
HP BASIC Language
Processor

. Programmer's
Reference Guide
F/ipl HEWLETT
1I:t:.. PACKARD

Edition 2 October 1987

82301-90002

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett­
Packard shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

MS is a U.S. trademark of Microsoft Corporation.
SIDEKICK and SUPERKEY are registered trademarks of Borland International, Inc.

© 1987 by Hewlett-Packard Co.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another language
without the prior written consent of Hewlett-Packard Company.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
clause at 52.227-7013.

Corvallis Workstation Operation
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History Edition 1
Edition 2

February 1987
October 1987

Mfg. No. 82300-90001
Mfg. No. 82301-90001

Chapter 1

Chapter 2

1·1
1-2
1-3
1-4
1-4
1-5

2-2
2-4
2-5

2-12
2-14
2-15
2-17
2-18

Contents

Introduction
What Is in This Guide
What Is in This Chapter
Features of the HP BASIC Language Processor
Hardware and Software Requirements
What Is in the Box
Other Manuals You May Find Useful

Software Installation
The Configuration File
Before You Start
Installing the HP BASIC Language Processor
After HP BASIC is Loaded
Testing Mass Storage Devices
Testing Printers
Testing Plotters
Testing the HP-HIL Mouse

Contents-1

Chapter 3

Chapter 4

2-Contents

3-1
3-1
3-2
3-2

3-11
3-14
3-18
3-29
3·43
3-61
3-89

3·104
3·123
3-157
3-169
3-178
3-184

4-1
4·1
4-9

4·37
4-54
4-62

Programming Techniques
Introduction
Explanation of Terms
Using the Keyboard
Using the Editor
Indenting
Running a Program
Program Storage and Retrieval
Program Structure and Flow
Numeric Computation
Numeric Arrays
String Manipulation
User-Defined Functions and Subprograms
Data Storage and Retrieval
Using a Printer
The Real-Time Clock
Error Handling
Program Debugging

Graphics Techniques
Getting Started
Graphics Information
Creating Graphics
Using Graphics Effectively
External Graphics Displays and Plotters
Color Graphics

Chapter 5

Chapter 6

Appendixes
& Index

5-1
5-3
5-4
5-7
5-9

5-10
5-16
5-41
5-52
5-65
5-69

6-1
6-2
6·7

6-29
6-32
6-34

A-1

B·1

C-1

D·1

E-1

F-1

G·1

H-1

Index-1

Interface Techniques
Terminology
Why Do You Need an Interface?
Interface Overview
The I/O Process
I/O Examples
Directing Data Flow
The HP-IB Interface
The RS-232 Serial Interface
The GPIO Interface
The HP-HIL Interface
Supported HP-HIL Devices

Using SRM
Introduction
System Concepts
Using Your BASIC Workstation on SRM
Modifying Existing Programs to Access Shared Resources
In Case of Difficulty
Summary of SRM Status Registers

Keyword Reference List

Using HP BASIC in the MS-DOS Environment

Utilities

List of Binaries

List of Keyboard Functions

Configuration

List of Programs On the Manual Examples Disc

Error List

Index

Contents-3

1 Introduction

Contents

Chapter 1 Introduction
1-1 What Is in This Guide
1-2 What Is in This Chapter
1-3 Features of the HP BASIC Language Processor
1-4 Hardware and Software Requirements
1-4 What Is in the Box
1-5 Other Manuals You May Find Useful

1

What Is in This
Guide

Introduction

Welcome to the HP BASIC Language Processor.

This guide will help you learn about setting up and using
your HP BASIC Language Processor software. It will guide
you through the software installation process and then will
help you become familiar with various programming tech­
niques of the HP BASIC Language Processor. Later, you can
use it as a reference. If you are already familiar with HP BA­
SIC Series 200/300 workstations, you should read appendix B
("Using the HP BASIC Language Processor in the MS-DOS
Environment"), appendix C ("Utilities"), appendix E ("Key­
boards"), and appendix F (liThe Configuration File") after you
complete the software installation in chapter 2.

You will find instructions for getting started, including proce­
dures for:

• Software installation.

• Programming techniques.

• Graphics techniques.

• Interface techniques.

• Using Shared Resource Management (SRM).

Introduction 1-1

Note

What Is in This
Chapter

1·2 Introduction

You will find the software installation easier to follow if you
are familiar with MS-DOS. If you are not familiar with MS­
DOS, the procedures recommend a command name that you
can look up in your MS-DOS manual when you need to per­
form MS-DOS functions.

Additional information is provided in appendixes:

• Using the HP BASIC Language Processor in the MS-DOS
Environment.

• Utilities.

• List of Binaries.

• List of Keyboard Functions.

• Configuration.

• List of Programs On the Manual Examples Disc.

• Error list.

This chapter describes:

• What is in the manual.

• Features of the HP BASIC Language Processor.

• Hardware and software requirements.

• What is in the box.

• The HP BASIC Language Processor discs.

• Other manuals that you may find useful.

Features of the
HP BASIC
Language
Processor

The HP BASIC Language Processor enables you to use your
personal computer to develop and run sophisticated BASIC
language programs. It provides the emulator program that en­
ables the HP 82321A Language Processor Card to be used in
your personal computer. The features include:

• HP Series 200/300 Basic Language Workstation Emula­
tion: The HP BASIC Language Processor enables your
personal computer to look and perform like an HP Series
200/300 BASIC Language Workstation. A medium resolu­
tion graphics display can also be emulated.

• MS-DOS Environment: The HP BASIC Language Processor
is similar to a typical MS-DOS language system. It accom­
modates the MS-DOS environment while retaining the
HP Series 200/300 BASIC interface and features. MS-DOS
allows access to 10 devices. The differences are explained
in detail in appendix B.

• Customizing Binaries: Binaries are optional enhancements
to the HP BASIC system. They include both language ex­
tensions and drivers. By selectively loading binaries after
booting, you can obtain the features you need without us­
ing excessive memory.

• Performance: HP BASIC provides the performance that
enables you to run sophisticated programs.

• Background Operations: HP BASIC can operate in the
background enabling other personal computer applications
to run simultaneously in the foreground. Refer to appendix
B for more information.

Introduction 1-3

Hardware and
Software
Requirements

Note

What Is in the
Box

1-4 Introduction

To set up the HP BASIC Language Processor you need an
MS-DOS computer that includes:

• A minimum of 256k bytes of RAM.

• A dual flexible disc drive system with at least one high­
capacity (1.2M byte or greater) drive, or a hard disc system
with at least one flexible disc drive.

• The HP 82321 Language Processor Card.

• The HP BASIC Language Processor software discs.

• A Monochrome Plus, Multirnode, or Enhanced Graphics
Display (EGA) adapter or equivalent, plus the appropriate
monitor.

EGA emulation of the 9836C color display requires at least
512K bytes of PC RAM.

The HP BASIC Language Processor package includes:

• This manual: HP BASIC Programmers Reference Guide.

• BASIC 5.0 Language Reference A-L (Volume 1).

• BASIC 5.0 Language Reference M-Z (Volume 2).

• Key Function and Switch Configuration Guide.

• Basic 5.0 Condensed Reference.

• Four keyboard overlays.

• Four 5.25-inch HP BASIC Language Processor software
discs.

• One 3.5-inch HP BASIC Language Processor software disc.

Other Manuals
You May Find
Useful

Labels and Descriptions of 5.25·lnch HP BASIC Discs

Label Description

Disc one: HP BASIC emulator The emulator program plus file
and PC utilities. and configuration utilities.

Disc two: HP BASIC system HP BASIC operating system.
disc.

Disc three: Binaries and drivers. Binaries for additional features
(drivers for devices).

Disc four: Manual examples and Examples from the manual.
selected HP BASIC Utilities.

The single 3.5-inch disc contains all of the above.

If you would like additional detail or information, you may
want to use these supplemental manuals available from
Hewlett-Packard.

Manual Name Part Number Description

Basic 5.0 Program- 98613-90012 Detailed description of
ming Techniques programming.

Basic 5.0 Graphics 98613-90032 Detailed description of
Techniques graphics.

Basic 5.0 Interface 98613-90022 Detailed description on
Techniques interfaces.

Installing, Using and 98613-90092 Information on install-
Maintaining the BASIC ing, using, and
5.0 System maintaining BASIC on

a series 200/300
system.

Introduction 1-5

1-6 Introduction

Manual Name Part Number Description

HP-IB Interface Manual 82990-90001 Detailed description of
HP-IB interfaces.

SRM System 98619-90032 General system
Manager's Guide maintenance.

SRM Hardware Insta/- 98619-90021 Hardware installation.
lation Manual

SRM Software Installa- 98619-90071 Installing the SRM op-
tion Manual erating system.

Information on recent changes to HP BASIC can be found in
a file called README on disc one. You should read this file
before you install HP BASIC. Use the MS-DOS TYPE or
PRINT command to list the file.

2 Software Installation

Chapter 2
2-2
2-4
2-5
2-5

2·10
2-12
2-14
2-15
2·17
2-18

Contents

Software Installation
The Configuration File
Before You Start
Installing the HP BASIC Language Processor

Installing On a High-Capacity Floppy Disc Drive
Installing On a Hard Disc Drive

After HP BASIC Is Loaded
Testing ~ass Storage Devices
Testing Printers
Testing Plotters
Testing the HP-HIL ~ouse

2 Software Installation

This chapter covers:

• Installing the HP BASIC Language Processor on your hard
disc or high-capacity (1.2 Mbyte or greater) floppy disc.
The install process consists of the following:

• Installing the HP BASIC Language Processor.

• Booting the HP BASIC Language Processor.

• Customizing your HP BASIC system by adding binaries.

• Saving the system you create.

• Testing your system.

In order to install and use the HP BASIC Language Processor,
your PC system must have one of the following combinations
of disc drives:

• Dual floppy disc drives, at least one of which must be a
high-capacity drive.

• At least one floppy disc drive and a hard disc drive.

If you do not have any of these combinations, you will not be
able to install the HP BASIC Language Processor.

Software Installation 2-1

The
Configuration
File

2·2 Software Installation

Your HP BASIC system builds a standard configuration file
during the installation process. The following table shows
what the standard configuration file will provide for your
HP Basic Language Processor system.

HP BASIC
Device Configuration Notes

Select Code

1 CRT (Alpha)

2 Keyboard Includes Hp·HIL mouse and
knob.

3 CRT (Graphics) Monochrome Plus Adapter
400h x 300v B/W.

Multimode Adapter 512h x
390v B/W.

Enhanced Graphics Adapter
512h x 350v Color.

7 Built-in HP-IB HP BASIC interrupt level = 3.

9 COM1 (RS· Baud = 9600
232) (Optional)t

Parity = None

Char Length = 8

Stop bits = 2

HP BASIC interrupt level = 3

Modem Status Lines CD, RI,
DSR, and CTS disabled.

15 Internal Discs Behave as HP-IB disc drives at
primary address 00 to
HP BASIC. Refer to the next
table for a correlation between
HP BASIC MSUS and MS-DOS
drive identification .

• Must match the settings on the HP 82990 HP-IB card.

t Optional interfaces are not configured if they are not connected tb your system.

HP BASIC Device Configuration· Notes
Select Code

19 MS-DOS Port Behaves as a GPIO device to
HP BASIC.

23 COM2 (RS- Same configuration as COM1.
232) (optional)t

24 HP-IB PC Card PC Select Code = 7*
1 (optional)t

System Controller = Yes*

HP BASIC Interrupt Level =
Disabled

PC Interrupts = Disabled

25 HP-IB PC card Not configured. Refer to ap-
2 (optional)t pendix F for more information.

26 LPT1 (printer) Behaves as a GPIO device to
(optional)t HP BASIC .

• Must match the settings on the HP 82990 HP·IB card.

t Optional interfaces are not configured if they are not connected to your system.

Any GPIO or SRM cards will also be configured to the select
codes and options set by switches on those cards.

The following table shows the correlation between HP BASIC
Mass Storage Unit Specifier (MSUS) and MS-DOS (Drive ID)
for the default configuration for internal disc drives.

HP BASIC MSUS MS·DOS Drive

":,1500,0" A:

":,1500,1" B:

":,1500,2" C:

":,1500,3" D:

Software Installation 2-3

Note

Before You
Start

2-4 Software Installation

Refer to appendix F if you want to change the standard con­
figuration file.

The interrupt level on your language processor card must
match the interrupt level in the configuration file. The default
interrupt level on the card and in the file is 07.0 Information
on changing the interrupt level on the card can be found in
the HP 82321A Language Processor Installation Instructions. If
you change the interrupt level on the card, you must change
the interrupt level in the configuration file. The install proce­
dure described later will do this for you.

Be sure that you have installed your language processor card.
If you have not done so, refer to the Language Processor Instal­
lation Instructions that came with the card for installation
instructions.

For best performance when using HP BASIC, you should set
the number of MS-DOS file handles to a minimum of 20. You
can use the MS-DOS configuration command HFILES=20" in
your CONFIG.5YS file (refer to your MS-DOS user's refer­
ence manual for more information). You should also set the
number of MS-DOS file buffers to a minimum of 10. You can
do this with the MS-DOS configuration command HBUFF­
ERS=10" in your CONFIG.SYS file. Be sure to reboot MS­
DOS after changing your CONFIG.SYS file.

The following installation procedure will accomodate most al­
lowable system configurations. Allowable configurations
include all supported discs, display adapters, keyboards, built­
in HP-HIL, serial or Centronics printers using LPTl, and SRM
and GPIO interfaces. The language processor card interrupt
level is set to 7, and the start address is 250H. If you need to
change the interrupt level or the start address, you will have
to change the configuration file. The install procedure de­
scribed in the next section will do this for you.

Installing the
HP BASIC
Language
Processor

Installing On a
High-Capacity

Floppy Disc Drive

Memory resident "hot key" programs such as SIDEKICK and
SUPERKEY are not supported by HP BASIC.

The following procedures show you how to install your
HP BASIC Language Processor on a high-capacity (1.2 Mbyte
or greater) floppy disc or a hard disc. The process of installing
involves copying files from your HP BASIC Language Proces­
sor discs onto a single high-capacity floppy disc or a hard
disc. The purpose of this is to locate all of the files necessary
to boot your HP BASIC Language Processor system from a
single high-capacity floppy disc or a hard disc directory. Use
the procedure which applies to your system, then continue
with the section entitled H After HP BASIC Is Loaded."

Use the following table to determine which drive to use as the
source (the drive which you will install from), which drive to
use as the target (the drive that you will install to), and
whether to use the 5.25-inch HP BASIC Language Processor
discs or the 3.5-inch HP BASIC Language Processor disc
when you install HP BASIC.

Software Installation 2-5

If Drive A Is ••. And Drive B Is •.•
Then Install •..

Prom •.• To •••

5.25-inch low-capacity 5.25-inch low-capacity You cannot install HP BASIC.

You must have at least one high-capacity floppy
drive.

5.25-inch high-capacity 5.25-inch high-capacity Either:
(1) 5.25-inch from A (source) to B (target)

or
(2) 5.25-inch from B (source) to A (target).

5.25-inch high-capacity 5.25-inch low-capacity 5.25-inch from B (source) to A (target).

5.25-inch low-capacity 5.25-inch high-capacity 5.25-inch from A (source) to B (target).*

5.25-inch low-capacity 3.5-inch 5.25-inch from A (source) to B (target).

5.25-inch high-capacity 3.5-inch Either:
(1) 5.25-inch from A (source) to B (target)

or
(2) 3.5-inch from B (source) to A (target).

3.5-inch 5.25-inch low-capacity 5.25-inch from B (source) to A (target)*

3.5-inch 5.25-inch high-capacity Either:
(1) 5.25-inch from B (source) to A (target)*

or
(2) 3.5-inch from A (source) to B (target). *

3.5-inch 3.5-inch Either:
(1) 3.5-inch from A (source) to B (target)

or
(2) 3.5-inch from B (source) to A (target)

• Refer to the examples that follow.

2-6 Software Installation

To clarify this procedure, consider the following examples:

• You have a S.2S-inch low-capacity drive in drive A and a
S.2S-inch high-capacity drive in drive B. You will install
HP BASIC using the S.2S-inch HP BASIC Language Pro­
cessor discs. These discs will be placed in drive A (source)
and installed on a single S.2S-inch high-capacity disc in
drive B (target).

• You have a 3.S-inch drive in drive A and a S.2S-inch low­
capacity drive in drive B. You will install HP BASIC using
the S.2S-inch HP BASIC Language Processor discs. These
discs will be placed in drive B (source) and installed on a
single 3.S-inch disc in drive A (target).

• You have a 3.S-inch drive in drive A and a S.2S-inch high­
capacity drive in drive B. You can install HP BASIC using
either the S.2S-inch HP BASIC Language Processor discs or
the single 3.S-inch HP BASIC Language Processor disc .

• If you install HP BASIC using the S.2S-inch HP BASIC
Language Processor discs, these discs will be placed in
drive B (source) and installed on a single 3.S-inch disc in
drive A (target) .

• If you install HP BASIC using the 3.S-inch HP BASIC
Language Processor disc, this disc will be placed in drive
A (source) and installed on a single high-capacity S.2S­
inch disc in drive B (target).

Determine the source and target drives you will use and pro­
ceed with the installation:

1. Use the MS-DOS FORMAT command to format the tar­
get disc. This will be your system disc. If you already
have a formatted disc prepared, disregard this step. In­
sert the formatted disc in the target drive as determined
from the table.

Software Installation 2-7

8: (Enter)

INSTALL (Enter)

2·8 Software Installation

2. Insert HP BASIC Language Processor disc one in the
source drive and make the source drive the current
drive. For example, if you want to install from drive B
(source) to your system disc in drive A (target), insert
disc one in drive B and type:

3. Run the install utility to complete the installation:

The INSTALL utility is necessary to set up the HP BASIC di­
rectory file on the target disc. It will also ask you if you have
changed the default configuration for the interrupt level or
the start address. After you answer the questions, INSTALL
will configure the system.

Install will then continue with the BOOT process. The system
will go through a self-test mode during which interfaces such
as keyboard, graphics, and HP-IB are tested. A list of Series
200/300 interface part numbers and the select code for the
corresponding HP BASIC Language Processor interface are
then displayed, along with the available HP BASIC Language
Processor memory.

Note

Note

If you accidently press a key after the boot process is started,
the boot process will be interrupted. After a short time you
will see:

Searching for a system (ENTER To pause)

at the bottom of the screen. Shortly thereafter; you will see
1 B SYSTEM_BAS in the upper right corner of the screen.
Type 1 B and the system will continue the boot process.

When the BOOT process is completed, you will hear a beep.
The HP BASIC system will then be built. At this point you
will have the option of having all binaries loaded automati­
cally (recommended if you have at least 1 Mbyte of RAM on
your language processor card), or selecting the binaries you
want to load. The version of HP BASIC that you just booted
already includes the EDIT, CS80, CRTA, GPIO, and HP-IB
binaries.

If your language processor card does not have optional mem­
ory installed (either the HP 82303A RAM Expansion Kit or
the HP 82305A RAM Expansion Board), you will not be able
to load all the binaries. Refer to appendix D for a list of. the
available binaries and the amount of memory each requires. If
your application requires all the available binaries, then you
must add additional memory to the language processor card.

If you want to load all the available binaries, press CD when
you see the message:

Do you want to load all the binaries (Y/N)?

If you answered N to the question, INSTALL will prompt you
for each of the binaries to be loaded. Press ® for those bina­
ries you do not want loaded and CD for those binaries you do
want loaded. When you see the message:

Software Installation 2-9

Installing On a
Hard Disc Drive

A: (Enter)

INS TAL L (Enter)

2-10 Software Installation

BASIC is now loaded.

the procedure is complete. You can now go on to the section
entitled U After HP BASIC Is Loaded."

1. Insert HP BASIC Language Processor disc one in the
source drive and make the source drive the current
drive. For example, if you want to install from drive A
(source) to your hard disc, insert disc one in drive A and
type:

2. Run the install utility to complete the installation:

The INSTALL utility is necessary to set up the HP BASIC di­
rectory file on the target disc. It will also ask you if you have
changed the default configuration for the interrupt level or
the start address. After you answer the questions, INSTALL
will configure the system.

INSTALL will then continue with the BOOT process. The sys­
tem will go through a self-test mode during which interfaces
such as keyboard, graphics, and HP-IB are tested. A list of
Series 200/300 interface part numbers and the select code for
the corresponding HP BASIC Language Processor interface
are then displayed, along with the available HP BASIC Lan­
guage Processor memory.

Note H!!I • If you accidently press a key after the boot process is started,
the boot process will be interrupted. After a short time you
will see:

Searching for a system (ENTER To pause)

at the bottom of the screen. Shortly thereafter, you will see
1 B S Y S T E M _ B A 5 in the upper right corner of the screen.
Type 1 B and the system will continue the boot process.

When the BOOT process is completed, you will hear a beep.
The HP BASIC system will then be built. At this point you
will have the option of having all binaries loaded automati­
cally (recommended if you have at least 1 Mbyte of RAM on
your language processor card), or selecting the binaries you
want to load. The version of HP BASIC that you just booted
already includes the EDIT, CS80, CRTA, GPIO, and HP-IB
binaries. If you want to load all the available binaries, press
CD when you see the message:

Do you want to load all the binaries (Y/N)?

If you answered N to the question, INSTALL will prompt you
for each of the binaries to be loaded. Press ® for those bina­
ries you do not want loaded and CD for those binaries you do
want loaded. When you see the message:

BASIC is now loaded.

the procedure is complete.

Software Installation 2-11

After HP BASIC
Is Loaded

BAS I C (Enter)

2-12 Software Installation

Your HP BASIC system is now installed, booted, customized,
and ready for use. You will find a complete list of keyboard
functions in appendix E. An abbreviated list appears on the
Key Function and Switch Configuration Guide.

You can exit HP BASIC at any time by pressing EXIT
(@ID<£IQ}). You then return to HP BASIC by typing:

To activate HP BASIC after you turn on your computer, fol­
low these steps:

1. If you are using a high-capacity floppy disc, insert your
system disc in the high-capacity drive.

2. Be sure your current disc drive and directory in MS-DOS
is the one which contains your HP BASIC system.

3. Type BAS Ie (Enter).

When the HP BASIC screen appears, your HP BASIC system
is ready for use. An explanation of the HP BASIC screen is
shown in the following figure and table.

Label

OUTPUT/pRINT

Disp

Keyboard Input

System Messages

Soft key labels

CD Soft key
menu indicator

® Caps lock
indicator

® Program
status indicator

®

1 O"P" Am.

} Blank Line

} Display Line

} Keyboard Area (two lines)

® } Message Results Line

'S' } Soft key labels (two lines)

Description

The largest portion of the display where char-
acters specified in PRINT and OUTPUT
statements are displayed when PRINTER IS
CRT is active.

System messages when PRINTER IS CRT
and PRINTALl ON are active.

Destination of characters specifed in DISP
statements.

Characters typed on the keyboard appear in
this line.

System messages and system status appear
in the line.

labels of soft keys appear here if KEY lA-
BELS is active.

Select menu with SYSTEM or MENU key.

Toggle caps lock with (Caps Lock) key.

Indicates status (running, paused, idle) of
program.

Software Installation 2-13

Testing Mass
Storage Devices

Your HP BASIC system can be customized to save language
processor RAM by using the LI ST BIN, LOAD BIN, and
STORE SYSTEM statements.

• LIS T BIN lists the binaries currently loaded in your
system.

• LOAD BIN <file name> loads the specified binary into
your system.

• STORE SYSTEM <f i 1 e-name> stores the BASIC system
into the specified file.

You've already done this in the preceding steps. However, if
you haven't tried all of your disc drives yet, here is a simple
procedure to test them:

1. Insert an initialized disc into the drive. Remove all other
discs from your other drives.

2. Use the syntax:

MASS STORAGE I S ": msus" (Enter)

2·14 Software Installation

to specify the drive that you are testing.

The following table shows the correlation between HP BASIC
Mass Storage Unit Specifier (MSUS) and MS-DOS (Drive 10)
for the default configuration for internal disc drives.

HP BASIC MSUS MS·DOS Drive

":,1500,0" A:

":,1500,1" B:

":,1500,2" c:
":,1500,3" D:

To execute this statement, substitute the MSUS of your drive
in the statement above. If you're using the B drive you would
type:

MASS STORAGE IS":, 151313, 1" (Enter)

CAT (Enter)

Testing Printers

3. Type:

If the drive's access light flashes and information is listed on
the screen, your drive is working normally.

Refer to the section entitled HThe Configuration File" for more
information.

1. Turn on the printer.

2. Use the syntax:

I PR I NTER I S device select code (Enter)

I PRINTER IS 26 (Enter)

substituting the device select code specific to your
device.

To execute this statement, substitute your printer's device
select number in the statement. For example if you are
using a GPIO (Centronics) printer, type:

Software Installation 2-15

PRINTER IS 701 (Enter)

P R I NT n HE L Lon (Enter)

Note

2-16 Software Installation

If you want to use a printer connected to the HP-IB port
on your HP BASIC Language Processor card, type:

This table shows the device select codes for different devices.

Printer Device Select Code

HP-IB 7

LPT1 26

3. Type:

Some printers require a full page of print to page advance, so
use the manual form feed to advance the page or print a
whole page of HHELLO».

If HHELLO» has printed the printer is working normally.

Testing Plotters 1. Turn the plotter on.

2. If you did not load the GRAPH binary into your custom
system, do it now. Use LOAD BIN HGRAPH" and
STORE SYSTEM to add this binary to your system.

3. Use the syntax:

PLOTTER I S device select code II HPGL II (Enter)

substituting your device select code to specify the plotter
as the default plotter.

To execute this statement, substitute your plotter's device
select code in the statement. If you have an HP-IB plot­
ter, type:

I PLOTTER IS 705,IHPGL" (Enter)

I PEN 1 (Enter)

I PEN 0 (Enter)

4. Type:

If the plotter picks up a pen, the plotter is working
normally.

5. To replace the pen, type:

Software Installation 2·17

Testing the
HP·HIL Mouse

2·18 Software Installation

1. Type: TIMEDATE (Do not press (Enterl).

2. If the mouse moves the cursor left and right when
moved, it is working properly. Pressing either of the but­
tons on the mouse will be treated the same as if you
pressed (Enter), and the TIMEDATE value will be
displayed.

Now that the software installation is complete you're ready to
start productively using HP BASIC. The next chapters contain
instructions for programming, graphics, and interfacing. You
may want to read the introduction at the beginning of each
chapter to familiarize yourself with the possiblities of
HP BASIC. Then just turn to the section you've selected to
continue learning how to use HP BASIC.

3 Programming Techniques

Chapter 3
3-1
3-1
3-2
3-2
3-3
3-5
3-6
3-7
3-8

3·10
3-11
3-14
3-14
3-15
3-18
3-18
3-18
3-21
3-22
3-24
3-25
3-29
3-29
3-31
3-37
3-41
3-43
3-43
3-46
3·57

Contents

Programming Techniques
Introduction
Explanation of Terms
Using the Keyboard
Using the Editor

Entering A Program
Renumbering a Program
Listing a Program
Editing A Program
Search and Replace Operations
Getting Out of EDIT Mode

Indenting
Running a Program

Program Execution
Live Keyboard

Program Storage and Retrieval
What Is Mass Storage?
Media Specifiers
Initializing a Disc
Disc Labels
Recording a Program
Retrieving a Program

Program Structure and Flow
Sequence
Selection
Repetition
Event-Initiated Branching

Numeric Computation
Numeric Data Types
Resident Numerical Functions
Evaluating Scalar Expressions

3-61
3·62
3·63
3·68
3·68
3·69
3·73
3·75
3·75
3-80
3·82
3-87
3·89
3·90
3·91
3·91
3·93
3·96
3·98
3·99

3·101
3·101
3·102
3·104
3·104
3·105
3·105
3·106
3·106
3·107
3·114
3·116
3·116
3·117
3-117
3·118
3·118
3·120
3·122
3·122

Numeric Arrays
Dimensioning an Array
Some Examples of Arrays
Problems with Implicit Dimensioning
Using Array Elements
Filling Arrays
Printing Arrays
Passing Entire Arrays
Copying Sub arrays
Redimensioning Arrays
Arrays and Arithmetic Operators
Boolean Arrays

String Manipulation
String Storage
String Arrays
Evaluating Expressions Containing Strings
Substrings
String -Related Functions
String Functions
MAT Functions and String Arrays
Number-Base Conversion
Introduction to Lexical Order
Predefined Lexical Order

User-Defined Functions and Subprograms
Location
Naming
The Difference Between a Function and a Subprogram
REAL Precision Functions and String Functions
Calling and Executing a Subprogram
Communication
Context Switching
Live Keyboard
Using Subprogram Libraries
Loading Subprograms One at a Time
Loading Several Subprograms at Once
Loading Subprograms Prior to Execution
Deleting Subprograms Programmatically
Editing Subprograms
SUBEND and FNEND
Recursion

3-123
3-123
3-124
3-124
3-125
3-128
3-133
3-133
3-135
3-137
3-138
3-139
3-139
3-140
3-142
3-143
3-144
3-144
3-148
3-148
3-149
3-152
3-153
3-154
3-157
3-157
3-158
3-158
3-159
3-160
3-161
3-161
3-163
3-169

Data Storage and Retrieval
Storing Data in Programs
Storing Data in Variables
Data Input by the User
Using DATA and READ statements
The Structure of Data Files
Mass Storage Techniques
Overview of Mass Storage Techniques
Non-Disc Mass Storage
Accessing Files
Reading and Writing BOAT Files
System Sector
Defined Records
Choosing A Record Length
Writing Data
Sequential (Serial) OUTPUT
Random OUTPUT
Reading Data From BOAT Files
General Mass Storage Operation
Trapping EOF and EOR Conditions
Protecting Files
Copying Files and Volumes
Purging Files
Accessing Directories

Using a Printer
Fundamentals
Device Selectors
Primary Addresses
Using Device Selectors
Using the External Printer
Control Characters
Formatted Printing
Using Images
Special Considerations

3-169
3-169
3-170
3-170
3-170
3-171
3-171
3-172
3-173
3-173
3-174
3-175
3-176
3-178
3-178
3-179
3-180
3-184
3-185
3-187
3-189
3·191
3·191

The Real-Time Clock
Clock Range and Accuracy
Initial Clock Value
Reading the Clock
Determining Date and Time of Day
Setting the Clock
Setting the Time
Setting the Date
Day of the Week
Branching on Clock Events
Cycles and Delays
Time of Day
Priority Restrictions
Branching Restrictions

Error Handling
Anticipating Operator Errors
Error Trapping

Program Debugging
Using Live Keyboard
Stepping
Tracing
PRINTALL IS
TRACE PAUSE

3
Introduction

Explanation of
Terms

Programming Techniques

This chapter will introduce you to the BASIC 5.0 program­
ming language and provide some helpful hints On how you
can obtain the most from it. You do not need a high skill level
in BASIC, but we assume you have some previous program­
ming experience. If you have never programmed a computer
before, it will probably be easier for you to start with one of
the many beginner's text books available from various pub­
lishing companies. If you have experience on other
HP desktop computer systems or with other high-level lan­
guages, you should find these programming procedures
familiar. Whatever your starting point, it makes sense to learn
the mechanics of program writing before you become ab­
sorbed in a study of all the program statements.

Before proceeding, you should understand some common
terms used in BASIC programming. This section will explain
the meaning of some of the more frequently used terms.

Keyword. A keyword is a group of uppercase characters that
is understood by the BASIC language system to represent
some predefined action.

Statement. A statement is a keyword (sometimes optional)
followed by any parameters, lists, specifiers, and secondary
keywords that are allowed with that keyword.

Program Line. A program line contains at least a line num­
ber followed by a statement. It may also contain a line label, a
name that is placed after the line number and terminated by a
colon.

Programming Techniques 3-1

Note

Using the
Keyboard

Using the Editor

3·2 Programming Techniques

Program. A list of program lines, with an END statement on
the last line.

Command. A command is a statement that is typed without
a line number and executed. There are some commands that
cannot be stored as program lines, such as DEL and
SCRATCH. There are also some statements that cannot be ex­
ecuted as commands, such as DIM and RETURN.

Enter. Entering a program line means that you type a line
number followed by a valid statement and then press the
(Enter) key. The line is stored in memory as part of a program,
but it performs no function until you run the program.

The ~ key may appear on the keyboard as (Return),

(Execute), (Exec), or (End Line), depending on the particular
computer you are using. When you see (Enter) in this guide,
use the key that corresponds to it on your keyboard.

Execute. Execute means that you type a statement with no
line number and press (Enter). The command is executed im­
mediately and is not stored in a program.

In this chapter you will find references to keyboard functions
rather than explicit keystrokes. This is because HP BASIC
supports both the Vectra PC keyboard and the Enhanced
Vectra PC keyboard. Refer to appendix E or the Key Function
and Switch Configuration Guide for your keyboard to deter­
mine the keystrokes to use.

The BASIC editor is a very versatile feature of the BASIC sys­
tem. The following sections will show you how to use it
properly.

Entering a Program

Format of EDIT Screen

To enter a program into the computer you must be in the
EDIT mode. You access EDIT by typing:

EDIT <line number>,<increment>

and pressing (Enter) or by pressing EDIT. If no parameters are
present, EDIT assumes a line number of 10 and an increment
between lines of 10. Once in EDIT, the format of the screen
display is changed as shown in the following diagram.

} "",,"cus Program Uno, Of any)

} Current Program Line (2 CRT lines)

} System Message Line (if needed)

} Following Program Lines (if any)

} Softkey Labels

You can view several lines before and after the line you are
editing. The system supplies the line number for the current
line, and program portions can be viewed by simple scrolling.

Entering Program Lines. You enter program lines by typing
them after the line number and pressing (Enter). The com­
puter checks for syntax errors and converts letter case to the
required form for names and keywords, and then stores the
line. The computer supplies a line number automatically. If
you want to change the line number, simply back up the
cursor to the appropriate position and type in the line number
you want. Changing the line number causes a copy operation,
not a move. The original line still exists.

Programming Techniques 3·3

3-4 Programming Techniques

Inserting Lines. You can insert new lines between existing
lines very easily. For example, assume you want to insert
some lines between line 90 and line 100. Place line 100 in the
current-line position and press INSERT LINE*. The program
display II opensH and a new line number appears between line
90 and line 100. Type and store the inserted lines in the nor­
mal manner. The computer maintains the established
increment between line numbers whenever possible. When
the normal increment cannot be maintained, an increment of
one is used. When there are no line numbers available be­
tween the current line and the next line, enough of the
program below the current line is renumbered to allow the
insert operation to continue.

Deleting and Recalling Lines. You can delete lines one at a
time or in blocks. To delete the current line, press DELETE
LINE*. If you delete a line by mistake, the line can be recov­
ered by pressing the RECALL * function. To do this, use the
following procedure:

1. Position the cursor below the . line where you want to
insert the deleted line.

2. Press INSERT LINE*. The program display will "openH
and a new line number will appear.

3. Press RECALL *. The deleted line will appear.

4. Press (Enter). A new line number will appear beneath the
line just recalled.

5. You can enter new lines at this point or move to another
area of the program for other editing.

You can use the DEL command to delete lines. When DEL is
followed by a single identifier, only that line is deleted. The
identifier can be a line number or a label. Blocks of program
lines can be deleted by using two identifiers with the DEL
command. The first identifier identifies the first line of the
block to be deleted, and the second identifier identifies the
last line of the block. Here are some examples:

• Refer to appendix E or the Key Function and Switch Configuration Guide for the
keystrokes to use.

I DEL 100,200

DEL BLOCK2,32766

DEL 250,10

Renumbering a
Program

REN 100,5 IN 1,500

Deletes lines 100 through 200, inclusive

Deletes all lines from the one labeled HBLOCK2" to the end of
the program.

Illegal because the line identifiers are not in order.

You can renumber a program by using the REN command.
You specify the starting line number, the interval between
lines, and the range of lines. For example,

renumbers current lines 1 thru 500 using 100 for the first line
number and an increment of 5 between line numbers. If the
increment is not specified, lOis assumed. If a range is not
specified, the entire program is renumbered. When no param­
eters at all are specified, the computer assumes 10 for the first
number and renumbers the entire program with an increment
of 10.

Programming Techniques 3-5

Listing a Program

I LIST 10111. 200

I LIST 1850

I LIST Rocket

I PRINTER IS 26

3·6 Programming Techniques

You can display or list all or part of your program by execut­
ing a LIST statement. The LIST statement has parameters that
allow you to specify both the range of lines to be listed and
the device to which the listing should be sent. If LIST is exe­
cuted without any parameters, the default action is to list the
entire program on the system printer. The default system .
printer after a power-on or SCRATCH A is the CRT. The sys­
tem printer is defined by the PRINTER IS statement.

You specify starting and ending line numbers in the LIST
statement, or you may specify labels instead. For example:

Lists lines 100 through 200, inclusive

Lists the program from line 1850 to the end.

Lists the program from the line labeled URocket" to the end.

If you want the listing to be printed on an external printer,
you must use the PRINTER IS statement prior to the LIST
statement:

I PRINTER IS 1

I LIST
LIST

#701
#26

Editing A Program

To make the CRT the system printer again use:

You can also use the LIST statement to list a program on the
printer and keep the CRT as the system printer:

This statement sends the entire program listing to an HP-IB
printer (address 01) without changing the system printer
selection.

Some commands make it easy to do large amounts of pro­
gram editing very quickly. Among these are commands to
move blocks of text, copy blocks of text, replace occurrences
of one string with another string, find occurrences of a string,
cross-reference the program, and more.

Moving Program Segments. You can move blocks of text
with the MOVELINES command. This command moves
contiguous program lines from one location to another. For
example, if you wish to move the code in a program that is
located between lines 100-250 to a new location in the pro­
gram beginning with line number 1000, type:

MOVELINES 100,250 to 1000

Or, you could specify the lines by using labels:

MOVELINES label1,label2 TO new_block

Programming Techniques 3-7

Note

Search and
Replace

Operations

3-8 Programming Techniques

If you intend to create a subprogram or function by moving a
block of code, enter the subprogram header before moving
the code. You cannot enter a SUB or DEF FN statement if
there are other statements following it.

If the starting line number does not exist, the next line is
used. If the ending line number does not exist, the previous
line number is used. If a line label doesn't exist, an error oc­
curs and no moving takes place. If an error occurs during the
MOVELINE operation (a memory overflow, for example), the
move is terminated and the program is left partially modified.

Copying Program Segments. The COPYLINES command
performs the same function as MOVELINES, except that it
leaves the code in the old location. This is desirable when you
want a section of code that is very similar, but not identical to
a section of code you already have. (If it were identical, you
would probably put it into a subprogram.) It is often easier to
copy code and modify one version than to type two separate,
only slightly different versions.

The FIND Command. You can find all the occurrences of a
particular string in a program by using the FIND command.
When a program line that contains the specified string has
been found, the computer places you in EDIT mode automati­
cally. The current line is the line containing the specified
string, and the cursor is positioned on the first character of
the string. The message uFound 'string valuem is displayed in
the system message line. You can then edit the string as you
desire. When you press (Enter), the computer will continue its
search for the string, stopping when it finds another occur­
rence of the string, when it reaches the end of the program,
or when it reaches the last line of the specified range. To can­
cel a search operation before it is finished, press CLEAR I/O.
The following examples illustrate the use of the FIND
command.

I F I NO "STR I NGA"

I F I NO "STR I NGB II IN 1500

Searches for the first occurrence of the string "STRINGA",
starting from the current location in the program.

Searches the program for the string "STRINGB" beginning at
line 1500.

I FIND "STRINGC" IN 1550, 1700

Searches the program for the string "STRINGC' beginning at
line 1550 and ending at line 1700.

You can use line labels instead of line numbers if you wish.

The CHANGE Command. You can replace any string with
another string by using the CHANGE command. CHANGE is
like FIND in that it looks through your program and finds
occurrences of the specified string. However it also makes a
tentative change that you can confirm by pressing (Enter), or
deny by pressing CONT. If you are positive that you don't
need to verify each replacement, appending ;ALL to the
CHANGE command will cause the search-and-replace to be
done with no further action on your part.

I CHANGE "OLD TEXT" TO "NEW TEXT"

Programming Techniques 3-9

The computer searches the entire program from the beginning
and stops at any point where it finds the string
" 0 L D T EXT". You are then asked the following question:
"OLD TEXT" to "NEW TEXT?". Press (Enter) if you want
the change made, or press CONT if you do not. In either case
the computer will continue the search, repeating the above
process whenever it finds the specified string.

CHANGE "OLD TEXT" to "NEW TEXT" IN 2600,3000

This performs exactly the same function as the previous com­
mand, except that the computer will only perform the search
from program line 2600 through program line 3000.

CHANGE "OLD TEXT" to "NEW TEXT";ALL

Getting Out of EDIT
Mode

This performs the same function as the first command, except
that no verification on your part is required. The computer
automatically makes the requested change.

There are many ways to terminate the EDIT mode. If you
want to return the CRT to its "normal" mode, press PAUSE or
(CTRL) (Home) (CLEAR SCREEN).

Another way to terminate EDIT mode is to proceed with an­
other operation by pressing the appropriate function key.
Initiating operations such as LOAD, CAT, LIST, RUN, STEP,
or PAUSE will automatically terminate EDIT mode.

3·10 Programming Techniques

Indenting You can indent your program in appropriate places by using
the INDENT command. This command automatically indents
whenever there is the beginning or end of a program state­
ment which causes looping, is conditionally executed, or is a
separate program segment. There are two parameters, starting
column number (default = 6) and increment (default = 2).
The starting column number is the column in which the first
character of the first statement of each context appears. The
increment specifies the number of spaces that the beginning
of the lines move to the left or right when the nesting level of
the program changes.

Indenting a program may cause the length of some of the
lines to become longer than the computer can list. This condi­
tion is indicated by the presence of an asterisk (*) after the
line numbers of affected lines. If this occurs, the program will
run properly, store properly, and load properly. However,
you cannot do a SAVE, then a GET. Doing an INDENT with
smaller values will alleviate this problem.

You can see the effect of the INDENT command from the
following example. You can type in the program or read it
from the flexible disc supplied with your BASIC system. If
you choose the latter method, place the disc in drive A and
type the following:

I LOAD "1 NDNTPGM : eS80, 1500,0"

Otherwise, enter the program as it is shown on the following
page.

Programming Techniques 3·11

10 FOR I = 1 TO 5
20 REPEAT
30 INPUT "How old are you?",Age
40 Reasonable = 1
50 IF Age < 0 THEN
60 DISP "Forgive me, but you can't be ";Age;"years old."
70 Reasonable = 0
80 ELSE
90 IF Age)= 120 THEN
100 DISP "That's a little difficult to believe."
110 Reasonable = 0
120 ELSE
130 IF Age)= 100 THEN
140 DISP "You are getting up t her e, ar en' t you?"
150 ELSE
160 IF Age)= 60 THEN
170 DISP "I'm impressed. You don't look that old.
180 ELSE
190 IF Age)= 40 THEN
200 DISP "Ah, you're over the hil!."
210 ELSE
220 DISP IIS O } just a youngster. "
230 END IF
240 END IF
250 END IF
260 END IF
270 END IF
280 WAIT 2
290 UNTIL Reasonable

"

300 DISP "You were";Age*365.242198781;"days old on your last birthday."
310 WAIT 2
320 NEXT
330 END

3-12 Programming Techniques

Then type the command I N DEN T and press (Enter). List the
program and you will see the results. The program should
now look like this:

10 FOR I = 1 TO 5
20 REPEAT
30 INPUT "How old are you?",AGE
40 REASONABLE = 1
50 IF AGE < 0 THEN
60 DISP "Forgive me, but you can't be "IAGEI"yearS old."
70 REASONABLE = 0
80 ELSE
90 IF AGE)= 120 THEN
100 DISP "That's a little difficult to believe."
110 REASONABLE = 0
120 ELSE
130 IF AGE)= 100 THEN
140 DISP "You are getting up there, aren't you?"
150 ELSE
160 IF AGE)= 60 THEN
170 DISP "I'm impressed. You don't look that old."
180 ELSE
190 IF AGE)= 40 THEN
200 DISP "Ah, you're over the hill."
210 ELSE
220 DISP "So, just a youngster."
230 END IF
240 END IF
250 END IF
260 END IF
270 END IF
280 WAIT 2
290 UNTIL REASONABLE
300 DISP "You were"IAge*365.2421987811"days old on your last birthday."
310 WAIT 2
320 NEXT I
330 END

Programming Techniques 3-13

Running a
Program

Program Execution

I RUN 200

You run a program by pressing the RUN keys or by typing
RUN and pressing (Enter). This tells ·the computer to go
through a pre-run phase and then begin normal program exe­
cution with the lowest numbered line in the main program.
The RUN command can ~lso be followed by a line identifier
that lets you specify where the program execution is to begin.

The process of program execution as implemented by the BA­
SIC interpreter is summarized below.

1. Determine which program line is to be acted upon next.

2. Identify the statement that follows the line number and
label (if any) on that line.

3. If the statement has a run-time action, perform that
action.

4. Repeat steps 1 through 3 until an END, STOP, or
PAUSE statement is executed.

The RUN command determines which line is acted on first.
Executing RUN with no parameters, or pressing the RUN keys
causes the execution process to begin at the first line of the
program. Execution can be started anywhere in the program
by using the RUN command with a line identifier. For
example:

This command causes execution of the program to begin at
line 200. If there is no line 200, execution begins with the line
whose number is closest to and greater than 200. The line
identifier can also be a label. For example:

3·14 Programming Techniques

RUN SpotJun

Live Keyboard

This command causes execution of the program beginning
with the line labeled HSpoLrnn". If there is no such label, an
error results.

The term "'live keyboard" is used when talking about com­
mands that are executed from the keyboard while a program
is running. The keyboard is still active when a program is
running. You can execute commands, change variables, and
change the state of the computer.

Pausing and Stopping. If the operator does not intervene, a
program will run until it encounters an END, PAUSE, or
STOP statement. For example, if you wish to pause program
execution before its normal completion, press PAUSE. This
causes a temporary halt to program execution. To continue,
press CaNT. If you wish to stop the program, press STOP.

The "Run Light". You can determine the current state of the
computer by the indicator in the lower-right hand corner of
the CRT. The character in this corner is referred to as the "run
light". The following table defines the various indications of
the run light.

Programming Techniques 3·15

113 DISP "NEXT COMMAND?"
213 x=e
313 PRINT X;
413 X=X+1
513 WAIT . 1
613 GOTO 313
713 END

Status Run
Computer State

Indicator Light

Idle blank Program stopped; CONTINUE not allowed

Running • Program running

Paused - Program paused; may be continued

Transfer 10 Program paused, but a TRANSFER is still
active

Input ? Computer is waiting for input from the
keyboard

Command * Computer is executing a command from the
keyboard

An Example. To demonstrate some of the interaction be­
tween a program and the keyboard, use the EDIT mode to
enter the following program.

1. After you have entered the program, run the program by
pressing RUN. This will automatically get you out of
EDIT mode and begin running the program.

2. Press PAUSE. The printout of numbers stops, and all
data on the CRT remains unchanged. The run light indi­
cates that the program is paused and can be continued.
The program line that appears at the bottom of the CRT
is the next line of the program that will be executed
when program execution resumes.

3-16 Programming Techniques

3. Press STEP a number of times. The program is now exe­
cuted one line at a time, as indicated by the program
lines changing at the bottom of the screen. Notice that
the program is still paused and continuable after each
press of the STEP keys.

4. Press CaNT. The printout on the CRT resumes with the
next number in sequence, and the run light indicates the
program is running.

5. Press STOP. The printout of numbers stops, and all the
data on the CRT remains unchanged. The run light is
off.

6. Press CaNT. An error results because a stopped pro­
gram cannot be continued.

7. Press RUN. The program runs again, but the number se­
quence has started from the beginning. RUN causes the
program to start from the beginning, not resume.

8. Type x == 0 and press (Enter). Notice that the numbers
being printed start over from Ht". The live keyboard was
used to change the value of HXH

, and the program used
this new value immediately.

9. Type WA I T 5 and press (Enter). Notice that the run light
changes to indicate that a keyboard command is being
executed. The printout is delayed for five seconds while
the keyboard command is processed.

10. Press PAUSE, and then type ED IT 50 and press (Enter).
The display on the CRT changes to show the program,
and line 50 appears in the current-line position of the
screen. The run light indicates that the program is
paused.

11. Change line 50 to WA IT 2 and press (Enter). The new
line 50 is entered, but the run light goes out. Changing
the program caused it to move from the paused state to
the stopped state.

12. Press CaNT. An error results. Once a program has been
changed, the program is no longer paused, and the
CaNT command is not allowed.

Programming Techniques 3-17

Program
Storage and
Retrieval

What Is Mass
Storage?

Media Specifiers

The previous sections have shown you how to enter, edit, and
run a program. The next logical step is to save the program
for future use or further development.

The exact procedure for storing and retrieving programs de­
pends upon the type of mass storage device you are using.
Your computer may have an internal floppy disc drive, an in­
ternal hard drive, an SRM system, or one of the many
external disc drives that are compatible with your system.

As the adjective N mass" suggests, mass storage devices are
data-storage devices which are generally capable of storing
"large" amounts of data. Just how much data constitutes a
large amount depends on the device itself. Most mass storage
devices are capable of storing hundreds of thousands to sev­
eral million items.

Besides having the ability to store data, mass storage devices
are capable of providing means for keeping data organized so
that logical groups may be accessed systematically and effi­
ciently. Data items are organized into logical groups of data
known as files; a file is merely a collection of data items. Mass
storage directories are composed of one or more files. On
some HP mass storage devices, a directory consists of all files
on the mass storage media; mass storage media are the actual
physical means by which data are stored. For example, the
media used by the internal drive of your computer consists of
magnetic particles on a plastic disc which can be magnetized
to store data.

Once the mass storage is connected, you need a way of speci­
fying which mass storage device is to be accessed. This is
done with a media specifier. The syntax for a media specifier
is illustrated below. Each component is then discussed.

MASS STORAGE IS ": [<device type>l,cdevlce
selector)[,<unlt number)]"

3-18 Programming Techniques

Device type-effectively describes the mass storage device to
the system. The system. then knows the capacity of the de­
vice, the directory structure, and other information required to
determine the access method for the device. Examples are

MEMORY, C880, and HP82901

Device type CS80 is used for internal drives. If the device
type specified is not valid, the system tests the device to de­
termine its type. There are two exceptions to this.

1. If the device selector is 0 and the device type is in valid,
the device type is assumed to be MEMORY.

2. If the device type is valid and the driver binary for the
device is not loaded, the system considers the device an
invalid device type.

Device Selector-tells the system the select code of the in­
terface connected to the device; if the interface is an HP-IB, it
also tells the system the device's primary address. The system
then knows which interface connects the device to the com­
puter (and the device's address, if an HP-IB is used).

A device selector can be just an interface select code or a
combination of select code and primary address. To derive a
device selector with a primary address, multiply the interface
select code by 100 and then add the address. For instance, the
device selector 703 would select the device with primary ad­
dress 3 which is connected to the interface at select code 7.
Note that interface select code 7 is the built-in HP-IB inter­
face; this is the interface you will probably use to attach
external disc drives. The device selector for built-in drives is
1500.

Unit number-is used to select among the various built-in
disc drives and directories. In the default configuration, A: is
unit number 0, B: is 1, C: is 2, and D: is 3.

Programming Techniques 3·19

Examples. The following statements set the system mass
storage to an HP 82901 drive at interface select code 7; the
HP 82901 is set to primary address 0 and has a unit number
of L

MASS STORAGE IS ":HP82901,700,l"

or

MASS STORAGE IS ":HP,700,l"

Note

CAT ":CS80,1500,0"

MS I is a valid abbreviation for MASS STORAGE I S, and is
easier to type.

Executing the following statement catalogs the disc in the in­
ternal drive at interface select code 1500 and unit number O.

The following statement creates an ASCII file named "Fred"
on the disc in unit 3 of an HP 9134 drive, connected through
interface select code 7; the device has a primary address of O.

CREATE ASCII "Fred:HP9134,700,3"

3-20 Programming Techniques

Initializing a Disc Before a disc is used for the first time, it must be initialized. If
the disc has already been initialized, and it contains data you
wish to retain, then it can be used on the BASIC system with­
out initialization. However, if you don't need the data on a
previously used disc, it might be advantageous to re-initialize
it on your computer to get maximum performance. The point
is this: a disc must be properly initialized before your com­
puter can use it, but initializing a disc destroys all the data on
the disc.

The following steps show a typical initialization process using
an internal floppy disc. The procedure for initializing external
discs is very similar, but specific details will change. For ex­
ample, an external disc drive will have a different specifier,
may have a different write-protect convention, and will prob­
ably take a different length of time to initialize.

This procedure will initialize the disc in MS-DOS format.
Discs that have been initialized by using the MS-DOS FOR­
MAT command can be used without going through this
procedure. If you need to initialize a disc in UF format for use
on an HP series 200 or 300. computer, use the HPWUTIL pro­
gram (Fl soft key)~ Refer to appendix C for more information.

To initialize a 5.25-inch disc on an internal disc drive A, fol­
low these. steps:

1. Make sure that the disc does not contain any important
data or programs. Many types of computers and word
processors use similar discs. When a disc is initialized, all
the data on it is destroyed!

2. Ensure that the disc is not "write protected'. The disc en­
velope has a small notch on one side. When this notch is
open, the computer is allowed to write on the disc. If
this notch is covered, data may be read from the disc,
but recording is not allowed. Trying to initialize a write­
protected disc results in error number 83.

3. Be sure the disc is properly inserted in the disc drive.

Programming Techniques 3·21

Note The next step assumes that you are using the default HP BA­
SIC configuration or that drive A is the first drive specified in
your HP BASIC configuration file.

4. Execute INITIALIZE ": CS80, 1500,0" . This com­
mand tells the computer to erase all data from the disc,
format it for use in your computer, check the quality of
the media, and create the directory area.

An initialize operation takes about three minutes. The CRT
displays the system's progress during this operation. When
the initialization is complete, the message is displayed:

Forma~~in9 ... Forma~ comple~e.

1213952 bytes ~o~al disc space.
1213952 by~es available on disk.

Format ano~her (Y/N?)

Disc Labels

Mter the initialization has completed successfully, the disc is
ready for storing programs and data.

Mter you initialize the disc, you may want to give it a label.
The PRINT LABEL statement prints the label in the disc di­
rectory. Once the label is there, a READ LABEL statement can
retrieve it. The disc label is included in a CATalog of the disc.

For example, to give the disc in the A: disc drive the label
VaLl, execute the following:

PRINT lABEL "Vall" TO ":CS80,1500,0"

3·22 Programming Techniques

To read the label, enter:

READ LABEL Name$ FROM ":CSSe,lSee,e"

Caution I

All mass storage operations, including program storage, re­
quirE!! a properly initialized device. You can tell if a mass
storage device has been properly initialized by executing a
CAT command for that device. This command will display
the contents of a device's directory. Type CAT and
press (Enter). If the CRT displays a catalog listing, then you
are looking at the directory of the default mass storage vol­
ume. Therefore, the device is properly initialized and can be
used for program storage. If you get an Error 80, then there is
no disc in the default drive, the disc has not been inserted
properly, or the disc is write protected (if this is the first time
the disc has been used). If you get an error, there are several
things you might do, depending on your situation.

• Be sure the appropriate driver binaries have been loaded.
Refer to chapter 2 for a description of loading binaries.

• If the error is caused by a disc that has not been initialized,
or has been initialized improperly (typically errors 78, 84,
or 85), you can execute an INITIALIZE command.

When you initialize a disc, all data on the disc is destroyed.

• Be sure that your mass storage system is configured
properly.

• If you need further assistance, call your local Hewlett­
Packard representative.

Programming Techniques 3-23

Recording a
Program

STORE "mor~9age"

SAVE "WHALES"

SAVE "TEMP", 500

To record a program, you can use the SAVE or STORE com­
mand with a suitable file name. The command used depends
upon the type of file you want. If SAVE is used, the text of
the program is recorded in an ASCII file. If STORE is used,
the program is recorded in a PROG file. The main advantage
of . a PROG file is rapid access. The following table gives a
brief summary of the differences between SAVE and STORE.

SAVE STORE

File type created: ASCII PROG

Retrieved by: GET LOAD

Can file be read as data? Yes No

Arbitrary program segments allowed? Yes No

To store a program, type the keyword STORE followed by a
file name, and press (Enter). For example, the command to
create a file called "'mortgageR is:

The SAVE procedure is similar except that SAVE allows you
to use line identifiers to specify what portion of the program
you want to save. This is helpful when moving or appending
program segments during major editing operations. To save
all of a program in a file called "WHALES", execute the fol­
lowing command:

The next command saves the last part of a program, from line
500 to the end, in an ASCII file called "'TEMPR.

3·24 Programming Techniques

When both the starting and ending lines are specified, any
portion of a program can be saved. Executing the command

SAVE "sort_cocle",Sort,Printout

Retrieving a
Program

GET "FORMULA"

saves that portion of the program that is between the lines
labeled "Sort" and "Printout" (inclusive) in an ASCII file
called "sort_code".

You can only use SAVE and STORE when first recording a
file. If the file you are trying to use already exists, you will get
an error message. To save or store a program to an existing
file, you must use RE-SAVE or RE-STORE.

Programs saved in an ASCII file are retrieved with the GET
statement. Programs stored in a PROG file are retrieved with
a LOAD statement. These statements can be executed from
the keyboard as commands or included in a program. To re­
trieve a program you need to know the name and type of the
file in which it is stored. If you are not sure of either of these,
use the CAT comand. The catalog display shows the name
and type of all files on the disc.

Using GET as a Command. You can use the GET command
to bring in programs or program segments from an ASCII file,
with the options of appending them to an existing program or
beginning program execution at a specified line.

If you want to clear any existing program from memory and
bring in the contents of an ASCII file, type:

This command clears the computer's memory and brings in
the ASCII file called "FORMULA". If the first line of the file
is not a valid program line, the GET is not performed and an
error 68 is reported. If the file is not an ASCII file, the GET is
not performed and an error 58 is reported.

Programming Techniques 3·25

GET IGeorge",750

GET IRATES",10,10

GET "RATES",250,100

If you want to append the contents of an ASCII file to an
existing program, a line identifier is added to the GET com­
mand. For example, assume you have a program in memory
whose last line number is 740, and you want to append the
contents of a file called uGeorgeH

• You can use the following
command to accomplish this:

This appends the program lines from the file called HGeorge"
to the existing program, renumbering them to start with line
number 750.

If the specified renumbering would create an invalid line
number, an error is sent to the system printer with an error
message, but it is not entered into program memory.

The GET command can also specify that program execution is
to begin. This is done by adding two line identifiers: one
specifies the placement and renumbering just described, and
the other specifies the line at which execution is to begin. For
example, assume there is no program in memory and that an
ASCII file called ORATES" contains valid program lines. A
typical command to bring a program into memory and begin
execution at the first line is:

If there is already a program in memory, an append run is
allowed. For example:

This command specifies that any existing lines from 250 to
the end are to be deleted, the contents of ORATES" is to be
renumbered and appended beginning at line 250, and then
program execution is to begin at line 100.

3·26 Programming Techniques

10 COM Ohms,Amps,Volts
20 Ohms = 120
30 Volts = 240
40 Amps = Volts/Ohms
50 GET "WATTAGE"
60 END

10 COM Ohms,Amps,Volts
20 Watts = Amps*Volts

Using GET in a Program Line. The GET statement can be
used in a program to transfer execution from one program
segment to another. This example of a programmed GET
demonstrates a simple linkage of two program segments, as
might occur when the entire program is too large to fit in
available memory.

First Program Segment:

File WATTAGE:

30 PRINT "Resistor Ohms =";Ohms
40 PRINT "Resistor Wattage =";Watts
50 END

LOAD "CANNON"

The COM statement dimensions and reserves memory for
variables in a special common memory area so more than one
program can access the variables.

Using LOAD as a Command. The LOAD command is used
to bring in programs from a PROG file, with the option of
beginning program execution at a specified line. For example:

Programming Techniques 3-27

LOAD "STONE",10

120 LOAD IPART2"

This command clears memory and loads the contents of the
PROG file called "CANNONH

• If the file is not a PROG file,
the LOAD is not performed and an error 58 is reported. If
any lines require a language extension that is not currently
installed, those lines cannot be executed. However, the LOAD
proceeds without error.

The LOAD command can also specify that program execution
is to begin.

This command causes the computer to load the program in
file HSTONE" and begin execution at line 10. The line identi­
fier may be a label or a line number, but it must identify a
line in the main program segment, not in a SUB or user-de­
fined function.

The LOAD command cannot be used to bring in arbitrary
program segments or append to a main program like GET
can.

Using LOAD in a Program Line. When used in a program
line, the actions of the LOAD statement are the same as those
described for the LOAD command, except program execution
resumes whether a line identifier is specified or not. For
example:

When this program statement is executed, the existing pro­
gram is replaced by the contents of the PROG file called
HPART2", and program execution resumes with the first line in
the new program.

3-28 Programming Techniques

Program
Structure and
Flow

Sequence

There are four general categories of program flow. These are
sequence, selection (conditional execution), repetition, and
event-initiated branching. This section tells you how to use all
of these types of program flow.

Linear Flow. The simplest form of sequence is linear flow.
Linear flow allows many program lines to be grouped to­
gether to perform a specific task in a predictable manner.
Keep these characteristics of linear flow in mind:

• Linear flow involves no decision making.

• Linear flow is the default mode of execution. Unless you
include a statement that stops or alters program flow, the
computer will always Hfall through" to the next higher
numbered line after finishing the line it is on.

Halting Program Execution. There are three statements
that can be used to block execution of the next line and halt
program flow.

1. The END statement. The primary purpose of the END
statement is to mark the end of the main program, how­
ever when an END statement is executed, program flow
stops and the program moves into the stopped (non-con­
tinuable) state.

2. The STOP statement. This acts just like an END state­
ment in that it stops program flow. You use a STOP
statement when you desire program flow to stop at some
point other than the end of the main program.

3. The PAUSE statement. You use the PAUSE statement to
temporarily halt program execution, leaving the program
variables intact. Execution is halted until you press
CONTINUE on the keyboard.

Programming Techniques 3-29

10 Radius = 5
20 Circum = PI*2*Radius
30 PRINT INT(Circum)
40 PAUSE
50 Area = PI*Radius A 2
60 PRINT INT(Area)
70 END

100 GOTO 30
150 GOTO XXXX

300 XXXX: , , , , , , , , ,

To demonstrate, type in the following program:

Now run the program by pressing RUN or type RUN and
press (Enter). The computer prints 31 on the CRT and the Run
Indicator in the lower right corner of the CRT is replaced with
a -, indicating the program is in a paused state. Now press
CONTINUE. The computer prints 78 on the CRT.

Simple Branching. The simplest form of branching uses the
statements GOTO and GOSUB. Both statements cause an un­
conditional branch to a specified location in the program.

1. The GOTO statement causes the program to branch to
some line number or label that is not the next line in the
program. Following are examples of the GOTO
statement:

2. The GOSUB statement is used to transfer program exe­
cution to a subroutine. A subroutine is a segment of a
program that is entered with a GOSUB statement and
exited with a RETURN statement. There are no param­
eters passed and no local variables are allowed in the
subroutine. The GOSUB statement can specify either the
line number or a line label as a designated entry point
for the subroutine being called. Here are some examples:

3-30 Programming Techniques

1'00
450

GOSUB 1000

GOSUB 3000

Selection

Remember that each time a subroutine is called by a
GOSUB, control is returned to the line immediately fol­
lowing the GOSUB when the RETURN is encountered in
the subroutine. Therefore you must have a RETURN for
each subroutine. Note that if you omit the RETURN, the
program will continue executing beyond the point at
which you expected it to return, until it encounters an­
other RETURN, STOP, or END. Obviously, this could
produce surprising results in the outcome of your
program.

The heart of a computer's decision-making power is the cate­
gory of program flow called selection, or conditional
execution. A certain set of the program either is or is not exe­
cuted, depending on the results of a test or condition. This
section presents the conditional-execution statements accord­
ing to various applications. The following is a summary of
these groupings:

1. Conditional execution of one segment.

2. Conditionally choosing one of two segments.

3. Conditionally choosing one of many segments.

Programming Techniques 3-31

Conditional Execution of One Segment. The basic deci­
sion to execute or not execute a program segment is made by
the IE .. THEN statement. This statement includes an expres­
sion that is evaluated as being either true or false. If true, the
conditional segment is executed. If false, the conditional seg­
ment is bypassed. The conditional segment can be either a
single BASIC statement or a program segment containing any
number of statements. The following example shows condi­
tional execution of a single statement:

100 IF Ph > 7,7 THEN PRINT "Ph Value has been exceeded!"

Notice the test (Ph > 7,7) and the conditional statement
(PR I NT, , ,) which appear on either side of the keyword
THEN. If the value of Ph is greater than 7.7 the PRINT state­
ment is executed. If the value of Ph is equal to or less than 7.7
the PRINT statement is not executed. In either case, the line
number immediately following line 100 would be executed
next.

Conditional Branching. Powerful control structures can be
developed by using branching statements in an IF. .. THEN
statement. Here are some examples:

110 IF Free_space < 100 THEN GOSUB Expand_file
120 !THE LINE AFTER IS ALWAYS EXECUTED

The statement checks the value of a variable called
Free_space, and if it is less than 100, a subroutine called
Expan~file is executed. If the value is not less than 100, the
subroutine is not executed. One important feature of this
structure is that the program flow is essentially linear, except
for the conditional uside trip" to a subroutine and back.

3-32 Programming Techniques

IF X

The conditional GaTa is such a commonly used technique
that the computer allows a special case of syntax to specify it.
Assuming that line number 200 is labeled "START', the fol­
lowing statements will cause a branch to line 200 if X is equal
to 3:

3 THEN
THEN
THEN
THEN

IF X = 3
IF X = 3
IF X = 3

GO TO 200
GOTO START
21313
START

lee
1113
1213
1313
1413
1513

lee
1113
1213
1313
1413
1513
1613
1713

IF Ph > 7,7 THEN
PRINT "The value
PRINT "Ph value

Multiple·Line Conditional Segments. If the conditional
program segment requires more than one statement, a slightly
different structure is used. For example:

of Ph has been exceeded!"
is";Ph

GOSUB Setup
END IF
! Program continues here

IF Flag THEN

If Ph is less than or equal to 7.7, the computer skips all the
statements between the IF ... END IF statements and continues
with the line follOwing the END IF. If the value of Ph is
greater than 7.7, then the statements between the IF. .. END IF
are executed before continuing on to the line after the END
IF. Any number of program lines can be placed between an
IF. .. END IF statement, including other IF. .. END IF statements.
For example:

IF End_of_page THEN
FOR I = 1 TO Skip_length

PRINT
Lines = Lines + 1

NEXT I
END IF

END IF

Programming Techniques 3·33

Remember, you can use the INDENT command to improve
the readability of your programs.

Choosing One of Two Segments. Often you want a pro­
gram flow that passes through only one of two paths
depending upon a condition. This type of decision is shown
in the following diagram:

Flag = 1

400
410
420
430
440
450
4GO
470
480

l- 490

IF Flag THEN
R=R+2
Area=PI*R"'2

ELSE

Flag = 0

Width=Width+l
Length=Length+l
Area=Width*Length

END IF
PRINT "Area =" jArea
! PrograM continues

This example has an IF. .. THEN ... ELSE structure which makes
the one-of-two choice easy and readable.

Choosing One of Many Segments. The SELECT ... END SE­
LECT is similar to the IF. .. THEN ... ELSE ... END IF construct,
but allows several conditional program segments to be de­
fined. Only one segment is executed each time the construct
is entered. Each segment starts after a CASE or CASE ELSE
statement, and ends when the next program line is a CASE,
CASE ELSE, or SELECT statement.

Consider the processing of readings from a voltmeter. Read­
ings which contain a function code have been taken. The
function codes identify the type of reading and are shown in
the following table:

3·34 Programming Techniques

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250

SELECT Funo;:t$
CASE "DV"
!
! Processing
!
CASE "AV"

! Processing
!
CASE "01"

! Processing
!
CASE "AI"
!
! Processing
!
CASE "OM"

! Proo;:essing
!
CASE ELSE

BEEP

Function Code Type of Reading

DV DC Volts

AV AC Volts

DI DC Current

AI AC Current

OM Resistance

The following example shows the use of the SELECT con­
struct. The function code is contained in the variable
FUNCT$.

Statements For DC Volts

Statements For AC Volts

Statements For DC Current

Statements For AC Current

Statements For Resistano;:e

PRItH "Invalid Reading!"
END SELECT
! Program exeo;:ution o;:ontinues here

Programming Techniques 3-35

Notice that the select construct starts with a SELECT state­
ment specifying the variable to be tested and ends with an
END SELECT statement. The anticipated values are placed in
CASE statements. Although this example shows a string
tested against simple literals, the SELECT statement works for
numeric or string variables or expressions. The CASE state­
ments can contain constants, variables, expressions,
comparison operators, or a range specification. The antici­
pated values must be of the same type (numeric or string) as
the tested variable.

The CASE ELSE statement is optional. It defines a program
segment that is executed if the tested variable does not match
any of the cases. If CASE ELSE is not included and no match
is found, program execution continues with the line following
the END SELECT.

You should be aware that if an error occurs when the com­
puter tries to evaluate an expression in a CASE statement, the
error is reported for the line containing the SELECT state­
ment. An error message pointing to the SELECT statement
means that there is an error in that line or in one of the CASE
statements following it.

Using the ON Statement. The same type of program flow
can be generated with an ON statement and some additional
processing. The ON statement transfers program control to
one of several destinations depending on the value of a
pointer. The pointer can be °a numeric expression rounded to
an integer, but its final value must be an integer.

100 ON Xl GOTO 150,200,300

In the above example, Xl is the pointer whose value will be
evaluated. If the value is 1, program control will be trans­
ferred to line 150; if it is 2, control is transferred to line 200;
and if it is 3, control is transferred to line 300. If Xl has a
value other than 1, 2, or 3, an error results:

3-36 Programming Techniques

ERROR 19 IN 100 Improper value or out of range

You can also use the ON statement with GOSUB instead of
GOTO. In this case, the RETURN from the GOSUB is to the
line following the ON ... GOSUB statement.

100 ON Xl GOSUB FIRST,SECOND,THIRD,LAST
110 PRINT "NEXT STATEMENT"

Repetition

The variable Xl is evaluated and the subroutine beginning at
the line identifier FIRST, SECOND, THIRD, or LAST, is exe­
cuted depending on whether Xl is 1, 2, 3, or 4. Control is
returned to line 110 regardless of which subroutine is exe­
cuted. As before, an error results if Xl is not 1, 2, 3, or 4.

There are four structures available for creating repetition. The
FOR. .. NEXT structure is used for repeating a program seg­
ment a predetermined number of times. Two other structures,
REPEAT. .. UNTIL and WHILE, are used for repeating a pro­
gram segment indefinitely, waiting for a specified condition to
occur. The LOOP ... EXIT IF structure is used to create an itera­
tive structure that allows multiple exit points at arbitrary
locations.

Fixed Number of Iterations. The general concept of repeti­
tive program flow can be shown with the FOR ... NEXT
structure. The FOR statement marks the beginning of the re­
peated segment and establishes the number of repetitions.
The NEXT statement marks the end of the repeated segment.
This structure uses a numeric variable as a loop counter. The
following example shows the basic elements of a FOR. .. NEXT
loop:

Programming Techniques 3-37

10 FOR X
20 BEEP
30 PRINT
40 WAIT 1
50 NEXT X
60 END

X

10 TO 0 STEP -1

In this example, X is the loop counter, 10 is the starting value,
o is the final value, -1 is the step size, and the repeated seg­
ment is composed of lines 20 through 50. Note that if the
step counter is not specified, a default value of 1 is assumed.

When all the variables involved are integers, the number of
iterations of any loop can be predicted using the formula

(STEP SIZE + FINAL VALUE - STARTING VALUE) --;- STEP SIZE

Thus, the number of iterations in the example above is 11.

The NEXT statement performs an Hincrement and compareH
on the loop counter. This means that the loop counter is in­
cremented by the step size and then compared to the final
value. If the loop counter has passed the specified value, the
loop is exited, otherwise the loop is repeated. Note that if the
number of iterations evaluates to zero or less, the loop is not
executed and program execution goes immediately to the line
following the NEXT statement.

The loop counter retains the exit value after the loop is fin­
ished.

Conditional Number of Iterations. Some applications need
a loop that is executed until a certain condition is true, with­
out specifically stating the number of iterations involved. For
example, suppose you want to be able to print the value of
successive powers of two, but only until the value is greater
than 1000. The REPEAT ... UNTIL is more flexible than the
FOR ... NEXT in this case. Consider the following example pro­
gram (found in file REPEATl on your Manual Examples disc):

3·38 Programming Techniques

10
20
30
40
50
60
70
80
90

X = 2
I = 1
PRINT Xl
REPEAT

X = 2" (I + 1)

I = I + 1
PRINT Xl

UNTIL X > 1000
END

This program will calculate the value of each power of 2 until
the value is greater than 1000. If you ran this program, the
results would be:

12 4 8 16 32 64 256 512 1024

10
20
30
40
50
60
70
80
90

X = 2
I = 1
PRINT Xl
WHILE X < 1000

X = 2" (I + 1)

I = I + 1
PRINT Xl

END WHILE
END

The WHILE loop is used for the same purpose as the REPEAT
loop. The only difference between the two is the location of
the test for exiting the loop. The REPEAT loop has its test at
the bottom. This means that the loop is always executed at
least once, regardless of the value of the test condition. The
WHILE loop has its test at the top, therefore it is possible for
the loop to be skipped entirely. The following example (found
in file WHILEl on your Manual Examples disc) shows this.

Programming Techniques 3-39

100 LOOP
110 Tes~ = RND -.5
120 IF Test < 0 THEN

The results obtained from this example should be identical to
the example using the REPEAT. .. UNTIL loop. Try these ex­
amples on your computer, and don't be afraid to experiment
with them. Change them to suit your own needs. This will
help you to understand the concepts of iterative processing.

Arbitrary Exit Points. The loop structures discussed so far
do not allow for conditional exit points within the program
segment between the top and bottom of the loop. The
LOOP ... EXIT IF construct allows you to do this. It also allows
you to have more than one exit point. Also, the EXIT IF state­
ment can be at the top or bottom of the loop. This means that
the LOOP structure can serve the same purposes as the
REPEAT ... UNTIL and WHILE ... END WHILE.

The EXIT IF statement must appear at the same nesting level
as the LOOP statement for a given loop. The following two
examples demonstrate this.

In this example, the EXIT IF statement is nested deeper than
the LOOP statement because it is placed in an IF. .. THEN
structure.

130 PRINT "NEGATIVE"
140 ELSE
150 EXIT IF Test> 0,4
160 PRINT "POSITIVE"
170 Et~D IF
180 END LOOP
190 END

3·40 Programming Techniques

100 LOOP
110 Test = RND -.5
120 EXIT IF Test> 0.4
130 IF Test < 0 THEN

Here is the proper structure to use.

140 PRINT "NEGATIVE"
150 ELSE
160 PRINT "POSITIVE"
170 END IF
180 END LOOP
190 END

If you enter the Hwrong" example and try to run it, you will
get the following error message:

ERROR 347 IN 150 Structures improperly matched

Event-Initiated
Branching

Now try the urightP example. The program should print the
words upositiveP and UnegativeP a random number of times,
and will stop when the value of the variable TEST is greater
than 0.4. In effect, since the RND function returns a frac­
tional value between 0 and 1, the program stops the first time
RND returns a value greater than 0.9

Event-initiated branching is established by the ON-event
statements. Here is a list of the statements:

ON CYCLE ON DELAY ON END

ON EaR ON EaT ON ERROR

ON HIL EXT ON INTR ON KBD

ON KEY ON KNOB ON SIGNAL

ON TIME ON TIMEOUT

Programming Techniques 3-41

100 ON KEY LABEL
110 ON KEY 5 LABEL
120
130 SPIN: DISP X
140 GOTO SPIN
150
160 PLUS: X = X + 1
170 RETURN
180
190 MINUS: X = X -
200 RETURN
210 END

The ON END event is used to detect when the end of a mass
storage file is reached. The ON CYCLE, ON DELAY, and ON
TIME events are used to direct program flow using the dock.
The ON ERROR event is used to trap run-time errors and
provide for error recovery routines. The ON KBD, ON KEY,
a,nd ON KNOB events pertain to various parts of the key­
board, and are used to enhance the "human interface" of
programs. The ON EaR, ON EaT, ON SIGNAL, ON INTR,
ON HIL EXT, and ON TIMEOUT events pertain to data
transfer, interfaces, and I/O operations.

The best way to understand how event-initiated branches op­
erate in a program is to try a few examples on your computer.
Try the following example (found in file ONKEY1 on your
Manual Examples disc).

"Inc" GOSUB PLUS
"Dec" GOSUB MINUS

1

The ON KEY statements are executed only once at the start of
the program. Once defined, these event-initiated branches re­
main in effect for the rest of the program. The program
segment labeled "SPIN" is an infinite loop. If it weren't for
interrupts, this program couldn't do anything except display a
zero. However, there is an implied IF .. THEN at the end of
lines 130 and 140 because of the ON KEY action. Either the
"PLUS" or "MINUS" subroutines are selected as a result of
softkey presses. If no softkey is pressed, the computer contin­
ues to display the value of X. The following section of
pseudocode shows the program flow of the "SPIN" segment
looks like.

3·42 Programming Techniques

SPIN: DISPLAY X
IF KEY 1 THEN GOSUB PLUS
IF KEY 5 THEN GOSUB MINUS
GOTO SPIN

Numeric
Computation

Numeric Data
Types

Note that the only way to terminate this program is to type
STOP and press (Enter).

Numeric computations deal exclusively with numeric values.
Adding two numbers and finding a sine or a logarithm are
numeric operations, but converting bases or converting num­
bers to a string are not.

The most fundamental numeric operation is the assignment
operation, achieved with the LET statement. The LET state­
ment originally required the keyword LET, but your computer
makes it optional. Thus, the following statements are
equivalent:

There are three numeric data types in BASIC:

• COMPLEX.

• INTEGER.

• REAL.

Programming Techniques 3-43

Any numeric variable that is not declared COMPLEX or IN­
TEGER is a REAL variable.

COMPLEX Variables. A COMPLEX number is written as
the sum of a real and an imaginary number. An imaginary
number is any real number multiplied by ~, and is ex­
pressed by mathematicians in the following manner:

a + ib

where i = ~. In the above representation, a is the real part
of the complex number, and ib is the imaginary part. The i in
front of the b forms the imaginary number, and is the same as
multiplying b by ~. For example, you would write 0" as
~ * V9 or simply 3i. Electrical engineers use the letter j in­
stead of i, to avoid confusion with the symbol for electric current.
COMPLEX numbers are stored as two REAL variables, thus a
COMPLEX number will require 16 bytes of memory.

INTEGER Variables. An INTEGER variable can be any whole­
number value from -32768 through +32767.

REAL Variables. A REAL variable can be any value from
-1.797073134862315 X 10-308 through 1.797073134862315 x
10-308. The smallest non-zero REAL value allowed is approxi­
mately ±2.22507385850n02 x 10-308

Declarations. You can declare variables to be of a particular
type by using the COMPLEX, INTEGER, and REAL statements.
For example, the statements

COMPLEX B, C, Phasorl(10), Phasor2(10)
INTEGER I, J, Da'::js(5), Weeks(5:17)
REAL X, y, Vol tage(4), Hours(5,8: 13)

3·44 Programming Techniques

DIM R(4,5)

each declare two scalar and two array variables. A scalar is a
variable which can represent a single value. An array is a
subscripted variable, and can contain multiple values accessed
by subscripts. You can specify both the lower and upper
bounds of an array, or specify the upper bound only, and use
the existing OPTION BASE statement as the lower
bound.You may declare an array using the DIM statement:

You may use an ALLOCATE statement to declare both REAL
and INTEGER arrays:

ALLOCATE REAL Coords(2,1:Points), INTEGER Status(l:Points)

The ALLOCATE statement allows you to dynamically allocate
memory in programs which need tight control over memory
use. Arrays will be discussed in detail later in this section.

Type Conversions. The computer will automatically convert
between REAL and INTEGER values in assignment state­
ments and when parameters are passed by value in program
and function calls. When parameters are passed by reference,
the conversion will not be made, and a TYPE MISMATCH
error will be reported.

When a REAL number is converted to an INTEGER, the frac­
tional part is lost, and the REAL number is rounded to the
closest INTEGER value. Converting the number back to
REAL will not restore the fractional part. Also, because of the
difference in ranges between the two types, not all REAL val­
ues can be converted into an equivalent INTEGER value. This
problem can generate INTEGER OVERFLOW errors. The
rounding problem does not generate an execution error, but
the range problem can generate an execution error, and you
should protect yourself from this possibility. One way to do
this is shown on the next page:

Programming Techniques 3-45

200 IF (-32768 <= X) AND (X <= 32767) THEN
210 Y = X
220 ELSE
230 GOSUB Out_of_range
240 END IF

Resident
Numerical
Functions

The resident functions are the functions that are part of the
BASIC language. Your BASIC language includes numerous
functions to make mathematical operations easier. This sec­
tion covers these functions by placing them in the following
categories:

• Arithmetic Functions.

• Exponential Functions.

• Trigonometric Functions.

• Binary Functions.

• Limit Functions.

• Rounding Functions.

• Random Number Function

• Complex Functions.

• Time and Date Functions.

• Base Conversion Functions.

• General Functions.

3-46 Programming Techniques

Arithmetic Functions. Your BASIC language has the fol­
lowing arithmetic functions included:

Function

ABS

FRACT

INT

PI

SGN

SQR

Description

Returns the absolute value of an expression.

Returns the fractional part of the argument.

Returns the greatest integer that is less than or
equal to an expression. The result is of the same
type as the original number.

Returns the constant 3.14159265358979, an ap­
proximate value for 7r.

Returns the sign of an expression: 1 if positive,
o if 0, -1 if negative.

Returns the square root of an expression.

Exponential Functions. This section provides a list of func­
tions used for determining the natural and common
logarithms of an expression. All exponential functions use
REAL, INTEGER, or COMPLEX numbers as their argument.

Function

EXP

LGT

LOG

Description

Raise the Naperian e to a power. e ~
2.71828182845905.

Returns the base 10 logarithm of the expression.

Returns the natural (Naperian base e) logarithm
of an expression.

Trigonometric Functions. There are twelve trigonometric
functions included in your BASIC language. All of these func­
tions use radian values as the default input, however you can
change this to degrees with the DEG statement. You can re­
select radians by using the RAD statement. It is a good idea to
explicitly set the mode for input to these functions, even if
you are using the default (radian) mode. This is especially im­
portant when you are writing subprograms, as the
subprogram inherits the mode from the calling program.

Programming Techniques 3-47

The following is a list of the trigonometric functions. All these
functions use INTEGER, REAL, or COMPLEX numbers as
their argument.

Function

ACS

ACSH

ASN

ASNH

ATN

ATNH

COS

COSH

SIN

SINH

TAN

TANH

Description

Returns the arc cosine of an expression.

Returns the hyperbolic arc cosine of an
expression.

Returns the arc sine of an expression.

Returns the hyperbolic arc sine of an
expression.

Returns the arc tangent of an expression.

Returns the hyperbolic arc tangent of an
expression.

Returns the cosine of the angle represented by
the expression.

Returns the hyperbolic cosine of the angle rep­
resented by the expression.

Returns the sine of the angle represented by the
expression.

Returns the hyperbolic sine of the angle repre­
sented by the expression.

Returns the tangent of the angle represented by
the expression.

Returns the hyperbolic tangent of the angle rep­
resented by the expression.

Binary Functions. All computer operations use the binary
number representation. You usually don't see this because the
computer changes decimal numbers that you input into bi­
nary representation. The operations you specify are
performed on the binary numbers, and results are changed
back into decimal numbers before displaying or printing
them.

3-48 Programming Techniques

The following BASIC functions deal with binary numbers:

Function

BINAND

BINCMP

BINEOR

BINIOR

BIT

ROTATE

SHIFT

Description

Returns the bit-by-bit logical and of two
arguments.

Returns the bit-by-bit complement of two
arguments.

Returns the bit-by-bit exclusive or of two
arguments.

Returns the bit-by-bit inclusive or of two
arguments.

Returns the state of a bit of the argument.

Returns a value obtained by shifting an integer
representation of an argument a specific num­
ber of bit positions with wraparound.

Returns a value obtained by shifting an integer
representation of an argument a specific num­
ber of bit positions, without wraparound.

When any of these operations are used, the arguments are
first converted to integer (if they are not already in integer)
and then the specified operation is performed. You should re­
strict bit-oriented binary operations to declared INTEGER
variables. If it is necessary to operate on REAL variables, be
sure to use the precautions described under type conversions
in the previous section, to avoid INTEGER OVERFLOW
errors.

Limit Functions. It is sometimes necessary to limit the range
of values of a variable. BASIC provides four functions for this
purpose:

Function

MAX

MAXREAL

MIN

MINREAL

Description

Returns the larger of a list of expressions.

Returns the largest REAL number.

Returns the smallest of a list of expressions.

Returns the smallest REAL number.

Programming Techniques 3-49

Rounding Functions. Sometimes it is necessary to round a
number in a calculation, to eliminate unwanted resolution.
There are two types of rounding, rounding to a total number
of decimal digits, and rounding to a number of decimal places
(limiting fractional information).

Function Description

DROUND Rounds a number to a specified number of
digits.

PROUND Returns the value of the argument rounded to a
power of ten.

Random Number Function. The RND function returns a
pseudo-random number between 0 and 1. Since many appli­
cations require random numbers with arbitrary ranges, it is
necessary to scale the numbers.

100 R=INT(RND*Range)+Offset

10 FOR 1=1 TO 10
20 Die=INT(RND*6)+1
30 PRINT "DIE IS";Die
40 NEXT
50 END

The above statement will return an integer between OFFSET
and OFFSET + RANGE. Try the following example, which
will simulate ten throws of a die.

If you run the above program several times, you will see that
the values for the die do not change from one run to the next.
This is because the RND function is using the same seed for
each run. The random number generator is seeded with the
value 37480660 at power-on, during pre-run, and when
SCRATCH or SCRATCH A are executed. You can change the
seed by using the RANDOMIZE statement, which will give a
new pattern of numbers. Edit the program above to add a
RANDOMIZE statement as line 05 and see what happens.

3·50 Programming Techniques

10 COMPLEX B,C

Complex Functions. These functions are obtained by load­
ing the COMPLEX binary, as described in chapter 2. Topics
which are covered in this section are:

• Assigning COMPLEX Variables.

• Evaluating COMPLEX Numbers.

• Complex Arguments and the Trigonometric Mode.

• Determining the Parts of Complex Numbers.

• Converting from Rectangular to Polar Coordinates.

• An Application for Complex Numbers.

Assigning COMPLEX Variables. To assign complex vari­
ables, the variables must first be declared as complex, and one
or more of the variables must have already been created using
the CMPLX function. For example, the following program
creates a complex variable C and assigns it to the complex
variable B. It then displays the results.

20 REAL Real_part,Imaginary_part
30 Real_part=3.5
40 Imaginary_part=.5
50 C=CMPLX(Real_part,Imaginary_part)
60 B=C
70 PRINT C,B
80 END

Executing the above program produces these results:

3.5 .5 3.5 .5

Programming Techniques 3-51

Evaluating COMPLEX Numbers. The BASIC expression
evaluation uses two separate routines for dealing with REAL,
INTEGER and COMPLEX data types. There is a routine for
dealing with REAL and INTEGER numbers and one for
COMPLEX numbers. For example, taking the square root of a
negative INTEGER or REAL number will produce an error.
For instance, SQR (-1) results in

ERROR 30 SQR of negative number

o 1

10 DEG
20 PRINT SIN(30)
30 PRINT

If you have a need to compute the square root of a negative
REAL or INTEGER number, assign the value to the real part
of a complex number using the CMPLX function. For in­
stance, SQR (CMPLX (-1.0» results in

where 0 is the real part of the complex number and 1 is the
imaginary part of that same number.

Complex Arguments and the Trigonometric Mode. When
a trigonometric function call is made using a complex value as
its parameter, BASIC will evaluate that call using the radian
mode regardless of the current trigonometric mode setting
(DEG, RAD, or GRAD). Mter the function call has been eval­
uated, the system returns to the current trigonometric mode.
For example, enter and run this program:

40 PRINT SIN(CMPLX(30.0»
50 PRINT

Always evaluated in the RAD mode.

60 PRINT SIN(30)
70 END

3-52 Programming Techniques

The results from executing this program are as follows:

.5 (degree mode)

- . 988031624093 0 (radian mode)

. 5 (degree mode)

Note Any complex function whose definition includes a sine or co­
sine function will be evaluated in the radian mode regardless
of the current trigonometric mode (i.e. RAD or DEG).

Determining the Parts of Complex Numbers. In some
applications, such as network design, it is useful to be able to
determine the real and imaginary parts of complex numbers,
and the conjugate of a complex number. This section provides
the functions necessary for performing these operations.

REAL(C)

IMAG(C)

returns the real part of a complex number. For
example,

DISP REAL(CMPLX(10,-3»

Executing this statement produces:

10

returns the imaginary part of a complex number.
For example,

DISP IMAG(CMPLX(10,-3)

Executing this statement produces:

-3

Programming Techniques 3-53

140 RAD

CONJG(C) returns the complex conjugate of a complex
number. This function returns both the real and
imaginary parts of a complex number;however,
the imaginary part is changed to a negative
value. For example:

DISP COHJG(CMPLX(10.-3»

Executing this statement produces the following
results:

10 3

Converting from Rectangular to Polar Coordinates.
BASIC stores and uses complex numbers in a representation
called rectangular coordinates. Rectangular coordinates locate
a point in the complex plane. The complex plane is similar to
the plane formed by the Cartesian coordinate system except
the X axis represents the real part of the complex number and
the Y axis represents the imaginary part of the complex num­
ber. An alternate representation is polar coordinates. Polar
coordinates consist of a magnitude and an argument (angle).
The function used to obtain the magnitude is ABS(C) and the
function used to obtain the argument is ARG(C).

The following program converts the rectangular coordinates 5
and 6 of the complex number 5 + j6 to polar coordinates.

150 PRINT liThe magnitude of 5 + j6 is: " J ABS(CMPLX(5,6»
160 PRINT liThe argument of 5 + j6 is: II J ARG(CMPLX(5, 6»
170 END

Executing this program produces the following results in ra­
dian mode (RAD):

The magnitude of 5 + j6 is: 7.81024967591
The argument of 5 + j6 is: .876058050598

3·54 Programming Techniques

140 DEG

If you change line 140 above to be:

and run the program again, the results in the degree mode
(DEG) are:

The magnitude of 5 + j6 is: 7.81024967591
The argument of 5 + j6 is: 50.1944289077

Time and Date Functions. There are two functions which
will return the time and date in seconds. These are:

Function

DATE

TIME

Description

Converts a formatted date string (UDD MMM
yyyy") into a numeric value in seconds.

Converts a formatted time-of-day
(HH:MM:SS") string into a numeric value of
seconds since midnight.

Base Conversion Functions. There are two functions you
can use to convert binary, octal, decimal, or hexadecimal
string values into a decimal number.

Function

DVAL

IVAL

Description

Returns the whole number value of a binary, oc­
tal, decimal, or hexadecimal 32-bit integer. The
argument is a a string.

Returns the integer value of a binary, octal, deci­
mal, or hexadecimal 16-bit integer. The
argument is a string.

General Functions. When you are specifying select code
and device selector numbers, it is more descriptive to use a
function to represent that device as opposed to a numeric
value. For example, the statement

Programming Techniques 3·55

ENTER 2;Numeric_function

ENTER KBD;Numeric_value

allows you to enter a numeric value from the keyboard. The
above statement is not as easy to understand as

where you know the function KBD stands for keyboard.
Functions which return a select code or device selector are:

Function

CRT

Description

Returns the INTEGER 1. This is the select code
of the internal CRT.

KBD Returns the INTEGER 2. This is the select code
of the keyboard.

SC Returns the interface select code associated with
an I/O path name.

PRT Returns the INTEGER 701. This is the default
(factory set) device selector for an external HP­
IB printer.

RES Returns the last live keyboard numeric result.

Array and Matrix Functions. The following functions per­
form operations connected with arrays or matrices.

Function

BASE

DET

DOT

RANK

SIZE

SUM

Description

Returns the lower subscript bound of a dimen­
sion of an array.

Returns the determinant of a matrix.

Returns the inner (dot) product of two vectors.

Returns the number of dimensions in an array.

Returns the number of elements in a dimension
of an array.

Returns the sum of all the elements in an array.

3-56 Programming Techniques

Evaluating Scalar
Expressions

The arithmetic operations that you can perform on the system
are:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (f)

• Exponentiation (")

• Integer Division (f or DIV)

• Modulo (MOD or MODULO)

The following table defines the hierarchy used by the com­
puter in evaluating numeric expressions.

Precedence Operator

Highest Parentheses; they may be used to force any order
of operation.

Functions, both user-defined and machine-
resident.

Exponentiation: A

Multiplication and division: ., /, MOD, DIV, and
MODULO.

Addition, subtraction, monadic plus and minus: +
and -.

Relational operators: =, <, >, <>, <=, and
>=.

NOT

AND

Lowest OR, EXOR

Programming Techniques 3·57

When an expression is being evaluated it is read from left to
right, and operations are performed as they are encountered,
depending upon the hierarchy. If the computer cannot imme­
diately perform the operation, it is stacked, and the evaluation
continues. Consider the following expression:

The computer will evaluate this expression in the following
the manner:

1. Perform the calculations inside the parentheses and
multiply by 4.

2. Compute the sine of Y.

3. Multiply the sine of Y by 5.

4. Add the value found in step 1 to the value found in
step 3.

Strings in Numeric Expressions. You can include string
expressions in numeric expressions if they are separated by
comparison operators. The comparison operators always yield
boolean results, which are numeric values in BASIC.

Step Functions. The comparison operators are useful for
conditional branching, but you can also use them for creating
numeric expressions representing step functions. For example,
suppose you want to output certain values depending on the
value, or range of values, of a single variable. This is shown
as follows:

• If variable < 0 then output = o.
• If 0 ~ variable < 1 then output = VA2 + B2.

• If variable ~ 1 then output = 15.

3·58 Programming Techniques

100 DEG
110 A=25.3765477

You could achieve the desired result by using a series of
IF..THEN statements, but you could also use the following ex­
pression (where X is the variable and Y is the output):

The boolean expressions each return a 1 or a which is then
multiplied by the accompanying expression. Expressions not
matching the selection return a and are not included in the
result. The value assigned to the variable before the expres­
sion is evaluated is used to determine the result.

Comparing REAL Numbers. When you compare INTEGER
numbers, no special precautions are necessary. When you
compare REAL numbers, especially the results of calculations
and functions, it is possible to encounter problems due to
rounding. For example, consider the use of comparison oper­
ators in IF..THEN statements to check for equality in the
following:

120 IF SIN(A)A2+COS(A)A2=1.0 THEN
130 PRINT "Equal"
140 ELSE
150 PRINT "Not Equal"
160 END IF

You will find that the equality test fails due to rounding er­
rors. A repeating decimal or irrational number cannot be
represented exactly in any finite machine.

Programming Techniques 3-59

113 A=32.5e87
213 B=31.625
313 C=A*B PRODUCT
40 0=32.5122
513 E=31.621595509
60 F=D*E ! PRODUCT
70 IF C=F THEN 90
80 PRINT "C is no~
90 C=DROUND(C,7)
100 F=DROUND(F,7)
110 IF C=F THEN
120 PRINT "C equals
130 ELSE
140 PRINT "C is no~
150 END IF
160 END

Another good example of equality error occurs when multi­
plying or dividing data values. A product of two non-integer
values nearly always results in more digits beyond the deci­
mal point than exists in either of the two numbers being
multiplied. Any tests for equality must consider the exact vari­
able value to its greatest resolution. If you cannot guarantee
that all digits beyond the required resolution are zero, you can
use the DROUND function to eliminate unwanted resolution
before comparing results. The following example (found in file
DROUNDI on your Manual Examples disc) shows how you
can use DROUND:

IS 1028.08763750

IS 1028.08763751

equal ~o F. "

F af~er DROUND."

equal to F af~er DROUND. "

You can experiment with the concept by substituting other
values for the variables A, B, D, and E, and by changing the
number of digits specified in the DROUND function.

3-60 Programming Techniques

Numeric Arrays

Note Many of the statements that deal with arrays (such as MAT)
require the MAT binary. If you do not have this binary
loaded in your system, or you are not sure how to determine
if it is loaded, refer to chapter 2, /I After HP BASIC Is Loaded,'
for more information.

An array is a multi-dimensioned structure of variables that
are given a common name. The array can have one through
six dimensions. Each location in an array can contain one
variable value, and each value has the characteristics of a sin­
gle variable, depending on whether the array consists of
REAL, INTEGER or COMPLEX values. A one-dimensional ar­
ray consists of n elements, each identified by a single
subscript. A two-dimensional array consists of m times n ele­
ments where m and n are the maximum number of elements
in the two respective dimensions. Arrays require a subscript
in each dimension in order to locate a given element of the
array. You can specify up to six dimensions for any array in a
program. REAL arrays require eight bytes of memory for each
element, plus overhead, and COMPLEX arrays require 16
bytes of memory for each element, plus overhead. It is easy to
see that large arrays can demand massive memory resources.
An undeclared array is given as many dimensions as it has
subscripts in its lowest-numbered occurrence. Each dimension
of an undeclared array has an upper bound of ten. Space for
these elements is reserved whether you use them or not.

Programming Techniques 3-61

Dimensioning an
Array

Before you use an array, you should tell the system how
much memory to reserve for it. This is called II dimensioning"
an array. You can dimension arrays with the DIM, COM, AL­
LOCATE, INTEGER, REAL or COMPLEX statements. For
example,

COMPLEX Array_complex(2,4)

DIM Array(3,4)

An array is a type of variable and as such follows all rules for
variable names. Unless you explicitly specify INTEGER or
COMPLEX type in the dimensioning statement, arrays default
to REAL type. The same array can only be dimensioned once
in a context.*

However, as we explain later in this section, you can
redimension arrays by using the REDIM statement.

When you dimension an array, the system reserves space in
internal memory for it. The system also sets up a table which
it uses to locate each element in the array. The location of
each element is designated by a unique combination of sub­
scripts, one subscript for each dimension. For example,

dimensions a 3 x 4 two-dimensional array with the first sub­
script (3) representing three rows and the second subscript (4)
representing four columns .. For a four-dimensional array, for
instance, each element is identified by four subscript values.
Each unique set of subscript values points to one, and only
one, array element. The actual size of an array is governed by
the number of dimensions and the subscript range of each
dimension. If A is a three-dimensional array with a subscript
range of 1 thru 4 for each dimension,

• There is one exception to this rule: If you ALLOCATE an array, and then
DEALLOCATE it, you can dimension the array again.

3-62 Programming Techniques

DIM A(1:4,1:4,1:4)

Some Examples of
Arrays

Note

10 DIM A(3,4,0:2)

then its size is 4 x 4 x 4, or 64 elements. Note that 1 on the
left side of the colon in the dimension statement above is the
lower bound and 4 on the right is the upper bound. There­
fore, when you dimension an array you must give not only
the number of dimensions, but also the subscript range of
each dimension. Subscript ranges can be specified by giving
the lower and upper bounds, as shown above, or by giving
just the upper bound. If you give only the upper bound, the
lower bound defaults to the current option base setting. Each
context initializes to an option base of 0 (arrays appearing in
COM statements with an (*) will keep the base with which
they were originally dimensioned). However, you can set the
option base to 1 using the OPTION BASE statement. You can
have only one OPTION BASE statement in a context, and it
must precede all explicit variable declarations.

Throughout this section we will be using DIM statements
without specifying what the current option base setting is.
Unless explicitly specified otherwise, all examples in this sec­
tion use option base 1.

The following examples illustrate some of the flexibility you
have in dimensioning arrays.

Programming Techniques 3-63

(1,1,0)
c:
0 (1,1,1) ·iii
c:
CD (1,2,0) (1,1,2)
E
i5 (1,2,1)
"0 c:

(1,3,0) (1,2,2) C\I

(1,3,1)

(1.4,0) (1,3,2)

(2,1,0) (3,1,0)

(2,1,1)

(2,2,0)

(2,2,1)

(2,3,0)

(2.4,1)

1 st Dimension

Size Lower Bound Upper Bound

1 st Dimension 3 1 3

2nd Dimension 4 1 4

3rd Dimension 3 0 2

In this example we portray the first dimension as planes, the
second dimension as rows, and the third dimension as col­
umns. In general, the last two dimensions of any array always
refer to rows and columns, respectively. When we discuss
two-dimensional arrays, the first dimension will always rep­
resent rows, and the second dimension will always represent
columns. Note also in the above example that the first two
dimensions use the default setting of 1 for the lower bound,
while the third dimension explicitly defines 0 as the lower
bound. The numbers in parentheses are the subscript values
for the particular elements. These are the numbers you use to
identify each array element.

3·64 Programming Techniques

10 COM B(1:5,2:6)

(1,2) (1,3) (1,4) (1,5) (1,6)

(2,2) (2,3) (2,4) (2,5) (2,6)

(3,2) (3,3) (3,4) (3,5) (3,6)

(4,2) (4,3) (4,4) (4,5) (4,6)

(5,2) (5,3) (5,4) (5,5) (5,6)

Size Lower Bound Upper Bound

1 st Dimension 5 1 5

2nd Dimension 5 2 6

10 ALLOCATE INTEGER C(2:4,-2:2)

(2,-2) (2,-1) (2,0) (2,1) (2,2)

(3,-2) (3,-1) (3,0) (3,1) (3,2)

(4,-2) (4,-1) (4,0) (4,1) (4,2)

Size Lower Bound Upper Bound

1 st Dimension 3 2 4

2nd Dimension 5 -2 2

121~ OPTION BASE 0
. u INTEGER 0(1,4,-1:2)

Programming Techniques 3-65

(0,0, -1)

(0,0,0)

(0,1, -1) (0,0,1)

(0,1,0)

(0,2, -1) (0,1,1)

(0,2,0)

(0,3,-1) (0,2,1)

(0,3,0)

(0,4, -1) (0,3,1)

(0,4,0)

(0,4,1)

(1,0, -1)

(1,0,0)

(1,1,-1) (1,0,1)

(0,0,2) (1,1,0) (1,0,2)

(1,2, -1) (1 ,1 ,1)

(0,1,2) (1,2,0) (1,1,2)

(1,3, -1) (1,2,1)

(0,2,2) (1,3,0) (1,2,2)

(1,4,-1) (1,3,1)

(0,3,2) (1,4,0)

(0,4,2) (1,4,2)

Size Lower Bound Upper Bound

1 st Dimension 2 0 1

2nd Dimension 5 0 4

3rd Dimension 4 -1 2

Arrays are limited to six dimensions, and the subscript range
for each dimension must lie between -32767 and 32767.
(REDIM and ALLOCATE allow the subscript range to go
down to -32768, but the total size of each dimension must
be less than 32768 elements.) For the most part, we use only
two-dimensional examples since they are easier to illustrate.
However, the same principles apply to arrays of more than
two dimensions as well.

3-66 Programming Techniques·

As an example of a four-dimensional array, consider a five­
story library. On each floor there are 20 stacks, each stack
contains 10 shelves, and each shelf holds 100 books. You can
specify the location of a particular book by using the number
of the floor, the stack, the shelf, and the particular book on
that shelf. You can dimension an array for the library with
the statement:

I DIM Library(5,213, 113, lee)

I Library(2, 12,3,35)

This means that there are 100,000 book locations. You iden­
tify a particular book by specifying its subscripts. For
example, the statement:

identifies the 35th book on the 3rd shelf of the 12th stack on
the 2nd floor. You can imagine accessing a particular page of
a book by using a 5-dimensional array. For example, if we di­
mension an array:

DIM Page(5,213, 113, 11313,213(3)

then

Page(1,7,2,19,13(3)

Programming Techniques 3-67

designates page 130 ofthe 19th book on the 2nd shelf of the
7th stack on the 1st floor. You can specify words on pages by
using a 6-dimensional array. Remember that six dimensions is
the maximum, so you cannot specify letters of words. Also,
you can dimension more than one array in a single statement
by separating the declarations with a comma. For example

10 DIM A(1,3,4),B(-2:0,2:5),C(2:4,-2:2)

Problems With
Implicit

Dimensioning

Using Array
Elements

A(3,4)=13

dimensions all three arrays A, B, and C.

In any environment, an array must have a dimensioned size.
You can pass this size into an environment through a passed
parameter list or a COM statement. You can explicitly dimen­
sion the array by using the COM, INTEGER, REAL,
COMPLEX or ALLOCATE statements. You can also implicitly
dimension an array by using a subscripted reference to it in a
program statement other than a MAT or a REDIM statement.
If you attempt to use an array that does not have a dimen­
sioned size in the current environment in a MAT or REDIM
statement, you will get an error. In other words, MAT and
REDIM statements cannot be used to implicitly dimension an
array.

This section will show you how to assign and extract values
from individual elements within an array.

Assigning an Individual Array Element. Once an array has
been dimensioned, the next step is to fill it with useful values.
Every element in an array is initially set to zero, but there are
a number of different ways you can change the values. The
most obvious is to assign a particular value to each element.
You do this by specifying the element's subscripts. For exam­
ple, the statement:

3-68 Programming Techniques

X=A(3,4,2)

Filling Arrays

assigns the value 13 to the element in the third row and
fourth column of array A. All subscripts must lie within the
dimensioned range. H you use out-of-range subscripts, the
system returns an error.

Extracting Single Values From Arrays. There are a num­
ber of ways you can use to extract values from array
elements. To extract the value of a particular element, simply
specify the element's subscripts. For example, the statement:

assigns the value of the element occupying the given location
in array A to the variable X. The system will automatically
convert variable types. For example, if you assign an element
from a Complex array to an Integer variable, the system will
perform the necessary rounding and ignore the imaginary
part of the complex number.

This section will provide you with three methods for filling
an entire array. The topics covered are as follows:

• Assigning Every Element in an Array the Same Value.

• Using the READ Statement to Fill an Entire Array.

• Copying Arrays into Other Arrays.

Assigning Every Element in an Array the Same
Value. For some applications, you may want to initialize ev­
ery element in an array to some particular value. You can do
this by assigning a value to the array name. However, you
must precede the assignment with the MAT keyword. For
example:

Programming Techniques 3-69

MAT A=(10)

MAT C=(CMPLX(1,2))

10 OPT! ON BASE 1
20 DIM A(3,3)

assigns the value 10 to every element in array A, regardless of
A's size. Note that the numeric expression on the right-hand
side of the assignment must be enclosed in parentheses and
that this expression may be INTEGER, REAL or COMPLEX.
Let's look at an example of assigning a COMPLEX value to
every element of a COMPLEX array:

This statements assigns the complex number 1 + 2i to every
element of the complex array C.

Using the READ Statement to Fill an Entire Array. You
can assign values to an array by using the READ and DATA
statements. The DATA statement allows you to create a
stream of data items, and the READ statement enables you to
enter the data stream into an array. For example:

30 DATA -4,36,2.3,5,89,17,-6,-12,42
40 READ A(t)
50 END

The asterisk in line 40 is used to designate the entire array
rather than a single element. The system will fill an entire
row before going to the next one. The READ jDATA state­
ments are discussed further in the section entitled UData
Storage and Retrieval. U

3-70 Programming Techniques

MAT A=B

Copying Arrays into Other Arrays. Another way to fill an
array is to copy the elements from one array into another.
Suppose, for example, that you have the two arrays A and B
shown below.

Note that A is a 3 x 3 array that is filled entirely with D's,
while B is a 3 x 2 array filled with non-zero values. To copy
B to A, we would execute:

Again, you must precede the assignment with MAT. The sys­
tem will automatically redimension the resulting array (the
one on the left-hand side of the assignment) so that it is the
same size as the "operand array" (the one on the right side of
the equation.) There are two restrictions on redimensioning
an array .

• The two arrays must have the same rank (e.g., the same
number of dimensions.)

• The dimensioned size of the result array must be at least as
large as the current size of the operand array.

If the system cannot redimension the result array to the
proper size, it will return an error.

Programming Techniques 3-71

10 OPTI ON BASE 1

Automatic redimensioning of an array will not affect the
lower bounds, only the upper bounds. Therefore, the BASE
values of each dimension of the result array will remain the
same. Keep in mind that the size restriction applies to the di­
mensioned size of the result array and the current size of the
operand array. Suppose we dimension arrays A, Band C to
the following sizes:

20 DIM A(3,3),B(2,2),C(2,4)

MAT A=B

MAT A=C

MAT A=C

MAT B=A or MAT B=C

We can execute the statement

since A is dimensioned to 9 elements and B is only 4 ele­
ments. The copy automatically redimensions A to a 2 x 2
array. Nevertheless, we can still execute:

The reason for this is that the nine elements originally re­
served for array A remain available until the program is
scratched. Array A now becomes a 2 x 4 matrix. Mter

you could not execute:

3·72 Programming Techniques

MAT C=A

Printing Arrays

PRINT AO).:

since in each of these cases, you are trying to copy a larger
array into a smaller one. You could execute:

after the original MAT A = B assignment, since C's dimen­
sioned size (8) is larger than A's current size (4).

Once an array has been filled with elements, it is nice to
know if those elements exist in the array. The best way to do
this is to display them on the screen or printer. This section
provides information on how to perform this task for REAL,
INTEGER, and COMPLEX values.

Printing an Entire Array. Certain operations (e.g., PRINT,
OUTPUT, ENTER and READ) allow you to access all ele­
ments of an array merely by using an asterisk in place of the
subscript list. The statement

The semicolon at the end of the statement is equivalent to
putting a semicolon between each element. When the ele­
ments are displayed they will be separated by a space. The
default is to place elements in successive columns.

Examples of Formatting Arrays for Display. This section
provides two subprograms which have been given the name
Printmat. The first subprogram is used to display two-dimen­
sional arrays and the second subprogram is used to display
three-dimensional arrays.

Programming Techniques 3·73

240 SUB PrintmatCArrayC*»
250 OPTION BASE 1

To display a two-dimensional array, you can use the follow­
ing subprogram:

260 FOR Row=BASECArray,l) TO SIZECArray,1)+BASECArray,1)-1
270 FOR Column=BASECArray,2) TO SIZECArray,2)+BASE(Array,2)-1
280 PRINT USING "DDDD,XX,#")ArrayCRow,Column)
290 NEXT Column
300 PRINT
310 NEXT Row
320 SUBEND

Assuming that the array you intend to display is a five-by­
five two-dimensional array, your results should look similar to
this:

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

In order to use the above subprogram with COMPLEX arrays,
you only need to change program line 240 to the following:

240 SUB PrintmatCCOMPLEX ArrayC*»

Each element position in the COMPLEX array will have two
values in it one being the real part of the complex number
and the other being the imaginary part. For example, the fol­
lowing array is a COMPLEX array called CompleX-array:

3-74 Programming Techniques

Passing Entire
Arrays

Printmat (ACt»)

Copying Subarrays

MAT Array55=Array33

9 -6

5 2 :]
where the element Complex-array (1,2) contains the real part
of the complex number - 6 and the imaginary part 1.

The asterisk is also used to pass an array as a parameter to a
function or subprogram. For instance, to pass an array A to
the Printmat subprogram listed earlier, you would write:

Topics discussed in this section are as follows:

• Subarray specifier.

• Copying a sub array into an array.

• Rules for copying subarrays.

Dimensions for the arrays covered in the above topics will
assume an option base of 1 (OPTION BASE 1) unless stated
differently.

An earlier section discussed copying the contents of an entire
array into another array.

Each element of Array33 is copied into the corresponding ele­
ment of Array55 which is redimensioned if necessary.

Now suppose you would like to copy a portion of one array
and place it in a special location within another array. This
process is called copying subarrays.

Programming Techniques 3-75

Subarray Specifier. A subarray is a subset of an array (an
array within an array). To specify a subarray, subscripts are
used in parentheses after the array name as follows:

]
The above subarray could take on many "sizes" and "shapes"
depending on what you used as dimensions for the array and
the values assigned to the subarray_specifier. Note that usize"
refers to the number of elements in the subarray and ushape"
refers to the same number of dimensions and elements in
each dimension, respectively (e.g. both of these subscript
specifiers have the same shape: (- 2 : 1 , - 1 : 10) and
(1 : 4, 9 : 20»). Before looking at ways you can express a
subarray, let's learn a few terms related to the subarray
specifier.

3-76 Programming Techniques

1. Subscript range is used to specify a set of elements
starting with a beginning element position and ending
with a final element position. For example, 5: 8 repre­
sents a range of four elements starting with element 5
and ending at element 8.

2. Subscript expression is an expression which reduces
the RAN K of the sub array. For example if you wanted to
select an element from a two-dimensional array which is
located in the 2nd row and 3rd column, you would use
the following sub array specifier: (2,3:3). The subscript
expression in this subarray specifier is 2 which repre­
sents the whole range of elements in row 2 of the array.

3. Default range is denoted by an asterisk (Le. (1 , * ») and
represents all of the elements in a dimension from the
dimension's lower bound to its upper bound. For exam­
ple, suppose you wanted to copy the entire first column
of a two-dimensional array, you would use the following
subarray specifier: (*, 1 : 1), where * represents all the
rows in the array and 1 : 1 represents only the first
column.

100 OPTION BASE 1

Some examples of sub array specifiers are as follows:

1. (1, *) a subscript expression and a default range which
designate the first row of a two-dimensional array.

2. (1: 2) a given subscript range which represents the first
two elements of a one-dimensional array.

3. (* , -1 : 2) a default range and subscript range which
represents all of the elements in the first four columns of
a two-dimensional array.

4. (3, 1 : 2) a subscript expression and subscript range
which represent the first two elements in the third row
of a two-dimensional array.

5. (1, * , *) a subscript expression and two default ranges
which represent a plane consisting of all the rows and
columns of the first plane in the first-dimension.

6. (1, 1 : 2 , *) a subscript expression, subscript range and
default range which represent the first two rows in the
first plane of the first-dimension.

7. (1, 2, *) two subscript expressions and a default range
which represent the entire second row in the first plane
of the first-dimension.

8. (1: 2, 3 : 4) two subscript ranges which represent ele­
ments located in the third and fourth columns of the
first and second rows of a two-dimensional array. Copy­
ing an Array into a Subarray.

In order to copy a source array into a subarray of a destina­
tion array, the destination array's sub array must have the
same size and shape as the source array. A destination and
source array are dimensioned as follows:

110 DIM Des_array(-3:1,5),Sor_array(2,3)

Programming Techniques 3-77

Suppose these arrays contain the following integer values:

11 12 13 14 15

21 22 23 24 25

[11 12 13] Des_array 31 32 33 34 35 Sor_array
21 22 23

41 42 43 44 45

51 52 53 54 55

You can copy the source array (Sor _ar ray) into a sub array
of the destination array (Des_array) by using program line
190 given below:

190 MAT Des_arrayC-1:0,2:4) = Sor_array

A two-dimensional plane with the following values in it
would be the result of executing the above statement.

11 12 13 14 15

21 22 23 24 25

Des_array 31 11 12 13 35

41 21 22 23 45

51 52 53 54 55

Rules for Copying Subarrays. This section should help
limit the number of syntax and runtime errors you could
make when copying subarrays. A previous section entitled
"Sub array Specifier" provided you with examples of the cor­
rect way of writing sub array specifiers for copying subarrays.
In this section, you will be given rules to things you should
not do when copying subarrays. The rules are as follows:

• Subarray specifiers must not contain all subscript expres­
sions (i.e. (1,2,3) is not allowed and it will produce a
syntax error). This rule applies to all subscript specifiers.

3-78 Programming Techniques

• Subarray specifiers must not contain all asterisks (*) or de­
fault ranges (i.e. (*, *, *) is not allowed and it will
produce a syntax error). This rule applies to all subscript
specifiers.

• If two subarrays are given in a MAT statement, there must
be the same number of ranges in each sub array specifier.
For example,

is the correct way of copying a subarray into another
subarray provided the default range given in the source ar­
ray (Sor _array) has only two elements in it. Note that
the source array is a three-dimensional array. However, it
still meets the criteria of having the same number of ranges
as the destination array because two of its subscripts are
ranges and one is an expression.

• If two subarrays are given in a M AT statement, the subscript
ranges in the sourCE! array must be the same shape as the
subscript ranges in the destination array. For example,

MAT Des_array(1:5,0:1)= Sor_array(3,1:5,6:7)

• is legal; however,

MAT Des_array(0:1,1:5)= Sor_array(1:5,0:1)

• is not legal, because both of its subarray specifiers do not
have the same shape (i.e. the rows and columns in the des­
tination array do not match the rows and columns in the
source array).

Programming Techniques 3·79

Redimensioning
Arrays

REDIM A(2,.4)

The system automatically redimensions an array during array
assignment, if necessary. BASIC also allows you to explicitly
redimension an array with the REDIM statement. As with
automatic redimensioning, the following two rules apply to all
REDIM statements:

• A REDIMed array must maintain the same number of
dimensions. .

• You cannot REDIM an array so that it contains more ele­
ments than it was originally dimensioned to hold.

Suppose A is the 3 X 3 array shown below.

You can redimension it to a 2 X 4 array by executing the
following

The new array will look like the figure below:

A=[1234]
5 6 7 8

3-80 Programming Techniques

I RED I M A «(I: 1, (I: 1)

I MAT A = «(I)

I REDIM A(3,3)

Note that it retains the values of the elements, though not
necessarily in the same locations. For instance, A(2,l) in the
original array was 4, whereas in the redimensioned array it
equals 5. For example, if we REDIMed A again, this time to a
2 X 2 array, we would get:

We could then initialize all elements to 0:

It is also important to realize that elements that are out of
range in the REDIMed array still retain their values. The fifth
thru ninth elements in A still equalS thru 9 even though they
are now inaccessible. If we REDIM A back to a 3 X 3 array,
these values will reappear. For example:

results in:

Programming Techniques 3-81

10 OPTI ON BASE 1
20 COMPLEX A(100,100)

One of the major strengths of the REDIM statement is that it
allows you to use variables for the subscript ranges: this is not
allowed when you originally dimension an array. In effect,
this enables you to dynamically dimension arrays. This
should not be confused with the ALLOCATE statement
which allows you to dynamically reserve memory for arrays.
In the example below;. for instance, we enter the dimensions
from the keyboard.

30 INPUT "Enter lower and upper bounds of dimensions",Low1,Up1.Low2.Up2
40 IF (Up1-Low1+1)*(Up2-Low2+1»10000 THEN Too_big
50 REDIM A(Lowl:Upl.Low2:Up2)

Arrays and
Arithmetic
Operators

Line 40 tests to see whether the new dimensions are too big.
If so, program control is passed to a line labelled -Too_bigH. If
line 40 were not present, the REDIM statement would return
an error if the dimensions were too large.

BASIC allows you to multiply, divide, add, and subtract sca­
lars to an array, as well as to add, subtract, multiply, and
divide one array to another. It is also possible for you to add
all the elements in an array to produce a single result. This
section covers a function and operations which allow you to
perform these tasks with INTEGER, REAL, and COMPLEX
data types.

Using the MAT Statement. All arithmetic functions involv­
ing arrays must be preceded by the MAT keyword. The
specified operation is performed on each individual element
in the operand array(s) and the results are placed in the result
array. The result array must be dimensioned to be at least as
large as the current size of the operand array(s). If it is of a
different shape than the operand array(s), the system will
redimension it. Given the array A below, note how these
arithmetic functions are performed.

3-82 Programming Techniques

I MAT B= A+(3)

I MAT C

To add 3 to each element of array A, you would use the fol­
lowing statement:

The result of the above addition is array B below:

B = [; : :]
10 11 12

To divide each element of array B above by 2, you would use
the following statement:

The result of the above division is array C given below:

Programming Techniques 3·83

MAT C= C*(l+l+1)

MAT 0= A+B

To multiply each element in array C by a scalar expression,
you would use a statement similar to the following:

The above statement multiplied each element in array C by 3
and placed that result in array C as shown below:

c [1:.5 :: 1:.5]
15 16.5 18

Note that the result array can be the same as the operand
array. Also, the scalar must be enclosed in parentheses. In ad­
dition to performing arithmetic operations with scalars, you
can also add, subtract, divide and multiply two arrays to­
gether. Except for multiplication with an asterisk, which is
described later, these functions proceed as follows: Cor­
responding elements of each operand array are processed
according to the specified operation, and the result is placed
in the result array. The two operand arrays must be exactly
the same size though their particular subscript ranges can be
different. For multiplication, use a period rather than an as­
terisk. Using arrays A and B, the statement,

would give the array:

3-84 Programming Techniques

MAT 8=A.8

The statement,

would give:

B = [2
4
8 :: ::]

70 88 108

Again, the dimensioned size of the result array must be as
large as the current size of each operand array. The two oper­
and arrays must be identical in shape and size, but not
necessarily in subscript ranges. For instance, A and B could
have been dimensioned:

10 DIM A(1:3,2:4),8(-1:1,0:2)

Performing Arithmetic Operations with Complex
Arrays. Remember that each of the operations mentioned in
the previous section can be performed with complex num­
bers. The resulting array if it is of type COMPLEX will have
both a real and imaginary part in each element location. For
example, you may have a two-dimensional complex array that
looks like this:

4 -1

1 9 :]
where the dimension statement is given as follows:

Programming Techniques 3·85

COMPLEX Op_array(-1:0,1:2)

2 4

The element Op--<lrray(-1,1) contains the values:

where 2 is the real part of the complex number and 4 is the
imaginary part.

H you were to multiply each of the complex values in the
above matrix by a scalar value of 2, you would use the fol­
lowing statement:

The previous statement would produce the following complex
array:

Complex_result [
4 8 -2 10]

12 2 18 6

Note that if the resulting array (Comple)Lfesult) had been of
type REAL or INTEGER, the results in array CompleX-result
would look like this:

-2]
18

This is due to the automatic type conversion made from
COMPLEX to REAL or INTEGER. Notice that the imaginary
part of the complex numbers in the array were dropped.

3·86 Programming Techniques

Boolean Arrays

MAT F = 8)<513)

Summing the Elements in an Array. The statement that re­
turns the sum of all elements in an array, however, works for
arrays of any dimension. Given the array A below,

the function, SUM (A) would return 29.

In addition to the arithmetic operators, you can also use rela­
tional operators with arrays. The result is a boolean* array, an
array composed entirely of l's and O's.

Given array B above, suppose you wanted to know how
many elements were greater than 50. First you execute the
statement,

which results in the array:

* Strictly speaking, these are not really boolean arrays since the values of the ele­
ments are not TRUE and FALSE.

Programming Techniques 3-87

I PRINT 8UM(F)

Note

I MAT C = A=B

Then you execute the statement,

which causes the computer to display "'4" on the current
PRINTER IS device.

The only comparison operators allowed with COMPLEX data
types are: = and < >. The only dyadic operators allowed
with COMPLEX data types are: A, +, -, *, /' < >, and =.
The only monadic operators allowed with COMPLEX data
types are: +, -, and NOT.

You can also compare two arrays to each other. For example,
if you wanted to compare the two arrays below,

you could execute the statement:

By looking at C, you can tell which elements are the same for
both A and B.

3·88 Programming Techniques

String
Manipulation

LET A$="COMPUTER"

It is often desirable to store non-numerical information in the
computer. You can use any sequence of characters in a string.
Quotation marks are used to delimit the beginning and end­
ing of the string. The following are valid string assignments:

Fail$="The test has failed."
File_name$="INVENTORY"
Test$=Fail$C5,8J

The left-hand side of the assignment (the variable name) is
equated to the right-hand side of the assignment (the literal).
String variable names are identical to numeric variable names
with the exception of a dollar sign ($) appended to the end of
the name. The length of a string is the number of characters
in the string. In the previous example, the length of A$ is 8
since there are eight characters in the literal "COMPUTER'.
BASIC allows the dimensioned length of a string to range
from 1 to 32,767 characters and the current length (number of
characters in the string) to range from zero to the dimen­
sioned length. A string of zero characters is often called a null
string or an empty string. The default dimensioned length of
a string is 18 characters. The DIM, COM, and ALLOCATE
statements are used to define string lengths up to the maxi­
mum length of 32,767 characters. An error results whenever a
string variable is assigned more characters than its dimen­
sioned length. A string may contain any character. The only
special case is when a quotation mark needs to be in a string.
Two quotes, in succession, will embed a quote within a string:

10 Qyote$="The time is ""NOW""."
20 PRINT Qyote$
30 END

Produces: The time is" NOW" .

Programming Techniques 3·89

String Storage Strings whose length exceeds the default length of 18 charac­
ters must have space reserved before assignment. The
following statements may be used.

• DIM Long$C 49'21 J Reserve space for a 400 character
string.

• COM Lin e $ C 89 J Reserve an 80 character common
variable.

• ALLOCATE Sear ch$C Leng t h J Dynamic variable
allocation.

The maximum length of any string must not exceed 32,767
characters. A string may also be dimensioned to a length less
than the default length of 18 characters. The DIM statement
reserves storage for strings:

DIM Par~_number$[leJ,Description$[64J,Cost$[5]

The COM· statement defines common variables that can be
used by subprograms:

I COM Name$[40],Phone$[14J

ALLOCATE Line$[Length]

The ALLOCATE statement allows dynamic allocation of
string storage. When the maximum length of of a string can­
not be determined ahead of time, the ALLOCATE statement
can be used to reserve enough memory space for the string
without wasting space.

Strings that have been dimensioned but not assigned return
the null string.

3-90 Programming Techniques

String Arrays

DIM File$(1000)[80J

PRINT File$(27)

Evaluating
Expressions

Containing Strings

Large amounts of text are easily handled in arrays. For
example:

This statement reserves storage for 1000 lines of 80 characters
per line. Do not confuse the brackets, which define the length
of the string, with the parentheses which define the number
of strings in the array. Each string in the array can be accessed
by an index. For example:

Prints the 27th element in the array. Since each character in a
string uses one byte of memory and each string in the array
requires as many bytes as the length of the string, string ar­
rays can quickly use a lot of memory. A program saved on a
disc as an ASCII type file can be entered into a string array,
manipulated, and written back out to disc.

This section covers the following topics:

• Evaluation Hierarchy.

• String Concatenation.

• Relational Operations.

Evaluation Hierarchy. Evaluation of string expressions is
simpler than evaluation of numerical expressions. The three
allowed operations are extracting a substrin& concatenation,
and parenthesization.

Programming Techniques 3-91

10 One$="WRIST"
20 Two$="WATCH"
30 Concat$=One$&Two$

String Concatenation. You can combine two strings to­
gether by using the concatenation operator "8,". The following
program demonstrates this feature:

40 PRINT One$,Two$,Concat$
50 END

WRIST WATCH WRISTWATCH

When you run the program it will print the following:

The concatenation operation, in line 30, appends the second
string to the end of the first string. The result is assigned to a
third string. An error results if the concatenation operation
produces a string that is longer than the dimensioned length
of the string being assigned.

Relational Operations. Most of the relational operators
used for numeric expression evaluation can also be used for
the evaluation of strings. The following examples show some
of the possible tests.

HABC" "ABC" True

"ABC" II ABC" False

HABC" < " Abc" True

U6" > H7" False

U2" < "12" False

Ulong" < = "longer" True

uRE-SAVE" > = "RESAVE" False

3-92 Programming Techniques

"BRONTOSAURUS" < "CAY"

Note

Substrings

I Str ing$C4J

Any of these relational operators may be used: <, >, < =,
> =, =, < >. Testing begins with the first character in the
string and proceeds, .character by character, until the relation­
ship has been determined. The outcome of a relational test is
based on the characters in the strings not on the length of the
strings. For example:

This relationship is true since the letter "e is higher in ASCII
value than the letter MB"'.

When the LEX binary is loaded, the outcome of a string com­
parison is based on the character's lexical value rather than
the character's ASCII value. See the LEXICAL ORDER IS
statement later in this chapter for more details.

You can append a subscript to a string variable name to define
a substring. A substring may comprise all or just part of the
original string. Brackets enclose the subscript which can be a
constant, variable, or numeric expression. For example:

specifies a substring starting with the fourth character of the
original string. The subscript must be within the range 1 to the
dimensioned length of the string plus 1. Note that the brackets
now indicate the substring's starting position instead of the
total length of the string as when reserving storage for a
string. Subscripted strings may appear on either side of the
assignment.

Programming Techniques 3-93

"JA88ERWDCKY"[4.6J

Single·Subscript Substrings. When a substring is specified
with only one numerical expression enclosed with brackets,
the expression is evaluated and rounded to an integer indicat­
ing the position of the first character of the substring within
the string. The following examples use the variable A$ which
has been assigned the literal "DICTIONARY".

Statement Output

PRINT A$ DICTIONARY

PRINT A$[0J Error

PRINT A$[lJ DICTIONARY

PRINT A$[5J IONARY

PRINT A$[10J Y

PRINT A$[11 J (null string)

PRINT A$[12J Error

When you use a single subscript, it specifies the starting char­
acter position, within the string, of the substring. An error
results when the subscript evaluates to zero or greater than
the current length of the string plus 1. A subscript that evalu­
ates to 1 plus the length of the string returns the null string
(10 ") but does not produce an error.

Double-Subscript Substrings. A substring may have two
subscripts, within brackets, to specify a range of characters.
When a comma is used to separate the items within brackets,
the first subscript marks the beginning position of the
substring, while the second subscript is the ending position of
the substring. For example:

Specifies the substring HBEW. When a semicolon is used in
place of a comma, the first subscript again marks the begin­
ning position of the substring, while the second subscript is
now the length of the substring. For example:

3·94 Programming Techniques

"JABBERWOCKY·C4;6J

10 A$="CONCAT"
20 A$C7J=IENATION"
30 PRINT A$
40 END

I CONCATENAT I ON

Specifies the substring 'BERWOC". In the following examples
the variable B$ has been assigned to the literal
UENUGHTENMENr.

Statement Output

PRINT 8$[1,13] ENLIGHTENMENT

PRINT B$[L 9] ENLIGHTEN

PRINT 8$[3,7] LIGHT

PRINT 8$[3;7] LIGHTEN

8$[13,26] Error
PRINT 8$[14;1] (null string)

An error results if the second subscript in a comma separated
pair is greater than the current string length plus 1 or if the
sum of the subscripts in a semicolon separated pair is greater
than the current string length plus 1. Specifying the position
just past the end of a string returns the null string.

Special Considerations. All substring operations allow a
subscript to specify the first position past the end of a string.
This allows strings to be concatenated without the concatena­
tion operator. For example:

When you run this program, it will print:

Programming Techniques 3-95

The substring assignment is only valid if the substring already
has characters up to the specified position. Access beyond the
first position past the end of a string results in the error:

I ERROR 18 String o fl. or substring err

String-Related
Functions

I PRINT LEN("HELP ME")

A good practice is to dimension all strings including those
shorter than the default length of eighteen characters.

Several intrinsic functions are available in BASIC for the
manipulation of strings. These functions include conversions
between string and numeric values.

String Length. The 1ength'" of a string is the number of
characters in the string. You can use the LEN function to re­
turn an integer whose value is equal to the string length. The
range is from 0 (null string) through 32,767. For example:

Prints: 7

Substring Position. You can determine the position of a
substring within a string by the using the POS function. This
function returns the value of the starting position of the
substring, or zero if the entire substring was not found. For
example:

PRINT POS("DISAPPEARANCE","APPEAR")

Prints: 4

3-96 Programming Techniques

PRINT VAL("123.4E3")

String-to-Numeric Conversion. You can use the VAL func- .
tion to convert a string expression into a numeric value. The
number returned by the VAL function will be converted to
and from scientific notation when necessary. For example:

Prints: 12341313

The string expression must evaluate to a valid number or error
32 will result.

ERROR 32 String is not a valid number

PRINT NUM("A")

You can use the NUM function to convert a single character
into its equivalent numeric value. The number returned is in
the range 0 to 255. For example:

Prints: 65

Numeric·to·String Conversion. You can use the VAL$
function to convert the value of a numeric expression into a
character string. The string contains the same characters (dig­
its) that appear when the numeric variable is printed. For
example:

PRINT 1000000,VAL$(1000000)

Prints: 1. E +6 1. E +6

Programming Techniques 3·97

The CHR$ function converts a number into an ASCII charac­
ter. The number can be of type INTEGER or REAL since the
value is rounded, and a modulo 255 is performed. For
example:

I PRINT CHR$(97);CHR$(98);CHR$(99)

String Functions

Prints: abc

Several additional string functions are available when the BA­
SIC system has been loaded into the computer.

String Reverse. The REV$ function returns a string created
by reversing the sequence of characters in the given string.

I PRINT REV$("Snack cans")

I PRINT RPT$("* *",10)

Prints: snac k canS

String Repeat. The RPT$ function returns a string created
by repeating the specified string a given number of times.

Prints: * ** ** ** ** ** ** ** ** ** *
Trimming a String. The TRIM$ function returns a string
with all leading and trailing blanks (ASCII spaces) removed.

I PRINT "*";TRIM("1.23");"*"

Prints: * 1 . 23*

TRIM$ is often used to extract fields from data statements or
keyboard input.

3-98 Programming Techniques

10 DIM Word$C160J

Case Conversion. The case conversion functions, UPC$ and
LWC$, return strings with all characters converted to the
proper case. UPC$ converts all lowercase characters to their
corresponding uppercase characters and LWC$ converts any
uppercase characters to their corresponding lowercase charac­
ters. Roman Extension characters will be converted according
to the current lexical order. See the LEXICAL ORDER IS
statement later in this section for the case conversion listings.

20
30
40
50
60
70

LINPUT "Enter a few characters",Word$
PRINT
PRINT "You typed:
PRINT "Uppercase:
PRINT "Lowercase:
END

MAT Functions and
String Arrays

MAT COpy$ Original$

"i Word$
"iUPC$(Word$)
";LWC$(Word$)

MAT functions (available with the MAT binary) are com­
monly used to manipulate data in numeric arrays. However,
several of these functions can be used with string arrays. For
example, a string array is copied into another string array by
the following.

Note that only the variable name is necessary. The array spec­
ifier U(*)" need not be included when using the MAT
statement.

Programming Techniques 3-99

I MAT Array$ = (Nul U)

Every element in a string array will be initialized to a constant
value by the following statement.

The constant value can be a literal or a string expression and
is enclosed in parentheses to distinguish it from being an ar­
ray name.

A list of items can be sorted very quickly by the MAT SORT
statement. Load and run the following program from file
MATSORT on your Manual Examples disc.

1121 ! Pr ogr am: SORT _L I ST
2121 DIM List$(1:5)C6J
3121 DATA Bread,Milk,Eggs,Bacon,Coffee
4121 READ List$(*)
5121
6121 PRINT "original order"
7121 PRINT List$(*)
8121
9121 PRINT "ascending order"
1121121 MAT SORT List$(*)
119 PRINT List$(*)
12121
13121 PRINT "descending order"
14121 MAT SORT List$(*) DES
159 PRINT List$(*)
169 END

Running this program produces:

original order
Bread Milk Eggs Bacon Coffee

ascending order
Bacon Bread Coffee Eggs Milk

descending order
Milk Eggs Coffee Bread Bacon

3·100 Programming Techniques

Number-Base
Conversion

PRINt DVAL("FF5900",16)
PRINT IVAL("AA",16)
PRINT DVAL$(100,B)
PRINT IVAL$(-1,16)

Introduction to
Lexical Order

Utility functions are available to simplify the calculations be­
tween different number bases. The two functions IVAL and
DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal number. The IVAL$ and DVAL$ func­
tions convert a decimal number into a binary, octal, decimal,
or hexadecimal string value. Each function has two param­
eters: the string to be converted and the radix. The radix is
limited to the values 2, 8, 10, or 16, and represents the nu­
meric base of the string to be converted. The IVAL and
IVAL$ functions are restricted to the range of INTEGER vari­
ables (-32,768 thru 32,767). The DVAL and DVAL$
functions allow H double length" integers and thus allow larger
numbers to be converted (- 2, 147,483,648 thru
2,147,483,647). IVAL and IVAL$ operate on 16-bit values,
while DVAL and DVAL$ operate on 32-bit values. The fol­
lowing statements show valid usage of these functions

The LEXICAL ORDER IS statement* lets you change the col­
lating sequence (sorting order) of the character set.

Changing the lexical order will affect the results of all string
relational operators and operations, including the MAT SORT
and CASE statements. In addition to redefining the collating
sequence, the case conversion functions, UPC$ and LWC$,
are adjusted to reflect the current lexical order.

• Available with the LEX binary installed.

Programming Techniques 3-101

Predefined Lexical
Order

Predefined lexical orders include: ASCII (American Standard
Code for Information Interchange), FRENCH, GERMAN,
SPANISH, SWEDISH, and STANDARD. You can create lexi­
cal orders for special applications. The STANDARD lexical
order is determined by an internal keyboard jumper, set at the
factory to correspond to the keyboard supplied with the com­
puter. The setting can be determined by examining the proper
keyboard status register in a program (STATUS 2,8iLan­
guage). Thus, the STANDARD lexical order on a computer
equipped with a French keyboard will actually invoke the
FRENCH lexical order.

The computer executes a LEXICAL ORDER IS STANDARD
statement when the Advanced Programming Binary is first
loaded or after a SCRATCH A is executed. The result will be
the correct lexical order for the language on the keyboard.
This can be checked by examining the keyboard status regis­
ter in a program (STATUS 2,8iLanguage), or by either of the
following statements.

SYSTEM$("LEXICAL ORDER IS")
SYSTEM$("KEYBOARD LANGUAGE")

The table on the following page shows the language indicated
by the value returned by the STATUS statement. Thus, if the
value returned indicates a French keyboard, the STANDARD
lexical order will be the same as the FRENCH lexical order.
The STANDARD lexical order for the Katakana keyboard is
ASCII.

3·102 Programming Techniques

Value
Keyboard

Lexical Order Language

0 ASCII ASCII

1 FRENCH FRENCH

2 GERMAN GERMAN

3 SWEDISH SWEDISH

4 SPANISH* SPANISH

5 KATAKANA ASCII

6 CANADIAN ENGLISH ASCII

7 UNITED KINGDOM ASCII

8 CANADIAN FRENCH FRENCH

9 SWISS FRENCH FRENCH

10 ITALIAN FRENCH

11 BELGIAN GERMAN

12 DUTCH GERMAN

13 SWISS GERMAN GERMAN

14 LATINt SPANISH

15 DANISH SWEDISH

16 FINNISH SWEDISH

17 NORWEGIAN SWEDISH

18 SWISS FRENCH FRENCH

19 SWISS GERMAN GERMAN

• European Spanish keyboard.

t Latin Spanish keyboard.

The CHR$ function may be used to produce characters not
readily available on the keyboard.

Programming Techniques 3-103

User-Defined
Functions and
Subprograms

Location

One of the most powerful constructs available in any lan­
guage is the subprogram (a user-defined function is a special
form of subprogram). A subprogram can do everything a
main program can do except that it must be invoked or
H called" before it is executed, whereas a main program is exe­
cuted by pressing RUN or executing the RUN command.

A subprogram has its own Hcontext" or state that is distinct
from a main program and all other subprograms. This means
that every subprogram has its own set of variables, its own
softkey definitions, its own DATA blocks, and its own line
labels. There are several benefits to be realized by taking ad­
vantage of subprograms:

• The subprogram allows you to take advantage of the Utop­
down" method of designing programs.

• The program is much easier to read using subprogram calls.

• By using subprograms and testing each one independently
of the others, it is easier to locate and fix problems.

• You may want to perform the same task from several dif­
ferent areas of your program.

• Finally, libraries of commonly used subprograms can be as­
sembled for widespread use.

A subprogram is located after the body of the main program,
following the main program's END statement. (The END
statement must be the last statement in the main program ex­
cept for comments.) Subprograms may not be nested within
other subprograms, but are physically delimited from each
other with their heading statements (SUB or DEF FN) and
ending statements (SUBEND or FNEND).

3-104 Programming Techniques

Naming

Initialize
Read_dvm
Sort_2_d_arry
Plot_data

The Difference
Between a

Function and a
Subprogram

A subprogram has a name which may be up to fifteen charac­
ters long, just as with line labels and variable names. Here are
some legal subprogram names:

Because up to fifteen characters are allowed for naming sub­
programs, it is easy and convenient to name subprograms in
such a way as to reflect the purpose for which the subpro­
gram was written.

A SUB subprogram (as opposed to a function subprogram) is
invoked explicitly using the CALL statement. A function sub­
program is called implicitly by using the function name in an
expression. It can be used in a numeric or string expression
the same way a constant would be used, or it can be invoked
from the keyboard. A function's purpose is to return a single
value (either a real number or a string).

There are several functions such as SIN, SQR, EXP, etc., that
are built into the BASIC language which can be used to re­
turn values.

Y=SIN(X)+Phase
Rootl=(-B+SQR(B*B-4*A*C))/(2*A)

X=1/FNSinh(Y"4)
Angle=FNAtn2(Y,X)

Using the capability of defining your own function subpro­
grams, you can essentially extend the language if you need a
feature not provided in BASIC.

Programming Techniques 3-105

REAL Precision
Functions and

String Functions

Calling and
Executing a
Subprogram

A general rule of thumb for using subprograms is that if you
want to take a set of data and analyze it to generate a single
value, then you probably want to implement the subprogram
as a function. On the other hand, if you want to actually
change the data itself, generate more than one value as a re­
sult of the subprogram, or perform any sort of I/O activity, it
is better to use a SUB subprogram.

A function is allowed to return either a REAL value or a
string value. Let's examine one which returns a string. There
are two primary differences: the first is that a $ must be
added to the name of a function which is to return a string.
This is used both in the definition of the function (the DEF
statement) and when the function is invoked. The second dif­
ference is that the RETURN statement in the function returns
a string instead of a number.

Subprograms are invoked explicitly using the CALL state­
ment, while functions are invoked implicitly just by using the
name in an expression, an output list, etc. A nuance of SUB
subprograms is that the CALL keyword is optional when in­
voking a SUB subprogram. The omission of the CALL
keyword when invoking a SUB subprogram is left solely to
the discretion of the programmer; some will find it more aes­
thetic to omit CALL, others will prefer its inclusion. There are,
however, three instances which require the use of CALL
when invoking a subprogram:

1. If the subprogram is called from the keyboard.

2. If the subprogram is called after the THEN keyword in
an IF statement.

3. In an ON <event> CALL statement.

3-106 Programming Techniques

Communication As mentioned earlier, there are two ways for a subprogram to
communicate with the main program or with other subpro­
grams: parameter lists, and COM (blank and labeled).

Parameter Lists. The formal parameter list is part of the
subprogram's definition, just like the subprogram's name. The
formal parameter list tells how many values may be passed to
a subprogram, the types of those values (string, integer, real,
array, I/O path name), and the names the subprogram will
use to refer to those values. The subprogram has the power to
demand that the calling context match the types declared in
the formal parameter list-otherwise, an error results. It is
perfectly legal for both the formal and pass parameter lists to
be null, or nonexistent.

Here is a sample formal parameter list showing which types
each parameter demands:

SUB Read_dvm(@Dvm,A(*),INTEGER Lower,Upper,Status$,Errflag)

@Dvm is an I/O path name which may refer to either an I/O
device or a mass storage file. Its name here implies that it is a
voltmeter, but it is perfectly legal to redirect I/O to a file just
by using a different ASSIGN with @Dvm.

A (*) is a REAL array. Its size is declared by the calling con­
text. Without MAT, there is no way to find the size of the
array except through information supplied explicitly by the
calling context; hence the parameters Lower and Upper.

Lower and Upper are declared here to be INTEGERs.
Thus, when the calling program invokes this subprogram, it
must supply either INTEGER variables or INTEGER expres­
sions, or an error will occur.

S tat us:$ is a simple string which presumably could be used
to return the status of the voltmeter to the main program. The
length of the string is defined by the calling context.

Programming Techniques 3-107

Err f 1 a 9 is a REAL number. The declaration of the string
S tat us:$ has limited the scope of the INTEGER keyword
which caused Lower and Upper to require INTEGER pass
parameters. .

There are two ways for the calling context to send values to a
subprogram: pass by value, and pass by reference. Using pass
by value, the calling context supplies a value and nothing
more. Using pass by reference, the calling context actually
gives the subprogram access to the calling context's value
area. The distinction is that a subprogram cannot alter the
value of data in the calling context if the data is passed by
value, while the subprogram can alter the value of data in the
calling context if the data is passed by reference.

The subprogram has no control over whether its parameters
are sent using pass by value or pass by reference. That is de­
termined by the calling context's pass parameter list. In order
for a parameter to be passed by reference, the pass parameter
list (in the calling context) must use a variable for that param­
eter. In order for a parameter to be passed by value, the pass
parameter list must use an expression for that parameter.
Note that enclosing a variable in. parentheses is sufficient to
create an expression. Using pass by value, it is possible to
pass an INTEGER expression to a REAL formal parameter
(the INTEGER is converted to its REAL representation) with­
out causing a type mismatch error. Likewise, it is possible to
pass a REAL expression to an INTEGER formal parameter
(the value of the expression is rounded to the nearest INTE­
GER) without causing a type mismatch error (an integer
overflow error is generated if the expression is out of range
for an INTEGER). Let's look at our previous example from the
calling program:

CALL Read_dvm(@Voltmeter,Readings(*),1,400,Status$,Errflag)

3·108 Programming Techniques

@Voltmeter is the pass parameter which matches the for­
mal parameter @Dvm in the subprogram. I/O path names are
always passed by reference, which means the subprogram can
close the I/O path or assign it to a different file or device.

Rea din 9 s (*) matches the array A (*) in the subprogram's
formal parameter list. Arrays, too, are always passed by
reference.

1,4121121 are the values passed to the formal parameters
Lower and Upper. Since constants are classified as expres­
sions rather than variables, these parameters have been
passed by value. Thus, if the subprogram used either Lower
or Upper on the left-hand side of an assignment operator, no
change would take place in the calling context's value area.

S tat us$ is passed by reference here. If it were enclosed in
parentheses, it would be passed by value. Notice that if it
were passed by value, it would be totally useless as a method
for returning the status of the voltmeter to the calling context.

Er r flag is passed by reference.

OPTIONAL Parameters. Another important feature of for­
mal parameter lists is the OPTIONAL keyword. Any formal
parameter list (the one defining the subprogram) may contain
the keyword OPTIONAL somewhere, although it isn't re­
quired to. The OPTIONAL keyword indicates that any
parameters that follow it are not required in the pass param­
eter list of a calling context-they are optional. On the other
hand, all parameters preceding the OPTIONAL keyword are
required. If no OPTIONAL appears in the subprogram's pa­
rameter list, then all the parameters must be specified, or an
error will be generated. The rules requiring matching of pa­
rameter types apply to OPTIONAL parameters as well as to
ordinary parameters. There is a standard function called
NPAR which can be used inside the subprogram to find out
how many pass parameters the calling context actually did
use. (NPAR will return 0 if used inside the main program, or
if no parameters were passed to a subprogram.)

Programming Techniques 3-109

10 OPTI ON BASE 1

COM Blocks. Since we've discussed parameter lists in detail,
let's turn now to the other method a subprogram has of com­
municating with the main program or with other
subprograms, the COM block.

There are two types of COM (or common) blocks: blank and
labeled. Blank COM is simply a special case of labeled COM
(it is the COM whose name is nothing) with the exception
that blank COM must be declared in the main program, while
labeled COM blocks don't have to be declared in the main
program. Both types of COM blocks simply declare blocks of
data which are accessible to any context having matching
COM declarations.

A blank COM block might look like this:·

20 COM Conditions(15),INTEGER,Cmin,Cmax,@Nuclear_pile,
Pile_status$[20J,Tolerance

A labeled COM might look like this:

30 COM /Valve/ Main(10,Subvalves910,15),@Valve_ctrl

A COM block's name, if it has one, will immediately follow
the COM keyword, and will be set off with slashes, as shown
above. The same rules used for naming variables and subpro­
grams are used for naming COM blocks.

Any context need only declare those COM blocks which it
needs to have access to. If there are 150 variables declared in
10 COM blocks, it isn't necessary for every context to declare
the entire set-only those blocks that are necessary to each
context need to be declared. COM blocks with matching
names must have matching definitions. As in parameter lists,
matching COM blocks is done by position and type, not by
name.

3·110 Programming Techniques

There are several characteristics of COM blocks which distin­
guish them from parameter lists as a means of
communications between contexts:

• COM survives pre-run. In general, any numeric variable is
set to 0, strings are set to the null string, and I/O path
names are set to undefined when the program is run, or
upon entering a subprogram. This is true of COM the first
time the program is run, but after COM block variables are
defined, they retain their values until:

1. SCRATCH A or SCRATCH C is executed.

2. A statement declaring a COM block is modified by the
user.

3. A new program is brought into memory using the
GET or LOAD commands which doesn't match the
declaration of a given COM block, or which doesn't
declare a given COM block at all.

• COM blocks can be arbitrarily large. One limitation on pa­
rameter lists (both pass and formal parameter lists) is that
they must fit into a single program line along with the
line's number, possibly a label, the invocation or subpro­
gram header, and possibly (in the case of a function) a
string or numeric expression. Depending upon the situa­
tion, this can impose a restriction on the size of your
parameter lists.

COM blocks can take as many statements as necessary.
COM statements can be interwoven with other statements
(though this is considered a poor practice). All COM state­
ments within a context which have the same name will be
part of the definition of that COM block.

• COM blocks can be used for communicating between con­
texts that do not invoke each other.

• COM blocks can be used to communicate between subpro­
grams that are not in memory simultaneously.

• COM blocks can be used to retain the value of ulocalH vari­
ables between subprogram calls.

• COM blocks allow subprograms to share data without the
intervention of the main program.

Programming Techniques 3-111

Hints for Using COM Blocks. Any COM blocks needed by
your program must be resident in memory at pre-run time.
Pre-run is caused by pressing RUN, executing a RUN com­
mand, executing LOAD or GET from the program, or
executing a LOAD or GET from the keyboard and specifying
a run line. Thus if you want to create libraries of subprograms
which share their own labeled COM blocks, it is wise to col­
lect all the COM declarations together in one subprogram to
make it easy to append them to the rest of the program for
inclusion at prerun time. (The subprogram need not contain
anything but the COM declarations.)

COM can be used to communicate between programs which
overlay each other using LOAD or GET statements, if you re­
member a few rules:

1. COM blocks which match each other exactly between
the two programs will be preserved intact. "Matching"
requires that the COM blocks are named identically (ex­
cept blank COM), and that corresponding blocks have
exactly the same number of variables declared, and that
the types and sizes of these variables match.

2. Any COM blocks existing in the old program which are
not declared in the new program (the one being brought
in with the LOAD or GET) are destroyed.

3. Any COM blocks which are named identically, but
which do not match variables and types identically, are
defined to match the definition of the new program. All
values stored in that COM block under the old program
are destroyed.

4. Any new COM blocks declared by the new program (in­
cluding those mentioned above in #3) are initialized
implicitly. Numeric variables and arrays are set to zero,
strings are set to the null string, and I/O path names are
set to undefined.

3-112 Programming Techniques

The first occurrence in memory of a COM block is used to
define or set up the block. Subsequent occurrences of the
COM block must match the defining block, both in the num­
ber of items, and the types of the items. In the case of strings
and arrays, the actual sizes need be specified only in the de­
fining COM blocks. Subsequent occurrences of the COM
blocks may either explicitly match the size specifications by
re-declaring the same size, or they may implicitly match the
size specifications. In the case of strings, this is done by not
declaring any size, just declaring the string name. In the case
of arrays, this is done by using the (*) specifier for the di­
mensions of the array instead of explicitly re-declaring the
dimensions.

Consider the following COM block definition:

10 COM /Dvm_state/ INTEGER Range,Format,N,REAL
Delay,Lastdata(1:40),Status$C20l

The following occurrence of the same COM block within a
subprogram matches the COM block explicitly and is legal:

2000 COM /Dvm_stat/ INTEGER Range,Format,N,REAL
Delay,Lastdata(1:40),Status$C20l

The following block within a different subprogram uses im­
plicit matching and is also legal:

4010 COM /Dvm_state/ INTEGER Range,Format,N,REAL
Delay,Lastdata(*),Status$

Programming Techniques 3-113

Context Switching A subprogram has its own context or state as distinct from a
main program and all other subprograms. In between the
time that a CALL statement is executed (or an FN name is
used) and the time that the first statement in the subprogram
gets executed, the computer performs a upre-run" on the sub­
program. This "entryH phase is what defines the context of the
subprogram. The actions performed at subprogram entry are
similar, but not identical, to the actual prerun performed at
the beginning of a program. Here is a summary:

• The calling context has a DATA pointer which points to the
next item in the current DATA block which will be used
the next time a READ is executed. This pointer is saved
away whenever a subprogram is called, and then the
DATA pointer is reset to the first DATA statement in the
new subprogram context.

• The RETURN stack for any GOSUBs in the current context
is saved and set to the empty stack in the new context.

• The system priority of the current context is saved, and the
called subprogram inherits this value. Any change to the
system priority which takes place within the subprogram
(or any of the subprograms which it calls in turn) is purely
local, since the system priority is restored to its original
value upon subprogram exit.

• Any event-initiated GOTO /GOSUB statements are dis­
abled for the duration of the subprogram. If any of the
specified events occur, this will be logged, but no action
will be taken. Upon exiting the subprogram, these event­
initiated conditions will be restored to active status, and if
any of these events occurred while the subprogram was be­
ing executed, the proper branches will be taken.

• Any event-initiated CALL/RECOVER statements are saved
away upon entering a subprogram, but the subprogram still
inherits these ON conditions since CALL/RECOVER are
global in scope. However, it is legal for the subprogram to
redefine these conditions, in which case the original defini­
tions are restored upon subprogram exit.

3-114 Programming Techniques

• The current value of OPTION BASE is saved, and the
value for the subprogram (0 or I, explicitly declared or de­
faulted) is used .

• The current DEG or RAD mode for trigonometric opera­
tions and graphics rotations is stored away. The
subprogram will inherit the current DEG or RAD setting,
but if it gets changed within the subprogram, the original
setting will be restored when the subprogram is exited.

Variable Initialization. Space for all arrays and variables
declared is set aside, whether they are declared explicitly with
DIM, REAL, or INTEGER, or implicitly just by using the vari­
able. The entire value area is initialized as part of the
subprogram's prerun. All numeric values are set to zero, all
strings are set to the null string, and all I/O path names are
set to undefined.

Subprograms and Soft keys. ON KEYs are a special case of
the event-initiated conditions that are part of context switch­
ing. They are special because they are the only <event>
conditions which give visible evidence of their existence to
the user through the softkey labels at the bottom of the CRT.
These key labels are saved away just as the event conditions
are, and the labels get restored to their original state when the
subprogram is exited, regardless of any changes the subpro­
gram made in the softkey definitions. This means the
programmer doesn't have to make any special allowances for
re-enabling his keys and their associated labels after calling a
subprogram which changes them-the language system han­
dles this automatically.

Subprograms and the RECOVER Statement. The event­
initiated RECOVER statement allows the programmer to
cause the program to resume execution at any given place in
the context defining the ON ... RECOVER as a result of a spec­
ified event occurring, regardless of subprogram nesting.

Programming Techniques 3-115

Live Keyboard

Using Subprogram
Libraries

Thus, if a main program executes an ON ... RECOVER state­
ment(for example a softkey or an external interrupt from the
SRQ line on an HP-IB), and then calls a subprogram, which
calls a subprogram, which calls a subprogram, etc., program
execution can be caused to immediately resume within the
main program as a result of the specified event happening.

Functions and subprograms can be called from live keyboard
by the user. There are some restrictions:

• Since variables cannot be created by the user from the key­
board (variables can only be defined by the program), it is
legal to use only parameters that already exist in the cur­
rent context.

• Constants may be used in the pass parameter list.

• When calling a SUB subprogram from the keyboard, the
CALL keyword must be used.

If you have a program which is quite large, along with sizable
data arrays, you could run out of memory in your computer.
But the program you're working on just has to remain one
program, and external factors prevent your reducing data ar­
ray size. What to do? There are several options which address
this problem.

If you want to load a specific subprogram from a PROG file,
you would use the LOADSUB <subprogram name> FROM
statement. If you want to load all the subprograms from a
specific PROG file, you would use the LOADSUB ALL FROM
statement. And, if you wanted to see which subprograms are
still missing or load all those still needed, you would use the
LOADSUB FROM command .. Note that this is a command,
and not a statement. Therefore, LOADSUB FROM cannot be
invoked programmatically.

3·116 Programming Techniques

Loading
Subprograms One

at a Time

Suppose your program has several options to select from, and
each one needs many subprograms and much data. All the
options, however, are mutually exclusive; that is, whichever
option you choose does not need anything that the other op­
tions use. This means that you can clean up everything
you've used when you are finished with that option.

If all of your subprograms can be put into one file, you can
selectively retrieve them as needed with this sort of statement:

LOADSUB Subpro9_1 FROM "SUBFILE"
LOADSUB Subpro9_2 FROM "SUBFILE"
LOADSUB FNNumeric_fn FROM "SUBFILE"
LOADSUB FNStrin9_function$ FROM "SUBFILE"

Loading Several
Subprograms at

Once

Note that only one subprogram per line can be loaded with
this form of LOADSUB. If, for any program option, you need
so many subprograms that this method would be cumber­
some, you could use the following form of the command.

For this method, you store all the subprograms needed for
each option in its own file. Then, when the program's user
selects Program Option 1, you could have this line of code
execute:

I LOADSUB ALL FROM "OPT1SUBFL"

and if the user selects Option 2,

I LOADSUB ALL FROM "OP2SUBFL"

and so forth.

There is one other form of LOAD SUB, but it cannot be used
programmatically. This is covered next.

Programming Techniques 3·117

Loading
Subprograms Prior

to Execution

Deleting
Subprograms

Programmatically

In the LOADSUB FROM form, for which you need the PDEV
binary, neither ALL nor a subprogram name is specified in
the command. This is used prior to program execution. It
looks through the program in memory, notes which subpro­
grams are needed (referenced) but not loaded, goes to the
specified file and attempts to load all such subprograms. If
the subprograms are found in the file, they are loaded into
memory; if they are not, an error message is displayed and a
list of the subprograms still needed but not found in the file is
printed.

The utility of the LOADSUB commands would be greatly re­
duced if one could not delete subprograms from memory at
will. So, there is a way to delete subprograms during execu­
tion of a program: DELSUB. If you want to delete only
selected ones, you could use a program line like this:

If you are sure of the positioning of the subprograms in mem­
ory, here is a method of deleting whole groups of
subprograms:

100 DEL SUB Print_report TO END

You can combine these methods:

The subprograms to be deleted do not have to be contiguous
in memory, nor does the order in which you specify the sub­
programs in a DELSUB statement have to be the order in
which they occur in memory. The computer deletes each sub­
program before moving on to the next name.

3-118 Programming Techniques

If there are any comments after an FNEND or SUBEND, but
before the next SUB or DEF FN, these will be deleted as well
as the rest of the subprogram body.

If the computer attempts to delete a nonexistent subprogram,
an error occurs, and the DELSUB statement is terminated.
This means that subprograms whose names are listed after
the error-causing one will not be deleted.

A subprogram can be deleted only if it is not currently active
and if it is not referenced by a currently active ON
RECOVER/CALL statement. This means:

1. A subprogram can not delete itself.

2. A subprogram can not delete the subprogram that called
it, either directly or indirectly. (Otherwise it wouldn't
have anywhere to return to when finished!)

Between the time that a subprogram is entered and the time it
is exited, the computer keeps track of an activation record for
that subprogram. Thus, if a subprogram calls a subprogram
that calls a subprogram, etc., none of the subsequently-called
subprograms can delete the original one or any of the ones in
between because the system knows from the activation record
that control will eventually need to return to the original call­
ing context. A similar situation exists with active event­
initiated CALL/RECOVER statements. As long as the
po~sibility of the specified event occurring exists, the system
will not let the subprogram be deleted. In essence, the system
will not let you execute two mutually-exclusive, contradictory
commands simultaneously.

Programming Techniques 3·119

Editing
Subprograms

Inserting Subprograms. There are some rules to remember
when inserting SUB and DEF FN statement in the middle of
the program. All DEF FN and SUB statements must be ap­
pended to the end of the program. If you want to insert a
subprogram in the middle of your program because your pre­
fer to see it listed in a given order, you must perform the
following sequence:

1. STORE the program.

2. Delete all lines above the point where you want to insert
your subprogram (refer to the DEL statement).

3. STORE the remaining segment of the program in a new
file.

4. LOAD the original program stored in step 1.

5. Delete all lines below the point where you want to insert
your subprogram.

6. 1}rpe in the new subprogram.

7. Do a LOADSUB ALL from the new file created in step 3.

If you have the PDEV binary installed, the job is much easier:

1. Write your new subprogram at the end of the program.

2. Perform a MOVELINES command where:

a. The Starting Line in the MOVELINES command is
the line which you want to immediately follow
your new subprogram.

b. The Ending Line in the MOVELINES command is
the line immediately prior to the SUB or DEF FN of
the new subprogram.

c. The Destination Line is any line number greater
than the highest line number currently in memory.

In either case there is an optional final step. It is not required
that you do a REN to renumber the program at this point, but
often it is desirable to close up the void left in the program
line numbering which resulted from the block of subprograms
being moved to the end of memory.

3-120 Programming Techniques

Deleting Subprograms. It is not possible to delete either
DEF FN or SUB statements with DEL LINE unless you first
delete all the other lines in the subprogram. This includes any
comments after the SUBEND or FNEND. Another way to de­
lete DEF FN and SUB statements is to delete the entire
subprogram, up to, but not including, the next SUB or
DEF FN line (if any). This can be done either with the DEL
command, or with the DELSUB command.

Merging Subprograms. If you want to merge two subpro­
grams together, first examine the two subprograms carefully
to insure that you don't introduce conflicts with variable us­
age and logic flow. If you've convinced yourself that merging
the two subprograms is really necessary, here's how you go
about it:

1. SAVE everything in your program after the SUB or
DEF FN statement you want to delete.

2. Delete everything in your program from the unwanted
SUB statement to the end.

3. GET the program segment you saved in step 1 back into
memory, taking care to number the segment in such a
way as not to overlay the part of the program already in
memory.

Once again, with PDEV, your job is greatly simplified:

Execute a MOVELINES command in which you move every­
thing from one subprogram-excluding the SUBjDEF FN and
SUBEND jFNEND statements-into the desired position in
the other subprogram. If there are any declarative statements
in the moved code, you will probably want to move those up
next to the declarative statements in the receiving code. Don't
forget to go back to the place where the code came from and
delete the SUBjDEF FN statement and the SUBENDjFNEND
statements.

Programming Techniques 3-121

SUBEND and
FNEND

Recursion

DEF FHFactorial (H)

The SUBEND and FNEND statements must be the last state­
ments in a SUB or function subprogram, respectively. These
statements don't ever have to be executed; SUBEXIT and RE­
TURN are sufficient for exiting the subprogram. (If SUBEND
is executed, it will behave like a SUBEXIT. If FNEND is exe­
cuted, it will cause an error.) Rather, SUBEND and FNEND
are delimiter statements that indicate to the language system
the boundaries between subprograms. The only exception to
this rule is the comment statements (either REM or !), which
are allowed after SUBEND and FNEND.

Both function subprograms and SUB subprograms are al­
lowed to call themselves. This is known as recursion.
Recursion is a useful technique in several applications.

The simplest example of reoorsion is the computation of the
factorial function. The factorial of a number N is denoted by
N! and is defined to be N x (N-1)! where 0!=1 by definition.
Thus N! is simply the product of all the whole numbers from
1 through N inclusive. A recursive function which computes
N factorial is:

IF H=0 THEN RETURH 1
RETURH H*FNFactorial(H-l)
FHEHD

References

3-122 Programming Techniques

1. Wirth, Niklaus, "Program Development by Stepwise Re­
finement·, Communications of the ACM, April 1971, Vol.
14, No.4, pp. 221-227

2. Yourdan, Edward, Techniques of Program Structure and
Design, (Prentice-Hall, Englewood Cliffs, NJ, 1975)

3. Dahl, Dijkstra, & Hoare, Structured Programming (Aca­
demic Press, New York, 1972)

Data Storage
and Retrieval

Storing Data in
Programs

This section describes some useful techniques for storing and
retrieving data. First we describe how to store and retrieve
data that is part of the BASIC program. With this method,
DATA statements specify data to be stored in the memory
area used by BASIC programs; thus, the data is always kept
with the program, even when the program is stored in a mass
storage file. The data items can be retrieved by using READ
statements to assign the values to variables. This is a particu­
larly effective technique for small amounts of data that you
want to maintain in a program file.

For larger amounts of data, mass storage files are more appro­
priate. Files provide means of storing data on mass storage
devices. The two types of data files, ASCII and BDAT, are
described in this section. A number of different techniques for
accessing data in BDAT files are described in detail.

The BASIC system can use a number of different mass stor­
age devices, including internal disc drives, external disc
drives, Hmemory volumes" and SRM systems. This section
gives guidelines for accessing many kinds of devices.

This section describes a number of ways you can store values
in memory. In general, these techniques involve using pro­
gram variables to store data. The data are kept with the
program when it is stored on a mass storage device (with
STORE and SAVE). These techniques allow extremely fast ac­
cess to the data. They provide good use of the computer's
memory for storing relatively small amounts of data.

Programming Techniques 3-123

Storing Data in
Variables

Probably the simplest method of storing data is to use a sim­
ple assignment, such as the following LET statements:

100 LET Cm_per_inch=2.54
110 Inch_per_cm=l/Cm_per_inch

Data Input by the
User

The data stored in each variable can then be retrieved simply
by specifying the variable's name. This technique works well
when there are only a relatively few items to be stored or
when several data values are to be computed from the value
of a few items. The program will execute faster when vari­
ables are used than when expressions containing constants
are used; for instance, using the variable Inch_per _cm in
the preceding example would be faster than using the con­
stant expression 1/2.54. In addition, it is easier to modify
the value of an item when it appears in only one place (Le., in
the LET statement).

You also can assign values to variables at run-time with the
INPUT and LINPUT statements as shown in the following
examples.

100 INPUT "Type in the value of X, please.",Id

200 DISP "Enter the value of X.Y. and Z."

300 LI NPUT Response$

Note that with this type of storage, the values assigned to the
corresponding variables are not kept with the program when
it is stored; they must be entered each time the program is
run. This type of data storage can be used when the data are
to be checked or modified by the user each time the program
is run. As with the preceding example, the data stored in each
variable can then be retrieved simply by specifying the
variable's name.

3-124 Programming Techniques

Using DATA and
READ statements

100 DATA i,A,50
200 DATA "88",20,45
300 DATA X,Y,77

The DATA and READ statements provide another technique
for storing and retrieving data from the computer's
read/write (R/W) memory. The DATA statement allows you
to store a stream of data items in memory, and the READ
statement allows you retrieve data items from the stream.

You can have any number of READ and DATA statements in
a program in any order you want. When you run a program,
the system concatenates all DATA statements in the same
context into a single Hdata stream." Each subprogram has its
own data stream. The following DATA statements distributed
in a program would produce the following data stream.

DATA STREAM: 11 1 A 150 IBBI20 1451 X 1 y 1771

As you can see from the example above, a data stream can
contain both numeric and string data items; however, each
item is stored as if it were a string.

Each data item must be separated by a comma and can be
enclosed in optional quotes. Strings that contain a comma, ex­
clamation mark, or quote mark must be enclosed in quotes. In
addition, you must enter two quote marks for everyone you
want in the string. For example, to enter the string
QUOTEHQUO"TE into a data stream, you would write:

100 DATA "QUOTE""QUO""TE"

Programming Techniques 3-125

100 READ X,Y,Z$

To retrieve a data item, assign it to a variable with the READ
statement. Syntactically, READ is analogous to DATA; but in­
stead of a data list, you use a variable list. For instance, the
statement:

would read three data items from the data stream into the
three variables. Note that the first two items are numeric and
the third is a string variable.

Numeric data items can be read into either numeric or string
variables. If the numeric data item is of a different type than
the numeric variable, the item is converted (i.e., REALs are
converted to INTEGERs, and INTEGERs to REALs). If the
conversion cannot be made, an error is returned. Strings that
contain non-numeric characters must be read into string vari­
ables. If the string variable has not been dimensioned to a size
large enough to hold the entire data item, the data item is
truncated.

The system keeps track of which data item to read next by
using a Udata pointer." Every data stream has its own data
pointer which points to the next data item to be assigned to
the next variable in a read statement. When you run a pro­
gram segment, the data pointer is placed initially at the first
item of the data stream. Every time you read an item from the
stream, the pointer is moved to the next data item. If a sub­
program is called by a context, the position of the data
pointer is recorded and then restored when you return to the
calling context.

3·126 Programming Techniques

10 DATA
20 READ
30 DATA
40 READ
50 Pr in t
60 END

November,26

Starting from the position of the data pointer, data items are
assigned to variables one by one until all variables in a read
statement have been given values. If there are more variables
than data items, the system returns an error, and the data
pointer is moved back to the position it occupied before the
read statement was executed.

Examples. The following example shows how data is stored
in a data stream and then retrieved. Note that DATA state­
ments can come after READ statements even though they
contain the data being read. This is because DATA statements
are linked during program pre-run, whereas READ statements
aren't executed until the program actually runs.

Month$,Da~,Year$

1981, liThe date is II

Str$
Str$; Month$; II II;Oay;IIJ II;Vear$; ".11

The date is November 26, 1981,

Storage and Retrieval of Arrays. In addition to using
READ to assign values to string and numeric variables, you
can also READ data into arrays. The system will match data
items with variables one at a time until it has filled a row.
The next data item then becomes the first element in the next
row. You must have enough data items to fill the array or you
will get an error. The following example shows you how
DATA values can be assigned to elements of a 3-by-3 numeric
array.

Programming Techniques 3-127

113 OPTION BASE 1
213 DIM Example (3,3)
313 DATA 1,2,3,4,5,6,7,8,9,10,11
413 READ Example(*)
513 PRINT USING "3(K,X),/";Example(*)
613 END

The Structure of
Data Files

The data pointer is left at item 10; thus, items 10 and 11 are
saved for the next READ statement.

Moving the Data Pointer. In some programs, you will want
to assign the same data items to different variables. To do
this, you have to move the data pointer so that it is pointing
at the desired data item. You can accomplish this with the
RESTORE statement. If you don't specify a line number or
label, RESTORE returns the data pointer to the first data item
in the data stream. If you do include a line identifier in the
RESTORE statement, the data pointer is moved to the first
data item in the first DATA statement at or after the identified
line.

There are two file types that you can use to store data: BDAT
and ASCII. BOAT files have several advantages: they allow
more flexibility in data formats and access methods, allow
faster transfer rates, and are generally more space-efficient
than ASCII data files. They can be randomly or serially
accessed, and they allow data to be stored in either ASCII
format, internal format, or a specialized format (defined by
the user with IMAGE statements).

3·128 Programming Techniques

ASCII files allow only serial access and only ASCII format.
They have these advantages: the files are compatible with
other HP computers that support this file type, the format
provides very compact storage for string data, and there is no
chance of reading the contents into the wrong data type (a
problem with BDAT files). The full name of ASCII files is "ilF
ASCII." LIF stands for Logical Interchange Format, a directory
and data storage format that is used by many HP computer
divisions. Understanding the characteristics of each file type
will help you choose the best one for your specific
application.

BDAT Files. BDAT files are designed to be storage-space ef­
ficient, have high data-transfer rates, and allow both random
and serial access. Random access means that you can directly
read from and write to any record within the file, while serial
access only permits you to access the file from the beginning.
Serial access can waste a lot of time if you're trying to access
data at the end of a file. On the other hand, if you want to
access the entire file sequentially, you are better off using se­
rial access than random access. BDAT files can be accessed
both randomly and serially, while ASCII files can only be
accessed serially.

BDAT files allow you to store and retrieve data using internal
format, ASCII format, or user-defined formats. With internal
format, items are represented with the same format the sys­
tem uses to store data in internal computer memory*. With
ASCII format, items are represented by ASCII characters.
User-defined formats are implemented with programs that
employ OUTPUT and ENTER statements that reference IM­
AGE specifiers.

• Actually, the format for BDAT files is slightly different than internal format. In­
stead of using a 2-byte length header for strings, BDAT files use a 4-byte length
header. Besides this, the two formats are identical, so we refer to both as
'internal'.

Programming Techniques 3-129

In most applications, you will use internal format for BDAT
files. Unless we specify otherwise, you can assume that when
we talk about retrieving and storing data in BDAT files, we
are also talking about internal format.

Because BDAT files use almost the same format as internal
memory, very little interpretation is needed to transfer data
from the computer to a BDAT file, or vice versa. BDAT files,
therefore, not only save space but also time.

Data stored in internal format in BDAT files require the fol­
lowing number of bytes per item:

INTEGER 2 bytes

REAL 8 bytes

String 1 byte per character (plus 1 pad byte if the string
length is an odd number), plus a 4-byte length
header

INTEGER numbers are represented in BDAT files by using a
16-bit, two's-complement notation, which provides a range 1-
32,768 thm 32,767. If bit 15 (the MSB) is 0, the number is
positive. If bit 15 equals 1, the number is negative; the value
of the negative number is obtained by changing all ones to
zeros, and all zeros to ones, and then adding one to the re­
sulting value.

REAL numbers are stored in BDAT files by using their inter­
nal format: the IEEE-standard, 64-bit, floating-point notation.
Each REAL number is comprised of two parts: an exponent
(11 bits), and a mantissa (53 bits). The mantissa uses a sign­
and-magnitude notation. The sign bit for the mantissa is not
contiguous with the rest of the mantissa bits; it is the most
significant bit (MSB) of the entire eight bytes. The II-bit ex­
ponent is offset by 1023 and occupies the 2nd through the
12th MSB's. Every REAL number is internally represented by
the following equation. (Note that the mantissa is in binary
notation):

-1 mantissa sign X 2 exponent - 1023 X l'mantissa

3-130 Programming Techniques

STRING data are stored in BDAT files in their internal format
(plus two additional, leading bytes of length header, which
are always 0 for Series 200/300 computers). Every character
in a string is represented by one byte which contains the
character's ASCII code. The four-byte length header contains
a value that specifies the length of the string. If the length of
the string is odd, a pad character is appended to the string to
get an even number of characters; however, the length header
does not include this pad character.

The string "AU would be stored:

00000000 00000000 00000000 00000001 01000001 00100000

Length = 0001 (binary) ASCII 65 ASCII 32

In this case, the space character (ASCII code 32) is used as the
pad character; however, not all operations use the space as
the pad character.

When using the ASCII data format for BDAT files, all data
items are represented with ASCII characters. With user-de­
fined formats, the image specifiers referenced by the
OUTPUT or ENTER statement are used to determine the data
representation. Using both of these formats with BDAT files
produce results identical to using them with devices.

ASCII Files. You have already been introduced to ASCII
files as a way to SAVE programs. ASCII files can also be used
to store data. In an ASCII file, every data item, whether string
or numeric, is represented by ASCII characters; one byte rep­
resents one ASCII character. Each data item is preceded by a
two-byte length header which indicates how many ASCII
characters are in the item. However, there is no "type" field
for each item; data items contain no indication (in the file) as
to whether the item was stored as string or numeric data.

Programming Techniques 3-131

There is often a relatively large amount of overhead for nu­
meric data items. For instance, to store the integer 12 in an
ASCII file requires the following six bytes:

1 0
1

3 1 11 12 I(pad) 1 ~ .
LENGTH ASCII

HEADER = CODES
BINARY 3

Similarly, reading numeric data from an ASCII file can be a
complex and relatively slow operation. The numeric charac­
ters in an item must be entered and evaluated individually by
the system's Hnumber builder" routine, which derives the
number's internal representation. (Keep in mind that this rou­
tine is called automatically when data are entered into a
numeric variable.) For example, suppose that the following
item is stored in an ASCII file:

____ ~I~'---------------v--------------~
LENGTH

HEADER =
BINARY 10

ASCII
CODES

Although it may seem obvious that this is not a numeric data
item, the system has no way of knowing this since there is no
type-field stored with the item. Therefore, if you attempt to
enter this item into a numeric variable, the system uses the
number-builder routine to strip away all non-numeric charac­
ters and spaces and assign the value 123 to the numeric
variable. When you add to this the intricacies of real numbers
and exponential notation, the situation becomes more
complex.

3-132 Programming Techniques

Mass Storage
Techniques

Overview of Mass
Storage Access

In general, you should only use ASCII files when you want to
transport data between machines. There may be other in­
stances where you will want to use ASCII files, but you
should be aware that they cause a noticeable performance
degradation compared to BDAT files.

This section presents BASIC programming techniques useful
for accessing mass storage devices and files. The first part
gives a brief introduction to the steps you might take to store
data in a file. Subsequent parts describe further details of
these steps. If you feel that you need additional background
information while reading this material, refer to the preceding
tutorial section.

Storing data in files requires a few simple steps. The follow­
ing program segment (found in file CRBDAT in your Manual
Examples disc) shows a simple example of creating a BDAT
file on the "A" drive, and writing data to it.

10 DIM Arrayl(5,4),Array2(5,4)
20 MAT Arrayl=5 !Fill Arrayl with 5.
30 MASS STORAGE IS ":CSS0,1500,0" ! MSI is drive A.
40 CREATE BOAT "FILE_l",10 ! 10 (256-byte) records.
50 ASSIGN @Path_l to "FILL1" ! Open an I/O path to the file.
60 OUTPUT @Path_1JArrayl(*) ! Send an array of numeric values.
70 ASSIGN @Path_l TO * ! Close the path
S0 ASSIGN @F_l to "FILE_l:CSS0,1500,0" ! Another path to the file.
90 ENTER @F_1JArray2(*)
100 ASSIGN @Path_l TO * ! Close the path
110 END

Line 30 specifies the "system mass storage device," or the "de­
fault" device which is to to be used whenever a mass storage
device is not explicitly specified during subsequent mass stor­
age operations. The term mass storage unit specifier (msus)
describes the string expression used to uniquely identify
which device is to be the mass storage. In this case,
":CS80,lS00,O" is the msus.

Programming Techniques 3-133

In order to store data in mass storage, a data file must be cre­
ated (or already exist) on the mass storage media. In this case,
line 40 creates a BDAT file for data storage; the file created
contains 10 defined records of 256 bytes each.

The term Hfile specifier" describes the string expression used
to uniquely identify the file. In this example, the file specifier
is simply F i 1 e_l, which is the file's name. If the file is to be
created (or already exists) on a mass storage device other than
the system mass storage, the appropriate msus must be ap­
pended to the file name.

Then, in order to store data in (or retrieve data from) the file,
you must assign an I/O path name to the file. Line 50 shows
an example of assigning an I/O path name to the file (also
called opening an I/O path to the file). Line 60 shows an ar­
ray of numeric data being sent to the file through the I/O
path.

The I/O path is dosed after all data have been sent to the
file. Closing the I/O path is optional if another I/O path
name is assigned to the file later in the program. All I/O path
names are automatically dosed by the system at the end of
the program. Closing an I/O path to a file updates the file
pointers.

If this array of data is to be retrieved from the file, another
ASSIGN statement is executed (line 110). Notice that a differ­
ent I/O path name has been used; this is an arbitrary choice
of names. Opening this I/O path name to the file sets the file
pointer to the beginning of the file. (Re-opening the I/O path
name @F i 1 e_l would have also reset the file pointer.)

3-134 Programming Techniques

Non-Disc Mass
Storage

Notice also that the msus is included with the file name. This
shows that the mass storage device, does not have to be the
current system mass storage in order to be accessed. The sub­
sequent ENTER statement reads the data into another
numeric array (which must be of the same data type when a
BDAT file is used in this manner).

Although mass storage is traditionally implemented using a
magnetic surface such as a disc or drum, the protocols of file
management can be applied to any device which stores data,
such as RAM Memory Volumes. Areas of the computer's
RAM can be treated as though they were mass storage de­
vices. Obviously, a RAM volume is volatile. However, it can
be accessed faster than any other mass storage device.

RAM Volumes. Areas of the computers RAM may be treated
as mass storage devices. These Umemory volumes" or "RAM
volumes" are volatile (all information is lost when the power
goes off), but high speed. A typical use for RAM volumes is
to copy a disc volume into memory, perform all necessary
manipulations using the RAM volume, then copy the new in­
formation back to disc. Obviously, there are only certain
applications which would benefit from this technique.

All mass storage operations work with RAM volumes.

RAM volumes are created by the INITIALIZE statement. A
special form of this statement is used, with a unit size param­
eter in the position normally occupied by the interleave
factor. The device type is always MEMORY, and the device se­
lector is always O. Unit numbers 0 thru 31 may be used. Here
are some examples.

Programming Techniques 3-135

INITIALIZE ":MEMORY,IZI,7" ,22121

This creates a RAM volume that is 220 sectors long and is
given unit number 7. Note that the unit size parameter is in
256-byte sectors, just like LIF file sizes.

If the unit size parameter is omitted, the result is a RAM vol­
ume that is the same size as a 5.25-inch or 3.5-inch disc. This
is 1056 sectors, or 270,336 bytes. The default size RAM vol­
ume provides only 80 directory entries, while the discs may
contain up to 112 directory entries. If a disc is copied into the
RAM volume, the entire directory will be copied.

The unit size of a RAM volume must be at least 4 sectors and
can be as large as available memory permits. Two sectors are
taken for system use, and about 1 sector of directory is cre­
ated for each 100 sectors of unit size.

No RAM volumes exist at power-up or after a SCRATCH A. It
is recommended that all binaries be loaded before RAM vol­
umes are initialized. If a binary is loaded after a RAM volume
is initialized, the memory used for the RAM volume cannot
be recovered until the computer is turned off and back on
again.

A RAM volume can be re-initialized to the same or different
size. If the size is different, memory space may be lost until
the next SCRATCH A.

After they are created, RAM volumes are accessed by using
their unit number in a MEMORY media specifier. The follow­
ing examples show typical mass storage unit specifiers for a
RAM volume with unit number 7.

MASS STORAGE IS ":MEMORY,IZI,7"
or
ASSIGN @Ram TO "TEMP:MEMORY,IZI,7"

3-136 Programming Techniques

Accessing Files Before you can access a data file, you must assign an I/O
path name to the file. Assigning an I/O path name to the file
sets up a table in computer memory that contains various in­
formation describing the file, such as its type, which mass
storage device it is stored on, and its location on the media.
The I/O path name is then used in I/O statements (OUT­
PUT, ENTER, and TRANSFER) which move the data to and
from the file. I/O path names are also used to transfer data to
and from devices.

Opening an 1/0 Path. I/O path names are similar to other
variable names, except that I/O path names are preceded by
the M@" character. When an I/O path name is used in a state­
ment, the system looks up the contents of the I/O path name
and uses them as required by the situation.

To open an I/O path to a file, assign the I/O path name to a
file specifier by using an ASSIGN statement. For example,
executing the following statement:

I ASSIGN @Pathl TO "Example"

assigns an I/O path name called @Pathl to the file
Examp 1 e. The file that you open must already exist and must
be a data file. If the file does not satisfy one of these require­
ments, the system will return an error. If you do not use an
msus in the file specifier, the system will look for the file on
the current MASS STORAGE IS device. If you want to access
a different device, use the msus syntax described earlier. For
instance, the statement:

ASSIGN @Path2 TO "Example:CS80,1500,0"

opens an I/O path to the file Examp 1 e. You must include the
protect code if the file has one.

Programming Techniques 3·137

100 COM @Path3

Once an I/O path has been opened to a file, you always use
the path name to access the file. An I/O path name is only
valid in the context in which it is opened, unless you pass it
as a parameter or put it in the COM area. To place a path
name in the COM area, simply specify the path name in a
COM statement before you ASSIGN it. For instance, the two
statements below would declare an I/O path name in an un­
named COM area and then open it:

110 ASSIGN @Path3 TO "File1"

ASSIGN @Path2 TO *

Reading and
Writing BDAT Files

Closing 1/0 Paths. I/O path names not in the COM area
are closed whenever the system moves into a stopped state
(e.g., STOP, END, SCRATCH, EDIT, etc.). I/O path names lo­
cal to a context are closed when control is returned to the
calling context. Re-ASSIGNing an I/O path name will also
cancel its previous association.

You can also explicitly cancel an I/O path by ASSIGNing the
path name to an * (asterisk). For instance, the statement:

closes @P a t h 2. @P a t h 2 cannot be used again until it is Re­
ASSIGNed. You can Re-ASSIGN a path name to the same file
or to a different file.

There are many alternatives for storing and retrieving data
when using BOAT files. You can choose internal, ASCII, or
user-defined formats, and serial or random access.

3-138 Programming Techniques

System Sector On the disc, every BOAT file is preceded by a system sector
that contains an End-Of-File pointer and the number of de­
fined records in the file. All data is placed in succeeding
sectors. You cannot directly access the system sector. How­
ever, as you shall see later, it is possible to indirectly change
the value of an EOF pointer.

SECTOR I (1) 1 2 3
I

: NUMBER

~ EOF OF
POINTER: DEFINED

...
I RECORDS

~----------~,,~--------------------~.-----------------
SYSTEM SECTOR DATA

EOF Pointer: • number of sectors from beginning of file
(32-bit binary number)

• number of bytes from beginning of sector
(32-bit binary number)

Number of defined records: See description below
(32-bit binary number)

Defined Records To access a BOAT file randomly, you specify a particular de­
fined record. Records are the smallest units in a file directly
addressable by a random OUTPUT or ENTER. They can be
anywhere from 1 through 65,534 bytes long. Both the length
of the file and the length of the defined records in it are spec­
ified when you create the file. For example, the statement:

I CREATE BOAT "Example",7.128

would create a file called E x amp 1 e with 7 defined records,
each record being 128 bytes long. If you don't specify a
record length in the CREATE BOAT statement, the system
will set each record to the default length of 256 bytes.

Programming Techniques 3-139

Both the record length and the number of records are
rounded to the nearest integer. Further, the record length is
rounded up to the nearest even integer. For example, the
statement:

CREATE BDAT "Odd",3.5,28.7

would create a file with 4 records, each 30 bytes long. On the
other hand, the statement:

CREATE "Odder",3.49,28.3

Choosing a Record
Length

would create a file with 3 records, each 28 bytes long.

Once a file is created, you cannot change its length, or the
length of its records. You must therefore calculate the record
size and file size required before you create a file.

The most important consideration in selecting of a proper
record length is the type of data being stored and the way
you want to retrieve it. For optimum performance, the record
size should be an even multiple of the size of the data ele­
ments stored in the record, 2 bytes for integers and 8 bytes
for real numbers.

Files that contain string data present a slightly more difficult
situation since strings can be of variable length. If you have
three strings in a row that are 5, 12, and 18 bytes long, re­
spectively, there is no record length less than 22 that will
permit you to randomly access each string. If you select a
record length of 10, for instance, you will be able to randomly
access the first string but not the second and third.

3-140 Programming Techniques

John Smith
Steve Anderson
Mary Mar t in
Bob Jones
Beth Robinson

If you want to access strings randomly, therefore, you should
make your records long enough to hold the largest string.
Once you've done this, there are two ways to write string
data to a BDAT file. The first, and easiest, is to enter each
string in random mode. In other words, select a record length
that will hold the longest string and then write each string
into its own record. Suppose, for example, that you wanted to
OUTPUT the following 5 names into a BDAT file and be able
to access each one individually by specifying a record
number.

The longest name, HSteve Anderson", is 14 characters. To store
it in a BDAT file would require 18 bytes, including four bytes
for the length header. You could create a file with record
length of 18 and then OUTPUT each item into a different
record:

100 CREATE BOAT "Names",5,18 ! Create a file.
110 ASSIGN @File TO "Names" ! Open an I/O path
120 OUTPUT @File,I;"John Smith" ! Write names to
130 OUTPUT @File,2;"Steve Anderson" ! Successive records
140 OUTPUT @File,3;"Mary Martin" ! In file
150 OUTPUT @File,4;"Bob Jones"
160 OUTPUT @File,5;"Beth Robinson"

Programming Techniques 3·141

On the disc, the file ''Names" would look like the figure be­
low. The four-byte length headers show the decimal value of
the bytes in the header. The data are shown in ASCII
characters.

1 0 1 0 1 0 1101 J 1 0 1 h 1 nil S 1 m 1 i 1 t 1 h 1 x 1 x 1 x 1 x 1 0 1 0 1 0 1141 sit 1 e 1 vie 1 1 A 1 n 1 die 1

1 r 1 s 10 I n 10 10 10 1111 M I air 1 y 1 1M 1 air 1 t 1 i 1 n I@I x 1 x 10 10 10 19 1 B 10 1 b 1 1 J 10 1

1 n 1 e 1 s I@I x 1 x 1 x 1 x 10 10 10 1131 B lei t 1 h 1 1 Rio 1 b 1 i 1 n 1 s loin I@I x 1 x 1 x 1 x 1 x 1 x 1

1 = length header
x = whatever data previously resided in that space

@ = pad character

The unused portions of each record contain whatever data
previously occupied that physical space on the disc.

Writing Data Data is always written to a file with an OUTPUT statement
via an I/O path. You can OUTPUT numeric and string vari­
ables, numeric and string expressions, and arrays. When you
OUTPUT data with the FORMAT OFF, data items are written
to the file in internal format (described earlier).

There is no limit to the number of data items you can write in
a single OUTPUT statement, except that program statements
are limited to two CRT lines. Also, if you try to OUTPUT
more data than the file can hold, or the record can hold (if
you are using random access), the system will return an EOF
or EOR condition. If an EOF or EOR condition occurs, the file
retains any data output ahead of the end condition.

There is also no restriction on mixing different types of data
in a single OUTPUT statement. The system decides which
data type each item is before it writes the item to the disc.
Any item enclosed in quotes is a string. Numeric variables
and expressions are OUTPUT according to their type (8 bytes
for REALs and 2 bytes for INTEGERs). Arrays are written to
the file in row major order (right-most subscript varies
quickest).

3-142 Programming Techniques

Sequential (Serial)
OUTPUT

Each data item in an OUTPUT statement should be separated
by either a comma or semicolon (there is no operational dif­
ference between the two separators with FORMAT OFF).
Punctuation at the end of an OUTPUT statement is ignored
with FORMAT OFF.

Data is written sequentially (serially) to BOAT files whenever
you do not specify a record number in an OUTPUT state­
ment. When data is written serially, each data item is stored
immediately after the previous item without any type of sepa­
rator. Sector and record boundaries are ignored. Data items
are written to the file one by one, starting at the current posi­
tion of the file pointer. As each item is written, the file pointer
is moved to the next byte. After all of the data items have
been OUTPUT, the file pointer points to the first byte follow­
ing the last byte just written.

There are a number of circumstances where it is faster and
easier to use serial access instead of random access. The most
obvious case is when you want to access the entire file at
once. For example, if you have a list of data items that you
want to store in a file and you know that you will never want
to read any of the items individually, you should write the
data serially. The fastest way to write data serially is to place
the data in an array and then OUTPUT the entire array at
once.

Another situation where you might want to use serial access
is if the file is so small that it can fit entirely into internal
memory at once. In this case, even if you want to change in­
dividual items, it might be easier to treat the entire file as one
or more arrays, manipulate as desired, and then write the en­
tire array(s) back to the file.

Programming Techniques 3-143

Random OUTPUT

Reading Data From
BDAT Files

Random OUTPUT allows you to write to one record at a time.
As with serial OUTPUT, there are EOF and file pointers that
are updated after every OUTPUT. The EOF pointers follow
the same rules as in serial access. The file pointer positioning
is also the same, except that it is moved to the beginning of
the specified record before the data is OUTPUT. If you wish
to write randomly to a newly created file, use either a CON­
TROL statement to position the EOF in the last record, or start
at the beginning of the file and write some "dummy" data into
every record.

If you attempt to write more data to a record than the record
will hold, the system will return an End-Of-Record (EOR)
condition. An EOF condition will result if you try to write
data more than one record past the EOF position. EOR condi­
tions are treated by the system just like EOF conditions,
except that they return Error 60 instead of 59 if they are not
trapped by ON END. Data already written to the file before
an EOR condition arises will remain intact.

Data is read from files with the ENTER statement. As with
OUTPUl: data is passed along an I/O path. You can use the
same I/O path you used to OUTPUT the data or you can use
a different I/O path.

You can have several variables in a single ENTER statement.
Each variable must be separated by either a comma or semi­
colon. It is extremely important to make sure that your
variable types agree with the data types in the file. If you
wrote a REAL number to a file, you should ENTER it into a
REAL variable; INTEGERs should be entered into INTEGER
variables; and strings into string variables. The rule to remem­
ber is: "Read it the way you wrote it."

When reading data into a string variable, it is important to
remember that the system will interpret the first four bytes
after the file pointer as a length header. It will then try to
ENTER as many characters as the length header indicates. If
the string has been padded by the system to make its length
even, the pad character is not read into the variable.

3·144 Programming Techniques

After an ENTER statement has been executed, the file pointer
is positioned to the next unread byte. H the last data item was
a padded string, the file pointer is positioned after the pad. H
you use the same I/O path name to read and write data to a
file, the file pointer will be updated after every ENTER and
OUTPUT statement. H you use different I/O path names,
each will have its own file pointer which is independent of
the other. However, be aware that each also has its own EOF
pointer and that these pointers may not match, which causes
problems.

Entering data does not affect the EOF pointers. However, you
cannot read data at or beyond the byte marked by the EOF
pointers. H you attempt to read past an EOF pointer, the sys­
tem will return an EOF condition.

In addition to making sure that data types agree, it is also
advisable to make sure that access modes agree. H you wrote
data serially, you should read it serially; and if you wrote it
randomly, you should read it randomly. There are a few ex­
ceptions to this rule which we discuss later. However, you
should be aware that mixing access modes will often lead to
erroneous results unless you are aware of the precise mechan­
ics of the file system.

Serial ENTER. When you read data serially, the system en­
ters data into variables starting at the current position of the
file pointer and proceeds, byte by byte, until all of the vari­
abIes in the ENTER statement have been filled. H there is not
enough data in the file to fill all of the variables, the system
returns an EOF condition. All variables that have already
taken values before the condition occurs retain their values.

Programming Techniques 3·145

10 CREATE BOAT ·STORAGE",1
20 ASSIGH @Path TO "STORAGE"
30 IHTEGER Hum,First,Fourth
40 Hum=5

In the program belo~ we OUTPUT five data items serially,
and then retrieve the data items with a serial ENTER
statement.

50 OUTPUT @PathJHum,"s~uared"," e~uals",Hum*Hum,".",EHD
60 ASSIGH @Path TO "STORAGE"
70 EHTER @PathJFirst,Second$,Third$,Fourth,Fifth$
80 PRINT FirstJSecond$JThird$,Fourth,Fifth$
90 EHD

5 s~uared e~uals 25.

Note that we re-ASSIGNed the I/O path in line 70. This was
done to re-position the file pointer to the beginning of the
file. If we had omitted this statement, the ENTER would have
produced an EOF condition. Note also that the OUTPUT
statement includes END, which specifies that the EOF pointer
is to be moved to match the file pointer at statement comple­
tion. In this case, the END is redundant.

Random ENTER. When you ENTER data in random mode,
the system starts reading data at the beginning of the speci­
fied record and continues reading until either all of the
variables are filled or the system reaches the EOR or EOP. If
the system comes to the end of the record before it has filled
all of the variables, an EOR condition is returned.

3·146 Programming Techniques

In the following example (found in file OUTPUn on your
Manual Examples disc), data is randomly OUTPUT to 10
successive records, and then ENTERed into an array in re­
verse order.

10 CREATE BDAT "SQ_ROOTS",5,2*8
20 ASSIGN @Path TO "SQ_ROOTS"
30 FOR Inc=1 to 5
40 OUTPUT @Path,Inc;Inc,SQR(Inc)
50 NEXT Inc
60 FOR Inc=5 TO 1 STEP -1
70 ENTER @Path,Inc;Num(Inc),Sqroot(Inc)
80 NEXT Inc
90 PRINT "Number","Square Root"
100 FOR Inc=1 TO 5
110 PRINT Num(Inc),Sqroot(Inc)
120 NEXT Inc
130 END

Number Square Root
1 1
2 1.41421356237
3 1,73205080757
4 2
5 2.2360679775

In this example, there was no need to re-ASSIGN the I/O
path because the random ENTER automatically re-positions
the file pointer.

Executing a random ENTER without a variable list has the
effect of moving the file pointer to the beginning of the speci­
fied record. This is useful if you want to serially access some
data in the middle of a file.

You can define records to be just one byte long. In this case, it
doesn't make sense to read or write one record at a time,
since even the shortest data type requires two bytes to store a
number.

Programming Techniques 3-147

General Mass
Storage Operation

Trapping EOF and
EOR Conditions

Random access to one-byte records, therefore, has its own set
of rules. When you access a one-byte record, the file pointer
is positioned to the specified byte. From there, the access pro­
ceeds in serial mode. Random OUTPUTs write as many bytes
as the data item requires, and random ENTERs read enough
bytes to fill the variable.

This section describes several different types of operations on
mass storage files.

• Trapping EOR and EOF conditions while reading and writ-
ing data files

• Protecting files

• Copying files

• Purging files

• Accessing directories programmatically

An EOF condition exists whenever the system attempts to
read data at, or beyond, the byte marked by the EOF pointers.
The EOR condition will arise if you attempt to randomly read
or write beyond the particular record specified. If, for exam­
ple, you try to randomly OUTPUT a 20-character string into a
lO-byte record, an EOR condition will occur. EOF conditions
will also result whenever you try to read or write beyond the
physical end-of-file.

EOF and EOR conditions can be trapped with an ON END
statement. ON END is similar to ON ERROR except that it
only traps EOF /EOR conditions and is only applicable to the
specified I/O path. If you do not have an ON END statement
in a program, the EOF /EOR condition will produce an error
that is trappable by the ON ERROR statement. Encountering
a logical or physical end of file will produce Error 59. En­
countering an end of record in random mode produces Error
60.

3-148 Programming Techniques

Protecting Files*

Note

I PROTECT "FILE1", "AA"

You can have any number of ON END statements in a pro­
gram context. ON END statements that refer to different I/O
paths will not interfere with each other, even if the paths go
to the same file. If you have more than one ON END to the
same I/O path, the system will use whichever one it most
recently executes during program flow.

An ON END is cancelled by the OFF END statement. OFF
END only cancels the ON END branch for the specified I/O
path. Re-ASSIGNing an I/O path will also cancel any existing
ON END branch for the particular path.

File protection does not prevent MS-DOS read/write of files,
or copying files with the HPWUTIL utility.

Protect codes are two-character strings that can be assigned to
any BDAT, BIN or PROG type file with the PROTECT state­
ment. Protect codes are not unbreakable; they are only
intended to prevent accidentally writing in files and
directories.

For instance, the following statement assigns the protect code
U AN' to the file named "FILE 1."

• This type of protect code applies only to non-SRM LIF discs. For a description of
SRM password protection, refer to Chapter 6, HUsing SRM:

Programming Techniques 3-149

File specifiers in mass storage statements that write to a file or
directory must include the protect code, if the file has one.
Mass storage statements that read a file or directory (CAT,
LOAD, LOAD BIN, LOADSUB ALL FROM, GET and COPy)
do not require the protect code. A protect code is specified by
placing it in brackets right after the file name. To assign an
I/O path name to the file named "'FILEl, W you would now
have to include the protect code.

I ASSIGN I!!Pathl TO "FILEl <AA)"

If you assign a protect code longer than two characters, the
system will ignore everything after the second (non-bland)
character. For example, the protect codes LONGPASS, LOL­
LYPOP,· and LOST all result in the same protect code: LO.
This rule holds both for PROTECTing a file and for specify­
ing the protect code in a file specifier. For example:

I PROTECT "FILE1","Protectl"

assigns the protect code "Pr" to FILEt. To rename the file, you
could write:

RENAME "FILE1<Prattle)" TO "FILE2"

"Prattle" is an acceptable protect code, since it starts with "Pr."
Note that we do not include a protect code in the new file
name. If you do, the system ignores it since the old protect
code is passed to the new file name. FILE2 still has the pro­
tect code "Pr". To rename the file again, we might write:

I RENAME "FILE2<Pr)" TO "FILE3"

3-150 Programming Techniques

Renaming a file has the effect of changing the file name in
the directory and leaving everything else intact.

In addition to using the PROTECT statement, you can also
assign a protect code to a BDAT file when you create it. For
example:

CREATE BOAT "Example(Xxx)",10

creates a lO-record BDAT file called "Example" and gives it a
protect code of "xx". You can also do this to PROG files with
the STORE and STORE BIN statements. However, since
ASCII files cannot be protected, a protect code cannot be in­
cluded in any CREATE ASCII, SAVE, or RE-SAVE statement.

To change a protect code, simply execute a new PROTECT
statement. To change the protect code of "Example" to "yy,"
execute:

PROTECT "Example(xx)","yy"

PROTECT "Example(yy)","

Note that you must include the current protect code in the file
specifier.

To completely remove a protect code from a file, PROTECT
the file with a code consisting of two blanks. For example, to
remove the protect code from file "Example," execute:

"

Programming Techniques 3-151

PURGE "Example"

PURGE "Example()"

Copying Files

Caution ,

When specifying a file that does not have a protect code, you
can either ignore the code entirely or include a code of two
spaces:

or

The COPY statement allows you to duplicate individual files.
Any type of file may be copied.

COpy of a file duplicates the existing file and places the new
file name in the directory. A new file can be created either on
the same disc or on another disc. If you copy a file to the
same disc, the new file name must be different from the exist­
ing file name. If the file is of BDAT, BIN or PROG type, you
can also assign a protect code to the new file. If there is not
enough room on the disc for the file to be copied, the system
cancels the statement and returns an error.

Copying entire directories or volumes to or from an internal
drive should be accomplished with the HPWUTIL program. Re­
fer to appendix C for information on this utility.

3-152 Programming Techniques

COPY "File1" TO "File2"

Examples. The following statement copies "Filel" from the
current system mass storage device to a new file called "File2"
on the same mass storage.

The following statement copies "Filel" from the current sys­
tem mass storage to the drive at interface select code 15,
primary address 0, unit number O. Note that both files can be
named "FILEI if they are on different volumes.

COPY "Fi lei" TO "Fi lei: CS80, 1500, O"

The following statement copies a file from a disc drive to the
current system mass storage device. The new file "DATA" is
given the protect codeuxx."

COpy "Filel:CS80,1500,0" TO "DATA<xx>"

Purging Files You can purge a file by using the PURGE statement. Purging
a file deletes the directory entry for the file and releases the
reserved space in the data area. Purging a file, therefore, cre­
ates two "gaps" on the disc: one in the data area and one in
the directory. When you create a file, the system looks at all
the gaps in the data area to see if the newly created file will
fit in any of them.

Programming Techniques 3·153

CAT

Accessing
Directories

CAT ":C880,1500,0"

Disc structure and mass storage directories were briefly de­
scribed earlier in this section. As you may recall, a directory is
merely an index to the files on a mass storage media. The
BASIC language has several features that allow you to obtain
information from the directories of mass storage media. This
section presents several techniques that will help you access
this information. .

To get a catalog listing of a directory, you will use the CAT
statement. Executing CAT with no media specifier directs the
system to get a catalog of the current system mass storage
directory.

Including a media specifier directs the system to get a catalog
of the specified mass storage. For instance, executing the fol­
lowing statement returns a catalog of the directory of the II A"
drive:

Both of the preceding statements sent the catalog listings to
the current system printer (the one specified in the last
PRINTER IS statement; the default system printing device is
the CRT).

3·154 Programming Techniques

CAT TO #26
CAT TO #External_prtr
CAT TO #Device_selector

Sending Catalogs to External Printers. The CAT state­
ment normally directs its output to the current PRINTER IS
device. The CAT statement can also direct the catalog to a
specified device, as shown in the following examples:

The parameter following the # is known as a device selector,
and is described in the section entitled "Using a PrinterH.

Cataloging Selected Files. The directory entry of file(s)
that begin with certain character(s) can be obtained by using
the secondary keyword SELECT. Suppose that you want to
catalog only files beginning with the letters "Prog". The
folowing examples show how this may be accomplished. No­
tice that this is not the same opertion as getting a catalog of a
PROG file.

10 Beginning_chars$="Prog"
20 CAT;SELECT Beginning_chars$
30 END

The directory entries of the three files beginning with the let­
ters "Prog" are sent to the PRINTER IS device. In the second
CAT statement above, the variable F i 1 es_and_headr is
filled with the number of selected files found on the current
default mass storage device (Plus the 5 header lines). (Keep in
mind that the variable F i 1 es_and_headr must be cur­
rently defined in the current program context.)

Programming Techniques 3-t 55

CAT;SELECT "Chap3"

SELECT may also be used to get the catalog of an individual
file entry by selecting the entire file name, as shown in the
fillowing statement:

Getting a Count of Selected Files. It is often desirable to
determine the total number of files on a disc, or the number
that begin with a certain character or group of characters. The
COUNT option directs the computer to return the number of
selected files in the variable that follows the COUNT
keyword.

10 CAT;COUNT Files_and_headr
20 END

10 CAT;SELECT "Data".COUNT Selected_files
20 END

CAT;SELECT "BCD".SKIP 5

The first CAT operation returns a count of all files in the di­
rectory (plus 5 header lines), since not including SELECT
defaults to Uselect all files". The second operation returns a
count of the specifically selected files (plus 5).

Skipping Selected Files. If there are many files that begin
with the same characters, it is often useful to be able to skip
some of the directory entries so that the catalog is not as long.
This may be especially useful when using a drive such as an
HP 7912, which has the capability of storing more than
10,000 files.

The following statement shows an example of skipping file
entries before sending selected entries to the destination.

3·156 Programming Techniques

The first five "selected" files (that begin with the specified
characters) are uskipped" (Le., not sent with the rest of the
catalog information).

It is also important to note the order of options in the CAT
statement. This order is required when several options are
used. If the NO HEADER option is used, it must be the last
option in the list, as shown in the following example.

CAT;SELECT "BCD".SKIP 5.COUNT Selected_files.NO HEADER

Using a Printer

Fundamentals

Sooner or later it needs to be printed. A wide range of print­
ers, supported by BASIC, can be connected to your computer.
This section covers the statements commonly used to commu­
nicate with external printers. The following is a list of some of
the printers that work with most popular personal computers:

• HP 2225 Thinkjet Printer

• HP 2601 Daisy-Wheel Printer

• HP 2631 Dot Matrix Printer

• HP 2671 Thermal Printer

• HP 2686 Laser Printer

• HP 82906 Dot Matrix Printer

The PRINT statement normally directs text to the screen of
the CRT. Text may be re-directed to an external printer by us­
ing the PRINTER IS statement. The default system printer is
the screen of the CRT. The PRINTER IS statement is used to
change the system printer.

Programming Techniques 3-157

Device Selectors

PRINTER IS 1

Primary Addresses

Before a printer will print the first character, several steps are
required to set up the printer. These steps are fully
documented in the appropriate printer installation manual.

After the printer is switched on and the computer and printer
have been connected via an interface cable, there is only one
piece of information needed before printing can begin. The
computer needs to know the correct device selector for the
printer. This is analogous to knowing the correct telephone
number before making a call.

A device selector is a number that uniquely identifies a par­
ticular device connected to the computer. When only one
device is allowed on a given interface, it is uniquely identified
by the interface select code. In this case, the device selector is
the same as the interface select code.

For example, the internal CRT is the only device at the inter­
face whose select code is 1. To direct the output of PRINT
statements to the CRT, use the following statement.

This statement defines the screen of the CRT to be the system
printer. Until changed, the output of PRINT statements will
appear on the screen of the CRT.

When more than one device can be connected to an interface,
such as the internal HP-IB interface (interface select code 7),
the interface select code no longer uniquely identifies the
printer. Extra information is required. This extra information
is the primary address.

3-158 Programming Techniques

I PRINTER IS 7131

Using Device
Selectors

Each printer has a set of switches, usually located on the back
panel, which set the primary address of the printer. The pri­
mary address, determined by the switch settings, is combined
with the interface select code to make up the device selector.
In the following example, the primary address 01 is appended
to the interface select code 7 to produce the device selector
701.

This statement tells the computer to use the internal HP-IB
interface (select code 7) to communicate with a printer whose
switches are set to the primary address 01. If the printer's pri­
mary address is set to 11, the device selector would be 711.

A device selector is used by several different statements. In
each of the following, the numeric constant is a device
selector.

PRINTER IS 1 Specifies the internal CRT (default).

PRINTER IS 701 Specifies an HP-IB printer with interface
select code 7 and primary address 01.

PR I NTER IS 26 Specifies a printer with interface select
code 26. This will access a standard MS-DOS printer at LPT1.

PR I NTER IS 22 Specifies a printer connected to interface
select code 22.

CAT TO #701 Prints a disc directory at 701.

PRINTALL IS 707 Logs information on a printer whose
select code is 7 and whose primary address is 07 (binary
00111).

LI ST #701 Lists the program in memory to a printer con­
nected to the internal HP-IB interface at primary address 01.

Programming Techniques 3·159

PRINTER IS Hal

CAT TO #OOg

PRINTER IS PRT
PRINTER IS 701

Using the External
Printer

Most statements allow a device selector to be assigned to a
variable. Either INTEGER or REAL variables may be used.

The following three-letter mnemonic functions have been as­
signed useful values.

Mnemonic Value

PRT 701

KBD 2

CRT 1

For example, the following statements perform the same
action:

The mnemonic may be used anywhere the numeric device se­
lector can be used.

Another method may be used to identify the printer within a
program. An I/O path name may be assigned to the printer;
the printer is subsequently referenced to by the I/O path
name.

Most ASCII characters are printed on an external printer just
as they appear on the screen of the CRT. Depending on your
printer, there will be exceptions. Several printers will also
support an alternate character set: either a foreign character
set, a graphics character set, or an enhanced character set. If
your printer supports an alternate character set, it usually is
accessed by sending a special command to the printer.

3-160 Programming Techniques

Control Characters

I PRIHTE" IS 2.
PRINT CHR$(12)

In addition to a Hprintable" character set, printers usualiy re­
spond to control characters. These non-printing characters
produce a response from the printer. One way to send control
characters to the printer is the CHR$ function. Execute the
following:

The printer responds with a formfeed. To resume printing on
the internal CRT, execute the following:

I PRIHTE" IS 1
PRINT "Back to the CRT."

Refer to your printer manual for a complete listing of control
characters and their effect on your printer. Some control char­
acters will only affect the current line of text.

Formatted Printing . For many applications the PRINT statement provides ade­
quate formatting. The simplest method of print formatting is
by specifying a comma or semicolon between printed items.

I PRINT A, B, C, D

When the comma is used to separate items, the printer will
print the items on field boundaries. Fields start in column one
and occur every ten columns (columns 1,11,21,31, ...). Using
the values: A = 1.1, B = -22.2, C = 3E + 5, D = 5.1E + 8

Produces:

123456789012345678901234567890123456789
1.1 -22.2 300000 5.1E+8

Programming Techniques 3-161

Note the form of numbers in a normal PRINT statement. A
positive number has a leading and a trailing space printed
with the number. A negative number uses the leading space
position for the U -" sign. This is why the positive numbers in
the previous example appear to print one column to the right
of the field boundaries. The next example shows how this
form prevents numeric values from running together.

A;B;C;D,E
123456789012345678901234567890123

1.1 -22.2 300000 5.1E+8

PRINT Array(*);

Using the semicolon as the separator caused the numbers to
be printed as closely together as the Ncompact' form allows.
The compact form always uses one leading space (except
when the number is negative) and one trailing space.

The comma and semicolon are often all that is needed to
print a simple table. By using the ability of the PRINT state­
ment to print the entire contents of of a array, the comma or
semicolon can be used to format the output.

If each array element contained the value of its subscript, the
statement:

Produces:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

3·162 Programming Techniques

PRINT TAB(25);-1.414

Another method of aligning items is to use the tabbing ability
of the PRINT statement.

123456789012345678901234567890123
-1.414

Using Images

PRINT USING "D.DDD";PI

3.142

While PRINT TAB works with an external printer, PRINT
TABXY may not. PRINT TABXY may be used to specify both
the horizontal and vertical position when printing to the in­
ternal CRT.

A more powerful formatting technique employs the ability of
the PRINT or OUTPUT statement to allow an image to spec­
ify the format.

Just as a mold is used for a casting, an image can be used to
format printing. An image specifies how the printed item
should appear. The computer then attempts to print to item
according to the image.

One way to specify an image is to include it in the PRINT or
OUTPUT statement. The image specifier is enclosed within
quotes and consists of one or more field specifiers. A semi­
colon then separates the image from the items to be printed.

This statement prints the value of pi (3.141592659 ...) rounded
to three digits to the right of the decimal point.

Programming Techniques 3·163

PRINT USING "D.10D";PI

3.1415926536

For each character "0'" within the image, one digit is to be
printed. Whenever the number contains more non-zero digits
to the right of the decimal than provided by the field speci­
fier' the last digit is rounded. If more precision is desired,
more characters can be used within the image.

Instead of typing ten NO'" specifiers, one for each digit, a
shorter notation is to specify a repeat factor before each field
specifier character. The image NOOOOOO'" is the same as the
image "'60"'.

The image specifier can be included in the PRINT statement
or on it's own line. When the specifier is on a different line,
the PRINT statement accesses the image by either the line
number or the line label.

100 Forma~: IMAGE "62. DD"
110 PRINT USING Forma~;A,B,C
120 PRINT USING 100;A,B,C

Both PRINT statements use the image in line 100.

3-164 Programming Techniques

Numeric Image Specifiers. Several characters may be used
within an image to specify the appearance of the printed
value.

Image
Purpose Specifier

D Replace this specifier with one digit of the number to
be printed. If the digit is a leading zero, print a space.
If the value is negative, the position may be used by
the negative sign.

Z Same as "D" except that leading zeros are printed.

E Prints two digits of the exponent after printing the se-
quence "E+". This specifier is equal to "ESZZ". See
the BASIC Language Reference for more details.

K Print the entire number without leading or trailing
spaces.

S Print the sign of the number: either a "+" of "-".

M Print the sign if the number is negative; if positive,
print a space.

Print the decimal point.

H Similar to K, except the number is printed using the
European number format (comma radix). (Requires
10)

R Print the comma (European radix) (Requires 10)

* Like Z, except that asterisks are printed instead of
leading zeros. (Requires 10)

Programming Techniques 3-165

PRINT USING

PRINT USING

PRINT USING

PRINT USING

PRINT USING

PRINT USING

PRINT USING

PRINT USING

PRINT USING

PRINT USING

PRHn USING

PRINT USING

PRINT USING

PRINT USING

To better understand the operation of the image specifiers ex­
amine the following examples and results.

Statement Output

"K";33,666 33.666

"00.000";33.666 33.666

"000.00";33.666 33.67

"ZZZ.00";33.666 1333.67

"ZZZ";.444 13130

"ZZZ";.555 eel

"SO.30E";6.023E+23 +6. 123E+23

"S30.30E";6.1323E+23 +6132, 3e13E +21

"S50.3de";6.1323E+23 +613230. 13130E +19

"H";3121.55 3121.55

"00ROO";19.95 19.95

"***";.555 **1

To specify multiple fields within the image, the field specifiers
are separated by commas.

Statement Output

"~, 50, 50"; 11313,2013,3130 lee 21313 31313

"00 .. ZZ .. OD";1,2,3 102 3

3-166 Programming Techniques

If the items to be printed can use the same image, the image
need be listed only once. The image will then be re-used for
the subsequent items.

PRINT USING "50.00"13.98.5.95.27.50.139.95
123456789012345678901234567890123

3.98 5.95 27.50 139.95

The image is re-used for each value. An error will result if the
number cannot be accurately printed by the field specifier.

String Image Specifiers. Similar to the numeric field image
characters, several characters are provided for the formatting
of strings.

Image
Purpose Specifier

A Print one character of the string. If all characters of
the string have been printed, print a trailing blank.

K Print the entire string without leading or trailing
blanks

X Print a space.

"Literal" Print the characters between the quotes.

Programming Techniques 3-167

The following examples show various ways to use string spec­
ifiers.

PRINT USING "5X,10A,2X,10A";"Tom","Smith"
12345678901234567890123456789

Tom Smith

PRINT USING "5X,""John"",2X,10A";"Smith"

12345678901234567890123456789
John Smith

PRINT USING """PART NUMBER"",2x,10d";90001234

12345678901234567890123456789
PART NUMBER 90001234

Additional Image Specifiers. The following image specifi­
ers serve a special purpose.

Image Purpose
Specifier

B Print the corresponding ASCII character.
This is similar to the CHR$ function.

Suppress automatic end-of-line (EOl) sequence;

l Send the current end-of-line (EOl) sequence; with 10,
see the PRINTER IS statement in the BASIC Lan-
guage Reference manual for details on re-defining the
EOl sequence.

/ Send a carriage-return and a linefeed.

@ Send a formfeed.

+ Send a carriage-return as the EOl sequence.
(Requires 10 binary)

- Send a linefeed as the EOl sequence.
(Requires 10 binary)

3-168 Programming Techniques

For example:

PRINT USING "@,#" outputs a formfeed.
PRINT USING "O,X,3A,""OR NOT"",X,B,X,B,B"J2,"BE",50,66,69

Special
Considerations

: The Real-Time
Clock

Clock Range and
Accuracy

If nothing prints, be sure the printer is ON LINE. When the
printer is OFF LINE the computer and printer can communi­
cate but no printing will occur.

Sending text to a non-existent printer will cause the computer
to wait indefinitely for the printer to respond. ON TIMEOUT
may be used within a program to test for the printer. To clear
the error press CLEAR I/O check the interface cable, and
switch settings then try again.

Most personal computers have a real-time clock that you can
set and read to monitor the time of day and date. The clock
keeps time even when the power is removed from the com­
puter. This section describes using the clock and related
functions and statements.

Many of the statements described in this section require the
CLOCK binary. Refer to the BASIC Language Reference manual
for specific requirements of each statement.

The range of the clock is March I, 1900 through August 4,
2079. The clock maintains time to within ± 2.5 seconds per
day.

Programming Techniques 3-169

Initial Clock Value

Reading the Clock

I PR I NT T I MEDATE

Determining Date
and Time of Day

I PRINT DATE$(TIMEDATE)

I PRINT TIME$(TIMEDATE)

When you boot the HP BASIC system, the HP BASIC clock in
most personal computers is set to one of three values:

• The HP BASIC clock time is set to the value of the real­
time clock. If there is no real-time clock, the HP BASIC
clock is set to 12:00:00 (midnight), March 1, 1900.

• With computers on the Shared Resource Management
(SRM) system that don't have a real-time clock, the clock
value is taken from the SRM system. (This occurs only
when the SRM and DCOMM binaries are loaded.)

Internally, the clock maintains the year, month, day, hour,
minute, and second as a single real number. This number is
scaled to an arbitrary udawn of time," thus allowing it to also
represent the Julian date. The current value of the clock is
returned by the TIMEDATE function.

While the value returned contains all the information neces­
sary to uniquely specify the date and time to the nearest one­
hundredth of a second, it needs to be uunpacked" to provide
understandable information.

The following functions are available to extract the date and
time of day from TIMEDATE.

The DATE$ function extracts the date from the value of
TIMEDATE.

The TIME$ function returns the time of day.

3-170 Programming Techniques

Setting the Clock The SET TIMED ATE statement is used to set the clock.

SET TIMEDATE DATE("2 OCT 1986") + TIME("8:37:30")

SET TIME TIME("9:55")

Setting the Time

The time of day can be changed without affecting the date by
the SET TIME statement.

Note that an error is reported if you try to set the clock to a
value outside the legal range.

The time of day is changed by SET TIME X, where X is the
number of seconds past midnight. The value of X must be in
the range: 0 through 86399.99 seconds. The TIME function
will convert twenty-four hour formatted time (HH:MM:SS)
into the value needed to set the clock.

The TIME function converts an ASCII string representing a
time of day, in twenty-four hour format, into the number of
seconds past midnight. For example:

SET TIME TIME("15:30:10")

I SET TIME 55810

Is equivalent to:

Either of these statements will set the time of day without
changing the date. Use the SET TIMEDATE statement to
change the date.

Programming Techniques 3-171

I PRINT TIME$(TIMEDATE)

Setting the Date

To display the new time, the TIME$ function formats the
clock's value (TIMEDATE) into hours, minutes, and seconds.

Prints: 1 5 : 3 fa : 16

Even though TIMEDATE returns a value containing both time
of day and the Julian date, TIME$ performs an internal mod­
ulo 86400 on the value passed to the function and will
always return a string in the range: fa fa : fa fa : fa fa thru
23: 59: 59.

The date is changed by SET TIMEDATE X, where X is the
Julian date multiplied by the number of seconds in a day
(86400). The DATE function converts a formatted date (DD
MMM YYYY) into the value needed to set the clock. Due to
the wide range of values allowed by the DATE function, neg­
ative years can be specified, but not when using the function
to set the clock.

The following statement will set the clock to the proper date.

I SET TI ME DATE DATE (,. 1 Jun 1984")

When programming without CLOCK, the user-defined func­
tion FNOa t e can be used.

I SET TIMEDATE FNDate("1 Jun 1984")

Both of these statements are equivalent to the following
statement.

I SET TI MEDATE 2, 113216992E +11

3-172 Programming Techniques

I PR I NT DATE$(T I MEDATE)

Day of the Week

Branching on
Clock Events

The DATE function converts the accompanying string (or
string expression) into the numeric value needed to set the
clock. To read the dock, the DATE$ function formats the
dock's value as the day, month, and year. For example, the
following line will print the date.

Prints: 1 Jun 1984

An advantage of Julian dates is the simplicity of finding the
day of the week. TI MEDATE 0 I V 86400 MOD 7 returns a
number which represents the day of the week. Monday is
represented by zero (0), and the numbering continues
through the week to Sunday which is represented by six (6).

Several additional branching statements, available with
CLOCK, allow end-of-statement branches to be triggered ac­
cording to the real-time clock's value.

• aNT I ME enables a branch to be taken when the clock
reaches a specified time of day.

• ON DELAY enables a branch to be taken after a specified
number of seconds has elapsed.

• ON CYCLE enables a recurring branch to be taken with
each passage of a specified number of seconds.

The specified time can range from 0.01 thru 167772.15 sec­
onds for the ON CYCLE and ON DELAY statements and 0
thru 86399.99 seconds for ON TIME. The value specified with
ON TIME indicates the time of day (in seconds past midnight)
for the branch to occur.

Each of these statements has a corresponding statement to
cancel the branch (OFF TIME, OFF DELAY, and OFF CYCLE).
A statement is also canceled by executing another ON TIME,
ON DELAY, or ON CYCLE statement.

Programming Techniques 3·173

Cycles and Delays

All of the statements use the internal real-time clock. You
should take care to avoid writing programs that could change
the clock's setting during execution. Since only one resource is
dedicated to each statement, certain restrictions apply to the
use of these statements.

Both the ON CYCLE and ON DELAY statements enable a
branch to be taken as soon as the specified number of sec­
onds has elapsed. ON CYCLE remains in effect, re-enabling a
branch with each passage of time. For example, load and run
the program found in file ONCYCLE on your Manual Exam­
ples disc.

10 ON CYCLE GOSUB Five! Print 5 random numbers every second.
20 ON DELAY 6 GOTO Quit! After 6 seconds quit.
30
40 T: DISP TIME$(TIMEDATE) ! Show the time.
50 GOTO T
60
70 Five:FOR 1=1 TO 5
80 PRINT RND;
90 NEXT I
100 PRINT
110 RETURN
120
130 Quit:END

The program will print five random numbers every second
for six seconds and then stop.

Only one ON CYCLE and one ON DELAY statement can be
active in a program context. Executing a second ON CYCLE
or ON DELAY statement in the same program context deacti­
vates the first ON CYCLE or ON DELAY statement. If a
branch is missed due to priority restrictions or execution of a
subprogram, the event is logged and the branch will be taken
when the restriction is removed or the original context is re­
stored. If an active ON CYCLE or ON DELAY statement gets
canceled in an alternate context (subprogram) the branch is
restored when execution returns to the defining context. (See
Branching Restrictions for more information about this).

3-174 Programming Techniques

Time of Day The ON TIME statement allows you to define and enable a
branch to be taken when the clock reaches a specified time of
day, where time of day is expressed as seconds past midnight.
Using the TIME function simplifies setting an ON TIME state­
ment by allowing a formatted time of day to be used.

For example:

ON TIME TIME("11:30") GO TO Lunch

Typically, the ON TIME statement is used to cause a branch at
a specified time of day. By adding an offset to the current
clock value, the ON TIME statement can be used as an inter­
val timer. In the following example (found in file ONDELAY
on your Manual Examples disc), both ON DELAY and ON
TIME are used as interval timers.

10 ON DELAY 5 GOSUB Takeoff ! delay 5 seconds
20 ON TIME (TIMEDATE+10) MOD 86400 GOSUB Touchdown delay 10 seconds
30 PRINT "STARTING", ".TIME$(TIMEDATE)
40 Clock:DISP TIME$(TIMEDATE)
50 GOTO Clock
60
70 Takeoff:PRINT "TAKEOFF at ".TIME$(TIMEDATE)
80 RETURN
90 Touchdown:PRINT "TOUCHDOWN at ",TIME$(TIMEDATE)
100 RETURN
110 END

The starting time is printed when the program is executed.
Five seconds later the first subroutine is executed. Ten seconds
after the program starts, the second subroutine is executed.

Programming Techniques 3-175

Priority
Restrictions

Only one ON TIME statement can be active in a program
context. If a branch is missed, due to priority restrictions or
execution of a subprogram, the event is logged and the
branch will be taken when the restriction is removed or the
original context is restored. If an active ON TIME statement
gets canceled in an alternate context (subprogram) the branch
is restored when execution returns to the defining context.
(See Branching Restrictions for more information about this).

Due to the Umatch an exact time" nature of the ON TIME
statement, if the specified time occurs when the statement is
temporarily canceled (by an OFF TIME in an alternate con­
text), no branch will be taken when the defining context is
restored.

A priority can be assigned to the branch defined by ON CY­
cLE' ON DELAY, and ON TIME. For example:

ON CYCLE Seconds,Priority GOTO Label

If the system priority is higher than the branch priority at the
time specified for the branch, the event will be logged but the
branch will not be taken until the system priority falls below
the branch priority. An example program, found in file PRI­
ORITY on your Manual Examples disc, follows.

3-176 Programming Techniques

1111 COM Start
2 I1IP = 111
3111 Up:P=P+1
4111 IF P) 15 THEN Qui t ! Pr ior i ty from I thru 15
5111 PRINT
6111 PRINT "Priority:";P;
7111 Start=TIMEDATE ! Save the start-time for subprogram.
8111 ON CYCLE I,P RECOVER Up ! New priority every second if not Busy.
9111 ,ON DELAY .5,6 CALL Busy! DELAY overrides CYCLE until priority
1111111 ! (P) is greater than 6.
11111 W:GOTO W
12111 Quit:END
13111 !----------------- SUB has priority of 6 ---------------------
14111 SUB Busy
15111 COM Start
16111 PRINT "SUB";
17111 WHILE 1(10
18111 IF TIMEDATE)Start+1 THEN! Has ON CYCLE time been exceeded?
19111 PRINT "*"; YES (only prints if Priority(7)
2111111 ELSE
210 PRINT
22111 END IF

II II, . , NO

23111 1=1+1 ! Loop ten times
24111 WAIT. I
25111 END WHILE
26111 PRINT "DONE";
27111 SUBEND

80 ON CYCLE I,P GO TO Up

Once the priority assigned to the ON CYCLE statement is
greater than the priority assigned to the ON DELAY statement
(6), the subprogram will be interrupted. After running the
program, change line 80 in the above program to the
following:

Programming Techniques 3-177

Branching
Restrictions

Error Handling

Running the new version of the program will show that
GOTO (or GOSUB) will not interrupt a subprogram regard­
less of the assigned priority. The branch will be logged but
not taken until execution returns to the main program. If you
write a program that makes extensive use of subprograms and
branching statements, use CALL and RECOVER to insure
proper operation.

Certain restrictions apply to the use of ON TIME, ON CY­
cLE, and ON DELAY because only one resource is dedicated
to each statement. Assuming an active branch has been de­
fined in the main program, execution of a subprogram which
sets up a new branch will cause the loss of the original time.
When the main program context is restored, the original
branch will be restored, but at the time defined in the
subprogram.

Most programs are subject to errors happening at run time.
There are three courses of action to take with respect to
errors:

1. Try to prevent the error from happening in the first
place.

2. Once an error occurs, try to recover from it and continue
execution.

3. Do nothing-let the program "roll over and die" if an
error happens.

The last alternative, which may seem frivolous at first glance,
is certainly the easiest to implement, and the nature of most
personal computers is such that this is often a feasible choice.
Upon encountering a run-time error, the computer will pause
program execution and display a message giving the error
number and the line in which the error happened, and the

3-178 Programming Techniques

Anticipating
Operator Errors

programmer can then examine the program in light of this
information and fix things up. The key word here is "pro­
grammer." If the person running the program is also the
person who wrote the program, this approach works fine. If
the person running the program did not write it, or worse yet,
does not know how to program, some attempt should be
made to prevent errors from happening in the first place, or
to recover from errors and continue running.

When you write a program, you know exactly what the pro­
gram is expected to do, and what kinds of inputs make sense
for the problem. Sometimes you overlook the possibility that
other people using the program might not understand the
boundary conditions. You have no choice but to assume that
every time a user has the opportunity to feed an input to a
program, a mistake can be made and an error can be caused.
You should make every effort to make the program foolproof.

Boundary Conditions. A classic example of anticipating an
operator error is the "division by zero" situation. An INPUT
statement is used to get the value for a variable, and the vari­
able is used as a divisor later in the program. If the operator
should happen to enter a zero, accidentally or intentionally,
the program crashes with an error 31. It is far better if you
plan for such an occurrence. One method is shown in the fol­
lowing example.

100 INPUT "Miles traveled and total hours",Miles,Hours
110 IF Hours=0 THEN
120 BEEP
130 PRINT "Improper value entered for hours,"
140 PRINT "Try again!"
150 GOTO 100
160 END IF
170 Mph=Miles/Hours

Programming Techniques 3-179

Error Trapping Despite the programmer's best efforts at screening the user's
inputs in order to avoid errors, sometimes an error will still
happen. It is still possible to recover from run-time errors,
provided the programmer predicts the places where errors are
most likely to happen.

ON/OFF ERROR. The ON ERROR command sets up a
branching condition which will be taken any time a recover­
able error is encountered at run time. The branching action
taken may be either GOTO, GOSUB, CALL, or RECOVER.
GOTO and GOSUB are purely local in scope-that is, they
are active only within the context in which the ON ERROR is
declared. CALL and RECOVER are global in scope-after the
ON ERROR is set up, the CALL or RECOVER will be exe­
cuted any time an error occurs, regardless of subprogram
environment.

When an ON ERROR statement is executed, the language sys­
tem will make sure that the specified line or subprogram
exists in memory before the program will proceed. If ON ER­
ROR GOTO/GOSUB/RECOVER are specified, then the line
identifier must exist in the current context. If an ON ERROR
CALL is given, then the specified subprogram must currently
be in memory. In either case, if the system can't find the
given line, an error 49 is issued.

If you use either ON ERROR GOSUB or ON ERROR CALL
and an error occurs, the specified branch will take place, and
when the RETURN or SUBEXIT is executed, then program
execution will resume at the line which caused the error, and
an attempt will be made to execute the line again.

ON ERROR has a priority of 16, which means that it will al­
ways take priority over any other ON <event> since the
highest user-specifiable priority is 15.

The OFF ERROR statement will cancel the effects of the ON
ERROR statement, and no branching will take place if an er­
ror is encountered.

The DISABLE statement has no effect on ON ERROR
branching.

3-180 Programming Techniques

1140 DISP ERRL(710)

ERRN/ERRL/ERRM$. ERRN is a function which returns the
error number which caused the branch to be taken. ERRN is a
global function, meaning it can be used from the main pro­
gram or from any subprogram, and it will always return the
number of the most recent error.

ERRM$ is a string function which returns the text of the error
which caused the branch to be taken.

ERRL is a function which is used to find the line in which the
error was encountered. ERRL is a boolean function. The pro­
gram feeds it a line identifier, and either a 1 or a 0 is
returned, depending upon whether or not the specified identi­
fier indicates the line which caused the error. ERRL is a local
function, which means it can only be used in the same envi­
ronment as the line which caused the error. This implies that
ERRL cannot be used in conjunction with ON ERROR CALL,
and that it can be used with ON ERROR GOTO and ON ER­
ROR GOSUB. ERRL can be used with ON ERROR RECOVER
only if the error did not occur in a subprogram which was
called by the environment which set up the ON ERROR
RECOVER.

The ERRL function will accept either a line number or a line
label.

910 IF ERRL(Compute) THEN Fix_compute

ON ERROR GOSUB. The ON ERROR GOSUB statement
should only be used when you can guarantee that the prob­
lem causing the error can be fixed and the line can be re­
executed safely. Remember that if the action taken in the error
service routine is not sufficient to correct the problem, the
program will dive into an infinite loop. Every time an error
occurs, a GOSUB will cause a branch to the error service rou­
tine which will RETURN execution to the line causing the
error.

Programming Techniques 3·181

When an error triggers a branch as a result of an ON ERROR
GOSUB statement being active, system priority is set at the
highest possible level (16) until the RETURN statement is exe­
cuted, at which point the system priority is restored to the
value it was when the error happened.

ON ERROR GOlO. The ON ERROR GOTO statement is
generally more useful than ON ERROR GOSUB, especially if
you are trying to service more than one error condition. The
only advantage that ON ERROR GOSUB has over ON ER­
ROR GOTO is that system priority is maintained at the
highest possible level until the error subroutine is finished.

By using the ON ERROR GOTO statement, the same error
service routine can be used to service all the error conditions
in a given context. By testing both the ERRN (what went
wrong) and the ERRL (where it went wrong) functions,
proper recovery procedures can be taken. Load and run file
ERRECOVER on the examples disc for a detailed example.

ON ERROR CALL. ON ERROR CALL is global, meaning
once it is activated, the specified subprogram will be called
immediately whenever an error is encountered, regardless of
the current context. System priority is set to level 16 inside
the subprogram, and remains that way until the SUBEXIT is
executed, at which time the system priority will be restored to
the value it was when the error happened.

You should only use the ON ERROR CALL statement when
you can guarantee that the problem causing the error can be
fixed and the line can be re-executed safely. Remember that if
the action taken in the error service routine is not sufficient to
correct the problem, the program will dive into an infinite
loop. Every time an error occurs, a CALL will cause a branch
to the error service routine which will return execution to the
line causing the error when a SUBEXIT statement is executed.

Remember that an ON ... CALL statement can not pass param­
eters to the specified subprogram, so the only way to
communicate between the environment in which the error is
declared and the error service routine is through a COM
block.

3-182 Programming Techniques

The ERRL function will not work in a different environment
than the one in which the ON ERROR statement is declared,
so when using an ON ERROR CALL, you should set things
up in such a manner that the line number either doesn't mat­
ter, or can be guaranteed to always be the same one when the
error occurs. This can be accomplished by declaring the ON
ERROR immediately before the line in question, and immedi­
ately using OFF ERROR after it.

5010 ON ERROR CALL Fix_disc
5020 ASSIGN @File TO "Data_file"
5030 OFF ERROR

7020 SUB Fix_disc
7030 SELECT ERRN
7040 CASE 80
7050 DISP "Door open -- shut it and pr~ss CONT"
7060 PAUSE
7080 CASE 83
7090 DISP "Write protected -- fix and press CONT"
7100 PAUSE
7120 CASE 85
7130 DISP "Disc not initialized -- fix and press CONT"
7140 PAUSE
7160 CASE 56
7170 DISP "Creating Data_file"
7180 CREATE BDAT "Data_file",20
7190 CASE ELSE
7200 DISP "Unexpected error "JERRN
7210 PAUSE
7220 SUBEND

Programming Techniques 3-183

Program
Debugging

ON ERROR RECOVER. The ON ERROR RECOVER state­
ment sets up an immediate branch to the specified line
whenever an error occurs. The line specified must be in the
context of the ON ... RECOVER statement. ON ERROR RE­
COVER is global in scope-it is active not only in the
environment in which it is defined, but also in any subpro­
grams called by the segment in which it is defined.

If an error is encountered while an ON ERROR RECOVER
statement is active, the system will restore the context of the
program segment which actually set up the branch, including
its system priority, and will resume execution at the given
line.

The problem of debugging a program is distinct from the is­
sues raised in the HError Handling" section. The HError
Handling" section is based on the premise that you are satis­
fied that the program works as it should, and that it then
should be made as foolproof as possible. This could be con­
strued as putting the cart before the horse-before you can
make a program foolproof, you must get it to run correctly in
the first place. One of the key characteristics of a Hbug" is that
it doesn't necessarily have to cause an error condition to oc­
cur-it only has to cause your program to give a wrong
answer. This section deals with the methods available to diag­
nose problems in logic and semantics.

Naturally, the ideal way to debug a program is to write it cor­
rectly the first time through. Hopefully, the techniques that
have .been been discussed in this manual will help you get a
little closer to this goal. The practice of writing self­
documenting code and designing programs in a top-down
fashion should help immensely.

The computer itself has several features which aid in the pro­
cess of debugging.

3-184 Programming Techniques

Using Live
Keyboard

10 FOR 1=1 TO 1.E+5
20 NEXT
30 END

CAT
2+2
SQR(6 A 2+17.2 A 2)

One of the pleasing characteristics of your computer is that its
keyboard is "liven during program execution. That is, you can
issue commands to the computer while it is running a pro­
gram the same way that you issue commands to it while it is
idl~. For example, you can add two numbers together, exam­
ine the catalogue of the disk currently installed in the drive,
list the running program to a printer, scroll the CRT alpha
buffer up and down, or output a command to a function gen­
erator over HP-IB. Practically the only thing you can't do
from live keyboard while a program is running is write or
modify program lines, or attempt to alter the control struc­
tures of the program. (A complete list of illegal keyboard
operations is given a little later on.)

By way of illustration, key in the following program, press
RUN, and then execute the commands shown underneath the
listing.

PRINT "THE QUICK BROWN FOX"
TIMEDATE

1=99999

This program will take a fair amount of time to complete
(about 18 seconds), so to find out how far the program has
gone, merely type I and press (Enter). The current value of I
will be displayed at the bottom of the screen. If you don't
want to wait for the program to go through all one hundred
thousand iterations, you can merely change the value of I by
executing the command

Programming Techniques 3·185

10 FOR 1=1 TO 1, E+5
15 CALL Dumm'::j
20 NEXT I
30 END
40 SUB Dumm'::j
50 FOR J=l TO 10
60 NEXT J
70 SUBEND

ASSIGN @Dvm TO *

ASSIGN @File TO "DATA"

Thus, we have seen that live keyboard can be used to exam­
ine and/or change the contents of the program's variables.

One aspect of live keyboard you should remember is that the
computer will only recognize variables that exist in the cur­
rent program environment. For example, suppose that we
change our example program to call a subprogram inside the
loop.

While this program is running and you try and test the vari­
able I from the keyboard, chances are that you will only get a
message saying that I doesn't exist in the current context­
most of the time will be spent in the subprogram. On the
other hand, if you test the value of J, it is highly likely that
you will get an answer.

Similarly, operations like ASSIGN and ALLOCATE, which are
declarative types of statements, must use variables that are
already known to the current environment when they are exe­
cuted from the keyboard. For example, it is perfectly legal to
perform the operation

from the keyboard, but it is not legal to perform

from the keyboard.

3-186 Programming Techniques

Stepping

Live keyboard operations are allowed to use variables already
known by the running program. Live keyboard operations are
not allowed to create variables.

Although the GOTO and GOSUB commands are illegal from
the keyboard, it is perfectly legal to call subprograms from the
keyboard. The only restriction on using SUB and function
subprograms from the keyboard is that the parameters that
are passed must either be constants or must be variables that
exist in the current context.

Here is a list of commands which may not be executed from
the keyboard while a program is running, although they may
be executed from the keyboard if the computer is idle:

RUN SCRATCH

CONT SCRATCH A

EDIT SCRATCH C

DEL SCRATCH BIN

GET

LOAD

LOAD BIN

One of the most powerful debugging tools available is the ca­
pability of single-stepping a program, one line at a time. This
process allows the programmer to examine the values of his
variables and the sequence in which the program is running
at each statement. This is done with the STEP function.

Programming Techniques 3·187

There are three ways to use STEP*:

1. If the program is stopped (i.e., a prerun has to be per­
formed), pressing STEP* will cause the system to
perform a pre-run on the program, but no program lines
will actually be executed. The first line that will be exe­
cuted will appear in the system message line at the
bottom of the screen. Pressing STEP* again will cause
that line to be executed, and the next line after that to be
executed will appear in the message line. If STEP* is
pressed causing the next line to appear in the display,
and a live keyboard operation (such as examining the
value of a variable) is performed, the contents of the
message line will change. Pressing STEP* again will still
cause the line to be executed, even though it is no longer
visible in the display line. After the statement has com­
pleted, the next line will appear.

2. If the program is in an INPUT or LINPUT statement,
pressing STEP* is sufficient to terminate the operation.
Any data entered from the keyboard will be entered into
the correct variables, just as though CONTINUE or
(Enter) had been pressed, but program execution will be
PAUSEd, and the statement immediately following the
INPUT or LINPUT will appear in the system message
line.

3. If the program is in a PAUSEd state, pressing STEP* will
cause the next line to be executed. The program counter
will not be reset, nor will a prerun be performed. Again,
the next line to be executed will appear in the system
message line after the last one has been completed. A
paused state is indicated by a dash in the run light in the
lower right-hand corner of the screen.

* Refer to appendix E or the Key Function and Switch Configuration Guide to find
the keystrokes for STEP.

3-188 Programming Techniques

10
20
30
40
50
60
70
80
9121
100

DIM A(1:5)

Type in the following example and execute it by pressing
STEP repeatedly.

! This is an example
8=0
FOR 1=1 TO 5

INPUT "Enter a
8=S +A (I)

NEXT I
PRINT S
PRINT A(*»)
END

Tracing

number",A(I)

Notice that STEP caused every statement to appear in the sys­
tem message line, one at a time, even those statements that
are not really executed, like DIM and comments.

The process of single-stepping, wonderful though it is, can be
quite slow, especially if the programmer has little or no idea
which part of his program is causing the bug. An alternative
way of examining variable changes and program flow is avail­
able in the form of the TRACE ALL statement.

TRACE ALL. When the TRACE ALL command is executed, it
causes the system to issue a message prior to executing every
line (this shows the order in which the statements were exe­
cuted), and if the statement caused any variables to change
value, a message telling the variables involved and their new
values is also issued. The messages are issued to the system
message line, and the most useful way to use the TRACE ALL
feature is to turn PRINT ALL on. Press the PRINT ALL keys
(refer to appendix E or the Key Function and Switch Configu­
ration Guide to determine the keys to use). A message
(UPrintall ann or HPrintall off") will appear on the screen. The
printall mode will cause all information from the DISP line,
the keyboard input line, and the system message line to be
logged on the PRINT ALL IS device.)

Programming Techniques 3·189

10 TRACE ALL
20 FOR 1=1 TO
30 PRINT I ;
40 IF I MOD
50 PRINT
60 ELSE
70 PRINT
80 END IF
90 NEXT
100 END

"
II

10

2 THEN
is odd,

Press PRINT ALL (refer to appendix E or the Key Function
and Switch Configuration Guide) to turn on PRINT ALL.
Load and run the following example (found in file
TRACEALL on your Manual Examples disc) to see how
TRACE ALL works:

II

is even, II

There are two optional parameters that can be used with
TRACE ALL. Both parameters are line identifiers (line num­
bers or line labels). The first parameter tells the system when
to start tracing, and the second one (if it's specified) tells the
system when to stop tracing.

It is usually more useful to use the TRACE ALL command
from the keyboard rather than from the program because a
program modification is not necessary if you want to trace a
different part of the program. All that's necessary is to type in
a new TRACE ALL command from the keyboard to override
the old one, For example, to trace a loop from lines 30 to 40,
type in TRACE ALL 30,40 from the keyboard.

The program will begin tracing at line 30, and keep on tracing
until it's ready to execute line 40, at which time it will termi­
nate the trace messages and will continue executing the
program normally.

3·190 Programming Techniques

PRINTALL IS

TRACE PAUSE

If the TRACE ALL statement uses a line label instead of a line
number, be aware of what happens if you have more than
one occurrence of a given line label in your program. For in­
stance, it is perfectly legal to have the same line label in two
or more different program environments-line labels are local
to subprograms and branching operations addressing a given
line label are treated separately in different subprograms.
However, when a TRACE ALL using a line label is executed,
the first line label in memory is the one that gets used, re­
gardless of the environment the program was in when the
TRACE ALL statement was executed. If two line identifiers
are used, their location with respect to each other does not
matter. Tracing will start when the line specified first is en­
countered, and it will stop when (or if) the second line is
encountered.

The PRINT ALL IS command is useful for switching the trac­
ing messages between the CRT and a hardcopy printer.
(Again, to get any record at all of the trace messages, PRINT
ALL must be on.) To cause the trace messages to be logged on
the CRT, execute PRINT ALL IS CRT. (The CRT is the default
PRINTALL IS device that the system assumes when it wakes
up.) To cause the messages to be logged on a printer, merely
change the select code to the appropriate value (PRINTALL IS
26).

The TRACE PAUSE command can be used to set a "break
point" in the program. The program will execute at a reduced
speed until the specified line is reached, at which time the
program will pause, and the specified line will be shown in
the display line, indicating that the program will execute it
when execution is resumed. Execution may be resumed by
pressing CONTINUE, or by executing CONTINUE from the
keyboard (the specified line identifier must be located in the
current environment).

Programming Techniques 3-191

10 DIM A(1:10)
20 FOR 1=1 TO 10
30 COSUB Printout
40 NEXT I
50 STOP
60 Printout:
70 FOR J=l TO 10
80 PRINT A(J);",";
90 NEXT J
100 PRINT
110 RETURN
120 END

By executing the command TRACE PAUSE Pr in t OIA t from
the keyboard, the following program (found in file TRPAUSE
on your Manual Examples disc) will pause every time it
reaches line 60.

Try the following ways of continuing execution:

• Press STEP.

• Press CONTINUE.

• Execute CO NT 110 (Enter).

As with TRACE ALL, a new TRACE PAUSE statement over­
rides a previous one. The same rules are applied when a line
label is used in a TRACE PAUSE statement as are applied to
the TRACE ALL statement-the first line in memory having
that label is used.

TRACE OFF. TRACE OFF cancels the effects of any active
TRACE ALL or TRACE PAUSE statements. The status of
Print All and the PRINT ALL IS device will be unchanged.

TRACE OFF may be executed either from the program, or
from the keyboard.

3-192 Programming Techniques

The CLR 1/0 Key. The CLEAR I/O key suspends any active
I/O operation and pauses the program in such a way that the
suspended statement will restart once CONTINUE or STEP is
pressed. This is useful for operations which appear to '"hang"
the machine, such as printing to a printer which isn't turned
on.

Most devices will not respond to ENTER requests unless they
have first been instructed to respond. If improper values are
sent to a device, it may refuse to respond. Therefore, CLEAR
I/O can help in debugging these situations.

Here are the operations that can be suspended with CLEAR
I/O.

PRINT SEND ASSIGN

LIST PRINT ALL PURGE
outputs

CAT ENTER CREATE

OUTPUT INPUT DUMP
GRAPHICS

HP-IB commands DUMP ALPHA External plotter
commands

Programming Techniques 3·193

4 Graphics Techniques

Chapter 4
4-1
4-1
4-1
4-3
4-3
4·4
4-4
4-9
4-9

4-12
4-14
4-20
4-22
4-22
4-23
4-24
4-25
4-33
4-37
4-37
4-45
4-47
4-49
4-51
4-54
4-54
4-55
4-56
4-58
4-62
4-62
4-64
4-67

Contents

Graphics Techniques
Getting Started
Graphics Information

The CRT Display
The Current Position
Preparing to Output
Clearing the Displays
The XY Plane

Creating Graphics
Drawing Lines
Scaling
Defining a Viewport
Other Ways to Draw or Move
Erasing Lines
Line Attributes
Pen Types
Line Types
Creating Simple Shapes
Additional Pen Control

Using Graphics Effectively
More on Labelling a Plot
Miscellaneous Graphics Concepts
Data-Driven Plotting
Translating and Rotating a Drawing
Incremental Plotting

External Graphics Displays and Plotters
Specifying a Plotter
Using a Shared Plotter
Dumping Raster Images
HPGL

Color Graphics
Non-Color Mapped Color
Color Mapped Color
Fill Colors

4
Getting Started

Graphics
Information

The CRT Display

Graphics Techniques

Graphics is a good means of presenting information. This
chapter takes you step-by-step through the graphics design
process in order to give you a basic background in graphics
programming on your computer. If you're an expert graphics
programmer, you may want to skip directly to appendix A to
familiarize yourself with the graphics statements. If you're not
familiar with graphics concepts, read this chapter carefully
and completely.

You should try the examples on your computer as you go
through this chapter. If you have not loaded the GRAPH and
GRAPHX binaries, do so now. Refer to chapter 2 for informa­
tion on loading binaries.

Before you create graphics, here is some background informa­
tion about your graphics system.

You will use the internal CRT as a plotter as you progress
through this chapter. Later, other kinds of plotters are ex­
plained. This is because it is easier to develop and edit
graphics programs using the CRT. With minor changes, the
image can be reproduced on an external plotter.

The Alpha and Graphics Displays. The CRT has two sepa­
rate displays, an alpha display and a graphics display, which
can be output either individually or combined. The alpha dis­
play outputs alphanumeric characters such as error messages
or commands, while the graphics display, obviously, outputs
graphics.

Graphics Techniques 4-1

I ALPHA ON

I ALPHA OFF

I GRAPH I CS ON

I GRAPH I CS OFF

4·2 Graphics Techniques

The alpha display is controlled with:

and

The graphics display is controlled with:

and

When you turn the computer on, the alpha display is on and
the graphics display is off. During execution of a graphics
program, the alpha display may be turned off, but execution
of a command or sending output to the alpha display turns
the alpha display on and leaves it on. The graphics display
can only be controlled with explicit GRAPHICS ON and
GRAPHICS OFF statements.

Resolution. A notable difference between CRTs and other
plotters is the resolution of the display. You probably know
that the CRT consists of an array of pixels or picture elements.
The resolution of graphics is directly dependent upon the
number of pixels per unit area.

I GINIT

The Current
Position

Preparing to
Output

When dealing with graphics output, this text uses the concept
of a current position. It is the point relative to which graphics
are currently output. Usually you can think of this as the
pen's current location or the location at which graphics can be
currently output.

The current position is not always where the physical pen is
located. For example, if you instruct the pen to move to a
point outside the edge of the plotter, the physical pen only
moves to the edge, but the current position is updated to the
point specified.

Although the current position is referred to when discussing
where graphics are output, the concept of a pen is still impor­
tant. Knowledge of what the pen type is and whether it is
HUpH or HdownH is needed. Thus the pen, on a CRT, is defined
as the effect which gives the appearance of an invisible pen
creating lines on the display. On a paper plotter, it is the con­
trol arm which holds the ink pens.

To bring the system to a known starting point, execute the
command:

This initializes· the graphics in the system by resetting all the
attributes, viewing operations, plotters and other system vari­
ables. GINIT should always be executed before starting any
graphics programming.

Graphics Techniques 4-3

Clearing the
Displays

I ALPHA OFF

I GCLEAR

The XV Plane

4-4 Graphics Techniques

Once GINIT is executed, you want to make it easy to see the
graphics display. One problem encountered is that data in the
alpha display covers the graphics display. This can be re­
moved. To save the information currently in the alpha
display, simply execute:

To delete the data in the alpha display, press CLEAR
SCREEN. A formfeed, CHR$(12) also clears the alpha display.
The cursor is the only thing left on the alpha display. CLEAR
SCREEN does not affect the graphics display, so you don't
have to worry about accidentally deleting your work.

To clear the graphics display, execute:

Any graphics in the output area of the display are lost, so be
sure that's what you want to do. This does not affect the al­
pha display.

If you execute GINIT, any subsequent output statement also
causes a clearing of the graphics display on the internal CRT.

Graphics primitives are output on an imaginary plane known
as the XY plane; X is a horizontal axis and Y is a vertical axis
on this plane. Any two-dimensional images which you create
are assigned a position on this plane using XY coordinates.
Obviously, this plane cannot be infinite in size because your
system can only process numbers up to a certain size. BASIC
graphics uses data of type SHORT; therefore, the largest ab­
solute value of x or y that can be input is approximately 3.4
X 1038• That is, you can't plot any coordinates greater than
this value.

Note

10 GINIT
20 GRAPHICS ON
30 FRAME
40 WAIT 5
50 END

Think of the display as a window to this plane. You can look
at the whole coordinate system or a very small part of it at
any time through this window. When you turn on the com­
puter, the lower left-hand corner of the display is (0,0), and
the upper right-hand corner is (133,100). The viewable upper
right hand corner for an Enhanced Graphics Display is
(133,90). The upper edge of the FRAME will not be visible.
Refer to appendix B.

Enter and run this program:

There is a WAIT statement in the examples to follow. This
allows you time to view the display. You can recall the graph­
ics screen after the BASIC screen reappears by pressing
GRAPHICS. You can then return to the alpha mode by press­
ing any alpha key.

A frame outlined in white will appear on the display. This
frame surrounds the entire plotting surface, and is smaller
than the CRT screen. Any coordinates to which you can actu­
ally plot are within this frame. You can execute graphics
output statements that are beyond the edge of the display, but
no primitives are output. Placing a frame around the usable
plotting area can help when composing a picture.

Graphics Techniques 4·5

113 WHERE X,V

Finding the Current Position. Besides knowing the plotting
area that you have to work with, you need to know where
the current position is. This is the point on the display relative
to which subsequent graphics are positioned. To find it, use
the WHERE command. Enter and execute the following
program:

213 PRINT "X =";X,"V =";V
313 END

MOVE 513,513

4-6 Graphics Techniques

X returns the x coordinate of the current location and Y re­
turns the y coordinate. Right now, X and Y should equal 0
because whenever GINIT is executed, the current position is
(0,0).

Changing the Current Position. The next step is to place
the current position where you want to start drawing. To do
this, use the MOVE statement. Execute the command:

Although nothing looks different on the display, you moved
the current position to the point (50,50). Use WHERE to see
that the current position has changed.

You can use any expression in the range of SHORT values in
MOVE. (In fact, almost all the graphics statements can work
with expressions in the range of SHORT values.) After a
GINIT, the resolution of the CRT is such that coordinates
have two significant decimal places. Other plotters have dif­
ferent resolutions; you have to experiment to determine these.

IMOVE lIL 5

TRACK CRT IS ON
DIGITIZE X,Y

You may want to displace the current position by a specific
amount. In this case, instead of working out the coordinates
of the new position, you can specify an incremental move­
ment. You do this with the IMOVE (Incremental MOVE)
command. Execute:

You've moved the current position by 10 units along the X
axis and 5 units along the Y axis to the point (60,55). Again,
WHERE can confirm this.

Digitizing the Current Position. Often you can see where
you would like to move the current position, but you can't tell
what the exact coordinates of the point are. To determine the
coordinates of a location on the display, use digitizing.

Here is how to do this.

• Put a crosshair on the display.

• Move the crosshair to the point on the display that you
want to be the current position by using the arrow keys of
the keyboard.

• Tell the system to return the coordinates of the crosshair's
position.

You can then use these coordinates to move the current posi­
tion to that point. Execute the commands:

Graphics Techniques 4-7

MOVE X,V

TRACK CRT IS OFF

4·8 Graphics Techniques

The left and bottom edges of the display have a bright white
line. The TRACK. . .IS ON command sets a full-screen
crosshair at the point (0,0). TRACK CRT I S ON tells the sys­
tem that you want to "track' or mimic the keyboard arrow
keys on the internal CRT with a crosshair.

Use the arrow keys on the keyboard or the optional mouse to
move the crosshair to the point you wish to digitize. Digitize
tells the system that you want to digitize or record the arrow
key's position. At this point, you can still move the crosshair
around if you wish. DIGITIZE doesn't store the coordinates
until the next time (Enter) is pressed.

When you have the crosshair positioned at the desired point,
press (Enter) again to get the system to actually digitize the
point and place the coordinate values in the variables X and
Y. X has the x coordinate and Y has the y coordinate. When
the system is waiting for you to press (Enter) to digitize a
point, the run light looks like an asterisk.

You can move to the point you've just found by executing the
command:

This form of digitizing only works for the internal CRT and
keyboard.

The crosshair does not disappear after you're done digitizing.
You can still move it around and digitize another point or
move the crosshair out of the way.

If your display is generated by a program, you can turn the
crosshair off with:

then execute:

I GCLEAR

Creating
Graphics

Drawing Lines

GINIT

MOVE 50,50

DRAW 60,60

lORAN 10,10

and then regenerate the display by running the program
again without the TRACK CRT IS ON statement.

At this point, you should be able to move the current position
to any point. This section explains how to draw lines on the
CRT.

Execute these commands:

You have a line on the display from the point (50,50) to the
point (60,60). You can draw any line by first moving the cur­
rent position to the starting point and then drawing to the
end point. In addition, the current position is updated to the
point (60,60). Use WHERE to see this.

If you want to draw a line of a certain length but you don't
want to figure out the coordinates of the end point, use the
IDRAW (Incremental DRAW) command. Execute:

Graphics Techniques 4-9

4-10 Graphics Techniques

This command draws a line to a point 10 units along the X
axis and 10 units along the Y axis from the current position. It
also updates the current position by the specified increments.

See if you can recreate the following picture using 21 state­
ments. You may use any of the statements presented up to
this point.

Load and run the file HBOLT" from the Manual Examples disc.
You can list the file on your CRT or printer to compare your
version.

As mentioned before, you can plot to points beyond the edge
of the display, but they do not appear. If part of the line is
within the display area, that part is output. As an example,
load and execute the file HBIGLlNES" from the Manual Exam­
ples disc. You should see the figure below.

IMOVE 13,13

IDRAW 13,13

PENUP

All the graphics output is handled in a similar manner. Those
points within the display area are output. Those points out­
side the display area are not shown, but the current position
is updated.

DRAW, IDRAW, IMOVE and MOVE have an additional ef­
fect beyond moving the current position and drawing a line.
They also determine whether the physical pen is up or down
(that is, touching the plotting surface). For a CRT, when the
pen is "down/ a dot appears. When the pen is "up," no dot is
created.

One way to control whether the pen is up or down on a plot­
ter is to use IMOVE AND IDRAW,

lifts the pen, but does not change the current position.

lowers the pen, but does not change the current position.

Another way to raise the pen is by executing the PENUP
statement.

Graphics Techniques 4-11

10 WHERE X,Y,STATUS$

The WHERE statement has an additional parameter with
which you can determine the status of the pen. It is a string
variable whose contents signals whether the pen is up or
down and whether it is within the display area. The string
also returns other indormation that is explained later. For ex­
ample, execute:

20 PRINT "X =";X,"Y -"IY,"STATUS =";STATUS$
30 END

1,2

Scaling

4-12 Graphics Techniques

STATUS$ is a string which looks like:

The first digit describes the pen's vertical position (0 = up, 1
= down). The second digit describes the pen's horizontal po­
sition within the display area (0 = outside of the display
area, 1 or 2 = inside the display area).

When you use a paper plotter make sure that the pen is lifted
if it is going to rest in one spot for very long; otherwise, an
ink blot occurs.

Some graphics may not show much information. There may
not be enough variation in the data as presented. For exam­
ple, load and run the file "SCALE" from the Examples disc.

Probably the first reaction you had when looking at the plot
was UThat doesn't show me anything ... ". That's true; it doesn't
show much information. There are two reasons for this. The
first is that there is not enough variation in the curve; it's too
straight to show anything. The second is that it is not
centered.

SHOW O,100,16,18

Both of these problems can be remedied by scaling. In this
context, scaling could be defined as udefining the values the
computer considers to be at the edges of the plotting surface."
By definition, the left edge is the smaller X, the right edge is
the larger X, the bottom is the smaller Y, and the top is the
larger Y. Thus, any point you plot that falls into these ranges
will be visible.

There are two statements available to define your own values
for the edges of the plotting surface . The first one we'll deal
with is SHOW, which forces X and Y units to be equal. Since
the X and Y units are identical, the SHOW statement centers
the specified area in the plotting area. This is called isotropic
scaling, and it is often desirable. For example, when drawing
a map, you will probably want one mile in the east-west di­
rection to be the same size as a mile in the north-south
direction. Here is an example of SHOW:

This causes the plotting area to be defined such that there is a
rectangle in that plotting area whose minimum X is 0, maxi­
mum X is 100, minimum Y is 16, and maximum Y is 18, using
isotropic units. As mentioned above, isotropic means that one
unit in the X direction is equal to one unit in the Y direction.
Hence, if the plotting area were square, the above SHOW
statement would define the minimum X to be 0, maximum X
to be 100, minimum Y to be -33 (not 16) and maximum Y to
be 67 (not 18). The reason for this is that allowing whatever
extra room it needs to insure that that rectangle is completely
contained in the plotting area. There will be extra room in
either the X or Y direction, but not both.

Since you (the user) were defining unit sizes with the SHOW
statement, you were working with User-Defined Units
(UDUs). Both the SHOW statement and the WINDOW state­
ment (covered next) specify user-defined units. Load and run
the file HSCALE2".

Graphics Techniques 4-13

Defining a
Viewport

4-14 Graphics Techniques

As you can see, the SHOW statement takes care of centering
the curve on the screen, but since the range of X values is so
much larger than the range of Y values (0 to 100 versus 16 to
18), it still does not give us enough resolution to see what the
data is doing. Isotropic scaling is desirable in many cases. In
many other cases, however, it is not. If this example shows·
the graph of the voltage from a sensor versus time, it makes
no sense to force seconds to be just as Hlong" as volts. Since
the data types are not equal, it would be better to use un­
equal, or anisotropic, scaling. You can do this with the other
scaling statement: WINDOW. This will not force X units to be
equal to Y units. Now load and run the file HSCALE3 H

•

This plot looks much better than the last one; you can easily
see variations in the data. To test how the Y axis range 15-19
affects relative variations in the data, list the program in file
HSCALE3 H and change line 30 to WINDOW 0, 100,30,5121
and change line 50 to PLOT X, RND + 40. Run the program
again and note that the line is less ragged.

There is still one problem, though. You can see relative varia­
tions in the data, but what are the units being used? That is,
is the height of the curve signifying differences of microvolts,
millivolts, megavolts, dozens of volts, or what? And you
probably wouldn't want the text (explaining units, etc.) to be
written in the same area that the curve is in, as it could ob­
struct part of the curve. Therefore, you need to be able to
specify a subset of the screen for plotting the curve, and put
explanatory notes outside this area. The next section tells you
how to do this.

A viewport is a subset of the plotting area. This is called the
soft clip area, and it is delimited by the soft clip limits. Clip,
because any line segments which attempt to go outside these
limits are cut off at the edge of the subarea. Soft, because you
can override these limits by turning off the clipping with the
CLIP OFF statement (more about this later). There are hard
clip limits also, and these are defined to be the absolute limits
of the plotting area. Under no circumstances can a line be
drawn outside of these limits. There is no way to override the
hard clip limits, as you could with soft clip limits.

Note

GDUs and UDUs. There are two types of units used to de­
fine viewport limits. These are UDUs (User-Defined Units)
and GDUs (Graphics Display Units). In order for viewports to
be predictable, they must always be specified in the same
units. Since UDUs are subject to change, you should use
GDUs when specifying the limits of a VIEWPORT statement.
GDUs are fixed for the CRT, so a viewport is associated with
the screen, rather than the graphical model used in your
program.

Unless you specify otherwise, the screen (but not necessarily
an external plotter) is considered to have the following ex­
panse: in the X direction, 0 through 133.444816054; in the Y
direction: 0 through 100. These are GDUs. The lower left of
the plotting area is always 0,0. The length of a GDU is de­
fined as DOne percent of the shorter edge of the plotting
area."

Since the height of the screen is shorter than the width of the
screen, the shorter edge is in the Y direction, therefore, Ymax
in GDUs is 100. If the screen had been higher than it is wide,
Xmax in GDUs would have been 100. That was the easy part.
Once you've decided which edge is shorter, and thus defined
the units along that edge, you need to find out how many
GDUs in extent the longer sides are. For no"" just observe
that the GDU limits are 0 to 133.444816054 in X, and 0 to
100 in Y.

If you are using an Enhanced Graphics Display, only 0 to
89.74 GDUs are viewable in Y.

Graphics Techniques 4·15

4-16 Graphics Techniques

Specifying the Viewport. The VIEWPORT statement de­
fines the extent of the soft clip limits in GDUs. It specifies a
subarea of the plotting surface which acts just like the entire
plotting surface, except that you can draw outside the subarea
if you turn off clipping. Load and list file uSCALE4 H from the
Manual Examples disc. The VIEWPORT statement in this pro­
gram specifies that the lower left-hand corner of the soft clip
area is at 10,15 and the upper right-hand corner is at 120,90.
This is the area which the WINDOW statement affects. Also
note line 40; the FRAME statement. This draws a box around
the current soft clip limits. It is used in this example so you
can see the area specified by the VIEWPORT statement. Now
run the program to see the result.

Labelling a Plot. With the inclusion of the VIEWPORT
statemEent, you have enough room to include labels on the
plot. Typically, in a plot like this, there is a title for the whole
plot centered at the top, a Y-axis title on the left edge, and an
X-axis title at the bottom.

You can use the LABEL statement to write text onto the
graphics screEen. You can position the label by using a MOVE
or PLOT statement to get to the point at which you want the
label to be placed. It is the lower left corner of the label which
ends up at the point to which you moved. In other words,
you move to the position on the screen at which you want the
lower left corner of the text to be placed.

Load and run the file "LABELS" from the Manual Examples
disc. Notice that the Y-axis label on the left edge of the screen
is created by writing one letter at a time. You only need to
move to the position of the first character in that label be­
cause each label statement automatically terminates with a
carriage returnjlinefeed. This causes the pen to go one line
down, ready for the next line of text.

Now you know what you are measuring-voltage VB. time­
but you still do not know the units being used. You need an
X-axis and a Y-axis labelled with numbers in appropriate
places. You can use the AXES statement to accomplish this.

10 GINIT
20 FRAME

Axes and Tick Marks. You can use the AXES statement to
draw X and Y axes and short lines, perpendicular to the axes,
to indicate the spacing of units. These short lines are called
tick marks. The axes may intersect at any point you desire.
The tick marks may be any distance apart, and you can select
the "major tick count" for each axis. The major tick count is
the total number of tick marks drawn for every large one.
This makes it convenient to count by fives or tens or what­
ever you chose the major tick count to be. And finally, you
can specify how long you want the major tick marks to be.
This is measured in GDUs. Enter the following program:

30 AXES 5,10,50,50,3,3,3
40 WAIT 5
60 END

Graphics Techniques 4-17

.
3 spaces between

large tick marks

Large tick marks
3 units long

4-18 Graphics Techniques

When you run this program, you should see the figure below:

} 10 units b.'ween nck m"ks

Intersection at (50,50) .

3 spaces between
large tick marks

In the axes statement, the first parameter specifies the dis­
tance between tick marks along the horizontal (x) axis, and
the second parameter specifies the distance along the vertical
(y) axis. The third and fourth parameters specify the intersec­
tion point of the axes. The fifth and sixth parameters specify
the number of spaces between the large tick marks, and the
last parameter specifies the size of the large tick marks. The
small tick marks are drawn half the size of the large tick
marks.

Now load the file uLABELS" again, add the AXES statement
shown below to this program, and run it to see the difference.

145 AXES 1,.1,0,15,5,5,3

10 GINIT
20 FRAME

Grids. You can also create a full grid pattern. Enter and run
the following program:

30 GRID 5,10,50,50,3,3,3
40 WAIT 5
50 END

When you run this program you should see the following:

r T T TT TT TT TT TT T T TT

~ ++ ++ ++ ++ ++ ++ ++ ++

r ++ ++ ++ ++ ++ ++ ++ ++

~ ++ ++ ++ ++ ++ ++ ++ ++

:

r ++ ++ ++ ++ ++ ++ ++ ++

~ ++ ++ ++ ++ ++ ++ + + ++

r ++ ++ ++ ++ ++ ++ ++ ++

L ..L..L .L..L .L .L ..L.L ..L..L .L..L .L.L ..L.L

Graphics Techniques 4·19

Other Ways to
Draw or Move

PLOT 10,40,2

4·20 Graphics Techniques

Some of the parameters have slightly different meanings in a
GRID statement than in an AXES statement. The first two still
represent the distance between tick marks in the horizontal
and vertical directions respectively. The next two parameters
specify the intersection point of two lines in the grid. The
fifth and sixth parameters still specify the number of spaces
between large tick marks for each axis. The last parameter still
specifies the length of the tick marks.

Like frames, axes and grids are always parallel to the edges of
the display. Axes and grids are affected by the line type and
pen type.

Load and run the file H AXESH from the Manual Examples disc
to see various kinds of axes and grids.

You can stop this program at any time by pressing STOP.

There are three other ways to draw or move. The first is using
the PLOT statement. With this statement, you specify the
point to which the pen moves and also whether the pen is up
or down before or after it is repositioned. Here is a PLOT
statement.

The first two items in the statement are the x and y coordi­
nates, and the third item is an optional pen control value.

The following table shows how the pen control value affects
the output.

Pen Control Value Meaning

Negative and even (-2, -4, -6, ...) Raise the pen before re-
positioning it.

Non-negative and even (0, 2, ...) Raise the pen after repo-
sitioning it.

Negative and odd (-1, -3, -5, ...) Lower the pen before re-
positioning it.

Positive and odd (1, 3, 5, ...) Lower the pen after repo-
sitioning it.

If no pen control is specified, 1 is assumed.

IPLOT (Incremental PLOT) is the second way to move or
draw. It is similar to PLOT. The difference is that with IPLOT
each repositioning is incremental like IMOVE OR IDRAW.
The pen control values cause actions similar to those in PLOT.

RPLOT (Relative PLOT) is the third way to move or draw. It
is similar to PLOT in that the RPLOT parameters are dis­
placements from an origin, but they are displacements from a
local origin. A local origin is a temporary origin for all consec­
utive RPLOT statements. Each coordinate given in an RPLOT
statement is measured from the local origin. The local origin is
defined as the current position when the first RPLOT is exe­
cuted. When you stop executing consecutive RPLOTs, that is,
when a graphics output statement other than an RPLOT
statement is executed, the local origin ceases to exist.

The next program is an example of how RPLOT works. Load
the file IISTARS" and list the program. Step through it slowly
and determine what happens with each statement before exe­
cuting it.

Notice how the local origin is set by a MOVE and a series of
IMOVEs. The pattern is actually drawn by repeating the sub­
routine, Rplot. RPLOT is particularly useful when drawing
the same series of lines in different spots on the CRT.

Graphics Techniques 4-21

Erasing Lines

Line Attributes

4-22 Graphics Techniques

PLOT, IPLOT, and RPLOT are useful for controlling the pen
with a formula or variable. For instance, you might want to
create a variable Pen.......status. If PeIL-status equals - 2, no line
is drawn, but the current position is updated.

Now that you can draw lines, you're probably wondering
how to erase them. GCLEAR clears the entire graphics area of
the CRT screen. To eliminate one specific line or portion of a
line, use the PEN statement. The PEN statement has the
form:

where Pefi-llumber is a numeric expression which specifies
the pen to use.

The PEN statement gives a choice of "pen" with which to
plot. The default pen type is 1. This is the pen type t~at cre­
ates the white line you have seen so far.

A pen selection of -1 sets the pen type to erase white. Out­
put statements are then executed with that color. If the
primitive crosses over a point on the display which is white,
that point becomes black.

Note that any output statement using this pen value not only
erases lines created by DRAW or IDRAW, but also erases part
of a frame or any other graphics output created with PEN 1.
Obviously, a pen type of -1 is only usable with a plotter that
can erase part of its display, such as a CRT. Plotters that
ouput on paper ignore a PEN -1 statement.

What is it about lines that distinguishes them from other
lines? The color of a line can set it apart from other lines; so
can the pattern used to draw it (for example, dashed or dot­
ted). These distinguishing traits are known as attributes of the
line. Your system provides a number of attributes for graphics
primitives.

Pen Types The PEN statement presented in the previous section does not
directly create graphics output but does affect the appearance
of graphics output. For this reason, it is an "attribute"
statement.

On a monchrome CRT, a pen type > 0 makes the pen color
uwhite". A pen type < 0 makes the pen color "erase white". A
pen type of 0, in effect, disables the pen; no lines or erasures
occur when a DRAW or other output statement is executed.
However, it does not disable updating of the current position;
that is, if you execute a DRAW, no line is drawn, but the cur­
rent position is now at the coordinates specified in the
DRAW.

PEN can also specify other colors if you have a color CRT or
other pen stalls on a paper plotter. The Tal or" section pro­
vides more information about these pen types.

Load and run the file "PENDEMO" from the Manual Exam­
ples disc.

Graphics Techniques 4-23

Line Types

4-24 Graphics Techniques

To distinguish between lines, use different line types such as
dashes or dots. The LINE TYPE statement gives a number of
choices. The pattern of a line is considered an attribute of that
line. Load and run the file HLINETYPES" from the Manual
Examples disc.

_________________________ s----------------------------

_________ J
.._._._.1-----------
_____ J

J
j---

This shows the available line types. It also shows how the
lines look when drawn straight or around corners.

Creating Simple
Shapes

10 GINIT
20 MOVE 20,20
30 RECTANGLE 10,30
40 WAIT 5
513 END

I PDIR Angle

BASIC Graphics has specific statements to create many kinds
of regular polygons quickly and easily.

Rectangles. The simplest polygon is probably the rectangle
created used the RECTANGLE statement. Enter and execute
the following program

The first parameter is the width of the rectangle and the sec­
ond parameter is the height of the rectangle. In this case,
you've drawn a rectangle 10 units wide and 30 units high.

RECTANGLE is another statement which has, in effect, a lo­
cal origin. The rectangle is drawn with the current position
(local origin) in the lower-left corner. In the example above,
the local origin is at 20,20. The sides of the box are parallel to
the sides of the CRT. This is only the default form. You can
use the PDIR (Plot DIRection) statement to rotate the rectan­
gle to any angle about the Z axis. Its form is:

where Angle is the amount the polygon is rotated in degrees,
radians or grads.

Graphics Techniques 4·25

4-26 Graphics Techniques

As an example, load and run the file uPDIRDEMO" from the
Manual Examples disc. You should see the following:

Notice that the rotation is about the local origin (lower-left
corner) of the ractangle. This means that when placing a rect­
angle on the display, you should note where the lower-left
corner should go, not where the center of the rectangle
should go.

The RECTANGLE statement has two other options. They are
FILL and EDGE. If you specify FILL, the rectangle is filled to
create a solid block. If you specify EDGE, the rectangle edge
is drawn with the current pen and line type. Load and run
the file "FILLEDGE" from the Manual Examples disc. You
should see the following:

r---I
1 I

I 1

1 I

I 1

1 I

I 1

L_~

FILL Attributes. shade of the fill color to various degrees of
grey using the AREA COLOR or AREA INTENSITY state­
ments. These statements are fully explained in the "Color"
section, but the following paragraphs explain how to use
them with a monochrome CRT.

Graphics Techniques 4-27

AREA COLOR . 1, • L . 1

AREA COLOR .5,.6,.1

AREA COLOR .7,.2,.1

AREA INTENSITY .1,.3,.4

The AREA COLOR statement defines the fill color based on a
hue, a saturation and luminosity. Only the third parameter,
the luminosity parameter, has any effect on a monochrome
CRT. For example:

All specify the same shade of grey. The luminosity parameter
specifies the approximate percentage of pixels to be Hon" in
the filled area. The previous three statements all turn on 10%
of the pixels in the fill area. The range of the luminosity is
from 0 thru 1.

The AREA INTENSITY statement defines the fill color based
on the largest of the three paramenters in the statement. For
example,

AREA INTENSITY .4,.2,.01

AREA I NTENS ITY .2,.4,.03

4-28 Graphics Techniques

All specify the same shade of grey. Again, the largest param­
eter specifies the approximate percentage of pixels to be bon"
in the filled area. The previous three statements all turn on
40% of the pixels in the fill area. Again, the range of the pa­
rameters in the statement is 0 thru 1.

10 GINIT
20 GRAPHICS ON
30 MOVE 50,50
40 POLYGON 10,6
50 WAIT 5
60 END

Polygons. To create more general polygons use the POLY­
GoN statement. Enter and execute the following:

The first parameter of the POLYGON statement is the radius
of the polygon and the second is the number of sides. Thus,
POLYGON 10,6 creates a six-sided polygon with a radius of
10 centered about the point (50,50). .

The polygon is output with the first vertex at an angle of 0
degrees from the X axis.

The POLYGON statement forces the shape to be a closed
polygon as opposed to an open polygon.

Graphics Techniques 4-29

4-30 Graphics Techniques

You may specify the number of edges to draw and the POLY­
GoN statement then closes the shape. For example, load and
run the file uPOLYGON6" from the Manual Examples disc.
You should see the following:

'~ \ -"-\

/ \
/~,
V

/
!

Whether the pen is up or down before the polygon is drawn
makes a difference. Load and run the file "POLYGON4 from
the Manual Examples disc. You should see the following:

08
00
H the pen is down when this statment is executed, the first
line is from the pen's starting position out to the first vertex
and the last line is from the last vertex back to the pen's origi­
nal position. H the pen is up when the statement is executed,
the last line is from the last vertex back to the first. In either
case, the current position is unchanged.

POLYGON also has the FILL and EDGE options like
RECTANGLE.

Graphics Techniques 4·3t

4-32 Graphics Techniques

Sometimes you don't want a closed polygon. In these cases,
use the POLYLINE statement. Load and run the file
"POLYLINE"

;/ \. ~ <. ...) \ \ / ...

/1

\
\
\ <

\\
...

You can see that polylines are similar to polygons, but they
don't have to be closed.

The general rule is: if the pen is down when this statement is
executed, the first line is from the pen's starting position out
to the first vertex. If the pen is up when this statement is exe­
cuted, the figure starts at the first vertex. The figure always
stops at the last vertex. The current position remains at its
original location.

PDIR also affects polygons and polylines. The local origin is
at the center of the polygon/polyline so the rotation is about
the center of the object. Load and run the file "CIRCLES2"
from the Manual Examples disc to see PDIR's effect.

Additional Pen
Control

r ~:+. '-'%,~

{
r;f ,\ __ ,

.' \
...

"

r

~
,.~,.

" ~ ---" __ "P.-. __ -

~~-><..:::::...

There are additional pen control values available when using
PLOT with an array that can't be used with PLOT x,y,z.
These help you to make more complex drawings than are
possible with PLOT x, y,z. For instance with PLOT x, y,z, a
pen control value which is a positive odd integer lowers the
pen after repositioning it. However, when using PLOT with
an array, only a pen control value of 1 causes this. A pen
control value of 3 tells the system that the x coordinate value
is to be interpreted as a pen number. Thus, you can switch
pens while plotting from an array. Here is a complete table of
all the pen control elements and how they are interpreted.

Graphics Techniques 4·33

X Coord. Y Coord. Z Coord. Pen Control
Element Element Element Element

This element is This element is This element is
If this element is: Action: interpreted as: interpreted as: interpreted as:

x coord. y coord. z coord. negative even Raises the pen
number (-2, -4, and then repo-
-6, ...) sitions it.

x coord. y coord. z coord. negative odd Lowers the pen
number (-1, -3, and then repo-
-5, ...) sitions it.

x coord. y coord. z coord. o or 2 Repositions the
pen and then
raises it.

x coord. y coord. z coord. 1 Repositions the
pen and then
raises it.

pen number n/a n/a 3 Selects this pen.

line type repeat length n/a 4 Selects this line
type and repeat
length.

fill color (see the n/a n/a 5 Selects this fill
following text) color.

n/a n/a n/a 6 Starts a polygon
with FILL.

n/a n/a n/a 7 End of a polygon.

row number n/a n/a 8 End of plotting
data.

n/a n/a n/a 9 Index of End-of-
plotting-data row

n/a n/a n/a 10 Starts a polygon
with EDGE.

n/a n/a n/a 11 Starts a polygon
with FILL and
EDGE.

n/a n/a n/a 12 Frames the cur-
rent display area.

n/a n/a n/a >12 Row Ignored.

4-34 Graphics Techniques

The fill color gives you the ability to change the color of a
filled polygon. The exact explanation of the process is covered
in the nColorH section of this chapter.

Now load and list the nSHIP" from the Manual Examples disc.
The DATA lines in this program are treated as an example
array. A step-by-step explanation of the data elements as they
would be interpreted in a two-dimensional PLOT is shown in
the matrix that follows.

0 0 12 Frames the display.

40 10 -2 Raises the pen and moves it to (40,10).

11 0 5 Selects the fill color defined by the value
11. The 0 is ignored.

12 34 11 Signals the start of a polygon that is filled
and has an edge. The values 12 and 34 are
ignored. Every consecutive line from this
point on is considered part of the polygon
until the figure is closed. The current posi-
tion is still (40,10).

100 10 -1 Lowers the pen and draws a line from
(40,10) to (100,10).

110 20 -1 Keeps the pen down and draws a line from
(100,10) to (110,20).

15 20 -1 Keeps the pen down and draws a line from
(110,20) to (15,20).

40 10 -1 Keeps the pen down and draws a line from
(15,20) back to (40,10). After this line is
completed there is a closed figure so it is
filled and the edge is kept.

0 0 7 Signals the end of the polygon. If this line is
not included and any DRAW actions are in-
cluded before a MOVE, those DRAWs are
considered part of the polygon. Thus, when
a MOVE is executed the DRAWs are closed
off to create a polygon.

65 20 -2 Raises the pen and moves it to (65,20).

Graphics Techniques 4·35

0 0 6 Signals the start of another polygon with
the FILL attribute. The zeroes in the first
two columns are more appropriate than the
values left in the first two elements of row
4.

64 80 -1 Draws a line from (65,20) to (64,80).

63 20 -1 Draws a line from (64,80) to (63,20).

0 0 7 Signals the end of a polygon so the two
lines are closed off to form a triangle and
then the polygon is filled.

64 80 0 Draws a line from (63,20) to (64,80) and
then lifts the pen

1 0 5 Selects the fill color defined by the value l.

0 0 6 Signals the start of a polygon with FILL.

50 25 -1 Lowers the pen and draws a line to (15,20).

15 20 -1 Keeps the pen down and draws a line to
(15,20).

64 80 -1 Keeps the pen down and draws a line to
(64,80).

0 0 7 End of the polygon.

64 75 -2 Moves the pen to (64,75).

0 0 6 Start of another polygon with FILL.

70 25 -1 Lowers the pen and draws a line from
(64,75) to (70,25).

110 20 -1 Keeps the pen down and draws a line to
(110,20).

64 75 -1 Keeps the pen down and draws a line to
(64,75).

0 0 7 End of the polygon.

4-36 Graphics Techniques

Using Graphics
Effectively

More on Labelling
a Plot

Now run the program to see the results:

The last section discussed the more elementary graphics oper­
ations. This section will present more detailed information on
those statements and introduce several other graphics
operations.

Most of the demonstration programs in this section are stored
on the Manual Examples disc which was shipped with this
manual. You are encouraged to load and run these programs
as you are reading the manual, as this will make understand­
ing the concepts much easier.

There are three statements that complement the LABEL state­
ment; they expand its capabilities greatly.

The first is CSIZE, which means character size. CSIZE has two
parameters: character cell height (in GDUs) and aspect ratio.
The height measures the character cell size. A character cell
contains a character and some blank space above, below, left
of, and right of the character. This blank space allows packing
character cells together without making the characters illeg­
ible. The amount of blank space depends, of course, on which
character is contained in the cell.

Graphics Techniques 4·37

h

The first of these small programs shows how the CSIZE state­
ment changes the size of characters. You may load this
program from file HCSIZE" on the Manual Examples disc.

When you run the program you should see something like
this:

T
l s

1 sjust 1 ike
thosecute 1 itt 1 ech arts

thatyoualwaysseeinyourfriendly

netghborhoodoptometrtstsoropttctansofftce.

4-38 Graphics Techniques

The FOR-NEXT loop writes lines of text on the screen with
different character sizes. The DATA statements contain both
pieces of information. Incidentally, notice also the WINDOW
statement. It specifies a Ymin larger than the Ymax. This
causes the top of the screen to have a lesser Y -value than the
bottom. This is perfectly legal.

x .

x

x

x

The next program deals with the relationship between the
size of the character, per se, and the size of the character
cell-that rectangle in which the character is placed. This pro­
gram is on file "CHARCELL' on the Manual Examples disc.

Size of Character in Character Cell

x x x x · · x x · x · . x . . · x · x x x x x x

x x x x

x x x x · x x x x

x x . x · x x x x

x x x x x

x x x · x

x . x x x

x x x x x

x x x x x
x x x x x · x x · x x x . x x x · x x x x x · x
x x x · x · . x · . · .

x x x x · . x x x · x x x x x . x x x

x x x x x . x x x · x x x x x x x x x

x x · x x x x x . x · x x x x x

x x x x x x x x

x x x x x x x x . · x . x x x x x . x

x . · x · x x x . x . x x x x x x x x . . · . · x . . x · x .

As the diagram shows, a character is drawn inside a rectangle,
with some space on all four sides. The rectangle's height is
specified by the CSIZE statement, and is measured in GDUs.
The rectangle's width (also measured in GDUs) is the height
multiplied by the aspect ratio. This rectangle is subdivided
into a grid of 9 wide by 15 high. Characters are drawn in this
framework, called the symbol coordinate system. Of course,
the little Xs in the plot above are not drawn when you label a
string of text; they are there solely to show the position of the
characters within the character cell. .

Graphics Techniques 4-39

4·40 Graphics Techniques

Again, character cell height is measured in GOUs, and the
definition of aspect ratio for a character is identical to the def­
inition of aspect ratio for the hard clip limits mentioned
earlier: the width divided by the height. Thus, if you want
short, fat letters, use an aspect ratio of 1.5 or larger. If you
want tall, skinny letters, use an aspect ratio less than about
0.5.

CS I ZE 3 Cell 3 GOUs high, aspect ratio .6 (default).

CS I ZE 6,.3 Cell 6 GOUs high, aspect ratio .3 (tall and
skinny).

CS I ZE 1,2 Cell 1 GOU high, aspect ratio 2 (short and
fat).

Note that you do not have to specify a second parameter (the
aspect ratio) in the CSIZE statement. This defaults to 0.6.

The second statement you need is LORG, which means label
origin. This lets you specify which point on the label ends up
at the point moved to before writing the label. You may load
the following program from file HLORG# on the Manual Ex­
amples disc.

LORG 1 =

LORG 2 =

LORG 3 =

LORG 4 =

LORG 5 =

LORG 6 =

LORG 7 =

LORG 8 =

LORG 9 =

TEST
X

xTEST

TE~rST
X

TEX3T

TE~~T
X

TESTx

TESf

The x's indicate where the pen was moved to before labelling
the word uTESr. This diagram shows that, for example, if
LORG 1 is in effect and you move to 4,5 to write a label, the
lower left of that label would be at 4,5. This automatically
compensates for the character size, aspect ratio, and label
length. It makes no difference whether there is an odd or
even number of characters in the label. If LORG 6 had been
in effect, and you had moved to 4,5, the center of the top
edge of the label would be at 4,5. You can readily see how
useful this statement is in centering labels, both horizontally
and vertically.

Graphics Techniques 4·41

4-42 Graphics Techniques

The third statement you need to know is LDIR, meaning label
direction. This specifies the angle at which the subsequent la­
bels will be drawn. The angle is specified in the current
angular units, and is either DEC (degrees) or RAD (radians).
For example, assuming degrees is the current angular mode:

LDIR 13 Writes label horizontally to the right.

LDIR 913 Writes label vertically, ascending.

LDIR 14 Writes label ascending a gentle slope, up and
right.

LDIR 1813 Writes label upside down.

LDIR 2713 Writes label vertically, descending.

Load and list the file QLDIR" on the Manual Examples disc.
You'll note that LORC 2 was specified (line 70), and this re­
mained in effect for many LDIRs. Each label is centered on
the left edge (relative to the label, remember). Now run the
program and you should see the following:

I
LORG 3
DEG
LDIR 90
MOVE 6,8

The label origin specified by LORG is relative to the label, not
the plotting surface, and it is independent of the current label
direction. For example, if you have specified

and then write the label, it is written going straight up, not
horizontally. Therefore, it is the upper left corner of the label
which is at point 6,8 relative to the rotated label. Relative to
the plotting device, however, it is the lower left corner of the
label which is at 6,8 (in this example) because the label has
been rotated.

Now that the prerequisites have been taken care of, we can
discuss the statement which actually causes labels to be writ­
ten: LABEL. LABEL takes into account the most recently­
specified CSIZE, LOIR and LORG when it writes a label. You
must position the label to get to the point at which you want
the label to be placed. You can use MOVE to accomplish this.

All four statements have been utilized in the following up­
date to our progressive plotting program. You may load this
program from file "SINLABEL" on the Manual Examples disc.

Graphics Techniques 4-43

VOLTRGE VRRIRNCE

OJ
OJ

'" +' -o
>

4·44 Graphics Techniques

Time (seconds)

Notice that the title of the graph, HVOLTAGE VARIANCE", is
now displayed in bold face. This effect was achieved by plot­
ting the label several times, moving the label origin just
slightly each time. Notice lines 60 through 90. The loop vari­
able, I, goes from -.3 to .3 by tenths. This is the offset in the
X direction (in GDUs*) of the label origin.

Since this is being labelled with LORG 6 in effect, the label
origin (the point moved to immediately prior to labelling) rep­
resents the center of the top edge of the label. This method
can also be used for offsetting in the Y direction. Or, offset
both X and Y. This will give you characters which are thick in
a diagonal direction, which makes them look like they are
coming out of the page at you. However, a more typical bold­
face is produced by offsetting only in the X direction.

• Technically, a MOVE uses UDUs for its units, but UDUs and GDUs are identical
until a SHOW or WINDOW is executed.

Miscellaneous
Graphics Concepts

I CLIP 10,20,5,Ymin,Ymax

I CLIP OFF

I CLIP ON

Now you know what you're measuring-voltage vs. time­
but the units are still not shown. As you saw in the last chap­
ter, what is needed is an X-axis and a Y-axis, and they need
to be labelled with numbers in appropriate places.

Clipping. Something that occurs completely Hbehind the
scenesH in your computer when drawing is a process called
clipping. Clipping is the process whereby lines that extend
over the defined edges of the drawing surface are cut off at
those edges. There are two different clipping boundaries at all
times: the soft clip limits and the hard clip limits. The hard
clip limits are the absolute boundaries of the plotting surface,
and under no circumstances can the pen go outside these lim­
its. The soft clip limits are user-definable limits, and are
defined by the CLIP statement.

This statement defines the soft clip boundaries only; hard clip
limits are completely unaffected. After this statement has
been executed, all lines which attempt to go outside the X
limits (in UDUs) of 10 and 20.5, or the Y limits (in UDUs) of
Ymin and Ymax will be truncated at the appropriate edge.
Clipping at the soft clip limits can be turned off by the
statement:

It can be turned back on, using the same limits, by

Graphics Techniques 4-45

4-46 Graphics Techniques

If you want the soft dip limits to be somewhere else, use the
CLIP statement with four different limits. Only one set of soft
dip limits can be in effect at anyone time. Clipping at the
hard dip limits cannot be disabled.

The VIEWPORT statement, in addition to defining how WIN­
DOW coordinates map into the VIEWPORT area, turns on
dipping at the specified VIEWPORT edges.

Drawing Modes. On a monochromatic CRT, there are three
different drawing modes available. (For selecting pens with a
color CRT, see the section on color in this chapter.) The three
pens perform the following actions:

Number Function

1 Draws lines (turns on pixels).

-1 Erases lines (turns off pixels).

0 Complements lines (changes pixels' state).

A characteristic of drawing with pen -1 or pen 1 is that if a
line crosses a previously drawn line, the intersection will be
the same "colorH as the lines themselves. When drawing with
pen 0, and a line crosses a previously drawn line, the intersec­
tion becomes the opposite state of the lines. For example,
assume a black background. You select PEN 0, then draw a
pair of AXES. When the first axis is drawn, all pixels are off,
so the line being drawn causes all pixels to be turned on
along its length. However, when the second axis is drawn, it
will turn on pixels until it gets to the other axis. At that point,
the pixel is on, so it gets turned off. After that, the rest of the
pixels are off, so they are again turned on.

Data-Driven
Plotting

Storing and Retrieving Images. If a picture on the screen
takes a long time to draw, or the image is used often, it may
be advisable to store the image itself-not the commands
used to draw the image-in memory or on a file.

This may be done with the GSTORE command. First, you
must have an INTEGER array of sufficient size to hold all the
data in the graphics raster. This amounts to an array size of
7500 with Monochrome Plus black and white display, 12480
with Multimode black and white display, and 49920 with
EGA color display. This array holds the picture itself, and it
doesn't care how the information got to the screen, or in what
order the different parts of the picture were produced. You
can use GLOAD to restore the picture to the CRT display.

When plotting data points, you will often find that they do
not form a continuous line. You must have the ability to con­
trol the pen's position. In the last chapter, a passing reference
was made to a third parameter in the PLOT statement. This
third parameter is the pen-control parameter, and its function
is to raise or lower the pen so that many lines can be drawn
with one set of data.

When using a single X-position and Y-position in a PLOT
statement (as opposed to plotting an entire array; we'll cover
this a little later), the third parameter is defined in the follow­
ing manner. Though it need not be of type INTEGER, its
value should be an integer. If it is not, it will be rounded. The
third parameter is either positive or negative, and at the same
time, either even or odd. Whether the number is odd or even
determines which action will be performed on the pen, and
the sign of the number determines when that action will be
performed: before or after the pen is moved.

Pen Control Parameter

Even (Up) Odd (Down)

Positive (after) Pen up after move Pen down after move

Negative (before) Pen up before move Pen down before
move

Graphics Techniques 4-47

4·48 Graphics Techniques

The default parameter is + I-positive odd-therefore, the
pen will drop after moving, and if the pen is already down, it
will remain doWn, drawing a line. Zero is considered positive.

The program LEMI (file "'LEMI n on Manual Examples disc) is
a good example of pen control. It draws a LEM (Lunar Excur­
sion Module). There are two arrays used: a two-column REAL
array for the X and Y data, and a one-column INTEGER array
containing pen-control data. The data is read from DATA
statements. Load and list the program and then run it.

Having the pen-control parameter in a third column of the
data array is generally a good strategy; it reduces the number
of array names you must declare, and when you have the
data points for the picture, you also have the information
necessary to draw it. Nevertheless, an array must be entirely
of one type, and usually you'll want the data to be real. So if
you're pressed for memory, you may want to have a two-col-

Translating and
Rotating a Drawing

umn data array of type REAL, and a one-column pen-control
array of type INTEGER. Integer numbers take only one­
fourth the memory real numbers take to store.

Often there is an application where a segment of a drawing
must be replicated in many places; the same sub-picture
needs to be drawn many times. Using the PLOT statement, it
is possible but rather tedious to do. There is another state­
ment called RPLOT, which draws a figure relative to a point
of your choice. RPLOT means Relative PLOT, and it causes a
figure to be drawn relative to a previously-chosen reference
point. RPLOT's parameters may be two or three scalars, or a
two-column or three-column array; the parameters are identi­
cal to those of PLOT.

The picture defined by the data given to an RPLOT statement
is drawn relative to a point called the current relative origin.
This is not necessarily the same as the pen position. The cur­
rent relative origin is the last point resulting from anyone of
the following statements:

AXES DRAW FRAME

GINIT GRID IDRAW

IMOVE !PLOT LABEL

MOVE PLOT POLYGON

POLYLINE RECTANGLE

Typically, a MOVE is used to position the current relative ori­
gin at the desired location, then the RPLOT is executed to
draw the figure. After the RPLOT statement has executed, the
pen may be in a different place, but the current relative origin
has not moved. Thus, executing two identical RPLOT state­
ments, one immediately after the other, results in the figure
being drawn precisely on top of itself.

Graphics Techniques 4·49

4-50 Graphics Techniques

A figure drawn with RPLOT can be rotated by using the
PIVOT statement before the RPLOT. PIVOT's single param­
eter is a numeric expression designating the angular distance
through which the figure is to be rotated when drawn. This
value is interpreted according to the current angular mode:
either DEG or RAD.

A program using RPLOT can be found on the Manual Exam­
ples disc under the file name uRPLOT". Load and list this file.
Various figures are defined with DATA statements: a desk, a
chair, a table, and a bookshelf. The program displays a floor
layout. Here again, the Rend polygon mode" codes (the O,O,7s
in the desk and chair definitions) are unnecessary; when a
polygon mode starts, any previous one ends by necessity.
Now run the program to see the figure below:

Incremental
Plotting

There are two points of interest in this program. First, notice
that you can specify the EDGE and/or FILL parameters in the
RPLOT statement itself (as in lines 230 and 260), or in the
array (as in lines 180 and 210). FILLs and EDGEs are speci­
fied in the array by having a 6, a 10, or an 11 in the third
column of the array. If FILL and/or EDGE are specified in
both the PLOT statement and in the data, . and the instruc­
tions differ, the value in the data replaces the FILL or EDGE
keyword on the statement.

The second interesting point is that some of the chairs appear
to be under the desks and tables; that is, parts of several
chairs are hidden by other pieces of furniture. This is accom­
plished by drawing the chair, and then drawing the desk or
table partially over the chair, and filling the desktop or table­
top with its own fill pattern, which may be black.

Incremental plotting is similar to relative plotting, except that
the origin, the point considered to be O,O-is moved every
point. Every time you move or draw to a point, the origin is
immediately moved to the new point, so the next move or
draw will be with respect to that new origin.

There are three incremental plotting statements available:
IPLOT, which has the same parameters as PLOT and RPLOT;
and IMOVE and IDRAW, which have the same parameters as
MOVE and DRAW, respectively.

An example program using IPLOTs can be found in the file
"FLAX· on the Manual Examples disc. It reads data from data
statements describing the outlines of certain letters of the al­
phabet, and then plots them. Load and run this file.

Graphics Techniques 4-51

4-52 Graphics Techniques

A program which demonstates the use of POLYGON,
POLYLINE, PLOT, RPLOT, polygon filling, and gray-shading
can be found on the file HSCENERyn on the Manual Examples
disc. Load and run this program.

Points of note in this program:

• The sunrise was created with graduated gray shades in suc­
cessively smaller ucirclesH (actually 30-sided polygons).

• The horizon was created by defining a rough edge on the
top half of a polygon which blacked out the bottom section
of the screen. This covered up the bottom of the sun. The
white line of the horizon was simple plotting of the horizon
array without the first and last points. We didn't want the
lower corners of the screen to be included.

• The clouds were created by plotting H circles" after having
invoked anisotropic units; thus long, thin ellipses resulted.

Graphics Techniques 4-53

External
Graphics
Displays and
Plotters

Specifying a
Plotter

PLOTTER IS 3,"IHTERHAL"

PLOTTER IS 705,"HPGL"

4-54 Graphics Techniques

• The seagulls were created by drawing two arcs with
POLYLINE. An arc is created by defining an N-sided poly­
gon and drawing less-than-N sides. Note that PIVOT was
used to cause the starting angle of the arcs to be other than
straight to the right.

• The trees were created by defining an array whose left side
is a mirror image of the right side. The array is centered
around zero in the X direction to allow for scaling of the
tree simply by multiplying the array by a constant. RPLOT
was used to place the trees in their various positions.

In previous sections you saw program listings containing a
line with a PLOTTER IS statement:

This caused the computer to activate the internal CRT graph­
ics raster as the plotting device, and thus all subsequent
commands were directed to the screen. If you want a plotter
to be the output device, only the PLOTTER IS statement
needs to be changed. If your plotter is at interface select code
7 and address 5 (the factory settings), the modified statement
would be:

Using a Shared
Printer or Plotter

I MSI ": REMOTE"

UHPGL" stands for Hewlett-Packard Graphics Language, and
it is the low-level language which the plotters actually speak
behind the scenes. More about this later.

There are some limitations, though. If you are doing an oper­
ation on one plotting device and attempt to send the plot to
another device which does not support that operation, it
won't work.

For example: area fills, which are valid operations on the in­
ternal CRT, are not available on plotters. Color map
operations, which are valid on the internal CRT (of the high
resolution color display), are not valid on a plotter. Erasing
lines can be done on the internal CRT and the external moni­
tors, but, naturally, not on a hard-copy plotter. HPGL
commands will be interpreted correctly by a hard-copy plot­
ter, but not by the internal CRT.

Use of special Shared Resource Manager (SRM) directories
called spooler directories allows you to access a shared plot­
ter. Setting up a spooler directory is explained in the USRM
Server Startup" chapter of the SRM Software Installation man­
ual. The following examples assume that the spooler directory
PL has been created at the root of the SRM directory
structure.

Include in your plotting program:

CREATE BDAT "PL/plot-file",l
PLOTTER IS "PL/plot-file"

PLOTTER IS 3,"INTERNAL"

The PLOTTER IS statement only works with BDAT files.

Graphics Techniques 4-55

Dumping Raster
Images

100 DUMP DEVICE IS 26
110 DUMP GRAPHICS

100 DUMP GRAPHICS #26

4-56 Graphics Techniques

In addition to generating a hard-copy plot with a plotter, as
described above, you can dump a CRT's raster image to a
printer. This method is called a graphics dump or screen dump.
It is accomplished by copying data from the frame buffer to a
printer to be printed dot for dot.

First, the image must be drawn on a CRT. Since this tech­
nique dumps a raster-type image, it prints only dots. Thus, it
cannot draw a line, per se, but only the approximation of a
line from the screen, made up of dots. The dump device
'"takes a snapshot" of the graphics screen at some point in
time, and doesn't care how the dots came to be turned on or
off. Thus, filled areas can be dumped to the printer; indeed,
all CRT graphics capabilities (except color) are available.

If your printer is an HP 9876, HP 2631G, HP 2671G,
HP 2673A, HP Laser Jet, HP ThinkJet, or any other printer
which conforms to the HP Raster Interface Standard, dump­
ing graphics images is easy. For example:

or simply,

Both of these program segments would take the image in the
last specified CRT graphics frame buffer (the internal CRT by
default) and send it to the printer at address 26. If no device
is specified, the image is taken from the last active CRT,
whether internal or external. The default factory setting for
printers is 701. You would probably use the two-statement
version in an application where you wish to specify the des­
tination device once, and have it apply to many different
DUMP GRAPHICS statements. The one-statement version
would probably be used where there are few and isolated
DUMP GRAPHICS statements.

DUMP GRAPHICS will also send a graphics display to a
printer. If a DUMP DEVICE IS statement has not been exe­
cuted, the dump device is expected to be at address 701.

If a DUMP GRAPHICS operation is aborted with CLR I/O,
the printer mayor may not terminate its graphics mode.
Sending 75 null characters (ASCII code zero) to a printer such
as a HP 9876 terminates its graphics mode. For example:

OUTPUT Dump_dev USING "I,K"JRPT$(CHR$(0),75)

If you want the image to be twice as large in each dimension
as the actual screen size, you can specify:

100 DUMP DEVICE IS 701,EXPANDED
110 DUMP GRAPHICS

This will cause the dumped image to be four times larger
than it would be if EX PAN D E 0 had not been specified. Each
dot is represented by a 2 X 2 square of dots, and the result­
ing image is rotated 90° clockwise to allow more of the
resulting image to fit on the page.

If you have a printer which does not conform to the
HP Raster Interface Standard, all is not lost. It must, however,
be capable of printing raster-image bit patterns.

Graphics Techniques 4·57

HPGL

I PLOTTER IS 705, II HPGL II

4-58 Graphics Technique.

Hewlett-Packard Graphics Language (HPGL) is a low-level
language that is understood by all current HP hard-copy plot­
ters. When you specify:

the plotter specifier "HPGL" notifies the computer that it will
be talking with a device which understands HPGL. This
causes all the user's BASIC statements to be converted into
HPGL commands and sent to the plotter. HP plotters always
receive commands in HPGL.

When you are executing BASIC graphics statements and they
are doing operations on an HP plotter, there is nothing pre­
venting you from interspersing your own HPGL commands
between the BASIC commands. HPGL commands can be sent
to the device with PRINT statements, after having specified
the receiving device in a PRINTER IS statement, but the pre­
ferred way is to use the OUTPUT statement. HPGL command
sequences are terminated by a linefeed, a semicolon, or an
EOI character, which is sent by the HP-IB (Hewlett-Packard
Interface Bus) END keyword. Individual commands within a
sequence are typically delimited by semicolons.

There are many HPGL commands available, but the exact
ones you will be able to use depend on the device itself. Plot­
ters are not the only devices which use HPGL; digitizers and
graphics tablets do also. By their nature, however, they use a
different subset of commands than plotters do. Following are
a few of the more common and/or useful HPGL commands.

Controlling Pen Speed. If your plotter pens are getting old,
you probably would want to make them draw more slowly to
get a better quality line. (There are other factors which can
affe<;t line quality. For example, humidity can alter the line
quality of a fiber-tipped pen.) To accomplish this, you could
have a statement:

I OUTPUT 705; "VS10"

I OUTPUT 705; "FS3. 6;"

"VSO stands for ''Velocity SelectO and the "10° specifies centi­
meters per second. Thus, this statement would tell the plotter
to draw at a maximum speed of ten centimeters per second. It
specifies a maximum speed rather than an only speed, because
on short line segments, the pen does not have time to acceler­
ate to the specified speed before the midpoint of the line
segment is reached and deceleration must begin. The range
and resolution of pen speeds, and default maximum speed
depend on the plotter.

Controlling Pen Force. On the HP 7580 and HP 7585
drafting plotters, you can specify the amount of force pressing
the pen tip to the drawing medium. This is useful when
matching a pen type (ball-point, fiber-tip, drafting pens, etc.)
to a drawing medium (paper, vellum, or mylar, etc.). Again, if
a pen is partially dried out, it may help line quality to adjust
the pen force.

An example statement is:

This statement (Force Select) would specify that pen number 6
should be pressed onto the drawing medium with force num­
ber 3. As you can see, the force specifier occurs first, the pen
number second. The reason for this is that if you do not spec­
ify a pen number, all pens will be affected.

The force number is translated into a force in grams. If, for
example, you have an HP 7580A plotter, the force number is
converted to force as follows:

1 = 10 grams

2 18 grams

3 26 grams

4 = 34 grams

5 42 grams

6 50 grams

7 = 58 grams

8 = 66 grams

Graphics Techniques 4-59

OUTPUT 705;"CS1"

Selecting Character Sets. Some plotters contains internal
character sets which may be much more pleasing to the eye
or more appropriate for your application than the character
set provided by the BASIC operating system. Through HPGL,
you can tell the plotter to use these character sets.

tells the plotter to use character set 1 until further notice. This
means, however, that to actually get these characters, you
cannot use the LABEL statement in BASIC. This is because
the BASIC graphics system generates all its characters as a
series of line segments, and the plotter can't tell when it is
told to draw a line segment whether it is going to be part of a
character or not. Thus, you must use the HPGL label com­
mand, LB:

OUTPUT 705;"LBThis is an example string."&CHR$(3)

OUTPUT 705;"DT&"

4·60 Graphics Techniques

CHR$(3) is the End-of-text or ETX character. It is the default
terminator for the LB command. If you wish, you can specify
other characters to signal the end of a line of text to label. You
use the Define Terminator command:

This statement instructs the plotter to consider the ampersand
to be the terminator. Thus, every L B command must have an
ampersand as the final character.

Note

OUTPUT 705;"OE;"
ENTER 705;Error

When using a printable ASCII character as the terminator, it
will be labelled in addition to terminating the L8 command.
Also, there must be a terminator as the final character in the
string to indicate the end of the text, or all subsequent com­
mands will be considered text and not commands; that is,
they will merely be labelled, not executed.

Error Detection. When using HPGL commands, there is al­
ways a possibility of making an error. When this occurs, the
program should be able to respond in a friendly way, and not
just hang then and there. With HPGL, it is possible to interro­
gate the plotting device and determine the problem. The
following statements in an error-trapping routine would de­
termine the type of error that occurred:

After these two statements have executed, the variable Er r or
will contain the number of the most recent error. What the
error code means depends on the particular device being
used.

This is not by any means an exhaustive list of HPGL com­
mands, but it serves to acquaint you with the concept of using
the HPGL language, and the amount of control it gives you
over the peripheral device. A thorough understanding of
HPGL can only be gotten by combining information from the
owner's manual of the particular device you have with actual
hands-on experience.

Graphics Techniques 4-61

Color Graphics

Non-Color Mapped
Color

4-62 Graphics Techniques

Color can be used for emphasis, clarity, and to present visu­
ally pleasing images. Color is a very powerful tool, and it
follows directly that it is very easy to misuse. Be careful in
using color, and it will serve as a valuable tool for communi­
cation. Misuse it, and it will garble the communiation.

The biggest benefit of the color computer is that it makes
experimenting with color so easy. With a bit-mapped frame
buffer and a color map, it is easy to test out ideas before you
use them. It is also possible to use the color map for simple
animation effects and some just plain impressive images.

The methods for displaying color fall into four categories:

• Background Value. Whenever GCLEAR is executed, all the
pixel locations in the display are set to O. Thus, PEN 0 is
the background color.

• Line Value. The PEN statement is used to determine the
color written. to the display for all lines drawn. This in­
cludes all lines (including characters created by LABEL) and
outlines specified by the secondary keyword EDGE.

• Fill Value. The AREA PEN statement is used to specify
the color written to the display for filling areas specified by
the secondary keyword FILL.

• Dithered Colors. AREA INTENSITY and AREA COLOR
can also be used to specify a fill color.

The PEN, AREA PEN, AREA INTENSITY, and AREA
COLOR statements control what are referred to as modal
attributes. This means that the value established by one of the
statements stays in effect until it is altered by another
statement.

When PLOTTER I S CRT," INTERNAL" is executed, 8 col­
ors are available through the PEN and AREA PEN
statements. The colors provided are:

• Black and white.

• Red, green, and blue (the additive color primaries) .

• Cyan, magenta, and yellow (the complements of the addi­
tive color primaries).

The colors can be selected with the PEN statement, the same
way they are for an external plotter. The colors and their pen­
selectors are listed below.

Non·Color·Mapped Pens. The meanings of the different
pen values are shown in the table below. The pen value can
cause either a 1 (draw), a 0 (erase), n/c (no change), or com­
plement (invert) the value in each color plane.

Non·Color Map Mode

Pen Action
Plane 1 Plane 2 Plane 3

(red) (green) (blue)

-7 Erase Magenta 0 n/c 0

-6 Erase Blue n/c n/c 0

-5 Erase Cyan n/c 0 0

-4 Erase Green n/c 0 n/c

-3 Erase Yellow 0 0 n/c

-2 Erase Red 0 n/c n/c
-1 Erase White 0 0 0

0 Complement invert invert invert

1 Draw White 1 1 1

2 Draw Red 1 0 0

3 Draw Yellow 1 1 0

4 Draw Green 0 1 0

5 Draw Cyan 0 1 1

6 Draw Blue 0 0 1

7 Draw Magenta 1 0 1

Graphics Techniques 4-63

10
20
30
40
50
60
70
8O
90

GINIT
GRAPHICS ON
MOVE 20,80
FOR X=1 TO 7

PEN X
IDRAW 50,0
IMOVE -50,-10

NEXT X
END

Color Mapped
Color

If you are in this mode, you can draw lines in the eight colors
listed above. The following program (found in file
COLORLINE on your Manual Examples disc) shows the col­
ors available.

If you are trying to define a complex human interface, you
will need more colors and more control over the colors. This
is possible after you turn on the color map. To do so, execute:

PLOTTER IS CRT,"INTERNAL";COLOR MAP

4·64 Graphics Techniques

Default Colors. If you do not modify the color map, the col­
ors selected by the PEN and AREA PEN values depend on
the default color map values. These values are shown in the
following table:

Default Color Map and Pen Values

Pen Color

0 Black

1 White

2 Red

3 Yellow

4 Green

5 Cyan

6 Blue

7 Magenta

8 Black

9 Olive Green

10 Aqua

11 Royal Blue

12 Maroon

13 Brick Red

14 Orange

15 Brown

The colors of pens 9-15 are only available in the separate
alpha/graphics mode. In the combined alpha/graphics mode
(the default mode), pens 8-15 are mapped to the colors of
pens 0-7.

Pens 0-7 of the default color map are the same as in non­
color map mode. The upper 8 colors (8 through 15) were
selected by a graphic designer to produce graphs and charts
for business applications. The colors are:

• Maroon, Brick Red, Orange, and Brown (warm colors) .

• Black, Olive Green, Aqua, Royal Blue (cool colors).

Graphics Techniques 4·65

4-66 Graphics Techniques

These colors are one designer's idea of appropriate colors for
business charts and graphs. They were chosen to. avoid clash­
ing with each other.

Changing Default Colors. The SET PEN statement is used
to customize the color that each PEN value represents. SET
PEN supports two color models, the RGB (Red, Green, Blue)
model and the HSL (Hue, Saturation, Luminosity) model.
Since the color models are dynamically interactive, it is much
easier to understand them by experimenting with them.

You can think of the RGB model as mixing the output of
three light sources (one each for red, green, and blue). The
parameters in the model specify the intensity of each of the
light sources. The RGB model is accessed through the second­
ary keyword INTENSITY used with the SET PEN statements.
The values are normalized (range from 0 through 1). Thus,

SET PEN 0 INTENSITY 0.7, 0,7, 0.7

sets pen 0 (the background color) to approximately a 70%
gray value. Whenever all the guns are set to the same inten­
sity, a gray value is obtained. The parameters for the
INTENSITY mode of SET PEN are in the same order they
appear in the name of the model, red, green, and blue.

When using an EGA system, each primary color (red, green,
and blue) can be displayed at four distinct levels:

• off

• % on

• % on

• full on

Therefore, each PEN may be set to one of 64 distinct colors.

The HSL model is closer to the intuitive model of color used
by artists, and is very effective for interactive color selection.
The three parameters represent hue (the pure color to be
worked with), saturation (the ratio of the pure color mixed
with white), and luminosity (the brightness-per-unit area). The
HSL model is accessed through the SET PEN statement with
the secondary keyword COLOR:

SET PEN Current_Pen COLOR Hue, Saturation, Luminosity

Fill Colors

Hue, Saturation, and Luminosity are normalized to values
from 0 to 1.

In either color-mapped or non-color-mapped mode, areas
may be filled with a PEN color by first selecting that PEN
with an AREA PEN statement. Filling is specified by using
the secondary keyword FILL in any of the following
statements:

IPLOT PLOT POLYGON

RECTANGLE RPLOT SYMBOL

It is possible to fill areas with other shades. These tones are
achieved through dithering. Dithering produces different
shades by combining dots of the eight colors described earlier.
The screen is divided into 4-by-4 cells, and patterns of dots
within the cells are turned on to match, as closely as possible,
the color you specify. Dithered colors are defined with the
AREA COLOR and AREA INTENSITY statements using the
RGB or HSL models described in the previous section.

Graphics Techniques 4-67

5 Interface Techniques

Chapter 5
5-1
5-3
5-3
5-4
5-4
5·4
5·4
5-4
5-6
5-6
5-7
5-7
5-8
5-8
5-9
5-9
5-9

5-10
5-10
5-13
5-16
5-17
5-17
5-24
5-32
5-33
5-36
5·41
5-42
5-45
5-46

Contents

Interface Techniques
Terminology
Why Do You Need an Interface?

Electrical and Mechanical Compatibility
Data Compatibility
Timing Compatibility
Additional Interface Functions

Interface ()vervievv
The HP-IB Interface
The RS-232 Serial Interface
The GPI() Interface

The I/() Process
Specifying a Resource
Registers
Data Handshake

I/() Examples
Example ()UTPUT Statement
Sample ENTER Statement

Directing Data Flovv
Specifying a Resource
Assigning If() Path Names

The HP-IB Interface
Initial Installation
Communicating vvith Devices
General Bus Management
The Computer As a Non-Active Controller
Status Register 3
Status Register 5

The RS-232 Serial Interface
Asynchronous Data Communication
Data Transfers Betvveen Computer and Peripheral
()vervievv of Serial Interface Programming

5·46 Initializing the Interconnection
5·47 Using Program Control to Override Defaults
5·49 Data Transfers
5·52 The GPIO Interface
5·52 Interface Description
5·54 Interface Configuration
5·57 Interface Reset
5·58 Using OUTPUT and ENTER Through the GPIO
5·62 GPIO Interrupts
5·63 Interrupt Enable Register
5·64 Interrupt Service Routines
5·65 The HP -HIL Interface
5·67 Preview of HP-HIL Devices
5·68 Communicating Through the HP-HIL Interface
5·69 Supported HP-HIL Devices
5·69 Identifying All Devices on the HP-HIL Link
5· 71 HP -HIL Keyboards
5· 72 Relative Positioners
5· 73 Absolute Positioners
5· 73 Security Device
5·73 Other Devices

5

Terminology

Interface Techniques

This chapter describes the functions and requirements of in­
terfaces between your computer and its resources. You can
gain useful information that will increase your understanding
of interfacing equipment with the computer. More detailed in­
formation can be found in the BASIC 5.0 Interfacing
Techniques (two volumes).

The terms used in this chapter are important to your under­
standing of the information presented here.

The term "computer" is defined as the processor, its support
hardware, the MS-DOS operating system, and the BASIC lan­
guage system. Together, these system elements manage all
computer resources. The term "computer resource" is used to
describe all of the "data handling" elements of the system.
Computer resources include internal memory, CRT display,
keyboard, disc drive, and any external devices that are under
computer control (printer, plotter, etc.). These resources are
often referred to as "peripheral" devices.

Interface Techniques 5-1

System
Expansion
Connectors

Keyboard

System
Processor
and
Memory

The term hardware describes both the electrical connections
and the electronic devices that make up the circuits within the
computer. Any piece of hardware is an actual physical device.
The term software describes the user-written, BASIC lan­
guage programs. Firmware refers to the pre-programmed
assembly language programs that are invoked by BASIC lan­
guage statements and commands, or assembly language
routines of the operating system. You cannot modify
firmware.

Data and
Control Buses

Backplane

CRT
Display

Disc
Drive

System
Interface

Language
Processor
and
Memory

Built-In
HP-IB
Interface

Language
Processor
Expansion
Connector

HP-IB
Connector

The term 1/0 is an acronym for uInput and Output". It refers
to the process of copying data to or from the computer's
memory.

The term bus refers to a common group of hardware lines
that are used to transmit information between computer re­
sources. The computer communicates directly with the
internal resources through the data and control busses. The
computer backplane is an extension of these internal data
and control busses. The computer communicates indirectly
with the external devices through interfaces connected to the
backplane.

5-2 Interface Techniques

Why Do You
Need an
Interface?

Computer

r-

Computer
Compatible
Connector

The functions of an interface are shown in the following
block diagram:

Logic
Level
Matcher

Interface
Logic

--,
Interface

Logic
Level
Matcher

cab~

1...--...1 D~
Compatible
Connector

Peripheral
Device

~-------------------~

Electrical and
Mechanical

Compatibility

The primary function of an interface is to provide a communi­
cation path for data and commands between the computer
and its resources.

The following explains the need for interfaces.

Electrical compatibility must be insured before any thought of
connecting two devices occurs. The two devices often have
input and output signals that do not match. If so, the inter­
face serves to match the electrical levels of these signals
before the physical connections are made.

Mechanical compatibility simply means that the connector
plugs must fit together properly. Most interfaces have cables
available that can be connected directly to the device.

Interface Techniques 5-3

Data Compatibility

Timing
Compatibility

Additional
Interface

Functions

Interface
Overview

The HP·IB
Interface

5-4 Interface Techniques

The computer and the peripheral device must agree upon the
form and meaning of data before communicating it. Some in­
terfaces format data, but most have little responsibility for
matching data formats. The computer must generally make
the necessary changes, if any, so that the receiving device gets
meaningful information.

Since all devices do not have standard data transfer rates and
do not always agree as to when the transfer will take place, a
consensus between the sending and receiving devices must be
made.

If the data transfer is not begun at an agreed upon point in
time and at a known rate, the transfer must proceed one data
item at a time with acknowledgement from the receiving de­
vice that it has the data and that the sender can send the next
item. This process is known as a uhandshake".

Another feature of some interface cards is to relieve the com­
puter of low-level tasks such as performing data transfer
handshakes. This distribution of tasks eases some of the
computer's burden and also decreases the otherwise stringent
response time requirements of external devices.

Each of the interfaces discussed in the following section is de­
signed for a specific method of data transfer.

The HP-IB interface is Hewlett-Packard's implementation of
the IEEE-488 1978 Standard Digital Interface for Programma­
ble Instrumentation. The acronym HP-IB stands for "'Hewlett­
Packard Interface Bus", and is often referred to as the ~us.n

System

Data

8
HP-IB
Interface

Handshake
Shielded Cable 0

3 -() to Device(s) Q)

Hardware c
c

and 0

Firmware Control
()

c

5 0:::
o.b
C\I

Logic and Shield
Grounds

8

The HP-IB interface fulfills all four compatibility requirements
(hardware, electrical, data, and timing) with no additional
modification. All you need to do is connect the interface cable
to the desired HP-IB.

The HbusH is somewhat of an independent entity. It is a com­
munication arbitrator that provides an organized protocol for
communications between several devices. The bus can be
configured several ways. The devices on the bus can be con­
figured as senders or receivers of data and control messages,
depending on their capabilities.

Interface Techniques 5-5

The RS·232 Serial
Interface

System

The GPIO Interface

5-6 Interface Techniques

The serial interface changes 8-bit parallel data into 8-bit-serial
information and transmits the data through a two-wire cable.
Data is received in this serial format and is then converted
back to parallel data. This use of two-wire cable makes it
more economical to transmit data over long distances than
would be the case if eight individual lines were used.

Parallel Data

Serial
Interface
Hardware

I

Bit-Serial Data

(In)

I Parallel/Serial
Converter

I (UART)
I
I

Grounds

o
~
c
c
o
U

Shielded Cable
to a Device

Data is transmitted at several programmable rates using either
a simple data handshake or no handshake at all. The main
use of this interface is communicating with simple devices.

The GPIO (General Purpose Input/Output) interface provides
the most flexibility of all the interfaces. It consists of 16 out­
put data lines, 16 input data lines, two handshake lines, and
other assorted control lines. Data is transmitted using pro­
grammable handshake conventions and logic sense.

Backplane
Connector

The 1/0 Process

Specifying a
Resource

Parallel Data Out

16

Parallel Data In

16
"- Shielded Cable Handshake
0 -(,) to a Device CI)

GPIO I::
4 I::

Interface 0

Hardware 0
Special Purpose I::

a::
I

6 0
It)

Grounds

7

The I/O process begins when the computer encounters an
I/O statement in a program. The computer first determines
the type of I/O statement to be executed (such as ENTER US­
ING, OUTPUT, etc.). Once the type of statement is
determined, the computer evaluates the statement's
parameters.

Each resource must have a unique specifier that allows it to
be accessed to the exclusion of all other resources connected
to the computer. The methods of uniquely specifying re­
sources are device selectors, string variable names, and path
names.

Interface Techniques 5-7

Registers

Data Handshake

5·8 Interface Techniques

For example, before executing an OUTPUT statement, the
computer first evaluates the parameter which specifies the
destination resource. The source parameter of an ENTER
statement is evaluated in the same manner.

The computer must often read certain memory locations to
determine which firmware routines will be called to execute
the I/O procedure. The contents of these locations, known as
registers, store parameters to be used and the type of interface
involved in the operation.

An example of register usage by firmware is during output to
the CRT. Characters output to this device are displayed begin­
ning at the current screen coordinates. After the computer has
evaluated the first expression in the source-item list, it must
determine where to begin displaying data on the screen. Two
memory locations are dedicated to storing the "X" and UY"
screen coordinates. The firmware determines these coordi­
nates and begins copying the data to the corresponding
locations in display memory.

Each byte (or word) of data is transferred with a procedure
known as data-transfer handshake. It is the means of moving
one byte of data at a time when the two devices are not in
agreement as to the rate of data transfer or as to what point
in time the transfer will begin. The steps of the handshake
are as follows:

1/0 Examples

Example OUTPUT
Statement

OUTPUT Destination;

Sample ENTER
Statement

1. The sender signals to get the receiver's attention.

2. The receiver acknowledges that it is ready.

3. A data byte (or word) is placed on the data bus.

4. The receiver acknowledges that it has received the data
item and is now busy. No further data may be sent until
the receiver is ready.

5. Repeat these steps if more data is to be transferred.

Now that you have seen the steps taken by the computer
when executing an I/O statement, lets look at how two typi­
cal I/O statements are executed by the computer.

Data can be output to only one resource at a time with the
OUTPUT statement (with the exception of the HP-IB inter­
face). This destination can be any computer resource, and is
specified by the destination parameter as shown below:

String$,CHR$(C+32),"That's all"

The data to be output may be a string, the result of a func­
tion, or a constant. Either string or numeric expressions can
specify the actual data to be output.

Data can be entered from only one resource at a time. The
source can be any resource, and is specified by the source pa­
rameter as shown by the following statement:

I ENTER Source;Number,String$

The destinations of ENTER operations are always variables in
memory. Both string and numeric variables can be specified as
the destinations.

Interface Techniques 5·9

Directing Data
Flow

Specifying a
Resource

5·10 Interface Techniques

As described in the previous section, data can be moved be­
tween computer memory and several resources, including:

• Computer memory (string variables in memory).

• Internal and external devices.

• Mass storage files.

• Buffers.

This section describes how string variables and devices are
specified in I/O statements.

Each resource must have a specifier that allows it to be
accessed to the exclusion of all other resources. String vari­
ables are specified with their names, while devices can be
specified with either their device selector or with a new data
type known as an I/O path name. This section describes how
to specify these resources in OUTPUT or ENTER statements.

String-Variable Names. Data is moved to and from string
variables by specifying the variable's name in an OUTPUT or
ENTER statement. Examples of each are shown in the follow­
ing program (found in file OUTENTER on your Manual
Examples disc):

100 DIM To_dest$C80J,FroM_source$C80J
110 DIM Data_out$C80J
120
130 FroM_source$="Source data"
140 Data_out$="OUTPUT data"
150
160 PRINTER IS 1
170 PRINT "To_dest$ before OUTPUT- ";To_dest$
180 PRINT
190
200 OUTPUT To_dest$;Data_out$;
210 PRINT "To_dest$ after OUTPUT= ";To_dest$
220 PRINT
230
240 ENTER FroM_source$;To_dest$
250 PRINT "To_dest$ after ENTER= ";To_dest$
260 PRINT
270
280 END

Printed results from the program are:

To_dest$ before OUTPUT=
To_dest$ after OUTPUT= OUTPUT data

To_dest$ after ENTER= Source data

Device Selectors. Devices include the built-in CRT and
keyboard, plus external printers and instruments, and all
other physical entities that can be connected to the computer
through an interface. Each interface has a unique number by
which it is identified, known as its interface select code. The
internal devices are accessed with the following permanently
assigned interface select codes:

Crt Display 1

Keyboard 2

Built-in HP-IB 7

Interface Techniques 5·11

OUTPUT l;"Data to CRT"
ENTER l;Crt_line$

Int_sel_code=12

Optional HP-IB and serial interfaces have select codes that
you can set by means of the configuration file (refer to appen­
dix F).

Other optional interfaces have select codes that you can set
by means of switches on the interface card. These interfaces
cannot use select codes 1 through 7; the valid range is 8
through 31. The following settings on optional interfaces have
been made at the factory, but can be reset to any unique se­
lect code between 8 and 31. Refer to the interface instruction
manual for further information.

GPIO 12

SRM 21

Examples of using interface select codes to access devices are
shown below.

OUTPUT Int_sel_code;String$&"Expression",NuM_expression
ENTER Int_select_code;Str_variable$,NuM_variable

NUMber=2
ENTER NUMber+7;Serial_data$
OUTPUT ll-NuMber;"Data to serial card"

5·12 Interface Techniques

The device selector can be any numeric expression that
rounds to an integer in the range 1 through 32 (32 is a pseudo
select code used as a device selector for parity, cache, and
float registers). If the interface select code specifies an HP-IB
interface, additional information must be specified to access a
particular HP-IB device, since more than one device can be
connected to the computer through HP-IB interfaces.

Assigning 1/0 Path
Names

Note

Hp·IB Device Selectors. Each device on the HP-IB inter­
face has a primary address by which it is uniquely identified.
Each address must be unique so that only one device is
accessed when one address is specified. The device selector is
therefore a combination of the interface select code and the
devices address. Two examples are shown below.

To access the device on:

Interface select code 7 at primary address 01, use device selec­
tor 701.

Interface select code 10 at primary address 13, use device se­
lector 1013.

1/0 Path Names. All data entered into and output from the
computer is moved through the HI/O pathH

• An I/0 path con­
sists of the hardware and operating system firmware used to
carry out this moving process. When a string variable or de­
vice selector is specified in an ENTER or OUTPUT statement,
the operating system first evaluates the expression that speci­
fies a resource, and then chooses the corresponding default
I/O path through which data will be moved~

The I/O paths to devices and mass storage files can be as­
signed special names; I/O paths to string variables can only
be assigned names if the variable is declared as a buffer. As­
signing names to I/0 paths provides improvements in
performance and additional capabilities over using device
selectors.

An I/0 path name is a new data type that can be assigned to
either a device or a data file on a mass storage device. Any
valid name preceded by the H@H character can be used.

A name is a combination of 1 to 15 characters, beginning
with an upper case alphabetic character or one of the charac­
ters CHR$(161) through CHR$(254) and followed by up to 14
lower case alphanumeric characters, the underscore character
(_), or the characters CHR$(161) through CHR$(254).

Interface Techniques 5·13

ASSIGN @Displa~ 1
ASSIGN @Printer 26
ASSIGN @Serial 9
ASSIGN @Gpio 12

The following examples show you how this is done.

Now you could use the I/O path names instead of the device
selectors to specify the resource with which the communica­
tion is to take place.

OUTPUT @Displa~;"Displa~ message"
OUTPUT @Printer;"Message to the printer"
ENTER @Serial;Variable,Variable$
ENTER @Gpio;Word1,Word2

5·14 Interface Techniques

Since an I/O path name is a data type, a fixed amount of
memory is allocated for the variable, similar to the manner in
which memory is allocated to other program variables (inte­
ger, real, and string).

Attempting to use an I/O path name that does not appear in
any program line results in error 910 (,'Identifier not found in
this context"). This error message indicates that memory space
has not been allocated for the variable. Attempting to use an
I/O path name that does appear in an ASSIGN statement in
the program, but which has not yet been executed results in
error 177 ("Undefined I/O path nameD). This error indicates
that memory space has been allocated, but no valid informa­
tion has been placed into the variable since the I/O path
name has not yet been assigned to a resource.

Reassigning 1/0 Path Names. If an I/O path name already
assigned to a resource is to be reassigned to another resource,
the preceding form of the ASSIGN statement is used. The
first action is that the I/O path name to the device is implic­
itly closed. A new assignment is then made as though the first
never existed.

100 ASSIGN @Printer TO 1 !Initial assignment.
110 OUTPUT @Printer;"Datal"
120
130 ASSIGN @Printer TO 701 !2nd ASSIGN closes the 1st
140 OUTPUT @Printer;"pata2" land makes a new assignment.
150 PAUSE
160 END

ASSIGN @Printer TO *
ASSIGN @Serial TO *
ASSIGN @Gpio TO *

The result of running the program is that "Datal II is sent to
the CRT, and UData2" is sent to the HP-IB device 701. Since
the program was paused (which maintains the program con­
text), the I/O path name @Printer can be used in an I/O
statement or reassigned to another resource from the
keyboard.

Closing I/O path names. A second use of the ASSIGN
statement is to explicitly close the name assigned to an I/O
path. Examples of statements that close path names are as
follows.

After executing this statement for a particular I/O path name,
the name cannot be used in subsequent I/O statements until
it is reassigned.

Interface Techniques 5-15

The HP·IB
Interface

System

5-16 Interface Techniques

This section describes the techniques necessary for program­
ming the HP-IB interface. It also describes the specific details
of how this interface works and how it is used to communi­
cate with and control systems consisting of various HP-IB
devices. Be sure you have the TRANS and 10 binaries loaded
in your system.

The HP-IB (Hewlett-Packard Interface Bus), commonly called
the "busH, provides compatibility between the computer and
external devices conforming to the IEEE 488-1978 standard.
Electrical, mechanical, and timing compatibility requirements
are all satisfied by this interface. The following diagram de­
picts the HP-IB interface.*

Data

8
HP-IB
Interface

Handshake Shielded Cable 0

3
.....

to Device(s) 0
Q)

Hardware c
c

and 0
()

Firmware Control c

5 a::
.;,
C\J

Logic and Shield
Grounds

8

The HP-IB Interface is easy to use and allows great flexibility
in communicating data and control information between the
computer and external devices .

• See HP-IB Standard for listing of all 24 lines (cable printouts).

Initial Installation

Communicating
with Devices

The built-in HP-IB interface requires no installation. Refer to
the HP-IB Interface manual and appendix F for information
about setting the switches and installing an external HP-IB in­
terface. Once the interface has been properly installed, you
can verify that the settings are what you intended by running
the program DEFAULTl on your Manual Examples disc. You
can also check the defaults of the internal HP-IB interface
with the program. The results are displayed on the CRT.

The hardware interrupt level on the Language Processor card
is set to 3 for the internal HP-IB interface, but can range from
3 to 6 on external interfaces. Refer to appendix F for informa­
tion on mapping these levels to your computer's interrupt
levels. Primary address is further described in uHP-IB Device
Selectors" in the next section.

The term uSystem Controller" is also further described later in
this section in HGeneral Structure of the HP-IB". The internal
HP-IB has a jumper that is set at the factory to make it a
system controller. Refer to the language processor card instal­
lation guide for a description of how to change this jumper.
External HP-IB interfaces have a switch that controls this in­
terface state.

This section describes programming techniques used to output
data to and enter data from HP-IB devices. General bus oper­
ation is also briefly described in this section.

HP·IB Device Selectors. Since the HP-IB allows the inter­
connection of several devices, each device must have a means
of being uniquely accessed. Specifying just the interface select
code of the HP-IB interface through which a device is con­
nected to the computer is not sufficient to uniquely identify a
specific device on the bus.

Each device on the bus has a primary address by which it is
identified. This address must be unique to allow individual
access of each device. Each HP-IB device has a set of switches
that are used to set its address. Thus, when a particular HP-IB
device is to be accessed, it must be identified with both its
interface select code and its bus address.

Interface Techniques 5·17

5-18 Interface Techniques

The interface select code is the first part of an HP-IB device
selector. The interface select code of the internal HP-IB is 7;
external interfaces can range from 8 to 31. The second part of
an HP-IB device selector is the device's primary address,
which are in the range of 0 through 30. For example, to spec­
ify the device:

On interface select code 7
with primary address 22

On interface select code 10
with primary address 2

Use device selector

Use device selector

722

1002

Remember that each device's address must be unique. The
procedure for setting the address of an HP-IB device is given
in the installation manual for each device. The HP-IB inter­
face also has an address. The default address of the internal
HP-IB is 21 or 20, depending on whether or not it is a System
Controller, respectively. The addresses of an external HP-IB
interface's address can be determined by reading STATUS
register 3 of the appropriate interface select code, and each
interface's address can be changed by writing to CONTROL
register 3. See HDetermining Controller Status and Address"
and HChanging the Controller's Address" for further details.

Moving Data Through the HP-IB. Data is output from and
entered into the computer through the HP-IB with the OUT­
PUT and ENTER statements, respectively. The only difference
between the OUTPUT and ENTER statements for the HP-IB
and those for other interfaces is the addressing information
within HP-IB device selectors.

Examples

100 Hpib=7
110 Device_addr=22
120 Device_selector=Hpib*100+Device_addr
130 !
140 OUTPUT Device_selectorJ"FIR7T2T3"
150 ENTER Device_selectorJReading

320 ASSIGN ~Hpib_device TO 702
330 OUTPUT ~Hpib_deviceJ"Data message"
340 ENTER ~Hpib_deviceJNumber

440 OUTPUT 822J"FIR7T2T3"

380 ENTER 724JReadings(*)

General Structure of the Hp·IB. Communications through
the HP-IB are made according to a precisely defined set of
rules. These rules help to ensure that only orderly communi­
cation may take place on the bus. For conceptual purposes,
the organization of the HP-IB can be compared to that of a
committee. A committee has certain "rules of orderH that gov­
ern the manner in which business is to be conducted. For the
HP-IB, these rules of order' are the IEEE 488-1978 standard.

On the HP-IB, the System Controller corresponds to the com­
mittee chairman. The system controller is generally
designated by setting a switch on the interface and cannot be
changed under program control. However, it is possible to
designate an Hacting chairman' on the HP-IB. On the HP-IB,
this device is called the Active Controller, and may be any
device capable of directing HP-IB activities, such as a desktop
computer.

When the System Controller is first turned on or reset, it as­
sumes the role of Active Controller. Thus, only one device can
be designated System Controller. These responsibilities may
be subsequently passed to another device while the System
Controller tends to other business. This ability to pass control
allows more than one computer to be connected to the HP-IB
at the same time.

Interface Techniques 5·19

5-20 Interface Techniques

In a committee, only one person at a time may speak. It is the
chairman's responsibility to urecognizeH which one member is
to speak. Usually, all committee members present always lis­
ten; however, this is not always the case on the HP-IB. One
of the most powerful features of the bus is the ability to selec­
tively send data to individual (or groups of) devices. This
allows fast talkers to. communicate with fast listeners without
having to wait.

During a committee meeting, the current chairman is respon­
sible for telling the committee which member is to be the
talker and which is (are) to be the listener(s). Before these as­
signments are given, he must get the attention of all
members. The talker and listener(s) are then designated, and
the next data message is presented to the listener(s) by the
talker. When the talker has finished the message, the designa­
tion process may be repeated.

On the HP-IB, the Active Controller takes similar action.
When talker and listener(s) are to be designated, the attention
signal line (ATN) is asserted while the talker and listener(s)
are being addressed. ATN is then cleared, signaling that those
devices not addressed to listen may ignore all subsequent data
messages. Thus, the ATN line separates data from commands;
commands are accompanied by the ATN line being true,
while data messages are sent with the ATN line false.

On the HP-IB, devices are addressed to talk and addressed to
listen in the following orderly manner. The Active Controller
first sends a single command which causes all devices to
unlisten. The talker's address is then sent, followed by the ad­
dress(es) of the listener(s}. After all listeners have been
addressed, the data can be sent from the talker to the listen­
er(s). Only device(s) addressed to listen accept any data that is
sent through the bus (until the bus is reconfigured by subse­
quent addressing commands).

I OUTPUT 701; "Data"

The data transfer, or data message, allows for the exchange of
information between devices on the HP-IB. Our committee
conducts business by exchanging ideas and information be­
tween the speaker and those listening to his presentation. On
the HP-IB, data is transferred from'the active talker to the
active listener(s) at a rate determined by the slowest active
listener on the bus. This restriction on the transfer rate is nec­
essary to ensure that no data is lost by any device addressed
to listen. The handshake used to transfer each data byte en­
sures that all data output by the talker is received by all active
listeners.

Examples of Bus Sequences. Most data transfers through
the HP-IB involve a talker and only one listener. For instance,
when an OUTPUT statement is used (by the Active Control­
ler) to send data to an HP-IB device, the following sequence
of commands and data is sent through the bus.

1. The talker's address is sent (here, the address of the
computer; UMy Talk Address"), which is also a
command.

2. The unlisten command is sent.

3. The listener's address (01) is sent, which is also a
command.

4. The data bytes uD", "aR, fit", "a", CR, and LF are sent; all
bytes are sent using the HP-IB's interlocking handshake
to ensure that the listener has received each byte.

Interface Techniques 5-21

I ENTER 722;Voltage

Similarly, most ENTER statements involve transferring data
from a talker to only one listener. For instance, the following
ENTER statement invokes the following sequence of com­
mands and data-transfer operations.

1. The talker's address (22) is sent, which is a command.

2. The unlisten command is sent.

3. The listener's address is sent (here, the computer's ad­
dress; HMy Listen Address"'), also a command

4. The data is sent by device 22 to the computer using the
HP-IB handshake.

Addressing Multiple Listeners. HP-IB allows more than
one device to listen simultaneously to data sent through the
bus (even though the data may be accepted at differing rates).
The following examples show how the Active Controller can
address multiple listeners on the bus.

100 ASSIGN @Listeners TO 701,702,703
110 OUTPUT @Listeners;String$
120 OUTPUT @Listeners USING Image_l;Arra~$(*)

5·22 Interface Techniques

This capability allows a single OUTPUT statement to send
data to several devices simultaneously. It is however, necessary
for all the devices to be on the same interface. When the pre­
ceding OUTPUT statement is executed, the unlisten command
is sent first, followed by the Active Controller's talk address
and then listen addresses 01, 02, and 03. Data is then sent by
the controller and accepted by devices at addresses 1, 2,
and 3.

If an ENTER statement that uses the same I/O path name is
executed by the Active Controller, the first device is ad­
dressed as the talker (the source of data) and all the rest of
the devices, including the Active Controller, are addressed as
listeners. The data is then sent from the device at address 01
to the devices at addresses 02 and 03 and to the Active
Controller.

130 ENTER @Listeners;String$
140 ENTER @Listeners USING Image_2;Arra~$~*)

100 ASSIGN
110 OUTPUT

200 OUTPUT

150 ASSIGN
1613
1713 OUTPUT

1213 OUTPUT

@Device TO

Secondary Addressing. Many devices have operating
modes which are accessed through the extended addressing
capabilities defined in the bus standard. Extended addressing
provides for a second address parameter in addition to the
primary address. Examples of statements that use extended
addressing are as follows.

72205 22=primar~, 05=secondar~.

@Device;Message$

72205;Message$

@Device TO 7220529 Additional secondar~

@Device;Message$

72213529; Message$

The range of secondary addresses is 00-31; up to six second­
ary addresses may be specified (a total of 15 digits including
interface select code and primary address). Refer to the
device's operating manual for programming information asso­
ciated with the extended addressing capability. The HP-IB
interface also has a mechanism for detecting secondary com­
mands.

Interface Techniques 5-23

General Bus
Management

5-24 Interface Techniques

The HP-IB standard provides several mechanisms that allow
managing the bus and the devices on the bus. Here is a sum­
mary of the statements that invoke these control mechanisms.

ABORT is used to abruptly terminate all bus activity and reset
all devices to power-on states.

CLEAR is used to set all (or only selected) devices to a pre­
defined, device-dependent state.

LOCAL is used to return all (or selected) devices to local
(front-panel) control.

LOCAL LOCKOUT is used to disable all devices' front-panel
controls.

PPOLL is used to perform a parallel poll on all devices (which
are configured and capable of responding).

PPOLL CONFIGURE is used to setup the parallel poll response
of a parficular device.

PPOLL UNCONFIGURE is used to disable the parallel poll re­
sponse of a device (or all devices on an interface).

REMOTE is used to put all (or selected) devices into their de­
vice-dependent, remote modes.

SEND is used to manage the bus by sending explicit com­
mand or data messages.

SPOLL is used to perform a serial poll of the specified device
(which must be capable of responding).

TRIGGER is used to send the trigger message to a device (or
selected group of devices).

These statements (and functions) are described in the follow­
ing discussion. However, the actions that a device takes upon
receiving each of the above commands are, in general, differ­
ent for each device. Refer to a particular device's manuals to
determine how it will respond.

REMOTE 7

ASSIGN @Device TO 700
REMOTE @Device

REMOTE 700

Remote Control of Devices. Most HP-IB devices can be
controlled either from the front panel or from the bus. If the
device's front panel controls are currently functional, it is in
the Local state. If it is being controlled through the HP-IB, it
is in the Remote state. Pressing the front-panel HLocar key
will return the device to Local (front-panel) control, unless the
device is in the Local Lockout state (described in a subsequent
discussion).

The Remote message is automatically sent to all devices
whenever the System Controller is powered on, reset, or
sends the Abort message. A device also enters the Remote
state automatically whenever it is addressed. The REMOTE
statement also outputs the Remote message, which causes all
(or specified) devices on the bus to change from local control
to remote control. The computer must be the System Control­
ler to execute the REMOTE statement.

Examples

Locking Out Local Control. The Local Lockout message ef­
fectively locks out the UlocalH switch present on most HP-IB
device front panels, preventing a device's user from interfer­
ing with system operations by pressing buttons and thereby
maintaining system integrity. As long as Local Lockout is in
effect, no bus device can be returned to local control from its
front panel.

Interface Techniques 5·25

ASSIGN @Hpib TO 7
LOCAL LOCKOUT @Hpib

LOCAL LOCKOUT 7

ASSIGN @Hpib TO 7
LOCAL @Hpib

ASSIGN @Device TO 700
LOCAL @Device

5-26 Interface Techniques

The Local Lockout message is sent by executing the LOCAL
LOCKOUT statement. This message is sent to all devices on
the specified HP-IB interface, and it can only be sent by the
computer when it is the Active Controller.

Examples

The Local Lockout message is cleared when the Local mes­
sage is sent by executing the LOCAL statement. However,
executing the ABORT statement does not cancel the Local
Lockout message.

Enabling Local Control. During system operation, it may be
necessary for an operator to interact with one or more de­
vices. For instance, an operator might need to work from the
front panel to make special tests or to troubleshoot. And, in
general, it is good systems practice to return all devices to lo­
cal control upon conclusion of remote-control operation.
Executing the LOCAL statement returns the specified devices
to local (front-panel) control. The computer must be the Ac­
tive Controller to send the LOCAL message.

Examples

ASSIGN @Hpib TO 7
TRIGGER @Hpib

ASSIGN @Device TO 707
TRIGGER @Device

If primary addressing is specified, the Go-to-Local message is
sent only to the specified device(s). However, if only the in­
terface select code is specified, the Local message is sent to all
devices on the specified HP-IB interface and any previous Lo­
cal Lockout message (which is still in effect) is automatically
cleared. The computer must be the System Controller to send
the Local message (by specifying only the interface select
code).

Triggering HP·IB Devices. The TRIGGER statement sends
a Trigger message to a selected device or group of devices.
The purpose of the Trigger message is to initiate some device­
dependent action; for example, it can be used to trigger a
digital voltmeter to perform its measurement cycle. Because
the response of a device to a Trigger Message is strictly de­
vice-dependent, neither the Trigger message nor the interface
indicates what action is initiated by the device.

Examples

Specifying only the interface select code outputs a Trigger
message to all devices currently addressed to listen on the
bus. Including device addresses in the statement triggers only
those devices addressed by the statement. The computer can
also respond to a trigger from another controller on the bus.

Interface Techniques 5·27

ASSIGN @Hpib TO 7
CLEAR @Hpib
ASSIGN @Oevice TO 700
CLEAR @Oevice

ASSIGN @Hpib TO 7
ABORT @Hpib

ABORT 7

5·28 Interface Techniques

Clearing HP·IB Devices. The CLEAR statement provides a
means of Hinitializing" a device to its predefined, device-de­
pendent state. When the CLEAR statement is executed, the
Clear message is sent either to all devices or to the specified
device(s), depending on the information contained within the
device selector. If only the interface select code is specified, all
devices on the specified HP-IB interface are cleared. If pri­
mary-address information is specified, the Clear message is
sent only to the specified device. Only the Active Controller
can send the Clear message.

Examples

Aborting Bus Activity. This statement may be used to ter­
minate all activity on the bus and return all the HP-IB
interfaces of an devices to a reset (or power-on) condition.
Whether this affects other modes of the device depends on
the device itself. The computer must be either the active or
the system controller to perform this function. If the System
Controller (which is not the current Active Controller) exe­
cutes this statement, it regains active control of the bus. Only
the interface select code may be specified; device selectors
which contain primary-addressing information (such as 724)
may not be used.

Examples

lee Hpib=7

HP·IB Service Requests. Most HP-IB devices, such as volt­
meter, frequency counters, and spectrum analyzers, are
capable of generating a Nservice request" when they require
the Active Controller to take action. Service requests are gen­
erally made after the device has completed a task (such as
making a measurement) or when an error condition exists
(such as a printer being out of paper). The operation and/or
programming manuals for each device describes the device's
capability to request service and conditions under which the
device will request service.

To request stervice, the device sends a Service Request mes­
sage (SRQ) to the Active Controller. The mechanism by which
the Active Controller detects these requests is the SRQ inter­
rupt. Interrupts allow an efficient use of system resources,
because the system may be executing a program until inter­
rupted by an event's occurrence. If enabled, the external
event initiates a program branch to a routine which Hservices"
the event (executes remedial action).

SeHing Up and Enabling SRQ Interrupts. In order for an
HP-IB device to be able to initiate a service routine as the Ac­
tive Controller, two prerequisites must be met: the SRQ
interrupt event musthave a service routine defined, and the
SRQ interrupt must be enabled to initiate the branch to the
service routine. The following program segment shows an ex­
ample of setting up and enabling an SRQ interrupt.

1113 ON INTR Hpib GOSUB Service_routine
1213
1313 Mask=2 ! Bit 1 enables SRQ interrupts.
1413 ENABLE INTR Hpib)Mask

The value of the mask in the ENABLE INTR statement deter­
mines which type(s) of interrupts are to be enabled. The value
of the mask is automatically written into the HP-IB interface's
interrupt-enable register (CONTROL register 4) when this
statement is executed. Bit 1 is set in the preceding example,
enabling SRQ interrupts to initiate a program branch. Read­
ing STATUS register 4 at this point would return a value of 2.

Interface Techniques 5·29

5-30 Interface Techniques

Servicing SRQ Interrupts. The SRQ is a level-sensitive in­
terrupt; in other words, if an SRQ is present momentarily but
does not remain long enough to be sensed by the computer,
the interrupt will not be generated.

It is important to ~ote that once an interrupt is sensed and
logged, the interface cannot generate another interrupt until
the initial interrupt is serviced. The computer disables all sub­
sequent interrupts from an interface until a pending interrupt
is serviced. For this reason, it was necessary to re-enable the
interrupt to allow for subsequent branching.

Polling HP·IB Devices. The Parallel Poll is the fastest
means of gathering device status when several devices are
connected to the bus. Each device (with this capability) can be
programmed to respond with one bit of status when Parallel
Polled, making it possible to obtain the status of several de­
vices in one operation. If a device responds affirmatively ("I
need service") to a Parallel Poll, more information as to its
specific status can be obtained by conducting a Serial Poll of
the device.

Configuring Parallel Poll Responses. Certain devices can
be remotely programmed by the Active Controller to respond
to a Parallel Poll. A device which is currently configured for a
Parallel Poll responds to the poll by placing its current status
on one of the bus data lines. The logic sense of the response
and the data-bit number can be programmed by the PPOLL
CONFIGURE statement. No multiple listeners can be speci­
fied in the statement; if more than one device is to respond
on a single bit, each device must be configured with a sepa­
rate PPOLL CONFIGURE statement.

Conducting a Parallel Poll. The PPOLL function returns a
single byte containing up to 8 status bit messages of all de­
vices on the bus capable of responding to the poll. Each bit
returned by the function corresponds to the status bit of the
device(s) configured to respond to the parallel poll. (Recall
that one or more devices can respond on a single line.) The
PPOLL function can only be executed when the computer is
the Active Controller.

I I Response=PPOLL< 7)

I PPOLL UHCOHF I GURE 7135

I PPOLL UHCOHF I GURE 8

Example

Disabling Parallel Poll Responses. The PPOLL
UNCONFIGURE statement gives the computer (as Active
Controller) the capability of disabling the Parallel Poll re­
sponses of one or more devices on the bus.

Examples. The following statement disables device 5 only.

This statement disables all devices on interface select code 8
from responding to a Parallel Poll.

If no primary addressing is specified, all bus devices are dis­
abled from responding to a Parallel Poll. If primary
addressing is specified, only the specified devices (which have
the Parallel Poll Configure capability) are disabled.

Conducting a Serial Poll. A sequential poll of individual
devices on the bus is known as a Serial Poll. One entire byte
of status is returned by the specified device in response to a
Serial Poll. This byte is called the Status Byte message and,
depending on the device, may indicate an overload, a request
for service, or a printer being out of paper. The particular re­
sponse of each device depends on the device.

Interface Techniques 5-31

The SPOLL function performs a Serial Poll of the specified
device; the computer must be the Active Controller.

Examples

ASSIGN @Device TO 700
Status_byte=SPOLL(@Device)

Spoll_24=SPOLL(724)

The Computer As a
Non·Active
Controller

5-32 Interface Techniques

Just as the Parallel Poll is not defined for individual devices,
the Serial Poll is meaningless for an interface; therefore, pri­
mary addressing must be used with the SPOLL function.

The section called HGeneral Structure of the HP-IB" described
how communications take place through HP-IB Interfaces.
The functions of the System Controller and Active Controller
were likened to a Hcommittee chairman" and "acting chair­
man," respectively, and the functions of each were described.
This section describes how the Active Controller may Hpass
control" to another controller and assume the role of a non­
Active Controller. This action is analogous to designating
another committee member to take the responsibility of act­
ing chairman and then becoming a committee member who
listens to the acting chairman and speaks when given the
floor.

Determining Controller Status and Address. It is often
necessary to determine if an interface is the System Controller
and to determine whether or not it is the current Active Con­
troller. It is also often necessary to determine or change the
interface's primary address.

Example. Executing the following statement reads STATUS
register 3 (of the internal HP-IB) and places the current value
into the variable StaLancLaddr. Remember that if the state­
ment is executed from the keyboard, the variable
StaLancLaddr must be defined in the current context.

Status Register 3:
Controller Status

and Address

Bit 7 Bit 6 Bit 5

System Active
0

Controller Controller

Value Value Value
= 128 = 64 = 32

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Primary Address of Interface

Value
Value = 8 Value = 4 Value = 2 Value = 1

= 16

If bit 7 is set (I), it signifies that the interface is the System
Controller; if clear (0), it is not the System Controller. Only
one controller on each HP-IB interface should be configured
as the System Controller.

If bit 6 is set (1), it signifies that the interface is currently the
Active Controller; if it is clear (0), another controller is cur­
rently the Active Controller.

Bits 4 through 0 represent the current value of the interface's
primary address, which is in the range of 0 through 30. The
power-on default value for the internal HP-IB is 21 (if it is the
System Controller) and 20 (if not the System Controller). For
external HP-IB interfaces, the default address is set by the
configuration file. (Refer to appendix F).

Example. Calculate the primary address of the interface
from the value previously read from STATUS register 3.

Interface Techniques 5·33

CONTROL 7,3;Intf_addr

11010 Hp_ib=7
1110 New_ac_addr=2a

This numerical value corresponds to the talk (or listen) ad­
dress sent by the computer when an OUPUT (or EN1ER)
statement containing primary-address information is
executed.

Changing the Controller's Address. It is possible to use
the CONTROL statement to change an HP-IB interface's
address.

Example

The value of IntLaddr is used to set the address of the HP-IB
interface (in this case, the internal HP-IB). The valid range of
addresses is 0 through 30; address 31 is not used. Thus, if a
value greater than 30 is specified, the value MOD 32 is used
(for example: 32 MOD 32 equals 0, 33 MOD 32 equals 1, 62
MOD 32 equals 30, and so forth).

Passing Control. The current Active Controller can pass
this capability to another computer by sending the Take Con­
trol message (TCT). The Active Controller must first address
the prospective new Active Controller to talk, after which the
TCT message is sent. If the other controller accepts the mes­
sage, it then assumes the role of Active Controller; this
computer then assumes the role of a non-Active Controller.

Passing control can be accomplished in one of two ways: it
can be handled by the system, or it can be handled by the
program. The PASS CONTROL statement can be used. For
example, the following statements first define the HP-IB
Interface's select code and new Active Controller's primary
address and then pass control to that controller.

1210 PASS CONTROL la0*Hp_ib+New_ac_addr

5·34 Interface Techniques

The following statements perform the same functions.

lee Hp_ib=7
110 New_ac_addr=2e
120 SEND Hp_ib;TALK New_ac_addr CMD 9

Once the new Active Controller has accepted the TCT com­
mand, the controller passing control assumes the role of a
non-Active Controller (or HHP_IB device") on the specified
HP-IB Interface. The next section describes the responsibil­
ities of the computer while it is a non-Active Controller.

Interrupts While Non-Active Controller. When the com­
puter is not an Active Controller, it must be able to detect and
respond to many types of bus messages and events.

The computer (as a non-Active Controller) needs to keep
track of the following information.

• It must keep track of itself being addressed as a listener so
that it can enter data from the current active talker.

• It must keep track of itself being addressed as a talker so
that it can transmit the information desired by the active
controller.

• It must keep track of being sent a Clear, Trigger, Local, or
Local Lockout message so that it can take appropriate
action.

• It must keep track of control being passed from another
controller.

One way to do this is to continually monitor the HP-IB inter­
face by executing the STATUS statement and then taking
action when the values returned match the values desired.
This is obviously a great waste of computer time if the com­
puter could be performing other tasks. Instead, the interface
hardware can be enabled to monitor bus activity and then
generate interrupts when certain events take place.

Interface Techniques 5-35

The computer has the ability to keep track of the occurrences
of all of the preceding events. In fact, it can monitor up to 16
different interrupt conditions. STATUS registers 4, 5 and 6
provide access to the interface state and interrupt information
necessary to design very powerful systems with a great degree
of flexibility.

Each individual bit of STATUS register 4 corresponds to the
same bit of STATUS register 5. Register 4 provides informa­
tion as to which condition caused an interrupt, while register
5 keeps track of which interrupt conditions are currently en­
abled. To enable a combination of conditions, add the decimal
values for each bit that you want set in the interrupt-enable
register. This total is then used as the mask parameter in an
ENABLE INTR statement.

Status Register 5:
Interrupt Enable

Mask

Bit 15 Bit 14 Bit 13

Parallel

Active
Poll My Talk

Controller
Configu- Address

ration Received
Change

Value Value Value
= 32768 = 16384 = 8192

Bit 7 Bit 6 Bit 5

Hand-
Unrecog-

Trigger
shake

nized
Received

Error
Universal
Command

Value Value Value
= 128 = 64 = 32

5-36 Interface Techniques

Bit 12

My Listen
Address
Received

Value
= 4096

Bit 4

Secondary
Command

While
Addressed

Value
= 16

Bit 11 Bit 10 Bit 9 Bit 8

Talker!
EOI

Remote!
Listener

Received
SPAS Local

Address
Change

Change

Value Value Value Value
= 2048 = 1024 = 512 = 256

Bit 3 Bit 2 Bit 1 Bit 0

Unrecog-
Clear nized SRQ IFC

Received Addressed Received Received
Command

Value = 8 Value = 4 Value = 2 Value = 1

Bit 15 enables an interrupt upon becoming the Active Con­
troller. The computer then has the ability to manage bus
activities.

Bit 14* enables an interrupt upon detecting a change in Paral­
lel Poll Configuration.

Bit 13 enables an interrupt upon being addressed as an active
talker by the Active Controller.

Bit 12 enables an interrupt upon being addressed as an active
listener by the Active Controller.

Bit 11 enables an interrupt when an E01 is received during an
ENTER operation (the EOI signal line is also described in
"HP_IB Control LinesH).

Bit 10 enables an interrupt when the Active Controller per­
forms a Serial Poll on the computer (in response to its service
request).

Bit 9 enables an interrupt upon receiving either the Remote or
the Local message from the active controller, if addressed to
listen. The action taken by the computer is, of course, depen­
dent on the user-programmed service routine.

Bit 8 enables an interrupt upon a change in talk or listen ad­
dress. An interrupt will be generated if the computer is
addressed to listen or talk or HidledH by an Unlisten or Untalk
command.

Bit 7 enables an interrupt upon receiving a Trigger message, if
the computer is currently addressed to listen. This interrupt
can be used in situations where the computer may be Harmed
and waitingH to initiate action; the active controller sends the
Trigger message to the computer to cause it to begin its task.

* This condition requires accepting data from the bus and then explicitly releasing
the bus.

Interface Techniques 5-37

5-38 Interface Techniques

Bit 6 enables an interrupt if a bus error occurs during an
OUTPUT statement. Particularly, the error occurs if none of
the devices on the bus respond to the HP-IB's interlocking
handshake (see "HP-IB Control Lines"). The error typically in­
dicates that either a device is not connected or that its power
is off.

Bit 5* enables an interrupt upon receiving an unrecognized
Universal Command. This interrupt condition provides the
computer with the capability of responding to new definitions
that may be adopted by the IEEE standards committee.

Bit 4* enables an interrupt upon receiving a Secondary Com­
mand (extended addressing) after the interface receives either
its primary talk address or primary listen address. Again, this
interrupt provides the computer with a way to detect and re­
spond to special messages from another controller.

Bit 3 enables an interrupt on receiving a Clear message. Re­
ception of either a Device Clear message (addressed to the
computer) will cause this type of interrupt. The computer is
free to take any "device-dependent" action, such as setting up
all default values again or even restarting the program, if that
is defined by the programmer to be the "cleared" state of the
machine.

Bit 2* enables an interrupt upon receiving an unrecognized
Addressed Command, if the computer is currently addressed
to listen. This interrupt is used to intercept and respond to
bus commands which are not defined by the standard.

Bit 1 enables an interrupt upon detecting a Service Request.

Bit 0 enables an interrupt upon detecting an Interface Clear
(IFC). The interrupt is generated only when the computer is
not the System Controller, as only a System Controller is al­
lowed to set the Interface Clear signal line. The service
routine typically is used to recover from the abrupt termina­
tion of an I/O operation caused by another controller sending
the IFC message.

• This condition requires accepting data from the bus and then explicitly releasing
the bus. Refer to the • Advanced Bus Management" section for further details.

Note that most of the conditions are state-sensitive or event­
sensitive; the exception is the SRQ event, which is level­
sensitive. State or event-sensitive events can never go
unnoticed by the computer as can service requests; the event's
occurrence is Nremembered' by the computer until serviced.

For instance, if the computer is enabled to generate an inter­
rupt on becoming addressed as a talker, it would interrupt the
first time it received its own talk address. After having re­
sponded to the service request (most likely with some sort of
OUTPUT operation), it would not generate another interrupt,
even if it was stil1left assigned as a talker by the Active Con­
troller. Thus, it would not generate another interrupt until the
event occurred a second time.

An oversimplified example of a service routine that is to re­
spond to multiple conditions might be as follows. This
example can be found in file SERVERl on your Manual Ex­
amples disc.

Register 4, the interrupt status register, is a Nread-destructive"
register; reading the register with a STATUS statement returns
its contents and then clears the register (to a value of 0). If the
service routine's action depends on the contents of STATUS
register 4, the variable in which it is stored must not be used
for any other purposes before all of the information that it
contains has been used by the service routine.

The computer is automatically addressed to talk (by the Ac­
tive Controller) whenever it is Serially Polled. If interrupts are
concurrently enabled for My Address Change and/or Talker
Active, the ON INTR branch will be initiated due to the re­
ception of the computer's talk address. However, since the
Serial Poll is automatically finished with the Untalk Com­
mand, the computer may no longer be addressed to talk by
the time the interrupt service routine begins execution. See
"Responding to Serial Polls" for further details.

Interface Techniques 5·39

I CONTROL 7, 1 J 64

I REQUEST 7 J 64

5·40 Interface Techniques

Requesting Service. When the computer is a non-Active
Controller, it has the capability of sending an SRQ to the cur­
rent Active Controller. The following statement is an example
of requesting service from the Active Controller of the HP-IB
Interface on select code 7.

The REQUEST statement can be used to perform the same
function.

Both of the preceding examples place a logic True on the SRQ
line. (Note that the line may already be set True by another
device.) Other bits may be set in the Status Byte message, in­
dicating that other device-dependent conditions exist.

The SRQ line is held True until the Active Controller executes
a Serial Poll or this computer executes a REQUEST with bit 6
equal to O. (Note also that the line may still be held True by
another device.)

Responding to Parallel Polls. Before performing a Parallel
Poll of bus devices, the Active Controller configures selected
device(s) to respond on one of the eight data lines. Each de­
vice is directed to respond on a particular data line with a
logic True or False; the logic sense of the response informs the
Active Controller either "I do need service' or HI don't need
service.' The logic sense of the response is also specified by
the Active Controller. This response to the Parallel Poll is
known as the Status Bit message.

I CONTROL 7,1; 64+2+1

The RS·232
Serial Interface

Responding to Serial Polls. As a non-Active Controller,
the response to Serial Polls is automatically handled by the
system. The desired Serial Poll Response Byte is sent to HP-IB
CONTROL Register 1. If bit 6 is set (bit 6 has a value of 64),
an SRQ is indicated from this controller. All other bits can be
considered to be Hdevice-dependent," and can thus be set ac­
cording to the program's needs.

The following statement sets up a response with SRQ and bits
1 and 0 set to 1.

When the Active Controller performs a Serial Poll on this
non-Active Controller, the specified byte is automatically sent
to the Active Controller by the system.

The Serial Interface is an RS-232-C compatible interface used
for simple asynchronous IjO applications such as driving line
printers, terminals, or other peripherals. It uses a UART (Uni­
versal Asynchronous Receiver and Transmitter) integrated
circuit to generate the required async signals. The computer
must provide most control functions because the card does
not have its own processor capability. Consequently, there is
more interaction between the card and computer than when
you use a more intelligent interface except for relatively sim­
ple applications.

Interface Techniques 5·41

Note

Asynchronous
Data

Communication

5-42 Interface Techniques

The RS-232-C interface standard establishes electrical and
mechanical interface requirements, but does not define the
exact function of all the signals that are used by various man­
ufacturers of data communications equipment and serial I/O
devices. Consequently, when you plug your serial interface
into an RS-232 connector, there is no guarantee the devices
can communicate unless you have configured optional param­
eters to match the requirements of the device you are
connecting to.

RS-232-C is a data communication standard established and
published by the Electronic Industries Association (EIA).
Copies of the standard are available from the association at
2001 Eye Street N.W., Washington D.C. 20006. Its equivalent
for European applications is CCITT V.24.

The terms Asynchronous (Async for short) data communica­
tion and Serial I/0 refer to a technique of transferring
information between two communicating devices by means of
bit-serial data transmission. This means that data is sent, one
bit at a time, and that characters are not synchronized with
preceding or subsequent data characters; that is, each charac­
ter is sent as a complete entity without relationship to other
events, before or after. Characters may be sent in close suc­
cession, or they may be sent sporadically as data becomes
available. Start and stop bits are used to identify the begin­
ning and end of each character, with the character data
placed between them.

~~-.---
Preceding
Character

Line in Start
Idle State Bit

Character Format. Each character frame consists of the fol­
lowing elements:

• Start Bit: The start bit signals the receiver that a new char­
acter is being sent. Since the receiver knows how many bits
per second are being transmitted (specified by the baud
rate), it can determine the expected arrival time for all sub­
sequent bits in that character frame. All other bits in a
given frame are synchronized to the start bit.

• 5-8 Character Data Bits: The next bits are the binary code
of the character being transmitted, consisting of 5, 6, 7, or 8
bits; depending on the application. The parity bit is not in­
cluded in the character data bits.

• Parity Bit: The parity bit is optional, included only when
parity is enabled.

• Stop Bit(s): One or more stop bits identify the end of each
character. The serial interface has no provision for inserting
the time gaps between characters.

Here is a simple diagram showing the structure of an asyn­
chronous character and its relationship to other characters in
the data stream:

o o o o Parity
Bit

Stop
Bit

(Mark) ~------Single Character Frame ---------I~

Start Bit
for Next
Character

Beginning of
Character

End of Character

Interface Techniques 5-43

5-44 Interface Techniques

Parity. The parity bit is used to detect errors as incoming
characters are received. If the parity bit does not match the
expected sense, the character is assumed to be incorrectly re­
ceived. The action taken when an error is detected depends
upon how the interface and your computer program are
configured.

Parity sense is determined by system requirements. The parity
bit may be included or omitted from each character by en­
abling or disabling the parity function. If the parity bit is
enabled, four options are available. Parity is checked by the
receiver for all parity options including ONE and ZERO. Par­
ity options include:

• NONE Parity function is DISABLED, and the parity bit
is omitted from each character frame.

• ODD Parity bit is SET if there is an EVEN* number of
ones in the data character. The receiver performs parity
checks on incoming character.

• EVEN Parity bit is SET if there is an 000* number of
ones in the data character. The receiver performs parity
checks on incoming characters.

• ONE Parity bit is set for all characters. Parity is checked
by the receiver on all incoming characters.

• ZERO Parity bit is cleared, but present for all charac-
ters. Parity is checked by the receiver on all characters.

• Parity sense is determined by counting the number of ones in the character IN­
CLUDING the parity bit. Consequently, the parity sense is reversed from the
number of ones in a character without the parity bit.

Data Transfers
Between Computer

and Peripheral

Error Detection. Two types of incoming data errors can be
detected by serial receivers:

• Parity errors are signalled when the parity bit does not
match the number of ones, including the parity bit, even or
odd as defined by interface configuration. When parity is
disabled, no parity check is made.

• Framing errors are signalled when start and stop bits are
not properly received during the expected time frame. They
can be caused by a missing start bit, noise errors near the
end of the character, or by improperly specified character
length at the transmitter or receiver.

Two additional error types are detected by the receiver section
of the serial interface:

• Overrun errors result when the desktop computer does not
consume characters as fast as they arrive. The card pro­
vides only one character of buffer space, so the current
character must be consumed by an ENTER before the next
character arrives. Otherwise, the character is lost when the
next character replaces it, and an error is sent to BASIC.

• Received BREAKs are detected as a special type of framing
error. They generate the same type of BASIC error as fram­
ing errors.

Four statements are used to transfer information between
your computer and the interface card:

• The CONTROL statement is used to control interface oper­
ation and defines such parameters as baud rate, character
format, or parity.

• The OUTPUT statement sends data to the interface which,
in turn, sends the information to the peripheral device.

• The ENTER statement inputs data from the interface card
after the interface has received it from the peripheral
device.

• The STATUS statement is used to monitor the interface and
obtain informaion about interface operation such as buffer
status, detected errors, and interrupt enable status.

Interface Techniques 5-45

Overview of Serial
Interface

Programming

Initializing the
Interconnection

5-46 Interface Techniques

Since the interface has no on-board processor, ENTER and
OUTPUT statements cause the computer to wait until the EN­
TER or OUTPUT operation is complete before continuing to
the next line. For OUTPUT statements, this means that the
computer waits until the last bit of the last character has been
sent over the serial line before continuing with the next pro­
gram statement.

Serial interface programming techniques are similar to most
general I/O applications. The interface card is initialized by
use of CONTROL statements; STATUS statements evaluate
its readiness for use. Data is transferred between your com­
puter and a peripheral device by OUTPUT and ENTER
statements. In most cases, you can use default configuration
switches on the interface card to eliminate or significantly re­
duce the need for using CONTROL statements to initialize
the card.

Due to the asynchronous nature of serial I/O operations, you
should take special care to ensure that data is not lost by
sending to a device before the device is ready to receive.
Modem line handshaking can be used to help solve this prob­
lem. Refer to the BASIC 5.0 Language Reference M-Z (Volume
2) for a description of interface registers.

Determining Operating Parameters. Before you can suc­
cessfully transfer information to a device, you must match the
operating characteristics of the interface to the corresponding
characteristics of the peripheral device. This includes match­
ing signal lines and their functions as well as matching the
character format for both devices.

Using Program
Control to Override

Defaults

Hardware Parameters. To determine hardware operating
parameters, you need to know the answer for each of the fol­
lowing questions about the peripheral device:

• Which of the following signal and control lines are actively
used during communication with the peripheral?

_Data Set Ready (DSR)
_Data Carrier Detect (DCD or CD)
_Clear to Send (CTS)
-Ring Indicator (RI)

• What baud rate (line speed) is expected by the peripheral?

Character Format Parameters. To define the character
format, you must know the requirements of the peripheral
device for the following parameters:

• Character Length: How many data bits are used for each
character, excluding start, stop, and parity bits?

• Parity Enable: Is Parity enabled (included) or disabled (ab­
sent) for each character?

• Parity Sense: Is the parity bit, if enabled, ODD, EVEN, al­
ways ONE, or always ZERO?

• Stop Bits: How many stop bits are included with each char­
acter: 1,1.5, or 2?

Using Interface Defaults to Simplify Programming. The
serial interface may be preconfigured with default parameters.
Refer to appendix F for details.

You can override some of the interface default configuration
options by use of CONTROL statements. This not only en­
ables you to guarantee certain parameters, but also provides a
means for changing selected parameters in the course of a
running program.

Interface Techniques 5·47

5·48 Interface Techniques

Interface Reset. Whenever an interface is connected to a
modem that may still be connected to a telecommunications
link from a previous session, it is good programming practice
to reset the interface to force the modem to disconnect, unless
the status of the link and remote connection are known.
When the interface is connected to a line printer or similar
peripheral, resetting the interface is usually unnecessary un­
less an error condition requires it.

When the interface is reset by use of a CONTROL statement
to Control Register 0 with a non-zero value, the interface is
restored to its default configuration, except that the current
character format is not altered, whether or not it is the same
as the current default configuration. If you are not sure of the
present settings, or if your application requires changing the
configuration during program operation, you can use CON­
TROL statements to configure the interface. An example of
when this may be necessary is when several peripherals share
a single interface through a manually operated RS-232 switch
such as those used to connect multiple terminals to a single
computer port, or a single terminal to multiple computers.

Selecting the Baud Rate. In order to successfully transfer
information between the interface card and a peripheral, the
interface and peripheral must be set to the same baud rate. A
CONTROL statement to register 3 can be used to set the in­
terface baud rate. To verify the current baud rate setting, use
a STATUS statement addressed to register 3. All rates are in
baud (bits/second).

Setting Character Format and Parity. Control Register 4
overrides the default configuration that controls parity and
character format. To determine the value sent to the register,
add the appropriate values selected from the following table:

Parity Sense Parity Enable Stop Bits Character Length

0 ODD parity 0 Disabled 0 1 stop bit 0 5 bits/char

16 EVEN parity 8 Enabled

32 Always ONE

48 Always ZERO

4 1.5 stop bits if 5 1 6 bits/char
bits/char or 2 stop bits if
6,7,or 8 bits/char

2 7 bits/char

3 8 bits/char

For example, to configure a character format of 8 bits per
character, two stop bits, and EVEN parity, use the following
CONTROL statement:

1200 CONTROL Sc,4;3+4+8+16

1200 CONTROL Sc,4;31

1200 CONTROL Sc,4;0

Data Transfers

or

To configure a 5-bit character length with 1 stop bit and no
parity bit, use the following:

The serial interface card is designed for relatively simple serial
I/O operations. It is not intended for sophisticated applica­
tions that use ON INTR statements extensively to service the
interface. Limited ON INTR capabilities are provided by the
serial interface for error trapping and other simple tasks.

Interface Techniques 5·49

5·50 Interface Techniques

Program Flow. When the interface is properly configured,
either by use of default switches or CONTROL statements,
you are ready to begin data transfers. OUTPUT statements
are used to send information to the peripheral; ENTER state­
ments to input information from the external device. Any
valid OUTPUT or ENTER statement and variable(s) list may
be used, but you must be sure that the data format is compat­
ible with the peripheral device. For example, non-ASCII data
sent to an ASCII line printer results in unpredictable
behavior.

Various other I/O statements can be used in addition to
OUTPUT and ENTER, depending on the situation. For exam­
ple, the LIST statement can be used to list programs to an RS-
232 line printer PROVIDED the interface is properly
configured before the operation begins.

Data Output. To send data to a peripheral, use OUTPUT,
OUTPUT USING, or any other similar or equivalent con­
struct. Suppression of end-of-line delimiters and other
formatting capabilities are identical to normal operation in
general I/O applications. The OUTPUT statement hangs the
computer until the last bit of the last character in the state­
ment variable list is transmitted by the interface. When the
output operation is complete the computer then continues to
the next line in the program.

Data Entry. To input data from a peripheral, use ENTER,
ENTER USING, or an equivalent statement. Inclusion or
elimination of end-of-line delimiters and other information is
determined by the formatting specified in the ENTER
statment. The ENTER statement hangs the computer until the
input variables list is satisfied. To minimize the risk of waiting
for another variable that isn't coming, you may prefer to
specify only one variable for each ENTER statement, and ana­
lyze the result before starting the next input operation.

Be sure that the peripheral is not transmitting data to the in­
terface while no ENTER is in progress. Otherwise, data may
be lost because the card provides buffering for only one char­
acter. Also, interrupts from other I/O devices, or operator
inputs to the computer keyboard can cause delays in com­
puter service to the interface that result in buffer overrun at
higher baud rates.

Modem Line Handshaking. Modem line handshaking,
when used, is performed automatically by the computer as
part of the OUTPUT or ENTER operation. After a given
OUTPUT or ENTER operation is complete, the program con­
tinues execution on the next line.

Control Register 5 can be used to force selected modem con­
trol lines to their active state(s). The Data Rate Select and
Secondary Request-to-Send lines are set or cleared by bits 3
and 2 respectively. Request-to-send and Data Terminal Ready
are held in their active states when bits 1 and 0 are true, re­
spectively. If bits 1 and/or 0 are false, the corresponding
modem line is toggled during OUTPUT or ENTER as ex­
plained previously.

Incoming Data Error Detection and Handling. The serial
interface card can generate several errors that are caused
when certain conditions are encountered while receiving data
from the peripheral device. The UART detects a given error
condition and sets the corresponding bit in Status Register 10.
The card then generates a pending error to BASIC.

Trapping Serial Interface Errors. Pending BASIC errors
can be trapped by using an ON ERROR statement in conjunc­
tion with an error trapping service routine to evaluate the
error condition.

Interface Techniques 5-51

The GPIO
Interface

Interface
Description

5-52 Interface Techniques

This section should be used in conjunction with the
HP 82306A GPIO Interface Installation Instructions. The best
way to use these two documents is to read this section before
attempting to configure and connect the interface according to
the directions given in the installation manual. The reason for
this order of use is that knowing how the interface works and
how it is driven by BASIC programs will help you to decide
how to connect it to your peripheral device.

The GPIO Interface is a very flexible parallel interface that
allows you to communicate with a variety of devices. The in­
terface sends and receives up to 16 bits of data with a choice
of several handshake methods. External interrupt and user­
definable signal lines are provided for additional flexibility.
The interface is known as the General-Purpose Input/Output
(GPIO) Interface for these reasons. This section describes how
to use the interface's features from BASIC Programs.

Use of some statements or suggestions for interfacing requires
the TRANS binary file. If you do not have TRANS loaded,
use LOAD BIN HTRANSH and STORE SYSTEM to load and
store this binary.

The main function of any interface is obviously to transfer
data between the computer and a peripheral device. This sec­
tion briefly describes the interface lines and how they
function.

The GPIO Interface provides 32 lines for data input and out­
put: 16 for input (DIO-DI1S), and 16 for output (DOO-DOlS).

Language
Processor

Parallel Data Out

16

Parallel Data In

16
.....

Shielded Cable 0
Handshake '0 to a Device Q)

GPIO c
4 c

Interface 0

Hardware
(J

Special Purpose c
0:::

I

6 0
I.C)

Grounds

7

Three lines are dedicated to handshaking the data from
source to destination device. The Peripheral Control line
(PCTL) is controlled by the interface and is used to initiate
data transfers. The Peripheral Flag line (PFLG) is controlled
by the peripheral device and is used to signal the peripheral's
readiness to continue the transfer process. The Input/Output
line (I/O) is used to indicate direction of data flow.

One line is used to signal External Interrupt Requests to the
computer (EIR). The interface must be enabled to initiate in­
terrupt branches for the interface to detect this request. The
state of the line can also be read by the program.

Interface Techniques 5-53

Interface
Configuration

5-54 Interface Technique.

Four general-purpose lines are available for any purpose you
desire; two are controlled by the computer and sensed by the
peripheral (CTLO and CTLl), and two are controlled by the
peripheral device and sensed by the computer (STIO and
STI1).

Both Logic Ground and Safety Ground are provided by the
interface. Logic Ground provides the reference point for sig­
nals, and Safety Ground provides earth ground for cable
shields.

This section presents a brief summary of selecting the
interface's configuration-switch settings. It is intended to be
used as a checklist and to begin to acquaint you with pro­
gramming the interface. Refer. to the installation manual for
the exact location and setting of each switch.

A sample program (found in file GPIOCHECK on your Man­
ual Examples disc) checks a few of these switch settings on a
GPIO Interface installed in the computer and displays the
settings. However, many of the settings cannot be determined
from BASIC programs. If any of the displayed settings are
different than desired, or if any settings are not already
known, refer to the installation manual for switch locations
and settings.

Interface Select Code. In BASIC, allowable interface select
codes range from 8 through 31; codes 1 through 7 are already
used for built-in interfaces. The GPIO interface has a factory
default setting of 12, which can be changed by re-configuring
the ''SEL CODE'" switches on the interface.

Hardware Interrupt Priority. Two switches are provided on
the interface to allow selection of hardware interrupt priority.
The switches allow hardware priority level 3 through 6 to be
selected. Hardware priority determines the order in which
simultaneously occurring interrupt events are logged, while
software priority determines the order in which interrupt
events are serviced by the BASIC program.

Data Logic Sense. The data lines of the interface are nor­
mally low-true; in other words, when the voltage of a data
line is low, the corresponding data bit is interpreted to be a 1.
This logic sense may be changed to high-true with the Option
Select Switch. Setting the switch labeled 'DIN' to the "'0" po­
sition selects high-true logic sense of Data In lines.
Conversely, setting the switch labeled "'DOU1' to the "'1" po­
sition inverts the logic sense of the Data Out lines. The
default setting is "'I" for both.

Data Handshake Methods. As a brief review, a data hand­
shake is a method of synchronizing the transfer of data from
the sending to the receiving device. In order to use any hand­
shake method, the computer and peripheral device must be in
agreement as to how and when several events will occur.
With the GPIO Interface, the following events must take
place to synchronize data transfers; the first two are optional.

• The computer may optionally be directed to perform a one­
time "OK check' of the peripheral before beginning to
transfer any data.

• The computer may also optionally check the' peripheral to
determine whether or not the peripheral is Bready" to trans­
fer data.

• The computer must indicate the direction of transfer and
then initiate the transfer.

• During OUTPUT operations, the peripheral must read the
data sent from the computer while valid; similarly, the
computer must clock the peripheral's data into the
interface's Data In registers while valid during ENTER
operations.

• The peripheral must acknowledge that it has received the
data.

Interface Techniques 5·55

5-56 Interface Techniques

The GPIO handshakes data with three signal lines. The
Input/Output line, I/O, is driven by the computer and is
used to signal the direction of data transfer. The Peripheral
Control line, PCTL, is also driven by the computer and is
used to initiate all data transfers. The Peripheral Flag line,
PFLG, is driven by the peripheral and is used to acknowledge
the computer's requests to transfer data.

Handshake Logic Sense. Logic senses of the PCTL and
PFLG lines are selected with switches of the same name. The
logic sense of the I/O line is High for ENTER operations and
Low for OUTPUT operations; this logic sense cannot be
changed. The available choices of handshake logic sense and
handshake modes allow nearly all types of peripheral hand­
shakes to be accommodated by the GPIO Interface.

Handshake Modes. There are two general handshake
modes in which the peTL and PFLG lines may be used to
synchronize data transfers: Full-Mode and Pulse-Mode Hand­
shakes. If the peripheral uses pulses to handshake data
transfers and meets certain hardware timing requirements, the
Pulse-Mode Handshake may be used. The Full-Mode Hand­
shake should be used if the peripheral does not meet the
Pulse-Mode timing requirements.

The handshake mode is selected by the position of the
uHSHK" switch on the interface, as described in the installa­
tion manual. Both modes are more fully described in
subsequent sections.

Data-In Clock Source. Ensuring that the data are valid
when read by the receiving device is slightly different for
OUTPUT and ENTER operations. During OUTPUTs, the in­
terface generally holds data valid while peTL is in the Set
state, so the peripheral must read the data during this period.
During ENTERs, the data must be held valid by the periph­
eral until the peripheral signals that the data are valid (which
clocks the data into interface Data In registers) or until the
data is read by the computer. The point at which the data are
valid is signalled by a transition of PFLG. The PFLG transi­
tion that is used to signal valid data is selected by the nCLK"
switches on the interface. Subsequent diagrams and text fur­
ther explain the choices.

Interface Reset

Gpio=12
CONTROL Gpio,0)1

Reset=1
CONTROL Gpio)Reset

Optional Peripheral Status Check. Many peripheral de­
vices are equipped with a line which is used to indicate the
device's current "0K-or-Not-OK" status. If this line is con­
nected to the Peripheral Status line (PSTS) of the GPIO
Interface, the computer may determine "the status of the pe­
npheral device by checking the state of the PSTS. The logic
sense of this line may be selected by setting the "PSTS"
switch. If the switch is enabled, the computer performs·a one­
time check of the Peripheral Status line (PSTS) before
initiating any transfers as part of the data-transfer handshake.
If PSTS indicates "Not OK," Error 172 is reported; otherwise,
the transfer proceeds normally. If this feature is not enabled,
this one-time check is never made. This feature is available
with both Full-Mode and Pulse-Mode Handshakes.

The interface should always be reset before use to ensure that
it is in a known state. All interfaces are automatically reset by
the computer at certain times: when the computer is powered
on, when RESET is pressed. The interface may be optionally
reset at other times under control of BASIC programs. Two
examples are as follows:

The following action is invoked whenever the GPIO Interface
is reset:

• The Peripheral Reset line (PRESET) is pulsed Low for at
least 15 microseconds.

• The PCTL line is placed in the Clear state.

• If the DOUT CLEAR jumper is installed, the Data Out lines
are all cleared (set to logic 0).

• The interrupt enable bit is cleared, disabling subsequent in­
terrupts until re-enabled by the program.

Interface Techniques 5-57

Using OUTPUT and
ENTER Through

the GPIO

ASSIGN @Gpio TO 12
OUTPUT @Gpio;"ASCII"

Gpio=12
Number=-4

The following lines are unchanged by a reset of the GPIO
Interface:

• The CTLO and CTLl output lines.

• The I/O line.
• The Data Out lines, if the DOUT CLEAR jumper is not

installed.

This section shows you how to use OUTPUT and ENTER
through the GPIO Interface. The actual signals that appear on
the data lines depend on three things: the data currently be­
ing transferred, how this data is being represented, and the
logic sense of the data lines.

This section gives simple examples of how several representa­
tions are implemented during OUTPUTs and ENTERs
through the GPIO Interface.

ASCII and Internal Representations. Data normally
passes through the GPIO Interface one byte at a time, with
the most significant byte first. This byte-mode transfer is in­
dependent of whether FORMAT ON or FORMAT OFF is the
I/O path attribute.

Example Statements Using OUTPUT. The following ex­
amples show how you can use the OUTPUT statement to
output data bytes through the GPIO interface.

OUTPUT Gpio USING "MD.DO";Number

ASSIGN @Gpio TO 12;FORMAT OFF
String$=11234"
OUTPUT @Gpio;String$

5-58 Interface Techniques

Example Statements Using ENTER. The following exam­
ples show how you can use the ENTER statement to enter
data bytes through the GPIO interface.

ENTER @Gpio USING "#,B";Byte
DISP "Value Entered = ";Byte

Value Entered = 65

ENTER 12;String$
DISP "String Entered

String Entered = ruok?

REAL Number
ASSIGN @Gpio TO 12
ENTER @Gpio;Number
DISP "Number = ;"Number

Number = 2

Word=3*256+3

Example Statements that Output Data Words*.

OUTPUT @Gpio USING "#,W";Output_word

Output_16_bits=-1
CONTROL Gp_isc,3;Output_16_bits

It is important to note that no output handshake is executed
when the CONTROL statement is executed; only the states of
the Data Out lines and the I/O lines are affected. Handshake
sequence, if desired, must be performed by BASIC statements
in the program.

• Data are automatically sent as words when using an I/0 path with the WORD
attribute.

Interface Techniques 5·59

Example Statements that Enter Data Words*.

ENTER 12 USING "#,W";Enter_16_bits
DISP "INTEGER entered = ";Enter_16_bits

INTEGER entered = 511

STATUS Gp_isc,3;Enter_16_bits
DISP "INTEGER entered = ";Enter_16_bits

INTEGER entered = -512

5-60 Interface Techniques

It is important to note that no enter handshake is performed
when the STATUS statement is executed. The only actions
taken are the I/O lines being placed in the High state and the
Data In registers being read. If an enter handshake is re­
quired, it must be performed by the BASIC program.

Remember also that the Data In Clock source is solely deter­
mined by the switch setting on the interface card. Thus, when
the STATUS statement is used to read the Data In lines, the
data on the lines mayor may not be clocked into the registers
when the statement is executed. If the data are to be clocked
in by the STATUS statement, the DREAD" clock source must
be selected. See the installation manual for further details.

GPIO Timeouts. This section explains how the time param­
eter is measured and describes typical service routines.

* Data are automatically received as words when using an I/O path with the
WORD attribute.

Timeout Time Parameter. There are two general time in­
tervals measured and compared to the specified TIMEOUT
time. The first interval is measured between the computer ini­
tiating the first handshake (PCTL=Set) and the peripheral
signalling Ready (with the PFLG line). If the peripheral does
not indicate readiness by the specified TIMEOUT time param­
eter, a TIMEOUT event occurs.

The time elapsed during each handshake is also measured
and compared to the TIMEOUT time. The timing begins
when the transfer is initiated (PCTL Set by the computer)
and, in general, ends when the peripheral responds on the
PFLG line.

Keep in mind that the TIMEOUT time parameter specifies the
minimum time that the computer will wait before initiating
the ON TIMEOUT branch. However, the computer may occa­
sionally wait an additional 25 % of the specified time
parameter before initiating the branch. For instance, if a time
of 0.4 seconds is specified, the computer will wait at least 0.4
seconds for the handshake to be completed, but it may occa­
sionally wait up to 0.5 seconds before initiating the ON
TIMEOUT branch.

Timeout Service Routines. The service routine usually re­
sponds by determining if the peripheral is functioning
properly (QOK") or is down Cnot OK"). The simplest action
that might be taken by the computer is to read the state of the
PSTS signal line, as shown in the following service routine
(found in file GPIOSERV on you Manuals Examples disc).

A TIMEOUT has been set up to occur if the peripheral takes
approximately more than .08 seconds to complete its response
during a data transfer; how the peripheral completes its re­
sponse depends on the handshake mode currently selected.
With Pulse-Mode Handshakes, the peripheral completes its
response by using PFLG to Clear PCTL; with Full-Mode
Handshakes, the response is complete only after PCTL has
been Cleared and PFLG is in the Ready state.

Interface Techniques 5-61

GPIO Interrupts

5·62 Interface Techniques

When a TIMEOUT occurs, the computer automatically exe­
cutes an Interface Reset; the PCTL line is Set and then
Cleared, and the PRESET line is pulsed Low. See the section
called uInterface Reset" for further effects. The Service routine
checks the PSTS line to see if the peripheral is OK or not OK.
If not OK, a message is displayed and the program is paused;
if OK, program execution is returned to the line following that
in which the TIMEOUT occurred. A service routine may be
programmed to attempt the transfer again, if desired; how­
ever, the automatic Reset performed when the TIMEOUT
occurred may make this type of response difficult to
implement.

This section describes the types of and techniques for using
the interrupts available on the GPIO Interface.

Types of Interrupt Events. The GPIO Interface can sense
two interrupt events:

• The interface becoming HReady" for subsequent
handshakes.

• The External Interrupt Request Line (EIR) being driven to
logic low by the peripheral.

Since both of these events initiate identical computer re­
sponses, the service routine must be able to determine which
of these interrupts has occurred.

Setting Up and Enabling Events. When either event oc­
curs, the interrupt is logged by the operating system. Mter
logging the occurrence, any further interrupts from the GPIO
Interface are automatically disabled until specifically enabled
by a program. All further computer responses to either event
depend entirely on the BASIC program currently in memory.

The following program segment shows the steps involved in
setting up and enabling Ready Interrupts.

lee Gpio=12
1113 ON INTR Gpio GOSUB Gpio_serv
120
130 Mask=2
140 ENABLE INTR Gpiol~ask

Interrupt Enable
Register:

(ENABLE INTR)

Bit 7 Bit 6 Bit 5

The value of the interrupt mask determines which, if any, of
the GPIO interrupt events are to be enabled to initiate the
corresponding branch. Bits of the Interrupt Mask register
have the following definitions.

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Enable
Enable

Not Used
Interface

EIR
Ready

Value Value Value
= 128 = 64 = 32

Interrupts
Interrupts

Value
Value = 8 Value = 4 Value = 2 Value = 1

= 16

Interface Ready. Setting this bit (1) enables an interrupt to
initiate the ON INTR branch when the interface detects that it
is Ready to handshake data. If Full-Mode Handshake is se­
lected (with the Option Select switch), the Ready event is
PCTL=Clear and PFLG=Ready. With Pulse-Mode Hand­
shake, the event is PCTL=Clear (independent of the state of
PFLG).

External Interrupt Request. Setting this bit (1) enables an
interrupt to initiate the ON INTR branch when the interface
senses an External Interrupt Request (EIR line=Low).

Interface Techniques 5-63

Interrupt Service
Routines

Status Register 4:
Interface Ready

Status Register 5:
Peripheral Status

Bit 7 Bit 6 Bit 5

0 0 0

Value Value Value
= 128 = 64 = 32

5-64 Interface Techniques

If both events are enabled, the service routine must be able to
differentiate between the two. And, if both have occurred, the
service routine must be able to service both causes. The fol­
lowing registers contain the current state of the Interface
Ready flag and ElR signal lines, from which the interrupt
cause(s) may be determined.

The interface is ready for a subsequent data transfer; 1
Ready, 0 = Busy.

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
PSTS EIR STI1 STIO

Ok Line Low Line Low Line Low

Value
Value = 8 Value = 4 Value = 2 Value = 1

= 16

As mentioned in preceding paragraphs, these two interrupt
causes are both level-sensitive events, not edge-triggered
events. This fact has two important implications. The first is
that, for an event to be recognized, the corresponding signal
line must be held in the interrupting state until the computer
can interrogate the line's logic state. If the signal line's state is
changed before the service routine checks the line, the inter­
rupt may be "missedH

• This will happen only if both events
are enabled; if only one event is enabled, determining the
cause may not be necessary.

The second implication is that the service routine must be
able to acknowledge the request in order for the peripheral
device to remove the request. If the request is not removed
after service, the same request may be serviced more than
once.

The HP-HIL
Interface

The program found in file EIRSERVE on your Manuals Exam­
ples disc shows a simple example of servicing an External
Interrupt Request. Note that only EIR-type interrupts have
been enabled and that the peripheral device provides its own
interrupt cause with signals on the STIO and STU lines.

A slightly different method that peripherals use to communi­
cate the cause of their interrupt request is to place the
interrupt cause on the data lines concurrent with the interrupt
request. The service routine can determine the cause by read­
ing STATUS register 3 and take the appropriate action.

Notice that the service routine indicates a likely place for a
Ready-interrupt service routine. The Service routine must
check for the Ready condition, acknowledge the interrupt,
and then take the desired action. In this case, no service ac­
tion has been defined because Ready interrupts have not been
enabled. The next section provides an example of a Ready in­
terrupt service routine.

HP-HIL (Hewlett-Packard Human Interface Link) is an inter­
face capable of supporting up to seven devices (such as a
mouse, keyboard, or digitizer) generally related to human in­
put. The following diagram illustrates the basic components
of the HP-HIL interface.

Interface Techniques 5·65

5·66 Interface Techniques

HP-HIL initialization occurs when you boot HP BASIC.
HP BASIC logs the HP-HIL devices present on the link. The
link can deal with a maximum of seven devices at a time. Any
devices added after the seventh are ignored. If you add a de­
vice to the link after HP Basic is booted, the device will not be
recognized by the system unless you boot HP BASIC again.
Also, if you replace an HP-HIL device with a different one,
the system may misinterpret data coming from the new de­
vice. Again, you must reboot HP BASIC in order for the
system to recognize the new device.

The address of a device is simply its topological order of
placement along the link. In the above diagram, device A has
address 1, B has address 2, and C has address 3. This is only

a result of their physical order of connection. If device Chad
been connected between devices A and B, device A would
still be address I, but device C would be address 2 and device
B address 3. The type of device has no bearing on the address
assigned to it.

After the link is operational and subsequent link operations,
each device looks at the data being sent down the link. If a
device sees that the destination address associated with the
data is the same as its address, that device receives and acts
on the data. Otherwise, the data is sent on to the next device.

Preview of HP-HIL
Devices

HP-HIL devices can be divided into a number of different
categories. This section provides you with a table that in­
cludes these categories as well as a list of high level and low
level statements that apply to each category.

HP·HIL Device High Level Low Level
Categories BASIC Access BASIC Access

HP-HIL Keyboard Operating system normally handles keystrokes. ON/OFF KEY
Programs can enter text and numbers with the IN- ON/OFF KBD
PUT. LlNPUT. and ENTER statements. KBD$

Relative Positioner Operating system handles as cursor movement in- ON/OFF KBD (traps
(mouse. etc.) put Can also be used with GRAPHICS INPUT IS. movement as arrow

keys and also traps
mouse buttons.)
KBD$
ON/OFF KNOB
ON/OFF CDIAL
CDIAL

Absolute Positioner (digi- Can be used with GRAPHICS INPUT IS. HIL SEND
tizing tablet. etc.) ON HIL EXT

HILBUF$

ID Module One can be used with SYSTEM$("SERIAL HIL SEND
NUMBER"). ON HIL EXT

HILBUF$

Other Devices None HIL SEND
ON HIL EXT
HILBUF$

Interface Techniques 5·67

Communicating
Through the

Hp·HIL Interface

HIL SEND
Address;HIL_Command

ON H r LEX T Address_mask
Branch

OFF HIL EXT

HILBUF$

5-68 Interface Techniques

This section provides a brief description of the HP-HIL Inter­
face Driver. This driver supports a set of statements which
allow communications between the HP-HIL interface and the
HP-HIL devices connected to it. Refer to the appropriate com­
mand listing in the BASIC 5.0 Language Reference for detailed
information on these statements.

Allows you to send HP-HIL commands to an HP-HIL device
(for example, HI L SEND 1; I DO). The basic HP-HIL com­
mands are presented in the next section. Address is the
location of the device in the HP-HIL link. Address 1 is as­
signed to the first device on the link that is addressable.
Subsequent addresses are assigned in ascending order.

Enables end-of-line interrupts from HP-HIL devices, allowing
you to receive interrupts from up to seven devices on the
HP-HIL link. Address_mask is a bit-map of the locations of
the device or devices in the HP-HIL link. The default value
is 254 which allows up to seven devices to send interrupts.
Branch refers to a branch to a program line number, label,
subroutine, or subprogram using the keywords
GOTO, GOSUB, RECOVER or CALL.

This statement disables all previously enabled end-of-line in­
terrupts for HP-HIL devices. Note that this statement does
not require an address mask.

This is a function used to capture data returned from HP-HIL
devices. This function provides a 256 byte buffer for data to
be stored in after execution of the first two statements listed
above. Once the limit of 256 bytes has been reached, the
buffer will not receive any new data until it has been emptied
by a read. The first byte stored in the buffer tells you how
many bytes of data have been lost. This byte is initially null.

Supported
HP-HIL Devices

Identifying All
Devices on the

Hp·HIL Link

This section provides a brief description of those devices sup­
ported by the HP-HIL Interface Driver, and the use of a
program for identifying all devices on the HP-HIL link.

Each device in the HP-HIL link has a device ID that identifies
the device and a Describe Record that provides you with de­
vice characteristics. This information can be obtained by
executing the HP-HIL command I DO and parsing the string
value returned by using the H I L B U F $ function. A program
called HILID on the Manual Examples disc makes use of the
I DO command and the H I L B U F $ function for the following:

• Determining if a device is recognized as being on the
HP-HIL link.

• Identifying the device at a specific address.

• Determining the device's characteristics.

Assume that your HP-HIL link has the following devices:

• Touchscreen located at address 1.

• ITF keyboard located at address 2.

• Function box located at address 3.

Interface Techniques 5·69

Executing the HIL-ID program will produce the following
output:

HP 25273A (Touchscreen) located at address 1
Describe Record Information

I/O Descriptor Information
Does not support Prompts/Acknowledges 1 thru 7
Supports Proximity Detection
Does not report buttons

X and Y axis information reported
Absolute positioning device
Returns 8 bits/axis

HP 46020/21A (ITF Keyboard) located at address 2
Describe Record Information

No special features

HP 46086A (Function Box) located at address 3
Describe Record Information

I/O DescriPtor Information
Recognizes General Prompt and Acknowledge
Does not support Prompts and Acknowledges 1 thru 7
Does not report buttons

No axis information reported

NO ~10RE DEVICES

5-70 Interface Techniques

The first device is a touchscreen located at address 1 in the
HP-HIL linle The Describe Record provides you with the
characteristics of the device. This information is as follows:

• I/O Descriptor Byte information is reported. The informa­
tion supplied in this byte tells you that when you touch
your finger on the screen or remove it from the screen, it
will be detected. This is called proximity in/out detection .

• It is an absolute positioning device. This means that every
coordinate position on the screen is referenced to the lower
left-hand corner of the screen (X coordinate = 0 and Y co­
ordinate = 0).

Hp·HIL Keyboards

ON/OFF KEY

ml/OFF KBD

KBO$

• X and Y axis information is reported. This tells you that
Poll Records received when communicating with this de­
vice will contain X and Y coordinate information. These are
absolute coordinate positions.

• Coordinate information is returned as 8 bits per axis. This
means that there will be only one byte of information for
each coordinate (X and Y) returned in the poll record.

There are three HP-HIL keyboards supported as HP-HIL de­
vices on the HP -HIL link. They are:

• HP 46020/21A

• HP 98203C

• Integral keyboard

• Vectra PC keyboard

To perform interrupt branching with the keyboard keys, you
need to use the following statements and function:

ON KEY defines and enables an event-initiated branch to be
taken when a soft key is pressed. OFF KEY cancels event­
initiated branches previously defined and enabled by and
ON KEY statement.

ON KBD defines and enables an event-initiated branch to be
taken when a key is pressed. OFF KBD cancels event-initiated
branches previously defined and enabled by the 0 N K B 0
statement.

This function returns the contents of the keyboard buffer
when ON KBD is active.

Interface Techniques 5·71

Relative
Positioners

ON/OFF KNOB

DIGITIZE

READ LOCATOR

5-72 Interface Techniques

The following devices are considered to be relative
positioners:

• HP 46060A Mouse.

• HP 46083A Rotary Control Knob.

• HP 98203C Keyboard.

• HP 46094A HP-HIL Quadrature Port using HP 46095A
Quadrature 3-button Mouse.

These devices support the ON/OFF KBD and KBD$ state­
ments and functions in the same manner as described in the
previous section. In addition, the following statements are
also supported.

ON KNOB defines and enables an event-initiated branch to be
taken when the relative positioner is moved. OFF KNOB can­
cels event-initiated branches previously defined and enabled
by the ON KNOB statement. Subsequent use of the relative
positioner results in normal scrolling or cursor movement.

This statement is used when graphics input has been specified
as a relative positioner by the statement

GRAPHICS INPUT IS KBD,"KBD"

It inputs the X and Y coordinates of a digitized point from the
locator specified by the GRAPHICS INPUT IS statement
(KBD in this case).

This statement is used when graphics input has been specified
as a relative positioner by the statement

GRAPHICS INPUT IS KBD,"KBD"

It samples the locator device without waiting for a digitizing
operation.

In addition, the HP 46085A Control Dials is a device with
nine knobs. Refer to ON CDIAL, OFF CDIAL, and CDIAL (n)
in the BASIC 5.0 Language Reference manuals for information
on accessing this device.

Absolute
Positioners

DIGITIZE X_coord,
V_coord

READ LOCATOR
X_coord,V_coord

Security Device

Other Devices

The following devices are considered absolute positioners:

• HP 35723A HP-HIL Touchscreen

• HP 46087 A A-Size Digitizer

• HP 46088A B-Size Digitizer

These devices can generate ON HIL EXT interrupts any time
except when the absolute positioner has been specified as the
input graphics device in a GRAPHICS INPUT IS statement:

GRAPHICS INPUT IS KBD,"TABLET"

Using HIL SEND to transmit a command other than IDD to
these devices in this situation will result in an error. Due to
the speed with which data is returned from the digitizers, an
HP BASIC program cannot keep up with them using ON HIL
EXT because HILBUF$ overflows. The only device in this
group capable of using the ON HIL EXT statement is the
touchscreen.

When these devices are specified as the graphics input device
(as above in the GRAPHICS INPUT IS statement), the state­
ments you may use are:

Inputs the X and Y coordinates of a digitized point.

Samples the locator device without waiting for a digitize
operation.

The HP 46084A HP-HIL Module is an HP-HIL device that re­
turns an identification number that identifies you as the
computer user. The identification number is unique to your
particular ID module. This allows application programs to use
the the ID module to control access to program functions,
data bases and networks.

The following devices can generate ON HIL EXT interrupts
and respond to various HIL SEND commands.

Interface Techniques 5-73

5·74 Interface Techniques

HP 46086A Function Box. The HP 46086A Function Box
provides 32 keys to select software-defined functions. It has
an LED that acts as a visual prompt for any purpose you as­
sign to it. The HP 46086A Function Box responds to the
following HP-HIL commands when sent by the HIL SEND
statement:

• PRM

• ACK
·DKA

• EKA 1

• EKA 2

HP 92916A Bar Code Reader. The HP 92916A Bar Code
Reader reads all standard bar codes using a wand as the input
device. It provides you with an effective and reliable alterna­
tive to the time-consuming keyboard for data entry. Note that
HP BASIC supports this device in both the ASCII transmit
mode (where the input from the device is ASCII characters),
and in the keyboard mode* where it transmits the same
keycodes as an HP 46020j21A Keyboard.

When the HP 92916A Bar Code Reader is in the ASCII trans­
mit mode, use the following statement:

ON HIL EXT

When it is in the keyboard mode, use the following
statements:

ON KBD
ENTER KBD
INPUT
LINPUT

• When in the keyboard mode, this device returns an HP-HIL ID in the same
range as an HP 46020/21A Keyboard.

6 Using SRM

Chapter 6
6·1
6·2
6·3
6·3
6·4
6·4
6·5
6·6
6·7
6·8

6·13
6·14
6·19
6·19
6·24
6·25
6·29
6·29
6·30
6·30
6·31
6·32
6·34

Contents

Using SRM
Introduction
System Concepts

What Is an SRM Network?
Shared Resource Support of the BASIC Language
How the SRM System Manages Shared Peripheral Use
Booting From the SRM
Accessing the Shared Mass Storage Device
SRM's Hierarchical Directory Structure

Using Your BASIC Workstation on SRM
Accessing the Shared Mass Storage Device
Shared Access to Remote Directories and Files
Protecting Files and Directories
Passwords and Protect Codes
Copying Files
Purging Remote Files and Directories
Using a Shared Printer or Plotter
Returning to Local Mass Storage

Modifying Existing Programs to Access Shared Resources
File Specifiers
Mass Storage Unit Specification
Allowing For Directory Paths

In Case of Difficulty
Summary of SRM Status Registers

6
Introduction

Using SRM

This chapter describes the use of your BASIC workstation
with a Shared Resource Management (SRM) system. To use
SRM, you must accomplish the following:

• Install the HP 50963A SRM Interface Card.

• Connect the SRM Interface Card to the Language Processor
Card.

• Load the DCOMM and SRM binaries into your HP BASIC
system.

You must have the HP 50963A SRM Interface Card installed
and connected to the language processor card, and the SRM
and DCOMM binaries loaded to use SRM. The SRM Interface
Card must have its node address set to a unique number
given to you by the SRM system manager. The default (fac­
tory set) select code for the SRM interface card is 21. Each
interface card attached to the Language Processor Card must
have a unique select code. Refer to the HP 50963A SRM Coax
Interface Installation Instructions that was shipped with your
SRM card for more information.

The chapter will cover four major areas:

• The "System Concepts" section is an overview to help you
understand how the SRM system works.

• The "Using Your BASIC Workstation on SRM" section dem­
onstrates some common operations involving shared
resources.

• The "Modifying Existing Programs" section discusses ways
to change BASIC programs to make them work with SRM.

• The "In Case of Difficulty" section introduces troubleshoot­
ing techniques and defines the status register contents.

Using SRM 6-1

System
Concepts

What Is an SRM
Network?

6-2 Using SRM

This section explains some of the concepts of the SRM sys­
tem, including descriptions of the folloWing topics:

• An SRM network.

• Support of the BASIC language on SRM.

• Management of shared peripherals.

• Booting from SRM.

• SRM's hierarchical directory structure.

• Creating directories and files.

• Shared access to directories and files (including file locking
and password protection).

An SRM network is a network of individual workstations
connected by coaxial cable to an SRM server. The server is
connected to disc drives, printers, and plotters that all
workstations share. Each workstation can access data on a
central database and send files to the printers and plotters,
however the workstations cannot communicate with each
other. The illustration shows a typical SRM installation.

Shared Resource
Support of the

BASIC Language

Printer Plotter
HP-IB

HP-IB

Server
HP-IB

You can use most BASIC statements that access local mass
storage devices to access shared mass storage devices on
SRM.

SRM adds three new commands to the BASIC mass storage
statements-CREATE DIR, LOCK, and UNLOCK-and adds
the PROTECT option for use with the CAT statement. In ad­
dition, the PROTECT statement's use on SRM is distinct from
its use with local files.

Using SRM 6-3

How the SRM
System Manages

Shared Peripheral
Use

Booting From the
SRM

6-4 Using SRM

The SRM system not only provides shared access to printers
and plotters, but also manages their use so that workstations
never need to wait for output to be generated.

To use shared peripherals, you place files to be output into a
special directory where they are held until the printer or plot­
ter is free. The system keeps track of the order in which files
arrive from the workstations, and outputs them in the same
order. This method is called Hspooling," and the directory
where the files are kept is called the "spooler directory."
Spooler directories are created for the SRM server's use when
the shared peripherals are installed on the SRM system.

After a file is placed in a spooler directory, the workstation is
free to do other processing. Please note, however, that the
SRM system manages output spooling only. You cannot send
information such as status codes or locations of the corners of
paper from a plotter back to the workstation.

If your workstation has Boot ROM version 3.0 or later, you
will be able to boot the BASIC language system into your
workstation from the SRM. Once your workstation has been
installed on the SRM system, the workstation power-up
scheme your system manager has implemented on your SRM
determines the exact procedure you use.

Automatic Configuration. The SYSTEMS directory contains
the SRM operating system (SYSTEM-SRM) binary files and
loading instructions belonging to each local workstation for
automatic boot procedures. You can boot your HP BASIC
Language Processor from your PC mass storage or from the
SRM system disc. If you want to automatically load your
HP BASIC Language Processor when you boot your
HP 82300 Language Processor Card, ask the SRM system
manager to HSTOREH your HP BASIC Language Processor in
the SYSTEMS directory on the SRM system disc.

Accessing the
Shared Mass

Storage Device

System Loading. The SYSTEMS directory also contains a
file called SYSTEM_LD. This file is the system loader file,
and it tells the SRM operating system to look for a file called
CONFIG_LDna. This file contains the name of the language
system (HP BASIC, for example) to load into the memory of
the local workstation. The suffix Rna" is the node address as­
signed to the local workstation and set on the SRM interface
card. An AUTOSTna in the SYSTEMS directory contains the
binaries the local workstation with node address Una" wants
to load during an automatic boot process. If there is no
AUTOSTna, the default AUTOST in the root directory is
used. Ask your SRM system manager to create these files for
you. You will need to give him the names of the binary files
you want loaded for your workstation.

If you do not want automatic loading at power-up time, press
the space bar after you boot your HP BASIC system. This will
display all the system files. Choose the system you want by
typing the two-character identifier (typically 18, IE, etc.) that
precedes the system file name. If you do not press the space
bar (and do not have a CONFIG_LDna file), the first valid
system file found by SRM is loaded.

Your workstation accesses shared resources through the SRM
server which is connected to the workstation through an
HP SRM interface in the workstation. The remote (SRM) mass
storage device is identified by a remote mass storage unit
specifier, or Uremote MSUS" (similar to the local MSUS),
which gives information about the SRM connection. The re­
mote MSUS includes the following required and optional
information:

• The device type REMOTE, which specifies the SRM
system .

• (Optional) The interface select code of your workstation's
SRM interface. The default is the select code of the inter­
face through which the boot ROM activates your
workstation. (If you do not boot from the SRM, the default
is the lowest select code of those available among the SRM
interfaces in your workstation.)

Using SRM 6·5

MS I ": REMOTE" (ENTER)

SRM's Hierarchical
Directory
Structure

6-6 Using SRM

• (Optional) The server's node address.

• (Optional) The volume name and volume password.

In general, the first step in accessing a mass storage device is
to make that device the MASS STORAGE IS device. Type:

A directory is a file that is used to organize and control access
to other files. The SRM operating system uses a hierarchical
directory structure to organize and contrbl access to files on a
shared mass storage device just as MS-DOS uses the hierar­
chical directory structure for its mass storage.

Directories are a type of file and, as such, can be:

• Created with the CREATE DIR statement. When a directory
is created, its location in the hierarchical structure is fixed.

• Cataloged with the CAT statement, renamed with the RE­
NAME statement, and protected with the PROTECT
statement.

• Filled with subordinate files and directories using the
COPY, CREATE BDAT, CREATE ASCII, CREATE DIR,
SAVE, STORE, RENAME, RE-SAVE, and RE-STORE state­
ments. Each subordinate file or directory is described in its
superior directory.

• Opened and closed with the MASS STORAGE IS (MSI)
statement. When a user's MSI statement specifies a direc­
tory, any previously opened directory of that user is closed
and the new one is opened.

• Emptied by removing all subordinate files and directories
with the PURGE statement.

• Purged with the PURGE statement. You must empty and
close a directory before purging it.

Using Your
BASIC
Workstation on
SRM

This section describes, through examples, some of the more
common procedures you'll use when operating your BASIC
workstation on the SRM, including:

• Accessing the shared mass storage device.

• Creating directories and files.

• Listing a directory's contents.

• Shared access to remote directories and files.

• Protecting files and directories.

• Passwords and protect codes.

• Copying files.

• Purging remote files and directories.

• Using a shared printer or plotter.

• Returning to local mass storage.

For the following examples, assume you are working with the
directory structure shown in the illustration below.

PROJECTS

ProjecLone ProjecLlwo General

TesLdat,

budget April

f2 May
,..--'----,

Using SRM 6·7

Accessing the
Shared Mass

Storage Device

MS I ": REMOTE" (ENTER)

Referring to Directories and Files in the Hierarchy. To
access either a directory or a file, you must specify its location
in the hierarchical directory structure. This location is speci­
fied by a list of directories, called a directory path, that you
must follow to reach the desired file or directory. Directory
names in the list are delimited by a slash (j).

For example, in the directory structure illustrated previously,
the remote file specifier:

defines the "path'" to the file, tl, through its superior
directories.

The path to a file begins either at the root level or at the cur­
rent working directory. The working directory is the directory
specified by the most recent MASS STORAGE IS statement.

Creating Directories. To create a directory named CHARLIE
in the directory, ProjecLone, you could type:

CREATE 0 I R "/PROJECTS/Pr oj ec t _one/CHARL IE" (ENTER)

The leading slash indicates that the directory path begins at
the root of the SRM directory structure.

You could accomplish the same thing by typing:

CREATE 0 I R "PROJECTS/Pr oj ec t _one/CHARL IE: REMOTE" (ENTER)

&-8 Using SRM

Using the leading slash to begin the directory path at the root
works only if you have previously established the remote
mass storage as your workstation's mass storage (with some
form of the MSI ":REMOTE" statement).

ProjecLone

This statement would place your newly-created directory into
the directory structure as shown below.

PROJECTS

ProjecLtwo General

Creating Files and Other Directories Under a
Directory. To create files subordinate to a new directory, you
may either establish the new directory as the working direc­
tory or specify the directory path to that directory. Assuming
your current working directory is the root, you could type:

MS I II PROJECTS/Pr oj ec ~ _one/CHARL I E II (Enter)

I CAT (Enter)

to move into the directory, CHARLIE.

You could verify the new working directory with a catalog
listing by typing:

Using SRM 6-9

On a computer whose screen supports an SO-character line
width, the resulting listing would look like this:

PROJECTS/Project_one/CHARLIE:REMOTE 21, 0
LABEL: Disci
FORMAT: SDF
AVAILABLE SPACE: 54096

SYS FILE NUMBER
FILE NAME LEV TYPE TYPE RECORDS

RECORD MODIFIED PUB OPEN
LENGTH DATE TIME ACC STAT

=========== ==== ====== ==== =======

To create an ASCII file named ASCILI that is initially to con­
tain 100 records and be contained within CHARLIE, you
would type:

CREATE ASCII "ASCIL1",100 (Enter)

To create another directory called MEMOS within CHARLIE,
you would type:

CREATE DIR "MEMOS" (Enter)

6·10 Using SRM

ProjecLone

I CAT (Enter)

The additions would make the directory structure look like
this:

PROJECTS

ProjecLtwo General

ASCIL1

BDAT_1

The simplest form of the CAT statement:

lists the contents of the current working directory because no
directory is specifically identified. If no directory name is
shown in the directory header, the current working directory
is the root.

Using SRM 6-11

If you want to list the contents of CHARLIE, but your current
working directory is not CHARLIE, you could:

• Designate CHARLIE as the working directory with the MSI
statement, then use the CAT statement's Ushort form." For
example:

MS I "PROJECTS/PI" oj ec t _one/CHARL IE: REMOTE 11 (Enter)

CAT (Enter)

• In the CAT statement, specify the entire path to CHARLIE,
starting at the root, by beginning the path name with a
slash(j). For example:

• This form assumes that you have already designated re­
mote mass storage with some form of the
MS I ": REMOTE 11 statement. If you have not, use the
form:

CAT II PROJECTS/PI" oj ec t _one/CHARL IE: REMOTE 11 (Enter)

I CAT" II (Enter)

6-12 Using SRM

• The leading slash is not necessary, because including
: REMOTE specifies the root as the beginning of the path.

• If you were in MEMOS (the directory immediately subordi­
nate to CHARLIE,) you could use the " .. p notation. For
example:

Shared Access to
Remote

Directories and
Files

Because the sharing of files is a consequence of shared mass
storage, the SRM system provides features for controlling ac­
cess to shared information.

The SRM system offers three kinds of access capability for
files and directories: READ, WRITE, and MANAGER. Ca­
pabilities are either public (available to all workstations on the
SRM) or protected (available only to users who know the ap­
propriate password).

Capabilities are protected with the PROTECT statement,
which associates password(s) with one or more access capabil­
ities. One password can be used to protect one or more
capabilities. Each file or directory can have several
password/ capability pairs assigned to it.

Once assigned, the password protecting an access capability
must be included with the file or directory specifier to execute
statements requiring that access. If you don't specify the cor­
rect password when it is required, the system will report an
error and deny access to the file or directory.

READ access capability for a file allows you to execute state­
ments that read the file. READ access capability for a
directory allows you to execute statements that read the file
names in the directory, and to "pass through" the directory
when the directory's name is included in a directory path.

For example, in the remote file specifier

including the assigned password <READpa:s::s:) allows pas­
sage through the directory ProjecLone to allow access to its
subordinate directories and files.

WRITE access capability for a file permits you to execute
statements that write to the file. WRITE access capability for a
directory allows you to execute statements that add to or de­
lete from the directory's contents.

Using SHIM! 6-13

Protecting Files
and Directories

6-14 Using SRM

With the MANAGER access capability, public capabilities for
a file or directory differ slightly from password-protected ca­
pabilities. Public MANAGER capability allows any SRM user
to PROTECT, PURGE or RENAME the file. The password­
protected MANAGER capability provides MANAGER, READ
and WRITE access capabilities to users who include a valid
password in the file or directory specifier.

When you create directories and files, their access capabilities
are "public" (available to any user on the SRM). You may sub­
sequently protect a directory or file against certain types of
access by other SRM workstations, provided:

• you have MANAGER access capability on the file or direc­
tory (MANAGER access to the file is public or you know
the password protecting the capability);

• you have READ access capability on the directory immedi­
ately superior to the file or directory you wish to protect;

• you protect the file or directory either while "in" its superior
directory or by specifying the valid directory path to its su­
perior directory.

For example, using the directory structure established for
other examples in this section (see illustration) and assuming
no passwords have been assigned to the files, you could:

ProjecLone

PROJECTS

ProjecLtwo General

Assignments

f1

ASCIL1

TesLprog

1. Assign the password passme to protect the MANAGER
and WRITE access capabilities on the directory CHARLIE
with the sequence:

MS I" /PROJECTS/Pr oj ec t _one" (Enter)
PROTECT "CHARL IE" , ("passme" : MANAGER, WR I TE) (EXECUTE)

which executes the PROTECT statement after moving to
the directory ProjecLone (immediately superior to
CHARLIE). As a result of the PROTECT statement, the
READ access capability on CHARLIE is still public, but
any operations that require MANAGER or WRITE ca­
pabilities must include the password.

Using SRM 6·15

2. Remove all public access capabilities from the file
ASCILl by assigning the password no_pub, using:

PROTECT "CHARLI E/ASC I L 1" , (" no_pub" : MANAGER, WR ITE, READ) (Enter)

or

MSI "CHARLIE" (Enter)
PROTECT "ASC I 1_1" , (" no_pub" ; MANAGER, WR ITE, READ) (Enter)

These statements assume you are in the directory,
ProjecLone, as if you had executed the statements in the
previous step.

The second sequence of statements makes CHARLIE the
new working directory, whereas in the first, you merely
Dpass through" CHARLIE to reach ASClLl. With the
READ access capability on CHARLIE still public, you do
not need a password.

3. Protect the file, BDAT -1, so that data can be read from it
but not written into it without using the password, write.
If the current working directory were CHARLIE, you
would type:

PROTECT "BDAT _I" , ("wr i teo" : MANAGER, WR I TE) (Enter)

4. Protect the MANAGER access capability of the directory
MEMOS with the password, mgr_pass (so that everyone
can read from and write to the directory, but a password
is required to purge the directory or its contents) by
typing:

PROTECT II MEMOS" , (" mgr _pass" : MANAGER) (Enter)

6-16 Using SRM

If you protected the files and directory in CHARLIE as in the
steps above, a catalog listing of CHARLIE will look something
like this:

PROJECTS/Project_one/CHARLIE:REMOTE 21, 8
LABEL: Disc1
FORMAT: SDF
AVAILABLE SPACE:

SYS
FILE NAME LEV TYPE
============
ASCI Ll
BDAT_1 98X6
MEMOS

54896
FILE
TYPE

ASCII
BDAT
DIR

NUMBER RECORD MODIFIED PUB OPEN
RECORDS LENGTH DATE TIME ACC STAT
======= ---- ===========

8 256 2-Dec-84 13:28
8 256 2-Dec-84 13:28 R
8 24 2-Dec-84 13:28 RW

The letters in the column labeled PUB A C C indicate access
capabilities that are public (not protected with a password).
For example, only the MANAGER < M) access capability on
the directory MEMOS has been protected, leaving the READ
(R) and WRITE (W) capabilities available to any SRM
workstation user.

Specifying Passwords. When a password is required, you
must include the correct password as part of the file or direc­
tory specifier in any command or statement that requires the
protected access on the file or directory. The password must
be enclosed between U <" and ">", and must immediately fol­
low the name of the file or directory it protects.

For example, to get the file ASCILI, you might type:

GET "/PROJECTS/Pr oj ec t _one/CHARLI E/ASC I I _1 <no_pub> " (Enter)

If the password were not included in the specifier, the system
would respond with an error message and refuse to get the
file.

Using SRM 6-17

1000
1010
1020
1030

2000
2010

Exclusive Access: Locking Files. Although sharing files
saves disc space, allowing several users access to one copy of
a file introduces the danger of users trying to access the file at
the same time, which can cause unpredictable results. For in­
stance, if one user tries to read part of a file while another
user is writing to it, the file's contents may be inaccurate for
the read.

You can Klock" Ii shared file with the LOCK statement, giving
you sole access to that file. The same file can be locked sev­
eral times in succession. Unlocking a file requires that you
cancel all locks on that file. If you use the UNLOCK state­
ment, you must cancel each LOCK with a corresponding
UNLOCK. Using ASSIGN to re-open a locked file unlocks the
file and you must execute another LOCK statement to lock
the file again. Closing the file via ASSIGN @ ... TO * cancels
all locks on the file.

In this example, a critical operation must be performed on the
file named File---'l, and you do not want other users accessing
the file during that operation. The program might be as
follows:

ASSIGN @File TO "File_a:REMOTE"
LOCK @File;CONDITIONAL Result_code
IF Result_code THEN GO TO 1010 ! Try again

Begin critical process

End critical process
UNLOCK @ F i1 e

The numeric variable called Result-code is used to determine
the result of the LOCK operation. If the LOCK operation is
successful, the variable contains O. If the LOCK is not success­
ful, the variable contains the numeric error code generated by
attempting to lock the file.

6-18 Using SRM

Passwords and
Protect Codes

The PROTECT statement format for remote files is different
from the format for local files. Depending on the type of mass
storage is being used, you can use either of the following to
decide which syntax will be used:

1. Try the non-SRM syntax with an ON ERROR statement
enabled. If an error occurs, see if it indicates that the
mass storage device is an SRM. An Error 1 occurs when
the following statement is executed on a remote file.

I PROTECT file specifier,protect code

Copying Files

2. If the program uses a string to store the mass storage
unit specifier, check for a non-zero value
of POS (Msus$, II REMOTE ") • This alternative is eas­
ier to implement than alternative 1 but will not work if
the program accesses the default device when Msus$ is
empty.

If the program looks for a password error (Error 62) at AS­
SIGN time, the program may have to be modified because
the system may not detect the password error until an ENTER
@Path or OUTPUT @Path is attempted.

With SRM, you can copy files between local and remote mass
storage devices by any of the methods illustrated in the fol­
lowing examples. Again using the directory structure
established for the other examples in this section, assume that
the current working directory is CHARLIE.

Using SRM 6-19

Using the COpy Statement. The most direct method of
copying a file from local to remote mass storage is to use the
COPY statement. For example, to copy a PROG file named
TesLprog that is on a local disc drive into the directory
CHARLIE on the SRM system disc, you could type:

COpy "Tes t _pr og: , 151313,13" TO "Tes t _prog" (Enter)

Caution

6·20 Using SRM

I

By including the : , 1500,0 MSUS, you can access the local
mass storage without changing the current working directory
(which is a remote directory).

Do not copy entire volumes between built-in disc drives and
SRM drives. Copy each file separately.

ProjecLone

PROJECTS

ProjecLtwo General

Assignments

f1

ASCIL1

TesLprog

Other Uses of COPY. The COpy statement can be used to
copy files not only from local to remote mass storage but also
from remote to local mass storage and from one remote mass
storage device to another. However, you cannot copy an en­
tire remote mass storage volume in a single COpy statement.
(You must copy a remote volume file by file.)

Suppose you want to copy the file BDAT _1 from the directory
CHARLIE into the directory AL (see previous illustration).

Assuming the working directory is CHARLIE, you could type:

COpy "BOAT_I" TO " PROJECTS Project_two AL BOAT_l" (Enter)

Using SRM 6·21

ProjecLone

The effect of the copy on the directory structure is illustrated
below:

PROJECTS

ProjecLtwo General

Assignments

ASCIL1

TesLprog

Using LOAD and STORE. You may also copy files by load­
ing the program into your workstation from local mass
storage and then storing it in remote mass storage. For exam­
ple, to copy a PROG file named TesLprog that is on a disc in
your workstation's A: disc drive into the directory CHARLIE
on the SRM system disc (as demonstrated earlier using
COPY), you could type:

I LOA 0 II T e 5 ~ _ pro 9 : , 1 5000' 0 II (Enter)

6-22 Using SRM

Once the file is in your workstation's memory, you may then
store the file in the remote directory by using a statement
such as:

I STORE "Tes t _pr og : REMOTE" (Enter)

Copying Item-by-Item Using ENTER and OUTPUT. You
may also copy a file from local to remote mass storage an
item at a time, as illustrated in the programs that follow.
These programs use the ENTER and OUTPUT statements to
copy data item-by-item from a local BDAT file to remote mass
storage.

The first program creates and fills a BDAT file named
BDAT-FILE.

10 CREATE BOAT "BDAT_FILE:,1500,0",10
20 ASSIGN @Local TO "BDAT_FILE:,1500,0"
30
40 FOR Item=1 TO 50
50 OUTPUT @Local;"String data item"
60 NEXT Item
70
80 ASSIGN @Local TO *
90 END

Using SRM 6-23

The second program copies the contents of BDAT -.FILE item­
by-item into a file (also called BDAT -.FILE) in the SRM
directory named General (shown in the previous illustration).

100 DIM String_item$[20J
110 CREATE BDAT "PROJECTS,General,BDAT_FILE:REMOTE",10
120 ASSIGN @Local TO "BDAT_FILE:,1500,0"
130 ASSIGN @Remote TO "PROJECTS,General,BDAT_FILE:REMOTE"
140
150 FOR Item=1 TO 50
160 ENTER @Local;String_item$
170 OUTPUT @Remote;String_item$'
180 NEXT Item
190
200 ASSIGN @Local TO *
210 ASSIGN @Remote TO *
220 END

Purging Remote
Files and

Directories

The PURGE statement works the same for removing remote
files as for removing files from local mass storage. You may
also remove directories using PURGE. PURGE works only
with closed files and directories. Directories must also be
empty (not contain any files or directories). Refer to the dis­
cussion on UReturning to Local Mass StorageH later in this
section for details on closing files and directories.

When specifying the remote file to be purged, you must in­
clude all passwords protecting access capabilities required for
the PURGE. For example, to purge the file BDAT _1 from the
directory CHARLIE (see previous examples), you could type:

PURGE ". <passme> ,BDAT _1 <wr i t e>" (Enter)

6·24 Using SRM

In this example, CHARLIE is the current working directory, as
denoted in the directory path by U.H.

MS I II l REMOTE II (Enter)

To purge a file, you must have the MANAGER access ca­
pability on that file and READ and WRITE access capabilities
on the file's superior directory. Because passme protects the
WRITE capability on CHARLIE and write protects the MAN­
AGER capability on BDAT _I, both passwords must be
included in the file specifier in the PURGE statement.

Although you do not normally need to specify the working
directory in a directory path, you must include the password
for the PURGE operation. The READ capability on CHARLIE
is not password-protected.

To purge CHARLIE, you would first need to purge the re­
maining files and directory in CHARLIE. Because the MSI
statement Dopens" a directory (making it the current working
directory), you must also "close" CHARLIE.

For example, if no files or directories remained in CHARLIE,
you could purge CHARLIE by typing.

PURGE II PROJECTS,...Pr oj ec t _one,...CHARL I E (passme) "(Enter)

Using a Shared
Printer or Plotter

The first statement closes CHARLIE and establishes the root
directory as the current working directory. Note that, because
passme protects the MANAGER access capability on CHAR­
LIE, you must include that password in the PURGE statement.

Use of special SRM directories called Dspooler directories" al­
lows you to access a shared printer or plotter. Setting up a
spooler directory is explained in the Shared Resource Manage­
ment System Manager's Guide. The examples in this section
assume that the spooler directories LP (for DLine Printer") and
PL (for HPLotter") have been created at the root of the SRM
directory structure.

Using SRM 6-25

Spooling Using PRINTER IS and PLOTTER IS. You can
use the PRINTER IS and PLOTTER IS statements to send
data to your shared printer or plotter. The following com­
mand sequence illustrates this spooling method:

CREATE BOAT "/LP/Print_file",l
PRINTER IS "/LP/Print_file"
LIST
XREF
PRINTER IS CRT

Note

PRINTER IS and PLOTTER IS statements work only with
BDAT files.

The DUMP DEVICE IS and PRINT ALL IS statements do not
support files, so they cannot be used for printer spooling.

Writing Files to the Spooler Directories. You may also ac­
cess the printer associated with LP by placing the data to be
printed in an ASCII or BDAT file in that spooler directory. For
example, to list a program currently in memory, you could
SAVE the program in LP as the file PLLISTING by typing
either:

SAVE "LP /P l_LI STI NG : REMOTE" (Enter)

6·26 Using SRM

or

The SAVE statement creates an ASCII file. Although this is
the same syntax used to save programs on a shared disc, the
SRM system knows that LP is a spooler directory and prints
the file as soon as possible.

Note When used for spooling, SA VB places a file in the spooler
directory. The file is printed, then purged. You may wish to
save or create the file first, then use the COpy statement to
place the file into the spooler directory.

Sending Program Output to a Shared Printer. To spool
program output to a shared printer, create an ASCII or BDAT
file, assign an I/O path name to the file (which opens the
file), and OUTPUT the data to that file. With BDAT files, you
should ASSIGN with FORMAT ON. When the file's contents
are to be printed, close the file. The following example pro­
gram segment outputs the data stored in the string array
called Data$ to an ASCII file named PERFORMANCE.

760 CREATE ASCII ",LP,PERFORMANCE",100
770 ASSIGN @Spool TO ",LP,PERFORMANCE"
780 OUTPUT @Spool;"Performance Summar~"
790 OUTPUT @Spool;Oata$(*)
800 ASSIGN @Spool TO * ! Initiate printing,

I CAT ",LP" (Enter)

The system waits until the file is not empty and closed before
sending its contents to the output device. If your file is not
printed or plotted within a reasonable amount of time, you
may not have closed it. You can verify that your file is ready
to be printed or plotted by cataloging the spooler directory:

The open status (OPEN STAT) of the file currently being
printed or plotted is listed as locked (L 0 C K). Files currently
being written to the spooler directory (either printer or plot­
ter) are listed as OPEN, Files that do not have a status word
in the catalog are ready for printing or plotting.

Using SRM 6-27

Note

The SRM 2.0 and newer operating systems allow BDAT files
to be sent to the printing device as a byte stream.

With the SRM 2.0 and newer operating systems, a BDAT file
sent to the spooler is printed exactly as the byte stream sent.
Unless you set up the BDAT file correctly, improper printer
output or operation could result. Therefore, you should AS­
SIGN BDAT files with FORMAT ON before outputting data.

The spooler inserts a carriage return and line feed after each
record in an ASCII file. To put several strings on one line,
concatenate them into one string before using OUTPUT to
send them to the spooler file. You may insert ASCII control
characters in the data by using the CHR$ string function.

Appearance of Output. Printed output for each file includes
a one-page header, which identifies the directory path to the
file, the file's name, and the date and time of the printing.
You can disable this header by using the NOBANNER option
at the server.

To cause the printer to skip the paper perforation after print­
ing a page (60 lines), prefix your file name with PFFH. For
example:

SAVE "/LP /FF _MYTEXT" (Enter)

6-28 Using SRM

Aborting Printing/Plotting in Progress. To abort an in­
progress printing or plotting, use the SPOOLER ABORT
command from the SRM server. The system stops sending
data to the output device and doses and purges the file. For
details on bringing the spooler UP and DOWN, see the de­
scription of the SPOOLER command in the HLanguage
Reference" section of the SRM System Manager's Guide.

Returning to Local
Mass Storage

MSI ":,1500,2"

Modifying
Existing
Programs to
Access Shared
Resources

With SRM 2.0 and newer operating systems, if a printer is
taken off-line while a file is being printed, the printer stops
and resumes when the printer is put back on-line. No data is
lost during such an interruption. The SRM 1.0 operating sys­
tem also resumes printing, but from the beginning of the file.

When you have finished accessing shared resources, you
should close all of your files and directories to "release" the
system resources.

Remote files are closed by ASSIGN ... TO (*). The SCRATCH
A command closes directories and files. All remote files except
those opened with the PRINTER IS statement are also closed
by pressing RESET.

To close your current working directory, execute an MSI to a
local msus. For example,

If you booted from local mass storage, you may also execute
the SCRATCH A command to completely release your access
to the system. If you booted from the SRM, executing
SCRATCH A resets the current working directory to the root.

This section summarizes ways you can modify existing pro­
grams that access local resources to allow those programs to
access shared resources.

When modifying programs to access SRM mass storage de­
vice(s), you should be aware that:

• Local and remote mass storage file specifiers may differ
and string variable names that contain file specifiers may
need corresponding modification.

Using SRM 6-29

File Specifiers

Mass Storage Unit
Specification

• References to mass storage unit specifiers throughout the
program may have to be altered.

• Allowances may have to be made for directory path
specification.

• Local protect codes may differ from passwords on remote
files. The syntax for protecting remote files is different from
that used for local files.

Composition of File Names. All files names for local mass
storage are 1 to 10 characters long, while remote file names
contain 1 to 16 characters. Remote file names can contain the
period character (.), while local files cannot. If file name
compatibility between resources is required, use 10 or fewer
characters and do not use periods within remote file names.

File and Mass Storage Device Specification in String
Variables. Modifying programs for use with shared re­
sources generally requires changing the value, and often the
length, of the string variables used to specify files and mass
storage devices. The statements that assign the actual values
to the string variable may have to be modified individually.

Some programs use separate variables for the file name and
MSUS. For example:

ASSIGN @Path TO Filename$~Msys$

6-30 Using SRM

If so, both variables may have to be dimensioned to greater
lengths. Allowing 34 characters for the file name variable ac­
commodates a 16-character file name, a 16-character
password, and the U <H and H>H password delimiters (for ex­
ample, H ABCDEFGHIJ123456 < 1234567890123456>H). The
remote MSUS may occupy up to 54 characters.

Other programs may use MASS STORAGE IS statements
throughout the program instead of including the MSUS in
each file specifier. For instance:

MASS STORAGE IS Left_drive$
ASSIGN @File To File_name$

Unless variable(s) are used to specify the MSUS and each
variable is assigned a value in only one place, you may have
to modify each MASS STORAGE IS statement to specify the
desired remote mass storage device.

Allowing For
Directory Paths

Suppose the following program needs to be modified to in­
clude a remote file's directory path.

100 DIM Filename$[14J,Msus$[20J

200 Filename$="SLIDES"
210 Msus$=":HP9895,700"

300 ASSIGN @File TO Filename$&Msus$
310 OUTPUT @File;Data(*)
320 ASSIGN @File TO *

400 ASSIGN @File TO Filename$&Msus$
410 OUTPUT @File;Data(*)
420 ASSIGN @File to *

Using SRM 6-31

In this example, it is probably easiest to add another string
variable for the (optional) path name. For example:

100 DIM Dir_pa~h$[160],Filename$[80],Msus$[80]

200 Dir_pa~h$="FRED/DATA_FILES/"

210 Filename$="SLIDES"
220 Msus$=":REMOTE 21,1"

300 ASSIGN @File TO Dirpa~h$~Filename$~Msus$

310 OUTPUT @File;Da~a(*)
320 ASSIGN @File TO *

In Case of
Difficulty

6-32 Using SRM

If the Dir _path$ variable is nult the statement looks ex­
actly like it did before the modification. If the M sus $ variable
is null, the current mass storage device is accessed. The only
difference is in the allowable length of the string variables.

If you have problems using the SRM network from your PC
workstation, verify the following items:

• The language processor card and the SRM card are prop­
erly installed and connected.

• The language processor card is functioning correctly.

• The node address on the SRM interface card has been set
to a unique number assigned by the SRM system manager.

• The SRM and DCOMM binaries are loaded in your
HP BASIC system.

10 FOR I = 1 TO 12
20 IF I = 4 THEN

• See if you can access the SRM system disc from your PC
workstation. Use the MSI H:REMOTEH statement to set your
mass storage unit specifier to the SRM system disc, and
then use CAT to display the SRM root directory.

• From the SRM server, type HNODES SC', where SC is the
select code of the server's SRM interface card. If there is
only one SRM card in the server, the select code is proba­
bly 21. The server recognizes your PC workstation if the
display on the server shows the node address of your PC
workstation's SRM interface card.

• Enter and r1L'l the following HP BASIC program to deter­
mine the contents of the SRM status registers:

30 PRINT "Register 4 not implemented."
40 ELSE
50 STATUS 21,I;Number
60 PRINT "Register ",I,"equals ",Number
70 END (F
80 NEXT
90 END

• Record the results. They will help Hewlett-Packard support
center personnel if you cannot find the problem.

• Run the diagnostics provided for the SRM card and record
the results.

The troubleshooting section in the SRM System Manager's
Guide contains complete instructions for diagnosing SRM net­
work problems. Contact your SRM manager for assistance.

Using SRM 6-33

Summary of
SRM Status
Registers

6·34 Using SRM

Status Register 0

Status Register 1

Status Register 2

Status Register 3

Status Register 4

Status Register 5

Status Register 6

Status Register 7

Card Identification

52 if the Remote Control switch (R) is
set to 0 (closed); 180 if switch is set to
1 (open).

Interface Interrupts

1 = interrupts enabled; O=interrupts
disabled.

Interface Busy
l=busy; O=not busy.

Interface Firmware ID

Always 3 (the firmware ID of the
interface).

Not Implemented

Data Availability

O=receiver buffer empty;
1 = receiver data available but no con­
trol blocks buffered;
2=receiver control blocks available but
no data buffered;
3 = both control blocks and data
available.

Node Address of the interface

Node address of the SRM interface in­
stalled in this computer which is set to
the specified select code. The range of
node addresses is 0 through 63.

CRC Errors

Total number of cyclic redundancy
check (CRC) errors detected by the in­
terface since powerup or RESET.

Status Register 8 Buffer Overflows

Total number of times the receive
buffer has overflowed since powerup
or RESET.

Status Register 11 Amount of available space (number of
bytes) in the transmit-data buffer.

Status Register 12 Number of transmission retries per­
formed since powerup or RESET.

Using SRM 6·35

A Keyword Reference List

This appendix has been deleted because the complete BASIC
5.0 Language Reference (Volumes 1 and 2) is now included in
your HP BASIC system. Refer to the appropriate volume for
the information you need.

Keyword Reference List A-1

r

B

I

O . I
• ____________________ ~1~n.:'l..!

Using the HP BASIC Language
Processor in the MS·DOS
Environment

The HP BASIC Language Processor uses a software emulator
to simulate the I/O devices of a Series 200/300 computer.
The software is installed into the language processor card.
This appendix describes how the HP BASIC Language Proces­
sor affects the keyboard, display, and interface cards, and
points out the differences between the HP BASIC Language
Processor and Series 200/300 BASIC.

The following diagram shows the language processor card
and its relationship to the host Pc.

ROM Memory
Expansion

Optional

GPIO
Connec

SRM
~-- Connec

HP BASIC In the MS· DOS Environment 8-1

B
Available
Devices and
Interfaces

The language processor card uses computer devices as though
they were standard Series 200/300 HP devices. This is com­
pletely invisible to programs running on the language
processor. The knob is simulated by a mouse and the display
can emulate several Series 200/300 displays.

Select code 15 corresponds to the built-in disc drives in the
computer. These drives are treated as CS80 drives.

Select codes 24 and 25 correspond to HP 82990A HP-IB cards
that may be plugged into the PC bus.

Select codes 9 and 23 emulate HP 98626A cards on the host
PC serial interface, such as the HP 24540A serial/parallel
card.

Select code 26 is used for a printer interface (LPT1) using lim­
ited GPIO capabilities in the HP BASIC language processor.

Select code 19 is used for the MS-DOS communications port.
It's purpose is to allow HP BASIC language processor pro­
grams and commands to communicate with the computer's
operating system. The interface between the HP BASIC lan­
guage processor and the operating system is the same as if a
GPIO card were installed.

READIO, WRITEIO, CONTROL, STATUS, ENTER, and
OUTPUT operations are not supported for select code 15.

B·2 HP BASIC In the MS·DOS Environment

PC Bus Cards

Select Interface 200/300 Card PC Bus Card
Code Type Emulated

7 HP-IB Built-in HP-IB Built-in HP-IB

9 or 23 RS-232 HP 98626A HP 24540A or equiva-
lent at COM1 or COM2

12' GPIO HP 98622A HP 82306A

15 HP-IB Disc interface Part of host PC

19 GPIO DOS port Part of host PC

21" SRM HP 50962A HP 50963A

24 HP-IB HP 98624A HP 82990A

25 HP-IB HP 98624A HP 82990A

26 GPIO HP 98622A Any system interface
(GPIO printer (Le. a parallel printer
only) interface) at LPn

• Factory setting. Switches on the card may be changed to any available select
code.

You must have the GPIO binary loaded in order to use select
codes 19 or 26. You must have the HPIB and CS80 binaries
loaded in order to use select code 15. These three binaries are
included in the system shipped with your HP BASIC.

The HP BASIC language processor supports the following:

• Up to two HP-IB PC interface cards, select codes 24 and
25.

• Up to two serial PC interface cards, select codes 9 and 23.

• One printer interface at select code 26.

Hp·IB PC Cards. The two HP-IB cards will appear like
HP 98624A HP-IB cards to the HP BASIC language processor.
The registers are identical. All functions are available except
Direct Memory Access (DMA). You can configure the card by
changing the configuration file. Refer to appendix F for in­
formation on the configuration file.

The HP 82990A HP-IB card has a default bus address of 30.

HP BASIC In the MS·DOS Environment B-3

B

Note

Serial PC Cards. The HP BASIC language processor views
serial cards the same way it views HP 98626A cards. The only
function not available is DMA. You can configure the card by
changing the configuration file. Refer to appendix F for in­
formation on changing the configuration file.

Although the functionality of serial and HP-IB cards is equiv­
alent to the Series 200/300, there may be a slight reduction in
performance under the HP BASIC Language Processor.

Printer Interface. One printer is supported as defined by
LPT!. The GPIO (PSTS) line is used to signify an error condi­
tion such as being out of paper. The card appears like an
HP 98622A GPIO, although many bits in the registers are not
functional.

HP-IL printers are not supported using select code 26.

The printer supported at select code 26 will respond with
timeouts just as an HP-IB printer on the internal select code 7,
except that the timeout unit when using select code 26 is half­
minutes instead of seconds. Thus, 0 N TIM E 0 U T 26, 1 will
provide a 30 second timeout, but ON TIMEOUT 7, 1 will
provide a 1 second timeout.

HP BASIC uses the Roman-8 symbol set as the default for
video display. You can customize the displayed font and sym­
bol set. Refer to NVideo Display" in this appendix.

SRM and GPIO Interface Cards. The HP BASIC language
processor has Shared Resource Management (SRM) and Gen­
eral Purpose Input/Output (GPIO) interface cards that plug
directly into your personal computer and provide the exact
functionality of their Series 200/300 interface counterparts.
The HP BASIC language processor cards are accessed exactly
like the DIO counterparts.

The SRM card provides access to HP's SRM network, and the
GPIO card makes it possible to connect to any user devices.

B·4 HP BASIC In the MS·DOS Environment

Video Display

On a Series 200 computer it is possible to send. a character
and then execute an ENABLE INTR command. This is not
possible on a Pc. Interrupts on the PC should be enabled be­
fore accessing the PC card.

The software emulator enables the HP BASIC language pro­
cessor to emulate three different Series 200 display models:

• HP 9816B: black and white, 400 dots by 300 dots.

• HP 9836A: black and white, 512 dots by 390 dots.

• HP 9836C: color, 512 dots by 390 dots.

The hardware requirements for the Series 200 display models
are:

• HP 9816B: Multimode, Monochrome Plus, or Enhanced
Graphics Adapter (EGA) plus monitor.

• HP 9836A: Multimode, Monochrome Plus, or Enhanced
Graphics Adapter (EGA) plus monitor.

• HP 9836C: EGA plus Enhanced Graphics Display or
equivalent.

The display model used is determined by the configuration
file, which is accessed during the boot process and remains
unchanged until the configuration file is altered and the
HP BASIC language processor is booted again.

If no display is specified in the configuration file, your com­
puter will default to the HP 9816B if you are using
Monochrome Plus, to the 9836A if your using Multimode,
and to the 9836C if you are using EGA.

HP BASIC In the MS·DOS Environment B·S

B

Alpha and Graphics. It is possible to choose emulation (by
using the configuration file) with separate alpha/graphics
planes or combined alpha/graphics emulation for each
model. The default mode is combined alpha/graphics, which
is the mode used in series 200/300 workstations. When using
combined alpha/graphics mode, some performance is lost
while displaying alpha text. For best alpha performance, se­
lect the separate alpha/graphics mode.

For faster scrolling speed use the separate alpha/graphics
mode.

Display Differences. The HP 9836 display models have a
resolution of 512 dots horizontally by 390 dots vertically, but
your PC display may be slightly different. For example, when
emulating a model 9836 display using an EGA adapter lim­
ited to 350 dots vertically, the top 40 dot-rows will not appear
on the display.

The HP BASIC language processor can shrink any graphics
picture to fit the display by using the VIEWPORT and WIN­
DOW statements in your BASIC program.

Use the following command to set the soft clip limits at the
boundaries of the area accessible by HP BASIC on the PC
display:

V I EWPORT 0 J RAT! 0*100 J 0 J «Pc_verLres>/390) * 100

RATIO is an HP BASIC function that returns the aspect ratio
of the emulated display (a 9836 in this case). The value of
Pc-verLres can be derived from the HPWSTATUS B$ pa­
rameter. Refer to the section entitled uHPWSTATUS" later in
this appendix.

B-6 HP BASIC In the MS·DOS Environment

The resultant values for the various PC displays are shown
below:

• For EGA displays, use

I VIEWPORT a,131.3,a,89.7

• For Monochrome Plus displays, use

I VIEWPORT a,131.3,a,89.2

• For Multimode displays, no adjustment is necessary since
there is no clipping of the display.

Mter you set the soft clip limits, you may wish to adjust the
,user display units (UDU) to obtain Hsquare dotsH so that
POLYGON and RECTANGLE commands can generate circles
and squares. This is necessary because the PC display does
not have physically square dots like the series 200/300 dis­
play. Use the following command to adjust the UDUs:

WINDOW a, <Pc_doLratio>*RATIO*1aa, a, laa

I WINDOW a, 1a3, 8, a, laa

Pc_doLratio is the HPWSTATUS E parameter. Refer to the
section entitled HHPWSTATUSH later in this appendix.

The resultant values for the available PC displays are shown
below:

• For EGA displays use

HP BASIC In the MS·DOS Environment B·7

B

I WINDOW 121,89.3,121,1121121

I WINDOW 121,11215.1219,121,1121121

• For Monochrome Plus displays use

• For Multimode displays use

Note that this sets the Y axis at 100 UDUs. This can be nor­
malized to any value by scaling the X and Y axes by the same
amounts.

Refer to chapter 4, "Graphics Techniques"', for more informa­
tion on the VIEWPORT and WINDOW statements.

When using the combined alpha/graphics mode on EGA
monitors, pens 8-15 map to pens 0-7. There are only 8 simul­
taneous colors on the EGA color model when using this
mode. The separate alpha/graphics mode provides 16 simul­
taneous colors in the graphics plane.

Custom Symbol Sets and Fonts. HP BASIC normally uses
the HP Roman-8 symbol set and 8 x 14 font. You can use the
special file name HHPWFONT" to change the symbol set or
font HP BASIC uses.

If you are using the combined alpha/graphics display mode
you can specify the symbol set or font HP BASIC should use
by creating a file named "HPWFONT" in the directory where
HP BASIC was installed. HPWFONT should contain an
8 x 14 font as delivered with an EGA or similar adapter. The
format of HPWFONT is the same as that of the standard MS­
DOS EGA adapter products.

B-8 HP BASIC In the MS-DOS Environment

PC Display Type

Multimode

Monochrome Plus

EGA

PC

If you are using the separate alpha/graphics mode, the exis­
tence of HPWFONT in the directory where HP BASIC was
installed will cause HP BASIC to use the standard MS-DOS
symbol set and font provided by your display adapter. Note
that HPWFONT does not have to contain anything, its exis­
tence is sufficient to change the font.

If you are using an EGA display in the separate
alpha/graphics mode, the font used by HP BASIC will be the
one you establish when you set up your EGA system. The file
"HPWFONT' is ignored if it exists in the directory where
HP BASIC was installed. The EGA system provides tools and
a selection of font files which allow you to change the font.

To summarize, the video emulator supports these display
adapters and modes:

Default
HP BASIC

Resolution
Display

Resolution Notes
Model

640 x 400 9836A 512 x 390

720 x 348 98168 400 x 300 Can use 9836A with the loss of the
top 42 dot-rows

640 x 350 9836C 512 x 350 Top 40 dot-rows are lost

HP BASIC In the MS-DOS Environment B-9

B
The MS-DOS
Communica­
tions Port

Communications
Port Control

Commands

I OUTPUT 19) "BACKGROUND"

Caution I

The MS-DOS communications port (select code 19) allows the
HP BASIC language processor programs to communicate with
your computer's software. Because of this port, no new
keywords need to be defined.

The MS-DOS port commands BACKGROUND, EXIT,
HPWSTATUS, SAVE--MODE-ON, SAVE--MODE-OFF,
WAIT_ON, and WAIT_OFF are discussed in the following
sections.

BACKGROUND. The BACKGROUND command allows you
to leave an HPBASIC program running in background while
you operate other software on your computer. HP BASIC pro­
grams running in background can access a printer at select
code 26 and activate the PC beeper. However, any attempt to
access any other PC resources will cause the program to be
suspended until you return to HPBASIC. You can enter back­
ground by typing:

The first time OUTPUT 19) "BACKGROUND" is executed, a
memory resident driver is loaded. This driver requires ap­
proximately 8K bytes of memory.

EXIT. The EXIT command allows an orderly return from the
HP BASIC language processor to your computer. You can re­
turn to the HP BASIC language processor at any time (before
turning your computer off) by typing H P BAS I C (Enter).

To protect file integrity, you must explicitly close all HP BASIC
files before exiting HP BASIC. The recommended method of
accomplishing this is to stop all HP BASIC programs before
executing the EXIT command.

B·10 HP BASIC In the MS·DOS Environment

OUTPUT 19;IHPWSTATUS"
ENTER 19;A$,B$,C,D$,E

You can exit HPBASIC in two ways:

• Press EXIT*

• Type OUT PUT 1 9 ; II E X I T II (Enter)

HPWSTATUS. The HPWSTATUS command will provide
useful information to help you set up the VIEWPORT param­
eters. You can include the following statements in a program:

The parameters in the ENTER statement are variables in your
program. Upon completion of the above statements, the vari­
ables will contain the following information:

• A $-The version number of the HP BASIC Language Pro­
cessor software you are using.

• B $-The viewable size of your display in the format
nnnxnnn, (horizontal x vertical).

• C-The language processor card hardware version number.

• D$-This is taken from the MACHINE: keyword in your
. configuration file, for example C9836.

• E-The x/y (horizontal/vertical) ratio of the physical dot
size on the display currently being used.

SAVE_MODL.ON. The HP BASIC alpha screen is saved and
then restored on return to HP BASIC. However, information
on the graphics screen is not saved. If you are executing an
MS-DOS command that does not write to the display (such as
D I R > HPW_P I PE), you may retain the graphics informa­
tion by first executing OUTPUT 19; II SAVE_MaDE_OFF ".
You can return to the default state by executing
OUTPUT 19; II SAVE_MaDE_ON".

• Refer to appendix E or the Key Function and Switch Configuration Guide for the
specific keystrokes.

HP BASIC In the MS·DOS Environment B·11

B

SAVE-MODE-ON

The following table may help to clarify what happens to the
various screens with SAVE_MODE_ON and
SAVE_MODE_OFF.

HP BASIC HP BASIC MS·DOS
Alpha Screen Graphics Screen Display Output

Retained Cleared Readable

SAVE_MODE_OFF MS-DOS overwrites Retained Improperly formatted

MS-DOS
Commands

I OUTPUT 19; "DIR"

As long as MS-DOS does not write to the screen,
SAVE_MODE_OFF is the best to use; otherwise
SAVE_MODE_ON is the best.

WAIT_ON. After you execute OUTPUT 19; "<MS-DOS
Command>', the system will wait for a key to be pressed
before returning to HP BASIC. If you do not want to wait for
a key press, execute OUTPUT 19; "WA IT _OFF" first. You
can restore the delay by executing
OUTPUT 19; "WAIT _ON". The initial value of this param­
eter is established in the configuration file. The default
configuration file establishes WA I T _ON as the initial value.

Any commands other than BACKGROUND, EXIT,
HPWSTATUS, SAVLMODLON, SAVLMODLOFF,
WAIT_ON, or WAIT_OFF will be processed by the MS-DOS
command shell, either PAM or COMMAND.COM.

For example, to execute a DIR command from the keyboard,
type:

The directory will be displayed on the screen. Press any key
to restore the HP BASIC display. Note that the directory listed
may not be the same as the current directory for HP BASIC.

B·12 HP BASIC In the MS·DOS Environment

Using the ENTER
Statement

OUT PUT 1 9 ; " 0 I R" wiIllist the files on the drive that was
most recently accessed by the HP BASIC emulator. To insure
the list is from the drive you want, execute an M S I command
for that drive immediately before you execute the
OUTPUT 19; "OIR".

OUT PUT 1 9 ; " COli will not change the mass storage unit
specifier (MSUS) that is active in HP BASIC.

If there are errors in starting the command, you will see an
MS-DOS error message on the display.

The execution of MS-DOS applications through the MS-DOS
communications port is not supported.

ENTER can be used to obtain results of communications port
control commands and MS-DOS commands. You can use EN­
TER as shown in a program called ENTERDEMO on your
manual examples disc. For example, ENTERDEMO has an
OUTPUT 19; HDIR > HPW -.-PIPE" statement followed by an
ENTER 19, B$ statement. If the MS-DOS file
COMMAND.COM cannot be found, the ENTER 19;B$ state­
ment will provide the following message:

ERROR: return value of -1 for DOS COMMAND "OIR > HPW_PIPE"

If an error occurs when the command is being executed, an
MS-DOS error message will appear on the screen just as it
does when you are running from MS-DOS.

If there are no errors, the next ENTER from select code 19
will get bytes from a file called HPW _PIPE. Subsequent EN­
TERs continue to draw bytes from this file.

Executing an ENTER on select code 19 will produce a timeout
if no file named HPW _PIPE exists, or if the file exists but is
empty. You must create and fill an MS-DOS file named
HPW -.-PIPE. This file is not created by HP BASIC.

HP BASIC In the MS·DOS Environment B-13

B

DIM Result$C80]

Thus, a communications protocol is set up. MS-DOS pro­
grams can open and direct output to the HPW -PIPE file. The
output can be read by the HP BASIC language processor.

The following program segment shows one way of using this
capability within a program.

OUTPUT 19; "DIR > HPICPIPE"
ENTER 19; Result$

HP BASIC File
System

The Series
200/300 LlF File

System

The string variable Result$ will contain the first line of the
output of the MS-DOS DIR command.

A feature of the HP BASIC Language Processor is that it al­
lows HP BASIC programs that work with the series 200/300
LIF (Logical Interchange Format) file system to use the MS­
DOS file system. As a result, using the MS-DOS file system
with the HP BASIC Language Processor requires an under­
standing of the series 200/300 file system, the MS-DOS file
system, and the means by which the language processor sys­
tem links the two.

The series 200/300 mass storage is based on external HP-IB
disc drives; a series of such drives is connected to the
workstation and accessed one at a time. Refer to figure B-1.

B-14 HP BASIC In the MS-DOS Environment

Series-200/300
Workstation

M HP-IB
Interface

j'-r,I ISC = 7

Address 0

Drive 0 Drive 1

LlF DIR LlF dir

file1 file1
file2 file2
file3 file3

":,700,0" ":,700,1"

r--------,
I 9122 Dual 3.5" I
I Floppy Drive "
I I 1.- _________

HP-IB Bus

I
Address 5

(drive) ,
Drive 0

LIF dir

file1
file2
file3

Drive 0

LlF dir

file1
file2
file3

":,705,0" ":,706,0"

Oth er HP-IB
Drives Disc

I
Address 6
(hard disc) ,

Drive 1

LlF dir

file1
file2
file3

":,706,1"

r--------- ----,
I 9133 Hard Disc Drive :
: With 3.5" Floppy Drive I
L.. ______________ J

Figure B·1. Series 2001300 Mass Storage Scheme

HP BASIC In the MS-DOS Environment B·15

B

The HP-IB drives can be flexible disc drives, hard disc drives,
or combination flexible and hard disc drives. Each drive is
designated by a separate address on the HP-IB bus. A com­
bination drive may have two addresses; one for the flexible,
another for the hard disc.

Each drive in the mass storage system contains its own file
system in an HP-unique format called LIF (Logical Inter­
change Format). Each LIF drive contains a directory and a
number of files.

HP BASIC selects each drive in the series 200/300 mass stor­
age system through a Mass Storage Unit Specifier (MSUS,
also sometimes called a Mass Storage Volume Specifier, or
MSVS). An MSUS has the form:

":<drive type>, <drive select code>"

The default drive type applies to internal drives used with the
HP BASIC Language Processor, so the <drive type> field
can be left blank.

The < drive select code> is a three or four-digit number; the
two least significant digits give the HP-IB address of the disc
drive, and the one or two most significant digits give the in­
terface select code of the series 200/300 HP-IB interface that
the drive is connected to.

An HP BASIC user uses the MASS STORAGE IS statement to
switch between different LIF drives; once a LIF drive has
been selected, its files can be listed, copied, deleted, read, or
written. MASS STORAGE IS has the syntax:

MASS STORAGE IS <MSUS>

In the example in figure B-t (which illustrates a typical series
200/300 file system), a dual flexible disc drive (with HP-IB
address 0) and a combination flexible and hard disc drive
(with address 5 for the flexible disc drive and address 6 for
the hard disc drive; note that the hard disc is further divided
into two partitions) are connected to a series 200/300 HP-IB
interface with interface select code 7.

B-16 HP BASIC In the MS-DOS Environment

The flexible disc drive on the combination drive can be se­
lected with the statement:

I MASS STORAGE IS ":,705,0"

The second partition of the hard disc drive could later be se­
lected with:

MASS STORAGE IS ":,706,1"

LOAD "SomeProg:,700,1"

The MS-DOS File
System

Files on drives other than the one currently in effect can be
accessed by appending the MSUS of the drive they are stored
on to their filenames; for example, given the mass storage
system shown in figure 1:

would load a file from the flexible drive, even if it hadn't
been selected by MASS STORAGE IS.

Most MS-DOS-based personal computers usually do not use
external drives; they use built-in flexible disc and hard disc
drives. A typical PC uses one or two flexible disc drives and a
single hard disc drive. A hard disc drive may be partitioned
into multiple volumes.

HP BASIC In the MS-DOS Environment B-17

B

.-_:~ :":~ _~ : l_ ~ :~~ t;L ~ :':~ J;=:! _ :_:~~_ ~~ ~~ _ : ~:v: _I,
I 360K Internal i I 1.2M Internal I I Internal I Other Hard Disc Volumes, Other I
I Floppy Drive I I Floppy Drive I I Hard Disc I Hard Discs, Network Disc Servers, I
L _____ -7"' L_ -- - __ ...J '"-- -- - - _.....I I RAM Discs HP-IB & HP-IL Disc I

, I
I Drives, ETC. L ________ ~ ______ J

C: Drive File System (Detail)

C:\
file1
file2
file3 , t t

C:\APPS C:\BIN Other

file1 file1 Subdirectories

file2 file2
file3 file3

I
t t

C:\APPS\PGMS C:\APPS\DATA

file1 file1
file2 file2
file3 file3

Figure B·2. MS·DOS Mass Storage Scheme

B-18 HP BASIC In the MS·DOS Environment

COPY G:OLDFILE NEWFILE

The MS-DOS file system can accommodate a large variety of
mass storage systems:

• RAM discs.

• Network mass storage servers.

• External disc drives.

MS-DOS designates each of these drive with a drive ID code,
consisting of a letter followed by a 0:0, giving drive IDs from
U A:" to HZ:" (refer to figure A-2). In a typical system, the A
and B drive IDs designate flexible drives, and the C drive ID
specifies the hard disc. All you have to do to select a particu­
lar drive is enter its drive ID; for example, entering:

selects a flexible disc drive. A file on a disc other than the one
currently in effect can be identified by preceding its file name
with the drive ID of the disc it's stored on; for example, enter­
ing the command:

copies a file named OLDFILE from drive G: to a file named
NEWFILE in the disc drive and directory currently in effect.

Each MS-DOS disc contains its own hierarchical file system.
A series 200/300 LIF volume is flat; it contains a single direc­
tory and a list of files. In a hierarchical file system, each disc
contains a directory with the name U\", which may may con­
tain files - as well as other sub-directories, which may contain
files, and their own subdirectories ... and so on, forming an
upside-down tree of directories, with the H \" directory at the
root of the tree. (As a result, the U\" directory is generally
called the root directory, or simply root.)

HP BASIC In the MS·DOS Environment B·19

B

MKDIR ,SIN
MKDIR ,APPS

MKDIR ,APPS,PGMS
MKDIR ,APPS,DATA

The advantage of the hierarchical file system is that it makes
it much easier for users to organize their files; files can be
stored in subdirectories appropriate to their functions. For ex­
ample (referring to figure B-2), two subdirectories could be
created on a hard disc with drive 10 HC", one (named APPS)
to store applications programs , the other (named BIN) to
store various system programs. These subdirectories can be
created with the MS-DOS MKDIR command:

Two further subdirectories could be made for the APPS direc­
tory, one to store auxiliary programs (PGMS) and another to
store data files (DATA):

Note that the two subdirectories are identified by linking their
names to that of their parent directory, APPS, with a U\". Us­
ing this same convention, (and prefixing a drive 10) allows a
file named UDFILE" in the U\APPS\DATN directory to be
designated by:

This is called the full pathname of the file (since it specifies a
path through the directory tree), and it uniquely describes the
file from any directory within the MS-DOS file system.

B-20 HP BASIC In the MS-DOS Environment

Language
Processor Mass
Storage Options

An MS-DOS user switches between directories with the CD
(Change Directories) command. For example, if the current di­
rectory is H\APPS\PGMSH, then:

changes the current directory to the root directory.

Since the language processor emulates computers that use a
LIF file system but resides on a MS-DOS machine, under­
standing the file system can be difficult. Refer to figure B-3.

HP BASIC In the MS-DOS Environment B-21

HP BASIC Configuration
BASIC ,L HP-IB HP-IB Bus

Program (CON F) Language Interface
Processor ,.. ..,. ISC = 7,24,25 To LlF Discs

B :,1500,0 A: J:l :,1500,1 C:\BASIC
:,1500,2 C:\BASIC\PGMS
:,1500,3 C:\BASIC\DATA Virtual HP-IB
:,1500,4 D: Interface

ISC = 15

..
'"

HPW.CON File I
• ~

Language Processor Emulation Software (Running on PC Host)

LlF-MSUS-to-DOS-Directory Mapping Table

~_'~,~5~~C: -1 ~:~5~o.: 1: f
A: C:\BASIC C~\ ~~~~~'~MS -1-6<~:~~~\3~ATA ":~ ~~~4'~ j

I '-----LX '- - - - - - - - - - -} t L l L 1

r _ ~_D~~ __ H _ ~_ ~:v: J:::! __ ~ _D~~ __ -!:j _ ~'_ D~;~ u!
I Floppy Drive I I Floppy Drive I I Hard Disc I I RAM Disc I
L..~ _______ J L. ________ J L ___ ~

r----....!--------..l I I
I c:\ I
I

r.l DOS Files
1---- _,

, ,
I , ,
I
I C:\BASIC C:\BIN
L ... HPWLlF.DIR

HPW Files DOS FILES
DOS Files

I

~ ,
C:\BASIC\PGMS C:\BASIC\DATA

... HPWLlF.DIR r~ HPWLlF.DIR
HPW Files , HPW Files
DOS Files I DOS Files L ________________ ~

Figure B·3. HP BASIC Access to MS·DOS File System

B-22 HP BASIC In the MS-DOS Environment

The language processor system can access mass storage in
several ways:

• HP-IB disc drives can be connected to the language
processor's built-in HP-IB interface (at interface select code
7) and accessed just as they are under series 200/300.

• Similarly, if the Language Processor has direct control over
PC HP-IB interfaces (using interface select codes 24 or 25)
these interfaces can be used to directly access HP-IB disc
drives, just as they are by the built-in HP-IB interface.

• The Language Processor can access LIF flexible discs from
built-in PC flexible drives.

• The Language Processor can also access files from MS-DOS
directories using a scheme by which the MS-DOS directo­
ries appears to the language processor as virtual LIF drives.

In the first two cases, only LIF drives can be accessed by the
language processor; this form of access is exactly the same as
the series 200/300 scheme and won't be discussed further
here. The last two cases, however, require further explana­
tion, and will be discussed in the next section.

Concepts of the Language Processor Access to the MS­
DOS File System. The language processor accesses MS-DOS
drives and directories as drives of a virtual HP-IB disc drive
(at address 0) connected to a virtual HP-IB interface (at inter­
face select code 15.) Which MS-DOS drives and directories
HP BASIC can access depends on how the language processor
system is configured.

The configuration of the language processor system is con­
trolled by a configuration file that specifies a list of MS-DOS
directories that the language processor maps into HP BASIC
virtual-LIF volumes. This configuration file is called
HPW.CON and it can be modified using the configuration
utility program CONF. This will be discussed later, or you can
refer to appendix F for information on using this utility.

HP BASIC In the MS-DOS Environment B-23

B

Each drive or directory is mapped into a virtual-LIF volume
corresponding to its position in the list; the first item in the
list becomes virtual-LIF volume 0, the second becomes vir­
tual-LIF volume I, and so on. The list can contain up to 15
drive or directory names, providing up to 15 virtual-LIF vol­
umes numbered 0 through 14.

The default drive mapping (when no drives or directories are
specified in the configuration file) is:

A: H:,1500,O"
B: H:,1500,IH
C: ":,1500,2"
D: u:,1500,3"

Assume that you want to change this mapping, and you want
to map the following physical disc drives and directories into
virtual-LIF volumes:

1. A:

2. C: \HP _BASIC

3. C:\HP _BASIC\PGMS

4. C:\HP _BASIC \ DATA

5. D:

Execute the configuration utility program from MS-DOS and
then move the cursor down the main menu to the number
that appears to the right of the word "drives". Then press
@, "EDIT DRIVES». The screen will display the 15 virtual­
LIF volumes available, 0 through 14, on the left margin.
These cannot be changed, however any mapping that exists
for any of these volumes can be changed. To specify the de­
sired mapping, position the cursor to the right of the
appropriate LIP volume, enter the physical drive name, and
press (Enter). The cursor will automatically move to the next
line. If you do not wish to use the LIF volume on that line,
simply press (Enter). To specify the mapping for the drives
and directories listed above, the screen would look like this:

B·24 HP BASIC In the MS·DOS Environment

:,151313,13 A:
:,151313,1 C:,HP_BASIC
:,151313,2 C:,HP_BASIC,PGMS
:,151313,3 C:,HP_BASIC,DATA
:,151313,4 D:
:,151313,5
:,15013,6
:,15013,7
:,151313,8
:,151313,9
:,151313,113
:,151313,11
:,15013,12
:,151313,13
:,151313,14

MSI ":,151313,2"

When you are done, press @, "Return to MAIN". From the
main screen, press (ill (SAVE CONFIG) to save the configu­
ration of the drives. Now boot HP BASIC and your
configuration is active.

To select drive C:\HP _BASIC\PGMS from HP BASIC, type:

and press (Enter). Under this scheme, LIF flexible discs can be
inserted into the PC's internal flexible disc drives and
accessed just as they would be in an HP-IB disc drive con­
nected directly to the language processor.

HP BASIC In the MS-DOS Environment B-25

B

B

Access to MS-DOS discs and directories, however, is more
complicated. To allow HP BASIC to access them in the same
way that it accesses a LIF volume, a virtual LIF organization is
installed on top of the MS-DOS disc or directory. The key to
this virtual-LIF organization is a file named HPWLIEDIR that
exists on each MS-DOS disc or directory mapped into the
HP BASIC file system. HPWLIEDIR is an MS-DOS file
whose data is organized in the same way as a conventional
LIF directory; it contains a list of all the files HP BASIC has
stored on that MS-DOS disc or directory. Furthermore, just as
HPWLIEDIR is a MS-DOS file with LIF organization, all the
files HP BASIC stores on that disc or directory are MS-DOS
files with LIF organization. These virtual-LIF files (and
HPWLIEDIR) are known as HPW files. All HPW files have
internal organizations different from typical MS-DOS files; in
certain cases they can be translated (using a utility caned
HPWUTIL, which is provided with the HP BASIC) so they
can be accessed from MS-DOS programs.

Normal MS-DOS files can be stored on discs or directories
that are being used as virtual-LIF volumes; there's no differ­
ence between them and any other MS-DOS disc or directory,
except that they contain certain unusual file types. Since these
normal MS-DOS files are not listed in the virtual-LIF
volume's HPWLIEDIR file, HP BASIC cannot catalog or ac­
cess them.

MS-DOS files cannot be read by HP BASIC even if they are
recognized, since their internal organization differs from the
organization of HP BASIC HPW files. (However, HPWUTIL
can translate MS-DOS files into HPW files and add an appro­
priate entry into HPWLIEDIR.)

B·26 HP BASIC In the MS·DOS Environment

Implications of the Language Processor Access to MS­
DOS File System. This unusual mass storage scheme
(devised to allow two different file systems to coexist) has cer­
tain implications, some of which have already been
mentioned (like the need to translate between MS-DOS and
HPW formats). Other implications need to be explained in
detail.

• When the HP BASIC language processor creates MS-DOS
filenames, it uses these rules to map:

• Embedded blanks and illegal MS-DOS characters be­
come N_".

• Lowercase letters are converted to uppercase letters.

• Filenames greater than eight characters appear with MS­
DOS extensions. For example, N ABCDEFGHIJ" would be
renamed in MS-DOS as N ABCDEFGH.lJ".

• To avoid duplicate names in MS-DOS, a unique two-let­
ter extension is appended to the MS-DOS file name
when needed.

• Attempting to access a LIF disc from MS-DOS will generate
an error. Access LIF discs only from HP BASIC or
HPWUTIL. Refer to appendix C for information on con­
verting files using HPWUTIL.

• HP BASIC cannot recognize HPW files in a virtual-LIF vol­
umes unless they have an entry in the volume's
HPWLIF.DIR file. This means that an HP BASIC file can­
not simply be copied into a virtual-LIF volume with the
MS-DOS COPY command; HP BASIC won't recognize it,
since COPY won't update HPWLIF.DIR. HP BASIC files
should be copied from virtual-LIF volume to virtual-LIF
volume by running HP BASIC and performing the copy
through HP BASIC COPY command (the HPWUTIL pro­
gram can be also be used for this purpose).

HP BASIC In the MS-DOS Environment B-27

B

ATTRIB -R <filename)

ATTRIB -R *.*

• Similarly, HPW files should not simply be deleted using
the MS-DOS DEL command, since that does not remove
their entry from the HPWLIEDIR file.'In fact, all HPW files
are write-protected from MS-DOS to prevent this. How­
ever, in some cases, a user may want to clear the contents
of a MS-DOS disc or directory designated as a virtual-LIF
volume, and in that case the write-protection becomes a
nuisance. Fortunately, write-protection can be removed us­
ing the MS-DOS ATTRIB command:

You can use ATTRIB to remove write-protection from all
files in the current MS-DOS directory as follows:

• Since virtual-LIF drives are simply MS-DOS directories
containing HPW files, any directory in the MS-DOS file
system - whether it's on a flexible disc, a hard disc, a PC
RAM disc, a PC network mass storage server, an HP-IL
disc drive, or an HP-IB disc drive - can be used as a vir­
tual-LIF drive. (However, LIF discs can be accessed only
from the PC's internal flexible drives.)

• If there is no HPWLIE DIR file on the disc or directory des­
ignated as a virtual-LIF drive when HP BASIC attempts to
access it, an HPWLIEDIR file will automatically be created.
Note that in this case an error will result if the disc in use
is write-protected.

B·28 HP BASIC In the MS·DOS Environment

Using A PC
HP·IB Mass
Storage Device

The HPWUTIL Utility Program. The HP HP BASIC lan­
guage processor also includes a utility program called
HPWUTIL, to allow the handling and conversion of HPW
files in MS-DOS directories.

The HPWUTIL program allows you to:

• Initialize flexible discs in LIF format on the PC's flexible
drives.

• Copy LIF discs to virtual-LIF volumes, and the reverse.

• Catalog LIF or virtual-LIF volumes.

• Check discs.

• Translate a MS-DOS file to an HPW file, or the reverse.

• Compress an HPWLIF.DIR directory file.

The HPWUTIL program can be run interactively or in a com­
mand-line mode; refer to appendix C for more information.

If you have a separate HP-IB interface such as the
HP 82990A, then you may use that interface as a second
HP-IB interface from the HP BASIC Language Processor (the
first is the built-in HP-IB interface on the language processor
card). You can use this second HP-IB interface as an I/0
channel using the emulation of select code 24 or 25. You may
attach a mass storage device to this interface for use by the
HP BASIC Language Processor. When accessed through select
code 24 or 25, this mass storage device must operate using
HP LIF-formatted discs.

HP BASIC In the MS·DOS Environment B-29

B

Caution

Disc
Initialization

,
You may also choose to connect a mass storage device to the
PC HP-IB interface using MS-DOS formatted discs. In this
case, use the configuration utility to allow HP BASIC to ac­
cess the external device. Refer to appendix F.

When using an external PC HP-IB interface, access the inter­
face using select code 15 if the interface is assigned to an MS­
DOS drive. Access the interface using select code 24 if it is to
be used by HP BASIC (either for instrument control or for LlF
mass storage) and has no drive designator assigned by MS­
DOS. You cannot have an external HP-IB interface assigned to
an MS-DOS device and also use it as an instrument control in­
terface. Be sure to access the interface using either select
code 15 or select code 24, but never both 15 and 24.

Disc initialization in the HP BASIC language processor is not
the same as in Series 200/300 HP BASIC. The HP BASIC lan­
guage processor initializes floppy discs in MS-DOS format
only (floppy discs can be initialized in LIF format using the
disc utility HPWUTIL). To initialize a disc in the first drive
specified in the DRIVES: keyword in the configuration file,
type:

INITIALIZE ":,1500,0" (Enter)

HP BASIC will be temporarily suspended, and from this point
on, the procedure will be the same as if you had entered the
FORMAT command from MS-DOS. When the disc is initial­
ized, HP BASIC will automatically return. A directory file is
created on the initialized disc.

B·30 HP BASIC In the MS·DOS Environment

ID PROM

Using a Network
With the
HP BASIC
Language
Processor

When using the 9836A and 9836C display models, the
HP BASIC language processor emulates the standard Series
200 ID PROM. If your PC does not have an HP-HIL security
module (HP 46084A) attached, then the serial number will be
11111111111, and not usable for security purposes. If your
PC does have the security module attached, then the module
will be used to generate a valid serial number for security
purposes.

A disc operating system which provides remote file access
(RFA) in a transparent manner is often called a "networked
disc operating system". When using such a system, the
HP BASIC Language Processor can access remote file systems
just as it would a local file system. If mass storage disc drive P
is networked, then use the configuration utility to allow
HP BASIC to access the networked drive. Refer to appen­
dix F.

You can access networked PC printers using the select code
26 port to write to LPTl. If LPTl is networked, then select
code 26 will be also.

To access network services which provide network capabili­
ties on a command basis (such as Network File Transfer
(NFT) and Virtual Terminal (VT», you must use the MS-DOS
communication port (select code 19) from the HP BASIC Lan­
guage Processor.

Access to the Shared Resource Management (SRM) network is
provided using the SRM add-on interface card. Using this
card and any set of MS-DOS networking services, the
HP BASIC Language Processor can perform a gateway service
between the SRM network and the provided MS-DOS
network.

HP BASIC In the MS·DOS Environment B-31

B
File Transfers

SOUND

MS-DOS applications that need to read the HP BASIC Lan­
guage Processor data files may do so directly since each such
file is also recognized by MS-DOS. However, the internal for­
mat of the file must be known to the MS-DOS application
reading the file.

MS-DOS applications that need to write to the HP BASIC
Language Processor files must insure that such files are first
copied out of the HPW file system using the utility program
HPWUTIL. The files may then be modified by the MS-DOS
application, and copied back into the HPW file system using
HPWUTIL. Failure to follow this procedure may result in cor­
ruption of the file contents.

In general, format conversion is not performed during file
transfer into or out of the HPW file system. File format con­
version is usuartY the responsibility of the programmers.
However, in the case of the HP BASIC Language Processor
ASCII files, format conversion can be performed by
HPWUTIL to and from MS-DOS .TXT files.

The HP BASIC statement SOUND is not supported.

B-32 HP BASIC In the MS-DOS Environment

c

HP BASIC File
Types

Utilities

The utilities program, HPWUTIL, provides utilities that sim­
plify the conversion of files between Logical Interchange
Format (UF), MS-DOS format, and the file system used by
HP BASIC. The program is menu-driven and operation is
self-explanatory. It may be executed from a batch file or di­
rectly from MS-DOS. This appendix describes some of the
conventions that are followed by the program and briefly
summarizes each of the functions.

There are three file formats in the HP BASIC environment.

1. HP LIF format. Most floppy discs formatted on Series
200/300 machines running HP BASIC or HP PASCAL
have this format.

2. HPW files. These are files created by HP BASIC on MS­
DOS-formatted discs. They are MS-DOS files containing
binary images of HP BASIC PROG, BOAT and other
types of files. The MS-DOS file HPWLIF.DIR is a direc­
tory of all HPW files within the current MS-DOS
directory. This file is automatically created by
HP BASIC. HPW files and directories are write-protected
from MS-DOS.

3. MS-DOS files. Any MS-DOS files that are not created
by HP BASIC. These files cannot be accessed directly
from within HP BASIC using standard keywords. Some
MS-DOS files can be incorporated into the HP BASIC
system by using this utilities program.

Utilities C-1

c

Note

Utility Functions

I HPWUTI L (Enter)

Note

(F1) Initializing an
LlF Formatted Disc

C·2 Utilities

HPW and MS-DOS files may exist on the same disc.

The utility program is found on disc one. If you copied this
disc onto a work disc or a hard disk, use that version. To exe­
cute the program from MS-DOS, type:

A menu will appear on the screen allowing you to choose the
utility function you want to perform. Each of these functions
is described in the following sections.

You can execute certain functions of the utility program from
a batch file. Complete information on this procedure can be
found in the documentation file HPWUTIL.DOC on disc one.
You can print this file or list it on your CRT using MS-DOS
commands.

This function initializes a floppy disc to the standard LIF for­
mat. For 5% inch discs, this function will work on the 1.2
Meg disc drive; however, for consistent results, we recom­
mend that you use a 360K drive if one is available. Note that
3.5-inch discs are initialized to a capacity of 720K bytes, re­
gardless of the normal capacity of the disc. After a disc is
initialized by this function, it is compatible with floppy disc
drives on Series 200/300 machines.

Note

(F2) LlF Copy

(F3) Catalog LlF or
HPW Directory

(F4) Verify
Disc/Directory

Integrity

You must have BIOS ROM release A.01.05 or greater in order
to use this function. This function will not work on computers
with the older Phoenix BIOS ROM.

This function copies an entire LIF disc to an MS-DOS direc­
tory and creates an HPW file subsystem and vice versa. The
destination disc must have at least enough space to copy the
files on the source medium. There are some differences in ac­
tion depending on which way files are copied.

• LIP to HPW. When an LIF disc is copied to an HPW direc­
tory, the target directory is not overwritten. Instead, all files
that are copied are appended to the end of the existing
directory.

• HPW to LIE In this case the entire destination disc is over­
written by the source files.

• HPW to HPW. In this case, the entire source directory is
copied to the destination directory.

This function performs a CAT on an LIF volume or HPW di­
rectory. The user must choose the format of the disc, either
LIF or HPW. If the user specifies the wrong format, the read
will fail. In this case, simply specify the other disc format and
repeat the process.

This function performs a check of the HPW file subsystem in
a MS-DOS directory. It also shows MS-DOS file names of
HP BASIC files. Note that the file names that you see when
you execute CAT from HP BASIC may not be the same as the
names of the MS-DOS files. Refer to appendix B for naming
conventions.

Utilities C-3

c

(FS) Check In an
MS-DOS File to an

HPW Directory

C-4 Utilities

This function also verifies that each file listed in the HPW
directory is present as a non-empty file. If a discrepancy is
found, you have the following options:

• Deleting the name of the missing file(s) from the HPW di­
rectory to make the system consistent. If you have a copy
of the missing file, it may be restored to the HPW directory
using the MS-DOS to HPW copy function (FS).

• Doing nothing, which leaves the subsystem inconsistent.

• In the case of a missing BDAT or ASCII HPW file, you can
simply create an empty file.

The recommended action to take in case of a missing file is
the first option above. This will avoid file access errors which
could occur the next time you bring HP BASIC up.

This function allows you to incorporate an MS-DOS file into
an HPW subsystem. You must specify the HP BASIC file type
you want the HPW file to be. If the source file is an MS-DOS
text file or an executable 68000 binary file, the program will
do some transformation on the file. If the source file is an
MS-DOS text file, it is converted into ASCII. The resulting file
is an HPW file containing data in HP BASIC ASCII file for­
mat. If the source is a binary file that you intend to use to
boot HP BASIC, you must supply the load and execution ad­
dresses. If the source file is a BOAT file, you must specify the
logical record size in bytes.

The directory containing the source file and the destination
directory containing the HPW file subsystem mayor may not
be the same. If the source and destination directories are not
the same, a copy of the source file is created in the destina­
tion directory. If the directories are the same, a copy is not
made (except when the source file is an MS-DOS text file).

If an MS-DOS text file is checked in as an HPW ASCII file,
the format converted file is checked in and the source file
remains.

Whether the destination file is copied or renamed, if a file
with the same name exists in the destination directory, a
unique name is generated by adding a suffix.

(F6) Check Out an
HPW File to

MS·DOS

Note

(F7) Pack the HPW
Directory File

This function checks out or exports a file from an HPW file
subsystem and enables write access. Once a file is exported
from an HPW file subsystem, it is not accessible from within
HP BASIC unless it is checked in by the previous function.

No data conversion is done unless the file is ASCII type. In
this case, the file can be converted into a MS-DOS text file.
You can access the resulting file with standard MS-DOS func­
tions like TYPE and MORE, and edit it with editors.

In order to make the original file type of the exported file eas­
ier to identify, a suffix is attached as the last character(s) of
the MS-DOS file name extention.

These suffixes are:

A ASCII type file when it is exported without format
change.

TXT ASCII type file when it is converted into a MS-DOS
text file.

B BIN file.

D BDAT file.

P Prog file

S SYSTEM FILE.

X Unknown file type.

The previous two functions, (FS) and (F6), deal with file ex­
changes between MS-DOS and HPW file format and NOT
between LIF and MS-DOS. In order to accomplish a LIF to
MS-DOS exchange, you must first do a LIF conversion (F2).

This function deletes null entries left in the HPW directory
file (HPWLIEDIR) by the PURGE, SAVE, RE-STORE, and
RE-SAVE commands, and then rebuilds the directory. The op­
eration involves the directory file ONLY and regular files are
not affected in any way, except that they may be renamed. As
a result, subsequent mass storage operations in HP BASIC
may run a little faster.

Utilities C·5

D List of Binaries

This appendix lists the binaries for the language extensions,
CRT display drivers, mass storage device drivers, and the in­
terface card drivers that are included with your system. All
the binaries listed here are contained on disc three. This sys­
tem will occupy 358K bytes of RAM. Remember that you can
selectively load the binaries that you need to accomplish the
task at hand, thus saving memory. Refer to chapter 2 for a
description of how to load and save binaries in your system.

Language Extensions
Bytes Disc
RAM Space

CLOCK-Real time clock 4K 4K

COMPLEX-Complex number functions 7K 7K

EDIT -System editor" 20 K 20 K

ERR-Error messages 7K 7K

GRAPH-Basic graphics 46 K 43 K

GRAPHX-Graphics extensions 27 K 27 K

10-Extended 1/0 11 K 11 K

KBD-Keyboard extensions 13 K 12 K

KNB2_0-BASIC 2.0 knob default OK OK

LEX Lexical order 10 K 10 K

MS-Extended mass storage 9K 9K

MAT -Matrix operations 20 K 21 K

• These binaries are automatically loaded when you install HP BASIC. All
other binaries may be selectively loaded, either during the install process
or later.

List of Binaries D·1

Language Extensions
Bytes Disc
RAM Space

DCOMM-Data Communications 7 K 6K

PDEV-Program development 13 K 13 K

SRM-Shared Resource Management 46 K 44 K

TRANS-Transfer statement 34 K 30 K

XREF-Cross reference statement 6 K 6 K

D
Drivers

Bytes Disc
RAM Space

CRTA-CRT display driver' 11 K 4K

CRTB-CRT display driver 18K 6K

CRTX-CRT display driver 2K 2K

CS80-CS80 & SS80 disc driver' 11K 4K

DISC-AMIGO HP-IB disc driver' 7K 7K

GPIO-Paraliel I/O driver' 6K 6K

HPIB-HP-IB built-in driver' 12K 12K

SERIAL-RS-232 driver 5K 5K

• These binaries are automatically loaded when you install
HP BASIC. All other binaries may be selectively loaded, either
during the install process or later.

D-2 List of Binaries

E Keyboard Information

This appendix describes the different keyboards that are sup­
ported by your HP BASIC system. Keep in mind that
HP BASIC is emulating the ITF keyboard (such as the
HP 46021), plus several functions from the HP 98203A key­
board and the HP 98203B & C keyboards.

These keyboards are shown in the following illustrations:

I
E::J [OJ ~ D ~ 0 ElIiiJ 0 [OJ [] ID [] [J t:J ~
~~~D[OJDIiJJIiJJUDD.OD~~u 
~ c=J [J [] D [] D IiJJ EJ D [>] [J EJ I:J ~ l':J 

Ii:] ~I I~ 

ITF Keyboard 

Keyboard Function Mapping E·1 



E 

E-2 Keyboard Information 

HP 98203A Keyboard 

0 ===== 
===== 

. , 
== 
== 

=~ 

==E3 

HP 98203B & C Keyboards 

df,&,~~ 
,:: I :~~ Ii ::,' :::., 

. , . oJ 
1 , 3 -J . G 

The following keyboards are supported by HP BASIC: 

• The Vectra PC keyboard. 

• The Enhanced Vectra PC keyboard. 



These keyboards are shown in the following illustrations: 

EJ~DuutJ~OEJu[O[On r;:J~[::J ~[][hJlD 
[]DEJuEJ[][]UDOD~ bJO~ [JD[[]O 

E=:JO[]L]tJDEJEJEJO[]I"- I bJ[;]~ ~[]Dn 
r::J ~ c::J~ ~GJ U 

Vectra PC Keyboard 

Enhanced Vectra PC Keyboard 

Keyboard Information E·3 



E 

Vectra PC 
Keyboard 

From these illustrations determine the keyboard you are us­
ing, then go to the section that explains your particular 
keyboard. 

The keys on the Vectra PC keyboard are arranged into the 
following functional groups: 

Softkeys 

IIDDDDICJIc::Jc::JDc::JID 

Program 
Control 
Keys 

Softkey 
Control 
Keys 

E-4 Keyboard Information 

Character Entry Keys Cursor 
Control and 
Editing Keys 

Vectra PC Keyboard Functional Groups 

Numeric 
Keypad 

This section provides you with key definitions for the Vectra 
PC keyboard. 



Note If you want to see the action of the keys demonstrated in the 
following steps, boot your HP BASIC system in the normal 
manner. Then type 

SCRATCH (Enter) 

before proceeding. 

HP BASIC 
Keyboard Overlays 

Two keyboard overlays designed for the Vectra PC keyboard 
are included with your HP BASIC system. Place the overlays 
on the keyboard as shown below: 

~EJ[]rJ[]tJ~O~[]DDn bJ~~ 
~~~[]~~~~DDD~~D~ 

~O~~~~~~U~~ ~~~
LJ ~ ~bJ

HP BASIC Keyboard Overlays

Keyboard Information E-5

E

Character Entry
Keys

uUEJDuU[]~Duu[[J[[Jn
~ []uu[JEJEJuDDDD~
~LlDDLlUEJEJDu[]I"~" I
LJ ~

E·6 Keyboard Informalion

Vectra PC Keyboard Character Entry Keys

The character keys are arranged like a typewriter, but have
some added features.

(Caps lock) This key sets the unshifted keyboard to either
uppercase (the default after HP BASIC is
booted) or lowercase. The computer displays
which mode it is in when you press the
(Caps lock) key.

Type in a few words, then press the (Caps lock)

key and continue typing. Notice the case
change. Press (CTRL)(End) when you are
finished.

(Shift) You can use the (Shift) key to alternate between
entering standard uppercase and lowercase let­
ters. This is exactly the same as a typewriter.

The (Enter) key has three functions:

• When a program that is executing prompts
you for data, respond by typing the re­
quested data and then pressing (Enter). This
signals the program that you have provided
the data it requested and it can continue.

• When typing in lines of a program the (Enter)
key is used to store each line of program
code.

• After typing in a command the (Enter) key
causes the command to be executed.

Type ED IT and press (Enter). Notice the num­
ber 10 is displayed on the screen. This is the
line number of the first line of an HP BASIC
program. The computer is waiting for you to
type in the line. Type:

!FIRST LINE

and press (Enter). The computer accepts the
statement as a program line and displays 20 in
preparation for the next line. Press ill) when
you are finished.

Pressing (Shift)(Prt Sc) prints a copy of the alpha
display on the default printer.

When pressed along with another key, this key
allows you to generate the rest of the full 256-
bit character set from the main typewriter
section on Standard and European keyboards.

This key moves the cursor forward to preset
tabs. Pressing (Shift)(Tab) moves the cursor
backward to preset tabs.

Before (Tab) can be used, a tab must be set.
Tabs are set and cleared with system menu
softkeys. This will be explained in the section
entitled "System Softkeys."

Keyboard Information E-?

E

Cursor Control
Keys

E·8 Keyboard Information

(CTRL) The control key works like the (Shift) key to ac­
cess a set of standard control characters, such
as line-feed and form-feed. These characters
are useful to you for controlling some devices
and communicating with other computers.

(Shift)(Enter) The Select function (Shift)(Enter» beeps but
performs no function unless it is program­
defined.

Vectra PC Keyboard Cursor Control Keys

The cursor-control keys move the display cursor.

@0
(Shift)@

(Shift)0

G
(Home)

(Shift)(Home)

The 0 and CYl keys allow you to scroll lines
in the output area up and down. Shifted, the
keys allow you to jump to the top and bottom
of the output area.

The @ and 0 keys allow you to move hori­
zontally along a line. Shifted, they allow you
to jump to the left and right limits of a line.

The backspace key works just like the @ key.

The (Home) key positions the print position at
the beginning position on the page. The shifted
(Home) key places the print position at the be­
ginning of the first empty line in the display
(scrolls up if necessary). In edit mode, pressing
this key (shifted or unshifted) causes the com­
puter to beep. To verify operation of the (Home)

key, press @ID(End). Then type
PR I NT II SOMETH I NG II and press (Enter); re­
peat twice. You should now have the following
display:

SOMETHING
SOMETHING
SOMETHING

Press the (Home) key (unshifted).

Type PR I NT II ANY II and press (Enter). Your
display should look like this:

ANY THING
SOMETHING
SOMETHING

Press (CTRL)(End).

Keyboard Information E-9

E

E-10 Keyboard Information

In normal mode, pressing the ~ key
causes the display to scroll down one page and
pressing the ~ key causes the display to
scroll up one page. In edit mode, these keys
move the display one-half page.

To test the horizontal movement of the cursor,
type a few words and press the shifted and
unshifted @ and CB keys. Notice that the
cursor cannot be moved beyond the characters
you have typed. Press (Shift)(End) when
finished.

To test the vertical movement of the cursor,
type EDIT and press (Enter). Now type the fol­
lowing lines, pressing (Enter) after each line (the
first line may be there already, so just press
(Enter) to accept it):

113 !FIRST LINE
20 ! SECOND LINE
30 ! THIRD LINE
413 ! FOURTH LINE

Try the shifted and unshifted 0, (y), and
(Home) keys. Then try the ~ and (Pg Dn)

keys. When you're done, press @) to exit.
Then type S C RAT CHand press (Enter) to clear
memory.

Numeric Keypad

The numeric keypad provides a convenient way to enter
numbers and perform arithmetic operations. Simply type in
the arithmetic expression you want to evaluate and press
(Enter). The result is displayed in the lower-left corner of the
screen.

Type in the following problem using the numeric keypad:

Now press (Enter) to perform the calculation. The answer, 10,
is displayed in the lower-left corner of the screen.

Keyboard Information E-11

Editing Keys

E

E·12 Keyboard Information

The editing keys put easy character editing and line editing at
your
fingertips.

(Shift)~ Pressing (Shift) and ~ inserts a new line above
the cursor's current position (edit mode only).

Type ED IT, then press (Enter). Type in this line
(if it isn't already there):

10 !FIRST LINE

No~ with the cursor somewhere on line 10,
press (Shift)~. Notice that a new line number
(1) is inserted before line 10. Press @ when
finished.

(Shift)~
Delete line

~
Insert char

~
Delete char

Pressing (Shift)(Del) deletes the line containing
the cursor (edit mode only).

Type EDIT, then press (Enter). Position the
cursor to the line:

10 !FIRST LINE

and press (Shift)~. The line is removed. To
restore the line, press @ (or (Shift)~),
then press (Enter) to enter it into the program.
Press @ to exit edit mode.

Pressing ~ sets insert mode, allowing you to
insert characters to the left of the cursor. Press
the key a second time to cancel insert mode.

Carefully type the following line exactly as
shown:

THIS IS A TEST

Position the cursor under the period and press
~. Now type:

OF INSERT MODE

and press ~ again. The line should now look
like this:

THIS IS A TEST OF INSERT MODE.

The new characters were inserted to the left of
the period. Press (Shift)(End) when finished.

Pressing (Del) deletes the character at the
cursor's position.

Type a few words and experiment with @ill,
positioning the cursor at various places on the
line. Notice that if you hold the key down,
characters are deleted until you release it. De­
lete all of the characters you typed.

Keyboard Information E·13

E

Program Control
Keys

E·14 Keyboard Information

Pressing (End) clears from the current cursor
position to the end of the line.

Pressing (Shift)(End) clears the keyboard line
and the message/results line.

Type in a few words and use the @ key to po­
sition the cursor in the middle of the line. Press
(End) to clear to the end of the line. Press
(Shift)(End) to clear the rest of the line.

(CTRL)(End) Pressing (CTRL)(End) clears the entire alpha
Clr screen screen.

Type the following HP BASIC command:

PRINT "PUT THIS MESSAGE IN THE
OUTPUT AREA,"

Now press (Enter) to execute it. Press @ to re­
call the command, and press (Enter) again.
Repeat this step several times to fill the screen
with messages. Now press (CTRL)(End) to erase
all lines at once.

The following keys allow you to control execution of the pro­
gram stored in the computer's memory.

@
Clr I/O

(Shift)@
Reset

Cill or
(Shift)~
Recall

Pressing @ pauses program execution when
the computer is performing or trying to per­
form an I/O operation. Press @ instead of
(Shift Kill (Stop) when the computer is hung
up on an I/O operation since (Shift)@ works
only after the computer finishes the current
program line. Pressing@ cancels the I/0 op­
eration and pauses the program at the current
line.

Pressing (Shift)@ pauses program execution
immediately without erasing the program from
memory. The HP BASIC Reset message indi­
cates the computer is ready for your command.

Pressing Cill recalls the last line that you en­
tered, executed, or deleted. Several previous
lines can be recalled this way. Recall is particu­
larly handy to use when you mistype a line.
Instead of retyping the entire line, you can re­
call it, edit it using the editing keys, and enter
or execute it again. Type:

PRINT "1" [Enter]

to print the number 1 on the screen. Now
press Cill to recall the print statement. Edit the
statement to print the number 2 by positioning
the cursor under the 1 and typing 2 over it.
Press (Enter) again. Now press Cill several
times to see all of the statements it remembers.
Then press (etrl)(End) to clear the screen when
you are finished.

(Shift)Cill or (Shift)~ moves forward
through the recall stack.

Pressing @ in the System menu performs the
same recall function as Cill.

Keyboard Information E-15

E

E-16 Keyboard Information

@
Pause

(Shift)@
Stop

(ill
RESULT

@
Step

(Shift)@

Print All

Pressing @ pauses program execution after
the current line. Pressing Continue @ in the
System menu resumes program execution from
the point where it was paused.

Pressing (Shift)@ stops program execution af­
ter the current line. To restart the program,
press RUN (@) in the System menu.

Pressing (ill returns the result of the last
arithmetic expression that was executed.

Press (Shift)(End) to clear the line, then type
2 3 +45 and press (Enter).

The result, 68, is displayed in the lower-left
corner of the screen. To
add 123 to this value, press (ill and type
+ 12 3 amd press (Enter). The new result, 191,
is now displayed. Press (Shift)(End) when
finished.

@ allows you to execute one program line at
a time. This is particularly useful for debug­
ging programs.

The Print All key (@) turns the printall
mode on and off, allowing keyboard opera­
tions and displayed error messages to be
copied to a printall device.

Press Print All once to set printall on and
again to set printall off. The display's output
area is the default printall device at powerup.

Press Print All to turn on prirltall mode. Now
type in the following command:

PRINT "THIS IS A KEYBOARD
OPE R A TI 0 N " (Enter)

@)
Alpha

(Shift)@)

Dump
Alpha

(ill
Graphics

(Shift)(ill
Dump
Graph

(CTRl)@

Background

(CTRl)CIT[)
EXIT

Both the PRINT command and the message it­
self are displayed on the screen, which is the
default printall device. Now type:

THIS WILL CAUSE AN ERROR (Enter)

Because this is not an executable HP BASIC
statement, an error message is displayed at the
bottom of the screen and in the printall area at
the top of the screen. A log of all commands
typed and executed at the keyboard, along
with any error messages, is thus produced
Press (Ctrl)(End) to clear the display, and press
Print All (Cill) to turn off printall mode.

Pressing @) once turns on the alphanumeric
display. Pressing it a second time turns off the
graphics display. This key function requires
that the GRAPH binary be loaded.

Pressing (Shift)@) prints a complete copy of
the alpha display on the default printer. The
Dump Alpha function is also executed by
(Shift)(Prt Sc) .

Pressing (ill once turns on the graphics dis­
play. Pressing it the second time turns off the
alphanumeric display.

Pressing (Shift)(ill prints a complete copy of
the graphics display on the default printer.

Both Graphics and Dump Graph key functions
require that the GRAPH language binary ex­
tension file be loaded.

Pressing (CTRl)@ places HP BASIC in back­
ground operation. This is identical to executing
OUTPUT 19;"BACKGROUND" from
HP BASIC. Refer to appendix B for more in­
formation on background operation.

Pressing (CTRl)CIT[) terminates HP BASIC and
returns your computer to MS-DOS.

Keyboard Information E-17

E

Softkeys and
Softkey Control

E-18 Keyboard Information

There are eight softkeys (labeled CIT) through @) and two
keys «(ill and CEQ)) that control the definitions of the
softkeys (MENU and SYSTEM).

When the HP BASIC system is booted, the softkeys default to
System mode. The System mode menu appears at the bottom
of your display. System softkeys are defined following control
key definitions. In addition to the System mode, there are
also three User modes: User 1, User 2, and User 3.

Softkey Control Keys. There are three control keys for the
System, User, and Menu functions.

(ill
Menu

Pressing (ill toggles the softkey labels (turns
them on if they're off and turns them off if
they're on).

Pressing (Shift)(ill increments user mode and
menu if user mode is on.

(ill)
System

(Shift)(ill)
User

Pressing (ill) causes softkeys to assume System
mode. The System menu is displayed if the
Menu key (0)) is toggled to the on position.

Pressing (Shift)(ill) puts the softkeys in User 1
mode. The User 1 menu is displayed if the Menu
key (0) is toggled to the on position.

User menus are blank unless the KBD language extension bi­
nary is loaded.

Now let's get familiar with the control keys.

First we want to get the System mode selected and menu dis­
played. If the System menu is displayed, continue with the
next paragraph. If it is not displayed, press (ill) (System). If it
is still not displayed, press 0) (Menu).

With the System menu displayed, press 0) (Menu) several
times. The system menu display should go on and off. Leave
the System menu displayed and press (Shift)(ill) (User). The
User 1 menu should appear on your display.

Press (Shift)0) (Shift Menu) several times. The displayed
menus should rotate successively through the three User
menus (User 1 ... User 2 -+ User 3 -+ User 1 ... User 2 -+, etc.).

Press @ (menu) several times and the last User menu goes
on and off. Leave the User menu on.

Finish this exercise by pressing (ill) (System) to get your
softkeys back in System mode.

System Softkeys. The following paragraphs define the
eight System softkeys.

CID
Step

@
Continue

@)
RUN

Step allows you to execute one program line at
a time. This is particularly useful for debug­
ging programs.

Continue resumes program execution from the
point where it was paused by PAUSE (@).

RUN starts a program running from the
beginning.

Keyboard Information E-19

E

E-20 Keyboard Information

00
Print All

00 and
(Shift)oo

Set Tab and
CIr Tab

00
Display
Functions

The Print All key (00) turns the printall
mode on and off, allowing keyboard opera­
tions and displayed error messages to be
copied to a printall device. Press 00 once to
turn printall on. Press it again to turn printall
off. A message appears on the screen indicat­
ing whether printall is on or off.

Set Tab (00) sets a tab at the cursor's current
position. Tabs remain in effect until cleared by
either Clr Tab «(Shift)00) or the SCRATCH A
statement

Clr Tab «(Shift)00) clears a tab previously set
at the cursor's position.

Press the space bar to move the cursor forward
a few spaces and press 00 (Set Tab). Move the
cursor back several spaces using @, then pres
(Tab). Move the cursor forward several more
spaces with the space bar, then press
(Shift)(Tab). To clear the tab, move the cursor
to the unwanted tab position and press
(Shift)00 (Clr Tab). Press (Shift)(End) when
finished.

Pressing Display Functions (00) turns on the
display functions mode, allowing you to see
special control characters (form-feed and car­
riage control, for example) on the screen.
Pressing 00 again turns the display functions
mode off. An asterisk (*) appears to indicate
that display functions is on.

Type the following line:

PRINT "DISPLAY FUNCTIONS
MODE OFF"

and press (Enter). Notice the display at the top
of the screen. Now press Recall (@) to recall
the line, and edit it to read:

PRINT "DISPLAY FUNCTIONS ON"

OD
Any char

00 or mJ
or
(Shift)~
Recall

Press Display Functions (00) and then press
(Enter). Notice that the carriage return and line
feed control characters are now· displayed.
Press Display Functions (00) again to turn off
the display functions mode. Press Clear Screen
«(CTRL)(End) when you are finished.

Any char (OD) is used to find any ASCII
character. First press OD (Any char). The fol­
lowing message appears above the menu:

Enter 3 digits, 000 to 255

Enter a three-digit number from 000 through
255 representing the decimal equivalent of an
ASCII character. The computer automatically
displays the character on the screen. For a list
of characters and their equivalent decimal val­
ues, see the US ASCII Character Codes table
in the "Useful Tables" appendix of the BASIC
Language Reference M-Z (Volume 2).

Press OD (Any char), then type 65 which is
the decimal equivalent of " A". The display line
now displays "A". Press (Shift)(End) to erase it.

The Recall softkey (00 or mJ or (Shift)~)
acts just like system control key (ill) described
earlier in this section. Recall recalls the last
line that you entered, executed, or deleted.
Several previous lines can be recalled this way.
Recall is particularly handy to use when you
mistype a line. Instead of retyping the entire
line, you can recall it, edit it using the editing
keys, and enter or execute it again.

Type:

PRINT "1"

and press (Enter) to print the number 1 on the
screen. Now press Recall (00) to recall the
PRINT statement. Edit the statement to print
the number 2 by positioning the cursor under
the number 1 and entering the number 2. over
it. Press (Enter) again. Now press Recall (00)
to see all of the statements it remembers.

Keyboard Information E-21

E

Enhanced
Vectra PC
Keyboard

Note that Recall goes backward through the
queue. Pressing (Shift)00 (or (Shift)@ or
(Shift)~) allows you to cycle forward
through the queue until the last line entered,
executed, or deleted is displayed.

The keys on the Enhanced Vectra PC keyboard are arranged
into the following functional groups:

Character Entry Keys Cursor
Control and
Editing Keys

Numeric
Keypad

E·22 Keyboard Information

Enhanced Vectra PC Keyboard Functional Groups

This section provides you with key definitions for the En­
hanced Vectra PC keyboard.

Note

HP BASIC
Keyboard Overlays

If you want to see the action of the keys demonstrated in the
following steps, boot your HP BASIC system in the normal
manner. Then type:

SCRATCH (Enter)

before proceeding.

Two keyboard overlays designed for the Enhanced Vectra PC
keyboard are included with your HP BASIC system. Place the
overlays on the keyboard as shown below:

HP BASIC Keyboard Overlays

Keyboard Information E-23

E

Character Entry
Keys

E-24 Keyboard Information

Enhanced Vectra PC Keyboard Character Entry Keys

The character keys are arranged like a typewriter, but have
some added features.

(Caps lock) This key sets the unshifted keyboard to either
uppercase (the default after HP BASIC is
booted) or lowercase. The computer does not
display which mode the computer is in when
you press the (Caps lock) key.

Type in a few words, then press the (Caps lock)

key and continue typing. Notice the case
change. Press (CTRL)(End) when you are
finished.

(Shift) You can use the (Shift) key to alternate between
entering standard uppercase and lowercase let­
ters. This is exactly the same as a typewriter.

The (Enter) key has three functions:

• When a program that is executing prompts
you for data, respond by typing the re­
quested data and then pressing (Enter). This
signals the program that you have provided
the data it requested and it can continue.

• When typing in lines of a program the (Enter)
key is used to store each line of program
code.

• After typing in a command the (Enter) key
causes the command to be executed.

Type EDIT and press (Enter). Notice the num­
ber 10 is displayed on the screen. This is the
line number of the first line of an HP BASIC
program. The computer is waiting for you to
type in the line. Type:

!FIRST LINE

and press (Enter). The computer accepts the
statement as a program line and displays 20 in
preparation for the next line. Press ill) when
you are finished.

em When pressed along with another key, this key
allows you to generate the rest of the full 256-
bit character set from the main typewriter
section on Standard and European keyboards.

(Tab) This key moves the cursor forward to preset
tabs. Pressing (Shift)(Tab) moves the cursor
backward to preset tabs.

Before (Tab) can be used, a tab must be set.
Tabs are set and cleared with system menu
softkeys. This will be explained in the section
entitl{ed "System Softkeys. n

Keyboard Information E-25

E

Cursor Control
Keys

E-26 Keyboard Information

(CTRL) The control key works like the (Shift) key to ac­
cess a set of standard control characters, such
as line-feed and form-feed. These characters
are useful to you for controlling some devices
and communicating with other computers.

(Shift)(Enter) The Select function «(Shift)(Enter) beeps but
performs no function unless it is program­
defined.

Enhanced Vectra PC Keyboard Cursor Control Keys

The cursor-control keys move the display cursor.

@CB
(Shift)@
(Shift)CB

G
(Home)

(Shift)(Home)

The 0 and (Y) keys allow you to scroll lines
in the output area up and down. Shifted, the
keys allow you to jump to the top and bottom
of the output area.

The @ and CB keys allow you to move hori­
zontally along a line. Shifted, they allow you
to jump to the left and right limits of a line.

The backspace key works just like the @ key.

The (Home) key positions the print position at
the beginning position on the page. The shifted
(Home) key places the print position at the be­
ginning of the first empty line in the display
(scrolls up if necessary). In edit mode, pressing
this key (shifted or unshifted) causes the com­
puter to beep. To verify operation of the (Home)

key, press (Ctrl)(End). Then type
PR I NT II SOMETH I NG II and press (Enter); re­
peat twice. You should now have the following
display:

SOMETHING
SOMETHING
SOMETHING

Press the (Home) key (unshifted).

lYPe PR I NT II ANY II and press (Enter). Your
display should look like this:

ANY THING
SOMETHING
SOMETHING

Press (CTRL)(End).

Keyboard Information E·27

E

E-28 Keyboard Information

(Page Up)

(Page Down)

In normal mode, pressing the (Page Up) key
causes the display to scroll dO-wn one page and
pressing the (Page Down) key causes the display
to scroll up one page. In edit mode, these keys
move the display one-half page.

To test the horizontal movement of the cursor,
type a few words and press the shifted and
unshifted @ and CE) keys. Notice that the
cursor cannot be moved beyond the characters
you have typed. Press (Shift)(End) when
finished.

To test the vertical movement of the cursor,
type EDIT and press (Enter). Now type the
following lines, pressing (Enter) after each line
(the first line may be there already, so just
press (Enter) to accept it):

113 !FIRST LINE
213 ! SECOND LINE
313 !THIRD LINE
413 ! FOURTH LINE

Try the shifted and unshifted 0, (y), and
~ keys. Then try the (Page up) and
(Page Down) keys. When you're done, press
(Pause) to exit. Then type S C RAT CHand press
(Enter) to clear memory.

Numeric Keypad

The numeric keypad provides a convenient way to enter
numbers and perform arithmetic operations. Simply type in
the arithmetic expression you want to evaluate and press
(Enter).
The result is displayed in the lower-left corner of the screen.

Type in the following problem using the numeric keypad:

Now press (Enter) to perform the calculation. The answer, 10,
is displayed in the lower-left corner of the screen.

Keyboard Information E-29

Editing Keys

E

E-30 Keyboard Information

The editing keys put easy character editing and line editing at
your
fingertips.

(Shift)(Insert) Pressing (Shift) and (Insert) inserts a new line
above the cursor's current position (edit mode
only).

lYPe EDIT, then press (Enter). Type in this
line (if it isn't already there):

10 !FIRST LINE

Now, with the cursor somewhere on line 10,
press (Shift)(Insert). Notice that a new line
number (1) is inserted before line 10. Press
(Pause) when finished.

(Shift) (Delete)

Delete line

(Insert)

Insert char

(Delete)

Delete char

Pressing (Shift)(Delete) deletes the line contain­
ing the cursor (edit mode only).

Type EDIT, then press (Enter). Position the
cursor to the line:

Ie !FIRST LINE

and press (Shift)(Delete). The line is removed.
To restore the line, press (Shift)(Page Up), then
press (Enter) to enter it into the program. Press
(Pause) to exit edit mode.

Pressing (Insert) sets insert mode, allowing you
to insert characters to the left of the cursor.
Press the key a second time to cancel insert
mode.

Carefully type the following line exactly as
shown:

THIS IS A TEST .

Position the cursor under the period and press
(Insert). Now type:

OF INSERT MODE

and press (Insert) again. The line should now
look like this:

THIS IS A TEST OF INSERT MODE.

The new characters were inserted to the left of
the period. Press (Shift)(End) when finished.

Pressing (Delete) deletes the character at the
cursor's position.

Type a few words and experiment with (Delete),

positioning the cursor at various places on the
line. Notice that if you hold the key down,
characters are deleted until you release it. De­
lete all of the characters you typed.

Keyboard Information E-31

E

Program Control
Keys

E-32 Keyboard Information

Pressing (End) dears from the current CUIsor po­
sition to the end of the line.

Pressing (Shift)(End) dears the keyboard line and
the message/results line.

Type in a few words and use the @ key to po­
sition the CUIsor in the middle of the line. Press
(End) to dear to the end of the line. Press
(Shift)(End) to dear the rest of the line.

@ID(End) Pressing @ID(End) dears the entire alpha
Clr screen screen.

Type the following HP BASIC command:

PRINT "PUT THIS MESSAGE IN THE
OUTPUT AREA."

Now press (Enter) to execute it. Press
(Shift)(Page Up) to recall the command, and press
(Enter) again. Repeat this step several times to
fill the screen with messages. Now press
@ID(End) to erase all lines at once.

The following keys allow you to control execution of the pro­
gram stored in the computer's memory.

(Scroll LOCk)

Clr I/O

(Shift)(Scroll Lock)

Reset

(Shift)(Page Up)

Recall

Pressing (Scroll LOCk) pauses program execu­
tion when the computer is performing or
trying to perform an I/O operation. Press
(Scroll Lock) instead of (Shift)(Pause) (Stop)
when the computer is hung up on an I/O
operation since (Shift)(Pause) works only
after the computer finishes the current
program line. Pressing (Scroll Lock) cancels
the I/O operation and pauses the program
at the current line.

Pressing (Shift)(Scroll Lock) (Reset) pauses
program execution immediately without
erasing the program from memory. The
HP BASIC Reset message indicates the
computer is ready for your command.

Pressing (Shift)(Page Up) recalls the last line
that you entered, executed, or deleted.
Several previous lines can be recalled this
way. Recall is particularly handy to use
when you mistype a line. Instead of retyp­
ing the entire line, you can recall it, edit it
using the editing keys, and enter or exe­
cute it again. Type:

PRINT "1" [Enter]

to print the number 1 on the screen. Now
press (Shift)(Page Up) to recall the print
statement. Edit the statement to print the
number 2 by positioning the cursor under
the 1 and typing 2 over it. Press (Enter)

again. Now press (Shift)(Page Up) several
times to see all of the statements it re­
members. Then press (Ctrl)(End) to clear
the screen when you are finished.

(Shift)(Page Down) moves forward through
the recall stack.

Keyboard Information E-33

E

E·34 Keyboard Information

(Shift)(Pause)

Stop

(Shift)(Print Screen)

Step

(Print Screen)

Print All

Pressing @ in the System menu performs
the same recall function as (Shift)(Page Up).

Pressing (Pause) pauses program execution
after the current line. Pressing Continue
(@) in the System menu resumes pro­
gram execution from the point where it
was paused.

Pressing (Shift)(Pause) stops program exe­
cution after the current line. To restart the
program, press RUN (@) in the System
menu.

(Shift)(Print Screen) allows you to execute
one program line at a time. This is par­
ticularly useful for debugging programs.

Print All «(Print Screen)) turns the printall
mode on and off, allowing keyboard oper­
ations and displayed error messages to be
copied to a printall device.

Press Print All (Print Screen) once to set
printall on and again to set printall off.
The display's output area is the default
printall device at powerup.

Press (Print Screen) (Print All) to turn on
printaU mode. Now type in the following
command:

PRINT "THIS IS A KEYBOARD
OPE R A TI 0 N " (Enter)

Both the PRINT command and the mes­
sage itself are displayed on the screen,
which is the default printall device. Now
type:

THIS WILL CAUSE AN ERROR (Enter)

(CTRl)@)

Background

(CTRl)Cill)
EXIT

CITD
Alpha

(Shift)CITD
Dump Alpha

(ill)
Graphics

(Shift)(ill)
Dump Graph

Because this is not an executable
HP BASIC statement, an error message is
displayed at the bottom of the screen and
in the printall area at the top of the
screen. A log of all commands typed and
executed at the keyboard, along with any
error messages, is thus produced. Press
@)@) to clear the display, and press
(Print Screen) (Print All) to turn off printall
mode.

Pressing (CTRl)@) places HP BASIC in
background operation. This is identical to
executing OUTPUT 19;HBACKGROUNDH

from HP BASIC. Refer to appendix B for
more information on background
operation.

Pressing (CTRl)Cill) terminates HP BASIC
and returns your computer to MS-DOS.

Pressing CITD once turns on the alphanu­
meric display. Pressing it a second time
turns off the graphics display. This key
function requires that the GRAPH binary
be loaded.

Pressing (Shift)CITD prints a complete copy
of the alpha display on the default printer.

Pressing (ill) once turns on the graphics
display. Pressing it the second time turns
off the alphanumeric display.

Pressing (Shift)(ill) prints a complete copy
of the graphics display on the default
printer.

Both Graphics and Dump Graph key
functions require that the GRAPH binary
extension file be loaded.

Keyboard Information E-35

E

Softkeys and
Softkey Control

E-36 Keyboard Information

There are eight softkeys (labeled WJ through @) and two
keys (em and COO) that control the definitions of the
softkeys (MENU and SYSTEM).

When the HP BASIC system is booted, the softkeys default to
System mode. The System mode menu appears at the bottom
of your display. System softkeys are defined following control
key definitions. In addition to the System mode, there are
also three User modes: User 1, User 2, and User 3.

Softkey Control Keys. There are three control keys for the
System, User, and Menu functions.

em
Menu

CTIQ)
System

(Shift)CTIQ)
User

Pressing em toggles the softkey labels (turns
them on if they're off and turns them off if
they're on).

Presing (Shift)@ increments user mode and
menu if user mode is on.

Pressing CTIQ) causes softkeys to assume System
mode. The System menu is displayed if the
Menu key (em) is toggled to the on position.

Pressing (Shift)CTIQ) puts the softkeys in User 1
mode. The User 1 menu is displayed if the Menu
key (em) is toggled to the on position.

User menus are blank unless the KBD language extension bi­
nary is loaded.

Now let's get familiar with the control keys.

First we want to get the System mode selected and menu dis­
played. If the System menu is displayed, continue with the
next paragraph. If it is not displayed, press CTIQ) (System). If it
is still not displayed, press em (Menu).

With the System menu displayed, press em (Menu) several
times. The system menu display should go on and off. Leave
the System menu displayed and press (Shift)CTIQ) (User). The
User 1 menu should appear on your display.

Press (Shift)em (Shift Menu) several times. The displayed
menus should rotate successively through the three User
menus (User 1 -+ User 2 -+ User 3 ... User 1 -+ User 2 , etc.).

Press em (menu) several times and the last User menu goes
on and off. Leave the User menu on.

Finish this exercise by pressing CTIQ) (System) to get your
softkeys back in System mode.

Keyboard Information E-37

E

E·38 Keyboard Information

System Softkeys. The following paragraphs define the
eight System softkeys.

em
Step

Cill
Continue

em
Run

@
Print All

@and
(Shift)@
Set Tab and
Clr Tab

@
Display
Functions

Step allows you to execute one program line at
a time. This is particularly useful for debug­
ging programs.

Continue resumes program execution from the
point where it was paused by (Pause).

Run starts a program running from the
beginning.

The Print All key (@) turns the printall
mode on and off, allowing keyboard opera­
tions and displayed error messages to be
copied to a printall device. Press @ once to
turn printall on. Press it again to turn printall
off. A message appears on the screen indicat­
ing whether printall is on or off.

Set Tab (@) sets a tab at the cursor's current
position. Tabs remain in effect until cleared by
either Clr Tab «(Shift)@) or the SCRATCH A
statement

Clr Tab «(Shift)@) clears a tab previously set
at the cursor's position.

Press the space bar to move the cursor forward
a few spaces and press @ (Set Tab). Move
the cursor back several spaces using G), then
pres (Tab). Move the cursor forward several
more spaces with the space bar, then press
(Shift)(Tab). To clear the tab, move the cursor
to the unwanted tab position and press
(Shift)@ (Clr Tab). Press (Shift)(End) when
finished.

Pressing Display Functions (@) turns on the
display functions mode, allowing you to see
special control characters (form-feed and car­
riage control, for example) on the screen.
Pressing @ again turns the display functions
mode off. An asterisk (*) appears to indicate
that display functions is on.

em
Any char

Type the following line:

PRINT "DISPLAY FUNCTIONS
MODE OFF"

and press (Enter). Notice the display at the
top of the screen. Now press Recall «(ill) to
recall the line, and edit it to read:

PRINT "DISPLAY FUNCTIONS ON"

Press Display Functions (@) and then
press (Enter). Notice that the carriage return
and line feed control characters are now dis­
played. Press Display Functions (@) again
to turn off the display functions mode. Press
Clear Screen «(CTRL)(End) when you are
finished.

Any char (em) is used to find any ASCII
character. First press em (Any char). The fol­
lowing message appears above the menu:

Enter 3 digits, 000 to 255

Enter a three-digit number from 000 through
255 representing the decimal equivalent of
an ASCII character. The computer automati­
cally displays the character on the screen. For
a list of characters and their equivalent deci­
mal values, see the US ASCII Character
Codes table in the uUseful Tables" appendix
of the BASIC Language Reference M-Z (Vol­
ume 2).

Press em (Any char), then type 65 which is
the decimal equivalent of U AU. The display
line now displays U AU. Press (Shift)(End) to
erase it.

Keyboard Information E-39

@or
(Shift)(r":P=-a-ge-'-:-U p-')

Recall

E

E·40 Keyboard Information

The Recall softkey (@ or (Shift)(Page Up»

acts just like system control key CEQ) de­
scribed earlier in this section. Recall recalls
the last line that you entered, executed, or
deleted. Several previous lines can be re­
called this way. Recall is particularly handy
to use when you mistype a line. Instead of
retyping the entire line, you can recall it, edit
it using the editing keys, and enter or execute
it again.

Type:

PRINT "1"

and press (Enter) to print the number 1 on the
screen. Now press Recall (@) to recall the
PRINT statement. Edit the statement to print
the number 2 by positioning the cursor un­
der the number 1 and entering the number 2.
over it. Press (Enter) again. Now press Recall
(@) to see all of the statements it remem­
bers. Note that Recall goes backward
through the queue. Pressing (Shift)@ (or
(Shift)(Page Down)) allows you to cycle forward
through the queue until the last line entered,
executed, or deleted is displayed.

Keyboard
Mapping

Function

ALPHA

ANY
CHARACTER

BACKGROUND

CLEAR TO END

CLEAR I/O

CLEAR LINE

CLEAR SCREEN

CLEAR TAB

CONTINUE

DELETE
CHARACTER

DELETE LINE

DISPLAY
FUNCTIONS

DUMP ALPHA

DUMP
GRAPHICS

EDIT

EXECUTE

The following table shows the relationships between the se­
ries 200/300 keyboards and the Vectra PC and Enhanced
Vectra PC keyboards.

HP 98203A,B,C HP 46021A ITF Vectra PC
Enhanced
Vectra PC

Series 200 Series 300 Keyboard
Keyboard

~ Unlableled Key 2 (ill (ill)

(Any Char) (System) @J (System) @J (System) (ill

* * (CTRl)@* (Ctrl)@*

(Clr~End) (Clr Line) (End) (End)

(Clr 1/0) (Break) (ill (Scroll lock)

(Clr In) (Shift)(Clr Line) (Shift End) (Shift End)

(Clr Scr) (Clr Disp) (CTRl End) (Ctrl End)

(ClrTab) (System) (System) (System)
(Shift)@ (Shift)@ (Shift)@)

(Continue) (System)@ (System) @ (System) @

(Del Chr) (Del Chr) @ill (Delete)

(Delln) (Del In) (Shift)(DEL) (Shift)(Delete)

(Display Fctns) (System) 00 (System) 00 (System) @

(Dump Alpha) (Shift) unlabeled (Shift)(ill or (Shift)(ill)
key2 (Shift)W

(numpad)

(Dump Graphics) (Shift) unlabeled (Shift)@ (Shift)WI)
key3

(Edit) (user 1) C!D (user 1) C!D (user 1) (ill

(EXECUTE) t t t

• Background function. No equivalent in series 200/300.

t Cannot generate this keystroke from this keyboard. If this character is OUTPUT to the keyboard, an error is not reported.
Instead, the system will perform as much of the indicated action as possible.

t Exit to MS-DOS. No equivalent in series 200/300.

Keyboard Information E-41

HP 98203A,B,C HP 46021 A ITF Vectra PC Enhanced
Function Vectra PC Series 200 Series 300 Keyboard

Keyboard

EXIT HP BASIC :I: :I: (CTRL)CITQ):I: (CTRL)CITQ):I:

SOFTKEY 0 @ t t t

SOFTKEY 1 (ill (ill QD ®
SOFTKEY 2 @ @ @ @

SOFTKEY 3 (ill @ @ em
SOFTKEY 4 (ill CID CID em
SOFTKEY 5 (ill CID CID @

SOFTKEY 6 @ 00 00 @

SOFTKEY 7 (ill OD OD (ill

SOFTKEY 8 @) 00 00 @

SOFTKEY 9 @ t t t

E
GRAPHICS (Graphics) Unlabeled Key3 @ (ill)

INSERT (InsChr) (Ins Chr) ~ (Insert)
CHARACTER

INSERT LINE ~ ~ (Shift)~ (Shift)(Insert)

MENU t (Menu) (ill (ill

PAUSE (Pause) ~ em (Pause)

PRINT ALL (PrtAII) (System) CID (System) CID or (System) CID or
(Shift)@ (Print Screen)

RECALL (Recall) Unlableled Key1 @ or (System) @ or
(System) 00 or (Shift)(Page Up)

(Shift)~

RECALL (Shift Recall) (Shift) Unlabeled (Shift)@ or (Shift)(Page Down)
FORWARD Key1 (Shift)~ or or

(System) (System)
(Shift)00 (Shift)@

RESET (Reset) (Shift) (Break) (Shift)® (Shift)(Scroll Lock)

RESULT (Result) Unlabeled Key4 em RES (keyword)

• Background function. No equivalent in series 200/300.

t Cannot generate this keystroke from this keyboard. If this character is OUTPUT to the keyboard, an error is not reported.
Instead, the system will perform as much of the indicated action as possible.

=1= Exit to MS-DOS. No equivalent in series 200/300.

E-42 Keyboard Information

HP 98203A,B,C HP 46021 A ITF Vectra PC
Enhanced

Function Vectra PC Series 200 Series 300 Keyboard
Keyboard

RUN (Run) (System) @ (System) @ (System)@

SET TAB (Set Tab) (System) 00 (System) 00 (System)@

SELECT t (Select) (Shift)(Enter) (Shift)(Enter)

STEP ~ (System) (ill @ or (System) (£D or
(System) (ill (Shift)(Print Screen)

STOP @QE) (Shift)@QE) (Shift) CIT) (Shift)(pause)

SYSTEM KEYS t (System) (ill) (ill)

USER KEYS t (User) (Shift) (ill) (Shift)(ill)

• Background function. No equivalent in series 200/300.

t Cannot generate this keystroke from this keyboard. If this character is OUTPUT to the keyboard, an error is not reported.
Instead, the system will perform as much of the indicated action as possible.

=!: Exit to MS-DOS. No equivalent in series 200/300.

Keyboard Information E-43

F HP BASIC Configuration

When you boot HP BASIC, a configuration file is used to tell
the system what resources are available to your computer and
how they are to be used. The filename HPW.CON is reserved
for the configuration file. HPW.CON must be in the same di­
rectory as the boot program, or it must be specified in the
MS-DOS search path.

If your configuration file is not correct you may not be able to
boot your HPBASIC system.

The configuration file tells the PC emulator which HP Series
200 computer you want to emulate (HP 9816B, HP 9836A, or
HP 9836C) and the video mode to use. In addition, the file
can specify settings for HP-IB, serial interface cards, and a
number of other settings for your HP BASIC system.

The HPW.CON configuration file found on disc one contains
the default configuration. This configuration file will work
with most PC applications, however you may wish to create a
custom configuration that matches your needs. You can do
this with the utility program CONF.

HP BASIC Configuration F·1

F

Working With
the
Configuration
Utility Program

F·2 HP BASIC Configuration

To use the configuration utility program, first enter MS-DOS.
Then make sure you are in the disc drive and directory that
contains the HPW.CON file.

• For a system without a hard disc: the HPW.CON file will
be in the root directory of disc one. Your MS-DOS prompt
should be A: > .

• For a system with a hard disc: the HPW.CON file will most
likely be in the directory C:\HPW. Your MS-DOS prompt
should be C:\HPW>.

You can execute the configuration utility program with an op­
tional parameter specifying a configuration file to use instead
of HPW.CON. If no file is specified, HPW.CON is automati­
cally used.

To execute the configuration utility program without the op­
tional file name, insert disc one of your HP BASIC set of discs
into drive A, type:

A:CONF

and press (Enter).

HPW.CON will be used since no file is specified.

To execute the configuration utility program using an optional
configuration file, insert disc one of your HP BASIC set of
discs into drive A, type:

and press (Enter).

Note

Primary
Configurations

In this case, the configuration file used will be a file named
C: \HPW\NEWCON.

Before C:\HPW\NEWCON can be used as the configuration
file it must be renamed as HPW.CON. HP BASIC will only
recognize HPW.CON as the configuration file.

Once the configuration utility program is runnin~ you will
see "Language Processor Configuration Utility rev. 1.56 on the
screen. Note how the screen is divided into four areas. On the
left is a column labeled "Primary Configurations. 6 On the up­
per right is the 'ISerial Cards" area. On the lower right is the
"HP-IB Cards6 area. Along the bottom are labeled function
keys.

Function keys CID and @ (NEXT CHOICE and PREV
CHOICE) will show you the different choices of values for
each item in the configuration screen. Function key @
(SAVE CONFIG) is used when you have completed changes
to the configuration utility program and wish to save the in­
formation into the HPW.CON file. Function key @
(DEFAULT VALUE) will set the current field (the field where
the cursor is currently located) to its default value. Function
key @ (EXIT) will return you to MS-DOS.

Use the keyboard cursor control keys to move from one item
to the next on the screen.

Each item in the Primary Configurations area is explained be­
low. As you proceed through the items on the screen, read
each explanation to find if you need to change the value. Use
the function keys to locate the appropriate value for your sys­
tem setup.

HP BASIC Configuration F-3

Port Address

F

F-4 HP BASIC Configuration

The following items are covered in the Primary Configuration
area:

1. Port address.

2. PC interrupt.

3. Machine type.

4. VGA enable.

5. Background mode.

6. DOS cmd save mode.

7. DOS command wait.

8. Mouse sensitivity.

9. Cache.

10. Drives.

11. Keydefs.

Port address is the memory location used by the PC emulator
to communicate with the language processor card.
Hexidecimal values for the port address range from 0 X 000 to
Ox 3FO in steps of 0 x 008. The default value is 0 x 250. If you
change the port address, you will have to change some switch
settings for switch SW2 on the language processor card. Refer
to the chart on the following page.

Interface
Enable
ON

I 1 \ 2

--1
13\415161718\91

I

Switch SW2 Settings

HP-IB Syst em Controller
s Controller OFF = Sy

ON = Not

Fixed at 0

Address
Lines

9

8

7

6 ON = 0
OFF = 1

5

4

3

{
2:

As shown above, switch segments 2 through 8 determine the
port address of the language processor. The last three bits of
the address are fixed at 0 and are not set by the switch seg­
ments. The switch segments are arranged in reverse order of
significant bits, with switch segment 8 representing the most
significant bit and switch segment 2 representing the least sig­
nificant bit. You determine the desired port address in
hexadecimal, convert this value to binary, and set the appro­
priate switch segments accordingly. For example, assume you
want the hexadecimal port address to be 0 X 338. The binary
value of 0 X 338 is 11 0011 1000. Since the last three bits are
fixed at 0 and not affected by the switch, they may be disre­
garded. The switch segment settings are then:

HP BASIC Configuration F·5

F

Binary Value 1 1 0 0 1 1 1

SW 2 Setting 8 off 7 off 6 on 5 on 4 off 3 off 2 off

PC Interrupt

Machine Type

F·6 HP BASIC Configuration

Note that a binary value of 0 corresponds to a switch segment
setting of ON, and a binary value of 1 corresponds to a
switch segment setting of OFF.

PC interrupt changes the PC interrupt level of your language
processor card. The default interrupt level is set at IRQ7. If
you must change the interrupt level, be sure the level you
choose does not conflict with any other cards or devices con­
nected to your system. Alternate values for the PC interrupt
level are IRQ3, IRQ4, IRQS, and IRQ9. The interrupt level you
select must also be set on the language processor card.

Machine type is used to select the series 200 display you want
to emulate. Use the Series 200 model number to specify the
display you want to emulate. Each display has its own num­
ber code. You must also indicate whether you would like to
emulate separate alpha/graphics modes or combined
alpha/graphics modes. When using combined alpha/graphics
modes, some performance is lost while displaying alpha text.
For best alpha performance, select the separate
alpha/graphics mode. If you use the field entry DEFAULT
MODE in the HP BASIC configuration file, HP BASIC deter­
mines the best emulation mode to use based on the existing
video adapter in your Pc. The default Machine type values
for the various adapters are:

Monochrome Plus:

Multimode:

Enhanced Graphics (EGA):

9816 COMBINED

9836A COMBINED

9836C COMBINED

For more information on displays, refer to appendix B.

VGA Enable

Background Mode

DOS Cmd Save
Mode DOS

Command Wait

You should set VGA enable to ON when you install a VGA
type display interface and a monitor capable of handling the
VGA's high resolution mode (640 x 480 dots).

Background mode is used when you want the language pro­
cessor to continue processing while you leave BASIC and
perform other tasks. The language processor will continue
working in one of two ways .

• When IGNORE GRAPHICS (continue when graphics is
accessed) is selected, the language processor will continue
running even if it is supposed to access the graphics display
during its work. A graphics display access will be ignored.
Therefore, any information that was supposed to be deliv­
ered to the graphics display will be lost. The alpha display
is updated and maintained while the system is in back­
ground mode. The alpha display will be restored when
HP BASIC is reentered .

• When PAUSE ON DISPLAY (wait when display is
accessed) is selected, the language processor will pause if a
display access is made. This is true for both alpha and
graphics displays. When the background condition is re­
moved (that is, when you return to HP BASIC), the
language processor will display its information on the
screen and then continue the operation it was doing at the
time it paused.

For more information on Background mode, refer to appen­
dix B.

When you are working in HP BASIC and need to access MS­
DOS, you will use the command nOUTPUT 19". HDOS cmd
save mode" and nDOS command wait" affect computer be­
havior when you use nOUTPUT 19."

HP BASIC Configuration F-7

Mouse Sensitivity

F

Cache

F-8 HP BASIC Configuration

"DOS cmd save mode" has two possible values, ON and OFF.

• ON will provide a display for MS-DOS command output,
but will clear the HP BASIC graphics display. HP BASIC
alpha information will be retained .

• OFF will allow MS-DOS to write into the HP BASIC dis­
play, resulting in combined output. However, since the
HP BASIC graphics display is not cleared in this mode,
both HP BASIC alpha and graphics displays are retained
and will be intact provided MS-DOS does not produce any
display output.

HDOS command wait" has two values, ON and OFF. ON
causes the computer to pause upon completion of an MS­
DOS command. When a key is pressed, the computer will
return to HP BASIC. OFF causes the computer to continue
processing immediately.

Refer to "The MS-DOS Communications Port" in appendix B
for more information.

HMouse sensitivity" is only used if you have a non-HP-HIL
mouse and the Microsoft mouse interface standard (INT 33H).
The value chosen sets the ratio of mouse movement "ticks" to
screen pixel movement.

HCache" is a buffer that can be used to store the equivalent of
one disc sector of data. Cache can be either ON or OFF, and
the default is OFF. Setting cache to ON may improve the
speed of writing to disc data files.

When cache is ON, the buffer will store data until it is full.
The data is then written onto a sector of the disc, and the
buffer is cleared for more data. This method of saving data
can be significantly faster than the when cache is OFF. How­
ever, if there is a power interruption, or a disc is removed, or
the computer is rebooted before closing the file, then all of
the data in cache will be lost.

Drives The HP BASIC Language Processor can have 15 different
path names specified for storage of information. The path
names are written just as they would be in MS-DOS. First, a
drive name is specified and then, if desired, a directory (and
possibly a sub-directory). Network devices and other forms of
remote or peripheral devices may be included in: drive
specifications.

If you are using the Hierarchical File System, you must spec­
ify a partition in addition to the drive name. Legal values for
partitions are 2, 3, and 4. The partition then becomes a part of
the drive name. For example, C2: is the second partition of
drive C. Note that the colon is required following the parti­
tion number. Also, directories cannot be used with partitions.

When you select "drives" on the configuration screen, func­
tion key GD is labeled EDIT DRIVES. Press GD and a window
will appear in the middle of the screen. You will type the
path names into this window.

ONLY ONE path name can be placed on each line in the
window. Up to 15 lines may be used. The first path listed will
be called "drive on by the HP BASIC Language Processor. The
second path will be "drive 1," the third will be "drive 2," etc.

For each physical disc drive, the drive list may include a drive
specifier (C:) or up to 15 directories for that drive (C:\,
C: \HPW; etc.), but not both. Note that if a drive specifier (C:)
is used, HP BASIC will access the directory that was the cur­
rent MS-DOS directory for that drive when HP BASIC was
executed.

HP BASIC Configuration F-9

Keydefs

F

F·10 HP BASIC Configuration

To type path names, use the keyboard typewriter keys. Use
the ~ key to toggle between Insert and Replace modes.

In Insert mode, characters are inserted before the character
the cursor is currently on. The cursor is a block cursor, and
the backspace key deletes characters.

In Replace mode, the current character is replaced by the new
character. The cursor is an underscore, and the backspace key
acts the same as a left cursor control key.

The (DEL) key deletes the current character.

If you need more help in understanding how to specify MS­
DOS path names, refer to an MS-DOS reference manual.

When you finish correctly typing path names into the win­
dow, press 00 (Return to MAIN) to return to the main screen
again. Notice that there is a number next to the HdrivesH item.
This number corresponds to the number of paths you have
entered.

UKeydefsH is used to redefine the function (series 200/300
keystroke) attached to a PC keystroke. Use "keydefsH if you
feel you can make the keyboard more convenient for your
personal use.

When you select "keydefsH on the configuration screen, func­
tion key GD is labeled EDIT KEYS. Press GD and a "windowH

appears in the middle of the screen. A vertical line divides the
window. The left side of the window contains a hidden list of
options for Series 200/300 keyboards. The right side of the
window contains a hidden list of options for PC keyboards.
The options are revealed one at a time when you use GD
(NEXT CHOICE) and @ (PREV CHOICE). As you step
through the choices, you will see the key function and, in the
right margin, a 1 or 2-letter code. On the left side of the win­
dow, the codes will be "NH

, "I", or both. UN" means the key is
found on the Series 200 keyboards, and "I" means the key is

Serial Cards

found on the the ITF (Series 300) keyboards. On the right side
of the window, the codes will be NE", NV", or both. HE" means
the key is present on the Enhanced Vectra PC keyboard, and
NV" means the key is present on the Vedra PC keyboard.

To illustrate the use of Nkeydefs", let's assume you want to
change the keystroke for clearing a line when in BASIC. On a
Series 200 keyboard, there is a key labeled (CLR LN) (clear
line). Using GD and @, locate this keystroke in the hidden
list of options on the left side of the window. Move the cursor
to the right side of the window (on the same line). Assume
that you would prefer to have (fillCD be the keystroke for
clearing the line. First, check the table of keystrokes in appen­
dix E to make sure this keystroke hasn't already been used.
Second, press CID to indicate (Ctrl). Third, use GD (NEXT
CHOICE) and @ (PREV CHOICE) to locate the CD key.

When you finish correctly setting keystrokes into the window,
press 00 (Return to MAIN) to return to the main screen
again. Notice that there is a number next to the Nkeydefs"
item. This number corresponds to the number of Nkeydef'
changes you entered.

Each item in the Serial Cards area is explained below. As you
proceed through the items on the screen, read each explana­
tion to help you determine if you need to change the value.
Use the function keys to locate the appropriate value for your
system setup.

You may configure up to two serial cards in a single configu­
ration file. There are two columns of input spaces next to the
list of items. Use one column for each serial card.

NFl BASIC Configuration F-11

F

Com Port

Sel Code

Int Level

Baud, Parity, Char
Len, and Stop Bits

Modem Disconnect

F·12 HP BASIC Configuration

The following items are covered in this section:

1. Com port.

2. Sel code.

3. Int level.

4. Baud, parity, char len, and stop bits.

5. Modem disconnect.

"Com portH allows you to select which of your serial ports to
configure, COM! or COM2. The port you select will refer to
the serial uinterface with that switch setting. You may also
specify NONE (no port), in which case the rest of the settings
are not displayed.

HSel codeH specifies the select code used by HP BASIC to ac­
cess the serial interface. The select code value can be either 9
or 23.

HInt leveln is used to set the HP BASIC interrupt level for the
serial interface. The available values are 3, 4, 5, and 6. This
interrupt level may be shared with other devices.

These four items specify information about communication
between HP BASIC and a serial device (such as a plotter or
printer). Documentation that came with your serial device will
state what the proper values should be.

There are four items in modem disconnect. The HOnn choices
are CD (carrier detect), RI (ring indicator), DSR (data set
ready), and CTS (clear to send). The Hoff" choices are
--, --, --, and ---. (The number of hyphens matches the
number of letters in the "on" position code.) Documentation
that came with your modem will help you determine the
proper values to use.

HP-IB Cards

PC Sel Code

PC Int Level

Each item in the HP-IB Cards area is explained below. As you
proceed through the items on the screen, read each explana­
tion to find if you need to change the value. Use the function
keys to locate the appropriate value for your system setup.

You may have up to two HP-IB cards installed. There are two
columns of input spaces next to the list of items. Use one col­
umn for each HP-IB card.

The following items are covered in this section:

1. PC sel code.

2. PC int level.

3. Sel code.

4. Int level.

°PC sel code" is used by the PC emulator to access the HP-IB
interface. This is the number you would use to access the in­
terface from MS-DOS. It must match the switch select code
set on the HP 82990 HP-IB card. The available values are
NONE, and the numbers 1 through 16.

°pC int level" sets the PC interrupt level of the HP-IB card.
The available values are NONE, 3, 4, 5, and 6. If you enable
interrupts, be sure the level you choose does not conflict with
any other cards or devices connected to your system. Note
that COM1 (if available) uses PC interrupt level 4 and COM2
(if available) uses PC interrupt level 3. HP-IB cards do not use
interrupts to access mass storage devices, therefore you may
select NONE (interrupt disabled) if you intend to use HP-IB
to access only mass storage devices.

HP BASIC Configuration F-13

F

Sel Code

Int Level

Exiting the
Configuration
Utility Program

F·14 HP BASIC Configuration

HSel code" is used by HP BASIC to access the HP-IB interface.
The value for select code can be either 24 or 25.

HInt level" indicates the HP BASIC interrupt level of the inter­
face. The available values are 3, 4, 5, and 6. These interrupt
levels may be shared with other devices. For example, two
HP-IB cards may be on HP BASIC interrupt level 3, but only
one can be on PC interrupt level 3.

When you have finished making changes in the configuration
utility program, be sure you save the changes you made by
pressing 00 (SAVE CONFIG) before you exit.

After saving the changes, press @ (EXIT) to return to MS­
DOS.

G

Chapter 3

Chapter 4

List of Example Program Files

This appendix lists all the example program files on your
Manual Examples disc. These programs are referred to in
chapters 3, 4, and 5.

INDNTPGM
REPEATl
WHILEl
ONKEYl
DROUNDl
MATSORT
CRBDAT
OUTPUTl
ONCYCLE
ONDELAY
PRIORITY
TRACEALL
TRPAUSE

BOLT
BIG LINES
SCALE
SCALE2
SCALE 3
SCALE4
LABELS
AXES
STARS
PENDEMO
LINETYPES
PDIRDEMO

List of Example Program Files G-1

Chapter 5

Appendix B
G

FILLEDGE
POLYGON6
POLYGON4
POLYLINE
CIRCLES2
SHIP
CSIZE
CHARCELL
LORG
LDIR
SINLABEL
LEMl
RPLOT
FLAX
SCENERY
COLORLINE
COLORl
COLOR2
STORM

OUTENTER
DEFAULTl
SERVERl
GPIOCHECK
GPIOSERV
EIRSERV
HILJD

ENTERDEMO

G-2 List of Example Program Files

H Error Messages

1 Missing option or configuration error. If a statement re­
quires an option which is not loaded, the option
number or option name is given along with the error
number.

2 Memory overflow. If you get this error while loading a
file, the program is too large for the computer's mem­
ory. If the program loads, but you get the error when
you press (Run), then the overflow was caused by the
variable declarations. Either way, you need to modify
the program or add more memory.

3 Line not found in current context. This could be a
GOTO or GOSUB that references a non-existent line,
or an EDIT command that refers to a non-existent
label.

4 Improper RETURN. Executing a RETURN statement
without previously executing an appropriate GOSUB or
function call. Also, a RETURN statement in a user-de­
fined function with no value specified.

5 Improper context terminator. You forgot to put an END
statement in the program. Also applies to SUBEND and
FNEND.

6 Improper FOR. .. NEXT matching. Executing a NEXT
statement without previously executing the matching
FOR statement. Indicates improper nesting or overlap­
ping of the loops.

7 Undefined function or subprogram. Attempt to call a
SUB or user-defined function that is not in memory.
Look out for program lines that assumed an optional
CALL.

Error Messages H·1

H

H-2 Error Messages

8 Improper parameter matching. A type mismatch be­
tween a pass parameter and a formal parameter of a
subprogram.

9 Improper number of parameters. Passing either too few
or too many parameters to a subprogram. Applies only
to non-optional parameters.

10 String type required. Attempting to return a numeric
from a user- defined string function.

11 Numeric type required. Attempting to return a string
from a user-defined numeric function.

12 Attempt to redeclare variable. Including the same vari­
able name twice in declarative statements such as DIM
or INTEGER.

13 Array dimensions not specified. Using the (*) symbol
after a variable name when that variable has never
been declared as an array.

14 OPTION BASE not allowed here. The OPTION BASE
statement must appear before any declarative state­
ments such as DIM or INTEGER. Only one OPTION
BASE statement is allowed in one context.

15 Invalid bounds. Attempt to declare an array with more
than 32767 elements or with upper bound less than
lower bound.

16 Improper or inconsistent dimensions. Using the wrong
number of subscripts when referencing an array
element.

17 Subscript out of range. A subscript in an array refer­
ence is outside the current bounds of the array.

18 String overflow or substring error. String overflow is an
attempt to put too many characters into a string (ex­
ceeding dimensioned length). This can happen in an
assignment, an ENTER and INPUT, or a READ. A
substring error is an attempted violation of the rules
for substrings. Watch out for null strings where you
weren't expecting them.

19 Improper value or out or range. A value is too large or
too small. Applies to items found in a variety of state­
ments. Often occurs when the number bulder
overflows (or underflows) during an I/O operation.

20 INTEGER overflow. An assignment or result exceeds
the range allowed for INTEGER variables. Must be
-32768 thru 32767.

22 REAL overflow. An assignment or result exceeds the
range allowed for REAL variables.

24 Trig argument too large for accurate evaluation. Out-of­
range argument for a function such as TAN or LDIR.

25 Magnitude of ASN or ACS argument is greater than 1.
Arguments to these functions must be in the range -1
thru +1.

26 Zero to non-positive power. Exponentiation error.

27 Negative base to non-integer power. Exponentiation
error.

28 LOG or LGT of a non-positive number.

29 megal floating point number. Does not occur as a result
of any calculations, but is possible when a FORMAT
OFF I/O operation fills a REAL variable with some­
thing other than a REAL number.

30 SQR of a negative number.

31 Division (or MOD) by zero.

32 String does not represent a valid number. Attempt to
use Hnon-numericH characters as an argument for VAL,
data for a READ, or in response to an INPUT state­
ment requesting a number.

33 Improper argument for NUM or RPT$. Null string not
allowed.

34 Referenced line not an IMAGE statement. A USING
clause contains a line identifier, and the line referred to
is not an IMAGE statement.

35 Improper image. See IMAGE or the appropriate
keyword in appendix A

Error Messages H·3

H

H-4 Error Messages

36 Out of data in READ. A READ statement is expecting
more data than is available in the referenced DATA
statements. Check for deleted lines, proper OPTION
BASE, proper use of RESTORE, or typing errors.

38 TAB or TABXY not allowed here. The tab functions are
not allowed in statements that contain a USING clause.
TABXY is allowed only in a PRINT statement.

40 Improper REN, COPYLINES, or MOVELINES com­
mand. Line numbers must be whole numbers from 1 to
32766. This may also result from a COPYLINES or
MOVELINES statement whose destination line num­
bers lie within the source range.

41 First line number greater than second line number. Pa­
rameters out of order in a statement like SAVE, LIST, or
DEL.

43 Matrix must be square. The MAT functions: IDN, INV,
and DET require the array to have equal numbers of
rows and columns.

44 Result cannot be an operand. Attempt to use a matrix
as both result and argument in a MAT TRN or matrix
multiplication.

46 Attempting a SAVE when there is no program in
memory.

47 COM declarations are inconsistent or incorrect. In­
cludes such things as mismatched dimensions,
unspecified dimensions, and blank COM occurring for
the first time in a subprogram.

49 Branch destination not found. A statement such as ON
ERROR or ON KEY refers to a line that does not exist.
Branch destinations must be in the same context as the
ON... statement.

51 File not currently assigned. Attempting an ON/OFF
END statement with an unassigned I/O path name.

52 Improper mass storage unit specifier. The characters
used for a msus do not form a valid specifier. This
could be a missing colon, too many parameters, illegal
characters, etc.

53 Improper file name. File names are limited to 10 char­
acters. Foreign characters are allowed, but punctuation
is not.

54 Duplicate file name. The specified file name already
exists in directory. It is illegal to have two files with the
same name on one volume.

55 Directory overflow. Although there may be room on
the media for the file, there is no room in the directory
for another file name. Discs initialized by BASIC have
room for over 100 entries in the directory, but other
systems may make a directory of a different size.

56 File name is undefined. The specified file name does
not exist in the directory. Check the contents of the disc
with a CAT command.

58 Improper file type. Many mass storage oerations are
limited to certain file types. For example, LOAD is lim­
ited to PROG files and ASSIGN is limited to ASCII
and BDAT files.

59 End of file or buffer found. For files: No data left when
reading a file, or no space left when writing a file. For
buffers: No data left for an ENTER, or no buffer space
left for an OUTPUT. Also, WORD-mode TRANSFER
terminated with odd number of bytes.

60 End of record found in random mode. Attempt to EN­
TER a field that is larger than a defined record.

62 Protect code violation. Failure to specify the protect
code of a protected file, or attempting to protect a file
of the wrong type.

64 Mass storage media overflow. There is not enough
contiguous free space for the specified file size. The
disc is full.

65 Incorrect data type. The array used in a graphics opera­
tion, such as GLOAD, is the wrong type (INTEGER or
REAL).

66 INITIALIZE failed. Too many bad tracks found. The
disc is defective, damaged, or dirty.

Error Messages H-5

H

H-6 Error Messages

67 Illegal mass storage parameter. A mass storage state­
ment contains a parameter that is out of range, such as
a negative record number or an out of range number or
records.

68 Syntax error occurred during GET. One or more lines in
the file could not be stored as valid program lines. The
offending lines are usually listed on the system printer.
Also occurs if the first line in the file does not start
with a valid line number.

72 Disc controller not found or bad controller address.
The msus contains an improper device selector, or no
external disc is connected.

73 Improper device type in mass storage unit specifier. The
msus has the correct general form, but the characters
used for a device typer are not recognized.

76 Incorrect unit number in mass storage unit specifier.
The msus contains a unit number that does not exist on
the specified device.

77 Attempt to purge an open file. The specified file is as­
signed to an I/O path name which has not been
closed.

78 Invalid mass storage volume label. Usually indicates
that the media has not been initialized on a compatible
system. Could also be a bad disc.

79 File open on target device. Attempt to copy an entire
volume with a file open on the destination disc.

80 Disc changed or not in drive. Either there is no disc in
the drive or the drive door was opened while a file was
assigned.

If you are using a floppy disc on your HP BASIC sys­
tem for the first time, be sure the disc is not write
protected. HP BASIC checks for the existence of the di­
rectory file HPWLIF.DIR. If this file is not found on the
disc, HP BASIC will create it. The error results when
HP BASIC tries to write the newly created directory file
to the write-protected disc.

81 Mass storage hardware failure. Also occurs when the
disc is pinched and not turning. Try reinserting the
disc.

82 Mass storage unit not present.

83 Write protected. Attempting to write to a write-pro­
tected disc. This includes many operations such as
PURGE, INITIALIZE, CREATE, SAVE, OUTPUT, etc.

84 Record not found. Usually indicates that the media has
not been initialized, or there is a problem in the HPW
file system. Refer to appendix C.

When initializing a disc, an Error 84 (record not found)
can occur under either of the following conditions:

• HP BASIC cannot find the MS-DOS FORMAT
program .

• There is not enough PC RAM to load the FORMAT
program.

You can insure that MS-DOS can find the FORMAT
program by specifying the proper path on a PATH
statement in your AUTOEXEC.BAT file. If an Error 84
occurs and you suspect insufficient memory to be the
problem, you may have to format the disc directly
from MS-DOS by using the FORMAT command.

85 Media not initialized. (Usually not produced by the in­
ternal drive.)

87 Record address error. Usually indicates a problem with
the media.

88 Read data error. The media is physically or magneti­
cally damaged, and the data cannot be read.

89 Checkread error. An error was detected when reading
the data just written. The media is probably damaged.

90 Mass storage system error. Usually a problem with the
hardware or the media.

Error Messages H· 7

93 Incorrect volume code in MSUS. The MSUS contains a
volume number that does not exist on the specified
device.

100 Numeric IMAGE for string item.

101 String IMAGE for numeric item.

102 Numeric field specifier is too large. Specifying more
than 256 characters in a numeric field.

103 Item has no corresponding IMAGE. The image speci-
fier has no fields that are used for item processing.
Specifiers such as # X / are not used to process the
data for the item list. Item-processing specifiers include
things like K 0 8 A.

105 Numeric IMAGE field too small. Not enough charac-
ters are specified to represent the number.

106 IMAGE exponent field too small. Not enough exponent
characters are specified to represent the number.

107 IMAGE sign specifier missing. Not enough characters
are specified to represent the number. Number would
fit except for the minus sign.

117 Too many nested structures. The nesting level is too
deep for such structures as FOR, SELECT, IF, LOOP,
etc.

118 Too many structures in context. Refers to such struc-
tures as FOR/NEXT, IF/THEN/ELSE, SELECT/CASE,
WHILE, etc.

120 Not allowed while program running. The program
must be stopped before you can execute this command.

121 Line not in main program. The run line specified in a
LOAD or GET is not in the main context.

122 Program is not continuable. The program is in the

H stopped state, not the paused state. CONT is allowed
only in the paused state.

126 Quote mark in unquoted string. Quote marks must be
used in pairs.

H-8 Error Messages

127 Statements which affect the knob mode are out of
order.

128 line too long during GET.

131 Unrecognized non-ASCII keycode. An output to the
keyboard contained a CHR$(255) followed by an ille­
gal byte.

132 Keycode buffer overflow. Trying to send too many
characters to the keyboard buffer with an OUTPUT 2
statement.

133 DELSUB of non-existent or busy subprogram.

134 Improper SCRATCH statement.

135 . READIO /WRITEIO to nonexistent memory location.

136 REAL underflow. The input or result is closer to zero
than 10-308 (approximately).

140 Too many symbols in the program. Symbols are vari­
able names, I/O path names, COM block names,
subprogram names, and line identifiers.

141 Variable cannot be allocated. It is already allocated.

142 Variable not allocated. Attempt to DEALLOCATE a
variable that was not allocated.

143 Reference to missing OPTIONAL parameter. The sub­
program is trying to use an optional parameter that
didn't have any value passed to it. Use NPAR to check
the number of passed parameters.

145 May not build COM at this time. Attempt to add or
change COM when a program is running. For example,
a program does a LOAD SUB and the COM in the new
subprogram does not match existing COM.

146 Duplicate line label in context. There cannot be two
lines with the same line label in one context.

150 megal interface select code or device selector. Value out
of range.

152 Parity error.

153 Insufficient data for ENTER. A statement terminator
was received before the variable list was satisfied.

Error Messages H-9

H

H-10 Error Messages

154 String greater than 32767 bytes in ENTER.

155 Improper interface register number. Value out of range
or negative.

156 Illegal expression type in list. For example, trying to
ENTER into a constant.

157 No ENTER terminator found. The variable list has
been satisfied, but no statement terminator was re­
ceived in the next 256 characters. The # specifier
allows the statement to terminate when the last item is
satisfied.

158 Improper image specifier or nesting images more than
8 deep. The characters used for an image specifier are
improper or in an improper order.

159 Numeric data not received. When entering characters
for a numeric field, an item terminator was encoun­
tered before any "numeric" characters were received.

160 Attempt to enter more than 32767 digits into one
number.

163 Interface not present. The intended interface is not
present, set to a different select code, or is
malfunctioning.

164 Illegal BYTE/WORD operation. Attempt to ASSIGN
with the WORD attribute to a non-word device.

165 Image specifier greater than dimensioned string length.

167 Interface status error. Exact meaning depends upon the
interface type. With HP-IB, this can happen when a
non-controller operation by the computer is aborted by
the bus. It may also indicate a problem in the HPW file
system. Refer to appendix C.

168 Device timeout occurred and the ON TIMEOUT branch
could not be taken.

170 I/O operation not allowed. The I/O statement has the
proper form, but its operation is not defined for the
specified device. For example, using an HP-IB state­
ment on a non-HP-IB interface or directing a LIST to
the keyboard.

171 Illegal I/O addressing sequence. The secondary ad­
dressing in a device selector is improper or primary
address too large for specified device.

172 Peripheral error. PSTS line is false. If used, this means
that the peripheral device is down. If PSTS is not being
used, this error can be suppressed by using control reg­
ister 2 of the GPIO.

173 Active or system controller required. The HP-IB is not
active controller and needs to be for the specified
operation.

174 Nested I/O prohibited. An I/0 statement contains a
user-defined function. Both the original statement and
the function are trying to access the same file or device.

177 Undefined 1j0 path name. Attempting to use an I/O
path name that is not assigned to a device or file.

178 Trailing punctuation in ENTER. The trailing comma or
semicolon that is sometimes used at the end of OUT­
PUT statements is not allowed at the end of ENTER
statements.

301 Cannot do while connected.

303 Not allowed when trace active.

304 Too many characters without terminator.

306 Interface card failure. The datacomm card has failed
self-test.

308 Illegal character in data. Datacomm error.

310 Not connected. Datacomm error.

313 USART receive buffer overflow. Overrun error de­
tected. Interface card is unable to keep up with
incoming data rate. Data has been lost.

314 Receive buffer overflow. Program is not accepting data
fast enough to keep up with incoming data rate. Data
has been lost.

Error Messages H·11

315 Missing data transmit clock. A transmit timeout has oc-
curred because a missing data clock prevented the card
from transmitting. The card has disconnected from the
line.

316 CTS false too long. The interface card was unable to
transmit for a predetermined period of time because
Clear-To-Send was false on a half-duplex line. The
card has disconnected from the line.

317 Lost carrier disconnect. Data Set Ready (DSR) or Data
Carrier Detect (if full duplex) went inactive for too
long.

318 No activity disconnect. The card has disconnected from
the line because no data was transmitted or received
for a predetermined length of time.

319 Connection not established. Data Set Ready or Data
Carrier Detect (if full duplex) did not become active
within a predetermined length of time.

324 Card trace buffer overflow.

325 lllegal databits/parity combination. Attempting to pro-
gram 8 bits-per-character and a parity of ''1'' or Non.

326 Register address out of range. A control or status regis-
ter access was attempted to a non-existent register.

327 Register value out of range. Attempting to place an il-
legal value in a control register.

328 USART Transmit underrun.

330 User-defined LEXICAL ORDER IS table size exceeds
array size.

331 Repeated value in pointer. A MAT REORDER vector
has repeated subscripts. This error is not always
caught.

H 332 Non-existent dimension given. Attempt to specify a
non-existent dimension in a MAT REORDER operation.

333 Improper subscript in pointer. A MAT REORDER vector
specifies a non-existent subscript.

H·12 Error Messages

334 Pointer size is not equal to the number of records. A
MAT REORDER vector has a different number of ele­
ments than the specified dimension of the array.

335 Pointer is not a vector. Only single-dimension arrays
(vectors) can be used as the pointer in a MAT REOR­
DER or a MAT SORT statement.

337 Substring key is out of range. The specified substring
range of the sort key exceeds the dimensioned length
of the elements in the array.

338 Key subscript out of range. Attempt to specify a sub­
script in a sort key outside the current bounds of the
array.

340 Mode table too long. User-defined LEXICAL ORDER IS
mode table contains more than 63 entries.

341 Improper mode indicator. User-defined LEXICAL OR­
DER IS table contains an illegal combination of mode
type and mode pointer.

342 Not a single-dimension integer array. User-defined
LEXICAL ORDER IS mode table must be a single-di­
mension array of type INTEGER.

343 Mode pointer is out of range. User-defined LEXICAL
ORDER IS table has a mode pointer greater than the
existing mode table size.

344 1 for 2 list empty or too long. A user-defined LEXICAL
ORDER IS table contains an entry indicating an im­
proper number of 1 for 2 secondaries.

345 CASE expression type mismatch. The SELECT state­
ment and its CASE statements must refer to the same
general type, numeric or string.

346 INDENT parameter out of range. The parameters must
be in the range: a thru eight characters less than the
screen width.

Error Messages H-13

H

H·14 Error Messages

347 Structures improperly matched. There is not a cor·
responding number of structure beginnings and
endings. Usually means that you forgot a statement
such as END IF, NEXT, END SELECT, etc.

349 CSUB has been modified. A contiguous block of com­
piled subroutines has been modified since it was
loaded. A single module that shos as multiple CSUB
statements has been altered because program lines
were inserted or deleted.

353 Data link failure.

369 ·399 Errors in this range are reported if a run-time Pas­
cal error occurs in a CSUB. To determine the Pascal
error number, subtract 400 from the BASIC error num­
ber. Information on the Pascal error can be found in
the Pascal Workstation System manual.

401 Bad system function argument. An invalid argument
was given to a time, date, base conversion, or SYS­
TEMS$ function.

403 Copy failed; program modification incomplete. An er­
ror occurred during a COPYLINES or MOVELINES
resulting in an incomplete operation. Some lines may
not have been copied or moved.

427 Priorty may not be lowered.

450 Volume not found-SRM error.

451 Volume labels do not match-SRM error.

453 File in use-SRM error.

454 Directory formats do not match-SRM error.

455 Possibly corrupt file-SRM error.

456 Unsupporteda directory operation-SRM error.

457 Passwords not supported-SRM error.

458 Unsupported directory format-SRM error.

459 Specified file is not a directory-SRM error.

460 Directory not empty-SRM error.

462 Invalid password-SRM error.

465 Invalid rename across volumes-SRM error.

471 TRANSFER not supported by the interface.

481 File locked or open exclusively-SRM error.

482 Cannot move a directory with a RENAME operation-
SRM error.

483 System down-SRM error.

484 Password not found-SRM error.

485 Invalid volume copy-SRM error.

488 DMA hardware required. HP 9885 disc drive requires a
DMA card or is malfunctioning.

511 The result arary in a MAT INV must be of type REAL.

600 Attribut cannot be modified. The WORD/BYTE mode
cannot be changed after assigning the I/O path name.

601 Improper CONVERT lifetime. When the CONVERT
attribute is included in the assignment of an I/O path
name, the name of a string variable containing the con­
version is also specified. The conversion string must
exist as long as the I/O path name is valid.

602 Improper BUFFER lifetime. The variable designated as
a buffer during an I/O path name assignment must ex­
ist as long as the I/O path name is valid.

603 Variable was not declared as a BUFFER. Attempt to as­
sign a variable as a buffer without first declaring the
variable as a BUFFER.

604 Bad source or destination for a TRANSFER statement.
Transfers are not allowed to the CRT, keyboard, or tape
backup on CS80 drives. Buffer to buffer or device to
device transfers are not allowed.

605 BDAT file type required. Only BDAT files can be used
in a TRANSFER operation.

606 Improper TRANSFER parameters. Conflicting or
invalid TRANSFER parameters were specified, such as
RECORDS without and EOR clause, or DELIM with an
outbound TRANSFER.

Error Messages H-15

607 Inconsistent attributes. Such as CONVERT or PARITY
with FORMAT OFF.

609 IVAL or OVAL result too large. Attempt to convert a
binary, octal, decimal, or hexadecimal string into a
value outside the range of the function.

612 BUFFER pointers in use. Attempt to change one or
more buffer pointers while a TRANSFER is in progress.

700 Improper plotter specifier. The characters used as a
plotter specifier are not recognized. May be misspelled
or contain illegal characters.

702 CRT graphics hardware missing. Hardware problem.

704 Upper bound not greater than lower bound. Applies to
P2 < = PI or VIEWPORT upper bound and CLIP
limits.

705 VIEWPORT or CLIP beyond hard clip limits.

708 Device not initialized.

713 Request not supported by specified device. Trying to
equate color CRT characteristics with an external de-
vice, such as using COLOR MAP on a plotter.

733 GESCAPE ope ode not recognized. Only values 1 thru 5
can be used.

900 Undefined typing aid key.

901 Typing aid memory overflow.

902 Must delete entire context. Attempt to delete a SUB or
DEF FN statement without deleting its entire context.
Easiest way to delete is with DELSUB.

903 No room to renumber. While EDIT mode was re-
numbering during an insert, all available line numbers
were used betweeen insert location and end of
program.

H 904 Null FIND or CHANGE string.

905 CHANGE would produce a line too long for the sys-
tem. Maximum line length is two lines on the CRT.

H-16 Error Messages

906 SUB or DEF FN not allowed here. Attempt to insert a
SUB or DEF FN statement into the middle of a context.
Subprograms must be appended at the end.

909 May not replace SUB or DEF FN. Similar to deleting a
SUB or DEF FN.

910 Identifier not found in this context. The keyboard-spec­
ified variable does not already exist in the program.
Variables cannot be created from the keyboard; they
must be created by running a program.

911 Improper I/O list.

920 Numeric constant not allowed.

921 Numeric identifier not allowed.

922 Numeric array element not allowed.

923 Numeric expression not allowed.

924 Quoted string not allowed.

925 String identifier not allowed.

926 String array element not allowed.

927 Substring not allowed.

928 String expression not allowed.

929 I/O path name not allowed.

930 Numeric array not allowed.

931 String array not allowed.

932 Excess keys specified. A sort key was specified follow­
ing a key which specified the entire record.

935 Identifier is too long: 15 characters maximum.

936 Unrecognized character. Attempt to store a program
line containing an improper name or illegal character.

937 Invalid OPTION BASE. Only 0 and 1 are allowed.

939 OPTIONAL appears twice. A parameter list may have
only one OPTIONAL keyword. All parameters listed
before it are required, all listed after it are optional.

Error Messages H-17

940 Duplicate formal parameter name.

942 Invalid I/O path name. The characters after the @ are
not a valid name. Names must start with a letter.

943 Invalid function name. The characters after the FN are
not a valid name. Names must start with a letter.

946 Dimensions are inconsistent with previous declaration.
The references to an array contain a different number
of subscripts at different places in the program.

947 Invalid array bounds. Value out of range, or more than
32767 elements specified.

948 Multiple assignment prohibited. You cannot assign the
same value to multiple variables by stating X=Y=Z=0.
A separate assignment must be made for each variable.

949 This symbol not allowed here. This is the general Hsyn_
tax error" message. The statement you typed contains
elements that don't belong together, are in the wrong
order, or are misspelled.

950 Must be a positive integer.

951 Incomplete statement. This keyword must be followed
by other items to make a valid statement.

961 CASE expression type mismatch. The CASE line con-
tains items that are not the same general type, numeric
or string.

962 Programmable only: cannot be executed from the
keyboard.

963 Command only: cannot be stored as a program line.

977 Statement is too complex. Contains too many operators
and functions. Break the expression down so that it is
performed by two or more program lines.

980 Too many sysmbols in this context. Symbols include
H variable names, I/O path names, COM block names,

subprogram names, and line identifiers.

982 Too many subscripts: maximum of six dimensions
allowed.

H-18 Error Messages

983 Wrong type or number of parameters. An improper pa­
rameter list for a machine-resident function.

985 Invalid quoted string.

987 Invalid line number: must be a whole number 1 thru
32766.

988 This error can be generated by using a configuration
file different from the one that was accessed when
HP BASIC was booted. If you change the HP BASIC
configuration file, you must reboot your HP BASIC
system.

Erl"or Messages HI-19

H

A
ABORT, 5-24, 5-26
ABS, 3-47, 3-54
Abort plotting, SRM, 6-28
Abort printing, SRM, 6-28
Aborting bus activity, 5-28
Accessing directories, 3-154
Accessing files, 3-137
Accessing shared device, 6-5, 6-8
ACS, 3-48
ACSH,3-48

Index

Active controller, 5-20 thru 5-22, 5-26, 5-28,
5-29

Address, primary, 3-158
Addressing multiple listeners, 5-22
Alpha display, 4-1
ALLOCATE, 3-45, 3-62, 3-65, 3-66, 3-68, 3-82
Anisotropic scaling, 4-14
Appearance of output, 6-22
Append, 3-26
Arbitrary exit points, 3-40
Arithmetic operations with complex arrays, 3-85
AREA COLOR, 4-27, 4-28, 4-62, 4-67
AREA INTENSITY, 4-27, 4-28, 4-62, 4-67
AREA PEN, 4-62, 4-67
ARG,3-54
Arithmetic

functions, 3-47
operators and arrays, 3-82

Array
and arithmetic operators, 3-82
assigning element values, 3-69
boolean, 3-87
COMPLEX operations with, 3-70, 3-85
copying, 3-71
dimensioning, 3-62, 3-68
elements, 3-68
examples of, 3-63
extracting single values from, 3-69
four-dimensional, 3-67
filling, 3-69
formatting for display, 3-73
and matrix functions, 3-56
numeric, 3-61
passing, 3-75
printing, 3-73
redimensioning, 3-71, 3-80
storage and retrieval, 3-127
summing elements, 3-87
two-dimensional, 3-74
using MAT statement, 3-82
using READ statement, 3-70
string, 3-91
variables, 3-45

ASCII, 3-133
ASCII files, 3-24 thru 3-26, 3-131
ASN,3-48
ASNH,3-48
Aspect ratio, 4-40
ASSIGN, 3-134, 5-14, 5-15, 6-20, 6-28
Assigning

array elements, 3-68, 3-69
COMPLEX variables, 3-51
I/O path names, 5-13

Index-1

ATN, 3-48
ATNH,3-48
Asynchronous data communication, 5-42
AXES, 4-17

B
Background, 1-3, B-10
Background value, 4-62
Backplane, 5-2
Bar code reader, 5-74
BASE, 3-56
Base conversion, 3-101
Base conversion functions, 3-55
BASIC, 2-12
BASIC, using with SRM, 6-7
Baud rate, serial interface, 5-48
BDAT, 3-129, 3-130, 3-138 thru 3-145, 3-149
BDAT file, reading and writing, 3-138
BINAND, 3-49
Binaries, 1-3, 2-9, 2-11, 3-23, D-l, D-2
Binary functions, 3-48
BINCMP, 3-49
BINEOR, 3-49
BINI OR, 3-49
BIT, 3-49
Boolean,

arrays, 3-87
expression, 3-59

Booting,
from SRM, 6-4
HP BASIC, 2-8, 2-9, 2-11

Boundary conditions, 3-179
Branching

conditional, 3-32
event-initiated, 3-29
on clock events, 3-173
restrictions, 3-178
simple, 3-30

BUFFERS, 2-4
Bus, 5-2

activity, aborting, 5-28
sequences, HP-IB, 5-21

2-lndex

c
CALL, 3-116, 3-178

. Calling a subprogram, 3-106
Card, language processor, 1-3
CASE, 3-34, 3-35
CASE ELSE, 3-34, 3-36
CAT, 3-20, 3-23, 3-25, 3-150, 3-154, 3-155,

3-157
Catalog, to printer, 3-155
Cataloging select files, 3-155
CHANGE,3-9
Character format, serial interface, 5-43, 5-47,

5-48
Character sets, selecting, 4-60
Check in a file, C-4
CHR$, 3-161
CLEAR, 5-24, 5-28
CLEAR I/O, 3-169, 3-193, 4-57
Clearing HP-IB devices, 5-28
Clip limits

hard, 4-14
soft, 4-14, 4-45

CLIP OFF, 4-14
Clipping, 4-45
ClOCK, 3-178
Clock

branching on, 3-173
initial value, 3 -170
range and accuracy, 3-169
reading, 3 -170
real time, 3-169 thru 3-178
setting, 3-171

Closing I/O path names, 3-138, 5-15
Color

background, 4-62
color-mapped, 4-64
color-map pen values, 4-65
default, 4-64
fill, 4-67
models, 4-66
non-color-mapped, 4-62
graphics, 4-62 thru 4-67

COLORLINE, 4-64

COM, 3-27, 3-62, 3-63, 3-65, 3-68, 3-110 thru
3-113

Command, 3-2
Communicating with devices, 5-17
Comparing REAL numbers, 3-59
Compatibility,

data, 5-4
electrical, 5-3
mechanical, 5-3
timing, 5-4

COMPLEX, 3-61
Complex, functions, 3-51
Complex numbers

and trigonometric mode, 3-52
assigning, 3-51
as arguments, 3-48
determining the parts of, 3-53
evaluating, 3-52
operations with arrays, 3-61, 3-85
variables, 3-47

Computation, numeric, 3-40
Concatenation, string, 3-92
Conditional,

branching, 3-32
execution, 3-29, 3-31
multiple-line segments, 3-33
number of iterations, 3-38

Configuration,
file, 2-2, appendix F
file, MS-DOS, 2-2, 2-4
utility, F-2

CONFIG.SYS, 2-4
CONJG,3-54
Context, 3-114
CONTINUE, 3-29, 3-30, 3-188, 3-191,
CONTROL, 3-144
Control characters, 3-161
Controlled access, 6-5
Controller

non-active, 5-35
address, 5-32 thru 5-35
status, 5-32 thru 5-35

Controlling
pen force, 4-59
pen speed, 4-58

Conversion
case, 3-99
number base, 3-101
numeric-to-string, 3-97
string-to-numeric, 3-7
type, 3-45

Converting rectangular to polar coordinates, 3-54
COPY, 3-152, 6-20, 6-21
COPYLINES, 3-8
Copying

arrays, 3-71
files, 3-152
files, SRM, 6-8, 6-19
program segments, 3-8
subarrays, 3-75, 3-78
using ENTER, 6-23
using OUTPUt 6-23

COS, 3-48
COSH,3-48
COUNT,3-156
Count of selected files, 3-156
CRBDAT, 3-133
CREATE, 3-130
CREATE BDAT, 3-139
CREATE DIR, 6-3, 6-8
Creating

graphics, 4-9
simple shapes" 4-25
SRM directories and files, 6-8, 6-9

CRT, 3-56, 3-160
CRT Display, 4-1
Current position

changing, 4-6
digitizing, 4-7
finding, 4-6

CustOmizing binaries, 1-3, 2-9, 2-11, 2-14
Cycles, 3-174

Index-3

D
DATA, 3-70, 3-125
Data

storing in programs, 3-123
writing, 3-142
driven plotting, 4-47
file, structure, 3-128
flow; 5-10
input, 3-124
input, serial interface, 5-50
output, serial interface, 5-50
pointer, 3-126, 3-128
storage and retrieval, 3-123
transfer, serial interface, 5-45, 5-49
types, numeric, 3-43

Date, 3-170, 3-172
DATE,3-55
DATE$, 3-170, 3-173
Debugging, 3-184 thru 3-193
Default

colors, 4-64
configuration, 2-2 thru 2-4, appendix F

DEF FN, 3-8, 3-104, 3-119, 3-120
Defined records, 3-139
DEG, 3-47, 3-52, 4-42, 4-50
DEL, 3-4
Delays, 3-174
DELETE LINE, 3-4
Deleting lines, 3-4
DET, 3-56
Device selector, 3-19, 3-135, 3-158 thru 3-160,

5-11, 5-13, 5-17
Device type, 3-19, 3-135
Devices, remote control of, 5-25
Difficulty, SRM 6-32
DIGITIZE, 4-8, 5-72
DIM,3-45
Dimensioning

array, 3-62, 3-68
implicit, 3-68

Directory, 3-18, 3-154, 6-8
Directory paths, 6-8, 6-31
Disc

initialization, 3-21
labels, 3-22

4-lndex

DISP, 3-53
Displays,

alpha, 4-1, B-5 thru B-9
graphics, 4-1, B-5 thru B-9

Dithering, 4-62, 4-67
DIV, 3-57
DOT, 3-56
DRAW, 4-11
Drawing

lines, 4-9
modes, 4-46

DROUND, 3-50, 3-60
DROUNDl, 3-60
Dump

graphicS, 4-56
screen, 4-56

DUMP GRAPHICS, 4-56
Dumping raster images, 4-56
DVAL,3-55

E
EDGE, 4-27, 4-31, 4-37
EDIT, 3-3
EDIT,

getting out of, 3-10
screen, 3-3

Editing
program, 3-7
subprograms, 3-120

Editor, 3-2
EIRSERVE, 5-65
Emulator, 1-3
END, 3-29, 3-146
END IF, 3-33
END SELECT, 3-35
Enter, 3-2
ENTER, 3-56, 3-73, 3-129, 3-145, 3-146, 3-154,

3-155, 5-9, 5-22, 5-58, 6-23, B-13
Entering a program, 3-3
EOF, 3-139, 3-144, 3-145, 3-148, 3-157
EOR, 3-144, 3-148
Erasing lines, 4-22
ERRL, 3-181, 3-183
ERRM$, 3-181
ERRN, 3-181

Error
detection, 4-61, 5-45, 5-51
handling, 3-178 thru 3-184
integer overflow, 3-45, 3-49
messages, appendix H
trapping, 3-180
type mismatch, 3-45

Error 19, 3-37
Error 30, 3-52
Error 31, 3-179
Error 58, 3-25, 3-28
Error 59, 3-144, 3-148
Error 60, 3-144, 3-148
Error 62, 6-19
Error 78, 3-23
Error 80, 3-23
Error 84, 3-23
Error 85, 3-23
Error 177, 5-14
Error 347, 3-41
Error 910, 5-14
Evaluating

COMPLEX numbers, 3-49
scalar expressions, 3-57
string expressions, 3-91

Event-initiated branching, 3-29, 3-41
Exclusive access, 6-18
Execute, 3-2
Executing a subprogram, 3-106
Execution,

conditional, 3-29, 3-31
halting, 3-29
program, 3-14, 3-26, 3-29

EXIT, 2-12, B-10
Exit points, arbitrary, 3-40
EXP, 3-47
Exponential functions, 3-47
Extracting single values from arrays, 3-69

F
Fields, printing, 3-161
FILES, 2-4
Files,

accessing, 3-137
ASCII, 3-24, 3-25
BDAT, 3-129, 3-130, 3-138 thru 3-145, 3-149
cataloging, 3-155
copying, 3-152, 6-19
count of selected, 3-156
mass storage, 3-18
PROG, 3-24, 3-25
protection, 3-149, 3-151, 6-14 thru 6-19
purging, 3-153
renaming, 3-151
skipping selected, 3-156
specifiers, 3-134, 6-30

FILL, 4-27, 4-31, 4-51, 4-62, 4-67
Fill,

attributes, 4-27
colors, 4-67
value, 4-62

Filling arrays, 3-69, 3-70
FIND, 3-8
Firmware, 5-2
Flow, 3-29
FNEND, 3-119, 3-122
FOR ... NEXT, 3-37, 3-38
FORMAT, 2-7, 3-21
FORMAT OFF, 3-142
FORMAT ON, 6-21
Formatted printing, 3-161
Function,

arithmetic, 3-47
array and matrix, 3-56
base conversion, 3-55
binary, 3-48
complex, 3-51
difference between subprogram and, 3-105
exponential, 3-47
general, 3-55
limit, 3-49
MAT,3-99

Index-5

matrix, 3-56
random number, 3-50
REAL, 3-106
resident numeric, 3-46
rounding, 3-50
step, 3-58
string, 3-96, 3-106
string, 3-98
time and date, 3-55
trigonometric, 3-47
user-defined, 3-28, 3-104

G
GCLEAR, 4-22, 4-62
GET, 3-25, thru 3-27
GINIT, 4-3, 4-6
GLOAD,4-47
GOSUB, 3-30, 3-33
GOTO, 3-30, 3-33
GPIO,

configuration, 5-54
data handshake, 5-55, 5-56
description, 5-52 thru 5-54
interrupt service routines, 5-64
interface, 5-52 thru 5-65
interface, 5-6
interface select code, 5-54
interrupt priority, 5-54
interrupts, 5-62
timeouts, 5-60 thru 5-62
using ENTER, 5-59
using OUTPUT, 5-58

GRAD,3-52
GRAPH,4-1
GRAPHX, 4-1
Graphics,

clearing display, 4-4
color, 4-62
creating, 4-9
current position, 4-3, 4-6, 4-7
display, 4-1
display units, 4-15
dump, 4-56
miscellaneous concepts, 4-45
using effectively, 4-37

6-lndex

Grids, 4-19
GSTORE, 4-47

H
Halting program execution, 3-29
Handshake, 5-21

data, 5-8
GPIO, 5-55, 5-56
modern line, 5-51

Hard clip limits, 4-14, 4-45
Hardware requirements, 1-4, 2-1
Hardware parameters, serial interface, 5-47
HILBUF$, 5-65
HILID,5-69
HIL SEND, 5-68, 5-73
HPBASIC,

configuration, F-1
features, 1-3
file system, B-14 thru B-28
installing, 2-1, 2-5 through 2-11
system display, 2-13

HPGL, 4-55, 4-58
HPWFONT, B-8, B-9
HPWSTATUS, B-ll
HPWUTIL, 3-21, 3-152, B-29, C-l thru C-5
HP-HIL,

absolute positioners, 5-73
communicating through, 5-65
identifying devices, 5-69
interface, 5-65
keyboards, 5-71
relative positioners, 5-72
supported devices, 5-69
testing, 2-18

HP-IB,
clearing devices, 5-28
device selectors, 5-13, 5-17
general structure of, 5-19
interface, 5-16 thru 5-40
interface, 5-4
polling devices, 5-30
service requests, 5-29
triggering devices, 5-27

HSL color model, 4-66, 4-67

I
I/O path, 3-142

closing, 3-138
opening, 3-137
names, 5-13

I/O process, 5-7
IDRAW, 4-9, 4-11, 4-21, 4-51
IF...END IF, 3-33
IF. .. THEN, 3-32
IMAG,3-53
Image specifier, 3-164, 3-165, 3-167, 3-168
Images, using in printing, 3-163 thru 3-169
IMOVE, 4-7, 4-11, 4-21, 4-51
Implicit dimensioning, 3-66
Incremental plotting, 4-51
INDENT, 3-34
INPUT, 3-82, 3-179
INSTALL, 2-8, 2-10
Indenting, 3-11
INITIALIZE, 3-22, 3-135, 3-136
Initializing a disc, 3-21
Input data, 3-124
INSERT LINE, 3-4
Inserting lines, 3-4
Installing HP BASIC,
. on a hard disc, 2-10

on a high-capacity floppy disc, 2-5
source drive, 2-5 thru 2-10
target drive, 2-5 thru 2-10

INT, 3-47
INTEGER, 3-43, 3-62, 3-135
INTEGER OVERFLOW error, 3-45, 3-49
INTEGER variables, 3-44, 3-66
INTENSITY, 4-62, 4-66
Interface,

functions, 5-3
GPIO,5-6
HP-IB, 5-4
select code, 3-158, 5-54
serial, 5-6

, techniques, 5-1
Interleave, 3-130

Interrupt,
enable mask, 5-36
level, 2-4
priority, GPIO, 5-54
service routines, GPIO, 5-64

Interrupts, GPIO, 5-62
IPLOT, 4-21, 4-51, 4-67
Isotropic,

scaling, 4-14
units, 4-13

IVAL, 3-55
Iterations, fixed number, 3-37

K
Keyboard,

Enhanced Vectra PC, 3-2, E-22 thru E-43
functions, 3-2, E-41 thru E-43
live, 3-15, 3-116, 3-185
Vectra PC, 3-2, E-4 thru E-21, E-41 thru E-43

Keyword, 3-1

L
LABEL, 4-16, 4-43, 4-60
Labelling a plot, 4-16, 4-37
Labels, softkey, 2-13
LDIR, 4-42
LET, 3-43
Lexical order, 3-101 thru 103
LIF, 3-21, 3-129, B-14 thru B-17
LGT,3-47
limit functions, 3-49
Line,

attributes, 4-22
label, 3-200
types, 4-24
value, 4-62

linear flow, 3-29
LIST, 3-7, 3-159
LIST BIN, 2-14
listeners, addressing multiple, 5-22
Listing a program, 3-6

Index-7

Live keyboard, 3-15, 3-116, 3-185
LOAD, 3-11, 3-25, 3-27, 3-150, 6-22
LOAD BIN, 2-14, 3-150
LOADSUB, 3-116, 3-150
LOCAL,5-24
Local Control, 5-25, 5-26
LOCAL LOCKOUT, 5-24, 5-26
LOCK, 6-3, 6-18
Locking files, 6-18
LOG,3-47
Logical Interchange Format, 3-21, 3-129, B-14

thru B-17
LOOP ... EXIT IF, 3-37, 3-40
LORG,4-40

M
MANAGER, 6-13, 6-25
Mass Storage, 3-18, 3-128 thru 3-130

device selector, 3-19
device type, 3-19
directories, 3-18
files, 3-18
media specifier, 3-18
non-disc, 3-135
operations, 3-157
techniques, 3-133
testing, 2-14
unit number, 3-18, 3-19
unit specification, 6-30
unit specifier, 3-18, 3-133

MASS STORAGE IS, 2-4, 2-15, 3-18, 3-20,
3-133, 6-8

MAT, 3-61, 3-68, 3-69, 3-82, 3-84 thru 3-87,
3-99

Matrix functions, 3-56
MAX,3-49
MAXREAL,3-49
Media specifiers, 3-18, 3-54
Merging subprograms, 3-121
MIN,3-49
MINREAL, 3-49
Modal attributes, 4-62
Modem line handshake, 5-51

a-Index

Modifying programs to access shared resources,
6-29

MODULO, 3-57
MOVE,4-11
MOVELINES, 3-7
Moving program segments, 3-7
MS-DOS,

BUFFERS, 2-4
CONFIG.SYS, 2-4
environment, 1-3, B-1 thru B-32
file system, B-17 thru B-20
FILES, 2-4
FORMAT, 2-7, 3-21

MSI, 3-20, 6-30
MSUS, 2-3, 3-133
Multiple line conditional segments, 3-33

N
NEXT,3-38
NO HEADER, 3-157
Non-active controller, 5-35
Non-color-mapped color, 4-62
Non-disc mass storage, 3-135
NPAR,3-109
Number base conversion, 3-101
Numeric,

arrays, 3-61
computation, 3-43
data types, 3-43
expressions, strings in, 3-58
functions, resident, 3-46
to string conversion, 3-97

o
OFF CYCLE, 3-173
OFF DELAY, 3-173
OFF END, 3-149
OFF ERROR, 3-180
OFF HIL EXT, 5-68, 5-73
OFF KNOB, 5-72
OFF TIME, 3-173
ON,3-36

ONKEY1, 3-42
ON CYCLE, 3-41, 173
ON DELAY, 3-41, 3-173
ON END, 3-41, 3-144, 3-148
ON EaR, 3-41
ON EaT, 3-41
ON ERROR, 3-41
ON ERROR CALL, 3-180, 3-182
ON ERROR GOSUB, 3-180, 3-181
ON ERROR GOTO, 3-180, 3-182
ON ERROR RECOVER, 3-184
ON HIL EXT, 3-41, 5-68
ON INTR, 3-41
ON KBD, 3-41
ON KEY, 3-41
ON KNOB, 3-41, 5-72
ON SIGNAL, 3-41
ON TIME, 3-173
ON TIMEOUT, 3-41, 3-169
ON ... GOSUB, 3-37
Opening an I/O path, 3-137
Operating parameters, serial interface, 5-46
OPTION BASE, 3-45, 3-63, 3-65

. OUTPUT, 3-73, 3-129, 3-142 thru 3-144, 3-155,
5-9, 5-21, 5-22, 5-58, 6-23, B-10 thru B-13

Output,
appearance of, 6-28
random, 3-144
sequential, 3-143

OUTPUTl, 3-147

p
Parallel poll, 5-30, 5-31
Parameter,

pen control, 4-47
lists, 3-107
serial interface, 5-46, 5-47
optional, 3-109

Parity, serial interface, 5-43, 5-48
Pass by reference, 3-109
Pass by value, 3-108
Passing entire arrays, 3-75
Passwords, 6-13, 6-19
Path names, 5-13 thru 5-15

PAUSE, 3-29, 3-188
Pausing, 3-15
PDIR, 4-25
PEN, 2-17, 4-22, 4-62 thru 4-66
Pen

control, 4-33
control parameter, 4-47
force, 4-59
speed, 4-58
types, 4-23

PENUP, 4-11
PI, 3-47
PIVOT, 4-50
PLOT, 4-20, 4-33, 4-51, 4-67
Plot, labelling, 4-16
Plotter,

specifying, 4-54
testing, 2-17
using shared, 4-55, 6-25

PLOTTER IS, 2-17, 4-55, 4-62, 6-26
Plotting,

aborting, 6-28
data driven, 4-47
incremental, 4-51

Polar coordinates, converting to rectangular, 3-54
Polling HP-IB devices, 5-30
POLYGON, 4-67
Polygons, 4-29
POLYLINE, 4-31
PPOLL,5-24
PPOLL CONFIGURE, 5-24
Precedence, 3-57
PPOLL UNCONFIGURE, 5-24
Pre-run, 3-14, 3-47, 3-114, 3-127
Primary address, 3-158, 5-17
PRINT, 3-171
PRINT LABEL, 3-22
PRINT TAB, 3-163
PRINT USING, 3-163, 3-166
Print, catalog, 3-164
PRINTALL IS, 3-159, 3-191
Printer, 2-15, 3-157 thru 3-169, 6-25
PRINTER IS, 2-16, 3-7, 3-88, 3-154, 3-157,

3-159, 6-26

Index-9

Printing,
aborting, 6-28
arrays, 3-73
fields, 3-161
formatted, 3-161
testing, 2-15, 2-16
using images, 3-163 thru 3-169

PRIORITY, 3-176
PROG file, 3-24, 3-25, 3-27
Program, 3-2, 3-3

debugging, 3-184 thru 3-193
editing, 3-7
execution, 3-14, 3-26
flow, serial interface, 5-50
halting execution, .3-29
line, 3-1, 3-3, 3-27
recording, 3-24
retrieving, 3-18, 3-25
running, 3-14
segments, copying, 3-8
segments, linking, 3-27
segments, moving, 3-7
storage and retrieval, 3-18
storing data in, 3-123
structure and flow, 3-29

Programming, serial interface, 5-46
Programs, modifying to access shared resources,

6-29
PROTECT, 3-149, 3-151, 6-13
Protect code, 3-132, 3-146, 6-19
Protecting files, 3-149, 6-14
PROUND, 3-50
PRT, 3-56, 3-160
PURGE, 6-3, 6-24
Purging files, 3-153, 6-24

R
RAD, 3-47, 3-52, 4-42, 4-50
Radian, 3-47
RAM volumes, 3-135
RANK,3-56

10-lndex

Random
access to strings, 3-140
ENTER, 3-146
number function, 3-50
OUTPUT, 3-144

RANDOMIZE, 3-50
Raster images, dumping, 4-56
RE-SAVE, 3-20
RE-STORE, 3-20
READ, 3-70, 3-73, 3-125, 6-13
README,I-6
READ LABEL, 3-21
READ LOCATOR, 5-72
REAL, 3-43, 3-53, 3-62, 3-135
Real numbers, 3-59
Real-time clock, 3-169
Reassigning I/O path names, 5-14
RECALL,3-4
Recalling lines, 3-4
Record length, choOSing, 3-140
Recording a program, 3-24
Records, defined, 3-139
RECOVER, 3-178
RECTANGLE, 4-25, 4-67
Rectangular coordinates, converting to polar

coordinates, 3-54
Recursion, 3-122
REDIM, 3-62, 3-65, 3-68, 3-80
Redimensioning arrays, 3-71, 3-79
Registers, 5-8
Relational operators, 3-57, 3-92
REMOTE, 5-24, 5-25, 6-5
Remote control of devices, 5-25
Remote files, locking and unlocking, 6-28
REN,3-5
RENAME, 3-150,
Renaming a file, 3-151
Renumbering, 3-5
REPEATl, 3-38
REPEAT ... UNTIL, 3-37, 3-38, 3-40
Repetition, 3-29, 3-37
Replace, 3-8
Requesting service, 5-40

Requirements,
hardware, 1-4
software, 1-4

RES, 3-56
RE-SAVE, 3-25
RE-STORE, 3-25
Reset, serial interface, 5-48
Resident numeric functions, 3-46
Resolution, 4-2
Responding to serial poll, 5-41
Retrieving

a program, 3-25
images, 4-47

RETURN, 3-30
RGB color model, 4-66
RND,3-50
ROTATE, 3-49
Rotating a drawing, 4-49
Rotation, 4-26
Rounding functions, 3-50
RPLOT, 4-21, 4-50, 4-51
RS-232 serial interface, 5-6, 5-41 thru 5-51
RUN, 3-14, 3-30
Run light, 3-15, 3-188
Running a program, 3-14

5
SAVE, 3-24, 3-131
SC, 3-56
Scalar, 3-45, 3-57
Scaling, 4-12, 4-14
SCRATCH, 3-50
SCRATCH A, 3-50, 3-136
Screen dump, 4-56
Search and replace, 3-8
Secondary addressing, 5-23
Seed, 3-50
Segments,

choosing one of many, 3-30
choosing one of two, 3-29
multiple-line conditional, 3-33

SELECT, 3-34, 3-35, 3-164
Selecting character sets, 4-60
Selection, 3-29, 3-31

Self-test, 2-8
SEND,5-24
Sequence, 3-29
Sequential (serial) output, 3-143
Serial

ENTER, 3-145
interface, 5-6, 5-41 thru 5-51
output, 3-143
poll, 5-31, 5-41

Service requests, 5-29
SET PEN, 4-66, 4-67
SET TIME, 3-171, 3-172
SET TIMEDATE, 3-171, 3-172
Shared

access, 6-5, 6-13
plotter, 4-55, 6-25
printer, 6-25, 6-27
resource management, 1-1, 6-1
resource support, 6-3

SHIFT, 3-49
SHOW, 4-13
SGN,3-47
Simple branching, 3-30
SIN, 3-48
SINH,3-48
SIZE,3-56
Skipping selected files, 3-156
Soft clip,

area, 4-14
clip limits, 4-14, 4-45

Softkey labels, 2-13
Software installation, 2-1
Software requirements, 1-4
Specifier, subarray, 3-74
SPOLL~ 5-24
SPOOLER ABORT, 6-28
Spooler, writing files to, 6-26
SQR, 3-47, 3-52

Index-11

SRM, 1-1, 1-6, 6-1 thru 6-35
abort plotting, 6-28
abort printing, 6-28
accessing shared device, 6-8
allowing for directory paths, 6-31
automatic configuration, 6-4
binaries required, 6-1
booting from, 6-4
copying files, 6-19, 6-20
copying item-by-item, 6-23
creating directories and files, 6-8, 6-9
default select code, 6-1
directories and files, 6-6, 6-8
exclusive access, 6-18
hierarchical structure, 6-6
in case of difficulty, 6-32
locking files, 6-18
managing shared peripherals, 6-4
manuals, 1-6
modifying programs to access shared

resources, 6-29
network, 6-2
passwords and protect codes, 6-19
protecting files, 6-14 thru 6-19
purging files/directories, 6-24
returning to local mass storage, 6-29
shared access, 6-5, 6-8, 6-13, 6-25
shared support of BASIC, 6-3
specifying passwords, 6-17
spooling, 6-4
storing remote files, 6-4
summary of status registers, 6-34
system concepts, 6-2
system loading, 6-5
unlocking remote files, 6-18
using BASIC on, 6-7
using shared devices, 6-25

SRQ interrupts, 5-29, 5-30
Statement, 3-1
Status registers, SRM, 6-34
STEP, 3-188, 3-189
Step function, 3-58, 3-187
Stepping, 3-187
STOP, 3-29, 3-43

12-lndex

Stopping, 3-15
STORE, 3-24, 6-22
STORE SYSTEM, 2-14, 2-17
Storing,

data in variables, 3-124
images, 4-47
remote files, 6-4

STRING, 3-135
String,

arrays, 3-91
concatenation, 3-92
data, 3-140
expressions, evaluating, 3-91
functions, 3-98
image specifiers, 3-167
in numeric expressions, 3-58
manipulation, 3-89
random access to, 3-140
related functions, 3-96
repeat, 3-98
reverse, 3-98
storage, 3-90
to numeric conversion, 3-97
trimming, 3-98
variable names, 5-10

Structure,
and flow, 3-24
of data files, 3-133
of discs, 3-129

Subarray specifier, 3-75, 3-76
Subarrays, copying, 3-75, 3-78
SUB, 3-8, 3-28, 3-104, 3-106, 3-119, 3-120
SUBEND, 3-119, 3-122
Subprogram,

and RECOVER, 3-115
and softkeys, 3-115
calling and executing, 3-106
deleting, 3-118, 3-121
difference between function and, 3-105
editing, 3-120
loading, 3-117, 3-118
libraries, 3-116
merging, 3-121
user-defined, 3-104

Subscript, 3-61, 3-68, 3-76
Substrings, 3-93 thru 3-96
SUM, 3-56, 3-87
Summing array elements, 3-87
SYMBOL, 4-67
System

display, 2-13
messages, 2-13
sector, 3-139

T
Tab, 3-163
TAN,3-48
TANH,3-48
Target, 2-5 thru 2-8
Testing,

HP-HIL mouse, 2-18
mass storage, 2-14
plotter, 2-17
printer, 2-15

Tick marks, 4-17
TIME, 3-55, 3-175
Time and date functions, 3-55
Time of day, 3-170, 3-175
TIMEDATE, 2-18, 3-170
Timeout, GPIO, 5-60 thru 5-62
TRACE ALL, 3-189 thru 3-191
TRACE OFF, 3-192
TRACE PAUSE, 3-191, 3-192
Tracing, 3-189
TRACK IS ... ON, 4-8
Translating a draWing, 4-49
Trapping EOF, 3-148
Trapping EOR, 3-148
TRIGGER, 5-24, 5-27
Triggering HP-IB devices, 5-27
Trigonometric,

functions, 3-47
mode, and COMPLEX numbers, 3-49

TRPAUSE, 3-192
Type conversion, 3-45
TYPE MISMATCH error, 3-45

u
UNLOCK, 6-3, 6-18
Unlocking remote files, 6-28
Usable volume, 3-18
User defined,

functions, 3-28, 3-104
subprograms, 3-104
units, 4-13, 4-15

User input data, 3-124
Using,

array elements, 3-68
BASIC on SRM, 6-7
printer, 3-157 thru 3-169
shared plotter, 6-25
shared printer, 6-25
SRM, 6-1 thru 6-35

v
Variable initialization, 3-115
Variables,

array, 3-45
COMPLEX, 3-43, 3-44, 3-51
INTEGER, 3-43, 3-441
REAL, 3-43, 3-44
scalar, 3-45
storing data in, 3-123

VIEWPORT, 4-15, 4-16
Viewport,

defining, 4-14
specifying, 4-16

Volume label, 3-131

w
WHILE, 3-37, 3-39, 3-40
WHILE 1, 3-39
WINDOW, 4-14
WRITE, 6-13
Writing data, 3-142

x
X-Y plane, 4-4

Index-13

-n.~ HEWLETT
~~PACKARD

Reorder· Number
82301-90002

82301-90001
Printed in U.S.A. 10/87
English

	0001
	0002
	001
	002
	003
	004
	1-001
	1-002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-001
	2-002
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-0001
	3-0002
	3-0003
	3-0004
	3-0005
	3-0006
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167
	3-168
	3-169
	3-170
	3-171
	3-172
	3-173
	3-174
	3-175
	3-176
	3-177
	3-178
	3-179
	3-180
	3-181
	3-182
	3-183
	3-184
	3-185
	3-186
	3-187
	3-188
	3-189
	3-190
	3-191
	3-192
	3-193
	3-194
	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	5-001
	5-002
	5-003
	5-004
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	6-001
	6-002
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	A-001
	A-002
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	xBack

