HP BASIC Language
Processor

Programmer’s
Reference Guide

[ﬁﬁ HEWLETT

PACKARD

Edition 2 October 1987
82301-90002

... - 3
Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

MS is a U.S. trademark of Microsoft Corporation.
SIDEKICK and SUPERKEY are registered trademarks of Borland International, Inc.

©1987 by Hewlett-Packard Co.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another language
without the prior written consent of Hewlett-Packard Company.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
clause at 52.227-7013.

Corvallis Workstation Operation

1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History Edition 1 February 1987 Mfg. No. 82300-90001
“Edition 2 October 1987 Mfg. No. 82301-90001

Contents

Chapter 1
11
1-2
1-3
1-4
14
1-5

Introduction

What Is in This Guide

What Is in This Chapter

Features of the HP BASIC Language Processor
Hardware and Software Requirements

What Is in the Box

Other Manuals You May Find Useful

Chapter 2
2-2
2-4
2-5
2-12
2-14
2-15
2-17
2-18

Software Installation

The Configuration File

Before You Start :
Installing the HP BASIC Language Processor
After HP BASIC is Loaded

Testing Mass Storage Devices

Testing Printers

Testing Plotters

Testing the HP-HIL Mouse

Contents—1

Chapter 3

3-1
3-1
3-2
3-2
3-11
3-14
3-18
3-29
3-43
3-61
3-89
3-104
3-123
3-157
3-169
3-178
3-184

Programming Techniques
Introduction

Explanation of Terms

Using the Keyboard

Using the Editor

Indenting

Running a Program

Program Storage and Retrieval
Program Structure and Flow
Numeric Computation
Numeric Arrays

String Manipulation
User-Defined Functions and Subprograms
Data Storage and Retrieval
Using a Printer

The Real-Time Clock

Error Handling

Program Debugging

Chapter 4
4-1
4-1
4-9
4-37
4-54
4-62

2-Contents

Graphics Techniques

Getting Started

Graphics Information

Creating Graphics

Using Graphics Effectively

External Graphics Displays and Plotters
Color Graphics

Chapter 5 Interface Techniques
5-1 Terminology
5-3 Why Do You Need an Interface?
5-4 Interface Overview
5-7 = The I/O Process
5-9 I/0 Examples
5-10 Directing Data Flow
5-16 The HP-IB Interface
5-41 The RS-232 Serial Interface
5-52 The GPIO Interface
5-65 The HP-HIL Interface
5-69 Supported HP-HIL Devices

b]
Chapter 6 Using SRM

6-1 Introduction

6-2 System Concepts

6-7 Using Your BASIC Workstation on SRM
6-29 Modifying Existing Programs to Access Shared Resources
6-32 In Case of Difficulty
6-34 Summary of SRM Status Registers

e e
Appendixes A1 Keyword Reference List
& Index B-1 Using HP BASIC in the MS-DOS Environment

C-1 Utilities
D-1 List of Binaries
E-1 List of Keyboard Functions
F-1 Configuration
G-1 List of Programs On the Manual Examples Disc
H-1 Error List
Index-1 Index

Contents-3

1 Introduction

Contents

Chapter 1 Introduction

What Is in This Guide

What Is in This Chapter

Features of the HP BASIC Language Processor
Hardware and Software Requirements

What Is in the Box

Other Manuals You May Find Useful

e T Y
OhhON=

Introduction

Welcome to the HP BASIC Language Processor.

This guide will help you learn about setting up and using
your HP BASIC Language Processor software. It will guide
you through the software installation process and then will
help you become familiar with various programming tech-
niques of the HP BASIC Language Processor. Later, you can
use it as a reference. If you are already familiar with HP BA-
SIC Series 200/300 workstations, you should read appendix B
(“Using the HP BASIC Language Processor in the MS-DOS
Environment”), appendix C (“Utilities”), appendix E (“Key-
boards”), and appendix F (“The Configuration File”) after you
complete the software installation in chapter 2.

What Is in This
Guide

You will find instructions for getting started, including proce-
dures for:

B Software installation.

B Programming techniques.

B Graphics techniques.

B Interface techniques.

B Using Shared Resource Management (SRM).

Introduction 1-1

Note

What Is in This
Chapter

1-2

Introduction

You will find the software installation easier to follow if you
are familiar with MS-DOS. If you are not familiar with MS-
DOS, the procedures recommend a command name that you
can look up in your MS-DOS manual when you need to per-
form MS-DOS functions.

Additional information is provided in appendixes:

®m Using the HP BASIC Language Processor in the MS-DOS
Environment.

m Utilities.

B List of Binaries.

B List of Keyboard Functions.

B Configuration.

B List of Programs On the Manual Examples Disc.

8 Error list.

This chapter describes:

B What is in the manual.

® Features of the HP BASIC Language Processor.
® Hardware and software requirements.

® What is in the box.

B The HP BASIC Language Processor discs.

B Other manuals that you may find useful.

Features of the
HP BASIC
Language
Processor

The HP BASIC Language Processor enables you to use your
personal computer to develop and run sophisticated BASIC
language programs. It provides the emulator program that en-
ables the HP 82321A Language Processor Card to be used in
your personal computer. The features include:

H HP Series 200/300 Basic Language Workstation Emula-
tion: The HP BASIC Language Processor enables your
personal computer to look and perform like an HP Series
200/300 BASIC Language Workstation. A medium resolu-
tion graphics display can also be emulated.

® MS-DOS Environment: The HP BASIC Language Processor
is similar to a typical MS-DOS language system. It accom-
modates the MS-DOS environment while retaining the
HP Series 200/300 BASIC interface and features. MS-DOS
allows access to IO devices. The differences are explained
in detail in appendix B.

N Customizing Binaries: Binaries are optional enhancements
to the HP BASIC system. They include both language ex-
tensions and drivers. By selectively loading binaries after
booting, you can obtain the features you need without us-
ing excessive memory.

B performance: HP BASIC provides the performance that
enables you to run sophisticated programs.

B Background Operations: HP BASIC can operate in the
background enabling other personal computer applications
to run simultaneously in the foreground. Refer to appendix
B for more information.

Introduction 1-3

Hardware and To set up the HP BASIC Language Processor you need an
Software MS-DOS computer that includes:
Requirements B A minimum of 256k bytes of RAM.

B A dual flexible disc drive system with at least one high-
capacity (1.2M byte or greater) drive, or a hard disc system
with at least one flexible disc drive.

B The HP 82321 Language Processor Card.

B The HP BASIC Language Processor software discs.

m A Monochrome Plus, Multimode, or Enhanced Graphics
Display (EGA) adapter or equivalent, plus the appropriate
monitor.

Note 1 EGA emulation of the 9836C color display requires at least
WP 512K bytes of PC RAM.
What Is in the The HP BASIC Language Processor package includes:

Box This manual: HP BASIC Programmers Reference Guide.

BASIC 5.0 Language Reference A-L (Volume 1).
BASIC 5.0 Language Reference M-Z (Volume 2).
Key Function and Switch Configuration Guide.
Basic 5.0 Condensed Reference.

Four keyboard overlays.

Four 5.25-inch HP BASIC Language Processor software
discs.

B One 3.5-inch HP BASIC Language Processor software disc.

1-4 iIntroduction

Labels and Descriptions of 5.25-Inch HP BASIC Discs

Label

Description

Disc one: HP BASIC emulator
and PC utilities.

Disc two: HP BASIC system
disc.

Disc three: Binaries and drivers.

Disc four: Manual examples and
selected HP BASIC Utilities.

The emulator program plus file
and configuration utilities.

HP BASIC operating system.

Binaries for additional features
(drivers for devices).

Examples from the manual.

The single 3.5-inch disc contains all of the above.

Other Manuals
You May Find
Useful

If you would like additional detail or information, you may
want to use these supplemental manuals available from

Hewlett-Packard.

Part Number

Description

Basic 5.0 Program-
ming Techniques

Basic 5.0 Graphics
Techniques

Basic 5.0 Interface
Techniques

Installing, Using and
Maintaining the BASIC
5.0 System

98613-90012

98613-90032

98613-90022

98613-90092

Detailed description of
programming.

Detailed description of
graphics.

Detailed description on
interfaces.

Information on install-
ing, using, and
maintaining BASIC on
a series 200/300
system.

Introduction 1-5

Manual Name Part Number Description

HP-IB Interface Manual | 82990-90001 Detailed description of
HP-IB interfaces.

SRM System 98619-90032 General system
Manager’s Guide maintenance.

SRM Hardware Instal- | 98619-90021 Hardware installation.
lation Manual

SRM Software Installa- | 98619-90071 Installing the SRM op-
tion Manual erating system.

Information on recent changes to HP BASIC can be found in
a file called README on disc one. You should read this file
before you install HP BASIC. Use the MS-DOS TYPE or
PRINT command to list the file.

1-6 Introduction

2 Software Installation

Contents

Chapter 2

2-2
2-4
2-5
2-5
2-10
212
2-14
2-15
2-17
2-18

Software Installation

The Configuration File

Before You Start

Installing the HP BASIC Language Processor
Installing On a High-Capacity Floppy Disc Drive
Installing On a Hard Disc Drive

After HP BASIC Is Loaded

Testing Mass Storage Devices

Testing Printers

Testing Plotters

Testing the HP-HIL Mouse

Software Installation

This chapter covers:

B Installing the HP BASIC Language Processor on your hard
disc or high-capacity (1.2 Mbyte or greater) floppy disc.
The install process consists of the following:

B Installing the HP BASIC Language Processor.

B Booting the HP BASIC Language Processor.

8 Customizing your HP BASIC system by adding binaries.
B Saving the system you create.

W Testing your system.

In order to install and use the HP BASIC Language Processor,
your PC system must have one of the following combinations
of disc drives:

B Dual floppy disc drives, at least one of which must be a
high-capacity drive.

B At least one floppy disc drive and a hard disc drive.

If you do not have any of these combinations, you will not be
able to install the HP BASIC Language Processor.

Software Installation 2-1

The
Configuration
File

2-2 Software Installation

Your HP BASIC system builds a standard configuration file
during the installation process. The following table shows

what the standard configuration file will provide for your

HP Basic Language Processor system.

HP BASIC
Select Code

Device

Configuration Notes

1
2

15

CRT (Alpha)
Keyboard

CRT (Graphics)

Built-in HP-IB

COM1 (RS-
232) (Optional)t

Internal Discs

Includes HP-HIL mouse and
knob.

Monochrome Plus Adapter
400h x 300v B/W.

Multimode Adapter 512h x
390v B/W. v

Enhanced Graphics Adapter
512h x 350v Color.

HP BASIC interrupt level
Baud = 9600

Parity = None

Char Length = 8

Stop bits = 2)

HP BASIC interrupt level = 3

Modem Status Lines CD, Rl,
DSR, and CTS disabled.

Behave as HP-IB disc drives at
primary address 00 to

HP BASIC. Refer to the next
table for a correlation between
HP BASIC MSUS and MS-DOS
drive identification.

I
bl

* Must match the settings on the HP 82990 HP-IB card.
t Optional interfaces are not configured if they are not connected to your system.

HP BASIC

(optional)t

Select Code Device Configuration Notes
19 MS-DOS Port Behaves as a GPIO device to
HP BASIC.
23 COM2 (RS- Same configuration as COM1.
232) (optional)t
24 HP-IB PC Card | PC Select Code = 7*
i t
1 (optional) System Controller = Yes*
HP BASIC Interrupt Level =
Disabled
PC Interrupts = Disabled
25 HP-IB PC card | Not configured. Refer to ap-
2 (optional)t pendix F for more information.
26 LPT1 (printer) Behaves as a GPIO device to

HP BASIC.

* Must match the settings on the HP 82990 HP-IB card.
t Optional interfaces are not configured if they are not connected to your system.

Any GPIO or SRM cards will also be configured to the select
codes and options set by switches on those cards.

The following table shows the correlation between HP BASIC
Mass Storage Unit Specifier (MSUS) and MS-DOS (Drive ID)
for the default configuration for internal disc drives.

HP BASIC MSUS | MS-DOS Drive
“,1500,0" A:
“,1500,1” B
“,1500,2" C:
“,1500,3" D

Software Installation 2-3

Note |

Before You
Start

2-4 Software Installation

Refer to appendix F if you want to change the standard con-
figuration file.

The interrupt level on your language processor card must
match the interrupt level in the configuration file. The default
interrupt level on the card and in the file is “7.” Information
on changing the interrupt level on the card can be found in
the HP 82321A Language Processor Installation Instructions. If
you change the interrupt level on the card, you must change
the interrupt level in the configuration file. The install proce-
dure described later will do this for you.

Be sure that you have installed your language processor card.
If you have not done so, refer to the Language Processor Instal-
lation Instructions that came with the card for installation
instructions.

For best performance when using HP BASIC, you should set
the number of MS-DOS file handles to a minimum of 20. You
can use the MS-DOS configuration command “FILES=20" in
your CONFIG.SYS file (refer to your MS-DOS user’s refer-
ence manual for more information). You should also set the
number of MS-DOS file buffers to a minimum of 10. You can
do this with the MS-DOS configuration command “BUFF-
ERS=10" in your CONFIG.SYS file. Be sure to reboot MS-
DOS after changing your CONFIG.SYS file.

The following installation procedure will accomodate most al-
lowable system configurations. Allowable configurations
include all supported discs, display adapters, keyboards, built-
in HP-HIL, serial or Centronics printers using LPT1, and SRM
and GPIO interfaces. The language processor card interrupt
level is set to 7, and the start address is 250H. If you need to
change the interrupt level or the start address, you will have
to change the configuration file. The install procedure de-
scribed in the next section will do this for you.

Memory resident “hot key” programs such as SIDEKICK and
SUPERKEY are not supported by HP BASIC.

|
Installing the
HP BASIC
Language
Processor

Installing On a
High-Capacity
Floppy Disc Drive

The following procedures show you how to install your
HP BASIC Language Processor on a high-capacity (1.2 Mbyte
or greater) floppy disc or a hard disc. The process of installing
involves copying files from your HP BASIC Language Proces-
sor discs onto a single high-capacity floppy disc or a hard
disc. The purpose of this is to locate all of the files necessary
to boot your HP BASIC Language Processor system from a
single high-capacity floppy disc or a hard disc directory. Use
the procedure which applies to your system, then continue
with the section entitled “After HP BASIC Is Loaded.”

Use the following table to determine which drive to use as the
source (the drive which you will install from), which drive to
use as the target (the drive that you will install to), and
whether to use the 5.25-inch HP BASIC Language Processor
discs or the 3.5-inch HP BASIC Language Processor disc
when you install HP BASIC.

Software Installation 2-5

If Drive A ls...

And Drive B Is...

Then Install ...
From...To...

5.25-inch low-capacity

5.25-inch high-capacity

5.25-inch high-capacity
5.25-inch low-capacity
5.25-inch low-capacity
5.25-inch high-capacity

3.5-inch
3.5-inch

3.5-inch

5.25-inch low-capacity

S.25-inch high-capacity

5.25-inch low-capacity
5.25-inch high-capacity
3.5-inch

3.5-inch

5.25-inch low-capacity
5.25-inch high-capacity

3.5-inch

You cannot install HP BASIC.

You must have at /east one high-capacity floppy

drive.

Either:

(1) 5.25-inch from A (source) to B (target)
or

(2) 5.25-inch from B (source) to A (target).

5.25-inch from B (source) to A (target).
5.25-inch from A (source) to B (target).”
5.25-inch from A (source) to B (target).

Either:

(1) 5.25-inch from A (source) to B (target)
or

(2) 3.5-inch from B (source) to A (target).

5.25-inch from B (source) to A (target)*

Either:

(1) 5.25-inch from B (source) to A (target)”
or

(2) 3.5-inch from A (source) to B (target).”

Either:

(1) 3.5-inch from A (source) to B (target)
or

(2) 3.5-inch from B (source) to A (target)

* Refer to the examples that follow.

2-6 Software Installation

To clarify this procedure, consider the following examples:

B You have a 5.25-inch low-capacity drive in drive A and a
5.25-inch high-capacity drive in drive B. You will install
HP BASIC using the 5.25-inch HP BASIC Language Pro-
cessor discs. These discs will be placed in drive A (source)
and installed on a single 5.25-inch high-capacity disc in
drive B (target).

® You have a 3.5-inch drive in drive A and a 5.25-inch low-
capacity drive in drive B. You will install HP BASIC using
the 5.25-inch HP BASIC Language Processor discs. These
discs will be placed in drive B (source) and installed on a
single 3.5-inch disc in drive A (target).

B You have a 3.5-inch drive in drive A and a 5.25-inch high-
capacity drive in drive B. You can install HP BASIC using
either the 5.25-inch HP BASIC Language Processor discs or
the single 3.5-inch HP BASIC Language Processor disc.

B If you install HP BASIC using the 5.25-inch HP BASIC
Language Processor discs, these discs will be placed in
drive B (source) and installed on a single 3.5-inch disc in
drive A (target).

B If you install HP BASIC using the 3.5-inch HP BASIC
Language Processor disc, this disc will be placed in drive
A (source) and installed on a single high-capacity 5.25-
inch disc in drive B (target).

Determine the source and target drives you will use and pro-
ceed with the installation:

1. Use the MS-DOS FORMAT command to format the tar-
get disc. This will be your system disc. If you already
have a formatted disc prepared, disregard this step. In-
sert the formatted disc in the target drive as determined
from the table.

Software Installation 2-7

2, Insert HP BASIC Language Processor disc one in the
source drive and make the source drive the current
drive. For example, if you want to install from drive B
(source) to your system disc in drive A (target), insert
disc one in drive B and type:

B: (Enter)

3. Run the install utility to complete the installation:

INSTALL

2-8 Software Installation

The INSTALL utility is necessary to set up the HP BASIC di-
rectory file on the target disc. It will also ask you if you have
changed the default configuration for the interrupt level or
the start address. After you answer the questions, INSTALL
will configure the system.

Install will then continue with the BOOT process. The system
will go through a self-test mode during which interfaces such
as keyboard, graphics, and HP-IB are tested. A list of Series
200/300 interface part numbers and the select code for the
corresponding HP BASIC Language Processor interface are
then displayed, along with the available HP BASIC Language
Processor memory.

Note

Note

If you accidently press a key after the boot process is started,
the boot process will be interrupted. After a short time you
will see:

Searching for a system (ENTER To pause)

at the bottom of the screen. Shortly thereafter, you will see
1B SYSTEM_BAS in the upper right corner of the screen.
Type 1B and the system will continue the boot process.

When the BOOT process is completed, you will hear a beep.
The HP BASIC system will then be built. At this point you
will have the option of having all binaries loaded automati-
cally (recommended if you have at least 1 Mbyte of RAM on
your language processor card), or selecting the binaries you
want to load. The version of HP BASIC that you just booted
already includes the EDIT, CS80, CRTA, GPIO, and HP-IB

binaries.

If your language processor card does not have optional mem-
ory installed (either the HP 82303A RAM Expansion Kit or
the HP 82305A RAM Expansion Board), you will not be able
to load all the binaries. Refer to appendix D for a list of the
available binaries and the amount of memory each requires. If
your application requires all the available binaries, then you
must add additional memory to the language processor card.

If you want to load all the available binaries, press (Y) when
you see the message:

Do you want to load all the binaries (Y- N)?

If you answered N to the question, INSTALL will prompt you
for each of the binaries to be loaded. Press (N) for those bina-
ries you do not want loaded and (Y) for those binaries you do
want loaded. When you see the message:

Software Installation 2-9

Installing On a
Hard Disc Drive

BASIC is now loaded,.

the procedure is complete. You can now go on to the section
entitled “After HP BASIC Is Loaded.”

1. Insert HP BASIC Language Processor disc one in the
source drive and make the source drive the current
drive. For example, if you want to install from drive A
(source) to your hard disc, insert disc one in drive A and

type:

A
2. Run the install utility to complete the installation:
INSTALL

2-10 Software Installation

The INSTALL utility is necessary to set up the HP BASIC di-
rectory file on the target disc. It will also ask you if you have
changed the default configuration for the interrupt level or
the start address. After you answer the questions, INSTALL
will configure the system.

INSTALL will then continue with the BOOT process. The sys-
tem will go through a self-test mode during which interfaces
such as keyboard, graphics, and HP-IB are tested. A list of
Series 200/300 interface part numbers and the select code for
the corresponding HP BASIC Language Processor interface
are then displayed, along with the available HP BASIC Lan-
guage Processor memory.

Note

If you accidently press a key after the boot process is started,
the boot process will be interrupted. After a short time you
will see:

Searching for a sustem (EMTER To pause)

at the bottom of the screen. Shortly thereafter, you will see
1B SYSTEM_BAS in the upper right corner of the screen.
Type 1B and the system will continue the boot process.

When the BOOT process is completed, you will hear a beep.
The HP BASIC system will then be built. At this point you
will have the option of having all binaries loaded automati-
cally (recommended if you have at least 1 Mbyte of RAM on
your language processor card), or selecting the binaries you
want to load. The version of HP BASIC that you just booted
already includes the EDIT, CS80, CRTA, GPIO, and HP-IB

binaries. If you want to load all the available binaries, press
when you see the message:

Do you want to load all the binaries (Y~-N>»?

If you answered N to the question, INSTALL will prompt you
for each of the binaries to be loaded. Press (N) for those bina-
ries you do not want loaded and (Y) for those binaries you do
want loaded. When you see the message:

BASIC is now loaded,

the procedure is complete.

Software Installation 2-11

After HP BASIC
Is Loaded

Your HP BASIC system is now installed, booted, customized,
and ready for use. You will find a complete list of keyboard
functions in appendix E. An abbreviated list appears on the
Key Function and Switch Configuration Guide.

You can exit HP BASIC at any time by pressing EXIT
(CctrD(F10)). You then return to HP BASIC by typing:

BASIC

2-12 Software Installation

To activate HP BASIC after you turn on your computer, fol-
low these steps:

1. If you are using a high-capacity floppy disc, insert your
system disc in the high-capacity drive.

2. Be sure your current disc drive and directory in MS-DOS
is the one which contains your HP BASIC system.

3. Type BRASIC (Enter).

When the HP BASIC screen appears, your HP BASIC system
is ready for use. An explanation of the HP BASIC screen is
shown in the following figure and table.

®

Output Area

}Blank Line
} Display Line
}Keyboard Area (two lines)

@ @ }Message Results Line

}Softkey Labels (two lines)

/

Label

Description

OUTPUT/PRINT

Disp

Keyboard Input
System Messages
Softkey labels

() softkey
menu indicator

@ Caps lock

indicator

@ Program
status indicator

The largest portion of the display where char-
acters specified in PRINT and OUTPUT
statements are displayed when PRINTER IS
CRT is active.

System messages when PRINTER IS CRT
and PRINTALL ON are active.

Destination of characters specifed in DISP
statements.

Characters typed on the keyboard appear in
this line.

System messages and system status appear
in the line.

Labels of softkeys appear here if KEY LA-
BELS is active.

Select menu with SYSTEM or MENU key.

Toggle caps lock with key.

Indicates status (running, paused, idle) of
program.

Software Installation 2-13

Your HP BASIC system can be customized to save language
processor RAM by using the LIST BIN, LOAD BIN, and
STORE SYSTEM statements.

B LIST BIN lists the binaries currently loaded in your
system.

B LOAD BIN <file name?> loads the specified binary into
your system.

B STORE SYSTEM <file-name? stores the BASIC system
into the specified file.

Testing Mass
Storage Devices

You've already done this in the preceding steps. However, if
you haven't tried all of your disc drives yet, here is a simple
procedure to test them:

1. Insert an initialized disc into the drive. Remove all other
discs from your other drives.

2. Use the syntax:

MASS STORAGE IS ":msus"

2-14 Software Installation

to specify the drive that you are testing.

The following table shows the correlation between HP BASIC
Mass Storage Unit Specifier (MSUS) and MS-DOS (Drive ID)
for the default configuration for internal disc drives.

HP BASIC MSUS | MS-DOS Drive
“,1500,0" A:
“,1500,1” B
“,1500,2" C:
“,1500,3" D

To execute this statement, substitute the MSUS of your drive
in the statement above. If you're using the B drive you would

type:

MASS STORAGE IS ":,1588,1"

3. Type:
CAT
If the drive’s access light flashes and information is listed on
the screen, your drive is working normally.
Refer to the section entitled “The Configuration File” for more
information.
R

Testing Printers 1. Turn on the printer.
2. Use the syntax:

PRINTER IS device select code

substituting the device select code specific to your
device.

To execute this statement, substitute your printer’s device
select number in the statement. For example if you are
using a GPIO (Centronics) printer, type:

PRINTER 15 26

Software Installation 2-15

If you want to use a printer connected to the HP-IB port
on your HP BASIC Language Processor card, type:

PRINTER IS5 781

This table shows the device select codes for different devices.

Printer | Device Select Code

HP-1B 7
LPT1 26
3. Type:
PRINT "HELLO"
Note I Some printers require a full page of print to page advance, so

'ﬁ use the manual form feed to advance the page or print a
whole page of “HELLO".

If “HELLO” has printed the printer is working normally.

2-16 Software Installation

Testing Plotters 1. Turn the plotter on.

2. If you did not load the GRAPH binary into your custom
system, do it now. Use LOAD BIN “GRAPH” and
STORE SYSTEM to add this binary to your system.

3. Use the syntax:

PLOTTER 1S device select code "HPGL"

substituting your device select code to specify the plotter
as the default plotter.

To execute this statement, substitute your plotter’s device
select code in the statement. If you have an HP-IB plot-
ter, type:

PLOTTER IS 785, "HPGL"

4. Type:

FEN 1 (Enter)

If the plotter picks up a pen, the plotter is working
normally.

5. To replace the pen, type:

PEN @ (Enter)

Software Installation 2-17

Testing the
HP-HIL Mouse

2-18 Software Installation

1. Type: TIMEDATE (Do not press (Enter)).

2. If the mouse moves the cursor left and right when
moved, it is working properly. Pressing either of the but-
tons on the mouse will be treated the same as if you
pressed (Enter), and the TIMEDATE value will be
displayed.

Now that the software installation is complete you're ready to
start productively using HP BASIC. The next chapters contain
instructions for programming, graphics, and interfacing. You
may want to read the introduction at the beginning of each
chapter to familiarize yourself with the possiblities of

HP BASIC. Then just turn to the section you've selected to
continue learning how to use HP BASIC.

3 Programming Techniques

Contents

Chapter 3

31

3-1

3-2

3-2

3-3

3-5

3-6

3-7

3-8
3-10
3-11
3-14
3-14
3-15
3-18
3-18
3-18
3-21
3-22
3-24
3-25
3-29
3-29
3-31
3-37
3-41
3-43
3-43
3-46
3-57

Programming Techniques

Introduction
Explanation of Terms
Using the Keyboard
Using the Editor
Entering A Program
Renumbering a Program
Listing a Program
Editing A Program
Search and Replace Operations
Getting Out of EDIT Mode
Indenting
Running a Program
Program Execution
Live Keyboard
Program Storage and Retrieval
What Is Mass Storage?
Media Specifiers
Initializing a Disc
Disc Labels
Recording a Program
Retrieving a Program
Program Structure and Flow
Sequence
Selection
Repetition
Event-Initiated Branching
Numeric Computation
Numeric Data Types
Resident Numerical Functions
Evaluating Scalar Expressions

3-61
3-62
3-63
3-68
3-68
3-69
3-73
3-75
3-75
3-80
3-82
3-87
3-89
3-90
3-91
3-91
3-93
3-96
3-98
3-99
3-101
3-101
3-102
3-104
3-104
3-105
3-105
3-106
3-106
3-107
3-114
3-116
3-116
3-117
3-117
3-118
3-118
3-120
3-122
3-122

Numeric Arrays

Dimensioning an Array

Some Examples of Arrays
Problems with Implicit Dimensioning
Using Array Elements

Filling Arrays

Printing Axrays

Passing Entire Arrays

Copying Subarrays
Redimensioning Arrays

Arrays and Arithmetic Operators
Boolean Arrays

String Manipulation

String Storage

String Arrays

Evaluating Expressions Containing Strings
Substrings

String-Related Functions

String Functions

MAT Functions and String Arrays
Number-Base Conversion

Introduction to Lexical Order

Predefined Lexical Order

User-Defined Functions and Subprograms

Location

Naming

The Difference Between a Function and a Subprogram
REAL Precision Functions and String Functions
Calling and Executing a Subprogram
Communication

Context Switching

Live Keyboard

Using Subprogram Libraries

Loading Subprograms One at a Time

Loading Several Subprograms at Once

Loading Subprograms Prior to Execution
Deleting Subprograms Programmatically
Editing Subprograms

SUBEND and FNEND

Recursion

3-123
3-123
3-124
3-124
3-125
3-128
3-133
3-133
3-135
3-137
3-138
3-139
3-139
3-140
3-142
3-143
3-144
3-144
3-148
3-148
3-149
3-152
3-153
3-154
3-157
3-157
3-158
3-158
3-159
3-160
3-161
3-161
3-163
3-169

Data Storage and Retrieval

Storing Data in Programs

Storing Data in Variables

Data Input by the User

Using DATA and READ statements
The Structure of Data Files

Mass Storage Techniques
Overview of Mass Storage Techniques
Non-Disc Mass Storage

Accessing Files

Reading and Writing BDAT Files
System Sector

Defined Records

Choosing A Record Length
Writing Data

Sequential (Serial) OUTPUT
Random OUTPUT

Reading Data From BDAT Files
General Mass Storage Operation
Trapping EOF and EOR Conditions
Protecting Files

Copying Files and Volumes
Purging Files

Accessing Directories

Using a Printer

Fundamentals

Device Selectors

Primary Addresses

Using Device Selectors
Using the External Printer
Control Characters
Formatted Printing

Using Images

Special Considerations

3-169
3-169
3-170
3-170
3-170
3-171
3171
3-172
3-173
3-173
3-174
3-175
3-176
3-178
3-178
3-179
3-180
3-184
3-185
3-187
3-189
3-191
3-191

The Real-Time Clock
Clock Range and Accuracy
Initial Clock Value
Reading the Clock
Determining Date and Time of Day
Setting the Clock
Setting the Time
Setting the Date
Day of the Week
Branching on Clock Events
Cycles and Delays
Time of Day
Priority Restrictions
Branching Restrictions
Error Handling
Anticipating Operator Errors
Error Trapping
Program Debugging
Using Live Keyboard
Stepping
Tracing
PRINTALL IS
TRACE PAUSE

3

Programming Techniques

Introduction

This chapter will introduce you to the BASIC 5.0 program-
ming language and provide some helpful hints on how you
can obtain the most from it. You do not need a high skill level
in BASIC, but we assume you have some previous program-
ming experience. If you have never programmed a computer
before, it will probably be easier for you to start with one of
the many beginner’s text books available from various pub-
lishing companies. If you have experience on other

HP desktop computer systems or with other high-level lan-
guages, you should find these programming procedures
familiar. Whatever your starting point, it makes sense to learn
the mechanics of program writing before you become ab-
sorbed in a study of all the program statements.

Explanation of
Terms

Before proceeding, you should understand some common
terms used in BASIC programming. This section will explain
the meaning of some of the more frequently used terms.

Keyword. A keyword is a group of uppercase characters that
is understood by the BASIC language system to represent
some predefined action.

Statement. A statement is a keyword (sometimes optional)
followed by any parameters, lists, specifiers, and secondary
keywords that are allowed with that keyword.

Program Line. A program line contains at least a line num-
ber followed by a statement. It may also contain a line label, a
name that is placed after the line number and terminated by a
colon.

Programming Techniques 3-1

Note "3

Program. A list of program lines, with an END statement on
the last line.

Command. A command is a statement that is typed without
a line number and executed. There are some commands that
cannot be stored as program lines, such as DEL and
SCRATCH. There are also some statements that cannot be ex-
ecuted as commands, such as DIM and RETURN.

Enter. Entering a program line means that you type a line
number followed by a valid statement and then press the
key. The line is stored in memory as part of a program,
but it performs no function until you run the program.

The key may appear on the keyboard as (Retumn),
(Execute), (Exec), or (EndLine}, depending on the particular
computer you are using. When you see in this guide,
use the key that corresponds to it on your keyboard.

Execute. Execute means that you type a statement with no
line number and press (Enter). The command is executed im-
mediately and is not stored in a program.

|
Using the
Keyboard

In this chapter you will find references to keyboard functions
rather than explicit keystrokes. This is because HP BASIC
supports both the Vectra PC keyboard and the Enhanced
Vectra PC keyboard. Refer to appendix E or the Key Function
and Switch Configuration Guide for your keyboard to deter-
mine the keystrokes to use.

. |
Using the Editor

3-2 Programming Techniques

The BASIC editor is a very versatile feature of the BASIC sys-
tem. The following sections will show you how to use it

properly.

Format of EDIT Screen

To enter a program into the computer you must be in the
EDIT mode. You access EDIT by typing:

EDIT {line number’,{increment’

and pressing or by pressing EDIT. If no parameters are
present, EDIT assumes a line number of 10 and an increment
between lines of 10. Once in EDIT, the format of the screen
display is changed as shown in the following diagram.

-

S

Previous Program Lines (if any)

} Current Program Line (2 CRT lines)
} System Message Line (if needed)

} Following Program Lines (if any)

} Softkey Labels
J

You can view several lines before and after the line you are
editing. The system supplies the line number for the current
line, and program portions can be viewed by simple scrolling.

Entering Program Lines. You enter program lines by typing
them after the line number and pressing (Enter). The com-
puter checks for syntax errors and converts letter case to the
required form for names and keywords, and then stores the
line. The computer supplies a line number automatically. If
you want to change the line number, simply back up the
cursor to the appropriate position and type in the line number
you want. Changing the line number causes a copy operation,
not a move. The original line still exists.

Programming Techniques 3-3

3-4 Programming Techniques

Inserting Lines. You can insert new lines between existing
lines very easily. For example, assume you want to insert
some lines between line 90 and line 100. Place line 100 in the
current-line position and press INSERT LINE*. The program
display “opens” and a new line number appears between line
90 and line 100. Type and store the inserted lines in the nor-
mal manner. The computer maintains the established
increment between line numbers whenever possible. When
the normal increment cannot be maintained, an increment of
one is used. When there are no line numbers available be-
tween the current line and the next line, enough of the
program below the current line is renumbered to allow the
insert operation to continue.

Deleting and Recalling Lines. You can delete lines one at a
time or in blocks. To delete the current line, press DELETE
LINE*. If you delete a line by mistake, the line can be recov-
ered by pressing the RECALL* function. To do this, use the
following procedure:

1. Position the cursor below the line where you want to
insert the deleted line.

2. Press INSERT LINE*. The program display will “open”
and a new line number will appear.

3. Press RECALL*. The deleted line will appear.

4. Press (Enter). A new line number will appear beneath the
line just recalled.

5. You can enter new lines at this point or move to another
area of the program for other editing.

You can use the DEL command to delete lines. When DEL is
followed by a single identifier, only that line is deleted. The
identifier can be a line number or a label. Blocks of program
lines can be deleted by using two identifiers with the DEL
command. The first identifier identifies the first line of the
block to be deleted, and the second identifier identifies the
last line of the block. Here are some examples:

* Refer to appendix E or the Key Function and Switch Configuration Guide for the
keystrokes to use.

DEL 18e, 288

Deletes lines 100 through 200, inclusive

DEL BLOCKZ,32766

Deletes all lines from the one labeled “BLOCK2” to the end of
the program.

DEL 258,18

Renumbering a
Program

Illegal because the line identifiers are not in order.

You can renumber a program by using the REN command.
You specify the starting line number, the interval between
lines, and the range of lines. For example,

REN 188,35 IN 1,588

renumbers current lines 1 thru 500 using 100 for the first line
number and an increment of 5 between line numbers. If the
increment is not specified, 10 is assumed. If a range is not
specified, the entire program is renumbered. When no param-
eters at all are specified, the computer assumes 10 for the first
number and renumbers the entire program with an increment
of 10.

Programming Techniques 3-5

Listing a Program

You can display or list all or part of your program by execut-
ing a LIST statement. The LIST statement has parameters that
allow you to specify both the range of lines to be listed and
the device to which the listing should be sent. If LIST is exe-
cuted without any parameters, the default action is to list the
entire program on the system printer. The default system
printer after a power-on or SCRATCH A is the CRT. The sys-
tem printer is defined by the PRINTER IS statement.

You specify starting and ending line numbers in the LIST
statement, or you may specify labels instead. For example:

LIST 168,206

Lists lines 100 through 200, inclusive

LIST 1858

Lists the program from line 1850 to the end.

LIST Rocket

Lists the program from the line labeled “Rocket” to the end.

If you want the listing to be printed on an external printer,
you must use the PRINTER IS statement prior to the LIST
statement:

FRINTER IS 26

3-6 Programming Techniques

To make the CRT the system printer again use:

PRINTER IS 1

You can also use the LIST statement to list a program on the
printer and keep the CRT as the system printer:

LIST #va@1
LIST #26

Editing A Program

This statement sends the entire program listing to an HP-IB
printer (address 01) without changing the system printer
selection.

Some commands make it easy to do large amounts of pro-
gram editing very quickly. Among these are commands to
move blocks of text, copy blocks of text, replace occurrences
of one string with another string, find occurrences of a string,
cross-reference the program, and more.

Moving Program Segments. You can move blocks of text
with the MOVELINES command. This command moves
contiguous program lines from one location to another. For
example, if you wish to move the code in a program that is
located between lines 100-250 to a new location in the pro-
gram beginning with line number 1000, type:

MOVELINES 188,258 to 10086

Or, you could specify the lines by using labels:

MOVELINES labell,label2 TO new_block

Programming Techniques 3-7

Note i

Search and
Replace
Operations

3-8 Programming Techniques

If you intend to create a subprogram or function by moving a
block of code, enter the subprogram header before moving
the code. You cannot enter a SUB or DEF FN statement if

there are other statements following it.

If the starting line number does not exist, the next line is

used. If the ending line number does not exist, the previous
line number is used. If a line label doesn’t exist, an error oc-
curs and no moving takes place. If an error occurs during the
MOVELINE operation (a memory overflow, for example), the
move is terminated and the program is left partially modified.

Copying Program Segments. The COPYLINES command
performs the same function as MOVELINES, except that it

leaves the code in the old location. This is desirable when you
want a section of code that is very similar, but not identical to
a section of code you already have. (If it were identical, you
would probably put it into a subprogram.) It is often easier to
copy code and modify one version than to type two separate,
only slightly different versions.

The FIND Command. You can find all the occurrences of a
particular string in a program by using the FIND command.
When a program line that contains the specified string has
been found, the computer places you in EDIT mode automati-
cally. The current line is the line containing the specified
string, and the cursor is positioned on the first character of
the string. The message “Found ‘string value’ is displayed in
the system message line. You can then edit the string as you
desire. When you press (Enter), the computer will continue its
search for the string, stopping when it finds another occur-
rence of the string, when it reaches the end of the program,
or when it reaches the last line of the specified range. To can-
cel a search operation before it is finished, press CLEAR 1/0.
The following examples illustrate the use of the FIND
command.

FIND "STRIMGA"

Searches for the first occurrence of the string “STRINGA”,
starting from the current location in the program.

FIND "STRINGB" IN 1588

Searches the program for the string “STRINGB” beginning at
line 1500.

FIND "STRINGC" IN 1558, 1788

Searches the program for the string “STRINGC” beginning at
line 1550 and ending at line 1700.

You can use line labels instead of line numbers if you wish.

The CHANGE Command. You can replace any string with
another string by using the CHANGE command. CHANGE is
like FIND in that it looks through your program and finds
occurrences of the specified string. However it also makes a
tentative change that you can confirm by pressing (Enter), or
deny by pressing CONT. If you are positive that you don't
need to verify each replacement, appending ;ALL to the
CHANGE command will cause the search-and-replace to be
done with no further action on your part.

CHANGE "OLD TEXT" TO "MNEW TEXT"

Programming Techniques 3-9

The computer searches the entire program from the beginning
and stops at any point where it finds the string

"OLD TEXT". You are then asked the following question:
"OLD TEXT" to "NEW TEXT?". Press if you want
the change made, or press CONT if you do not. In either case
the computer will continue the search, repeating the above
process whenever it finds the specified string.

CHANGE "OLD TEXT" to

"HEW TEXT" IN 2608,3B8608

This performs exactly the same function as the previous com-
mand, except that the computer will only perform the search
from program line 2600 through program line 3000.

CHANGE "OLD TEXT" to

"MEW TEXT":;ALL

Getting Out of EDIT
Mode

This performs the same function as the first command, except
that no verification on your part is required. The computer
automatically makes the requested change.

There are many ways to terminate the EDIT mode. If you
want to return the CRT to its “normal” mode, press PAUSE or
(CLEAR SCREEN).

Another way to terminate EDIT mode is to proceed with an-
other operation by pressing the appropriate function key.
Initiating operations such as LOAD, CAT, LIST, RUN, STEP,
or PAUSE will automatically terminate EDIT mode.

3-10 Programming Techniques

You can indent your program in appropriate places by using
the INDENT command. This command automatically indents
whenever there is the beginning or end of a program state-
ment which causes looping, is conditionally executed, or is a
separate program segment. There are two parameters, starting
column number (default = 6) and increment (default = 2).
The starting column number is the column in which the first
character of the first statement of each context appears. The
increment specifies the number of spaces that the beginning
of the lines move to the left or right when the nesting level of
the program changes.

Indenting a program may cause the length of some of the
lines to become longer than the computer can list. This condi-
tion is indicated by the presence of an asterisk (*) after the
line numbers of affected lines. If this occurs, the program will
run properly, store properly, and load properly. However,
you cannot do a SAVE, then a GET. Doing an INDENT with
smaller values will alleviate this problem.

You can see the effect of the INDENT command from the

following example. You can type in the program or read it

from the flexible disc supplied with your BASIC system. If
you choose the latter method, place the disc in drive A and
type the following:

LORD "INDNTPGM:CSB88, 1500,0"

Otherwise, enter the program as it is shown on the following
page.

Programming Techniques 3-11

18

20

30

40

58

60

7o

8@

20

160
11@
120
130
140
150
160
170
180
190
200
218
228
238
240
250
260
2re
280
290
308
3le
320
33a

FORI =1T05
REPEAT
INPUT "How old are you?",RAge
Reasonable = 1
IF Age < @ THEN
DISP "Forgive me, but you can't be “;Age;"years old."
Reasonable = @
ELSE
IF Age >= 128 THEN
DISP "That's a little difficult to believe."
Reasonable = 8
ELSE
IF Age >= 188 THEN
DISP "You are getting up there, aren't you?"
ELSE
IF Age >= 68 THEN
DISP "I'm impressed. You don't look that old."
ELSE
IF Age »>= 48 THEN
DISP "Ah, you're over the hill."
ELSE
DISP "So, Jjust a youngster.,"
END IF
END IF
END IF
END IF
END IF
WAIT 2
UNTIL Reasonable
DISP "You were";Age¥365.242198781;"days old on your last
WAIT 2
NEXT I
END

birthday."

3-12

Programming Techniques

Then type the command INDENT and press (Enter). List the
program and you will see the results. The program should
now look like this:

18
20

0

40

50

60

70

8@

96

100
110
120
138
140
150
160
170
188
190
200
218
220
230
240
250
268
279
280
290
300
318
320
330

FORI1I =1T05
REPERT
INPUT "How old are you?",AGE
RERSONABLE = 1
IF AGE < @ THEN
DISP "Forgive me, but you can't be ";AGE;"years old."
REASONABLE = @
ELSE
IF AGE >= 128 THEN
DISP "That's a little difficult to believe,"
REASONARBLE = @
ELSE
IF AGE >= 188 THEN
DISP "You are getting up there, aren't you?"
ELSE
IF AGE >= 68 THEN
DISP “I'm impressed. You don't look that old."
ELSE
IF AGE >= 48 THEN
DISP "Ah, you're over the hill."
ELSE
DISP "So, Jjust a youngster,"
END IF
END IF
END IF
END IF
END IF
WRIT 2
UNMTIL REASOMNABLE
DISP "You were";Age¥365.242198781;"days old on vour last birthday."
WAIT 2
NEXT 1
END

Programming Techniques 3-13

L
Running a
Program

Program Execution

You run a program by pressing the RUN keys or by typing
RUN and pressing (Enter). This tells the computer to go

through a pre-run phase and then begin normal program exe-
cution with the lowest numbered line in the main program.
The RUN command can also be followed by aline identifier
that lets you specify where the program execution is to begin.

The process of program execution as implemented by the BA-
SIC interpreter is summarized below.

1. Determine which program line is to be acted upon next.

2. Identify the statement that follows the line number and
label (if any) on that line.

3. If the statement has a run-time action, perform that
action.

4. Repeat steps 1 through 3 until an END, STOP, or
PAUSE statement is executed.

The RUN command determines which line is acted on first.
Executing RUN with no parameters, or pressing the RUN keys
causes the execution process to begin at the first line of the
program. Execution can be started anywhere in the program
by using the RUN command with a line identifier. For
example:

RUN 288

This command causes execution of the program to begin at
line 200. If there is no line 200, execution begins with the line
whose number is closest to and greater than 200. The line
identifier can also be a label. For example:

3-14 Programming Techniques

RUM Spot_run

Live Keyboard

This command causes execution of the program beginning
with the line labeled “Spot_run”. If there is no such label, an
error results.

The term “live keyboard” is used when talking about com-
mands that are executed from the keyboard while a program
is running. The keyboard is still active when a program is
running. You can execute commands, change variables, and
change the state of the computer.

Pausing and Stopping. If the operator does not intervene, a
program will run until it encounters an END, PAUSE, or
STOP statement. For example, if you wish to pause program
execution before its normal completion, press PAUSE. This
causes a temporary halt to program execution. To continue,
press CONT. If you wish to stop the program, press STOP.

The “Run Light”. You can determine the current state of the
computer by the indicator in the lower-right hand corner of
the CRT. The character in this corner is referred to as the “run
light”. The following table defines the various indications of
the run light.

Programming Techniques 3-15

Status Run

Indicator | Light Computer State

Idle blank | Program stopped; CONTINUE not allowed

Running B Program running

Paused - Program paused; may be continued

Transfer 10 Program paused, but a TRANSFER is still
active

Input 7 Computer is waiting for input from the
keyboard

Command | % Computer is executing a command from the
keyboard

An Example. To demonstrate some of the interaction be-
tween a program and the keyboard, use the EDIT mode to
enter the following program.

1@
28
3@
44
5]
(1]
va

DISP "MEXT COMMAND?"

®=8
PRINT X:
H=n+1
WRIT .1
GOTO 38
EHD

1. After you have entered the program, run the program by
pressing RUN. This will automatically get you out of
EDIT mode and begin running the program.

2. Press PAUSE. The printout of numbers stops, and all
data on the CRT remains unchanged. The run light indi-
cates that the program is paused and can be continued.
The program line that appears at the bottom of the CRT
is the next line of the program that will be executed
when program execution resumes.

3-16 Programming Techniques

3.

4-

7.

10.

11.

12.

Press STEP a number of times. The program is now exe-
cuted one line at a time, as indicated by the program
lines changing at the bottom of the screen. Notice that
the program is still paused and continuable after each
press of the STEP keys.

Press CONT. The printout on the CRT resumes with the
next number in sequence, and the run light indicates the
program is running.

Press STOP. The printout of numbers stops, and all the

data on the CRT remains unchanged. The run light is
off.

Press CONT. An error results because a stopped pro-
gram cannot be continued.

Press RUN. The program runs again, but the number se-
quence has started from the beginning. RUN causes the
program to start from the beginning, not resume.

Type x = @ and press (Enter). Notice that the numbers
being printed start over from “1”. The live keyboard was
used to change the value of “X”, and the program used
this new value immediately.

Type WAIT S and press (Enter). Notice that the run light
changes to indicate that a keyboard command is being
executed. The printout is delayed for five seconds while
the keyboard command is processed.

Press PAUSE, and then type EDIT 58 and press (Enter).
The display on the CRT changes to show the program,
and line 50 appears in the current-line position of the
screen. The run light indicates that the program is
paused.

Change line 50 to WAIT 2 and press (Enter). The new
line 50 is entered, but the run light goes out. Changing
the program caused it to move from the paused state to
the stopped state.

Press CONT. An error results. Once a program has been
changed, the program is no longer paused, and the
CONT command is not allowed.

Programming Techniques 3-17

Program
Storage and
Retrieval

What Is Mass
Storage?

Media Specifiers

The previous sections have shown you how to enter, edit, and
run a program. The next logical step is to save the program
for future use or further development.

The exact procedure for storing and retrieving programs de-
pends upon the type of mass storage device you are using.
Your computer may have an internal floppy disc drive, an in-
ternal hard drive, an SRM system, or one of the many
external disc drives that are compatible with your system.

As the adjective “mass” suggests, mass storage devices are
data-storage devices which are generally capable of storing
“large” amounts of data. Just how much data constitutes a
large amount depends on the device itself. Most mass storage
devices are capable of storing hundreds of thousands to sev-
eral million items.

Besides having the ability to store data, mass storage devices
are capable of providing means for keeping data organized so
that logical groups may be accessed systematically and effi-
ciently. Data items are organized into logical groups of data
known as files; a file is merely a collection of data items. Mass
storage directories are composed of one or more files. On
some HP mass storage devices, a directory consists of all files
on the mass storage media; mass storage media are the actual
physical means by which data are stored. For example, the
media used by the internal drive of your computer consists of
magnetic particles on a plastic disc which can be magnetized
to store data.

Once the mass storage is connected, you need a way of speci-
fying which mass storage device is to be accessed. This is
done with a media specifier. The syntax for a media specifier
is illustrated below. Each component is then discussed.

MASS STORAGE IS "™: [<device type>],<device
selector>[,<unit number>1"

3-18 Programming Techniques

Device type—effectively describes the mass storage device to
the system. The system.then knows the capacity of the de-
vice, the directory structure, and other information required to
determine the access method for the device. Examples are

MEMORY, CE88, and HP829@1

Device type CS80 is used for internal drives. If the device
type specified is not valid, the system tests the device to de-
termine its type. There are two exceptions to this.

1. If the device selector is 0 and the device type is invalid,
the device type is assumed to be MEMORY.

2, If the device type is valid and the driver binary for the
device is not loaded, the system considers the device an
invalid device type.

Device Selector—tells the system the select code of the in-
terface connected to the device; if the interface is an HP-IB, it
also tells the system the device’s primary address. The system
then knows which interface connects the device to the com-
puter (and the device’s address, if an HP-IB is used).

A device selector can be just an interface select code or a
combination of select code and primary address. To derive a
device selector with a primary address, multiply the interface
select code by 100 and then add the address. For instance, the
device selector 703 would select the device with primary ad-
dress 3 which is connected to the interface at select code 7.
Note that interface select code 7 is the built-in HP-IB inter-
face; this is the interface you will probably use to attach
external disc drives. The device selector for built-in drives is
1500.

Unit number—is used to select among the various built-in

disc drives and directories. In the default configuration, A: is
unit number 0, B: is 1, C: is 2, and D: is 3.

Programming Techniques 3-19

Examples. The following statements set the system mass
storage to an HP 82901 drive at interface select code 7; the
HP 82901 is set to primary address 0 and has a unit number
of 1.

or

MASS STORAGE IS ":HP8Z2561,768,1"

MASS STORAGE IS ":HP,7@B,1"

Note

lﬁ

MSI is a valid abbreviation for MASS STORAGE IS, and is
easier to type.

Executing the following statement catalogs the disc in the in-
ternal drive at interface select code 1500 and unit number 0.

CAT ":CS8@,15606,8"

The following statement creates an ASCII file named “Fred”
on the disc in unit 3 of an HP 9134 drive, connected through
interface select code 7; the device has a primary address of 0.

CRERTE RASCII "Fred:HP2134,7680,3"

3-20 Programming Techniques

Initializing a Disc

Before a disc is used for the first time, it must be initialized. If
the disc has already been initialized, and it contains data you
wish to retain, then it can be used on the BASIC system with-
out initialization. However, if you don’t need the data on a
previously used disc, it might be advantageous to re-initialize
it on your computer to get maximum performance. The point
is this: a disc must be properly initialized before your com-
puter can use it, but initializing a disc destroys all the data on
the disc.

The following steps show a typical initialization process using
an internal floppy disc. The procedure for initializing external
discs is very similar, but specific details will change. For ex-
ample, an external disc drive will have a different specifier,
may have a different write-protect convention, and will prob-
ably take a different length of time to initialize.

This procedure will initialize the disc in MS-DOS format.

Discs that have been initialized by using the MS-DOS FOR-
MAT command can be used without going through this

procedure. If you need to initialize a disc in LIF format for use
on an HP series 200 or 300 computer, use the HPWUTIL pro-
gram (F1 soft key). Refer to appendix C for more information.

To initialize a 5.25-inch disc on an internal disc drive A, fol-
low these steps:

1. Make sure that the disc does not contain any important
data or programs. Many types of computers and word
processors use similar discs. When a disc is initialized, all
the data on it is destroyed!

2. Ensure that the disc is not “write protected”. The disc en-
velope has a small notch on one side. When this notch is
open, the computer is allowed to write on the disc. If
this notch is covered, data may be read from the disc,
but recording is not allowed. Trying to initialize a write-
protected disc results in error number 83.

3. Be sure the disc is properly inserted in the disc drive.

Programming Techniques 3-21

Note i

The next step assumes that you are using the default HP BA-
SIC configuration or that drive A is the first drive specified in
your HP BASIC configuration file.

4. Execute INITIALIZE ":CS8@,1588,8" . This com-
mand tells the computer to erase all data from the disc,
format it for use in your computer, check the quality of
the media, and create the directory area.

An initialize operation takes about three minutes. The CRT
displays the system’s progress during this operation. When
the initialization is complete, the message is displayed:

Format another (Y-N?)

Formatting...Format complete,.

1213952 bytes total disc space.
1213952 butes available on disk.

Disc Labels

After the initialization has completed successfully, the disc is
ready for storing programs and data.

After you initialize the disc, you may want to give it a label.
The PRINT LABEL statement prints the label in the disc di-
rectory. Once the label is there, a READ LABEL statement can
retrieve it. The disc label is included in a CATalog of the disc.

For example, to give the disc in the A: disc drive the label
VOL1, execute the following:

PRINT LABEL "VWOL1" TO "“:CS8@,15600,8"

3-22 Programming Techniques

To read the label, enter:

READ LABEL Mame$ FROM ":C586,1508,8"

Caution w

All mass storage operations, including program storage, re-
quire a properly initialized device. You can tell if a mass
storage device has been properly initialized by executing a
CAT command for that device. This command will display
the contents of a device’s directory. Type CAT and

press (Enter). If the CRT displays a catalog listing, then you
are looking at the directory of the default mass storage vol-
ume. Therefore, the device is properly initialized and can be
used for program storage. If you get an Error 80, then there is
no disc in the default drive, the disc has not been inserted
properly, or the disc is write protected (if this is the first time
the disc has been used). If you get an error, there are several
things you might do, depending on your situation.

B Be sure the appropriate driver binaries have been loaded.
Refer to chapter 2 for a description of loading binaries.

B [f the error is caused by a disc that has not been initialized,
or has been initialized improperly (typically errors 78, 84,
or 85), you can execute an INITIALIZE command.

When you initialize a disc, all data on the disc is destroyed.

B Be sure that your mass storage system is configured
properly.

B If you need further assistance, call your local Hewlett-
Packard representative.

Programming Techniques 3-23

Recording a
Program

To record a program, you can use the SAVE or STORE com-
mand with a suitable file name. The command used depends
upon the type of file you want. If SAVE is used, the text of
the program is recorded in an ASCII file. If STORE is used,
the program is recorded in a PROG file. The main advantage
of .a PROG file is rapid access. The following table gives a
brief summary of the differences between SAVE and STORE.

SAVE | STORE
File type created: ASCII PROG
Retrieved by: GET LOAD
Can file be read as data? Yes No
Arbitrary program segments allowed? Yes No

To store a program, type the keyword STORE followed by a
file name, and press (Enter). For example, the command to
create a file called “mortgage” is:

STORE "mor tgage"

The SAVE procedure is similar except that SAVE allows you
to use line identifiers to specify what portion of the program
you want to save. This is helpful when moving or appending
program segments during major editing operations. To save
all of a program in a file called “WHALES”, execute the fol-
lowing command:

SAVE "HWHALES"

The next command saves the last part of a program, from line
500 to the end, in an ASCII file called “TEMP”.

SAVE "TEMP", 508

3-24 Programming Techniques

When both the starting and ending lines are specified, any
portion of a program can be saved. Executing the command

SAVE "sort_code",Sort,Printout

Retrieving a
Program

saves that portion of the program that is between the lines
labeled “Sort” and “Printout” (inclusive) in an ASCII file
called “sort_code”.

You can only use SAVE and STORE when first recording a
file. If the file you are trying to use already exists, you will get
an error message. To save or store a program to an existing
file, you must use RE-SAVE or RE-STORE.

Programs saved in an ASCII file are retrieved with the GET
statement. Programs stored in a PROG file are retrieved with
a LOAD statement. These statements can be executed from
the keyboard as commands or included in a program. To re-
trieve a program you need to know the name and type of the
file in which it is stored. If you are not sure of either of these,
use the CAT comand. The catalog display shows the name
and type of all files on the disc.

Using GET as a Command. You can use the GET command
to bring in programs or program segments from an ASCII file,
with the options of appending them to an existing program or
beginning program execution at a specified line.

If you want to clear any existing program from memory and
bring in the contents of an ASCII file, type:

GET "FORMULRA"

This command clears the computer’s memory and brings in
the ASCII file called “FORMULA”". If the first line of the file
is not a valid program line, the GET is not performed and an
error 68 is reported. If the file is not an ASCII file, the GET is
not performed and an error 58 is reported.

Programming Techriques 3-25

If you want to append the contents of an ASCII file to an
existing program, a line identifier is added to the GET com-
mand. For example, assume you have a program in memory
whose last line number is 740, and you want to append the
contents of a file called “George”. You can use the following
command to accomplish this:

I—GET "George", 750

This appends the program lines from the file called “George”
to the existing program, renumbering them to start with line
number 750.

If the specified renumbering would create an invalid line
number, an error is sent to the system printer with an error
message, but it is not entered into program memory.

The GET command can also specify that program execution is
to begin. This is done by adding two line identifiers: one
specifies the placement and renumbering just described, and
the other specifies the line at which execution is to begin. For
example, assume there is no program in memory and that an
ASCII file called “RATES” contains valid program lines. A
typical command to bring a program into memory and begin
execution at the first line is:

GET "RATEZ", 186,18

If there is already a program in memory, an append run is
allowed. For example:

GET "RATES", 258, 106

This command specifies that any existing lines from 250 to
the end are to be deleted, the contents of “RATES” is to be
renumbered and appended beginning at line 250, and then
program execution is to begin at line 100.

3-26 Programming Techniques

Using GET in a Program Line. The GET statement can be
used in a program to transfer execution from one program
segment to another. This example of a programmed GET
demonstrates a simple linkage of two program segments, as
might occur when the entire program is too large to fit in
available memory.

First Program Segment:

18 COM Ohms,Amps,Volts

28 Ohms = 128

38 Volts = 248

48 Amps = Volts 0Ohms

58 GET "WATTAGE"

€8 END
File WATTAGE:

i@ COM Ohms,Amps,Volts

28 HWatts = AmpsXVolts

38 PRINT "Resistor Ohms =";0hms

48 PRINT "Resistor MWattage =";MWatts

58 END
The COM statement dimensions and reserves memory for
variables in a special common memory area so more than one
program can access the variables.
Using LOAD as a Command. The LOAD command is used
to bring in programs from a PROG file, with the option of
beginning program execution at a specified line. For example:

LOAD "CAMMON"

Programming Techniques 3-27

This command clears memory and loads the contents of the
PROG file called “CANNON". If the file is not a PROG file,
the LOAD is not performed and an error 58 is reported. If
any lines require a language extension that is not currently
installed, those lines cannot be executed. However, the LOAD
proceeds without error.

The LOAD command can also specify that program execution
is to begin.

LORD "STONE",18

This command causes the computer to load the program in
file “STONE” and begin execution at line 10. The line identi-
fier may be a label or a line number, but it must identify a
line in the main program segment, not in a SUB or user-de-
fined function.

The LOAD command cannot be used to bring in arbitrary
program segments or append to a main program like GET
can.

Using LOAD in a Program Line. When used in a program
line, the actions of the LOAD statement are the same as those
described for the LOAD command, except program execution
resumes whether a line identifier is specified or not. For
example:

1206 LOAD "PART2"

When this program statement is executed, the existing pro-
gram is replaced by the contents of the PROG file called
“PART2’, and program execution resumes with the first line in
the new program.

3-28 Programming Techniques

Program There are four general categories of program flow. These are
Structure and sequence, selection (conditional execution), repetition, and

event-initiated branching. This section tells you how to use all
Flow of these types of program flow.

Sequence Linear Flow. The simplest form of sequence is linear flow.
Linear flow allows many program lines to be grouped to-
gether to perform a specific task in a predictable manner.
Keep these characteristics of linear flow in mind:

B Linear flow involves no decision making.

B Linear flow is the default mode of execution. Unless you
include a statement that stops or alters program flow, the
computer will always “fall through” to the next higher
numbered line after finishing the line it is on.

Halting Program Execution. There are three statements
that can be used to block execution of the next line and halt
program flow.

1. The END statement. The primary purpose of the END
statement is to mark the end of the main program, how-
ever when an END statement is executed, program flow
stops and the program moves into the stopped (non-con-
tinuable) state.

2. The STOP statement. This acts just like an END state-
ment in that it stops program flow. You use a STOP
statement when you desire program flow to stop at some
point other than the end of the main program.

3. The PAUSE statement. You use the PAUSE statement to
temporarily halt program execution, leaving the program
variables intact. Execution is halted until you press
CONTINUE on the keyboard.

Programming Techniques 3-29

To demonstrate, type in the following program:

16
28
38
48
=1c
68
va

Radius = 5

Circum = PI¥2%Radius
PRINT INTC(Circum>
PAUSE

Area = PI¥Radius"2
PRINT INT(Area>

END

Now run the program by pressing RUN or type RUH and
press (Enter). The computer prints 31 on the CRT and the Run
Indicator in the lower right corner of the CRT is replaced with
a -, indicating the program is in a paused state. Now press
CONTINUE. The computer prints 78 on the CRT.

Simple Branching. The simplest form of branching uses the
statements GOTO and GOSUB. Both statements cause an un-
conditional branch to a specified location in the program.

3-30 Programming Techniques

1. The GOTO statement causes the program to branch to
some line number or label that is not the next line in the
program. Following are examples of the GOTO
statement:

188 GOTO Z@
158 GOTO XHXX
288 KMER:. . . 000
2. The GOSUB statement is used to transfer program exe-

cution to a subroutine. A subroutine is a segment of a
program that is entered with a GOSUB statement and
exited with a RETURN statement. There are no param-
eters passed and no local variables are allowed in the
subroutine. The GOSUB statement can specify either the
line number or a line label as a designated entry point
for the subroutine being called. Here are some examples:

188 GOSUB 1&88a

4580 GOSUB 38088

Remember that each time a subroutine is called by a
GOSUB, control is returned to the line immediately fol-
lowing the GOSUB when the RETURN is encountered in
the subroutine. Therefore you must have a RETURN for
each subroutine. Note that if you omit the RETURN, the
program will continue executing beyond the point at
which you expected it to return, until it encounters an-
other RETURN, STOP, or END. Obviously, this could
produce surprising results in the outcome of your

program.

Selection The heart of a computer’s decision-making power is the cate-
gory of program flow called selection, or conditional
execution. A certain set of the program either is or is not exe-
cuted, depending on the results of a test or condition. This
section presents the conditional-execution statements accord-
ing to various applications. The following is a summary of
these groupings:

1. Conditional execution of one segment.
2. Conditionally choosing one of two segments.

3. Conditionally choosing one of many segments.

Programming Techniques 3-31

Conditional Execution of One Segment. The basic deci-
sion to execute or not execute a program segment is made by
the IF.. THEN statement. This statement includes an expres-
sion that is evaluated as being either true or false. If true, the
conditional segment is executed. If false, the conditional seg-
ment is bypassed. The conditional segment can be either a
single BASIC statement or a program segment containing any
number of statements. The following example shows condi-
tional execution of a single statement:

18@ IF Ph » 7.7 THEN PRINT "Ph Value has been exceeded!"

Notice the test (Fh > 7.7) and the conditional statement
(PRINT...) which appear on either side of the keyword
THEN. If the value of Ph is greater than 7.7 the PRINT state-
ment is executed. If the value of Ph is equal to or less than 7.7
the PRINT statement is not executed. In either case, the line
number immediately following line 100 would be executed
next.

Conditional Branching. Powerful control structures can be
developed by using branching statements in an IF.. THEN
statement. Here are some examples:

128

118 IF Free_space < 188 THEN GOSUB Expand_file
ITHE LINE AFTER IS ALWAYS EXECUTED

The statement checks the value of a variable called
Free_space, and if it is less than 100, a subroutine called
Expand_file is executed. If the value is not less than 100, the
subroutine is not executed. One important feature of this
structure is that the program flow is essentially linear, except
for the conditional “side trip” to a subroutine and back.

3-32 Programming Techniques

The conditional GOTO is such a commonly used technique
that the computer allows a special case of syntax to specify it.
Assuming that line number 200 is labeled “START”, the fol-
lowing statements will cause a branch to line 200 if X is equal
to 3:

IF ¥ = 3 THEH
IF ¥ = 3 THEN
IF ¥ = 3 THEHN
IF ¥ = 3 THEH

GOTO START

Multiple-Line Conditional Segments. If the conditional
program segment requires more than one statement, a slightly
different structure is used. For example:

188 IF Ph > 7.7 THEH

114 PRINT "The walue of Ph has been exceeded!"
128 PRINT "Ph walue is";Ph

138 GOSUB Setup

148 EMD IF

158 | Program continues here

If Ph is less than or equal to 7.7, the computer skips all the
statements between the IF...END IF statements and continues
with the line following the END IF. If the value of Ph is
greater than 7.7, then the statements between the IF...END IF
are executed before continuing on to the line after the END
IF. Any number of program lines can be placed between an
IE...END IF statement, including other IF...END IF statements.
For example:

188 IF Flag THEHN
i@ IF End_of_page THEHN
1 TO Skip_length

128 FOR I
138 PRINT
148 Lines
158 NEXT I

168 ENMD IF
178 END IF

Lines + 1

Programming Techniques 3-33

Remember, you can use the INDENT command to improve
the readability of your programs.

Choosing One of Two Segments. Often you want a pro-
gram flow that passes through only one of two paths
depending upon a condition. This type of decision is shown
in the following diagram:

Flag = 1 Flag = 0
400 IF Flad THEN
410 R=R+2
420 Area=PI*R"2
430 ELSE
440 Width=Width+1
450 Length=Lendth+1
460 Area=kWidth*¥lLendth

470 END IF
480 PRINT "Area ="3Area
* 490 ! Prodram continues

This example has an IF.. THEN...ELSE structure which makes
the one-of-two choice easy and readable.

Choosing One of Many Segments. The SELECT...END SE-
LECT is similar to the IF.. THEN...ELSE...END IF construct,
but allows several conditional program segments to be de-

fined. Only one segment is executed each time the construct
is entered. Each segment starts after a CASE or CASE ELSE
statement, and ends when the next program line is a CASE,
CASE ELSE, or SELECT statement.

Consider the processing of readings from a voltmeter. Read-
ings which contain a function code have been taken. The
function codes identify the type of reading and are shown in
the following table:

3-34 Programming Techniques

Function Code | Type of Reading
DV DC Volts
AV AC Volts
DI DC Current
Al AGC Current
oM Resistance

The following example shows the use of the SELECT con-
struct. The function code is contained in the variable

FUNCTS$.
2888 SELECT Funct#
2818 CRASE "Du"
2828 |
2838 | Processing Statements For DC Volts
2848 |
2838 CASE "AY"
2868 |
2878 | Processing Statements For AC Volts
2884 |
2898 CRSE "DI"
2188 !
2118 | Processing Statements For DC Current
2128 !
2138 CASE "RAI"
2148
2158 ! Processing Statements For AC Current
2168 |
2178 CASE "OM"
2188 !
2198 | Processing Statements For Resistance
2288 !

2218 CASE ELSE

2228 BEEP

2238 PRINT "Inhvalid Reading!"

2248 EWD SELECT

2258 ! Program execution continues here

Programming Techniques 3-35

Notice that the select construct starts with a SELECT state-
ment specifying the variable to be tested and ends with an
END SELECT statement. The anticipated values are placed in
CASE statements. Although this example shows a string
tested against simple literals, the SELECT statement works for
numeric or string variables or expressions. The CASE state-
ments can contain constants, variables, expressions,
comparison operators, or a range specification. The antici-
pated values must be of the same type (numeric or string) as
the tested variable.

The CASE ELSE statement is optional. It defines a program
segment that is executed if the tested variable does not match
any of the cases. If CASE ELSE is not included and no match
is found, program execution continues with the line following
the END SELECT.

You should be aware that if an error occurs when the com-
puter tries to evaluate an expression in a CASE statement, the
error is reported for the line containing the SELECT state-

ment. An error message pointing to the SELECT statement

means that there is an error in that line or in one of the CASE
statements following it.

Using the ON Statement. The same type of program flow
can be generated with an ON statement and some additional
processing. The ON statement transfers program control to
one of several destinations depending on the value of a
pointer. The pointer can be a numeric expression rounded to
an integer, but its final value must be an integer.

186 ON X1 GOTO 156,280,308

In the above example, X1 is the pointer whose value will be
evaluated. If the value is 1, program control will be trans-
ferred to line 150; if it is 2, control is transferred to line 200;
and if it is 3, control is transferred to line 300. If X1 has a
value other than 1, 2, or 3, an error results:

3-36 Programming Techniques

ERROR 1% IN 188 Improper walue or out of range

You can also use the ON statement with GOSUB instead of
GOTO. In this case, the RETURN from the GOSUB is to the
line following the ON...GOSUB statement.

188 OM ¥1 GOSUB FIRST,SECOND, THIRD,LAST
118 PRINT "NEXT STATEMENT"

Repetition

The variable X1 is evaluated and the subroutine beginning at
the line identifier FIRST, SECOND, THIRD, or LAST, is exe-
cuted depending on whether X1 is 1, 2, 3, or 4. Control is
returned to line 110 regardless of which subroutine is exe-
cuted. As before, an error results if X1 is not 1, 2, 3, or 4.

There are four structures available for creating repetition. The
FOR..NEXT structure is used for repeating a program seg-
ment a predetermined number of times. Two other structures,
REPEAT...UNTIL and WHILE, are used for repeating a pro-
gram segment indefinitely, waiting for a specified condition to
occur. The LOOP...EXIT IF structure is used to create an itera-
tive structure that allows multiple exit points at arbitrary
locations.

Fixed Number of Iterations. The general concept of repeti-
tive program flow can be shown with the FOR...NEXT
structure. The FOR statement marks the beginning of the re-
peated segment and establishes the number of repetitions.
The NEXT statement marks the end of the repeated segment.
This structure uses a numeric variable as a loop counter. The
following example shows the basic elements of a FOR...NEXT
loop:

Programming Techniques 3-37

]
28
30
408
50
64

FOR ¥ =
BEEP
PRIMT X
WAIT 1
NEXT ¥
END

i6 TO @8 STEP -1

In this example, X is the loop counter, 10 is the starting value,
0 is the final value, —1 is the step size, and the repeated seg-
ment is composed of lines 20 through 50. Note that if the
step counter is not specified, a default value of 1 is assumed.

When all the variables involved are integers, the number of
iterations of any loop can be predicted using the formula

(STEP SIZE + FINAL VALUE — STARTING VALUE) <+ STEP SIZE
Thus, the number of iterations in the example above is 11.

The NEXT statement performs an “increment and compare”
on the loop counter. This means that the loop counter is in-
cremented by the step size and then compared to the final
value. If the loop counter has passed the specified value, the
loop is exited, otherwise the loop is repeated. Note that if the
number of iterations evaluates to zero or less, the loop is not
executed and program execution goes immediately to the line
following the NEXT statement.

The loop counter retains the exit value after the loop is fin-
ished.

Conditional Number of Iterations. Some applications need
a loop that is executed until a certain condition is true, with-
out specifically stating the number of iterations involved. For
example, suppose you want to be able to print the value of
successive powers of two, but only until the value is greater
than 1000. The REPEAT..UNTIL is more flexible than the

FOR...NEXT in this case. Consider the following example pro-
gram (found in file REPEAT1 on your Manual Examples disc):

3-38 Programming Techniques

18 ¥ = 2

28 I = 1

38 PRINT ¥;

48 REPEAT

58 X o= 21 + 12

6@ I =1+ 1

78 PRINT ¥

88 UNTIL ¥ > 1888
98 END

This program will calculate the value of each power of 2 until
the value is greater than 1000. If you ran this program, the
results would be:

2 4 8 16 32 64 256 512

1824

The WHILE loop is used for the same purpose as the REPEAT
loop. The only difference between the two is the location of
the test for exiting the loop. The REPEAT loop has its test at
the bottom. This means that the loop is always executed at
least once, regardless of the value of the test condition. The
WHILE loop has its test at the top, therefore it is possible for
the loop to be skipped entirely. The following example (found
in file WHILE1 on your Manual Examples disc) shows this.

18 ¥ 2

28 I 1

38 PRINT ¥X;

48 WHILE X < 1088
58 ¥ o= 21 + 12
68 I =1 +1

va FRIHT X:

88 EMD WHILE

o8 EMD

Programming Techniques 3-39

The results obtained from this example should be identical to
the example using the REPEAT...UNTIL loop. Try these ex-
amples on your computer, and don’t be afraid to experiment
with them. Change them to suit your own needs. This will
help you to understand the concepts of iterative processing.

Arbitrary Exit Points. The loop structures discussed so far
do not allow for conditional exit points within the program
segment between the top and bottom of the loop. The
LOOP...EXIT IF construct allows you to do this. It also allows
you to have more than one exit point. Also, the EXIT IF state-
ment can be at the top or bottom of the loop. This means that
the LOOP structure can serve the same purposes as the
REPEAT...UNTIL and WHILE...END WHILE.

The EXIT IF statement must appear at the same nesting level
as the LOOP statement for a given loop. The following two
examples demonstrate this.

In this example, the EXIT IF statement is nested deeper than
the LOOP statement because it is placed in an IE..THEN
structure.

lee LOOP
118 Test = RND -.5
128 IF Test < 8 THEMN

17a EHMD IF
186 END LOOP
156 END

138 PRINT "MEGARTIVE"
148 ELSE

15@a EXIT IF Test >
168 PRINT "FOSITIVE"

8.4

3-40 Programming Techniques

Here is the proper structure to use.

168
118
128
138
148
158
168
ive
188
198

Loop
Test = RHD -.5
EXIT IF Test > 8.4

IF Test < 8 THEN
PRIMNT "NEGATIVE"
ELSE
PRINT "POSITIVE"
END IF
END LOOQOP
END

If you enter the “wrong” example and try to run it, you will
get the following error message:

ERROR 347 IN 150

Structures improperly matched

Event-Initiated
Branching

Now try the “right” example. The program should print the
words “positive” and “negative” a random number of times,
and will stop when the value of the variable TEST is greater
than 0.4. In effect, since the RND function returns a frac-

tional value between 0 and 1, the program stops the first time
RND returns a value greater than 0.9

Event-initiated branching is established by the ON-event
statements. Here is a list of the statements:

ON CYCLE ON DELAY ON END
ON EOR ON EOT ON ERROR
ON HIL EXT ON INTR ON KBD
ON KEY ON KNOB ON SIGNAL
ON TIME ON TIMEOUT

Programming Techniques 3-41

The ON END event is used to detect when the end of a mass
storage file is reached. The ON CYCLE, ON DELAY, and ON
TIME events are used to direct program flow using the clock.
The ON ERROR event is used to trap run-time errors and
provide for error recovery routines. The ON KBD, ON KEY,
and ON KNOB events pertain to various parts of the key-
board, and are used to enhance the “human interface” of
programs. The ON EOR, ON EOT, ON SIGNAL, ON INTR,
ON HIL EXT, and ON TIMEOUT events pertain to data
transfer, interfaces, and I/O operations.

The best way to understand how event-initiated branches op-
erate in a program is to try a few examples on your computer.
Try the following example (found in file ONKEY1 on your
Manual Examples disc).

186 OM KEY 1 LABEL "Inc" GOSUB PLUS
118 ON KEY 5 LABEL "Dec" GOSUB MINUS
1ze !

138 SPIM: DISP ¥

148 GOTO SPIM

158 |

168 PLUS: X = ¥ + 1

178 RETURN

188 |

198 MINUS: ¥ = ¥ - 1

28@ RETURH

218 END

The ON KEY statements are executed only once at the start of
the program. Once defined, these event-initiated branches re-
main in effect for the rest of the program. The program
segment labeled “SPIN” is an infinite loop. If it weren't for
interrupts, this program couldn’t do anything except display a
zero. However, there is an implied IF.THEN at the end of
lines 130 and 140 because of the ON KEY action. Either the
“PLUS” or “MINUS” subroutines are selected as a result of
softkey presses. If no softkey is pressed, the computer contin-
ues to display the value of X. The following section of
pseudocode shows the program flow of the “SPIN” segment
looks like.

3-42 Programming Techniques

SPIM: DISPLAY X
IF KEY 1 THEM GOSUB PLUS
IF KEY S5 THEM GOSUB MINUS

GOTO SPIN
Note that the only way to terminate this program is to type
STOP and press (Enter).
I
Numeric Numeric computations deal exclusively with numeric values.
computation Addmg two nu.mbers and fmdlpg a sine or a logar.lthm are
numeric operations, but converting bases or converting num-
bers to a string are not.
The most fundamental numeric operation is the assignment
operation, achieved with the LET statement. The LET state-
ment originally required the keyword LET, but your computer
makes it optional. Thus, the following statements are
equivalent:
LET A =R +1
A=A +1

Numeric Data There are three numeric data types in BASIC:

Types m COMPLEX.
® INTEGER.
W REAL.

Programming Techniques 3-43

Any numeric variable that is not declared COMPLEX or IN-
TEGER is a REAL variable.

COMPLEX Variables. A COMPLEX number is written as

the sum of a real and an imaginary number. An imaginary
number is any real number multiplied by V=1, and is ex-

pressed by mathematicians in the following manner:

a+ib

where i = \/—1. In the above representation, a is the real part
of the complex number, and ib is the imaginary part. The i in
front of the b forms the imaginary number, and is the same as
multiplying b by V—1. For example, you would write V=9 as
V=1 *\9 or simply 3i. Electrical engineers use the letter j in-
stead of i, to avoid confusion with the symbol for electric current.
COMPLEX numbers are stored as two REAL variables, thus a
COMPLEX number will require 16 bytes of memory.

INTEGER Variables. An INTEGER variable can be any whole-
number value from —32768 through +32767.

REAL Variables. A REAL variable can be any value from
—1.797073134862315 x 107398 through 1.797073134862315 X
107308, The smallest non-zero REAL value allowed is approxi-
mately +2.225073858507202 x 10308

Declarations. You can declare variables to be of a particular
type by using the COMPLEX, INTEGER, and REAL statements.
For example, the statements

COMPLEX B, C, Phasori1(18), Phasorz2¢in)
INTEGER I, J, Daus<(5), Weeks(5:17>
REAL X, ¥, Voltage(4>, Hours(5,8:13>

3-44 Programming Techniques

each declare two scalar and two array variables. A scalar is a
variable which can represent a single value. An array is a
subscripted variable, and can contain multiple values accessed
by subscripts. You can specify both the lower and upper
bounds of an array, or specify the upper bound only, and use
the existing OPTION BASE statement as the lower
bound.You may declare an array using the DIM statement:

DIM RC4,5>

You may use an ALLOCATE statement to declare both REAL
and INTEGER arrays:

ALLOCATE REAL Coords{(2,

1:Points), IMTEGER Status(l:Points?

The ALLOCATE statement allows you to dynamically allocate
memory in programs which need tight control over memory
use. Arrays will be discussed in detail later in this section.

Type Conversions. The computer will automatically convert
between REAL and INTEGER values in assignment state-
ments and when parameters are passed by value in program
and function calls. When parameters are passed by reference,
the conversion will not be made, and a TYPE MISMATCH
error will be reported.

When a REAL number is converted to an INTEGER, the frac-
tional part is lost, and the REAL number is rounded to the
closest INTEGER value. Converting the number back to
REAL will not restore the fractional part. Also, because of the
difference in ranges between the two types, not all REAL val-
ues can be converted into an equivalent INTEGER value. This
problem can generate INTEGER OVERFLOW errors. The
rounding problem does not generate an execution error, but
the range problem can generate an execution error, and you
should protect yourself from this possibility. One way to do
this is shown on the next page:

Programming Techniques 3-45

288 IF (-32768 <= X) AND (¥ <= 32767> THEHN
218 ¥ = ¥

228 ELSE

238 GOSUB Out_of_range

248 END IF

Resident The resident functions are the functions that are part of the
Numerical BASIC language. Your BASIC language includes numerous
. functions to make mathematical operations easier. This sec-
Functions tion covers these functions by placing them in the following
categories:

B Arjthmetic Functions.

B Exponential Functions.

W Trigonometric Functions.
Binary Functions.

Limit Functions.

Rounding Functions.
Random Number Function
Complex Functions.

Time and Date Functions.

Base Conversion Functions.

General Functions.

3-46 Programming Techniques

Arithmetic Functions. Your BASIC language has the fol-
lowing arithmetic functions included:

Function Description

ABS Returns the absolute value of an expression.
FRACT Returns the fractional part of the argument.
INT Returns the greatest integer that is less than or

equal to an expression. The result is of the same
type as the original number.

PI Returns the constant 3.14159265358979, an ap-
proximate value for =.

SGN Returns the sign of an expression: 1 if positive,
0 if 0, —1 if negative.

SQR Returns the square root of an expression.

Exponential Functions. This section provides a list of func-
tions used for determining the natural and common
logarithms of an expression. All exponential functions use
REAL, INTEGER, or COMPLEX numbers as their argument.

Function Description

EXP Raise the Naperian e to a power. e =
2.71828182845905.

LGT Returns the base 10 logarithm of the expression.

LOG Returns the natural (Naperian base e) logarithm

of an expression.

Trigonometric Functions. There are twelve trigonometric
functions included in your BASIC language. All of these func-
tions use radian values as the default input, however you can
change this to degrees with the DEG statement. You can re-
select radians by using the RAD statement. It is a good idea to
explicitly set the mode for input to these functions, even if
you are using the default (radian) mode. This is especially im-
portant when you are writing subprograms, as the
subprogram inherits the mode from the calling program.

Programming Techniques 3-47

The following is a list of the trigonometric functions. All these
functions use INTEGER, REAL, or COMPLEX numbers as
their argument.

Function
ACS
ACSH

ASN
ASNH

ATN
ATNH

COS

COSH

SIN

SINH

TAN

TANH

Description
Returns the arc cosine of an expression.

Returns the hyperbolic arc cosine of an
expression.

Returns the arc sine of an expression.

Returns the hyperbolic arc sine of an
expression.

Returns the arc tangent of an expression.

Returns the hyperbolic arc tangent of an
expression.

Returns the cosine of the angle represented by
the expression.

Returns the hyperbolic cosine of the angle rep-
resented by the expression.

Returns the sine of the angle represented by the
expression.

Returns the hyperbolic sine of the angle repre-
sented by the expression.

Returns the tangent of the angle represented by
the expression.

Returns the hyperbolic tangent of the angle rep-
resented by the expression.

Binary Functions. All computer operations use the binary
number representation. You usually don’t see this because the
computer changes decimal numbers that you input into bi-
nary representation. The operations you specify are
performed on the binary numbers, and results are changed
back into decimal numbers before displaying or printing

them.

3-48 Programming Techniques

The following BASIC functions deal with binary numbers:

Function
BINAND

BINCMP

BINEOR

BINIOR

BIT

ROTATE

SHIFT

Description

Returns the bit-by-bit logical and of two
arguments.
Returns the bit-by-bit complement of two
arguments.
Returns the bit-by-bit exclusive or of two
arguments.

Returns the bit-by-bit inclusive or of two
arguments.

Returns the state of a bit of the argument.

Returns a value obtained by shifting an integer
representation of an argument a specific num-
ber of bit positions with wraparound.

Returns a value obtained by shifting an integer
representation of an argument a specific num-
ber of bit positions, without wraparound.

When any of these operations are used, the arguments are
first converted to integer (if they are not already in integer)
and then the specified operation is performed. You should re-
strict bit-oriented binary operations to declared INTEGER
variables. If it is necessary to operate on REAL variables, be
sure to use the precautions described under type conversions
in the previous section, to avoid INTEGER OVERFLOW

errors.

Limit Functions. It is sometimes necessary to limit the range
of values of a variable. BASIC provides four functions for this

purpose:

Function
MAX
MAXREAL
MIN
MINREAL

Description

Returns the larger of a list of expressions.
Returns the largest REAL number.

Returns the smallest of a list of expressions.

Returns the smallest REAL number.

Programming Techniques 3-49

Rounding Functions. Sometimes it is necessary to round a
number in a calculation, to eliminate unwanted resolution.
There are two types of rounding, rounding to a total number
of decimal digits, and rounding to a number of decimal places
(limiting fractional information).

Function Description

DROUND Rounds a number to a specified number of
digits.

PROUND Returns the value of the argument rounded to a
power of ten.

Random Number Function. The RND function returns a
pseudo-random number between 0 and 1. Since many appli-
cations require random numbers with arbitrary ranges, it is
necessary to scale the numbers.

188 R=INT(RMD¥Range)+0ffset

The above statement will return an integer between OFFSET
and OFFSET + RANGE. Try the following example, which
will simulate ten throws of a die.

18 FOR I=1 TO 18
2a Die=INT(RND¥6&> +1

48 HEXT I
28 END

38 PRINT "DIE IS";Die

If you run the above program several times, you will see that
the values for the die do not change from one run to the next.
This is because the RND function is using the same seed for
each run. The random number generator is seeded with the
value 37480660 at power-on, during pre-run, and when
SCRATCH or SCRATCH A are executed. You can change the
seed by using the RANDOMIZE statement, which will give a
new pattern of numbers. Edit the program above to add a
RANDOMIZE statement as line 05 and see what happens.

3-50 Programming Techniques

Complex Functions. These functions are obtained by load-
ing the COMPLEX binary, as described in chapter 2. Topics
which are covered in this section are:

Assigning COMPLEX Variables.
Evaluating COMPLEX Numbers.

Complex Arguments and the Trigonometric Mode.

Converting from Rectangular to Polar Coordinates.

|
a
|
B Determining the Parts of Complex Numbers.
]
]

An Application for Complex Numbers.

Assigning COMPLEX Variables. To assign complex vari-
ables, the variables must first be declared as complex, and one
or more of the variables must have already been created using
the CMPLX function. For example, the following program
creates a complex variable C and assigns it to the complex
variable B. It then displays the results.

18
2a
3a
48
58
508
ra
80

COMPLEX B,C

RERAL Real_part,Imaginary_part
Real _part=3.,5

Imaginary_part=.5
C=CHMPLX(Real_part,Imaginary_part?
B=C

PRINT C,B

END

Executing the above program produces these results:

Programming Techniques 3-51

Evaluating COMPLEX Numbers. The BASIC expression
evaluation uses two separate routines for dealing with REAL,
INTEGER and COMPLEX data types. There is a routine for
dealing with REAL and INTEGER numbers and one for
COMPLEX numbers. For example, taking the square root of a
negative INTEGER or REAL number will produce an error.
For instance, S@R(-1) results in

ERROR 38 S@R of negative number
If you have a need to compute the square root of a negative
REAL or INTEGER number, assign the value to the real part
of a complex number using the CMPLX function. For in-
stance, SAR(CMPLKX<(-1,08>> results in

8 1
where 0 is the real part of the complex number and 1 is the
imaginary part of that same number.
Complex Arguments and the Trigonometric Mode. When
a trigonometric function call is made using a complex value as
its parameter, BASIC will evaluate that call using the radian
mode regardless of the current trigonometric mode setting
(DEG, RAD, or GRAD). After the function call has been eval-
uated, the system returns to the current trigonometric mode.
For example, enter and run this program:

16 DEG

28 FRINT SINC3@2

38 PRINT

48 PRIMT SINCCMPLX(38,8)> ! Alwaus evaluated in the RAD mode.

58 PRINT

68 PRIMT SINC38)

7@ END

3-52 Programming Techniques

The results from executing this program are as follows:

.5 (degree mode)

-.9880831524893 B (radian mode)

.5 (degree mode)

sine function will be evaluated in the radian mode regardless

Note '# Any complex function whose definition includes a sine or co-
of the current trigonometric mode (i.e. RAD or DEG).

Determining the Parts of Complex Numbers. In some
applications, such as network design, it is useful to be able to
determine the real and imaginary parts of complex numbers,
and the conjugate of a complex number. This section provides
the functions necessary for performing these operations.

REAL(C) returns the real part of a complex number. For
example,
DISP REALCCMPLXC18,-32>
Executing this statement produces:
18

IMAG(C) returns the imaginary part of a complex number.
For example,

DISP IMAGCCMPLXCl@,-322
Executing this statement produces:
-3

Programming Techniques 3-53

CONJG(C) returns the complex conjugate of a complex
number. This function returns both the real and
imaginary parts of a complex number;however,
the imaginary part is changed to a negative
value. For example:

DISP CONJGC(CHMPLX(1B,-32>

Executing this statement produces the following
results:

18 3

Converting from Rectangular to Polar Coordinates.
BASIC stores and uses complex numbers in a representation
called rectangular coordinates. Rectangular coordinates locate
a point in the complex plane. The complex plane is similar to
the plane formed by the Cartesian coordinate system except
the X axis represents the real part of the complex number and
the Y axis represents the imaginary part of the complex num-
ber. An alternate representation is polar coordinates. Polar
coordinates consist of a magnitude and an argument (angle).
The function used to obtain the magnitude is ABS(C) and the
function used to obtain the argument is ARG(C).

The following program converts the rectangular coordinates 5
and 6 of the complex number 5 + j6 to polar coordinates.

148 RAD

138 PRINT "The magnitude of 3 + j6 is: ";ABS(CMPLX{I,6>)

168 PRINT "The argument of 5 + j6 is: ";ARG(CMPLX(S,8>>

1v8 END
Executing this program produces the following results in ra-
dian mode (RAD):

The magnitude of 5 + j& is: 7.81824967591

The argument of 5 + j6 is: ,876853685083598

3-54 Programming Techniques

If you change line 140 above to be:

148 DEG

and run the program again, the results in the degree mode
(DEG) are:

The magnitude of 5 + j6 is: 7.81824967591
The argument of 5 + j6 is: 58,1944289077

Time and Date Functions. There are two functions which
will return the time and date in seconds. These are:

Function Description

DATE Converts a formatted date string (‘DD MMM
YYYY”) into a numeric value in seconds.

TIME Converts a formatted time-of-day
(“HH:MM:SS”) string into a numeric value of
seconds since midnight.

Base Conversion Functions. There are two functions you
can use to convert binary, octal, decimal, or hexadecimal
string values into a decimal number.

Function Description

DVAL Returns the whole number value of a binary, oc-
tal, decimal, or hexadecimal 32-bit integer. The
argument is a a string.

IVAL Returns the integer value of a binary, octal, deci-
mal, or hexadecimal 16-bit integer. The
argument is a string.

General Functions. When you are specifying select code
and device selector numbers, it is more descriptive to use a
function to represent that device as opposed to a numeric
value. For example, the statement

Programming Techniques 3-55

EHTER 2:HNumeric_function

allows you to enter a numeric value from the keyboard. The
above statement is not as easy to understand as

ENMTER KBD;HNumeric_wvalue

where you know the function KBD stands for keyboard.
Functions which return a select code or device selector are:

Function
CRT

KBD

SC

PRT

RES

Description

Returns the INTEGER 1. This is the select code
of the internal CRT.

Returns the INTEGER 2. This is the select code
of the keyboard.

Returns the interface select code associated with
an I/O path name.

Returns the INTEGER 701. This is the default
(factory set) device selector for an external HP-
IB printer.

Returns the last live keyboard numeric result.

Array and Matrix Functions. The following functions per-
form operations connected with arrays or matrices.

Function
BASE

DET
DOT
RANK
SIZE

SUM

3-56 Programming Techniques

Description

Returns the lower subscript bound of a dimen-
sion of an array.

Returns the determinant of a matrix.
Returns the inner (dot) product of two vectors.
Returns the number of dimensions in an array.

Returns the number of elements in a dimension
of an array.

Returns the sum of all the elements in an array.

Evaluating Scalar
Expressions

The arithmetic operations that you can perform on the system

are:

Addition (+)

Subtraction (—)
Multiplication (*)

Exponentiation ()
Integer Division (/ or DIV)
Modulo (MOD or MODULO)

| |
]
|]
® Division (/)
]
|]
|

The following table defines the hierarchy used by the com-
puter in evaluating numeric expressions.

Precedence

Operator

Highest

Lowest

Parentheses; they may be used to force any order
of operation.

Functions, both user-defined and machine-
resident.

Exponentiation:

Multiplication and division: *, /, MOD, DIV, and
MODULO.

Addition, subtraction, monadic plus and minus: +
and —.

Relational operators: =, <, >, <>, <=, and
>=.

NOT
AND
OR, EXOR

Programming Techniques 3-57

When an expression is being evaluated it is read from left to
right, and operations are performed as they are encountered,
depending upon the hierarchy. If the computer cannot imme-
diately perform the operation, it is stacked, and the evaluation
continues. Consider the following expression:

4R(3°2,20 +5XSIHCY 2

The computer will evaluate this expression in the following
the manner:

1. Perform the calculations inside the parentheses and
multiply by 4.

2. Compute the sine of Y.

3. Multiply the sine of Y by 5.

4. Add the value found in step 1 to the value found in
step 3.

Strings in Numeric Expressions. You can include string
expressions in numeric expressions if they are separated by
comparison operators. The comparison operators always yield
boolean results, which are numeric values in BASIC.

Step Functions. The comparison operators are useful for
conditional branching, but you can also use them for creating
numeric expressions representing step functions. For example,
suppose you want to output certain values depending on the
value, or range of values, of a single variable. This is shown
as follows:

® If variable < 0 then output = 0. :
m If 0 < variable < 1 then output = \VA? + B2.
B If variable = 1 then output = 15.

3-58 Programming Techniques

You could achieve the desired result by using a series of
IF..THEN statements, but you could also use the following ex-
pression (where X is the variable and Y is the output):

Y=C(X<B)%@+(¥>=8 AND X{1)>*¥SARCA~Z+B~2)+(¥>=1)¥15

The boolean expressions each return a 1 or 0 which is then
multiplied by the accompanying expression. Expressions not
matching the selection return 0 and are not included in the
result. The value assigned to the variable before the expres-
sion is evaluated is used to determine the result.

Comparing REAL Numbers. When you compare INTEGER
numbers, no special precautions are necessary. When you
compare REAL numbers, especially the results of calculations
and functions, it is possible to encounter problems due to
rounding. For example, consider the use of comparison oper-
ators in IF. THEN statements to check for equality in the
following:

160
118
1za@
138
1408
158
168

DEG
A=25.3765477

IF SIMCA>"2+C0SCAY"~2=1.8 THEN

FPRINT "Equal"
ELSE

PRINT "Moot Equal"

END IF

You will find that the equality test fails due to rounding er-
rors. A repeating decimal or irrational number cannot be
represented exactly in any finite machine.

Programming Techniques 3-59

Another good example of equality error occurs when multi-
plying or dividing data values. A product of two non-integer
values nearly always results in more digits beyond the deci-
mal point than exists in either of the two numbers being
multiplied. Any tests for equality must consider the exact vari-
able value to its greatest resolution. If you cannot guarantee
that all digits beyond the required resolution are zero, you can
use the DROUND function to eliminate unwanted resolution
before comparing results. The following example (found in file
DROUNDI1 on your Manual Examples disc) shows how you
can use DROUND:

18 A=32.,5887

28 B=31.625

38 C=R%B ! PRODUCT IS 1828.88763758
48 D=32.5122

50 E=31.621595589

68 F=D*¥E ° ! PRODUCT IS 1828.887&63751
78 IF C=F THEN 28

88 PRINT "C is not equal to F."

98 C=DROUNDCC,7>

188 F=DROUNDCF,?>

118 IF C=F THEN

128 PRINT "C equals F after DROUND."
138 ELSE

148 PRINT "C is not equal to F after DROUND."
156 END IF

16@ EHND

You can experiment with the concept by substituting other
values for the variables A, B, D, and E, and by changing the
number of digits specified in the DROUND function.

3-60 Programming Techniques

I
Numeric Arrays

Note I Many of the statements that deal with arrays (such as MAT)
'@ require the MAT binary. If you do not have this binary
loaded in your system, or you are not sure how to determine
if it is loaded, refer to chapter 2, “After HP BASIC Is Loaded,”
for more information.

An array is a multi-dimensioned structure of variables that
are given a common name. The array can have one through
six dimensions. Each location in an array can contain one
variable value, and each value has the characteristics of a sin-
gle variable, depending on whether the array consists of
REAL, INTEGER or COMPLEX values. A one-dimensional ar-
ray consists of n elements, each identified by a single
subscript. A two-dimensional array consists of m times n ele-
ments where m and n are the maximum number of elements
in the two respective dimensions. Arrays require a subscript
in each dimension in order to locate a given element of the
array. You can specify up to six dimensions for any array in a
program. REAL arrays require eight bytes of memory for each
element, plus overhead, and COMPLEX arrays require 16
bytes of memory for each element, plus overhead. It is easy to
see that large arrays can demand massive memory resources.
An undeclared array is given as many dimensions as it has
subscripts in its lowest-numbered occurrence. Each dimension
of an undeclared array has an upper bound of ten. Space for
these elements is reserved whether you use them or not.

Programming Techniques 3-61

Dimensioning an Before you use an array, you should tell the system how
Array much memory to reserve for it. This is called “dimensioning”
an array. You can dimension arrays with the DIM, COM, AL-
LOCATE, INTEGER, REAL or COMPLEX statements. For
example,

COMPLEX Arrau_complex(2,4>

An array is a type of variable and as such follows all rules for
variable names. Unless you explicitly specify INTEGER or
COMPLEX type in the dimensioning statement, arrays default
to REAL type. The same array can only be dimensioned once
in a context.*

However, as we explain later in this section, you can
redimension arrays by using the REDIM statement.

When you dimension an array, the system reserves space in
internal memory for it. The system also sets up a table which
it uses to locate each element in the array. The location of
each element is designated by a unique combination of sub-
scripts, one subscript for each dimension. For example,

DIM Array(3, 4>

dimensions a 3 X 4 two-dimensional array with the first sub-
script (3) representing three rows and the second subscript (4)
representing four columns. For a four-dimensional array, for
instance, each element is identified by four subscript values.
Each unique set of subscript values points to one, and only
one, array element. The actual size of an array is governed by
the number of dimensions and the subscript range of each
dimension. If A is a three-dimensional array with a subscript
range of 1 thru 4 for each dimension,

* There is one exception to this rule: If you ALLOCATE an array, and then
DEALLOCATE it, you can dimension the array again.

3-62 Programming Techniques

DIM AC1:4,1:4,1:42

Some Examples of
Arrays

Note ”ﬂ'l

then its size is 4 X 4 X 4, or 64 elements. Note that 1 on the
left side of the colon in the dimension statement above is the
lower bound and 4 on the right is the upper bound. There-
fore, when you dimension an array you must give not only
the number of dimensions, but also the subscript range of
each dimension. Subscript ranges can be specified by giving
the lower and upper bounds, as shown above, or by giving
just the upper bound. If you give only the upper bound, the
lower bound defaults to the current option base setting. Each
context initializes to an option base of 0 (arrays appearing in
COM statements with an (*) will keep the base with which
they were originally dimensioned). However, you can set the
option base to 1 using the OPTION BASE statement. You can
have only one OPTION BASE statement in a context, and it
must precede all explicit variable declarations.

Throughout this section we will be using DIM statements
without specifying what the current option base setting is.
Unless explicitly specified otherwise, all examples in this sec-
tion use option base 1.

The following examples illustrate some of the flexibility you
have in dimensioning arrays.

18 DIM AC3,4,8:2)

Programming Techniques 3-63

:/

(2,1,0) (3,1,0)

%/
/
/i
/

.é ’\ (1,1,1) \ 2,1,1) \ \ (3,1,1) \
é (1,2,0) \ (1,1,2) (2.2,0) \ 21.2) (3,2,0) \ 3,1.2)
E \ (1,2.1) \ \ 2,2,1) \ \ 3.2.1) \
&l | 080 \ (1,2.2) (2,3,0) \ (222) (3,3,0) \ (3.2.2)
\ (2,3,1) \ \ (3.3,1) \
! (2,4,0) \ (23.2) (3,4,0) (3:3.2)
\ (24.1) \ \ (3.4.1) \

(2,4,2) \ (3,4,2)

1st Dimension

/

/
/

Size | Lower Bound | Upper Bound

1st Dimension 1
2nd Dimension 1
3rd Dimension 0

In this example we portray the first dimension as planes, the
second dimension as rows, and the third dimension as col-
umns. In general, the last two dimensions of any array always
refer to rows and columns, respectively. When we discuss
two-dimensional arrays, the first dimension will always rep-
resent rows, and the second dimension will always represent
columns. Note also in the above example that the first two
dimensions use the default setting of 1 for the lower bound,
while the third dimension explicitly defines 0 as the lower
bound. The numbers in parentheses are the subscript values
for the particular elements. These are the numbers you use to
identify each array element.

3-64 Programming Techniques

1é COM BC1:5,2:62

121013 11,41 @15)] 1,6)
(22) | (2,3) | (24) | (2,5) | (2,6)
(3.2) | 83) | 3.4) | (38,5 | (3,6)
(4.2) | (43) | (4,4) | (4.5) | (4.6)
(5,2) | 6,3) | (5,4) | (5,5) | (5.6)

Size | Lower Bound | Upper Bound

1st Dimension 5 1

2nd Dimension 5 2

16 ALLOCATE IMTEGER Ct2:4,-2:2)

2-2 | @-1)|@o| @) |2
G=2 |G- [G0[EBN[E2
@,-2) | 41| @0]| @} @2

Size | Lower Bound | Upper Bound

1st Dimension 3 2

2nd Dimension 5 —2

16 OFPTIOM ERSE @
28 INTEGER Dci,4,-1:2%

Programming Techniques 3-65

/
/

(0,0,—1)

/

{
/

(0,1,—1)

/

/

(0,2,—-1)

/

(0,3,-1)

/

(Or41 -1)

/

/
/

(0,2,0)

O
I\J
_;

(0,0,2)

(0,1,2)

/

0,2,2)

/

(1,0,—1)

/

(1,1,-1)

/

(1,2,-1)

/

(1,3,-1)

/

T

(1,1,1)

/

(1,0,2)

\
\

(1,2,0)

\ (1,2,1)

T
T

/

(1,1,2)

/

(1,2,2)

/
]

(0,4,0)

\ (0’4’2)

/

(1,4,—1) \ (1,3,1)

(1,4,0) (1,3,2)

\ (1,4,1)
\

(0,3,2)

/

/

(1,4,2)

/
/

Size | Lower Bound | Upper Bound

1st Dimension 1
2nd Dimension 5 4
3rd Dimension 4 —1 2

Arrays are limited to six dimensions, and the subscript range
for each dimension must lie between —32767 and 32767.
(REDIM and ALLOCATE allow the subscript range to go
down to —32768, but the total size of each dimension must
be less than 32768 elements.) For the most part, we use only
two-dimensional examples since they are easier to illustrate.
However, the same principles apply to arrays of more than
two dimensions as well.

3-66 Programming Techniques:

As an example of a four-dimensional array, consider a five-
story library. On each floor there are 20 stacks, each stack

contains 10 shelves, and each shelf holds 100 books. You can
specify the location of a particular book by using the number
of the floor, the stack, the shelf, and the particular book on
that shelf. You can dimension an array for the library with
the statement:

DIM Library(5,206,1a,18a0)>

This means that there are 100,000 book locations. You iden-
tify a particular book by specifying its subscripts. For
example, the statement:

Librargc2,12,3,35>

identifies the 35th book on the 3rd shelf of the 12th stack on
the 2nd floor. You can imagine accessing a particular page of
a book by using a 5-dimensional array. For example, if we di-
mension an array:

DIM Page(5,20.10,180,268>

then

Page{l1.7,2,19,138>

Programming Techniques 3-67

designates page 130 of the 19th book on the 2nd shelf of the
7th stack on the 1st floor. You can specify words on pages by
using a 6-dimensional array. Remember that six dimensions is
the maximum, so you cannot specify letters of words. Also,
you can dimension more than one array in a single statement
by separating the declarations with a comma. For example

18 DIM AC1,3,42,B(-2:8,2:5>,C(2:4,-2:2)

Problems With
Implicit
Dimensioning

Using Array
Elements

dimensions all three arrays A, B, and C.

In any environment, an array must have a dimensioned size.
You can pass this size into an environment through a passed
parameter list or a COM statement. You can explicitly dimen-
sion the array by using the COM, INTEGER, REAL,
COMPLEX or ALLOCATE statements. You can also implicitly
dimension an array by using a subscripted reference to it in a
program statement other than a MAT or a REDIM statement.
If you attempt to use an array that does not have a dimen-
sioned size in the current environment in a MAT or REDIM
statement, you will get an error. In other words, MAT and
REDIM statements cannot be used to implicitly dimension an
array.

This section will show you how to assign and extract values
from individual elements within an array.

Assigning an Individual Array Element. Once an array has
been dimensioned, the next step is to fill it with useful values.
Every element in an array is initially set to zero, but there are
a number of different ways you can change the values. The
most obvious is to assign a particular value to each element.
You do this by specifying the element’s subscripts. For exam-
ple, the statement:

AC3,42=13

3-68 Programming Techniques

assigns the value 13 to the element in the third row and
fourth column of array A. All subscripts must lie within the
dimensioned range. If you use out-of-range subscripts, the
system returns an error.

Extracting Single Values From Arrays. There are a num-
ber of ways you can use to extract values from array

elements. To extract the value of a particular element, simply
specify the element’s subscripts. For example, the statement:

X=RA(3,4,2)

Filling Arrays

assigns the value of the element occupying the given location
in array A to the variable X. The system will automatically
convert variable types. For example, if you assign an element
from a Complex array to an Integer variable, the system will
perform the necessary rounding and ignore the imaginary
part of the complex number.

This section will provide you with three methods for filling
an entire array. The topics covered are as follows:

® Assigning Every Element in an Array the Same Value.
® Using the READ Statement to Fill an Entire Array.
B Copying Arrays into Other Arrays.

Assigning Every Element in an Array the Same

Value. For some applications, you may want to initialize ev-
ery element in an array to some particular value. You can do
this by assigning a value to the array name. However, you
must precede the assignment with the MAT keyword. For
example:

Programming Techniques 3-69

MAT AR=(18)>

assigns the value 10 to every element in array A, regardless of
A’s size. Note that the numeric expression on the right-hand
side of the assignment must be enclosed in parentheses and
that this expression may be INTEGER, REAL or COMPLEX.
Let’s look at an example of assigning a COMPLEX value to
every element of a COMPLEX array:

MAT C=(CMPLXC(1,23>

This statements assigns the complex number 1 + 2i to every
element of the complex array C.

Using the READ Statement to Fill an Entire Array. You
can assign values to an array by using the READ and DATA
statements. The DATA statement allows you to create a
stream of data items, and the READ statement enables you to
enter the data stream into an array. For example:

18 OPTION BASE 1
28 DIM R(3,3>

48 RERD A%
58 END

38 DATA -4,36,2.3,5.89,17,-6,-12,42

The asterisk in line 40 is used to designate the entire array
rather than a single element. The system will fill an entire
row before going to the next one. The READ/DATA state-
ments are discussed further in the section entitled “Data
Storage and Retrieval.”

3-70 Programming Techniques

Copying Arrays into Other Arrays. Another way to fill an
array is to copy the elements from one array into another.
Suppose, for example, that you have the two arrays A and B
shown below.

0 0 0 3 5
A=|0 0 0|]B=|8 2
0 00 1 7

Note that A is a 3 X 3 array that is filled entirely with 0,
while Bis a 3 X 2 array filled with non-zero values. To copy
B to A, we would execute:

MAT A=B

Again, you must precede the assignment with MAT. The sys-
tem will automatically redimension the resulting array (the
one on the left-hand side of the assignment) so that it is the
same size as the “operand array” (the one on the right side of
the equation.) There are two restrictions on redimensioning
an array.

W The two arrays must have the same rank (e.g., the same
number of dimensions.)

B The dimensioned size of the result array must be at least as
large as the current size of the operand array.

If the system cannot redimension the result array to the
proper size, it will return an error.

Programming Techniques 3-71

Automatic redimensioning of an array will not affect the
lower bounds, only the upper bounds. Therefore, the BASE
values of each dimension of the result array will remain the
same. Keep in mind that the size restriction applies to the di-
mensioned size of the result array and the current size of the
operand array. Suppose we dimension arrays A, B and C to
the following sizes:

18 OPTION BASE 1
28 DIM RA(3,3>,BC2,22,C(2,42

We can execute the statement

MAT A=B
since A is dimensioned to 9 elements and B is only 4 ele-
ments. The copy automatically redimensions A to a 2 X 2
array. Nevertheless, we can still execute:

MAT A=C
The reason for this is that the nine elements originally re-
served for array A remain available until the program is
scratched. Array A now becomes a 2 X 4 matrix. After

MAT R=C

you could not execute:

MAT B=R or MAT B=C

3-72 Programming Techniques

since in each of these cases, you are trying to copy a larger
array into a smaller one. You could execute:

MAT C=AR

Printing Arrays

after the original MAT A = B assignment, since C’s dimen-
sioned size (8) is larger than A’s current size (4).

Once an array has been filled with elements, it is nice to
know if those elements exist in the array. The best way to do
this is to display them on the screen or printer. This section
provides information on how to perform this task for REAL,
INTEGER, and COMPLEX values.

Printing an Entire Array. Certain operations (e.g., PRINT,
OUTPUT, ENTER and READ) allow you to access all ele-
ments of an array merely by using an asterisk in place of the
subscript list. The statement

FRIMT ACk);

The semicolon at the end of the statement is equivalent to
putting a semicolon between each element. When the ele-

ments are displayed they will be separated by a space. The
default is to place elements in successive columns.

Examples of Formatting Arrays for Display. This section
provides two subprograms which have been given the name
Printmat. The first subprogram is used to display two-dimen-
sional arrays and the second subprogram is used to display
three-dimensional arrays.

Programming Techniques 3-73

To display a two-dimensional array, you can use the follow-
ing subprogram:

248 SUB Printmat(Array(k))

258 OPTION BRSE 1

260 FOR Row=BASE(Array,1> TO SIZE(Array,1)+BASE(Arrau,1)-1

278 FOR Column=BRASE{Array,2) TO SIZE(Array,2)+BASE(Array,2>-1
288 PRINT USING "DDDD,XX,#":Array(Row,Column>

298 MEXT Column

360 PRINT

318 NEXT Row

328 SUBEND

Assuming that the array you intend to display is a five-by-
five two-dimensional array, your results should look similar to
this:

-1 1 12 13 14 15—
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

In order to use the above subprogram with COMPLEX arrays,
you only need to change program line 240 to the following:

248 SUB Printmat<{COMPLEX RArraulk)>>

Each element position in the COMPLEX array will have two
values in it one being the real part of the complex number
and the other being the imaginary part. For example, the fol-
lowing array is a COMPLEX array called Complex_array:

3-74 Programming Techniques

Passing Entire
Arrays

3 9 -6 1
-1 5 2 4

where the element Complex_array (1,2) contains the real part
of the complex number —6 and the imaginary part 1.

The asterisk is also used to pass an array as a parameter to a
function or subprogram. For instance, to pass an array A to
the Printmat subprogram listed earlier, you would write:

Frintmat (ACk>>

Copying Subarrays

Topics discussed in this section are as follows:

B Subarray specifier.

® Copying a subarray into an array.

B Rules for copying subarrays.

Dimensions for the arrays covered in the above topics will

assume an option base of 1 (QOFTION EASE 1) unless stated
differently.

An earlier section discussed copying the contents of an entire
array into another array.

MAT Arrau3S=Arrau33

Each element of Array33 is copied into the corresponding ele-
ment of Array55 which is redimensioned if necessary.

Now suppose you would like to copy a portion of one array
and place it in a special location within another array. This
process is called copying subarrays.

Programming Techniques 3-75

Subarray Specifier. A subarray is a subset of an array (an
array within an array). To specify a subarray, subscripts are
used in parentheses after the array name as follows:

Array_name{subarray_specifier)

The above subarray could take on many “sizes” and “shapes”
depending on what you used as dimensions for the array and
the values assigned to the subarray_specifier. Note that “size”
refers to the number of elements in the subarray and “shape”
refers to the same number of dimensions and elements in
each dimension, respectively (e.g. both of these subscript
specifiers have the same shape: (-2:1,-1:18) and
¢1:4,9:287). Before looking at ways you can express a
subarray, let’s learn a few terms related to the subarray
specifier.

3-76 Programming Techniques

1.

2.

3.

Subscript range is used to specify a set of elements
starting with a beginning element position and ending
with a final element position. For example, 5: 8 repre-
sents a range of four elements starting with element 5
and ending at element 8.

Subscript expression is an expression which reduces
the RANK of the subarray. For example if you wanted to
select an element from a two-dimensional array which is
located in the 2nd row and 3rd column, you would use
the following subarray specifier: (2,3:3). The subscript
expression in this subarray specifier is 2 which repre-
sents the whole range of elements in row 2 of the array.

Default range is denoted by an asterisk (i.e. <1, %) and
represents all of the elements in a dimension from the
dimension’s lower bound to its upper bound. For exam-
ple, suppose you wanted to copy the entire first column
of a two-dimensional array, you would use the following
subarray specifier: (%, 1:12, where % represents all the
rows in the array and 1:1 represents only the first
column.

Some examples of subarray specifiers are as follows:

1.

3.

4-

5.

7.

€1, %> a subscript expression and a default range which
designate the first row of a two-dimensional array.

¢1:2) a given subscript range which represents the first
two elements of a one-dimensional array.

(*¥,-1:2> a default range and subscript range which
represents all of the elements in the first four columns of
a two-dimensional array.

(3,1:2) a subscript expression and subscript range
which represent the first two elements in the third row
of a two-dimensional array.

¢1,%, %) a subscript expression and two default ranges
which represent a plane consisting of all the rows and
columns of the first plane in the first-dimension.

¢1,1:2,%> a subscript expression, subscript range and
default range which represent the first two rows in the
first plane of the first-dimension.

€1,2, %) two subscript expressions and a default range
which represent the entire second row in the first plane
of the first-dimension.

¢1:2,3:4> two subscript ranges which represent ele-
ments located in the third and fourth columns of the
first and second rows of a two-dimensional array. Copy-
ing an Array into a Subarray.

In order to copy a source array into a subarray of a destina-
tion array, the destination array’s subarray must have the
same size and shape as the source array. A destination and
source array are dimensioned as follows:

188 OPTION BRSE 1

118 DIM Des_array¢-3:1,52,S0r_arraui2,3)

Programming Techniques 3-77

Suppose these arrays contain the following integer values:

11 12 13 14 15

21 22 23 24 25
11 12 13

Des_array |31 32 33 34 35| Sor-array
21 22 23

41 42 43 44 45
51 52 53 54 55

L -

You can copy the source array (Sor _arr ay) into a subarray
of the destination array (Des_arr ay) by using program line
190 given below:

198 MAT Des_array(-1:8,2:4>» = Sor_array

A two-dimensional plane with the following values in it
would be the result of executing the above statement.

_11 12 13 14 151
21 22 23 24 25
Des_array |31 11 12 13 35
41 21 22 23 45
51 52 53 54 55

Rules for Copying Subarrays. This section should help
limit the number of syntax and runtime errors you could
make when copying subarrays. A previous section entitled
“Subarray Specifier” provided you with examples of the cor-
rect way of writing subarray specifiers for copying subarrays.
In this section, you will be given rules to things you should
not do when copying subarrays. The rules are as follows:

B Subarray specifiers must not contain all subscript expres-
sions (i.e. {1,2,3» is not allowed and it will produce a
syntax error). This rule applies to all subscript specifiers.

3-78 Programming Techniques

B Subarray specifiers must not contain all asterisks (¥) or de-
fault ranges (i.e. (%, %, %> is not allowed and it will
produce a syntax error). This rule applies to all subscript
specifiers.

B If two subarrays are given in a MAT statement, there must
be the same number of ranges in each subarray specifier.
For example,

MAT Des_arrayldl1:18,2:3>= Sor_array(9:14,%,3)

is the correct way of copying a subarray into another
subarray provided the default range given in the source ar-
ray (Sor_array) has only two elements in it. Note that
the source array is a three-dimensional array. However, it
still meets the criteria of having the same number of ranges
as the destination array because two of its subscripts are
ranges and one is an expression.

® If two subarrays are given in a MAT statement, the subscript
ranges in the source array must be the same shape as the
subscript ranges in the destination array. For example,

MAT Des_array<i1:5,8:1>= Sor_arrauc3,1:5,6:7>

| is legal; however,

MAT Des_arraytB:1,1:52= Sor_arraycl:5,8:1>

B is not legal, because both of its subarray specifiers do not
have the same shape (i.e. the rows and columns in the des-
tination array do not match the rows and columns in the
source array).

Programming Techniques 3-79

Redimensioning The system automatically redimensions an array during array
Arrays assignment, if necessary. BASIC also allows you to explicitly
. redimension an array with the REDIM statement. As with
automatic redimensioning, the following two rules apply to all
REDIM statements:

® A REDIMed array must maintain the same number of
dimensions.

B You cannot REDIM an array so that it contains more ele-
ments than it was originally dimensioned to hold.

Suppose A is the 3 X 3 array shown below.

1 2 3
A=ji4 5 6
7 89

You can redimension it to a 2 X 4 array by executing the
following

REDIM AC2,4>

The new array will look like the figure below:

1 2 3 4
A =
5 6 7 8

3-80 Programming Techniques

Note that it retains the values of the elements, though not
necessarily in the same locations. For instance, A(2,1) in the
original array was 4, whereas in the redimensioned array it
equals 5. For example, if we REDIMed A again, this time to a
2 X 2 array, we would get:

REDIM RA{@:1,8:1)

We could then initialize all elements to 0:

MAT A = (&>

It is also important to realize that elements that are out of
range in the REDIMed array still retain their values. The fifth
thru ninth elements in A still equal 5 thru 9 even though they
are now inaccessible. If we REDIM A back to a 3 X 3 array,
these values will reappear. For example:

REDIM RAC3, 3D

results in:

0 0O
A=|0 5 6
7 8 9

Programming Techniques 3-81

One of the major strengths of the REDIM statement is that it
allows you to use variables for the subscript ranges: this is not
allowed when you originally dimension an array. In effect,
this enables you to dynamically dimension arrays. This
should not be confused with the ALLOCATE statement
which allows you to dynamically reserve memory for arrays.
In the example below, for instance, we enter the dimensions
from the keyboard.

18
28
38
48
Se

OPTION BASE 1
COMPLEX AC108,188)

INPUT "Enter lower and upper bounds of dimensions",lLowl,Upl,Low2,Up2
IF (Upl-Lowl+1)¥(Up2-Low2+13>10608 THEN Too_big
REDIM AlLowl:Upl,Low2:Up2)

3-82

Arrays and
Arithmetic
Operators

Line 40 tests to see whether the new dimensions are too big.
If so, program control is passed to a line labelled “Too_big”. If
line 40 were not present, the REDIM statement would return
an error if the dimensions were too large.

BASIC allows you to multiply, divide, add, and subtract sca-
lars to an array, as well as to add, subtract, multiply, and
divide one array to another. It is also possible for you to add
all the elements in an array to produce a single result. This
section covers a function and operations which allow you to
perform these tasks with INTEGER, REAL, and COMPLEX
data types.

Using the MAT Statement. All arithmetic functions involv-
ing arrays must be preceded by the MAT keyword. The
specified operation is performed on each individual element
in the operand array(s) and the results are placed in the result
array. The result array must be dimensioned to be at least as
large as the current size of the operand array(s). If it is of a
different shape than the operand array(s), the system will
redimension it. Given the array A below, note how these
arithmetic functions are performed.

Programming Techniques

1 2 3
A=|4 5 6
7 8 9

To add 3 to each element of array A, you would use the fol-
lowing statement:

MAT B= A+(3>

The result of the above addition is array B below:

4 5 6
B=|7 8 9
10 11 12

To divide each element of array B above by 2, you would use
the following statement:

MAT C

B-(2)

The result of the above division is array C given below:

2 25 3
C=|35 4 45
5 55 6

Programming Techniques 3-83

To multiply each element in array C by a scalar expression,
you would use a statement similar to the following:

MAT C= C¥{1+1+1>

The above statement multiplied each element in array C by 3
and placed that result in array C as shown below:

6 75 9
c=|105 12 135
15 165 18

Note that the result array can be the same as the operand
array. Also, the scalar must be enclosed in parentheses. In ad-
dition to performing arithmetic operations with scalars, you
can also add, subtract, divide and multiply two arrays to-
gether. Except for multiplication with an asterisk, which is
described later, these functions proceed as follows: Cor-
responding elements of each operand array are processed
according to the specified operation, and the result is placed
in the result array. The two operand arrays must be exactly
the same size though their particular subscript ranges can be
different. For multiplication, use a period rather than an as-
terisk. Using arrays A and B, the statement,

MAT D= A+B

would give the array:

5 7 9
D=]11 13 15
17 19 21

3-84 Programming Techniques

The statement,

MAT B=RA.B

would give:

4 10 18
B =|28 40 54
70 88 108

Again, the dimensioned size of the result array must be as
large as the current size of each operand array. The two oper-
and arrays must be identical in shape and size, but not
necessarily in subscript ranges. For instance, A and B could
have been dimensioned:

1@ DIM ARC1:3,2:43,BC-1:

1,8:2)

Performing Arithmetic Operations with Complex
Arrays. Remember that each of the operations mentioned in
the previous section can be performed with complex num-
bers. The resulting array if it is of type COMPLEX will have
both a real and imaginary part in each element location. For
example, you may have a two-dimensional complex array that
looks like this:

2 4 -1 5
Op_array
-6 1 9 3

where the dimension statement is given as follows:

Programming Techniques 3-85

COMPLEX Op_arrays<—-1:8,1:2)

The element Op_array(—1,1) contains the values:

where 2 is the real part of the complex number and 4 is the
imaginary part.

If you were to multiply each of the complex values in the
above matrix by a scalar value of 2, you would use the fol-
lowing statement:

MAT Complex_result= Op_array%(2>

The previous statement would produce the following complex
array:

4 8 -2 10
Complex_result
12 2 18 6

Note that if the resulting array (Complex_result) had been of
type REAL or INTEGER, the results in array Complex_result

would look like this:
4 -2
-12 18

This is due to the automatic type conversion made from
COMPLEX to REAL or INTEGER. Notice that the imaginary
part of the complex numbers in the array were dropped.

3-86 Programming Techniques

Summing the Elements in an Array. The statement that re-
turns the sum of all elements in an array, however, works for
arrays of any dimension. Given the array A below,

4 2 -1
A=]|3 8 16
-5 2 0

the function, SUM<{A>» would return 29.

Boolean Arrays In addition to the arithmetic operators, you can also use rela-
tional operators with arrays. The result is a boolean* array, an
array composed entirely of 1’s and 0’s.

Given array B above, suppose you wanted to know how
many elements were greater than 50. First you execute the
statement,

MAT F = B><{58>

which results in the array:

0 00
F=|0 01
111

* Strictly speaking, these are not really boolean arrays since the values of the ele-
ments are not TRUE and FALSE.

Programming Techniques 3-87

Then you execute the statement,

PRINT SUMCF>

which causes the computer to display “4” on the current
PRINTER IS device.

Note I The only comparison operators allowed with COMPLEX data
% types are: = and <>. The only dyadic operators allowed
with COMPLEX data types are: , +, —, *, /, <>, and =.
The only monadic operators allowed with COMPLEX data
types are: +, —, and NOT.

You can also compare two arrays to each other. For example,
if you wanted to compare the two arrays below,

1 3 5 1 3 4
A=]|2 8 7|B=|2 0 7
1 4 6 1 4 4

you could execute the statement:

MAT C = A=B

By looking at C, you can tell which elements are the same for
both A and B.

(1]

Il
[Y
[= N S
o = o

3-88 Programming Techniques

|
String
Manipulation

It is often desirable to store non-numerical information in the
computer. You can use any sequence of characters in a string.
Quotation marks are used to delimit the beginning and end-
ing of the string. The following are valid string assignments:

LET A$="COMPUTER"

File_name#="INVENTORY"
Test$=Fail$C5,81]

Fail$="The test has failed."

The left-hand side of the assignment (the variable name) is
equated to the right-hand side of the assignment (the literal).
String variable names are identical to numeric variable names
with the exception of a dollar sign ($) appended to the end of
the name. The length of a string is the number of characters
in the string. In the previous example, the length of A$ is 8
since there are eight characters in the literal “COMPUTER".
BASIC allows the dimensijoned length of a string to range

from 1 to 32,767 characters and the current length (number of
characters in the string) to range from zero to the dimen-

sioned length. A string of zero characters is often called a null
string or an empty string. The default dimensioned length of
a string is 18 characters. The DIM, COM, and ALLOCATE

statements are used to define string lengths up to the maxi-
mum length of 32,767 characters. An error results whenever a
string variable is assigned more characters than its dimen-

sioned length. A string may contain any character. The only
special case is when a quotation mark needs to be in a string.
Two quotes, in succession, will embed a quote within a string:

18 Quote$="The time is
28 PRINT Quote$
38 END

n IINON nn . "

Produces: The time is "HOW".

Programming Techniques 3-89

String Storage

Strings whose length exceeds the default length of 18 charac-
ters must have space reserved before assignment. The
following statements may be used.

B DIM Long$C 4881 Reserve space for a 400 character
string.

B COM Line$C882] Reserve an 80 character common
variable.

B ALLOCATE Search$CLength] Dynamic variable
allocation.

The maximum length of any string must not exceed 32,767
characters. A string may also be dimensioned to a length less
than the default length of 18 characters. The DIM statement
reserves storage for strings:

DIM Part_number$C18],Description$L64],Cost$L5]

The COM statement defines common variables that can be
used by subprograms:

COM Name$[L40],Phones$C141]

The ALLOCATE statement allows dynamic allocation of
string storage. When the maximum length of of a string can-
not be determined ahead of time, the ALLOCATE statement
can be used to reserve enough memory space for the string
without wasting space.

ALLOCATE Line$CLengthl

Strings that have been dimensioned but not assigned return
the null string.

3-90 Programming Techniques

String Arrays

Large amounts of text are easily handled in arrays. For
example:

DIM File$(1808>C[861]

This statement reserves storage for 1000 lines of 80 characters
per line. Do not confuse the brackets, which define the length
of the string, with the parentheses which define the number
of strings in the array. Each string in the array can be accessed
by an index. For example:

PRINT File$(27)

Evaluating
Expressions
Containing Strings

Prints the 27th element in the array. Since each character in a
string uses one byte of memory and each string in the array
requires as many bytes as the length of the string, string ar-
rays can quickly use a lot of memory. A program saved on a
disc as an ASCII type file can be entered into a string array,
manipulated, and written back out to disc.

This section covers the following topics:

B Evaluation Hierarchy.

®m String Concatenation.

B Relational Operations.

Evaluation Hierarchy. Evaluation of string expressions is
simpler than evaluation of numerical expressions. The three

allowed operations are extracting a substring, concatenation,
and parenthesization.

Programming Techniques 3-91

String Concatenation. You can combine two strings to-
gether by using the concatenation operator “&”. The following
program demonstrates this feature:

18 One$="WRIST"

20 Two$="WATCH"

38 Concat$=0nes$&Two$

48 PRINT One#$,Two$,Concat#$
56 END

When you run the program it will print the following:

WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second
string to the end of the first string. The result is assigned to a
third string. An error results if the concatenation operation
produces a string that is longer than the dimensioned length
of the string being assigned.

Relational Operations. Most of the relational operators
used for numeric expression evaluation can also be used for
the evaluation of strings. The following examples show some
of the possible tests.

“ABC” = “ABC” True
“ABC” = “ ABC” False
“ABC” < “ Abc” True
‘6" > 7" False
27 < 12" False
“long” <= “longer” True

“RE-SAVE” >= “RESAVE” False

3-92 Programming Techniques

Any of these relational operators may be used: <, >, <=,
>=, =, <>. Testing begins with the first character in the
string and proceeds, character by character, until the relation-
ship has been determined. The outcome of a relational test is
based on the characters in the strings not on the length of the
strings. For example:

"BRONTOSAURUS" < "CAT"

Note 'é

Substrings

This relationship is true since the letter “C” is higher in ASCII
value than the letter “B”.

When the LEX binary is loaded, the outcome of a string com-
parison is based on the character’s lexical value rather than
the character’s ASCII value. See the LEXICAL ORDER IS
statement later in this chapter for more details.

You can append a subscript to a string variable name to define
a substring. A substring may comprise all or just part of the
original string. Brackets enclose the subscript which can be a
constant, variable, or numeric expression. For example:

String$C41]

specifies a substring starting with the fourth character of the
original string. The subscript must be within the range 1 to the
dimensioned length of the string plus 1. Note that the brackets
now indicate the substring’s starting position instead of the
total length of the string as when reserving storage for a

string. Subscripted strings may appear on either side of the

assignment.

Programming Techniques 3-93

Single-Subscript Substrings. When a substring is specified
with only one numerical expression enclosed with brackets,
the expression is evaluated and rounded to an integer indicat-
ing the position of the first character of the substring within
the string. The following examples use the variable A$ which
has been assigned the literal “DICTIONARY".

Statement Output

PRINT A% DICTIONARY
PRINT A%$CQ1] Error
PRINT A%$C11 DICTIONARY
PRINT A%$C51 IONARY
PRINT A$C181 | Y

PRINT A$C 113 | (null string)
PRINT A$L121 | Error

When you use a single subscript, it specifies the starting char-
acter position, within the string, of the substring. An error
results when the subscript evaluates to zero or greater than
the current length of the string plus 1. A subscript that evalu-
ates to 1 plus the length of the string returns the null string
(" ") but does not produce an error.

Double-Subscript Substrings. A substring may have two
subscripts, within brackets, to specify a range of characters.
When a comma is used to separate the items within brackets,
the first subscript marks the beginning position of the
substring, while the second subscript is the ending position of
the substring. For example:

"JABBERWOCKY"C4,61]

Specifies the substring “BER”. When a semicolon is used in
place of a comma, the first subscript again marks the begin-
ning position of the substring, while the second subscript is
now the length of the substring. For example:

3-94 Programming Techniques

"JABBERWOCKY"C4;:61]

Specifies the substring “BERWOC”. In the following examples
the variable B$ has been assigned to the literal
“ENLIGHTENMENT”".

Statement Output

PRINT B#C1,133 | ENLIGHTEMMENT
PRINT B#$C1,93] EMLIGHTEMN
FRINT B#L3,71 LIGHT

PRINT B#$LCL3;71] LIGHTEN

B#C 13,261 Error

PRINT B$C14;113 | (null string)

An error results if the second subscript in a comma separated
pair is greater than the current string length plus 1 or if the
sum of the subscripts in a semicolon separated pair is greater
than the current string length plus 1. Specifying the position
just past the end of a string returns the null string.

Special Considerations. All substring operations allow a

subscript to specify the first position past the end of a string.
This allows strings to be concatenated without the concatena-
tion operator. For example:

18 A$="CONCAT"

28 ASLC?I="ENRTION"
38 PRINT A%

48 END

When you run this program, it will print:

CONCATENATION

Programming Techniques 3-95

The substring assignment is only valid if the substring already
has characters up to the specified position. Access beyond the
first position past the end of a string results in the error:

ERROR 18 String ovfl,.

or substring err

String-Related
Functions

A good practice is to dimension all strings including those
shorter than the default length of eighteen characters.

Several intrinsic functions are available in BASIC for the
manipulation of strings. These functions include conversions
between string and numeric values.

String Length. The “length” of a string is the number of
characters in the string. You can use the LEN function to re-
turn an integer whose value is equal to the string length. The
range is from 0 (null string) through 32,767. For example:

PRINT LEN{"HELP ME">

Prints: 7

Substring Position. You can determine the position of a
substring within a string by the using the POS function. This
function returns the value of the starting position of the
substring, or zero if the entire substring was not found. For
example:

PRINT POS{"DISAPPEARANCE","APPEAR">

Prints: 4

3-96 Programming Techniques

String-to-Numeric Conversion. You can use the VAL func-
tion to convert a string expression into a numeric value. The
number returned by the VAL function will be converted to
and from scientific notation when necessary. For example:

PRINT VAL("123.4E3")

Prints: 123488

The string expression must evaluate to a valid number or error
32 will result.

ERROR 32 String is not

a valid number

You can use the NUM function to convert a single character
into its equivalent numeric value. The number returned is in
the range 0 to 255. For example:

PRINT NUM{"R")

Prints: €5

Numeric-to-String Conversion. You can use the VAL$
function to convert the value of a numeric expression into a
character string. The string contains the same characters (dig-
its) that appear when the numeric variable is printed. For
example:

FRINT 108608606, VAL$(1000000>

Prints: 1 .E+6 1.E+6

Programming Techniques 3-97

The CHR$ function converts a number into an ASCII charac-
ter. The number can be of type INTEGER or REAL since the
value is rounded, and a modulo 255 is performed. For
example:

PRINT CHR#$<97);CHR$(98);CHR$(99)

Prints: abc
String Functions Several additional string functions are available when the BA-
SIC system has been loaded into the computer.

String Reverse. The REV$ function returns a string created
by reversing the sequence of characters in the given string.

PRINT REV$("Snack cans">

Prints: snac kcanS$

String Repeat. The RPT$ function returns a string created
by repeating the specified string a given number of times.

PRINT RPT#{"X *x",1@)

Prints: ¥ %% %% X% X% X% *¥¥ *¥ *¥ ¥% %

Trimming a String. The TRIMS$ function returns a string
with all leading and trailing blanks (ASCII spaces) removed.

PRINT "%";TRIM("1.23")>;"%"

Prints: %1 .23%

TRIMS is often used to extract fields from data statements or
keyboard input.

3-98 Programming Techniques

Case Conversion. The case conversion functions, UPC$ and
LWCS$, return strings with all characters converted to the

proper case. UPC$ converts all lowercase characters to their
corresponding uppercase characters and LWC$ converts any
uppercase characters to their corresponding lowercase charac-
ters. Roman Extension characters will be converted according
to the current lexical order. See the LEXICAL ORDER IS

statement later in this section for the case conversion listings.

18
28
38
48
S8
€8
7a

DIM Word#[1681

LIMPUT "Enter a few characters",lord$

PRINT
PRINT "You typed:
PRINT "Uppercase:

PRINT
END

"Lowercase:

"iHord#$
";UPC$(Hords$>
"LWC$Hords$)

MAT Functions and MAT functions (available with the MAT binary) are com-

String Arrays

monly used to manipulate data in numeric arrays. However,
several of these functions can be used with string arrays. For
example, a string array is copied into another string array by
the following.

MAT Copy%#

Original#%

Note that only the variable name is necessary. The array spec-
ifier “(*)” need not be included when using the MAT
statement.

Programming Techniques 3-99

Every element in a string array will be initialized to a constant
value by the following statement.

MAT Arrag$ = (Null%>

The constant value can be a literal or a string expression and
is enclosed in parentheses to distinguish it from being an ar-
ray name.

A list of items can be sorted very quickly by the MAT SORT
statement. Load and run the following program from file
MATSORT on your Manual Examples disc.

18 | Program: SORT_LIST

280 DIM List$(1:5)C61

38 DATA Bread,Milk,Egg9s,Bacon,Coffee
48 READ List$(¥)

58 1

68 PRINT "original order"
78 PRINT List$d(¥k)

g8 |

98 PRINT "ascending order"
188 MAT SORT List$(k)

118 PRINT List$Ck)

128 !

138 PRINT "descending order"
148 MAT SORT List$(k> DES
1538 PRINT List$(¥)

1686 END

Running this program produces:

original order
Bread Milk Eggs Bacon Coffee

ascending order
Bacon Bread Coffee Eggs Milk

descending order
Milk Eggs Coffee Bread Bacon

3-100 Programming Techniques

Number-Base
Conversion

Utility functions are available to simplify the calculations be-
tween different number bases. The two functions IVAL and
DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal number. The IVAL$ and DVAL$ func-
tions convert a decimal number into a binary, octal, decimal,
or hexadecimal string value. Each function has two param-
eters: the string to be converted and the radix. The radix is
limited to the values 2, 8, 10, or 16, and represents the nu-
meric base of the string to be converted. The IVAL and
IVAL$ functions are restricted to the range of INTEGER vari-
ables (—32,768 thru 32,767). The DVAL and DVAL$
functions allow “double length” integers and thus allow larger
numbers to be converted (—2,147,483,648 thru
2,147,483,647). IVAL and IVAL$ operate on 16-bit values,
while DVAL and DVAL$ operate on 32-bit values. The fol-
lowing statements show valid usage of these functions

PRINT DVALC"FF5988",16)
PRINT IVALC"AA",16)
PRINT DYAL$<¢188,8)
PRINT IVAL$¢-1,16>

Introduction to
Lexical Order

The LEXICAL ORDER IS statement* lets you change the col-
lating sequence (sorting order) of the character set.

Changing the lexical order will affect the results of all string
relational operators and operations, including the MAT SORT
and CASE statements. In addition to redefining the collating
sequence, the case conversion functions, UPC$ and LWCS$,
are adjusted to reflect the current lexical order.

* Available with the LEX binary installed.

Programming Techniques 3-101

Predefined lexical orders include: ASCII (American Standard
Code for Information Interchange), FRENCH, GERMAN,
SPANISH, SWEDISH, and STANDARD. You can create lexi-
cal orders for special applications. The STANDARD lexical
order is determined by an internal keyboard jumper, set at the
factory to correspond to the keyboard supplied with the com-
puter. The setting can be determined by examining the proper
keyboard status register in a program (STATUS 2,8;Lan-
guage). Thus, the STANDARD lexical order on a computer
equipped with a French keyboard will actually invoke the
FRENCH lexical order.

Predefined Lexical The computer executes a LEXICAL ORDER IS STANDARD
Order statement when the Advanced Programming Binary is first
loaded or after a SCRATCH A is executed. The result will be
the correct lexical order for the language on the keyboard.
This can be checked by examining the keyboard status regis-
ter in a program (STATUS 2,8;Language), or by either of the
following statements.

SYSTEM$C("LEXICAL ORDER IS">
SYSTEM$("KEYBOARD LANGURGE">

The table on the following page shows the language indicated
by the value returned by the STATUS statement. Thus, if the
value returned indicates a French keyboard, the STANDARD
lexical order will be the same as the FRENCH lexical order.
The STANDARD lexical order for the Katakana keyboard is
ASCIL

3-102 Programming Techniques

Value I'_(:::::;: Lexical Order
0 ASCII ASCIl
1 FRENCH FRENCH
2 GERMAN GERMAN
3 SWEDISH SWEDISH
4 SPANISH* SPANISH
5 KATAKANA ASCII
6 CANADIAN ENGLISH | ASCII
7 UNITED KINGDOM ASCII
8 CANADIAN FRENCH | FRENCH
9 SWISS FRENCH FRENCH
10 ITALIAN FRENCH
11 BELGIAN GERMAN
12 DUTCH GERMAN
13 SWISS GERMAN GERMAN
14 LATINt SPANISH
15 DANISH SWEDISH
16 FINNISH SWEDISH
17 NORWEGIAN SWEDISH
18 SWISS FRENCH FRENCH
19 SWISS GERMAN GERMAN

* European Spanish keyboard.

1 Latin Spanish keyboard.

The CHR$ function may be used to produce characters not
readily available on the keyboard.

Programming Techniques 3-103

]
User-Defined
Functions and
Subprograms

Location

One of the most powerful constructs available in any lan-
guage is the subprogram (a user-defined function is a special
form of subprogram). A subprogram can do everything a
main program can do except that it must be invoked or
“called” before it is executed, whereas a main program is exe-
cuted by pressing RUN or executing the RUN command.

A subprogram has its own “context” or state that is distinct
from a main program and all other subprograms. This means
that every subprogram has its own set of variables, its own
softkey definitions, its own DATA blocks, and its own line
labels. There are several benefits to be realized by taking ad-
vantage of subprograms:

B The subprogram allows you to take advantage of the “top-
down” method of designing programs.

® The program is much easier to read using subprogram calls.

B By using subprograms and testing each one independently
of the others, it is easier to locate and fix problems.

B You may want to perform the same task from several dif-
ferent areas of your program.

B Finally, libraries of commonly used subprograms can be as-
sembled for widespread use.

A subprogram is located after the body of the main program,
following the main program’s END statement. (The END
statement must be the last statement in the main program ex-
cept for comments.) Subprograms may not be nested within
other subprograms, but are physically delimited from each
other with their heading statements (SUB or DEF FN) and
ending statements (SUBEND or FNEND).

3-104 Programming Techniques

A subprogram has a name which may be up to fifteen charac-
ters long, just as with line labels and variable names. Here are
some legal subprogram names:

Initialize
Read_dvm
Sort_2_d_arry
Plot_data

The Difference
Between a
Function and a
Subprogram

Because up to fifteen characters are allowed for naming sub-
programs, it is easy and convenient to name subprograms in
such a way as to reflect the purpose for which the subpro-
gram was written.

A SUB subprogram (as opposed to a function subprogram) is
invoked explicitly using the CALL statement. A function sub-
program is called implicitly by using the function name in an
expression. It can be used in a numeric or string expression
the same way a constant would be used, or it can be invoked
from the keyboard. A function’s purpose is to return a single
value (either a real number or a string).

There are several functions such as SIN, SQR, EXP, etc., that
are built into the BASIC language which can be used to re-
turn values.

¥=SIN(X)+Phase

Rootl=C(-B+SQR(B¥B-4%A%C) > (2%A>

Using the capability of defining your own function subpro-
grams, you can essentially extend the language if you need a
feature not provided in BASIC.

K=1,FNSinh(Y¥"4)
Angle=FNAtn2C(Y, X)

Programming Techniques 3-105

A general rule of thumb for using subprograms is that if you
want to take a set of data and analyze it to generate a single
value, then you probably want to implement the subprogram
as a function. On the other hand, if you want to actually
change the data itself, generate more than one value as a re-
sult of the subprogram, or perform any sort of 1/O activity, it
is better to use a SUB subprogram.

REAL Precision A function is allowed to return either a REAL value or a
Functions and string value. Let's examine one which returns a string. There

: . are two primary differences: the first is that a $ must be
String Functions added to the name of a function which is to return a string.
This is used both in the definition of the function (the DEF
statement) and when the function is invoked. The second dif-
ference is that the RETURN statement in the function returns

a string instead of a number.

Calling and Subprograms are invoked explicitly using the CALL state-
Executing a ment, while functions are invoked implicitly just by using the

name in an expression, an output list, etc. A nuance of SUB
Subprogram subprograms is that the CALL keyword is optional when in-
' voking a SUB subprogram. The omission of the CALL
keyword when invoking a SUB subprogram is left solely to
the discretion of the programmer; some will find it more aes-
thetic to omit CALL, others will prefer its inclusion. There are,
however, three instances which require the use of CALL
when invoking a subprogram:

1. If the subprogram is called from the keyboard.

2. If the subprogram is called after the THEN keyword in
an IF statement.

3. In an ON <event> CALL statement.

3-106 Programming Techniques

Communication As mentioned earlier, there are two ways for a subprogram to
communicate with the main program or with other subpro-
grams: parameter lists, and COM (blank and labeled).

Parameter Lists. The formal parameter list is part of the

subprogram’s definition, just like the subprogram’s name. The
formal parameter list tells how many values may be passed to
a subprogram, the types of those values (string, integer, real,
array, I/O path name), and the names the subprogram will
use to refer to those values. The subprogram has the power to
demand that the calling context match the types declared in
the formal parameter list—otherwise, an error results. It is

perfectly legal for both the formal and pass parameter lists to
be null, or nonexistent.

Here is a sample formal parameter list showing which types
each parameter demands:

SUB Read_dvm(@Dvm,AC*), INTEGER Lower,Upper,Status¥$,Errflag>

@Dvm is an I/O path name which may refer to either an I/O
device or a mass storage file. Its name here implies that it is a
voltmeter, but it is perfectly legal to redirect I/O to a file just
by using a different ASSIGN with @0wvm.

A¢%> is a REAL array. Its size is declared by the calling con-
text. Without MAT, there is no way to find the size of the
array except through information supplied explicitly by the
calling context; hence the parameters Lower and Upper.

Lower and Upper are declared here to be INTEGERs.
Thus, when the calling program invokes this subprogram, it
must supply either INTEGER variables or INTEGER expres-
sions, or an error will occur.

Status$ is a simple string which presumably could be used
to return the status of the voltmeter to the main program. The
length of the string is defined by the calling context.

Programming Techniques 3-107

Errflag is a REAL number. The declaration of the string
Status$ has limited the scope of the INTEGER keyword
which caused Lower and Upper to require INTEGER pass
parameters.

There are two ways for the calling context to send values to a
subprogram: pass by value, and pass by reference. Using pass
by value, the calling context supplies a value and nothing
more. Using pass by reference, the calling context actually
gives the subprogram access to the calling context’s value
area. The distinction is that a subprogram cannot alter the
value of data in the calling context if the data is passed by
value, while the subprogram can alter the value of data in the
calling context if the data is passed by reference.

The subprogram has no control over whether its parameters
are sent using pass by value or pass by reference. That is de-
termined by the calling context’s pass parameter list. In order
for a parameter to be passed by reference, the pass parameter
list (in the calling context) must use a variable for that param-
eter. In order for a parameter to be passed by value, the pass
parameter list must use an expression for that parameter.
Note that enclosing a variable in. parentheses is sufficient to
create an expression. Using pass by value, it is possible to
pass an INTEGER expression to a REAL formal parameter
(the INTEGER is converted to its REAL representation) with-
out causing a type mismatch error. Likewise, it is possible to
pass a REAL expression to an INTEGER formal parameter
(the value of the expression is rounded to the nearest INTE-
GER) without causing a type mismatch error (an integer
overflow error is generated if the expression is out of range
for an INTEGER). Let’s look at our previous example from the
calling program:

CALL Read_dvm{(@Yoltmeter ,Readings{(%),1,4088,5tatus$,Errflaq’

3-108 Programming Techniques

@Yol tmeter is the pass parameter which matches the for-
mal parameter @Dvm in the subprogram. I/O path names are
always passed by reference, which means the subprogram can
close the I/O path or assign it to a different file or device.

Readings (k> matches the array A(*) in the subprogram’s
formal parameter list. Arrays, too, are always passed by
reference.

1,488 are the values passed to the formal parameters
Lower and Upper. Since constants are classified as expres-
sions rather than variables, these parameters have been
passed by value. Thus, if the subprogram used either Lower
or Upper on the left-hand side of an assignment operator, no
change would take place in the calling context’s value area.

Status¥ is passed by reference here. If it were enclosed in
parentheses, it would be passed by value. Notice that if it

were passed by value, it would be totally useless as a method
for returning the status of the voltmeter to the calling context.

Errflag is passed by reference.

OPTIONAL Parameters. Another important feature of for-
mal parameter lists is the OPTIONAL keyword. Any formal
parameter list (the one defining the subprogram) may contain
the keyword OPTIONAL somewhere, although it isn’t re-
quired to. The OPTIONAL keyword indicates that any
parameters that follow it are not required in the pass param-
eter list of a calling context—they are optional. On the other
hand, all parameters preceding the OPTIONAL keyword are
required. If no OPTIONAL appears in the subprogram’s pa-
rameter list, then all the parameters must be specified, or an
error will be generated. The rules requiring matching of pa-
rameter types apply to OPTIONAL parameters as well as to
ordinary parameters. There is a standard function called
NPAR which can be used inside the subprogram to find out
how many pass parameters the calling context actually did
use. (NPAR will return 0 if used inside the main program, or
if no parameters were passed to a subprogram.)

Programming Techniques 3-109

COM Blocks. Since we've discussed parameter lists in detail,
let’s turn now to the other method a subprogram has of com-
municating with the main program or with other
subprograms, the COM block.

There are two types of COM (or common) blocks: blank and
labeled. Blank COM is simply a special case of labeled COM
(it is the COM whose name is nothing) with the exception
that blank COM must be declared in the main program, while
labeled COM blocks don’t have to be declared in the main
program. Both types of COM blocks simply declare blocks of
data which are accessible to any context having matching
COM declarations.

A blank COM block might look like this:

18 OPTION BASE 1
28 COM Conditions(15>,INTEGER,Cmin,Cmax,BNuclear_pile,
Pile_status$CL281,Tolerance

A labeled COM might look like this:

38 COM -Valver MainciB,Subvalves?16,15),8Valve_ctrl

A COM block’s name, if it has one, will immediately follow
the COM keyword, and will be set off with slashes, as shown
above. The same rules used for naming variables and subpro-
grams are used for naming COM blocks.

Any context need only declare those COM blocks which it
needs to have access to. If there are 150 variables declared in
10 COM blocks, it isn’t necessary for every context to declare
the entire set—only those blocks that are necessary to each
context need to be declared. COM blocks with matching
names must have matching definitions. As in parameter lists,
matching COM blocks is done by position and type, not by
name.

3-110 Programming Techniques

There are several characteristics of COM blocks which distin-
guish them from parameter lists as a means of
communications between contexts:

® COM survives pre-run. In general, any numeric variable is
set to 0, strings are set to the null string, and I/O path
names are set to undefined when the program is run, or
upon entering a subprogram. This is true of COM the first
time the program is run, but after COM block variables are
defined, they retain their values until:

1. SCRATCH A or SCRATCH C is executed.

2. A statement declaring a COM block is modified by the
user.

3. A new program is brought into memory using the
GET or LOAD commands which doesn’t match the
declaration of a given COM block, or which doesn’t
declare a given COM block at all.

B COM blocks can be arbitrarily large. One limitation on pa-
rameter lists (both pass and formal parameter lists) is that
they must fit into a single program line along with the
line’s number, possibly a label, the invocation or subpro-
gram header, and possibly (in the case of a function) a
string or numeric expression. Depending upon the situa-
tion, this can impose a restriction on the size of your
parameter lists.

COM blocks can take as many statements as necessary.
COM statements can be interwoven with other statements
(though this is considered a poor practice). All COM state-
ments within a context which have the same name will be
part of the definition of that COM block.

¥ COM blocks can be used for communicating between con-
texts that do not invoke each other.

B COM blocks can be used to communicate between subpro-
grams that are not in memory simultaneously.

B COM blocks can be used to retain the value of “local” vari-
ables between subprogram calls.

B COM blocks allow subprograms to share data without the
intervention of the main program.

Programming Techniques 3-111

Hints for Using COM Blocks. Any COM blocks needed by
your program must be resident in memory at pre-run time.
Pre-run is caused by pressing RUN, executing a RUN com-
mand, executing LOAD or GET from the program, or
executing a LOAD or GET from the keyboard and specifying
a run line. Thus if you want to create libraries of subprograms
which share their own labeled COM blocks, it is wise to col-
lect all the COM declarations together in one subprogram to
make it easy to append them to the rest of the program for
inclusion at prerun time. (The subprogram need not contain
anything but the COM declarations.)

COM can be used to communicate between programs which
overlay each other using LOAD or GET statements, if you re-
member a few rules:

1. COM blocks which match each other exactly between
the two programs will be preserved intact. “Matching”
requires that the COM blocks are named identically (ex-
cept blank COM), and that corresponding blocks have
exactly the same number of variables declared, and that
the types and sizes of these variables match.

2. Any COM blocks existing in the old program which are
not declared in the new program (the one being brought
in with the LOAD or GET) are destroyed.

3. Any COM blocks which are named identically, but
which do not match variables and types identically, are
defined to match the definition of the new program. All
values stored in that COM block under the old program
are destroyed.

4. Any new COM blocks declared by the new program (in-
cluding those mentioned above in #3) are initialized
implicitly. Numeric variables and arrays are set to zero,
strings are set to the null string, and I/O path names are
set to undefined.

3-112 Programming Techniques

The first occurrence in memory of a COM block is used to
define or set up the block. Subsequent occurrences of the
COM block must match the defining block, both in the num-
ber of items, and the types of the items. In the case of strings
and arrays, the actual sizes need be specified only in the de-
fining COM blocks. Subsequent occurrences of the COM
blocks may either explicitly match the size specifications by
re-declaring the same size, or they may implicitly match the
size specifications. In the case of strings, this is done by not
declaring any size, just declaring the string name. In the case
of arrays, this is done by using the (%> specifier for the di-
mensions of the array instead of explicitly re-declaring the
dimensions.

Consider the following COM block definition:

18 COM -Dvm_stater INTEGER Range,Format,N,REAL
Delay,Lastdata<1:48),Status$[201]

The following occurrence of the same COM block within a
subprogram matches the COM block explicitly and is legal:

2888 COM -Dvm_statrs INTEGER Range,Format,N,REAL
Delay,Lastdataci:48),Status$[28]

The following block within a different subprogram uses im-
plicit matching and is also legal:

4818 COM -Dvm_stater INTEGER Range,Format,N,REAL
Delay,Lastdatac¥),Status#

Programming Techniques 3-113

Context Switching A

subprogram has its own context or state as distinct from a

main program and all other subprograms. In between the
time that a CALL statement is executed (or an FN name is
used) and the time that the first statement in the subprogram
gets executed, the computer performs a “pre-run” on the sub-
program. This “entry” phase is what defines the context of the
subprogram. The actions performed at subprogram entry are
similar, but not identical, to the actual prerun performed at
the beginning of a program. Here is a summary:

3-114 Programming Techniques

The calling context has a DATA pointer which points to the
next item in the current DATA block which will be used
the next time a READ is executed. This pointer is saved
away whenever a subprogram is called, and then the
DATA pointer is reset to the first DATA statement in the
new subprogram context.

The RETURN stack for any GOSUBs in the current context
is saved and set to the empty stack in the new context.

The system priority of the current context is saved, and the
called subprogram inherits this value. Any change to the
system priority which takes place within the subprogram
(or any of the subprograms which it calls in turn) is purely
local, since the system priority is restored to its original
value upon subprogram exit.

Any event-initiated GOTO/GOSUB statements are dis-
abled for the duration of the subprogram. If any of the
specified events occur, this will be logged, but no action
will be taken. Upon exiting the subprogram, these event-
initiated conditions will be restored to active status, and if
any of these events occurred while the subprogram was be-
ing executed, the proper branches will be taken.

Any event-initiated CALL/RECOVER statements are saved
away upon entering a subprogram, but the subprogram still
inherits these ON conditions since CALL/RECOVER are
global in scope. However, it is legal for the subprogram to
redefine these conditions, in which case the original defini-
tions are restored upon subprogram exit.

B The current value of OPTION BASE is saved, and the
value for the subprogram (0 or 1, explicitly declared or de-
faulted) is used.

B The current DEG or RAD mode for trigonometric opera-
tions and graphics rotations is stored away. The
subprogram will inherit the current DEG or RAD setting,
but if it gets changed within the subprogram, the original
setting will be restored when the subprogram is exited.

Variable Initialization. Space for all arrays and variables
declared is set aside, whether they are declared explicitly with
DIM, REAL, or INTEGER, or implicitly just by using the vari-
able. The entire value area is initialized as part of the
subprogram’s prerun. All numeric values are set to zero, all
strings are set to the null string, and all I/O path names are
set to undefined.

Subprograms and Softkeys. ON KEYs are a special case of
the event-initiated conditions that are part of context switch-
ing. They are special because they are the only <event>
conditions which give visible evidence of their existence to
the user through the softkey labels at the bottom of the CRT.
These key labels are saved away just as the event conditions
are, and the labels get restored to their original state when the
subprogram is exited, regardless of any changes the subpro-
gram made in the softkey definitions. This means the
programmer doesn’t have to make any special allowances for
re-enabling his keys and their associated labels after calling a
subprogram which changes them—the language system han-
dles this automatically.

Subprograms and the RECOVER Statement. The event-
initiated RECOVER statement allows the programmer to
cause the program to resume execution at any given place in
the context defining the ON...RECOVER as a result of a spec-
ified event occurring, regardless of subprogram nesting.

Programming Techniques 3-115

Thus, if a main program executes an ON..RECOVER state-
ment (for example a softkey or an external interrupt from the
SRQ line on an HP-IB), and then calls a subprogram, which
calls a subprogram, which calls a subprogram, etc., program
execution can be caused to immediately resume within the

main program as a result of the specified event happening.

Live Keyboard Functions and subprograms can be called from live keyboard
by the user. There are some restrictions:

B Since variables cannot be created by the user from the key-
board (variables can only be defined by the program), it is
legal to use only parameters that already exist in the cur-
rent context.

B Constants may be used in the pass parameter list.

B When calling a SUB subprogram from the keyboard, the
CALL keyword must be used.

Using Subprogram If you have a program which is quite large, along with sizable
Libraries data arrays, you could run out of memory in your computer.
But the program you're working on just has to remain one
program, and external factors prevent your reducing data ar-
ray size. What to do? There are several options which address
this problem.

If you want to load a specific subprogram from a PROG file,
you would use the LOADSUB <subprogram name> FROM
statement. If you want to load all the subprograms from a
specific PROG file, you would use the LOADSUB ALL FROM
statement. And, if you wanted to see which subprograms are
still missing or load all those still needed, you would use the
LOADSUB FROM command. Note that this is a command,
and not a statement. Therefore, LOADSUB FROM cannot be
invoked programmatically.

3-116 Programming Techniques

Loading
Subprograms One
at a Time

Suppose your program has several options to select from, and
each one needs many subprograms and much data. All the
options, however, are mutually exclusive; that is, whichever
option you choose does not need anything that the other op-
tions use. This means that you can clean up everything
you've used when you are finished with that option.

If all of your subprograms can be put into one file, you can
selectively retrieve them as needed with this sort of statement:

LOADSUB Subprog_1 FROM
LOADSUB Subprog_2 FROM

LOADSUB FMNumeric_fn FROM "SUBFILE"
LOADSUB FMString_function% FROM "SUBFILE"

"SUBFILE"
"SUBFILE"

Loading Several
Subprograms at
Once

Note that only one subprogram per line can be loaded with
this form of LOADSUB. If, for any program option, you need
so many subprograms that this method would be cumber-
some, you could use the following form of the command.

For this method, you store all the subprograms needed for
each option in its own file. Then, when the program’s user
selects Program Option 1, you could have this line of code
execute:

LOARDSUB ALL FROM "OPT1SUBFL"

and if the user selects Option 2,

LOADSUB ALL FROM "OP2SUBFL"

and so forth.

There is one other form of LOADSUB, but it cannot be used
programmatically. This is covered next.

Programming Techniques 3-117

Loading
Subprograms Prior
to Execution

Deleting
Subprograms
Programmatically

In the LOADSUB FROM form, for which you need the PDEV
binary, neither ALL nor a subprogram name is specified in
the command. This is used prior to program execution. It
looks through the program in memory, notes which subpro-
grams are needed (referenced) but not loaded, goes to the
specified file and attempts to load all such subprograms. If
the subprograms are found in the file, they are loaded into
memory; if they are not, an error message is displayed and a
list of the subprograms still needed but not found in the file is
printed.

The utility of the LOADSUB commands would be greatly re-
duced if one could not delete subprograms from memory at
will. So, there is a way to delete subprograms during execu-
tion of a program: DELSUB. If you want to delete only
selected ones, you could use a program line like this:

188 DELSUB Sort_data,Print_report,FNPolu_solve

If you are sure of the positioning of the subprograms in mem-
ory, here is a method of deleting whole groups of
subprograms:

188 DELSUB Print_report TO END

You can combine these methods:

188 DELSUB Sort_data,Print_report,FNGet_name$ TO EHND

The subprograms to be deleted do not have to be contiguous
in memory, nor does the order in which you specify the sub-
programs in a DELSUB statement have to be the order in
which they occur in memory. The computer deletes each sub-
program before moving on to the next name.

3-118 Programming Techniques

If there are any comments after an FNEND or SUBEND, but
before the next SUB or DEF FN, these will be deleted as well
as the rest of the subprogram body.

If the computer attempts to delete a nonexistent subprogram,
an error occurs, and the DELSUB statement is terminated.
This means that subprograms whose names are listed after
the error-causing one will not be deleted.

A subprogram can be deleted only if it is not currently active
and if it is not referenced by a currently active ON
RECOVER/CALL statement. This means:

1. A subprogram can not delete itself.

2. A subprogram can not delete the subprogram that called
it, either directly or indirectly. (Otherwise it wouldn’t
have anywhere to return to when finished!)

Between the time that a subprogram is entered and the time it
is exited, the computer keeps track of an activation record for
that subprogram. Thus, if a subprogram calls a subprogram
that calls a subprogram, etc., none of the subsequently-called
subprograms can delete the original one or any of the ones in
between because the system knows from the activation record
that control will eventually need to return to the original call-
ing context. A similar situation exists with active event-
initiated CALL/RECOVER statements. As long as the
possibility of the specified event occurring exists, the system
will not let the subprogram be deleted. In essence, the system
will not let you execute two mutually-exclusive, contradictory
commands simultaneously.

Programming Techniques 3-119

Editing Inserting Subprograms. There are some rules to remember
Subprograms When inserting SUB and DEF FN statement in the middle of
the program. All DEF FN and SUB statements must be ap-
pended to the end of the program. If you want to insert a
subprogram in the middle of your program because your pre-
fer to see it listed in a given order, you must perform the
following sequence:

1. STORE the program.

2. Delete all lines above the point where you want to insert
your subprogram (refer to the DEL statement).

3. STORE the remaining segment of the program in a new
file.

4. LOAD the original program stored in step 1.

5. Delete all lines below the point where you want to insert
your subprogram.

6. Type in the new subprogram.
7. Do a LOADSUB ALL from the new file created in step 3.

If you have the PDEV binary installed, the job is much easier:

1. Write your new subprogram at the end of the program.
2. Perform a MOVELINES command where:

a. The Starting Line in the MOVELINES command is
the line which you want to immediately follow
your new subprogram.

b. The Ending Line in the MOVELINES command is
the line immediately prior to the SUB or DEF FN of
the new subprogram.

€. The Destination Line is any line number greater
than the highest line number currently in memory.

In either case there is an optional final step. It is not required
that you do a REN to renumber the program at this point, but
often it is desirable to close up the void left in the program
line numbering which resulted from the block of subprograms
being moved to the end of memory.

3-120 Programming Techniques

Deleting Subprograms. It is not possible to delete either
DEF EN or SUB statements with DEL LINE unless you first
delete all the other lines in the subprogram. This includes any
comments after the SUBEND or FNEND. Another way to de-
lete DEF FN and SUB statements is to delete the entire
subprogram, up to, but not including, the next SUB or
DEF EN line (if any). This can be done either with the DEL
command, or with the DELSUB command.

Merging Subprograms. If you want to merge two subpro-
grams together, first examine the two subprograms carefully
to insure that you don’t introduce conflicts with variable us-
age and logic flow. If you've convinced yourself that merging
the two subprograms is really necessary, here’s how you go
about it:

1. SAVE everything in your program after the SUB or
DEF EN statement you want to delete.

2. Delete everything in your program from the unwanted
SUB statement to the end.

3. GET the program segment you saved in step 1 back into
memory, taking care to number the segment in such a
way as not to overlay the part of the program already in
memory.

Once again, with PDEV, your job is greatly simplified:

Execute a MOVELINES command in which you move every-
thing from one subprogram—excluding the SUB/DEF FN and
SUBEND/FNEND statements—into the desired position in
the other subprogram. If there are any declarative statements
in the moved code, you will probably want to move those up
next to the declarative statements in the receiving code. Don’t
forget to go back to the place where the code came from and
delete the SUB/DEF FN statement and the SUBEND /FNEND
statements.

Programming Techniques 3-121

SUBEND and The SUBEND and FNEND statements must be the last state-
FNEND ments in a SUB or function subprogram, respectively. These
statements don’t ever have to be executed; SUBEXIT and RE-
TURN are sufficient for exiting the subprogram. (If SUBEND
is executed, it will behave like a SUBEXIT. If FNEND is exe-
cuted, it will cause an error.) Rather, SUBEND and FNEND
are delimiter statements that indicate to the language system
the boundaries between subprograms. The only exception to
this rule is the comment statements (either REM or !), which
are allowed after SUBEND and FNEND.

Recursion Both function subprograms and SUB subprograms are al-
lowed to call themselves. This is known as recursion.
Recursion is a useful technique in several applications.

The simplest example of recursion is the computation of the
factorial function. The factorial of a number N is denoted by
N! and is defined to be N x (N-1)! where 0!=1 by definition.
Thus N! is simply the product of all the whole numbers from
1 through N inclusive. A recursive function which computes
N factorial is:

DEF FNFacterial (M)

IF N=8 THEN RETURN 1
RETURN N¥FNFactorial{N-1>
FNEND

References

1. Wirth, Niklaus, “Program Development by Stepwise Re-
finement”, Communications of the ACM, April 1971, Vol.
14, No. 4, pp. 221-227

2. Yourdan, Edward, Techniques of Program Structure and
Design, (Prentice-Hall, Englewood Cliffs, NJ, 1975)

3. Dahl, Dijkstra, & Hoare, Structured Programming (Aca-
demic Press, New York, 1972)

3-122 Programming Techniques

Data Storage
and Retrieval

Storing Data in
Programs

This section describes some useful techniques for storing and
retrieving data. First we describe how to store and retrieve
data that is part of the BASIC program. With this method,
DATA statements specify data to be stored in the memory
area used by BASIC programs; thus, the data is always kept
with the program, even when the program is stored in a mass
storage file. The data items can be retrieved by using READ
statements to assign the values to variables. This is a particu-
larly effective technique for small amounts of data that you
want to maintain in a program file.

For larger amounts of data, mass storage files are more appro-
priate. Files provide means of storing data on mass storage
devices. The two types of data files, ASCII and BDAT, are

described in this section. A number of different techniques for
accessing data in BDAT files are described in detail.

The BASIC system can use a number of different mass stor-
age devices, including internal disc drives, external disc
drives, “memory volumes” and SRM systems. This section
gives guidelines for accessing many kinds of devices.

This section describes a number of ways you can store values
in memory. In general, these techniques involve using pro-
gram variables to store data. The data are kept with the
program when it is stored on a mass storage device (with
STORE and SAVE). These techniques allow extremely fast ac-
cess to the data. They provide good use of the computer’s
memory for storing relatively small amounts of data.

Programming Techniques 3-123

Storing Data in
Variables

Probably the simplest method of storing data is to use a sim-
ple assignment, such as the following LET statements:

188 LET Cm_per_inch=2,54
118 Inch_per_cm=1-Cm_per_inch

Data Input by the
User

The data stored in each variable can then be retrieved simply
by specifying the variable’s name. This technique works well
when there are only a relatively few items to be stored or
when several data values are to be computed from the value
of a few items. The program will execute faster when vari-
ables are used than when expressions containing constants
are used; for instance, using the variable Inch_per _cm in
the preceding example would be faster than using the con-
stant expression 1,2,54. In addition, it is easier to modify
the value of an item when it appears in only one place (i.e., in
the LET statement).

You also can assign values to variables at run-time with the
INPUT and LINPUT statements as shown in the following
examples.

388 LINPUT Response#

188 INPUT "Type in the value of ¥, please.",Id

208 DISP "Enter the wvalue of X,Y, and 2."

Note that with this type of storage, the values assigned to the
corresponding variables are not kept with the program when
it is stored; they must be entered each time the program is
run. This type of data storage can be used when the data are
to be checked or modified by the user each time the program
is run. As with the preceding example, the data stored in each
variable can then be retrieved simply by specifying the
variable’s name.

3-124 Programming Techniques

Using DATA and
READ statements

The DATA and READ statements provide another technique
for storing and retrieving data from the computer’s
read/write (R/W) memory. The DATA statement allows you
to store a stream of data items in memory, and the READ
statement allows you retrieve data items from the stream.

You can have any number of READ and DATA statements in
a program in any order you want. When you run a program,
the system concatenates all DATA statements in the same
context into a single “data stream.” Each subprogram has its
own data stream. The following DATA statements distributed
in a program would produce the following data stream.

ied DATA 1,A,350
268 DATA "BB",28,45
388 DATA X,Y,77

DATA STREAM: | 1 | A |50 |BB|20|45) X | Y |77

As you can see from the example above, a data stream can
contain both numeric and string data items; however, each
item is stored as if it were a string.

Each data item must be separated by a comma and can be
enclosed in optional quotes. Strings that contain a comma, ex-
clamation mark, or quote mark must be enclosed in quotes. In
addition, you must enter two quote marks for every one you
want in the string. For example, to enter the string
QUOTE“QUO"TE into a data stream, you would write:

i8@ DATA "QUOTE""QUO""TE"

Programming Techniques 3-125

To retrieve a data item, assign it to a variable with the READ
statement. Syntactically, READ is analogous to DATA; but in-
stead of a data list, you use a variable list. For instance, the
statement:

188 READ X,Y,Z%

would read three data items from the data stream into the
three variables. Note that the first two items are numeric and
the third is a string variable.

Numeric data items can be read into either numeric or string
variables. If the numeric data item is of a different type than
the numeric variable, the item is converted (i.e., REALs are
converted to INTEGERs, and INTEGERs to REALs). If the
conversion cannot be made, an error is returned. Strings that
contain non-numeric characters must be read into string vari-
ables. If the string variable has not been dimensioned to a size
large enough to hold the entire data item, the data item is
truncated.

The system keeps track of which data item to read next by
using a “data pointer.” Every data stream has its own data
pointer which points to the next data item to be assigned to
the next variable in a read statement. When you run a pro-
gram segment, the data pointer is placed initially at the first
item of the data stream. Every time you read an item from the
stream, the pointer is moved to the next data item. If a sub-
program is called by a context, the position of the data
pointer is recorded and then restored when you return to the
calling context.

3-126 Programming Techniques

Starting from the position of the data pointer, data items are
assigned to variables one by one until all variables in a read
statement have been given values. If there are more variables
than data items, the system returns an error, and the data
pointer is moved back to the position it occupied before the
read statement was executed.

Examples. The following example shows how data is stored
in a data stream and then retrieved. Note that DATA state-
ments can come after READ statements even though they
contain the data being read. This is because DATA statements
are linked during program pre-run, whereas READ statements
aren’t executed until the program actually runs.

18
28
38
48
58
€0

The date is Movember 26, 1981,

DRATA Hovember, 26

READ Month%¥,Day,Year$
DATA 1981, "The date is "

READ Str#
Print Str$;Months$;"
END

";Day;", "“;Year$;"."

Storage and Retrieval of Arrays. In addition to using
READ to assign values to string and numeric variables, you
can also READ data into arrays. The system will match data
items with variables one at a time until it has filled a row.
The next data item then becomes the first element in the next
row. You must have enough data items to fill the array or you
will get an error. The following example shows you how
DATA values can be assigned to elements of a 3-by-3 numeric
array.

Programming Techniques 3-127

18
28
3a
48
Sa
&8

OPTION BARSE 1
DIM Example (3,3

DATA 1.2,3,4,5,6,7,8.,9.,18,11

READ Exampled{¥)

PRINT USING "3(K,X>,";Exampletk)

END

The Structure of

Data Files

1 2 3
4 5 6
7 8 9

The data pointer is left at item 10; thus, items 10 and 11 are
saved for the next READ statement.

Moving the Data Pointer. In some programs, you will want
to assign the same data items to different variables. To do

this, you have to move the data pointer so that it is pointing
at the desired data item. You can accomplish this with the

RESTORE statement. If you don’t specify a line number or
label, RESTORE returns the data pointer to the first data item
in the data stream. If you do include a line identifier in the
RESTORE statement, the data pointer is moved to the first
data item in the first DATA statement at or after the identified
line.

There are two file types that you can use to store data: BDAT
and ASCIIL BDAT files have several advantages: they allow
more flexibility in data formats and access methods, allow
faster transfer rates, and are generally more space-efficient
than ASCII data files. They can be randomly or serially
accessed, and they allow data to be stored in either ASCII
format, internal format, or a specialized format (defined by
the user with IMAGE statements).

3-128 Programming Techniques

ASCII files allow only serial access and only ASCII format.
They have these advantages: the files are compatible with
other HP computers that support this file type, the format
provides very compact storage for string data, and there is no
chance of reading the contents into the wrong data type (a
problem with BDAT files). The full name of ASCII files is “LIF
ASCIL.” LIF stands for Logical Interchange Format, a directory
and data storage format that is used by many HP computer
divisions. Understanding the characteristics of each file type
will help you choose the best one for your specific
application.

BDAT Files. BDAT files are designed to be storage-space ef-
ficient, have high data-transfer rates, and allow both random
and serial access. Random access means that you can directly
read from and write to any record within the file, while serial
access only permits you to access the file from the beginning.
Serial access can waste a lot of time if you're trying to access
data at the end of a file. On the other hand, if you want to
access the entire file sequentially, you are better off using se-
rial access than random access. BDAT files can be accessed
both randomly and serially, while ASCII files can only be
accessed serially.

BDAT files allow you to store and retrieve data using internal
format, ASCII format, or user-defined formats. With internal
format, items are represented with the same format the sys-
tem uses to store data in internal computer memory*. With
ASCII format, items are represented by ASCII characters.
User-defined formats are implemented with programs that
employ OUTPUT and ENTER statements that reference IM-
AGE specifiers.

* Actually, the format for BDAT files is slightly different than internal format. In-
stead of using a 2-byte length header for strings, BDAT files use a 4-byte length
header. Besides this, the two formats are identical, so we refer to both as
“internal”.

Programming Techniques 3-129

In most applications, you will use internal format for BDAT
files. Unless we specify otherwise, you can assume that when
we talk about retrieving and storing data in BDAT files, we
are also talking about internal format.

Because BDAT files use almost the same format as internal
memory, very little interpretation is needed to transfer data
from the computer to a BDAT file, or vice versa. BDAT files,
therefore, not only save space but also time.

Data stored in internal format in BDAT files require the fol-
lowing number of bytes per item:

INTEGER 2 bytes

REAL 8 bytes

String 1 byte per character (plus 1 pad byte if the string
length is an odd number), plus a 4-byte length
header

INTEGER numbers are represented in BDAT files by using a
16-bit, two’s-complement notation, which provides a range -
32,768 thru 32,767. If bit 15 (the MSB) is 0, the number is
positive. If bit 15 equals 1, the number is negative; the value
of the negative number is obtained by changing all ones to
zeros, and all zeros to ones, and then adding one to the re-
sulting value.

REAL numbers are stored in BDAT files by using their inter-
nal format: the IEEE-standard, 64-bit, floating-point notation.
Each REAL number is comprised of two parts: an exponent
(11 bits), and a mantissa (53 bits). The mantissa uses a sign-
and-magnitude notation. The sign bit for the mantissa is not
contiguous with the rest of the mantissa bits; it is the most
significant bit (MSB) of the entire eight bytes. The 11-bit ex-
ponent is offset by 1023 and occupies the 2nd through the
12th MSB'’s. Every REAL number is internally represented by
the following equation. (Note that the mantissa is in binary
notation):

B i . t — 1023
{mantissa sign y 9pexponen X 1. mantissa

3-130 Programming Techniques

STRING data are stored in BDAT files in their internal format
(plus two additional, leading bytes of length header, which
are always O for Series 200/300 computers). Every character
in a string is represented by one byte which contains the
character’s ASCII code. The four-byte length header contains
a value that specifies the length of the string. If the length of
the string is odd, a pad character is appended to the string to
get an even number of characters; however, the length header
does not include this pad character.

The string “A” would be stored:

00000000 00000000 00000000 00000001 01000001 00100000

Length = 0001 (binary) ASCIl 65 ASCIl 32

In this case, the space character (ASCII code 32) is used as the
pad character; however, not all operations use the space as
the pad character.

When using the ASCII data format for BDAT files, all data
items are represented with ASCII characters. With user-de-
fined formats, the image specifiers referenced by the
OUTPUT or ENTER statement are used to determine the data
representation. Using both of these formats with BDAT files
produce results identical to using them with devices.

ASCII Files. You have already been introduced to ASCII
files as a way to SAVE programs. ASCII files can also be used
to store data. In an ASCII file, every data item, whether string
or numeric, is represented by ASCII characters; one byte rep-
resents one ASCII character. Each data item is preceded by a
two-byte length header which indicates how many ASCII
characters are in the item. However, there is no “type” field
for each item; data items contain no indication (in the file) as
to whether the item was stored as string or numeric data.

Programming Techniques 3-131

There is often a relatively large amount of overhead for nu-
meric data items. For instance, to store the integer 12 in an
ASCII file requires the following six bytes:

013 112 |(pad) 3
——— e e

LENGTH ASCII

HEADER = CODES

BINARY 3

Similarly, reading numeric data from an ASCII file can be a
complex and relatively slow operation. The numeric charac-
ters in an item must be entered and evaluated individually by
the system’s “number builder” routine, which derives the
number’s internal representation. (Keep in mind that this rou-
tine is called automatically when data are entered into a
numeric variable.) For example, suppose that the following
item is stored in an ASCII file:

0|10|A|B|C|= 1123 |X]Y "'3
[——T - ,

LENGTH ASCII

HEADER = CODES

BINARY 10

Although it may seem obvious that this is not a numeric data
item, the system has no way of knowing this since there is no
type-field stored with the item. Therefore, if you attempt to
enter this item into a numeric variable, the system uses the
number-builder routine to strip away all non-numeric charac-
ters and spaces and assign the value 123 to the numeric
variable. When you add to this the intricacies of real numbers
and exponential notation, the situation becomes more
complex.

3-132 Programming Techniques

Mass Storage
Techniques

Overview of Mass
Storage Access

In general, you should only use ASCII files when you want to
transport data between machines. There may be other in-
stances where you will want to use ASCII files, but you
should be aware that they cause a noticeable performance
degradation compared to BDAT files.

This section presents BASIC programming techniques useful
for accessing mass storage devices and files. The first part
gives a brief introduction to the steps you might take to store
data in a file. Subsequent parts describe further details of
these steps. If you feel that you need additional background
information while reading this material, refer to the preceding
tutorial section.

Storing data in files requires a few simple steps. The follow-
ing program segment (found in file CRBDAT in your Manual
Examples disc) shows a simple example of creating a BDAT
file on the “A” drive, and writing data to it.

18 DIM Arrayl(5,4),Array2¢(5, 4>

20 MAT Arrayl=3 IFill Arrayl with 3,

38 MASS STORAGE IS ":CS80,1588,8" | MSI is drive A,

48 CREATE BDAT "FILE_1",18 ! 18 (256-byte) records,

58 ASSIGN @Path_1 to "FILE_1" ! Open an I-0 path to the file,

68 OUTPUT @Path_1;Arraul(%> ! Send an array of numeric values.

78 ASSIGN @Path_1 TO % ! Close the path

80 ASSIGN @F_1 to "FILE_1:C580,1508,8" ! Another path to the file.

98 ENTER @F_1;Array2Ci)

1866 ASSIGN @Path_1 TO % ! Close the path

116 END

Line 30 specifies the “system mass storage device,” or the “de-
fault” device which is to to be used whenever a mass storage
device is not explicitly specified during subsequent mass stor-
age operations. The term mass storage unit specifier (msus)
describes the string expression used to uniquely identify
which device is to be the mass storage. In this case,
“:CS80,1500,0” is the msus.

Programming Techniques 3-133

In order to store data in mass storage, a data file must be cre-
ated (or already exist) on the mass storage media. In this case,
line 40 creates a BDAT file for data storage; the file created
contains 10 defined records of 256 bytes each.

The term “file specifier” describes the string expression used
to uniquely identify the file. In this example, the file specifier
is simply File_1, which is the file’s name. If the file is to be
created (or already exists) on a mass storage device other than
the system mass storage, the appropriate msus must be ap-
pended to the file name.

Then, in order to store data in (or retrieve data from) the file,
you must assign an I/O path name to the file. Line 50 shows
an example of assigning an I/O path name to the file (also
called opening an I/O path to the file). Line 60 shows an ar-
ray of numeric data being sent to the file through the I/O
path.

The I/O path is closed after all data have been sent to the
file. Closing the I1/O path is optional if another I/O path
name is assigned to the file later in the program. All I/O path
names are automatically closed by the system at the end of
the program. Closing an I/O path to a file updates the file
pointers.

If this array of data is to be retrieved from the file, another
ASSIGN statement is executed (line 110). Notice that a differ-
ent I/O path name has been used; this is an arbitrary choice
of names. Opening this I/O path name to the file sets the file
pointer to the beginning of the file. (Re-opening the I/O path
name @File_1 would have also reset the file pointer.)

3-134 Programming Techniques

Non-Disc Mass
Storage

Notice also that the msus is included with the file name. This
shows that the mass storage device, does not have to be the
current system mass storage in order to be accessed. The sub-
sequent ENTER statement reads the data into another
numeric array (which must be of the same data type when a
BDAT file is used in this manner).

Although mass storage is traditionally implemented using a
magnetic surface such as a disc or drum, the protocols of file
management can be applied to any device which stores data,
such as RAM Memory Volumes. Areas of the computer’s
RAM can be treated as though they were mass storage de-
vices. Obviously, a RAM volume is volatile. However, it can
be accessed faster than any other mass storage device.

RAM Volumes. Areas of the computers RAM may be treated
as mass storage devices. These “memory volumes” or “‘RAM
volumes” are volatile (all information is lost when the power
goes off), but high speed. A typical use for RAM volumes is
to copy a disc volume into memory, perform all necessary
manipulations using the RAM volume, then copy the new in-
formation back to disc. Obviously, there are only certain
applications which would benefit from this technique.

All mass storage operations work with RAM volumes.

RAM volumes are created by the INITIALIZE statement. A
special form of this statement is used, with a unit size param-
eter in the position normally occupied by the interleave
factor. The device type is always MEMORY, and the device se-
lector is always 0. Unit numbers 0 thru 31 may be used. Here
are some examples.

Programming Techniques 3-135

INITIALIZE ":MEMORY,B,7" ,228

This creates a RAM volume that is 220 sectors long and is
given unit number 7. Note that the unit size parameter is in
256-byte sectors, just like LIF file sizes.

If the unit size parameter is omitted, the result is a RAM vol-
ume that is the same size as a 5.25-inch or 3.5-inch disc. This
is 1056 sectors, or 270,336 bytes. The default size RAM vol-
ume provides only 80 directory entries, while the discs may
contain up to 112 directory entries. If a disc is copied into the
RAM volume, the entire directory will be copied.

The unit size of a RAM volume must be at least 4 sectors and
can be as large as available memory permits. Two sectors are
taken for system use, and about 1 sector of directory is cre-
ated for each 100 sectors of unit size.

No RAM volumes exist at power-up or after a SCRATCH A. It
is recommended that all binaries be loaded before RAM vol-
umes are initialized. If a binary is loaded after a RAM volume
is initialized, the memory used for the RAM volume cannot
be recovered until the computer is turned off and back on
again.

A RAM volume can be re-initialized to the same or different
size. If the size is different, memory space may be lost until
the next SCRATCH A.

After they are created, RAM volumes are accessed by using
their unit number in a MEMORY media specifier. The follow-
ing examples show typical mass storage unit specifiers for a
RAM volume with unit number 7.

MASS STORAGE IS ":MEMORY,@8,7"
or
ASSIGH @Ram TO "TEMP:MEMORY,B,7?"

3-136 Programming Techniques

Accessing Files Before you can access a data file, you must assign an 1/0
path name to the file. Assigning an I/O path name to the file
sets up a table in computer memory that contains various in-
formation describing the file, such as its type, which mass
storage device it is stored on, and its location on the media.
The I/O path name is then used in 1I/O statements (OUT-
PUT, ENTER, and TRANSFER) which move the data to and
from the file. I/O path names are also used to transfer data to
and from devices.

Opening an 1/O Path. I/O path names are similar to other
variable names, except that I/O path names are preceded by
the “@” character. When an I/O path name is used in a state-
ment, the system looks up the contents of the I/O path name
and uses them as required by the situation.

To open an I/0 path to a file, assign the I/O path name to a
file specifier by using an ASSIGN statement. For example,
executing the following statement:

ASSIGN EBPathl TO "Example"

assigns an I/O path name called @Pathl to the file
Example. The file that you open must already exist and must
be a data file. If the file does not satisfy one of these require-
ments, the system will return an error. If you do not use an
msus in the file specifier, the system will look for the file on
the current MASS STORAGE IS device. If you want to access
a different device, use the msus syntax described earlier. For
instance, the statement:

ASSIGN @PathZz TO "Example:C580,1508,8"

opens an I/O path to the file Example. You must include the
protect code if the file has one.

Programming Techniques 3-137

Once an I/O path has been opened to a file, you always use
the path name to access the file. An I/O path name is only
valid in the context in which it is opened, unless you pass it
as a parameter or put it in the COM area. To place a path
name in the COM area, simply specify the path name in a
COM statement before you ASSIGN it. For instance, the two
statements below would declare an I/O path name in an un-
named COM area and then open it:

188 COM @Path3
118 ASSIGN @Path3 TO "Filel"

Closing 1/0 Paths. 1/O path names not in the COM area
are closed whenever the system moves into a stopped state
(e.g., STOP, END, SCRATCH, EDIT, etc.). I/O path names lo-
cal to a context are closed when control is returned to the
calling context. Re-ASSIGNing an I/O path name will also
cancel its previous association.

You can also explicitly cancel an I/O path by ASSIGNing the
path name to an * (asterisk). For instance, the statement:

ASSIGHM BPath2 TO *

closes @FPath2. BPath2 cannot be used again until it is Re-
ASSIGNed. You can Re-ASSIGN a path name to the same file
or to a different file.

Reading and There are many alternatives for storing and retrieving data
Writing BDAT Files when using BDAT files. You can choose internal, ASCII, or
user-defined formats, and serial or random access.

3-138 Programming Techniques

System Sector On the disc, every BDAT file is preceded by a system sector

SECTOR:

that contains an End-Of-File pointer and the number of de-
fined records in the file. All data is placed in succeeding
sectors. You cannot directly access the system sector. How-
ever, as you shall see later, it is possible to indirectly change
the value of an EOF pointer.

0 1 2 3
: NUMBER Y
EOF | OF
POINTER | DEFINED
| RECORDS
SYSTEM SECTOR DATA

EOF Pointer: @ number of sectors from beginning of file

(32-bit binary number)
® number of bytes from beginning of sector
(32-bit binary number)

Number of defined records: See description below

(82-bit binary number)

Defined Records To access a BDAT file randomly, you specify a particular de-

fined record. Records are the smallest units in a file directly
addressable by a random OUTPUT or ENTER. They can be
anywhere from 1 through 65,534 bytes long. Both the length
of the file and the length of the defined records in it are spec-
ified when you create the file. For example, the statement:

CREATE BDAT "Example",7,128

would create a file called Example with 7 defined records,
each record being 128 bytes long. If you don't specify a
record length in the CREATE BDAT statement, the system
will set each record to the default length of 256 bytes.

Programming Techniques 3-139

Both the record length and the number of records are
rounded to the nearest integer. Further, the record length is
rounded up to the nearest even integer. For example, the
statement:

CREATE BDAT "Odd",3.5,28.7

would create a file with 4 records, each 30 bytes long. On the
other hand, the statement:

CREATE "Odder",3.49,28.3

would create a file with 3 records, each 28 bytes long.

Once a file is created, you cannot change its length, or the
length of its records. You must therefore calculate the record
size and file size required before you create a file.

Choosing a Record The most important consideration in selecting of a proper
Length record length is the type of data being stored and the way
you want to retrieve it. For optimum performance, the record
size should be an even multiple of the size of the data ele-
ments stored in the record, 2 bytes for integers and 8 bytes
for real numbers.

Files that contain string data present a slightly more difficult
situation since strings can be of variable length. If you have
three strings in a row that are 5, 12, and 18 bytes long, re-
spectively, there is no record length less than 22 that will
permit you to randomly access each string. If you select a
record length of 10, for instance, you will be able to randomly
access the first string but not the second and third.

3-140 Programming Techniques

If you want to access strings randomly, therefore, you should
make your records long enough to hold the largest string.
Once you've done this, there are two ways to write string
data to a BDAT file. The first, and easiest, is to enter each
string in random mode. In other words, select a record length
that will hold the longest string and then write each string
into its own record. Suppose, for example, that you wanted to
OUTPUT the following 5 names into a BDAT file and be able
to access each one individually by specifying a record
number.

John Smith
Steve Anderson
Mary Martin
Bob Jones

Beth Robinson

The longest name, “Steve Anderson”, is 14 characters. To store
it in a BDAT file would require 18 bytes, including four bytes
for the length header. You could create a file with record
length of 18 and then OUTPUT each item into a different
record:

188
118
128
138
140
158
168

CREATE
ASSIGH
OUTPUT
OQUTPUT
OUTPUT
OUTPUT
QUTPUT

BOAT "Mames",5,18 ! Create a file,

"Mames" | Open an I-0 path

"John Smith" | Write names to

"Steve Anderson" | Successive records
"Mary Martin" | In file

"Bob Jones"

"Beth Robinson"

BFile TO
BFile,1;
BFile,2;
EBFile, 3;
BFile,d4;
BFile,5;

Programming Techniques 3-141

On the disc, the file “Names” would look like the figure be-
low. The four-byte length headers show the decimal value of
the bytes in the header. The data are shown in ASCII
characters.

[ofofofolson]n] [s[m]it[n|x|x|x{x]JoJooft4f[s[t]e[v]e] [Aln]d]e]

[rlslofnfoJofoftt[mfafr]y] [m[a|r]t]i]n]e@|x[x]ofofo]9]B]o]o] [Jfo]

el e x [[olo[o e e [t [n [[Aloo [[n[s [o[n [e[x [x [x [x[x[x]

1 = length header
x = whatever data previously resided in that space
@ = pad character

The unused portions of each record contain whatever data
previously occupied that physical space on the disc.

Writing Data Data is always written to a file with an OUTPUT statement
via an I/O path. You can OUTPUT numeric and string vari-
ables, numeric and string expressions, and arrays. When you
OUTPUT data with the FORMAT OFF, data items are written
to the file in internal format (described earlier).

There is no limit to the number of data items you can write in
a single OUTPUT statement, except that program statements
are limited to two CRT lines. Also, if you try to OUTPUT
more data than the file can hold, or the record can hold (if
you are using random access), the system will return an EOF
or EOR condition. If an EOF or EOR condition occurs, the file
retains any data output ahead of the end condition.

There is also no restriction on mixing different types of data
in a single OUTPUT statement. The system decides which
data type each item is before it writes the item to the disc.
Any item enclosed in quotes is a string. Numeric variables
and expressions are OUTPUT according to their type (8 bytes
for REALs and 2 bytes for INTEGERSs). Arrays are written to
the file in row major order (right-most subscript varies
quickest).

3-142 Programming Techniques

Sequential (Serial)
OUTPUT

Each data item in an OUTPUT statement should be separated
by either a comma or semicolon (there is no operational dif-
ference between the two separators with FORMAT OFF).
Punctuation at the end of an OUTPUT statement is ignored
with FORMAT OFF.

Data is written sequentially (serially) to BDAT files whenever
you do not specify a record number in an OUTPUT state-
ment. When data is written serially, each data item is stored
immediately after the previous item without any type of sepa-
rator. Sector and record boundaries are ignored. Data items
are written to the file one by one, starting at the current posi-
tion of the file pointer. As each item is written, the file pointer
is moved to the next byte. After all of the data items have
been OUTPUT, the file pointer points to the first byte follow-
ing the last byte just written.

There are a number of circumstances where it is faster and
easier to use serial access instead of random access. The most
obvious case is when you want to access the entire file at

once. For example, if you have a list of data items that you
want to store in a file and you know that you will never want
to read any of the items individually, you should write the
data serially. The fastest way to write data serially is to place
the data in an array and then OUTPUT the entire array at
once.

Another situation where you might want to use serial access
is if the file is so small that it can fit entirely into internal
memory at once. In this case, even if you want to change in-
dividual items, it might be easier to treat the entire file as one
or more arrays, manipulate as desired, and then write the en-
tire array(s) back to the file.

Programming Techniques 3-143

Random OUTPUT Random OUTPUT allows you to write to one record at a time.
As with serial OUTPUT, there are EOF and file pointers that
are updated after every OUTPUT. The EOF pointers follow
the same rules as in serial access. The file pointer positioning
is also the same, except that it is moved to the beginning of
the specified record before the data is OUTPUT. If you wish
to write randomly to a newly created file, use either a CON-
TROL statement to position the EOF in the last record, or start
at the beginning of the file and write some “dummy” data into
every record.

If you attempt to write more data to a record than the record
will hold, the system will return an End-Of-Record (EOR)
condition. An EOF condition will result if you try to write
data more than one record past the EOF position. EOR condi-
tions are treated by the system just like EOF conditions,
except that they return Error 60 instead of 59 if they are not
trapped by ON END. Data already written to the file before
an EOR condition arises will remain intact.

Reading Data From Data is read from files with the ENTER statement. As with
BDAT Files OUTPUT, data is passed along an I/O path. You can use the
same I/O path you used to OUTPUT the data or you can use

a different I/O path.

You can have several variables in a single ENTER statement.
Each variable must be separated by either a comma or semi-
colon. It is extremely important to make sure that your
variable types agree with the data types in the file. If you
wrote a REAL number to a file, you should ENTER it into a
REAL variable; INTEGERs should be entered into INTEGER
variables; and strings into string variables. The rule to remem-
ber is: “Read it the way you wrote it.”

When reading data into a string variable, it is important to
remember that the system will interpret the first four bytes
after the file pointer as a length header. It will then try to
ENTER as many characters as the length header indicates. If
the string has been padded by the system to make its length
even, the pad character is not read into the variable.

3-144 Programming Techniques

After an ENTER statement has been executed, the file pointer
is positioned to the next unread byte. If the last data item was
a padded string, the file pointer is positioned after the pad. If
you use the same I/O path name to read and write data to a
file, the file pointer will be updated after every ENTER and
OUTPUT statement. If you use different I/O path names,
each will have its own file pointer which is independent of
the other. However, be aware that each also has its own EOF
pointer and that these pointers may not match, which causes
problems.

Entering data does not affect the EOF pointers. However, you
cannot read data at or beyond the byte marked by the EOF
pointers. If you attempt to read past an EOF pointer, the sys-
tem will return an EOF condition.

In addition to making sure that data types agree, it is also
advisable to make sure that access modes agree. If you wrote
data serially, you should read it serially; and if you wrote it
randomly, you should read it randomly. There are a few ex-
ceptions to this rule which we discuss later. However, you
should be aware that mixing access modes will often lead to
erroneous results unless you are aware of the precise mechan-
ics of the file system.

Serial ENTER. When you read data serially, the system en-
ters data into variables starting at the current position of the
file pointer and proceeds, byte by byte, until all of the vari-
ables in the ENTER statement have been filled. If there is not
enough data in the file to fill all of the variables, the system
returns an EOF condition. All variables that have already

taken values before the condition occurs retain their values.

Programming Techniques 3-145

In the program below, we OUTPUT five data items serially,
and then retrieve the data items with a serial ENTER
statement.

18 CREATE BDAT "STORAGE",1
28 ASSIGN @Path TO “"STORAGE"
38 INTEGER MNum,First,Fourth
48 NHum=5

68 ASSIGN @Path TO "STORAGE"

98 END

3 squared equals 25,

58 OUTPUT @Path;MNum,"squared”," equals”,Num¥Num,".",END

78 ENTER @Path;First,Second$,Third$,Fourth,Fifth$
88 PRINT First;Second$;Third$,Fourth,Fifth$

Note that we re-ASSIGNed the I/O path in line 70. This was
done to re-position the file pointer to the beginning of the
file. If we had omitted this statement, the ENTER would have
produced an EOF condition. Note also that the OUTPUT
statement includes END, which specifies that the EOF pointer
is to be moved to match the file pointer at statement comple-
tion. In this case, the END is redundant.

Random ENTER. When you ENTER data in random mode,
the system starts reading data at the beginning of the speci-
fied record and continues reading until either all of the
variables are filled or the system reaches the EOR or EOF. If
the system comes to the end of the record before it has filled
all of the variables, an EOR condition is returned.

3-146 Programming Techniques

In the following example (found in file OUTPUT1 on your
Manual Examples disc), data is randomly OUTPUT to 10
successive records, and then ENTERed into an array in re-
verse order.

i@
28
38
48
o8
=15
v
g8a
9a
100
110
128
138

Number Square Root

B W=

CREATE BDAT "SRA_ROOTS",5,2%8
ASSIGN EBPath TO "SQ@_ROOTS"
FOR Inc=1 to S

QUTPUT @Path,Inc;Inc,S@R(Inc?
NEXT Inc
FOR Inc=5 TO 1 STEP -1

ENTER @Path,Inc;Num{Inc),Sqroot(Inc)
NEXT Inc
PRINT "Number","Square Root"
FOR Inc=1 TO S

PRIMT Num<Inc?>,Sqroot{Inc?
NEXT Inc
END

1
1.41421356237
1,73283888737
2
2.,2368679377

In this example, there was no need to re-ASSIGN the I/0
path because the random ENTER automatically re-positions
the file pointer.

Executing a random ENTER without a variable list has the
effect of moving the file pointer to the beginning of the speci-
fied record. This is useful if you want to serially access some
data in the middle of a file.

You can define records to be just one byte long. In this case, it
doesn’t make sense to read or write one record at a time,
since even the shortest data type requires two bytes to store a
number.

Programming Techniques 3-147

Random access to one-byte records, therefore, has its own set
of rules. When you access a one-byte record, the file pointer
is positioned to the specified byte. From there, the access pro-
ceeds in serial mode. Random OUTPUTs write as many bytes
as the data item requires, and random ENTERs read enough
bytes to fill the variable.

General Mass This section describes several different types of operations on
Storage Operation mass storage files.

B Trapping EOR and EOF conditions while reading and writ-
ing data files

B Protecting files
B Copying files
B Purging files

W Accessing directories programmatically

Trapping EOF and An EOF condition exists whenever the system attempts to

EOR Conditions read data at, or beyond, the byte marked by the EOF pointers.
The EOR condition will arise if you attempt to randomly read
or write beyond the particular record specified. If, for exam-
ple, you try to randomly OUTPUT a 20-character string into a
10-byte record, an EOR condition will occur. EOF conditions
will also result whenever you try to read or write beyond the
physical end-of-file.

EOF and EOR conditions can be trapped with an ON END
statement. ON END is similar to ON ERROR except that it
only traps EOF/EOR conditions and is only applicable to the
specified I/O path. If you do not have an ON END statement
in a program, the EOF/EOR condition will produce -an error
that is trappable by the ON ERROR statement. Encountering
a logical or physical end of file will produce Error 59. En-
countering an end of record in random mode produces Error
60.

3-148 Programming Techniques

Protecting Files*

Note ”é

You can have any number of ON END statements in a pro-
gram context. ON END statements that refer to different I/O
paths will not interfere with each other, even if the paths go
to the same file. If you have more than one ON END to the
same I/O path, the system will use whichever one it most
recently executes during program flow.

An ON END is cancelled by the OFF END statement. OFF
END only cancels the ON END branch for the specified I/O
path. Re-ASSIGNing an I/O path will also cancel any existing
ON END branch for the particular path.

File protection does not prevent MS-DOS read /write of files,
or copying files with the HPWUTIL utility.

Protect codes are two-character strings that can be assigned to
any BDAT, BIN or PROG type file with the PROTECT state-
ment. Protect codes are not unbreakable; they are only
intended to prevent accidentally writing in files and
directories.

For instance, the following statement assigns the protect code
“AA” to the file named “FILE1.”

PROTECT "FILE1","ARA"

* This type of protect code applies only to non-SRM LIF discs. For a description of
SRM password protection, refer to Chapter 6, “Using SRM.”

Programming Techniques 3-149

File specifiers in mass storage statements that write to a file or
directory must include the protect code, if the file has one.
Mass storage statements that read a file or directory (CAT,

LOAD, LOAD BIN, LOADSUB ALL FROM, GET and COPY)
do not require the protect code. A protect code is specified by
placing it in brackets right after the file name. To assign an
I/O path name to the file named “FILE1,” you would now
have to include the protect code.

ASSIGH @Pathl TO "FILE1<ARAX"

If you assign a protect code longer than two characters, the
system will ignore everything after the second (non-bland)
character. For example, the protect codes LONGPASS, LOL-
LYPOP, and LOST all result in the same protect code: LO.
This rule holds both for PROTECTing a file and for specify-
ing the protect code in a file specifier. For example:

PROTECT "FILE1","Protectl"
assigns the protect code “Pr” to FILE1. To rename the file, you
could write:

REMAME "FILE1<Prattle>" TO "FILEZ"

“Prattle” is an acceptable protect code, since it starts with “Pr.”
Note that we do not include a protect code in the new file
name. If you do, the system ignores it since the old protect
code is passed to the new file name. FILE2 still has the pro-
tect code “Pr”. To rename the file again, we might write:

RENAME

"FILE2<{Pr>" TO "FILE3"

3-150 Programming Techniques

Renaming a file has the effect of changing the file name in
the directory and leaving everything else intact.

In addition to using the PROTECT statement, you can also
assign a protect code to a BDAT file when you create it. For
example:

CREATE BDAT "Example<d{¥xx>".,18

creates a 10-record BDAT file called “Example” and gives it a
protect code of “xx”. You can also do this to PROG files with
the STORE and STORE BIN statements. However, since

ASCII files cannot be protected, a protect code cannot be in-
cluded in any CREATE ASCII, SAVE, or RE-SAVE statement.

To change a protect code, simply execute a new PROTECT
statement. To change the protect code of “Example” to “yy,”
execute:

PROTECT "Exampled{xx>","

ggll

Note that you must include the current protect code in the file
specifier.

To completely remove a protect code from a file, PROTECT
the file with a code consisting of two blanks. For example, to
remove the protect code from file “Example,” execute:

FROTECT "Example<{yy>","

Programming Techniques 3-151

When specifying a file that does not have a protect code, you
can either ignore the code entirely or include a code of two
spaces:

PURGE "Example"

or

PURGE "Example{ >"

COpying Files The COPY statement allows you to duplicate individual files.
Any type of file may be copied.

COPY of a file duplicates the existing file and places the new
file name in the directory. A new file can be created either on
the same disc or on another disc. If you copy a file to the
same disc, the new file name must be different from the exist-
ing file name. If the file is of BDAT, BIN or PROG type, you
can also assign a protect code to the new file. If there is not
enough room on the disc for the file to be copied, the system
cancels the statement and returns an error.

Caution Copying entire directories or volumes to or from an internal
drive should be accomplished with the HPWUTIL program. Re-
fer to appendix C for information on this utility.

3-152 Programming Techniques

Examples. The following statement copies “Filel” from the
current system mass storage device to a new file called “File2”
on the same mass storage.

COPY "Filel" TO "File2"
The following statement copies “Filel” from the current sys-
tem mass storage to the drive at interface select code 15,
primary address 0, unit number 0. Note that both files can be
named “FILE1 if they are on different volumes.

COPY "Filel®™ TO “"Filel:(S86,1588,8"
The following statement copies a file from a disc drive to the
current system mass storage device. The new file “DATA” is
given the protect code”xx.”

COPY "Filel:C580,1588,8" 70 "DATA<{xx>"

Purging Files

You can purge a file by using the PURGE statement. Purging
a file deletes the directory entry for the file and releases the
reserved space in the data area. Purging a file, therefore, cre-
ates two “gaps” on the disc: one in the data area and one in
the directory. When you create a file, the system looks at all
the gaps in the data area to see if the newly created file will
fit in any of them.

Programming Techniques 3-153

Accessing Disc structure and mass storage directories were briefly de-

Directories scribed earlier in this section. As you may recall, a directory is
merely an index to the files on a mass storage media. The
BASIC language has several features that allow you to obtain
information from the directories of mass storage media. This
section presents several techniques that will help you access
this information. '

To get a catalog listing of a directory, you will use the CAT
statement. Executing CAT with no media specifier directs the
system to get a catalog of the current system mass storage
directory.

CAT

Including a media specifier directs the system to get a catalog
of the specified mass storage. For instance, executing the fol-
lowing statement returns a catalog of the directory of the “A”
drive:

CAT ":CS84,156868,8"

Both of the preceding statements sent the catalog listings to
the current system printer (the one specified in the last
PRINTER IS statement; the default system printing device is
the CRT).

3-154 Programming Techniques

Sending Catalogs to External Printers. The CAT state-

ment normally directs its output to the current PRINTER IS
device. The CAT statement can also direct the catalog to a
specified device, as shown in the following examples:

CAT TO #26
CAT TO #External_prtr
CAT TO #Device_selector

The parameter following the # is known as a device selector,
and is described in the section entitled “Using a Printer”.

Cataloging Selected Files. The directory entry of file(s)
that begin with certain character(s) can be obtained by using
the secondary keyword SELECT. Suppose that you want to
catalog only files beginning with the letters “Prog”. The
folowing examples show how this may be accomplished. No-
tice that this is not the same opertion as getting a catalog of a
PROG file.

18 Beginning_chars$="Praog"
28 CAT;SELECT Beginnina_charss$

38 EHMD

The directory entries of the three files beginning with the let-
ters “Prog” are sent to the PRINTER IS device. In the second
CAT statement above, the variable Files_and_headr is
filled with the number of selected files found on the current
default mass storage device (plus the 5 header lines). (Keep in
mind that the variable Files_and_headr must be cur-
rently defined in the current program context.)

Programming Techniques 3-155

SELECT may also be used to get the catalog of an individual
file entry by selecting the entire file name, as shown in the
fillowing statement:

CAT; SELECT "Chap3"

Getting a Count of Selected Files. It is often desirable to
determine the total number of files on a disc, or the number
that begin with a certain character or group of characters. The
COUNT option directs the computer to return the number of
selected files in the variable that follows the COUNT
keyword.

18 CAT;COUNT Files_and_headr
28 EHND

16 CAT;SELECT "Data",COUNT Selected_files
28 END

The first CAT operation returns a count of all files in the di-
rectory (plus 5 header lines), since not including SELECT
defaults to “select all files”. The second operation returns a
count of the specifically selected files (plus 5).

Skipping Selected Files. If there are many files that begin
with the same characters, it is often useful to be able to skip
some of the directory entries so that the catalog is not as long.
This may be especially useful when using a drive such as an
HP 7912, which has the capability of storing more than
10,000 files.

The following statement shows an example of skipping file
entries before sending selected entries to the destination.

CAT:SELECT "BCD",SKIP 5

3-156 Programming Techniques

The first five “selected” files (that begin with the specified
characters) are “skipped” (i.e., not sent with the rest of the
catalog information).

It is also important to note the order of options in the CAT
statement. This order is required when several options are
used. If the NO HEADER option is used, it must be the last
option in the list, as shown in the following example.

CAT;SELECT "BCD",SKIP 5,COUNT Selected_files,NO HEARDER

- . ;B
Using a Printer

Fundamentals

Sooner or later it needs to be printed. A wide range of print-
ers, supported by BASIC, can be connected to your computer.
This section covers the statements commonly used to commu-
nicate with external printers. The following is a list of some of
the printers that work with most popular personal computers:

® HP 2225 Thinkjet Printer

HP 2601 Daisy-Wheel Printer
HP 2631 Dot Matrix Printer
HP 2671 Thermal Printer

HP 2686 Laser Printer

HP 82906 Dot Matrix Printer

The PRINT statement normally directs text to the screen of
the CRT. Text may be re-directed to an external printer by us-
ing the PRINTER IS statement. The default system printer is
the screen of the CRT. The PRINTER IS statement is used to
change the system printer.

Programming Techniques 3-157

Before a printer will print the first character, several steps are
required to set up the printer. These steps are fully
documented in the appropriate printer installation manual.

After the printer is switched on and the computer and printer
have been connected via an interface cable, there is only one
piece of information needed before printing can begin. The
computer needs to know the correct device selector for the
printer. This is analogous to knowing the correct telephone
number before making a call.

Device Selectors A device selector is a number that uniquely identifies a par-
ticular device connected to the computer. When only one
device is allowed on a given interface, it is uniquely identified
by the interface select code. In this case, the device selector is
the same as the interface select code.

For example, the internal CRT is the only device at the inter-
face whose select code is 1. To direct the output of PRINT
statements to the CRT, use the following statement.

PRINTER IS5 1

This statement defines the screen of the CRT to be the system
printer. Until changed, the output of PRINT statements will
appear on the screen of the CRT.

Primary Addresses When more than one device can be connected to an interface,
such as the internal HP-IB interface (interface select code 7),
the interface select code no longer uniquely identifies the
printer. Extra information is required. This extra information
is the primary address.

3-158 Programming Techniques

Each printer has a set of switches, usually located on the back
panel, which set the primary address of the printer. The pri-
mary address, determined by the switch settings, is combined
with the interface select code to make up the device selector.
In the following example, the primary address 01 is appended
to the interface select code 7 to produce the device selector
701.

PRINTER IS 701

Using Device
Selectors

This statement tells the computer to use the internal HP-IB
interface (select code 7) to communicate with a printer whose
switches are set to the primary address 01. If the printer’s pri-
mary address is set to 11, the device selector would be 711.

A device selector is used by several different statements. In
each of the following, the numeric constant is a device
selector.

FRINTER IS 1 Specifies the internal CRT (default).

PRINTER IS 7@1 Specifies an HP-IB printer with interface
select code 7 and primary address 01.

PRINTER IS 26 Specifies a printer with interface select
code 26. This will access a standard MS-DOS printer at LPT1.

PRINTER IS 22 Specifies a printer connected to interface
select code 22.

CAT TO #7781 Prints a disc directory at 701.
PRINTALL IS 787 Logs information on a printer whose
select code is 7 and whose primary address is 07 (binary

00111).

LIST #7@1 Lists the program in memory to a printer con-
nected to the internal HP-IB interface at primary address 01.

Programming Techniques 3-159

Most statements allow a device selector to be assigned to a
variable. Either INTEGER or REAL variables may be used.

PRINTER IS Hal

CAT TO #Dog

The following three-letter mnemonic functions have been as-
signed useful values.

Mnemonic Value

PRT 701
KBD 2
CRT 1

For example, the following statements perform the same
action:

PRINTER IS PRT
PRINTER IS 7ol

Using the External
Printer

The mnemonic may be used anywhere the numeric device se-
lector can be used.

Another method may be used to identify the printer within a
program. An I1/O path name may be assigned to the printer;
the printer is subsequently referenced to by the I/O path
name.

Most ASCII characters are printed on an external printer just
as they appear on the screen of the CRT. Depending on your
printer, there will be exceptions. Several printers will also
support an alternate character set: either a foreign character
set, a graphics character set, or an enhanced character set. If
your printer supports an alternate character set, it usually is
accessed by sending a special command to the printer.

3-160 Programming Techniques

Control Characters

In addition to a “printable” character set, printers usually re-
spond to control characters. These non-printing characters
produce a response from the printer. One way to send control
characters to the printer is the CHR$ function. Execute the
following:

PRINTER IS 2%
PRINT CHE#(12)

The printer responds with a formfeed. To resume printing on
the internal CRT, execute the following:

PRIMTER IS5 1
FRINT "Back to the CRT.

Formatted Printing

Refer to your printer manual for a complete listing of control
characters and their effect on your printer. Some control char-
acters will only affect the current line of text.

For many applications the PRINT statement provides ade-
quate formatting. The simplest method of print formatting is
by specifying a comma or semicolon between printed items.

When the comma is used to separate items, the printer will
print the items on field boundaries. Fields start in column one
and occur every ten columns (columns 1,11,21,31,...). Using
the values: A = 1.1, B= —222, C=3E+ 5 D =5.1E + 8

FRINT A,B,C,D

Produces:

1.1 -22,2 306004

123456789012345678901234567898123456789

S.1E+8

Programming Techniques 3-161

Note the form of numbers in a normal PRINT statement. A
positive number has a leading and a trailing space printed
with the number. A negative number uses the leading space
position for the “—” sign. This is why the positive numbers in
the previous example appear to print one column to the right
of the field boundaries. The next example shows how this

form prevents numeric values from running together.

A;B;C;D,E

1.1 -22.,2 300008 5.1E+8

123456789012345678501234567890123

Using the semicolon as the separator caused the numbers to
be printed as closely together as the “compact” form allows.
The compact form always uses one leading space (except
when the number is negative) and one trailing space.

The comma and semicolon are often all that is needed to
print a simple table. By using the ability of the PRINT state-
ment to print the entire contents of of a array, the comma or
semicolon can be used to format the output.

If each array element contained the value of its subscript, the
statement:

PRINT Arraugcka;

Produces:

3-162 Programming Techniques

Another method of aligning items is to use the tabbing ability
of the PRINT statement.

PRINT TRAB¢(252;-1.414

123456789012345678901234567890123

-1.414

Using Imageé

While PRINT TAB works with an external printer, PRINT
TABXY may not. PRINT TABXY may be used to specify both

the horizontal and vertical position when printing to the in-
ternal CRT.

A more powerful formatting technique employs the ability of
the PRINT or OUTPUT statement to allow an image to spec-
ify the format.

Just as a mold is used for a casting, an image can be used to
format printing. An image specifies how the printed item
should appear. The computer then attempts to print to item
according to the image.

One way to specify an image is to include it in the PRINT or
OUTPUT statement. The image specifier is enclosed within
quotes and consists of one or more field specifiers. A semi-
colon then separates the image from the items to be printed.

PRINT USING "0.DDD";PI

This statement prints the value of pi (3.141592659...) rounded
to three digits to the right of the decimal point.

3.142

Programming Techniques 3-163

For each character “D” within the image, one digit is to be
printed. Whenever the number contains more non-zero digits
to the right of the decimal than provided by the field speci-
fier, the last digit is rounded. If more precision is desired,
more characters can be used within the image.

PRINT USING "D.18D":PI

3.1415926536

Instead of typing ten “D” specifiers, one for each digit, a
shorter notation is to specify a repeat factor before each field
specifier character. The image “DDDDDD” is the same as the
image “6D”.

The image specifier can be included in the PRINT statement
or on it's own line. When the specifier is on a different line,
the PRINT statement accesses the image by either the line
number or the line label.

188 Format: IMAGE "&Z2.DD"
118 PRINT USIMG Format:A,E.C
1z2ze@ PRINT USING 186:A,B,C

Both PRINT statements use the image in line 100.

3-164 Programming Techniques

Numeric Image Specifiers. Several characters may be used
within an image to specify the appearance of the printed

value.
Image
Specifier Purpose

D Replace this specifier with one digit of the number to
be printed. If the digit is a leading zero, print a space.
If the value is negative, the position may be used by
the negative sign.

z Same as “D” except that leading zeros are printed.

E Prints two digits of the exponent after printing the se-
quence “E+". This specifier is equal to “ESZZ". See
the BASIC Language Reference for more details.

K Print the entire number without leading or trailing
spaces.

S Print the sign of the number: either a “+” of “—".

M Print the sign if the number is negative; if positive,
print a space.
Print the decimal point.

H Similar to K, except the number is printed using the
European number format (comma radix). (Requires
10)

R Print the comma (European radix) (Requires 10}

* Like Z, except that asterisks are printed instead of
leading zeros. (Requires 10)

Programming Techniques 3-165

To better understand the operation of the image specifiers ex-
amine the following examples and results.

Statement Output
FPRIMT USIHG "K";33,6648 33.666
PRINT USIHG "DD.DODD";33.666 33.666
PRINT USIMG "DDD.DD":33.666 33.67
PRINT USING "ZZ22.DD";33.666 B33.67
FRINT USING "Z2Z2":.444 paa
PEINT USING "Z222":.3555 a1
FRINT USING "SD.3DE";:;6.B23E+23 +6 . 123E+23

FEINT USING "S30,3DE":6.B23E+23 +602 . 388E+21

FREINT USIMG "S55D.3de":6.823E+23 +60230.00RE+19
FRIMT USIMG "H":3121.55 3121.55

PRIMT USING "DDRDD";19.95 19,95

FRINT USING "%xk%";, 555 *k1

To specify multiple fields within the image, the field specifiers
are separated by commas.

Statement OCutput

FRINT USING "«,50,50";186,200,3600 (186 260 200
FRINT USIMG "DD,ZZ,0D0";:;1,2,3 182 3

3-166 Programming Techniques

If the items to be printed can use the same image, the image
need be listed only once. The image will then be re-used for
the subsequent items.

PRINT USING "5D.DD";3.98,5.95,27.59,139,95
123456789012345678901234567890123
3.98 5.95 27.58 139.95

The image is re-used for each value. An error will result if the
number cannot be accurately printed by the field specifier.

String Image Specifiers. Similar to the numeric field image
characters, several characters are provided for the formatting

of strings.
Image
Specifier Purpose
A Print one character of the string. If all characters of
the string have been printed, print a trailing blank.
K Print the entire string without leading or trailing
blanks
X Print a space.
“Literal” Print the characters between the quotes.

Programming Techniques 3-167

The following examples show various ways to use string spec-
ifiers.

PRINT USING "SX,18R,2X,168RA";"Tom", "Smith"
12345678301 2343678901234356789

Tom Smith
FPRINT USIHG "SX,""John"",2X,10A";:"Smith"

123456789081 2345678908123456789
John Smith

PRINT USIHG """PART NUMBER"",2x,16d" ;986801234

12343678501 234567898123456789
PART NUMEER 2006E1234

Additional Image Specifiers. The following image specifi-
ers serve a special purpose.

Image Purpose
Specifier
B Print the corresponding ASCIi character.

This is similar to the CHR$ function.
Suppress automatic end-of-line (EOL) sequence;

L Send the current end-of-line (EOL) sequence; with 10,
see the PRINTER IS statement in the BASIC Lan-
guage Reference manual for details on re-defining the
EOL sequence.

Send a carriage-return and a linefeed.

Send a formfeed.

+® ~

Send a carriage-return as the EOL sequence.
(Requires 10 binary)

— Send a linefeed as the EOL sequence.
(Requires 10 binary)

3-168 Programming Techniques

For example:

PRINT USING "@,#" outputs a formfeed.
PRINT USING "D,X,3R,""0R NOT"",X,B,%,B,B";2,"BE",50,66,69

Special
Considerations

If nothing prints, be sure the printer is ON LINE. When the
printer is OFF LINE the computer and printer can communi-
cate but no printing will occur.

Sending text to a non-existent printer will cause the computer
to wait indefinitely for the printer to respond. ON TIMEOUT
may be used within a program to test for the printer. To clear
the error press CLEAR I/O check the interface cable, and
switch settings then try again.

'The Real-Time
Clock

Clock Range and
Accuracy

Most personal computers have a real-time clock that you can
set and read to monitor the time of day and date. The clock
keeps time even when the power is removed from the com-
puter. This section describes using the clock and related
functions and statements.

Many of the statements described in this section require the
CLOCK binary. Refer to the BASIC Language Reference manual
for specific requirements of each statement.

The range of the clock is March 1, 1900 through August 4,
2079. The clock maintains time to within +2.5 seconds per
day.

Programming Techniques 3-169

Initial Clock Value

Reading the Clock

When you boot the HP BASIC system, the HP BASIC clock in
most personal computers is set to one of three values:

B The HP BASIC clock time is set to the value of the real-
time clock. If there is no real-time clock, the HP BASIC
clock is set to 12:00:00 (midnight), March 1, 1900.

B With computers on the Shared Resource Management
(SRM) system that don’t have a real-time clock, the clock
value is taken from the SRM system. (This occurs only
when the SRM and DCOMM binaries are loaded.)

Internally, the clock maintains the year, month, day, hour,
minute, and second as a single real number. This number is
scaled to an arbitrary “dawn of time,” thus allowing it to also
represent the Julian date. The current value of the clock is
returned by the TIMEDATE function.

PRINT TIMEDATE

Determining Date
and Time of Day

While the value returned contains all the information neces-
sary to uniquely specify the date and time to the nearest one-
hundredth of a second, it needs to be “unpacked” to provide
understandable information.

The following functions are available to extract the date and
time of day from TIMEDATE.

The DATE$ function extracts the date from the value of
TIMEDATE.

PRINT DATE$(TIMEDATE>

The TIMES$ function returns the time of day.

PRINT TIME$C(TIMEDRTE?

3-170 Programming Techniques

Setting the Clock

The SET TIMEDATE statement is used to set the clock.

SET TIMEDATE DATEC("2 O0CT 1986"> + TIMEC“"8:37:3@")>

The time of day can be changed without affecting the date by
the SET TIME statement.

SET TIME TIMEC("9:55">

Setting the Time

Note that an error is reported if you try to set the clock to a
value outside the legal range.

The time of day is changed by SET TIME X, where X is the
number of seconds past midnight. The value of X must be in
the range: 0 through 86399.99 seconds. The TIME function
will convert twenty-four hour formatted time (HH:MM:SS)
into the value needed to set the clock.

The TIME function converts an ASCII string representing a
time of day, in twenty-four hour format, into the number of
seconds past midnight. For example:

SET TIME TIME("13:38:18">

Is equivalent to:

SET TIME 55818

Either of these statements will set the time of day without
changing the date. Use the SET TIMEDATE statement to
change the date.

Programming Techniques 3-171

To display the new time, the TIME$ function formats the
clock’s value (TIMEDATE) into hours, minutes, and seconds.

PRINT TIME$(TIMEDATE>

Prints: 15:38: 16

Even though TIMEDATE returns a value containing both time
of day and the Julian date, TIME$ performs an internal mod-
ulo 86400 on the value passed to the function and will
always return a string in the range: 88:88:88 thru
23:39:39.

Setting the Date The date is changed by SET TIMEDATE X, where X is the
Julian date multiplied by the number of seconds in a day
(86400). The DATE function converts a formatted date (DD
MMM YYYY) into the value needed to set the clock. Due to
the wide range of values allowed by the DATE function, neg-
ative years can be specified, but not when using the function
to set the clock.

The following statement will set the clock to the proper date.

SET TIMEDATE DATEC("1 Jun 1984")

When programming without CLOCK, the user-defined func-
tion FNDate can be used.

SET TIMEDATE FHMDate("1 Jun 1984")

Both of these statements are equivalent to the following
statement.

SET TIMEDATE 2.11321693ZE+11

3-172 Programming Techniques

The DATE function converts the accompanying string (or
string expression) into the numeric value needed to set the
clock. To read the clock, the DATE$ function formats the
clock’s value as the day, month, and year. For example, the
following line will print the date.

PRINT DATE$<TIMEDATE?>

Day of the Week

Branching on
Clock Events

Prints: 1 Jun 1984

An advantage of Julian dates is the simplicity of finding the
day of the week. TIMEDATE DIY 86488 MOD 7 returns a
number which represents the day of the week. Monday is
represented by zero (0), and the numbering continues
through the week to Sunday which is represented by six (6).

Several additional branching statements, available with
CLOCK, allow end-of-statement branches to be triggered ac-
cording to the real-time clock’s value.

B ON TIME enables a branch to be taken when the clock
reaches a specified time of day.

B OH DELAY enables a branch to be taken after a specified
number of seconds has elapsed.

B 0N CYCLE enables a recurring branch to be taken with
each passage of a specified number of seconds.

The specified time can range from 0.01 thru 167772.15 sec-
onds for the ON CYCLE and ON DELAY statements and 0
thru 86399.99 seconds for ON TIME. The value specified with
ON TIME indicates the time of day (in seconds past midnight)
for the branch to occur.

Each of these statements has a corresponding statement to
cancel the branch (OFF TIME, OFF DELAY, and OFF CYCLE).
A statement is also canceled by executing another ON TIME,
ON DELAY, or ON CYCLE statement.

Programming Techniques 3-173

Cycles and Delays

All of the statements use the internal real-time clock. You
should take care to avoid writing programs that could change
the clock’s setting during execution. Since only one resource is
dedicated to each statement, certain restrictions apply to the
use of these statements.

Both the ON CYCLE and ON DELAY statements enable a
branch to be taken as soon as the specified number of sec-
onds has elapsed. ON CYCLE remains in effect, re-enabling a
branch with each passage of time. For example, load and run
the program found in file ONCYCLE on your Manual Exam-
ples disc.

18 OH CYCLE 1 GOSUB Fiwve !
28 0N DELRAY & GOTO Guit 1
38 |

48 T: DISP TIME$(TIMEDATE>» !
58 GOTO T

58 |

Y8 Five:!FOR I=1 TO 5

28 PRINT RHND;

98 HEXT I

188 PRINT

118 RETURN

128 |

138 Quit:EHND

Print 5 random numbers every second.
After & seconds quit.

Show the time,

The program will print five random numbers every second
for six seconds and then stop.

Only one ON CYCLE and one ON DELAY statement can be
active in a program context. Executing a second ON CYCLE
or ON DELAY statement in the same program context deacti-
vates the first ON CYCLE or ON DELAY statement. If a
branch is missed due to priority restrictions or execution of a
subprogram, the event is logged and the branch will be taken
when the restriction is removed or the original context is re-
stored. If an active ON CYCLE or ON DELAY statement gets
canceled in an alternate context (subprogram) the branch is
restored when execution returns to the defining context. (See
Branching Restrictions for more information about this).

3-174 Programming Techniques

Time of Day

The ON TIME statement allows you to define and enable a
branch to be taken when the clock reaches a specified time of
day, where time of day is expressed as seconds past midnight.
Using the TIME function simplifies setting an ON TIME state-
ment by allowing a formatted time of day to be used.

For example:

ON TIME TIMEC"11:38") GOTO Lunch

Typically, the ON TIME statement is used to cause a branch at
a specified time of day. By adding an offset to the current

clock value, the ON TIME statement can be used as an inter-
val timer. In the following example (found in file ONDELAY
on your Manual Examples disc), both ON DELAY and ON

TIME are used as interval timers.

18 ON DELAY 5 GOSUB Takeoff ! delay 5 seconds

20 ON TIME (TIMEDATE+18) MOD 86488 GOSUB Touchdown ! delay 18 seconds
38 PRINT "STARTING... ",TIME$(TIMEDATE>

4@ Clock:DISP TIME$(TIMEDARTE>

58 GOTO Clock

68 !

70 Takeof f:PRINT "TAKEOFF at ",TIME$(TIMEDATE>

88 RETURHM

98 Touchdown:PRINT "TOUCHDOWN at ", TIME$<(TIMEDATE>
188 RETURN

118 END

The starting time is printed when the program is executed.

Five seconds later the first subroutine is executed. Ten seconds
after the program starts, the second subroutine is executed.

Programming Techniques 3-175

Only one ON TIME statement can be active in a program
context. If a branch is missed, due to priority restrictions or
execution of a subprogram, the event is logged and the
branch will be taken when the restriction is removed or the
original context is restored. If an active ON TIME statement
gets canceled in an alternate context (subprogram) the branch
is restored when execution returns to the defining context.
(See Branching Restrictions for more information about this).

Due to the “match an exact time” nature of the ON TIME
statement, if the specified time occurs when the statement is
temporarily canceled (by an OFF TIME in an alternate con-
text), no branch will be taken when the defining context is
restored.

Priority A priority can be assigned to the branch defined by ON CY-
Restrictions CLE, ON DELAY, and ON TIME. For example: '

ON CYCLE Seconds,Priority GOTO Label

If the system priority is higher than the branch priority at the
time specified for the branch, the event will be logged but the
branch will not be taken until the system priority falls below
the branch priority. An example program, found in file PRI-
ORITY on your Manual Examples disc, follows.

3-176 Programming Techniques

1@

28P=

30
48
50
ca
e
88
28
iee
1180
128

138 !

148
158
160
ive
180
198
2ea
218
228
238
240
258
26@
270

-ON DELAY .5,6 CALL Busy ! DELRY overrides CYCLE until priority

COM Start

5]

Up:iP=P+])

IF P>15 THEN Quit ! Priority from 1 thru 15

PRINT

PRINT "Priority:";P;

Start=TIMEDATE ! Save the start-time for subproaram.

ON CYCLE 1,P RECOVER Up ! Mew priority every second if not Busuy.

| (P> is greater than 6,
W:GOTO W
Guit:END

SUB Busy
COM Start
PRINT "SUB";
WHILE I<18
IF TIMEDATE>Start+1 THEN ! Has ON CYCLE time been exceeded?
PRINT "%"; | YES (only prints if Prioritu{?)
ELSE
PRINT "."; | NO
END IF
I=1+1 ! Loop ten times
WAIT .1
END WHILE
PRINT "DONE";
SUBEND

Once the priority assigned to the ON CYCLE statement is
greater than the priority assigned to the ON DELAY statement
(6), the subprogram will be interrupted. After running the
program, change line 80 in the above program to the
following:

‘88 ON CYCLE 1,P GOTO Up

Programming Techniques 3-177

Branching
Restrictions

Running the new version of the program will show that
GOTO (or GOSUB) will not interrupt a subprogram regard-
less of the assigned priority. The branch will be logged but
not taken until execution returns to the main program. If you
write a program that makes extensive use of subprograms and
branching statements, use CALL and RECOVER to insure
proper operation.

Certain restrictions apply to the use of ON TIME, ON CY-
CLE, and ON DELAY because only one resource is dedicated
to each statement. Assuming an active branch has been de-
fined in the main program, execution of a subprogram which
sets up a new branch will cause the loss of the original time.
When the main program context is restored, the original
branch will be restored, but at the time defined in the
subprogram.

|
Error Handling

Most programs are subject to errors happening at run time.
There are three courses of action to take with respect to
errors:

1. Try to prevent the error from happening in the first
place.

2. Once an error occurs, try to recover from it and continue
execution.

3. Do nothing—Iet the program “roll over and die” if an
error happens.

The last alternative, which may seem frivolous at first glance,
is certainly the easiest to implement, and the nature of most
personal computers is such that this is often a feasible choice.
Upon encountering a run-time error, the computer will pause
program execution and display a message giving the error

number and the line in which the error happened, and the

3-178 Programming Techniques

Anticipating

Operator Errors

programmer can then examine the program in light of this
information and fix things up. The key word here is “pro-
grammer.” If the person running the program is also the
person who wrote the program, this approach works fine. If
the person running the program did not write it, or worse yet,
does not know how to program, some attempt should be
made to prevent errors from happening in the first place, or
to recover from errors and continue running.

When you write a program, you know exactly what the pro-
gram is expected to do, and what kinds of inputs make sense
for the problem. Sometimes you overlook the possibility that
other people using the program might not understand the

boundary conditions. You have no choice but to assume that
every time a user has the opportunity to feed an input to a
program, a mistake can be made and an error can be caused.
You should make every effort to make the program foolproof.

Boundary Conditions. A classic example of anticipating an
operator error is the “division by zero” situation. An INPUT
statement is used to get the value for a variable, and the vari-
able is used as a divisor later in the program. If the operator
should happen to enter a zero, accidentally or intentionally,
the program crashes with an error 31. It is far better if you
plan for such an occurrence. One method is shown in the fol-
lowing example.

ies
116
i28\
136
i4@
158
18
178

IMPUT "Miles traveled and total hours",Miles,Hours

IF Hours=8 THEHN
BEEP

PRINT "Improper value entered for hours.,"
PRINT "Try again!"

GOTO 188
END IF
Mph=Miles- Hours

Programming Techniques 3-179

Error Trapping Despite the programmer’s best efforts at screening the user’s
inputs in order to avoid errors, sometimes an error will still
happen. It is still possible to recover from run-time errors,
provided the programmer predicts the places where errors are
most likely to happen.

ON/OFF ERROR. The ON ERROR command sets up a
branching condition which will be taken any time a recover-
able error is encountered at run time. The branching action
taken may be either GOTO, GOSUB, CALL, or RECOVER.
GOTO and GOSUB are purely local in scope—that is, they
are active only within the context in which the ON ERROR is
declared. CALL and RECOVER are global in scope—after the
ON ERROR is set up, the CALL or RECOVER will be exe-
cuted any time an error occurs, regardless of subprogram
environment.

When an ON ERROR statement is executed, the language sys-
tem will make sure that the specified line or subprogram
exists in memory before the program will proceed. If ON ER-
ROR GOTO/GOSUB/RECOVER are specified, then the line
identifier must exist in the current context. If an ON ERROR
CALL is given, then the specified subprogram must currently
be in memory. In either case, if the system can’t find the
given line, an error 49 is issued.

If you use either ON ERROR GOSUB or ON ERROR CALL
and an error occurs, the specified branch will take place, and
when the RETURN or SUBEXIT is executed, then program
execution will resume at the line which caused the error, and
an attempt will be made to execute the line again.

ON ERROR has a priority of 16, which means that it will al-
ways take priority over any other ON <event> since the
highest user-specifiable priority is 15.

The OFF ERROR statement will cancel the effects of the ON
ERROR statement, and no branching will take place if an er-
ror is encountered.

The DISABLE statement has no effect on ON ERROR
branching.

3-180 Programming Techniques

ERRN/ERRL/ERRMS$. ERRN is a function which returns the
error number which caused the branch to be taken. ERRN is a
global function, meaning it can be used from the main pro-
gram or from any subprogram, and it will always return the
number of the most recent error.

ERRMS is a string function which returns the text of the error
which caused the branch to be taken.

ERRL is a function which is used to find the line in which the
error was encountered. ERRL is a boolean function. The pro-
gram feeds it a line identifier, and either a 1 or a 0 is
returned, depending upon whether or not the specified identi-
fier indicates the line which caused the error. ERRL is a local
function, which means it can only be used in the same envi-
ronment as the line which caused the error. This implies that
ERRL cannot be used in conjunction with ON ERROR CALL,
and that it can be used with ON ERROR GOTO and ON ER-
ROR GOSUB. ERRL can be used with ON ERROR RECOVER
only if the error did not occur in a subprogram which was
called by the environment which set up the ON ERROR
RECOVER.

The ERRL function will accept either a line number or a line
label.

1140 DISP ERRLC(F1@2

918 IF ERRL{(Compute) THEN Fix_compute

ON ERROR GOSUB. The ON ERROR GOSUB statement
should only be used when you can guarantee that the prob-
lem causing the error can be fixed and the line can be re-
executed safely. Remember that if the action taken in the error
service routine is not sufficient to correct the problem, the
program will dive into an infinite loop. Every time an error
occurs, a GOSUB will cause a branch to the error service rou-
tine which will RETURN execution to the line causing the
error.

Programming Techniques 3-181

When an error triggers a branch as a result of an ON ERROR
GOSUB statement being active, system priority is set at the
highest possible level (16) until the RETURN statement is exe-
cuted, at which point the system priority is restored to the
value it was when the error happened.

ON ERROR GOTO. The ON ERROR GOTO statement is
generally more useful than ON ERROR GOSUB, especially if
you are trying to service more than one error condition. The
only advantage that ON ERROR GOSUB has over ON ER-
ROR GOTO is that system priority is maintained at the
highest possible level until the error subroutine is finished.

By using the ON ERROR GOTO statement, the same error
service routine can be used to service all the error conditions
in a given context. By testing both the ERRN (what went
wrong) and the ERRL (where it went wrong) functions,
proper recovery procedures can be taken. Load and run file
ERRECOVER on the examples disc for a detailed example.

ON ERROR CALL. ON ERROR CALL is global, meaning
once it is activated, the specified subprogram will be called
immediately whenever an error is encountered, regardless of
the current context. System priority is set to level 16 inside
the subprogram, and remains that way until the SUBEXIT is
executed, at which time the system priority will be restored to
the value it was when the error happened.

You should only use the ON ERROR CALL statement when
you can guarantee that the problem causing the error can be
fixed and the line can be re-executed safely. Remember that if
the action taken in the error service routine is not sufficient to
correct the problem, the program will dive into an infinite

loop. Every time an error occurs, a CALL will cause a branch
to the error service routine which will return execution to the
line causing the error when a SUBEXIT statement is executed.

Remember that an ON...CALL statement can not pass param-
eters to the specified subprogram, so the only way to
communicate between the environment in which the error is
declared and the error service routine is through a COM
block.

3-182 Programming Techniques

The ERRL function will not work in a different environment
than the one in which the ON ERROR statement is declared,
so when using an ON ERROR CALL, you should set things
up in such a manner that the line number either doesn’t mat-
ter, or can be guaranteed to always be the same one when the
error occurs. This can be accomplished by declaring the ON
ERROR immediately before the line in question, and immedi-

ately using OFF ERROR after it.

58186
S8z2a
aaza

raza
7838
re4ae
rase
7868
rage
Fa98
7lee
7iza
7130
7148
Fleo
7iva
rige
vi9a
vZea
vZie
vZze

ON ERROR CALL Fix_disc
ASSIGH @File TO "Data_file"
OFF ERROR

SUB Fix_disc
SELECT ERRH
CASE 8@
DISP "Door open —- shut it and press COMT"
PAUSE
CASE &3
DISP "Write protected —-- fix and press CONT"
PAUSE
CASE 85
DISP "Disc not initialized -- fix and press CONT"
PAUSE
CASE 56
DISP "Creating Data_file"
CREATE BDAT "Data_file", 2@
CASE ELSE
DISP "Unexpected error ";ERRN
PAUSE
SUBEND

Programming Techniques

. 3-183

ON ERROR RECOVER. The ON ERROR RECOVER state-
ment sets up an immediate branch to the specified line
whenever an error occurs. The line specified must be in the
context of the ON..RECOVER statement. ON ERROR RE-
COVER is global in scope—it is active not only in the
environment in which it is defined, but also in any subpro-
grams called by the segment in which it is defined.

If an error is encountered while an ON ERROR RECOVER
statement is active, the system will restore the context of the
program segment which actually set up the branch, including
its system priority, and will resume execution at the given
line.

The problem of debugging a program is distinct from the is-
sues raised in the “Error Handling” section. The “Error
Handling” section is based on the premise that you are satis-
fied that the program works as it should, and that it then
should be made as foolproof as possible. This could be con-
strued as putting the cart before the horse—before you can
make a program foolproof, you must get it to run correctly in
the first place. One of the key characteristics of a “bug” is that
it doesn’t necessarily have to cause an error condition to oc-
cur—it only has to cause your program to give a wrong
answer. This section deals with the methods available to diag-
nose problems in logic and semantics.

Naturally, the ideal way to debug a program is to write it cor-
rectly the first time through. Hopefully, the techniques that
have been been discussed in this manual will help you get a
little closer to this goal. The practice of writing self-
documenting code and designing programs in a top-down
fashion should help immensely.

The computer itself has several features which aid in the pro-
cess of debugging.

3-184 Programming Techniques

Using Live
Keyboard

One of the pleasing characteristics of your computer is that its
keyboard is “live” during program execution. That is, you can
issue commands to the computer while it is running a pro-
gram the same way that you issue commands to it while it is
idle. For example, you can add two numbers together, exam-
ine the catalogue of the disk currently installed in the drive,
list the running program to a printer, scroll the CRT alpha
buffer up and down, or output a command to a function gen-
erator over HP-IB. Practically the only thing you can’t do
from live keyboard while a program is running is write or
modify program lines, or attempt to alter the control struc-
tures of the program. (A complete list of illegal keyboard
operations is given a little later on.)

By way of illustration, key in the following program, press
RUN, and then execute the commands shown underneath the
listing.

18 FOR I=1 7O 1.E+5
28 HEXT I
38 END

CAT

2+2

SQRC{&"2+17 .22

PRINT "THE GQUICK BROWH
TIMEDATE

Fox"

This program will take a fair amount of time to complete
(about 18 seconds), so to find out how far the program has
gone, merely type I and press (Enter). The current value of I
will be displayed at the bottom of the screen. If you don't
want to wait for the program to go through all one hundred
thousand iterations, you can merely change the value of I by
executing the command

I=93335

Programming Techniques 3-185

Thus, we have seen that live keyboard can be used to exam-
ine and/or change the contents of the program’s variables.

One aspect of live keyboard you should remember is that the
computer will only recognize variables that exist in the cur-
rent program environment. For example, suppose that we
change our example program to call a subprogram inside the
loop.

1@
13
28
38
48
o8
60
ve

FOR I=1 TO 1.E+5
CALL Dummy

NEKT I

END

SUB Dummy

FOR J=1 TO 18

NEXT J

SUBEND

While this program is running and you try and test the vari-
able I from the keyboard, chances are that you will only get a
message saying that I doesn’t exist in the current context—
most of the time will be spent in the subprogram. On the

other hand, if you test the value of J, it is highly likely that
you will get an answer.

Similarly, operations like ASSIGN and ALLOCATE, which are
declarative types of statements, must use variables that are
already known to the current environment when they are exe-
cuted from the keyboard. For example, it is perfectly legal to
perform the operation

ASSIGH @Dvm TO ¥

from the keyboard, but it is not legal to perform

RSSIGH @File TO "DATA"

from the keyboard.

3-186 Programming Techniques

Stepping

Live keyboard operations are allowed to use variables already
known by the running program. Live keyboard operations are
not allowed to create variables.

Although the GOTO and GOSUB commands are illegal from
the keyboard, it is perfectly legal to call subprograms from the
keyboard. The only restriction on using SUB and function
subprograms from the keyboard is that the parameters that
are passed must either be constants or must be variables that
exist in the current context.

Here is a list of commands which may not be executed from
the keyboard while a program is running, although they may
be executed from the keyboard if the computer is idle:
RUN SCRATCH GET

CONT SCRATCH A LOAD

EDIT SCRATCH C LOAD BIN

DEL SCRATCH BIN

One of the most powerful debugging tools available is the ca-
pability of single-stepping a program, one line at a time. This
process allows the programmer to examine the values of his
variables and the sequence in which the program is running
at each statement. This is done with the STEP function.

Programming Techniques 3-187

There are three ways to use STEP*:

1. If the program is stopped (i.e., a prerun has to be per-
formed), pressing STEP* will cause the system to
perform a pre-run on the program, but no program lines
will actually be executed. The first line that will be exe-
cuted will appear in the system message line at the
bottom of the screen. Pressing STEP* again will cause
that line to be executed, and the next line after that to be
executed will appear in the message line. If STEP* is
pressed causing the next line to appear in the display,
and a live keyboard operation (such as examining the
value of a variable) is performed, the contents of the
message line will change. Pressing STEP* again will still
cause the line to be executed, even though it is no longer
visible in the display line. After the statement has com-
pleted, the next line will appear.

2, If the program is in an INPUT or LINPUT statement,
pressing STEP* is sufficient to terminate the operation.
Any data entered from the keyboard will be entered into
the correct variables, just as though CONTINUE or
had been pressed, but program execution will be
PAUSEd, and the statement immediately following the
INPUT or LINPUT will appear in the system message
line.

3. If the program is in a PAUSEJ state, pressing STEP* will
cause the next line to be executed. The program counter
will not be reset, nor will a prerun be performed. Again,
the next line to be executed will appear in the system
message line after the last one has been completed. A
paused state is indicated by a dash in the run light in the
lower right-hand corner of the screen.

* Refer to appendix E or the Key Function and Switch Configuration Guide to find
the keystrokes for STEP.

3-188 Programming Techniques

Type in the following example and execute it by pressing
STEP repeatedly.

1@ DIM A<1:5)

28 ! This is an example

38 S=8

46 FOR I=1 TO 5

58 INPUT "Enter a number",A<I)
60 S=S5+ACIyY

78 HMERXRT 1

88 PRINT §

98 PRINT RAC¥);

188 END

Tracing

Notice that STEP caused every statement to appear in the sys-
tem message line, one at a time, even those statements that
are not really executed, like DIM and comments.

The process of single-stepping, wonderful though it is, can be
quite slow, especially if the programmer has little or no idea
which part of his program is causing the bug. An alternative
way of examining variable changes and program flow is avail-
able in the form of the TRACE ALL statement.

TRACE ALL. When the TRACE ALL command is executed, it
causes the system to issue a message prior to executing every
line (this shows the order in which the statements were exe-
cuted), and if the statement caused any variables to change
value, a message telling the variables involved and their new
values is also issued. The messages are issued to the system
message line, and the most useful way to use the TRACE ALL
feature is to turn PRINT ALL on. Press the PRINT ALL keys
(refer to appendix E or the Key Function and Switch Configu-
ration Guide to determine the keys to use). A message
(“Printall on” or “Printall off”) will appear on the screen. The
printall mode will cause all information from the DISP line,
the keyboard input line, and the system message line to be
logged on the PRINTALL IS device.)

Programming Techniques 3-189

Press PRINT ALL (refer to appendix E or the Key Function
and Switch Configuration Guide) to turn on PRINT ALL.
Load and run the following example (found in file
TRACEALL on your Manual Examples disc) to see how
TRACE ALL works:

18 TRACE ALL

28 FOR I=1 TO 18

30 PRINT I;

48 IF I MOD 2 THEHN

58 PRINT " is odd."
(=] ELSE

7a PRINT " is even."
88 END IF

98 HEXT I

188 END

There are two optional parameters that can be used with
TRACE ALL. Both parameters are line identifiers (line num-
bers or line labels). The first parameter tells the system when
to start tracing, and the second one (if it’s specified) tells the
system when to stop tracing.

It is usually more useful to use the TRACE ALL command
from the keyboard rather than from the program because a
program modification is not necessary if you want to trace a
different part of the program. All that’s necessary is to type in
a new TRACE ALL command from the keyboard to override
the old one. For example, to trace a loop from lines 30 to 40,
type in TRACE ALL 38,48 from the keyboard.

The program will begin tracing at line 30, and keep on tracing
until it's ready to execute line 40, at which time it will termi-
nate the trace messages and will continue executing the
program normally.

3-190 Programming Techniques

PRINTALL IS

TRACE PAUSE

If the TRACE ALL statement uses a line label instead of a line
number, be aware of what happens if you have more than
one occurrence of a given line label in your program. For in-
stance, it is perfectly legal to have the same line label in two
or more different program environments—line labels are local
to subprograms and branching operations addressing a given
line label are treated separately in different subprograms.
However, when a TRACE ALL using a line label is executed,
the first line label in memory is the one that gets used, re-
gardless of the environment the program was in when the
TRACE ALL statement was executed. If two line identifiers
are used, their location with respect to each other does not
matter. Tracing will start when the line specified first is en-
countered, and it will stop when (or if) the second line is
encountered.

The PRINTALL IS command is useful for switching the trac-
ing messages between the CRT and a hardcopy printer.
(Again, to get any record at all of the trace messages, PRINT
ALL must be on.) To cause the trace messages to be logged on
the CRT, execute PRINTALL IS CRT. (The CRT is the default
PRINTALL IS device that the system assumes when it wakes
up.) To cause the messages to be logged on a printer, merely
change the select code to the appropriate value (PRINTALL IS
26).

The TRACE PAUSE command can be used to set a “break

point” in the program. The program will execute at a reduced
speed until the specified line is reached, at which time the
program will pause, and the specified line will be shown in
the display line, indicating that the program will execute it
when execution is resumed. Execution may be resumed by

pressing CONTINUE, or by executing CONTINUE from the
keyboard (the specified line identifier must be located in the
current environment).

Programming Techniques 3-191

By executing the command TRACE PAUSE Printout from
the keyboard, the following program (found in file TRPAUSE
on your Manual Examples disc) will pause every time it
reaches line 60.

18 DIM AdC1:18>

28 FOR I=1 TO 1@

38 GOSUB Printout
48 HEXT I

58 STOP

68 Printout: !

¥8 FOR J=1 TO 18

28 PRINT RA{J>;",";
98 HEXT J

188 PRIMT

118 RETURN

128 EHND

Try the following ways of continuing execution:

W Press STEP.
B Press CONTINUE.

B Execute CONT 118 (Enter).

As with TRACE ALL, a new TRACE PAUSE statement over-
rides a previous one. The same rules are applied when a line
label is used in a TRACE PAUSE statement as are applied to
the TRACE ALL statement—the first line in memory having
that label is used.

TRACE OFF. TRACE OFF cancels the effects of any active
TRACE ALL or TRACE PAUSE statements. The status of
Print All and the PRINTALL IS device will be unchanged.

TRACE OFF may be executed either from the program, or
from the keyboard.

3-192 Programming Techniques

The CLR 1/0 Key. The CLEAR I/O key suspends any active
I/O operation and pauses the program in such a way that the
suspended statement will restart once CONTINUE or STEP is
pressed. This is useful for operations which appear to “hang”
the machine, such as printing to a printer which isn’t turned
on.

Most devices will not respond to ENTER requests unless they
have first been instructed to respond. If improper values are
sent to a device, it may refuse to respond. Therefore, CLEAR
I/O can help in debugging these situations.

Here are the operations that can be suspended with CLEAR
I/0.

PRINT SEND ASSIGN
LIST PRINTALL PURGE
outputs

CAT ENTER CREATE

OUTPUT INPUT DUMP
GRAPHICS

HP-IB commands DUMP ALPHA External plotter
commands

Programming Techniques 3-193

Graphics Techniques

Chapter 4

4-4

4-12
4-14
4-20
4-22
4-22
4-23
4-24
4-25
4-33
4-37
4-37
4-45
4-47
4-49
4-51
4-54
4-54
4-55
4-56
4-58
4-62
4-62
4-64
4-67

Contents

Graphics Techniques

Getting Started

Graphics Information
The CRT Display
The Current Position
Preparing to Output
Clearing the Displays
The XY Plane

Creating Graphics
Drawing Lines
Scaling
Defining a Viewport
Other Ways to Draw or Move
Erasing Lines
Line Attributes
Pen Types
Line Types
Creating Simple Shapes
Additional Pen Control

Using Graphics Effectively
More on Labelling a Plot
Miscellaneous Graphics Concepts
Data-Driven Plotting
Translating and Rotating a Drawing
Incremental Plotting

External Graphics Displays and Plotters
Specifying a Plotter
Using a Shared Plotter
Dumping Raster Images
HPGL

Color Graphics
Non-Color Mapped Color
Color Mapped Color
Fill Colors

4

Graphics Techniques

Getting Started

Graphics is a good means of presenting information. This
chapter takes you step-by-step through the graphics design
process in order to give you a basic background in graphics
programming on your computer. If you're an expert graphics
programmer, you may want to skip directly to appendix A to
familiarize yourself with the graphics statements. If you're not
familiar with graphics concepts, read this chapter carefully
and completely.

You should try the examples on your computer as you go
through this chapter. If you have not loaded the GRAPH and
GRAPHX binaries, do so now. Refer to chapter 2 for informa-
tion on loading binaries.

]
Graphics
Information

The CRT Display

Before you create graphics, here is some background informa-
tion about your graphics system.

You will use the internal CRT as a plotter as you progress
through this chapter. Later, other kinds of plotters are ex-
plained. This is because it is easier to develop and edit
graphics programs using the CRT. With minor changes, the
image can be reproduced on an external plotter.

The Alpha and Graphics Displays. The CRT has two sepa-
rate displays, an alpha display and a graphics display, which
can be output either individually or combined. The alpha dis-
play outputs alphanumeric characters such as error messages
or commands, while the graphics display, obviously, outputs
graphics.

Graphics Techniques 4-1

The alpha display is controlled with:

ALPHA ON

and

ALPHA OFF

The graphics display is controlled with:

GRAPHICS ON

and

GRAPHICS OFF

4-2 Graphics Techniques

When you turn the computer on, the alpha display is on and
the graphics display is off. During execution of a graphics
program, the alpha display may be turned off, but execution
of a command or sending output to the alpha display turns
the alpha display on and leaves it on. The graphics display
can only be controlled with explicit GRAPHICS ON and
GRAPHICS OFF statements.

Resolution. A notable difference between CRTs and other
plotters is the resolution of the display. You probably know
that the CRT consists of an array of pixels or picture elements.
The resolution of graphics is directly dependent upon the
number of pixels per unit area.

The Current
Position

Preparing to
Output

When dealing with graphics output, this text uses the concept
of a current position. It is the point relative to which graphics
are currently output. Usually you can think of this as the
pen’s current location or the location at which graphics can be
currently output.

The current position is not always where the physical pen is
located. For example, if you instruct the pen to move to a
point outside the edge of the plotter, the physical pen only
moves to the edge, but the current position is updated to the
point specified.

Although the current position is referred to when discussing
where graphics are output, the concept of a pen is still impor-
tant. Knowledge of what the pen type is and whether it is
“up” or “down” is needed. Thus the pen, on a CRT, is defined
as the effect which gives the appearance of an invisible pen
creating lines on the display. On a paper plotter, it is the con-
trol arm which holds the ink pens.

To bring the system to a known starting point, execute the
command:

GINIT

This initializes the graphics in the system by resetting all the
attributes, viewing operations, plotters and other system vari-
ables. GINIT should always be executed before starting any
graphics programming.

Graphics Techniques 4-3

Clearing the
Displays

Once GINIT is executed, you want to make it easy to see the
graphics display. One problem encountered is that data in the
alpha display covers the graphics display. This can be re-
moved. To save the information currently in the alpha
display, simply execute:

ALPHA OFF

To delete the data in the alpha display, press CLEAR
SCREEN. A formfeed, CHR$(12) also clears the alpha display.
The cursor is the only thing left on the alpha display. CLEAR
SCREEN does not affect the graphics display, so you don't
have to worry about accidentally deleting your work.

To clear the graphics display, execute:

GCLERR

The XY Plane

4-4 Graphics Techniques

Any graphics in the output area of the display are lost, so be
sure that’s what you want to do. This does not affect the al-
pha display.

If you execute GINIT, any subsequent output statement also
causes a clearing of the graphics display on the internal CRT.

Graphics primitives are output on an imaginary plane known
as the XY plane; X is a horizontal axis and Y is a vertical axis
on this plane. Any two-dimensional images which you create
are assigned a position on this plane using XY coordinates.
Obviously, this plane cannot be infinite in size because your
system can only process numbers up to a certain size. BASIC
graphics uses data of type SHORT; therefore, the largest ab-
solute value of x or y that can be input is approximately 3.4
X 1038, That is, you can’t plot any coordinates greater than
this value.

Note

Think of the display as a window to this plane. You can look
at the whole coordinate system or a very small part of it at
any time through this window. When you turn on the com-
puter, the lower left-hand corner of the display is (0,0), and
the upper right-hand corner is (133,100). The viewable upper
right hand corner for an Enhanced Graphics Display is
(133,90). The upper edge of the FRAME will not be visible.
Refer to appendix B.

Enter and run this program:

There is a WAIT statement in the examples to follow. This
allows you time to view the display. You can recall the graph-
ics screen after the BASIC screen reappears by pressing
GRAPHICS. You can then return to the alpha mode by press-
ing any alpha key.

ig
28
30
48
1]

GINIT
GRAPHICS 0N
FRAME

WAIT 3

END

A frame outlined in white will appear on the display. This
frame surrounds the entire plotting surface, and is smaller
than the CRT screen. Any coordinates to which you can actu-
ally plot are within this frame. You can execute graphics
output statements that are beyond the edge of the display, but
no primitives are output. Placing a frame around the usable
plotting area can help when composing a picture.

Graphics Techniques 4-5

Finding the Current Position. Besides knowing the plotting
area that you have to work with, you need to know where
the current position is. This is the point on the display relative
to which subsequent graphics are positioned. To find it, use
the WHERE command. Enter and execute the following
program:

18 WHERE X,Y

38 END

26 PRINT "X =";X,"Y =";¥

X returns the x coordinate of the current location and Y re-
turns the y coordinate. Right now, X and Y should equal 0
because whenever GINIT is executed, the current position is
(0,0).

Changing the Current Position. The next step is to place
the current position where you want to start drawing. To do
this, use the MOVE statement. Execute the command:

MOVE 58,58

4-6 Graphics Techniques

Although nothing looks different on the display, you moved
the current position to the point (50,50). Use WHERE to see
that the current position has changed.

You can use any expression in the range of SHORT values in
MOVE. (In fact, almost all the graphics statements can work
with expressions in the range of SHORT values.) After a
GINIT, the resolution of the CRT is such that coordinates
have two significant decimal places. Other plotters have dif-
ferent resolutions; you have to experiment to determine these.

You may want to displace the current position by a specific
amount. In this case, instead of working out the coordinates
of the new position, you can specify an incremental move-
ment. You do this with the IMOVE (Incremental MOVE)
command. Execute:

IMOVE 18,5

You've moved the current position by 10 units along the X
axis and 5 units along the Y axis to the point (60,55). Again,
WHERE can confirm this.

Digitizing the Current Position. Often you can see where
you would like to move the current position, but you can’t tell
what the exact coordinates of the point are. To determine the
coordinates of a location on the display, use digitizing.

Here is how to do this.

B Put a crosshair on the display.

B Move the crosshair to the point on the display that you
want to be the current position by using the arrow keys of
the keyboard.

® Tell the system to return the coordinates of the crosshair’s
position.

You can then use these coordinates to move the current posi-
tion to that point. Execute the commands:

TRACK CRT IS ON
DIGITIZE X,Y

Graphics Techniques 4-7

The left and bottom edges of the display have a bright white
line. The TRACK...IS ON command sets a full-screen
crosshair at the point (0,0). TRACK CRT IS ON tells the sys-
tem that you want to “track” or mimic the keyboard arrow
keys on the internal CRT with a crosshair.

Use the arrow keys on the keyboard or the optional mouse to
move the crosshair to the point you wish to digitize. Digitize
tells the system that you want to digitize or record the arrow
key’s position. At this point, you can still move the crosshair
around if you wish. DIGITIZE doesn’t store the coordinates
until the next time is pressed.

When you have the crosshair positioned at the desired point,
press again to get the system to actually digitize the
point and place the coordinate values in the variables X and
Y. X has the x coordinate and Y has the y coordinate. When
the system is waiting for you to press to digitize a
point, the run light looks like an asterisk.

You can move to the point you've just found by executing the
command:

MOVE X.,Y

This form of digitizing only works for the internal CRT and
keyboard.

The crosshair does not disappear after you're done digitizing.
You can still move it around and digitize another point or
move the crosshair out of the way.

If your display is generated by a program, you can turn the
crosshair off with:

TRACK CRT IS OFF

4-8 Graphics Techniques

then execute:

GCLERR

Creating
Graphics

Drawing Lines

and then regenerate the display by running the program
again without the TRACK CRT IS ON statement.

At this point, you should be able to move the current position

to any point. This section explains how to draw lines on the
CRT.

Execute these commands:

GINIT
MOVE 58,58

DRAW 66,608

You have a line on the display from the point (50,50) to the
point (60,60). You can draw any line by first moving the cur-
rent position to the starting point and then drawing to the
end point. In addition, the current position is updated to the
point (60,60). Use WHERE to see this.

If you want to draw a line of a certain length but you don't
want to figure out the coordinates of the end point, use the
IDRAW (Incremental DRAW) command. Execute:

IDRAW 18,16

Graphics Techniques 4-9

4-10 Graphics Techniques

This command draws a line to a point 10 units along the X
axis and 10 units along the Y axis from the current position. It
also updates the current position by the specified increments.

See if you can recreate the following picture using 21 state-
ments. You may use any of the statements presented up to
this point.

FLEARARAARALY

Load and run the file “BOLT” from the Manual Examples disc.
You can list the file on your CRT or printer to compare your
version.

As mentioned before, you can plot to points beyond the edge
of the display, but they do not appear. If part of the line is
within the display area, that part is output. As an example,
load and execute the file “BIGLINES” from the Manual Exam-
ples disc. You should see the figure below.

All the graphics output is handled in a similar manner. Those
points within the display area are output. Those points out-
side the display area are not shown, but the current position
is updated.

DRAW, IDRAW, IMOVE and MOVE have an additional ef-
fect beyond moving the current position and drawing a line.
They also determine whether the physical pen is up or down
(that is, touching the plotting surface). For a CRT, when the
pen is “down,” a dot appears. When the pen is “up,” no dot is
created.

One way to control whether the pen is up or down on a plot-
ter is to use IMOVE AND IDRAW,

IMOVE @,8
lifts the pen, but does not change the current position.
IDRAW 8,8
lowers the pen, but does not change the current position.
Another way to raise the pen is by executing the PENUP
statement.
PENUP

Graphics Techniques 4-11

The WHERE statement has an additional parameter with
which you can determine the status of the pen. It is a string
variable whose contents signals whether the pen is up or
down and whether it is within the display area. The string
also returns other indormation that is explained later. For ex-
ample, execute:

18 WHERE X,Y,STATUS$
28 PRINT "X =";X,"Y =";¥,"STATUS =";STATUSS
38 END

STATUSS$ is a string which looks like:

The first digit describes the pen'’s vertical position (0 = up, 1
= down). The second digit describes the pen’s horizontal po-
sition within the display area (0 = outside of the display
area, 1 or 2 = inside the display area).

When you use a paper plotter make sure that the pen is lifted
if it is going to rest in one spot for very long; otherwise, an
ink blot occurs.

Scaling Some graphics may not show much information. There may
not be enough variation in the data as presented. For exam-
ple, load and run the file “SCALE” from the Examples disc.

Probably the first reaction you had when looking at the plot
was “That doesn’t show me anything...”. That's true; it doesn’t
show much information. There are two reasons for this. The
first is that there is not enough variation in the curve; it’s too
straight to show anything. The second is that it is not
centered.

4-12 Graphics Techniques

Both of these problems can be remedied by scaling. In this
context, scaling could be defined as “defining the values the
computer considers to be at the edges of the plotting surface.”
By definition, the left edge is the smaller X, the right edge is
the larger X, the bottom is the smaller Y, and the top is the
larger Y. Thus, any point you plot that falls into these ranges
will be visible.

There are two statements available to define your own values
for the edges of the plotting surface . The first one we’ll deal
with is SHOW, which forces X and Y units to be equal. Since
the X and Y units are identical, the SHOW statement centers
the specified area in the plotting area. This is called isotropic
scaling, and it is often desirable. For example, when drawing
a map, you will probably want one mile in the east-west di-
rection to be the same size as a mile in the north-south
direction. Here is an example of SHOW:

SHOW @,188,16,18

This causes the plotting area to be defined such that there is a
rectangle in that plotting area whose minimum X is 0, maxi-
mum X is 100, minimum Y is 16, and maximum Y is 18, using
isotropic units. As mentioned above, isotropic means that one
unit in the X direction is equal to one unit in the Y direction.
Hence, if the plotting area were square, the above SHOW
statement would define the minimum X to be 0, maximum X
to be 100, minimum Y to be —33 (not 16) and maximum Y to
be 67 (not 18). The reason for this is that allowing whatever
extra room it needs to insure that that rectangle is completely
contained in the plotting area. There will be extra room in
either the X or Y direction, but not both.

Since you (the user) were defining unit sizes with the SHOW
statement, you were working with User-Defined Units
(UDUs). Both the SHOW statement and the WINDOW state-
ment (covered next) specify user-defined units. Load and run
the file “SCALE2".

Graphics Techniques 4-13

Defining a
Viewport

4-14 Graphics Techniques

As you can see, the SHOW statement takes care of centering
the curve on the screen, but since the range of X values is so
much larger than the range of Y values (0 to 100 versus 16 to
18), it still does not give us enough resolution to see what the
data is doing. Isotropic scaling is desirable in many cases. In
many other cases, however, it is not. If this example shows:
the graph of the voltage from a sensor versus time, it makes
no sense to force seconds to be just as “long” as volts. Since
the data types are not equal, it would be better to use un-
equal, or anisotropic, scaling. You can do this with the other
scaling statement: WINDOW. This will not force X units to be
equal to Y units. Now load and run the file “SCALE3".

This plot looks much better than the last one; you can easily
see variations in the data. To test how the Y axis range 15-19
affects relative variations in the data, list the program in file
“SCALE3” and change line 30 to WINDOW @6, 168,38, 56
and change line 50 to PLOT X,RND + 48. Run the program
again and note that the line is less ragged.

There is still one problem, though. You can see relative varia-
tions in the data, but what are the units being used? That is,
is the height of the curve signifying differences of microvolts,
millivolts, megavolts, dozens of volts, or what? And you
probably wouldn’t want the text (explaining units, etc.) to be
written in the same area that the curve is in, as it could ob-
struct part of the curve. Therefore, you need to be able to
specify a subset of the screen for plotting the curve, and put
explanatory notes outside this area. The next section tells you
how to do this.

A viewport is a subset of the plotting area. This is called the
soft clip area, and it is delimited by the soft clip limits. Clip,
because any line segments which attempt to go outside these
limits are cut off at the edge of the subarea. Soft, because you
can override these limits by turning off the clipping with the
CLIP OFF statement (more about this later). There are hard
clip limits also, and these are defined to be the absolute limits
of the plotting area. Under no circumstances can a line be
drawn outside of these limits. There is no way to override the
hard clip limits, as you could with soft clip limits.

Note

GDUs and UDUs. There are two types of units used to de-
fine viewport limits, These are UDUs (User-Defined Units)
and GDUs (Graphics Display Units). In order for viewports to
be predictable, they must always be specified in the same
units. Since UDUs are subject to change, you should use
GDUs when specifying the limits of a VIEWPORT statement.
GDUs are fixed for the CRT, so a viewport is associated with
the screen, rather than the graphical model used in your
program.

Unless you specify otherwise, the screen (but not necessarily
an external plotter) is considered to have the following ex-
panse: in the X direction, 0 through 133.444816054; in the Y
direction: 0 through 100. These are GDUs. The lower left of
the plotting area is always 0,0. The length of a GDU is de-
fined as “One percent of the shorter edge of the plotting
area.”

Since the height of the screen is shorter than the width of the
screen, the shorter edge is in the Y direction, therefore, Ymax
in GDUs is 100. If the screen had been higher than it is wide,
Xmax in GDUs would have been 100. That was the easy part.
Once you've decided which edge is shorter, and thus defined
the units along that edge, you need to find out how many
GDUs in extent the longer sides are. For now, just observe
that the GDU limits are 0 to 133.444816054 in X, and 0 to
100 in Y.

If you are using an Enhanced Graphics Display, only 0 to
89.74 GDUs are viewable in Y.

Graphics Techniques 4-15

4-16 Graphics Techniques

Specifying the Viewport. The VIEWPORT statement de-
fines the extent of the soft clip limits in GDUs. It specifies a
subarea of the plotting surface which acts just like the entire
plotting surface, except that you can draw outside the subarea
if you turn off clipping. Load and list file “SCALE4” from the
Manual Examples disc. The VIEWPORT statement in this pro-
gram specifies that the lower left-hand corner of the soft clip
area is at 10,15 and the upper right-hand corner is at 120,90.
This is the area which the WINDOW statement affects. Also
note line 40; the FRAME statement. This draws a box around
the current soft clip limits. It is used in this example so you
can see the area specified by the VIEWPORT statement. Now
run the program to see the result.

Labelling a Plot. With the inclusion of the VIEWPORT
statement, you have enough room to include labels on the
plot. Typically, in a plot like this, there is a title for the whole
plot centered at the top, a Y-axis title on the left edge, and an
X-axis title at the bottom.

You can use the LABEL statement to write text onto the
graphics screen. You can position the label by using a MOVE
or PLOT statement to get to the point at which you want the
label to be placed. It is the lower left corner of the label which
ends up at the point to which you moved. In other words,
you move to the position on the screen at which you want the
lower left corner of the text to be placed.

Load and run the file “LABELS” from the Manual Examples
disc. Notice that the Y-axis label on the left edge of the screen
is created by writing one letter at a time. You only need to
move to the position of the first character in that label be-
cause each label statement automatically terminates with a

carriage return/linefeed. This causes the pen to go one line
down, ready for the next line of text.

Now you know what you are measuring—voltage vs. time—
but you still do not know the units being used. You need an
X-axis and a Y-axis labelled with numbers in appropriate

places. You can use the AXES statement to accomplish this.

Axes and Tick Marks. You can use the AXES statement to
draw X and Y axes and short lines, perpendicular to the axes,
to indicate the spacing of units. These short lines are called
tick marks. The axes may intersect at any point you desire.
The tick marks may be any distance apart, and you can select
the “major tick count” for each axis. The major tick count is
the total number of tick marks drawn for every large one.
This makes it convenient to count by fives or tens or what-
ever you chose the major tick count to be. And finally, you
can specify how long you want the major tick marks to be.
This is measured in GDUs. Enter the following program:

ig
28
38
48
=15)

GINIT
FRAME

AXES 5,16,58,58,3,3,3

WRIT 5
END

Graphics Techniques 4-17

When you run this program, you should see the figure below:

} 10 units between tick marks

Intersection at (50,50).

5 units between
tick marks

3 spaces between
large tick marks 4

3 spaces between
large tick marks

Large tick marks
3 units long

In the axes statement, the first parameter specifies the dis-
tance between tick marks along the horizontal (x) axis, and
the second parameter specifies the distance along the vertical
(y) axis. The third and fourth parameters specify the intersec-
tion point of the axes. The fifth and sixth parameters specify
the number of spaces between the large tick marks, and the
last parameter specifies the size of the large tick marks. The
small tick marks are drawn half the size of the large tick
marks.

4-18 Graphics Techniques

Now load the file “LABELS” again, add the AXES statement
shown below to this program, and run it to see the difference.

145 AXES 1,.1,0,15,5,5,3
Grids. You can also create a full grid pattern. Enter and run
the following program:

i@ GINIT

28 FRAME

38 GRID 5,19,50,59,3,3,3

48 WAIT S

58 END

When you run this program you should see the following;:

44+ 41+ 414+

F"TT"TT"'TT"'TT““T

O N . A

4 L

Graphics Techniques 4-19

Other Ways to
Draw or Move

Some of the parameters have slightly different meanings in a
GRID statement than in an AXES statement. The first two still
represent the distance between tick marks in the horizontal
and vertical directions respectively. The next two parameters
specify the intersection point of two lines in the grid. The
fifth and sixth parameters still specify the number of spaces
between large tick marks for each axis. The last parameter still
specifies the length of the tick marks.

Like frames, axes and grids are always parallel to the edges of
the display. Axes and grids are affected by the line type and

pen type.

Load and run the file “AXES” from the Manual Examples disc
to see various kinds of axes and grids.

You can stop this program at any time by pressing STOP.

There are three other ways to draw or move. The first is using
the PLOT statement. With this statement, you specify the
point to which the pen moves and also whether the pen is up
or down before or after it is repositioned. Here is a PLOT
statement.

FLOT 18,48,2

4-20 Graphics Techniques

The first two items in the statement are the x and y coordi-
nates, and the third item is an optional pen control value.

The following table shows how the pen control value affects
the output. -

Pen Control Value Meaning

Negative and even (—2, —4, —6, ...) | Raise the pen before re-
positioning it.
Non-negative and even (0, 2, ...) Raise the pen after repo-
sitioning it.

Negative and odd (—1, —3, —5, ...) | Lower the pen before re-
positioning it.

Positive and odd (1, 3, 5, ...) Lower the pen after repo-
sitioning it.

If no pen control is specified, 1 is assumed.

IPLOT (Incremental PLOT) is the second way to move or
draw. It is similar to PLOT. The difference is that with IPLOT
each repositioning is incremental like IMOVE OR IDRAW.
The pen control values cause actions similar to those in PLOT.

RPLOT (Relative PLOT) is the third way to move or draw. It
is similar to PLOT in that the RPLOT parameters are dis-
placements from an origin, but they are displacements from a
local origin. A local origin is a temporary origin for all consec-
utive RPLOT statements. Each coordinate given in an RPLOT
statement is measured from the local origin. The local origin is
defined as the current position when the first RPLOT is exe-
cuted. When you stop executing consecutive RPLOTSs, that is,
when a graphics output statement other than an RPLOT
statement is executed, the local origin ceases to exist.

The next program is an example of how RPLOT works. Load
the file “STARS” and list the program. Step through it slowly
and determine what happens with each statement before exe-
cuting it.

Notice how the local origin is set by a MOVE and a series of
IMOVEs. The pattern is actually drawn by repeating the sub-
routine, Rplot. RPLOT is particularly useful when drawing
the same series of lines in different spots on the CRT.

Graphics Techniques 4-21

Erasing Lines

PLOT, IPLOT, and RPLOT are useful for controlling the pen
with a formula or variable. For instance, you might want to
create a variable Pen_status. If Pen_status equals —2, no line
is drawn, but the current position is updated.

Now that you can draw lines, you're probably wondering
how to erase them. GCLEAR clears the entire graphics area of
the CRT screen. To eliminate one specific line or portion of a
line, use the PEN statement. The PEN statement has the
form:

PEN Pen_number

Line Attributes

4-22 Graphics Techniques

where Pen_number is a numeric expression which specifies
the pen to use.

The PEN statement gives a choice of “pen” with which to
plot. The default pen type is 1. This is the pen type that cre-
ates the white line you have seen so far.

A pen selection of —1 sets the pen type to erase white. Out-
put statements are then executed with that color. If the
primitive crosses over a point on the display which is white,
that point becomes black.

Note that any output statement using this pen value not only
erases lines created by DRAW or IDRAW, but also erases part
of a frame or any other graphics output created with PEN 1.
Obviously, a pen type of —1 is only usable with a plotter that
can erase part of its display, such as a CRT. Plotters that
ouput on paper ignore a PEN —1 statement.

What is it about lines that distinguishes them from other
lines? The color of a line can set it apart from other lines; so
can the pattern used to draw it (for example, dashed or dot-
ted). These distinguishing traits are known as attributes of the
line. Your system provides a number of attributes for graphics
primitives.

Pen Types

The PEN statement presented in the previous section does not
directly create graphics output but does affect the appearance
of graphics output. For this reason, it is an “attribute”
statement.

On a monchrome CRT, a pen type > 0 makes the pen color
“white”. A pen type < 0 makes the pen color “erase white”. A
pen type of 0, in effect, disables the pen; no lines or erasures
occur when a DRAW or other output statement is executed.
However, it does not disable updating of the current position;
that is, if you execute a DRAW, no line is drawn, but the cur-
rent position is now at the coordinates specified in the
DRAW.

PEN can also specify other colors if you have a color CRT or
other pen stalls on a paper plotter. The “Color” section pro-
vides more information about these pen types.

Load and run the file “PENDEMO” from the Manual Exam-
ples disc.

Graphics Techniques 4-23

Line Types To distinguish between lines, use different line types such as
dashes or dots. The LINE TYPE statement gives a number of
choices. The pattern of a line is considered an attribute of that
line. Load and run the file “LINETYPES” from the Manual
Examples disc.

This shows the available line types. It also shows how the
lines look when drawn straight or.around corners.

4-24 Graphics Techniques

Creating Simple
Shapes

BASIC Graphics has specific statements to create many kinds
of regular polygons quickly and easily.

Rectangles. The simplest polygon is probably the rectangle
created used the RECTANGLE statement. Enter and execute
the following program

18
26
38
48
58

GINIT

MOVE 28,28
RECTANGLE 18,38
WAIT 35

END

The first parameter is the width of the rectangle and the sec-
ond parameter is the height of the rectangle. In this case,
you've drawn a rectangle 10 units wide and 30 units high.

RECTANGLE is another statement which has, in effect, a lo-
cal origin. The rectangle is drawn with the current position
(local origin) in the lower-left corner. In the example above,
the local origin is at 20,20. The sides of the box are parallel to
the sides of the CRT. This is only the default form. You can
use the PDIR (Plot DIRection) statement to rotate the rectan-
gle to any angle about the Z axis. Its form is:

FDIR Angle

where Angle is the amount the polygon is rotated in degrees,
radians or grads.

Graphics Techniques 4-25

As an example, load and run the file