
MRX/OS Control Program
and Data Management Services
Ba.sic Reference Manuell
2200.001-01

n
0
3 ,,
c
(D .,, ..

... en
0 '< a. tn c n. CD
ur 3

November 1972 Edition

This edition (2200.001-01) is a major rev1s1on of and
obsoletes, the previous preliminary edition (2200.001).

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

Comments may be addressed to the Memorex Corporation,
Publications Dept., 8941 Tenth Avenue North (Golden
Valley) Minneapolis, Minnesota 55427.

© 1972, MEMOREX CORPORATION

MRX/OS CONTROL PROGRAM AND DATA MANAGEMENT SERVICES
BASIC REFERENCE MANUAL

PREFACE

The MRX/OS Control Program and Data Management
Services are discussed in two separate documents, each
designed for a specific type of input/output (1/0) level
user. This document, the Basic Reference manual,
contains information at the. logical 1/0 level of processing
where the blocking and deblocking of data is done for the
user. The Extended Reference manual is designed for the
block and physical 1/0 level user. Block 1/0 level
processing recognizes no logical records; therefore, all data
is read or written as a data block. The physical 1/0 level of
processing allows the user to do his own processing of
data.

This document provides a detailed discussion of the basic
MRX/OS facilities provided. Also included is a list of all
macros and associated keyword parameters needed to
execute Data Management, Control Program Services, and
console communication facilities at the logical 1/0 level.

Additional and more detailed information may be found
in the following documents.

• 1\11 RX/OS Control Language Services, Extended
Reference

• 1\11 RX/OS Control Program and Data Management
Services, Extended Reference

• 1\11 RX/OS Assembler Reference

iii

TAE~LE OF CONTENTS

Section Page

INTRODUCTION 1-1

2 RECORDS, FILES, AND LABELS 2-1

Records 2-1
Data Format 2-1

Reicords and Record Headers 2-2
Block 2-2

Record Type 2-3
Record Size 2-3

Control Characters 2-3
Files 2-3

File Organization 2-4
Sequential Files 2-4
RE!lative Files 2-4
Indexed Files 2-4

Data Portion of Indexed File 2-4
Index Portion of Indexed File 2-7

File Type 2-7
Scratch 2-7
Temporary 2-7
Work 2-7
Permanent 2-7

Summary of File Types by Organization 2-8
Labels and Catalogs 2-8

Tape Labels 2-8
Standard Tape Volume Label 2-9
Standard Tape File Label 2-9

Disc Labels 2-10
Oise Storage Catalogs 2-10

3 1/0 PROCESS! NG 3-1

Access Methods 3-1
Sequential Access 3-1
Random Access 3-3

Logical Record Processing 3-3
Buffer Switching 3-3
Buffer Sharing 3-3
Sequential Processing with Record Area 3-3
Sequential Processing Without a Record Area 3-8
Random Processing 3-8

Magnetic Tape Processing 3-8
Open Tape File 3-11

Bypass and Ignore Tape Labels 3-11
Standard Tape Labels 3-11
Nonstandard Tape Labels 3-11
Unlabeled Tapes 3-11

v

Section

4

5

6

vi

TABLE OF CONTENTS (Continued)

Close Tape File
Ignore and Bypass Tape Labels
Standard Labels
Nonstandard Labels and Unlabeled Tapes

Volume Switching
Input Files without Standard Labels
Output Files with No Labels
Files with Standard Labels

IBM Tape Processing
Interaction of Data Management and MRX/OS Control Language

CONTROL PROGRAM SERVICES

Program Termination
Time and Date Retrieval
Console Communication

Messages to Console
Replies from Console

PROGRAM DEBUGGING

Checkout Operation
Requesting Debugging Services

BREAK Directive
PROG Directive

Conditional Requests
Example of Job Control Deck with Checkout Directives

MACROS

Data Management Macros
File and Label Definition Macros

DEFSF - Define Sequential File
DEFRF - Define Relative File
DEFIF - Define Indexed File
Summary of File Definition Parameters
DEF LB - Define Label

Logical 1/0 File Control Macros
OPEN L - Open Logical File
CLOVEL - Volume Switching

Data Transmission Macros
GET - Get Record
PUT - Put Record
SETL - Set Limits
LOCRC - Locate Record
PUTU - Put Update
DELR - Delete Record

Page

3-12
3-12
3-12
3-12
3-12
3-12
3-12
3-12
3-12
3-13

4-1

4--1
4-1
4-1
4-2
4-2

5-1

5-1
5-2
5-2
5 .. 4

5-4
5-4

6-1

6-1
6-1
6-2
6-3
6-5
6-7
6-7
6-8
6-8
6··10
6-10
6-10
6-12
6-12
6-13
6-14
6-14

TABLE OF CONTENTS (Continued)

Section Page

Console Communications Macros 6-15
CONSOLE - Transmit Message to Console and Optionally Receive Reply 6-15
MESSAGE - Set up Message Format 6-15

Generation of an Output Message 6-15
Generation of a Reply Buffer 6-16

Control Program Services Macros 6-16
Program Termination Macros 6-16

HALT -Terminate Program 6-17
EHAL T - Terminate Program 6-17
ABIEND - Terminate Program Abnormally 6-17
Tl ME - Retrieve Time of Day 6-17
SDATE - Retrieve System Date 6-17
JDATE - Retrieve Job Date 6-18

APPENDIX A LIST PARAMETER A-1

APPENOIX B LINKAGIE CONVENTIONS B-1

APPENDIX C PROGRAM FLOW C-1

APPENDIX D INDEX PORTION OF INDEXED FILE D-1

vii

LIST OF FIGURES

Figure Page

2-1 Sequential File Organization 2-5

2-2 Relative File Organization 2-5

2-3 Indexed File Organization 2-6

2-4 Tape Organization 2-8

2-5 Standard Tape Volume Label 2-9

2-6 Standard Tape File Label 2-9

2-7 Disc Label 2-10

3-1 Sequential Access Method 3-2

3-2 Random Access Method 3-4

3-3 Buffer Switching with GET Request 3-5

3-4 Buffer Switching with PUT Request 3-5

3-5 GET Request with Record Area 3-6

3-6 PUT Request with Record Area 3-6

3-7 GET Request Without Record Area 3-7

3-8 PUT Request Without Record Area 3-7

3-9 Random Access with GET Macro 3-9

3-10 Random Access with PUT Macro 3-10

5-1 Job Deck with Debug Requests 5-2

5-2 Example of Use of Conditional Request 5-5

5-3 Typical Job Deck with Debugging Directives 5-6

LIST OF TABLES
Table Page

2-1 Legal Usage by Device 2-1
2-2 File Types by Organization 2-8
3-1 Usage Conflicts 3-3
6-1 RECREG Use 6-7
6-2 File Definition Parameters 6-8
6-3 GET /PUT Macro Usage 6-11

viii

1. INTRODUCTION

Through the use of Data Management and Control
Program Services, the MR X/OS provides the easiest and
most convenient coding methods for organizing and
performing input/output (1/0) operations and for direct
implementation by the system's Control program.

The system provides the basic user with the following
facilities at the Assembler language level.

1. Data Management

At the logical 1/0 level of processing, the
Data Management facility provides sequential
and random access methods, three file
organizations (sequential, relative, and
indexed), device independence, and logical
record processing with and without a record
area.

2. Control Program Services

Basic Control Program Services available
include time and date retrieval, and console
communication.

3. Debugging

Debugging capabilities are provided by the
CHECKOUT routine which allows the pro­
grammer, through debug request cards in
the Control Language statements, to cal I
for a selection of register and main­
storage dumps.

1-1

2" RECORDS, FILES, AND LABELS

. Before considering how processing works within the
MRX/OS, an idea of what will be proceissed is necessary.
This section describes the data in terms of records, files,
and labels, and Section 3 discusses the data in terms of
processing.

The processing of data files is partially determined by the
type of file organization. Sequential files can only be
processed sequentially, while relative files and indexed
files can be processed both sequentially and randomly.
Efficiency in processing is provided by the common data
formats ~f the file records and labeling o1f the files_:

Throughout this section, several macrns are referenced
in the discussions of the records, files, and labels.
Section 6 contains a detailed discussion of each macro
and its function.

Table 2-1 gives the legal device usage for file organization,

record type, and access.
Table 2-1. Legal Usage by Device

~ Unit Record Tape Disc e
&

Organization

Sequential YES YES YES
._ .·~-""''

Relative NO INO ~~(ES~.
Indexed NO INO hii;foJ

~·;f!>¥-r.

Record Type

Fixed YES YES YES
Variable NO YES YES

Access

Sequential YES YES YES
Random NO INO YES

RECORDS

A record can be fixed or variable length and can vary in
size up to 32K bytes of alphanumeric and/or special
characters.

The actual size of a file (determined by the length and
number of records), file organization, and programming
requirements are all important to file processing.
Variable length records can be placed on either sequen­
tial or relative files; however, the maximum record length
must be determined and stated in program coding. In­
dexed files are limited to fixed length records.

DATA FORMAT

All data stored by Data Management at the logical 1/0
level on disc or magnetic tape is in a common format,
except for absolute program images. This format includes
logical record headers and optional space headers (disc
files) in each block of data. The common format provides
the following advantages:

• Efficiency of processing and decreased mem­
ory requirements for the GET/PUT level
blocking and deblocking functions

• Increased data recoverability by making it
possible to process logical records (at the
physical 1/0 level) without reference to
associated cataloging or indexing information

• More complex file organizations or access
methods for which the record headers will
contain additional information

The control information (record headers and space headers)
is managed by the system for users working at the logical
1/0 level.

2-1

Records and Record Headers

A logical record is a contiguous string of user-defined
data within a block of data. A record header is a 4-byte
field which precedes each logical record in the block.
The first byte of the record header is a record identi­
fier which is unique to that block. The format of a
record header is as follows:

RECORD HEADER ---- ~
012 567

I I CB I I ID I AL I ~
~-------...----------

Byte 0 Byte 1 Bytes 2 and 3

CB - control byte

Bits 0 and 1 specify data type.

01 user data

10 system data (for example, catalog
records)

11 user and system data (for example,
index records)

Bit 2 specifies last data record for Library
member only.

0 data record in library member
last data record in library
member

Bits 3 through 5 are reserved for future
system use.

Bits 6 and 7 are always 102 to specify two
bytes as the length of the record length
field (bytes 2 and 3 oLthe record header).

ID - record identifier

R L - logical record length (in bytes) exclusive
of record header

Block

A block is the smallest unit of data which is processed at
the block 1/0 level. Files are collections of blocks, all of
equal length on disc and unit record devices and of
variable length on magnetic tape. Blocks are made up of
logical records with record headers and may have unused
space which is preceded by a space header. In a sequential
file, records (fixed or variable length) follow in succession

2-2

without space between records; available space is at the
end of the block. Since indexed files are made up of fixed
length records only, there is no available space between
records. In a relative file, however, records may have
available space between variable length records (blocks are
formate!d in increments of the longest variable length
record) as shown:

~ ~
H1 SH1

H1, H2 - record headers

R1, R2 - logical records

· SH1, SH2 - space headers (optional)

SIP - available space (optional)

Space headers are 1- to 3-byte fields which describe and
precede unused space in blocks. The format of a space
header is as follows:

012 567

I I CB I I NBA

~---------------Byte 0 Bytes 1 and 2

CB - control byte

Bits 0 and 1 are 00 to specify available
space rather than data.

Bits 2 through 5 are reserved for future
system use.

Bits 6 and 7 specify the byte length of
the NBA.

00 one byte of space available (only
CB present)

01 two bytes of space available (CB
and one byte of NBA containing
zero)

10 three bytes or more of space
available (CB and two bytes of
NBA containing zero or the
NBA)

NBA - number of bytes of space available ex­
clusive of the header. This field may be ab­
sent, a single ~yte containing zero, or two
bytes containing zero or the NBA.

At the logical 1/0 level, record headers are generated by
1the system when data is stored on disc or tape and are
removed from the data by the system when stored data is
retrieved from these media.

BECORD TYPE

The data portion of a logical record may be fixed or
variable length for files residing on magnetic tape or disc.
Hecords must be fixed length for files processed from
unit record devices.

HECORD SIZE

Data Management will support (e,xcept when maximum
block length for a particular device imposes lower limits)
block length between 18 bytes and :J2K bytes and
blocking of logical records up to 256 records per block.

CONTROL CHARACTERS

The control characters for the printer and punch are
included as part of the data record itself, but they are not
transferred to the output units. (Therefore, if the output
is to the punch, 81 characters are specified for the record
size.) The character code defines the operation of the
carriage control tape of a printer and the stacker selection
of a card punch. The following lists the ANS control
character codes and corresponding <>perations.

Character
Code Operation

(blank) Space one line before printin!J

0 Space two lines before printing

Space three lines before printing

+ Suppress space before printing

Skip to channel 1 before printing

2 Skip to channel 2 before printing

3 Skip to channel 3 before printing

4 Skip to channel 4 before printing

5 Skip to channel 5 before printing

6 Skip to channel 6 before printing

7 Skip to channel 7 before printing

8 Skip to channel 8 before printing

9 Skip to channel 9 before printing

A Skip to channel 10 before printing

B Skip to channel 11 before printing

c Skip to channel 12 before printing

v Select stacker 1

w Select stacker 2

The native device control characters are listed in the
applicable peripheral device reference manual.

The 1/0 processing accepts both the ANS character codes
and native device codes. The CONTROL parameter of the
OPEN L macro specifies which set of characters is being
used.

in calculating buffer, record area, and record sizes, the
appropriate number of bytes must be added for the
control characters. For example, if the record size is 96
bytes, another byte is added for the control character;
thus the record size and record area size is 97 bytes.
However, only the 96 bytes of data will be printed or
punched.

FILES

A file is a set of records containing related information.
Such a set of records may be punched into cards (card
file), printed on forms (printer file), or written on mag­
netic tape (tape file) or disc (disc file).

Files are organized in specific manners: sequential, rela­
tive, and indexed. Files can be classified according to
their function within the job structure: scratch, temporary,
work, or permanent. The following paragraphs describe
the files according to organization and type (clas~ifica­
tion).

2-3

FILE ORGANIZATION

Files assigned to unit record and magnetic tapes are
always organized as sequential files.

Random access devices, such as the disc, remove the re­
strictions of sequential organization and sequential proc­
essing. Disc flexibility allows for all three types of
organization and, consequently, the associated methods
of file processing.

Sequential Files

Sequential files apply to all media: disc storage, magnetic
tape, and unit record devices. Records are written in
consecutive locations for sequential file organization. The
c;irder of the records when the file is created (Figure 2-1)
determines the sequence for processing the file later.

Sequential organization limits processing. Records can
only be retrieved sequentially beginning with the first
record of the file and subsequently retrieving each
record in the file. Any changes, additions, or deletions
to a magnetic tape or card file involves recopying the
entire file. The additions are included in the file and the
deletions are excluded. For a sequentially organized
disc file, changes can be made to individual records
without retrieving unchanged records, providing no
additions or deletions exist.

Relative Files

The position of logical records in a relative file is given
by a record number relative to the beginning of the file.
The GET /PUT logic changes this record number into
a block number and a relative position (record identi­
fication) within that block.

The records are written into preformated blocks on the
basis of the block record number (Figure 2-2).
Preformating is accomplished at file creation time by the
OPENL macro. Blocks are· preformated over the entire
allocated space in the common stored data format with
binary zeros in the logical record area. Record deletion or
further maintenance of blank records is a user
responsibility.

2-4

Relative file organization provide~ for sequential or
random creation. The records are placed in a predeter­
mined order which could be sequential or relative.
The ACCESS parameter of the DEFRF macro determines
the processing environment of the file.

Indexed Files

When indexed file organization is specified, two types of
data are generated: the data portion of the file and the
index portion of the file.

Allocation of space for the index portion is performed
automatically when the data file is allocated. The user
requests allocation through the Control Language
DEFINE cards and may control placement of both the
data portion and the index portion to the pack and
cylinder level if desired (index portion may, therefor.e, be
on same pack as data portion or on a separate pack).

The number of blocks needed for the index portion is
calculated by the allocation routine from the number of
data blocks estimated, the key length, and the number of
keys per block specified.

Appendix D gives the layout of the index portion of the
file.

Data Portion of Indexed File

The data portion of an indexed file is written into blocks
that have been preformated by the OPENL macro at disc
file creation. As successive blocks are written, they are
scattered around each disc track so that a fixed number of
blocks may separate two logically consecutive blocks on a
track. The number of blocks separating logically
consecutive blocks can vary from 0 to 9. Scattering is
done to increase the probability that two successive data
block readings can be performed without losing a disc
revolution. The number of blocks which separate logically
consecutive blocks is determined by a spread factor
established as a file attribute through the allocation
process.

CARD FILE

RECORD 1

CARD FILE

RECORD 4

(~ RECORD3

RECORD :__J----__.

RECORD 2 RECORD 3 RECORD 4

Figure 2-1. Sequential File Organization

RELATIVE RECORD
NUMBEIRS

RECORD A

3

RECORD D

RECORD B

RECORD B

2 3 4

Figure 2-2. Relative File Organization

RECORD 5

RECORD C

r------,
I Records are placed in 1

1 I consecutive locations
I on the disc. I
L-----_J

DISC FILE

r------,
I Records are positioned I
I according to relative record I
L"~:... ___ _I

DISC FILE

RECORD POSITION

2-5

2-6

CARD FILE

RECORD 4

(-
--~~~~~--~--..

RECORD 3

RECORD 2

RECORD 1

RECORD 1

DIRECTORY TO THE
DIRECTORY INDEX

Key value and its
associated directory
index block number

RECORD 2

t-·~·~~~~------1

Block 1

Block n

RECORD 3 RECORD 4

DIRECTORY INDEX

Key value and its
associated primary
index block number

,..---------------.,
The directory to the directory index,
which is located on disc, and may be
processed on disc or in main storage,
gives the first value in each directory
block. The directory index gives the
first value in each primary index
block. The primary index, in turn,
gives the associated block record
address for a key value. Entries in
the directories are assembled in
ascending order according to the
keys. I ______________ J

Figure 2-3. Indexed File Organization

Block 1

Block n

RECORD 5

PRIMARY INDEX

Key value and its
associated block
record address

DISC FILE

Index Portion of Indexed File

The locations of logical records in data files are recorded
in an index portion of the file by means of a three-level
table look-up indexing scheme (Figure 2-:3). Each record
has a unique primary index key value, which is recorded
with the block record number in the primary level index
block at file creation time. A directory level index, which
locates the primary index blocks for random access, is also
generated at file creation time. Another index, a directory
to the directory level index is also E1enerated. This
additional directory is read into main storage (if specified
by the INMAIN parameter of the DEFIF= macro) at the
opening of the file, thus increasing the efficiency of
random retrieval.

Flandom access is performed by reading the directory to
the directory index and the directory blocks, followed by
an access to the appropriate primary index block. The
dlata is then accessed by the block record number found in
tlhe primary index block.

Sequential access is performed by main-storage processing
of primary index blocks. A look-ahead process for a
c:hange in block number within each index block provides
the overlap of data block transfer with logical record
processing. A linkage chain among primarv index blocks is
used to handle overflow of the primary index blocks.

Creation of indexed files requires that the data be
presented in the ascending order of the collating sequence
of the primary key values. As data blocks are created, the
index information is generated by the GET/PUT modules
for indexed files and written in the index blocks. A ten
percent margin remains in each index and directory block
to accommodate the addition of data records.

Indexed files may be extended by additkm of more data
records, presorted in the sequence of the primary index
key values, if the key value of the first data record of the
extension is greater than the highest key value processed
during creation. This extension is performed by specifying
output usage in the OPENL macro. The positioning to the
1md of current information and initializing tables is
performed by the OPENL macro. No previous updates are
allowed if the file is to be extended.

Data may be added, deleted, or updated 1:-iither randomly
or sequentially by opening for update usage. When data
records are added they are written after the current last
record in the data portion of the 'file. A record address is
then inserted into the appropriate primarv index block. If
additions of many records in the same region of primary
index causes the primary index block to overflow, a new
block is linked into the first level linkage chain and some

· of the record addresses in the block which overflowed are

moved into this new block to minimize the chance of
further overflow in the same area.

When data is deleted, the index information for the
deleted record is removed, but the data record is not
modified.

FILE TYPE

Each file has a disposition type (scratch, temporary,
work, or permanent) established when space is alloca·

ted for the file.

Scratch

Scratch files are used by jobs that have several job steps.
These files exist only for the duration of a job step and, at
the end of the job step, are purged by system control. The
file is positioned at the beginning of the file by the
OPEN L macro. Scratch files cannot have an indexed file
organization.

Temporary

Temporary files provide a temporary storage area for job
processing. They exist only for the duration of the job
and, at the end of the job, are purged by system control.
The file is positioned at the beginning of the file by the
OPENL macro. Temporary files cannot have an indexed
file organization.

Work

Work files occupy permanently allocated space; how­
ever, the file data exists only for the duration of a job.
If a work file is opened for output use, the pointer for
placement of the data is positioned to the beginning
of the file. Work files must have sequential file organi­
zation.

Permanent

Permanent files occupy permanently allocated space and
the file data is permanent. If a permanent sequential file is
opened for output use, the data is added to the end of the ·
file. For relatively organized files, the records are added
wherever specified. For indexed files data is added to the
end and must be presented in the collating sequence of
the primary key beginning above the current high key
value.

2-7

SUMMARY OF FILE TYPES BY ORGANIZATION

Table 2-2 provides an easy reference to the file types
allowed for each file organization. It notes how records
are added to permanent files.

Table 2-2. File Types By Organization

Scratch

Temporary

Work

Permanent

LABELED
TAPES

Sequential Relative Indexed

Legal Legal Illegal

Legal Legal Illegal

Legal Illegal Illegal

Legal Legal Legal
1----·-t-----t-----

Records Records Records
are are are added
added to added to the end
the end wherever of file
of file user

specifies

VOLUME HEADER HEADER T
LABEL LABEL 1 LABEL 2 M

LABELS AND CATALOGS

File labels ensure the opening of a correct file for a
particular job. The OPENL macro checks the fil~ for
the proper name and attributes. Since Data Management
handles labels and catalogs, the basic user need not
be concerned with the physical aspects of label and
catalog checking (the Control Program and Data
Management Services, Extended Reference manual pro­
vides this information).

TAPE LABELS

Tape labels are special records at the beginning and end of
magnetic tape files (Figure 2-4). They are used to identi­
fy the reel of tape and the succeeding file, as well
as certain information for file maintenance. Al I labels
may not have the same format. Some tapes may be un­
labeled and others may have user-supplied nonstandard
label formats.

DATA RECORDS T
M TRAILER LABEL

T T
M M

DATA RECORDS

Figure 2-4. Tape Organization

2-8

Standard Tape Volume Label

The volume label is located at the beginniing of a tape reel.
and is identified by the characters, VOL, found in the first
three positions (Figure 2-5). The volume label number is
always 1 for compatibility with IBM. The volume serial
number occupies positions 4 through 9 and identifies the
volume. A unique owner name and address code identifies
the installation.

BYTE 0
1 VOL
2...._ ____ _
3 VOLUME LABEL NUMBER 4 ____ __;;___;_ _____ ~------11 EQUALS 1

VOLUME SERIAL NUMBER

Figure 2-5. Standard Tape Volume Label

Standard Tape File Label

The standard tape file label provides information
concerning the user's file such as creation and expiration
dates, file name, and sequence number (Figure 2-6). The
label identification field identifies the type of st~ndard
label with a three letter abbreviation. Three types of labels
i;upported by the system are header labels (HOR),
end-of-file labels (EOF), and end-of-volume labels (EOV).
The file label number found in byte 3 is 1 or 2. The file
serial number, found in positions 21-26, is identical to the
volume serial number in the volume label of the first
volume. The volume sequence number identifies the order
of the volume of data records in a multivolume logical
file. The block count provides the number of physical
records written in a file at creation.

BYTE 0
1
2
3
4

20
21

26
27

30
31

40
41

rDR LABEL IDENTIFICATION -EOF
EOV

FILE LABEL NUMBER

FILE NAME

FILE SERIAL NUMBER

VOLUME SEQUENCE NUMBER

CREATION DATE

EXPIRATION DATE

Figure 2-6. Standard Tape File Label

2-9

DISC LABELS

Disc packs have a standard volume label containing
volume identification and owner information (Figure 2-7).
The device type, owner, and state of the volume -
unrestricted (0), restricted (1), or locked (2) - are
included along with the starting track address of the pack
catalog for this volume. The actual file identification is
found in the disc catalogs.

BYTE 0

VOL
J _______ _
4

VOLUME IDENTIFIER

9....__~~-~-~-~·-
10 ·-· .. _ ... ~==-~........____
11 ___ --"'ST~A~T~E~O~F~V~OL~U~M~E __ _
12 POINTER TO VTOC (VOLUME

TABLE OF CONTENTS) ONLY ON
CONVERTED IBM PACKS

DEVICE TYPE

OWNER
(1-56 BYTES EBCDIC)

Figure 2-7. Disc Label

Disc files are described by file labels found in the pack
catalogs, which are resident on each disc pack in the
system. The file labels contain the file name, file
attributes, and a physical description of the segments of
disc space allocated to the file on this pack. The actual
fields of the catalogs can be found in the Control Program
and Data Management Services, Extended Reference
manual.

2-10

DISC STORAGE CATALOGS

The space management routines (explained in the .
Control Program and Data Management Services, Extended
Reference manual), in p.erforming their function, main­
tain the central catalog and pack catalogs on disc.
The central catalog, existing once for a system, contains
an entry for each file cataloged in the system. The
entry identifies the file and describes the volume(s)
occupied by the file.

ThE1 pack catalog, existing on each volume, contains an
entry for each file occupying space on the volume.
The entry identifies the file and describes the space
occupied by the file.

3. 1/0 PROCESSING

The 1/0 processing capabilities of MRX/OS are divided
into three levels: logical, block, and physical. The logical
1/0 processing level, discussed in this section, blocks and
deblocks data for the user; block 1/0 processing
recognizes no logical records (data is read or written as a
data block); physical 1/0 allows the user to do his own
1/0 processing. The block and physical 1/0 processing
levels are discussed in detail in the Control Program and
Data Management Services, Extended Reference manual.

The logical 1/0 level Data Management functions are
provided by relocatable subroutines which are loaded with
and linked to the user programs which request them. They
require MRX/OS control program, system control, loader,
and library functions.

ACCESS METHODS

Two access methods are provided at the logical 1/0 level,
sequential and random.

SEQUENTIAL ACCESS

Sequential access is a method of retrieving records
consecutively in the order of logical arrangement in the
file. All file organizations are sequentially accessible.

Sequential access is the only method that can be used for
retrieving sequentially organized file records. Relatively
organized file records can be processed sequentially by
beginning at the start of the file and processing each
successive record. Indexed file records also can be
processed sequentially by retrieving in the sequence of the
primary key values. By using the SETL macro, all the
records in an indexed file may be retrieved starting at the
beginning of file, or a portion of the file may be retrieved
by selecting a key value for the beginning of the
processing. The SETL macro, however, is not necessary to
start processing at the beginning of an indexed file; Data
Management will process from the beginning unless
otherwise specified.

Figure 3-1 illustrates the sequential access method.

3-1

3-2

SEQUENTIAL OR RELATIVE FILE

Sequential File
or
Relative File

Fl.LE!.

ELLE:L

FILE 1

INDEXED FILE

D.£:FS.F

D.EiRF
B.1..J{S.l.Z.=-1.JJ.D_JLU.S.LZ.=.~• . .).R.E.c.~£_.:_f+SJ_KE.JlL=.J.~~--·

• • ·' ._ •-'.:.,_Qr;·-'--' --L-• •-•:;--L~ •--•~-L·:s• --•-•-.:9·-' -•-.·· L- •--•--• " '-• ·'-··'-- •--'

C.C.ES.S.-.S4.8.L.KS.l.Z.i~.a'} .. £...C..J:L-_,___.J!,_,.4., .. •• , • __ .. _._._,

.E.C.T.Y.P:=,f=.. ... , .• ·-· _ .. , .• ·-~- .• -'--·----·-~- ._.~--·- ·--L ····-·-~·-"--·-~-~-~-•

, '.D.i#i:-:F. ti.~:1-~, '.R:t.-e11:i,)t. 7LR'i.A.i~-:P.Tii.·A!JX=~Ts~r:r:

RECORD 2

OPERAND

r-----------,
I Retrieves first record and each I
I succeeding record. I

L------------'

1 2 3 4 5 6 7 8 9 10 111213141516171819202122232425262728293031323:134353637 3839404142434445464748495051525354 555657585960

From beginning
of file

Fl.LE.2.. .£.f/F~ A.C.C.E.S.s.=,S.,,lL~KSI z:=.~g_.04 Re:-.c.A..D.~=}lRC.112~)_.;.uU •.. ~~-J
Rc.C.SL.Z.=LU., ./ l(IJ.$) .Z..=,~04){E.':1.$LZ..::_._~ ·-· ,_,. -• ·---" .. ~--•·-·-'

From selected
file record

FILE 2

FILE 3

sirL
G.~.T.

S.E".T.1...
G.C.T .

RECORD 2

1 1:b:E.r:d:=:~/J..ii~'.s'.riifr·:=~i<~Y-~-~ ~:::~-~ ~-~-·-L" ·
1 .D. Y.. 3.A.=:~. E'.S.). UJ.£"N. T. •.RI J-.~.B ·J J{T.t/.A..,O,,R..=J.SLT._ ..

------- r-----------, I Retrieves record specified in key I

RECORD 1 RECORD 35

Figure 3-1. Sequential Access Method

I field and each succeeding record. I
I Allocated with a spread factor of I L'=:... _________ .J

BANDOM ACCESS

Bandom access is a method of retrieving individual
records from a file. Only relative anid indexed file
records are randomly accessible.

f:or relative files, the record number of the desired
record is changed into a block number and a relative
position within that block. From this c:omputed infor­
mation the record is directly accessible.

F=or indexed files, the key values specifit~d as the actual
keys indicate the desired records. A search in the direc­
tory to the directory index block, the directory index
block, and the primary index block gives the appropriate
block record number of the desired record. The data
record is then retrieved by the block record number.

f=igure 3-2 illustrates the random access method.

l.OGICAL RECORD PROCESSING

Blocking/deblocking of logical records is provided by
GET/PUT macros, which move logical records between a
rncord area and an 1/0 buffer or which process records
in an 1/0 buffer. Processing may be either sequential
or random with a record area and one or two 1/0 buffers
defined.

BUFFER SWITCHING

If two buffers are specified, a buffer switching process
is performed. For a GET request, as the records are
transferred from the second buffer, the next data block
is simultaneously transferred into the first buffer.
Figure 3-3 illustrates the buffer switching involved for a
(JET request.

Buffer switching for PUT is similar to GET but in reverse
order. Records which have been processE~d in the record
airea are transferred to the appropriate 1/0 buffer. As soon
as the last record* has been transferred to buffer 1, the
next record is transferred to buffer 2, and simultaneously
buffer 1 has its records put on the output data file in
the · appropriate block. Figure 3-4 illustrates buffer
switching for PUT requests.

* For variable length records, this is the last whole record the
buffer can contain.

Buffer switching increases efficiency of processing because
reading and processing operations occur simultaneously
with no waiting involved.

Fl LE SHARI NG

OPEN L checks shared files on volumes which are
mounted on shared resources. Output usage ensures
exclusive use of the file. Update usage ensures that no
other program can update the file until it is closed, but
other programs may have access to the file. Table 3-1
indicates the legality of usage when program 1 opened the
file and an OPENL macro from program 2 is checking for
usage conflicts.

Legal

Illegal

BUFFER SHARING

Table 3-1. Usage Conflicts

Input Update Output

Input Input None
Update

Output Update Input
Output Update

Output

When buffer sharing has been specified in the define
macro, an additional two bytes must be added to the
buffer size. This 2-byte field is used by OPENL and
CLOSEL to resolve buffer usage conflicts.

SEQUENTIAL PROCESSING WITH RECORD AREA

The GET macro transfers a block of input data into an 1/0
buffer. From the 1/0 buffer, the logical record goes to a
record area. When the last logical record in a data block
has moved to a record area, the buffer is refilled. If a
second 1/0 buffer is specified, buffer switching is per­
formed; control returns to the user when the buffer
switching is completed. Figure 3-5 illustrates the GET re­
quest using both a record area and a buffer.

The PUT macro moves a logical record from a record area
into an I /0 buffer. Buffers are emptied after the last
record has been put into the current 1/0 buffer or when

3-3

3-4

RELATIVE FILE

llC.C_.£:S.S,_-llf,'f.+.8J._.K_S.L,l.!_.("~·J--·t(E')'.ltl>J(:::._(l.J{6.~JL}, . . ,
R.£.C..S,l.Z.r.9J..,.R.E.t..nl.f'=.F. , ... , . -·--~-~--·

, o ••• < .l < 'J J L .L. l. L -'··-'--..1..-.I- -'---'- -'-- .. .1...-L-----..1.- J_ _ _J._ _ _.. __ _J ____ _.__ _ _._ __ _1._l_ __ _L__L__ _ _J_ _ _J_ ___ L__i_ __ L __ _l _ _J

'll_b._,. ~ ._ .__ 1.s.o. ._L ••• • _L_,, .. ____ L • .. • • " ._., •••

iii~~~-._-:_. __ -ti:tilfr.=ff.(CLi(:rtlc~~n:ti~7filfA)(:e .. f1ifi>.R.::1~t~it$~T::

r--------------, I Computes the record block number from I
I the record identification and retrieves the I
I desired record. I L _____________ ...J

FILERL ~~ __ l ___ R_E_c_oR_D __ 1 _______ RE_c_o_R_D_2 ________ _.. __ ,_R_E_co_R_D __ 15_o _____ R_E_c_oR_D __ 15_1 __ ____ _

INDEXED FILE

DIRECTORY
TO THE

DIRECTORY
INDEX

f U ... E l.N. . Ac._e_(S.S.•.~1.8.1.J<.S. ~lr..10.0.JLO.A.l),f?J..=. IJ(,£.J. w·
flE:.l.A.l>.R•.A.l/.C:A.IJ.. •. rf.£C.S.l .Z. =.9,,> .l<..E.~.s.1.z.=.'t~ .J.lU>.S.J ,'1,.,=_5JL,

D.F.FJ.F. .

8.D_J>.:.

,ir.·::.
15:o:ur,:is : :-:~ ~·-: ~-:-~=-~-~~-~~~: :-~-~~~=-~-~-: :-:-: : ::~:=:
_ ,:o. iili~F. iiE.1 :N., :i.i.N.A:IJ:ti.. :.){ ts~r-~-~--'.-~ ~~~- ~~::-: : ~ -·~----'

DIRECTORY
INDEX

RECORD 1

PRIMARY
INDEX

RECORD 2 RECORD 750

Figure 3-2. Random AcCElss Method

f S:-eks"rt;"e7e:r~;;;;;:;i"n~ll
I dexing scheme. The desired key I

velue is found in the three in·
I dex blocks end the primary i11dex I I pointer gives the location of the I
L:~~_:~~_:u.:_ ___ _J

RECORD 751

INPUT
DATA
FILE

BUFFER 1

BUFFER1

BLOCK 1 BLOCKJ BLOCK2 I
<_ -----------

BLOCK4

I I

.-------1
I When two buffers are I I specified, GET trans-
l fers data blocks to each I
I of the buffers. I L ______ J

-;;;;;;;:=::=:;:::.~~~;;;;;:::;--- ---

... R_E_C_O _R _D _1 ... _R E_C, .O'lll!R!""'D_2 __ 3
--__.

RECORD 1

BUFFER 2 RECORD 4 RECORD 5 RECORD 6

~ //////////

~Y/ r---------,
I As soon as GET transfers the last record I

RIECORD AREA RECORD n I found in Buffer 1 and starts transferring I
I

records from Buffer 2, Block 3 is trans- I
ferred into Buffer 1. The reading and

r-- --.,
L Processed Data 1
_____ _.

I processing of data blocks occur simul· I
I taneously. I
L _________ _J

FigurE1 3-3. Buffer Switching with GET Request

,-----------, I Input Data I ._____ _ ___ _,

RECORD AREA

RECORD-3 BUFFER 2

r------------,
1

1

Processing of input data record occurs 1

1 in the record area. As soon as PUT
1

1

transfers the last record in Buffer 1 II
I

and starts transferring records into I
I

Buffer 2, the records in Buffer 1 are I
I put on the output data file in the I
I appropriate data block. I

L------------..J

RECORD 6

---------------·--------

OUTPUT
DATA
FILE

-------.--
BLOCK2 BLOCK 3

.----­--
BLOCK 4 17

Figur19 3-4. Buffer Switching with PUT Request

3-5

3-6

INPUT
DATA
FILE

OUTPUT
DATA
FILE

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4
r----------,
I GET retrieves a block of input I
I data and places it in a buffer. I L _________ _J

r----------------,
BUFFER RECORD 1 RECORD 3 I Each record from the buffer is transferred I

I individually to the record area until the I
I buffer is empty.

RECORD AREA T
.--------, IL Processed Data .I --------

L ______________ _J

r-------------------,
L_:::~::::~::~~::~:J

Figure 3-5. GET Request with Record Area

,-------,
I Input Data I
L-- --..I

,--------------------,
RECORD AREA I Processing of the input deta record occurs in the record I

I area. I

BUFFER RECORD 1

BLOCK 1

L--------------------'

RECORD 3 RECORD 4

BLOCK 2 BLOCK 3 BLOCK 4

Figure 3-6. PUT Request with Record Area

r---------------, I Each record is transferred individually to I

L~~~=~~~~~~-----J

r------------,
I When the buffer is full, the block I
I of data is put on the output file. I
L------------.J

~~:: \I
FILE •.

BUFFER

BLOCK! ~,-B.LO~C~K-2 _________ BL_o_c_K_3 ________ B_L_o_cK_4 ________ __
r---------,
I GET retrieves a block of I
I input data and places it in I
I a buffer. I

RECORD 1

L ________ .J

r-------------~--------------,

RECORD 3 R1

r--- ----,
I Processed Data I

L--------i..I

Address of available record area

r---------------,
I Processing of the record occurs in the buffer. I
I R1 contains the address of the next logical I
I record to be processed. I

L---------------J

Figure 3-7. GET Request Without Record Area

,.-------,
I Input Data I
L-- ---1

r---------------1
I Processing of thil record occurs in the buffer. I
I R 1 contains the address of the arna of the I
I buffer available for the next logical record. I

L---------------~

BUFFER

r-------------~~---------------~--,

.. _•R•EC•O•R•D-1
1

----~ R1 AddraH of ava;•b• raco•d area

~-----·

BLOCK2 BLOCK 3 \
Figure 3-8. PUT Request Without Record Area

r------------1
I After the buffer is full, the block I
I of data is put on the output file. I L ____________ ...J

3-7

the space left in the current 1/0 buffer will not contain
the next variable length record. If a second 1/0 buffer
is specified, buffer switching is performed before re­
turning control to the user; if a second 1/0 buffer is not
specified with variable length records, the next variable
length record is not moved into the buffer until it has
been emptied. Figure 3-6 illustrates the PUT request
using both a record area and a buffer.

SEQUENTIAL PROCESSING WITHOUT A RECORD
AREA

GET returns to the user, in general-purpose register 1
(R 1), the address of the first data character of a logical
record in the buffer which is available for processing.
Buffers are refilled after the GET request for the first
logical record of a block is made. If a second 1/0 buffer is
specified, buffer switching is performed; control returns
to the user upon switching completion. If there is only
one 1/0 buffer specified, control is retained by Data
Management until the buffer has been filled. Figure 3-7
illustrates the GET request using only an 1/0 buffer for
processing.

PUT returns to the user, in R 1, the first character address
in the buffer which is available for the next logical record.
Buffers are emptied after the PUT for the first logical
record in the block is made. If a second 1/0 buffer is
specified, buffer switching is performed; control returns
to the user upon switching completion. If there is only
one 1/0 buffer, control is retained by Data Management
until the buffer has been emptied. Figure 3-8 illustrates
the PUT request using only an 1/0 buffer for processing.

RANDOM PROCESSING

While in the random mode of processing, GET retrieves
a specified record. The buffer is filled if the specified
record is not currently in the 1/0 buffer. If a second 1/0
buffer is specified, it is not used.

When a record area is used, the GET request moves the
requested record through the 1/0 buffer to the record
area; however, if only a buffer is available, the first
character address of the record in the 1/0 buffer is
returned to the user in R 1. Figure 3-9 illustrates the
processing of a randomly retrieved record with and with­
out a record area.

3-8

When a record area has been specified, the PUT macro
empties the buffer if it contains an updated record but
does not contain the specified record. The buffer is then
filled with the data blo~J~ t,hat is to contain the new
record; the record is moved into the buffer. If this is
an update process, the data block of this particular
rece>rd must be in the buffer before PUT transfers the
record. (Thus a GET request is issued first.)

While in random mode, PUT macros are processed only
when a record area has been specified. Figure 3-10
illustrates the processing of the PUT macro while in
random mode.

MAGNETIC TAPE PROCESSING

MRX/OS supports three types of labels:

• Standard labeled tape

• Nonstandard labeled tape

• Unlabeled tape

The default for no LABEL specification is standard labels.
The nonstandard option is valid only for input files.

The label type may be selected at assembly-time through
the optional LABTYP parameter of the DEFSF macro or
at run-time through the LABEL parameter of the
//DEFINE statement. However, the LABEL parameter of
the //DEFINE statement overrides any label specification
in the BOT which is created by the DEFSF macro.

On the //DEFINE card, the Control Language specifies
the type of magnetic tape labels, plus two additional
features - ignore and bypass label processing. The LABEL
keyword parameter has the following format:

GET REQUEST WITH RECORD AREA

INPUT
DATA
FILE \ I ::1 BLOCK 2

BLOCK 1
RECORD 1 RECORD 2

~

l
~

BUFFER [RECORD 1 RECORD 2

RECOROAREA [..... S.pe•c-ifi.ed.-R.ec•o•rd ____ _.

r·---- ----,
I Processed Record J
L-----------

GET REQUEST WITHOUT RECORD AREA

BLOCK2

BLOCK 3

r:~:::~~=~::::~:--1
I specified record to the 1/0 buffer. This record I
I is then placed in the record area for processing. I
L-----------------...1

INPUT
DATA
FILE

BLO_C_K_, __ ..._ ____________________ B_Lo_c_K_3 ______ _
RECORD 1 RECORD 2

~

r~~=:::e~a:::::·,
I places it in the 1/0 buffer. R1
I gives the first character address I
II of the specified record in the 1/0 J
_ buffer.

L------------

Figure 3-9. Random Access with GET Macro

3-9

3-10

PUT REQUEST WITH RECORD AREA

r------,
I Input Record I L-- __ .J

RECORD AREA RECORD n

OUTPUT
DATA .
FILE

BUFFER

BLOCK 1

RECORD 1 RECORD 2:

-
BLOCK 2 BLOCKJ

rUr;;:;;;;h::~~;~:~~'1
I and transfers it to the buffer. If this is an
I updated record, the buffer has the data block I
I of this record and the record is rewritten. I
I The data block is written on the output data
I file only when the block (still in the buffer) I
I containing the new or updated record can·
I ~ot receive another record in that particu- I
1..!~!!&~ ___________ ...J

BLOCK 4

Figure 3-10. Random Access with PUT Macro

The codes are defined as:

Code Definition

s Standard tape labels

N Nonstandard tape labels

U Unlabeled tapes

B Bypass label processing

Ignore label processing

Chapter 2 of this manual describes the format of standard
labels, nonstandard labels and no labels.

OPEN TAPE FILE

Each OPEN(L) request for a tape unit must be supported
by a //DEFINE Control Language statement. The SYSIN
(system input file) is searched using the IDENT field
supplied by the OPEN macro. If no match is found, an
error is returned.

Tape units are assigned for .exclusive use of a job-step by
the .Step Initiator. OPEN(L) issues a mount reel request, if
necessary, for each unit (1 or 2 per IDENT) assigned by
th.e Step Initiator.* The message includes volume
identification, reel sequence number and unit number. If
REWIND=NO is specified in the OPEN(L) macro, no
rewind is performed before checking labels.

After label checking, an FDT (File Description Table) is
built and linked into the FDT string. If the file is open for
logical 1/0 processing, buffers are prefilled, and control
returns to the caller.

Bypass and Ignore Tape Labels

The bypass and ignore options of the LABEL parameter
are valid for input files only. If ignore (I) is selected, no
tap.e positioning or label checking occurs. If bypass (B) is
selected, no label checking between existing label and the
Control Language options occurs.

When the bypass option is used, the first tape record is
read. If it is a tape mark, the tape is an unlabeled one and
is positioned at the first data record and no further
positioning occurs. If the first record is a standard tape
volume label, it is a standard labeled tape and a forward
space file routine positions the tape to the first record
beyond the label set. If the first record was neither a tape
mark nor a standard tape volume label, a1n unlabeled tape

*Step Initiator is a module of Control Languago Services.

is assumed and a backspace record routine positions the
tape to the beginning. The user is then responsible for
correct positioning of the tape with nonstandard labels.

Input files must conform to the label requirements; this
allows no operator override. If a conflict exists, a rewind
request is issued and the operator must mount the correct
tape reel.

Standard Tape Labels

When the input file has standard labels, the volume serial
number of the tape volume label must match the
VOLUME parameter of the //DEFINE statement; and the
filename of the first header label (standard tape file label)
must match the FILENAME parameter of the //DEFINE
statement. A forward space file routine then positions the
first data record. If the filename in the header does not
match the FILENAME parameter, the operator receives a
message to retry or abort.

When the standard labels option is selected for an output
file, standard labels both volume and header labels must
be written on the tape. If the volume label does not exist
on the tape, a message is issued to the operator who must
respond with RETRY or the information necessary to
create a standard volume label. A standard tape file label
(HD R 1) is created from the Control Language
information. A second header label (HDR2) is written
with all fields of zero and followed by a tape mark. If the
standard volume label does exist, the first heacter label is
read. If HDR1 is valid, the expiration date is checked. For
unexpired files, a message is issued; and the operator
responds with RETRY or ACCEPT. RETRY starts the
sequence again and ACCEPT allows the volume to be used
as if expired.

Nonstandard Tape Labels

The nonstandard label option is only valid for input files.
A read of the first record on the tape is issued. If the
record is not a standard volume label, a forward space file
positions the type beyond the header label set.

Unlabeled Tapes

The first record of an unlabeled input file is read. If it is a
tape mark, the first data record is in position. If it is not a
tape mark, a backspace record routine positions the first
data record.

For output files, the first record is read. If the record is a
standard volume label, the next record is read. If the next
record is not a HDR1 label, the file is backspaced and a
tape mark is written. If the second record is a HOR 1 label,
the expiration date is checked. If the file is expired, the

3-11

file is backspaced and a tape mark written; a message
informs the operator that a standard volume label is being
overwritten. If HOR 1 is not expired, a message is issued,
and the operator may ACCEPT or RETRY. If the record
is a tape mark, the correct record is in position. If the first
record is not a tape mark nor a volume label, the tape is
backspaced and a tape mark written.

CLOSE TAPE FILE

At the end of processing a tape 'file certain steps are taken
according to the option selected.

After any label processing is done, a rewind/unload is
issued unless a CLOSE(L) with REWIND=NO was
specified. The FDT is taken out of the FDT string unless
CLOSE(L) with LOCK=YES was specified. Control is
then returned to the caller.

Ignore and Bypass Tape Labels

When the ignore or bypass option is selected, no trailer
label checking is performed.

Standard Labels

When processing an input file with standard labels, the last
record (which should be an EOF record) is read. If it is
not an EOF and the FDT indicates the end of file, a
message is issued to the operator, and no comparison of
block count (FDT vs. trailer label) is made. If the record is
an EOF, the trailer label block count is compared with the
block count for the volume; a console message indicates
an error when the two block counts are unequal.

After writing the last data record in an output file, a tape
mark, an EOF trailer label with block count, and two tape
marks are written.

Nonstandard Labels and Unlabeled Tapes

When processing input file with either nonstandard tape
labels or no tape labels, no label checking occurs. After
completion of writing an unlabeled output file, two tape
marks are written.

VOLUME SWITCHING

The CLOVE(L) macro performs volume switching for
multivolume tape files. CLOVE(L) performs header and
trailer label processing on tapes and alternate unit
processing on tapes.

3-12

Input Files Without Standard Labels

While processing input files with the ignore, bypass,
nonstandard, or unlabeled option, the operator must
indicate if there are more volumes to the tape file. If this
is the last input volume, EOF is set in the CLOVE packet,
ancl control returns to the caller. If it is not the last
volume, label processing for this volume is the same as in
CLOSE. A REWIND=UNLOAD and a request to mount
the next volume are issued. Label checking for the next
volume follows the OPEN procedure.

Output Files With No Labels

After processing an unlabeled output tape, two tape
marks are written and a mount the next volume is
requested. Label processing occurs for the next volume as
in the open routine.

Files with Standard Labels

When the files have standard labels, the current volume
processing is the same as CLOSE except the last record is
an EOV instead of EOF. A mount message is issued for
the next volume, and the processing continues as in
OPEN.

After label checking is complete, the FDT is updated if
necessary and control returns to the caller.

IBM TAPE PROCESSING

A mode of processing which does not use the common
stored data format (described in Chapter 2) will be
available for processing of IBM format F and U magnetic
tapes. This mode is selected on tape by specifying
CSD=NO in the //DEFINE statement and by specifying
BLKFAC=n for format F and BLKFAC=1 for format U in
the DEFSF macro.

~NTERACTION OF DATA.MANAGEMENT AND
MRX/OS CONTROL LANGUAGE

The Control Language Services, through the //DEFINE
~rtatement of the Control Language, provides a run-time
interface with some of the Data Management services.
Rather than coding into the program c1ll the attributes
of each file to be processed, the user supplies certain
iinformation about the files in the /IDE FINE statement.
In this way changes, which might otheirwise require re­
assembly of the program, only require modification of
the Control Language statement. Thus, the program tends
to remain independent of such things as the name of the
'file being processed, what device or volume the file re­
sides on, and for sequential files the type of media
used for processing. The Control La1nguage Services
provides the additional service of requ1esting allocation
of space for new disc files from the user supplied param­
eters.

For sequential files, the Control Languag1e can change the
file to any device. If files have the same characteristics,
the file name specified in DEFLB and referenced by the
OPEN L macro can be overridden by the Control Language
with different file names; that is, files other than the one
specified by OPEN L can be processed.

At the logical 1/0 level, the Control Language can handle
all the spac:e management (allocation, expansion, and
purging). After a control table has been set up by the
Control Language, Data Management can use these
parameters for OPENL/CLOVEL routines.

When a file is opened (OPENL macro), a File Description
Table (FDT) is established. The file attributes described
iin the table are taken from the System Control Table
(SCT) established by the //DEFINE statement and the
Buffer Description Table (BOT) established by the define
macros. (The Control Language Services, Extended Refer-
1ence manual provides a detailed discussion of the at­
tributes specified by the //DEFINE statement.)

The CLOVEL macro uses the volume information to switch
volumes. The file name of this macro overrides DEFLB
macro information.

Example

The file attributes for FILE4 (cataloged as FILE4PAY)
are as fol lows:

Record size of 100
Block size of 104
Two buffers
Estimated 1000 record$
Permanent disc file
Input file
Volume-id 104000
Common stored data format
Sequential organization
Cataloged file
Error routine
Record area

The OPENL macro places the file attributes in the FOT.
The Control Program and Data Management, Extended
Reference manual contains an exact layout of the FDT.

3-13

4. CONTROL PROGRAM SERVICES

All service requests are initially interpreted by the Control
Program, but most of them are then transferred to
separate routines for processing. There are, however,
certain service requests which are processed directly by
the! Control Program. The two services that fall into this
category are program termination and time and date
retrieval.

PFlOGRAM TERMINATION

Thi~ program termination macro is necessary for returning
control to the system in an orderly fashion on completion
of a program. Three Control Program Service macros,
HALT, EHALT, and ABEND are provided for this
purpose.

Th1~se macros differ primarily in their effect upon
subsequent steps of the job. HALT (required in all
programs) will not affect subsequent steps in any way.
EHAL T (error halt) and ABEND (abnormal end) will
cause any subsequent job steps to be bypassed, going
dirnctly to the end of job.

In addition, ABEND provides the ability to log a discrete
binary completion code in the Job Control Table which is
displayed on SYSOUT. ABEND also forces a dump of the
partition, unless a DUMP=NO was coded on the
//EXECUTE statement.

Thei DUMP= keyword operand, when coded explicitly in
the //EXECUTE statement, will cause the partition to be
dumped or not dumped as specified, without regard to
whether termination was via HALT or EHAL T. If the
DUMP option was not coded on the //EXECUTE
statement, termination via HALT or EHAL T will not
cause a dump; but termination via ABEND will cause the
partition to be dumped.

Neither the HALT macro nor the El-IAL T macro requires
any operands. ABEND requires a specification of
completion code desired to be logged ..

Pro!grams may also be terminated by giving control to an
exit routine loi:ated in the system linkage area. For this
method to work properly, the user program must not
disturb (or must save and reload) the contents of general
register 7 since this will be loaded by the system with the

exit linkage address. To terminate the program a BR @7
should be coded in place of the HALT. This method of
termination allows the program to serve as a subroutine
which either links back to the caller or terminates
depending on the contents of register 7. (Appendix B
describes the linkage conventions.)

TIME AND DATE RETRIEVAL

The operating system maintains the current time and date
for access by user programs. A user program may read
the current time and date by means of the TIME and
SDATE macros which will return the time or date to
a user specified storage location. Neither the time nor the
system date may be altered by a user program (only by
operator command), but there is a second date area
in the system which is available for storing a date asso­
ciated with a particular job. The user may set this job
date to any date he wishes by means of a //SET state­
ment in the Control Language for his job. To read the
job date within the program the JDATE macro must be
used._ l_f _th~job date is not Sf;!tjn t~~_Control t,.ang~_Elge
statements, the system date will be used, and any JDATE
macros in the program will then receive the system date.

I

The use of TIME, SDATE, and JDATE involves specifying
a location where the time or date is to be received. TIME
gives the time of day in hours, minutes, and seconds while
SDATE and JDATE have the option of calendar or Julian
_formats.

CONSOLE COMMUNICATION

A single macro, CONSOLE, is provided for communication
with the operator's console. This macro may be used both
for sending messages to be typed on the console and for
receiving replies from the console.

A second macro, MESSAGE, is available to generate the
actual message format, though this is not essential since
the message could also be coded directly if desired (using
Assembler data definition statements).

4-1

MESSAGES TO CONSOLE

All messages to be sent to the console must conform to a
standard format in memory. However, if the MESSAGE
macro is used to create the message, the programmer need
not be concerned with this format since it will be
produced correctly by the macro.

The MESSAGE macro should be coded in a data area of
the user program using the parameters specified under the
MESSAGE macro description in Section 6; it must be
given a label so that it may be referenced by the
corresponding CONSOLE macro.

To transmit a message to the console, a CONSOLE macro
must be coded using a DATBUF1==symbolic address
parameter where the symbolic address is the tag on the
MESSAGE macro used to generate the actual message.

The format of the message as it will be typed on the con­
sole is as follows:

n ii t message text

n - the message number assigned by the system.
This will be blank unless a reply is required.
If a reply is required, this message number must
be included by the operator in the reply state­
ment.

ii - a two-character operating system source
indicator: P 1 means partition 1, P2 means parti­
tion 2,# #means operating system.

t - a one-character message type indicator:
I means informative, D means directive (re·
quiring operator action). This is obtained from
the type specified in the MESSAGE macro.

messagetext - the actual message, up to 100
EBCDIC characters (bytes) long.

Example

- ---- - ----------··------------ -------------
1 2. 3 4 !i 6 1 8 9 10 11 12 :~~~ ~8 19..!!.!~1_!1_.3!,~;_~~2! ~~IS JI 3839_·1~~~~

' • ~D~ll A
L.A8Et..A.

l'l.~.C..L. 8.DJ;.
. S.C.2... UtO.

4-2

lpf{S. G 1 ,'MS'.G +' t .
DAT8UF1.•L.A 8 EL A

t·is:ca. M.s:i:. +'t . :
.T4UF.1..•LA.a£1..A ,

~ ' _. .

~
i.reU:F.i=-:M.s.,. J>ir.ia:i..,:1f~;-: : ·

. JITJl.T.X.T.•C.' fHAS.E .J..'. . . .
'.c.u.M.f.L.£TU.~ ' . ' . . ' ...

.' .AS.O.f<.T,CD
-' --'- ~ • • _,__ J.. - L ,_ < • J ' , , & • ' o ~ '

At assembly time the MESSAGE macro at LABELA will
crnate a message format with a message text area 17 bytes
long, the first byte of which will be labeled MSG. The
first seven bytes contained in the message tex.t area will
be PHASE 1 and the remaining 10 bytes will be filled
with blanks.

During execution of the program, the first MOVX instruc­
tion will move the characters COMPLETED into LABE LA's
message text area displaced eight bytes to the right of
th1~ label MSG, thus forming the message PHASE 1
COMPLETED. The CONSOLE macro following this
MOVX instruction will then cause the message to be
typed out on the console. Similarly, the second MOVX
instruction will result in the message PHASE 1 ABORTED,
and the CONSOLE macro following the MOVX instruc­
tion will send this message to the console.

REPLIES FROM CONSOLE

The link between a given output message and its
corresponding reply message is established by a message
number which is the first character in both the message
and its reply. This number is assigned by the system and
typed with the output message if the message requires a
reply (otherwise the first character position will be left
blank).

When the operator types the reply, the following format
is used:

n replytext

n - the number of the output message to which
the operator is replying.

replytext - the actual reply, up to 100
EBCDIC characters (bytes) long.

The reply will be received by the same CONSOLE macro
that issued the output message. (In addition to the
DATBUF1=symbolic address parameter, a CONSOLE
macro that is intended to receive a reply must also include
a DATBUF2=symbolic address parameter to signal the
system that a reply is required and to direct it to the reply
buffer area.)

Note that when a CONSOLE macro requires a reply,
control will not be returned to the user program until a
reply has been received unless RETURN=YES is coded to
specify immediate return.

Example

• ' • • .. 1 • : . • :~-· " ... -

, •. • • • . • C..O.N.SO.L.£ .

. . . fr:D:Pt:TA :A:l{:~A:i :
LA.8E.L.A. . rt£:S.S.A.G.6'.

U,:AJ3.£..l..8 . [tt£:itJi:~:i
' ·-1-1 •• ' '~ ..• '

,,:,.,:r.A. iir:W:c> :i.N:r£'.i ~ili~s'.$'.~~1:;,
l"\._Q,J).£a_,l) , .. , , , , , , . , , .. ~~~-·-~· .. L

O.AT.S./.Z.J.,,,..to. , .. _._,_,_,_~ c .. ~~-~~-~-·

At assembly time the MESSAGE macro at LABELA will
create an output message format containing the message
text ENTER PASSWORD, and the MESSAGE macro
at LABE LB will create a reply messag1e format contain­
ing a 10-byte field reserved for the reply message text.

During the execution ofthe program, the CONSOLE macro
will cause the message 5 P1 D ENTEH PASSWORD to
be typed clut on the console. The system has included
the message number (5 for this example) so that the
operator's reply (which will use the same prefix)
may be I inked to the correct output message. When
the operator enters his reply (for example, 5 molybdenum),
the reply will be transferred to the 10-byte field re­
served for it by LABELS.

4-3

5. PROGRAM DEBUGGING

Included in the operating system is a debug package,
known as CHECKOUT, for assistance in debugging
Assembler language* programs. CHECK.OUT enables the
programmer, through debug request cards placed in his
Control Language deck (as a data file), to call for a
selection of register and main-storage dumps· to be
performed at specified points during the1 execution of his
program. The following dynamic snapshots in
hexadecimal format may be obtained.

1. General registers

2. Any specified area of the user program

3. The entire user and system areas

4. : Formated system control information

13efore debugging requests may be applied to a program,
the program must be assembled and linkag1e edited.

·~CHECKOUT may also be used with RPG,COBOL, and FORTRAN
programs if an Assembler language listing of' the compiler out­
put is available.

CHECKOUT OPERATION

CHECKOUT operates in two phases. The first phase,
performed immediately after the program segment to be
debugged has been loaded, involves inTiializin-g --th"e pro~­
gram by planting special debug service requests at
appropriate points within it and building (within the
system) the control information necessary for executing
the debug request. (The nature and location of the
planted service requests is determined by the debugging
requirements supplied by the user with the Control Langu­
age statements.)

At this point, the directives are written on the job's
SYSOUT file, accompanied by directive diagnostic
messages, if any.

The second phase, performed after the initialized pro­
gram has been loaded and goes into execution, involves
the processing of the previously planted service requests.

Each debug service request overlays a user program
instruction. This instruction is saved by CHECKOUT so
that it may be replaced and executed on completion of
the service request (to maintain the integrity of the user
program). After the replaced instruction has been
executed, the Control Program reestablishes the debug
service request in preparation for the next time through
the program (if any).

5-1

REQUESTING DEBUGGING SERVICES

Program debugging services are requested entirely through
the use of request cards which are placed in the job
deck with the Control Language cards (Figure 5-1) .
This arrangement enables specific requests to be altered
from run to run without requiring repeated reassembly
of the program being debugged.

When debugging services are required, the //EXECUTE
statement associated with the program to be debugged
must always include the parameter DEBUG=YES. This
instructs the system to load the CHECKOUT routines
immediately after the program itself has been loaded
and then to transfer control to CHECKOUT.

The types of dumps required and the circumstances in
which they are to be performed are specified in the set
of debugging directives coded on the request cards.

BREAK DIRECTIVE

The BREAK directive specifies the type, location, and
circumstances of a particular action in a debugging re­
quest. There are three types of action that may be re­
quested.

1. Dump

2. Program termination

3. Setting or resetting of the condition flag
(an indicator, maintained by CHECKOUT,
used to govern the execution of condition­
al requests*)

The format of the BREAK directive is:

BREAK= (breakpoint address.action
[,type] [,interval]
[,starting address.ending address])

* For a more detailed discussion, refer to Conditional Request
paragraph.

___ ("
FEQU EST C~RDS

--

5-2

lft~ATA
[

SYSTEM
CONTROL CARDS

L--------·-·------------------------

Figure 5-1. Job Deck with Debug Requests

breakpoint address

A 1- to 4··digit hexadecimal code specifying the address
within the program at which this particular BREAK
directive is to come into operation. The breakpoint
address must be an even number (on ;a word boundary)
and must point to the first word of any valid instruction
except an SR or a service request macro (for example,
READ or WRITE). The breakpoint address must be
specified as a displacement within the relevant load
module. When a program consists of a single load module
which was produced from a single control section (the
normal case), this displacement may be obtained directly
from the program's assembly listing, but when the
program consists of multiple control sections/modules,
the Linkage Editor map will also be required to calculate
the additional control section displaceme!nts.

action

A 1- or 2-character code specifying the action to be per­
formed- at the breakpoint address. Thu following action
codes are available.

Code

T

TC

Action

Terminates program and dlumps if type
parameter is present

Terminates if condition flag is on and
dumps if type parameter is present

D Dumps unconditionally

DC

cs

CR

Dumps if condition flag is on

Turns condition flag on and dumps if
type parameter is present

Turns condition flag off and dumps if
type parameter is present

type (Optional)

A 1··character code specifying the type of dump to be
performed. The following type codes are available.

Code

R

s

p

General registers only

General registers plus main-storage im­
ages (in hexadecimal with EBCDIC trans-
lations) of that section of the user
partition defined by starting address
and ending address

General registers, formated ! system con­
trol information, and main-storage im­
ages of the entire user partition

A General registers, formated system
control information, and main-storage
images of the entire user and system
areas

interval (Optional)

A 1- to 3-digit decimal number (0-255) specifying the
number of times the breakpoint address must be passed
before the selected action is performed. No action will be
taken on the first n-1 executions of the instruction at the
breakpoint address; action will be taken on execution n,
2n, 3n, etc.

starting address,ending address (Optional)

A pair of 1- to 4-digit hexadecimal codes specifying the
starting and ending words of the main-storage dump. Both
should be word addresses; if not, starting address and
ending address will be rounded down one byte. Starting
address and ending address must be specified as
displacements within the partition. Starting and ending
displacements are relative to the beginning of the user
portion of the partition. The linkage editor map will be
required to compute the actual offset.

5-3

Examples

1. BREAK=(1064,D,R)

When program execution reaches displace­
ment 1064 (before executing the instruction
at 1064), general registers are dumped.

2. BREAK=(1098,CS)

The condition flag is turned on when program
execution reaches displacement 1098.

3. BREAK=(1120,TC,S,,2000,2080)*

If the condition flag is on when displacement
1120 is reached, the program terminates and
the memory from partition displacements
2000 to 2080 is dumped. If the condition flag
is off at this time, no action is taken.

4. BREAK=(1250,D,R,40)

For the first 39 executions of program
displacement 1250, no action is taken. At the
40th, 80th, 120th, etc., executions, the
general registers are dumped.

PROG DIRECTIVE

The PROG directive establishes the name of the load
module to which all succeeding directives apply, up to the
point that a new PROG directive is encountered. Until the
first PROG directive is reached, all BREAK directives
automatically relate to the main module as specified in
the //EXECUTE statement. Thus, the PROG directive is
only necessary when debugging programs containing more
than one load module.

The format of the PROG directive is:

PROG=program name

program name

The name of the load module to which all succeeding
directives apply.

*The extra comma indicates that the interval parameter has
been omitted.

5-4

CONDITIONAL REQUESTS

A conditional request (BREAK directive) is a request
which is only performed in the event that the condition
flag, maintained by CHECKOUT, is in the on condi­
tion at the time that the request is to be implemen­
ted. This flag may be dynamically altered during program
exucution and may thus be used to govern the execution
of conditional requests.

The condition flag is always in the off state at the start
of a program. If a BREAK directive is coded to set the
condition flag to on at a breakpoint address within a
given program path, a conditional dump will not be
recognized unless the program has followed the given
program path. As a result of the condition flag still
being off, no conditional requests of the given program
path will be honored (Figure 5-2).

EXAMPLE OF JOB CONTROL DECK WITH
CHECKOUT DIRECTIVES

Figure 5-3 shows a typical job deck including a CHECK­
OUT directive set calling for a variety of different
dumps. An explanation of each card follows:

Card 1: The //JOB card.

Card 2: The //EXECUTE card includes the
parameter DEBUG==YES so that the system will
open the CHECKOUT data file and initialize
CHECKOUT for each loaded module.

Cards 3, 4, and 5: The //DEFINE cards identify
the input file, o~tput file, and CHECKOUT
directive file, respectively. (Cards 3 and 4 are not
required by CHECKOUT.)

Card 6: The I /DAT A card informs the system
that data destined for the CH ECK OUT data
file follows immediately.

Card 7: The first of the CHECKOUT directive
cards. The BREAK directive on this card di­
rects CHECKOUT to turn the condition flag
on when displacement 102A is reached within
program COPY. (Since a PROG directive has
not yet been issued, the program name given
on the //EXECUTE card is assumed.)

j~ 1-~~~C~N---~
______________ JI ~=~t=~ginitializedtooffwh:- I

new program is loaded by Control I

[
I I ''"'"'" s.v;.,, lat stan of step

~ L..'.'"'•l·~-~--~_J

p~-B -------s-= DEBUG REQUEST _::-]

I Turn condition flag on at this I
L._~~----------_J

PATH A

L
~-;;;;~~E;---J

------------1 Conditional dum:hisaddre:- 1

1 I (will be performed only if Path B
was taken). I L _______ ..J

G:J

Figure 5·2. Example of Use of Conditional Request

5-5

15 //EOJ

14 /*

13 BREAK={488.DC,A, 150),BREAK=(488,T.,200)

12 BREAK=(488,DC,S,50, 1000,2000),BREAK=(488,D,R)

11 PROG=SEGMENT2,BREAK={1000,CS)

BREAK=(12,D,R, 1 O),BREAK=(888,T)

8REAK=(102E,D,R,),BREAK=(104B,DC,S" 1000, 1800)

4 //DEFINE ID=OUTFILE,FILE=YOURDATA

~--~-Ex_E_c_u_rE __ P_G_M_=c_o_Pv_.o_e_e_u_G~=-_v=_e=s __ ==-= --=--~---~------~-~~--~·------~------~--------, l
Figure 5-3. Typical Job Deck with Debugging Directives

Card 8: This card contains two BREAK
directives.* The first calls for a register file dump
at displacement 102E within COPY. The second
BREAK directive specifies a conditional dump of
memory between partition displacements 1000
and 1800, to be performed at displacement 1048
within COPY only if the condition flag is on at
this time.

Card 9: The BREAK directive on this card
requests program termination and a type A dump
to be performed on every 15th execution of the
instruction at program displacement 17FE. The
PROG directive indicates that from here on (until
another PROG is encountered) all BREAK
directives are to apply to SEGMENT1.

Card 10: The first BREAK directive calls for a
register dump on every 10th execution of the
instruction at displacement 12 within
SEGMENT1. The second BREAK directive
specifies termination of program at displacement
888 within SEGMENT1.

Card 11: From this point until another PROG
directive is issued, all directives apply to SEG­
M ENT2. The BREAK directive calls for the
condition flag to be turned on at displacement
1000 within SEGMENT2.

Cards 12 and 13: The four BREAK directives on
these cards all apply to displacement 488 within
SEGMENT2. The first specifies a conditional
dump of memory locations between partition
displacement 1000 and 2000, to be performed on
every 50th execution of the instruction at the
breakpoint address if the condition flag is on. The
second calls for a register file dump on each
execution. The third is a conditional dump of type
A to be performed on the 150th execution. The
fourth is an unconditional termination of the
whole program on the 200th execution.

Card 14: This is the data delimiter card for
the CHECKOUT directive data file.

Card 15: The //EOJ card.
*Note that multiple debugging directives may appear on one card,
but no continuation is allowed.

5-6

This section gives the specifications for the logical 1/0
level functions of Data Management, console communica­
tions, and Control Program Services. In general, all the
macros havE! the following format.

Name Operation Operand

The name field is an optional field which contains a 1- to
8-character alphanumeric file identifier. The first six
characters must be unique to accommodate the standard
suffixes used by the system. These are discussed in the
Control Program and Data Managiement Services,
Extended Reference manual.

The names ident, labadr, and tag are used as identifiers for
the software function specified in the operation field.

The operand field contains keyword parameters which
may be in any order separated by commas. Optional
parameters are denoted by brackets, [] . Parameters with
a choice of specifications are denoted bv braces, { } , with
the default case being underlined.

Fields are free-form and are separated by blanks; thus,
no imbedded blanks are allowed within the parameter
string. If more than one card is necessary, a semicolon
must appear after the last parameter on each card ex­
cept the last.

Symbolic address is the 1- to 8-character symbol used to
identify a coding statement. Unless otherwise stated all
numbers are assumed to be in decimal with no leading
zeros.

The linkage conventions for M RX/OS are found in
Appendix B.

6. MACROS

DATA MANAGEMENT MACROS

In this section only the logical 1/0 level of Data Manage­
ment macros are given. This level of macros includes:

• File and Label Definition Macros

DEFSF
DEF RF
DEFIF
DEF LB

• File Control Macros

•

OPENL
CLOS EL
CLOVEL

Data Transmission Macros

GET
PUT
SETL
LOCRC
PUTU
DELA

FILE AND LABEL DEFINITION MACROS

The declarative macros for the logical 1/0 level define
the blocking/deblocking and label information for the
three logical 1/0 level organizations. There must be
a file definition macro (DEFSF, DEFRF, or DEFIF)
for each file to be opened and processed. The macros
generate a main-storage table, the Buffer Description
Table (BOT), which is used by the GET/PUT logic.

The name field (ident) of the define macros is a required
entry. This 8-character file identifier is the symbolic
address of the BOT generated by a macro instruction.

6-1

DEFSF - Define Sequential File

The DEFSF macro defines sequential files. The format for

DEFSF is as follows:

Name Operation ~~

ident DEFSF ~INARY=~~~SG
BLKFAC=n
BLKSIZ=n

~UFSHR=~~~so
[DATBUF1::.:symbolic address]

rDATBUF2J YES . fl L 1 symbol tc address U
[ERROPT~~ymbolic address~

rLABTYP=\ ~~~~ l] L {NSTND}
[RECADR=symbolic address]

[RECREG=~ ~~sn
RECSIZ=n

RECTYP=~~~
[veRIFY={~~s~J

(Optional)

BINARY=YES indicates that files assigned to card readers
will process binary cards; therefore, the buffer size must
be 160 bytes rather than 80 (or in the case of punch, 161
bytes rather than 81). If BINARY=NO or if omitted, the
data is in EBCDIC.

BLKFAC=n

Designates the number of records per block (blocking
factor). The keyword value gives an integer value of 1
through 255. BLKFAC is required for fixed length
records. This parameter should be used for variable length
records only when packing is not desired; without it,
packing will occur.

BLKSIZ=n

Specifies the block size of the file. The keyword value
gives an integer value of 18 bytes through 32K bytes for
magnetic tape and 7294 bytes for disc. The four bytes per
record for record headers must be included when
specifying block size for files which may be assigned to
disc or magnetic tape. Buffer size must be greater than or
equal to the block size of any file which uses the buffer.

6-2

(Optional)

BUFSHR=YES indicates the 1/0 buffer(s) is(are) shared
with another file. If sharing is specified, the buffer
address(es) must be explicitly specified and the user must
reserve two bytes {one machine word) immediately before
DATBUF1. This word, containing zero, is used by OPENL
and CLOSEL to resolve buffer usage conflicts. If
BUFSHR=NO or is omitted, 1/0 buffers are not shared.
OPENL and CLOSEL do not check for buffer usage

conflicts.

DATBUF1=symbolic address • · (Optional)

Specifies the address of the first 1/0 buffer, which must
begiin on an even byte boundary. When generating
buffers, the buffer size must be greater than or equal
to the block size of any file which uses the buffer.
If the parameter is not specified, DEFSF generates.
a buffer equal to block size immediately following the
BOT.

DATBUF2jYES }
l.symbolic address

(Optional)

Specifies a second 1/0 buffer, which permits overlapping
of data transfer and information processing. The buffer
mt::.;t begin on an even byte boundary. DATBUF2=YES
results in generation of a second buffer following
DATBUF1. If omitted, processing is from one buffer.

{

symbolic address}
ERROPT= S

I
(Optional)

Sp(!Cifies one of three conditions for processing errors.
The symbolic address gives the user control when errors
occur. The S (skip) option and I (ignore) option (only for
input files) skips to the next block or ignores errors,
respectively, and processing continues. If the parameter is
omitted, error conditions abort the job.

{

STND }
LABTYP= NONE

NSTND

(Optional)

Determines the type of tape label processing to be per­
formed for tape files. The parameter is ignored for non­
tape files. The default value for files assigned to tape is
standard label processing. The code definitions are:

QQde Definition

STND Check labels for input file~s. Write stan·
dard labels for output files ..

NONE N<:> labels exist and no label checking is
done.

NSTND Nonstandard labels exist and label check­
ing is bypassed. The nonstandard label
set must be terminated by a tape mark.
The tape is positioned to the record
following the tape mark by the OPENL
macro.

RECADR=symbolic address (Optional)

Specifies the address of a record area. The size of the
record area must be greater than or eiqual to R ECSIZ.
Record area address may also be specified at GET /PUT
time.

RECREGJYES}.
' lrill (Optional)

RECREG=YES indicates processing without a record area.
When RECREG=YES, R1 contains the address of a logical
input record that is available for processing after a GET or
the address of the area that is available for construction of
the next logical record before a PUT. If this parameter is
omitted or if RECREG=NO, a record area (RECADR
parameter) must be specified in the~ DEFSF or at
GET /PUT time.

RECSIZ=n

Indicates the record length (in bytes) for fixed length
records. The keyword value gives an integer value of 18
bytes through 32K bytes for magnetic tape and 7294
bytes for disc. The maximum record length must be
specified for variable length records. Record length does
not include the header length.

RECTYP={~}

Specifies the record type, fixed (F) or variable (V) length,
for the file. If omitted, records will be fixed length.
If the file is assigned to cards or printer, the record
type must be fixed.

VERIFY={~~S} (Optional)

VERI FY=YES states that a disc write verification will be
done. If the file is not on disc, VER I FY is ignored. If
omitted or VER I FY=NO, write verification is not used.

Example

1 -2~567B*g1Iii11-lilJ-,,\- i5_1_6_!l18 1.9202122ii24-2526"21--i8293o- 31-3233343-539-3739-3940-4·,~424]44-115-46

jtAtt'.l).J I{ ' fJE.F~F. '~ . 81...1($} .Z.::i,fJ)'>,E.R.l<.oP.r=.£N.f/.C.L>,;r~--·
....•• _. t.E.C,SJ :i.•,r.a,.~.E"~T.:J.P:.,Fd. . ..

8.t..K.F.AC.•.1 ..

CARDIN is a sequential card file which is fixed length
with block and record sizes of 80 bytes each. An error
routine, ER RCD, processes any incorrect cards,

DEFRF - Define Relative File

The DEFRF macro defines relative files. The format for
DEF RF is as follows:

Name Operation

ident DEFRF ACCESS=~~~
[BLKFAC=n]
BLKSIZ=n

[suFsHR= ~~~sn
[DATBUF1=symbolic address]

roATBuF2= sves t] L 1svmbolic addressf

[ERROPT·{rmbonc addressE
KEY ADR=symbolic address
[RECADR=symbolic address]

[RECREG=~ ~~so
RECSIZ=n

RECTYP={~}
[START=X]
[END=Y]

[vERIFY=~~~so

6-3

Specifies sequential (S) or random (R) access mode.
Together with the usage parameter of OPEN L, it
determines the processing environment of the file. If
omitted, access is sequential.

BLKFAC=n (Optional)

Designates the number of records per block (blocking
factor). The keyword value gives an integer value of 1
through 255. When omitted, the blocking factor is
determined by block size and record size. When BLKFAC
is used, the relationship BLKSIZ2:BLKFAC(R ECSIZ+4)
must be true.

BLKSIZ=n

Specifies the block size of the file. The keyword value
gives an integer value of 18 bytes through 32K bytes for
magnetic tape and 7294 bytes for disc: The block size
includes record headers for disc or tape files.

BUFSHR={~S} (Optional)

BUFSHR=YES indicates the 1/0 buffer(s) is(are) shared
with another file. If BUFSHR=YES, the buffer address(es)
must be explicitly specified and two bytes (one machine
word) must be reserved immediately before DATBUF1.
This word, containing zero, is used by OPENL and
CLOSEL to resolve buffer usage conflicts. If
BUFSHR=NO or if omitted, buffers are not shared, and
OPENL and CLOSEL do not check for conflicts.

DATBUF1=symbolic address (Optional)

Specifies the location of the first 1/0 buffer, which must
begin on an even byte boundary. If DATBUF1 is omitted,
the buffer immediately follows the BOT. The buffer size
must be greater than or equal to the block size of any file
which uses the buffer.

6-4

DATBUF2={YES . }
.' symbolic address

(Optional)

Specifies a second 1/0 buffer, which allows overlapping of
data transfer with information processing for sequential
access. DATBUF2 is ignored for random access. If
present, DATBUF2 must begin on an even byte boundary.
DA.TBUF2=YES generates the buffer following
DA.TBUF1. If DATBUF2 is omitted, processing if from
one buffer.

J
symbolic address!

ERBOPT= S
I

(Optional)

Specifies one of three conditions for processing errors.
The symbolic address gives the user control when errors
occur. The skip (S) option and ignore (I) option, for input
files, skips to the next block or ignores errors,
res1:>ectively, and processing continues. S is illegal for
randoln access. If ERROPT is omitted, error conditions
abort the job.

KEYADR=symbolic address

Gives (for random access) the address of the location that
will contain the number of the record to be processed.
KEYADR is ignored for sequential access. The symbolic
adc;ress for KEYADR is a 4-byte location beginning on an
even byte boundary.

RECADR=symbolic address (Optional)

Specifies the address of the record area. Record areas may
also be specified at GET/PUT time. They are required for
random output to a blocked file. The size of the record
area must be greater than or equal to RECSIZ.

(Optional)

RECREG=YES defines processing without a record area.
When RECREG=YES, R1 contains the address of a logical
input record that is available for processing after a GET or
the address of the area that is available for constructing
the next record before a PUT. If RECREG is omitted or if
RECREG=NO, a record area must be defined either in the
DEFRF macro at GET/PUT time. If random output is
selected with RECREG=YES, the blocking factor must
equal one.

RECSIZ=n

Indicates the record length (in bytes) for fixed length
records. The keyword value gives an integer value of 18
bytes through 32K bytes for magnetic tape and 7294
bytes for disc. For variable length records, the record
length is the maximum record length permitted. Record
length does not include the header lengtlh.

RECTYP={t}

Denotes the record type, fixed (F) or variable (V) length,
of the file. The default value is fixed length.

START=X (Optional)

States the logical limit, which may range from 1 to 232.1
(decimal), for the beginning of processing. At creation,
this limit becomes the permanent offset for relative
addressing. If START is used, the END parameter must

also be used.

END=Y (Optional)

States the logical limit for ending procE!Ssing, where Y2X.
(X is the START parameter limit.) Limits are decimal
numbers.

VERIFY~~~S} (Optional)

VERI FY=YES states that a disc write verification will be
done. If omitted or VERI FY=NO, write1 verification is not
used.

Example

MPLOY is a relatively organized file which allows random
access through a key name, KEYIS. Although the fixed
length record size is 100 bytes, the block size is 104
bytes, which includes the record header. Write verification
is specified.

DE Fl F - Define Indexed File

The DEF IF macro defines indexed files. The format for
DEF! F is as follows:

Name Operation .Operand

ident DEFIF ACCESS=~~~

ACCESS={~}

[BLKFAC=n]
BLKSIZ=n

[suFSHR=~ ~~s~J
[DATBUF1=symbolic address]

[oA TBUF2={ ~:Sbolic address}]

[ERROPT=~ ~ymbolic address~

r.NDBUF= {YES • }] L symbolic address

ENDSHR= {~~s }]
INDSIZ=n

(INMAIN=symbolic address]

KEY ADR 1 =symbolic address

[KEYADR2=symbolic address]

KEYSIZ=n
[RECADR=symbolic address]

[R ECR EG=~ ~~S 0
RECSIZ=n

[vERIFY=~~~sf]

Specifies sequential (S) or random (R) access mode.
Together with the usage parameter specified in the
OPEN L macro, this parameter determines the processing
environment of the file. If omitted, processing is
sequential.

BLKFAC=n (Optional)

Indicates the number of records per block (blocking
factor). The keyword value gives an integer value of 1
through 255. When not specified, the blocking factor is
determined by the block size and record size. When
BLKFAC is used, the relationship BLKSIZ~BLKFAC
(RECSIZ+4) must be true.

BLKSIZ=n

Specifies the block size of the file. The keyword value is
in integer value of 18 bytes through 7294 bytes for disc.
BLKSIZ must include the space for record headers.

6-5

(Optional)

BUFSHR=YES specifies that the 1/0 buffer is shared with
another file. If BUFSH R=YES, the buffer address must
have been explicitly specified and one word immediately
before DATBUF 1 must be reserved. This word contains
zero and is used by OPENL and CLOSEL to resolve buffer
usage conflicts. If omitted or BUFSH R=NO, buffers are
not shared, and OPENL and CLOSEL do not check for
conflicts.

DA TB U F 1 =symbolic address (Optional)

Designates the address of the first 1/0 buffer, which must
begin on an even byte boundary. The buffer size must be
greater than or equal to BLKSIZ when the user generates
his own buffer. If DATBUF1 is omitted, a buffer is
generated following the BOT.

DATBUF2={symbolic address}
YES

(Optional)

Specifies a second 1/0 buffer, which permits overlapping
of data transfer with record processing. If present,
DATBUF2 must begin on an even byte boundary.
DATBUF2=YES generates the buffer following
DATBUF1. If DATBUF2 is omitted, processing is from
one buffer.

ERROPT={~ymbolic address} (Optional)

Specifies one of the two conditions for processing errors.
The symbolic address gives the user control when errors

occur. The ignore (I) option, only for input files, ignores
errors and processing continues. If ER ROPT is not
specified, error conditions abort the job.

INDBUF={YES }
symbolic address

(Optional)

Specifies the address of a buffer to be used by the system
for processing of index blocks. If this parameter is
omitted for random access, INDSHR=YES must be
specified. INDBUF=YES causes automatic buffer
generation.

6-6

INDSHR={~~S} (Optional)

INDSHR=YES indicates that the index buffer is shared
with the data file buffer. Access must be random,
DJ\TBUF1 must be specified, and RECREG must not be
specified. If omitted or INDSHR=NO, no index buffer
sharing occurs.

INDSIZ=n

Spe:cifies the index block size. The value n ranges from 18
bytes to 7294 bytes.

INMAIN=symbolic address (Optional)

Specifies the address in main storage where the directory
to the directory index entries are read into from mass
storage. This option expedites random processing. For
sequential access, this parameter is ignored.

KEYADR1=symbolic name

Specifies the address of the location containing the primary
key value of a record to be:

1. Updated, retrieved, added, or deleted when
in random mode

2. Updated, added, or deleted when in sequen­
tial mode

KEYADR1 is required for record addition in sequential
mode, optional for update in sequential mode, and
ignored for input only in sequential mode. It is required
for access in random mode.

KEYADR2=symbolic address (Optional)

Sp1ecifies the address of the location which contains the
primary key value of the record after a GET (forward
key) that will be obtained on the next GET. When the end
of file is reached, the first two bytes of the location
speicified by KEYADR2 will be set to FFFF15 to indicate
an EOF. This allows records to be added at the end of the
file. KEYADR2 is optional for sequential access and
ignored for random access.

KEYSIZ=n

Specifies the length (in bytes) of the primary key. The
value n ranges from 2 to 100 bytes.

RECADR=symbolic address (Optional)

Specifies the address of a record area. The record area size
must be greater than or equal to RECSIZ. It is required
for random output to a blocked file using PUT. Record
aireas may also be specified at GET/PUT time.

(Optional) .

HECREG=YES specifies processing without a record area.
When RECREG=YES, R1 contains the address of a logical
input record after a GET or the address available for
constructing the next record before PUT or PUTU. If
omitted or RECREG=NO, a record area must be specified
either in the DEFI F macro or at GET /PUT time. Table
fi-1 indicates when RECREG may be used.

Table 6-1. RECREG Use

l~ s Input u pdate Output

Sequential Any BLKFAC BL KFAC Any BLKFAC
of·

Random Any BLKFAC BL KFAC Illegal
of·

l~ECSIZ=n

Specifies the fixed record length in bytc~s. The value n
ranges from 18 bytes to 7294 bytes. Thie record length
does not include the header length.

VERI FY=YES states that a disc write verification will be
done. If omitted or VERIFY=NO, no write verification is
done.

!:xample

r
- -

NAME OPERATION OPERAND

2 3-.i 56 7 a 9 lo 11 12 13 14 15 rn 11 rn rn 20 21 22 n 14 2s26 21 2s 29 3Q31 12 33 34 3s 36373s3B404~.1546

ARTJ..ST l>EFJF. 11CC£.S.S=.R,Sl..l(S.JZ=9.'{,. . . .
. . IElf.lloPT•.MISTJL1<,.•aR.1.Ft=·J1.f:s,~.%·,

. . . _ . . K.C.VAOR.1.•.KcY.NA.M.~.~E.C...S I L:::.9.o.)., .
. /f./.bSIZ.=.2.6'0.,,t<..E'tS,IZ..=~S: . .

l -1 ~ I l l I • l I I I 1- I 1 l 1 < l

PARTLST is an indexed file open for random access
through KEYNAM. The keysize is five bytes. The block
size is 94 which is the record size plus four bytes for the
control header. The index block size is 250 bytes. If an
error is detected, the error routine MISTAK receives
control. A write verification will be done.

Summary of File Definition Parameters

Table 6-2 summarizes the parameters for sequential,
relative, and indexed files.

DEFLB- Define Label

The DEFLB macro generates file label data into a
main-storage buffer for creating and checking disc labels.
The logical 1/0 level file control macros may use DEF LB,
but it is not necessary to define labels at the logical 1/0
level. The format for DEFLB is as follows:

Name Operation

labadr DEF LB

FILENAM=name

Operand

FILENAM=name
[MSC=code]

Specifies a 1- to 17-character alphanumeric file name. The
first character may be A-Z, 0-9, or$. lmbedded dashes are
allowed, but not imbedded blanks. Index file names are
created by adding an asterisk at the end of the associated ,
data file name.

MSC= code (Optional)

Designates a 4-byte EBCDIC modification security code,
which is used only for work and permanent files. If
omitted, blanks are assumed.

Example

'l"i~5618 9 1011!21.i141516-lt1tl920-21-i!22324252627-28293o31323JJ4353037i8J9.4o41·-42434445·4a-

T!t.t'.£:J. . . , D.~fi..S. . . f.l.L.E.~4.fl1=7-ll:ift.o.4l-- .. , , ..

TAPE 1 gives the label identification for a file named
PAYROLL.

6-7

Table 6-2. Fila Definition Parameters

ACCESS

BINARY

BLKFAC

devices

Optional;
default is
packing

Relative

Required;
default

Indexed

Required;
default

BLKSIZ Requirep.: R,equired
i--~~~~~~+--

8 U F SH R Optional Optional Optional
....__~~~~~~+--~~~~-+~· -~-+~~~~--1

DATBUF1 Optional; Optional; Optional;

DATBUF2

END

INDBUF

INDSHR

INDSIZ

INMAIN

KEYADR(1)

KEYADR2

KEYSIZ

LABTYP

RECADR

RECREG

RECSIZ

RECTYP

START

VERIFY

6-8

default default default
follows follows follows
BOT BDT BOT

Optional

Optional

Optional

Required

Required;
default
fixed

for ran­
dom access

Optional

Optional

Optional

sequential

Optional

Required
for ran­
dom access,
sequential
update,
sequential

Optional

Optional

Re'ouitOd,

1
_Required'

Required; Fixed
default I length

LOGICAL 1/0 Fl LE CONTROL MACROS

The file control macros (OPENL, CLOSEL, and CLOVEL)
direct data transmission at the logical 1/0 level.

The functions of the OPENL macro are as follows:

• Opens the file for data transmission by
establishing an FDT

• Records BOT entriesnotsuppl!ed by DEFSF,
DEF RF, or DEFIF

• Catalogs logical level file attributes when
files are opened for output for the first
time

• Checks file attributes supplied through
DEFSF, DEFRF, or DEFIF against perman­
ent cataloged attributes on subsequent opens

• Prefills buffers for sequential access by GET I
PUT requests

The CLOSEL macro closes files to data transmission and
empties buffers for GET/PUT when required.

The CLOVEL macro closes disc or magnetic tape volumes
and switches to the next volume before the end of the
al located disc space or end of tape marker is reached.
End of allocated area volume switching is performed
by the GET/PUT logic through the CLOVEL macro.

OPENL - Open Logical File

The OPENL macro opens a file for logical 1/0 processing.
The format for OPEN L is as follows:

Operation Operand

[tag] OPE NL IDENT=name

[coNTROL=1~~~1VEfl
[LABDEF=symbolic address]

[usT=~~~sf]
[REWINo=J~~sn

[USAGE~~!]

IDENT=name

Specifies the file identifier. It must correspond to the
name field (file identifier) of a DEFSF, DEFRF, or
DEFIF macro.

{
ANS }

CONTROL== NATIVE (Optional)

CONTROL=NATIVE indicates that the control characters
are native to that device. ANSI control characters are used
if omitted or CONTROL=ANS.

LABDEF=symbolic address (Optional)

Specifies the address of the main-stoirage buffer that
contains a file label. The symbolic address should be
identical to that specified in the label address name field
of a DEF LB macro. For disc files, label information may
have been specified by Control Lan~1uage /IDE FINE
statements which override LABDEF information if both
are present. This parameter may not be used for
permanent files or work files with update or output usage.
For temporary or scratch flies, the filename is
concatenated with the job name. It is ignored for files
assigned to unit record devices or magnetiic tape.

(Optional)

If LIST==YES, only the parameter packet is generated. If
LIST=NO, only the subroutine linkage is generated and
loading of general-purpose register 6 (R6) with the address
of the parameter packet and general-purpose register 7
(R7) with the save area address is a user responsibility. If
the LIST parameter is omitted, both the subroutine
Ii nkage and the parameter packet are generated
immediately following the subroutine call; and the user
must load R7 with the save area address. A detailed
discussion of the LIST parameter is contained in
Appendix A.

REWIND={~~S} (Optional)

REWIND=NO specifies that no initial rewind will be
performed. This parameter is ignored for non-tape files. If
REWI ND=YES or if omitted, initial rewind is performed.

USAGE=~~~ (Optional)

Determines input, update, or output processing. Update
usage is allowed for sequential files only if the record type
is fixed length and the file is assigned to mass storage. The
default value is I.

Example

OPENL opens the input file CARDIN for processing.

CLOSEL - Close Logical File

The CLOSE L macro closes a file to logical 1/0 processing.
The format for CLOSEL is as follows:

Operation

[tag] CLOSEL

IDENT=name

Specifies the file identifier.

(Optional)

If LIST=YES, only the parameter packet is generated. If
LIST=NO, only the subroutine linkage is generated and
loading of R6 with the address of the parameter packet
and R7 with the save area address is a user responsibility.
If the LIST parameter is omitted, both the subroutine
linkage and the parameter packet are generated
immediately following the subroutine call; and the user
must load R7 with the save area address. A detailed
discussion of the LIST parameter is contained in
Appendix A.

6-9

(Optional)

Indicates the disposition of the file. When the parameter is
not specified or LOCK=NO, the file may be reopened
from within the same job; tape files are rewound. When
LOCK=YES, OPENL may not be executed again during
the same job; tape files are unloaded.

REWIND={~~S} (Optional)

REWIND=NO specifies that no rewind will be performed
after closing the file. This parameter is ignored for
non-tape files. If REWIND=YES or if omitted, initial
rewind is performed.

Example

..----~......------.~-----·--------------

I -2 3-4 5 6 1 8 9 10 11 -12 13 1i1i-1tt11B11s20 212Zi32425i627Zi29iQJ13i3Ji)5-jiJ73lii404! ~

..... --· 1--1CJ..oilL.. ID.alll•MPL.fl!i . .. L • --~ -·---~~~~---
~-- ·-~---H - ···-~-----•-- H-----~~-'--~-· • ·• •· -···· ·--· -•--- ··-·-··-•- •--• • -·-~--

CLOSEL closes the file MPLOY to any further proc­
essing.

CLOVEL - Volume Switching

The CLOVEL macro performs volume switching. It is
used for sequential multivolume files assigned to tape or
disc and should be used only to prematurely close a
volume and switch to the next sequential volume. Volume
switching at EOV is performed automatically by the
GET/PUT modules.

CLOVEL performs header and trailer label processing on
tapes, alternate unit processing on tapes, and disc pack
mounting and demounting (via operator control). The
format for CLOVEL is as follows:

Name Operation

[tag] CLOVEL IDENT=name

[LIST= { ~~S 0

IDENT=name

Specifies the file identifier.

6-10

(Optional)

If LIST=YES, only the parameter packet is generated. If
LIST=NO, only the subroutine linkage is generated and
loading of R6 with the address of the parameter packet
and R7 with the save area address is a user responsibility.
If the LIST parameter is omitted, both the subroutine
linkage and the parameter packet are generated
immediately following the subroutine call; and the user
must load R7 with the save area address. A detailed
discussion of the LIST parameter is contained in
Appendix A.

CLOVE L switches volumes in a multivolume file called
TAPFI L.

DATA TRANSMISSION MACROS

The data transmission macros - GET, PUT, and associated
macros - control the transmission of data to and from
the different files.

Table 6-3 lists the GET/PUT macros allowed according to
file type and usage.

GET - Get Record

The GET macro makes a logical record available in a
rec.ord area. When no record area is present, the address
of an available logical record in an 1/0 buffer is pro­
vided in R 1. The format for GET is as follows:

Name Operation

[tag] GET

Operand

IDXSA=YES
IDENT=name

[LIST= ~ ~~sn
[RECADR=symbolic address]
[RECSIZ=symbolic address]
[RTNADR=symbolic address]

IDXSA=YES

Specifies sequential processing of indexed files; it is
ignored for random processing. If ID:XSA is omitted for
sequential processing, control is given to the user's error
routine or the job aborts.

IDENT=name

Specifies the file identifier.

(Optional)

If LIST==YES, only the parameter packet is generated. If
LIST=NO, only the subroutine linkage is generated and
loading of R6 with the address of the parameter packet
and R7 with the save area address is a user responsibility.
If the LIST parameter is omitted, both the subroutine
Ii n kage and the parameter pac:ket are generated
immediately following the subroutin1e call; and the user
must load R7 with the sav1! area address. A detailed
discussion of the LIST parameteir is contained in
Appendix A.

RECADR=symbolic address (Optional)

Specifies the address of a record area. When RECADR is
present in the GET macro, it overrides any RECADR
specified in a DEFSF, DEF RF, or DEIFI F macro.

RECSIZ=symbolic address (Optional)

Specifies the address qf a location that will contain the
size (in bytes) of the logical record upon return. R ECSI Z
is ignored for fixed length records. It must specify an
even byte boundary.

RTNADR=symbolic address (Optional)

Specifies the address of a user routine which receives
control when a sequentially processed fi!e reaches the end
of file or a randomly processed file contains an invalid key
value in the KEYADR1 address. When RTNADR is
omitted, control is given to the error option selected in
the ERROPT parameter of the define macro. If no
ER ROPT was specified, the job will abort.

Example

The GET macro reads the CARDIN file until the DONE
parameter is satisfied.

6-11

PUT - Put Record

The PUT macro moves a logical record from a record area
into an 1/0 buffer or indicates that a logical record has
been generated by the user in an 1/0 buffer. PUT is used
to update records for sequential and relative files. The
format for PUT is as follows:

Name Operation

[tag] PUT

IDXSA=YES

Operand

IDXSA=YES
IDENT=name

[LIST=~ ~~so
[RECADR=symbolic address]
[RECSIZ=symbolic address]
[RTNADR=symbolic address]

Specifies sequential processing of indexed files; it is
ignored for random processing. If IDXSA is omitted for
sequential processing, control is given to the user's error
routine or the job aborts.

IDENT=name

Specifies the file identifier.

LIST={~~S} (Optional)

If LIST=YES, only the parameter packet is generated. If
. LIST=NO, only the subroutine linkage is generated and

loading of R6 with the address of the parameter packet
and R7 with the save area address is a user responsibility.
If the LIST parameter is omitted, both the subroutine
linkage and the parameter packet are generated
immediately following the subroutine call; and the user
must load R7 with the save area address. A detailed
discussion of the LIST parameter is contained in
Appendix A.

RECADR=symbolic address (Optional)

Specifies the address of a record area. When RECADR is
present in the PUT macro, it overrides any RECADR
specification in a DEFSF, DEFRF, or DEFIF macro.

6-12

RECSIZ=symbolic address

Specifies the address of a location that contains the size
(in bytes) of the logical record. RECSIZ must specify
an even byte boundary. It is ignored for fixed length
records. When RECSIZ is absent and the records are
of variable length, control is given to ER ROPT or the
job aborts.

RTNADR=symbolic address (Optional)

Specifies the address of a user routine which receives
control when the end of allocation or a key error
occurs. When RTNAD R is not defined, control goes to
the addresses specified in the ER ROPT parameter of the
define macro. If EA ROPT was not specified, the job aborts.

Example

F
NAME OHRATION D

3 4 5 8 7 8 9 10 11 1213" 15 18 17 1 19 20 21 2223 24 25 28 27 28 29 30 31 32 33 34 35 38 37 3839 40 41 42 4344 45 4~

- ~ idi~L~~l.Z.£. ___ c ·-~~
, __ ,__~..__._ --~- ~---•-~-~_.________._ _ ___ ..__ ..._ __ _._ _ __,_-£.i... _ _i. __ ..._ _ _.__L _ _... _ ___..__.___,_ __ _. _____,_ __ _. ___ , __ ~_._--'-_..__, ___ ,_ _____,

The PUT macro writes the file RECRD according to the
byte size found in SIZE.

SETL - Set Limits

Thie SETL macro establishes an initial key value for
sequential access of indexed files. If SETL is not issued,
retrieval starts at the logical beginning of the file. The
format for SETL is as\follows:

Name Operation

[tag] SETL

IDENT=name

Operand

IDENT=name
KEYERR=symbolic address

[usT= ~~~sf]
START={~~~y}

BOF

Specifies the file identifier.

KE:YE R R=symbolic address

Specifies the address which receives control when ST ART=
KEY and there is no key value specified. This parameter
is required for START=KEY; otherwise, it is ignored.

(Optional)

If LIST=YES, only the parameter packet is generated. If
LIST=NO, only the subroutine linkage is generated and
loading of R6 with the address of the parameter packet
and R 7 with the save area address is a user responsibility.
If the LIST parameter is omitted, both the subroutine
linkage and the parameter pack~~t are generated
immediately following the subroutine call; and the user
must load R7 with the save area address. A detailed
discussion of the LIST parameter is contained in
Appendix A.

l KEY ~·
START= GKEY

BOF

Determines where the retrieval begins according to the
following codes.

Code

KEY Retrieval begins with the record having
the key value contained iin KEYADR2
of the tagged DEF I F macro. If no data
record with this key exists, control
returns to KEYERR.

GKEY Retrieval begins with the record having
the key value contained in KEYADR2,
or if no record having this value exists,
it begins with the record having the next
greater value. If no record has a greater
key value, KEYADR2 recieives FFFF15•
indicating the end of the file. This per­
mits records to be added to the end of
the file.

BOF

Example

Retrieval begins at the be!ginning of the
file.

The SETL macro is used with a GET to establish the
beginning key value for indexed files. In this case, re­
trieval will begin at the beginning of the file named
PRTLST.

LOCRC- Locate Record

LOCRC is a relative record seek macro. A seek operation
is issued to the block containing the record number found
in the location specified by the KEYADR parameter of
the DEF RF macro. LOCRC is used to overlap seek and
processing time for random access. If an error condition
arises, the following GET/PUT receives the status by
having control returned to the invalid key routine. The
format for LOCRC is as follows:

Name Operation Operand

[tag] LOCRC IDENT=name

[usT=~ ~~sf]

IDENT=name

Specifies the file identifier.

(Optional)

If LIST=YES, only the parameter packet is generated. If
LIST=NO, only the subroutine linkage is generated and
loading of R6 with the address of the parameter packet
and R7 with the save area address is a user responsibility.
If the LIST parameter is omitted, both the subroutine
linkage and the parameter packet are generated
immediately following the subroutine call; and the user
must load R7 with the save area address. A detailed
discussion of the LIST parameter is contained in
Appendix A.

Example

The LOCRC macro positions the access mechanism at the
location on the disc file which contains the record.

6-13

PUTU - Put Update

The PUTU macro updates a record in indexed files and
rewrites the record retrieved by the preceding GET. The
address specified by KEYADR in the DEFI F macro
must contain the key value of the record to be changed.
If the key value in KEYADR is not identical to the
key value of the record obtained in the previous GET,
control goes to the invalid key routine. The format for
PUTU is as follows:

Name Operation

[tag) PUTU

IDENT=name

Operand ----
IDENT=name
KEYERR=symbolic address

[LIST=~ ~~sn
[RECADR=symbolic address]

Specifies the file identifier.

KEYERR=symbolic address

Specifies the address which will receive control when a
key error occurs.

(Optional)

If LIST=YES, only the parameter packet is generated. If
UST=NO, only the subroutine linkage is generated and
loading of R6 with the address of the parameter packet
and R7 with the save area address is a user responsibility.
If the LIST parameter is omitted, both the subroutine
linkage and the parameter packet are generated
immediately following the subroutine call; and the user
must load R7 with the save area address. A detailed
discussion of the LIST parameter is contained in
Appendix A.

RECADR=symbolic address (Optional)

Specifies the address of a record area. When R ECAD R is
present in the PUTU macro, it overrides RECADR
specified in a DEFI F macro.

6-14

PUTU updates a record in the RECRD file. HEREIS
receives control if the key from the file is invalid.

DE.LR - Delete Record

ThEi DE LR macro deletes a record from an indexed file.
ThEi indexing information is deleted from the file's
associated index blocks (and directory blocks if
necessary), and the data record is left unchanged. Proc­
essing requirements differ depending upon access.

Sequential access requires that the key value contained
in KEYADR of the DEFIF macro be equal to the key
value of the record obtained on the previous GET. If
it is not equal, control goes to the invalid key routine.

Random access does not require a preceding GET. If a
record having the key value contained in KEYADR does
not exist, control goes to the invalid key routine. The
format for DELA is as follows:

Name Operation

[tag) DELR

IDENT=name

IDENT=name
KEYERR=symbolic address

[usT= ~ ~~sn

Specifies the file identifier.

KEYERR=symbolic address

Specifies the address which will receive control when a
key error occurs.

LIST={~~S} (Optional)

If LIST=YES, only the parameter packet is generated. If
LIST=NO, only the subroutine linkage is generated and
loading of R6 with the address of the parameter packet
and R7 with the save area address is a user responsibility.

If the LIST parameter is omitted, both the subroutine
linkage and the parameter packet are generated
immediately following the subroutine call; and the user
must load R7 with the save area addrnss. A detailed
discussion of the LIST parameter is contained in
Appendix A.

DELR deletes a given record from the inde:><:ed file RECRD.
WRONG is the routine that handles key errors.

CONSOLE COMMUNICATION MACROS

Two macros, CONSOLE (an active macro) and MESSAGE
(a data macro), are available for communicating with
the operator's console.

CONSOLE -· TRANSMIT MESSAGE TO CONSOLE AND
OPTIONALLY RECEIVE REPL V

The CONSOLE macro enables programs to· transmit
messages to the operator's console and optionally re­
c:eive replies. The main-storage format of the message
to be sent to the console must include two fields, a
c:ontro~ block which is not typ1:!d and the text field
which contains the actual message. ThE~ buffer set up
to receive a reply from the console (if any) must contain
a control block followed by the actual buffer for the
rieply text. The format of CONSOLE is as follows:

Name

[tag]

Operation

CONSOLE DATBUF1 =symbolic address
[DATBUF2=symbolic address]

DATBUF1=symbolic address

Specifies the address of the message control block which
is followed by the message text.

DATBUF2=symbolic address (Optional)

Specifies the address of the reply control block which is
followed by the reply buffer area.

Example

i-1-j456_i_8 9- -io1il21314151sl1iti92oli22-i32425-26 21 2-829 3031-Ji-33-34·35·3a·37·3-eTs~4'546

T~PE. ' ' ~- C.o.N.S.o.LE. D.11.T.BU. F'.:L.•.l..A.S.E.L.lt' .; ' • ' ' ' ' . ' ' ' .. '
-~~-~-·~~-r-i -~ " -·--~-·-·. . bA.T.S.U.F.Z..=.LJU,EJ...d .. ~ , , ,

The message located in the message area, LABELA, is
transmitted to the console. When it is received, the
reply is stored in the reply area, LABELS.

MESSAGE - SET UP MESSAGE FORMAT

The MESSAGE macro, to. be used in conjunction with
the CONSOLE macro, simplifies the generation of messages
by creating the correct format required by CONSOLE.
A tag is required for all MESSAGE macros so that the
corresponding CONSOLE macro may locate it. Two for­
mats exist for the MESSAGE macro, one for generating

, an output message and one for generating a reply buffer.

Generation of an Output Message

The format for generating an output message is as
follows:

Name Operation Operand

tag MESSAGE [DATBUF1=symbolic address] .
~DATSIZ1=decimal number l
1DATATXT=character string~

[MooE=~MJ

DATBUF1=symbolic address (Optional)

Enables a name to be attached to the beginning of the
message text field.

DATSIZ1=decimal number

Specifies the decimal length (in bytes) of the message
text. If no length is specified, the text length will be used.
If there is no message, a length of zero is assumed. The
maximum value of DATSIZ1 is 100.

6-15

DAT ATXT=character string

Specifies the actual message to be placed in the message
text field. It is created in EBCDIC and may be up to 100
characters (bytes) long. The default is a string of blanks,
with length being determined by the parameter DATSIZ1.
The character string must be coded in the form, C'message
text'.

MODE={~} (Optional)

Specifies whether the message is informative (I) or
directive (D). MODE=D indicates that the message calls
for some operator action. The default value of MODE is I.

Example

.-----...--~-----.~--------·-----

LA.BEL.A. M.E.S.S.H.t: D.ll.T.111'.F:J.•,L...A.8£.L..C.,.:;
. . -~-·- ·- •-- LZ.,J.L•,2.0., .j, . · · · • • • . · · ·

. _ /;l.A._f'Jr.n:r •. c. '.F.O.R."1AT . . E.llR.o.R. '

Creates a message area at assembly time consisting of a
message control block, LABELA, followed by a message
text area, LAB E LC. The message text area will be
20 bytes long. The first 12 bytes will contain FORMAT
ERROR and the remaining eight bytes will contain
blanks.

Generation of a Reply Buffer

The format for generating a reply buffer is as follows:

Name

tag

Operation

MESSAGE [DATBUF2=symbolic address]
DATSIZ2=decimal number

DATBUF2=symbolic address (Optional)

Enables a name to be attached to the beginning of the
reply text field.

6-16

DATSIZ2=decimal number

Specifies the decimal length in characters (bytes) of the
reply buffer to be generated. The reply field will be
assembled with blanks. The maximum value of DATSIZ2
is 100.

F
NAME OPERATION OPERAND

,,-56J-~2131415i611Jal 19 iO 2!22 2324-25 2627 2a29 30-31J2i33435J637 3a 39404142 4344 -45 46

8£L1!. M.£S.SACJ•. 1>.A.T81LF.Z.=.Lll.6.(1..l) ,; . . .
. - ~.. . . " • , l>AT £l.Z2..•.2.D. , . , . , . .

~ • _. I ' I A • ' J ~ J J l l '-

Creates a reply area at assembly time consisting of a
reply control block, LABE LO, followed by a 20-byte
reply text buffer, LABELD.

CONTROL PROGRAM SERVICES MACROS

Control Program Services macros are those macros which
are implemented directly by the Control Program itself.
These macros include:

• Program Termination

HALT
EHALT
ABEND

• Time and Date

TIME
SD ATE
JDATE

PROGRAM TERMINATION MACROS

Three macros are provided for program termination,
HALT for normal step termination, EHAL T for step and
job termination, and ABEND for abnormal termination.

HALT - 'Terminate Program

The HALT macro is used to perform norrmal termination
of a user's program step. This macro will not result in a
memory dump unless OUMP=YES has b1~en coded in the
//EXECUTE statement associated with the program. The
format for HALT is as follows:

Operation

[tag] HALT

EHALT- Terminate Program

The EHAL T (error halt) macro is used to request
termination of a user's job. This macro will not
automatically give a memory dump unless DUMP=YES
has been coded in the //EXECUTE stat,ement associated
with the program. The format for EHAL Tis as follows:

Operation

[tag] EHALT

ABEND - Terminate Program Abn<>rmally

The ABEND macro is used to request abnormal
termination of a job, and to pass a completion code to
Job Monitor for display. A dump will be given unless
IDUMP=NO is specified on the //EXECUTE statement.
The completion code is a 16-bit binary value. The format
for ABEND is as follows:

Name Operation

[tag] ABEND INFOADR=svmbolic address

iNFOADR=symbolic address

Specifies the first byte address of the area containing the
completion code.

TIME AND DATE MACROS

The time and date of program execution may be obtained
from the system with the TIME and SDATE macros.
A third macro, JDATE, is available for obtaining a
special user-specified job date.

Tl ME - Retrieve Time of Day*

The TIME macro returns the current time of day in the
operand specified. The time of day is returned in an
unpacked deCimal format: hhmmss, where hh is the
hour, mm is the minute, and ss is the second. The format
for TIME is as follows:

Name Operation Operand

[tag] TIME INFOADR=symbolic address

INFOADR=symbolic address

Specifies the first byte address of the area which receives

the time.

Example

1Z3458 7 811D111213141511!.!J,!!112DZ1222324252'2721213D31323334353137313940414Z43444541

l'I'.l_HE llJtl'OA,DlhCLO(!k ~~~~P··· i-•-······~~

Transfers the current time (six bytes) to the memory lo­
cation labeled CLOCK.

SDATE- Retrieve System Date

The SDATE (system date) macro returns the system date
in the operand specified. The date is returned in one of
two unpacked decimal formats: mmddyy or yyjjj,
where mm is the month, dd is the day, yy is the year,
and jjj is the Julian day. The format for SDATE is as
follows:

Name Operation

tag SDATE INFOADR=symbolic address

MODE= ~~f
INFOADR=symbolic address

Specifies the first byte address of the area that receives
the date.

*Function is available on minimal system (16K storage), but
returns zeros.

6-17

MODE={I}

Specifies the current date in the calendar (C) 6-byte
format mmddyy or the Julian (U) 5-byte format yyjjj.
The default value is C.

Example

~----...-....--------,,....------------·---

1234fl67 89 10111213141516111 1920212Z23242S2G2?2.~...!,!.~!!.,3139404142044454i

Jt.FOADR.wD.A..T£.1t-11.0.DE C ..•..... ~.

Transfers the system date, in calendar format, to the
memory location labeled DATE 1.

JDATE - Retrieve Job Date

The JDATE (job date) macro returns the date provided
for by a //SET statement. The date returned will be the
system date unless the //SET statement has specified
a job date. The date is returned in one of two unpacked
decimal formats: mmddyy or yyjjj, where mm is the month,
dd is the day, yy is the year, and jjj is the Julian day.
The format for JDATE is as follows:

Name Operation

tag JDATE INFOAOR=symbolic address

MODE= ~y~

INFOADR=symbolic address

Specifies the first byte address of the area which re­
ceives the date.

MODE=={f}

Specifies the current date in the calendar (C) 6-byte
format mmddyy or Julian (J) 5-bit format yyjjj. The
default value is C.

Example

Transfers the job date, in Julian format, to the memory
location labeled DATE2.

6-18

The LIST parameter, which is used by the logical 1/0
level file control macros and the GET /PUT macros,
allows for separate generation of the parameter packet
and the subroutine linkage.

All logical 1/0 level requests perform a subroutine call
to either the GET /PUT module or the Data Management
Open Close Control (DMOCC) using the following linkage

conventions.

1. Parameter list address set in general-purpose
\register 6 (R6)

2. Save area address set in general-purpose
register 7 (R7)

LODO

A. LIST PARAMETER

, usTJvesi
\ /NO \

The LIST parameter is used to generate parameter packets
and subroutine linkages which make it possible to run
program subroutines at execution time. The LIST=YES
option generates the parameter packet, and the LIST=NO
option generates the subroutine linkage. (Tables A-1
and A-2, at the end of this appendix, provide complete
descriptions of the parameter packets for the GET/PUT
and OPENL/CLOSEL macros.)

When the LIST=NO option is specified, the IDENT
parameter must be specified for the GET /PUT macros.
Prior to issuing the LIST=NO option, the user must load
R6 with the address of the appropriate parameter packet
(generated by the LIST=YES option) to be used and must
load R7 with the save area address. Together the address
of the parameter packet and the subroutine linkage will
take the program to the appropriate subroutine at
execution time. When a program subroutine is used several
times, the LIST=NO option provides ease and efficiency
in coding. The subroutine linkage generated by LIST=NO
has the coding format shown in Figure A-1.

R7

Return Address

B

BOT Address (GET/PUT Macros) or DMOCC (OPENL/CLOSEL Macros)

Figure A-1. Subroutine Linkage Coding Format

A-1

Example

~--~~---·-.-.--------------------

1--23-4567~o-ll1213141s1611~-2o2i222i24~25262i-282930it373334-35-J63138394041-i24J-4445:16

·-~- _1...o.11D . . L. is-a.JLLo:,,_Jn -
LoJUL._~_. n,.f R,

rJiis~ :-~ ~~- P.u. r, . . . L1.s.r=.N.o,_, .1.0.~W,T=.F.1.<-.~~ . _ •. ~-- ..•

TA.0.1/. ' Pu:f.: : : : i!J~E# r..:..F.hi.,:~:Lis:+.r::ii.s : : :
jsi11:i(f : Wb.D. 3,6, :

Subroutine
Linkage

PUT
Parameter
List

With the LODD instruction, the user loads the address of
a parameter packet which has been specified elsewhere in
the program (T AG4) and the address of the save area 1

specified at SAVEIT.

With the PUT macro and a LIST==NO parameter specified,
a subroutine linkage is generated (IDENT must be
specified).

At address T AG4, the PUT parameter list is generated.

LIST DEFAULT

If the LIST option is omitted, subroutine linkage coding is
generated followed by the appropriate parameter list. The
user must load R7 with the save area address. Figure A-2
shows the subroutine linkage coding format for the
default of the LIST option.

Subroutine
Linkage
(Default)

GET
Parameter
List

The LIST default for the GET request results in the
generation of the subroutine linkage and the GET param­
eter liist.

Return Address

--~-~~·~-~R==~==-~~1_1-L'--~~~~-R-6~~~~~_.
BOT Address (GET/PUT Macros) or DMOCC (OPENL/CLOSEL Macros)

Figure A-2. LIST Default Subroutine Linkage Coding Format

A-2

0

4

6

8

10

12

14

16

18

20

22

Bytes Bits

0, 1

2

3 2

3

4

5

3 6,7

4,5

7

8,9

Table A-1. GET/PUT Parameter List

Length of List

FC RA

Error Code

Record Address

Description

Lengtlh of parameter list. Always set to 4, 6, 8, 9, or 11.

Function Codes (FC)

() GET
PUT

2 PUTU
~J LOCRC
7 DELA
n SETL

Index external (I)

() Not indexed function
1: Indexed function

Record address (RA)

0 No record address
Record address

Size parameter specified (S)

0 No address specified in word 7

s

1 Address of variable record size specified in word 7

Return parameter specified (R)

0 No address specified in word 9

R

Return address specified for EOF or invalid key in word 9

SETL flag (SL)

00 Positions to BOF
01 Positions to record equal to KEY ADA 2
10 Positions to record greater than or equal to KEYADR2

Error code, word contains the error code returned by the GET/PUT module if an
error condition is detected.

Segment tag for BDT

BOT address (must be present)

*The 2-character suffix for unique file identifier.

Suffix*

LL

FC/BT

ER

BD

sz

EA

RA

A-3

Bytes Bits

11

12,13

15

16, 17

18;19

21

22,23

A-4

Table A-1. (Contili1ued)

Description

Segment tag for record size address

Record size address. If 5=1 (byte 3, bit 4), this address must be present. This address
points to a 2-byte location which contains the size (in binary) of the record. This
parameter is required for PUT and PUTU and optional for GET. It is ignored for
fixed length records.

Segment tag for end return address

End return address. If R•1 (byte 3, bit 5), this parameter must be present. This address
is where control is returned if EOF, EOA, or an invalid key occurs.

Index external. If 1=1 (byte 3, bit 2), this is the external address of the functional
module of indexed GET/PUT macros.

Segment tag for record address

Record address, an optional record .area that can be specified in each GET or PUT

--

Table A-2. OPENL/CLOSEL Parameter List

~*

0 Length of List LL·

2 FC cc u R LB FC/BT

4 Error Code ER

6 STAG BOT

8 BO

10 STAG LAB

12 Label Address LB

Bytes I Bits I Description

0, 1 Length of parameter list, always set to 6

2 Functi1ln code\. (FC)

4 OPENL (Uses CC, U, R, and LB)
5 CLOSEL (Uses LK and R)
6 CLOVEL (Uses none of these)

3 0 Con troll character (CC)

0 ANSI control characters
1 Device control characters

2 Lock (LK)

0 No lock
1 Lock

4,5 Usage (U)

0() Input
011 Input/output
1 () Output

3 6 Rewind (R)

0 No rewind
1 Rewind

7 Label (LB)

0 No label address specified in word 7
1 Label address specified in word 7

4,5 Error code, word contains error code returned by the DMOCC module if an
error condition is detected.

7 Segment tag for BOT ·

8,9 BOT address (must be present)

11 Segment tag for label address

12, 13 Label address. If LB=1 (byte 3, bit 7), this is the address of the label packet.

"'The 2-character suffix for unique file identifier.

A-5

B. LINKAGE CONVENTIONS

Program linkage is the process of linlking separately
generated object modules into an execution unit. The
fol lowing two basic functions must be1 performed in
a linkage process:

Matching of external address references

Actual transfer of control during execution

The first function is performed by a linkage editor,
and it is not discussed in this manual. The second
function is the linkage conventions established for the
MRX/OS.

The basic linkage conventions for a c:alling program
include:

1. Using the proper registers to establish linkage

2. Reserving an area that is used by the called
program to refer to the parameter list.

3. Reserving an area in which the contents of
the registers may be saved.

FlEGISTER USE

The linkage requires one or two registers, depending
upon the passing of the address of the parameter list
to the called program.

The user must load the save area address into gen­
eral-purpose register 7 (R7).

i.

If the parameter list is elsewhere in the program, the user
loads the address of the parameter I ist into
general-purpose register 6 (R6).

PARAMETER LIST

The parameter list is a list of contiguous words starting on
a word boundary. It is the expansion of the macro call.
When the parameter list is not found immediately after
the macro call, the location of this parameter list must be
loaded into R6.

SAVE AREA

The calling program must reserve an area of 22 bytes
(beginning on an even-byte boundary) to be used by
the called program for saving registers. The calling
programs must load the address of the save area into
R7.

The following diagram illustrates the layout of the
save area.

1 Save-area Return Address

+2 Previous Save Area Address

+4 Status

+6 Contents of Register O

~

+20 Contents of Register 7

B-1

THE CALLING SEQUENCE

The calling sequence has two forms, depending upon
whether the return is in-line or out-of-line.

In-Line

1- 2 J 4 s a 1 e s 10 11 12 13 14 15 le-lti8 192ii212223i42526-272e29-·30ii-~3~4"243444548

---·- .. _____ l...Jlb.Jl.. • (>A.t,AJ..J..S.T:.~.R.J.... .of.TJ.O.AJA.L.._ C·-·-~
1-~~·--~ 1~.QJUL .. '-1 ~A.\11.1'.t;, ,f,.7, •• · · . -·~-• • ·--·~ ~ • ·---~
f--~-·---~--- 1-if,.s.f._._._.__ S.U.l!t~~. -• . _ .. _.•••. ~-· ' '--•-·-~-
!-·-·---·----~ H -• ····-· ·-~--<---! _.__, ···-• ·--•-• • • • • • -• • • • • • -·-•-- • • ·-·-·---~--

The parameter list address if elsewhere in the program, is
loaded into R6. The address of the save area is loaded into
R7. A branch and store register instruction saves the
address of the next instruction in the return address of the
save area.

B-2

Out-of-Line

Tho parameter list address, if elsewhere in the program, is
loaded into R6. The address of the save area is loaded into
R7. The address of the user return (MY RTN) is loaded
into the return address of the save area. Then a branch to
the subroutine is performed.

C. PROGRAM FLOW

The following figure illustrates the placement of the
different macros in the program.

The ID keyword of the Control Language //DEFINE
statement and the IDENT keyword of OPENL/CLOSEL
and GET /PUT correspond to the identifier entry of the
define file macro.

//DEF
//DEF

FILE1
FILE2

ID=FILE1, .. .
ID=FILE2, .. .

DEFIF .. .
DEFSF .. .

OPENL
OPENL

GET

IDENT=FILE1, .. .
IDENT=FILE2, .. .

I

IDENT=FILE2, ...

.._ ___ Subroutine

PUT IDENT=FILE1, ...

CLOSEL IDENT=FILE1, .. .
CLOSEL IDENT=FILE2, .. .

HALT

C-1

D. INDEX PORTION OF INDEXED FILE

The following diagram (Figure D-1) give:s the relationship
of the different parts of the index porti•:>n of an indexed
file.

Block 1
2

Block n

n+1

Information Block

Primary Index Blocks

Available Space

Directory to the Directorv Block

Directory Index Blocks

Figure D-1, Index Portion of an lnd1exed File Layout

The layouts of the individual blocks a11e found in the
·succeeding sections of this appendix.

INFORMATION BLOCK

The Information Block of the Index portion of an
indexed file gives the addresses of the last blocks of the
data portion and index portion of the indexed file that
were written. This enables Data Management to make
further additions to the file. Figure D-2 gives the fields of
the Information Block.

Byte 0 Common Stored Data Record Header

2

4 Pass Boundary Index Track Boundary Index

6 Block Address of Last Spattered Block Written

8

10 Available Space Block Address

12 Block Address of Directory to the Directory

14 Block Address of the Last Directory Index Block

16 Common Stored Data Space Header
(1-3 bytes length). _________ _

18

Figure D-2. Information Block

0-1

DIRECTORY TO THE DIRECTORY BLOCK

Figure D-3 gives the layout of the Directory to the
Directory block. Each key value has an associated
directory index block address.

Byte 0

2

4

6

8

10

m

m+2

n

n+2

Record Header

--
Previous Block link*

Next Block Link*

Count of Values in Block

Key Value 1

~
(1-100 Character EBCDIC)

~

--
Pointer to Directory Index Block

·---I

~ Key Value 2 rL..

Pointer to Directory Index Block

SpaceH_e_a_d-er------j

and

,__--~--~-A_v_ai_la_bleSpace~~

Figure D-3. Directory to the Directory Block

Key 1

Key 2

DIRECTORY INDEX BLOCK

Figure D-4 gives the layout of the Directory Index block.
Each key value has an associated primary index block
address.

Byte 0 Record Header

2

4 Previous Block Link*

6 Next Block Link*

8 Count of Values in Block

10
Key Value 1

~
(1-100 Character EBCDIC)

~
Key 1

m Pointer to Primary Index Block

m+2 Key Value 2

~ ~~ key 2

n Pointer to Primary Index Block

n+2

* ~

Space· Header
and

Available Space

Figure 0-4. Directory Index Block

*The previous block link and next block link entries are not used in the directory blocks; they are reserved for
future use.

D-2

PRIMARY INDEX BLOCK

Figure D-5 gives the layo~t of the Primary Index block.
Each key value has an associated block record address.

Byte 0 Record H eader

2

4 Previous Bl o ck Link

6 Next BIQC k Link

8 Count of Valuf ts in BI01:k

10 Key Val ue 1
(1-100 Charact er EBCDIC Key 'I

m Logical Bloc k Numbor

m+2 [: Record Number

m+4

Key Val ue 2

Key 2

n Logical Bloc k Number

n+2 [Record Number

n+4

Space H eader
and

Available Space

Figure D.S. Primary Index Block

.D-3

GLOSSARY

Access Process of obtaining information from or placing information into storage.

Block A set of words, characters, or records that are recorded as a unit.

Block 1/0 level A processing level recognizing no logical records. Data is read or written as a physical
data block. Further processing of logical records is a user responsibility.

Buffer switching The transfer of processing from one buffer to another when two buffers are specified.

Catalog Ordered compilation of item descriptions and sufficient information to give access to
those items.

Close A function that makes a file unavailable for further processing and does label
processing for end of file.

Control Language A statement in a job that is used in identifying the job~or describing its requirements to
statement the operating system.

Directive A control statement (as opposed to data) supplied to a program for the purpose of
directing its mode of operation.

Debug

Dump

File

File identifier

File name

Global register
save area

Information
retrieval

Job

Job step

The detection, location, and removal of mistakes from a routine or malfunctions from
a computer.

Copying of contents from internal storage to an external storage.

A collection of related records treated as a unit.

Identification given by the DEFSF, DEFRF, or DEFIF macro and referenced as the
IDENT parameter of the GET/PUT and OPEN/CLOSE macros. IDENT is synonymous
with the IDENTIFIER (ID) keyword of the Control Language //DEFINE statement.

Cataloged name of file given by the FILENAME (FIL) keyword of the Control
Language //DEFINE statement. This corresponds to the FILENAM parameter of the
DEFLB macro.

Storage area used for saving and restoring user registers that can be used by several
routines.

Method and procedure of recovering specific information from stored data.

A specified group of logically related tasks prescribed as a unit of work for a computer.

The execution of a computer program explicitly identified by a Control Language
statement. A .iob may specify that several job steps be executed.

Glossary-1

Glossary-2

Key

Label

Load point

Logical 1/0 level

Macro, action

Macro, data

Macro, system

Modification
security code

Characters within a data item that are used to identify it or control its use.

Symbols identifying or describing an item, record, message, or file.

Preset point (reflector strip) at which magnetic tape is initially positioned under the
read/write head to start processing.

A processing level that reads and writes logical records. Data Management does the
blocking and deblocking.

Macro which generates executable code that results in some action being taken at
execution time. Such a macro is always coded in line with the executable part of the
program.

Macro which generates nonexecutable code, such as an 1/0 control table, and should
usually be coded in a data area of the program where an attempt to execute it (by
mistake) is unlikely. Some macros are inherently data macros in any form while any
system macro may become a data macro by including the parameter LIST=YES.

Instructions through which the user avails himself of the various system services, such
as 1/0 processing. They form an extension to the standard machine instruction set and
result in the generation of code which provides an interface with the system.

Code that restricts access to a file for security purposes.

Open Function making file available for processing by checking label and file attributes.

Packing Contiguous placement of records with no space in between records in a buffer.

Physical 1/0 level The lowest level of 1/0 implementation available to the user. The user may have more
responsibility for details, but gains in flexibility. This level of coding is independent of
the system file organizations.

Record Group of related items of data that are treated as a unit.

Record identifier Identification of a record in terms of block number and relative position within that
block.

Relative record Number of a record relative to the beginning of the file.
number

Split cylinder Denotes the sharing of a cylinder by two files.

Tag Character(s) attached to record or item for identification.

Tape mark (TM) Special character written on magnetic tape signaling the physical end of the recording
on tape.

Thread An address pointing to the previous or next item in a series of logically related items.

Unblocked record Block that contains only one record.

INDEX

ABEND Macro 6-'16, 17 Data format 2-1

Access 2-'I ;3-1 ;6··3,5;Glossary-1 Data macro Glossary-2

random 2- '1,4, 7 ;3-1,3,4,8,9 Data Management 1-1 ;3-13

sequential 2-'l ,4,7;3-1,2,3,6,8,9 Data Management macros 6-1
ACCESS parameter 2-4;6-3,4,5,8 CLOS EL 6-1,9

Action macro Glossary-2 CLOVEL 6-1, 10
DEFIF 6-1,5

BOT 6-'I DEF LB 6-1,7
Bl NARY parameter 6-2,8 DEF RF 6-1,3
BLKFAC parameter 6-2,3,4,5,:B DEFSF 6-1,2
BLKSIZ parameter 6-2,3,4,5,:B DELR 6-1, 14
Block 2-2 ;Glossary-1 GET 6-1, 10
Block 1/0 level 3-'I ;Glossciry-1 LOCRC 6-1,13
BREAK 6-2 OPENL 6-1,8
Buffer description table 6-'I PUT 6-1, 12
Buffer sharing 3-3;6-2,4,6 PUTU 6-1, 14
Buffer switching 3-3,5;Glo~;sary-1 SETL 6-1,12
BU FSH R parameter 6-2,3,4,5,16,8 Data portion of indexed files 2-4
Bypass tape labels 3-'l 1, 12 Data transmission macros 6-1, 10

DELR 6-1, 14
Catalog 2-8 ;Glossciry-1 GET 6-1,10

Central 2-'IO LOCRC 6-1, 13
disc storage 2-'110 PUT 6-1, 12
pack 2-'IO PUTU 6-1, 14

Central catalog 2-110 SETL 6-1, 12
CHECKOUT H ;5-1,2,4 DAT A TXT parameter 6-15, 16
Close Glossary-11 DA TB U F 1 parameter 6-2,3,4,5,6,8, 15
Close logical 'file 6-9 DATBUF2 parameter 6-2,3,4,5,6,8, 15, 16
Close tape file 3-'12 DATSIZ1 parameter 6-15
CLOSEL macro 3-3, 12;6-11,9 DATSI Z2 parameter 6-16
CLOVEL macro 3-'l 2, 13;6-1, 10 Debugging 1-1;5-2;Glossary-1
Common stored data format 2-'I DEFI F macro 2-7;6-1,5
Conditional requests 5-4,5 Define indexed file 6-5
Console communication 4-'I Define label 6-7

messages to 4-2 Define relative file 6-3
replies from 4-2 Define sequential file 6-2

Console communication DEFLB macro 3-13;6-1,7
macros 6-'15 DEFRF macro 2-4;6-1,3

CONSOLE 6-'15 DEFSF macro 3-8;6-1,2
MESSAGE 6-'15 Delete record 6-14

CONSOLE macro 4-'l ,2;6-Hi DELR macro 6-1, 14
Control characters 2-3 Device 2-1
Control language 3-'l 3;Glosi:;ary-1 disc 2-1,2,4,7
CONTROL parameter 2-3;6-8,9 printer 2-3
Control program macros 6-'16 punch 2-3

ABEND 6-'16,17 tape 2-1,2,4
EHALT 6-'16,17 unit record 2-1,2,4
HALT 6-'16, 17 Device usage 2-1
JDATE 6-'16, 17 Directive Glossary-1
SDATE 6-'16, 17 Directory index 2-6,7;0-2
TIME 6-'16,17 Directory to the directory

Control program services 1-'1;4-1 index 2-6,7;0-2

lndex-1

Disc 2-1,2,4,7 IBM tape processing 3-12
Disc label 2-10 IDENT parameter 6-8,9, 10, 11, 12, 13, 14
Disc storage catalog 2-10 IDXSA parameter 6~ 10,·11, 12
Dump Glossary-1 Ignore tape labels 3-11,12

INDBUF parameter 6-5,6,8
Indexed file 2-1,3,4,6,8

EHALT macro 4-1;6-·16,17 Index portion of indexed file 2-7;D-1

END parameter 6-3,5,8 IN DSH R parameter 6-5,6,8

End-of-file label 2-9 INDSIZ parameter 6-5,6,8
End-of-volume label 2-9 INFOADR parameter 6-17,18
ER ROPT parameter 6-2,3,4,5,6,8 Information block D-1

Information retrieval Glossary-1
FDT 3-11, 12, 13 INMAIN parameter 2-7;6-5,6,8
File 2-1 ;Glossary-1 Input files 3-12

indexed 2-1,3,4,6,8;6-5 1/0 processing 3-1
organization · 2-1,3,4,8 logical record 3-3
permanent 2-3,7,8 magnetic tape 3-8
relative 2-1,3,4,5,8; 6-3 random 3-8,9, 10
scratch 2-3,7,8 sequential processing with
sequential 2-1,3,4,5,8; 6-2 record area 3-3,6
temporary 2-3,7,8 sequential processing without
type 2-1,3, 7,8 record area 3-8,9
work 2-3,7,8

File and label definition JDATE macro 4-1; 6-18
macros 6-1 Job Glossary-1

DEFIF 6-1,5 Job step Glossary-1
DEF LB 6-1,7
DEF RF 6-1,3 Key Glossary-2
DEFSF 6-1,2 KEYADR parameter 6-3,4,8, 13, 14

File control macros 6-1,8 KEYADR1 parameter 6-5,6,8
CLOS EL 6-1,9 KEYADR2 parameter 6-5,6,8
CLOVEL 6-1, 10 KEYERR parameter 6-12, 14
OPENL 6-1,8 KEYSIZ parameter 6-5,6,8

File description table 3-11, 12, 13
File name Glossary-1 LABDEF parameter 6-8,9
File organization 2-1,4,8 Label 2-8;Glossary-1

indexed 2-1,3,4,6,8 disc 2-10
relative 2-1,3,4,5,8 end-of-file 2-9
sequential 2-1,3,4,5,8 end-Of-volume 2-9

File sharing 3-3 header 2-9
File type 2-1,3,7,8 standard tape file 2-9, 10;6-2

permanent 2-3,7,8 standard tape volume 2-9
scratch 2-3,7,8 tape 2-8;6-2
temporary 2-3,7,8 LABEL parameter 3-8
work 2-3,7,8 Labeled tapes 2-8;3-8, 11, 12

File with standard label 3-12 LABTYP parameter 3-8;6-2,8
Fl LENAM parameter 6-7 Linkage conventions B-1
Fixed length record 2-1,3; 6-3,5 UST parameter 6-8,9, 10, 11, 12, 13, 14;A-1
Forward key 6-6" Load point Glossary-2

Locate record 6-13
GET macro 3-3,8; 6-1, 10 LOCRC macro 6-1, 13
Get record 6-10 Logical 1/0 level 3-1 ;Glossary .. 1
Global register save area Glossary-1 Logical record 2-2

Logical record processing 3-3;Glossary-1
HALT macro 4-1 ;6-16, 17
Header label 2-9

lndex-2

Macro expansions A-3,5 Parameters
Macros 6-1 ACCESS 2-4;6-3,4,5,8

.ABEND 6-16, 17 BINARY 6-2,8
CLOS EL 3-3, 12; 6-1,9 BLKFAC 6-2,3,4,5,8
CLOVEL 3-12,13;6-1,10 BLKSIZ 6-2,3,4,5,8
CONSOLI: 4-1,2; 6-1!5 BUFSHR 6-2,3,4,5,6,8
console communication 6-15 CONTROL 2-3;6-8,9
control program 6-16 DATATXT 6-15,16
data management 6-1 DATBUF1 6-2,3,4,5,6,8, 15
data transmission 6-1, 10 DATBUF2 6-2,3,4,5,6,8, 15, 16
DEFIF 2-7; 6-1,5 DATSIZ1 6-15
DEFLB 3-13; 6-1,7 DATSIZ2 6-16
DEFRF 2-4; 6-1,3 END 6-3,5,8
DEFSF 3-8;6·1,2 ERROPT 6-2,3,4,5,6,8
DELR 6-1, 14 FILENAM 6-7
EHALT 4-1 ; 6-16, 17 IDENT 6-8,9, 10, 11, 12, 13, 14
file and label definition 6-1 IDXSA 6-10, 11, 12
file control 6-1,8 INDBUF 6-5,6,8
GET 3-3,8; 6-1, 10 INDSHR 6-5,6,8
HALT 4-1 ; 6-16, 17 INDSIZ 6-5,6,8
JDATE 4-1 ;6-18 INFOADR 6-17, 18
LOCRC 6-1, 13 INMAIN 2-7; 6-5,6,8
MESSAGE 4-1,2; 6-15, 16 KEYADR 6-3,4,8, 13, 14
OPENL 2-3,4, 7 ,8 ;:3-3, 11, 13;6-1,8 KEYADR1 6-5,6,8
PUT 3-3,8;6-1,12 KEYADR2 6-5,6,8
PUTU 6-1, 14 KEYE RR 6-12, 14
SDATE 4-1;6-16,17 KEYSIZ 6-5,6,8
SETL 3-1; 6-1, 12 LABDEF 6-8,9
TIME 4-1;6-16,17 LABEL 3-8

Magnetic tape processing 3-8 LABTYP 3-8;6-2,8
bypass tape labels 3-11,12 LIST 6-8,9, 10., 11., 12., 13, 14.;A· 1
close tape file 3-12 MODE 6-15, 16, 17, 18
ignore tape labels 3-11, 12 MSC 6-7
open tape file 3-11 RECADR 6-2,3,4,5, 7,8,10, 11, 12, 14

MESSAGE macro 4-1,2; 6-15, 16 RECREG 6-2,3,4,5,7,8
Message to console 4-2 RECSIZ 6-2,3,5,7,8,10,11,12
MODE parameter 6· 15, 16, 17I18 RECTYP 6-2,3,5,8
Modification security code rnossary-2 REWIND 6-8,9, 10
MSC parameter 6-7 RTNADR 6-10, 11, 12

START 6-3,5,8, 12, 13
Nonstandard labels 2"8;3-8, 11, 12 USAGE 6-8,9

VERIFY 6-2,3,5,7,8
Open Glossary-2 Permanent file 2-3,7,8
Open logical file 6-8 Physical 1/0 level 3-1
Open tape file 3-11 Primary index 2-6,7; D-3
OPENL macro 2-3,4,7,8;3-3,11,13;6-1,8 Printer 2-3
Output files 3-12 PROG 5-4

Program termination 4-1; 6-16
Punch 2-3
PUT macro 3-3,8;6-1, 12
Put record 6-12

Pack catalog 2-10 Put update 6-14
Packing Glossary-2 PUTU macro 6-1, 14

lndex-3

Random access
RECADR parameter
Record
Record headers
Record identifier
Record size
Record type

fixed length
variable length

RECREG parameter
RECREG.use
RECSIZ parameter
RECTYP parameter
Relative file
Relative record number
Replies from consol.e
Retrieve job date
Retrieve system date
Retrieve time of day
REWIND parameter
RTNAD R parameter

Save area
Scratch file
SDATE macro
Sequential access

Sequential file
Sequential processing with

record area
Sequential processing without

record area
Set limits
Set up message format
SETL macro
Space headers
Split cylinder
Standard tape file label
Standard tape volume label
START parameter
System macro

Tag
Tape
Tape label
Tape mark
Tape organization

Labeled
nonstandard labels
Unlabeled

Temporary file
Terminate program abnormally
Terminate program normally
Thread
Time and date retrieval
TIME macro

lndex-4

2-1,4, 7 ;3-1,3,4,8,9 ;6-3,5
6-2,3,4,5, 7,8, 10, 11, 12, 14
2-1,2;Glossary-2
2-2
Glossary-2
2-3; 6-3,5, 7
2-3;6-3,5
2-1,3
2-1,3
6-2,3,4,5,7,8
6-7
6-2,3,5,7,8, 10, 11, 12
6-2,3,5,8
2-1,3,4,5,8; 6-3
Glossary-2
4-2
6-18
6-17
6-17
6-8,9, 10
6-10, 11, 12

B-1
2-3,7,8
4-1; 6-16, 17
2-1,4,7; 3-1,2,3,6,8,9;
6-3,5
2-1,3,4,5,8; 6-2

3-3,6;6-3

3-7,8,9
6-12
6-15
3-1; 6-1, 12
2-2
Glossary-2
2-9;6-2
2-9
6-3,5,8, 12, 13
Glossary-2

Glossary-2
2-1,2,4
2-8;6-2
Glossary-2
2-9
2-8;3-8, 11, 12
2-8;3-8, 11, 12
2-8;3-8, 11, 12
2-3,7,8
6-17
6-17
Glossary-2
4-1
4• 1 ; 6-16 I 1 7

Transmit message

Unblocked record
Unit record device
Unlabeled tapes
Update record
Usage conflicts
USAGE parameter

Variable length record
VER I FY parameter
Volume switching

Work file

6-15

Gloss·ary-2
2-1,2,4
2-8;3-8, 11, 12
6-12, 14
3-3
6-8,9

2-1,3; 6-3,5
6-2,3,5,7,8
3-12; 6-10

2-3,7,8

I
COMMENTS FORM

MR X/OS Control Program and Data Management Services
Basic Reference Manual (2200.001-01)

Please send us your comments, to help us produce better publications. Use the space below to
qualify your responses to the following questions, if you wish, or to comment on other aspects of
the publication. Pleaso use specific page and paragraph/line references where appropriate. All
comments become the property of the Memorex Corporation.

Yes No

• Is the material:

Easy to understand? a a
Conveniently organized? a a
Complete? a a
Well illustrated? a a
Accurate? a a
Suitable for its intended audience? . a a
Adequately indexc!d? a a

• For what purpose did you use this publication? (reference, general interest, etc.)

• Please state your department's function:------------------

• Please check specific crnticism(s), give page number(s), and explain below:

a Clarification on page(s) -----------------------

0 Addition on page(s) -----------------------

0 D~etion on page~)---~--------------~~---~

0 Error on page(s) --------------------------

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage Will Be Paid By

Memorex Corporation

Midwest Operations -- Publications
8941 Tenth Avenue North
Minneapolis, Minnesota 55427

First Class

Permit No. 14831
Minneapolis,
Minnesota 55427

• • • e •••••SS••••• S • S • • • • • e ••I I'" I I I I I I I I I I I I I I I I. I 11 I I I

Thank you for your information

Our goal is to provide better, more useful manuals, and your
comments will help us to do so .

. Memorex Publications

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-1
	B-2
	C-1
	C-2
	D-1
	D-2
	D-3
	D-4
	Glossary-1
	Glossary-2
	Index-1
	Index-2
	Index-3
	Index-4
	replyA
	replyB

