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FOREWORD

The SPACE-A program described in this report is a modified version
of the trajectory and observation generation portion of the Sequential Position
and Covariance Estimation (SPACE) program originally acquired from NASA.
This document contains a detailed analysis of the equations and models used
by the program, a brief description of the routines used in the program, as
well as instructions for its operation. The principal applications of SPACE-A
are the prediction of space~vehicle trajectories and the generation of observa-
tional data plus other trajectory related information.

There have been numerous changes made in the original program in
addition to its adaptation to the IBM 7030 and its subsequent debugging. The
modified SPACE-A program is the result of the efforts of the authors and
L. E. Wilkie. S. Schwartz aided in the debugging and rewriting of certain
routines. Special thanks and appreciation are due to R. K. Squires, D.S.
Woolston, and other members of the Special Projects Branch, Theoretical
Division of the Goddard Space Flight Center from whom the SPACE program
was obtained.

The work reported in this document was performed by The MITRE
Corporation, Bedford, Massachusetts, for the Directorate of Planning and

Technology, Electronic Systems Division, of the Air Force Systems Command
under Contract AF 19(628)-5165.

REVIEW AND APPROVAL

Publication of this technical report does not constitute Air Force approval of
the report's findings or conclusions. It is published only for the exchange and
stimulation of ideas.

ANTHONY P. TRUNFIO

Technical Advisor, Development Engineering Div.
Directorate of Planning and Technology
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ABSTRACT

This report describes the SPACE~-A program presently available for
operational use. SPACE-A is the trajectory and observation generation
portion of the Sequential Position and Covariance Estimation Program (SPACE)
which is currently under development. The document contains a detailed
analysis of the equations and models used by the program, a brief description
of routines used in the program, as well as instructions for its operations.
The principal applications of SPACE-A are the prediction of the space-
vehicle trajectories and the generation of observational data plus other
trajectory related information.
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SECTION I
OBJECTIVES

INTRODUCTION

The SPACE trajectory determination program was originally devel-
oped for the Special Projects Branch, Theoretical Division, Goddard
Space Flight Center by the Sperry Rand Systems Group. It was designed
as a comprehensive trajectory determination and tracking program for
both orbital and deep space flights, The original program consisted
of three major modes of operation:

(1) SPACE-A, designed for trajectory and observation generation
without statistical processing,

(2)  SPACE-Bl, designed for statistical estimation of the six
state variables describing the position and velocity at
prescribed points of the trajectory.

(3) SPACE-B2, designed for statistical estimation of the six
state variables describing position and velocity plus up
to 20 additional states selected from a group of vari-
ables which permit estimation of dynamic biases (para-
meters affecting orbital motion) or observational biases
(affecting measurements),

The version of the SPACE program received by MITRE contained
numerous errors in programming. SPACE-Bl and SPACE-B2 had never been
debugged and many of the routines of SPACE-A were unworkable, In ad-
dition, the programming had to be made compatible with the IBM 7030,
Therefore, a large effort was put into checking the theory, debugging
the program, and revising or rewriting certain routines, Many check-
out runs were necessary during and after the debugging of the program.

Since the SPACE=B2 mode includes the capabilities of the SPACE-Bl
mode, the SPACE-Bl mode was not debugged., The original SPACE-B2
(which was not operational when received by MITRE) employed two dif=-
ferent statistical estimation techniques:

(1) a minimum variance sequential filtering technique, the so-
called "Kalman filter", and



(2) a non-recursive batch processing technique.

Because a number of trajectory estimation programs at MITRE
already employ the batch processing technique, the second option of the
SPACE-B2 mode was left in a non-operatioral status., The first ontion
of SPACE-B2, which incorporates the Kalman filter in the traiectory
estimation procedure, is presently being debugged and checked out.

The theory, programming, and results of {ts operation will be pub-
lished in a succeeding document, The theoretical development and
much of the programming of the trajectory generaticn portion of
SPACE-B2 is identical with that used in SPACE-A,

This document deals with the modified SPACE-A trajectory genera-
tion program written in Fortran IV and is presently operational on
the IBM 7030 at MITRE. This report is based on the original dncuncnts[l’2’3]
publisﬂed by Sperry Rand for NASA.

Section I contains a brief discussion of the objectives and capa-
bilities of SPACE-A, Section II discusses the theoretical bhackground,
as well as the equations and methods emploved by the program Section
III consists of a user's guide for operating the program, Jection IV
gives the program structure and a brief description of the functionr
of each subroutine,

The larger part of the report is contained in Section II since
understanding or following the programming is really a matter of fol-
lowing the appropriate equations. Although parts of Section II are

original, the contents of pertinent sections of the SPACE Analytic

ManualLl] have been freely used or modified to fit the description
of the present program, Sections III and IV closely follow the format

of the original User's ManualEz] and Programmer's ManualEB]; however,

since a number of changes in programming have been made, only Section
III and Section IV of this report should be used in operating the modi-
fied SPACE-A trajectory generation program,



CAPABILITIES

The modified SPACE-A trajectory generation may be run in any of
the following modes:

(D Trajectory generation - the computation of position and
velocity of the vehicle at regular time points along a
trajectory.

(2) Observation generation - the computation of certain
ground-based observations of the vehicle at regular
time points,

(3 Simulated data - the computation and writing onto
tape of the observations in a format suitable for
processing data by SPACE-B2,

(4) Visibility computation = the time of initial view
of the vehicle by a given station, the total time
in sight by the station, and the observations
while the vehicle i1s in sight,

The required input consists of the initial date and initial time
of a particular run and the initial position and velocity of the vehi-
cle, When the effect of drag is to be included which is usually the
case, the effective area and mass of the vehicle and the magnitude of
solar flux must be specified., When the effect of direct solar radia-
tion is included, an effective area pertaining to solar radiation must
be specified., For observation calculations, the specification of the
station location on the surface of the Earth is necessary. The de-
talls of the units and format of these required inputs along with
other optional input features are discussed in Section III, The types
of output data, which consist primarily of trajectory and/or observa-
tion information, is also given in Section III,

The philosophy behind the modified SPACE=-A trajectory generation
program is that its primary use would be for Earth orbital trajec-
tories, Toward this objective, its dynamic model includes the effects
of the primary term and oblateness perturbations of the Earth's grav-
ity, the solar, lunar, and planetary gravitational perturbations, the
effect of direct solar radiation and drag, as well as such dynamic ef-

fects as precession, nutation, and the daily rotation of the Earth,
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The model used for drag is a combination of the U.S. Standard
Atmosphere 1962 and the Harris-Priester model for the upper atmosphere,
which depends on the magnitude of solar flux., The model for Earth
gravitational oblateness may include up to nine zonal harmonics, four
sectorial harmonics, and twelve additional tesseral harmonics, The
types of ground station observations that may be specified are given
in Section II (see OBSERVATIONS),

Although the modified SPACE~-A program is intended primarily for
Earth orbital trajectories, it may be used for other types of missions,
However, a number of options that were included in the original SPACE-A
trajectory generation program are not presently operational, These op-
tions were a capability for modeling the perturbations due to thrust,

a model for lunar libration, simple models for lunar gravitational ob-
lateness perturbations, as well as models for the drag of Mars and
Venus, and a capability for computing on-board observations from a
vehicle, Although these options are not presently available in the
modified SPACE-A program, with some effort they could also be included.



SECTION II
THEORY

GENERAL DESCRIPTION OF TRAJECTORY COMPUTATION

Orbit prediction or trajectory computation is the process of cal-
culating the position and velocity of a vehicle at any time subsequent
to some initial time, provided the initial position and velocity of
the spacecraft are given.,

To accomplish this prediction, one uses the laws of celestial
mechanics embodied in the differential equations of motion. The
forcing functions for the equations of motion are obtained from a dy-
namic model which accounts for the accelerations on the vehicle., A
reference frame is erected to express the components of the various
vector quantities, and the equations of motion are numerically inte-
grated subject to the given initial conditions, Once the vehicle tra-
jectory is determined, the program can then generate observations.

The coordinate system used in this program is based upon the
position of the mean Earth's equator and equinox at oh 1 January of
the year subsequent to the initial input time of the program, Coordi-
nate directions of this frame are inertial with respect to the fixed
stars; the center of origin of the system, however, may be transferred
from one central body to another so that the spacecraft motion is
specified relative to a point mass which itself has a proper motion.
This reference frame is called the Base Date System or simply the in-
ertial system,

Observations made from the Earth are necessarily in a system
different from the Base Date System, To accomplish transfer between
various coordinate systems, transformations are provided (see COORDI-
NATE SYSTEMS AND TRANSFORMATIONS), These transformations include the
dynamical effects of precession, nutation, and daily rotation of the

Earth .



All accelerations acting on the vehicle are specified in the Base
Date System, The gravitational attractions of bodies in the solar sys-
tem are functions only of position with respect to the vehicle; conse-
quently, the program employs an ephemeris giving planetary coordinates
relative to the Sun, and lunar coordinates relative to the Earth, all
in a Base Date System, A Base Date System 1s specified for overlapping
two-year blocks of data, the date corresponding to the middle of the
two-year file, Specifying an initial time causes the program to choose
an ephemeris file having as its Base Date the beginning of the year
following the initial input time of the program. In this way, at least
one full year of ephemeris information is available before a change of
reference system is necessary.,

Another acceleration specified in the Base Date System without
transformation is that arising from solar radiation pressure. Since
this acceleration is a function of relative position between the Sun
and the vehicle, its direction is given in the proper frame by using
information from the ephemeris,

Other accelerations, such as perturbations due to Earth oblate-
ness effects must be transformed through nutation and precession to the
proper frame, All positions, velocities and accelerations are computed
in canonical units (i.e., Earth radii (ER), Earth radii per hour
(ER/hr), Earth radii per hour per hour (ER/hr?), respectively) and ap-
propriate constants are used to transform to other units of measure.

Vehicle motion 1s always computed relative to some reference body;
a planet; the Moon; the Sun, Consequently, the equations of motion
contain a term which accounts for the acceleration of the reference
body on the vehicle., The remaining accelerations are usually, but not
always, much smaller than this primary acceleration and are therefore
called perturbations, In most cases, they can be regarded as giving
rise to small disturbances in the orbit determined by the reference

body and the initial conditions,




Reference bodies are changed during a trajectory calculation when
the vehicle leaves the 'region of influence' associated with a partic-
ular body. Regions of influence are computed for a body with respect
to the object of which it is a satellite, Hence, each planet has a
region of influence defined relative to the Sun, and the Moon has a
similar region defined relative to the Earth, In transferring into or
out of such a region, velocity as well as position with respect to the
new reference body must be calculated.

Since no analytic solution exists for the equations of motion,
numerical methods are employed to compute the components of position
and velocity, In the program, a cholce may be made hetween using
straightforward integration and using Encke's method. The former
technique, called Cowell's method, 1s conceptually simple, but suffers
from precision and machine running time problems., Encke's method,
although somewhat more complicated, gives dividends in both precision
and machine efficiency. In this procedure, the Keplerian orbit
arising tfrom the reference body central force field is taken as a
nominal trajectory., The perturbation accelerations are integrated
and the resulting position and velocity increments are added to the
Keplerian solutions, Naturally, Encke's method is most effective when
the perturbations are small,

The present program has the capability to compute a number of
ground-based observations. Corrections are provided for the refraction
of an electromagnetic signal by the troposphere and by the ionosphere.
Adjustments are computed for errors in elevation angle, range, and
radial velocity; other angular corrections are calculated from the
adjustment in elevation angle,

Description of the basic equations used by the program for the
dynamic model now follows. It includes derivations of the accelera-
tions due to the planets, Earth oblateness, drag, and direct solar
radiation pressure., It also discusses the coordinate systems, numeri-

cal integration methods, and observation calculations including the
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refraction model used by the program.

DYNAMIC MODEL

The equations of motion for a space vehicle are second-order
differential equations which describe the accelerations arising from
the forces acting on the vehicle., These forces can be classified as
follows:

(1) Gravitational acceleration of the reference body - primary.

(2) Gravitational perturbations due to other bodies (e.g.,
planets).

(3) Gravitational perturbations due to reference body
oblateness.,

(4) Perturbations due to drag.

(5) Perturbations due to direct solar radiation pressure
on the space vehicle,

For orbit determination the reference body primary gravitational
force almost always predominates the perturbation forces given above.
The only exception occurs during reentry of a vehicle into the atmos-
phere, when drag forces may be larger than the primary force of gra-
vity. Another force which may exceed the primary force of gravity is
that of vehicle thrust. Since this program is designed primarily for
orbital computations, this force 1s not discussed here although it
can be readily included 1if desired.

The simplest gravitational force field is that due to a single
point mass or equivalently that due to a homogeneous ponderable body
which is perfectly spherical. In this case the equations of motion

of a vehicle with respect to the ponderable reference body are:

ol 1

R=- (1)
where

W= G(Mm) = GM, since m << M

G is the universal gravitational constant,

M is the mass of the reference body,

m is the mass of vehicle,



R is the vector position of the vehicle with respect to
the reference body center,

With initial conditions ﬁo and ﬁo Equation (1) defines a '"two-
body" or Keplerian orbit, which arises from the primary reference
body central force field and which may be expressed in closed form in
terms of its true or eccentric anomaly.

The above "two=-body' dynamic model may be extended to include
perturbational accelerations acting on the vehicle, in which case

Equation (1) becomes:

-
R = =

o N
+
=17

-+ > -+
il i ) v W e ST (2)
where

P; 1s the summation of all the accelerations arising from
planetary,lunar and solar attraction,

P, 1s an acceleration arising from the oblateness of the
reference body,

P3 1is an acceleration arising from drag as derived from
an appropriate model to be described later, and

Py, 1s an acceleration due to direct solar radiation upon
the vehicle neglecting reflected sunlight from the
reference bodies or planets,

- > -
The perturbational accelerations 31, P,, P3, and P, are obtained

from specific dynamical models whose detalls are described below,

PERTURBATIONS DUE TO PLANETARY ATTRACTIONS
The general expression for the perturbational acceleration, 51,
of a space vehicle due to the gravitational influence of the Sun, Moon,

and other planets (excluding the reference body) is given by:

<> ﬁvj irj ﬁ.
Pl - z - u [ _ cmomtaa (3)
] ’ Ryj Rej3 |
where
Hy = G

G is the gravitational constant,

Mj 1s the mass of the jth body,



Ryy 1s the position of the vehicle with respect to the
jth  body, (Figure 1)

Rry 1s the position of the reference body with respect
to the jth body, (Figure 1)

AR 1is the position of the vehicle with respect to the
reference body (Figure 1),

ivj vehicle

jth body .
Y
Rrj

reference body

Figure 1. Vectors for Planetary Attractions

If the two terms of the bracketed expression in Equation (3) are
very nearly equal, a loss of accuracy due to round-off errors by
machine computations will occur. Equation (3) can be written in a
more convenient form due to Battin[aj thereby eliminating this pro-
blem. Using Equation (3), and Equation (4) below and rearranging terms

one obtains Equation (5).

Aﬁ = _ﬁvj = irj (l‘)
P, = g oy [Rrj (E;;; - 1) - &R] (5)

This latter form is used to achieve more computational accuracy. The

actual programmed equations, which can readily be shown equivalent by
substitution are:

P, = § E%ig (Bey (£0)) - oK) (6)
where
U3 + U (3+U)]

f(U) =
1+ (1+U)%& 7

> A-» . Aﬁ
U_Z(Rq"‘ R)

. (8)
Rrj
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The forces introduced by solar, lunar and planetary attractions
in orbit prediction about the Earth are usually smaller by a factor
of 1077 than that of the primary attraction of the Earth's gravita-
tional pull, Planetary perturbations (including solar and lunar per-
turbations) do have a significant effect on a vehicle trajectory over

long time periods or for deep space probes,

PERTURBATIONS DUE TO EARTH OBLATENESS

The fact that the Earth is not a perfect sphere of uniform den-
sity gives rise to perturbational accelerations due to Earth oblate-
ness, Formulas are derived below which the program uses to include
these perturbations in the prediction of near-Earth trajéctories. In
a coordinate system attached rigidly to the ﬁarth, the Earth oblate=-
ness perturbation may be treated as the acceleration of a conservative

force derivable from a potential, Thus:
3
P, = - VU

The potential function is given by Equation (12) and the final form of
the acceleration 32 is given by Equations (26)-(29) and Equation
(32) below.

The Geopotential Function

The geopotential function can be derived from the basic property

that the potential, U, satisfies Laplace's Equation[s’ PP g, (LI,

VZU = 0,

In spherical coordinates, Equation (10) becomes

EY) ) 13U
VZU-—Z——]"——[-R' (rz cos¢-g%)+-a§;(cos ¢3-¢-)+37(m-a—)}- 0

Although the solution of Equation (11) is not elementary, the equa-

tion may be solved by applying the method of separatlon of variables

[6ys p.40].

and using Legendre polynomials The solution of Equation

11

(9)

(10)

(11)



(11) is given by

o R n
U = - %. f (15)“ ) {P: (s8in ¢) [Cp,m cos mA + Sy p sin mi]}
n=Q m=0

where
u 1s the Earth's gravitational parameter,
Re 1s the Earth's mean equatorial radius,
r,A,¢ are spherical coordinates (see Figure 2),

P, 1s the associated Legendre function (spherical harmonics)
of the first kind of degree n and order m, and

Cn,m and
Sn,m are numerical coefficients,

The Legendre polynomials, P,(x), are defined by

Pr(o) = =2—d ((x2 - 17,
2 n! dx

and the associated Legendre function P:(x) by

m
PR(x) = (1 - x2)7 4% p_(x).
dx™

The spherical coordinates r, A, ¢ are defined with respect to
the fundamental planes determined by the true equator, and the Green-

wich meridian (see Figure 2),.

vehicle

Greenwich meridian y
true equator

X

Figure 2. Spherical Coordinates
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The fundamental term in the expression for U 1is given by
m=mn=20, The terms in which m = 0 are called zonal harmonics.
Inspection of Equation (12) shows that these terms vary only with
latitude, and hence reflect deviations of the Earth's potential from
a sphere of uniform density that are symmetric around the spin axis
(e.g., a pear shaped Earth potential can be modeled with zonal harmon-

ics). Evaluating the 2,0 term for U we have
Ra+2
- ‘5‘ (‘;‘) Py, (8in ¢) Cz’o
and since
Py0) = 2 (3x2 - 1)

Equation (13) becomes

Re 2 1
- 'E- (-;_-) -5 (3 sin? ¢ - 1) C2,00

The zeros of Equation (13) are at % 35725,

+ 35325
equator

- 35225

Figure 3. Zonal Harmonic for n=2, m=0

The sectorial harmonics arise when m = n, The zeros of the
sectorial terms lie along lines of longitude, The remaining combi-
nations are tesseral or square in that these terms vanish both along
a number (m - n) of parallels of latitude and a number (2m) of meri-

dians of longitude, Figure 4 provides an illustration of zonal,

13
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7

sectorial, and tesseral harmonic variations for a sample set,

Zonal Sectorial Tesseral
Harmonics Harmonics Harmonics
n=4 ne=3 n =8

m= 0 m=3 me=3
Figure 4. Variations

In summary, Equation (12) describes the Earth's gravitational
potential at any point in space; the negative gradient of this poten-
tial gives the corresponding acceleration, Note should be made, how-
ever, that the acceleration obtained is in the Creenwich coordinate
system, and hence must be transformed into the inertial system (the

Base Date System) to be employed in trajectory computation.

Computation of Accelera;ipndDus~eo-£arth Oblateness

The components of gravitational acceleration are now expressed
as the sum of terms which have the same general form for any m, n
combination, First, it is necessary to develop expansions for cos mi

and sin mA in terms of cos A and sin A. From DeMoivre's theorem,
cos mA + 1 sin mA = (cos A + i sin A)M

Now, expanding by the binomial theorem

m
cos mi + 1 sin m)A = 2 (E)(cos A)m-k(i sin A)k.

k=g

For m an even number

14



a

2
cos mh + 1 sin mA = Z (;L)(-l)k(cos A)m-Zk(sin A)Zk
kwg
3-1 \
4 Z ( m )(-l)k(cos A)m-Zk-l(sin A)2k+1 .
2k+1 J
k=g
and for m an odd number
m=1
e k 2k 27
cos mi + 1 sin mA = ) (;L)(-l) (cos M) “F(sin 1)
k=g
JuiPY \
2
+14 1 (21?+1)(-1)k(cos M2 (s1n A)Zkﬂ}-
k=g
Equating real and imaginary parts above, we have
u k [ m m-2k 2k
cOS mA = Z (=1) (Zk) (cos 1)) (sin A) (14)
k=g
L3 K 2k=1 2+1
m me=2k= Ba :
sinm\ = z (=1) (2k+1)(cos ) (sin X)) s
k=g
m m!
where (] = 2! (m=2)!

if m 1is even

gu}
2
mgl if m 1is odd,

M-
5-1 if m 1is even
and M = -1
2‘3— if m is odd.

From the definition of spherical coordinates:
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sin ¢ = f

cos ¢ cos A -‘f (16)

cos ¢ sin A = =
r

where x, y, and 2z are the coordinates of the vehicle in the Green-

wich coordinate system,

Using Equation (16) in Equations (14) and (15), we have:

] -2k 2k ’
cos m\ = = 2 (-1) ( )( e 2 (y) (17
(r cos ¢) kmg .
1 M 2k=1, \2k+1
-2k- +
g i (i e (-1) (2k+1)(")m (y) (18)
(r cos ¢) k=g
Substitution of Equations (17) and (18) into Equation (12) yields:

o [R n PY (sin ¢)
ve-k ] [T G(xs ¥) (12)
m
n=0 meg (r cos ¢)
where M
k -2k 2k
G(xs ¥) = Caym L D ()T
k=0
¥ 2k=1, . 2k+l
+Sam L DN )"
k=0
From the definition of the associated Legendre function, we have
m
) Z N
PR = 2t S (2 - 7, (19)
2% af dt

Setting T = sin ¢ and dividing Equation (19) by cos" ¢,

m
Py (sin &) 1 @7 2 pyn (20)
cos™ ¢ 2" nt drm+n

Setting U = Z Z Un,n» and using Equation (20) we have
n=0 ms(
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The gravitational acceleration

gradient of the potential function,

(2 - D" alx, )

dt
(12 = D" 6(x, v)

is computed by taking the negative

The general derivative in the

gradient will be taken with respect to £, where £ takes on the
values of x, y, and z,
Defining
£ We o
- - A
Am.n aE
and carrying out the indicated operations using
& _& L.z J 13z _ 2L
BT E T ETEE r] E [35 r2]
yields: R
Eae e (mn+1) £ gEe. 5 ah
An,m = —y [ 2 G(x,y) e (1 1)
2" nlr dt
S SGo ) (22 zf] LT 2 - 17
r 9k r Tm+n+1
+n
s N E.G_M] (21)
P 13
where
M
k -2k=1 2k 9
& ¥ wcam I (DS () {@e2k) T i
9§
k=0
+ 2k xm—Zk y2k--1 21}]
13
2 k k=2 2k+l 3
m LepPlioe X
+ Sp,m L [(~1) (2k+1){(m-2k-1) x y :

k=0

# ey sk 2 -2%}].
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It can be shown by applying the binomial theoram and induction

that i [n - 4]
L o2-nta J (nF () —Lacic : (ry2n-2k-1
dt k=0

where [n - %ﬂ indicates the integral part of n -'%. Hence,

=ity ‘
goin n 2 k oy (2p=2K)1 n-2k-m
— (12 = 1) kzo 13" () (e (1) (23)
and [m-n-ll
mn+l  , oo : k (ny _(2n-2101 n=2k-m-1 ,
:%;:;:I (¢ =1) kEO (-1) (k) CES T (1) (24

where 1t = gin ¢ = f'. Therefore, Equation (21) may be rewritten as

[==)
2 =i Rg k (ny (2n=2k)! (z\n=2k-m
Aym = wel [{ kgo 0" () zemT ) [
. () ¢ ox, v - 392%—’-} -
S =201 (zyn-2k-m-1
{ kzo 0" () ety () }
" G(x ) .3
(Sl (2 - ﬁ] }] (25)

e
By separately considering the case for n-m odd and for n-m even,

it may be shown that Equation (25) reduces to the following expres-

sion: - [25&]
E - —-u_—e—- k (ML! .E_ n-2k'ﬂl-1 -
SR Pl kzo E G o v ey g = } x 26)
{((2n-2k+1) %5 y .(r%:ﬂl_g%) 6xy 9 - & acs,(agm}
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where

1 {if £ = x 9y (1 £ E=y 29z (1 1f E= 2
ag "o tredx 700 tregy 0 trcge Y
and M
k m! -
G(x. Y) . Cn.m Z (-l) 2k! (m-Zk)' (x)m Zk(y)Zk
k=0 )
k 1 =2k= k+
Sam L D" Gy emenT @ ot e
k=0
2.1 4f 1
- _{m/Z 1if m 1is even M' - 2 (e R RS
2L if n 1s odd BL  4f n 1s odd
3G(x, y) c % [(-l)k {( 2k) ()™ =2k=1 )2k 3x
N S 2K 1 (m —2k)1 T & 3
+ 2™ 2K gy 21 :Z}]
M' :
m
# Sn,m kzol( -1)" DT (m2k-D) 1
< {@261) TP P ZE oy o) 0™ o 2 (29)

It is important to note that when =z = 0, a special procedure
must be used since the term (-1-2__-)'1 arises in Equation (26) for n-m
even; and (-:-)0’ when n-m 1is odd,

When n-m is even, Equation (26) reduces to one term, when 2z = O.

n m
£ - U Re 1n+m1} (p+m+l)£ G 3G
An,m = o0 g m+n+1 {( -1 (n-m }{ - 35} * (30

== ) n-_

2 2

Similarly, when n-m is odd, Equation (26) may be reduced
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ASm=0 for £ =x,y

z “ [nZ ] (Ehn+ )2 el
An,m = et {(-1) e e (31)
of rm+n+l (nZE) (n_[nzm])l r

In summary, the program computes the acceleration of a vehicle

due to the Earth in the Greenwich coordinate system by the formula:

«© n >
Po= ] I Uapi+Ani+ainn (
n=0 m=0

Lo
[S%]
~

-

where I, 3, k are unit vectors in the Greenwich coordinate system.
In Equation (32) the range of indices (n,m) are restricted by

SPACE-A to the following limits:

a o

2 O X, 2

3 @, 1, 2, 3

4 @l Ly Ty, Oy &
5 B Lo 2y &

6 5

7 g, 1

8 0

9 0

10 0

The fundamental term is given by the (0, 0) combination and
would be the only term present if the Earth were of uniform density
and a perfect sphere. Since the center of the coordinate system is
taken to be at the center of mass, it can be shown that the (1, 0)
and (1, 1) combinations vanishtb’p'SOJ.

In Equation (32), Ag
n,m

2

z = 0, by Equation (30) or Equation (31) depending on whether n-m

is given by (26) when z # 0, and when

is even or odd.
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PERTURBATION DUE TO DRAG

Accurate simulation of an artificial satellite or other space
vehicle trajectories requires consideration of vehicle deceleration
resulting from atmospheric drag. A number of planets (e.g., Earth,
Venus, Mars and Jupiter) have sufficiently dense atmospheres to re-
tard the motion of a vehicle within their atmospheres; however, this
discussion confines itself to the atmospheric model of the Earth,

An analysis of drag must take into account the particular mis-
sion of the vehicle, e.g., low eccentricity, orbit, reentry, or fly-
by, since vehicle mission determines what portion of the atmosphere
it is necessary to include in the model,

The following discussion describes the general equations used
for drag computation, some of the problems involved in simulating the

Earth's atmosphere, and the effects of certain simplifying assumptions,

Drag Equations

The program uses two different formulas for computing the vehi-
cle deceleration, 53, due to drag. For a relatively dense atmos-
phere where the assumption of continuum flow is valid the following
well known equation is used:

CpS. .
By=-C (30 =) Va Va (33)

where
p 1is the atmospheric density at the vehicle,
Cp is the drag coefficient of the vehicle (dimensionless),
S 1is the effective surface area of the vehicle,
m 1is the mass of the vehicle,

Va 1s the vector of the velocity of the vehicle with
respect to the local atmosphere,

Va 1is the magnitude of Va, and

C, 1is a constant used to convert the above expression
into the units used by the program,

Equation (33) is used to compute the acceleration of drag in the
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lower atmosphere from O kilometers up to 120 kilometers, although the
model for the lower atmosphere from which the values of p and (p
are obtained may be extended up to 210 kilometers with some loss of
accuracy. The basic model used in the lower atmosphere is the U, S.
Standard Atmosphere 1962[7] " and its details are discussed below.

As the atmosphere becomes more diffuse, the mean free path length
(average distance between impacts of air molecules) increases, At
110 kilometers, mean free path length is roughly one meter and at 130
kilometers may become as large as ten meters[7]. When the mean free
path length exceeds the dimensions of the vehicle, the assumption of
continuum air flow is no longer applicable. In such a diffuse atmos-
phere where all collisions are essentially two~body collisions, the
alr flow is referred to as free molecular flow.

Ketchum[8] has derived the following formula for the magnitude

of drag deceleration in free molecular flow:

-

B3] = % (2 +%&)[o Cav %l Va , (34)
where

R the radius of the vehicle,

A the mean free path,

Cav the average velocity of particles in the medium,

Ketchum is uncertain as to the validity of the (1 + 2R/)) term
in Equation (34). In the high atmospheric region the assumption that
A >> R 1is usually justified, except perhaps below 140 kilometers.
Therefore, the program actually uses Equation (35) in computation of

the drag in the high atmosphere,

By =~ Cy (Fo Cav) Va (35)
where,
S 1is the effective surface area of the vehicle,
m 1is the mass of the vehicle,
p 1is the atmospheric density at the vehicle,

Cav 1s the average velocity of particles in the medium,
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a 1s the vector of the velocity of the vehicle with
respect to the surrounding atmosphere, and

C, 1s a constant used to convert the expression into
the units used by the program,

Equation (35) 1s used to compute the deceleration of drag in the
upper atmosphere from 100 kilometers up to 1,050 kilometers, although
the model for the upper atmosphere may be extended up to 2,000 kilo-
meters. The basic model used for the upper atmosphere 1s that due to
Harris & PriesterEg]. The values of o and Cav wused in Equation
(35) are derived from this model, the details of which are alseo dis-
cussed below,

Notice in both Equations (33) and (35) that the direction of the
drag force is in a direction opposite to the velocity with respect to
air, In addition, both formulations assume zero 1lift and assume that
the angle of attack of the vehicle 1s zero, i.e,, that the vehicle
velocity relative to the air mass is in line with the vehicle longi-
tudinal axis,

It is readily seen that the formula for drag in the upper atmos-
phere, Equation (35),differs from the equation of drag in the lower
atmosphere, Equation (33)., Furthermore, in the region between 100
kilometers and 120 kilometers there are disagreements between the two
models. For example, the value of density predicted by the low atmos-

pheric model (U, S, Standard Atmosphere 1962) at 120 kilereters is

347% hipher than that predicted by the high atmesnheric redel (Farris-
Priester) at the same height,

The present program achieves a compromise between thcse twe
models by treating the region from 100 to 120 kiloreters as a tre-si-
tion region in which a weighted average is taken between the drae
values computed by the two rethods and gradually slides the weight
from unity for free molecular flow and zerec for continuum flow at 120
kilometers to unity for continuum flow and zero for free molecular

flow at 100 kilometers.
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Because of the uncertainties in the atmospheric models and be~
cause of the approximations made in the analysis the computation of
drag deceleration is probably accurate to + 5% in the lower atmospicre

and is less accurate in the upper atmosphere.

Variables Used in Drag Computation

Vehicle Mass

In the most general case, the vehicle mass in the drag equations
should be considered as variable with time. In the orbiting case or
the fly-by case, a step change in mass representing the separation of
a landing craft is conceivable. A long~term steady-state mass flow
rate, however, would probably be small.

For the reentry case, if the reentry vehicle is of the heat-sinr
type, the mass would be constant. For an ablative nose cone (i.,e.,
one which loses mass when moving at high speeds due to friction) the
mass flow rate is a function of the drag. For ballistic missile ap-
plications, this mass change is usually ignored. In any event, such
changes in mass represent a small error in the location of the impact

point. Therefore, the program treats the mass as an input constant.

Surface Area

The effective surface area term S in the drag equation is not
simply the cross-sectional area of the vehicle. The vehicle, in
passing through the air, produces a shock wave which skirts the mis-
sile thereby placing the effective cross-sectional area at a point
somewhat close to the nose. Since the shock wave changes with air
speed, so does the effective cross-sectional area. In practice, S
is made constant and any variation with speed is included in the co-

efficient of drag.

Velocity with Respect to Ailr

The velocity of the vehicle is available in an inertial coordi-
nate system (Base Date System).

-

The vehicle velocity with respect to the moving air mass, Va,
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in the same coordinate system, is obtained by subtracting the velocity
of the air mass from the vehicle velocity. A good first approximation
to the velocity of the air mass is obtained by assuming the air mass
to be rigidly attached to the rotating planet.

From these considerations we have:

Va=R-0' xR (36)
where

-
Vo 1is the velocity with respect to surrounding atmosphere,

R 1s the position vector of the vehicle in the inertial

, frame,

R is the velocity vector of the vehicle in the inertial

frame, and

-

Q' 1is the vector of angular rotation of Earth expressed
in the inertial frame,

A better approximation could be obtained by including the effects
of wind velocity. The purely local effects have to be neglected, but
the long~term horizontal effects are known as a function both of posi~
tion on the Earth's surface and of altitude. The effects of the wind
velocity's direction (independent of altitude but dependent on lati~-
tude and longitude) and magnitude (strongly dependent on altitude,
less strongly on latitude, and least on longitude) would have to be
included. The error made by neglecting Earth winds is about 1,500
feet at impact for a typical ICBM mission., It should be noted that
winds are of importance only in the Earth's lower atmosphere, mainly
for the reentry case. In the present program the effect of winds is

neglected,

Drag Coefficient

The drag coefficient, Cp, 18 sometimes considered to be a con-
stant, Very often the ballistic coefficient, B = E%i » 18 used in
analysis in place of the drag coefficient, mass, and effective sur-
face area., A much more accurate representation for Cp is obtained

by considering it to be a function of Mach number. Mach number is
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defined to be:

-

Va
M- -;‘ (37

where,
M 1s the Mach number,
|Va] 1s the speed with respect to the surrounding air, and

c 1s the speed of sound in the surrounding air,

The speed of sound 18 a function of altitude obtained from the
low atmospheric model (see below)., It should be noted that as altitude
increases, the atmosphere becomes rarified to the point that the speed
of sound loses its physical significance.

In the program Cp 1s tabulated for about 40 different Mach
numbers. These numbers are denser for speeds below Mach 2 than those
above and are very dense in the region around Mach 1, For intermedi-
ate values of Mach number, linear interpolation is used.

Inadequate knowledge of the drag coefficient is one of the major
sources of inaccuracy in the simulation of drag. Since drag coeffi-
cient is a function of Mach number, drag coefficient data has been

obtained by wind tunnel measurements made at a range of Mach numbers.

Alr Density

In the region below 120 kilometers the air density, p, 1is a
function of altitude obtained from the low atmospheric model and is
computed from a stored table (see below).

In the high atmosphere p 1is obtained from the upper atmospheric
model of Harris-Priester and is considered to be a function of alti-
tude, local solar time, solar flux, and latitude, Tables are provided

in the program for its computation (see below).

Mean Particle Velocity

The mean particle velocity, Cgzy, 18 of importance only when
the vehicle is in the upper atmosphere where the assumption of free
molecular flow is valid. From Equations l.3.4-1 and 1.2,6-=1 of
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Reference (7], C,, is given by

T km
Cav = &/ 2 (oon)

T 1s the absolute temperature of particles (°K),

where

m 1s the mean molecular weight of medium (gm),
k 18 a constant of proportionality (.145),
The values of T and m are given in the Harris-Priester model of

the upper atmospheres. Cgy can, therefore, be obtained directly from

stored tables,

Lower Atmospheric Model

Drag in the lower atmosphere (below 120 kilometers) can be large
and a vehicle entering this region will usually be slowed down suffi-
ciently to be juickly captured by the Earth, Thus, the lower atmos-
phere is primarily of concern in the reentry case,

Data for an average model have been well established for the
lower atmosphere, There are five sources for these data: U. S,
Stancard Atmosphere 1962; COSPAR International Reference Atmosphere
{(CIRA), 1961; COESA Table for Tropical Latitudes, 1962; ARDC Model
Atmosphere 1956, 1959, Table I shows the density deviation (in

percent), as a function of altitude, of each of the others from the

U. S. Standard Atmosphere values, From the table, it is evident that,
except for the COESA tables, there is good agreement between the vari-
ous tables at low altitudes. Note that the U, S, étandard Atmosphere
and CIRA tables are in excellent agreement all the way to 120 km,
(400,000 feet).

The lower atmosphere is characterized by seasonal, diurnal, and
latitude variations; however, none of these is sufficiently well
documented., The only effect of omitting them is that the impact point
of a re-entering body would be slightly different, It was estimated
in 1958 that the standard deviation for a heat-sink type nose cone
used in the ICBM application 1is only about 0,5 nm.
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Table 1

Comparison of Sources of Density Data

U, S, Standard
Atmosphere Pcrecent Deviatior fror Iir Sirc-«
Altitude Density
Values 3
(Reference) ARDC ARDC CIRA COF SA
ke, Ex; slugs/ft3 1956 1959 1961 1962
0 0 2,38"3 0 0 0.55 -4,77
3.0 | 10,000 1.76-3 0 0 -0,91 -5,32
5,5 | 18,000 1.3673 0.04 0 1.85 -1.67
1Ww.1 | 33,000 7,97 ¢ 0.05 0 1.68 1.9
la.6 § 48,000 4,007" 0.09 0 2.36 15.5
20,4 } 67,000 l.617" 3.28 0.16 0.48 6.80
29.0 { 95,000 4,205 0.59 -2.36 0.10 0,46
32,5 }110,000 2,077 -3,13 -3,13 0.68 2,53
48,6 {160,000 G 4,77 4,77 O 8.9
67,1 | 220,000 2507 15.0 15.5 1.30 8.10
$1.4 | 300,000 4,62-° 31,2 -10.8 0.11 - -
121,9 V400,000 3.62711 81.5 -35,0 1.57 - -

Three tables with 32 values each are stored in the program for
the lower atmospheric model. The first contains 32 values of alti-
tudes in kilometers, the second contains 32 values of the logarithm
(base 10) of the density, p, in gm/km3, and the third contains 32

values of the speed of sound, c, in km/sec. The nth entry in the
altitude table corresponds to the nth entry in the table for log;oP
and ¢, Intermediate values are obtained by linear interpolation.

These three tables are obtained from the U, S. Standard Atmos-

phere 1962, in which densities and speed of sound at altitudes below
90 km are listed, Above 90 km the speed of sound was calculated from
temperature and mean molecular weight data which are directly avail-
able,
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The value of altitude (in Earth radii) above an ellipsoidal
Earth is obtained using a formula found in BakerElOJ.

2
s o 44 E sl 4 4 e (e 2 el 123 (39)
2 N 4
where
h is the height of the vehicle (ER),

r 1is the distance of the vehicle from the geocenter (ER),

is the geocentric latitude of the vehicle,
1
298,3 °*

For programming purposes Equation (39) is put into the more convenient

form:

is the flattening constant of the Earth =

2 1y x2 + y2
1+ (-9 g

- - 2
R Al Lok 298.3 R2 (40)

where,
h 1is the altitude of the vehicle (ER),

X,¥,2 are the position coordinates of the vehicle in the
Greenwich coordinate system (ER),

- 2 2 2 is the distance of the vehicle from
R //¥ tyo e the geocenter (ER).

The position coordinates of the vehicle are available from the pro-
gram and h 1s multiplied by 6378.165 to convert its units into
kilometers.

After h is obtained, p (p = 10108109) and c¢ are obtained
from the low atmosphere tables., Then the air velocity, Va and the
drag coefficient, Cp, are computed as described above. Finally,

53 is computed according to Equation (33).

Upper Atmospheric Model

Models of the Earth's upper atmosphere (above 100 kilometers)
must take into account solar activity, There is evidence that solar
activity occurs cyclically at periods of 27 days, 6 months, 1 year

and 11 years,
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Theoretical models do not exist for the 27-day, 6-month, and 1-
year cycles. Diurnal variations, if any, of the models for these
cycles are not known, Investigation of the ll-year cycle (corres-
ponding to the sunspot period) in solar flux led to the Harris-
Priester model of the upper atmosphere. This model"g’ll:| has
diurnal and solar flux variations.

The Harris-Priester mode1[9] lists the density, absolute tem=-
perature, and mean molecular weight of the atmosphere as a function
of altitude, solar flux and local solar time, The mean particle
velocity can be found by use of Equation (38). Note that at the
North and South Poles local solar time is undefined,

The upper atmosphere has a delaying effect on solar radiation,

It takes several hours for the Sun's heat to pass through the atmos-
phere and reach the Earth's surface. The Harris-Priester model is
based on densities computed at the Earth's equator., Intuitively, it

is expected that it will take longer for the solar flux to reach the
poles as opposed to the equator, Therefore, it is considered that
there is an effective variation of solar flux with latitude. This
variation is implemented in the program by applying the Harris-Priester
model at the equator and a stored table of "twilight' densities at

the poles. The cosine of the latitude of the vehicle is used as a
weighting factor to interpolate between the two sets of data.

The Harris-Priester upper atmospheric model has been incorporated
in the program by means of a table look-up procedure, Two tables are
used in the program,

The first table lists the logarithm to the base 10 of the density
in gm/km3 times the mean particle velocity in km/sec (log;gp Cav) at
the equator as functions of altitude (km), solar flux (vatts/m?2 - Hz
at a wavelength of 10,7 cm) and local solar time (hrs). These values
have been tabulated for 16 values of altitude, 4 values of solar flux

and 13 values of local solar time, Hence, this table has 832 entries,
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The second table lists 1log;g PCay 1in the same units at "twi-
light” for the modeling of the polar region as a function of altitude
and solar flux, This table has 16 entries for altitude, 4 entries
for solar flux, or 64 entries,

For intermediate values of the input variables (altitude, solar
flux, local solar time) a linear interpolation is used to obtain the
output, log;p pCav. This method gives fairly accurate results since
0Cav 1s nearly exponential, The value of solar flux is determined by
input data. The value of altitude is computed according to Equation
(40)., The value of local solar time is computed from the x and vy
coordinates of the vehicle and the Sun in the inertial (Base Date)

coordinate system (see Figure 5),

SUN

VEHICLE
- 6

] > y-AXIS
—/// 67

GEOCENTER _/

Y x-AXIS

Figure 5. View of x-y Plane from Above
Thus we have:

(-]
local solar time '{(92 -8 + 1 !ﬁ%l— + 720°}(mod 360°)

where
= Ys
- 1 = < 0 < = 7
6, tan [xs) where w < 8] <
- -1 (L T < 0y <=1
6, = tan [xv) where <82 %
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Xys Yv are the vehicle coordinates in the inertial system,

Xg, Yg are the Sun's coordinates in the inertial system,
Local solar time given above is then divided by 15 to convert its units
to hours,

After a value of log;y pCay has been obtained from both the
equatorial table and the "twilight" polar table an interpolation is
done to obtain the final value of pCay using the cosine of latitude

as a weighting function, Hence:

L =Lp + cos ¢ (LE -~ Lp) '

2 2
4_xc + o
cos ¢ = \/ml_‘_—:z (43)

pCav = 10L (44)
where
L 41is the final value of 1log;( eCav,

Lp 1is the value of 1log;o pCav obtained
from the twilight table,

LE 1s the value of 1log)g pCav obtained
from the equatorial table,

X,Y,2 are the coordinates of the vehicle in the inertial
(Base Date) system and ¢ 1is the latitude of the
vehicle,

Once pCgv has been found, the vehicle area and mass (S and m,
standard program inputs) as well as air velocity Va (see Equation
(36)), are obtained and the value of drag deceleration is finally

computed according to Equation (35).

PERTURBATION DUE TO DIRECT SOLAR RADIATION

Solar radiation exerts a pressure on the intercepting surface of
a vehicle, Orbiting planetary vehicles, having a large area to mass
ratio are subject to noticeable perturbations due to solar radiation

pressure, In fact, for orbits above 500 miles the solar radiation
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perturbation is usually more significant than that due to dragtlz].
The vehicle acceleration due to solar radiation pressure depends on
the area to mass ratio of the vehicle as well as the intensity of the
Sun's incident power at the vehicle and the fraction of solar illu-
mination on the vehicle, The illumination factor is considered in
three distinct regions in the following analysis: full sunlight,
penumbral illumination, and no illumination (i.e., umbral region).

In computing the solar radiation perturbation, ?u, this analy-
sis neglects the dispursive effects of planetary atmospheres which
complicate the geometry of the umbra and penumbra., The analysis also
neglects the effects of reflected sunlight from the reference body

or any other planet,

Acceleration Due to Solar Radigtion Pregsure

An expression for the acceleration due to solar radiation pres-

sure given in Wolvertontlz] is: N

3, = Ay Loy Rsy
By P4 (m)(bnc) Rgy3
where,
p 1s the illumination factor,
q 1is the reflectivity coefficient,

A 1s the area of vehicle pertaining to solar
radiation pressure,

m 1is the mass of vehicle,

Log=3.86 x 1026 watts, the total power output
of the Sun (+ 3%),

c 1is the speed of light,
ﬁsv is the vector from the Sun to the vehicle,
The SPACE program assumes a reflectivity coefficient equal to
unity. This assumption may be altered by changing the area, A, by
an appropriate factor., Simplifying Equation (45) and putting the

above variables into units used by the program, one obtains:
->

A R
3u-p(;n') CP@%
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where,
p 1s the 1llumination factor, O spLl,
A 1is the area pertaining to radiation pressure (ft?),
n  1is the mass pertaining to radiation pressure (lb-masses),
ﬁsv is the vector from the Sun to the vehicle (ER),

3 (ER3-1b
Cp =1.04819 x 10 (HR s ) and 1s a constant used to convert

the expression into units used by the program and to ac~
count for the 55% factor of Equation (45),
Equation (46) 1is the basic equation used by the program for com-
puting the solar radiation perturbation acceleration,
The illumination factor, p, 1s obtained from the relative geo=
metry of the vehicle with respect to the Sun, the Mocn and the plarets:
P 1 1in full sunlight,

p =0 1in the umbral region,

0 <p <1 in the penumbral region.

It is possible that a vehicle may lie within the penumbral region
of two bodies at the same time, e.g., the Earth and the Moon. In
this case, only the penumbral illumination factor due to the reference
body is computed, Errors introduced by this assumption are extremely
small: first, because for most vehicles of interest the solar radia-
tion perturbation is itself small (usually less than 10 ° times the
acceleration of the reference body except for low density balloons);
second, because only a short time is spent in the penumbral region of
the reference body by an orbiting vehicle; and third, because the
incidence of simultaneous penumbral obscuration is rare,

Since the geometry used in calculating the illumination factor
is the same as that used for eclipse information, the portion of the
program which computes the solar radiation pressure perturbation also
computes the times at which the vehicle enters or leaves the umbra or
penumbra of the celestial bodies., The geometry used in calculating

the vehicle illumination factor, p, 1s described below.
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Vehicle Illumination Factor

Figure 6 illustrates the geometry of vehicle illumination, neg-

lecting the effects of atmospheric refraction,
it is seen that the height of the umbral cone
(hp)

cone

where,

By similar triangles

(hy) and penumbral

are respectively given by:

R

L ]

Rp

is the distance from the center of the Sun to the

center of the
is the radius
1s the radius

reference body,
of the Sun, and

of the reference body.

Next, criteria are developed to see in which region the vehicle

lies, i.,e., full sunlight, umbra, or penumbra,

Figures 7
-5

-
R

and 8 and the

is the vector
to the center

is the vector

First, consider
definitions and relations below,

from the center of the Sun
of the reference body,

from the center of the

reference body to the vehicle,

cos A= /1 - (Eﬁ)z
@ -3 - Kep
cos a ™= - -
IK"PI Rsp
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POSITION OF VEHICLE

APEX OF UMBRA

Figure 7. Umbral Region Geometry

POSITION OF
VEHICLE

SUNLIGHT

Figure 8. Penumbral Region Geometry
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Froa Figure 8 we gety

cos B= /1=~ (-2-)2 (5133
bp
- - -> : i

cos B = (R Qi 3 (54,
1% - Q! Rap

tow, 1f the scalar product E . B lp positive, then the vehicle

lies on the side of the reference body away from the Sun. In this
case, 1f gos o > 0 and 1f a < A, the vehicle or satellite lies

in the uzbra and p 1s set equal to zerc, Another test is:
j2 |cos a| > |cos A! ' (5
then p =0,

i.e., the vehicle lies in the umbra,
1f the vehicle does not lie in the umbral region one can test to
see if it lies in the penumbra, Thus, if gos 8 > 0 and B8 < B the

vehicle lies in the penumbra, or equivalently:
if |cos 8| > |cos B| (5¢)
then 0<p<l1

{i.e,, the vehicle lies in the penumbra}),

I1f the vehicle does not lie in either the umbral or penumbral
region, then the reference body does not obscure the Sun's rays. A
check can then be made to see whether any other celestial body blocks
or partially blocks the solar radiation; and if not, the illumination

factor is set equal to one, p = 1,

Pepumbral Illumination Factor

If the tests of Equations (55) and (56) above indicate that the
vehicle lies in the penumbral regiom, then the illumination factor,

ps 1s computed according to the formula:

Aex (57

P Bg
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where Agx i1s the angular area subtended by the exposed portion of
the solar cap at the vehicle position, and

6g 1s the total angular area of the solar cap at the
vehicle position,

The general approach used by the SPACE program for computing the
penumbral illumination factor is somewhat more detailed than that
given in most references, It consists in projecting the solar disc
(or cap) and the cap of the ohscuring planet (or moon) on to a great
imaginary sphere whose center is at the vehicle position, The rela-
tive angular areas of the caps are computed and the illumination fac-
tor is given according to Equation (57)., While the theoretical de-
velopment is somewhat involved, it leads to simple closed form alge-
braic expressions convenient for use on a computer,

First, consider Figure 9 which shows a sphere of radius R, re-
presenting the Sun or a planet, and a point P at a distance £ + 7"
from the center of the sphere, The apparent angular area of the
sphere as seen from point P 18 equivalent to the angular area of
the sphere's cap projected onto &8 projection sphere of radius a,

Therefore the following is true:

angular area 0 = 27 [1 - cos V]

_Zw[l_m]

%+ R G
-am 2, (59)
where a 1s the radius of the projection sphere, and
H 1s the height of the projected cap.
The total angular area of a planet (6p) or of the Sun (8g) at
the position of a vehicle can be obtained by substituting the appro-
priate values of 2 and R 1into Equations (58) and (59) and simpli-
fying, Thus, we have!
vh(h + 2Rp) H(
6p = 2w 1-——h—+—§P—-2n: (60)
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POSITION OF VEHICLE AT
WHICH THE ANGULAR AREA
OF THE SOLAR OR PLANE-
TARY CAP IS MEASURED

DISC AND CAP OF THE
SUN OR PLANET

SUN OR PLANET

SPHERE OF PROJECTION

PROJECTED CAP OF SPHERE

Figure 9. Geometry Used to Measure the Angular Area
of the Solar or Planetary Cap
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where

6p 1s the angular area of the planet (or moon) at the vehicle
position,

h 1is the height of the vehicle above the planet's surface,

Rp 4is the radius of the planet,

6s 1is the angular area of the Sun at the vehicle position,

Rgy 1s the distance from the center of the Sun to the vehicle,

Rg 1is the radius of the Sun,

H 41is the height of the solar cap,

H' 41is the height of the planetary cap,

a 1is the radius of the imaginary sphere of projection.
Equations (60) and (61) establish the relative size of the solar and
planetary caps as seen from the vehicle,

Next, it is desired to determine the angular area of the exposed
solar cap Agx. To do this, consider Figure 10, In this figure the
vehicle is positioned at the center of a great imaginary projection
sphere of arbitrary radius, a., The relative positions of the Sun
and the obscuring body or planet are shown as well as the projections
of the solar and planetary caps onto the great sphere, The equator
of the great sphere 1s constructed to be coplanar with the vehicle,
the center of the Sun, and the center of the planet. A great circle
is also constructed perpendicular to the equator and passing through
the intersection of the caps; this circle will be used to define one
of the limits of integration in the computation of the angular area
of the two lunes which are formed by the great circle,

For the calculations to follow, three coordinate systems are de-
fined and illustrated in Figures 10 and 11, The coordinate systems

employed are:

41
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POSITION OF VEHICLE

SUN

PLANETARY
CAP OF
TOTAL AREA

op

SOLAR CAP OF

TOTAL AREA 6g GREAT CIRCLE

Figure 10. Geometry of the Intersection of the Solar
and Planetary Caps

Yo ¥ i ¥

Figure 11. Definition of Coordinate System
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(1) A system (x,y,z) for the solar cap.

(2) A system (x',y',z') for the planetary cap.

(3) A system (x",y",z") for the great circle,
All three coordinate systems are orthogonal and have, in common, the
same y axis, The relations between the coordinates are given in
Equations (62) and (63)¢

- =\ -
x' (;os 6c =-s8in 6c O r-x
z'| = |8in 6C cos 6c O |z
! 0 0 1 62

x"-1 ( sin 6 cos 6g 0] xT
z'|= |~co8 8 s8in 6g 0] z

y" 0 0 {J y (63)

where

6c 1is the angle from the center of the solar cap (z-axis) to
the center of the planetary cap (z'-axis),

6c 1is the angle from the center of the solar cap (z-axis) to
the great circle (x"-axis).

By inspection of Figure 10 one finds that:

R.R
R Rgy (64)
where
0 < 8¢ < =
c22

Next find the points of intersection of the planetary and solar
caps X ® Xp, ¥ * Yp, and 2z = zp, Referring to Figures 9 and 10
one sees that the equation of the small circle of the solar caps

(having a cap height of H) isi
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%2 # g2 22 = g2
z=a-1H
o's X2 + y2 = H (2a - H)
Similarly, the equation of the small circle of the planetary cap
having height H' {is:
(x")2 + (3% + (z")2 = a2

'-a_H'

zZ
x'2 +y'2 = ' (2a - H")

Using Equation (62) we can write Equations (67) and (68) in terms of

the (x,y,z) coordinates,
z' = x cos 6c + z sin 6c = a - H'

x'2 + Y'2 = (x cos Oc - z sin ec)2 +y =H'(2a - H")

From Equations (65) and (69) we find:

(a = H') = (a = H) cos 9¢
% *p sin BC

Using this result and Equation (65), Equation (70) gives:

g2 = yp? = H'(2a - H') sin8. - [(a = H') cos 6; = (a - H)]?2

2
sin ec

And, of course, Equation (65) can be rewritten:

Z™=2p™a- H

Equation (72) requires some interpretation, Figure 10 illustrates a
case where the solar and planetary caps intersect, It is possible

that the caps are tangent or that the planetary cap lies within the

4

(65)

(66)

(67)

(0t

(69)

(70)

(71)

(72)

(73)



solar cap. To determine whether an intersection exists, the value
of yp? of Equation (72) may be used as a discriminant,

(1) 1If yp? > 0, two intersections exist,

(2) 1f yp? = 0, the caps are tangent,

(3) 1f ypz < 0, the caps do not intersect and the
exposed solar angular area is given by
AEx = 65 - @p.

For the great circle passing through the intersection of the

caps 2" = 0, z = zp, x = xp, Hence, Equation (63) gives:

2" = -~ x cos 8; + z 8in 65 = 0

P9
2z

Xp
or = —= = tan f;
Zp

thus from Equations (71) and (73)

(a = H') = (a-H) cos 8
(a = H) 8in 6¢

tan BG =

In a similar manner we may also find the equation for 6. ',
the angle between the center of the planetary cap and the great
circle,

x'

tan 65' = 5

everywhere on the great circle,
Using Equation (62) evaluated at x = xp and z = zp we

finally obtain:

, (a=-H") cos 8c - (a - H)
Eamt{Bs" = (a - H") sin 8¢

In computing Agx, there are five cases of interest and these
cases are illustrated in Figure 12, 1If yp2 < 0 one obtains case
V where Apx = 65 - 6p., 1If yp2 > 0, however, the caps intersect;

and before Agx can be determined, one must calculate Ag and
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GREAT CIRCLE GREAT CIRCLE

EQUATOR OF

EQUATOR OF

GREAT SPHERE

PLANETARY
CAP

PLANETARY
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Case I. Agy = Ag = Ap Case II, Apx = 05 - Ag - Ap

\GREAT CIRCLE

i}EAT CIRCLE

EQUATOR OF

—

PLANETARY
CAP

SOLAR CAP

SOLAR CAP

PLANETARY
CAP

Case III, Agx = 6g - 6p + Ap - Ag Case IV, AEX = 6g - Ag - Ap

SOLAR CAP

LANETARY CAP

Case V., Agpxy = 6g = 6p

. Figure 12, Possible Penumbral Configurations
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ONE HALF OF THE
SPHERICAL LUNE, Ap

CIRCLE OF PROJECTED
PLANETARY CAP

CIRCLE OF
PROJECTED
SOLAR CAP

ONE HALF OF THE
SPHERICAL LUNE,

Ag

Figure 13. Area of Spherical Lune, As
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Ap, where Ag 1is the angular area of the smaller lune formed by the
solar cap and the great circle, and Ap 1s the angular area of the
smaller lune formed by the planetary cap and the great circle,

Figure 13 illustrates the geometry and the variables used to
compute Ag, The method of computing Ap 1is identical except that
all computations are done in the (x', y', z') coordinate system
instead of the (x, y, z) coordinate system,

The area of the surface ABC of Figure 13 is given by:

%0 0 (%)
area of ABC = Ja dd [ a sin 6 d8, 0 < ¢ < %‘ (79,
C 6,(¢)
To get the angular area, Ag, one must double the area of ABC and
divide the result by a2, Thus,
o, p(®)
Ag = 2 [d¢ [ sin 6 d6 (80)
0 6.(8)
0
or Ag = 2 J {cos [04(¢)] = cos [6p(¢)] d¢ (81)
0

where

¢ 1is the angular displacement in the x-y plane,
positive counterclockwise,

6,(¢) 1is the angular displacement of side BC (an
arc of the great circle) from the z-axis,
positive counterclockwise,

6p(¢) 1is the angular displacement of side AC (an
arc of the small circle of the solar cap)
from the z-axis, positive counterclockwise,

Before Equation (81) can be evaluated, expressions for cos [6,(¢)]

and cos [6;,(¢)] must be found., The equation of the small circle of
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the solar cap is:

x2 + y2 = H (2a - H),. (82)

Using the following transformation:
X = a sin 6 cos ¢
y = a sin 6 sin ¢
2= a cos 6 (83)

Equation (82) becomes:
a? (sinze cos?¢ + sin29 sin2¢) = || (2a - H)
or a2 (1 - cos?8) = H (2a - H) (84)

For the small circle of the solar cap, 6 = 6}, and Equation (84)

becomes

a-H

cos 0y = = (85)
The equation of the great circle is
(x")2 + y? = a? (86)
and using Equation (53) for x" we obtain:
(x sin 0g + 2z cos ec)2 + y2 = a2, (87)
From Equation (75) we note that everywhere on the great circle
z tan 6g = x, (88)
Hence, after substitution of Equation (88) into Equation (87) we have
(z tan 6g sin 6G + z cos 6(;)2 + y2 = a2, (89)

Inserting the polar coordinate relations from Equation (83), yields after

some reduction:

cos26 (1 - coszec sin¢) = coszec cos?¢ (90)

or, since 6 = 64(¢) along the great circle

49



I cos 8g cos ¢

cos 0,(¢) = (91)
[A //1 = coszec sin?¢

Now we can evaluate A

g of Equation (61) using the value of cos 8,

and cos eb above,

®0 COS 6.~ cos ¢
G a - H
AS - 2 - a d¢ (92)
0 //1 - coszec sin2¢
Rearranging we have:
%0 0
d H
Ag = 2 [ Lot s -2 J (l - ;ﬂ de
b //seczec - sin2¢ 0
. 2 2
Letting sin 9 = x, c“ = sec“fg
sin ¢,
dx_ 2 (1 - &
Ag = 2 :FFTT::E \ =) ¢o
0
rsin ¢0 H
2 sin”l ommml - 2 i1 =], carg
-1 (3 = & 93
Ag = 2 sin [sin $g cos 6g) = 2 ¢p !1 - a) (93)

From Equation (82) and Figure 13, it 1is evident that

Xp XPp
cos ¢o = " K (2a - B (e
//xpz + ypl (

Yp Yp

i , JP > 0 (95)
XPZ + sz YH (2a - H)

sin ¢p =
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therefore,

yp
-1 n
¢g = 0 < < == 96
0 sin [ s = H)}' 0 £ 2 (96)

Using Equations (93), (95), and (96) the value of Ag 1is obtained.
Notice that the above development was done under the restriction,
0 < 2g 2ﬁ§- in which case the entire lune of intersection, Ag, is in
the first and fourth quadrants, If the intersection of the twe caps
occurs in the second quadrant (as in Case I of Figure 12), then ¢
is in the second quadrant and the entire lune of intersection lies in
the second and third quadrants. Instead of recomputing this case,
note that (see Figure 13) if the lune of intersection, Ag, lies in
the second and third quadrants one could rotate the x-y plane about
the z-axis by 180°, resulting in the problem that has just been ana-
lyzed, Therefore, Equations (93), (94), and (96) give the correct
value of the angular area Ag whether ¢y actually lies in the first
or second quadrant. Notice, however, that if 0 - ¢g ;‘g- then
xp - 0 and cos ¢g > 0; but if g-:_¢o < nm then xp < 0 and
cos 29 < 0. Thus, cos ¢g can be used tc discriminate between the
two cases just mentioned,

A completely parallel development is used in order to compute
Ap. The major difference is that all calculations are done in the

(x'y'z') coordinate system. The resulting equations are:

Hl

Ap = 2 sin”! [sin ¢o' cos 8G'] - 200" (1 - =) (97)
, Xp cos 8p - (a - H) sin ec
cos =
0 JH' (2a - 1I') (98)
sin ¢p' = e (99)

/H' (2a - H')
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|
) yp 7
o = S l {m' (2a - H')} Vitozy R

where the primed quantities are related to the planet and dg' is
given by Equation (78).

Finally, note that many quantities are expressed in terms of a,
the radius of the great sphere, and H or ' the depth of the solar

or planetary cap. By use of Equations (60) and (61) we have

H_ s g
a 2n

H' Up .
PR S

Thus all quantities may be expressed in terms of ©g and 6p which

are already known., This is most easily accomplished by setting a = 1

8
(since the radius of the sphere is arbitrary) and letting Il = ?%
Op £
(s e
and H K 0

The computation of Apy, the exposed angular area of the solar
cap is shown for each of the five cases of Figure 12 in Table 1I. Note
that the discriminmts used to determine which case is to be evaluated
are yp?, cos ¢p, and cos ¢g'e

Finally the penumbral illumination factor is given by Equation

(S7)a
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NUMERTCAL INTEGRATION

The equations of motion for a space vchicle are second-order
ditferential equations which describe the accelerations arising iror
the forces acting on the vehicle. Accounting for the primary gra.i-
tational field of the reference body and four types of perturbative

aceclerations, the equations of motion (from Equation (2)),

ti--l‘{—};-+51+52+33+ﬁu (2)

If the perturbations are considered to be zero, the right hand
side of Equation (2) reduces to one term and the vehicle will follow
a Keplerian orbit which may be described in closed form in terms of
its true or eccentric anomaly, Usually, however, part or all of the
perturbaticns are included and Equation (2) must be numerically inte-
erated.

There are two basic methods by which the integration of Equation
(2) may be formulated, Encke's method and Cowell's method, If Equa-
cion (2) were to be numerically integrated in a straight-forward
manner, the integration would be known as Cowell's method. The sirm-
plicity of this method is offset by the larre accelerations which must
be integrated, As a consequence of the acceleration magnitudes, smell
time increments have to be used in the integration, and machine round-
off error accumulates rapldly. Independent evaluations at many cor=-
panies and universities have shown that Cowell's method requires more
machine time than other perturbational schemes. See Baker[lo’ Epe. &eBAcHE]
tor a further discussion of Cowell's advantages and disadvantages.
Despite its drawbacks, Cowell's method is still widely used and
is especially suited if the accelerations due to perturbations are
as large or larger than the term due to the central force field (e.y.,
during reentry). The program contains both methods and the option is
left to the user.

Historically, Encke's method is older than Cowell's although

the former is more sophisticated. Cowell's method requires a modern
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high-speed computer to be practical, whercas Fnclke's was developed

for hand computation. In Encke's method, it 1s assumed that the rer-
turbative accelerations, F}, are small compared to the referenue
body acceleration. Consequently, when drag accelerztions are small,
the solution of Equation (1) is a good approximation to the true orbhit,
lnder these conditions, it is only necessary to inte;rate the differ~
cnce between the accelerations on the two-body orbit and the total
accelerations acting on the vehicle. The c¢quations of motion then
become second-order differential equations describin; the acceleration
differences, Let

£ =R - Rpg (103)

where ﬁTB is the position of the vehicle in terms of the two-body

orbit, Then,

: R Rrp S
h oy E?'TR ] + . Py (104)
[ B i=)

Equation (104) is integrated to obtain E and E. These quancitics
are then added to ﬁTB and ETB. resPectively. to obtain the instan-
taneous position (E) and velocity (R) of the vehicle, The quan-

»
tity ¢ 1is commonly referred to as the "Encke" term,

Encke's Meth