATEMENT 

In f'arl d of the definition of a seauence-l!::IF-e1 t.he case in 
uhich !:I is enipty and :-: is r1on-enipt.!::I is not cove red, 

PROPOSEir CHANGES 

·Re Place 

"If >! is the enwt!:I seouencer then x==!:I shall be true if and 
onl!:I if !::I is also the enr?l!:! seauence 1 • 

with 

·If either. :-: or ~ is the e.rr1f'lY seauence1 then :-:=y- sha:ll be· 
true if and onl~ if both >t and. Y are en1Pt!:lt r 

-0 
'.!> 
(/) 

n 
'.!> 
r 

= rn 
:>;:'. 
(/) 

"" N 
I-' 

'.!> 
-0 

"° 
r 
' 
I-' 
lD 
00 
I-' 

-0 
)> 
Gl 
m 
U1 
Cl 



1 
COHllEHT ON E>:aph in 6,6.2 
STATUS f'ro~ra& Bu!! 
f'ROBLEll STATEMENT 

In function ReadE>:nession1 the statuent 

'this := HakeFor•ul1 (thisr ReadOperatorr ReadOperandli' 

would. not be standard-confor1>in!I if both ReadOperator and 
Re·adOE-erand t.tere functions that advance the input streo11 - it 
relies on the lefl-to-ri!lht evalualion of the actual 
para.Rteters. 

PROf'OSEU CHANGES 

Replace 'function ReadEm•ression • •. endi' with 

•function ReadE>:Pi'ession : foriaulai 
var 

this : for.,ulai 
op : oPeralori 

be Sin 
this := Re3d0F-erandf 
while IsOPerator (ne>:ts"•) do be!lin 

op := ReadDf'eratori 
this := Ma}' .. eFor111ula Ct.hisr 0P1 ReadOf'etand) i 

endf 
ReadExPression := this 

end;' 

COMMENT Oii Actual paranoeters with pac~.ed t"ees <Neu 6,6,3.1 and 6,6,3.7) 
STATUS Editorial 
f'RDBLEH STATEMENT 

Does t.he sentence 

'An actual variable raranieter shall not. denote a coni?onent 
of a variable that F-ossesses a t.!:lre that is desiSnated 
packed,' 

mean that the cai11F-onent's t,ype 11ust not be pacY~ed1 or that the 
variable 1 s h:1F-e 111ust not be packed? The latter inlerPrelation 
is the desired one. 

f'ROPOSED CHANGES 

In 6 1 6, 3. 1 rep 1 ace the an1biSuous sentence ui lh 

•An actual vari a.bl e Pa ra111ele r shall not denote a component 
of a variable where that. variable rossesses 2 t.~pe Yhich is 
desisnat.ed F-acked,' 

Si.11uilarl~1 in 6161317 replace 

•,,,shall not denote a con1Ponent of a variable t.hat 
f'Ossesses a l!:!Pe that. is desi!:!naled PacY~ed, • 

with 

'.,,shall not denole a conif'onent of a varizble '"1here that 
variable Posseses a type which is desi.Snat.ed packed1 • 

COHMENT ON Conforo,ant arra" Para•eters (New 6.6.3,7) 
STATUS Editorial 
f'ROilLEH STATEMENT 

This section (6,6,3,7) sa"s 

•,;,and which sh al 1 
that denoted b" the 

have a co111ponenl-b1Pe thal 
type-identifier contained 

confo n1ant- a r raY-sche "a in 

shall be 
b" the 

the 
conforniant.-arra':l-P~ran1eter-speci ficat.ion and \.lhich shall 
have the index-t,;pes of the t"pe possessed b,; the 
aclual-Paraiielers that. corresf'ond (see 6,6,318) t.o t.he 
index-type-specif icat.i ans contained by the 
canformant.-arraY-schea1a in t.he 
confo r11ant-2r raY-Pa raiaete r-speci f i cation,• 

Since Pascal does not have true 11ulti·-diftlension arra':ls1 the 
sentence should be Phrased in t.er111s of nested conforD1ant. arraY 
scheruas 1 

PROPOSED CHANGES 

Replace the sentence tail ouat..ed above ~it.h 

•,,,and \.lhich shall have a cooponent-t"pe that shall be 
that denoted b" the type-identifier or 
conf o rn1ant-2 r raY-sche J1a closest-contained by t.he 
conformanl-a rray-pa ran1eter-sPeci f ication and which shall 
hav.e the inde:·:-tYPe Possess.ed by the actual Paranieters t.hat 
correspond (see 6161318) lo t.he sinsle 
inde>:'-t':IPe-sPecification closest-contained b':I t.he 
confor11ant-~rraY-schen1a in t.he 
conforR1ant.-arraY-?ara111e le r-sreci fication 1 ' 

As is the case elsewhere, this definition aPF-lies to the 
lonS-hand for.111 of confor•anl-a rray-Para•et.er-speci f icatians • 

COMMENT ON A'5i!lnin!l-reference (6,5,1) 

STATUS Error 
f'f.:DllLEM STATEMENT 

The definition of assiSninS-reference in sect.ion 6.5.1 does 
not. saY anYlhinS about actual paranielers t.o reaui red 
procedures at.her than read and readln. As it turns out.r there 
is no real need since t.he notion of assiSnin9-reference is 
onl" us·ed in the definition of the for-state~ent1 and the t"pe 
of the loop variable cannot. be an arraY-1 pointer-, or 
file-lYPe+ The lern1 'assiSninS-reference' and its place111ent 
in 61511 sive one the misleadin9 i~F-ression that. it. is a 
Sener211Y useful not.ion, 

CJ 
::c> 
(/) 

n 
::c> 
r 

z: 
rn 
:>:: 
(/) 

"" N 
f-' 

::c> 
-0 
;o 

r-
f-' 
lD 
00 
f-' 

CJ 
)> 
Ci) 

rn 

V1 
f-' 



r 

F'ROF'OSE!I CHANGES 

If the ter" 
ordinal-tYPeS 

ass i Sni nS- ref e re"nce 
then either al 

"ordinal-assi9nin9-reference', or 
(6,5,!) to 6,9,3,9 (for-stateAoenls), 

is to ren1ain specific to 
chanse the nan1e to 

b) ruove t.he defini lion 

If the lern1 is to be made 9enerallY useful1 then tO the 
definition of assiSninS-reference1 append 

"(Sl The variable is denoted bY the variable-access in a 
Procedure-stat.en1ent that specifies the activation of 
the renuired Procedure new, 

(h) The variable is denoted by the third actual parameter 
in a Procedure-st.aten1ent. that specifies the activation 
of the reaui red ?rocedure pacrd 

( i) The va. ri able is denoted by the second actual pa ra111ete r 
in a F'T'Ocedure-stat.e11ent. that specifies the activation 
of the renuired Procedul'e unpacr ... 

(j) The variable is denoted (possibly inwlicitly) by the 
fi le-t~f'e actual para.11eter in a procedure-staten1ent 
that specifies the activation of anY of the follo~ins 
reauired procedures! read, readln1 write~ urit.elr11 
Seti put, reset.1 rewrite, and Pa.Se, 

NOTEI It is possible 
assisnin~-references 
execute the pr0Sra11. 
for-state11ent. • 

for a processor to detera1ine all 
in a state~ent without havin!I to 

It is used in the defini lion of the 

COMMENT ON hwle111entation-Dependencies v.s. £:-:tensions 
STATUS Error 
f'RDBLEH STATEHEHT 

The standard is confused with resnct to the nature and 
varieties of i11.Plenientation-dependencies, We propose lhe 
followin.9 characterizations of the lern1s 
1 imPlementalion-dePender1t. 1 and "e:..:lension", 

An 'in1Plen1entation-dePendent.• aspect of the lamfUaSe is one 
for \.lhich the standard does not Sive a co111Plete definition, 
The intention is to allo1.1 the i11pleP1entor a Sreat.er deSree of 
freedo• than is nor~allY the case. The follo~ins 
characteristics are desireablel 

1) A standard-confor11inS ?rocessor 11a!:I choose anY 
in1Ple111enlalion of an i111.ple111entation-dePendent feature as 
lon.9 as it P1eets the reauire111ents set do1.1n by the standard, 

2) A standard-conforJtins processor need not docunient the 
w2Y(s) in 1.1hich the iD1Ple111ent..at.ion-dependent aspects. of the 
lansuase are hlf'leoiented (c,f, i11ple111entation-defined 
aspects), 

3) A slandard-confor11ins Pro~ra11 1i2~ not relY on the n.anner in 
which an i•f" 1 e1tient.~tion-dependent. aspect. is i •P 1 e1tiented. 

On the ct.her hand, lhe ter11 "e>rlensions'• is used for 11 ,, .am:1 
features accepted by the Processor that are not sPeci fied in 
clarJse 6,' The intent.ion of talldn9 about e>:lensions in the 
standard is to allow an ifhPlenientat.ion to auSit1ent lhe lansuase 
defined in the standard, E>:lensions have the follouinS 
cha racleristics t 

1) Standard-confor1sins Processors 111a~ support extensions. 

2) St.andard-confor11inS Processors aust 
use of amt extensions •,,,in 
specified for errors, • , • 

3) St.and a rd-con fa uiin9 
extensions. 

Processors 

be able to P"rocess the 
11anOer siiriilar to that 

aust docu11ent. all 

-4) Standard-confor11imt prosraas •ust. not. use 3n!:I extensions. 

f'RDF'DSED CHANGES 

It uould seeJ11 appropriate t.o define the ter111 e!densions in 
sect.ion 3 instead of in section 5,1 by addins 

•3,5 e;dension1 A feature accepted by a processor that is 
not specified in clause 6, • 

In sect.ion 5+11 Ye find 

• ( i) be able to Process in c. P1anner siPrilar to that 
use of an specified for errors an~ 

imf'lementation-dePendent fe2ture1 1 

This clause in 111eaninsiess 1 
assiSnment statement can 
imPlemenl.alion-dependenl feature, 

anY proSram conta1nins an 
be said to use an 

The violation is in rel!:lins 
on a Particular imrlement2tion of an imF-lementation-dependent 
fe2lure1 Since detection of such violations is i111Possible in 
Sener2l1 clause 5,1 (i) should be deleted, 

A better wordins for S.2 (cl is 

•Cc) not rel~ on an~ particular interpretation of 
imPle111ent2tion-dePendent aspects of the lansuase 
concomi Lant with the p ro.Sr2n1" s comf' liance level, • 

Section 6.1+4 talks about imrlementation-dePendent directives, 
Cal linS such directives imP 1 en1entati on-dependent is incorrect 
- the i111Ple111ent.or 1.1ould not even have to docu"ent the111! These 
are extensions - and the standard has adenuate constraints on 
e:-:lensions. Therefore, delete the sentence . "Other 
imPle11entalion-dePendent. directives may be Provided1 • and 
chan:Be 

'NOTE: On 11anY processors the directive external is used to 
SPeci fy that the , •• ' 

"""CJ 
> 
(/) 

n 
> 
r 
:z: 
rn 
::;:: 
(/) 

~ 
N ,__, 

> 
"""CJ 

"° 
c--
,__, 
LO 
00 ,__, 

"""CJ 
)> 
Ci) 

rn 
Vl 
N 



1 
ta 

'HOTEi Han!:I Processors Provide• as an extension• t.he 
directive ext.ernd which is used ta specify that. , •• ' 

The i111ple11ent.at.ion-dependencies Jient.ioned in sect.ions 6.7.2.1, 
6+·7.31 6,e,2,2, and 6,s,2,3, are lrue 
i11Ple111entat.ion-dependencies - no chanSes are needed, 

As su!l!lesled in anolher couenlr lhe effecl af inspecliml a 
te>:lfile · to .which pa!le have been an•lied should be 
i mP 1 emenla ti on-defined r not i,.P 1 elhent.a ti on-dependent, 

In sect.ion 6,10 we find 

'The bindin!I of the variables 
pararr1et.ers to entities external 
iDIP 1 ementati on-dependent r except 
a file-l\<Pe in which case 
iniP le11ent.at.ion-defined. ' 

denoted bl< the pro!lraD 
to the no!lraa shall be 
if the variable possesses 

the bindin!I shall be 

As is t.he case with direC"t.ives1 we don't \.lant the in1Plen1entor 
S:oinS off and ProvidinS non-file-type Pr0Sra111 paran1eters 
without docu•entin!I theo1i this should 'be called an extension. 
Replace the above sentence with 

'The variables denoted b\< 
possess a file-t!ln and the 
untities external to 
im? lemeritation-d.efined. • 

the Pro!lra• Paralbelers shall 
bindin!I of the v.ariables to 

the no!lraa shall be 

If it is still deenied necessar\< to niention the co11ftlon 
exlensioru extend the note as follows: 

'NOTE: The external representation of such external 
entities is not defined in this slandard1 nar is an\< 
Properl~ of a Pascal pr0Sra1t1 dependent. on such 
represent.at.ion+ As an e>:lension1 11an1J processors perait the 
variables denoted b~ the Pro.Sra• para11eters to possess a 
t\<Pe other than a file-t!IPe ,' . 

COMMENT ON If statenoents (6,B,3.~) 

STATUS Editorial 
PROBLEM STATEMENT 

This section sa\<s 'An if-stalenient without an else-parl shall 
not be folloYed by lhe tor.en else.' It is onl!I a noble~ if 
an if-statement. Yithout an else-pa,-t is IMMEDIATELY followed 
b\< t.hetoken else. 

PROPOSED CHANGES 

Charise the sentence to 
else-Part shall not be 
else.• 

read: 'An 
imniediatel~ 

if-slate .. ent without an 
followed b\< the token 

COHMEtff ON Procedure pa!le (6,9,6) 
STATUS Editorial 
PROBLEM STATEMENT 

'The effec't. of inspect.in!! a text.file to which the pa!le 
Procedure was applied durin!I !leneration shall be 
i111Ple11ent.at.ion-dePendenl, • It t.:.1ould be 111ore appropriate if 
this a spec\. was ilhPl..,entation-defined1 .not 
i1>PleA1entation-dependent.. This would also be consistent w1lh 
stance taken in 6.10 where the effect of the application of 
rese~ or rewrite to either input. or output was classed as 
i111p 1 en1enta lion-defined, 

PROPOSED CHANGES 

Chan!le the sentence tol 'The effect of insl'eclin!I , , , shall be 
i111P 1 e11entation-def ined. • 

COt!MENT ON Terniinat.in!I execution of pro!lranis (5, 1 
STATUS Edilorial 
PROJlLEt! STATEMENT 

3)· 

Section s,1, part ir subpart 3 says 'lhe nocessor shall 
rePort the error durin!I e>:ecution of the Pro!lrao1 and 
terminate execution of the pro9'ran11 • An in1Plen1entation should 
be free to decide (and docu1>ent.) what for"' of corrective 
actionr if an\<r will be taken in the event of a 
runl!n1e-detected Proble11, For examPle1 lhe Processor n11S'ht 
want lo ask the user whal value his uninitialized variable 
should have, and then resulhe e>:ecution. 

PROPOSED CHANGES 

Charise the sentence to: ·~> the Processor shall rePort the 
error durins execution of the prosrani. • 

-0 
:i=
cn 
n 
:i=
r 
:z: 
rn 
:£'. 
en 

'<lo 
N ...... 

> 
-0 
:;o 

["" 

...... 
lD 

"" ...... 

-0 
)> 
en 
rn . 

V1 
l.N 



r 

Corrrnent on Value Conformant Arrays (6.6.3.7) 

Status: technical comment 

Problem Staten~nt: 

An actual-parameter corresponding to a conformant-array-parameter
specification is allowed to be an expression (that is not a variable
access). This results in copying of the value of the actual-parameter. 

This approach is conceptually inappropriate,, inconsistent with 
the rest of the language, and error-prone. In PASCAL, it has been 
the programmer of the procedure declaration who has decided (by choosing 
between the variable and value forms of formal parameter specifications) 
whether a local copy of an actual-parameter is necessary. This 
responsibility should not fall on the callers of a procedure because, 
in principle, they need only concern themselves with what the procedure 
does, and should not be concerned with how this is done. If 
parenthesization of an actual conformant array parameter is by 
acci.dent omitted, the result will often be a subtle 1 ogi ca 1 error 
because of unexpected storage sharing, with no compile-time or 
run-time warning. 

Proposed Changes: 

.1.Allow value as well as vari.abl.e forms of conformant-array
parameter-specifications. 

2.Require an actual-parameter which corresponds to a variable 
conformant-array-parameter-specification to be a varriable-access. 

3.Modify the r.estriction in the last .paragraph of 6.6.3.7 to 
apply only when the actual-parameter corresponds to a value 
conformant-array-parameter-specification. 

ATTACHMENT C 

Czechoslovak comments of an editorial nature on document 
ISO/TC 97 /SC 5 N 595 _- Dl'_ Ull5 

1) In our opinion, the incorporation of levels 0 and 1 into 

the specification of Pascal in fact defines two programming 

langua~es, being inconsistent with the need of portability 

of programs. 

We suggest therefore to retain one level of compliance only, 

preferably level 1 (including conformant array schema) to 

force compiler producers to include this required feature 
into their products. 

2) In section 6.4.3,4 a statement limiting the largest and 
Bfilallest values of the base-type was deleted, We are 

convinced that such limits exist in each implementation 

and are usually low. 

We suggest to add a etatement to section 6,4,3,4, stating 

on existence of limits of the cardinality of canonical sets 

(these limits being implementation-defined) and requiring 

their minimal range to allow for set of char, 

3) The behaviour of the procedures read and readln is not 
sati·sfactorily resolved when reading integer- or real-type 
values, 

We suggest to adjust parts (c) end {d) of section 6,9.2 in 

such a way, that if rest of file being scanned for inteoer 

or real values consists of spaces and snd~of-lines only, 

then readin.g shall cease, sof and eoln being true and value 

of variable v being left undefined, 

4) The production rule for procedur·e-statement conflicts with 

the definition of parameter-lists for procedures read, readln, 

write, writeln. 
We suggest to formally complete the production rule for 

p~ocedure-statement as follows: 

procedure-statement m 

procedure-identifier [actual-parameter-list] / 
read-procedure-identifier read-parameter-list / 

teadln-procedure-identifiar readln-parameter-list 

write-procedure-identifier write-parameter-list / 

writeln-procedure-identifier writeln-parameter-list 

I 

""O 
)> 
U> 
n 
)> 

r 
:z:: 
rn 
:E'. 
U> 

"" N 
f--' 

)> 
""O 
::0 

r 
f--' 
LO 
00 
f--' 

""O 
;l> 
Gl 
m 

Vl 
.c-



ATTACHMENT D 

COMMENTS OF SFS ON DP7185 "SPECIFICATION FOR THE PROGRAMMING LANGUAGE 

PASCAL" 

Finnish comments are mainly based on the paper prepared 
~ 

at the Helsinki University of Technology and made by 

the PAX-Pascal Group (Jukka Korpela 4Pertti Tapola, 

Timo Larmela, Ahti Planman). I have collected some 

other opinions listed below. 

Layout of the draft is incomplete: It's very difficult 

to find starting points oh chapters from the text, 

because there are no extra eri/ty lines between chapters, 

Darker chapter headings or headings written with 

letters differing from normal text would help. Contents 

(page 1) is incomplete and doesn't include all chapter 

headings. Index (pages 77-82) is very uncomfortable 

to use because of several references to same objects 

(for example term "variable" has 23 references) . 

References should be grouped into "sub-terms" or/and 

main references should be unde"rlined or written with 

different type. Some terms (for example "comment") 

are missing. 

In chapter 6.1.2 characters uln and 11 111 are missing 

from the production special-symbol. It would also be 

usefull to have reference to the chapter 6.11 (Hardware 

representation) where alternative symbols are listed. 

In chapters 6.1.8, 6.4.3.1.2 and 6.5.3.2 references 

to chapter 6.11 as above. Thats important for 

scandinavian Pascal users, because we use scandinavian 

letters A,6,A having same code as r ,\,]. Just a 

few terminals have characters [ and } 

In chapter 6.4.3.1 order of productions is wrong, 

irjsome other chapters too. 

In chapter 6.4.3.3 (record type variant part) it 

should be possible to have as an element of case

constant-list some kind of subrange expression of 

form case-constant 11 •• 11 case-constant. Same form 

is also usefull in case-statement (6.8.3.5). In 

addition this form of case-co~tant is compatible with 

set expressions. 

Basic principles of garbage collection system should 

be formulaten in spite of it's hardware-dependence. 

Thats important because different implementations 

have different properties (e.g. what to do with dynamic 

allocated variables referenced with pointers written 

into file-variable. 

Tampere 1981-03-16 

~~ 
Acting member of SFS on the area of ISO TC97/SC5 

""CJ 
> 
(/) 

n 
> 
' :z: 
rn 
::E: 
(/) 

'!to 
N 
f-' 

> 
""CJ 
:;o 

' 
>-' 
.D 
:;o 

u 
)> 
:;., 
m 

VJ 
Vl 



r 

HELSINKI UNIVERSITY OF TECHNOLOGY 
Computing Centre 
PAX-Pascal Group/Jukka Korpela 4-MAR-1981 

COMMENTS ON THE 2ND DRAFT PROPOSAL FOR THE ISO 
SPECIFICATION FOR THE COMPUTER PROGRAMMING LANGUAGE PASCAL 

CONTENTS 

1(19) 

Foreword • . . • • • • • . • • . . • . • • • • . • • . . ... . . . 2 

CHAPTER 1 

1.1 
l.i 
1.3 
1. 4 
1.5 

CRAFTER 2 

2.1 
2.2 
2.3 
2.4 
2.4.1 
2.4.2 
2. 4. 3 
2.5 
2.6 
2.7 
2.8 
2.9 
2.10 
2.11 
2.12 

Foreword 

• STRUCTURE AND TERMINOLOGY 

OVERALL STRUCTURE AND COMPLETENESS OF THE DRAFT 
THE STABILITY OF PASCAL • , • , • 
CONCEPTS AND DENOTATIONS . , . , , 
THE STRUCTURE OF LANGUAGE DEFINITION 
TERMINOLOGY . . . . . . • , , , . . 

DETAILED COMMENTS AND SUGGESTIONS 

LEXICAL TOKENS . . • . , . . . 
BLOCKS, SCOPE AND ACTIVATIONS 
CONSTANT-DEFINITIONS 
TYPE-DEFINITIONS • 

General . . • . 
simple-types . . 
structured-types 

DECLARATIONS AND DENOTATIONS OF VARIABLES 
PROCEDURE AND FUNCTION DECLARATIONS 
EXPRESSIONS 
STATEMENTS . • . . • . 
INPUT AND OUTPUT • . • 
PROGRAMS ......••••• • •· 
HARDWARE REPRESENTATION . • . . 
TYPOGRAPHIC ERRORS AND STYLISTIC MATTERS 

This paper has been prepared at the Helsinki University of 
Technology Computing Centre. It does not present any official 
statement of any organization but reflects the observations, 
suggestions, and opinions of several specialists actively 
working on the fields of systems and applications 
programming, including ·Pascal compiler writing and 
maintenance, and teaching of Pascal. 

3 
4 
G 
6 
8 

10 
11 
12 
12 
12 
12 
] 3 
:14 

17 
18 
18 
18 

CHAPTER l 

STRUCTURE AND TERMINOLOGY 

1.1 OVERALL STRUCTURE AND COMPLETENESS OF THE DRAFT 

The draft being commented contains significant improvement3 
to the first draft, and is, in general, sufficiently comp!et0 
and well-structured te become a standard. 

The main disadvantage is the alteration of terminology and 
style for semi-formal definitions. This draft, as well as the 
first draft, contains a great amount of terminology which is 
not commonly known and used in the Pascal community, or even 
differs from the terminology currently in use. 

For example, the definitions in clause 6.2.3 are difficult to 
understand, and assumably extremely obscure to ordinary 
Pascal programmers. What makes them strange for experts to·) 
is the obvious attempt to avoid references to implementation. 
The definitions become understandable to a compiler writer 
when the "within" relation is conceptually associated with 
what is known as static link in implementations. 

On the other hand, the last note in clause 6.6.3.7 makes a 
rather explicit reference to implementation, using the notion 
of activation record. 

It is difficult to define some features of Pascal in a m,"J~• -
which is both general {not referring to a particular met ~o .. i 
of implementation) and understandable, ·and possibly tb·:> 
difficulty is inherent. 

In spite of the criticism above, the. difficulties 0£ 
specification should not be allowed to postpone the 
standardization of Pascal. Probably a sufficient solution 
would be to add a few notes referring to implementatior. 
aspects, particularly to clause 6.2.3 but possibly also to 
clauses 6.6.6.3 {about the fact that in practise the address 
of an actual variable parameter is passed and all referPnce1 
to the formal parameter use the address passed), 6.6.3.4 anc' 
6.6.3.5 {an analogous note wo~ld be useful), 6.6.3.7 (e.~. 
that both the address of an actual parameter and the actual 
index bounds are passed), 6.8.2.4 {a nonlocal GOTO requires 
an appropriate context switching), and 6.8.3.10 (the add1~ss 
of a record variable in the record variable list of a WITtl 
statement is calculated once only). 

The structure of the draft is similar to previous 
descriptions of Pascal. However, the order of presentation 
should be reconsidered in the following respects. 

1. Clause 6.3 bears the title Constant-deflnitions, although 
it also describes constants. Splitting it into two part~ 
would not be worth while, but 'the title should be 
changed. 

--c 
> 
U> 
n 
> 
' 
z: 

'"" ~ 
(/) 

"" N ,___.. 

> 
-a 
:;o 

r 
,___.. 
LD 
00 ,___.. 

-a 
)> 
Ci) 

rn 

V1 
m 



, 
2. Similar c6mment applies to clause 6.4. However, the 

importance of the subject and the length of the clause 
suggest that the claus.e should be divided into several 
major sub-clauses of clause 6. At present clause 6.4 
describes type definitions, denotations of types, and.the 
meanings of type denotations. These subjects shoul<'I !··e 
treated separately. 

3. Rules for procedure and function declarations in clause 
6.6 exhibit great.similarity of structure. Integra,,tion of 
the specifications would increase readability and reduce 
the size of the standard. 

1.2 THE STABILITY OF PASCAL 

The two major changes stated in the foreword are useful. The 
first one is to be regarded as a necessary language change. 
The second one is rather strong extension 'to the language 
defined .by Niklaus Wirth but is very useful. The solution 
adopted, to make it a sort of •recommended extension", is 
elegant. 

They are some features of Pascal in which the draft differs 
from Wirth's definition and/or most current implementations 
in a manner which makes them important for ordinary users. 
Mentioning them in the foreword would be worth while. This 
applies in particular to type compatibility rules in t~ie 
broad sense,· the semantics of WITH statement, the meaning L'f 
IN operator, and the format of output of real values to a 
textfile. The· changes involved are definitely improvements. 

The definition of Pascal should 
given in the draft in any 
however, s·ome features which 
exactly. 

not be changed from that 
essential respect. There are, 

should be spe9ified more 

Moreover, after the official approval of the standard by ISO, 
a project should be started in order to define "level 2 
Pascal", i.e. to standardize some extensions to the. language 
described by the do.cument being currently prepared. It is 
well known that the.re are several extensions to Pascal in 
existing implementations. Often the extensions serve simil<0r 
purposes but differ in their syntax and/or details of 
semantics. Given that extensions are available and are used, 
portability of programs could be increased if the most common 
extensions were standardized. 

The project suggested would inevitably encounter serious 
problems because of the ~arying needs of the users as well as 
the different opinions of language implementors and computer 
scientists. Anyhow, the Pascal language was designed for 
teaching - and is undoubtedly the best language for that 
purpose - but is being used for the construction of 
complicated "real-life" programs and systems as well. The 
true applications of Pascal require carefully selected and 
defined extensions to the language. 

Admittedly, Ada is an axtension of Pascal, but i~ roughly the 
same sense as Pascal is an extension of Algol 60, i.e. very 

far from being a pure extension. A fundamental aifferPn~P 
between Ada and Pascal· is t.hat Pascal can be learned in tot0 
within reasonable time,· even by a person with no previous 
experience about computers, whereas Ada is •everything for 
everybody" which makep the language conceptually difficul~ 
and large in contents. 

There is no need to suggest what the "level 2 Pascal" would 
contain. Instead the problem is to limit the extensions to a 
conceptually clear repertoire which increases the expressive 
power of the language without substantially decreasing 
efficiency of implementation. In our opinion, the following 
extensions (possibly together with s.ome minor extensi0ns) 
would constitute such a repertoire1 

1. use of static expressions instead·of constants. 

2. Some kind of module structure. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Separate compilation of modules, 
definition of the properties of 
needed. 

together with the 
the software support 

Dynamic arrays, which could be added to the language 
simply by allowing the use of a parameter of a pro('<:dtn:<J 
or function in the same manner as constant identifl0r.s ;.., 
type definitions. 

Double-precision real numbers. 

The LOOP EXIT constr.uct. 

OTHERS branch and/or subrange notation for case constant 
lists in CASE statement. 

Additional predefined procedures and functions for file 
operations (close, delete, append, etc.), including tools 
for control over input errors like invalid format ot 
numeric data. 

standardization of the feature 
declared as array variables 
access files. 

that program parameters 
represent external random 

1.3 CONCEPTS AND DENOTATIONS 

When describing a programming language, cl~ar distinction 
should b~ made between an underlying concept (an abstract 
entity) like a variable, and its denotation like a variable 
denotation. The draft is incomplete in this respect. For 
variables, such distinction is made in most contexts; but for 
types not. Moreover, the production rule for variable 
aenotation ("variable-access• in the draft) uses terms like 
"entire-variable"; a more adequate term would be 
"entire-variable-denotation". 

Consider, for example, clause 6.4.3.5. It first specifies 
"file-type" by a production, i.e. defines the term 
"file-type" as one form of type denotation. However, tte tex~ 
then uses the term "file-type" as being something which can 
be denoted by a type-denoter. such confusions could be 
avoided by the systematic· distinction mentioned. 

"' :J> 
(/) 

n 
:J> 
r 
:z: 
rn 
:e:: 
(/) 

"" N .._. 

:J> 
""'CJ 
:;o 

~ 
.._. 
<.D 
00 .._. 

"' > 
G> 
rn 

V1 ..._,, 



r 

.1 .• 4 THE S'!'RUC'l'U.l<E OF .:i:.ANGUAGi;: DJ;:FIN;ITION 

The dtaft use-s the verb "shall". excess-ively. 'f'.. st11.od1t:rd, by 
its very m1.ture, .says how things shall (or 11houli1) be; 
und_iscrJmin.;i.ted ll§,e of "csh;tll" i.11 r\edund1t·nt. 

_Mor.eov.er, el(cessive us,e of "shall" hides the fact that the 
different ',Statements in .the .dr!l.tt stani11trd b.ave varying 
lo.g ic.al ,9_ ta.tus_. La99m1.ge .-d.ef in it_ ions (e.xc_ lud.ing ex per imen tR l 
f.ormali;zed systems) Jn g,eneral con,,;ist of (a} ru)..es for 
cont1=xt fx:_ee synta,x, :u.S\.l.i9..lly given in BNF fo.x;m, (b) 
addi,tioili9.l syntp.ctic rule9, 9iven in prose, and (c) semantic 
,rule,p, given in prose and bei,ng somewhi9.t less exact than 
synti9,ctic rules. The <;'!raft µSe$ "shg.11" b.oth in a.lass (b) and 
in class .(c) rules. It wou·19 be .more _natural tG r.estrict th.e 
use of nshall" to class (b.) rules, class (c) rules just 
stating what IS the me;ming of a language con.struct. 

In addition, th.ere .are ·the specifications for error 
conditions, with the word "error" use<;'! to designate what is 
commonly known a9 runtirne error.· (A pro9ess9r may of course 
be able to detect a runtime error during compiLation, i'\ 
special cases.) In these specifications, "shall" is not 
necessarily strange _but µ5eles-9. 

Yet another group of 9.tatern.enti; in langui9,ge definition 
9ons-ists of nominal aefini tions (-for auxiliary concepts) • In 
a sense, a '.lang\l;i.ge stand11.r9 ;t.s such is, a nominal aefinition 
of .g. 1-apgµage. ;From the i:.eac'ler's point of view at least, it 
w9u_ld be ve.·ry useful to .s.epara,te nornin!'ll definit,ions (in tht' 
strict sens.e) from the othe.r contents of the standard. Thf"l' 
neithe.r describe the l.angµage nor set any requirements up0:i 
complying programs <;>r pr90.e.ssor9, b\lt serve for the pur,,os·~ 
of descri_ption and specifying requirements. 

Consequently, the lowest level clauses of the standard (i.e. 
cl;i.uses not cont<;1ining any other clause) should be organ; zeJ 
as follows. First .the re1ev!'lnt production ruLes are given (ir 
BNF). Then the additional syntactic requirements ar~ 
specified, in prosi, but exactly, using whatever a~xil'ary 
techni9al terms are needed. Next, the ~emant!c ;µles a-.~ 
given, i-n prose, and this specification is s0met=me$ 
unavoidably inexact (but uniquely interpretable by 
experienced benevolent readers). Finally, the e:ror 
conditions, if any, are specified. 

Whether the suggested structuring i9 reflected by appropriate 
sub-titles, paragraphing, layout, or simi.la-r methods, is a 
matter o·f convenience. In most cases, p?1ra9raphing ;;ecm.:: lo 
be the most adequate 'method, rhe first pr~se pa••i d~~ 
(syntactic rules) may well use the word "shall", w-hil_,:t th" 
others should use "is". 

Nomi_nal definitions sfiould, if possible, be co).lected in ro 
separate clauses, and clearly distinguished as suc;:h, e.<J. -:O:J 
beginning them with "Definition." or •convention."· Then It 
wou).d be unnecessary to µse clumsy constrµc;:ts in ~ngllsh; 
instead of "a shall be designated .11..s b" one may specify ";o. is 
called b", "a is said to be b•, or si:mply "a is b". 

To make the suggestions more concrete, hePe is a revised form 
ot 6.5.5 (with no changes to the contents): 

6.5.5 Buffer-vi9.riables. 

puffer-variable • .file-va:ria.bl,e •A·• • 
file•variable • variable-access 

A fi.1-e-var iable shall be a variable-i9,ccess that denotes a 
vari.a.bLe possessing a fil.e-type. 

A -buffer-var,iable denotes a variable associated with the 
variable denoted by the fil.e-variable of the buffer-va-rk:.1le. 
A buf fer-v11.r iable associated with a textf ile possec 0 2·> t , 
chp.r-ty:pe; otherwise; a buffer-vp.riable posse:1!.ieS t 1-.• 

component-type of the file-type possessed by ~1 .. , 
file-variable of the buffer-variable. A reference or a<··'"'" 
to a buffer-variable constitutes . a refe~ence or ac~nss. 
respectively, to the associated file-vi9.riable. 

Example.s: 
'input A 

pooltapeA2AA 

It is an error to alter the value of a file-variabl.e f when a 
reference to the .buffer--varii9.ble fA. e·xists. 

The revised form uses the terminology of the 
not to be taken as a final suggestion 
illustrate the method of presentation. 

draft, ano 
but rather 

is 
to 

The term "implement!'ltion-defined" is defined (clause 3.2) too 
vaguely. In particular, may the corresponding definition (fo>: 
an implementation) 9pecify i9.dditional error conditions, 
restrictions or even changes to the specifications in the 
standard? 

Especially import!'lnt problem arises from the fact that 
bindi!'Jg of program parameters of file type to extPrnal 
entities is "implementation-defined". Does this imply that· 
there must be some binding? If not, it is possible to provide 
i9. processor which strictly conforms to the standard be:':: '., 
completely useless. Moreover, it i9 as9umably intended that ~ 
program parameter of type Text can be bound to a device J.i<•? 
te.rminal, 1ine printer, oi: ca,r.d reader. Now suppose thcit we 
bind a such i9. program•parameter, say f, to a terminal, writ·=• 
to the fil.e f, a·.nd then try to Po Reset(f). Strictly to.kins 
thi.s should 9i11e us the opportunity to read back what w•;, 
wi:ote. (Clause 6 .. 6.5.2 implies that Reset(f) does not ch;ing2 
the seq\lence of components associated with the value of £, 
except that it may append i9.n end-of-line component to it.) 
Although th,is i9 implementable (by making, say, a disk .::o'J.i· 
of · e11erything written to f} it pragmatic ally ma.kes no sens'.',. 
',!'be problem i:; even clearer for a fil.e bound to an unspoc'l"d 
card reader, first opened by Reset !'lnd then re-openoJ hy 
Rewrite; since the pre-assertion for Rewrite is True, l:h<> 
operation 9hould .d.efinitely be possible. one solution i.:: 0£ 
course to prevent the binding of a pri;igram parameter oth:?r 
·than Input or output to a device; but such a restrictinn 
seems unacceptable and it probably is not the intention that 
the standai:d woul,d implicitly require .it .• 

-a 
:P 
en 
n 
:P 
r 
:z: 
rn 
:e: 
en 

'!*' 
N 
f--' 

:P 
-a 
;o 

r 
f--' 
LD 
00 
f--' 

-a 
)> 

"' rn 

l.Tl 
00 



1 
consequently, one should either specify that the definition 
of an implementation-defined feature introduces modifi.cr.tio·u;; 
to the language specification, or to remove any need :or "'L :1 
modifications. (The latter alternative is definitely ~·et~•··, 
and would require changes to the specification of Reset a~: 
Rewrite at least, probably also the specification of· rea: 
arithmetic operations which should be specified to b0 an 
error if the operation is not carried out with sufficient 
accuracy.) 

1.5 TERMINOLOGY 

The following changes of terminology are sugg·ested. They 
would be motivated by the· terminology currently in use, or by 
simplicity, or by a clearer distinction between "things and 
names", i.e. between (abstract) entities and the>ir 
denotation. 

"The y closest-containing an x• should be replaced by "t>v: 
smallest y that contains an x". ("Closest-containing" does 
not correspond to normal rules of formation of words in 
English.) 

"New-type", "new-ordinal-type", etc. should be replaced by 
•type-description•, "ordinal-type-description•, etc., 
•ordinal-type" by "ordinal-type-denotation" (or -denoter), 
and so on. A type-denotation is a language construct thut 
denotes a type; a type is an abstract entity (and the wcnJ 
"type" as such should be reserved for that purpose}; and a 
type-description is any type-denotation which is not a 
type-identifier. 

similar changes should be made to terminology re>latP ~ •0 

variables. "Variable-acces-s" should be replaced :.,._. 
•variable-denotation". The variable (as abstract enti~~: 
associated with a file-variable should be call •~·i 
•·buffer-variable"; it can be denoted. :-:: 
buffer-variable-denotation of the form f~ but it nee>d rot 
(for example, a formal parameter may denote a buff~· 
variable). 

"Identified-variable" should be replaced by 
"referenced-variable" or •referenced-variable-denotation''., as 
appropriate. 

The phrase "the type possessed by x" is strange nn:l 
artificial. It should be replaced by "the type of x". T·.; '' 
will be possible when "type" is restricted to refer to ~n 
entity, not to a. syntactic construct (because •of" applied to 
syntactic constructs has a specific technical meaning by 
clause 4). 

There seems to be no good reason to use the attribute 
•required" instead of wpredeclared" or "predefined", except 
that it may shorten some specifications (sometimes "re>gui ····!·'!" 
should be replaced by "predeclared or predef:n:.•"). 
Admittedly the existence of e.g. the type inter'r · 
"required"; but the potential existence of enumerutc.l L,:• 
is •required" as well. Moreover, ~he •required" :1r 
identifier Integer can appropriately be called "preder:- ... 1•, 
whereas the type denoted cannot adequately be c.•; : · .1 

"required" or "predefined". It is "introduced by langJage 
definition",. but such a term would admittedly be clumsy. 

CHAPTER 2 

DETAILED COMMENTS AND SUGGESTIONS 

These comments are· organized according to. the structur :· o< 
the draft. 

The relevant clauses of the draft are referred by thei~ 
number only, so that. these comments should be read tog,•::h,: 
with the draft. 

2.1 LEXICAL TOKENS 

The statements "Id·entifiers may be of any length. A~ l 
characters of an identifier shall be significant." ar" 
redundant and should be made into a note. HOW<''"'"· , 
restricting the number of significant charact~r~ i · 
identifiers to, say, 10 would not decrease the exprc·.1ivr 
power of Pascal, would allow compilers to be slightly mor•.· 
efficient, and would promote portability of programs (be··.ic:-<·· 
in any case programs will be used in environment:; '10c 

supporting infinite recognition length). 

The statement "A directive shall occur only in 
procedure-declaration or function-declaration." cou:•.' 
misinterpreted so that, for instance, "forward" could ~at 
used as identifier (which is the case in 
implementations). A clarifying note should be added. 

d 
1-., 
:)0 

""1( ~: 

Clause 6.1.S states that "An unsigned-real shall dena~ • .- i-· 
decimal notation a value of real-type". The meani~] c 
"denote" in this context requires clarification, sine• ~" 
unsigned-real in general does not exactly correspond tc any 
value of real-type· (the internal representation of real 
numbers being what it usually is). Moreover, it cann<''.: be 
uniquely derived from 6.1.5 what a processor should do .d~· 
an unsigned-real whose mathematical v·alue is outside tiH'! 
implemented range. Consider le-1000 (assuming . a tyr>i c'l 1 

floating point representation in which no accu·.o.t·.' 
representation for it exists); should the processor repr~nnn~ 
the value as 0.0, or as the smallest pcrsitive real n·.1:!.:n· 
representable, or should it give an error message? And -•~~ 
about le+lOOO? 

" ;p 

"' n 
;p 
r 
:z: 
rn 
::e: 
"' 
:it: 
N ...... 

;p 
'"'tJ 

"' 
~ 
,_. 
lO 
00 ...... 

" )> 
en 
Ill 

\.n 
lO 



r 
t 

., The pseudo-production for string-character should be repl~c~: 
by a more adequate formulation, e.g. by the following: 
The syntax rule for string-character i; 
implementation-defined and shall have the form 

string-character= al o a2 o ... o aN . 
where each of al, a2, ... , aN is a terminal symbol denoti:19 ~ 
single character. 

2.2 BLOCKS, SCOPE AND ACTIVATIONS 

The draft requires, for a change, that every decla(ed ''~~: 
must be used. Admittedly it is good programming pra::tiCr nr·: 
to declare labels whi::h are not used; but why s''o~' - ' ··: 
be treated differently from identifiers in this r"s~- ··? 
processor may give warnings about unused identif,eii ~ •' 
labels or it may not; but to specify such redunJanc~ t · 
violation of the rules of language is questionable. 

A note should be appended to clause 6.2.2, saying t~:at ':'.•·· 
scope of an identifier shall not contain applied occurr~nc.·· 
of synonymous identifier (from outer scope}, i[ '.h· 
principle is to remain. However, the proposed scop~ -
unnecessarily complicate compilers, and it is unli~~1v '1; 

any standard can enforce such rules to be implem0~t· 
Pascal processors. We strongly suggest th~t the definiti• ·1 ,_.

scope be revised back to the principle that the sc<'?C ,,: 
from the defining-point. It would hardly decrease ~~~' •· 
security, and would be intuitively more understand3blr 
the principle that the scope begins at a point precedhs; ci:.· 
defining-point. 

Clause 6.2.3.2 would be easier to understand if some n"t•· 
were appended, e.g. a note stating (as in the first dt•E•' 
that each activation of a block introduces a collectio~ o: 
distinct local va~iables. 

Clause 6.2.3.3 is extremely vague. Is the first stac~-~-· 
nominal definition of "within" relation between activ3c ·1 .. 
or does it prescribe where an activation can be d~si~· t· 
(by what?}. The statement after the note uses ~ ,,. ·: .. 
"within" to denote a relation between occurrences o~ 1 ·~ 
and identifiers, on one hand, and acti11ations, on the c ... ,. 
Presumably the word "within" should in that contex• ;,,. 
understood in some intuitively evident sensei but in ~h3t 
senae can an occurrence be within an activation? An 
occurrence of an identifier primarily appears (textu~· ~· 
within a block, and it obviously denotes some entity ~. ~ · 
belongs to some activation of that block; but the pro• "'" 
remains: what is the c9rresponding acti11ation? 

2.3 CONSTANT-DEFINITIONS 

The semantics of a sign in a constant, however obviou~. 
should be explicitly specified. (Notice that such a si"'l l:: 
not an operator, so that the semantic rules for unary "+" a;,•1 
"-" are not applicable.) 

2.4 TYPE-DEFINITIONS 

2.4.l General 

The statement "The· required 
predefined type-identifiers 

types shall be denoted ''Y 
" is redundant. 

2.4.2 Simple-types 

The alternatives integer-type, Boolean-type, and char-ty~·· 
should be removed from the production for ordinal-type. T~c~ 
are redundant (being special cases 0f 
ordinal-type-identifier), there are no productions for I-~~
and the terms are used to refer to the abstract type-enti~i.
(instead of identifiers) in the sequel. 

The production 
real-type = type-identifier • 

should be added. 

The specification of the 
clarified by referring 
numbers" instead of just 
real numbers. 

required numerical ·types would be 
to "the mathematical set oE whole 

"whole numbers" and similarly :or 

Since the specification of integer-type in 6.4.2.2 might ·,,, 
interpreted as excluding the possibility of exist.,.n-::e '-'' 
values of that type outside the interval -Maxint .. Max~-,,. 
is suggested that the sentence beginning with "Tte v~:~· 
shall be a subset of the whole numbers ---" be trun,:acn < 
that part cited; the denotation of values of integer-t;, .. ,. :-_ 
signed-integers is sufficiently described by claus0s ~.l.~ 
and 6.3, provided that the latter is extended by 2 

description of the semantics of a sign, as suggested earli"'~ 
in these comments. 

The rules for subrange-types (in 6.4.2.4) are inexact and 
given in a confusing order (syntactic requirements !· ·i·''.' 
intermixed with semantic specifications). For exa"·le. 
starting the description by "The definition of a type ---• 
may suggest that sub~ange type denotations would only b·~ 
allowed in type definitions, and leaves unspecified what '• ~ 
definition of a type. 

2.4.3 Structured-types 

The specification of the effect of PACKED should be r.-.1·1·· 
clearer. The phrase "should be economised" can be in te:-p~ ,. t,,,~ 
so" that PACKED is a suggestion only, and the processor '"''', 
choose not to apply a~y effective packing even i~ it wou•.· ~: 
possible, or a processor may ignore PACKED entirely. Thi~ '' 
assumably the intended interpretation; the next paragr~;t, 
however, refers to the representation of a type (values cf a 
type) in data storage as being "packed". Evidently t~'~ Im 
some confusion, b~cause nothing prevents the pr0ce~1or irJ1i1 

repiesenting a structured type not designaterl p3CkPd •~ ~ 
Eorm which is packed (in the sense that minimal st:'r ·q· 
used). 

""O 
~ 
(./J 

n 
~ 
r 
:z: 
rn 
::e::: 
(./J 

"" N ,_. 

~ 
""O 
;;o 

[" 
,_. 
u:i 
:io ,_. 

""O 
)> 
Ci) 

m 

O'l 
0 



1 

Consequently, clause 6.4.3.1 should be modified as fol··~:· 
First, the only statement that is strictly relatr' 
language definition is made: "The occurrence of thP • ,:,.·.··. 
packed in a new-st£uctured-type shall designate th~ ;0· 
denoted thereby as packed." Then the following is statorl 'r • 
note: "The designation of a structured type as pac>; ,,1 I<'•·.; 
not designate apy component of the type ~s packed." Thr 1 

note about the logical effect is given; this. note may rP. ' :i.e. 
the note in the draft. Finally, a third note (whit"·· i · 
practically ver.y important but logically irrelevant) s: '"' ·. 
be given, e.g. as follows: "On many processt't"S, ·~ ~,. 

designation of a structured-type as packed may caus. \ '•· 
representation of values of the type to require lcs.s '·.~' 
storage than otherwise would be the case; on the bther :· 
it may cause operations on, or accesses to componcnl~ ~~, 

values of the type to be less .efficient in terms of spnc<·, c·r 
time, or both." · 

In 6.4.3.2, as well as in 6.5.3.2 and 6.6.3.7, cer:~i~ 

syntactic constructs are defined to be "equivalent". T~P 
precise meaning of such definition is left unspecified. ~·~·· 

"equivalent" presumably neans is roughly what is r'"'" ·:· · ... 
"identical" according to Leibniz' definition of ld0 
("Eadem sunt qui inter sibi salva veritat-? s•.!~ 
possunt"). Thus, a definition (convention) should be 
statfng that when two syntactic constructs ar.e defin».l 
equivalent, this means that either of the two construct:·. ,. , · 
be replaced by the other without affecting the correctri.- .. 
meaning of a program, and that any rule .given for el r.:11·;:· 
construct is applicable to the other as well. 

A note should be given in 6.4.3.3, stating that for a variant 
part without a tag-field,·the select~r of the variant ?art 
does not necessarily have a physical correspondence in th8 
representation of the record type. 

Clause 6.4.3.3 allows empty field-lists which. implies that 3r. 

empty record is allowed. However, the question arises whoth,0 r 
a variable of an empty record type is initialized or not; on 
one hand each variable is uninitialized when it come" t:• 
existence; on the other hand, a record is initialized ~hen 
all of its fields are initialized, which means that an 0cpt~ 
record would always be initialized. Since empty records an' 
useless, a minor change of definition would remove this 
theoretical but irritating problem: remove the outer.mos!: 
brackets from the production for field-list, enclose the 
symbol field-list into brackets in ·the production for 
variant, and add (into the text) the requirement that for a 
field-list with no fixed-part, at least one variant of the 
variant-part shall contain ~ field-list. 

The draft does not specify any restrictions on the use of 
ordinal types as the base-type of a set-type. This 
effectiv.ely means that implementation of sets will be rather 
inefficient, which causes set types to los.e a lot of their 
usefulness. (So this change to the language is an op~ration 
which may succeed but the patient may die.) The restrict."•on.'<, 
as specified in the first draft, should be restor.ed. · 

2.5 DECLARATIONS ANO DENOTATIONS OF VARIABLES 

Clau"se 6.5..3.2 does not specify the order in which the 
indices of an indexed variable are evaluated; neither does it 
state that the order is implementation-dependent. Analogously 
with e.g. 6.7.2.1, it should be specified that the order of 
evaluating the index-expressions in an indexed-variable is 
implementation-dependent. 

The production 
field-designator-identifier • identifier • 

should be included into clause 6.5.3.3. 

2. 6 PROCEDURE AND FUNCTION DECLARATJ': .• d 

Clause 6.6.3.1 specifies that with each formal value cc 
variable i;>arameter there is an associated variable. Th~s 
specification is somewhat obscure because of the pre2r: ;; r .1r 

the article "the" (" --- defining-point as the ass<), .at·. 
variable-identifier ---"). Similar comment appli''" c.; 
procedural and functional parameters. The use of "the" ~"i::t1.' 
to suggest that the existence of such an associated enti!:f 
has been previously postulated, which is not the case. 

Clause 6.6.3 does not specify any restrictions on the allowed 
types of a formal value parameter. Clause 6.6.3.2 specifies 
that the actual parameter must be assignment-compatible wi tb 
the type possessed by the formal parameter. This mean$ that 
it is legal to declare a procedure with a value paramete!" o,C 
a file type but illegal to call such a procedure. This is 
somewhat strange; in general, language defini.tion should not 
formally allow constructs which are useless. The followL1g i r, 
sugge.s ted: 

1. 

2. 

3. 

Add the following definition to clause 6.4.3.S, befor~ 
the first paragraph of the very text: "A type is sald to 
have a file component if it is a file type, or an array 
type whose component type has a file component, or a 
record type such that at least one of its fields is or a 
type that has a file component." Change the para9r :qoh 
mentioned to read as follows: "The type-denoter of a 
file-type shall not denote a type that has a file 
component.• 

Change statement. (a) of 6.4.6 to read as follows: "(a) Tl 
and T2 are the same type which does not have a file 
component." 

Add the following sentence to 6.6.3.2: "The ty9e 
formal parameter shall not have a file component." 

of .3 

By 6.6.3.3, "An actua~ variable parameter shall not denct~ ~ 
component of a variable that possesses a type t'1J!" i·"· 
designated packed." However, there is some doubt about t~e 
relation of componentship. For clarification, the followi'1·J 
note should be added: The relation of componentship is n·ot 
transitive; that is, if a is a component of b and b iE a 
component of c, then a is not a· component of c. 

-0 
:r> 
en 
n 
:r> 

' z: 
rn 
:e:: 
en 

"" N ._... 

:r> 
LI 

= 
["" 
._... 
lD 
00 ._... 

-0 
:» 
G1 
m 
01 ._... 



r 

I r 
In 6:-6.3.7, it is said that the actual paramc.>~er 
corresponding to a cont:ormant arr.ay schema "shall be. eith,..r .i 

var fable access Qr· an expression that is not a. factor that i-; 
not a variable-access•. This is not very explicit, and it 
seems that the contents of that specification is not what is 
intended: probably the second "11qt" shoul.d be removed? Of 
cburse, any variable-access is an expression· that is not a 
factor that"is not a variable-access, so the subsequent rulns 
are· ambiguous. What is effectively meant is probably teat 
such an actual parameter shall be either a variable or ,,, 
expression that is either a string constant (possibly 1~ 
parentheses) or a variable enclosed in parenthesas. 

On the other hand, the differences· between the t:irst dra; 
and the second draft in the specification ~: 
conformant-array-schemas clearly show that the authors of th~ 
second draft wish to allow conformant-array-schemas as \a).t'" 
parameters. We have no strong opinion about such ~n 
extension. However, if accepted, the extension should be mada 
in a less confusins way. In general, value and variable 
parameters are distinguished by the absence or presence of 
the token VAR in a parameter-specification. we can see no 
reason why this method should not be used oo= 
conformant-array-schemas, too. 

The note in clause 6.6.4.1 should not be a note but a part of 
the very specification of the language. Moreover, it leaves 
undefined what rules, if any, given for user-decl~ted 
procedures and functions are applicable to reqni t •1:l 
procedures and functions. This incompleteness is particularly 
important to the semantics of Write, Writeln, Read, Reddln, 
Pack, and Unpack. 

Clause 6.6.5.2 specifies the semantic of Read and Write in 
terms of an expansion into more primitive statements (cf. 
also 6.9 for similar expansions). Now if Read(f,a,b) shall. '>e 
equivalent to BEGIN Read(f,a); Read(f,b) END we have to~~~:' 

1. shall the variable f be evaluated several times 

2. shall such evaluation be affected by the effects of the 
previous operations caused by the statement (consi.der 
Re ad ( fA iA, i , j ) l 

Obviously it is intended that access to the file variable is 
established as the first operation in.the execution o( t~~ 

'procedures mentioned; this should be specified. 

Clause 6 .. 6. 5. 4 defines the transfer procedures Paci< ar.d 
Unpack as •macros" •whose calls must be equivalent to th·~ 
given expansions. However, it makes no sense to interprPt 
this literally because it would imply that the parameters are 
name parameters, quite contrary to the nature of the Pase~~ 
language. (Literally, 6.6.5.4 would imply tl:Jat if in, r;ay, 
Pack (a, i, z), a is an indexed vai:iable {of an array type, ~·[ 
course), its indices should be evaluated N times whe;:e :-; i« 
the number of components of ·z. Consider the (admitt<'•ll\ 
theoretical!) possibility that the evaluations of· a a::d ·· 
affect each other!) - Thus it should be specified that t:, · 
parameters of Pack and Unpack shall be evaluated once orly, 
in an implementation-dependent order. 

2.7 EXPRESSIONS 

Clause 6.7.1 says that "An expression shall denote a value 
---•, and clause 6.7.2.1 speaks of "evaluation" of 
expression. However, it is not defined what is the va?ue ~f 
an expression, or what constitutes the evaluatiC;\ .,~ ,., 
expression. It would not be very difficult to sl•ppl,,. 
sufficiently precise definitions. 

According to clause 6. 7. 2. 2, "The results of the re,:_ 
arithmetic operators and functions shall be approximatio~s t: 
the corresponding mathematical results. The accuracy of thi.s 
approximation shall be implementation-defined.• such a 
specification is definitely an improvement but is 
insufficient. For what is an approximation? suppose that we 
have a floating point system where the range of absoluL<.' 
values of repr'esentable numbers is roughly le-38 to l·~+JS, 
and consider the operation of squaring the number le-30. I~ 
0.0 an approximation to the result? Most mathematicians \\"<>UVl 
say no. 1\.nd what about squaring le+30? Notice t:iat wh..il. ;,,. 
commonly known as floating point overflow or underflow r-:h.:i'.' 
not be an error according to the draft. Assumably a proceain · 
may give a runtime warning; but it must also proceed '\.!"-"·~ 
some •approximation" to the result. Notice also that cl.w·~·: 
6.6.6.2 specifies that sqr(x) is an error if the square of x 
does not exist; this can be interpreted so that under'flow or 
.overflow in the calcula"tion of sqr (x) for real x would be an 
error; why ·should sqr be exceptional in this respect? 

It should be specified that the order of evaluation of tl:n 
expressions of the member-designators of a set constructor is 
implementation-dependent. currently no order is specified, 
which should probably be interpreted so that the order is 
implementation-dependent, but this should be stated 
explicitly. 

2.8 STATEMENTS 

The requirement (in 6.8.3.9) that "The statement o
for-stateme.nt shall not contain an assigning-reference --- t:i 
the control-variable t>f the for-statement." is understanc' · 1'. 
from the security point of view. However, it re~. 
complication of processors which would not be other.: ;;,· 
necessary (at least partial crpss-reference information =·ia• 
be gathered). This means extra costs, the benefits 1 .. >in.1 
questionable. These comments of. course on-ly apply to cha.-1· i ... ~ 
against assigning references in procedures and funct; ,.,,. 
invoked within a for-statement. One solution would o~ t 

require that the variable used as a control variable :::':01· 
not be used outside that statement part in which t. 
corr~sponding for-statement occurs. This would ra• " 
decrease the expressive power of Pascal. It is moreover ""° 
programming practise to reserve the control variables fc1 
that purpose only. Such a restriction would allow the rul~ 
mentioned to be formulated in a manner which can be 
implemented with no significant extra costs. Notice that 
speaking of implementation in this context refers to inhe:· .. nt 
proble.ms of implementing the requirement of the draft, not t:1 

any particular implementation. 

-0 
~ 

"' n 
~ 
r 

= rn 
::e::: 

"' 
'II: 
N ,..... 

~ 
-0 
;;o -~ 
,..... 
lD 
00 ,..... 

-0 
)> 
en 
m 

0'1 
N 



~ 
2.9 INPUT AND OUTPUT 

The effect of read(f,v) when f is a textfile and v is· ~f 
integer or real type is incompletely specified in clau~:e 
6.9.2. It is said that it causes •reading from f a sequence 
of characters", and assumably reading involves the sa:ne 
operation as get. However, the details are unspecified. The 
error condition descriptions use the notion of "the rest of. 
the sequence", but it is left undefined what "the sequence." 
is; a related r.ule ("Reading shall ceas.e ---") i·s given, but 
it is obscure. For instance, if the characters "l", "E", an'.'! 
"X" are encountered, in that order, when reading a re.;: 
number, what happens? Most existing runtime systems repor• 1 
format err.or, but the specification of the draft· would . t><::n 
to ~mply that the input should be accepted, "l" bei11g t:1t' 
longest sequence available that forms a signed-number. rt is 
not .only difficult to implement the lookahead required; .;uch 
lookahead would be quite contrary to the fundamental ideas of 
file handling in Pascal. 

It is said, in 6. 9. 2 (b) , that -•rt shall be an error if the 
rest of the sequence does not form a signed-number according 
to the syntax of 6.1.5.". This purely syntactic approa.::'i 
gives no answer to the question how underflow or overflow 
should be treated. 

The definitions (c) and (d) in clause 6.9.2 should be given 
by appropriate equivalent program fragments or other uniq~ely 
interpretable methods. 

2.10 PROGRAMS 

The note in clause 6,10 is very obscure. What are the 
properties of a Pascal. program? 

The pragmatic meaning of sample program t6p6p3p3d2revised n~ 

test program should be enlightened. Moreover, the program is 
related to earlier versions of draft s.tandards (the program 
is .not related to clause 6,6.3.3 as one would expect), ar'." 
should be accordingly updated. 

2.11 HARDWARE REPRESENTATION 

Comment delimiters sbou~d .be required to be matching, so thnt 
comment beginning with "(*" is o.nly closed by"*)" and 
comment beginning with "ii" ii! only clo$ed by ·"A". In fact, 
clause 6.1.8 should be rewritten in this respect, so that 
there would be two different forms of comments. The character 
"A" (as well as "ii") has been replaced by a national letter 
in several modifications of international charact~r code: 

2.12 TYPOGRAPHIC ERRORS AND STYLISTIC MATTERS 

The table of contents does not correspond to the ti·tles in 
the text (e.g. for clauses 6.1 and 6.2). 

Clause 3. 4 should say "accepts a program" instead of ·•accepts 
the program", i.e. accepts any program (subject to 1.2 {a)). 

The specification of char-type in 6.4.2.2 would be better 
formulated if the beginning of the second statement would 
read as "The values shall be the enumeratio.n of iln 
implementation-defined set of characters•. Similar commen~ 
applies to the pseudo-production for •string-character" i.n 
6.1. 7. 

In 6.2.2.9, the word "new-pointer-types• should appear ir 
singular, because it is preceded by "any•. 

In the final note in clause 6.4.3.2, the comma following tr.€' 
word "which" is ungrammatical. (Possibly. it should preced~ 
the "which".) 

In 6.4:3.5, the paragraph beginning with 
each be a single value ---" uses 
redundantly in two occurrences. 

"Let f.L and f.R 
the word •sing le" 

In 6. 4. 4, the comma after the word "them• in the secc,nd 
statement is ungrammatical. 

The abbreviated notation specified in 6.5.3.2 and 6.6.3.7 
described by saying that "a single comma" or "a s:·. '3~ ;· 
semicolon" replaces a certain syntactic construct. The .:or .. : 
"single" in these contexts is redundant. 

In 6. 6. 3. 6 (e) (1), the word "index-type-specification" : s 
misspelled as "index-type-specifiecation•. 

In 6.6.5.3, the second statement of the specification of th~ 
second form of new contains the misspelling •possese~· ~f 
"possessed". 

In 6.9.4.5.1, the specification of the condition under w'oi1•'1 
the sign character is '-' involves the condition (eWrit!· .. ·• ' 
0). However, it seems to be so that (e<O) imF· .. · 
(eWritten>O) so that the latter can be omitted. Probably ~.,e 
redundancy results from an analogy with 6.9.4.5.2. (For e;,.o:-.l 
point representatinn the condition (e<O) and (eWritte~>O) 
does not contain redundancy, of course.) 

-0 
> en 
n 
> 
r 
:z: 
rn 
:e:: 
en 

""" N ,_. 

:i> 
-0 
:;o 

.'. 
,_. 
t.D 
00 ,_. 

-0 
:i> 

"' m 

01 
Vol 



r 

GENERAL 

COMMENTS FROM THE FRENCH MEMBER BODY 
ON ISO/TC '!I /SC 5 N 595 

SECOND DP 7185 - SPECIFICATION FOR 
COMPUTER PROGRAM!~ING LANGUAGE PASCAL 

ATTACHMENT E 

The French committee voted positively about this second draft proposal, one 
of its main motivations being that the standardization of PASCAL will be useful 
only if it is completed very soon. As a further way to speed up the remaining 
part of the standardization process, the French member body strongly suggests 
that the next meeting of WG 4, whose main purpose will be to revise and incor
porate if possible those improvements suggested during the vote, do not wait 
until the next meeting of SC 5 in London, but is convened before summer. 
The French member body officially offers to organize such a meeting in NICE, 
France, in June or July of 1981. This should allow the completion of the standard 
to be done in the present year. 

The following comments are devided in two parts : technical comments, which deal 
with the language PASCAL as described in the second DP 7185, and editorial comments, 
which deal with the description itself. Comments considered especially important 
by the Frenah member body are emphasized w; th an asterisl~. 

COMMENTS 

* Q~~E~=!!E-~!!L-~~=~~~-~~~~~~L-:!'.!:!!E!~==-~~~~~! 

The French committee tried several times, but with no success, to obtain the 
specification in Standard Pascal of a required character set, and to obtain a 
clear separation between the description of the reference language and its 
various hardware representations. The current state of the draft proposal shows 
that these proposals were not so bad, since, while the printing quality and ~he 
character set of the descriptions of Pascal are quietly worsening from one version 
to the next, they become at the same time more and more similar to the current ISO 
standard character set. The last evidence of this progressive modification is the 
replacement of the character "t "• the-only remaining one that was not in the ISO 
set, by the character "A", Although these modifications result only from successive 
changes in· the printing devices used for the successive descriptions, some benefit 
can be got. Hopefully, the final version of the standard description will not use 
a printer with only the 48 character set of Fortran ! 

The main concern of the French committee is that the lexical description of Pascal 
does not prevent the use of good printing devices with their full range of capabi
lities, i.e. that Pascal programs printed with boldface keyboards, italics identi
fiers and not-too-offending operators (for exemple, in both Wirth's books published 
by Printice-Hall) are legal Pascal programs. 

This does not deal only with books, a:f'ter all, since the time when phototypesetters 
or printing devides of an equivalent quality will be usable for ordinary computer 
output is probably not so far. 

Although a clear distinction between the reference language and its hardware repre
sentations would have been considered by the French committee more appropriate for 
such a purpose, the current draft allows almost· completely what we need, in a 
different way. Since the representation of letters is considered insignificant, the 
only remaining problem is with special symbols. Alternative representations were 
provided for implementations which lack some good quality characters, like square 
brackets or braces. In tne present draft, an alternative is provided for implemen
tations which have a better character than "" ", i.e. the up arrow. We propose to 
prusue in such a direction, and to provide good alternatives for unsatisfying special 
symbols. No implementation is required to provide these alternatives if they are not 
available in its character set, but a program which ilses them is legal. Our proposal 
of course, does not include bad representations for existing good symbols, made 
only for using available characters, like 11 &11 for 11 and11 , for example, or worse, 
11 -=ft: 11 for 11.+ 11. 

~ : table 6, page 68 

Add the following alternative symbols, which appear in the order of decreasing 
:importance : 

reference 

alternative 
<) <= >= 
=/: ~ ~ 

* ~~!~~!_~~LE~~=!!~ 

and 

" 
or not 

v ..., 

The French committee tried to compare the four successive variants of the proposal 
that were done in the first DP 7185, in WG 4 documents N 5 and N 9, and in the 
current DP. The main critic we made about the current state of the proposal is that 
a feature added for a very precise purpose (i.e. to allow character string constants 
as conformant. array parameters) is now used for a completely different thing, remi
niscent of PL/1 (i.e. simulating value parameters with dummy variables). 
What is worse, the first intended purpose is not completely achieved, since a formal 
conformant array parameter cannot be a string variable, which greatly weakens the 
advantages provided by the feature. Several possible solutions were considered. 
The proposal we made seems to have only very simple consequences on both the descrip
tion of the language and its implementation, it needs no modification to the level 
0 conformity, and its has interesting consequences on most uses of conformant array 
parameters. 

Proposal·1 : Section 6.6.3.7, pages 35 to 37 

Come back to the wording of WG 4 N 9, or something equivalent which uses an auxi
liary· variable only when the actuel parameter is a string constant, and moreover 
which does not force any implementation of the feature. 

Proposal 2 : Sections 6.4.3.2, 6.6.3.7 and 6.6.3.8 

In Section 6.6.3.7, allow the lower bound of an index-type-specification to be 
a const!'Ilt of the suitable type, in which case the corresponding actual parameter 
must have an index type with the same lower bound. 

"'tJ 
):> 
<.n 
n 
):> 

r 
:z: 
rn 
:i;: 
<.n 

~ 
N ,_. 

):> 
"'tJ 
;:o 
~ 

r 
~ 

,_. 
'° 00 ,_. 

"'tJ 
)> 

"' m 

01 
.J::" 



~ 

Conformant array parameters with a constant lower index bound would probably be 
the great majority, and they can be implemented more efficiently. Moreover, in 
Section 6.4.3.2, extend the definition of a string type to include the case of a 
packed conformant array of characters with a constant lower bound of 1· Thus the 
formal parameter is a string, comparison operators can·be use~ as well as the 
procedure write, and it should only be stated that it is an error when upper bounds 
differ in an assignment involving such "conformant strings". 
Of course, the two preceeding proposals should be carefully worded, and all conse
quences on the full draft.taken care of. This could be done for the next meeting 
of WG 4. 

!=~~~;!:!~~=-~=!;!E:itio~~ 

On page 12, Section 6.4.1, the last ·sentence of the paragraph that follows the syntax 
makes an exception to a general rule, especially for allowing the use of a type
identifier in a pointer-type, while it is not entirely defined, as in the following 
example : 

~T1=~ .•• x:1'T1; ••• end; 

Of course, this is not necessary, since the type tT1 may be defined ans named before, 
an probably this definition is needed anyway for other purposes, because of the strict 
compatibility rules. What is worse, this exception legalizes some absurd type defi
nitions, as in the following example : 

~ T2 =array \j .. 10Q] of 1'T2 

T3 = 1'T3 ; 

Proposal: Section 6.4.1, page 12 

Remove the ·first half of the last sentence.of the second paragraph, which thus 
becomes :. 

"The type-denoter shall not contain an applied occurrence of ·the identifier in 
the type-definition 11 • 

~~=-~=~~~~-~E=-~~~~ 

On page 48, Section 6.7.2.2, the first paragraph implies that there may exist some 
values of the integer-type that are not in the closed interval -maxint •• +maxint. 
This seems useless. On the contrary, on machines using two's-complement arithmetic, 
the negative number with the largest absolute value could be used as an "undefined" 
value, extremely useful for checking that variables are initialized. 

Proposal : Section 6.7.2;2, page 48 

Reword the ·first paragraph so that the integer-type is exactly the interval -maxint •• 
+maxint. · 

EDITORIAL COKl!ENTS 

- page 2, 1.2 (a) 

Add the sentence "• and the actions to be taken when the corresponding limits are 
exceeded". 

This suggestion was triggered by the constatation that nothing was said about what 
happens when the procedure new finds no more available space. 

page 7, 6.1.5 

Xothing.is said about the meaning of the period and the digit-sequence that follows 
ii;, in an unsigned-real. A possible solution would be to replace "digit-sequence" 
with "fractional-part", defined elsewhere as a digit-sequence. 

- page 10, 6.2.3 

This ~hole section is very difficult to understand. A possible solution would be 
to use a simple stack implementation model, not compelling for implementators, but 
much clearer. 

- page 11, 6.3 

This is the first occurrence of a systematic principle used in the whole standard, 
i.e. identifiers are always qualified in syntax rules, except for their defining
point. This is pretty good, but a note should explain it, for example, at the end 
of Section 6.2, or in Section 4. 

- pages 15, 18, 19 

Examples use type identifiers that are defined only on page 2? (colour, vector) 
or not defined at all (string, angle). Something would be.done. 

- pages 33, 34 

Boring repetitions occur every time something is saif about procedures and 
functions. By defining the term "subprogram", and by specifying a uniform subs
titution with either "procedure" or "function", it should be easy to simplify and 
shorten the se.cond paragraph of page 33, the last two paragraphs of the same page, 
and Sections 6.6.3.4 and 6.6.3.5 on page 34. 

page 34, 6.6.3.3 

Since the types possessed by the actual-parameters are the same as that denoted 
by the type-identifier, they must be identical. The second sentence of Section 
6.6.3.3 is consequently useless. 

- page 35, 6.6.3.6 

By replacing in (a) the two occurrences of 11value 11 with "value(resp. variable) 11 , 

it is possible to entirely omit (b). 

- page 36, 6.6.3.7 

A note should be insered before the last paragraph of page 36, explaining that 
bound-identifiers are neither constants nor variables. 

-Q 
:i=
C/) 
n 
:i=
r 
:z: 
rn 
::e:: 
C/) 

'It! 
N ...... 

:i=
-0 
;:o 

r 
' 
...... 
lO 
00 ...... 

-0 
)> 

"' m 

CTI 
U1 



;~ 

page Y/·, 6.6.3.7 

The first sentence of the second paragraph is impossible to understand, and 
probably wrong. The fourth paragraph is extremely difficult to understand, and 
should be dther worded differently or illustrated with an example, or both. 
In the third note of the page, "anonymous" should be replaced with !'auxiliary", 
for uniformity. 

page 43, 6·,6.6.4 

The de$criptions of succ and pred differ only by one word ("less" instead of 
"greater"). A simplificatio!l in the same way as page 35, 6.6.3.6 should be possible. 

- page 47, 6.·7.2.2 

The last three paragraphs of the page begin with a sentence stating that a term is 
an error if something occurs. Given the definition of an error, it should be better 
to state that it is an error if y = O in a term of the form x/y, etc. 

page 50, 6.7.3 

For the sake of uniformity with Section 6.8.2.3,. the second sentence should end 
with"··· activation of the block of the function-block associated with the function
identifier of the function-designator". 

page 52, .. 6.8.2.4 

The wording is extremely unclear, especially in (b). What are "these exceptions" 

- page 53,. 6.8.3,5 

By adding"• otherwise it shall be an error" at the end of the first paragraph, 
the second one can be omitted. 

- page 55, 6.8.3.9 

Nothing is said ~?out the assignment-compatibility of the initial-value. 

page 5.9, 6.9.1 

It seems that only textfiles occurring as program-parameters could be used at all. 
This relates to nothing elsewhere, and should be omitted. 

page 68, 6.1.1 

The last part of note 2, dealing with the possibility of national variants, disap-
peared during the summer. Why ? · 

page 67 

The chosen example cannot be considered a significant demonstration of the capabili
ties of Pascal. A better example could be found in one' of the numerous textbooks 
about the language. 

- Appendices 

Syntax diagrams are recognized as an excellent means for syntactic descriptions, 
especially for Pascal. They should be included in an additional appendix. 

1981-03-Q2 German Comments on Second DP 7185 

Part I. Technical reasons 

1. Call-by value for conformant array parameters 

ATTACHMENT F 

Page 1 

We do not approve that the call-by-value of conformant array 

parameters is specified by enclosing the a c t u a 1 para

meters in parentheses. In Pascal, the parameter access method 

is always specified with the f o rm a 1 parameters. There 

should be no exception for conformant array parameters. 

2. Use of "denote" 

The use of "denote" in Second DP 7185 is not consistent. See 

the accompanying notes "'German concerns on the use of 'denote' " • 

Part II. Editorial comments 

0. INTRODUCTION 

Delete· this heading and include the text as new paragraph 1 . 3 . 

4. DEFINITIONAL CONVENTIONS, Table 1 

Delete the line " > shall have as an alternative definition". 

5.1 Processors (hl and (i) 

Replace "specified for errors" bye "specified.for violations". 

6.1.5. Numbers 

Change the sequence of the syntax to run from signed-number to 

digit-sequence (top-down). in accordance with usage in other places 

of the Second DP 7185. 

6.2.3.2 (dl and (e) 

Formal parameters are associated to the b 1 o c k , not to the 

identifier (see 6 .6 .1). Change, therefore, ·the wording as foolows: 

{d) for each procedure-identifier local to the block, a procedure 

with. the procedure-block corresponding to the procedure-identi= 

fier, and the formal parameters of that procedure-block; and 

~e) for each function-identifier local to the block, a function . 

with the function-block corresponding to, and the type posses

sed by, the function-identifier, and the formal parameters 

of that function-block. 

.,, 
> 
en 
n 
> 
r 
z: 
rn 
:.;:: 
en 

~ 
N 
I-' 

> .,, 
;;o 

r-
I-' 
lD 
00 
I-' 

.,, 
)> 

"' m 

O'l 
O'l 



, 
6.4.2.2 integer-type 

Include after "see also 6.7.2) ." the following text taken from 

6.7.2.2: "The required constant-identifier maxint shall denote 

an implementation-defined value of integer-type. All integral 

values in the closed interval from -maxint to +maxint shall be 

values of the integer-type." 

6.4.1 General. Second paragraph. 

Replaqe "as the domain-type" by "in the domain-type". 

6.4.1 General. Third paragraph. 

Delete the sentece "The required types shall be denoted by 

predefined type-identifiers (see 6.4.2.2 and 6.4.3.5) ." 

6.4.2.2 char-type 

Insert after "without graphic representations" the following 

text", the others denoted as specified in 6.1.7 by the 

character-denoter". 

6.4.2.3 Enumerated types. 

Delete "as their identifiers occur .•. enumerated-type" and 

add after "from zero." the following: "The mapping shall be 

order preserving." 

6 .4 .3 .1 General. 

Change the sequence of the syntax to run from new-structured-type 

to structured-type (top-down) • 

6.4.3.2 Array-types. Next to last paragraph. 

Insert after "a smallest value of 1" the following: "and a 

largest value of greater than~·· This is a clarification for 

the use of string types. 

6 .• 4. 3. 2 Array-types. Last note. 

Delete comma after "which". 

6.4.3.4 Set-types. 

Replace "of its base-type" in the first sentence by "of the 
base-type of the set-type". 

Replace "an unpacked set designated" in the last paragraph 

by "an unpacked set type designated". 

6.4.3.5 File-types. Last four paragraphs. 

Replace "a sequence x...S(e), where x is" by "a sequence cs..S(e), 
where cs is 11 • 

Replace "If x is a line then no component of x other than x.last" 

by "If l is a line, then no component of l other than l.last". 

Replace "A line-sequence, z, shall be either the empty sequence 

or the sequence X"":f where x is a line and y is a line-sequence" 

by "A line-sequence ls shall be either the empty sequence or the 

sequence l"' ls' where l is a line and ls 1 is a line-sequence". 

Replace in (b) the text "shall be X"'Y where x is a 

line-sequence and y is a sequence of components" by "shall 

be ls~cs where ls is a line-sequence and cs is a sequence 
of co.mponents". 

In the NOTE following (b) replace y by cs in two places. 

6 . 4 . 7 Example 

In NOTES 2. replace "to have been declared" by "to have been 
defined''. 

6. 6 .1 .Procedure-declarations. Third paragraph. 

Replace "the the procedure-declaration" by "the 

procedure-declaration". 

6.6.3.6 Parameter list congruity. 

In (e) ( 1) replace "index-type-specifiecation" by 

"index-type-specification". 

6.6.3.7 Conformant array parameters. 

We propose to use the syntax as stated in "Notes on US concerns". 

..,, 
""' en 
n 

""' r 

= rn 
::e: 
en 

'*" N 
I-' 

""' ..,, 
;:;o 
~ 

r 

I-' 
tD 
00 
I-' 

..,, 
)> 

"' m 

01 
....... 



r 

6.6.5.2 File handling procedures. First paragraph. 

Move the clause"and similarly for fO" and f"'" to the end of 

the sent.ence. 

6.6.5.3 Dynamic allocation procedures. NOTE. 

Replace "see 6.8.2.2" by "see 6.8.2.2 and 6.6.3.2" 

6.7.2.2 Arithmetic operators. 

The paragraph after the NOTE shall read as follows: 

"Any monadic operation performed on an integer value in the 

interval -maxint .. +maxint shall be correctly performed according 

to hte mathematical rules for integer arithmetic. Any dyadic 

integer operation on two integer values in this same interval 

shall be correctly performed according to the mathematical 

rules for integer aritblnetic, provided that the result is also 

in· this interval. Any relational operation on two integer values 

in this same interval shall be correctly performed according to 

the mathematical rules for integer arithmetic." 

(Note that the other parts of this paragraph have been shifted 

to 6.4.2.2.) 

6.7.2.4 Set operators. Table 4. 

Insert after "a canonical set-of-T type" the following: "(see 6. 7 .1 )°". 

6.7.2.5 Relati.onal operators. Table 5. 

Delete "(see 6.7.1)" after "a canonical set-of-T type". 

In the fourth paragraph after Table 5, replace "Where u and v 

denote simple-expressions" by "Wher!' u and v denote operands". 

6.8.1 General. 

Replace "A label occurring in a statement" by "A label, if any, 

of a statement". 

6.8.2.2 Assignment-statements. 

Delete the last paragraph "The state of a vari<;tble ... possess 

a structured-type." Insert this text under 3. DEFINITIONS as 

3.5 undefined. and 3.6 totally-undefined. 

6.8.2.3 Procedure-statements. First paragraph, 

In the text "which is list of" insert an "a" after "which is". 

6.8.3.5 Case-statements. 

Delete last sentence of the first paragraph "One of the ... 
to the case-statement." 

6.8.3.9 For-statement. 

Replace "The value of the final-value shail be assignment-com= 

patible with the control-variable" by "The value of the 

final-value shall be assignment-compatible with the type 

possessed by the control-variable". 

6.8.3.10 With-statements. 

Replace "as the only record-variable" by "as single 
record-variable 11 ~ 

In the Example replace "shall be equivalent to" by "shall 

"has the same effect on the variable date as" . 

6.9.2 The procedure read. 

(c) Delete the clause "the longest sequence available that forms". 

Change the sequence of the last sentences. 

(d) same as section (c) . 

6.9.4.1 Multiple parameters. 

Delete the heading; preserve the text as part of 6.9.4. 

6.9.4.2 Write-parameters. 

Change to 6.9.4.1. 

6.~o Programs. First paragraph. 

Replace "Each program parameter shall be declared" by "Each 

program parameter except the identifiers input and output, if 
occurring, shall be declared". 

Second example: Replace "t6p6p3p3d2revised" by "t6p6p3p4d2revised" . 

--cJ 
.;):> 
(/) 

n 
:I> 
r 
z: 
rn 
~ 
(/) 

* N 
....... 

:I> 
--cJ 
;:o 

[' 

....... 
<D 
00 
....... 

--cJ 
)> 
Gl 

"' m 
00 



1 
German concerns on the use of "denote" 

In the use Of the word 1 clenote', we realize the insight 
that there exists a sharp difference between the I thing' 
meant by a certain piece Of program text, and the program 
text itself. All kinds of syntactic constructs never are 
those mysterious P a s c a l. things, but only denote them. 

NOTE: This distinction may be found in some formal language 
definition techniques, especially the denotational semantics 
Csee Gordon, Stoy, Tennent, Bjorner/Jonesl. 

We fully agree with an approach allowing us to treat the 
P a s c a 1 objects without need to refer to some syntactic 
instances, and we feel it the only way to succeed in drafting 
an unambiguous and yet understandable standard. 

Unfortunately, however, the promising approach has not been 
carrie,d throught the whole draft, what lack, on the one hand, 
makes it even more ambiguous than former, not formally based, 
drafts, and on the other hand, at some points totally unclear. 

As an example for the latter conjecture look at 6.6.3.7 of 
N9. There is stated on p. le, line Bf: " .•. the formal parameters 
shall possess an array-type ... ", and in the NOTE on the same 
page: "The type of the forr.ial parameter cannot be a string
type (see 6.4.3.2) because it is not denoted by an array-type." 

For the initiated, the word "denoted" in the note makes clear 
that the latter "array-type" r.1eans a piece of te>:t derivable 
from the syntactic non-terminal array-type Cp.15 of ~!4), while 
the former means a semantic entity, a property of a variable 
structured as an array. Is every reader of the standard initiated? 

The following lines list those places in H4/N9, where we 
found errors in the two drafts related to the "denote"
distinction between syntactical and semantical entities. 
Ive do not claim for completeness! 

6.4.2.l: simple Types General: we are not able to derive the 
real-type (integer-type, boolean-type,char-typel from simple-type, 
but only the denoting identifiers. 

simple-type = ordinal-type I real-type-identifier 
ordinal-type = new-ordinal-type I integer-type-iclentifier I 

Boolean-type-identifier I char-type-identifier 

- 6.4.3.2 Array-types: the second to sixth occurence of the 
word "array-type" in the section address the synctactic 
entity , the others the semantical thing, the mapping. 

NOTE : He assume that all sections on type specify the same mess, 
but do not list all of them .. 

- G.4·;3.4 set-types: In the last paragraph "S" seems to be 
the name of the semantical thing, but the wording "set of S" 
instead of set-of-S supports the syntactical view. In either 
case, it is used wrongly. 

- 6.5.l Variable-declarations: 
variable" is used for both, 
semantical entity. 

In the second paragraph, "buffer
the syntactical structure and the 

- 6.6.3 Parameters: Formal parameters and actual-parameters are 
syntactical entities and do not possess. a type! The type is 
possessed by the variable denoted by the parameters. 
Here we have a real clash in terminology, because we should 
better associate the type of a formal variable parameter 
with the parameter-identifier, not with the denoted variable, 
since the denoted variable is the variable denoted by the 
corresponding actual-parameter. 

- 6.6.5,2 File handling procedures: On p. 38 the verbs "to 
denote" and "to .be" are used just the false way round. Some 
examples: "vl .•. vn denote variable-access" should read 
"vl ••. vn are variable-accesses", "Consequently it may be a 
component of a packed structure" should read "Consequently 
it may denote a component of a packed structure", since 
variable-accesses are pieces of text (like vll denoting 
variables (like components of packed structures). 
Additionally, only the variable denoted by the file-variable 
f possesses a type, and read, readln, write, writeln are not 
procedures, but procedure-identifiers. 

- 6.6.5.3 Dynamic allocation procedures: P 
Ca statement missing in the draft!) and 
which possesses a type ancl may be 

is a variable-access 
denotes a variable, 

attributed a v~lue. 

- 6.6.5.4 Transfer procedures; A can be a variable-access, not 
a variable, j and k don't possess types, and an expression 
does not have a value. 

NOTE : It is impossible to list all inconsistencies of 6.6.4, 
6.6.5 and 6.6.6. 1·1e assume that these section have not l;een 
untergone careful reading when introducing the distinction 
bet1-1een syntax and semantics. 

- 6.7.1 Expressions General: The first sentence states, how 
it should be: "An expression shall denote a value". The last 
paragraph on p.43 anci the NOTE, however, miss a number of 
"denote"s: "shall have the value denoted by x", "from the 
value denoted by x to the value denoted by y", "if the 
value denoted by x greater than the value denoted by y". 

- 6.7.2.5 Relational operators, 

- 6.7.3 Function designators, 

- 6.8.3.4 If-statements, and 

- 6.8.3.7 Repeat-statements: Here we find 
which (possibly) reflects the fact, that 
by the expressions are time-variant. We 
point later. 

the word "yields", 
the values denoted 
will comme to this 

- 6.9 Input and output: The points of 6.6.5,2 as to "to be", 
"to denote", "to possess a type" and to the distinction 
between procedures and procedure-identifiers apply here, too. 

As we have tried to show, the introduction of the syntax/ 
semantic-distinction, whi1ch made the draft much harder to 
read than its predecessors, resulted,. as undergone only 
half-hearted, in a draft being neither exact nor readable, 
while former ones were at least readable. 

" > 
en 
n 
> 
r 

:z 
rn 
,,;::. 
en 

"" N ,..__. 

> 
" ;a 

r 
~ 

,..__. 
·.D 
00 ,..__. 

" > 
"' m 

m 
:.0 



r 

We do not think that correction of all errors (or laxities) 
will do, as the standard," then, will be totally unreadable. 
Instead, we have two alternative proposals for further 
processing: · 

1) Pull the approach to its end, but in a more suitable 
f·orm, i.e. give a forr.ial definition of PASCAL based 
on Oxford notation or the related and .more· convenient 
Vienna Development Oethod. This will establish an 
unar.ibiguous reference for implementors and debuggers. 
Additionally, for the informal reader (he who would 
have been content with one of the former drafts) 
annotate the f orr.ial def ini ti on with some text along 
the lines of one of the former drafts. 

2) t·!ake the distinction between syntax and semantic totally 
cl ear by conseguen t wording, e. g. a syntactical non
terminal denoting some semantical entity x should be 
specified an "x-denoter". Pushing this approach through 
the draft will at least convert all inconsistencies 
and ambiguities into errors, which may be fixed by two 
ways, an exact one and a lax one: 
The exact one proceeas by inserting the words 
"denoted by" at all places where.they are needed. As we 
mentioned earlier, the draft will probably become un
readable. The lax one includes· the sentence: "l'/herever 
context makes clear whether an x or an x-denoter is 
addressed, the x-denoter is used to.name the x". Then we 
may throv: away a lot of "denote"s and have to correct 
only some places (e.g. the first mentioned section on 
conforr.:al-array parameters) .. 

NOTE: \·le like 
ancJ i:hus 

proposal l 
more suited 

better, since it is more clean 
for an international standard. 

At last, a few words on the ciefei;rEod time-variance probler.i: 
The relation between a variable-access or a function-designator 
ancl its value is not as simple as the relation between a type
denoter and its type, but is t11ofold: the variable-access 
denotes a variable, and that variable "denotes" the value 
actually attributed to it. The semantics of an assignment 
stater.ient is a change only of the second relation, while a 
procedure call affects the first one. So we shouid not use the 
word denote to describe the relation between a variable
access ancJ its value, and, as expressions incorporate variable
access, an expression and its value. 
In the denotational semantics the two-stageness is reflected by 
the use of two different mappings, one relating the synctactical 
to the semantical entity, and one relating that to the value: 
By this, you can clearly describe how different operations 
(assignment versus call) affect different changes in meaning. 

References: 
Bjorner D., Jones C.B (eds): The Vienna Development Hethod: 

The Meta-Language, LNCS 61, Springer 1978 
GorcJon N.J.C.: The Denotational Description of Programming 

Languages, Springer 1979 
Stoy J.E.: Denotational Semantics: The Scott-strachey Approach 

to Programming Language Theory, MIT Press 1977 
Tennent R.D.: The Denotational Semantics of Programing 

Languages, CACM 19 (1976), 8 1 437 - 453 

ATTACHMENT G 

Japanese Co111ments 

. we Saw ttiat"--Che ·se-eond "drcift f'l'DP"Osal (}i°-595) ha·d been extrea1el!:I. iai?rove~L ·-The 
elaboration done b" the editors shall be hi>Jhl" appreciated, However1 the 
Proposal still contains several rroblea1s to be considered careful!!:! and1 because 
sonre of them are ver!:I essential1 we are very sorr'::l Lo disarProve the draft this 
tiiae once a.9'ain, Our cori~ents are as follows, 

1+ Scope rules {6,2+2) 

1,1 Accordin.9' to 6,2,2,4, the rules 6,2,2,5 and 6;2,2,6 shali be exclusion 
Princi?lest Fra111 this YiewPaint.1 rule 6.2,2,5 seenis all risht, Howe:1ver1 
61212+6 shall be amended as: 
-;z;,2,2.6 The regfon ·that E tne field-s?ecHier ii'f a f'ieiil-desig-r\ator shall b·e 
e>wluded frolll the enclosin9 sco?es, 
The ari9inal 6,2,216 expresses 
th1..1s seellls SJJPerfluous, 

t.he same rule as one e>~Pressed in 6,5,513 and 

1, 2 6, 2, 2, 7 shall be aitended .as l 
6.:. 2, 7 There shat1 nOt he .. -two· defirlins:PDlrrls ·onhe ·siiie identifier or label 
for the same resion1 The ori.9inal 6,2,2,7 "The scope of a definins point of an 
identifier shall include no other definins point of the same identifier• does 
not allow, sa°=' the occurence of the value ParaJieter identifier because {see 
p,33) the scar-e that is the forBial i:-ara11eter list of the definin.9 Point as a 
Parameter identifier contains lhe definins point as the associated variable 
identifier ·ror-the-reiIOrllhat is the li1oi'I<, --

2, Confarniant arra=i ?ara111eters 

2.1 \Je have discussed on this u1atter ver!:I intensivel'::i and caJr1e to conclude that 
"the coniforn1ar;f-a·rra!:l-~ara111eter·s in the -pr-eS-ent--f-of.111 rs··-sl"iil tao ad hOc arid 
?rerr,a-t.ure~ It makes it ver!:I hard to teach or explain the lansuase, It 
contradicts with the oriSinal aim uf the lan9uase that. is 'to wiake available a 
1ansua~e suitable for teachins ?r0Sra111mins as a s=istematic disciPline based on 
certain fundamental concepts clearl!:I and naturatl!:l reflected by the lans.uase 1 , 

If the conformant arra!:I ?ara11:1eters shall be introduced for "writins of both 
--··s':ISfe-n7-·-ar,d··· ii?.Pi"lCat:lOn· Saft~are•, - "the ir;C1uS.iOi1 Of-. Onl!:I cOriforirianf. arra=i 

f'ara111~le1·s see!fiS not enoush, We need more features. Sor we stran91Y reco..iiend 
to remove the conformant arra:: paran1eters fron1 the current draft, It shall be 
reconsidered tosether with other il1Portant e>:tensions1 after the current draft 
is Slandat-dizeO ,·-· · - ·-

--::;'2 -"EsPecia1 Iii - 'we'. -cfo'ri It 1 TI;e --tliereaflii'e - 1,e;- 1n0Irne- vailie ano-varTalile -
Parameters at the callins- site, This is not. the PrinciF-le of Pascal but of 
Fortran, \Je can not accept the mixture of Pascal and Fortran, 

213 DescriPtions fo·r the conforniant arraY" Para1t1eters have not been brushed up, 
The sentence like "The actual Parameter shall be either a variable access or an 

- ·-e-x-Pre-~Sfcii=r "thaf rs-r~ot-a ·-racror -uia·t-1s·-rsr;of a·-v-a"rfabiO"cCe"Ss I lS""be~omrou-r
understandins. Moreover1 in the sa11;e clause1 the·re are: several Places where the 
e>t?ressions are 11eant in this sense without anY" co-.aents. We thinY~ it would 
take lam! to imProve the idea of the confor11ant array Para111eters, So, in order 
to aPProve the draft in one or two More editin~sr the discussion of the 

__ c~~f~-~~a_i:1_~- .~: _ _r_a~-.!~!.~~.~~e_T_s . ~~!! _~ _P_o_s~~n~? .... to _ _:!:~~ 1?_!.~~ ~~-~-~!~ + 

-0 
J;> 
en 
n 
J;> 
r 
= rn 
:>:: 
en 

~ 
N ,._. 

J;> 
-0 
;o 

::---
,._. 
LO 
00 ,._. 

-0 

"' Ci'l 
rn 
....., 
Cl 



1 
3, Syntax rules 

3 +.1 Groi.Jps of ·sYi=ita}; -r·ules in. a· cfause- ·are p-res-e·nled hOttOt°-up (cf I e>~P~!iSlon 

6.7,1) or top-down {cf, record t'::lPes 6,4,3,3) or in 1.ixed order (cf, 
structured h1Pe 6.4,3,1), The';I shall be Presented in a s:1ste111atic wa'::l+ 

3,2 Throu!:lhoul. the whole s1.:1rrt.a~: rules1 there are nonter1.inal s~:111bols which are 
defined but not referred to in other rules+ The!:! are onl!:I" used in se1antics1 

··-· Tfie~·-· a·re1 ?Ofr1te·r.:.t!:l"Pe1 Prosran1. ·read::.:p-aran1et.er-=1fst, i-ia.din-para.Dete-r-=-iiSt, 
s1-·ec i a 1-s!:l"mbol ' si~ned-nunrbe r, s in1P le-t!:l"Pe 1 st ructu red-t!:l'Pe, 
1Jrite-par·•rn1el.er-list and writeln-para11eter-.list, They shall be indicated as 
such. (For instance with an asterisk as in ALGOL 68,) There are nonterainal 
s!:l'r.1bols that are referred to but not defined, They are:-
field-desisnator-identi fier1 inteser-h1F-e1 boolean-t!:l'?e1 char-t!:IPe and 
-real-type, - field-=°des-iiinaTor-Ii:lenfifie_r_ --shall i;-.-- defineC!;----Others: siiaiCb-e 
indicated, 

4+ B ch11racter rule for identifiers and 4 diSit rule for labels 
If the eisht character rule is not adopted then the four disit rule shall be 
ren1oved; - · · ---· -· --- · ·----------·--- --

6, 116 'th~t shall be in the closed internal 0 to 9999' -> e1.Pt!:l"1 

;:i, Seauerrce t~Pe rule-s 6 .. 4t315 
In rule (c)1 component c is also concatenated from the risht to define ,last 
like }!"'S(c~ •. So-,."·the- r1Jle" (b) s·hai1-be aruendedr··-·arid S(c)"'x and w"'S{c) Shall 
also be a seauence1' As a whole1 the Preciseness of descriPtion of the draft 
varies e>:cessivel~ fro111 Place to place 1 AccordinSl!:I' the draft 1.akes readers 
fj nd the comPosi ti on very unbalanced Ye believe En~lish SPeakins people will 
r;ature;ll:: feel t~1e points b!:I' far 111ore sensibly than ~e did1 

6, New-tYPe 
T'=i'Pes a re denoted either bY t!:l'Pe-identi fier or new-t!:l'Pe, See p, 12 + 

i..'::l?e-denoler = t!:l"Pe-identi fier l new-t!:l'Pe 
urdinal-tYPe = new-ordinal-type I , , , 

ordinal-\..YP"e-identi fier 1 

so-;- siifiilarEi <iltra~- t1=1PE- shSr1 ···t:1e·-· -·- -·-·- -·-
e.1 r2"_·-t::!::·e = rie\.1-arraY-tYPe I arra\:1-tYPe-ideniifier 
n.~ l.:,::Pe·-i ienti f ier vector shal 1 be the arraY-type-identi fier, not the 
sirucl.ured-t\:IPe-ident.ifier, And so on, 

--;:---E:-cHTOrla1 co-•~enrs -·· -- ---- -· 
:J,7 unsj9ned-real = unsi9ned-inte9er(',' '" l'e' 111 ) • 
p,9 1.-14 Add 6.10 (definins Point for inPut and output) 
r ... ,22 1, 17 (a) Ti and T2 are the sa111e type which is permissible as a coaponenl 

t~we of a file tYPe1 <This is not lhe onlY Place where rules are to be 
inlerPreted recursively, Remark for recursiveness shall be treated evenl!:I',) 

---P-;-2!3 i.n-the"th"e-=>llie ---------------- ------- ---- ----- - ---- --

P12B 1126 'forward'-> forward (In 6,1,'1 forward is used without auotes,) 
p,29 In~erl '{* This exa1nple is not for level 01*)' to Procedure declaration 

AddVeotors, 
e.31 1.4 the the -> the 
p,31 LS 'forward' -> forward 
"P.31 i.I~ Exa111Ple at"··a·PrOCedUre=a-nd-fUOCtiOn.::d~ciar-a-tro·n·_:part .:.>Ex-au· le of a 

Procedure-and-function-dee larati on-pa rt l 
p, 36 11 7, B (packed-conformant-array-sche111a I unpacked-confor111ant-arra!:l'-sche11a) 

-> packed-conformant-arra'::l-schema I unpack.ed-confor1ant-arra'::l-sche111a 
p,36 1,23 c"onlairlS. -> ·clOseSt.:c·ar1t1~linS- --- ··-·-·- ---
p,3(-. L25126 'J' 'of' 'array• 1 [ 1 -> J of arra!:I [ (Word s!:l111bols are not auoted 

outside the s~mtax rules,) 
p,38 1113114 is is-> is 
P+-40 li11 Insert 'write• and ad.Just indentation, 
p,40 new(p)I Indicate that pis the variable Para•eter, 

--·-p;4(paCkla1iJ::):· Indicate that z··1s-the ·variab1e·-Paf.aDeter, And so on, 
P148 1+1 Add 'and J > 0 1 after 'i >= o·. 
?151 1.-20 or to the functiorridentifier -> or to the function denoted b1.:1 the 

funct~on-identifier (see L-9 when the variable or function does not have 
attrib1Jted ,,,) 

P+52 Insert • CtThis exa1t1Ple is not for level O,*)' to Procedure statement 
Add\lectors, ·- --- - - -

p,53 1+2 6,8,3,3 conditional-statements. -> 6,8,313 conditional-statements 
{remove Period, see 6, 8 t3, 4 i f-state.n1enl.s) 

p,53 l+-6 Delete 'one of the case-constants , , , to the case-statements,' 
because the s..me 11eanins: is containded in the ne>:t sentence 'it •hill be an 
error if , , , upon entr!:I" to the case-state!lent,' -- - -- -· ···-···----- - --- -------

USA Conunents on 97/5 N 595 - 2nd Draft Proposal 7185 

Comment on Section 6.6.5.3 

Status; Error 

PROBLEM: 

Pascal ATTACHMENT H 
PART I 

Tho current draft (7185/2) says it is a.n error to provide Dispose vith 
fever tag arguments than vere ~iven Nev to create the object. The 
requirement tha.t • not be less than n is to Lvoid disposing more space 
than vas originally allocated. Hovever if m is greater than n, then 
it is approved to dispose less than vas originally allocated and leave 
a dangling piece of storage space that cannot be reclaimed. It should 
be an error if the tag field list in dispose is not identical to its 
corresponding nev. The argument that this may be too hard to detect 
is vacuou! because, in the form 11 it shall be an error ... " 1 its 
detection is optional. 

RECOMMENDATION: 

W~..,_ige 11 m is less tha.n n 1
' to "m is not equal to 0 11 • 

" )> 
(/) 

n 
)> 

r 

= rn 
::;;: 
(/) 

~ 
N 
f--' 

)> 

" :;o 

r 
f--' 
ill 
YJ 
f--' 

" )> 

"' m 

'-J 
f--' 



r 

Comment regarding functio.n1 

STATUS: Error. 

PROBLEM: 

DP7185/second edition does not currently specify function results. 
In_particular, assignment to a function-identifier bas the effect of 
attributing a value to the function instead of to &n activation of 
tho functton. This ignores the problem of functions for vhich there 
exi1t more than one activation. 

Thus, tor example, the !olloving program vill vrite the sequence o! 
integers (2,1,0) &ccdrding to the commonly held interpretation, but 
vill vrite the sequence (2,2,2) according to the specifications in 
DP7185/second edition. 

~ p(o); {a "counter" example} 
~ na tw:_.,a.l z 0 .. max int ; 
var o: file of natural; 
~ co~n;.t'ural; 
function !: natural; 
begin 

f : z count; 
if count <2 then 
-begin count":• count + 1; vrite(o,f) end 

end· 
begin ~evrite(o); count : = O; vrite(o,f) end. 

The solution to this problem requires the introduction of & nev part 
of an activation o! a !unction vhich has many o! the characteristics of 
a variable. Th.is is a nontrivial change and requires alterations to 
6.2.1, 6.2.3.2, 6.2.3.3, 6.6.2, 6.7.3, and 6.8.2.2. 

PROPOSED CHANGES: 

In 6.2.1, last sentence, insert after the 1econd comma: 
and any result of an activation. 

In 6.2.3.2, repl&ce {e) vith: 
(e) for each !unction-identifier local to the block, a 
function vith the fo:nnal para.meters associated vith, the 
function-block corresponding to, and the result type 
associated vith the function-identifier; and 
(f) if the block be a function-block, a result possessing 
the associated result type. 

In 6.2.3.3, paragraph 2, append the clause: 
; except that the .function-identifier of an assignment-state
ment shall, vithin an activation of the function denoted by 
that f'unction-identi!ier, denote the result of th~t 
activation. 

In 6.6.2, paragraph 3, change "possessing the type denoted" to: 
associated vitb the result type denoted 

In 6.6.2, paragraph 2, replace sentence 2 vitb: 
A tunction-block shall contain at least one assignment-
1tatement such that the function-identifier of the &ssign
•ent-statement is associated vith the function-block. 

In 6.6.2, p&I'1Lgr>.ph 2, delete the last 2 sentences (revised 
restrictions are incoI»Orated into 6.7.3, vhich is vhere 
they &lvays should have been.) 

In 6.6.2, append the folloving the paragraph 5: 
; the block of the function-block shall be associated vith the 
result type that is associated vith the identifier or 
function-identifier, respectively. 

In 6.7.3, paragraph 1, replace sentences 1 and 2 vith: 
A !unction-designator shall specify the activation of the 
function denoted by the function-identifier of the function
designator, and shall yield the value of the result of the 
activation upon completion of the algorithm o! the activation; 
it shall be an error if the result is undefined upon 
completion of the algorithm. 

In 6.8.2.2, paragraph 1, replace 1entence 1 vith: 
· An assignment-statement shall attribute the value o! the 

expression of the assignment-statement either to the variable 
denoted by the variable-access of the assignment-statement, or 
to the activation result that is denoted by the function
identi!ier o! the assignment-statement; the value shall be 
assignment-compatible vi+h the type possessed, respectively, 
by the variable or by the activation result. 

In 6.8.2..2, paragraph 3, sentence 1, change "variable or !unction" to 
"variable or activation result" {tvice), and in sentence.2 and 
3 change 11va.riable 11 to variable or activation result 11 (4 times}. 

JUSTIFICATION: 

Corrects an error. 

Comment on document X3J9/81-007 

(Dr. Arthur Sale'o letter to Dr. Addyman or January 12, 1981. 

Status: Change 

Observation: 

Web.ave reviewed the document cited above. We 
particular· note of items AHJS-81/5 "definition 
and AHJS-81/6 11 de!inition of processor". 

took 
of error" 

We concur vith Dr. Sale's evaluation and recommendations regarding 
these items .. 

u 
:JO> 
C/J 
n 

""' r 
z: 
rn 
:e:: 
(/) 

"" N ..... 

""' " :;a 

;:-
..... 
'"" 00 ..... 

" )> 

"' m 
....., 
N 



i 

Comment on 6.9.1 I/O (page 59) 

Status: Editorial 

Problem: 

The term "legible" is not veil defined and the vhole paragraph is 
unnecessary. 

Propo•ed,,_cb&nge: Delete clau•• 6.9.1. 

Comment on 5.1 Processor Compliance 

Status: Change 

Problem: Clause (•) doe•n't really require anything. 

Proposed Change: 
report 11 -. 

Justification: 

In clause (•), replace "detect" vi th• detect and 

The change to. clause {e) requires the processor to diagnose violations 
of the standard, at least at user option. 

Comment on 6.2.1 Blocks 

Status: Editoria.l · 

Problem: The tir•t and last paragraphs or this •action are not about 
block• and should be elsevher• in the text. 

PrQPC>sed Change: 

A new sub clause \betwee.. 6 .2 •pd 6 3, llhould be crHte~Jand titled 
"Labels". The first paragraph or 6.2.1 should become the ·text of this 
1ub clause. 

The last paragraph or 6.2.1 should become th• first paragraph or 
6.2.3.5. 

Justi!ica.tion: 

Each o! the other declaration part• or the block has a •action to 
i~oelf, viz.: 6.3 constants, 6.4 types, 6.5 variables, 6.6 procedures. 
For parallelism, and 10 that the user may be able to !ind it, labels 
should have a parallel 1ection, however small. 

The last paragraph of 6.2.1 is one or the activation rules and belongs 
next to the rule on the life of variables in 6.2.3.5. This change &lso 
aerv•~ to organite the standard 10 th&t things may be tound. 

Comment on 6.4.3.5 Text!ile• 

Status: Error 

Problem: 

On pa.ge 21, the disclaimer on text!ile structure does not 
10 tar enough. There is a real danger that 1ome otticially sanctioned 
validation suite may contain tests such a• the attached program 
(reprinted !rom JPC/80-061). 

Proposed Change: 

On pa.ge 21, first paragraph, replace the last sentence "This 
definition... processor11 vith: _ 
"These provisions describe the functionality only, and shall not be 
construed to determine in any vay the underlaying representation or 
text!ile1; .in pa.rticular, the relationship, i! any, betveen end-o!-line 
and valuu or the char-type •hall be implementation-dependent." 

Justification: 

There i1 too 1111ch myth about text!iles to permit the standard to floss 
over aany machine dependencies vith a disclaimer on •nd-o!-line. It 
suggests that one doesn't expect t~e end-o!-line to be a •pa.ce and 
that an implementor i• not requireclto have a character {byte) vhich i• 
the end-ot-line. But it does not make clear that the attached program 
i•=implementation-dependent. 

Moreover, the original description in the UMIJl: "text • !ile or char" 
has led to more than one implementation-dependent program vhich the 
author believed to conform to all reasonable portability considerations 
in the UMIJ!. It is therefore necessary to dispel that notion in the 
1ta.ndard by expressly stating the implementation-dependency or text!ile 
I/O. 

program testeol (output, text!); 
( 

con st 

var 

begin 
{ 

This program tests vbether texttiles handle the character set 
and end-o!-line interrelations properly 

11axchr • 127 

text!: 
tv..lue: 
c: 
allok: 

text; 
char; 
integer; 
boolean; 

{the maximum ordinal value or type char 
in this case the v&lue is 127 !or ASCII); 

this section writes &11 of the char values to a. text!ile 
rewrite(taxtr); 
tor c:•O to maxchr do 

write (textf, chr(c)); 
writeln(textr); 

Cl 
:>=> 
cn 
r. 
:>=> 
r 
:z 
rr: 
:>':: 
en 

"*' N ,_. 

:>=> 
Cl 
:;o 
~ 

r 

,_. 
ill 

"" ,_. 

Cl 
)> 
Ci) 

rn 

" V.J 



r 
f 

end. 

This section rea.ds a.ll of the cha.r values be.ck 
a.nd checks tha.t they ma.tch vba.t va.s written 

res et (text!') ; 
allok:=true; 
for c:=O to ma.xchr do begin 

if eoln(textf') then begin 
vriteln(output, 

'eoln unexpectedly returned true for c=', c:4); 
a.llok:=fa.lse 

end {it); 
rea.d (textf, f'va.lue); 
if !'value <> chr(c) then begin 

vriteln{output, 
'tile value va.s different tor chr ot 1

, c:4, 
'va.lue returned va.s', ord(fV&lue):4); 

allok:=fa.lse 
end {if) 

end {for c); 
this dection tests for end-of-line a.nd end-of- f<le 
if not eoln(textf) then becin 

vriteln(output, 
'eoln did not return true aft•r the la.st va.lue'); 

a.llo.k: =fa.ls• 
end {if}; 
read(textf,f'va.lue}; 
i! fvalue <> ' ' tbt111 begin 

vriteln(output, 
1 end of line value va.s not space. It va.s chr of', 
ord(f'value): 4); 

a.llok:=fa.lse 
end (i!}; 
if not ebf(text!} then begin 

vriteln(output, 'eof did not return true at end of file'); 
a.llok:=fa.lse · 

end (if}; 
if a.llok then vri teln. (output, 'textfile behaved a.s ·expectd' ) ; 
vri~e(output, '***end or test•••'); 

Conunent on va.rious 1ections of the Second Draft Proposa.l for Pascal 

Sta.tus: Editorial 

Problem Statement: 

Thero a.re oeveral pla.ces where the dra.ft proposa.1 vould be improved or 
coJ:;•cted by ainor cha.nges in apellinc, vording and punctuation. 

Proposed Cba.ngu to the Dra.ft Propo1a.l: 

p. 3: In the first pa.ragra.ph .of Hction ·4 change "th• identifier of a 
predecla.red or predefined entity''. to "the identifier of a required entity". 

p. 11: In the la.st pa.ra.gra.ph of Hction 6.3 cha.nge "The constant iha.ll not 
conta.in" "to "The constant in a consta.nt-def'inition 1hall not contain". 

p. 15: In 1ection 6.4.3.2, in the pa.ra.gra.ph tha.t follovs Example 2, cha.nge 
"by the index type. ·Then the values" to "by the index t:vpe; then the 
T&lue11 11 • 

I II 

p. 16: In the la.it llOTE of section 6.4.3.2 cha.nge "vhich, allov" to "wh;._\, allow • 

p. 19: In the pa.ra.gra.ph folloving the second note of 1ection 6.4.3.4 change 
11unpacked 1et designated the" to 11 un.packed 1et type desicriated the 11 • 

p. 57: In 1ection 6.8.3.10 a.dd the 1ynta.x 
tield-designa.tor-identifier s identifier. 

p. 35: In section 6.6.3.6 subpa.racra.ph {•} 
tion", 

definition: 
t' .,lJ-on~ .~ 

ccJ::f l2J. "'".~f. 
index-t:vpe-specifica.-

p. 37: In the third note of section 6.6.3.7 (fir1t note at top of pa.re) 
change "can not 11 to ca:nnot 11 • 

p. 36: 2nd pa.;qgra.ph from the bottom, replace \he.fir"t" bou,Jo-'-ottJ'TLfier '' b 
11afpll.e~ oc.c.urre.nc.es o+ -tl-e for.s-C ide,,t;.f,y-" n"J. rep la.Ce. "-tl\e sec""d ~w•-tt>&m F"IE~" 
I.. 11 qeplieJ occ.urre.-.ces of B.t. sec.cm& ule"'t;~,;,,-" · , . . " 

· ~ 1 ~ _L' / u z 3 c.l,, 1 L 'ch 15 L,st o-t-
52.. I -Ole ~,r:st r"r"{ror'I o~ se01<r><.. ..,, 0. • QN\~e.. W'll . I( ,.. . c"' + " .. ...,. ·-•- 15 -t!.e Lis"t o~ ac..+ua.t-parn..,e:k>rs • 

ac.tua. - pan:u"e ers o ri1c:n 

In 6.4.1, pa.ra.cra.ph 2, the phrase "it1 type-denotar" i1 poor; cha.nge to 
"th• type-denoter of th• type-definition" 

In 6.6.1, delete the first pa.ragraph; th• rirst 1entence 11 mea.ningless, 
the second i1 redunda.nt (see 6.2.3,3). 

In 6,.6,·1, pa.ragraph 3, change "tbe the" to "the". 

In 6.6.1, clarify the mea.ning of paracraph 4 by cha.nging "in the 1ame 
procedure-and-function-dela.ration-pa.rt" to "closest-containad by the 
procedure-a.nd-function-declara.tion-pa.rt close1t-conta.ininc the procedure-

hea.dinc". 

In 6.6.1, paragra.ph 5, cha.nee "a.uocia.tea" to "shall associate". 

In 6.6.2, delete pa.ra.cra.ph 1; the first sentence is aea.ningless, the second 
ia Hdunda.nt (He 6.2.3.3). 

In 6.6.2, pa.ra.craph 3, cha.nge "the the" to "the". 

In 6.6.2, clarify the mea.ning of paracraph 4 by changing "in the 1a.me 
prcftledure-and ·runction-decla.ration-pa.rt" to "closest-conta.ined by the 
procedure-and-function-pa.rt cloaef;-conta.Xllg the function-baa.ding". 

In 6.6.2, paragraph 5, change "associa.tes 11 to 11 sha.ll associate". 

-0 
;:,,. 
<.n 
n 
:i=
r 
z: 
JTI 
:,;: 
<.n 

~ 
N ...... 

:i=
-0 
:;o 

r 
~ 

...... 
t..D 
00 ...... 

-0 
)> 
Gl 
m 

'-I 
-"' 



1 

Comment on 4. DEFINITIONAL CONVENTIONS 

Status: Error 

Problem: Definition o! "a y containin( an x" de!inH .a y to be an x. 

Prqpoaed Change: 

Revord definition to read "a y containin( an x: refers to any y from vhich 
an x is directly or il>directly derived." 

Justification: 

The proposed wording defines a y to be a y. 

Comment on ISO 2nd DP 

Status: Editorial 

Problem: 

In previo~s drafts, appearances of a vprd-sYJflbol pr required identifier 
in the text were underlined yhen necessary to distinguish them from English 
vords. This underlines pave all disappeared in the s•cond DP. 

Pro?"sed Change: 

Restpr~ the lln4erlines as in previous drafts or ~sea different typeface, 
The locations affected include: 

6.1.4 
6.4.2.2 
6.4.3.1 
6.4.3.5 
6.4.4 
6.6.5.2 
6.7.1 
6.7.2.2 
6.1.2.5 
6.8.3.4 

Justifi~ai:;ipn~ 

forward, external 
integer, real, Boolean, false, true, char 
p;i.cked · 
text 
1111 
read~ writ~ 
not 
11axint 
in 
the11, •lse 

Readability i• enhanced by \iistinguishing language 
elemen~s tro~ English vor~s. In many or these case~, ~p~ 
Hnte11ce ii gramatically incorrpct unless tpis distinctioq 
is aa,de, · · 

Comment 011 Note in 6,1.4 
Problem: 

In 6.1.4 1 the no'I:~ c~ot be deduce.!.. from the text of the 
1t~~~r~ ~4 is irrelevant. 

Status: Editorial 

Recoznmendation: Delete. the note in 6.1.4. 

CoD11Dent on 6.6.5.3 (I>ynamic allocation procedures) 

Status: Error 

Problem Statement: 

The description o! the aecond !orm o! dispose uses the 
const:nict "q""" vhere q represents a pointer expression, This use of "q""'" 
ia not defined by the dr&ft proposed Pascal standard because an 
identified"vari~ble can only be constructed from a ;pointer-variable and q~ 
is a pointer expression. 

Proposed Change to the Draft Proposal: Change "q~" in the description 
of the second !arm of dispose to "the pointer value of q". 

Comment on 6.10 (Programs) 

Status: Error 

Problem Statement: 

The dr&ft proposal requires that if the required variables input or output 
are specified as progra.m.-pa.rameters then these identifiers must be 
declared in the variable-declaration-part of the program block. This is a 
change from the Pascal User Manual and Report vhich states that the program 
parameters input and output must not be declared as variables in the 
program block. 

Proposed Change to the Draft Proposal: 

In th• first paragraph of section 6.10 change "each program parameter 
shall be declared" to "each progra."l! parameter shall have a defining-point 
as a va.riable-j.dentifier for the region that is the program-block". 

Comment on 6.8.3.5 Case-Statements 

Sta tu•: Error 

Problem: 

The la.t 1entence ot the first paragraph is contradicted by 
the~ second paragraph. Tl\e former states the requirement th1t one of the 
case-const~ts ,ball b. equal to the value of the case-index, aak.ing 
detection of violation mandatory (py 5.1), vhi1e the latter states the 
violation shall be an error, mo.king the detection optional (by 3.1). 

Proposed Change: Delete the second paragraph. 

Justification; 

As they stand, the tvo statements are obviously 
contradictory, The selection of mandatory detection ia dictated by 
consistency with the majority of current Pascal implementations, rigor, 
robustness, a.nd the desire to ~ able to prove progr~s correct. 

-0 
> 
C/J 
n 
> 
r 

= rn 
::=:: 
C/J 

""' N ,__. 

> 
-0 
;o 

r 
,.__, 
lD 
'.XJ ,__. 

CJ 
:» 
Gl 
m 
___, 
Vl 



~ 

Comment on Scope o! procedure and !unction header(s) 

Status: Change 

Problem Statement: 

The seope ot identitiers appearing in procedure and !unction headers 
is unnecessarily complicated by the 1eparation into two regions 
(and tvo 1copes). This allows programs vhich ~contradictory, 
and complicat~s an accurate description in re!erEnce manuals. J:t appears 
to have no compensating advantages. 

Example: 

!unction Func(Param 
type 

Integer ~ char; 
begin 

/body or tune/ 
end; 

integer) integer; 

In the example, the appearances o! 'integer' in the !unction header 
do not correspond to the type 'Integer' declared vithin the !unction. 
Specifically, type identitier1 (and the procedur~/tunction identifier) 
may be redefined vithin the procedure/function; parameter identifiers 
may not be rede!ined. 

Recommendation: 

Modify the scope rules so that any identifier tha.t appears in a. 
procedure/function (including the header) may have only one meaning 
throughout that procedure/function. 

A possible (and desirable) e!!ect o! this change vould be to prohibit 
redeclaration o! a procedure identi!ier immediately within the 
original procedure. (Note that this redeclaration i1 already 
prohlbited·for f'und;ion identifiers, as no assignment to th9 !unction 
va.lue could be made.) Note also that this vould restore the 
correctness o! 1tatements in s~ctions 10 and 11 o! the Revised Report: 
"The use or the [procedure/!unction) identifier •.• within its 
declara'tion implies recursive execution.'' 

Comment on 6.6.3.7 Con!ormant Array Parameters 

Status: .. Change 

Problem: 

Th• technique nevly introduced in dp7185 o! requiring the calling 
pro£edure to determine whether a given actual parameter is to be pa11ed 
by "reference 11 or "value" has 1evera1 problems: 
(1) It assigns a. new oemantic meaning to a 1yntax which tormarly had a 

di!!erant semantic meaning - it makes the parens signirica.nt in (AJ. 
(2) It i1 unlike any similar construct in the Pascal la.nguige de!ined by 

the 1tandard 
(3) Thi1 very departure trom the rest o! the language crea.te1 contu1ion 

!or the user and leads easily.to invalid programs •. 
(4) It creates a.n unnecessary limitation on implementations. 

Moreover, this problem is merely the latest in a long •tring o! 
di!!iculties.in getting a technically robust con!ormant-array
proposal. It is not clear that it is the last such problem, 1ince 
••veral di!!iculties vith the previous proposals remain unsolved in 
the current proposal. 

Th••• problems arise out or the attempt to put the con!ormant-array
•xtension into the 1tandard and, in particular, to do 10 in a strange 
fashion so that minimal impact on exi1ting implementations may be 
!elt. This approach has real penalties. We 1uggest tour alternatives 
below, the tirst one being our pre!erence: 

(l) 

(2) 

(3) 

(4) 

Remove the con!ormant array feature entirely and leave only the level 
0 language • rr•'t-
Allov both 11 va.lue '' and 11va.r 11 conf'ormant"i>~a.zneters, vi thout unusual 
restrictions, in exactly the same way that "v&.lue 11 and 11var" 
parameters or any other type may be speci!ied, admitting that this "'"'j 
require runtime specification of the 1iz• or the activation record in 
eome instances; or 
Delete the "value 11 confonnant-array-parameter construct entirely, 
and therevith the attempt to permit 1tring manipulation via con!ormant 
array parameters. 
Consider as an alternative !or turther •tudy document JPC/80-246 
(attached). 

Proposed Change: 

The above options are in order or pre!erence. If the !eature is deemed 
•o desirable that it cannot be removed, it must be made adequately robust. 

Justi!ication: 

(1) Some compilers may have a serious problem distinguishing A !rom (A) 
in an actual parameter 1pe,i::ification, nominally because o! the use ot 
bottom-up parsing mechanisms in th• expression parser. While one may 
a.rgue that margina.l coiipiling technique1 1hould not be encouraged, 
other1 may argue vith as much right that runtime storage management 
mechani1ms 1hould be su!!iciently robust to tolerate runtime 
1peci!ication ot the·activation record sizes. 

(2) Con1ider the procedure WCRKON defined to produce an array Y by 1ome 
activity on the elements o! array X, tor example, transpos.iion. With 
!ixed array types, the procedure vould look like: 

type vector • array (1 .. 50) or reo..() 

procedure WCRKON ( X: vector; var Y:vector); 
Tar i: 1 .. 50; 

begin 

end; 

tor i :• 1 to 50 do 
Y[i) :• X[51 - .iJ; 

a.nd i! A is a vector, then WORKON (A, A); can be expected to transpose 
A over itsel~ correctly. But i! a con!ormant array 1chema i1 used: 

procedure WORKON rra.r X, Y: array [lo .. hi: integer) ot real); 
then WO~A, A) vill !ail 1trangely, a.nd WORKON ((A), A) is required. 

The annoying thing about this failure is that the latter procedure i1 
the one 'lhich i1 expected to be put in a 1ource library to be copied 
into the user program and u1ed vithout othe~ than black-box 

-0 
;x,. 
(/) 

n 
;x,. 
r 
z: 
rn 
"". 
(/) 

"*' N 
....... 

> 
-0 

"" 
.'. 
....... 
lD 
00 
....... 

-0 
> 
"' m 
......, 
en 



1 

documentation. The problem vith the proposed syntax ia that the 
procedure cannot protect itael! from misuse - it must depend on the 
caller to use it correctly. And yet the avoved intention of the 
construct in the first place vas to permit the construction o! 
procedure lilllries which vere •••entially independent of the types in 
the calling program. 

(3) The proposal eliJninates a desirable implementation method. The 
proposal requires the calling program to allocate the copy o! the 
variable, vhere for code economy the implementor may prefer the called 
program do so. 

(4) A number o! objections to con!ormant array parameters a1 pr•vioualy 
specified still stand aa objections to the current proposal: 

(a) They emphasize structural compatibility o! types, a phenomenon 
which is avoided in the theoretical atudies of Pascal and in the draft 
proposed standard, in each case vith great deliberation. Several 
other proposed modifications to permit atructural compatibility of 
anonymous types have been firmly rejected on the basis of the 
iJnportance of type identification and name-compatibility o! types. 
This feature is deemed to be o! auch value that it• consistency vith 
such cherished characteristic• o! the language is of.no consequence. 

(b) Con!ormant array 1chemas provide no method o! construction of a 
type-denoter !or the types they represent. ~ a consequence, no 
related compatibilities can be specified, aa betveen arrays and 
vectors, !or example, and ouch compatibilities ao may be r•quired in a 
given procedure 11Ust be checked by user code at runtime. 

(c) The expectation that many procedurea using con!ormant array 
parameters vill be included from oource libraries creates a real 
problem in the intelligent UH o! the "ordin&l-typa-identi!ier" in the 
index·-typa-1peci!ication. Since such type-identifiers vould in 
most cases be limits on the capabilities or the procedure, and vould 
have to be source-included in a program which bas no other use for 
~hem, it i• likely that in the average installation the ordinal-typa
identi!ier vould usu&lly degene,,.te to integer. Thus in most cases, 
an7 limitations the procedlire really has must be protected by uoer 
code runtime checks. 

(d) Because o! the con!ormability.ruleo, the UH of "ordinal-typa
identi!ier" doesn't prevent the oyotem from ho.ving to perform 
runtime checks for the compatibility o! index-type-specifications. 
Consider: 

type rglO •·1,.10; rg20 • 1 •• 20; 
var A: array[rglO) of real; 

B: array,[rg20) o! re&l; 
procedure P(.\\li: array [lo •• hi:rg20) o! real); 

procedure. cic"vAR. Y:ci.n-a.j no .. h.'..:rj.10] ofr11ctC)j 

I! procedure P contains the otatement Q(X); 
then P(A); io valid, but P(B) is invalid. Andi! the call on Q io 
conditional, e.(. i! h~lO then Q(X); 
then even P(B) io valid, but the proof io in the ta~ - you !ind out 
at run_time. So the system has to perform the runtime check, or oay 
that it doesn't, o! couroe. 

Conuaent on 6.6.3.7 Con!o:nnant-array-parameters (p. 37) 

Statue: Error 

Problem: 

The beginning of the paragraph !olloving the first note on page 37 
contains an •laborate •pacification which reduces to nothing of value. 

-:- It contains at lea.st one incorrect occurrence ot 11not" in 11not a 
!actor· that i1 not a variable-acceu." It clearly does not represent 
the author'• intent. 

Proposed Change: 

In the paragraph folloving the first note on page 37, delete the !irst 
sentence and the beginning of the second sentence Up to 11 expression11 , 

and replace them vith: 
"Tne actual-parameter shall be an expression. If the actual-parameter 
is not a variable-access," ... 

Justification: 

The only English-language parse o! the first sentence yields: 
"The actual-parameter shall be either (a) a variable-access, or 
(b) an expression vhich is.not denoted by a factor." (The clause 

11not a f'a.ctor that is not a. variable-access 11 translates to: 11 i! 
it is a !actor then it must be a variable-access", which i1 alloved 
by the first spec.) 

Unfortunately, the only expressions alloved under (b) are those which 
contain rela~ional-ope.rators, a.dding-operators, or 
17"' 1 ~iplying-oparators, none o! which can yield a value o! array-type 
except by extension to the propos'ed standard. Moreover, the 
recommendation in the t'olloving ~ote, that a. "value" pa.ranu~:ter can be 
constructed by the form "(A)" conflicts vith the otated requirement, 
because the :fom 11 (A)" is a. factor \lhich is not a. va.ria.ble-access. 
So it is very unlikely that this restriction vas intended as vritten. 

It is not difficult to allov the gener&lization to "expression", oince 
the conformability requirement vill eliminate aost possible productions 
and leave exactly three possibilities vitbin the proposed standard: 
variable-access, character-otring, and "(variable-access)". (It also 
&llovs any number o! redundant parentheses around any of the three 
possibilities.) It is not clear whether the author intended to 
prevent character-string as a possibility, but it seems unnecessary to 
do 10. Character-string parameters present no difficulty to the 
compiler-vriter and considerable &dvantage to the user, vhereas the 
form (A), vhich vas clearly intended, causes additional headaches for 
the compiler-vriter and the author o! this otandard. 

It ohould &lac be noted tha.t the generalization to "expreseion" 
implementations which support array arithmetic or array-valued 
!unctions to be included automatically vithout t'urther local 
aodi!ic&tions to the con!ormant-array-parameter rules. 

allovs 

" )> 
(/) ....., 
)> 

' z 
rn 
::e:: 
(/) 

'>!: 
N ,_. 

)> 

" "" 
' ' ,_. 
<D 

"° ,_. 

" ,, 
GI 
rn 

"-l 
"-l 



, 

Colll!1lent on 6.6.3.7 Confonnant-o.rray-pa.rameters (p. 37) 

Status: Error 

Problem: On p&ge 37 in the second p&ragraph after the second note, 
beginning "If th• actual-p&rameter io an exprHsion whose value ia denoted 
by a variable-access~ 11 the condition given is incorrect in two ways: 

(l) 

(2) 

The e?'Pression vhich is a variable-access is a~'k~s~t\-< 
expression whose value is denoted by a variable-access.1l'Iimitations 
•hould not be applied, •ince the rule above specifies that the 
para.meter shall be.po,. ssed 11by reference" in this case. 

When the actual-para.meter is an indexed-variable, the variable-access 
that is the actual-parameter is never the variable-access ~hat 
closest-contains the confonnant-array-para.meter identifier -- the 
array-variable is. 

Propcsed Change: 

At the end of the first paragraph of 6.6.3.7 (p.35), add: 
11 A parameter-identifier ao defined shall be designated a confonnant
array-par3.meter. " 

At the end or the paragraph at the top of page 37, just before the note, 
insert: 
"The type denoted by the type-identifier contained by the con!onnant-array
schema in a conformant-a..rray-parameter-apecification shall be designated 
the fixed-component-type o! the confonnant-o.rray-parameters defined by that 
con!onnant-array-pa.rameter- spec i!ica ti on, " 

Replace the second paragraph after the second note on page 37 with: "I! the 
actual-parameter is not denoted by a variable-access and the 
actual-parameter contains an occurrence of a conformant-a..rrajq>arameter, 
then for each occurrence of the confonna.nt-array-parameter contained by the 
actual-para.meter expression, either 
(a) +he occurrence or the confonnant-array-parameter shall be contained by 

a function-designator contained by the actual-parameter expression, or 
(b) the occurlence of the confonnant-array-parameter shall.be contained by 

an indexed-variable contained by the actual-parameter expression, such 
that the type of that indexed-variable is the fixed-component-type of 
the confonnant-a.rra.~ameter. 

Justification: 

(l) I! the actual-parameter is an expression whose value is denoted by & 
va.ri_~ble-a.ccess, it~ \-Ahe form V 1 whereas the expression the author 
wants to limit has the !onn (V), because the !onner is p&ssed by 
reference (and therefore is no problem), but the latter is passed by 
value, and its siz.e must be known at compile-time. 

(2) The idea is that i! the actual-parameter contains & formal p&rameter 
from a higher-level activation and that formal parameter is itself & 
con!ormant-array-parameter 1 we vant to be sure that we are not 
required to pass on something of unknown length, unless ve can p&s• it 
by reference. Unfortunately, the variable-access which 
Ct£1!3•t-co9ta~ ~~ C?~~ant1,~~arameter is the ~ariable-&cce11 
2>r .... tli:'"~~i~bie-:cce~d·,,n1chv-~~°'tne &c't'1g_rt~1'lnei'if.~ e_ 

(3) Ragr.itably, there is no good vay to 1pacify the particular •yntactic 
entitY which nay not contain a con!o:nnant-a.rray-parameter unless it is 
adequately subscripted. Consider the descent for (A[I]): expression, 
•imple-expression, term., !actor, (parens) expression, 
simple-expression, term, factor, variable-access, component-variable, 
indexed-v4lriable, (a) array-variable, variable-access, 
entire-variable, variable-identifier, identifier; (b) (brackets) 
index-expression, expression,... It is easy to leap to the 
conclusion that indexed-variable i1 the target entity, but note the 
ancestral tree you have to give to distinguish the one you mean from 
the-possible occurrence of another one in the index-expression. 

The propcsed change discards this approach in favor or a much more 
clobal, but apparently adequate, limitation. The weakness is that the 
propcsed change assumes that there can be no legal operators on 
confonnant-array-para.meters per 1e 1 only on the fixed-component-type. 
or course, it is always pcssible !or the conformant-array-parameter 
to be passed to a function used in the computation o! some value in 
the actual-paraJDeter expression. So option (a) allows this, notin1 
that the con!onnant-array-parameter will have to satisfy the usage 
co,.,raints as an actual-parameter to that function. 

(4) Note that the changes contain tvo insertions to define tenns so 
that the restriction on actual parameters is comprehensible. They a.re 
not •trictly necessary, but the existing vording for 
"confonnant-array-parameter" requires an additional clause: 
"defining-occurrence tor the block vhich contains the 
actual-parameter ..• ". The existing (a) and (b) could be combined 
into a replacement for the proposed (b), and thus remove the need !or 1 
defining "fixed-component-type", leaving as much of the existing teX't. 1 a.nd 
as little comprehensibility, as pcssible. 

Comment on FOR statements 

Status: Change. 

Problem: DP7185/second edition changes the otatus from error to 
requirement in 6.8.3.9 for assigning-references vithin a for-1tatement. 
This may cause difficulties for some implementations. Consider 

procedure p; 
var i: integer; j: integer; 
function !: integer; 
begin 

t :s O; 
i :• l 

end; 
begin 

for i :: l to 10 do j := f 
end 

Without flov analysis or other relatively expensive mechanisms it is 
very difficult to detect the modification of i within f, This problem 
is very difficult in general and the space-overhead in compilation can be 
a burden. 

Propcsed Change: In 6.8.3.9, paragraph 2, replace sentence 3 vith: 
Neither the statement of a for-statement nor any procedure
e.nd-f'unction-declaration-part of the block that closest-contains 
a !or-statement shall contain a statement threatening the 
variable denoted by the control-variable of the !or-statement. 

-0 
:P 
(/) 

n 
:P 
r 
z 
rn 
~ 
(/) 

""' N ..... 

:P 
-0 
::0 

~ 
..... 
ill 
:xi ..... 

-0 
)> 
G) 

m 

" :xi 



1 
And a nev paragraph to 6. 8. 3-9: 

A statement S shall be designated as threatening a variable 
V if one or more of the !olloving is t:nie. 
{a) S is an assignment-statement and V i1 denoted by the 

variable-access of .S; 
·(b) S contains an actual va.riable parameter vhich denotes V; 
{c) S is a procedure-statement that specifies the activation 

of the required procedure read or the required pro·cedure 
readln, and V is denoted by an actua.l parameter contained by 
S; 

(d) S is a for-statement and the control-variable of S denotes V. 

Justification: 

The present restrictions a.re unnecessarily complex and 
costly to enforce; as a consequence implementations are likely to not 
enforce them. It i1 preferable from the user'• point of viev tha.t such 
parts of the language be enforced to promote the detection of programming 
errors and to a.void the crea.tion of non-conforming programs. The proposed 
change is simpler to understand, more likely to be enforced, and in 
addition to the above a.dvantages for users, allovs the removal of run-time 
checks from for-statement loops. 

Comment on section 6.Y,.2.3 (Procedure-statements) a.nd section 6,9 (Input 
a.nd output 

Status: Error 

Problem Statement: Th• non-terminal symbols read-parameter-list, 
readln-parameter-list, vrite-pa.rameter-list and writeln-parameter-list 
are never used in other syntax productions. 

17opoaed Change to the Dre.ft Proposal: 

In 1ection .6.8.2.3 add the ~allowing to the end of the first paragraph: 

The procedure-identifier in a procedure-statement containing a rea.d
pa.rameter-list shall denote the required procedure read; the 
procedure-identifier in a procedure-statement containing a 
rea.dln-pa.rameter-list shall .denote the required procedure readln; 
the procedure-identifier in a. procedure-statement containing a 
write-parameter-list shall denote the required procedure write; the 
procedure-identifier in a procedure-statement containing a vriteln
parameter-list shall denote the requir~d procedure vriteln. 

In the same section modify the definition of procedure-statement to read: 

procedure-statement 
procedure-identifier 

( I actual-parameter-list] I 
read-parameter-list I 
readln-parameter-listl 
write-parameter-list I 
writeln-parameter-list ) • 

Comment on non-existence ot applied occurrences 

Sta.tus: Error 

Problem: In subcla.use 6.2.2, the vord identifier is used vith {a.t lea.st)· 
four different meanings. In 6.2,2.1, it conforms to tho {syntactic) 
definition given in 6.1.3. In 6.2.2.5, it refers to homonyms: tvo 
dif_ferent 1yntactic identifiers having identical orthography but dii°erent 
deriva.tions and meanings. In 6.2.2.7, there is the synta.ctic aeaning a.s 
-ll as the meaning of homograph: having identica.l orthography. Then in 
6.2.2.9 it#untena.ble. To correct it, remove all usa.ges of identifier {and 
label) tha.t conflict with the definition given in 6.1.3. 
~ do w<tn -01. set o.\ 7-. ;de,..rl:;!i:er.s. Sud\ C<MoVlJsiovt 1..9 

·oposed change: 

Replace 6.2.2.5 by 

When an identifier or label has a defining-point for region A and another 
identifier or la.bel having the same spelling has a defining-point for 1ome 
region B enclosed by A, then region B and all regions enclosed by B sha.ll 
be excluded from the scope of the defining-point for region A. 

Replace 6.2.2.7 by 

The scope of a defining-point of an identifier or label sha.11 include no 
defining-point of a.nether identifier or label having the same spelling. 

In 6.2.2.8, change "a.11 occunences Of· that identifier or label sha.11 be 
designated applied occurrences 11 to 11 each occurrence ot an identifier or 
label having the same spelling shall be designated a.n applied occurrence 
of the identifier or label of the defining-point". 

In 6.2.2.9, change "a type-identifier may have an applied occurrence in 
the domain-type" to "a.n identifier ma.y have a.n applied occurrence in the 
type-identifier of the doma.in-type". 

Justification: Without this change there a.re no applied occurrences. 

Comment on File Handling Procedures (6.6.5.2, 6.9.2, 6.9.3, 6.9.4, 6.9.5) 

Status: Error 

Probl .. Statement: 

Section 6.6.5.2 defines read{f,v) to be equivalent to: 
_ begin v :• r~; get{!) end 

andvrite(!,e) to be equivalent to: 
begin r~ :• e; put{!) end 

The P.'•f"l'ltl q(4ftJ(ii"'&~en conta.ins a. note ma.king it clear tha.t rea.d is 
equ±vli.lent to the specified compound statement a.nd not to a. procedure 
vhoH bod:y is the compound statement. 

Consider the following variable decla.rations: 
var 

ta : arra.y [l • • 10 J of file of integer; 
!text: a.rray (0 •• 256] of text; 
a : arra.y [1 •. 10] of rul; 
i : integer; 
c : cha.r; 

-0 
):> 
en 
n 
):> .--
z: 
rn 
:4 
en 

"" N ,_. 

> 
-0 

"° 
['" 
,_. 
t.D 

"" ,_. 

-0 
)> 
Ci) 

ITT 

....., 
:.D 



i 

The proposed Pascal standard leads one to believe that read(ta[i],i) is 
equivalent to: 

begin i := fa[i]A; get(fa[i]) end 
and that vrite(fa[ta[2]A],i) is equivalent to: 

begin fa[fa[2]A)A :E i; put(ta[!a[2)A]) end 
By choosing the proper values for the variables i~• possible that th• above 
raad statement vill read an integer value from the tile butter of one tile 
but do the get operation on a ditterent tile. Likevise, the above vrite 
statement can do an assignment to the tile buffer ot one file but do the 
put operation on a different tile. The above behavior is even aore 
spectacular vben texttiles are used. The praposed Pascal standard does 
not seem to adequately define the effect ot: 

readln(ftext[ ord(ftext[i]A)+ord(eol.n(ttext[ord(c)))) ], i, a[i], c) 

The Pascal file handling procedures should not be defined 10 that the 
file variable being accessed can change during the procedure exe~ution. 

Proposed Change to the Draft Proposal: 

JPC believes that thie is an important correction to the Paecal standard. 
Hove~er, the complexity of the issue preclude• a reliable 1olution in the 
time allotted. The exact vording of the correction should be considered by 
ISO/TC 97/SC 5/WG 4. An example of an attempted correction follovs: 

In section 6.6.5.2 change the definition of read to: 

Let f be a file-variable and vl ..• vn be variable-acces~then the 
procedure-statement read(f,vl, .•. ,vn) shall access the file variable and 
establish a reference to that tile variable tor the remaining exec:wtion of 
the statement. The remaining execution of the statemeut ehall be 
equivalent to 

begin read(ff,vl); ••• ; read(ff,vn) end 

vhere ff denotes the referenced file. variable. 

Let f be a file-variable and v be a variable-access; thvn the procedure
et~ement read(f ,v) shall access the file variable and establish a 
reference to that file variable for the remaining execution of the 
statement. The remaining ~xecution of the statement shall be equivalent to 

begin v ;z ff~; get(!!) end 

llbere ff denotes the referenced file variable. 

In section 6.6.5.2 change the definition of vrite to: 

Let f be a file-variable and el ... eD be expre"'1ons; then the procedure-
1tatement vrite(f,el, .•. ,en) shall access the file variable and establish a 
~~:~~·ence to that !ile variable for the remaining execution o! the 
statement. The remaining execution o! the statement shall be equivalent to 

begin vrite(ff,el); ... ; vrite(ff,en) end 

vbere ff denotes the referenced file variable. 

Let t be a file-variable a.nd e be an expression; then the procedure
statement vrite(f ,e) •hall access the file variable and establish a 
referenca to that tile variable for the remaining execution of the 
statement, The remaining execution of the vrite statement shall ba 

equivalent to 

begin ff~ !E •; put(ff) end 

where ff denotes the referenced tile variable. 

In section 6.9.2 change subp~raph (a) to: 

(a) read(!,vl, ..• vn) shall access the textfile variable and establish a 
reference to that textfile variable for the remaining execution of the 
statement. The remaining execution of the statement shall be 
equivalent to 

begin read(ff,vl); •.. ; read(ff,vn) end 

where !f denotes the referenced texttile variable. 

In eection 6.9.2 change subparagraph (b) to: 

(b) If v is a variable-accese possessing the char-type (or subrange 
there·on, read(! ,v) shall access the textfile variable and establish a 
reference to that taxtfile variable for the remaining execution o! the 
statement. The remaining execution of the statement shall be equivalent 
to 

begin v := ff~; get(ff) end 

vhere ff denotes the referenced textfile variable. 

In section 6.9.2 change the first sentence of aubparagraph (c) to: 

(c)~ If v is a variable-access possessing the integer-type (or subrange 
thereof), read(f,v) shall access the textfile variable and establish a 
reference to that textfile variable for the remainin& execution of the 
statement. The remaining execution of the statement shall cause the 
reading from the referenced textfile variable of a sequence of characters. 

In the last sentence of subparagraph (c) of section 6.9.2 change 
11 tbe buffer-variable !" does not" to "the buffer-variable o! the referenced 
textfile does not" 

In aection 6.9.2 change the firat and last eentences of aubparagraph (d) 
similiarly to the change of subparagraph (c). 

In section 6.9.3 change the definition of readln to: 

Readln(f,vl, ..• ,vn) shall access the textfile variable and establish a 
reference to that textfile variable for the remair.ing execution of the 
statement. The remaining execution of the statement shall be equivalent to 

b<!gin read(!f,vl, •.. ,vn); readln(ff) end 

vhere ff denotes the referenced textfile variable. 

In eection 6.9.4.l change the definition of vrite to: 

Write(f,pl, .•• ,pn) shall access the textfile variable and establish a 
reference to that textfile variable ror the remaining execution of the 
statement. The remaining execution of the statement shall be equivalent 
to 

begin vrite(ff ,pl); .•. vrite (ff,pn) end 

CJ 
)> 
(./) 

n 
)> 
r 

= rn 
::E 
(./) 

""' N .__.. 

;IO> 
-c: 
;:c 

[" 
,_. 
<.D 
:xi .__.. 

CJ 
)> 
Gl 
rn 

JO 
0 



~ 
vhere rr denotes the referenced textfil• vari&ble. 

In section 6.9.5 chenge the definition of vriteln to: 

Writeln{f,pl, ... ,pn) shall &ccess the textfile variable and establish & 
reference to that textfile variable for the remaining execution of the 
1tatement. The remaining execution of the statement 1h&ll be equivelent· 
to 

begin vrite(f!,pl, ... ,pn); writeln(rr) end 

vhere ff denotes the reference textfile variablP. 

Schema Array Proposal 

USA Contribution on Schema Arrays for Pascal 

Abstract 

ATTACHMENT H 
PART 2 

Tb.is proposal introduces a new concept into Pascal - the schema. Once 
defined it solves the same problem that conformant arrays attempted to 
address. The principle advantage with this mechanism is that it provides a 
broader base on which to build; it resolves many of the problems found 
with conformant arrays and offers the opportunity to provide other fea
tures in the future should the need be determined. 

The problem addressed by conformant arrays is one of how to pass arrays 
into a procedure or function in such a way that the bounds of the array are 
provided by the actual parameter - rather than by the formal parameter. 
This function is very desirable in the context of being able to write 
generic procedures and functions. 

This proposal will be based upon X3J9/80-l92 with references to conformant 
arrays omitted. 

Overview 

A schema can be thought of as a collection of types; each member of the 
collection is related to the other members in that they each have the same 
overall structure. The structure of e"ach type is that of an array with the 
same component type. However, each array has a different index-type. 

We permit a para.meter of a procedure or function to specify that it will 
accept any actual para.meter whose type is a member of a specified schema. 
In this way we permit the procedure or function to operate on a number on 
values with different types, although only from the same schema. 

Proposal 

In section 6.2. 1 modify the production for type-definition-part: 

type-definition-part = 

Effect 

[ "type" ( type-definition I schema-definition ) ";" 
{ ( type-definition I schema-definition ) ";" } ] . 

This says that the type-definition-part of a block is composed of any num
ber of type and schema definitions. 

Modify the production in section 6.4.1 for a new-type: 

new-type = new-ordinal-type I new-structured-type 
new-pointer-tYPe J discriminated-schema . 

Effect 

This specifies thai: a new-type may be created by any of the existing means 
in Pascal or by selecting one of the members of a schema. 

Add a section between 6.4 and section 6.5: 

6.x Schema-definitions 

6.x.l General. A schema-definition shall introduce an identifier to 
denote a schema. A schema defines a collection of new-types whose ~ype
denoter is a discriminated-schema. 

schema-definition 

identifier formal .. discriminant-part "=" array-schema • 

formal-discriminant-part = 
11 (" discriminant-specification 
{ 11 ;" discriminant-specification } 11 ) 11 • 

discriminant-specification = 
identifier-list ":" ordinal-type-identifier 

array-schema = [ 11packed" ] "array" 11 [" schema-index-type 
{ 11 ; 11 schema .. index-type ) 11 ] 11 "of" component-type . 

" '.):> 
U:> 
n 
> 
r 

z: 
rn 
::;;:: 
U:> 

"" N ...... 

> 
" ;:o 

["" 

...... 
'° :JO ...... 

" )> 

"' m 

;)() 

...... 



i 
schema-index-type = ( constant I discriminant-identifier 

11 " ( constant I discriminant-identifier ) • 

discriminant-identifier = identifier. 

schema-identifier= identifier. 

Tl:l:e occurrence of an identifier in a schema-definition of a type
definition-part shall constitute its defining-point for the region that 
is a block. Each applied occurrence of that identifier shall denote the 
same schema. Except for applied occurrences of the iden"t:ifier in a 
discriminated-schem.! as the domain-type of a pointer-type, the schema 
shall not contain an applied occurrence of l:he schema-definition. 

Effect 

The above definitions add the mechanism by which to define a schema. The 
leading identifier on the schema-definition (schema-identifier) becomes 
known. A schema may not have any references to itself except when used as 
the domain of a pointer; and in that case, it must only be used with the 
actual-discriminants (discriminated-schema). 'Ib.us, a schema has the same 
scope as a type declared at the same place. 

I 

Add a section after 6. x. 1 

6.x.2 Formal-discriminant-part. The formal-discriminant-part in a 
schema-definition shall define the formal-discriminants. The occurrence 
of a identifier in a discriminant-specification shall constitute its 
defining point as a discriminant-identifier for that region of the program 
that is the following array-schema. 

For every discrimina~t-identifier in formal-discriminant-part, there 
shall be at least one applied occurr.,-nce in the array-schema. The occur
rence of a discriminant-identifier in a schema-index of an array-schema 
shall specify that there is one type-denoter which is· a member of the 
schema for each allowed value of the discriminant-identifier such that all 
other schema-index values in 't.he schema are the same. 

Note: this implies that the number of type-denoters in the domain of the 
schema is the product of the number of values for each occurrence of each 
discriminant-identifier. 

Effect 

The formal-discriminant-part is used to associate identifiers with the 
schema so that the domain· (members of the schema) can be determined. Every 
iden~ifier used in the formal-dsicriminan't. must be used ae least once in 
the following array-schema. In the following example, SmallVect is a col
lection of ten type-denoters with indeX-'C.ypes no .. 111·, irO .. 2 11 , 

11 0 .. 10 11 • 

type 
Smallint = 1 •. 10; 
SmallVect(RighBound : Smalllnt) = 

array [ 0 •. HighBound J of Real; 

Add a section after 6. x .2 

6.x.3 Discriminated-schema. A discriminated-schema selects one of the 
members of a schema as a new-type. The discriminant-values are bound to 
their corresponding discriminant-specifications in the formal
discriminant-part for the schema. The number of discriminant values must 
be equal to the number of formal-discriminants and each value must be 
assignment compatible with the type of the corresponding formal
discriminant. 

discriminated-schema = schema-identifier actual-discriminant-part 

actual-discriminant-part = 11 (" discriminant-value 
{ 11 , 11 discriminant-value ) ) . 

discriminant-value = constant . 

A:ny schema designated packed and denotes an array-schema having its 
schema-index-type specifying its smallest value a constant whose value is 
1, and having as its component-type a denotation of the char-type, shall 
be a string-schema. A:ny new type specifying a discriminated-schema which 
is a string-schema shall be designated a string-type. 

Effect 

A discriminated-schema is a type-denoter selected from the collection of 
type-denoters in the schema. The v~lues given in the actual
discriminant-part are used (substituted) for the formal-discriminants in 
the array-schema. Thus the discriminated-schema: "Smal1Vect(7)" selects 
the member of the schema which is equivalent to (but not the same as) the 
array: 

array [ 0 .. 7 ] of Real 

A:n attempt to specify the schema as "SmallVect(ll)" will result in an 
error because the value 11 is not assignment-compatible with the type of 
HighBound. 

It must be noted that although a discriminated-schema is· equivalent. in 
structure to an array-type, it never the same (in the sense of type com
patibility). Moreover, two discrimina;ced-schemas that specify the same 
discriminant-values are not the same. In the following fragment V2 and V3 
have the same type, and V4, V6 'and V7 have the same type. 

type 
Tl = Smal1Vect(3); 
T2 = Smal1Vect(3); 
T3 =Tl; 

var 
Vl 
V2,V3 
V4 
vs 
V6 
V7 

Smal1Vect(3); 
Small Vect (3); 
Tl; 
T2; 
Tl; 
T3; 

.---------- ----·-·-----·----------i 

-0 
> 
(/) 

n 
> 
r 
:z: 
rn 
:>:: 
(/) 

"" N ...... 

> 
-0 
;;o 

.'. 
...... 
..D 
'.lC ...... 

-0 
:.-
"' rn 

"" N 



1 

Modify the production in section 6.6.3. 1 

formal-parameter-section = 
value-parameter-specification I 
variable-parameter-specification 
constant-parameter-specification I 
procedural-parameter-specification f 
functional-parameter-specification . 

Effect 

Th.is introduces constant-parameter-specification~ 

Modify the production in section 6.6.3. 1 

variable-parameter-specification = 
11var" identifier-list 11 :" 

(type-identifier f schema-identifier) 

Effect 

The modified production states that a variable may be passed into a proce
dure or function whose type-denoter is a member of a schema. When a 
schema-identifier is specified, then the parameter may be of any type 
which is a member of the schema. 

Add this production to section 6 .. 6.3. 1 

constant-parameter-specification 
"const11 identifier-list ": 11 schema-identifier . 

Effect 

A constant-parameter-specification is permitted only to be used with 
schemas and permits literal character-s'trings 'CO be passed efficieritly to 
a procedure or funC'tion. It also permits variables which are array-schemas 
to be passed as "read-only" variables. It should be possible to extend 
this concept to other types in the future if i't found to be desirable. 

Add this to the text Of section 6.6.3.1 

The occurrence of an identif ie~ in in the identifier-list of a 
constant.-parameter shall constitute its defining point as a 
read-only-variable for the region that is the block, if any, of which it 
is a formal-parameter. 

Effect 

All parame"ters thal: are specified Wi'th the const.an't mechanism are identi
fied as being read-only varaibles, this permits them to be limited to 
being factors within the block. 

I -, 

Add to section 6.6.3.3 

If the formal parameters are specified in a variable
parameter-specification in which there is a schema-identifier, the type 
possessed by the actual-parameter shall be a discriminated-schema desig
nating the same schema-identifier as the formal parameter or the actual
parameter shall be itself a parameter that was specified with the same 
schema-identifier; and the type possessed by the formal-parameter shall 
be distinct from any other type. 

Effect 

Th.is states that a formal parameter that was declared with a schema will 
only permit the actual parameter to be of type which is part of the same 
schema. A formal-parameter which is a schema may in turn be passed t:o as a 
variable-parameter utilizing the same schema. 

If the form of the parameter list includes an identifier-list, then all 
the actual parameters must be of the same type: this is true for schemas 
as well as other types. 

The following example adds two vectors, element by element, and returns 
the result in the first parameter. 

,--

procedure AddVectors(var A,B,C 
var 

i : natural; 
begin 

for i := 0 to B.HighBound do 
A[i] := B[i] + C[i] 

end; 

Add a section between 6.6.3.3 and 6.6.3.4 

SmallVect); 

6.6.3.y Constant parameters. The actual-parameter shall be an expression. 
The formal parameters that occur in a single 
constant-parameter-specification shall possess an array-type which is 
distinct from any other type. The type possessed by the actual-parameter 
shall be a discriminated-schema designating the same schema-identifier as 
the formal parameter or the actual-parameter shall be itself a parameter 
that was specified with the same schema-iden'tifier; or the actual
parameter must be a string-type and the formal parame'ter must designate a 
string-schema. 

For an actual-parameter that denotes a variable-access 1 there shall be no 
assigning-reference during the activation of the block of procedure or 
function 'to the actual-parameter. 

" ):> 
en 
n 
):> 
r-
z: 
rn 
::e: 
en 

'Ito 
N ...... 

):> 

" "" 
["" 

...... 
lD 
00 ...... 

" )> 

"' m 

"° '-"' 



, 

Effect 

This in'troduces a parameter mechanism into Pascal that: permits may no't. be 
altered during 'the acL.ivation of the associated procedure or function. Any 
express ion may be specified by the a.ct:.ual parame'ter 1 however the only 
expression 'tha't is not a variable-access will be a string li'teral. Thus, 
t:he mechanism achieves not only proteC"t.ion of the ac'tual-parameter but 
also permits literal strings to be specified. 

The method of passing the parameter may be chosen by the implementation, 
one sui't.able method may by passing an indirect reference in t:he parameter 
list. 

,-------------------~-----------------~ 

Modify the production in 6. 7 for a factor 

factor variable-access 
fUDction-designa'tor 
11 (" expression 11 ) 11 

schema-discriminant 

unsigned-constant 
set-constructor 
"not" facto"r 
read-only-variable 

schema-discriminant = parameter-identifier 
11 11 discriminant.-identifier . 

read-only-variable = variable-access • 

Effect 

Addition to factor is used to indicate that a factor may also be a 
schema-discriminant. 

r- ------------ - - ----1 

Add the production in 6.7 for a schema-discriminant 

schema-discriminant = variable-access 
11 11 discriminant-identifier 

Effect 

A schema-discriminant is used to determine tha"t· ac"tual-discriminants of 
the the actual-parameter. Because a factor can never appear as a target of 
an assignment, the discriminant may never be altered~ Ibe value of the 
discriminant could be thought of as a "read-only" value .associ~ted with 
the variable (or parameter). 

I -- - - -- ---------------------------------~ 

Example 

canst 
Me..xMatru = 100; 

typ1' 
Positive 
Mat:ru(M,N 

array[ 
Square(Len 

= 1. .Max.'1atru; 
: Positive) = 
1 •• M, 1. .N J of Real; 
: Positive) = Mat:ru(L,L); 

procedure Transpose (var M : Square ); 
var 

I,J 
R 

begin 

Positive; 
Real; 

for I := M.Len downto 2 do 
for J := I-1 downto 1 do 

end; 

begin 
R := M[I,J) 
M[I,J] i= M[J,I) 
M[J,I] := R 

end 

" > 
v: 
r. 
> 
r 

:z 
rr. 

"" (/") 

"' N 
J-0 

> 
-0 
::<:: 

[""" 

.,c; 
:io 

" )> 
·m 
m 

:io 
-i::-



IMPLEMENTATION NOTES ONE PURPOSE COUPON 

0. DATE 

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *J 

2. MACHINE/SYSTEM CONFIGURATION (*Any known limits on the configuration or support software required, e.g. 

operating system. *) 

3. DISTRIBUTION (*Who to ask, how it comes, in what options, and at what price. *) 

4. DOCUMENTATION (*What is available and where. *J 

5. MAINTENANCE (*Is it unmaintained, fully maintained, etc?*) 

6. STANDARD (*How does it measure up to standard Pascal? Is it a subset? Extended? How.*) 

7. MEASUREMENTS (*Of its speed or space.*) 

8. RELIABILITY (*Any information about field use or sites installed. *) . 

9. DEVELOPMENT METHOD (*How was it developed and what was it written in?*) 

10. LIBRARY SUPPORT (*Any other support for compiler in the form of linkages to other languages, source libraries, etc.*) 



-

(FOLD HERE) 
0~~-------------------------------------------------

1 i ! 
i 

I I ' 

Bob Dietrich 
M.S. 92-134 
Tektronix, Inc. 
P.O. Box 500 
Beaverton, Oregon 97077 
U.S.A. 

(FOLD HERE) 

NOIE: Pascal News publishes all the checklists it 
gets. Implementors should send us their checklists 
for their products so the thousands of committ~d 
Pascalers can judge them for their merit. Otherwise 
we must rely on rumors. 

Please feel free to use additional sheets of pap·er. 

PLACE 
POSTAGE 

HERE 

·IMPLEMENTATION NOTES ONE PURPOSE COUPON 



POLICY: PASCAL USERS GROUP (15-Sep-80) 

Purpose: The Pascal User's Group (PUG) promotes the use of the programming 
language Pascal as well as the ideas behind Pascal through the 
vehitle of Pascal News. PUG is intentionally designed to be non 
political, and as such, it is not an "entity" which takes stands on 
issues or support causes or other efforts however well-intentioned. 
Informality is our guiding principle; there are no officers or 
meetings of PUG. 

The increasing availability of Pascal makes it a viable alternative 
for software production and justifies its further use. We all 
strive to make using Pascal a respectable activity. 

Me1nbership: Anyone can join PUG, particularly the Pascal user, teacher, 
maintainer, implementor, distributor, or just plain fan. 
Memberships from libraries are also encouraged. See the 
ALL-PURPOSE COUPON for details. 

Facts about Pascal, THE PROGRAMMING LANGUAGE: 

Pascal is a small, practical, and general-purpose (but not all-purpose) 
programming language possessing algorithmic and data structures to aid 
systematic programming. Pascal was intended to be easy to learn and read by 
humans, and efficient to translate by computers. 

Pascal has met these goals and is being used successfully for: 
* teaching programming concepts 
* developing reliable "production" software 
* implementing software efficiently on today's machines 
* writing portable software 

Pascal implementations exist for more than 105 different computer systems, and 
this number increases every month. The 11 Implementation Notes" section of 
Pascal News describes how to obtain them. 

The standard reference and tutorial manual for Pascal is: 

Pascal - User Manual and Report (Second, study edition) 
by Kathleen Jensen and Niklaus Wirth. 
Springer-Verlag Publishers: New York, Heidelberg, Berlin 
1978 (corrected printing), 167 pages, paperback, $7.90. 

Introductory textbooks about Pascal are described in the "Here and There" 
section of Pascal News. 

The programming language, Pascal, was named· after the mathematician and 
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym. 

Remember, Pascal User's Group is each individual member's group. We currently 
have more than 3500 active members in more than 41 countries. this year Pascal 
News is averaging more than 100 pages per issue. 

,, 
0 --·· n 
'< 


