MRX/OS Assembler

Reference Manual
2202.001-01

pEl @IS

wajlsAg 19ndwon

sjonpo.d

December 1972 Edition

This edition (2202.001-01) is a major revision of, and obsoletes,
the previous preliminary edition (2202.001).

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,
8941 - 10th Ave. No. (Golden Valley) Minneapolis,
Minnesota 55427.

© 1972, MEMOREX CORPORATION

PREFACE

This reference publication is intended for programmers using the MRX/OS Assembler
Language. This publication describes how to write assembler source statements, including
assembler instructions, macro instructions, and conditional assembly statements. These
instructions are summarized in Appendix E. Machine instructions and extended mnemonic
codes are summarized in Section 3, and additional reference tables appear in Appendixes B,
C, and D. The machine instructions are described in detail in the publication 7200 or 7300
Processing Unit Reference.

' TABLE OF CONTENTS

Section
1 INTRODUCTION

Function of the Assembler
Relationship to the Operating System
System Requirements

2 WRITING SOURCE STATEMENTS

Character Set
Basic Format of Source Statements
Terms and Expressions
Terms
Constants
String Constants :
Character String Constan
Hexadecimal String Constant
Packed Decimai String Constant
Zoned Decimal String Constant
Integer String Constant
Floating Point String Constant
Arithmetic Constants
Decimal Arithmetic Constant
Hexadecimal Arithmetic Constant
Symbols
Ordinary Symbols
Variable Symbols
Concatenation of Variable Symbols
Sequence Symbols
Location Counter Reference
Symbol Length Attribute
‘Literals
Expressions
Evaluation of Expressions
Absolute and Relocatable Expressions
Absolute Expressions
- Relocatable Expressions
. Examples of Absolute and Relocatable Expressions
Coding Form
Name Field
Operation Field
Operand Field
Comment Field
Identification-Sequence Field
Statement Continuation

 Bulletin: 2202.001-0101
Date: 3/19/73

2-6a

2-10
2-10
2-11
2-11
2-12
2-13
2-14
2-15
2-17
2-17
2-18
2-18
2-18
2-20
2-20
2-20
2-20
2-20
2-21

Section

3

TABLE OF CONTENTS (Continued)

MACHINE INSTRUCTIONS

Source Statements
Instruction Alignment and Checking
Operands and Suboperands
Name and Length Attributes
Notation Used to Describe Machine Instructions
Summary of Machine instructions
General-Purpose Instructions
System Instructions
Summary of Extended Mnemonics
Extended Mnemonic Codes

ASSEMBLER INSTRUCTION SOURCE STATEMENTS —
OVERVIEW

PROGRAM SECTIONING AND LINKING STATEMENTS

CSECT — ldentify Control Section

Symbolic Linkage Statements — ENTRY and EXTRN
ENTRY - ldentify ENTRY Point SYMBOL

EXTRN -- Identify External Symbol

COM — Define Common Control Section

Reserved Symbolic Segment Name — $SYSEG

PROGRAM CONTROL STATEMENTS

ORG — Set Location Counter
END — End Assembly

PUNCH — Write to File

LTORG — Begin Literal Pool
ICTL — Input Format Control
ISEQ — Input Sequence Checking
ALIGN — Align Location Counter

LINKAGE-EDITOR MAP DIRECTIVE — SEG
SYMBOL AND DATA DEFINITION STATEMENTS

EQU — Equate
WDD and BDD — Word and Byte Defined Data
WRS and BRS — Word and Byte Reserve Storage
FORM — Define Data Format
FORM — Instruction Statement
Padding and Truncation Rules for Form Statements

vi

Page

3-1

3-1
3-1

3-2
33
35
3-9
3-10
3-11

4-1

5-1

5-2
5-3

5-6

6-1
6-3
6-3
6-4
6-4
6-5
6-6

7-1

8-1
8-2

8-7
8-7

TABLE OF CONTENTS (Continued)

Section Page
9 LISTING CONTROL STATEMENTS 9-1
TITLE — Identify Listing 9-1
EJECT — Start New Page 9-2
SPACE — Insert Blank Lines 9-2
PRINT — Print Optional Data 9-3
10 MACRO LANGUAGE AND CONDITIONAL ASSEMBLY
STATEMENTS 10-1
Macro Language 10-1
Macro Definition 10-1
Header Statement 10-2
Prototype Statement 10-2
Model Statements 10-3
Termination Statement 10-5
Macro Instruction 10-5
Positional Operands 10-6
Keyword Operands 10-6
Special Characters in a Macro Instruction 10-7
Escape Character 10-7
Ampersand 10-7
Apostrophe 10-8
Parentheses 10-8
Comma 10-8
Semicolon 10-8
Blank 10-9
Sublists in Macro Instructions 10-9
Sublists in Model Statements 109
Substring Notation 10-10
Concatenation of Variable Symbols 10-11
Nesting of Macros 10-12
MNOTE — Generate Error Message 10-12
MEXIT — Alternate Termination for Macro Definition 10-13
System Variable Symbols — &SYSNDX and &SYSECT 10-13
&SYSNDX 10-13
&SYSECT 10-15
Conditional Assembly Statements 10-15
Set Statements 10-16
SETA — Assign Arithmetic Value to Set Symbol 10-16
SETC — Assign Character Value to Set Symbol 10-18
GBLA and GBLC — Global Arithmetic and Character Set
Symbols 10-20
ADO — lterative Return 10-20

vii

TABLE OF CONTENTS (Continued)

Section
10 (cont) Nesting of ADO Statements
AGO — Unconditional Branch
ANOP — Label Definition
Count and Number Attributes
Count Attribute
Number Attribute
11 CONTROL LANGUAGE STATEMENTS
APPENDIX A — EBCDIC REPRESENTATION
APPENDIX B — OBJECT FORMATS OF MACHINE INSTRUCTIONS
APPENDIX C — ALPHABETICAL LIST OF MNEMONICS
APPENDIX D — HEX CODE TO MNEMONIC CODE
APPENDIX E — SUMMARY OF ASSEMBLER STATEMENTS
APPENDIX F — MACRO EXAMPLE

APPENDIX G — ASSEMBLER ERROR MESSAGES

viii

Page

10-22
10-23
10-23
10-24

10-24
10-25

C-1
D-1
E-1
F-1

G-1

LIST OF FIGURES

Figure

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
29
2-10
2-11
2-12

5-2
8-1
8-2
83
84
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
11-1
11-2
11-3
11-4

Character Usage

Source Statement Format

Types of Terms

Character Constants

Truncation and Padding of String Constant Values
Examples of Assembled Constants
Concatenation of Variable Symbols

Examples of Length Attributes

Examples of Literals

Examples of Duplicate Literals

Types of Operators

Source Code Form

Example of EXTRN and ENTRY

Example of the COM Statement

Examples of EQU Statements

Examples of WDD and BDD Statements
Example of an ORG Statement with WDD and BRS
Examples of Padding and Truncation for Form Statements
Macro Definition

Macro Instruction — Positional Operands
Macro Instruction — Keyword Operands
Examples of Substring Notation
Concatenation of Variable Symbols

Nesting of Macros

Using &SYSNDX with Inner and Outer Macros
Examples of &SYSNDX

Example of &S YSECT

Example of the AGO Statement

Examples of the Count Attribute

Example of Control Language Statements
Example of Control Language Statements
Example of Control Language Statements

Placing Files on Disk — Example

ix

Page

22
2-3
2-4
2-5
2-7
2-8
2-10
2-12
2-13
2-14
2-16
2-19

5-5
8-2
8-3
8-6
8-9
10-4
10-6
10-7
10-11
10-11
10-12
10-14
10-14
10-15
10-24
10-25
11-4
11-5
11-6
11-6

1. INTRODUCTION

FUNCTION OF THE ASSEMBLER

The MRX/0OS Assembler consists of a language and an assembler program. The language is a
set of codes and coding rules for writing a source program. The assembler program translates
the source program into an object program that can be executed by the system. The object
program produced by the assembler is in the form of relocatable object modules. This
translation process is called an assembly.

Two types of source statements can be expressed in the assembler language, machine
instructions and assembler instructions.

The machine instruction source statements provide mnemonic codes for all machine
instructions in the MRX 40/50 instruction set. Extended mnemonic codes are also provided
for the skip and branch instructions. Section 3 of this manual describes the general format
of the machine instructions. A complete description of the machine instructions, addressing
techniques, and data representation is in the manual 7200 or 7300 Processing Unit
Reference.

The assembler instruction source statements specify auxiliary functions to be performed by
the assembler program. These functions include:

) Checking and documenting programs

. Controlling address assignment

° Segmenting programs

. Defining data and symbols

() Generating macro and form instructions

° Controlling the assembly process through conditional assembly
statements

The macro facility enables the programmer to define and use macro instructions. A macro
instruction is represented by an operation code which, in turn, stands for a sequence of
statements that accomplish the desired function.

Conditional assembly statements affect the order of source statement assembly and macro
generation, or the content of generated statements.

1-1

A listing of the source programn statements and the resulting object program statements may
be produced with programmer control of form and content. A cross-reference list of symbol
definitions and references is also produced unless suppressed by the programmer. Errors
detected during assembly are indicated in the program listing. Warning errors may be
suppressed. '

RELATIONSHIP TO THE OPERATING SYSTEM

The assembler program is a component of the MRX 40/50 operating system and operates
under its control. The operating system provides the assembler program with input/output,
segment loading, library, and other services needed for its proper functioning. The assembler
program is called through Control Language statements and resides in a user partition during
execution.

N

SYSTEM REQUIREMENTS

The MRX 40/50 System equipment configuration required to execute the assembler
program is as follows.

) 16K bytes of main storage, of which at least 8K bytes must be
' available to the assembler (additional storage, up to 24K, will
increase the performance of the assembler)

° One source input device or data set
o One list device or data set

° One operator console

° One 660 disc storage drive

) The standard instruction set

1-2

2. WRITING SOURCE STATEMENTS

To write source statements, the programmer should be familiar with the following topics:

° Character set
® Basic format of source statements
® Types of terms and expressions
® Coding form
CHARACTER SET

Source statements may contain the following characters:

Letters - Athrough Z,and $
Digits 0 through 9
Special +* &
Characters -(;
s)‘ ”
’ blank
=/ # @<>

The EBCDIC formats and card punch codes for these characters are listed in Appendix A.
Any of the 256 punch combinations may appear inside a character constant, in comments,
or in macro instruction operands. The meanings of these characters, and combinations of
these characters, are explained in Figure 2-1. ‘

2-1

Bulletin: 2202.001-0101
Date: 3/19/73

Character Explanation Example

A through Z,and $ Used in symbols and character string constants C'ACCOUNT NO.’

0 through 9 Used in numeric constants and symbols TAG3,5825

, Operand or suboperand separator HERE,THERE

= Indicates a literal term or a keyword parameter value =A+2

c Defines a character constant (all characters to C’'ABC’
the next apostrophe)

X' Defines a hexadecimal string constant (all hexa- X'1AFEE’
decimal characters to the next apostrophe)

P Defines a packed decimal string constant (all P'425'
characters to the next apostrophe)

z Defines a.zoned decimal string constant (all 2'-44'
characters to the next apostrophe)

Vv Defines an intoger string constant (all 1'4286°
characters to the next apostrophe)

o4 Defines a floating point string constant (all D’147 .25E-1"
characters to the next apostrophe)

" Defines a hexadecimal arithmetic constant “FF1A

<> Define relational (EQ, GT, LT, NE, LE, GE) A<EQ>B
and logical (NOT, AND, OR, EOR) operations A<AND>B

L’ Defines a reference to a symbol length attribute L'SYMX

* Location counter reference or multiplication *+4
indicator 12*20

/ Division indicator (Note that 1/2=0 because 10/0
division always results in an integer, not a TAG/B
fraction.)

+ Addition indicator TAG+12

- Subtraction indicator TAB-4

& Defines a variable symbol &TAC

() Separates an address-modifying index from the PAG(R2)
rest of the address, delimits sublisted operands,
or encloses operands or suboperands
Used for sequence symbols and concatenation .LAST

B Used for macro definition comments JCOMMENT

The character following this symbol is to be c2afa

evaluated for its literal value, not for its special
function. In the example, the symbol following
the # sign is a semicolon, not a continuation
indicator.

Continuation Indicator

THE STATEMENT IS;

Indirect addressing

@REG1,@TAG1

blank

Field separator

ADDR 3,4

Figure 2-1. Character Usage

2-2

BASIC FORMAT OF SOURCE STATEMENTS

Source program statements have the fields outlined in Figure 2-2.

Name Operation Operand Comment
Any symbol | Machine instruction, Single expression, Informational material
or blank assembler instruction, | several expressions, | or blank

macro instruction, or or blank
FORM instruction

Figure 2-2, Source Statement Format

The name field entry is a symbol used to identify a statement. The name field is necessary
for certain statements, or when the statement is referred to in another statement, such as in
a Branch instruction.

The operation field entry is a predefined mnemonic code (or mnemonic) which identifies
the function of a machine, macro, assembler, or FORM instruction. Mnemonics are designed
to be easily learned and remembered; for example, ADDR for Add Register-Register, or
EQU for an Equate assembler instruction.

The operand field entry defines or identifies the data involved in the operation. Most
statement$ have one or more operands, although some statements have no operands at all.
Each operand has one or more terms, which may be used in a combination to form one or
more expressions. (Refer to immediately following text for a discussion of terms and
expressions.) An operand field may not have more than 35 terms. Operands of machine
statements generally represent storage locations, general registers, immediate data, or
constant values. Operands of assembler statements provide the information necessary for the
assembler to perform the designated operation.

The optional comment field contains any informational material the programmer wishes to
add.

TERMS AND EXPRESSIONS

A term is a symbol, character, or nhumber that represents a value; an expression is a single

term or a combination of terms. An expression is used in the operand field of a source
statement. The following text fully defines terms and expressions.

2-3

Bulletin: 2202.001-0101
Date: 3/19/73

TERMS

Every term represents a value; the value may be assigned by the assembler program (symbol,
symbol length attribute, location counter reference) or may be inherent in the term itself
(constant, literal).

An arithmetic combination of terms is reduced to a single arithmetic value by the assembler.
An arithmetic value is represented as a 16-bit binary value in two’s complement form. A
logical value has a range of 0 through 65,535; and an arithmetic value has a range of -32,768
through 32,767. Limitations on the value of an expression depend on its use. For example, a
term designating a general register must have a value between 0-7 inclusively; a term
representing an address must not exceed the size of storage.

A term is absolute if its value does not change upon program relocation. It is relocatable if
its value changes upon program relocation.

The terms used in assembler statements are outlined in Figure 2-3. An explanation of each
type of term and the rules for its use are provided in the following text.

Character String
Constant C'ABC’

Hexadecimal String
Constant X'C49FE’

Packed Decimal

String Constants String Constant P’-244'

Zoned Decimal
String Constant 2246’

Integer String
Constants Constant 1*-323°

Floating Point

String Constant D’146.3E-1"
Arithmetic getr::smtaar:t Arithmetic 2316
Constants o
Hexadecimal Arithmetic
Constant “2FA
Ordinary Symbols
Symbolic Parameter &TAB1
Symbols Variable Symbols System Variable Symbols &SYSNDX
Set Symbols &TAB3
Sequence Symbols
Location
Counter
Reference *.20
Symbol
Length
Attribute L'TAB1
Literals =HERE

Figure 2-3. Types of Terms

24

Bulletin: 2202.001-0101
Date: 3/19/73

CONSTANTS

Constants are terms whose values are inherent in the terms themselves. They specify
machine values or bit configurations directly, rather than by equating the values to symbols
and then using symbolic references. ‘Constants represent such program elements as
immediate data, masks, registers, addresses, and address increments.

Constants are string or arithmetic. String constants are of variable size; arithmetic constants
are 16 bits long. Examples of all types of constants are presented in Figure 2-6.

String Constants

A string constant can only be used as a single term expression, or in a relational expression.
In a relational expression, both terms must be of the same type (character, hexadecimal,
etc.), for example: C'ABCE'< LT>C'&P1".

Character String Constant

A character string constant is written as the letter C followed by a character string enclosed
in apostrophes, for example: C'STRING'. To represent the literal value of an apostrophe, an
ampersand, a semicolon, or a pound sign as part of the character constant, the character
must be immediately preceded by an escape character, which is the pound sign. The length
of a character constant is equal to the number of characters in the constant, excluding the
escape characters, which do not appear in storage.

Examples of character constants are shown in Figure 2-4. In the last example of Figure 2-4,
the generated code is: THIS STRING HAS MANY SPECIAL CHARS IN IT: # ;' &.

OPERAND

171181 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 .

C'THIS XS A MESSAGE’. T
c:'uug_cmAg:rAa&;mmq, T f,.'f‘ffﬁ e
LS. CONTINBED'
co-r'a':.s;;c;m;amg& mgm.w,m n'o:ri @snmeo“‘ S)

............................... IR W S bl X TS T

Figure 2-4. Character Constants

2.5

If the following characters are not preceded by an escape character in a character constant,
they have the meaning given below:

Character Meaning

A character constant is continued on the next line
. Encloses the characters of a character constant
Variable symbol

Next character retains its literal value

Hexadecimal String Constant

A hexadecimal string constant is written as the letter X followed by a string of hexadecimal
digits enclosed in apostrophes, such as: X'C49FE’. Each hexadecimal digit is translated into
its four-bit equivalent. The maximum size of a hexadecimal string constant is limited to the
maximum number of digits that can be contained on two coding lines. |f an odd number of
digits is specified, the leftmost four bits in the leftmost byte are set to zero. The implied
length of the constant is half the number of hexadecimal digits in the constant, rounded to
the next higher integer.

Packed Decimal String Constant

A packed decimal string constant is written as the letter P followed by a signed integer
number enclosed in apostrophes, such as: P’-244’, If the sign is omitted, the number is
assumed to be positive. Each pair of decimal digits is translated into one byte. The rightmost
byte of a packed field contains the rightmost digit and the sign. Signs generated are ““C16"
for plus, and “D1g"’ for minus. The maximum length of a packed decimal string constant is
limited to the number of digits that can be contained on two coding lines.

Zoned Decimal String Constant

A zoned decimal string constant is written as the letter Z followed by a signed integer
number enclosed in apostrophes, for example: Z‘246’. |f the sign is omitted, the number is
assumed to be positive. Each decimal digit is translated into one byte. The rightmost byte
contains the sign and the rightmost digit. Signs generated are “C1g"’ for plus, and ‘D1’ for
minus. The maximum length of a zoned decimal string constant is limited to the number of
digits that can be contained on two coding lines.

Integer String Constant

An integer string constant is written as the letter | followed by a signed integer number
enclosed in apostrophes, such as: 1’-246’. |f the sign is omitted, the number is assumed to be
positive. An integer string constant is translated into its four-byte binary equivalent. Integer
constants consist of 1-10 digits with a value ranging from -231 to 231-1. The constant is
word aligned when used in a WDD statement or a literal.

2-6

Butlletin: 2202.001-0101
Date: 3/19/73

Floating Point String Constant

A floating point string constant is written as the letter D followed by a floating point
number enclosed in apostrophes, such as: D'+2.461E-1'. The number is written as a signed
or unsigned decimal value; if the sign is omitted, the number is assumed to be positive. The
decimal point may appear before, within, or after the number, or it may be omitted. The
exponent is optional. It is written immediately after the number in the form Enn, where nn
is a signed or unsigned decimal integer specifying the exponent of the factor 10. If the
exponent is unsigned, a plus sign is assumed.

Alignment can be specified by all data definition statements (WDD, BDD, and FORM). Byte
alignment is allowed to facilitate building tables containing mixed values with odd
bounding. Note, however, that all floating point instructions require word bounding of the
operand in storage. The optional size and repetition factors may be coded.

The implicit length of a floating point constant is eight bytes, and it is carried as such
through the assembly. Truncation or padding occurs at object output time with no
rounding. The floating point decimal value may contain a maximum of 152 digits (including
the exponent) in addition to the decimal goint and sign. The approximate decimal range of
values allowed is 7.2 X 1075 t0 5.4 X 1079,

The internal format of floating point numbers is described in the 7300 Processing Unit
Reference manual.

2-6a

Bulletin: 2202.001-0101
Date: 3/19/73

When string constants define data in storage, truncation and padding of their values is
performed according to the rules presented in Figure 2-5.

Explicit Length=

Explicit Length >

Explicit Length <

Constant Implicit Length implicit Length Implicit Length
Character C'ABC’(3)=ABC Laeft justify. Left justify.
Biank fill on right. Truncate on right.
C’'ABC’ Warning message is given.
C'ABC’{4)=ABC
C'ABC’'(2)=AB
Hexadecimal Right justify. Right justify. Right justify.
Zero fill on left if the Zero fill on left. Truncate on left.
X' 10A’ constant contains an Warning message is given.
odd number of digits. X"10A’(3)=00010A
X' 10A’(1)=0A
X'10A’(2)=010A
Packed Right justify. Right justify. Right justify.
Decimal Zero fill on left if the Zero fill on left. Truncate on ieft.
constant contains even Warning message is given.
p-24° number of digits. P’-24’(3)=00024D
P’-24’(1)=4D
P’-24°(2)=024D
Zoned 2'123'(3)=F1F2C3 Right justify. Right justify.
Decimal ' Zero fill on left. Truncate on left.
Warning message is given.
2’123 2’123’ (4)=FOF1F2C3
F'123'(2)=F2C3
Integer Right justify. Right justify. Right justify.
Propagate sign on left. Propagate sign on left Truncate on left.
1’-758° Sign is lost.
I’-758°'(8)=FFFFFDOA I’-758'(6)= Warning message is given.
FFFFFFFFFDOA
1'-7568'(1)=0A
Floating Normalize Expand fraction. Truncate fractional
Point Size = 8 hytes Zero fill on right. position on right, no
rounding.
Warning message is given,
D'+1.3 D'+1.3'= '+1.3(10)=
4114CCCCCCCCCCeD 4114CCCCCCCCCCCDO000 | D'+1.3(4)=4114CCCC
Figure 2-5. Truncation and Padding of String Constant Values
Arithmetic Constants

Arithmetic constants can be used in multi-term expressions. An arithmetic constant is
assembled as its two-byte binary equivalent. The maximum size of an arithmetic constant is
216.1, If arithmetic constants are used in statements where an explicit size is specified,
truncation and padding follow the same rules as those for an integer string constant.

Decimal Arithmetic Constant

A decimal arithmetic constant is written as an unsigned integer number of 1-5 digits, for

“example: 20.

Bulletin: 2202.001-0101
Date: 3/19/73

Hexadecimal Arithmetic Constant
A hexadecimal arithmetic constant is written as quotation marks followed by a string of 1-4

hexadecimal digits, for example: ““2FA. Each hexadecimal digit is assembled as its four-bit
binary equivalent.

Type Example Generated Hexadecimal Code
Character String C'F12AY9* C6F1F2C1E8F95C
cszil##e 5BE97D7BF5
c's’ c2
Hexadecimal String X'C49FE’ OC49FE
X'F2' F2
Xc’ oc
Packed Decimal String P14’ 014C
P'925860° 0925860C
p-2’ 2D
P’-25696' 02596D
Zoned Decimal String z’14 F1Ca
2'925860' FOF2F5F8F6CO
z-2' D2
Z2'-2596' F2F5F9D6
integer String 14 00 00 00 OE
1'925860" 00 OE 20 A4
r2 FF FFFFFF
I'-2596° FF FFF5 DC
Floating Point String D10’ 41 A0 00 00 00 00 00 00
D'+99999999" 49 25 40 BE 3F F0 00 00
D’-50.25E-1 C150 66 66 66 66 66 66
Decimal Arithmetic 14 000E
302 012E
67399 E037
Hexadecimal Arithmetic “14 0014
“F2A OF2A
“EOSF EO9F

Figure 2-8. Examples of Assembled Constants

SYMBOLS

A symbol is a character or combination of characters used to represent locations or arbitrary
values. Symbols, through their use in name fields and operands, provide the programmer
with an efficient way to name and reference a program element. A symbol is defined when
it appears in the name field of a source statement.

2-8

In general, symbols must conform to these rules:
1. The symbol must not have more than eight characters.

2. The first character must be a letter, a period, a dollar sign, or an
ampersand (&).

3. The remaining characters may be digits, letters, or dollar signs. If the
first character is a period or an ampersand, the second character must
be a letter or a dollar sign.

4, The first blank after the start of a symbol terminates that symbol.
b. Symbol definitions cannot be continued.

The assembler has three types of symbols: ordinary symbols, variable symbols, and sequence
symbols. Sequence symbols and variable symbols are used only for the macro language and
for conditional assembly.

~

Ordinary Symbols

An ordinary symbol consists of 1-8 alphanumeric characters, the first of which must be a
letter or a dollar sign. Ordinary symbols identify program locations or arbitrary values. The
value of an ordinary symbol may be absolute or relocatable. Examples of ordinary symbols
are:

BETA
X242

$ENTRYP1

An ordinary symbol that names an instruction, a storage area, a data definition, or a control
section is the address of the leftmost byte of the identified field. Address values are
relocatable terms. The value of an address symbol must not exceed 216-1,

An ordinary symbol may be defined only once in an assembly. That is, each symbol used as
the name of a statement must be unique within that assembly. However, a symbol may be
used more than once in the name field of a COM or CSECT assembler statement, because
the coding of a control section may be suspended and then resumed at a subsequent point.
Some statements require that a symbol in the operand field be previously defined.

During assembly, the assembler assigns a length attribute to all ordinary symbols. The length
attribute of a symbol is the length, in bytes, of the storage field whose address is represented
by the symbol. For example, a symbol naming an instruction that occupies four bytes of
storage has a length attribute of four.

2-9

Variable Symbols

A variable symbol is a symbol that is assigned different values by the programmer or the
assembler. The three types of variable symbols are:

1. Symbolic parameters — used only in macro definitions; values are
assigned by macro instructions.

2. System variable symbols — used only in macro definitions; values are
assigned by the assembler.

3. Set Symbols — used anywhere in the source program; values are
assigned by SET or GBL statements.

Variable symbols consist of an ampersand (&) followed by one to seven alphanumeric
characters, the first of which must be a letter or a dollar sign. Examples of variable symbols
are:

&BETA
&X24

&P1

Concatenation of Variable Symbols

When a variable symbol is assembled, the current value assigned to the variable symbol is
substituted for the variable symbol. If a variable symbol is immediately preceded or
followed by other characters or by another variable symbol, concatenation of the variable
symbol with another variable symbol or character occurs. To concatenate a variable symbol
with a letter, digit, period, or left parenthesis that follows the symbol, a period must
immediately follow the variable symbol, for example: &VAL.8. The period merely indicates
the end of the variable symbol and does not appear in the generated code. The size of a
concatenated symbol is limited only by the maximum statement size. However, the
generated symbol is limited by the rules which pertain to the generated name, operation, or
operand field, See Figure 2-7 for examples of the concatenation of variable symbols.

Assume that the following values have been assigned to these variable symbols:

&P1 = ROP
&P2 = 5
&P3 = @

Initial Code Generated Code
&P1&P2 ROPS5
&P1.8 ROP8
&P3.R7 @R7
B.&P2 B.5
&P1 ROP
703&P2 7035

Figure 2-7. Concatenation of Variable Symbols

2-10

Sequence Symbols

Sequence symbols consist of a period followed by one to seven alphanumeric characters, the
first of which must be a letter or a dollar sign. Sequence symbols can be used in the name
field of any statement except MACRO, GBLA, and GBLC, and in the operand field of only
ADO or AGO statements. The programmer can use sequence symbols to vary the sequence
in which statements are processed by the assembler. Examples of sequence symbols are:

.LAST
.HERE

LOCATION COUNTER REFERENCE

A location counter assigns storage addresses to program statements. It is the assembler’s
equivalent of the instruction counter in the computer. As each machine instruction or data
area is assembled, the location counter is first adjusted to the proper boundary for the item
(if adjustment is necessary) and then incremented by the length of the assembled item.
Thus, it always points to the next available location. If the statement is named by a symbol,
the value of the symbol is the value of the location counter before addition of the length.

The assembler maintains a location counter for each control section of the program and
manipulates each location counter as previously described. Source statements for each
section are assigned addresses from the location counter for that section. The location
counter for a given control section assigns locations in storage without regard to assignments
made within other control sections.

Thus, if a program has multiple control sections, all statements identified as belonging to the
first control section will be assigned from the location counter for section 1; the statements
for the second control section will be assigned from the location counter for section 2, etc.
This procedure is followed whether the statements from different control sections are
interspersed or written in control section sequence.

The location counter setting is controlled by using the ORG and ALIGN assembler
statements. The counter affected by an ORG statement is the counter for the control
section in which it appears. The maximum value for the location counter is 216-1.

The programmer can refer to the current location counter by using an asterisk in the
operand field. The asterisk represents the value of the current location counter at the start
of the current statement. This value is relocatable.

An example of the use of the location counter is:

NAME OPERATION OPERAND

1,2 345 6 7 818110 11 1213 14 16 16 17[18] 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344 45 46 47 48 49 50

GOP . | WDD. | %, %% A R SRR

If the location counter is at 0100 when this statement is encountered, the following data is

generated:

Locatio

0100
0102
0104

n

Value

0100
0100
0100

SYMBOL LENGTH ATTRIBUTE

The length attribute of a symbol may be used as a term by writing L’ followed by the
symbol, for example: L'SYMX. The length attribute of SYMX is then substituted for the
term. The length attribute of an ordinary symbol is the length, in bytes, of the storage field
whose address is represented by the symbol.

The length attribute of * is invalid. |If the operand of an EQU statement is an asterisk or an
arithmetic constant, the symbol defined by the EQU statement has a length attribute of
one. In any other context, the length attribute of an arithmetic constant is two. Examples
of symbol length attributes are shown in Figure 2-8.

NAME

OPERATION

OPERAND

12 345678

9

10 11 12,13 14 15 16 17

18]

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 365 37 38 39 40 41 42 43 44 45 46 47 48 49 50

T
muL NuMl

INST .
% L' TNST]

lLoc . .
% L'LOCH
CONS. . |
~3 L'CON§

22
“ﬁau‘

10

LoDD

Qu
jEﬁcx.ocATr.

DD
CARLITH

[-

(ARITH

4 CLODD.

-

EQW .

11, cegav

f&

_WDD. .
LINTEGER

C

ed. .
QNSTANT)

25.6%10. .
CQNSTANT lN,EQu &IAIEMENT)

S S U Y S G U S SU i G PR PSRRI S 1

PSSO SN U VO T S T S N

S YUV G S S AT YO S PSR GG GHNE SO S W S B

ok

SRR SR

- P G

T
0

E

FIRE

s+RucTLQn 15 q‘BYTas,gone)

Lok P RS

| CTR REF IN EGU STATEMENT)

FOE T S SR S ST T TS U S SOOI WY ST GO S

C'THIS STRING'
N.OHARAGTERS IN STRING). .

1'~26" ‘J“‘“*Tf‘ .
STRIMG 18 4 &YTES.LO&G)

R

"

FU——

e e

S I S R T ST

Figure 2-8. Examples of Length Attributes

2-12

Bulletin: 2202.001-0101
Date: 3/19/73

LITERALS

A literal term is used to introduce data into a program. The formats of a literal term are as

follows.
Where:

=a a is the data value to be generated (required); any legal expression
except another literal term.

=a(b,c) b is the length specification (in bytes): a positive absolute expres-
sion. |f omitted, the length specification is the implied size of

=a(b) the expression.

=al.c) c is the repetition factor; a positive absolute expression. 1f omitted,

a repetition of 1 is assumed. If the size or length is specified
symbolically, the symbol must have been previously defined.

Examples of literals are shown in Figure 2-9.

==C'ABD’ Invalid: literal cannot define another literal.

=C'ABD'(4,3) Valid: same as =C'ABD ABD ABD'

=A+B/2+4 Valid: implied length is the length of symbol A; implied
repetition factor is 1.

=P*.446'(6) Valid: specified length is 6; implied repetition factor is 1.

=X‘FF00'(,3) Valid: implied length is 2; specified repetition factor is 3.

Figure 2-9. Examples of Literals

The assembler generates the literal data, stores this data in a literal pool, and places the
address of the stored data in the operand field of the statement using the literal. The
position of the literal pool may be controlled by the programmer with the LTORG
assembler statement. If LTORG is not specified at the end of a control section, the literal
pool for that segment is placed at the end of the first control section.

A literal can be defined at any point in a program by specifying the literal in the operand of
the statement in which it is used. In contrast, data definition statements define and label
data, and then the label is used to specify the data.

A literal may not be combined with any other term, nor may a literal be used as a receiving
field of a statement that modifies storage.

Literals are relocatable, because the address of the literal, not the literal itself, is assembled
into the statement using the literal.

2-13

If duplicate literals are specified within one literal pool, only one literal is stored. Literals
are duplicate if their final specifications, size, and repetition factors are identical on a
character-by-character basis. A literal may be a duplicate even when it appears to be
different (see examples in Figure 2-10). A literal is a duplicate if it contains no forward
references and the expressions evaluate to the same value as the corresponding expressions
of an existing literal.

A literal which contains a reference to the location counter is stored even if it duplicates

another literal (see examples). If an expression used in a literal term contains a forward
reference to a symbol, the symbol is assumed to represent a two-byte value.

Examples of duplicate literals are shown in Figure 2-10.

=C'ABC'(4,3) Only one literal is stored.
=C'ABC'{4,3)

=C'ABC’ Both literals are stored.

=X'C1C2C3’

=A+B Only one literal is stored if A and B are predefined symbols.

=B+A

=C<EQ>D Only one literal is stored if C is defined to be equal to D, so that the
=1 expression is equal to 1.

=*+10 Both literals are stored

=*+10

Figure 2-10. Examples of Duplicate Literals

EXPRESSIONS

An expression is defined as one or more terms linked by arithmetic, relational, or logical
operators. Expressions may be single term or multi-term (see examples below).

Single Term Expressions Multi-Term Expressions

29 SYMX+40

“FO A+B/2+10

SYMX (X<OR>"FOF0)<EQ>(SP2<OR>"FOFO0)
* (((A+4)/2+1)*2< AND >"00FF) <EQ >24)
L'SYMX - . *+L'BETA

P’-240° A+B<LE>SUM

2-14

During assembly, all expressions are resolved to a single value. Figure 2-11 provides an
explanation of all types of operators.

The rules for coding expressions within an operand field are as follows.

1. An expression may not start with an arithmetic, relational, or logical
operator. However, an expression may begin with a unary operator:
positive sign (+), negative sign (-), or logical complement (< NOT >).
A unary operator indicates the state of the numbers it precedes (such
as negative, positive, or complement), rather than indicating an
arithmetic operation (such as addition or subtraction).

2. An expression may not contain two terms in succession.

3. An expression may not contain two operators in succession, except
for the logical operator < NOT>, which may follow the logical
operators <AND>, <OR>, and <EOR>.

4, A multi-term expression may not contain a literal.

5. In a multi-term expression, string constants are restricted to
relational operations.

EVALUATION OF EXPRESSIONS

A single term expression has the value of the term involved.

A multi-term expression is reduced to a single arithmetic value as follows.
1. Each term is given its value.

2. Operations are performed from left to right using the following rules
of precedence:

a. Unary arithmetic operations: positive (+) and negative (-).

b. Arithmetic multiplication (*) and division (/).

c. Arithmetic addition (+) and subtraction (-).

d. Relational operations (<EQ>, <NE>, <LT>, <GT>,

<LE>, and <GE>).

e. Unary logical complement (<NOT>).
f. Logical product (<AND>).
g. Logical addition (< OR>) and subtraction (<EOR >).

2-15

The expression is computed to 32 bits, and then truncated to 16 bits
or less, depending on its contextual use.

Division always yields an integer result. For example, 1/2*10 yields a
zero result, whereas 10*1/2 yields 5. Division by zero is permitted
and yields a zero result.

A relational operation yields a binary result of O or 1. If string
constants are used in relational operations, both relational terms
must be of the same type; thus, P'246° <EQ>Z'246" is illegal.

Logical operations are performed on a bit-by-bit basis equivalent to a
masking operation. A non-zero value is considered true and a zero
value is considered false.

Arithmetic Operators

Operator Meaning Example

+ Addition A+B
Subtraction 10-C

* Multiplication D*16

/ Division 25/X

Relational Operators

Operator Meaning Example
<EQ> Equal to A<EQ>B

<NE> Not equal to A<NE>B

<LT> Less than 17<LT>&P1
<GT> Greater than 69<GT>TAB
<LE> Less than or equal to 73<LE>M
<GE> Greater than or equal to "3F<GE>&TAB1

Logical Operators

Operator Meaning Example

<NOT> Logical complement (one's <NOT>A
complement)

<AND> Logical product A<AND>B
<OR> Logical addition {inclusive or) A<OR>B
<EOR> Logical subtraction (exclusive or) A<EOR>W

Figure 2-11. Types of Operators

2-16

Parentheses are used in the normal role of arithmetic grouping to change the order of
evaluation. Parenthesized parts of an expression are evaluated before the rest of the terms in
the expression. In the case of nested parentheses, the innermost parentheses are evaluated
first. For example, the expression ((A+4Y2+1)*B is evaluated as follows, if A=10 and B=3.

1. A+4 = 14 giving (14/2+1)*B
2. 14/2 = 7 giving, (7+1)*B
3. 7+1 = 8 giving 8*B

4. 8*B = 24 giving 24

ABSOLUTE AND RELOCATABLE EXPRESSIONS

An expression is absolute if its value is unaffected by program relocation. It is relocatable if
its value is changed by program relocation.

Absolute Expressions

An absolute expression may contain relocatable terms (RT) alon