
3. APPLICATION PROGRAMMING

Introduction
This chapter deals with programming where the objective is to produce sets of
programs (applications) that will run on the SYSTEM V/68 operating system.

The chapter begins with a discussion of how the ground rules change as you
move up the scale from writing programs that are essentially for your own private
use (we have called this single-user programming) to working as a member of a
programming team developing an application that is to be turned over to others to
use.

There is a section on how the criteria for selecting appropriate programming
languages may be influenced by the requirements of the application.

The next three sections of the chapter deal with a number of loosely related topics
that are of importance to programmers working in the application development
environment. Most of these mirror topics that were discussed in Chapter 2,
"Programming Basics," but here we try to point out aspects of the subject that are
particularly pertinent to application programming. They are covered under the
following headings:

Advanced Programming deals with such topics as file and record locking,
interprocess communication, and the programming of
terminal screens.

Support Tools

Project Control Tools

covers the common object file format, link editor
directives, shared libraries, sdb, and lint.

includes some discussion of make and the Source
Code Control System (SCCS).

The chapter concludes with a description of a sample application called liber that
uses several of the components described in earlier portions of the chapter.

Application Programming Considerations
The characteristics of the application programming environment that make it
different from single-user programming have at their base the need for interaction
and for sharing of information.

MU43815PG/D2 3-1 12/01187

II

II

APPLICATION PROGRAMMING

Numbers
Perhaps the most obvious difference between application programming and
single-user programming is in the quantities of the components. Not only are
applications generally developed by teams of programmers, but the number of
separate modules of code can grow into the hundreds on even a simple
application.

When more than one programmer works on a project, there is a need to share
such information as:

• the operation of each function

• the number, identity, and type of arguments expected by a function

• if pointers are passed to a function, whether the objects being pointed are to
modified by the called function and what the lifetime of the pointed-to
object is.

• the data type returned by a function

In an application, there is an odds-on possibility that the same function can be
used in many different programs by many different programmers. The object
code should be kept in a library accessible to anyone on the project who needs it.

Portability

When you are working on a program to be used on a single model of a computer,
your concerns about portability are minimal. In application development, on the
other hand, it is often a desirable objective to produce code that will run on many
different operating systems. Some of the things that affect portability will be
touched on later in this chapter.

Documentation

A single-user program has modest needs for documentation. There should be
enough for the program's creator to recall how to use the program and what the
intent was in portions of the code.

On an application development project there is a significant need for two types of
internal documentation:

• comments throughout the source code that enable successor programmers to
understand easily what is happening in the code. Applications can be
expected to have a useful life of 5 or more years and frequently need to be
modified during that time. It is not realistic to expect that the person who
wrote the program will always be available to make modifications. Even if

MU43815PG/02 3-2 12/01/87

APPLICATION PROGRAMMING

that does happen, the comments will make the maintenance job a lot easier.

• hard-copy descriptions of functions should be available to all members of an
application development team. Without them it is difficult to keep track of
available modules, which can result in a function's being needlessly written
again.

Unless end users have clear, readily available instructions on how to install and
use an application, they either will not do it at all (if that is an option) or they will
do it improperly.

Language Selection
This section presents some of the considerations that influence the selection of
programming languages and describes two of the special-purpose languages that
are part of the SYSTEM V/68 environment.

Influences

In single-user programming, the choice of language is often a matter of personal
preference; a language is chosen because it is the one the programmer feels most
comfortable with.

An additional set of considerations comes into play when a language must be
chosen for an application development project.

Is there an existing standard within the organization that should be
observed?

A firm may decide to emphasize one language because a good supply
of programmers familiar with the language is available.

Does one language have better facilities for handling the algorithms
involved in the application?

One would like to see all language selection based on such objective
criteria, but it is often necessary to balance this against the skills of the
organization.

Is there an inherent compatibility between the language and the operating
system?

This is sometimes the impetus behind selecting C for programs
destined for SYSTEM V/68.

MU43815PG/D2 3-3 12101/87

II

II

APPLICATION PROGRAMMING

Are there existing tools that can be used?

If parsing of input lines is an important phase of the application,
perhaps a parser generator such as yacc should be employed to
develop what the application needs.

Does the application integrate other software into the whole package?

If, for example, a package is to be built around an existing data base
management system, there may be constraints on the variety of
languages the data base management system can accommodate.

Special-Purpose Languages

The operating system contains several tools that can be included in the category
of special-purpose languages. Three that are especially interesting are awk, lex,
and yacc.

The awk Utility

The awk utility scans an ASCII input file record by record, looking for matches to
specific patterns. When a match is found, an action is taken. Patterns and their
accompanying actions are contained in a specification file referred to as the
program.

The program can be made up of a number of statements. However, since each
statement has the potential for causing a complex action, most awk programs
contain only a few statements. The set of statements may include definitions of
the pattern that separates one record from another (a newline character, for
example) and of what separates one field of a record from the next (white space,
for example). It may also include actions to be performed before the first record
of the input file is read, and other actions to be performed after the final record
has been read. All statements between are evaluated, in order, for each record in
the input file. To paraphrase the action of a simple awk program, it would go
something like this:

Look through the input file.
Every time you see this specific pattern, do this action.

A more complex awk program might be paraphrased like this:

MU43815PG/D2 3-4 12/01/87

APPLICATION PROGRAMMING

First do some initialization.
Then, look through the input file.
Every time you see this specific pattern, do this action.
Every time you see this other pattern, do another action.
After all the records have been read, do these final things.

The directions for finding the patterns and for describing the actions can get
pretty complicated, but the essential idea is as simple as the two sets of
statements above.

One of the strong points of awk is that once you are familiar with the language
syntax, programs can be written quickly. They don't always run very fast,
however, so they are seldom appropriate if you want to run the same program
repeatedly on a large quantities of records. In such a case, it is likely to be better
to translate the program to a compiled language.

Using awk

One typical use of awk would be to extract information from a file and print it out
in a report. Another might be to pull fields from records in an input file, arrange
them in a different order and pass the resulting rearranged data to a function that
adds records to your data base. The sample application at the end of this chapter
contains an example of a use of awk.

The manual page for awk is in Section (1) of the User's Reference Manual. Chapter
4 in Part 2 of this guide contains a description of the awk syntax and gives
examples of ways in which awk may be used.

The lex and yacc Utilities

The lex and yacc utilities are often described together because they perform
complementary parts of what can be viewed as a single task: making sense out of
input. The two utilities also share the common characteristic of producing source
code for C language subroutines from specifications that appear on the surface to
be similar.

Recognizing input is a recurring problem in programming. Input can be from
various sources. In a language compiler, for example, the input is normally
contained in a file of source language statements. The operating system shell
language most often receives its input from a person keying in commands from a
terminal. Frequently, information coming out of one program is fed into another
where it must be evaluated.

The process of input recognition can be subdivided into two tasks: lexical
analysis and parsing. That's where lex and yacc come in. In both utilities, the

MU43815PG/D2 3-5 12/01/87

II

II

APPLICATION PROGRAMMING

specifications cause the generation of C language subroutines that deal with
streams of characters. The lex utility generates subroutines that do lexical
analysis, while yacc generates subroutines that do parsing.

To describe those two tasks in dictionary terms:

Lexical analysis has to do with identifying the words or vocabulary of a
language as distinguished from its grammar or structure.

Parsing is the act of describing units of the language grammatically.
Students in elementary school are often taught to do this with sentence
diagrams.

Of course, the important thing to remember here is that in each case the rules for
our lexical analysis or parsing are those we set down ourselves in the lex or yacc
specifications. Because of this, the dividing line between lexical analysis and
parsing sometimes becomes fuzzy.

The fact that lex and yacc produce C language source code means that these parts
of what may be a large programming project can be separately maintained. The
generated source code is processed by the C compiler to produce an object file.
The object file can be link-edited with others to produce programs that perform
whatever process follows from the recognition of the input.

Using lex

A lex subroutine scans a stream of input characters and waves a flag each time it
identifies something that matches one or another of its rules. The waved flag is
referred to as a "token." The rules are stated in a format that closely resembles
the one used by the operating system text editor for regular expressions. For
example, the notation:

[\t] +

describes a rule that recognizes a string of one or more blanks or tabs (without
mentioning any action to be taken). A more complete statement of the rule might
have this notation:

[\t] +

which, in effect, says to ignore white space. The statement carries this meaning
because no action is specified for when a string of one or more blanks or tabs is
recognized. The semicolon marks the end of the statement. Another rule, one
that does take some action, could be stated like this:

MU43815PG/D2 3-6 12/01187

APPLICATION PROGRAMMING

[0-9] + {
i = atoi(yytext);
return(NBR);
}

This rule depends on several things:

NBR must have been defined as a token in an earlier part of the lex source
code called the declaration section. (It may be in a header file which is
#include' d in the declaration section.)

The i is declared as an extern int in the declaration section.

A characteristic of lex is that things it finds are made available in a
character string called yytext.

Actions can make use of standard C syntax. Here, the standard C
subroutine, atoi, is used to convert the string to an integer.

What this rule boils down to is lex saying, ''Hey, I found the kind of token we call
NBR, and its value is now in i."

To review the steps of the process:

1. The lex specification statements are processed by the lex utility to produce a
file called lex.yy.c. (This is the standard name for a file generated by lex,
just as a.out is the standard name for the executable file generated by the
link editor.)

2. The lex.yy.c file is transformed by the C compiler (with a -c option) into an
object file called lex.yy.o that contains a subroutine called yylex{).

3. The lex.yy.o file is link-edited with other subroutines. Presumably, one of
those subroutines will call yylex() with a statement such as:

while((token = yylex()) != 0)

and other subroutines (or even main) will deal with what comes back.

The manual page for lex is in Section (1) of the Programmer's Reference Manual. A
tutorial on lex is in Chapter 5 in Part 2 of this guide.

MU43815PG/D2 3-7 12/01/87

II

APPLICATION PROGRAMMING

Using yacc

Subroutines using yacc are produced by pretty much the same series of steps as
lex:

1. The yacc specification is processed by the yacc utility to produce a file
called y.tab.c.

2. The y.tab.c file is compiled by the C compiler, producing an object file,
y.tab.o, that contains the subroutine yyparse(). A significant difference is
that yyparse() calls a subroutine called yylex() to perform lexical analysis.

3. The object file y.tab.o may be link-edited with other subroutines, one of
which will be called yylex().

There are two things worth noting about this sequence:

1. The parser generated by the yacc specifications calls a lexical analyzer to
scan the input stream and return tokens.

2. While the lexical analyzer is called by the same name as one produced by
lex, it does not have to be the product of a lex specification. It can be any
subroutine that does the lexical analysis.

What really differentiates these two utilities is the format for their rules. As noted
above, lex rules are regular expressions like those used by the operating system's
editors. Rules for yacc are chains of definitions and alternative definitions,
written in Backus-Naur form, accompanied by actions. The rules may refer to
other rules defined farther on in the specification. Actions are sequences of C
language statements enclosed in braces. They frequently contain numbered
variables that enable you to reference values associated with parts of the rules.
For example:

ltokn. NUMBER

"" expr numb { .. = $1; }
expr ·+. expr { .. = $1 + $3; }

expr . -. expr { $$ = $1 $3; }
expr ... expr { $$ = $1 • $3; }
expr · / · expr { $$ = $1 I $3; } . (. expr •) . { $$ = $2; }

numb NUMBER { $$ = $1; }

MU43815PG/D2 3-8 12/01/87

APPLICATION PROGRAMMING

This fragment of a yacc specification shows:

• NUMBER identified as a token in the declaration section

• the start of the rules section indicated by the pair of percent signs

• alternate definitions for expr separated by the I sign and terminated by the
semicolon

• actions to be taken when a rule is matched

• within actions, numbered variables used to represent components of the rule:

$$ means the value to be returned as the value of the whole rule

$n means the value associated with the nth component of the rule, counting
from the left

• numb defined as meaning the token NUMBER. This is a trivial example that
illustrates that one rule can be referenced within another, as well as within
itself.

As with lex, the compiled yacc object file will generally be link-edited with other
subroutines that handle processing that takes place after - or even ahead of -
the parsing.

The manual page for yacc is in Section (1) of the Programmer's Reference Manual.
Chapter 6 of this guide contains a detailed description of yacc.

Advanced Programming Tools
Chapter 2 described the use of such basic elements of programming as the
standard 110 library, header files, system calls, and subroutines in the SYSTEM
V/68 environment. This section introduces tools that are more apt to be used by
members of an application development team than by a single-user programmer.
This section contains material on the following topics:

• memory management

• file and record locking

• interprocess communication

• programming terminal screens

MU43815PG/D2 3-9 12/01/87

II

II

APPLICATION PROGRAMMING

Memory Management
There are situations where a program needs to ask the operating system for blocks
of memory. It may be, for example, that some records have been extracted from a
data base and need to be held for further processing. Rather than writing them
out to a file on secondary storage and then reading them back in again, it is likely
to be a great deal more efficient to hold them in memory for the duration of the
process. (This is not to ignore the possibility that portions of memory may be
paged out before the program is finished; but such an occurrence is not pertinent
to this discussion.)

There are two C language subroutines available for acquiring blocks of memory,
both called malloc. One of them is malloc(3C); the other is malloc(3X). Each has
several related commands that do specialized tasks in the same area. These
commands are:

• free-to inform the system that space is being relinquished

• realloc-to change the size and possibly move the block

• calloc-to allocate space for an array and initialize it to zeros

In addition, malloc(3X) has a function, mallopt, and a structure, mallinfo. The
mallopt function provides control over the space allocation algorithm. The
mallinfo structure provides the program with information about the usage of the
allocated space.

The malloc(3X) subroutine runs faster than the other version. To load it, you
specify:

-lmalloc

on the cc(l) or ld(l) command line to direct the link editor to the proper library.
When you use malloc(3X), your program should contain the statement:

#inc1ude <ma11oc.h>

where the values for mallopt options are defined.

See the Programmer's Reference Manual for the formal definitions of the two
mallocs.

File and Record Locking

The provision for locking files, or portions of files, is primarily used to prevent the
sort of error that can occur when two or more users of a file try to update
information at the same time. The classic example is the airlines reservation
system where two ticket agents each assign a passenger to Seat A, Row 5 on the 5
o'clock flight to Detroit. A locking mechanism is designed to prevent such

MU43815PG/D2 3-10 12/01/87

APPLICATION PROGRAMMING

mishaps by blocking Agent B from even seeing the seat assignment file until
Agent A:s transaction is complete.

File locking and record locking are really the same thing, except that file locking
implies the whole file is affected, while record locking means that only a specified
portion of the file is locked. (Remember, in the operating system, file structure is
undefined; a record is a concept of the programs that use the file.)

Two types of locks are available: "read" locks and ''write" locks. If a process places
a read lock on a file, other processes can also read the file but all are prevented
from writing to it (that is, changing any of the data). If a process places a write
lock on a file, no other processes can read or write in the file until the lock is
removed. Write locks are also known as "exclusive locks." The term "shared lock"
is sometimes applied to read locks.

Another distinction needs to be made between "mandatory" and "advisory"
locking. Mandatory locking means that the discipline is enforced automatically
for the system calls that read, write, or create files. This is done through a
permission flag established by the file's owner (or the super-user). Advisory
locking means that the processes that use the file take the responsibility for
setting and removing locks as needed.

Thus mandatory locking may sound like a simpler and better deal, but it isn't so.
The principal weakness in the mandatory method is that the lock is in place only
while the single system call is being made. It is extremely common for a single
transaction to require a series of reads and writes before it can be considered
complete. In cases like this, the term "atomic" is used to describe a transaction
that must be viewed as an indivisible unit. The preferred way to manage locking
in such a circumstance is to make sure that the lock is in place before any 1/0
starts, and that the lock is not removed until the transaction is done. That calls
for locking of the advisory variety.

Using File and Record Locking

The system call for file and record locking is fcntl(2). Programs should include
the line:

#include <fcntl.h>

to bring in the header file shown in Figure 3-1.

MU43815PG/D2 3-11 12/01187

II

APPLICATION PROGRAMMING

/• Flag Yalu•• acc•••ible to open(2) and fcntl(2) •/
/• (Th• f ir•t three can only be ••t by open) •/
#define O_llDONLY 0
#def.in• O_WRONLY 1
#define O_llDWR 2
#def in• O_NDELAY 04 /• Non-blocking I/O •/
#define O_APPEND 010 /• append (writea guaranteed at the end) •/
#define O_SYNC 020/• aynchronoua write option •/

/• Flag Yalu•• acc•••ible only to open(2) •/
#define O_CREAT 00400 /• open with file create (uae• third open arg)•/
#define O_TRUNC 01000 /• open with truncation •/
#define O_EXCL 02000 /• exclusive open •/

I• fcntl(2) requeata •/
#define F_DUPFD 0 I• Duplicate fild•• •/
#define F_GETFD 1 /• Get filde• flag• •/
#define F_SETFD 2 /• Set fildea flaga •/
#define F_GETFL 3 /• Get file flag• •/
#define F_SETFL 4 /• Set file flaga •/
#define F_GETLK 6 /• Get file lock •/
#define F_SETLK 6 /• Set file lock •/
#define F_SETLKW 7 /• Set file lock and wait •/
#define F_CHKFL 8 /• Check legality of file flag changes •/

/• file ••gment locking ••t data type - information paaaed to ayatem by user
•truct flock {

};

a ho rt
ahort
long
long
•hort
ahort

l_typ•;
l_whence;
l_•ta.rt;
l_len; /• len = 0 meana until end of file •/
l_ayaid;
l_pid;

I• file •egment locking typea •/
/• Read lock •/

#define F_llDLCK 01
/• Write lock •/

#define F_WRLCK 02
/• Remove lock(a) •/

#define F_UNLCK 03

Figure 3-1. The fcntl.h Header File

The format of the fcntl(2) system call is:

int fcntl(fildes, cmd, arg)
int fildes, cmd, arg;

The fildes is the file descriptor returned by the open system call. In addition to
defining tags that are used as the commands on fcntl system calls, fcntl.h

MU43815PG/D2 3-12 12/01/87

APPLICATION PROGRAMMING

includes the declaration for a struct flock that is used to pass values that control
where locks are to be placed.

The lockf Subroutine

A subroutine, lockf(3), can also be used to lock sections of a file or an entire file.
The format of lockf is:

#include <unistd.h>

int lockf (fildes, function, size)
int fildes, function;
long size;

The fildes is the file descriptor; function is one of four control values defined in
unistd.h that let you lock, unlock, test and lock, or simply test to see if a lock is
already in place. size is the number of contiguous bytes to be locked or unlocked.
The section of contiguous bytes can be either forward or backward from the
current offset in the file. (You can arrange to be somewhere in the middle of the
file by using the lseek(2) system call.)

There is an example of file and record locking in the sample application at the end
of this chapter. The manual pages that apply to this facility are fcntl(2), fcntl(5),
lockf(3), and chmod(2) in the Programmer's Reference Manual. Chapter 7 in Part 2
of this guide is a detailed discussion of the subject, with examples.

Interprocess Communications
Chapter 2 described forking and execing as methods of communicating between
processes. Business applications often need more sophisticated methods. For
example, in applications where fast response is critical, a number of processes
may be brought up at the start of a business day so that they are constantly
available to handle transactions on demand. This cuts out initialization time that
can add seconds to the time required to deal with the transaction. In transaction
driven systems, the normal mode of processing is to have all the components of
the application standing by waiting for an indication that there is work to do.

To meet requirements of this type, the operating system offers a set of nine
system calls and their accompanying header files, all under the umbrella name of
Interprocess Communications (IPC).

The IPC system calls come in sets of three: one set each for messages,
semaphores, and shared memory. These three terms define three different styles
of communication between processes.

MU43815PG/D2 3-13 12/01/87

II

APPUCATION PROGRAMMING

messages

semaphores

Communication is in the form of data stored in a buffer. The
buffer can be either sent or received.

Communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be contained
in an array whose size is determined by the system
administrator. The default maximum size for the array is 25.

shared memory Communication takes place through a common area of main
memory. One or more processes can attach a segment of
memory and, therefore, can share whatever data is placed
there.

The sets of IPC system calls are:

IPC get Calls

msgget
msgctl
msgop

semget
semctl
semop

shmget
shmctl
shmop

The get calls each return to the calling program an identifier for the type of IPC
facility that is being requested.

IPC ctl Calls

The ctl calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET), and removing (IPC_RMID) the values in data
structures associated with the identifiers picked up by the get calls.

IPC op Calls

The op manual pages describe calls that are used to accomplish the particular
operations characteristic of the type of IPC facility being used. The msgop
process has calls that send or receive messages. The semop process (the only one
of the three that is actually the name of a system call) is used to increment or
decrement the value of a semaphore, among other functions. The shmop process
has calls that attach or detach shared memory segments.

The sample application at the end of this chapter includes an example of the use
of some IPC features. The system calls are all located in Section (2) of the
Programmer's Reference Manual. Don't overlook intro(2). It includes descriptions of
the data structures that are used by IPC facilities. A detailed description of IPC,
with many code examples that use the IPC system calls, is in Chapter 9.

MU43815PG/D2 3-14 12101/87

APPLICATION PROGRAMMING

Programming Terminal Screens

The facility for setting up terminal screens to meet the needs of your application is
provided by two parts of the operating system. The first of these, terminfo, is a
data base of compiled entries that describe the capabilities of terminals and the
way they perform various operations.

The terminfo data base normally begins at the directory /usr/lib/terminfo. The
members of this directory are themselves directories, generally with single­
character names that are the first character in the name of the terminal. The
compiled files of operating characteristics are at the next level down the hierarchy.
For example, the entry for a Teletype 5425 is located in both the file
/usr/lib/terminfo/5/5425 and the file /usr/lib/terminfo/t/tty5425.

Describing the capabilities of a terminal can be a painstaking task. A good
selection of terminal entries is included in the terminfo data base that comes with
your computer. However, if you have a type of terminal that is not already
described in the data base, the best way to proceed is to find a description of a
terminal that comes close to having the same capabilities as yours and building on
that description. There is a routine (setupterm) in curses(3X) that can be used to
print out descriptions from the data base. Once you have worked out the code
that describes the capabilities of your terminal, you use the tic(lM) command to
compile the entry and add it to the data base.

The curses Package

After you have made sure that the operating capabilities of your terminal are a
part of the terminfo data base, you can use the routines that make up the
curses(3X) package to create and manage screens for your application.

The curses library includes functions to:

• define portions of your terminal screen as windows

• define pads that extend beyond the borders of your physical terminal screen
and let you see portions of the pad on your terminal

• read input from a terminal screen into a program

• write output from a program to your terminal screen

• manipulate the information in a window in a virtual screen area and then send
it to your physical screen

MU43815PG/D2 3-15 12/01/87

II

II

APPLICATION PROGRAMMING

The sample application at the end of this chapter shows how you might use
curses routines. Chapter 10 in Part 2 of this guide contains a tutorial on the
subject. The manual pages for curses are in Section (3X), and those for terminfo
are in Section (4) of the Programmer's Reference Manual.

Programming Support Tools
This section covers operating system components that, although part of the
programming environment, have a highly specialized use. Among them are such
things as:

• link edit command language

• Common Object File Format

• libraries

• Symbolic Debugger

• lint as a portability tool

Link Editor Command Language
The link editor command language is for use when the default arrangement of the
Id output will not do the job. (The default locations for the standard Common
Object File Format sections are described in a.out(4) in the Programmer's Reference
Manual.)

When an a.out file is loaded into memory for execution, the text segment starts at
location 0 and the data section starts at the next segment boundary after the end
of the text (typically Ox400000). The stack begins at lFFFFFF and grows to lower
memory addresses. Note that these numbers may vary in different hardware
configurations. ·

The link editor command language provides directives for describing different
arrangements. The two major types of link editor directives are MEMORY and
SECTIONS. MEMORY directives can be used to define the boundaries of
configured and unconfigured sections of memory within a machine, to name
sections, and to assign specific attributes (read, write, execute, and initialize) to
portions of memory. SECTIONS directives, among many other functions, can be
used to bind sections of the object file to specific addresses within the configured
portions of memory.

Why would you want to be able to do those things? Well, in most cases you
don't have to worry about it. The need to control the link editor output becomes
more urgent under two (possibly related) sets of circumstances.

MU43815PG/D2 3-16 12/01/87

APPLICATION PROGRAMMING

1. Your application is large and consists of numerous object files.

2. The hardware that your application is to run on is tight for space.

Chapter 12 in Part 2 of this guide gives a detailed description of the link editor
command language.

Common Object File Format
A knowledge of COFF is fundamental to using the link editor command language.
It is also good background knowledge for tasks such as:

• setting up archive libraries or shared libraries

• using the Symbolic Debugger

The following system header files contain definitions of data structures of parts of
the Common Object File Format:

<syms.h>
<linenum.h>
<ldfcn.h>
<fllehdr.h>
<a.out.h>
<scnhdr.h>
<reloc.h>
<storclass.h>

symbol table format
line number entries
COFF access routines
file header for a common object file
common assembler and link editor output
section header for a common object file
relocation information for a common object file
storage classes for common object files

The object file access routines are described below under the heaqing 'The Object
File Library."

Chapter 11 in Part 2 of this guide gives a detailed description of COFF.

Libraries

A library is a collection of related object files and/or declarations that simplify
programming effort. Programming groups involved in the development of
applications often find it convenient to establish private libraries. For example, an
application with a number of programs using a common data base can keep the
1/0 routines in a library that is searched at link edit time.

Prior to Release 3 the libraries, whether system supplied or application developed,
were collections of common object format files stored in an archive <filename.a) file
that was searched by the link editor to resolve references. Files in the archive that
were needed to satisfy unresolved references became a part of the resulting
executable.

MU43815PG/D2 3-17 12/01/87

II

II

APPLlCATIONPROGRAMMING

Beginning with Release 3, shared libraries are supported. Shared libraries
resemble archive libraries in that they are collections of object files that are acted
upon by the link editor. The difference, however, is that shared libraries perform
a static linking between the file in the library and the executable that is the output
of Id. · The result is a saving of space, because all executables that need a file from
the library share a single copy. Shared libraries are covered later in this section.

Chapter 2 described many of the functions that are found in the standard C
library, Ube.a. The next two sections describe two other libraries: the object file
library and the math library.

The Object File l,.ibrary

The object file library provides functions for the access and manipulation of object
files. Some functions locate portions of an object file such as the symbol table,
the file header, sections, and line number entries associated with a function.
Other functions read these types of entries into memory. The need to work at
this level of detail with object files occurs most often in the development of new
tools that manipulate object files. For a description of the format of an object file,
see 'The Common Object File Format" in Chapter 11. This library consists of
several portions. The functions reside in /lib/libld.a. They are loaded during the
compilation of a C language program by the ·I command line option, which
causes the link editor to search the object file library:

cc file-lld

The argument ·lld must appear after all files that reference functions in libld.a.

The following header files must be included in the source code:

#inc1ude <atdio.h>
#inc1ude <a.out.h>
#inc1ude <1dfcn.h>

MU43815PGID2 3-18 12101/87

APPLICATION PROGRAMMING

Function Reference Brief Description

ldaclose ldclose(3X) Close object file being
processed.

II ldahread ldahread(3X) Read archive header.

ldaopen ldopen(3X) Open object file for
reading.

ldclose ldclose(3X) Close object file being
processed.

ldfhread ldfhread(3X) Read file header of
object file being
processed.

ldgetname ldgetname(3X) Retrieve the name of
an object file symbol
table entry.

Id Ii nit ldlread(3X) Prepare object file for
reading line number
entries via ldlitem.

ldlitem ldlread(3X) Read line number entry
from object file after
ldlinit.

ldlread ldlread(3X) Read line number entry
from object file.

Id I seek ldlseek(3X) Seeks to the line number
entries of the object
file being processed.

ldnlseek ldlseek(3X) Seeks to the line number
entries of the object file
being processed given
the name of a section.

ldnrseek ldrseek(3X) Seeks to the relocation
entries of the object file
being processed given
the name of a section.

MU43815PG/D2 3-19 12/01/87

APPUCATION PROGRAMMING

Function Reference Brief Description

ldnshread ldshread(3X) Read section header of

II
the named section of the
object file being
processed.

ldnsseek ldsseek(3X) Seeks to the section of
the object file being
processed given the
name of a section.

ldohseek ldohseek(3X) Seeks to the optional
file header of the object
file being processed.

ldopen ldopen(3X) Open object file for
reading.

ldrseek ldrseek(3X) Seeks to the relocation
entries of the object file
being processed.

ldshread ldshread(3X) Read section header of
an object file being
processed.

ldsseek ldsseek(3X) Seeks to the section of
the object file being
processed.

ldtblndex ldtbindex(3X) Returns the long index
of the symbol table entry
at the current position of
the object file being
processed.

ldtbread ldtbread(3X) Reads a specific
symbol table entry
of the object file
being processed.

ldtbseek ldtbseek(3X) Seeks to the symbol
table of the object file
being processed.

MU43815PG/D2 3-20 12/01/87

Function Reference

sgetl sputl{3X)

sputl sputl{3X)

APPLICATION PROGRAMMING

Brief Description

Access long integer data
in a machine independent
format.

Translate a long integer
into a machine
independent format.

Common Object File Interface Macros (ldfcn.h)

The interface between the calling program and the object file access routines is
based on the defined type LDFILE, which is in the header file ldfcn.h (see
ldfcn(4)). The primary purpose of this structure is to provide uniform access to
both simple object files and to object files that are members of an archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure and returns
a pointer to the structure. The fields of the LDFILE structure may be accessed
individually through the following macros:

• The TYPE macro, which returns the magic number of the file. The number is
used to distinguish between archive files and object files that are not part of an
archive.

• The IOPTR macro, which returns the file pointer. The pointer was opened by
ldopen(3X) and is used by the input/output functions of the C library.

• The OFFSET macro, which returns the file address of the beginning of the
object file. This value is non-zero only if the object file is a member of the
archive file.

• The HEADER macro, which accesses the file header structure of the object file.

Additional macros are provided to access an object file. These macros parallel the
input/output functions in the C library; each macro translates a reference to an
LDFILE structure into a reference to its file descriptor field. The available macros
are described in ldfcn(4) in the Programmer's Reference Manual.

The Math Library

The math library package consists of functions and a header file. The functions
are located and loaded during the compilation of a C language program by the -I
option on a command line, as follows:

cc file-Im

MU43815PG/D2 3-21 12/01/87

II

II

APPLICATION PROGRAMMING

This option causes the link editor to search the math library, libm.a. In addition
to the request to load the functions, the header file of the math library should be
included in the program being compiled. This is accomplished by including the
line:

#include <math.h>

near the beginning of each file that uses the routines.

The functions are grouped into the following categories:

• trigonometric functions
• Bessel functions
• hyperbolic functions
• miscellaneous functions

Trigonometric Functions

These functions compute angles (in radian measure), sines, cosines, and tangents.
All these values are expressed in double precision.

Function Reference Brief Description

a cos trig(3M) Return arc cosine.

asin trig(3M) Return arc sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of
a ratio.

cos trig(3M) Return cosine.

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

Bessel Functions

These functions calculate Bessel functions of the first and second kinds of several
orders for real values. The Bessel functions are jO, j1, jn, yO, y1, and yn. The
functions are located in section bessel(3M).

MU43815PG/D2 3-22 12/01/87

APPLICATION PROGRAMMING

Hyperbolic Functions

These functions compute the hyperbolic sine, cosine, and tangent for real values.

Function Reference Brief Description

cosh sinh{3M) Return hyperbolic cosine.

sinh

tanh

Miscellaneous Functions

sinh{3M)

slnh{3M)

Return hyperbolic sine.

Return hyperbolic tangent.

These functions cover a wide variety of operations, such as natural logarithm,
exponential, and absolute value. In addition, several are provided to truncate the
integer portion of double-precision numbers.

Function Reference Brief Description

cell floor{3M) Returns the smallest
integer not less than a
given value.

exp exp{3M) Returns the exponential
function of a given value.

fabs floor{3M) Returns the absolute value
of a given value.

floor floor{3M) Returns the largest integer
not greater than a given
value.

fmod floor(3M) Returns the remainder
produced by the division of
two given values.

gamma gamma{3M) Returns the natural log of

MU43815PG/D2

the absolute value of the
result of applying the
gamma function to a
given value.

3-23 12/01/87

II

II

APPLICATION PROGRAMMING

Function Reference Brief Description

hypot hypot(3M) Returns the square root
of the sum of the squares
of two numbers.

log exp(3M) Returns the natural
logarithm of a given
value.

log10 exp(3M) Returns the logarithm base
ten of a given value.

matherr matherr(3M) Error-handling function.

pow exp(3M) Returns the result of a
given value raised to
another given value.

sqrt exp(3M) Returns the square root
of a given value.

Shared Libraries

As noted above, beginning with Release 3, shared libraries are supported. Not
only are some system libraries (libc and the networking library) available in both
archive and shared library form, but applications have the option of creating
private application shared libraries as well.

Shared libraries are desirable because they save space, both on disk and in
memory. With an archive library, when the link editor goes to the archive to
resolve a reference it takes a copy of the object file that it needs for the resolution
and binds it into the a.out file. From that point on, the copied file is a part of the
executable, whether it is in memory to be run or sitting in secondary storage. If
you have many executables that use, say, printf (which requires much of the
standard I/O library) you can be talking about a sizeable amount of space.

With a shared library, the link editor does not copy code into the executable files.
When the operating system starts a process that uses a shared library, it maps the
shared library contents into the address space of the process. Only one copy of
the shared code exists, and many processes can use it at the same time.

This fundamental difference between archives and shared libraries has another
significant aspect. When code in an archive library is modified, existing
executables are unaffected. They continue using the older version until they are
link-edited again. When code in a shared library is modified, all programs that
share that code use the new version the next time they are executed.

MU43815PG/D2 3-24 12/01/87

APPLICATION PROGRAMMING

Each process that uses shared library code gets its own copy of the entire data
region of the library. It is actually only the text region that is really shared; so
shared libraries may add space to executing a.out's, even though the chances are
good that they will cause more shrinkage than expansion. What this means is
that when there is a choice between using a shared library and an archive, you 3
shouldn't use the shared library unless it saves space. If you were using a shared
libc to access only strcmp, for example, you would pick up more in shared library
data than you would save by sharing the text.

The answer to this problem, and to others that are somewhat more complex, is to
assign the responsibility for shared libraries to a central person or group within
the application. The shared library developer should be the one to resolve
questions of when to use shared and when to use archive system libraries. If a
private library is to be built for your application, one person or organization
should be responsible for its development and maintenance.

The sample application at the end of this chapter includes an example of the use
of a shared library. Chapter 8 in Part 2 of this guide describes how shared
libraries are built and maintained.

Symbolic Debugger

The use of sdb was mentioned briefly in Chapter 2. In this section we want to
say a few words about sdb within the context of an application development
project.

The sdb program operates on a process. It enables a programmer to find errors in
the code. It is a tool a programmer might use while coding and unit testing a
program, to make sure it runs according to its design. The sdb program would
normally be used before the program is turned over, along with the rest of the
application, to testers. During this phase of the application development cycle,
programs are compiled with the -g option of cc to facilitate the use of the
debugger. The symbol table should not be stripped from the object file. Once the
programmer is satisfied that the program is error-free, strip{l) can be used to
reduce the file storage overhead taken by the file.

If the application uses a private shared library, the possibility arises that a
program bug may be located in a file residing in the shared library. Dealing with
a problem of this sort calls for coordination by the administrator of the shared
library. Any change to an object file that is part of a shared library means the
change affects all processes that use that file. One program's bug may be another
program's feature.

Chapter 15 in Part 2 of this guide contains information on how to use sdb. The

MU43815PG/D2 3-25 12/01/87

II

APPUCATION PROGRAMMING

manual page is in Section {1) of the Programmer's Reference Manual.

lint as a Portability Tool
Generally speaking, it is desirable for a compiler to run fast. Most C compilers,
therefore, let some things go unflagged so long as the language syntax is observed
statement by statement. This sometimes means that while your program may
run, the output will have some surprises. It also sometimes means that while the
program may run on the machine on which the compilation system runs, you
may have difficulty in running it on some other machine.

That's where lint comes in. The lint command produces comments about
inconsistencies in the code. The types of anomalies flagged by lint are:

• cases of disagreement between the type of value expected from a called
function and the value actually returned

• disagreement between the types and number of arguments expected by a
function and what the function actually receives

• inconsistencies that might prove to be bugs

• things that might cause portability problems

Here is an example of a portability problem that would be caught by lint.

Code such as this would get by most compilers:

in~ i = lseek(fdea. offae~. whence)

However, lseek returns a long integer representing the address of a location in
the file. On a machine with a 16-bit integer and a bigger long int, the long
integer value would produce incorrect results because i would contain only the
last 16 bits of the value returned.

Chapter 16 in Part 2 of this guide contains a description of lint with examples of
the kinds of conditions it uncovers. The manual page is in Section {l) of the
Programmer's Reference Manual.

Project Control Tools
Volumes have been written on the subject of project control. It is an item of top
priority for the managers of any application development team. Two operating
system tools that can play a role in project control are described in this section.

MU43815PG/D2 3-26 12/01/87

APPLICATION PROGRAMMING

The make Command
The make command is extremely useful for keeping track of what object files
need to be recompiled as changes are made to source code files in an application
development project. One of the characteristics of C programs is that they are II
made up of many small pieces, each in its own object file, that are link-edited
together to form an executable file. Quite a few of the operating system tools are
devoted to supporting that style of program architecture. For example, archive
libraries, shared libraries and even the fact that the cc command accepts .o files
as well as .c files (and that it can stop short of the Id step and produce .o files
instead of an a.out) are all important elements of modular architecture. The two
main advantages of this type of programming are that:

• A file that performs a given function can be reused in any program that needs
it.

• The whole program does not have to be recompiled when one function is
changed.

A consequence of the proliferation of object files is an increased difficulty in
keeping track of what does and what does not need to be recompiled. The make
command is designed to help deal with this problem. You use make by
describing in a specification file, called makefile, the relationship (that is, the
dependencies) between the different files of your program. Having done that,
you conclude a session in which possibly a number of your source code files have
been changed by running the make command. The make command takes care of
generating a new a.out by comparing the time-last-changed of your source code
files with the dependency rules you have given it.

The make command is able to work with files in archive libraries or under control
of the Source Code Control System (SCCS).

Where to Find More Information

The make(l) manual page is contained in the Programmers Reference Manual.
Chapter 13 in Part 2 of this guide gives a complete description of how to use
make.

MU43815PG/02 3-27 12/01/87

II

APPUCATION PROGRAMMING

SCCS
SCCS is an acronym for Source Code Control System. The system consists of a
set of 14 commands used to track evolving versions of files. Its use is not limited
to source code; any text files can be handled, so an application's documentation
can also be put under control of SCCS. SCCS can:

• store and retrieve files under its control

• allow no more than a single copy of a file to be edited at one time

• provide an audit trail of changes to files

• reconstruct any earlier version of a file that may be wanted

SCCS files are stored in a special coded format. Only through commands that are
part of the SCCS package can files be made available in a user's directory for
editing, compiling, etc. From the point at which a file is first placed under SCCS
control, only changes to the original version are stored. For example, let's say
that the program restate, which was used in several examples in Chapter 2, was
controlled by SCCS. One of the original pieces of that program is a file called
oppty.c that looks like this:

#include •recdef.h•

float
oppty(pa)
atruct rec •pa;
<

I• Opportunit7 Coat -- oppt7.c •/

return(pa->i/12 • pa->t • pa->dp);
}

MU43815PG/02 3-28 12/01/87

APPLICATION PROGRAMMING

If you decide to add a message to this funtion, you might change the file like this:

#includ• •recdef.h•
#include <•tdio.h>

float
oppty(p•)
•truct rec •p•;
{

I• Opportunity Co•t -- oppty.c •/

(void) fprintf(•tderr, •opportunity calling\n•);
return(p•->i/12 • p•->t • p•->dp);

}

SCCS saves only the two new lines from the second version, with a coded
notation that shows where in the text the two lines belong. It also includes a ri.ote
of the veri;ion number, lines deleted, lines inserted, total lines in the file, the date
and time of the change and the login id of the person making the change.

Chapter 14 in Part 2 of this guide is an SCCS user's guide. SCCS commands are
in Section (1) of the Programmer's Reference Manual.

liber, A Library System
The example on the following pages illustrates the use of operating system
programming tools in the development of an application. The system is known as
liber. The early stages of system development, we assume, have already been
completed; feasibility studies have been done, the preliminary design is described
in the coming paragraphs. We are going to stop short of producing a complete
detailed design and module specifications for our system. You will have to accept
that these exist. In using portions of the system for examples of the topics
covered in this chapter, we will work from these virtual specifications.

We make no claim as to the efficacy of this design. Its sole purpose is to provide
some passably realistic examples of operating system programming tools in use.

The liber system is a system for keeping track of the books in a library. The
hardware consists of a single computer with terminals throughout the library.
One terminal is used for adding new books to the data base. Others are used for
checking out books and as electronic card catalogs.

The design of the system calls for it to be brought up at the beginning of the day
and to remain running while the library is in operation. The system has one
master index that contains the unique identifier of each title in the library. When

MU43815PG/D2 3-29 12/01/87

II

II

APPLICATION PROGRAMMING

the system is running, the index resides in memory. Semaphores are used to
control access to the index.

The pages that follow show fragments of some of the system's programs to
illustrate how they work together. The startup program performs the system
initialization; it opens the semaphores and shared memory, reads the index into
the shared memory, and kicks off the other programs. The id numbers for the
shared memory and semaphores (shmid, wrtsem, and rdsem} are read from a file
during initialization. The programs all share the in-memory index. They attach it
with the following code:

/• attach •hared memory for index •/
if ((int)(index =(INDEX•) •hmat(•hmid, NULL, 0)) == -1)
<

(void) fprintf(•tderr, ••hmat failed: ld\n•, errno);
exit(1);

}

Of the programs shown, add-books is the only one that alters the index. The
semaphores are used to ensure that no other programs will try to read the index
while add-books is altering it. The checkout program locks the file record for the
book, so that each copy being checked out is recorded separately and so that the
book cannot be checked out at two different checkout stations at the same time.

The program fragments on the following pages do not provide any details on the
structure of the index or the book records in the data base.

MU43815PG/D2 3-30 12101/87

APPLICATION PROGRAMMING

I• liber.h - header file for the

• library system .
•I

typedef ... INDEX;/• data structure for book file index•/
typedef atruct {/• type of records in book file •/

char title[30];
char author[30];

} BOOK;
int ahmid;
int wrtaem;
int rdaem;
INDEX •index;

int book_file;
BOOK book_buf;
I• startup program•/

I•
• 1. Open shared memory for file index and read it in.
• 2. Open two semaphores for providing exclusive write acceaa to index.
• 3. Stash id•a for shared memory segment and semaphores in a file
• where they can be accessed by the programs.
• 4. Start programs: add-books, card-catalog, and checkout running
• on the various terminals throughout the library.
•I

#include<atdio.h>
#include<aya/typea.h>
#include<aya/ipc.h>
#include<aya/ahm.h>
#include<aya/aem.h>
#include•liber.h•

void exit() ;
extern int errno;

key_t key;
int ahmid;
int wrtaem;
int rdaem;
FILE •ipc_file;

main()
{

MU43815PG/D2 3-31 12/01/87

II

II

APPLICATION PROGRAMMING

if ((ahmid = ahmget(key, aizeof(INDEX), IPC_CREAT I 0666)) == -1)

<
(void) fprintf(atderr, •startup: ahmget failed: errno=ld\n•, errno);
n:it (1);

}

if ((wrtaem = aemget(key, 1, IPC_CREAT I 0666)) == -1)

<
(void) fprintf(atderr, •startup: aemget failed: errno=ld\n•, errno);
n:i t (1) ;

}

if ((rd••• = ••mget(key, 1, IPC_CREAT I 0666)) == -1)
<

(void) fprintf(atderr, •startup: aemget failed: errno=ld\n•, errno);
exit(1);

}
(void) fprintf(ipc_file, •Sd\nld\nld\n•, ahmid, wrtaem, rdaem);

I•
• Start the add-booka program running on the terminal in the
• basement. Start the checkout and card-catalog programs
• running on the various other terminal• throughout the library.
•I

}

/• card-catalog program•/

I•
• 1. Read acreen for author and title.
• 2. Uae aemaphorea to prevent reading index while it ia being written .
• 3. u •• index to get position of book record in book file.
• 4. Print book record on acreen or indicate book waa not found.
• 6. Go to 1.
•I

#include <atdio.h>
#include <aya/typea.h>
#include <aya/ipc.h> ·
#include <aya/aem.h>
#include<fcntl.h>
#include•liber.h•

void exit() ;
extern int errno;
atruct aembuf aop[1];

main() {

MU43815PG/D2 3-32 12/01/87

}

while (1)
{

I•

APPLICATION PROGRAMMING

• Read author/titl•/•ubject information from •creen.
•I

I•
•Wait for write semaphore to reach 0 (index not being written).
•I

sop[O] .sem_op = 1;
if (•emop(wrtsem, sop, 1) == -1)
{

(void) fprintf(stderr, •semop failed: ld\n•, errno);
exit(1);

}

I•
• Increment read ••maphor• •o potential writer will wait
• for u• to finish reading th• index.
•I

•op[O].•em_op = O;
if (semop(rd••m, •op, 1) == -1)
{

}

(void) fprintf(stderr, •••mop failed: ld\n•, errno);
exit(1);

/• U•• index to find fil• pointer(s) for book(s) •/

I• Decrement read semaphore •/
•op[O].••m_op = -1;
if (•emop(rd•em, •op, 1) == -1)
{

}

(void) fprintf(•tderr, •••mop failed: ld\n•, errno);
exit(1);

I•
• Now w• u•• th• f il• pointers found in th• index to
• read the book file. Then we print the information
• on the book(•) to th• •creen.
•I

} /• whil• •/

I• checkout program•/

I•
• 1. Read •creen for Dewey Decimal number of book to be checked out.
• 2. U•• semaphore• to prevent reading index while it is being written.
• 3. U•e index to get po•ition of book record in book file.
• 4. If book not found print message on •creen, otherwise lock
• book record and read_..
• 6. If book already checked out print m••sage on •creen, otherwise

MU43815PG/02 3-33 12/01/87

II

APPLICATION PROGRAMMING

• mark record "checked out• and write back to book file.
• 6. Unlock book record.
• 7. Go to 1.
•I

#include <at.dio.h>
#include <aya/typaa.h>
#include <aya/ipc.h>
#include <aya/aam.h>
#includa<fcntl.h>
#includa"libar.h"

void exit();
long laaak();
extern int arrno;
atruct flock flk;
atruct aambuf aop[l];
long bookpoa;

main()
{

while (1)
{

I•
• Raad Dewey Decimal number from screen.
•I

I•
• Wait for writ.a semaphore to reach 0 (index not being written).
•I

aop[O].aam_flg = O;
aop[O] .aam_op = O;
if (aamop(wrtaam, sop, 1) == -1)
{

(void) fprintf(at.darr, •aamop failed: ~d\n•, arrno);
axit(l);

}

I•
• Increment read semaphore ao potential writer will wait
• for ua to finish reading the index.
•I

aop[O] .aam_op = 1;
if (aamop(rdaam, sop, 1) == -1)
{

(void) fprintf(atdarr, •aamop failed: ~d\n•, arrno);
axit(1);

}

I•
• Now we can use the index to find the book·a record position.

MU43815PG/D2 3-34 12/01/87

}

• Aaaign thia value to •bookpoa•.
•I

I• Decrement read aemaphor• •/
aop[O].aem_op = -1;
if (aemop(rdaem, aop, 1) == -1)
{

APPLICATION PROGRAMMING

(void) fprintf(atderr, •aemop failed: ld\n•. errno);
exit(1);

}

/• Lock the book•a record in book file, read th• record. •/
flk.l_type = F_WRLCK;
flk.l_whence = O;
flk.l_atart = bookpoa;
flk.l_len = aizeof(BOOK);
if (fcntl(book_file, F_SETLKW, &flk) == -1)
{

}

(void) fprintf(atderr, •trouble locking: ld\n•, errno);
exit(1);

if (laeek(book_fil•, bookpoa, 0) == -1)
{

Error processing for lseek;
}

if (read(book_fil•, &book_buf, aizeof(BOOK)) -1)
{

Error processing for read;
}

I•
• If the book ia checked out inform the client, otherwi••
• mark the book·• record aa checked out and writ• it
• back into th• book file.
•I

I• Unlock the book·• record in book file. •/
flk.l_type = F_UNLCK;
if (fcntl(book_file, F_SETLK, &flk) == -1)
{

(void) fprintf(atderr, •trouble unlocking: ld\n•, errno);
exit(1);

I• add-book• program•/

I•
• 1. Read a new book entry from acreen.
• 2. Inaert book in book file.
• 3. Uae ••maphore •wrtaem• to block new readera.

MU43815PG/D2 3-35 12/01/87

II

II

APPLICATION PROGRAMMING

• 4. Wait for ••maphor• •rd•em• to reach 0.
• &. In•ert book into index.
• 8 .. Decrement wrt•em.
• 7. Qo to 1.
•/

#include <•tdio.h>
#includ•<•y•/type•.h>
#include<•y•/ipc.h>
#includ•<•y•/•em.h>
#include•liber.h•

Toid exit();
extern int errno;
•truct ••mbuf •op[1];
BOOK bookbuf;

main()
{

for (; ;)
{

I•
• Read information on new book from •creen.
•I

add•cr(&bookbuf);

/•write new record at the end of the bookfile.
• Code not •hown, but
• add•cr() return• a 1 if title information ha•
• been entered, 0 if not.
•I

I•
• Increment writ• ••maphore, blocking new reader• from
• acc•••ing th• index.
•I

•op[O].Bem_flg = O;
•op[O].•em_op = 1;
if C•emop(wrt••m, •op, 1) == -1)
{

(Toid) fprintf(•tderr, •••mop failed: ld\n•, errno);
exitC1);

}

I•
• Wait for read ••maphore to reach 0 (all reader• to fini•h
•using the index).
•I

•op[O].•em_op = O;

MU43815PG/D2 3-36 12101/87

}

APPLICATION PROGRAMMING

if (aemop(rdaem, sop, 1) == -1)
{

}

(void) fprintf(atderr, •aemop failed: ld\n•, errno);
exit(1);

* Now that we have exclusive access to the index we
* insert our new book with its file pointer.
•I

/• Decrement write semaphore, permitting readers to read index. •/
aop[O].aem_op = -1;
if (aemop(wrtaem, sop, 1) == -1)
{

}

} /• for •/

(void) fprintf(atderr, •aemop failed: ld\n•, errno);
exit(1);

The following example, addscr{), illustrates two significant points about curses
screens:

1. Information read in from a curses window can be stored in fields that are
part of a structure defined in the header file for the application.

2. The address of the structure can be passed from another function where the
record is processed.

MU43815PG/D2 3-37 12/01/87

II

II

APPUCATIONPROGRAMMING

I• add•cr i• called from add-book•.
• The u••r i• prompted for title
• information.
•I

#include <cur•••.h>

WINDOW •cmdwin;

adchcr (bb)
•truct BOOK •bb;
{

int c;

init•cr();
nonl () ;
no echo();
cbreak ();

cmdwin = newwin(e, 40, 3, 20);
mvprintw(O, 0, •Thi• •creen i• for adding title• to the data ba•••);
mvprintw(1, 0, •Enter a to add; q to quit: •);
refre•hO;
for (;;)
{

refre•hO;
c = getch();
•witch (c) {

ca•• •a•:
wera••(cmdwin);
box(cmdwin, • 1 ·, ·-·>;
mvwprintw(cmdwin, 1, 1, •Enter title: •);
wmove(cmdwin, 2, 1);
echo();
wrefre•h(cmdwin);
wg•t•tr(cmdwin, bb->title);
noecho ();
wera•e(cmdwin);
box(cmdwin, • 1 ·, ·-•);
mvwprintw(cmdwin, 1, 1, •Enter author: •);
wmove(cmdwin, 2, 1);
echo();
wrefre•h(cmdwin);
wget•tr(cmdwin, bb->author);
noecho();
wera•e(cmdwin);
wrefre•h(cmdwin);
•ndwin () ;
return (1) ;

C&8e •q•:
er&••();

MU43815PG/D2 3-38 12/01/87

APPLICATION PROGRAMMING

}
}

}

end win() ;
ret.urn (0) ;

Uakef ile for liber library ayat.em

cc = cc
CFLAGS = -0
all: at.art.up add-book• checkout. card-catalog

•tart.up: liber.h at.art.up.c
$(CC) $(CFLAGS) -o at.art.up at.artup.c

add-book•: add-booka.o addacr.o
$(CC) $(CFLAQS) -o add-book• add-books.o addacr.o

add-booka.o: liber.h

checkout: liber.h checkout..c
$(CC) $(CFLAQS) -o checkout checkout.c

card-cat.alog: liber.h card-catalog.c
$(CC) $(CFLAGS) -o card-cat.alog card-catalog.c

MU43815PG/D2 3-39 12/01/87

II

II

