)

Burroughs

Student Guide

A Series And B 5/6/7000 Work Flow
Language And Utilities

Mark 3.6

EP 4386

March 1986

Copyright * 1986 Burroughs Corporation. Detroit. Michigan 48232 U.S.A.
Printed in the U.S.A.

"The names used in this publication are not of individuals living or otherwise. Any
similarity of likeness of the names used in this publication with the names of any
individual living or otherwise is purely coincidental and not intentional.”

Burroughs believes that the information described in this publication is accurate and
reliable, and much care has been taken in its preparation. However, no responsibility,
financial or otherwise, can be accepted for any consequences arising out of the use of
this material, including loss of profit, indirect, special, or consequential damages. There
are no warranties which extend beyond the program specification.

The customer should exercise care to assure that use of information in this publication
will be in full compliance with laws, rules, and regulations of the jurisdiction with
respect to which itis used.

The information contained herein is subject to change. Revisions may be issued from
time to time to advise of changes and/or additions. ‘

Correspondence regarding this document should be forwarded directly to Burroughs
Corporation, Room 205, Education Development, 2611 Corporate West Drive, Lisle, IL
60532-3697.

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

TABLE OF CONTENTS

Introduction i e e i
General Lab Information i e v
SECTION 1 - TASK INITIATION AND CONTROL..........ciiiiiniiniinen... 1- 1
Work Flow Language and Processcciiueriiinnernnnneennnns 1- 3
Job Strueture . 1-13
Task Initiation. ... i e 1-19
Basic Task Control and Communications 1-25
Job Initiation. e e 1-33
SECTION 2 - FILE MAINTENANCE AND COMPILATIONS................... 2-1
Task EqQUations it it it ittt et e 2- 3
File EQUations it et e it ettt e e 2- 7
Library Maintenance i, O 2-15
10703 02 o3 8 -1 750 2-21
SECTION 3 - EXPRESSIONS, ITERATIONS, and FUNCTIONS 3-1
Declarations, Expressions, and Assignments............................ 3- 3
Flow Control Statements iy e 3-13
String Functions i e 3-19
Numeric Funetions i e 3-27
Job Attributes. 3-31
Job Parameters. e e e 3-35

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

TABLE OF CONTENTS (continued)

SECTION 4 - SUBROUTINES, CONTROL, and ERROR HANDLING 4- 1
SUDPOULINES. . . . ittt i e e e 4- 3
Communication with the operator i i 4-13
Exception Handling and Task Control............... ..ot 4-17
Global Files and Global Data Decks........... ... i, 4-25
WFL Compiler $ Optionsottt 4-31

SECTION 5 = UTILITIES. ..ottt ettt ittt it ea s 5- 1
Printing SUDSYSteM it 5- 3
SYStem/DUMPALL .. . oeveeeneeeeeeeeeennns [5-23
System/Filedataoiiinniiii i 5-33
SYStem/FileCOPY . .ottt 5-43
System/LOganalyZerttt 5-51
Additional Utilitiesttt i e e e 5-57

APPENDIX A - ALTERNATIVE LABS i A-1
| - < T S S A RIS A- 2
LAB 2t ittt ittt e A- 3
LAB 3. ittt it ittt i e e A- 35
- = S S TR A- 7
| - 2 T 2 I I A- 8
LAB B e e e A-10

ii

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

INTRODUCTION

COURSE OBJECTIVE
Design, create, implement, and maintain job schedules and manipulate files on a
Burroughs large system using Work Flow Language.
COURSE GOALS
After completion of this course, you will have acquired the necessary knowledge
and skills to:

e Create and execute a job stream.

e Utilize the job summary.

e Define job attributes which interface with job queues.

® Process tasks asynchronously.

® Provide control of printer backup facilities.

e Utilize terminal related system utility programs.

iii

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

AUDIENCE

This course is directed toward programmers, analysts, and senior operators with
some programming experience who work through terminals or remote computing
systems.

PREREQUISITES

You should have the equivalent understanding of, or should have completed,
Introduction to Large Systems and Introduction to A Series CANDE. A working
knowledge of CANDE is necessary and programming experience is helpful. You will
be responsible for your own data entry requirements for the WFL source.

COURSE LENGTH

The course length is approximately 40 hours.

COURSE MODE

The course will be instructor-led, usually following the sequence as listed in the
Table of Contents. This course will involve extensive practice of the skills used in
creating and implementing. Work Flow jobs.

Classroom sessions will be held to give background information and lab sessions will

provide hands on experience. It is expected that the learner will utilize reference
materials to supplement the classroom lectures.

iv

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

GENERAL LAB INFORMATION

1. Sign on to CANDE.
Use a USERCODE/PASSWORD pair provided by your instructor.

USERCODE

PASSWORD

DESTNAME

2. Your Work Flow source should be of type JOB.

3. All files created, either through CANDE or your Work Flow
jobs, should have a first name of your initials and a family
name provided by your instructor unless otherwise stated.

FAMILY

4. Start your Work Flow jobs through CANDE using the START
command.

5. Sign off CANDE and MARC when finished with your lab assignment each
day.

SECTION 1

TASK INITIATION AND CONTROL

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

TASK INITIATION AND CONTROL

SECTION OBJECTIVE

Construct task initiation and control statements.

PURPOSE
This section provides an introduction to the Work Flow Language (WFL) and

the Work Flow process. It will also provide information on the initiation of
and control of tasks while executing under WFL.

UNIT OBJECTIVES

e Identify the elements of the Work Flow process and related
terms.

e Identify and describe the five sections of a Work Flow
job.

e Construct simple task initiation statements.

e Construct basic task control and communication statements.

1-2

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

TASK INITIATION AND CONTROL
Unit 1

Work Flow Language and Process

OBJECTIVE

Identify the elements of the Work Flow process and related terms.

PURPOSE

In order to write effective WFL source programs, it is necessary to have some
understanding of the Work Flow Management system, its terminology, its
features, and its performance.

RESOURCES

a. Student Guide Section 1

Unit 1

b. A Series WFL Reference Manual : Section 1
KEY WORDS

Task WFL Compiler

Job Task Jobfile

Dependent Task WORK FLOW MANAGEMENT SYSTEM

Independent Task CONTROLLER

Synchronous Task JOBDESC

Asynchronous Task MCPHOST

Job AUTOBACKUP

Mix Numbers Job Summary

Job Stream

Job Queue

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 1: Work Flow Language and Process

LEARNING SEQUENCE

WORK FLOW TERMINOLOGY

A task is the execution of a program. Tasks can be divided into three types: job
task, dependent task, and independent task.

e A job task is the execution of a program written in Work
Flow Language.

e A dependent task is any task initiated by a job task or
called by another task.

e An independent task is any task that is initiated from a
task and is no longer under the control of the originating
task.

e Tasks may be run either synchronously or asynchronously.

- Synchronous tasks are those that execute serially. This
means that the next task cannot start until the one
executing finishes. :

- Asynchronous tasks are those thét run concurrently in a
multiprogramming environment.

TASK EXAMPLES:

An execution of a job % Job Task

A program execution % Dependent Task
A program compilation

A file copy from tape or disk

A job starting another job % Independent Task

A job is a collection of one or more related tasks, including the job task and all
the dependent tasks initiated by tasks in the job. The system keeps track of these
tasks by assigning them numbers. These numbers are called mix numbers.

1-4

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 1: Work Flow Language and Process
LEARNING SEQUENCE

JOB EXAMPLE:

PAYROLL JOB
UPDATE ADDRESS PROGRAM
EDIT TIMECARD PROGRAM
SORT & PROCESS PROGRAM
PRINT PROGRAMS

CHECKS
YTD TOTALS
MIX NUMBERS
PAYROLL
JOB JOB 1325
UPDATE
ADDRESS TASK 1325/1334
EDIT TASK 1325/1340
TIMECARDS
SORT
& TASK 1325/1350
PROCESS
CHECKS YTD
TOTALS
TASK 1325/1360 TASK 1325/1361

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 1: Work Flow Language and Process

LEARNING SEQUENCE

A job stream is the order of tasks to be executed within the job, sometimes
referred to as just the job.

A job queue is a place to store jobs that are to be executed. The system provides
the means for controlling job execution based on the attributes assigned to that job
and attributes of the queue. Such items as priority, available system resources,
and limits imposed by the operational staff are used in these decisions.

WORK FLOW FEATURES

The Work Flow Language (WFL) is a high level language in which jobs are
described. It is designed to control, execute, and monitor the flow of tasks within
a job stream. '

WFL is the means by which a job is described and presented to the system for
execution. The language allows the user to programmatically control the execution
of a set of interrelated tasks. A job may decide, at run-time, whether to run a
program, which programs to run, and in what order to run them. The printed and
punched output for all tasks within the job is retained and output as a group at the
end of the job. As part of that output, the log information generated for that job
is output at the same time. Comprehensive billing information is accumulated to
be used if desired.

WFL source statements are English-like and, with a few exceptions, are free-
format. The WFL compiler syntactically checks and compiles all control statements
into machine code and outputs a disk file referred to as a jobfile. This jobfile is
then linked to a job queue for scheduling.

1-6

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 1: Work Flow Language and Process

LEARNING SEQUENCE
WORK FLOW MANAGEMENT SYSTEM

When a Work Flow job is started, the selected source statements are given to the
WFL compiler. After a successful compilation, the system will attempt to link the
job file to an appropriate queue where the job will wait for selection to be
executed. If an appropriate queue is not available, the job will be discontinued.
Upon selection, the system must check if enough memory is available. If not, the
job is scheduled; otherwise, the job is loaded into memory and begins execution.
When all of the tasks within the job have been completed, the printed or punched
output from the tasks within the job is released to the printer backup facility.

The output includes the Job Summary, the WFL source, the WFL Log, and the
dependent tasks printed or punched output.

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 1: Work Flow Language and Process

LEARNING SEQUENCE

MCS
JOBDESC oDt

WFL
Statements
and Data

/ ////////////////Il, ,4'
Do camsie Dy
NI L
(2 \
S0 s
JOBFORMATTER
& ‘
Job s a
and Ta‘s‘:‘gutgut SUMLOG

N

Shaded areas represent parts of the MCP.

Work Flow Management System Organization

1-8

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 1: Work Flow Language and Process

LEARNING SEQUENCE

WORK FLOW MANAGEMENT SYSTEM consists of several parts of the MCP
represented by the shaded areas on the preceding page.

e The WFL compiler generates the job by:
- checking the syntax of the WFL source;
- translating the job control statements to machine code;
- storing the machine code, WFL source, any data decks used,
and space for logging and restart information in a
special type of file called a jobfile.

e The CONTROLLER controls the system work load, queue level
scheduling, and operator communications by:
- maintaining the Jobfile Description File (JOBDESC) that contains
* directories of jobfiles
* queue for controller scheduling
* links to the jobfiles ‘
* Job Queue Heads, number of queues, and pointers to
the individual queues
- choosing the queue to which the job will be linked;
- inserting the job at the appropriate location in the queue;
- selecting the job to execute next; '
- removing the job from the job queue;
- passing the addresses of the diskfile header and Program Parameter

Bilock (HDR/PPB) to JOBSTARTER.
e The MCPHOST includes
- building part of the Process Information Block (PIB);
- calling additional routines to finish building the
PIB, allocate memory, build the process stack, and
place it in the ready queue to be executed;
- indirectly placing a message in the Controller's

queue that will cause the Controller to initiate
AUTOBACKUP.

e The AUTOBACKUP facility % On 3.6 the Printing Subsystem
- formats the job summary for printing;
- formats the WFL source statements for printing;
- prints or punches job output;
- removes the jobfile.

1-9

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 1: Work Flow Language and Process

PRACTICE EXERCISE

A. Please complete the following statements by filling in the
blank.

1. A consists of a collection of related

2. The creates the WFL code file and

stores it in a

3. As a job runs, the MCP continually stores log information for

that job in the __ file maintained by

the

4. (True or False) A WFL code file will remain on disk after a WFL job

is completed.

5. (True or False) Tasks within a job may be run one at a time

or at the same time.

1-10

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 1: Work Flow Language and Process

PRACTICE EXERCISE continued

B. Identify the sections/blocks of the Work Flow Management system by selecting
the letter that represents the program unit or procedure corresponding to that
function.

Function Unit/Procedure

1. This unit syntactically checks the job A. MCPHOST
and translates job control statements
into machine language code.

2. This file contains object code, WFL B. AUTOBACKUP
source, data decks, logging and
restart information.

3. This program unit is fired-up by the ' C. JOBDESC
MCP at halt/load time and runs as an
independent runner.

4. This file is maintained by the controller D. JOBFILE
and has entries that consist of file
headers and links used to organize the
. jobs by class and priority.

5. This section chooses the appropriate E. CONTROLLER
class by matching requirements of the
job with the specifications of the
various queues.

6. This section chooses a job to be started F. WFL COMPILER
by paying attention to the queue priorities,
mix limits, and also assigns attributes
not explicitly set by the job.

7. This section is notified by the Controller
to transfer the job entry to the proper
task/stack structure to be run.

8. This section is called after receiving
notice of EOJ from the MCP and formats the
job summary and WFL source statements for
printing.

1-11

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

BLANK PAGE

1-12

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

TASK INITIATION AND CONTROL
Unit 2

Job Structure

OBJECTIVE

Identify and describe the five sections of a Work Flow job.

PURPOSE

To write effective WFL jobs, it is necessary to understand how the language
is structured.

RESOURCES
a. Student Guide Section 1
Unit 2
b. A Series WFL Reference Manual Section - 3

wrnv
KEY WORDS

BEGIN JOB
Job Attributes
Declarations
Statements
END JOB

1-13

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 2: Job Structure

LEARNING SEQUENCE

Work Flow Job:

The Work Flow (WFL) job controls the execution of the dependent tasks initiated
from it. Statements may be written in a free format structure within each of the
sections. All statements must end with a semi-colon (;). In order to describe the
WFL job structure, the job is divided into five sections; three of these are
mandatory, (BEGIN JOB, STATEMENTS, END JOB) and must appear in the correct
order. The job attributes and declarations sections are optional and allow
additional control capabilities.

SECTION WFL PROGRAM STATEMENTS
BEGIN JOB SECTION BEGIN JOB MYJOB ;
JOB ATTRIBUTES QUEUE = 20 ;
(optional)
DECLARATIONS TASK T1 ;
(optional)
STATEMENTS RUN PROGA ;
END JOB SECTION END JOB

1-14

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 2: Job Structure

LEARNING SEQUENCE

BEGIN JOB

This is the first section and must begin with the reserved words BEGIN JOB and
may have a job title, job parameters list and a job disposition. The job title is a
file title and is defined in the WFL Manual. The job parameters are named
identifiers and may be of the type Boolean, Integer, Real, or String. The

iob disposition is usually used to compile the iob and check for syntay errors.

(See Section 3 of the WFL Reference Manual)

JOB ATTRIBUTES

Task attributes are used to control the environment and behavior of a task before,
during, and after execution of the task. These attributes, when used at the job
level, are known as Job Attributes and are used to assign attributes to the job such
as USERCODE, PRIORITY, QUEUE, and MAXLINES.

(See Section 3 of the WFL Reference Manual)

DECLARATIONS

Declarations are Work Flow constructs that define variables by type and express
their intended use. Each variable used in a job must be declared via a declaration
statement before it can be used. There are seven variable types: File, Task,
Real, String, Boolean, Integer, and Subroutine.

(See Section 4 of the WFL Reference Manual)

STATEMENTS

The statements section is the working section of the job and consists of WFL
statements. A statement is a combination of basic elements, constructs, and
commands that can be used to initiate or control a process. A statement may also
be used to assign values to previously declared variables. Each statement ends
with a semicolon (;).

(See Section 6 of the WFL Reference Manual)

END JOB

The reserved words END JOB designate the end of the job. It is the last section
and is required.

1-15

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 2: Job Structure

LEARNING SEQUENCE

BEGIN JOB JOB NAME

JOB ATTRIBUTES QUEUE or CLASS
USERCODE
DESTNAME
FAMILY
TASK ATTRIBUTES
STARTTIME

DECLARATIONS REAL
INTEGER
STRING
BOOLEAN
TASKS
SUBROUTINES
GLOBAL FILES

STATEMENTS TASK INITIATION
TASK CONTROL
FLOW CONTROL
COMPOUND
SUBROUTINE CONTROL
FILE HANDLING
FILE MANAGEMENT
TASK SECURITY
COMMUNICATION
CATALOGING
VALUE ASSIGNMENT

END JOB

1-16

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 2: Job Structure

PRACTICE EXERCISE

A. List the five sections of a Work Flow job including a brief
description of each.

B. Which, if any, are the optional sections of a Work Flow job?

1-17

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

BLANK PAGE

1-18

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

TASK INITIATION AND CONTROL
Unit 3

Task Initiation

OBJECTIVE

Construct simple task initiation statements.

PURPOSE

Once the purpose of WFL is known and the basic structure of the language
understood, it is necessary to begin constructing some simple statements to
accomplish the purpose of a WFL job.

RESOURCES

a. Student Guide Section
: Unit

b. A Series WFL Reference Manual Section
) Section

KEY WORDS

COMPILE

RUN

COoPY

ADD

START

PROCESS

LOG

PB .
SCR

PTD

1-19

o

oo,

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 3: Task Initiation

LEARNING SEQUENCE

A task initiation statement is used to start user programs and system functions as
separate dependent tasks. Some simple task initiation statements are COMPILE,
RUN, START, and COPY. These task initiation statements run synchronously; that
is, one task must complete before the next task is started.

- - < task initiation statement > >
- — 1__
———— ; ———< compiler task equation list >—————- >
———— ; ———< task equation list > - ->

The COMPILE statement is used to initiate a compiler, which uses a source
program to generate an object program.

e COMPILE PROGA COBOL74 LIBRARY ;
e COMPILE PROGB/OBJ WITH FORTRAN SYNTAX ;

e COMPILE PROGC ON USER1 ALGOL LIBRARY GO ;

The RUN statement is used to initiate an object program.

e RUN

0

01A_'

P 3

!

e RUN PROGB ON USERI ;

The COPY and ADD statements allow the capability to do file maintenance through
WFL.

e COPY A AS B ;

e COPY A/=, B/= TO BKUP ; % (KIND = TAPE)
e ADD COBOL/= FROM DEVELOPMENT ; % (KIND = TAPE)
e ADD Z/= FROM T TO R (KIND=PACK), TO DISK ;

% (KIND = DISK)

1-20

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 3: Task Initiation

LEARNING SEQUENCE

The START statement is used to initiate another job that is independent of the
requesting task. The START statement initiates the WFL compiler as a
synchronous dependent task. After the compiler finishes, the resultant WFL
program is initiated as a job task. The original job waits for the WFL compiler,
but not for the job task to complete, before continuing to the next statement.

The started job is independent of the job that started it and runs according to its
own attributes. If the started job does not have a usercode job attribute, the
usercode of the job that performed the start is used.

e START INVENTORY ;

e START PAYROLL ON PAYPACK ;

e START AJOB; STARTTIME = 12:02 ;
The PROCESS statement initiates a task asynchronously and can be used with any
other task initiation statement. The job will not terminate, however, until all
asynchronous tasks have terminated. '

e PROCESS RUN PROGA ;

e PROCESS COPY A AS (WFL)A ;

Other task initiation statements are LOG, PB, SCR and PTD.
e LOG OPERATOR AX ;
e PB "PRINTOUT/ONE" COPIES 3 SAVE ;
e SCR ;

e PTD ;

1-21

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 3: Task Initiation

LEARNING SEQUENCE
SAMPLE JOBS:

e BEGIN JOB MYJOB ;
RUN PROGX ;

END JOB

e BEGIN JOB MYJOB ;
PROCESS RUN PAYROLL ON PRODUCTION ;
END JOB % Control gets to the end of job before

Payroll is finished.
e BEGIN JOB MYJOB ;
DESTNAME = SITE ;
PROCESS RUN USER1/PROGA ;
RUN USER1/PROGB ;

END JOB

e BEGIN JOB MYJOB ;
QUEUE = 30 ; % CLASS = 30 ;
DESTNAME = CECRJEL ;
RUN (USER)CEC/INITIALS ON EDUCATION ;

END JOB

1-22

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 3: Task Initiation

PRACTICE EXERCISE

Write the WFL statements that will have the system do the following. Assume
that the files are on the Halt/Load unit DISK unless otherwise stated.

1. Initiate the object program CHECK/WRITER which is located on
disk named USERB.

2. Initiate the WFL program BACKUP which is located on the
Halt/Load unit.

3. Initiate the program CHECKBOOK/UPDATE simultaneously with the
CHECK/WRITER program initiated in step 1.

4. Initiate the programs CHECKBOOK/TOTALS and
CHECKBOOK/PRINTOUTS synchronously.

5. Initiate the programs A, B, and C with programs A and B
asynchronous to each other and program C synchronous to B.

1-23

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

BLANK PAGE

1-24

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

TASK INITIATION AND CONTROL
Unit 4

Basic Task Control and Communications
OBJECTIVE
Construct basic task control and communication statements.
PURPOSE

After learning the skills to structure basic WFL and task initiation, the next
step is to control those tasks which perform a required sequence of events.

RESOURCES
a. Student Guide Section 1
Unit 4
b. A Series WFL Reference Manual Section 6
Section 7
KEY WORDS
Task state DISPLAY
Task variable String expression
Task identifier ABORT
IF COMPOUND
THEN BEGIN - END
ELSE WAIT

1-25

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 4: Basic Task Control and Communications

LEARNING SEQUENCE

Up to this point, the basic structure of a WFL job has been presented along with
simple task initiation statements. Consideration must be given to having some
knowledge of what those tasks are doing. The system provides a means for
checking on certain types of status such as whether the task is active, scheduled,
completed, or completed ok. This type of information is referred to as the task
state. To be able to check on the status or state of a task, there is a special
type of declaration statement particularly for use with tasks. The use of this type
of declaration statement provides a task variable which may then be assigned to a
particular task. When it is assigned, the task variable becomes a task identifier.
A task identifier may then be referenced, as to the task state, to make a decision
concerning the flow of the job.

e TASK T1, T2 ; % Declaration of a task
variable
e RUN PROGA [T1]; % Assignment of a task

variable to a task

To make a decision within a WFL job, the simplest statement to use is an IF
statement. The IF statement evaluates a boolean expression to determine if the
value is true or false. If the expression is true, the statement following the THEN
will be executed. If the expression is false, then either the statement after the
ELSE will be executed, or if there is no ELSE phrase, the next sequential
statement in the job will be executed. The Boolean expression used below is
checking on a task state while the statements that may be used are any of those
in section 7 of the reference manual.

e IF T1 ISNT COMPLETEDOK THEN < statement >

e IF T1 IS COMPLETEDOK

THEN < statement > ;

e IF T1 IS ACTIVE
THEN < statement >

ELSE < statement > ;

1-26

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 4: Basic Task Control and Communications

LEARNING SEQUENCE

Once the ability of checking on a task is available, the next step is to be able to
communicate that status with the operator when necessary. The DISPLAY
statement is used to communicate with the operator by putting a message on the
ODT, in the log file, and in the job summary. The message must be in the form
of a string expression. A string expression normally is treated as a group of
characters.

e DISPLAY < string expression > ; -
e DISPLAY "THIS TASK DID NOT COMPLETE" ;

e DISPLAY STR1 ; % Using a string variable

Another statement that might be useful for displaying information to the operator
and also for discontinuing the job is the ABORT statement. The ABORT statement
allows the WFL programmer to "abort" the job currently executing. It optionally
allows the capability to display a string expression. The abort statement also
allows one to abort an individual task through the use of its task identifier. An
optional string expression may be displayed prior to aborting the task.

e ABORT ; % JOB
e ABORT < string expression > ;

e ABORT "THIS TASK FAILED, ABORTING THE JOB" ;

e ABORT STRI1 ;

e ABORT [TSK1] ; % TASK

e ABORT [T1] "TASK T1 IS ABORTED" ;

One limitation of the IF statement is that the THEN and the ELSE phrases only
allow one statement to be executed. To make up for that limitation, another
statement has been provided to allow several statements to be treated as one
statement. This statement is the COMPOUND statement. If the COMPOUND
statement is used after the THEN or ELSE phrases, any number of statements may
be executed. The COMPOUND statement starts with BEGIN and stops with an
END.

1-27

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1:

TASK INITIATION AND CONTROL

UNIT 4: Basic Task Control and Communications

LEARNING SEQUENCE

° IF T1 ISNT COMPLETEDOK THEN < statement > ;

° IF T1 IS COMPLETEDOK

THEN

BEGIN
< statement
< statement
< statement
< statement
< statement

END ;

° IF T1 IS ACTIVE
THEN

BEGIN
< statement
< statement
¢ statement
< statement
END

ELSE

BEGIN
< statement
< statement
< statement
END ;

vV VYV VYV

ws we we we wo

VvV VYV

\YAAVAA "4

% USE OF A COMPOUND STATEMENT

% USE OF A COMPOUND STATEMENT

1-28

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 4: Basic Task Control and Communications

LEARNING SEQUENCE

There is still one problem that can exist in basic flow control in that there is not
any method to temporarily suspend the current flow until an asynchronous task is
finished. The statement provided for this purpose is the WAIT statement. This
statement allows the programmer to wait on a task completion, time element, file
existence, particular status of a task, or operator input. Examples of these follow:

BEGIN JOB MYJOB ;
TASK T1 ;
PROCESS RUN MYPROG1 [T1] ;
RUN MYPROG? ;

WAIT (T1) ; % MYPROG2 COMPLETES & WAITS T1
RUN MYPROG3 ; % MYPROG3 WAITS FOR MYPROG1
END JOB

BEGIN JOB MYJOB ;
RUN MYPROGI ;

WAIT (30) ; % WAIT FOR 30 SECONDS
RUN MYPROG2 ; % MYPROG2 EXECUTES AFTER WAIT
END JOB

BEGIN JOB MYJOB ;
PROCESS RUN MYPROGI ;
RUN MYPROG2? ;
WAIT (FILE MASTERFILE IS RESIDENT) ;
% MYPROG2 COMPLETES & WAITS
% ON MASTERFILE BEING RESIDENT
RUN MYPROGS3 ; % MYPROG3 EXECUTES WHEN
% MASTERFILE IS RESIDENT
END JOB

1-29

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 4: Basic Task Control and Communications

LEARNING SEQUENCE

BEGIN JOB MYJOB ;
PROCESS RUN MYPROGI ;
RUN MYPROG2? ;

WAIT ; % WAIT FOR < mix number > HI
RUN MYPROGS3 ; % FROM THE OPERATOR
END JOB
BEGIN JOB MYJOB ;
PROCESS RUN MYPROGL1 ;
RUN MYPROG2 ;
WAIT (OK) ; % WAIT FOR < mix number > OK
RUN MYPROGS3 ; % FROM THE OPERATOR
END JOB
BEGIN JOB MYJOB ;
PROCESS RUN MYPROGL ;
RUN MYPROG?2? ;
WAIT ("MOUNT TAPE", OK) ; % DISPLAYS MOUNT TAPE &
RUN MYPROGS3 ; % WAITS FOR < mix number > OK
END JOB. % FROM THE OPERATOR

Using the basic job structure below, the task control and communication with the
operator usually becomes the largest portion of a WFL job. This can be seen in
the example on the next page.

BEGIN JOB MYJOB ;

PROCESS RUN PROGX ; % RUN TASK X ASYNCHRONOUSLY
RUN PROGY ; % RUN TASK Y
RUN PROGZ ; % RUN TASK Z AFTER Y

END JOB

1-30

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 4: Basic Task Control and Communications

LEARNING SEQUENCE

00000100 BEGIN JOB MYJOB ;

00000200
00000300
00000500
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000

00002100

QUEUE = 30 ;

TASK T1, T2, T3, T4 ;

PROCESS RUN PROGX [T1] ;

RUN PROGY [T2] ;

WAIT (T1) ;

IF T1 ISNT COMPLETEDOK
THEN

BEGIN

DISPLAY "PROGX FAILED, RETRY IN PROGRESS" ;

RUN PROGX/BKUP [T3] ;
IF T3 ISNT COMPLETEDOK
THEN ABORT "PROGX/BKUP FAILED" ;
END;
IF T2 ISNT COMPLETEDOK

THEN ABORT "PROGY FAILED " ;

RUN PROGZ [T4] ;
IF T4 ISNT COMPLETEDOK

THEN DISPLAY "PROGZ FAILED, SO DID THE JOB" ;

00002200 END JOB

1-31

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 1: TASK INITIATION AND CONTROL

UNIT 4: Basic Task Control and Communications

PRACTICE EXERCISE

Write the WFL statements that will have the system do the following:

Write a WFL statement to execute a task synchronously using a task
identifier TSK1. The object code file for the task is called

OBJECT/PAYROLL/ONE.

1.

Write a WFL statement to check on the status of task T1 to
see if it completed ok. If T1 did complete ok, then execute the task

2.
PROG/UPDATE2; otherwise, display the error message "T1 FAILED".

3. Write a WFL statement to abort the job if task T2 fails.

4. Write the WFL statements to execute two tasks, asynchronously. The names
of the two tasks are PROG1 and PROG2 respectively. Each task should have
a task identifier and there should be a statement to suspend further execution

of the job until the asynchronous task is finished.

1-32

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

TASK INITIATION AND CONTROL
Unit 5

Job Initiation

OBJECTIVE

Construct WFL job initiating statements.

PURPOSE

Once it is known how to write WFL jobs, it becomes necessary to be able

start them to verify that they do what is intended.

RESOURCES
a. Student Guide
b. A Series WFL Reference Manual
c. A Series ODT Reference Manual
d. The B 6700 WFL Primer

KEY WORDS
START
STARTJOB

1-33

Section
Unit

Section
Section

Section

Chapt

to

(S0 o]

(=230 o)

14

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: TASK INITIATION AND CONTROL

UNIT 5: Job Initiation

LEARNING SEQUENCE

With enough information to write an effective WFL job, the next logical step is to
initiate the job. There are several places from where that may be accomplished.
CANDE and the ODT are probably the most common; however, jobs may also be
started from a card reader, a zip from a program, or from other jobs.

e Using a CANDE terminal:

- START < WFL file name > % Used to start a WFL file
resident on disk

- START % Used to start the current
CANDE workfile

or

- ST < WFL file name > % Use of the abbreviated
form of the start command

- ST

& Using the ODT conscle

- START < WFL file name > % Used to start a WFL file
resident on disk

- STARTJOB < WFL file name >

A point to note about starting WFL jobs is that the Controller may recognize some
statements passed to it as being part of WFL even though they are not an ordinary
ODT command. The Controller will insert a BEGIN JOB in front of the statements
and an END JOB behind them which effectively creates a WFL job. The Controller
then passes this job to the WFL compiler. Task initiation statements are good
examples of this.

1-34

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: TASK INITIATION AND CONTROL

UNIT 5: Job Initiation

PRACTICE EXERCISES

1. Write the command to initiate a CANDE workfile whose type is
JOB.

2. Write the command to initiate a job to compile a program.
The name of the job file is called COMP/FILE.

3. ’Explain the use of the START command when your workfile is
the job filé and your workfile has not been saved.

1-35

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES
SECTION 1: TASK INITIATION AND CONTROL
LAB : 1-1

Write and run a Work Flow job which includes the steps described below. You may
find it helpful to write, perform, and check each step separately before adding the
next step to the job. .

STEP 1: The job name is to be in the following format.

<your initials>/LAB1

STEP 2: The job is to execute at the default priority for the class usercode.
STEP 3: Program Print/Practice is to execute first.
STEP 4: If program Print/Practice is completed successfully then the program

Cobol/Sample is to be executed asynchronously with Algol/Sample. Job
flow control is to be maintained through Algol/Sample.

STEP 5: If either sample program fails, terminate the job immediately,
specifying which program failed.

STEP 6: After the previous step is accomplished, start the job from CANDE at
your- work station. Get onto the MARC window and determine what is
in the mix for this job(AA from MARC action line). Get back onto
the CANDE window and enter the required information. Terminating
the Algol/Sample program should terminate the Coboi/Sampie normally
and proceed to a normal EOJ.

SAVE YOUR JOB FOR FUTURE PROJECTS.

SHOW THE JOB SUMMARY INCLUDING STEPS 1 THRU 6 TO THE INSTRUCTOR.

1-36

SECTION 2

FILE MAINTENANCE AND COMPILATIONS

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

FILE MAINTENANCE AND COMPILATIONS

SECTION OBJECTIVE

Construct file maintenance and compilation statements.

PURPOSE
This section provides the information necessary to perform basic library

maintenance and compilations using task attributes and file attributes to set
the environment for each executing task.

UNIT OBJECTIVES

e Construct task equation statements using task attributes.
e Construct file equation statements using file attributes.

e Construct file maintenance statements using appropriate
WFL naming conventions.

e Construct COMPILE statements using file equations.

e Construct WFL job initiating statements.

2-2

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

FILE MAINTENANCE AND COMPILATIONS
Unit 1

Task Equations

OBJECTIVE

Construct task equation statements using task attributes.

PURPOSE

In the operation of a large system, it is sometimes necessary to change the
environment in which a task is executing. Under WFL, the capability exists
to modify the environment of a task on an individual basis.

RESOURCES
a. Student Guide Section 2
Unit 1
b. A Series WFL Reference Manual Section 5
Appendix A
c. A Series Print System Reference Manual Section 3.2
KEY WORDS
Task attribute PRINTDEFAULTS
DESTNAME PRIORITY
FAMILY RESTART
JOBNUMBER RESTARTED
STACKNO STATION
NAME STATUS
MAXCARDS SW1 THRU SW8
MAXIOTIME TASKVALUE
MAXLINES USERCODE
MAXPROCTIME Task equation
MAXWAIT

2-3

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2:

LEARNING SEQUENCE

FILE MAINTENANCE AND COMPILATIONS

UNIT 1: Task Equations

A Task Attribute defines a characteristic of a task. Changing the state of a single
attribute changes the characteristics of a task and may cause changes in subsequent
tasks if a task identifier is used.

e TASK ATTRIBUTES

DESTNAME

FAMILY

JOBNUMBER
STACKNO
NAME
MAXCARDS
MAXIOTIME
MAXLINES
MAXPROCTIME
MAXWAIT

PRINTDEFAULTS

PRIORITY

RESTART

RESTARTED

Destination name for printer or punch
backup. This attribute may be set to
either a station name or SITE. It is
used frequently for sending printed
reports to remote sites under RJE.

Indicates which family specifications
are to be applied to a task. It
basically controls the access to
families. TAPE is not allowed as a

familyname.

Represents the mix number of the job.
Represents the mix number of the task.
Represents the name of the task.
Represents limits imposed on the task

or job by either system defaults or
programmer supplied values.

Used to set file attribute default values for printed
output.

Used by the system for scheduling functions.
Specifies the number of times the task
may be restarted following an error

termination.

True if the task has been restarted or
after a rerun statement.

2-4

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 1: Task Equations

LEARNING SEQUENCE

e TASK ATTRIBUTES (continued)

- STATION Contains the logical station number.

- STATUS Represents the current task state. It
is very similar to the task state
discussed eariier. It may not be used
in a task equation.

- SW1 THRU SW8 Used in COBOL74.

- TASKVALUE Provides a means for passing one real
number to a task. It is not dealt with
as a parameter. Known in WFL as VALUE.

- USERCODE Specifies the usercode under which a

task is to execute.

A Task Equation is used to specify changes to the current task attributes within
the program being initiated. The attribute name must be used in a task equation.

e RUN PROGA/OBJ ;
PRIORITY = 70 ;
MAXLINES = 1000 ;

DESTNAME = CECRJEL1L ;

e PROCESS RUN PROGB/OBJ ;
FAMILY DISK = PRODUCTION OTHERWISE DISK ;
USERCODE = MYUSERCODE/MYPASSWORD ;

VALUE = 3 ;

2-5

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 1: Task Equations

PRACTICE EXERCISE

Write the WFL statements that will have the system do the following:

1. write the WFL statements to execute PROGA using a task identifier TSK1
synchronously with another task. PROGA is to run with a priority of 80.

2. Write the WFL statements to execute PROGB asynchronously with
PROGC, and allow a maximum output of 3000 printed lines for PROGC.

3. Write the WFL statements to execute PROGD synchronously with
another task and find its files only under the family USER2. Those files are
located in the usercode PRODUCTION and a have a password of PRODI.

4. Write the WFL statements to execute PROGD synchronously with
another task. PROGD needs a value of 3 to be passed to it for correct
operation.

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

FILE MAINTENANCE AND COMPILATIONS
Unit 2

File Equations

OBJECTIVE

Construct file equation statements using file attributes.

PURPOSE

When a programmer writes a program, the filenames that are used in the
program seldom match those used on a system. The capability exists to
modify the physical file that a program is to access, but also other attributes
or specifications about the file.

RESOURCES

a. Student Guide Section 2

Unit 2

b. A Series WFL Reference Manual Section 5

c. I/O Subsystem Reference Manual ' ' Section 4
KEY WORDS

File attribute UNITS

INTNAME MAXRECSIZE

TITLE MINRECSIZE

FILENAME BLOCKSIZE

FAMILYNAME AREASIZE

FAMILYINDEX AREAS

KIND . FLEXIBLE

FILETYPE CRUNCHED

FILEUSE MYUSE

2-7

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES
SECTION 2: FILE MAINTENANCE AND COMPILATIONS
UNIT 2: File Equations

LEARNING SEQUENCE

File names and file titles are used to identify physical files. A file name
identifies a physical file without consideration of the disk where it resides. No
pack name is required if the file resides on the Halt/Load family or if security
invokes a default pack. A File Title identifies a physical file and the disk on
which it resides. Directory names and directory titles are used to identify a group
of physical files all having the same first name or belonging to the same user.

o XYZ

e Y/Z ON USERA

e A/=

e (A)B ON DISK

e ABC/DEF

e (LMN)= ON PACKB

2-8

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 2: File Equations

LEARNING SEQUENCE

A File Attribute defines a characteristic of a file. Changing the state of a single
attribute changes the characteristics of the file and may cause the states of other
attributes to be changed.

e FILE ATTRIBUTES

- INTNAME Internal filename chosen by
the programmer of a task.

- TITLE Complete external filename.
Associates a logical file with
a physical file or mateh port
files.
Default = INTNAME

- FILENAME External filename. Used to
indentify the physical file.

Default = INTNAME

- FAMILYNAME Name or label of a disk
family.

- FAMILYINDEX Relative number indicating
a physical unit in the family.

- KIND Describes the peripheral unit
associated with the logical
file.

- FILETYPE Specifies the format of the

records and the structure used
to store them.

- FILEUSE Describes how the file may be
used.

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2:

LEARNING SEQUENCE

FILE MAINTENANCE AND COMPILATIONS

UNIT 2: File Equations

e FILE ATTRIBUTES (continued)

- UNITS

- MAXRECSIZE

- MINRECSIZE

- BLOCKSIZE

- AREASIZE

- AREAS

- FLEXIBLE

- CRUNCHED

- MYUSE

Indicates whether certain
attribute values are in words
or bytes.

Specifies the maximum record
size that may be used in the
logical file.

Specifies the minimum record
size that may be used in the
logical file.

Usually the amount of physical
transfer that takes place in a
physical I/O. Size is usually
a multiple of MAXRECSIZE.

Specifies the number of
logical records in a disk
area called a row.

Specifies the total number of
rows that may be allocated for
a file.

Indicates whether a file may
be allocated more areas.

Indicates whether a file was
closed with a crunch. If it

was, the area within the row
beyond the last used block

is returned to the system.

Describes the user's intended use of the
file, such as: INPUT, OUTPUT, or IO.

2-10

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 2: File Equations

LEARNING SEQUENCE

A file equation is used to specify changes to the various file attributes declared
within the program being initiated. The internal name of the file must be used
with a file equation.

e RUN PROGB/OBJ ;
- FILE INFILE(BLOCKSIZE = 30, KIND = TAPE) ;

- FILE LINE(KIND = PRINTER) ;

e RUN PROGC/MYVERSION ;
- FILE INP(KIND = DISK, TITLE = DATAFILE/MYVERSION) ;

- FILE OUT(KIND = TAPE) ;

e COMPILE PROGC/MYVERSION COBOL74 LIBRARY ;

- COMPILER FILE CARD(KIND = DISK, TITLE = PROGC/SRC) ;

COMPILE PROGB/OBJ ALGOL LIBRARY ;
- ALGOL FILE CARD(KIND = DISK, TITLE = PROGB/SRC) ;

- FILE CARD(KIND = TAPE) ;

2-11

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 2: File Equations

PRACTICE EXERCISE

Write the WFL statements that will have the system do the following:

Write a task initiating statement for the program PAYROLL
that file equates the internal file INP to the external file named
UPDATE/DATA which is located on the family PRODUCTION.

1.

Write a file equation that equates the internal file OUTPUTT to the
external file whose record size is 180 bytes and whose block size is 3600
bytes. The Units attribute should be set to words, the device to be used is

tape, and the filename is NEWMASTER.

Write a file equation for the ALGOL compiler whose input card image

CK and whose name is SOURCEIN.

3.
file is located on the family USERPACK

Write a file equation for the task PRODUCTIONII whose input is normally

on tape but for this run it will be found on disk. The family name is
PRODUCTION, the filename is DATAIN, record size is 180 bytes, block size is
300 words, and it will be used for input only. The internal file name being

used for PRODUCTIONII is the same as the external name.

2-12

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 2: File Equations

PRACTICE EXERCISE

A. Write a WFL job using the instructions below.
1. Name the job < your initials > .
2. Put the job in queue 20.

3. The user-coded files are on the family SYSTEMS, and the
utilities and compilers are on the family DISK.

4. The job should execute at priority 70.
5. Run the programs PROG/2A and PROG/2B synchronously.

6. End the job.

B. Add the following to the job written above.

1. If PROG/2A does not end normally, abort the job.
(Do not allow PROG/2B to run)

2. Display a message to the operator indicating whether
2} YaYel) - crianaeaf i1l An At
UG/ 4D ran successiuily or not.

C. Add the following to the job written above.
1. PROG/2A should run at priority 75.
2. Pass a value of 3 to PROG/2B.
3. PROG/2B expects a tape file with the internal name INPUTT. For this

run, it should use the disk file called DATA/IN on SYSTEMS instead of
the tape file.

2-13

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

2-14

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

FILE MAINTENANCE AND COMPILATIONS
Unit 3

Library Maintenance

OBJECTIVE

Construct file maintenance statements using appropriate WFL naming

PURPOSE

To be able to accomplish anything with a computer system, it is necessary to
be able to have the appropriate files present. The user has available routines
which will allow one to copy, add, and remove files, change filenames and
security on selected files.

RESOURCES

a. Student Guide Section 2
Unit 3

b. A Series WFL Reference Manual Section 6
KEY WORDS

COoPY

AUTORM

ADD

CHANGE
REMOVE
SECURITY
SECURITYTYPE
SECURITYUSE

2-15

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 3: Library Maintenance

LEARNING SEQUENCE

File maintenance statements may be used to change the name, attributes, security,
or residence of disk files. WFL uses the MCP library maintenance routines to
perform this function.

The COPY statement is used to copy files between disk and tape media. If
duplicate files exist, the results are dependent on how system options are set. If
AUTORM is set, the existing version will be removed and the new version loaded in
its place. If it is reset, a duplicate file condition will arise and display an
appropriate message to the operator. If the ADD statement is used instead of
COPY, the files will be copied to the destination where they are not already
resident.

e COPY A FROM X(KIND=TAPE) TO Z(KIND=DISK) ;

e COPY A AS B FROM USERA ;

e COPY A/=, B/= TO BKUP(KIND=DISK) ;

e COPY A/= FROM XYZ(KIND=TAPE) TO USER(DISK), TO BKUP(DISK) ;

e COPY AND COMPARE = FROM DISK TO XYZ(KIND=TAPE) ;

e ADD COBOL/= FROM SYSTEM(KIND=TAPE) ;

2-16

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2:

LEARNING SEQUENCE

The CHANGE statement changes the names of files on a disk family.

FILE MAINTENANCE AND COMPILATIONS

UNIT 3: Library Maintenance

In WFL, if a

family substitution statement is in effect, it will change the file on the substitute

family only as of the 3.6

CAUTION Use of the "from" clause may save you grief !

e CHANGE

e CHANGE

e CHANGE

e CHANGE

e CHANGE

release.

W/X TO Y/Z ;
A ON USERC TO B ;
R/= TO S/= ;

L/M TO N/O FROM USEKA ;

A/= TO B/=, C/C TO D/D FROM

2-17

USER1 ;

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES
SECTION 2: FILE MAINTENANCE AND COMPILATIONS
UNIT 3: Library Maintenance
LEARNING SEQUENCE

The REMOVE statement removes files from a disk family. In WFL, if a family
substitution statement is in effect, it will remove the file from the substitute
family only as of the 3.6 release.
CAUTION Use of the "from" clause may save you grief !

e REMOVE A/B;

e REMOVE C FROM USERC ;

e REMOVE D/= FROM USERD ;

e REMOVE V/W, X FROM PACKA, Y/= FROM PACKB, Z ;

The SECURITY statement is used to change the SECURITYTYPE and
SECURITYUSE of files on disk.

e SECURITY A/B PRIVATE IO ;

e SECURITY C/D ON USER1 PUBLIC IN ;

e SECURITY E/F ON MYPACK GUARDED XYZ ;

2-18

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 3: Library Maintenance

PRACTICE EXERCISE

Using the files A through F below, generate the LIBRARY MAINTENANCE
statements to accomplish the following in a WFL job.

Assume the following:

1.

Unless otherwise noted, all these files should be
manipulated under your usercode.

Unless otherwise noted, all these files are on the family
DISK.

A = SYSTEM/ALGOL B = PROGONE/CLASS
C = PROGTWO/CLASS D = PROGTWO/CLASSMATES
E = SYSTEM/COBOL F = SYSTEM/FORTRAN

Copy file C from DISK to a tape labeled CDETAPE.
Copy file C from the tape CDETAPE to a tape labeled DATAPE.
Copy files A, B, C from DISK to a tape labeled MYTAPE.

Copy file B to exist under your usercode. Then using the
CHANGE WFL command, change the name to
< your initials >/PROGONE/CLASS.

Change the security of the file < your initials >/PROGONE/CLASS
to PRIVATE, I/0.

Remove the files created in steps 4 and 5.

2-19

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 3: Library Maintenance

PRACTICE EXERCISE (continued)

Write the WFL statements that will have the system do the following. Assume
that the Halt/Load Family is DISK.

1. Copy all the files with a first name of PAYROLL from a tape
named PAYBKUP to the Halt/Load family.

2. Copy the files PROG1/SRC and PROG1/OBJ from the system
disk to a user disk named BKUPPACK. Have each file
compared immediately after it is copied.

3. Copy only those files that are not currently resident on a
user disk named SYSBKUP to that disk from a tape named
SYSTEM. The group of files is named DOCUMENT.

4. Change the first node of a group of filenames from ABC to XYZ.
These files are located on a pack named USERI.

5. Remove the file RS/TU and XYZ from the pack named USER2.

6. Change the SECURITYTYPE of the file A on the system pack to
PUBLIC and its SECURITYUSE to INPUT only.

2-20

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

FILE MAINTENANCE AND COMPILATIONS
Unit 4

Compiles

OBJECTIVE

Construct COMPILE statements using file equations.

PURPOSE

Since compilers are used at most sites, it is beneficial to know how to
compile through a WFL job. In this way, the operations staff has more
control over system resources.

RESOURCES

a. Student Guide Section

Unit

b. A Series WFL Reference Manual Section
KEY WORDS

$ (Dollar Sign Option) NEWTAPE

LINE NEW

LIST NEWSOURCE

ERRORFILE SET

ERRLIST RESET

ERRORLIST POP

TAPE COMPILEDOK

SOURCE DATA CARD

MERGE ? (invalid punch)

2-21

(3]

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 4: Compiles

LEARNING SEQUENCE

As covered in Unit 1, the WFL compiler takes source input and generates a
specialized object code file. The other compilers on the system work in a similar
manner in that they also take source input and generate object code output. These
other compilers offer more options than the WFL compiler.

The basic compile statement was covered in Section 1 Unit 3 and the use of file
equations in Unit 2 of this section. To be able to make use of a file equation it
is necessary to know the internal files that a task has. There are several options
available to the compiler through the use $ (dollar sign) options in those compilers.
The normal or default diagram of a compilation is shown below.

SOURCE COMPILER OBJECT

Every compile in WFL must have two statements:

e Compiler initiate
e Compiler file equation or data card file in the WFL deck

PRIMARY
SOURCE :
COMPILER OBJECT
SECONDARY

SOURCE

Compilers may have two input files which requires the use of an additional
compiler file equation and a dollar sign option.

PRIMARY SOURCE SECONDARY SOURCE THE COMPILER USES

(CHANGES) (ORIGINAL) (END RESULT)
010$SET MERGE 010$SET MERGE
100 BEGIN JOB ONE; 100 BEGIN JOB; 100 BEGIN JOB ONE;
250 PRIORITY = 80; 200 QUEUE = 50; 200 QUEUE = 50;
250 PRIORITY = 80;
300 DISPLAY "ONE"; 300 DISPLAY "ONE";
400 END JOB 400 END JOB

2-22

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 4: Compiles

LEARNING SEQUENCE

The compile statement format is
COMPILE < object code file name > < compiler > < disposition > ;

e The object code file name should be different from the
source file name.

e The compilers are:

ALGOL

COBOL BASIC DCALGOL NDL
COBOL74 XALGOL ESPOL NDLII
FORTRAN PL/1 BINDER NEWP
FORTRANT77 PASCAL RPG SORT

e The disposition is one of the following:

GO LIBRARY SYNTAX LIBRARY GO < blank >
INTERNAL FILENAME $§ OPTION FUNCTION
CoObE = OBJECT CODE FILE
(DISK)
CARD - PRIMARY SOURCE FILE
(CARD)
LINE LIST SOURCE LISTING
(PRINTER)
ERRORFILE ERRLIST ERROR LISTING
ERRORLIST (PRINTER)
(COBOL174)
TAPE MERGE SECONDARY SOURCE
SOURCE (COBOLT74) (DISK)
NEWTAPE NEW NEW SOURCE FILE
NEWSOURCE (COBOL74) (DISK)

2-23

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 4: Compiles

LEARNING SEQUENCE

The compiler options mentioned are made available through the use of a SET,
RESET, or POP function. These functions with the options usually occur as the
first records in the primary input file, although other compiler options may occur
at any place in the file. The $ must occur in certain columns.

e The functions operate as follows:

SET Turns the option on.

RESET Turns the option off.

POP . Returns the option to the previous
setting.

e The $ must be placed in certain columns as follows
to have that $ record shown or not shown in the listing:

ALGOL $ in. column 1 (not shown)
$ in column 2 (shown)

COBOL74 $ in column 7 (not shown)

a

$ in column 8 (shown)
® A sample compile statement is as follows:

COMPILE OBJECT/ALGOL/ONE ALGOL LIBRARY;
ALGOL FILE CARD(KIND = DISK, TITLE = SOURCE/ALGOL/PATCH1);
ALGOL FILE TAPE(KIND = DISK, TITLE = SOURCE/ALGOL/ONE);

ALGOL FILE NEWTAPE(TITLE = NEWSOURCE/ALGOL/ONE);

e A primary input file may contain as its first record when it is a patchfile:

00000100$ SET MERGE NEW

2-24

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 4: Compiles

LEARNING SEQUENCE

[el

| OPTIONALUPDATED |

PRIMARY INPUT FILE SYMBOLIC FILE i
(CARD) | (NEWTAPE) I
[e e e |
=== ———— OBJECT CODE FILE
| OPTIONALSECONDARY | (CODE)
i INPUT FILE COMPILER
I P | P ————
Fem———————— | OPTIONALLINE |
| OPTIONALSOURCE | | PRINTERLISTING i
I FILESINPUTBY | LNE) o= =
| $INCLUDE CARDS | \ ~ /
| SO P P -—
e ——————— =
OPTIONAL ERROR i

MESSAGE LISTING I
(ERRORFILE P - -]

/

N -

COMPILER INPUT FILES :

(SOURCE LANGUAGE COMPILER - GENERATED

INPUT AND COMPILER OUTPUT FILES
CONTROL STATEMENTS)

P V]

COMPILER DA
To check on the status of a compile, one of the task states available is
COMPILEDOK which is set if there were no errors during compilation. A task
identifier may be used to check on this status. There are two task identifier

assignments possible in a compile statement. The first will be dssigned to the
object code being generated and the second will be assigned to the compiler itself.

If this is used in the previous example, T1 is assigned to the status of the
program being compiled and T2 is assigned to the compile status itself.

COMPILE OBJECT/ALGOL/ONE [T1) ALGOL [T2] LIBRARY GO;
ALGOL FILE CARD(KIND = DISK, TITLE = SOURCE/ALGOL/PATCH1);
ALGOL FILE TAPE(KIND = DISK, TITLE = SOURCE/ALGOL/ONE);

ALGOL FILE NEWTAPE(TITLE = NEWSOURCE/ALGOL/ONE);

2-25

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 4: Compiles

LEARNING SEQUENCE

By adding the data deck to the previous example, the file equation will be replaced
by the data deck. When using the data deck, all data following the ALGOL DATA
CARD is assumed to be data. The only way that the WFL compiler will stop
regarding input as data is to find a ? (invalid punch) in the first column of a
record.
COMPILE OBJECT/ALGOL/ONE [T1] ALGOL [T2] LIBRARY GO ;
ALGOL FILE TAPE(KIND = DISK, TITLE = SOURCE/ALGOL/ONE) ;
ALGOL FILE NEWTAPE(TITLE = NEWSOURCE/ALGOL/ONE) ;
ALGOL DATA CARD
$ SET MERGE NEW 00000010
END. 00001500

? RUN MYPROG ;
RUN OBJECT/ALGOL/ONE ;

COMPILE OBJECT/COBOL/ONE [T1] COBOL [T2] LIBRARY GO ;
COBOL FILE TAPE(KIND = DISK, TITLE = SOURCE/COBOL/ONE) ;
COBOL FILE NEWTAPE(TITLE = NEWSOURCE/COBOL/ONE) ;
COBOL DATA CARD

0000108 SET MERGE NEW
013200 M7 A PIC 9V99 VALUE 99.

2

"RUN MYPROG ;
RUN OBJECT/COBOL/ONE ;

2-26

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

UNIT 4: Compiles

PRACTICE EXERCISE

Write the WFL statements that will have the system do the following. In all
cases, the code generated should be saved on disk.

1. Compile a program naming it PROGA/OBJ. The RPG source is
named PROGA/SRC on the same disk.

2. Compile a COBOL program whose object is OBJECT/PRODUCTIVITY/ONE and
whose source is SRC/PRODUCTIVITY/ONE. A patchfile is used to
supply corrections to the source file and its name is
SRC/PRODUCTIVITY/PATCHONE.

3. Compile the ALGOL program OBJ/ACCTS/PAY with the source
SRC/ACCTS/PAY and the patchfile PATCHFILE/ACCTS/PAY. Create
a new source file called NEWSRC/ACCTS/PAY, put any errors in
a disk file called NEWSRC/ACCTS/PAY/ERRS, and send the
listing to a normal printer backup file.

4. Compile the COBOL source SRC/INVENTORY naming the task
OBJECT/INVENTORY. Save the object file on disk after
compilation and immediately execute it. The task should
execute at a priority of 65 and have a maximum processor
time of 300 seconds which are to be compiled into the task.

2-27

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES
SECTION 2: FILE MAINTENANCE AND COMPILATIONS

LAB : 2-1

Write and run a Work Flow job which includes the steps described below. You may
find it helpful to write, perform, and check each step separately before adding the
next step to the job.

STEP 1: Copy the following files from the family
to the family : WFL/PROGI1SRC, WFL/PROG3SRC,
WFL/PROGSSRC, and WFL/PROGS8SRC.

STEP 2: Compile PROGS8 using PROG8SRC with the COBOL74 compiler
making sure to keep a copy on disk.

STEP 3: Run PROG8. PROGS8 has an output disk file internally
named DISK-FILE. This newly created file should have
a directory name of your initials, a name of MASTER
and reside on the user disk. Assure that more areas
can be allocated than may be specified within the

program.
STEP 4: Make a backup copy of MASTER named MASTERBKUP under
your directory.
STEP 5: Change the name of the file MASTERBKUP TO MSTRBKUP.
STEP 6: Compile PROG3 using PROG3SRC with the COBOL74 compiler
making sure to keep a copy on disk.
STEP 7: Run PROG3. The input file was created in STEP 3.
The output file, internally named PUNCH-FILE, is a
card file. For this run only, create a disk file
with a directory name of your initials and a name of
DISKPUNCH.
STEP 8: Compile PROG5 using PROGSSRC with the COBOL compiler making
sure to keep a copy on disk.
STEP 9: Run PROGS. The input file, internally named
TIME-CARD, is a card file. Use the disk file
WFL/TIMECARD instead.
STEP 10: Compile PROG1 using PROGISRC and COBOL74 making sure
to keep a copy on disk.
STEP 11: Run PROGI1. The internal name of the print file is PRINTFILE.
STEP 12: Remove all files you created in this WFL job from

the disk.

2-28

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES
SECTION 2: FILE MAINTENANCE AND COMPILATIONS

LAB : 2-2

Write and run a Work Flow job which includes the steps described below. You may
find it helpful to write, perform, and check each step separately before adding the
next step to the job.

STEP 1: The source files CLASS/PROGANEW and CLASS/PROGBNEW
exist on disk. Copy these files simultaneously (not
one after the other) into your own library, under
the names UTIL/< yourname >/PROGANEW and
UTIL/< yourname >/PROGBNEW.

STEP 2: Compile the COBOL source UTIL/< yourname> /PROGANEW.
Name the object file UTIL/< yourname >/PROGA, and store
it in your library for execution later.

STEP 3: If PROGANEW fails to compile (step 2 above), then do
the following:

A. Place the COBOL source CLASS/PROGAOLD into your
library under the name UTIL/< yourname >/PROGAOLD.
B. Compile this source, and store the object as
UTIL/< yourname >/PROGA.

STEP 4: If PROGAOLD has syntax errors (step 3 above), stop
the entire job and give the reason for termination in
the job summary. ‘

STEP 5§ Patch and compile the ALGOL program described below.
A. Name the object UTIL/< yourname >/PROGB.
B. The patchfile is CLASS/PROGBNEW/PATCH ON DISK.
C. The source is UTIL/< yourname >/PROGBNEW ON DISK.
D. Create a new source disk file called
UTIL/< yourname >/NEWBB.
STEP 6: If PROGBNEW fails to compile (step 5 above), then copy

the object file CLASS/PROGB into your library under
the name UTIL/< yourname >/PROGB.

STEP 7: If UTIL/< yourname >/PROGB does not reside on disk at
this point (steps 5 and 6 above), stop the entire
job and give the reason for termination in the job
summary.

SAVE YOUR JOB FOR USE IN FUTURE LAB PROJECTS.

SHOW THE JOB SUMMARY INCLUDING STEPS 1 THRU 7 TO THE INSTRUCTOR.

2-29

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 2: FILE MAINTENANCE AND COMPILATIONS

LAB : 2-3

Additional labs may be supplied by the instructor.

2-30

SECTION 3

EXPRESSIONS, ITERATIONS, and FUNCTIONS

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

EXPRESSIONS, ITERATIONS, and FUNCTIONS

SECTION OBJECTIVE

Construct a WFL job using assignment statements, iterative statements, and
WFL functions.

PURPOSE
This section adds the concept of using variables in task control.

Consideration will also be given to routines provided for the WFL
programmer in the form of functions.

UNIT OBJECTIVES
e Construct assignment statements using appropriate

expressions.

® Construct iterative and case statements to control the
flow of a WFL job.

e Construct statements using string functions.
o Construct statements using numeric functions.
e Construct job attribute statements.

e Construct job initiating statements that pass
parameters.

3-2

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

EXPRESSIONS, ITERATIONS, and FUNCTIONS
Unit 1

Declarations, Expressions, and Assignments

OBJECTIVE

Construet assignment statements using appropriate expressions.
PURPOSE

One of the most useful tools in any language, is the ability to calculate

values. This unit deals with the declaration of variables, the evaluation of
expressions, and the assignment of values.

RESOURCES
a. Student Materials _ Section 3
Unit 1
b. A Series WFL Reference Manual Section 6
Section 7
KEY WORDS
REAL boolean expression
INTEGER boolean variables
BOOLEAN string expressions
STRING string variables
expressions # string primary
primary assignment statement
real expressions MYSELF
real variables MYJOB

integer expressions
integer variables

3-3

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 1: Declarations, Expressions, and Assignments

LEARNING SEQUENCE

In Section 1, the declaration section was mentioned as one of the five major
sections of a job. In making a declaration, the compiler is directed to generate
the code necessary to reserve a portion of memory for the variable being declared.
The amount of memory is determined by the type of declaration being made. As
covered earlier, task variables are one type of declaration. In WFL, all variables
must be explicitly declared. The new types to be covered in this unit are REAL,
INTEGER, BOOLEAN, and STRING.
e REAL
- NUMERIC
- 12 DIGITS AND DECIMAL POINT MAXIMUM

- WHOLE AND FRACTIONAL NUMBERS

e INTEGER
- NUMERIC
- 12 DIGITS AND NO DECIMAL POINT

- WHOLE NUMBERS ONLY

e BOOLEAN
- LOGICAL

- TRUE or FALSE

e STRING
- GROUP OF CHARACTERS

- 256 CHARACTERS MAXIMUM

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 1: Declarations, Expressions, and Assignments

LEARNING SEQUENCE

With areas of memory reserved by declaration statements, the purpose is to store a
value in memory. It may be necessary to manipulate a combination of many values
to obtain a single value for storage. This evaluation is performed on an expression.
Expressions may be one value (primary) or a combination of values manipulated
through the use of operators. As with declarations, there are different types of
expressions and operators.

ARITHMETIC OPERATORS:

e REAL % WHOLE or FRACTIONAL NUMBERS
- 4+ % ADDITION
- - % SUBTRACTION
- % % MULTIPLICATION
-/ % REAL DIVISION
- DIV % INTEGER DIVISION
- MOD % MODULUS DIVISION
e INTEGER % WHOLE NUMBERS ONLY
- 4+
.
- DIV
- MOD

ARITHMETIC OPERATOR PRECEDENCE:

e PREFIX + or - % Unary operator - one operand
e * /, DIV, or MOD % Equal precedence
e INFIX + or - % In an expression between operands

3-5

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 1: Declarations, Expressions, and Assignments

LEARNING SEQUENCE

ARITHMETIC EXPRESSIONS:

e Real expressions yield numerical values by combining real
primaries with arithmetic operators. The conventional operators, +, -, *,
/ for addition, subtraction, multiplication, and real division are used. The
DIV operator produces a quotient with a truncated fractional part. The
MOD operator returns the remainder of a divide operation.

e Real variables may be used to store the value of real

expressions.
- EXAMPLES:
* REAL R1, R2, R3 ; % REAL DECLARATIONS
* REAL R4 ;
* 95 + 72 % REAL EXPRESSIONS
* 57 - R2
* R3I*4/3
* R1 DIV 3

e Integer-expressions yield numerical values by combining
integer primaries with arithmetic operators. The conventional operators,
+, -, * for addition, subtraction, and multiplication are used. The DIV
operator produces a quotient with a truncated fractional part. The MOD
operator returns the remainder of a divide operation.

e Integer variables may be used to store the value of
integer expressions.

- EXAMPLES:
* INTEGER I1, 12, I3 ; % INTEGER DECLARATIONS
* INTEGER R4 ;
s 95 + 72 % INTEGER EXPRESSIONS
* 57 - 12
s 3+17-4*3
*+ 11 DIV 3

3-6

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 1: Declarations, Expressions, and Assignments

LEARNING SEQUENCE

BOOLEAN OPERATORS:

NOT
AND
OR
IMP
EQV

ceecoe
RRRRR R

BOOLEAN OPERATOR PRECEDENCE

NEGATE PRESENT VALUE
TRUE IF BOTH ARE TRUE
TRUE IF EITHER IS TRUE
FALSE IF 1ST TRUE 2ND FALSE
TRUE IF BOTH ARE THE SAME

BOOLEAN RELATIONAL OPERATORS:

e ARITHMETIC COMPARISON

- LSS
- GEQ
- GTR
- LEQ
- EQL
- NEQ
- <

- >

e STRING COMPARISON

- EQL
- NEQ

e TASK STATE COMPARISON
- IS or ISNT

INUSE
COMPLETED
SCHEDULED
ACTIVE
STOPPED
ABORTED
COMPLETEDOK
COMPILEDOK

L 2K JEE JEE JNE JEE BN IR)

3-7

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 1: Declarations, Expressions, and Assignments

LEARNING SEQUENCE

BOOLEAN RELATIONAL OPERATORS: (continued)

e TASK MNEMONIC COMPARISON

- IS
- ISNT

e FILE RESIDENCY COMPARISON

- IS or ISNT

* RESIDENT

BOOLEAN EXPRESSIONS:

A boolean expression is an expression that always evaluates to one of
only two values: TRUE or FALSE. They provide the user with the
power to make decisions during the run of a job. Boolean expressions
usually contain two primaries and one operator, but can be more
complex. “

Boolean variables may be used to store the value of boolean expressions.
They may also be used in place of the boolean expressions as used later
in this unit.

- EXAMPLES:

* BOOLEAN Bl, BZ; % BOOLEAN DECLARATIONS
BOOLEAN BOOL;

*

I <10 % BOOLEAN EXPRESSIONS
STR1 EQL "ONE"

JOBSUMMARY IS SUPPRESSED

T1 IS COMPLETEDOK

FILE ABC IS RESIDENT AND T2 IS COMPILEDOK

® % % 8 »

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 1: Declarations, Expressions, and Assignments

LEARNING SEQUENCE

STRING OPERATORS: % CONCATENATION OF STRINGS
o & % STRING STRING

o * % * STRING

o / % STRING / STRING

e ON % STRING ON STRING

e /= % STRING /=

STRING EXPRESSIONS:

e String expressions yield a group of characters. Two
strings may be concatenated together by the use of the "&" operator.

e String variables may be used to store the value of string
expressions.

- EXAMPLES:

* STRING S1, S2 ; % STRIN

1 D,

Y
* STRING STR ;

"HELLO THERE EVERYONE" % STRING EXPRESSIONS
STR1 & STR7 '

S1 / S2 ON "SYSTEMS"

RUN # S1

START # S1 / S2

® % * B #

A # <string primary> syntax may be used in dynamically built constructs
such as filenames, family names, and usercodes using the string concatenation
operators provided. Use of this format tells the system to use the contents
of the variable rather than the variable name itself.

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 1: Declarations, Expressions, and Assignments

LEARNING SEQUENCE

An assignment statement assigns values to declared variables. The evaluation of an
expression reduces that expression to a single "value" which will be assigned to a
location in memory set aside by the declaration of a variable. In simple terms, it
means that a value is stored at a memory address for later access. Variables may
be assigned an initial value in the declaration statement. Since there are many
different kinds of declarations, there may also be many types of assignments. For
real, integer, boolean, and string type variables, the assignment operator is :=
(colon equals).

1
x
tri
>
o

.63, R4 := 18.477 ; % INITIAL VALUE

1
X
—

b
X
> w
o

e INTEGER

- INTEGER 12 := 37 ; 9% INITIAL VALUE
- 11 :=5+2;

- 11 +1;
- I1: + 12

Pl g
-

e BOOLEAN

- BOOLEAN B4 := FALSE ; % INITIAL VALUE
- B1 := TRUE ;

- B2:=11=23;

- B3 := NOT Bl AND TRUE ;

e STRING

- STRING S1 := "EXECUTING " ; % INITIAL VALUE

- STR1 "THIS PROGRAM IS" ;

- STR2 := "NOT " ;

- STR3 := STR1 & S1 & STR2 ; % THE ORDER OF
CONCATENATION

STR1 & STR2 & S1 ; DETERMINES THE
RESULT

- STR3 :

"

3-10

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 1: Declarations, Expressions, and Assignments

LEARNING SEQUENCE

Other variables may have different forms for their assignment statements. In the
previous section, task variables were assigned to a task to become a task identifier.
Through the task equation, attributes were assigned to a particular task. Attributes
may also be assigned to the task variable, which when assigned to a task, assigns
those attribute values to that task. There are three ways to assign task attributes.

e TASK EQUATION

- RUN PROGA ;
PRIORITY = 65 ;

- RUN MYPROG ;
MAXLINES = 1000 ;

e TASK VARIABLE

- T1 (PRIORITY = 75) ;

- T4 (PRIORITY = 65, MAXLINES = 100) :
* T1 (MAXPROCTIME=20); % USE IN A JOB
RUN PROGA [T1] ;

* INITIALIZE (T1) ; % T1 (STATUS = NEVERUSED)
% RESETS STATUS OF T1

RUN PROGB [T1] ;
e TASK VARIABLE AT DECLARATION
- TASK T1, T2 (PRIORITY = 90), T3 ;
- TASK T1, T2, TI(MAXLINES = 500, MAXPROCTIME = 30) ;
MYSELF and MYJOB are predeclared task variables. They are used in exactly the
same way as any task variable except that they may not be assigned to a task.

MYJOB and MYSELF are task variables which provide access to the values of the
job's task attributes.

3-11

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 1: Declarations, Expressions, and Assignments

PRACTICE EXERCISE

Evaluate the following expressions in the order of their execution within the job.

BEGIN JOB EXPRESSIONS;
STRING S,T,U;
INTEGER LJ,R,V,W,X;

BOOLEAN B,C;

S = "X" % S CONTAINS
T :="AB" & "C" ; % T CONTAINS
S:=8S & "#¥T" ;........... % S CONTAINS
U=T&S;.....c....... % U CONTAINS
S = "1" , % S CONTAINS
S =S &S ;... % S CONTAINS
S =S&S;.: % S CONTAINS
T:=S&U;............. % T CONTAINS
I =15 ..ot % I CONTAINS

J =105 ;.. ... % J CONTAINS
R:=2 ;. ... % R CONTAINS
VisI*Jd; . oo % V CONTAINS
W:=VDIVR ;........... % W CONTAINS
W:=VMODR; % W CONTAINS
B:=S=T ;.0....... % B CONTAINS
C:=R<I; % C CONTAINS
END JOB

3-12

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

EXPRESSIONS, ITERATIONS, and FUNCTIONS
Unit 2

Flow Control Statements

OBJECTIVE

Construet iterative and case statements to control the flow of a WFL job.

PURPOSE
With the ability to calculate values, one way to shorten the amount of

coding necessary is to create a looping structure or decide the direction of
flow based on a value.

RESOURCES

a. Student Materials Section
Unit

8N W

b. A Series WFL Reference Manual Section
Section

DN

KEY WORDS

GO TO
label id
WHILE DO
DO UNTIL
CASE

3-13

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 2: Flow Control Statements

LEARNING SEQUENCE

The GO TO statement is perhaps the easiest of the flow control statements to use;
however, care must be taken to be sure what will actually take place when the job
executes. The GO TO statement requires the use of a label id to determine where
control is to be passed and will unconditionally transfer control to that label. (BE
SURE TO READ THE CAUTION IN THE REFERENCE MANUAL.)

e BEGIN JOB MYJOB ; 9%
INTEGER I ;
DOIT: %
RUN MYPROG ;
GO TO DOIT ; %
END JOB ;
e BEGIN JOB MYJOB ; 9%
INTEGER I, J ;
I:=1;
Jd=1;
DOIT : %
RUN MYPROG ;
Jd:=Jd+1;
I:=1+Jd+1;
IFI=5 %
THEN GO TO FINISH ;
GO TO DOIT ;
FINISH: %

END JOB ;

e BEGIN JOB MYJOB ;
INTEGER I ;
DOITAGAIN : %
RUN MYPROG ;
I:=1+1;
IF I LEQ 5 9%
THEN GO TO DOITAGAIN ;
END JOB ;

3-14

INFINITE LOOP

LABEL ID

TRANSFERS CONTROL TO DOIT

INFINITE LOOP?

LABEL

EXECUTES MYPROG TIMES

LABEL

LABEL

EXECUTES MYPROG 5 TIMES

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 2: Flow Control Statements

LEARNING SEQUENCE

The WHILE statement is used to execute a WFL statement when the condition is
true. The statement to be executed may be a COMPOUND statement, which
treats many statements as a single statement. If the condition is to be modified
in the loop, care should be exercised to prevent an infinite loop. (BE SURE TO
READ THE CAUTION IN THE REFERENCE MANUAL.)

e BEGIN JOB ;
INTEGER I ;
WHILE TRUE 9% INFINITE LOOP
DO :
RUN MYPROG ;
END JOB ;

e BEGIN JOB MYJOB ;
INTEGER I, J ;
I:=1;
Jd =1
WHILE I NEQ 5 % INFINITE LOOP?
DO :
BEGIN
RUN MYPROG ;
d=dJd+1;
I:=1+J+1;
END ;
END JOB ;

e BEGIN JOB MYJOB ;
INTEGER I ;
WHILE I LSS 5 % EXECUTES MYPROG 5 TIMES
DO
BEGIN
RUN MYPROG ;
I:=1+1;
END ;
END JOB ;

3-15

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 2: Flow Control Statements

LEARNING SEQUENCE

The DO statement performs the same function as the WHILE statement. However,
the WFL statement is executed before the boolean expression is evaluated and will
be repeated until the expression is true. Note, that with this order of events, the
WFL statement is always executed at least once, regardless of the value of the
boolean expression. (BE SURE TO READ THE CAUTION IN THE REFERENCE
MANUAL))

e BEGIN JOB ;
INTEGER T ;
DO % INFINITE LOOP
RUN MYPROG ;
UNTIL FALSE ;
END JOB ;

e BEGIN JOB MYJOB ;

INTEGER I, J ;
I:=1;
Jd :=1;
DO % INFINITE LOOP?
BEGIN
RUN MYPROG :
Jd:==dJd+1;
1 =1+d+1;
END ;
UNTIL I =5 ;
END JOB ;

e BEGIN JOB MYJOB ;
INTEGER 1 ;
DO % EXECUTES MYPROG 5 TIMES
BEGIN
RUN MYPROG ;
I:=1+1;
END ;
UNTIL I GEQ 5 ;
END JOB ;

3-16

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 2: Flow Control Statements

LEARNING SEQUENCE

The CASE statement allows dynamic selection of one out of several alternative
statements depending on the value of the case expression. The case expression

must be either an integer expression or string expression and be of the same type
as the case constants provided.

e BEGIN JOB EXAMPLE ;
TASK T ;
INTEGER 1 ;

DO
BEGIN
WAIT("ENTER OK WHEN SRC/PROGA IS CORRECT",0OK) ;
COMPILE OBJ/PROGA WITH COBOL74 [T] LIBRARY ;

COMPILER FILE CARD (KIND = DISK, TITLE=SRC/PROGA) ;
END ;

UNTIL T IS COMPILEDOK ;

I:=0;
WHILE I < 3
DO
BEGIN
CASE I OF
BEGIN
(0) : DISPLAY " 1ST RUN OF PROGA" ;
(1) : DISPLAY " 2ND RUN OF PROGA" ;
(2) : DISPLAY " 3RD RUN OF PROGA" ;
ELSE : DISPLAY " INVALID VALUE OF I" ;
END ;
RUN OBJ/PROGA ;
I:=1+1;
END ;
END JOB ;

3-17

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 2: Flow Control Statements

PRACTICE EXERCISE

Study the WFL jobs below, and then answer the questio;\s following each job.

BEGIN JOB A ;
REAL COUNT ;
COUNT := 7 ;

WHILE COUNT GTR 0 DO

BEGIN
RUN X ;
TASKVALUE = COUNT ;
COUNT := COUNT - 2 ;

END ;

END JOB ;
Al. HOW MANY TIMES WILL THE LOOP BE EXECUTED?

A2. WHAT WILL BE THE VALUE OF COUNT AFTER ALL ITERATIONS HAVE
BEEN EXECUTED?

BEGIN JOB B ;
REAL CTR ;
TASK TX ;

DO
BEGIN
RUN X[TX];
CTR := CTR + 1 ;
END;
UNTIL TX IS COMPLETEDOK OR CTR GTR 3 ;

END JOB ;

Bl. WHAT IS THE MINIMUM NUMBER OF TIMES THAT THE LOOP WILL BE
EXECUTED?

B2. WHAT IS THE MAXIMUM NUMBER OF TIMES THAT THE LOOP WILL BE
EXECUTED?

3-18

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

EXPRESSIONS, lTERATIONS, and FUNCTIONS
Unit 3

String Functions

OBJECTIVE

Construct statements using string functions.

PURPOSE

Many times it is useful to break apart messages to determine the exact flow
desired, get the data to pass to particular task, or to find out system
information such as the time or date.

RESOURCES

a. Student Materials Section 3
Unit 3

b. A Series WFL Reference Manual Section 7

KEY WORDS

TAKE
DROP
HEAD
TAIL
ACCEPT
STRING
TIMEDATE
SYSTEM

3-19

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 3: String Functions

LEARNING SEQUENCE

A string function is a prewritten procedure provided for the programmer which
accepts one or more arguments and returns a string value. The string returned
may be used anywhere a string expression may be used. The six string functions
are: TAKE, DROP, HEAD, TAIL, ACCEPT, and STRING.

The TAKE and DROP functions are used to extract a portion of a given string.
The result is a string whose value is some number of characters from the beginning
or end of another string. The TAKE function returns a new string whose value is
a copy of the first indicated number of characters taken from the target string.
The DROP function returns a new string whose value is a copy of the characters

remaining in the target string after the first indicated number of characters have
been discarded.

e S := "ABCDEFGHIJ" ;

e T := TAKE(S,5) ; % RESULTS IN T = "ABCDE"
e T := DROP("ABCDEFG",2) ; % RESULTS IN T = "CDEFG"
e S := "OPQRST" ;
e T := DROP(S,4) & TAKE(S,2) ;

% RESULTS IN T = "STOP"
e R := "ABCDEFGHIJK" ;
e U := DROP(TAKE(R,9) ,7) ;

% RESULTS IN U = "HI"

3-20

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 3: String Functions

LEARNING SEQUENCE

The HEAD and TAIL functions extract a substring from a given string based upon a
character set. The HEAD function returns a new string consisting of a copy of all
the leading characters in the string that belong to a given character set. The

TAIL function returns a new string consisting of a copy of all the characters in the

string that remains after the removal of all the leading characters that belong to
the character set.

e S1 := "ABCDEF" ;
e T := HEAD(S1,"A12B3") ; % RESULTS IN T = "AB"
e U := TAIL(S1,"A12B3") ; % RESULTS IN U= "CDEF"

In the following example, the TAIL function is performed first to supply a string
expression to the HEAD function. The effect of the tail function using the "not
character set" is to search for the first valid character and return the tail of the

string from that point. The whole statement serves to strip leading and trailing
garbage from an input statement.

o S2:

"AB122784XYZ" ;

e V

..
"

HEAD(TAIL(S2, NOT "0123456789"), "0123456789") ;

% RESULTS IN V = "122784"

Is exactly the same as the following two statements:

®
<
n

TAIL(S2, NOT "0123456789");

[]
<
W

HEAD(V, "0123456789");

3-21

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 3: String Functions

LEARNING SEQUENCE

The ACCEPT function displays a message on the system ODT and waits for a
reply. The job is suspended until the operator responds with an ODT command
(mix number AX message). The message entered by the operator will be a string.

e ST1 := ACCEPT("ENTER CURRENT ACCOUNTING PERIOD") ;

The STRING function converts an integer into an equivalent string representation.
The absolute value of the integer is converted to a string of the specified length.
If an asterisk is used in place of specifying a length, the string returned will be

precisely the number of digits needed to represent the integer.

e I1 :=432;

e I2 := 768 ;

e ST1 := STRING(1,5) ; % RESULTS IN ST1 = "00432"
e ST2 := STRING(IL,2) ; % RESULTS IN ST2 = "32"

e ST3 := STRING(12,4) ; % RESULTS IN ST3 = "0768"
e ST4 := STRING(2,*) ; % RESULTS IN ST4 = "768"

3-22

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 3: String Functions

LEARNING SEQUENCE

The TIMEDATE function returns the system time or date in various forms that may
be used in the WFL job. It could be used for communication with the operator or
as part of a file name.

e STR1 := TIMEDATE (HHMMSS) :

[J
w
(3]
"

TIMEDATE (YYDDD) ;
e STR3 := TIMEDATE (MMDDYY) ;

e S2:

TIMEDATE (YYYYDDD) ;

e S3:

TIMEDATE (MMDDYYYY) ;

The SYSTEM function allows access to the system serial number, type, and MCP
level. This may be useful if the flow of a job changes depending on the type of
system it is executing on.

e STR1 :

SYSTEM (TYPE) ;

e S2 := SYSTEM (MCPLEVEL) ;

3-23

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 3: String Functions

PRACTICE EXERCISE

In the space provided, write the letter of the description that best defines the
string function.

1. ACCEPT FUNCTION a. Returns a string whose
value is a substring from
a given string based upon
a character set.

2. STRING FUNCTION b. Returns a string entered
by the operator.

3. TAKE/DROP FUNCTIONS ¢. Converts an integer
expression into a string
expression.

4. HEAD/TAIL FUNCTIONS d. Returns a string whose

value is some number

of characters from the
beginning or end of
another string expression.

3-24

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 3: String Functions

PRACTICE EXERCISE (continued)

Study the WFL job below, and then determine the values of the strings just before
the end of job. -

BEGIN JOB C ;

STRING FYLE, S1, S2, S3, S4, S5 ;

FYLE := "ACCTS/PAYABLE/HISTORY" ;

S1 := FYLE/"1984" ; S1 =
S2 := TAKE(FYLE, 4) ; S2 =
S3 := DROP(FYLE, 6) ; . S3 =
S4 := HEAD(FYLE, ALPHA) ; S4 =
S5 := TAIL(S1, NOT "1234567890") ; S5 =
END JOB

3-25

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

3-26

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

EXPRESSIONS, ITERATIONS, and FUNCTIONS
Unit 4

Numeric Functions

OBJECTIVE

Construct statements using numeric functions.

PURPOSE

Since the only way to receive data from the operator is in the form of
string data, if some of that information is to be used in arithmetic
computation, a transformation of this data must occur. Numeric functions
provide the transformation capability.

RESOURCES

a. Student Materials Section 3
: Unit 4

b. A Series WFL Reference Manual Section 7

KEY WORDS

LENGTH
HEX
OCTAL
DECIMAL
INTEGER

3-27

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 4: Numeric Functions

LEARNING SEQUENCE

Numeric functions are prewritten procedures provided for the programmer which
may accept a string or real expression and returns a real or integer value.

The LENGTH function returns the number of characters in a given string as a real
primary.

The HEX, OCTAL, and DECIMAL functions are used to convert a string containing
either a hex, octal, or decimal number to its equivalent real value. A run time
error will occur if the string contains invalid characters for the type of field being
converted.

The INTEGER function returns the integer portion of a real expression. Since large
system WFL supports real and integer arithmetic, the INTEGER function is used to
convert a real expression to an integer.

e SI := "25";

% ORIGINAL STRING VALUE
e R1 := LENGTH("ABCDWXYZ") ; % RESULTS IN R1 = 8
e R2 := HEX("1F") ; % RESULTS IN R2 = 31
e R3 := OCTAL("37") ; % RESULTS IN R3 = 31
e R4 := DECIMAL(S]) ; % RESULTS IN R4 = 25

e I5 := INTEGER(MYSELF(ACCUMPROCTIME));

RESULTS IN I5 = NUMBER
OF WHOLE SECONDS OF

PROCESSOR TIME FOR A
JOB TASK.

RRRR

3-28

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 4: Numeric Functions

LEARNING SEQUENCE

e SAMPLE JOB USING STRINGS AND FUNCTIONS

00001000 BEGIN JOB PARSE ;
00001100 STRING 81, S2 ;

00001200 S1 :

ACCEPT ("ENTER STRING TO BE PARSED") ;

00001300 S1 :

it

TAIL (S1, " ") ;
00001400 WHILE LENGTH(S1) > 0 DO

00001500 BEGIN

00001600 S2 := HEAD (S1, ALPHA) ;
00001700 DISPLAY S2 ;
00001800 S1 := TAIL(S1, ALPHA) ;
00001900 S1 := TAIL(SL, " ") ;
00002000 END;
00002100 END JOB
INPUT: THIS IS A 6 TOKEN STRING
DISPLAYS: THIS

IS

A

6

TOKEN

STRING

3-29

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 4: Numeric Functions

PRACTICE EXERCISE

A. In the space provided, write the letter of the deséription that best defines the
integer function.

1. HEX FUNCTION a. Returns the number of characters
within a string expression.

2. DECIMAL FUNCTION b. Returns the real expression
without a fractional part.

3. LENGTH FUNCTION c. Returns a real primary equal to
the BASE 8 number represented by
the value of the string
expression.

4. INTEGER FUNCTION d. Returns a real primary equal to
the BASE 16 number represented
by the value of the string
expression.

5. OCTAL FUNCTION e. Returns a real primary equal to
the BASE 10 number represented
by the value of the
string expression.

3-30

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

EXPRESSIONS, ITERATIONS, and FUNCTIONS
Unit 5

Job Attributes

OBJECTIVES

Construct job attribute statements

PURPOSE

To further the understanding of attributes, this unit covers some of the
attributes unique to the job task and others that may have unexpected
influence on the results.

. RESOURCES
a. Student Materials Section 3
Unit 5
b. A Series WFL Reference Manual Section 3

KEY WORDS

job attribute specification
job attribute assignment
class specification

family specification

fetch specification
starttime specification
usercode specification

3-31

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 5: Job Attributes

LEARNING SEQUENCE
The job attribute specification is used to assign attributes to the job task. There
are six separate categories that fall under the job attribute specification.

The job attribute assignment allows the assignment of task attributes to the job
itself.

The class specification allows the job to be assigned to a particular class or job
queue.

The family specification allows the job to equate a target family with a substitute
family.

The fetch specification causes the job to wait for operator action before beginning
execution. When the job is initiated, the operator is informed that the job contains
a FETCH message. The message may be displayed using the ODT command (PF).
The job will start after the ODT command (OK) is used.

The starttime specification sets limitations on the job as to when it may start
execution. The job, when started, will be placed in the appropriate queue and
await the designated time before starting.

The usercode specification allows the usercode and password to be set. This is
retained across a Halt/Load.

e BEGIN JOB BACKUP ;
PRIORITY = 7 ;
QUEUE = 30 ;
FAMILY DISK = SYSTEMS OTHERWISE DISK ;
FETCH = "MOUNT 2 SCRATCH TAPES FOR BACKUP" ;
STARTTIME = 20:00 ON 02/01/85 ;
USERCODE = PRODUCTION/MYPASS ;
COPY INVENTORY/= FROM INVENT TO INVENTBKUP(KIND=TAPE) ;

END JOB

3-32

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 5: Job Attributes

PRACTICE EXERCISE

Write the job attribute section of a Work Flow job that does the following:
1. Informs the operator that the user disk PAYROLL should be
mounted for this job.
2. Sets the priority of the job to 8.
3. Establishes the usercode/password for this job as PAY/ONE.
4. Restricts the processing time to a maximum of three minutes.

5. Starts the job at one minute after midnight.

BEGIN JOB MYJOB ;

END JOB

3-33

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

3-34

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

EXPRESSIONS, ITERATIONS, and FUNCTIONS
Unit 6

Job Parameters

OBJECTIVE

Construct job initiating statements that pass parameters.

PURPOSE
RESOURCES
a. Student Materials Section
Unit
b. A Series WFL Reference Manual Section
KEY WORDS
parameters

3-35

D W

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 6: Job Parameters

LEARNING SEQUENCE

When starting a WFL job using the ODT command (START) it is possible to pass
parameters, or values to the job. Whatever parameters are needed must first be
specified within the BEGIN JOB statement. The type and name are specified and
must be either REAL, INTEGER, BOOLEAN, or STRING. The parameters in the
START command are checked against the parameter list in the job and must match
by type and number. The variable declared as a job parameter may only be used
as an expression. It may not be used on the left side of an assignment operator.

e START PARAMEXAMPLE("PAYROLL ON PAYPACK")

BEGIN JOB PARAMEXAMPLE (STRING 8) ;
RUN # S ;

END JOB;

e START MYJOB ("12/31/84", 2)

BEGIN JOB MYJOB (STRING S1, REAL R1) ;

STARTTIME = 2:00 ON 01/01/85 ;

TASK T1 ;

RUN MYPROG [T1 } ;
VALUE = Rl ;

I[F T1 IS COMPLETEDOK
THEN DISPLAY "MYPROG REPORT FOR " & Sl
ELSE DISPLAY "MYPROG FAILED" ;

END JOB

3-36

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

UNIT 6: Job Parameters

PRACTICE EXERCISE

A. Write a Work Flow job that will compile a COBOL program. Be able to supply
the object name and source name at START time. Also include the START
statement that would be used to compile OBJ/PROGB using SRC/PROGB as the
source disk file.

BEGIN JOB :

END JOB

START

B. Take the job written above and test it in the lab, using the
source CLASS/PROGAOLD, and an object file name of your choice.

3-37

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS
LAB : 3-1
Write and execute a Work Flow job that will accept a person's name after the job
has started. It will display the lengths of the first and last name separately, no

matter how many spaces are included before, after, or in between the names.
SHOW THE INSTRUCTOR THE RESULTS.

SAMPLE INPUT:

bbSUSANbbbWILSONDbDD % b MEANS A BLANK OR SPACE
SAMPLE OUTPUT:

SUSAN CONTAINS 5 CHARACTERS

WILSON CONTAINS 6 CHARACTERS

Modify the job just created to accept a person's name as part of the start
statement. SHOW THE INSTRUCTOR THE RESULTS.

3-38

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

LAB : 3-2

Write a WFL job which includes the steps below:

1. Accepts a person's name from the ODT (or a CANDE
terminal), then displays the name in reverse order.

2. Accepts a number from the ODT (or a CANDE terminal),
then displays that number squared. Parse the input to
make sure the data is valid input.

3. Each of the following strings must be included in your
job. Extract and display the string "GEORGE WASHINGTON" using
each of the functions TAKE, DROP, HEAD, and TAIL at least once.

STR1 := "GEORACF" ;
STR2 := "XYGE WA" ;
STR3 := "123SH4IN" ;
STR4 := "GPRSTONEF" ;

SHOW THE INSTRUCTOR THE RESULTS.

3-39

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 3: EXPRESSIONS, ITERATIONS, and FUNCTIONS

LAB : 3-3

Additional labs to be supplied by the instructor.

3-40

SECTION 4

SUBROUTINES, CONTROL, and ERROR HANDLING

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SUBROUTINES, CONTROL, and ERROR HANDLING

SECTION OBJECTIVE
Construct a WFL job using subroutines, advanced task control statements, and
error handling techniques.

PURPOSE
To provide more efficient code generation, subroutines allow duplicate code

to be discarded. With this in mind, they also allow error handling
statements to be grouped together.

UNIT OBJECTIVES
e Construct a subroutine to execute a section of repetitive

code.

e Construct communication statements to instruct an
operator during the job.

e Constrfuct statements for advanced task control.
e Construct a job using Global Files or Global Data Decks.

e Identify the functions of the WFL $ options.

4-2

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SUBROUTINES, CONTROL, and ERROR HANDLING
Unit 1

Subroutines

OBJECTIVE
Construct a subroutine to execute a section of repetitive code.
PURPOSE

To keep a repetitive job simple, WFL has the capability of executing a
section of code just by identifying it and calling it.

RESOURCES
a. Student Materials Section 4
‘ Unit 1
b. A Series WFL Reference Manual Seétion 5
Section 6
KEY WORDS
subroutine

local variables
global variables
RETURN

STOP
CALL-BY-NAME
CALL-BY-VALUE

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING
Unit 1: Subroutines

LEARNING SEQUENCE

A subroutine is a construct that represents a single statement or group of
statements identified by an identifier. The subroutine identifier must first be
defined in the declaration part of the job along with the executable statements
that belong to it. Afterwards, any reference to that subroutine identifier is
interpreted as a command to execute the statements associated with that identifier.
Therefore, a subroutine is & shorthand method of repeating the same WFL
statements several times.

00000100 BEGIN JOB THISJOB ;
00000200 STRING STR1 ;

00000300 SUBROUTINE SUBI ;
00000400 BEGIN

00000500 RUN PROG/A ;

00000600 FILE PATFILE = # STR1/PATIENTS ;

00000700 FILE DRFILE (TITLE = # STR1/DOCTORS) ;
00000800 FILE CHARGES { TITLE = # STR1/CHARGES) ;
00000900 RUN PROG/B ;

00001000 FILE PATFILE = # STR1/PATIENTS ;

00001100 END ;

00001200 STR1 = "HOSPITAL1" ;
00001300 SUB1 ;

00001400 STR1 := "HOSPITAL2" ;
00001500 SUB1 ;

00001600 STR1 := "HOSPITAL3" ;
00001700 SUB1 ;

00001800 END JOB ;

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 1: Subroutines

LEARNING SEQUENCE

Some declarations may occur within subroutines as well as those at the job level.
All declarations made in the currently executing subroutine are called local
variables. It is possible that variables declared in the calling routine may be
accessible. Those variables that are accessible are called global variables with
reference to the currently executing routine. This means that all variables
declared at the job level are global to any subroutine and local to the job itself.

00000100 BEGIN JOB EXAMPLE2 ;
00000200 SUBROUTINE SUBZ2 ;

00000300 BEGIN

00000400 INTEGER 1 ;

00000500 STRING ST1 ;

00000600 WHILE I LSS 7 DO

00000700 BEGIN

00000800 ST1 := STRING(L*) ;

00000900 RUN APROG ;

00001000 FILE INTA (TITLE = AB/ # ST1);
00001100 I:=1+1;

00001200 END ;

00001300 END ;
00001400 SUB2 ;
00001500 RUN BPROG ;
00001600 SUBZ ;
00001700 RUN BPROG ;

00001800 END JOB

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 1: Subroutines

LEARNING SEQUENCE

The RETURN statement is used for early termination of the subroutine and returns
control to the statement following the initiation of the subroutine.

00000100 BEGIN JOB SUBEXAMPLES ;

00000150

00000200 TASK T1 ;

00000250

00000300 SUBROUTINE SUBI ;

00000400 BEGIN

00000500 TASK T2 ;

00000600 RUN PAYROLL/REPORT1 [T2] ;
00000700 IF T2 IS COMPLETEDOK

00000800 AND

00000900 FILE PAYROLL/NEWMASTER IS RESIDENT
00001000 THEN RETURN ;

00001100 RUN PAYROLL/REPORT? ;
00001200 END ;

00001250

00001300 RUN PAYROLL/UPDTWK [T1] ;
00001350

00001400 SUB1 ;

00001450

00001500 IF T1 IS COMPLETEDOK

00001600 AND

00001700 FILE PAYROLL/MNTH IS RESIDENT
00001800 THEN

00001900 BEGIN ,

00002000 RUN PAYROLL/UPDTMNTH ;
00002100 SUB1 ;

00002200 END ;

00002250

00002300 END JOB

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 1: Subroutines

LEARNING SEQUENCE

The STOP statement allows the early termination of an asynchronous subroutine or
the job itself. Both of these will be terminated normally if no dependent tasks are
currently executing. If there are tasks executing, the parent and its dependent
task are terminated abnormally. An optional string expression is available for
displaying a message prior to termination.

00000100 BEGIN JOB SUBEXAMPLEZ ;

00000150

00000200 TASK Tl ;

00000250 _

00000300 SUBROUTINE SUBI ;

00000400 BEGIN

00000500 TASK T2 ;

00000600 RUN PAYROLL/REPORTL [T2] ;
00000700 IF T2 IS COMPLETEDOK

00000800 AND ,
00000900 FILE PAYROLL/NEWMASTER IS RESIDENT
00001000 THEN STOP

00001100 ELSE RUN PAYROLL/REPORT? ;
00001200 END ;

00001250

00001300 RUN PAYROLL/UPDTWK [T1] ;
00001350

00001400 PROCESS SUBL ;

00001450

00001500 IF T1 IS COMPLETEDOK

00001600 AND

00001700 FILE PAYROLL/MNTH IS RESIDENT
00001800 THEN

00001850 STOP "FIRST RUN OK" ;
00001900 ELSE

00001950 BEGIN

00002000 RUN PAYROLL/UPDTWKBKUP ;
00002100 SUBI1 ;

00002200 END ;

00002250

00002300 END JOB

4-7

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 1: Subroutines

LEARNING SEQUENCE

The use of parameters when calling a subroutine operate in a similar manner to
those covered in the job. When a value is passed to a subroutine, that value may
be treated in one or two ways. The first, CALL-BY-NAME, is used when the
parameter is only a link to the original area in memory set aside for the variable
being passed. Therefore, when the parameter value is changed in the subroutine, it
is actually changing the value of the original variable.

00000100 BEGIN JOB ROLLMONTH ;

00000200 REAL DATE1, DATEZ2 ;

00000250

00000300 SUBROUTINE GETDATE (REAL R, STRING TEXT) ;
00000400 BEGIN

00000500 STRING S ;

00000550

00000600 WHILE R LEQ 0 DO

00000700 BEGIN

00000800
00000900
00001000
00001100
00001200
00001250
00001300 END;

00001325

00001350

00001375

00001400 GETDATE (DATE1l, "ENTER CURRENT MONTH END DATE" } ;
00001450

00001500 RUN A/B ;

00001600 VALUE = DATE] ;

00001650

00001700 GETDATE (DATEZ, "ENTER NEXT MONTH END DATE") ;
00001750

00001800 RUN A/C ;

00001900 VALUE = DATE? ;

00001950

00002000 END JOB

ACCEPT (TEXT) ;

TAIL(S, NOT "0123456789") ;
HEAD (S, "0123456789") ;

:= DECIMAL (8) ;

AT

Smononn

o]

-s

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 1: Subroutines

LEARNING SEQUENCE

The second, CALL-BY-VALUE, is used when no link exists between the parameter
and the original area of memory where the value is stored. The parameter is
given the value of the original variable; but when the parameter value changes, it
does not modify the original variable contents.

00000100 BEGIN JOB SQUARES ;
00000200 REAL X := 4, Y =17, Z

00000300

00000400 SUBROUTINE SQUAREIT (REAL R VALUE, REAL S);
00000500 BEGIN % R=4,S=0

00000600 REAL T ;

00000700 R:=R*R;

00000800 T :=R;

00000900 S:=T+Y;

00001100 END;

00001200

00001300 SUBROUTINE SQUAREITAGAIN (REAL R , REAL S)
00001400 BEGIN % R=178=23

00001500 REAL T ; '

00001600 R:=R * ;

00001700 T := R ;

00001800 S:=T+X;

00001900 END;

00002000

00002100 SQUAREIT (X , Z) ; % X=4,Y=17,2=0
00002200 % X = 4,Y= 17,2=23
00002300 SQUAREITAGAIN (Y , Z); % X=4,Y= 17,2=2
00002400 % X= 4,Y=49,2 =353

00002500 END JOB

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 1: Subroutines

PRACTICE EXERCISE

Study the WFL job below, and then determine the values of the variables just
before the end of job.
BEGIN JOB D ;

XEAL C, X, Y

SUBROUTINE ADDER(REAL A, REAL B VALUE) ;

BEGIN
C := A +B; c=__ A= __ B=
A:=B+C,; A= __ B=__ c=___
B:=A+C; B=__ A= c=___
% < What are the values of the identifiers at this point?
END ;
X :=4;
Y =2;
C =3,
ADDER(X, Y) ;
END JOB

ANSWERS :

w > =< X QO
"

4-10

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 1: Subroutines

PRACTICE EXERCISE (continued)

Write a WFL job that contains a subroutine that runs REPORT/ALL. Within the
main body of the job include the following:

1. Run PAY/ONE on PAYPACK.

2. Run REPORT/ALL.

3. Run PAY/TWO on PAYPACK.

4. If the file PAY/MASTER is on PAYPACK, run REPORT/ALL.
5. Run PAY/THREE.

6. If PAY/THREE completes to a normal end of task, run REPORT/ALL;
otherwise, run PAY/FOUR.

4-11

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

4-12

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SUBROUTINES, CONTROL, and ERROR HANDLING
Unit 2 |

Communication with the Operator

OBJECTIVE
Construct communication statements to instruct an operator during the job.
PURPOSE
Operator communication is very important to the proper operation of any
system. This is meant as a review of those means of communication already

discussed and as an additional means of providing instructions to an operator
only if the operator needs them.

RESOURCES

a. Student Materials Section
Unit

N >

b. A Series WFL Reference Manual Section
’ Section

o

KEY WORDS

fetch specification
DISPLAY

WAIT

ABORT

STOP
INSTRUCTION

IB < number >

4-13

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 2: Communication with the Operator

LEARNING SEQUENCE

At this point, many statements have been covered to display messages to an
operator before the job starts, during the job, and at termination.

e PRIOR TO JOB EXECUTION

- The fetch specification causes the job to wait for operator action

before beginning execution. When the job is initiated, the operator is
informed that the job contains a FETCH message. The message may
be displayed using the ODT command (PF). The job will start after
the ODT command (OK) is used.

e DURING JOB EXECUTION

The DISPLAY statement displays a string expression on the ODT.

The WAIT statement causes the job task to suspend execution until a
time period elapses in seconds or the OK ODT command is entered.
A message can be displayed along with the wait.

The ACCEPT statement will display a message to an operator and
suspend the task until the operator enters a response.

e DURING JOB TERMINATION

The ABORT statement causes the job task to be terminated
abnormally. The STOP statement causes the job task to terminate

normally. In both statements, optionally a message will be displayed
prior to the termination.

The STOP statement allows the early termination of an asynchronous
subroutine or the job itself. Both of these will be terminated
normally if no dependent tasks are currently executing. If there are
tasks executing, the parent and its dependent task are terminated
abnormally. An optional string expression is available for displaying a
message prior to termination.

4-14

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 2: Communication with the Operator

LEARNING SEQUENCE

The INSTRUCTION statement allows the WFL programmer to provide indepth
instructions to the operator. Up to 63 separate instructions may be provided, each
with a maximum length of 1500 characters. These instructions will be displayed
only if the operator enters the ODT command (<mix #> IB < number>). This
command is not available in CANDE.

00000100BEGIN JOB COMPILE/TESTS ;

00000200
00000300
00000310
00000400
00000500
00000510
00000520

00000700

00000800

00000900

00001000

FETCH = "INSTRUCTIONS ARE AVAILABLE" ;
INSTRUCTION 1
TESTTAPE IS IN TAPE RACK 3 ;
COPY & COMPARE = FROM TESTTAPE TO USERS(PACK) ;
INSTRUCTION 2
IF THE COPY FROM TESTTAPE TO USERS FAILS,
PLEASE LEAVE A NOTE FOR JK ;
COMPILE TEST/17 ALGOL ;
ALGOL FILE CARD (TITLE = USERS/FILE1l, KIND = DISK) ;
FILE INP (TITLE = USERS/INP/TESTFILE) ;

IF FILE TEST/17 ISNT RESIDENT THEN ABORT "BAD COMPILE";

00001100END JOB

4-15

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 2: Communication with the Operator

PRACTICE EXERCISE

Write a WFL job that incorporates the following functions:

1. Run PROGA with a priority of 70 and task identifier T3.
2. Display a message indicating whether PROGA completed or not.
3. If PROGA failed, abort the job with the message "JOB ABORTED".

Otherwise, send a message to the ODT that it completed ok and wait
for an operator response.

4. Display a message to the operator that instructions are available
prior to the start of the job.

5. The instructions are:

A. PROGA is on the USERS pack.
B. If the job aborts, run job BKUP.

4-16

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SUBROUTINES, CONTROL, and ERROR HANDLING
Unit 3

Exception Handling and Task Control

OBJECTIVE
Construct statements for advanced task control.

PURPOSE
Under certain conditions, the task control statements learned to this point
may not be the most effective. WFL provides the ON statement to handle
more difficult error conditions and flows.

RESOURCES

a. Student Materials Section
Unit

w >

b. A Series WFL Reference Manual Section
Section

(= N4}

KEY WORDS

ON TASKFAULT
AUTORECOVERY
ON RESTART
OPTION

BDBASE
BDNAME

FAULT

DSED

ARRAYS

BASE

CODE

FILES

4-17

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 3: Exception Handling and Task Control

LEARNING SEQUENCE

A task fault occurs when any task of the job does not terminate normally. This
can happen either because the task was DS'ed or, if the task was a compilation, it
terminated finding syntax errors in the program source file. The ON TASKFAULT
statement allows the user to specify that the job be terminated in the event of

any task failure.

The ON TASKFAULT alone disables the condition so that an

abnormal task termination will not have any effect on the job.

e ON TASKFAULT ;

e ON TASKFAULT, < statement > ;

e ON TASKFAULT, ABORT "TASK HAS FAILED" ;

00000100 BEGIN JOB TF1 ;

00000200
00000300
00000400
00000500
00000600
00000700
00000800

00000900

RUN A ;

ON TASKFAULT, DISPLAY "TF1" ;
RUN B ;

RUN C ;

ON TASKFAULT, DISPLAY "TF2" ;
RUN D ;

ON TASKFAULT ;

RUN E ;

00001000 END JOB

4-18

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 3: Exception Handling and Task Control

LEARNING SEQUENCE

In this example, the ON TASKFAULT statement in line 900 resets the capability.
Therefore, if a failure occurs in line 700 or 800, "TF2" may or may not be
displayed since these are process statements and control is passed to line 900 as
soon as the tasks are initiated.

00000100 BEGIN JOB TF1 ;

00000200 RUN A ;

00000300 ON TASKFAULT, DISPLAY "TF1" ;
00000400 PROCESS RUN B ;

00000500 RUN C ;

00000600 ON TASKFAULT, DISPLAY "TF2" ;
00000700 PROCESS RUN D ;

00000800 PROCESS RUN E
00000900 ON TASKFAUL’i‘ ;
00001000 RUN F ;

00001100 END JOB

4-19

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES :

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 3: Exception Handling and Task Control

LEARNING SEQUENCE

There are times when the operator of a system has no control over when the
system will HALT/LOAD. Power outages and fluctuations, software bugs and
hardware failures may all cause this situation. WFL provides for these
circumstances if the system option AUTORECOVERY is set. The job will begin
execution at the last null mix unless the statement ON RESTART is used. The ON
RESTART statement provides the capability of controlling the restart point.

e ON RESTART ;
e ON RESTART, < statement > ;

e ON RESTART, ABORT "TASK HAS FAILED" ;

0.0000100 BEGIN JOB TF1 ;

00000200. RUN A ;

00000300 ON RESTART, DISPLAY "TR1" ;
00000400 RUN B ;

00000500 RUN C ;

00000600 ON RESTART, DISPLAY "TR2" ;
00000700 RUN D ;

00000800 ON RESTART ;

00000900 RUN E ;

00001000 END JOB

4-20

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 3: Exception Handling and Task Control

LEARNING SEQUENCE

In this example, the ON RESTART statement in line 900 resets the capability.
Therefore, if a failure occurs in line 700 or 800, "TR2" may or may not be
displayed since these are process statements and control is passed to line 900 as
soon as the tasks are initiated.

00000100 BEGIN JOB TF1 ;

00000200 RUN A ;

00000300 ON RESTART, DISPLAY "TR1" ;
00000400 PROCESS RUN B ;

00900500 RUN C ;

00000600 ON RESTART, DISPLAY "TR2" ;
00000700 PROCESS RUN D ;

00000800 PROCESS RUN E .;

00000900 ON RESTART ;

00001000 RUN F ;

00001100 END JOB

4-21

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 3: Exception Handling and Task Control

LEARNING SEQUENCE

In this example, the subroutine is used for restarting the job.

00000100 BEGIN JOB RESTARTIT ;
00000200 TASK T1 ;
00000300 SUBROUTINE RESTARTSUB (REAL RESTARTCODE VALUE)

00000400 CASE RESTARTCODE OF

00000500 BEGIN

00000600 (0) : RUN RESTART ;

00000700 (1) : RUN RESTARTI ;

00000800 (2) : RUN RESTARTZ2 ;

00000900 ELSE : BEGIN

00001000 START RESTARTIT ;

00001100 ABORT "INVALID VALUE, JOB RESTARTED" ;
00001200 END ;

00001000 END;

00001100 ON RESTART, RESTARTSUB(0) ;
00001200 RUN PROG ;
00001300 ON RESTART, RESTARTSUB(1) ;
00001400 RUN PROGI ;
00001500 ON RESTART, RESTARTSUB(2) ;
00001600 RUN PROG2 ;

00001700 END JOB

4-22

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 3: Exception Handling and Task Control

LEARNING SEQUENCE
The OPTION attribute is used to set options for the process and allows additional
capabilities when a fault occurs.
00000100 BEGIN JOB OPTIONEXAMPLE ;
00000200 OPTION = (BDBASE) ;
00000300 BDNAME = PRODUCTION/WFLJOB ;
00000400 RUN PRODUCTION/PROGLI ;
00000500 OPTION = (FAULT, DSED, ARRAYS, BASE, CODE, FILES) ;
00000600 FILE INP (TITLE = PRODUCTION/IN) ;
00000700 RUN PRODUCTION/PROG2 ;
00000800 FILE FILEOUT (TITLE = PRODUCTION/OUT) ;
00000900 END JOB
If PRODUCTION/PROGI has an internal failure or if it is externally DSed, a
program dump will occur automatically. The stack, arrays, base of the stack, code,
and files pertaining to that execution of the program will be included in the dump.
00001000 BEGIN JOB OPTIONEXAMPLE? ;

00001100 RUN PAYROLL/PROGI ;

00001200 OPTION = (BDBASE) ;

00001300 BDNAME = PAYROLL/CHKS ;

00001400 RUN PAYROLL/PROG2 ;

00001500 END JOB
Previously, BDBASE had to be used in conjunction with the attribute BDNAME.
The use of these attributes allowed the WFL programmer to modify the name of a
printer backup file. In the first example, it will alter the names for the job, and
in the second example only the names for the associated task. With release level

3.6, the entire printing subsystem has been changed and a closer look at these
attributes occurs in section 5 of the student materials.

4-23

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 3:

PRACTICE EXERCISE

Exception Handling and Task Control

In the space provided, write the letter of the description that best defines the

statement.

1. ON RESTART

2. ON TASKFAULT

3. FAULT
4 BDNAME
5. DSED

6. BDBASE |

Causes a program dump to occur if

L.
fault.

- led -

thoma ie = .|
there is an internal

Causes the flow to be passed to a
statement when a fault occurs.

Causes a descendant stack for printer
backup files to be initiated as a job.

Provides the directory name for
printer backup files.

Causes a particular statement to be
executed after a HALT/LOAD.

Causes a program dump when
terminated externally.

4-24

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SUBROUTINES, CONTROL, and ERROR HANDLING
Unit 4

Global Files and Global Data Decks

OBJECTIVE
Construct a job using Global Files or Global Data Decks.
PURPOSE
In some circumstances, it would be useful to have control over files from

within the WFL job. This unit deals with the control that is available from
within a WFL job.

RESOURCES

a. Student Materials Section
Unit

>

b. A Series WFL Reference Manual Section
Section

[op NS L]

KEY WORDS

Global Files
OPEN
CRUNCH
LOCK
PURGE
RELEASE
REWIND

4-25

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 4: Global Files and Global Data Decks

LEARNING SEQUENCE

WFL has the capability of dealing with files in many ways. As presented in
Section 1, WFL may copy, remove, or change file names and security. Global Files
allow the WFL programmer to do everything with physical files that a program can
do except read and write to them. Global Files may only be declared in the
declaration section of the job, not in a subroutine. These files may have certain
file attributes assigned to them and then the whole file may be equated to a
program’s internal files. This allows different programs to have different internal
file names and still use the same file without removing the physical file structure.
Global Files have several statements that apply to them.

e OPEN Opens the global file according to MYUSE attribute.

e CRUNCH Intended for disk and pack, closes the file and returns
the unused space at the end of the file to the system.
A crunched file may not be expanded.

e LOCK Intended for disk, pack and tape, closes the file and
makes disk files permanent. Tape files are rewound and
made unaccessible without operator action.

e PURGE Intended for disk, pack and tape, closes the file and
removes disk files from the system. Tapes are marked as
scratch.

‘o RELEASE Intended for all files, closes the file, disassociates the

logical from the physical file, and returns the buffers.
This is the system default. CAUTION: This will not
save newly created files unless PROTECTION is set to
save.

e REWIND Intended for disk or tape, closes the file with retention,
which means that the physical file is still assigned. For
disk, the record pointer is adjusted to the first record.
For tape, the tape is rewound.

4-26

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 4: Global Files and Global Data Decks

LEARNING SEQUENCE

00000100 BEGIN JOB GLOBALI ;

00000200 FILE GLOBEL (KIND = DISK, TITLE = USER/GLOBAL/DATA) ;
00000300 RUN USER/PROG1 ;

00000400 FILE OUTP := GLOBEL ; % ASSIGNED AS OUTPUT
00000500 IF GLOBEL IS RESIDENT

00000600 THEN RUN USER/PROG/REPORT ;

00000700 FILE INP := GLOBEL ; % ASSIGNED AS INPUT

00000800 END JOB

Global Files may have many different and useful purposes such as described below:

e CREATE MULTIFILE TAPES

- Write to a data tape from many programs without elosing or rewinding

e INCREASE SECURITY BY MATCHING WFL JOBS TO COBOL PROGRAMS
- Open files in WFL, read and write in COBOL

e PASS VALUES BETWEEN PROGRAMS
- As the above example

e PURGE TAPES

- Open the file from WFL and close it with the PURGE statement

4-217

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 4: Global Files and Global Data Decks

LEARNING SEQUENCE

Global Data Decks must be declared in the same manner as Global Files. Access
to these data decks is handled by the system and the programs using these decks.
There may be more than one data deck available but none may have the same
name.

e BEGIN JOB GLOBAL/DATA/DECK ;

DATA CARD % BEGINNING OF THE DATA DECK

END OF THE DATA DECK
RUN PROG/DATA/EXAMPLE ; % INTERNAL FILE CARD
RUN PROG2/DATA/EXAMPLE ; % INTERNAL FILE CARD

END JOB

e BEGIN JOB GLOBAL/DATA/DECK ;
DATA CHARSET1 % BEGINNING OF THE DATA DECK
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
[1<O0*+=-8&7/.,;:
? % END OF THE DATA DECK
DATA CHARSET?2 % BEGINNING OF THE DATA DECK
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDE
? END OF THE DATA DECK
RUN PROG/DATA/EXAMPLE ; % INTERNAL FILE CHARSET1
RUN PROG2/DATA/EXAMPLE ; % INTERNAL FILE CHARSET2

END JOB

4-28

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 4: Global Files and Global Data Decks

PRACTICE EXERCISE

Write a WFL job that incorporates the following functions:

1. Run a program whose name is PAYROLL that uses the global file
TAXINFO for input and output. The internal file name is TAXES.

2. Run a report program PAYROLLTAX that uses the same global file as
input only. The internal file name is TAXINFO.

3. The global file TAXINFO resides on disk by the name of TAXDATA.

4. The report program PAYROLLTAX also uses a card file called CARDIN
whose card images are to be included in the WFL job. The cards will
contain the name of the company, the name of the report, and the name
of the department being reported on.

4-29

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

4-30

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SUBROUTINES, CONTROL, and ERROR HANDLING
Unit 5

WFL Compiler $ Options

OBJECTIVE
Identify the functions of the WFL § options.

PURPOSE
To make full use of the WFL system, it is necessary to know what is
available for use.

RESOURCES

a. Student Materials Section 4
Unit 5

b. A Series WFL Reference Manual Section 9
KEY WORDS

$
ERRORLIMIT
NEWSOURCE
INCLUDE
CODE

LIST

SET

RESET

POP

4-31

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 5: WFL Compiler $ Options

LEARNING SEQUENCE

WFL Dollar Options provide additional flexibility and control over the WFL job
being produced. The $ must be in columns 1 or 2 of the card as with regular
compiler options. The number of options for WFL is restricted. The option $
ERRORLIMIT is used to stop the compile after a certain number of errors. The
job disposition NEWSOURCE will determine whether a new source file will be
created. If present, the new source file is created including or excluding the $
options based on the location of the $ character.

It is possible to store sections of commonly used WFL source code in a library on
disk. These sections of code may then be used by just merging these library files
into the WFL source. The $ INCLUDE is used to do this as illustrated below.
e SOURCE PROGRAM
- BEGIN JOB LIBRARYEX (INTEGER I1)
| " NEWSOURCE = LIBRARYEXNEW ON SYSTEMS ;
BOOLEAN COMPILEIT ;
IFI1 =1
THEN COMPILEIT := TRUE
ELSE COMPILEIT := FALSE ;
$INCLUDE LIB/ROUTINE ;

END JOB
e LIBRARY FILE (LIB/ROUTINE somewhere on the system)

- IF COMPILEIT
THEN COMPILE PROGA COBOL LIBRARY GO ;
COBOL FILE CARD (KIND = DISK, TITLE = WFL/LIB/PROGA) ;

ELSE RUN PROGA ;

4-32

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 5: WFL Compiler $ Options

LEARNING SEQUENCE

Sometimes if problems are occurring and there seems to be no simple explanation,
it may be useful to get a code listing of the WFL job. The $ SET CODE function
must be used with the LIST option to get a code listing with the address couple

information for the job. The SET, POP and RESET functions may be used to
restrict the listing to only those areas desired.

e 00000100 $SET LIST CCDE
00000200 BEGIN JOB WFL/TEST ;
00000300 INTEGER I ;

00000400

00000500 I :=5 ;

00000600 I :=1+ 2+ 3+ 4;
00000700

00000800 DISPLAY STRING(I,*) ;
00000900

00001000 END JOB

e CUDE GENERATED BY THIS SIMPLE J(B

100 00000100 $SET LIST CCDE
200 00000200 BEGIN JOB WFL/TEST ;

300 (01,0002)
400 (02,0002)
500 (02,0003)
600 (02,0004)
700

OODE SEGVENT DESCRIPTCR
SKELETON STACK DESCRIPTICN
DATA DECK ARRAY

ROLLOUT TIMESTAVP SLOT
000:0 NOOP FE

o il

800 00000300 INTEGER 1 ;

900 DATA POOL: SEGMENT=0005 (5]

1000 800000000014 000001200000 000400000003 0C010203E6C6 D304E3CSE2E3
1100 081400000003 07000103DSE6 C40000000000 240400000004 0ESBE2CSE340
1200 D3C9E2E340C3 D6C4C5000000 260100000002 000000418088 371200000005
1300 17021204C4C9 E2D209E2E8E2 E3CSD4E2C5C4 04CAC9E2D2AT 000000000000
1400 (02,0005) = I

1500 00000400

4-33

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 5: WFL Compiler $ Options

LEARNING SEQUENCE

e CODE GENERATED BY THE EXPRESSIONS IN LINE 500 AND 700

1600 00000500 I :=5;

1700 0000:1 LTS8 B205 LINEINFO 00000500
1800 0000:3 NAVC (02,0005) 5005

1900 0000:5 STCD B8

2000 00000600 I :=1+2+3+4;

2100 0001:0 VALC (02,0005) 1005 LINEINFO 00000600
2200 0001:2 LTS8 B202

2300 0001:4 ADD 80

2400 0001:5 LTS8 B203

2500 0002:1 ADD 80

2600 0002:2 LTS8 B204

2700 0002:4 ADD 80

2800 0002:5 NTIA 86

2900 0003:0 NAVC (02,0005) 5005

3000 0003:2 STD B8

3100 00000700

4-34

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 5: WFL Compiler $ Options

LEARNING SEQUENCE

3200 00000800 DISPLAY STRING(I,*) ;

3300 (01,0003) = MESSER @ (0,0028)

3400 0003:3 MKST AE LINEINFO
3500 0003:4 NAMC (01,0003) 6003
3600 0004:0 LT48 BE000004000003
3700 (02,0006) = TEMPCRARY STRING

3800 (02,0007) = TEMPCRARY STRING LENGTH

3900 0006:0 ZERO B0
4000 0006:1 NavC (02,0006) 5006
4100 0006:3 INDX A6
4200 0006:4 ZERO B0
4300 0006:5 NAMC (02,0007) 5007
4400 0007:1 STD B8
4500 (02,0008) = EXPRESSICN TEMPCRARY

4600 0007:2 NAMC (02,0008) 5008
4700 0007:4 OVRN BB
4800 0007:5 DUPL B7
4900 (01,0004) = QCSTRINGFUNCTION @ (0,0034)
5000 0008:0 MKST AE
5100 0008:1 NAMC (01,0004) 6004
5200 0008:3 NAMC (02,0008) 5008
5300 0008:5 LOAD
5400 0009:0 VALC (02,0005) 1005
5500 0009:2 ZERO B0
5600 0009:3 NE Bl
5700 0009:4 ENTR AB
5800 0009:5 DUPL B7
5900 000A:0 VALC (02,0007) 1007
6000 000A:2 ADD 80
6100 000A:3 NAMC (02,0007) 5007
6200 000A:5 STD B8
6300 000B:0 TUNU EE
6400 000B:1 DLET BS
6500 000B:2 ZERO B0
6600 000B:3 LT8 B206
6700 000B:5 TUND E6
6800 000C:0 ZERO BO
6900 000C:1 NaMC (02,0006) 5006
7000 000C:3 INDX A6
7100 000C:4 ENIR AB
7200 00000900

7300 00001000 END JOB % AND 3 MCRE PAGES NOT LISTED

4-35

00000800

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

PRACTICE EXERCISE

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

Unit 5: WFL Compiler $ Options

In the space provided, write the letter of the description that best defines the
statement.

1.

LIST

INCLUDE

NEWSOURCE

CODE

ERRORLIMIT

A. This option will cause the compiler to

generate a listing of the code along with

cmiiman

4 o - Tigédiom
the source iisung.

This element will enable an updated
WFL job symbol file to be generated.

C. This option will enable a separate WFL

source listing to be printed.

D. This option will set the maximum

number of errors allowed by the WFL
compiler for a single compilation.

This option will allow the compiler to
include the contents of library files as
part of the source for a compilation.

4-36

LAB :

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

4-1

Write and run a Work Flow job which includes the steps described below.
find it helpful to write, perform and check each step separately before adding the
next step to the job. .

You may

Assure that all tasks within the job have a priority of 80 unless stated otherwise.
The job should be limited to 10,000 lines of print.

STEP

STEP

STEP

STEP

STEP

STEP

Copy the files WFL/PROGASRC and WFL/PROGESRC from
to .

Allow time for the operator to load the correct paper.

Assure the COBOL source PROGESRC is available and com-
pile PROGE putting a copy of the object on disk. The

compile should be run at a priority of 60.

Run PROGE if it had no syntax errors from STEP 3.

The input file, internally named ORIGINAL-FILE is named
WFL/WFLDATA and should be on the systems disk.

The two output files, INPUT-FILE and BKUP-FILE

should be named SALESDATA and SLSDATABKP respectively.
SLSDATABKP is a backup copy of SALESDATA.

Assure the COBOL source PROGASRC is available and
compile PROGA putting a copy of the object on disk.
Assign a priority of 35 using a task variable. If
needed, WFL/PRGASRCBKP is another copy of PROGA's
source.

Run PROGA if there were no syntax errors. The input
file, internally named ORIGINAL-FILE, is SALESDATA.
The output file, internally named DISK-FILE, should be
named SALESMSTR.

4-37

LAB :

STEP 7:

STEP 8:

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

(Continued)

Create a loop that will call a subroutine. The
subroutine should run each of the programs listed below
depending on an integer variable value.

The three programs create reports and the first

two need SALESMSTR as input. The three programs are:
a. WFL/PROGB

b. WFL/PROGD

c. WFL/PROGC

Remove all files you created within this WFL job from
the user disk.

SHOW THE INSTRUCTOR THE RESULTS.

4-38

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

LAB : 4-2

Write a WFL job which includes the steps below:

STEP 1: Execute UTIL/< yourname >/PROGA and UTIL/< yourname >/PROGB
simultaneously. PROGB has an output file with the internal name of
AUDITDISK. File equate this to a global disk file called
UTIL/< yourname >/GLOBAL.

STEP 2: Write one "ON TASKFAULT" subroutine to handle possible failures
of the tasks run in STEP 1 above.

A. If PROGA fails then:

1. Run CLASS/PROGD and file equate the internal file
AUDIT to the global file built in STEP 1. PROGD
will use this as an input file, so be sure to set the
record pointer to the beginning of the file.

2. Rerun PROGA asynchronously with PROGB. Pass a
taskvalue of 2 to PROGA.

3. If PROGA fails to run the second time, stop the entire
job and give the reason for termination in the job
summary.

B. If PROGB fails then:

1. Discontinue PROGA and rerun PROGA with a
taskvalue of 1 passed to it.

to
poo)

erun PROGB.

3. If PROGB fails the second time, stop the entire job
and give the reason for termination in the job summary.

STEP 3: After PROGA and PROGB run successfully, run CLASS/PROGC.

SHOW THE INSTRUCTOR THE RESULTS.

4-39

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

LAB : 4-3

Write a WFL job containing three subroutines to perform the sections
of the string function lab from SECTION 3.

STEP 1: Make a new file for this job or get the previous lab as
another name.

STEP 2: If the functions are in separate jobs, use the CANDE INSERT
command to combine them into one file.

STEP 3: Put each of the three functions (NAME REVERSAL,
SQUARING, & GEORGE WASHINGTON) into a separate
subroutine.

STEP 4: Accept the name and number in the working section
and pass them as parameters to the subroutines.

STEP 5: Include at least one local variable in a subroutine.

STEP 6: Display the results from either the subroutine or

the working section.
EXTRA : Instead of aécepting the information in the working section,

pass the information needed as a job parameter.

SHOW THE INSTRUCTOR THE RESULTS.

4-40

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

LAB : 4-4

Additional labs to be supplied by the instructor.

4-41

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 4: SUBROUTINES, CONTROL, and ERROR HANDLING

LAB : 4-5

Additional labs to be supplied by the instructor.

4-42

SECTION 5

UTILITIES

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

UTILITIES

SECTION OBJECTIVE

Construct a WFL job using different utilities to produce the desired results.

PURPOSE
The utilities provide the user with a means to obtain various information

about the system and a way to manage the system resources. There are
some basic utilities that almost every user needs to know.

UNIT OBJECTIVES

e Construct a WFL job to print out a file using the printing subsystem.

e Construct a WFL job to copy a file from one media to another using'
SYSTEM/DUMPALL.

e Construct a WFL job that uses SYSTEM/FILEDATA to generate reports on
disk usage.

Construct a WFL job that will copy files to a backup location using
SYSTEM/FILECOPY.

e Construct a WFL job that will execute SYSTEM/LOGANALYZER to
generate reports from system logging.

e Identify the uses of other utilities available on large systems.

5-2

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

UTILITIES
Unit 1

Printing Subsystem

OBJECTIVE
Construct a WFL job to print out a file using the printing subsystem.
PURPOSE
To keep the machine from becoming I/O bound on slow speed devices, such
as a printer or punch, the MCP has some options that allows the output to
these devices to be redirected to disk or tape. The printing subsystem is
provided to manage the efficient use of these devices.

RESOURCES

a. Student Materials Section 5
Unit 1

b. A Series Print System

c. A Series Printing Utilities

KEY WORDS
LPBDONLY DS
CPBDONLY CL
BACKUPBYJOBNR PS STCP
SB PS OK
DLBACKUP PS FORCE
DL SYSTEM/BACKUP
ou
PS SHOWREQUEST
PS DELETE

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem

LEARNING SEQUENCE

Printer and punch type peripheral devices are usually very slow in their handling of
data. If many programs are trying to access a printer or punch, and only one may
have control over it any point in time, then several programs are just waiting.
This creates a problem in that the I/O cannot keep up with the processor which is
more commonly referred to as I/O bound. To alleviate this situation, the printed
or punched output from any or all programs may be redirected to disk or tape
through the systems options LPBDONLY and CPBDONLY. The default for these
options are to backup or put the files on disk or tape. A benefit derived from
sending output files to disk or tape is that the utility may print these files at the
first opportunity. It will also drive the device at close to its maximum output thus
making better use of system resources.

The backup files are linked in a queue structure that provides two selection
capabilities based on another system option BACKUPBYJOBNR. This option allows.
the operator to decide whether files will be output by job number or by the
amount of lines generated by the job.

To get a job to execute properly and to get the desired results, it may be
necessary to control the environment of the job, its tasks, and the output
generated. Task attributes and file attributes are used for this purpose. With the
level 3.6 release, many of these have enhanced capabilities when applied to
printing. In addition, other attributes have been created to provide capabilites not
available to the previous backup system.

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES
SECTION 5: UTILITIES
Unit 1: Printing Subsystem
LEARNING SEQUENCE
These are some of the system options and attributes that were available for level
3.5 software and are still applicable to level 3.6 software.

SYSTEMS OPTIONS:

e LPBDONLY % OP+ SET
OP- RESET

SPOOLED
DIRECT

e CPBDONLY

e BACKUPBYJOBNR % OP+ SET - BY JOB NUMBER
OP- RESET - BY VOLUME
- NO SUMMARY IF A

e NOSUMMARY % OP+ SET
- NORMAL EOJ OCCURS

TASK ATTRIBUTES:

e BDBASE % INITIATES A SEPARATE STACK
e BDNAME % PREFIX FOR BACKUP FILE NAME
e JOBSUMMARY % DEFAULT NOSUMMARY

(SYSTEM OPTION)

FILE ATTRIBUTES:

e BACKUPKIND % BACKUP MEDIA TYPE

e FORMID % SPECIFIES THE TYPE OF FORM TO BE
USED

e KIND % ORIGINAL DEVICE

e PRINTERCONTROL % INDICATES THE FILE NAME OF A

PRINTER CONTROL FILE

e PRINTERKIND % TYPE OF PRINTER - IMAGE OR LP

5-5

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem

LEARNING SEQUENCE

Several ODT commands allow the operator flexibility as to where to store backup
files. The ODT command (SB) allows the operator to equate any backup media
type to another media type or DLBACKUP for better control of the system. This
also allows the print system to find all backup at one location. The DLBACKUP
option specifies that the system should look for a particular family based on the
information given by the ODT command (DL). If a particular unit is not available,
the MCP will respond with a message marked RSVP. The ODT command (OU)
allows the operator to assign another output unit in place of the unavailable unit.

Other ODT commands allow the operator to control the process. The ODT
command (SP) will show the current files waiting to be printed. The oDT
command (EP) eliminates the print queue if AB is set to zero. To stop a file that
is printing, there are three ODT commands available. The ODT command (DS) will
terminate the current print task and remove the print file. The ODT command
(CL) will terminate the current task, remove the print file, and reset the exception
flags for that device. The ODT command (QT) will allow an operator to stop the
task while not removing the print file. The task must be restarted manually at a
later time unless the print queue is rebuilt. If you are stopping the task to print a
special job, you might want to set AB to zero and initiate the task independently
of AUTOBACKUP. To initiate a separate copy of AUTOBACKUP not under control
of the AB command, the ODT command (PB) is used.

Since the printing subsystem must find the backup files being created and be able
to know which files belong to which job, the filenames are in the following format.
*BD/JOB NUMBER/TASK NUMBER/FILENAME

*BD/00O /000 /000

*BD/0004255/0004260/000LINEOUT

The attribute BDNAME is, therefore, used to modify the prefix of the printer
backup filename. If modified, the printing subsystem will not be able to find the
printfile automatically. Other means may be used to print it out such as the PB
statement in WFL, WFL PB from CANDE, or the ODT command (?PB). These
statements will initiate SYSTEM/BACKUP which has capability to do more
specialized print request than does the printing subsystem. It allows one to specify
the number of copies, special formatting, and where the output is to go. In
addition, reference may be made by directory name or file name rather than by job
number or mix number.

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem

LEARNING SEQUENCE

These are some of the ODT commands that were available for level 3.5 software
and are still applicable to level 3.6 software. Some however have been
implemented differently because of the new printing subsystem.

ODT COMMANDS:
e SB % SUBSTITUTE BACKUP

CHANGE MEDIA TYPE

e DL % DISK LOCATION
EQUATE MEDIA TO A FAMILY

e OU % OUTPUT UNIT
‘ RESPONSE TO RSVP

e AB 9% NEW 3.6 IMPLEMEN ATION
- WILL BE DE-IMPLEMENTED

e SP % NEW 3.6 IMPLEMENTATION
. - WILL BE DE-IMPLEMENTED

e EP % NEW 3.6 IMPLEMENTATION
- WILL BE DE-IMPLEMENTED

o QT % QUIT
QUIT AND SAVE

e CL % CLEAR
QUIT AND REMOVE, CLEAR DEVICE

e DS % DISCONTINUE
QUIT AND REMOVE

e PB % NEW 3.6 IMPLEMENTATION
- WILL BE DE-IMPLEMENTED

e ?PB % PRINT BACKUP
INITIATES SYSTEM/BACKUP

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem

LEARNING SEQUENCE

If the BDBASE option is set in addition to the BDNAME attribute, then a separate
descendant stack is initiated for the print job. This means that the printout is
treated as a separate job by the system and may become separated from the
original job output since there is no guarantee that they will go to the same
destination or will be printed at the same time.

BEGIN JOB WFLBACKUP ;
RUN MYPROG/ONE ;
OPTION = (BDBASE) ;
BDNAME = CONCEPTS/CLASS ; % DL LOCATION
PB "CONCEPTS/CLASS ON EDUCATION" ;
RUN MYPROG/TWO ;

END JOB ;

JOB OUTPUT % FROM MYPROG/TWO

(RWD)*BD /0007299/0007300/000LINEOUTTWO

BDBASE OPTION OUTPUT % FROM MYPROG/ONE
(RWD)CONCEPTS/CLASS/0007225/000LINEOUTONE

5-8

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem

LEARNING SEQUENCE

There are new system options and attributes for level 3.6 software which include
the new printing subsystem. The implementation of the new printing subsystem

offers new or enhanced task attributes and file attributes to control printed and
punched output.

The Printing Subsystem offers the following new task attributes:

JOBSUMMARYTITLE - DESIGNATES TITLE OF BACKUP FILE TO
RECEIVE JOB SUMMARY.

NOJOBSUMMARYIO - INHIBITS WRITING OF JOB SUMMARY
INFORMATION TO THE JOB CODE FILE.

PRINTDEFAULTS - SPECIFIES DEFAULT VALUES FOR
PRINTING-RELATED FILE ATTRIBUTES.

The Printing Subsystem offers the following new file attributes:
1. For routing and scheduling of print requests:

AFTER - DEFERS PRINTING TO LATER TIME.

DESTINATION - SPECIFIES DESTINATIONS WITH
OPTIONAL COPY COUNT PER
DESTINATION. [DEFAULT VALUE IS SET
FROM DESTNAME, WHICH CANDE
EXTRACTS FROM CANDEDESTNAME IN
THE USERDATAFILE.]

PRINTDISPOSITION - SPECIFIES WHEN TO LOGICALLY QUEUE
THE FILE FOR PRINTING.

PRINTERKIND - INDICATES GENERIC PRINTER (IMAGE
PRINTER, LINE PRINTER, OR
DONTCARE).

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

LEARNING SEQUENCE

2. For backup file control:

PRINTCOPIES

SAVEBACKUPFILE

SECURITYTYPE

TITLE

USERBACKUPNAME

3. For printing control:

BANNER

FORMID

NOTE

PRINTERCONTROL

TRANSFORM

SECTION 5: UTILITIES

Printing Subsystem

INDICATES NUMBER OF COPIES TO
PRINT AT DESTINATION.

SPECIFIES WHETHER A BACKUP FILE
SHOULD BE REMOVED OR NOT AFTER
PRINTING.

SET TO PRIVATE IF BACKUP FILE TITLE
INCLUDES A USERCODE.

RETURNS ACTUAL BACKUP FILE NAME.

ALLOWS USER-SPECIFIED BACKUP FILE
NAME.

PRECEDES FILE PRINTING BY BANNER
PAGE.

INDICATES TYPE OF PAPER OR KIND
OF FORM REQUIRED. [A STRING
VALUE UP TO 100 CHARACTERS LONG.]

ALLOWS USER TO SUPPLY TEXT FOR
BANNER PAGE.

INDICATES THE FILE NAME OF THE
PRINTER CONTROL FILE.

SPECIFIES LIBRARY ENTRYPOINT FOR

TRANSFORMING DATA ON ITS WAY
FROM BACKUP FILE TO PRINTER.

5-10

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem

LEARNING SEQUENCE

A new printing subsystem that replaces the autobackup facility is available on the
Mark 3.6 release. The new subsystem supports the backup file creation and
automatic printing features that were previously provided by Autobackup, as well as
providing capabilities for backup file creation, routing, and printing control.

Remote printing has been integrated into the new subsystem to make routing to
remote printers as easy as routing to site printers and to allow remote printers to
be controlled with the same operator commands that work for site printers.

All the old operator commands that were supported by Autobackup are still
accepted and cause equivalent actions in the new Printing Subsystem. The only old
command without a direct equivalent is EP. The new PS DELETE ALL command is
roughly equivalent to EP except that it also removes any files queued for printing.
The equivalent new syntax for the old Autobackup commands is shown below.
Acceptable abbreviations are shown in upper case characters. The system
automatically translates the old commands to the new commands for you, except
for the EP command, which results in an informative error message.

0Old syntax New syntax

AB PS SERVers

AB <number> PS SERVers = <number>

AB <device> PS DEVices + <device>

AB - <device> PS DEVices - <device>

EP PS DELete ALL

FORM <device> PS DEVices <device>

FORM <device> <text> PS CONFIGure <device> FORMid <text>
SP PS SHowrequests

On level 3.6, some new ODT commands allow the operator to control the process.
The ODT command (PS SHOWREQUEST) will show the current files waiting to be
printed. The ODT command (PS DELETE) eliminates entries from the print queue
and the associated backup files. To stop a file that is printing, there are three
ODT commands available. The ODT command (DS) will terminate the current print
task and remove the print file. The ODT command (CL) will terminate the current
task, remove the print file, and reset the exception flags for that device. If you
are stopping the task to print a special job, you might want to use the QDT
command (PS STOP) which will allow an operator to suspend the printing while not
removing the print file. The ODT command (PS OK) will restart printing of a
stopped file. When a print request is initiated at the wrong time, it may be
rescheduled by the ODT commands (PS REQUEUE) and (PS MODIFY). To initiate
an immediate print request, the ODT command (PS FORCE) is used.

5-11

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem

LEARNING SEQUENCE

The Printing Subsystem offers the following new operator commands.
NEW OPERATOR COMMANDS:

PS
ADDFILES ADD BACKUP FILES AND CREATE PRINT REQUESTS FOR
THEM.

CONFIGURE IDENTIFY DEVICE CHARACTERISTICS SUCH AS VOLUME
LIMITS, FORMID, AND TRANSFORM FUNCTION.

DEFAULT CONTROL PRINT-TIME DEFAULTS FOR ENTIRE SYSTEM,
SUCH AS PRINTER SELECTION BY PRINTERKIND FOR
PRINT JOBS VERSUS STANDALONE JOB SUMMARY FILES.

DELETE DELETE PRINT REQUEST(S) AND REMOVE ANY ASSOCIATED
BACKUP FILES.

DEVICES LIST PRINTING DEVICES AND THEIR CONFIGURATIONS.

FORCE FORCE REQUEST TO PRINT AS SOON AS POSSIBLE BY '
GIVING IT AN ARBITRARILY HIGH PRIORITY.

MODIFY MODIFY ATTRIBUTES (INCLUDING DESTINATION) OF
PENDING PRINT REQUEST.

OK : RESUME PRINTING ON A DEVICE THAT WAS STOPPED BY
AN OPERATOR.

REQUEUE STOP DEVICE AND REQUEUE PRINT REQUEST.

SERVERS VIEW/CHANGE NUMBER OF PRINT SERVERS ALLOWED.

SHOWREQUESTS DISPLAY PRINT REQUEST LIST (OPTIONALLY SHOW ONLY
REQUESTS THAT ARE COMPLETED, WAITING, PRINTING,
SCHEDULED, OR EXCEPTIONS). [ANY SHOWREQUESTS
COMMAND MAY BE LIMITED TO REQUESTS FOR A
PARTICULAR USERCODE.]

SKIP SKIP FORWARD OR BACKWARD WITHIN A FILE OR SKIP
FILES COMPLETELY DURING PRINTING.

STOP TEMPORARILY STOP PRINTING ON A DEVICE.

5-12

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem
LEARNING SEQUENCE

A brief summary of the new printing subsystem appears below. The printing
subsystem offers the following capabilities:

1. A programmatic interface through file attributes that gives the user
control over backup file creation, routing, and printing. ’

9. The ability to set defaults for printing-related file attributes for a job,
task, or MARC session through the task attribute PRINTDEFAULTS.

3. Extended operator control over printing devices and print jobs through the
set of ODT commands that begin with the prefix PS.

4. The ability to manually create print requests with the PRINT state: -at in
WFL.

5. Enhanced capabilities for viewing, copying, removing, and printing backup
files via the Backup Processor utility that is available through MARC or
CANDE.

6. The ability to optionally print job summary information, store it in a
backup file for later analysis, or prevent job summary information from
being written to the job code file through the task attributes
JOBSUMMARY, JOBSUMMARYTITLE, and NOJOBSUMMARYIO,
respectively.

7. Remote printing that is integrated with site printing and controlled by the
same file attributes and operator commands.

5-13

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem
LEARNING SEQUENCE
The user/operator should be aware of differences in the following areas:

1. New programs/libraries

a. The PRINTSUPPORT function must be SLed to SYSTEM/PRINT/SUPPORT, a
system library that maintains most of the state for the Printing Subsystem.

b. SYSTEM/PRINT/ROUTER is a process that will stay in the mix to
handle asynchronous communications with the Printing Subsystem.
It is responsible for creating printing requests, responding to
ODT commands, and monitoring changes in printer status.

c. A new Backup Processor Utility that is called for CANDE or MARC users is
provided by the codefile SYSTEM/PRINT/BACKUP/PROCESSOR. This replaces
the internal BACKUPPROCESSOR that CANDE previously used.

d. Remote printing reqhires creation of a PRINTING window via the
COMS UTILITY window and installation of the program titled
SYSTEM/PRINT/REMOTE/SERVER. This program handles multiple

remote printers and uses the library SYSTEM/PRINT/REMOTE/LIB to
maintain state.

e. Site printing is done by a stack per printer that is labelled
SERVER/<unit name>/R#<request number>/J#<job number> rather
than the old naming convention AUTOPRINT/<unit name>/<job number>.

f. The stack that does tape printing follows the old naming convention with one
exception: AUTOPRINT is replaced by TAPEPRINT.

5-14

A SERIES AND B 5/6/7000 WORKFLOW AND UTILITIES

SECTION 5: UTILITIES

Unit 1: Printing Subsystem
LEARNING SEQUENCE
2. New system files

a. Information regarding backup files and print requests is
maintained in the system file SYSTEM/BACKUPFILELIST on the DL
BACKUP family. If this file is not present at Halt/Load, the
Printing Subsystem waits on a "NO FILE" condition. This wait
allows the operator to copy in the file from another pack or
from ta