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Preface 

The Burroughs B 1700 family of computers exhibits a new style of 
architecture. These computers are known as interpretive definable-field 
machines. Their normal mode of execution is the interpretation of other 
computers, virtual or real. A system designed to interpret other com
puter systems should have a flexible storage-accessing mechanism so 
that bit strings of arbitrary length may be fetched and processed under 
control of the programmer. The definable-field feature of the B1700 
family supports efficient interpretation of instructions and promotes 
effective use of storage. Overviews of these features were presented by 
W. T. Wilner in a series of papers in 1972 ["Design of the B1700", pp. 
489-497, and "B1700 Memory Utilization", pp. 579-586, in AFIPS 
Conference Proceedings, Vol. 41, Part 1, and "Microprogramming 
Environment of the Burroughs B1700" in IEEE Computer Society 
COMPCON72, pp. 103-106.) 

Innovative systems such as the B1700 and its successors are attractive 
laboratory facilities for education and research in computer science, 
especially for software engineering studies, including the design and 
evaluation of new or special-purpose computer and data-base systems, 
and for studies in software portability. 

This book describes the architecture of the Burroughs B1700 family, 
with primary attention given to the B 1726 computer system, its internal 
structure, and how it may be programmed for the emulation of other 
computer systems. The book may have only limited appeal to computer
system specialists who are looking for reasons to select one computer 
organization over another. We do not address the comparative strengths 
and weaknesses of the B1700. We do not address such interesting 
questions as why interpretation is important and when it is to be 
preferred over the more conventional compiler-based general-purpose 
systems popular today. We do not dwell on the history of interpretation 
nor on its potential for the future. (We only hint at the promise for 
multilevel interpreters.) Finally, we do not suggest other applications of 
the B1700 architecture, say for database computing. Rather, our objec
tive is to help the person who is already motivated to learn the "insides" 
of the B 1700 and who wants the knowhow to implement an interpreter at 
the microcode level. 

The book grew out of a set of notes written for upper-level undergrad-

ix 



x Preface 

uate computer-science students who have some prior knowledge of 
conventional computer-system organization and low-level language pro
gramming. Students at the University of Utah have used these notes in a 
software laboratory course in which the major objective is to produce a 
microcoded emulator for a fairly simple computer, e.g., a PDP-11. For 
more advanced students who expect to use the B1700 for research, the 
same notes have been useful for self-study as a supplement to or 
replacement for available reference manual literature. 

The programming language introduced and used in this text, McMIL, 
is an enhanced version of MIL (Micro Instruction Language, an assem
bler for which is supplied by Burroughs). The McMIL superset of MIL 
contains statement types which can be used by the programmer to 
simplify the generation of MIL instruction sequences that correctly 
interface a MIL interpreter program with the system environment (e.g., 
for achieving interrupt handling, i/o management, file system services, 
and process switching). 

The text consists of seven chapters and several appendices. The first 
three chapters focus on the architecture of the B1700 family as interpret
ing machines, on the internal structure of the B1700 processor, and on 
its (symbolic) micro-level machine language. The next three chapters 
show ways to write micro-level programs. A major case study vehicle 
that is used is a simulator for the hypothetical computer SAMOS 
outlined in Appendix F. It is in Chapters 4, 5, and 6 that the assembly 
language MIL and its McMIL enhancements are thoroughly illustrated. 
Methodologies of higher-level language programming including stepwise 
decomposition, clean structure, and good documentation are applied in 
translating from problem statements expressed in relatively abstract 
terms to concrete McMIL programs. Appendices A, B, and C are 
intended as reference manuals for MIL, for the actual computer sys
tem's register and instruction semantics, and for the McMIL extensions, 
respectively. (Appendix D provides additional reference materials used 
for setting up test runs of an interpreter, and Appendix E offers listings 
of the toy SAMOS interpreter and a sample test run. The toy interpreter 
may be used in a set of exercises as a study vehicle and point of 
departure for some interesting modifications and enhancements.) Chap
ter 7 examines the fine points in the control structure of the B1726 as a 
microprogram processor. 

These seven chapters intentionally focus on the existing hardware of 
the B 1700 family for use in design and implementation of interpreters 
and are to a great extent independent of the supporting software 
supplied by Burroughs. It is expected that another book would be useful 
for focusing on the structure and functions of the Burroughs software, 
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including the operating system (MCP) and the critically important 
central module (known as GISMO) which serves as an i/o-device driver, 
process switcher, i/o buffer server, and interlace with the MCP. Such a 
book would provide the reader with a serious look at the (system
controlled) environment which supports the execution of programs one 
has learned to write and test. 

The authors acknowledge with deep appreciation the support of our 
colleagues, students, and secretarial friends at Utah who have helped us 
assemble this text. We are also most fortunate for the support received 
from the Burroughs Corporation. Many persons within Burroughs 
helped make the project at Utah and this book, one of the byproducts, a 
reality and, we hope, a success. We are grateful to all of these 
individuals. In particular, the project could not have become a reality 
without the help and confidence of R. R. Johnson, R. D. Merrell, and R. 
S. Barton, members of the Burroughs engineering organization who 
were early advocates of the B1700 as a system worthy of serious 
attention and use in computer-science and engineering studies. This 
book is published with the permission of the Burroughs Corporation. 

E. L Organick 
Salt Lake City, Utah 

J. A. Hinds 
Goleta, California 





Chapter 1 
Universal host computers 

An important characteristic of conventional (von Neumann) computer 
systems is the control mechanism, or processor, which is designed to 
decode and execute a sequence of instructions fetched from storage 
(Figure 1.1). The processor generally has at least two groups of 
registers: one for control, and one for "processing information". The 
first set of registers is mainly used for controlling the sequence of 
instructions in the program and for decoding each instruction so that it 
can be properly executed. The second set of registers, nearly but not 
totally unrelated to the first set, is used in carrying out the execution of 
decoded instructions. Generally speaking, execution involves fetching 
(or storing) data from (or to) storage, or examination and manipulation 
of data fetched from storage or produced by the execution of preceding 
instructions. 

The picture of the computing machine given in Figure 1.1 is clearly 
incomplete, since it lacks a connection to the storage in the outside 
world. The input/output (i/o) controls and devices provide channels for 
information to flow from or to the computing machine and the "outside" 
storage which may consist of various media (tapes, disks, displays, 
printed paper, etc.) For the present discussion we shall ignore i/o 
transfers to outside storage. 

The tasks of actually decoding and executing each instruction of the 
computing machine are primitive. The programmer normally cannot 
influence the manner in which these tasks are carried out. In all early 
computers these primitives were achieved by hardware circuitry. In 
many recent computer designs they are implemented as sequences of 
microsteps or microprograms which are themselves interpreted by 
hardware circuitry. By one means or another these microprograms are 
often made inacessible to the programmer, so that interpretation of the 
instructions that a user programmer might compose remains primitive; 
i.e., he has no influence over the interpretation mechanism. 

Although the programmer of a computer of this class may not vary the 
primitive behavior of such a computer, he may as an expedient compose 
a simulator (or emulator) program whose function is to interpret 
programs for other machines. The logic of the programmed interpreter is 

1 
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Figure 1.1. A view of a typical computer architecture. 

completely under the control of the user. Not only can he vary the steps 
of the decoding mechanism, but he also can select whatever execution 
logic he chooses. 

The user has a wide spectrum of redesign opportunities available. It 
may be that he wishes to simulate a machine that offers only a slightly 
different set of responses from that of the basic machine, e.g., augment 
its instruction set with a few more instructions, or alter the interpreta
tion of the existing instructions. On the other end of the spectrum, he 
may have in mind the simulation of a machine having an entirely 
different set of instructions, with formats quite different from that of the 
"host" machine and having quite different semantics. For example, he 
may have in mind to emulate on a PDP-9 a PDP-15, a SAM OS machine, 1 

or a FORTRAN machine. The first one (PDP-15) is just an extension of 
the PDP-9 itself (i.e., has only a few new instructions.) The second 
(SAMOS), though quite different in its . semantics (having decimal 
arithmetic rather than binary) is roughly similar in the syntax and 
semantic power of its instructions to that of the PDP-9. Thus the formats 
of both SAMOS and PDP-9 instructions are fixed in length and have a 
small number of fixed subfields, both use index registers, etc. On the 
other hand, the instructions of FORTRAN have variable formats, a 
variable number of subfields, and a much greater range of semantic 
complexity than those of the PDP-9. 

Figure 1.2 is a first view of a two-level host/guest system, consisting 
of a host, or H-machine, which functions as an interpreter of another 
computer system-G, for guest. Recursion in computer organization is 

1 A hypothetical computer used for instructional purposes in certain introductory 
computer science courses. (See Appendix F.) 
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clearly implied in this view. 2 Here we examine it from the inside out. 
The H or host processor consists of control logic and some storage (the 
registers). The H-machine consists of the H-processor and storage for its 
instructions (H-storage). But the H-machine in tum functions as a 
processor for another machine G, so the H-machine is in effect a G
processor. Adding "outside" storage for the H-machine forms a new 
machine (the G-machine). The outside storage for the G-machine is not 
actually shown in Figure 1.2, but its existence is implied (as was the 
outside storage for the machine depicted in Figure I. I). In principle this 
recursion can be extended, since the G-machine might be designed to 
behave as a processor for some other machine G-G (guest of guest) and 
be coupled to storage containing programs for the G-G machine, etc. 

There have always been practical trade-offs in building interpretive 
systems of this type. If the instruction set of the host machine and its 
registers is sufficiently different from that of its guest, the H-language 
subroutines which interpret G-language instructions may become long 
(and occupy a lot of H-machine storage). Also the time required to 
interpret a G-language instruction sequence on the H-machine may far 
exceed the time required to execute a "comparable" H-language in
struction sequence executed on the same H-machine. Ratios of 10 to 100 
for G-time/H-time are not uncommon. Even so, interpreters built to run 
on conventional computer systems are valued widely. 

Since any machine may in principle be coded to behave as a host for 
any guest machine, it is also feasible that the same host may behave at 

2 The concept that a processor may be viewed as having a recursive structure was first 
brought to the authors' attention by Robert S. Barton. 
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different times like the processor for any of a number of different guests. 
The backing store for an H-machine may contain interpreters for 
different guests. These interpreter programs may be swapped in and out 
of H-storage by some scheduling discipline, so that during discrete time 
slices the H-machine in fact acts like first one G-processor and then 
another. The duration of the time slices may be days, minutes, or 
seconds (or less), depending on the "swapping" technology that is used. 
Whatever the size of the time slice during which one of the interpreters 
is active, it should now be easy to accept the fact that any host may 
behave as a universal host, i.e., a host for a variety of guests. 

Even so, few actual computer systems have been designed for 
applications in which they behave typically as hosts, much less as 
universal hosts for other machines. The B1700 class of computers, 
however, is one system which was indeed intended to behave mainly as 
a universal host. As we study it we shall hope to see in what ways its 
special features support such behavior. 

The B1700 family of computer models, produced by the Burroughs 
Corporation, has been recently augmented with upgraded versions called 
B1800. In this book we will use the term "B1700" to refer to all 
members of this augmented class of computer systems except when we 
explicitly mention one member. For these systems the machine language 
of the host processor (H-language) is defined by the same base set of 16-
bit microinstructions. Moreover, these systems have essentially the 
same internal logical structure, differing only in the mechanisms for 
accessing microinstructions. The B 1700 has also been called an "in
terpretive definable field machine" because the programs and data 
executed by its interpreters are accessed from a storage that is viewed as 
an ordered set of.fields (bit strings), each of definable length. 

1.1 STRUCTURE OF STORAGE 
IN THE 81700 FAMILY 
OF COMPUTERS 

To satisfy requirements of a universal host machine, the H-machine 
processor must have access to microprograms of many interpreters, one 
for each guest machine. One way to translate this requirement into an 
implementation is to imagine that the H-processor actually has access to 
several H-stores, each holding an interpreter for a different guest 
machine. Naturally, the processor must then be capable of switching 
from one H-store to another so that the system can multiprogram among 
several active interpreters. Storage technology and storage management 
techniques that have been developed over the past 15 years suggest 
several cost-effective ways by which such a system can be implemented. 
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Three related approaches have been taken in the B 1700 family, one for 
each of three models within this family. These models are the B1710, 
B1720 and B1800. 

The first approach (simplest, least expensive in hardware and slowest) 
is found in the Bl710 model. Here (Figure 1.3) main storage is allocated 
into separate sections, some representing H-store and some representing 
G-store. The section representing H-store holds the microprograms that 
comprise the interpreter for a G-machine. The figure shows only one G
store and one H-store section represented, but in principle and in 
practice the main store is large enough to hold several of each. 

Each H-store holds the microprograms that constitute the interpreter 
for a G-machine. The B 1700 processor can be initialized to begin 
fetching and executing microinstructions from any H-store section of 
main storage using a G-store section as its workspace. At any given 
moment the Bl700 processor knows about (has access to) only one H
store and one G-store representation in main storage. Switching inter
preters implies resetting registers of the B 1700 processor so it has access 
to a different H-store/G-store pair. 

The B 1800 model uses a similar principle for the representation of H
and G-stores in main storage, but is able to fetch microinstructions more 
rapidly through the use of a "cache memory" (Figure 1.4). The cache 
holds copies of blocks of microinstructions transferred from the main 
store as needed. The access to a microinstruction, when it is found in 
the cache (the usual case), is roughly an order of magnitude faster than 
the access to a microinstruction that must first be brought to the cache 

Processor 
control unit 

Main store 
~ 

actual 

Figure 1.3. 81710 Processor access to H-store code. 
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'-----v-------
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from main store. The size of the cache is large enough to contain an 
entire interpreter, or at least that portion of it that is most frequently 
executed. 

The B 1720 model uses a less elegant but quite effective method for 
speeding up the fetching of microinstructions. A second storage unit, 
here called fast control store, is added to the system (Figure 1.5). This 
unit is large enough to hold the most frequently used portions of one or 
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more interpreters, space permitting. H-store is represented in part in the 
fast control store and in part in main store, depending on the size of the 
available fast control store. Extra base registers are provided in the 
B 1720 processor for use in determining the access path needed to fetch 
the next microinstruction, a path leading either to the fast control store 
(path A) or to the main store (path B). Other things being equal, the 
Bl720 and the Bl800 degrade gracefully to Bl710-like performance as 
the size of fast control store or the size of the cache, respectively, is 
reduced to zero. Chapter 7 of this book deals with these details. 

Other differences exist between the B 1710, B 1720 and B 1800 models 
than those just mentioned, but they are unimportant for the purposes of 
this book. Nevertheless, to avoid fuzziness, we shall always be as 
specific as possible about which model we are discussing. Because the 
authors' experience at the University of Utah has been primarily with 
the B 1720 model, in particular the variant known as the B 1726, this book 
will describe the B 1726; but in so doing it also describes the related 
models to a very large extent. When we have occasion to discuss one of 
the other models, we will be careful to identify it. 

1.2 THE 81726 MODEL OF STORAGE 

We can now gain additional initial perspective by focusing on how 
storage in the Bl726 achieves the effect of a universal host machine. A 
typical mainstore, which Burroughs refers to as S-memory (S for string), 
normally has a size of at least 64K bytes (2 19 bits). The fast control store, 
which Burroughs refers to as M-memory (M for microinstruction) 
usually has a size in the range 4K to 8K bytes, enough to hold at least 
2048 H-language, 16-bit microinstructions. 

Let us first assume that the B 1726 is busy executing programs for only 
one G-machine. [Later we will consider the more general case of two or 
more different G-machines as simultaneous guests on the host Bl726.] 
And further, let us assume that the one G-machine interpreter needed 
consists of about 4096 microinstructions, or twice that of the available 
H-store. Then we expect that at some point in time the main-store S
memory will hold half of the G-machine interpreter. If there are more G
machine language programs active (i.e., being executed in multiprogram
ming mode), then storage will be needed for procedures of each program 
and for the data sets of each program. [If two or more programs shared 
certain procedures, duplicate copies of those (reentrant) procedures will 
not be needed. So the remainder of S-memory will be occupied by 
various procedures and data structures of the active programs of the 
guest machine.] 
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Any time the host machine needs to execute a microinstruction from 
H-store that is not in the M-memory, one of three approaches can be 
taken: 

1. A block of microinstructions, including the ones currently needed, 
can be swapped in from S-memory, replacing a selected block of 
microcode now present. 

2. So long as the microcode has the attributes of a pure procedure 
(read only), a simple overlaying strategy will also work, making 
swapping unnecessary. This also assumes that a backup copy of the 
entire interpreter is kept in S-memory. 

3. Since the B 1726 processor is so designed that individual microin
structions can also be fetched into the instruction register directly 
from S-memory (not just directly from M-memory), only the fre
quently needed microinstructions need be fetched from M-memory. 

When blocks of microinstructions are needed in control store, ap
proach 2 is used. (Approach 1 is never needed or used, since microcode 
is treated as pure procedure.) The B1726 executive system known as 
"MCP" (Master Control Program) also uses approach 3, since H-store 
microinstructions may be fetched directly from either M-memory or 
from S-memory. 

To summarize, our conceptual G-store maps onto the physical storage 
called S-memory, and our conceptual H-store maps, to a first approxi
mation, onto the physical storage called M-memory; but in actuality, 
since M-memory is a relatively scarce resource, H-store maps onto S
memory as well. It will be convenient and simpler to adopt the more 
ideal view, that of a one-to-one correspondence, which is H-store onto 
M-memory and G-store onto S-memory. We will take this simpler view 
in the next five chapters without loss of rigor. In the last chapter 
(Chapter 7), however, we will need to examine the details of the actual 
mapping between conceptual and actual host stores in the B 1726 system. 

To appreciate the motivation for the "two-level control store" of the 
B 1726, it is important to observe the following. 

1. Because the M-memory is regarded as a relatively scarce resource, 
the different interpreters being multiprogrammed can if necessary 
reside on and be executed entirely from S-memory. The operating 
system has responsibility for keeping track of which physical storage 
resources currently hold the interpreters, and is able to redistribute 
all or part of each interpreter among the two levels of storage as 
deemed appropriate. 
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2. If the operating system allocates the most frequently used portions 
of one or more interpreters to M-memory, there need be little need 
for frequent reallocation. This is because in general much more is 
known about the control structure and frequency of use of an 
interpreter and its parts than is known about the higher-level 
language programs that will be interpreted; hence it is possible to 
dedicate a portion of the M-memory resource to particular interpret
ers for relatively long periods of time with better effect than would 
be possible in a conventional system whose fastest storage is used 
for currently executing user or system code that is derived from 
compilers. 



Chapter 2 
The 81700 as an interpreting machine 

The computer known as the Bl700, or more precisely (in our laboratory) 
the Bl726, is a system designed to make easy and as efficient as possible 
the interpreting of a wide variety of instruction sets. The machine 
language of the B 1700 host is very low-level, resembling the microcode 
of other systems whose programmable machine language is at a higher 
level. A very low-level machine language is advantageous for programs 
that interpret instructions which are at the semantic level of conven
tional machine language or even higher-level languages. Although we 
shall refer to the machine language of the Bl700 as microcode, we 
should take care to avoid the heretofore common connotation of 
microcode as something fixed (e.g., read only) and inaccessible to the 
computer user. In our case "microcode" is merely the manufacturer's 
name for the machine language of the B 1700. 

The Bl726 is a general-purpose computer. Like all such machines it 
may be programmed (in this case in microcode) to interpret another 
machine. There is, however, one major practical difference. Most 
general-purpose computers have instruction sets designed to go with a 
storage organization that is word- or byte-oriented. Bit strings fetched 
from storage are always taken in fixed chunks (words or bytes) aligned 
on chunk boundaries. Moreover, the length of the machine's instruction 
is always made strictly compatible with the chunk sizes fetched from 
storage. Usually the length of an instruction is one chunk or a multiple 
thereof. We take it for granted, for example, that for the 18-bit word
organized storage of the PDP-9 there is a companion instruction set, 
every member of which is an 18-bit chunk. Instructions of the PDP-9 are 
fetched or stored in units of 18 bits on aligned 18-bit boundaries (i.e., ==O 
modulo 18.) Now the PDP-9 may not be a perfect computer, but without 
knowing more about its internal organization, we may assume that what 
it does best is done on chunks of 18 bits. Thus, if we were to use the 
PDP-9 to interpret instructions for a 17, 19, or 20 bit computer, we 
would expect to see a waste of storage as well as a distinct loss of 
efficiency in both the decoding and execution functions of the inter
preter. What we have just said about the PDP-9 applies equally well to 
all such conventional word- or byte-organized systems. 

10 
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Is the BI 726 any different in this respect? Very definitely, yes, but the 
difference is somewhat subtle. On the one hand, its own machine 
language involves a set of microinstructions of fixed length (16 bits). 
However, within this repertoire are instructions which control the width 
and position of bit-string fetches (and stores) between storage and the 
processor. Thus, to fetch a string of 17 bits from bit addresses 19367 
through 19383 takes no more and no fewer B 1726 machine instructions 
than, say, fetching a string of 21 bits from bit addresses 800 I through 
8021. 

These controls for fetches and stores actually only regulate the flow of 
bit strings of from 1 to 24 bits in length. For transmission of chunks 
greater than 24 bits, the B 1726 provides simple but powerful iteration 
controls in its machine-language repertoire. So although it takes more 
instructions (and more time) to fetch a 25-bit chunk than a 24-bit chunk, 
all chunks in the range 25 through 48 are in the same get/put class 
(instructions and time for a fetch or store), as are chunks in the range 49 
through 72, 73 through 96, etc. 

Apart from the crucial capability for defining fields of bits (chunks) 
and transmitting them from or to storage, the BI726 organization 
resembles in essence the familiar von Neumann architecture of a modern 
(e.g., 4th generation) sequential stored program digital computer. Be
cause of its special orientation (and objective) as an interpreting ma
chine, however, the structure of the processor, at first glance, appears to 
be more complicated than a conventional processor. Even so, it is easy 
to gain a simplifying view of this structure if one realizes that the 
processor performs only four types of activities; one can gain an 
integrated understanding by studying these activities one by one. There 
are interconnecting data and control paths between the registers used to 
implement each activity so a complete understanding of the processor 
can come only after all these interconnections and interrelationships are 
recognized. The four activities are 

I . Data fetch and addressing 
2. Data examination and manipulation 
3. Decoding of higher-level language instructions 
4. Control 

We will look briefly at each of these. 

I . There is a group of registers associated with the control and 
transmission of chunks to and from data storage. These include, for 
example, registers to hold the starting address of a bit field in 
storage, field length, etc., as well as registers to serve as receivers 
(from storage) or sources (to storage). Other registers, in a block 
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known as the scratchpad, are useful for holding bit addresses and 
lengths for frequently referenced fields in storage. 

2. There is a group of registers associated with the arithmetic and 
logical functions of the computer, so that the B 1726 can be micro
coded to perform the conventional types of arithmetic and logic 
needed in everyday (simpler) computer and systems applications. 

3. A few registers are available for use as local storage. Some of these 
are endowed with special properties, very useful in the decoding 
phase of the interpreting process (e.g. shift and rotate, and in 
addition, extraction and testing of subfields). 

4. The machine has what amounts to an instruction or program line 
counter and an instruction register for controlling the sequence of 
microinstructions and for holding the microinstruction that is being 
decoded and executed by the hardware. In addition, there is a small 
stack whose main use is for holding return addresses for micropro
cedure calls (a control stack.) Address modification and other 
dynamic altering of B 1726 microinstructions is made easy by utiliz
ing a feature that ORs the operand of the preceding instruction with 
the next instruction. In many conventional machines this feature is 
achieved using index or base registers. 

There are a number of explicit and implicit "connections" between 
the registers involved in the four classes of functions of the processor. 
Learning all these connections will take some time; the best way is by 
first studying some examples (case studies) of short microcode se
quences. By tracing these one can incrementally accumulate an under
standing of the whole process and be able to start writing B 1700 
microcode and/or "critiquing" microcode written by someone else. 

The explicit connections referred to in the preceding paragraph are 
those spelled out in each microinstruction. For example, each MOVE 
microinstruction explicitly names the source and sink registers involved 
in the move operation. In essence, it is possible to move bit strings from 
any register to any other register. Of course, there are certain excep
tions-for example, the microinstruction that causes a fetch from 
storage names the sink register explicitly, but does not name the 
registers holding the bit address or length of the source field in storage. 
These registers are always implied, as is (for example) the accumulator 
in the conventional SUB instruction of SAMOS. 

2.1 INSTRUCTION DECODING 

In the introduction we hinted that the B 1726 instruction set and 
machine organization were designed especially to facilitate interpreting 
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of guest-language instructions. That's a broad statement. There are 
potentially an infinite number of guest languages with an infinite variety 
of instruction formats. It is surely not the case that the B 1726 decodes 
with equal facility the instructions of every possible guest or G-machine. 
First note, however, that for most actual machines (potential G-ma
chines) the instructions formats are regular. That is, they have such 
characteristics as fixed length and fixed fields, or a very small number of 
lengths and a small number of different fields and field lengths, accord
ing to the subclass within the repertoire. Based on this set of characteris
tics, SAMOS, for example, has a regular instruction format. So does the 
PDP-9 or even the IBM System 370. Regularity is popular in actual 
machines for minimizing the complexity of the interpreting hardware 
and/or micrologic so as to gain maximum speed or economy. 

But it is certainly possible to imagine other G-machine languages 
where the instruction formats are, may, or should be highly irregular or 
exotic. If the G-machine has a phrase-structured language such as 
ALGOL (or any of the so-called higher-level languages), chances are the 
instruction format will be regarded as exotic in comparison with those of 
most everyday conventional computers. 

In a well-designed interpreting machine the work of decoding should 
be roughly proportional to the complexity of the instruction format-and 
this appears to be true for the B 1726 design. Whether regular or exotic, 
decoding is easiest on the B 1726 if the operation code field is at or near 
the left end of the instruction. But fortunately, this is the case in nearly 
every machine design we have seen. Why is this so? Well, op-code fields 
are typically positioned at the left end of an instruction, with operand 
fields following, to conform with the customary functional notation of 
mathematics, e.g., f(a,b) for a two-operand operator f. To fetch and 
decode such an instruction, two steps are necessary. 

I . First we position the storage pointer to the storage address of the 
first bit in the instruction, and then read into a B 1726 register as 
many bits as are needed to examine the entire op-code field. For a 
G-machine with 256 or fewer distinct binary op-codes (that covers 
most G-languages), the op-code field might then be no more than 8 
bits in length. 1 

2. In the B1726 there is a 24-bit special decoding register, known as the 
transform register T, which has been endowed with special logic. In 

1 Of course there are various ways of designing operation codes. which for the sake of 
efficiency, might lead to op-codes of various lengths, some less than 8 bits and some more, 
in this case. [But, for pure binary computers it is certainly unlikely that an op-code field 
greater than 24 bits would ever be required.] 
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particular, there are B 1726 machine-language instructions which test 
bits of T and bit subfields of T, extract them, and move them to 
other registers. The Bl726 possesses other features which enable a 
rapid jump (much like a FORTRAN computed GO TO) to the 
appropriate subroutine, where further analysis of the instruction or 
its execution can commence. For such jumps, the op-code extracted 
from the special decoding register T serves as index value for the 
jump (i.e., jump to here plus index.) 

If the G-language is regular, and if the instructions are 24 bits or less 
in length, then the entire instruction can be analyzed directly from one 
loading of the T-register described above. If they are of regular format, 
but greater than 24 bits, then two or more successive loadings of T from 
storage may be required. After each loading of T, subfields can be 
extracted from T, analyzed, and held as necessary in other B 1726 
registers that serve as local or temporary storage. 

For each new loading of T the storage pointer must be reset to the bit 
address of the next field in storage. There is a special field address 
register in the B 1726 called FA which is used for the purpose of holding 
the storage address of the next 24-bit (or smaller) chunk. To go with the 
FA-register, there is an adder dedicated for the purpose of incrementing 
or decrementing FA. One can specify activation of this adder, for adding 
or subtracting a small constant (0 through 24), as part of the microin
struction that uses FA. For example, 

READ 8 BITS TD T INC FA 

specifies that T is to be loaded with an 8-bit field from G-store beginning 
at the address given by FA. Following the fetch from G-store, FA is to be 
incremented by 8. (The incrementation of FA overlaps the fetch of the 
next micro instruction from H-store.) 

Another register called thefield length register, FL, is provided in the 
B1726, and is also outfitted with a dedicated adder. The content of the 
FL-register is often used as an iteration counter for loop control during 
the transfer of long fields (>24 bits) to or from storage. If an instruction 
subfield is of variable length, the value in the FL-register can be preset 
to the (current) field length and then decremented and tested (against 
zero). 

The specification for activating the FL's adder, like that for the FA's, 
is made part of the transfer microinstruction (READ or WRITE), e.g., 
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WRITE 12 BITS TD T INC FA AND DEC FL, so there is no extra cost in 
B 1726 machine time to carry out the address and counter arithmetic 
during each transit of the transfer loop. In this way, a series of variable
size subfields can be read from G-storage, the size being dependent on 
the analysis of preceding fields within the same G-language instruction. 



Chapter 3 
Organization 
of the 81726 
microprocessor 

In the preceding section we identified four kinds of activities performed 
by the B 1726 microprocessor. 1 We now look at these one by one in more 
detail. 

3.1 DATA FETCH AND ADDRESSING 

Before an interpreter can decode a higher-level instruction, it must be 
fetched from the store that holds it. We have called that store the guest 
store, or G-store (although the Burroughs literature calls it "S-mem
ory"). We assume that before interpretation begins, the G-language 
program has been loaded into one portion of G-store and a workspace 
has been allocated for data storage for the same program. 

The left side of Figure 3 .1 shows the G-store on a long "stick" to 
represent a bit string. A subfield to be used as the workspace is marked 
off by values in a pair of bounds registers called BR (base register) and 
LR (limit register). (The workspace is used for variables, constants, 
temporary storage, saved copies of registers during temporary interrup
tion of the interpretation process, etc.). The bounds registers are used 
mainly to protect against accidentally writing into sections of G-store 
lying outside the workspace. The sections outside the workspace nor
mally hold G-language instructions, i.e., code, system-manipulated in
put/output buffers, and workspaces for other computations that are 
being multiprogrammed with this one. We assume that the interpreter is 
provided with the size and location of the workspace and that the base 
and limit registers are set prior to interpreting the first G-language 
instruction. 

The hardware logic of the microprocessor checks each G-store data 

1 We use the term microprocessor to mean a processor of microinstructions (i.e., as a 
shorthand for microinstruction processor. We do not intend to imply that the B 1726 
computer system is a tiny computer consisting of a few large-scale integrated (LSI) chips. 
A principal reference describing the processor is: Burroughs, "Bl700 Systems Reference 
Manual", Burroughs Corporation, Detroit, 1972, Form 1057165. 

16 
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address before using it against values of the LR and BR register. If the LR 
and BR registers are preset properly, and if they are not improperly reset 
during execution of the G-language program, the programmer can be 
assured that the process of interpretation will not damage system tables. 
But caution must be exercised, since there are no constraints in the 
machine language against assigning values to LR and BR. Having said all 
this about the protection role of LR and BR, we will for the most part 
now ignore these two registers, taking for granted that the microcoder 
who develops an interpreter will use these key registers properly. 

We are now ready to see how inputs from G-store (reads) and outputs 
to G-store (writes) are executed. The read (or write) action is a hardware 
procedure that has three parameters. 

Bit address of the field in G-store 
Length of that field 
Register in the microprocessor that is to serve as sink (for a read) or 

source (for a write) 

An argument value for the first parameter is (must be) always 
provided by presetting the FA register with the bit address of the 
beginning of the G-store field. [In Figure 3.1 we see that the F-register is 
a double-length register, the left half being the 24-bit FA register. G
stores of vp to 224 bits are possible in the B 1726, so an absolute address 
is 24 bits long.] The second argument may be specified explicitly in the 
read (write) microinstruction, or by a default rule. The third argument is 
always specified explicitly. The registers X and T shown in Figure 3 .1 
are two of four registers that can be named as the sink (source) registers 
in a read (write) microinstruction. 

Example Suppose we are trying to read an 18-bit field located at bit 
address 16218 into the X-register of the microprocessor. The steps we 
want to execute are 

FA <- 16218 

2 

Read 18 bits to X 

What could be simpler? This sequence would cause the transfer of 18 
bits at address FA to register X. The X-register is one of four 24-bit 
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registers (others are Y, T, and L) which may serve as a sink (or source) 
for reads (or writes) from (or to) G-store. 

One READ (or WRITE) instruction is sufficient to transfer from I to 24 
bits. [Fields of fewer than 24 bits are regarded as right-justified in the 
sink (or source). Zeros pad the left end of the sink register when the 
input field is less than 24 bits long.] How are fields of length greater than 
24 bits to be transferred? Clearly, a microinstruction loop is needed such 
that upon each transit of the loop, up to 24 bits are shipped. Of course, 
FA must be properly incremented for use in succeeding reads or writes. 
A special arithmetic unit is provided in the Bl726, shown in Figure 3.1. 
Using this facility we can make the READ (or WRITE) instructions 
specify incrementation (or, if we like, decrementation) of FA immedi
ately following the transfer of bits from/to G-store. In particular, 

Read 18 bits to X 

2b 

F'A +--- F'A+18 

2a 

(rOnly one microinstruction 
is required. 

Combining the incrementing of FA with the READ (or WRITE) in this way 
will cut down the number of instructions needed for loops involving 
repeated transfers. For example, the loop in Figure 3.2 shows how one 
might control the transfer of a sequence of ten 18-bit fields (or one 180-
bit field taken as ten 18-bit chunks) into the microprocessor, where the 
starting address in G-store is 1600. 

We already know how easy it is to map boxes l and 3 into Bl726 
symbolic microcode (or MIL,2 for micro implementation language). It is 
not however, straightforward to map box 2 above into microcode, 
simply because on the B 1726 there is no circuitry to perform a logical 
comparison on the value in FA. As mentioned at the end of Chapter 2, 
the B 1726 designers have solved this problem in another, relatively 
convenient, way. They provided another register, FL, in the lower 16 
bits of the right half of F to serve several purposes, including that of a 
loop counter. The address arithmetic unit will increment (or decrement) 
FL as well as FA, if such action is specified in a READ or WRITE 
microinstruction. Moreover, contents of FL can be compared with zero. 
A skip or GD TD based on this comparison can then be taken based on 

2 Appendix A of this book is an abridged reference manual for the MIL language. 
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this test. Figure 3 .3 shows a modified flowchart for the above input loop 
showing the use of the FL register as a loop control counter, counting by 
18. 

The approach taken in Figure 3.3 is all well and good when the width 
of the field moved from (or to) G-store is a multiple of the chunk size 
transferred during one READ or WRITE. What about other cases? For 
example, suppose we wish to transfer a field of 2001 bits, up to 24 bits at 
a time-i.e., as a sequence of 83 chunks of 24 bits; followed by one 9-bit 
chunk-starting at bit address 22759. It will be most convenient if all 
READs can be performed by one instruction which is part of the loop, 
including the one that transfers the residue of 9 bits. Figure 3 .4 shows a 
flowchart representation of this type of read loop. Here again the FL 
register serves as a loop-control counter, but it also has one other 
important role. 

These two illustrations (Figures 3.3 and 3.4) show how the FL register 
gets its name, i.e., the field-length register. This register may be initially 
assigned the actual length of the long G-store field to be transferred. 

Initialize the 
read loop 

FL of- 0 

2 

Read min(24, FL) 
bits to X; 

F 

3 

FA <--- 22759 
FL <--- 2001 => MOVE 22759 TO FA 

MOVE 2001 TO FL 

( 
Equivalent 

then increment FA ====> 
and decrement FL 
by min(24, FL) 

BIAS BY F 
READ TD X INC FA AND DEC FL 

Figure 3.4. Read loop to transfer a field of length FL, CPL bits at a time, 
into the X-register. 
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Fields up to 216 bits long may be accommodated in the B1726. [That's 
why FL is 16 bits wide.] We want to set the size of the chunk transferred 
by the READ instruction to the minimum of 24 and the current value of 
FL, which is to be decremented by 24 following each READ. When there 
is a residue chunk of 1 to 23 bits remaining to be transferred, it will be 
transferred on the last transit to the loop, the size of the residue being 
min(24,FL). 

To see how this residue control is achieved in the equivalent B1726 
operations, we must note two more facts about the semantics of the 
B1726 READ (and WRITE) microinstructions. 

1. If the chunk size is not explicitly specified in the READ (or WRITE) 
instruction (or if it is explicitly specified as zero), a default value is 
chosen as the current value in the special length control or CPL 
register (not shown in Figure 3.1 but shown in Fig. 3.8 below). 

2. The READ (or WRITE) instruction may be preconditioned by execu
tion of a so-called BIAS instruction, which sets the default chunk 
size by assigning to CPL the minimum of 24 and the value specified 
in that BIAS instruction. For example, executing the microinstruc
tion 

BIAS BY F 

prior to executing a READ with an unspecified chunk size amounts to 

CPL ~ min(24,FL), 

which is precisely what is wanted for handling the residue in our 
field-transfer algorithm of Figure 3.4. In that instance FL had the 
value 9 and CPL the value 24 when the BIAS instruction was about 
to be executed for the last time. Executing the BIAS instruction at 
that point gives CPL the new value 9, so the chunk size used in the 
succeeding READ is 9. 

Here are two final notes regarding field transfers: 

1. In the example of Figure 3 .4 we imagined that we wanted to 
minimize the number of READs by transferring 24-bit subfields (the 
largest chunk that can be transferred at one time). We are, of 
course, free to specify chunks of less than 24 bits. For example, had 
we chosen to transfer subfields of 7 bits each, only two coding 
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changes are required. In box 1, we need to insert the instruction 

,___C_PL_~,_+-_7 _ __.I.:) MOVE 7 TO CP 

In addition, the BIAS instruction of box 3 must be written as 

BIAS BY F AND CP 

The semantics of this variant of the BIAS instruction is 

CPL ~ min(24, FL, CP) 

Executing this instruction before each READ (or WRITE) guarantees 
that CPL will be set to the minimum of 7 (the value first assigned to 
CPL) and any lower value that may be eventually assigned to FL. 
Each READ will now transfer a chunk of 7 bits, except possibly the 
last transfer, which may be less than 7 bits. Incrementing of FA and 
decrementing of FL will now be done by 7 instead of 24. 

2. READ and WRITE microinstructions may proceed not only forward, 
(i.e., from low to high G-store bit addresses, which is the usual way) 
but also in reverse (i.e., from high to low G-store bit addresses). The 
READ REVERSE or WRITE REVERSE option is provided by the B1726 
designers so the programmer can gain increased efficiency in certain 
types of transfer operations. For example, with FA set at a bit 
address as shown below, 

Sink ~urce 

I Field I I Field 2 
G-store '------===----,,'r· ---------' 

8''" FA 

one can READ TO X (forward) from field 2 of G-store, and later 
WRITE REVERSE FROM X into field 1 without having to use a 
different value of FA. Suppose, for example, that fields 1 and 2 are 
each 16 bits long, with the address of the leftmost bit of field 2 
currently in FA. If field 2 contains the character string "BC'', 
then upon executing the sequence 

READ 16 BITS TO X 
WRITE 16 BITS REVERSE FROM X 

the value stored in field 1 is also "BC". A REVERSE transfer does 
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not reverse the order of the information in the transferred copy. It 
only changes the significance of FA from the field beginning at 
address FA to the field ending at FA - 1. 

We have now explained the functions of most of the registers shown 
in Figure 3.1 except the "scratchpads". These are a set of 16 double
length registers which may be used as local storage for any purpose, but 
are especially convenient for the temporary storage of G-storage field 
descriptors, i.e. (address, length) pairs. 

One obvious use of the scratchpads occurs to us if we consider the 
simple problem of copying a bit string from one part of G-store to 
another. For example, we shall consider the problem of copying a field 
of 2001 bits from a starting address of 22759 to a new field, starting at 
(say) 26721. 

We saw in Figure 3.4 how to flowchart the task of moving this bit 
string from G-store into the microprocessor via register X. Now we want 
to take the chunks originally brought into X one by one, and write them 
out to G-store. Thus 

1 4a 

now mean;) 
Set FA to 
the right value 

1 4b 

Write out the value of X 
into G-store at some 
address implicitly 
specified by FA 

l 
But to achieve this objective, we need temporary storage to save and 
restore alternately the current values of FA for the source and sink fields 
on each transit of the loop. We can use scratchpad registers for this 
purpose, as suggested in Figure 3.5. S1A is used for temporary storage 
of the sink address, and SOA as temporary storage for the source 
address. The FL register is used as a loop control counter. 

Another way to achieve the alternation of source and sink addresses, 
which saves two MIL instructions, takes advantage of the XCH microin-
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Initialize the 
read/write loop 

FL =t 0 

2 

F 

3 

FL <--- 2001 
FA <--- 22759 

S1A <--- 26721 

CPL <--- min(24.FL) => BIAS BY F 

Read CPL bits to X; 
then increment FA 
and decrement FL 

4 

Save FA for the source 
and 
restore FA for the sink 

6 

Write CPL bits from X; ~ 
then increment FA 

'-'-----r---~ 

7 

Save FA for the sink 
and 
restore FA for the source 

25 

MOVE 2001 TO FL 
MOVE 22759 TO FA 
MOVE 26721 TO S1A 

READ TD X INC FA AND DEC FL 

MOVE FA TD SOA 
MOVE S1A TO FA 

WRITE FROM X INC FA 

MOVE FA TO S1A 
MOVE SOA TD FA 

Figure 3.5. G-store-to-G-store copy loop for a 2001-bit field, using sepa
rate scratchpad registers for saving source and sink addresses. 

struction to interchange the contents of any scratchpad register (all 48 
bits) with F. [The general form of the XCH is 

XCH ( scratch 1 ) F ( scratch2 ) , 

which "simultaneously" moves a copy of Finto scratch2 and a copy of 
scratch! into F. In our special use of XCH in Figure 3.6, scratch! and 
scratch2 are the same registers. We assume that the XCH operation uses 
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FL <--- 2001 
FA <--- 22759 

S1A <--- 26721 

==> BIAS BY F 

MOVE 2001 TO FL 
MOVE 22759 TO FA 
MOVE 26721 TO S1A 

=> WRITE FROM X INC FA % BY CPL 

Figure 3.6. Same copy program as in Figure 3.5 except for coding of 
boxes 5 and 7, which uses the XCH instruction and scratchpads S1A and 
S1B. (This program uses S1B but not SOA.) 
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a hidden register to simulate the simultaneity inherent in the exchange 

scratch1 
Step 2 

scratch2 

F Step 3 

hidden register 

Step I 

where step l must precede steps 2 and 3 .] 
As the operations on the data flowing from G-store and back again 

become more elaborate, it will be increasingly convenient to hold at one 
time a variety of descriptors in the scratchpad registers. That is why 16 
double registers hardly seems too many. [There are, however, some 
good arguments for not making the scratchpad too big. We shall discuss 
this issue in connection with the job of saving and restoring the state of a 
computation following an interrupt.] 

At this point we have discussed all the registers shown in Figure 3.1 
except the 16-bit register SFL (in the lower-order portion of SOB, the 
right half of SO) and several 4-bit registers, namely FU, FT, and SFU. 
The SFL register may be used as a limit value against which FL may be 
compared. That is, the hardware senses the relative magnitudes of FL 
and SFL ( < ,= ,>) and sets a bit in one of several control registers to be 
discussed later. Testing that bit can be used as a basis for branching, 
i.e., skipping the next microinstruction. 

The SFL field may also be hardware-sensed in a variant of the BIAS 
instruction. For example, BIAS BY F AND S means CPL ~ 
min(24,FL,SFL). It might be used, for instance, when SO and F contain 
descriptors for two fields and the size of the next read or write chunk is 
to be based on the smaller of the length fields FL and SFL of the 
respective descriptors, thus avoiding destruction of G-store information 
when the source field is longer than the destination field. 

The four-bit registers FU, FT, and SFU have no important hardware 
function for data transmission to and from G-store. [Actually, the 
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contents of FU may be sensed in a rarely used variant of the BIAS 
instruction, BIAS BY UNIT, in which UNIT is the key word that refers to 
FU. The contents of FU characterize the type of data (i.e., bit string, 4-
bit decimal, 8-bit decimal). The meaning of BIAS BY UNIT is 

l 
CPL ~ FU 

{
if FU = 4, then I 

CPU~ 

else 0 

This has the effect of setting the chunk size to that of FU. The 
significance of the CPU and the value assigned to it is secondary. We will 
discuss the significance of the special CPU register later when we discuss 
the so-called "24-bit function box".] Data stored in FU and FT may be 
regarded as "addenda" to the address and length of a descriptor. In 
particular, when it is necessary to carry a type description for a field, 
such information may be held in FU and/or FT. 

3.2 DATA EXAMINATION AND MANIPULATION 

Once data have arrived from G-store into the H-processor, there are a 
wide variety of facilities for examining and processing them. As men
tioned earlier, there are actually four registers, X, Y, L, and T, that may 
serve as receivers. Each is 24 bits long, and each has a set of distinct 
functional properties such that, depending on what one wants to do with 
the data arriving from G-store, one particular receiver register (X, Y, L, 
or T) may be more suitable than another. Of court;e, data can be moved 
(copied) from the receiver register to another one using the MOVE 
microinstruction. For example, if data has been read to T, it can then be 
moved (copied) to X: 

READ 15 BITS TD T 
MOVE T TD X 

The L and T registers are further subdivided into individually address-
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able 4-bit subregisters, known as LA, LB, LC, LD, LE, and LF: 

0 I 2 3 20 2122 23 

L 

I •--:- I; T 
I : I I I I 
I I I l I I I 
I I I I I I 

l l I l•l .l. 

LA LB LC LD LE LF 

and TA, TB, TC, TD, TE, and TF: 

0 I 2 3 20 2122 23 

T 

' I 
I I I I I I 

I I I I 
I I 

I I I I I I I 
I I l I I I 
I I l I l _L 

TA TB TC TD TE TF 

That is, each of these subregisters may be mentioned by name in a 
microinstruction. For example, MOVE LC TD TD would cause the four 
bits in LC to be copied to the TD field of T. The individual bits of a four
bit register are addressable from left to right with subscripts 0, I, 2, or 3 
respectively. Thus LC ( 3 ) is the same as L ( 11 ) . 

The T-register has rather special (and powerful) transformational 
properties. Its contents may also be tested as a basis for conditional 
branching. Perhaps even more interesting is the fact that any subfield of 
T may be copied and moved to any receiver register (X, Y, L, or T), 
using the so-called EXTRACT microinstruction. For example, a copy of 
the seven-bit field in positions T 16 through T 22 can be assigned to the 
lower-order seven bits of Y (and Y padded with leading zeros), e.g., 

0 l 2 ... 16 22 23 

0 l 2 ... 17 23 

YI.___------'''---" .. _· ... ·___.· . · 1 

The (MIL) microinstruction to achieve this type of copy is 

EXTRACT 7 BITS FROM T ( 16) TD Y. 
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Extraction in the direct sense just described cannot be performed on 
the other receiver registers. However, two of the registers, X and Y, may 
be shifted or rotated left or right to isolate a desired subfield. 

Any bit within L or T, or pair of bits that are within any one four-bit 
subregister of L or T, may be tested (compared for equality against 
particular values) for use in selection steps. Some example selection 
steps, mapped into MIL code, are given in Figure 3.7. The illustrations 

LC3 =true 

F 2 

> 

T 
TC= 14 

F 
PROC 

TB 1 or TB3 

F 2 

x = y 

6 

IF LC(3) TRUE THEN 
BEGIN 
i Steps of box 3 

END ELSE 
BEGIN 
; Steps of box 2 
END 

IF TC = 14 THEN CALL PROC 

IF TB(1) OR TB(3) THEN 
BEGIN 
; Steps of box 3 
IF X = Y THEN 

BEGIN 
i Steps of box 6 

END ELSE 
BEGIN 

i Steps of box 5 
END 

END ELSE 
BEGIN 
; Steps of box 2 
END 

Figure 3.7. Examples of selection steps based on contents of bits or 
pairs of bits within a subregister of Lor T, or based on a comparison of X 
and Y. 



Data Examination and Manipulation 31 

given in this figure are intended only to provide an idea how easy it is to 
express tests based on the contents of the receiver registers or on one or 
two bits within one subregister. The syntax of the MIL IF statement is 
detailed in Appendix A. 

3.2.1 The arithmetic capability or "function box" 

The two registers X and Y are inputs to a 24-bit function box whose 
combinational logic provides a variety of arithmetic and logical results as 
output. These results are available in a block of nine 24-bit "result" 
registers, one machine cycle (167 nanoseconds) after a new value is 
assigned to either X or Y. The registers, whose meaning is given below, 
are shown in Figure 3.8. 

MSKX 
Results CMPX 
registers 

? 
SUM 

DIFF 

XANY 

XDRY 

XEOY 

CMPY 

MSKY 

Masked copy of X 

Complement of X 

Sum of X + Y + value of CYF. the carry flipflop 

Difference of X and (Y + value of CYF. the carry flipflop) 

Bitwise and of X and Y 

Bitwise inclusive or of X and Y 

Bitwise exclusive or of X and Y 

Complement of Y 

Masked rnpy of Y 

The length of each result is controlled by the value assigned to our old 
friend, the CPL register. A value of m :5 24 in CPL allows m-bit results to 
appear in each result register. For example, if CPL = 7, then only the 
low-order 7 bits of the results appear in the result registers. [The high
order portion of the result register is padded with zeros.] Thus if X 
contains the binary number 1000102 and Y contains the binary number 
10001012 , and if CPL = 4; then MSKX (masked copy of X) contains the 
binary number 102 and MSKY contains 101 2 • At the same time, SUM 
contains 111 2 , XORY contains 111 2 , etc. All bits to the left of the fourth 
bit are then zero in each result register. So by controlling the value in 
CPL, the microprogrammer can generate results of any length up to 24 
bits. 

Carries for sums and borrows for differences are indicated in separate, 
one-bit result registers, CYL and CYD respectively. These carry-out 
registers may be tested as a basis of an (IF) selection step. Carry values 
may also be copied into the carry-in flipflop register CYF for input to the 
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Figure 3.8. Additional registers for data examination and manipulation. 

function box on a next sum or difference of X and Y, as might be 
required, say, in simulating a multiple"precision add or subtract. 

3.2.2 Arithmetic tidbits 

To do a multiply or a divide, one is forced to use a microcoded 
subroutine built on repeated adds or repeated subtracts. There is, of 
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course, no floating-point arithmetic primitive in the B 1726, so this too 
must be microprogrammed. 

Adds and subtracts can be performed in binary or in 4-bit decimal. In 
4-bit decimal arithmetic, each 4-bit subfield of the operands X and Y and 
of the results in the SUM and DIFF registers is binary-coded 0 through 9. 

What determines whether X- and Y-registers will be regarded by the 
hardware as binary or as 4-bit decimal? There is a special 2-bit register 
called CPU, whose value controls this arithmetic interpretation of X and 
Y. The CPU is a companion or "cellmate" of the CPL register, both being 
housed, along with the carry-in flipflop CYF, in the 8-bit CP (control 
parallel) register. 

0 234567 

CY~~--~l~C-PU~"'--~~C-P-L~~--' 

The microprogrammer can, of course, also set or test the value in CPU 
and hence can cause the controls to switch back and forth from decimal 
to binary arithmetic for the results he wants. 

Taking stock, the CP register plays an important role in control of 
arithmetic and (to a lesser extent) of logical operations resulting from the 
inputs X, Y, and CYF. The subregister CPL controls the length of each 
result, and the subregister CPU controls the unit (binary or 4-bit decimal) 
on which arithmetic will be performed. For an overview of the data 
examination and manipulation capabilities based on the receiver regis
ters X, Y, L, and T, we have now said enough. 

3.3 INSTRUCTION DECODING 

At the risk of oversimplification, we can say that a machine instruc
tion consists of an op-code followed by several operands (none, one, or 
more). If this is true for the machine that is to be interpreted by the 
B 1726 host, then instruction decoding can be thought of as consisting of 
these steps: 

1. Determine, by examination of the op-code field, which microcoded 
subroutine must be called to carry out the intent of that instruction. 
(We will call it the "operator subroutine".) 
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2. Evaluate each operand on the basis of the information in each 
operand field. 

3. Call the operator subroutine determined in step 1. 

If step 2 has been executed before step 3, then the operator subroutine 
is in effect supplied arguments which are the results produced in step 2. 
However, if steps 2 and 3 are interchanged, then the operator subroutine 
must be "smart" enough to know how each operand is to be found and 
evaluated so as to execute the intended semantics of the operator. 

In simple (i.e., regular) machines, not only is there a fixed (or at least 
small) number of operands for each instruction, but each operand has a 
simple interpretation. For example, in SAMOS each operand may be 
regarded as atomic (no substructure) and is a number representing a 
location in the SAM OS store. For such simple machines it is probably of 
small consequence (except for limited efficiency tradeoffs) whether or 
not step 2 precedes step 3. 

When operands differ in description according to the statement types 
in which they appear, as in the case of higher-level (more exotic) 
machine like FORTRAN, there is greater justification for the inter
preter designer to delegate to each operator subroutine the job of 
deciding how its associated operands are to be fetched or stored. Thus, 
each operand in a FORTRAN-like machine would probably have several 
components, such as its type, in what table (work space) the cell for this 
operand may be found, the offset within this table, and the length of the 
operand. For the remainder of this discussion we wish to keep things 
simple, so we'll assume we are dealing with a regular machine in which 
it is quite feasible to execute step 2 before step 3. 

With this case in mind, and without loss of too much generality, we 
can further narrow the discussion to the case of a one-address machine 
like SAMOS. For such a machine there are typically, at most, three 
fields following the op-code field, e.g., operand, index register indicator, 
and possibly an indirect address indicator. The order is immaterial. 
Since each field is in a fixed position· within the instruction, it is a 
relatively easy matter to write microinstructions which fetch the "next" 
instruction from G-store and extract each of its fields. The T-register is 
ideally suited for this. If the instruction is greater than 24 bits in width, 
several fetches will be needed, and more of the "local registers" such as 
L or even X and Y might be used. As each operand is isolated it can be 
evaluated and its value saved in an agreed-upon scratchpad register. 

What do we mean by evaluation of an operand? Take the case where 
we are simulating a machine M whose storage consists of r cells, each s 
bits wide. We assume that the storage for M (r x s bits) will have been 
allocated in G-store beginning at some absolute address, represented 
(say) by the symbol B. Then evaluating an operand whose value is (say) 
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v amounts to a mapping from v to an absolute address in G-store. In this 
case it is 

map(v) = B + s x v 

where 0 :5 v :5 r. Of course, the word width s is a constant for machine 
M. Moreover, B is fixed for a particular interpretation of a program for 
M. B is based on the contents of the B 1726 base register BR. 3 [It may be 
useful to let the value of r be a parameter of the interpreter so that the 
storage size of M can be specified anew on each simulation.] 

The sequence of microinstructions which performs this mapping must 
therefore know where to find B, probably s, and r. Very likely B will be 
found in an agreed-upon scratchpad register. 

Must address arithmetic of the type required in computing map(v) be 
performed entirely by the function box? If so, there could be some 
congestion-induced overhead in the use of registers X and Y. If one or 
both of these registers hold data values which are to be written out to G
store at an address which is about to be computed in the function box, 
then data values in X and Y will have to be moved and may have to be 
given a "round-trip ride" to and from some available scratchpad while 
the function box is put to use computing the target address-e.g., as 
shown in Figure 3.9. 

To avoid a lot of this overhead the designers of the BI700 attached a 
full 24-bit adder to the FA register, making it possible to do the most 
frequently needed address arithmetic (computing offsets by addition and/ 
or subtraction) outside the function box. One can add to or subtract 
from FA the value of any of the 16 left half scratchpads' registers (SiA, i 
= 0, 1, ... , 15). Thus in the instruction sequences 

MOVE BR TO FA 
ADD S7A TD FA 
MOVE FA TD S9A 

or 

% MOVE BASE FROM BR TD FA 

MOVE S10A TD FA % MOVE BASE FROM S10A TO FA 
SUBTRACT S11A FROM FA 
MOVE FA TD S15A 

the FA register plays the role of a conventional accumulator (with 
addend or subtrahend addressed from the left half of the scratchpad and 
with augend or minuend from any register). We see that if address 
computation only requires computing an offset from some base, then the 

3 We assume that BR is fixed in value during the interpretation process, but in a 
multiprogramming environment it may be that a program's data space may be relocated 
before its execution is completed, so in fact BR is not strictly a constant. 
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Save X and/or Y 
in appropriate 
scratch pad 

Move base to X 
and offset to Y 

2 

Move SUM or DIFF, as 
appropriate, to FA 

Restore X and/or Y 
from scratchpad 

Figure 3.9. 

3 

4 

5 

wasteful sequence of 5 steps in Figure 3.9 reduces to 

l Replaces 1-4 

Compute address in G-store 
and save it, if needed, in 
a scratchpad register 

l 5 

Write out from X and/or 
Y to G-store 

l 
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We now suppose that, having computed map(v), this value is stored in 
another agreed-upon register. The values of other subfields that define 
the operand, such as the index register indicator, can also be stored in 
agreed slots. The operator subroutine may then be called and it will 
know, by convention, where to find the values of its arguments, for 
instance in scratchpad registers S3, S4, and S5. The mechanics of 
calling the appropriate operator subroutine and returning from it will be 
discussed in the next section. 

3.4 CONTROL 

We are now ready to examine more closely the actual control 
structure of the B 1726 microprocessor. Code executed by the B 1726 
consists of sequences of 16-bit microinstructions. [The machine language 
of the Bl726 is itself a somewhat regular one.] Microcode is regarded as 
invariant, i.e., it shouldn't be altered as a result of being used (inter
preted). 

To the extent possible, microcode is kept in a separate program store 
(H-store), whose mode of access is primarily read-only, and where 
microinstructions are relatively well protected against being accidentally 
clobbered. Of course the program store has to be loaded periodically 
with new batches of microcode, so the program store (usually referred to 
in the literature as control store) must also be (and is) writeable. [In fact, 
there are several ways to write into control store. Use of the special 
OVERLAY instruction causes code to be shipped from G-store to H-store, 
and it is also possible to load microcode into H-store from a console 
cassette tape or from the console switches.] The control store on the 
University of Utah Bl726 has, for example, a capacity of 2048 microin
structions (4096 bytes). 

The ordinary cycle for interpreting a microinstruction begins with a 
fetch from H-store from the location pointed to by the A-register (Figure 
3 .10), which is the program counter for the hardware. The fetched 
microinstruction goes to the M-register, whence it is decoded by the 
hardware for execution. 

How does the OR box attached to M help us? The actual operation of 
the hardware in the execution of a B 1700 instruction is 

l. The microinstruction at location (A) is ORed into M. 
2. A is incremented by 16. 
3. Instruction in the M-register is decoded, and gates are set appropri

ately for execution. 
4. M is cleared (preparatory for next instruction). 
5. The instruction is executed. 
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Figure 3.10. Additional registers for control, i.e., interpretation of mi
croinstructions. 

Of course, before the very first instruction of a program is executed, the 
M register must be cleared. This always happens during the initial startup 
procedure. Suppose that some instruction caused data to be moved to 
the M register-for example, MOVE 3 TD M. During step 5 the value 
specified (3 in this case) would be moved to M and would then 
"participate" in step 1 of the next instruction cycle. Hence the value 
moved to M can control (modify) the effect of the next instruction. Note 
several things about this modification. 

1. Logical DRing of all 16 bits allows modification of any fidd of a 
B1700 operation. 
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2. The effect lasts only for one instruction execution. 
3. The actual H-store is not changed in any way. 

Example Suppose scratchpad registers S12A, S13A, S14A, and S15A 
contain a list of 4 possible offsets to a base address of a list in G-store. 
Further, assume we know that TA has a value in the range 0 through 3 
inclusive, corresponding to one of the offsets found in S12, S13, Sl4, or 
S15. We would like to use the scratchpad ADD instruction to add the 
offset from the desired scratchpad into FA. The following sequence of 
microinstructions accomplishes this objective. 

MOVE TA TO M 
ADD S12A TO FA 

The scratchpad ADD instruction names S12A as the source, but the 
address field designating S12A will be ORed with a copy of TA previ
ously moved to M, producing an "effective address" that designates the 
desired scratchpad register: S12A for TA=O, S13A for TA=l, S14A for 
TA=2, or S15A for TA=3. 

[Warning: We must be careful in the use of the DRing feature, or we 
may get unexpected results. For example, what is the effect of MOVE TA 
TO M in the following sequence when TA is again assumed to have a 
value in the range 0 through 3? 

MOVE TA TD M 
ADD S11A TD FA 

[Answer: No effect. Why?] 
Another important application of the DRing property of M is in 

achieving a multiway branch, using a "jump table". For example, 
suppose we wish to decode a 3-bit op-code to achieve an 8-way branch 
to one of 8 operator subroutines. Assume that 3-bit op-code is located in 
bit positions 5 through 7 of the T-register. Then the following instruction 
sequence would do the trick. 

EXTRACT 3 BITS FROM T (5) TO L 
MOVE L TO M 
JUMP FORWARD 
GD TD ROUTINE1 
GO TD ROUTINE2 

GD TO RDUTINE7 
GD TD ROUTINES 

Explanation First we take advantage of the EXTRACT instruction to 
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pull out of T a copy of the 3-bit field and move it to another receiver 
register L. The value moved to L will be padded with high-order zeros. 
This value is then moved to M. 

The JUMP is an unconditional branch whose operand is a signed 
displacement, e.g., JUMP to "here"+5 or JUMP to "here"-10, where 
"here" is the current contents of the A-register, now pointing at the next 
instruction. The special JUMP FORWARD option means JUMP to 
"here" +0. But we have DRed into this instruction an unsigned integer in 
the range 0 through 7, so we will have an effective JUMP to one of the 
eight succeeding instructions, each being a GO TO to a different operator 
subroutine. 

Note that in no case where we take advantage of the ORing feature of 
the M-register, do we in any way alter the instruction residing in H-store. 
This DRing feature permits, in a limited way, the instruction modification 
capabilities made possible in more conventional machines using index 
registers. 

Besides indexed JUMPs, of course, we can have arbitrary jumps 
limited only to displacements ( + or - ) of no greater than 4096. In the 
MIL symbolic language the usual form of such an instruction is 

GO TO label 

which is converted by the MIL assembler into a jump instruction with an 
appropriate displacement. 

Conditional branching is achieved by having an IF statement mapped 
into an appropriate SKIP or TEST microinstruction. 4 It should not be 
necessary to become familiar with the detailed syntax of either the SKIP 
or TEST microinstructions, as the proper ones are generated by the MIL 
assembler from the higher-level IF statement. Direct use of SKIP and 
TEST instructions should be avoided. Section 2 of Appendix B lists the 
registers (and bits within them) that may be tested in an IF statement. 

Labels are declared implicitly by their occurrence in the label position 
of a MIL statement, i.e., the first item on a card (beginning somewhere 
in columns I through 5.) Labels may be global in scope, in which case 
they must of course be unique, or they may be local in scope, in which 
case two or more occurrences of the same local label are permitted. A 
local label is declared with its first character immediately preceded by a 
period (.) character. Hence local labels are often spoken of as point 
labels. To transfer control to a point or local label using a GO TO 

4 The SKIP conditionally skips the next microinstruction according to the truth or falsity 
of a bit field in some specified 4-bit register, possibly interpreted under control of a 
specified mask. The TEST conditionally jumps up to ± 16 microinstructions, depending on 
the condition of a specified bit in a designated 4-bit register. 
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statement, one must indicate the jump direction ( + for forward or - for 
backward) in the GD TD statement, e.g., GD TD +LABEL or GD TD 
- LABEL. The jump is then made forward or backward to the first 
occurrence of the possibly non-unique LABEL identifier. 

There are other microinstructions whose execution exercises control 
over the flow path of the computation. Of course, there is a HALT 
instruction and a no-op (NOP) instruction, with the usual meanings. 
However, perhaps the two most important control instructions beyond 
the jump and (conditional) skip instructions are the CALL and EXIT 
instructions used for microsubroutine procedure calls and returns. These 
instructions operate with the help of a special stack, onto which return 
addresses are pushed on each CALL and from which return addresses are 
popped on each EXIT. 

Executing a CALL instruction pushes the contents of the A-register, 
(i.e., the program counter) onto the stack. At the time of this push, the 
program counter already has as its value the address of the next 
instruction, which is the wanted return address. Thus, executing a 
matching EXIT microinstruction pops the top entry of the stack and 
places it in the A-register. After an EXIT is executed, the next instruc
tion executed will be the one whose address is now in A, which is the 
return address of the subroutine. 

The stack is a special set of registers (32 in all) which can only be dealt 
with as a pure pushdown device, that is, only its top entry can be 
addressed. This entry has the name T AS (top of A stack). Because each 
entry in the control stack is a 24-bit register, one can, with care, push 
any 24-bit datum onto the stack. 

Example MOVE X TD T AS pushes a copy of the value of X onto the 
stack, and MOVE T AS TD FA pops the top element off the stack and 
assigns it to FA. 

Since there will ordinarily be some excess capacity in the stack, there 
may be occasions when the stack can be used for storing data that are 
local to the current procedure activation, provided of course they are 
"used up", i.e., all popped off prior to executing the return (EXIT) step. 
In other words, care must therefore be taken to maintain a balance of 
executed pushes and pops during each procedure activation. 

The foregoing discussion has been a brief sketch of the control aspects 
and features of the B 1726 microprocessor. Later chapters will include a 
series of case studies (code vignettes), some of which will show how 
these control features may be exploited. Section 1 of Appendix B gives a 
summary of the B 1726 registers and their properties and uses. 
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The 81700 computation environment 

The designers of the B 1700 software system supposed that the MCP 
(operating system) would serve a queue of jobs, each remarkably similar 
in computation structure. We need to become familiar with this compu
tation structure, since any interpreter we build must fit into that 
structure or else the valuable services of the MCP will not be easily 
accessible. 

Every computation served by the MCP is assumed to consist of two 
parts, a MIL-coded program part, assumed to be an interpreter, and a 
data part, which usually consists of several components. One compo
nent, always present, serves as an interface with the MCP. That 
interface, known as the run-structure nucleus, has a standard format, 
and must be generated and loaded into G-store before the computation 
can start. 

Whether the program part is actually an interpreter is really immater
ial to the MCP as long as appropriate formatting conventions for the 
computation structure are adhered to, as in the construction and use of 
the run-structure nucleus. The program part is the MIL object code 
produced by the MIL assembler. It is easiest, and quite practical, to 
assume that the entire program part resides in the program store of the 
Bl700, i.e., H-store. However, in reality the MIL object program may 
be segmented, some segments being loaded into H-store and the rest 
into G-store. The MCP will take care of loading the interpreter in this 
fashion. 

When microcode is split between H- and G-store, certain hardware 
control registers, not yet described, are pre-loaded by the MCP to 
condition the microinstruction-fetching mechanism so that each instruc
tion is fetched from the appropriate store in which it resides. No extra 
program steps are needed to fetch a G-store-resident instruction. 1 Only 
the hardware speed of the fetch is different ( l microsecond for G-store 
versus 167 nanoseconds for H-store). Via MIL statements, a program
mer may advise the MCP which segments should be loaded, space 
permitting, into the preferred H-store. 

1 The hardware organization details by which this "neat trick" is accomplished are 
discussed in Chapter 7. 
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During the computation, messages are transmitted to/from the pro
gram and the MCP via "mailboxes" in the run-structure nucleus. Also 
placed in this interface, usually preset at load time, are key parameters 
of the computation, for instance, i/o device and file identification and 
attributes of files, the size and makeup of the remainder of the data part, 
and the name (file identification) of the associated interpreter. This 
information is used by the MCP in determining, for instance, what i/o 
service to offer the computation when coded messages requesting 
service are sent to the MCP, and where to find the interpreter whenever 
the MCP is ready to give control back to the computation. [We are 
implying here that, in the interplay between a computation and the 
MCP, each computation plays the role of a coroutine with respect to the 
MCP.] There is a lot to know about the run-structure nucleus if one 
expects to construct an interpreter that fully exploits the MCP's service 
functions. Fortunately, we will be able to get started knowing a bare 
minimum about this nucleus. (We will see why this is so later.) 

The data part of a computation has other important components (at 
least one) besides the system-oriented run-structure nucleus. There 
needs to be a read/writeable workspace area which the program (inter
preter) can use for local storage. Of primary interest to us as beginners is 
the section of the read/write workspace called the STATIC region. 

The workspace required for one program may be so large that 
overlaying strategies will be needed to conserve G-store. For this reason 
an overlayable or DYNAMIC region of the read/write workspace, contig
uous with the STATIC region, may also be specified (Figure 4.1). It is 
the responsibility of the programmer (i.e., the author of the interpreter) 
to overlay (or swap) from the disk portions of the workspace into the 
DYNAMIC region, if such space is needed. 

For many interpreters the G-language code being interpreted is 
invariant (i.e., the process of the interpretation causes no alteration of 
the G-language code). Such code may therefore be regarded as read
only. Only the read/writeable section of the workspace need be placed 
within the region bracketed by the BR and LR registers. 2 For this reason 
invariant, code to be interpreted (higher-level language code) is usually 
loaded into G-store on an as-needed basis as code segments, outside the 
BR-LR region. Code segments belong to an address space that is logically 
and physically separate from the read/writeable workspace. 

We now begin to perceive an important distinction between an 
interpreter for a higher-level programming language like FORTRAN or 
COBOL, whose code is invariant under interpretation, and an inter-

2 These registers are sensed by the hardware so as to prevent attempts to write outside 
the bracketed region. 
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Figure 4.1. Accessing environment for a 81700 computation. Note that 
the run-structure nucleus is always allocated immediately "above" the 
BR-LR workspace. 

preter (or simulator) for an actual machine, whose storage must be 
regarded as read/writeable. For example, an interpreter for the SAMOS 
machine must simulate its storage. SAMOS code to be interpreted must 
be loaded (written) into the simulated storage. Moreover, the very 
process of executing a SAMOS read (RWD) instruction results in writing 
into the simulated storage. We see that as long as our main interest is the 
construction of interpreters for actual machines whose storage is read/ 
writeable as in SAMOS, the workspace for the interpreter will need no 
read-only code segments. 

If the storage space of an interpreted machine is small enough, as it 
may be for a first-attempted simulation, it should be possible to ignore 
the DYNAMIC region. We shall assume that the STATIC region can be 
allocated large enough for adequately representing the storage and the 
various registers of the emulated machine with room to spare for the 
local storage needed by a MIL-coded interpreter. [For example, to 
simulate a 100-word SAMOS machine (88 bits per 11-character word), 
no more than 10,000 bits of STATIC storage are needed to represent the 
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store and the various registers. The implementation of a SAMOS 
simulator is considered as a case study in Chapters 5 and 6. Appendixes 
E and F provide further details.] 

4.1 THE BURROUGHS CONCEPT OF "CODEFILE" 

In Burroughs B 1700 terminology, the entire data part of a computa
tion, (all its components as discussed above) is specified by a codefile. 
Each codefile is typically generated by a Burroughs-provided compiler. 
For example, consider what happens when a COBOL program is 
processed by a Burroughs-supplied COBOL compiler, which is compati
ble with the MCP and produces code for the Burroughs-supplied 
COBOL interpreter. The COBOL compiler, taking the user's COBOL 
program as input, not only generates code segments to be interpreted by 
the COBOL interpreter, but also generates and formats the run-structure 
nucleus and various constants that are to be preset in the STATIC and 
DYNAMIC regions. The generated nucleus also contains a system pointer 
to the particular (COBOL) interpreter which will "execute" the code
file. [The interpreter may be regarded as the MCP's coroutine and the 
codefile as the accessible environment for the coroutine.] 

Once the codefile has been prepared, it is kept "on ice" as an 
ordinary disk-resident file and read by the MCP whenever the user 
issues a command to execute it. When that happens, the MCP loads the 
data part of the codefile into G-store and then invokes it by sending 
control to the start point of the indicated interpreter. 

To summarize, note the following points. 

1. In the context of the B 1700 MCP, the data part of a computation 
structure is generated as part of the process of compilation and 
saved as a codefile named by the user. 

2. The program part is a file of MIL object code whose name is 
specified to the MCP at the time the codefile is created (by a 
COMPILE command). 

3. Once the codefile is completed as a file in the system storage, it 
can be executed (EXECUTE command). 

4. When the MCP responds to an EXECUTE command naming that 
codefile, the MCP will, in effect, load the codefile and its 
associated interpreter3 and, when ready to do so, pass control to 
the start point of the interpreter. Loading the codefile implies 

3 If a copy of the interpreter is already loaded, perhaps executing some other codefile at 
this time, this step is skipped. The interpreter is reentrant, so only one copy ever needs to 
be resident in addressable storage. 
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allocating storage and loading a copy of the run-structure nucleus, 
the read/write STATIC region, and the initial DYNAMIC region if 
any. 

4.2 CONSTRUCTING A COMPUTATION ENVIRONMENT 

We have described the nature of a B1700 computation environment 
and we have explained how such environments come into existence 
under control of the MCP during "normal" use of the system, as 
conceived by the system's designers. If we are to implement arbitrary 
MIL programs on the B1700, also under MCP control, we will need 
some convenient system for constructing (compiling) computation envi
ronments tailored to the needs of our individual MIL programs (inter
preters). No such general-purpose environment constructor is currently 
available as a Burroughs software product, since the machine is not 
marketed for use by customers who are MIL coders. (Ordinary cus
tomers are expected to code in one of the several higher-level languages 
for which MIL-coded interpreters are already provided.) 

One general-purpose constructor program of the type needed was 
developed by Hinds. 4 This program is on file in the University of Utah 
system and is regarded by the MCP as a compiler (since its purpose is to 
construct codefiles). Hinds named his compiler the LOADER, but it is 
really a codefile maker. To use the LOADER, one has to learn its 
language. We will see later that this language is relatively simple to 
learn. [A LOADER program is a sequence of statements which is 
compiled into a codefile description appropriate for the MIL program 
one would like to execute. The syntax of such a program will be 
described briefly in the next section; for those needing it, a reference 
document is given as Appendix D.] 

Taking stock to this point, we see that to implement and then execute 
a MIL-coded computation on the B 1700 under the MCP, we need to 
successfully complete a 3-step process: 

I. Request the MCP to assemble a MIL object file using the MIL 
assembler, given a symbolic MIL program. The name given to this 
assembled object file will later be regarded by the MCP, in step 3, 
as the name or identifier of an interpreter. 

2. Request the MCP to use the LOADER to compile a LOADER 
program into a codefile. The request includes a name to be 
associated with the codefile to be generated. 

4 J. A. Hinds, "SMACK, a System for Operating System Interface for the Burroughs 
B 1700", M.S. Dissertation, Department of Computer Science, State University of New 
York at Buffalo, 1975. 
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3. If, in step I, the given name of the MIL object is MY. MIL, and if 
in step 2 the name specified for the codefile is MY. CDDEFYL, then 
this step requests the MCP to execute MY. CDDEFYL using the 
MY. MIL interpreter. 

4.3 IMPLEMENTING A COMPLETE MIL PROGRAM 

We could continue providing additional details on the use of the MIL 
assembler and the LOADER in more or less top-down fashion, until you 
had enough information to begin constructing a MIL program-perhaps 
even a complete simulator program. But at this point it seems more 
fruitful to make a new beginning and proceed from the bottom up by 
building up a complete (though trivial) program and identifying by a 
discovery process the concepts, constructs, and tools we still need to 
learn to complete our understanding. 

In the spirit of learning in small steps, we want first to imagine that 
our MIL program represents a very simple everyday algorithm. For the 
moment, let's assume we have succeeded in getting our loaded program 
to begin executing. You may rightly ask, "What algorithms are we now 
able to code in MIL?" The MIL we have seen so far allows us to 
perform only processing steps that are internal to the machine. We saw 
no way to actuate and use a card reader, start up a line printer, open or 
close a file, rewind a tape, etc. How far can we really get without such i/ 
o instructions? What about declarations? How do we name the variables 
of our program, i.e., associate names with storage cells, so we can easily 
map from a flowchart language variable to specific fields in storage or to 
registers of the processor? Are we stuck with all those funny names for 
the registers of the H-processor, or can we rename them, using 
"decent" mnemonics that are especially applicable to the problem at 
hand? 

All or at least most of these missing pieces become evident when we 
tackle even the simplest of problems. For example, suppose the problem 
is to write and test a MIL program that inputs a line of 80 characters 
from a data card, echoes that line on the line printer, and outputs the 
inverted line on the printer, repeating this process until the card deck 
(input file) is exhausted, and then prints a sign-off message such as THE 
END. 

Figure 4.2 is a flowchart and legend of what we want. Study it for a 
moment. Our present knowledge of MIL coding will allow us to map the 
heart of the algorithm (boxes 5 through 8), but not boxes I through 4 or 9 
through 12, which involve declarations and i/o operations. So let's start 
by coding what we know how to code, and then learn how to do the rest 
via a series of digressions into some new topics. 



48 

Issue required 
declarations 

Not end of 
CARD.READER 

file 

F 

PRINT. AREA• <-- INAREA; 

8 

Eject 
paper 

7 

10 

9 

The 81700 Computation Environment 

Declare and open files: 
PRINTER= 0 
CARD. READER = 1 

Define space for buffers: 

I.I 

DISPLAY. MESSAGE (8 chars) 
INAREA (80 chars) 
PRINT. AREA (80 chars) 

II 

12 

Close files 

1.2 

Figure 4.2. Flowchart algorithm for displaying inverted card images. 



Implementing a Complete MIL Program 49 

We assume that suitable declarations (box I .2) will make the symbols 
for the buffers INAREA and PRINT. AREA stand for bit offsets from the 
base of the data storage region. Let us further assume that we can 
declare these SO-character buffers as contiguous fields. 

IN AREA PRINT.AREA 

Inverting a card image amounts to moving INAREA79 to PRINT. AREA0 , 

then INAREA78 to PRINT. AREA1 , etc. 
We seem to need two starting addresses for the loop of boxes 6, 7, and 

8, namely that of INAREA79 and PRINT. AREA0 • Here, however, we can 
make use of the little trick: If we read INAREA 79 into a receiver register 
using the REVERSE option, then PRINT . AREA0 is the proper starting 
address for the READ REVERSE of INAREA 79 • It is of course also the 
proper starting address for PRINT. AREA0 • This means that to code box 
7 for the first transit of the inversion loop, we will need to compute only 
one absolute G-storage address, that of PRINT. AREA0 • This address is 
the sum of BR (which holds the absolute address of the base of the 
program's workspace) and the declared offset value for PRINT. AREA. 
The sum can be formed in register FA if we remember to use the adder 
associated with FA. This technique assumes that one operand is in FA 
and the other is in a scratchpad register. The procedure is 

MOVE BR TD SOA % SOA SELECTED TD HOLD VALUE 
% OF BR 

MOVE PRINT.AREA TD FA % "PRINT.AREA" IS A SYMBOL 
% WHICH, BY DECLARATION, HAS 
% BEEN EQUATED TD SOME 
% INTEGER 

ADD SOA TD FA 
MOVE FA TD S2A % SAVE COPY OF COMPUTED 

% ADDRESS IN S2A 

We can represent the loop counter j (range 80 to I) as FL if we set FL 
to 80 x 8, step it down by 8, and then test for FL = 0. 
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BOX6 
MOVE 80*8 TO FL % THE SET PART OF BOX6 

.LP IF FL = 0 GO TO BOX9 % ESCAPE FROM INNER LOOP 
% BOX7. USE Y AS THE CHARACTER RECEIVER 

READ 8 BITS REVERSE TD Y DEC FA AND DEC FL 

XCH S2 F S2 

WRITE 8 BITS 
XCH S2 F S2 
GO TO -LP 

% DECREMENTS THE COUNTER 
% AND ALSO ACCOMPLISHES 
% THE PURPOSE OF BDX8 
% GET POINTER TO SINK 
% AND SAVE POINTER TD SOURCE 

FROM Y INC FA 
% RESTORE POINTER TD SOURCE 
% "-LP" MEANS THE PRECEDING 
% LABEL, ".LP" 

The READ REVERSE instruction decrements FL and FA, thus accom
plishing the counter and indexing arithmetic for INAREA. The WRITE 
instruction increments FA, thus accomplishing the indexing on 
PRINT. AREA, as it is not necessary to keep a second counter, corre
sponding to k. Hence box 5 needs no counterpart in the MIL code. 

A moment's reflection explains why we saved in S2A a second copy 
of the computed absolute address for PRINT. AREA. We need one copy 
to be successively decremented and another copy to be successively 
incremented. The XCH instructions are used to interchange these values. 
FL is saved along with FA on the first XCH and is restored on the second 
XCH. 

Having found a way to code the inner loop of Figure 4.2, we are now 
ready to consider how declarations are coded. Then we will be ready to 
consider the i/o steps. 

4.4 DECLARATIONS IN MIL 

Three types of declaration statements are available in MIL: MACROs, 
DEFINES, and DECLAREs. 

MACROs allow us to define templates for instruction sequences that are 
to be generated upon request to the assembler. 5 This is a powerful 
language feature about which we will have more to say later. 

5 A macro definition, by analogy with a procedure definition, can be invoked via a macro 
call anywhere in the body of a MIL progrom. The MIL assembler responds to a macro call 
by substituting for it a copy of the template, after making string substitutions as indicated 
by the arguments supplied by the macro call. 
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A DEFINE statement permits the MIL coder to use an arbitrary 
symbol as a surrogate (or substitute) for a standard symbol, literal, or 
previously DEFINEd symbol. For example, 

DEFINE LEN.OF.INAREA = 640# 

would allow us to recode the first line of BOX6 in the more meaningful 
way 

BDX6 
MOVE LEN.OF.INAREA TD FL % SET PART OF BOX6 

Mnemonic-valued symbols are nearly always preferable to numeric 
constants for two reasons. 

1. The documentation has greater clearity. 
2. If the substituted symbol is used several times in the program, then 

a later decision to change the constant-e.g., from 640 to 768 (in 
going from 80- to 96-column cards)-requires only a change in the 
DEFINE statement, in this case to DEFINE LEN. OF. INAREA = 
768#. Reassembly of the program will then substitute, for every 
occurrence of LEN. OF. INAREA, the new value 768. 

DEFINEs can also be used to advantage for "christening" scratchpad 
registers with new names that characterize their storage function in the 
given program. For example, we chose SOA as the register to hold a 
copy of the BR value. Why not rename SOA as BR. VALUE? 

DEFINE BR.VALUE= SOA# 

While we are at it, we might rename S2A as IMAGE. ADDRESS and S2 as 
IMAGE. DESCRIPTOR. With these definitions, our code for the inner 
loop is now as shown in Figure 4.3. 

The scope of a DEFINE, unless otherwise constrained, is the entire 
MIL program. We can narrow or localize the scope very easily. Scopes 
may be nested as in ALGOL declarations. The syntactic device for 
blocking the DEFINEs is a pair of BEGIN, END statements where the 
BEGIN statement is followed by the phrase LOCAL. DEFINES, as sug
gested in Figure 4.4. 

A study of the purely fictitious example in Figure 4.4 reveals the 
following: The symbol LEN. OF . INBUFFER means S5B everywhere in 
the program. The symbol ADDR. INBUFFER means S5A everywhere in 
level 0 and level I of the program. In block C (level 2) the same symbol 
means S6A. In Block A and in Block C the symbol 
ADDR. CARD. COUNTER is associated with S5A. Within block B the 
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% COMPUTE CARD IMAGE.ADDRESS AND SAVE COPY 
MOVE BR TD BR.VALUE 
MOVE PRINT.AREA TD FA 
ADD BR.VALUE TO FA 
MOVE FA TO IMAGE.ADDRESS 

BDX6 
MOVE LEN.OF.INAREA TO FL % THE SET PART OF BDX6 

.LP IF FL= 0 GD TO BDX9 % ESCAPE FROM INNER LOOP 
% BDX7. USE Y AS THE CHARACTER RECEIVER 

READ 8 BITS REVERSE TO Y DEC FA AND DEC FL 
% DECREMENTS COUNTER 

XCH IMAGE.DESCRIPTOR F IMAGE.DESCRIPTOR 
WRITE 8 BITS FROM Y INC FA % INC PART IS BDX8 
XCH IMAGE.DESCRIPTOR F IMAGE.DESCRIPTOR 
GO TD -LP 

Figure 4.3. Code for the inner loop. 

symbol ADDR. INDEX. REG is also associated with S5A. (In block C, 
therefore, S5A has three different aliases.) 

A DECLARE statement6 (almost identical with the UPL 7 DECLARE) 
permits the MIL coder to define data structures and associate with each 
a G-store, base-relative address. The MIL assembler maintains a "loca
tion counter'' which is started at zero at the beginning of each assembly. 
That counter is incremented as MIL processes each DECLARE, the 
amount of the increment being the size of the declared data structure. 
Use of the DECLARE allows the programmer to associate a program 
variable with a specific field in G-store. This can best be illustrated for 
our card-image inversion problem. Box 1.2 of Figure 4.2 can be coded 
using a DECLARE as follows. 

DECLARE 
DISPLAY.MESSAGE 
INAREA 
PRINT.AREA 

CHARACTER ( 8 ) , 
CHARACTER ( 80 ) , 
CHARACTER ( 80 ) ; 

The effect of processing this declaration will be to associate DIS-

6 The DECLARE statement was not described in the original MIL reference manual 
printed by Burroughs. An alternate method for naming and sizing data spaces was 
available to students using James A. Hinds's SMACK system. The alternate approach 
used the =BSS macro call in McMIL. 

7 "Bl700 Systems User Programming Language (UPL) Reference Manual", Burroughs 
Corporation, Detroit, December 1973, Form No. 1067170. 
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Line No. 

1 
2 
3 

% LEVEL 0 
DEFINE LEN.OF.INBUFFER 
DEFINE ADDR.INBUFFER 

= S5B # 
= S5A # 

10 
11 
12 [

BEGIN % BLOCK A (LEVEL1) 
LOCAL.DEFINES 
DE~INE ADDR.CARD.COUNTER = S5A # 

20 

30 
31 
32 

END % BLOCK A 

BEGIN% BLOCK B (LEVEL1) 
LOCAL.DEFINES 

DEFINE ADDR.INDEX.REG 

40 BEGIN % BLOCK C (LEVEL2) 
41 LOCAL.DEFINES 

= S5A # 

42 DEFINE ADDR.CARD.COUNTER = S5A # 
43 DEFINE ADDR.INBUFFER = S6A # 

50 END % BLOCK C 

60 END % BLOCK B 

70 % END OF PROGRAM 

53 

Figure 4.4. Use of the LOCAL. DEFINES feature for localizing the scope of 
DEFINE statements. 

PLAY. MESSAGE with bit address 0, INAREA with bit address 64, and 
PRINT. AREA with bit address 704 ( =64 + 640). More elaborate DE
CLAREs involving structured data types, as in UPL, are also permitted
for example, 

DECLARE 01 STRUC, 
02 C, 

03 D BIT(20), 
03 E BIT ( 30 ) , 

02 G CHARACTER(3); 

It is not necessary to specify type and length for STRUC and C, which 
are group items. Clearly STRUC is a 20 + 30 + 3X8 or 74-bit record, and 
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C is a 20 + 30 or 50-bit subrecord. Using this definition, the absolute G
store address of STRUC, or for any subfield of STRUC, can be computed 
as we have done in the past. For example, to move the first character of 
G to the T register, 

MOVE BR TD SOA 
MOVE G TD FA 
ADD SOA TD FA 
READ 8 BITS TD T 

% MOVE LEFTMOST CHARACTER 
% OF G TD T 

The declared attribute of a variable, a structure, or any part of a 
structure may include the word REVERSE so that the MIL assembler will 
associate with that identifier an address that is appropriate for READ 
REVERSE and WRITE REVERSE microinstructions. For example, if the 
characters of the component G of STRUC are to be brought into T in 
REVERSE mode (i.e., one at a time, last character first), then we might 
declare STRUC as 

DECLARE 01 STRUC 
02 C, 

03 D BIT(30), 
03 E BIT ( 20) , 

02 G CHARACTER(3) REVERSE; 

Now the address associated with G is the ending address of G, plus 1, 
i.e., 

'----- C ----~-- G ~ 

1~_,__jl STRUc-~J I Address of G 
Address of E 

Address of STRUC 

So, to bring into the T-register the last character of G, we might use code 
such as 

MOVE BR TO SOA 
MOVE G TO FA 
ADD SOA TD FA 
READ 8 BITS REVERSE TD T 
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Space for arrays may also be declared. Thus, 

DECLARE FF(5) BIT(10); 

defines a space for a 5-element array named FF, each element I 0 bits 
long. Any item or group item within a structure may also be an array, 
but arrays may not be nested. 

DECLARE 01 Q(5) BIT(48), 
02 B CHARACTER(3), 
02 C FIXED; 

defines an array structure Q having five 48-bit elements, each being a 
pair of components B and C, as shown below. 

The addresses associated with identifiers Q, B, and C are those corre
sponding to the.first elements, Q0 , B0 , and C0 , respectively. Of course, 
we have no subscript expressions in MIL, so to reference a particular 
element of an array, other than the first element, requires execution of 
an appropriate microinstruction sequence provided by the programmer. 

MIL provides several useful special features as companion pieces to 
the DECLARE statement. These can be studied in Appendix A. One 
feature is mentioned here. The MIL assembler treats the expression 

DATA. LENGTH((declared identifier)) 

as a function call and returns the bit length of the (declared identifier), 
(or, if an array, the length of one array element for that identifier) as 
though that length had appeared in an explicit DEFINE declaration. 
Thus, 

MOVE DATA.LENGTH(Q) TD S3A 

would assign 48 to S3A in the context of the preceding array declaration 
for Q. Subsequently, one could advance from one element of B or of C to 
another by incrementing, with the offset DATA. LENGTH ( Q) held in S3A 

MOVE S4A TD FA % ADDR OF C(I) 
ADD S3A TD FA % COMPUTE ADDR OF C(I+1) 
READ 24 BITS TO L % L GETS C(I+1) 
MOVE FA TD S4A % ADDR OF NEW C(I) 

A more comprehensive example could be useful here to summarize 



56 The 81700 Computation Environment 

what we have learned so far about MIL declarations. Instead, let us 
expand the concept of MIL macros. 

A MIL macro definition consists of a head and a body. The head 
contains the name of the macro and an optional formal parameter list. 
The body, terminated by the # mark, is the instruction template, 
consisting of a sequence of one or more MIL statements 

~---'r~ 
((parameter list)) ' = } head MSCRO (name) 

statement I 
statement 2 

statement m # } m-statement 
body or template followed 
by an end-marker 

Subsequent to encountering such a definition, the MIL assembler will 
respond to any recurrence of (name) by first substituting for it the 
corresponding body. Each recurrence of (name) is regarded as a macro 
call. If the macro definition includes a formal parameter list, then each 
corresponding macro call must include a matching argument list. In 
substituting the statements of the body for (name), each instance of a 
formal parameter will be replaced (by string substitution) with its 

MACRO GET.NEXT.ELEMENT(CURRENT.ELEM,LENGTH,RECEIVER) = 
MOVE CURRENT.ELEM TD FA 
READ LENGTH BITS TD RECEIVER INC FA 
MOVE FA TD CURRENT.ELEM# 

(a) 

DECLARE Q(50) FIXED; 
DEFINE CURRENT.Q = S12A # 

MOVE Q(O) TO CURRENT.Q 
MOVE BR TD FA 
ADD CURRENT.Q TO FA 
MOVE FA TD CURRENT.Q 

% SET UP CURRENT.Q 
% WITH ABS. ADDRESS 
% OF 
% FIRST ELEM OF Q 

GET.NEXT.ELEMENT (CURRENT.Q, DATA.LENGTH(Q), X) 
IF X = 0 GD TO ZERO.CASE 

(b) 

Figure 4.5. 



Literals 57 

matching argument. [Warning: In the current MIL implementation, a 
parameter may not represent a statement label.] 

Example Imagine that a frequently needed step of an algorithm is to 
scan the next item of an array, given the address of the last item 
scanned, and the length of an item (assumed to be :S24 bits.) The next 
item is to be brought to one of the four possible receiver registers for 
examination. We shall assume that all available addresses are relative to 
the base register. A possible MIL macro definition is given in Figure 
4.5(a). 

We might want to use this macro to test if the next element of an array 
is zero. After having DECLAREd the array Q, defined the register 
CURRENT. Q, and initialized the latter with the absolute address of Q0 , 

we can later issue a macro call [underscored statement in Figure 4.5(b)] 
to place the value of Q; in the receiver register X and then adjust the 
pointer, CURRENT. Q, to point to Qi+i · This macro call will expand to 
(i.e., be replaced by) 

MOVE CURRENT.Q TD FA 
READ DATA.LENGTH(Q) BITS TD X INC FA 
MOVE FA TD CURRENT.Q 

We see that the body of GET. NEXT. ELEMENT will be inserted into the 
MIL code in place of the call, but with the argument strings substituted 
for the corresponding parameter. When the MIL assembler reads the 
new lines of code, it will assemble microinstructions for which 
DAT A. LENGTH ( Q) will be evaluated as 24 and CURRENT. Q evaluated as 
S12A, by virtue of declarations previously encountered. 

4.5 LITERALS 

We have been illustrating the use of literals in a number of MIL 
statements and declarations. It is time we explained the rules by which 
one writes a MIL literal and the rules that the MIL assembler uses to 
interpret them. 

Literals come in three "flavors"; they are character strings, digit 
strings, and decimal integers. 

1. Character strings are enclosed by quotation marks, e.g., "CAT", 
"99", "ODD", etc. Such a string may have up to 3 characters. 
Thus, the statement MOVE "CAT" TD X would be mapped to an 
instruction to assign to X a string of 24 bits representing the 
EBCDIC encoding of "CAT". 

2. Digit strings may be specified in base 2, 4, 8, or 16. Each digit 
string is enclosed by "at" signs (@). The digit string is preceded 
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by a base indicator enclosed in parentheses. The indicator (bits 
per digit) is 1 for base two, 2 for base four, 3 for base eight, and 4 
for base sixteen [The indicator is optional for a base-16 digit 
string.] For example, 

Base 

2 
4 
8 

16 
16 

Digit string 

@(1)101@ 
@(2)3211@ 
@(3)62715@ 
@(4)AFOC9@ 
@AFOC9@ 

Meaning 

Binary number 1012 

Base-4 number 32114 

Octal number 627158 

Hexadecimal number AFOC916 

Hexadecimal number AFOC916 

Thus all of the following MIL instructions are equivalent 

MOVE @(4)3218@ TO L 
MOVE @3218@ TO L 
MOVE @(3)30450@ TO L 
MOVE @(1)0011000100101000@ TO L 

The effect of each of these instructions will be to assign the 
specified digit string, converted to a bit string, to L, right-justified, 
with left zero fill. 

3. Decimal integers. Unsigned or positive decimal integers are 
converted to unsigned binary integers. Negative decimal integers 
are converted to 2s-complement form. 

Examples 

l. MOVE 24 TO CPisequivalenttoMOVE@(1)00111000@ TO CP. 
2. DEFINE LENGTH = 65# is equivalent to 

DEFINE LENGTH=@( 1) 1000001@ #. 
3. MOVE -3 TO Xis equivalent to 

MOVE @FFFFFD@ TO X % 2'S COMPLEMENT OF 3 
% EXPRESSED IN HEX 

Note that if we want a different representation for - 3 moved to 
X, such as a signed magnitude representation, we must specify the 
negative integer as a digit string, e.g., 

MOVE @800003@ TO X 
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4.6 INPUT/OUTPUT IN THE McMIL LANGUAGE 

The language MIL has been extended by James A. Hinds in a system 
called SMACK (system macro). SMACK includes a package of about 20 
powerful macro definitions. A number of these macros define instruction 
sequences for communicating input/output requests to the MCP. As 
mentioned earlier, the MCP has responsibility for executing i/o functions 
and file-system primitives. Getting the MCP to carry out these steps 
amounts to sending it an appropriate message called a "communicate". 
Because sending these messages involves use of the run-structure 
nucleus, and because we would prefer insofar as possible to regard such 
activity as off limits (at least while we maintain amateur status as MIL 
coders), the SMACK macro definitions will answer our need admirably. 
We shall be able to code our interactions with the MCP as macro calls 
and thus avoid the risk of generating code that the MCP cannot 
understand or digest. [Using this approach, we in effect delegate to 
SMACK the role of (MCP) interface specialist.] We have only to 
become familiar with the available SMACK macros and how to use 
them. The language MIL is really extended when we permit calls to the 
predefined macros of SMACK. Macro calls are known as "E-state
ments" (Eis for extension). Together with regular MIL statements, they 
form the superset known as McMIL. An E-statement is distinguished 
from ordinary MIL statement by beginning with an equal sign ( =) in 
column 1. 

A McMIL program (i.e., a MIL program that has been enriched with 
E-statements) is processed in two stages. In the first phase, each E
statement (macro call) is expanded into a sequence of MIL statements. 
Upon completion of the first or preprocessing phase, the program is 
ready to be assembled by the MIL assembler. The second phase 
completes the process of producing the microcode and places the object 
code on file for use as an interpreter. 8 

We introduce a few of the important McMIL statements here. A 
complete reference manual (user's guide) for McMIL and SMACK is 
included in Appendix C and should be consulted when more information 
is needed. 

8 R. A. Belgard, while with Burroughs, and later at the University of Utah, developed a 
set of macro definitions (coded in MIL) known as BIOPSI. These definitions are 
comparable to those of SMACK. The BIOPSI macros may, however, be invoked using 
ordinary MIL macro call statements, provided that the definitions are included in the same 
source program. The inclusion of these definitions is achieved easily, using control 
commands of the form & LIBRARY (file name), where (file name) designates the file 
holding the BIOPSI definitions. Advanced MIL programmers at the University of Utah 
now prefer the use of BIOPSI over SMACK because symbolic assembly is faster using 
BIOPSI since only one processing phase is needed. 
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Consider the problem of coding box 3 of Figure 4.2, 

3 

INAREA 

Here we wish to fill the buffer INAREA from the CARD. READER file. 
The McMIL equivalent of box 3 is: 

= BUFFER READ USING INAREA FILE CARD.READER 

The underscored parts of this statement are the arguments of this 
particular SMACK macro. [Note that the format of a SMACK macro 
call is quite different from the functional form used in MIL, which is: 

(macrocall) ::= (macroname) I (macroname)((argument list)).] 
The same macro is used for coding box 4, 

but on printer output we specify line spacing. One writes 

= BUFFER WRITE USING INAREA FILE PRINTER OPT SINGLE 

Likewise box 11, 

11 

DISPLAY.MESSAGE 

may be coded as 

=BUFFER WRITE USING DISPLAY.MESSAGE FILE PRINTER OPT SINGLE 

The OPT SINGLE means "space the printer carriage one line after 
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printing''. The possible spacing options are 

OPT SINGLE 
OPT DOUBLE 
OPT EJECT 
DPT ADVANCE 

spaces one line after printing 
spaces two lines after printing 
skips to next page after printing 
spaces no lines after printing (allows overprinting) 
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If no spacing option is specified in a WRITE statem~nt the default is no 
advance. 

We may also wish to send the same message, such as "THE END", to 
the console printer. If so, the key word needed is DISPLAY rather than 
WRITE, e.g., =BUFFER DISPLAY USING DISPLAY .MESSAGE. No file 
need be specified, since the console printer cannot be attached to a 
user's computation, as a file can by opening it. No spacing option is 
required either. 

The BUFFER READ macro call may also specify a branch on end of 
file. For our problem we can state 

BDX2AND3 
=BUFFER READ USING INAREA FILE CARD.READER 

ON EDF GD TD BOX10 

because this McMIL statement is really the equivalent of flowchart 
boxes 2 and 3 combined, 

Not end of CARD. READER 
file 

T 
3 

INAREA 

2 

F 

Box IO may be coded by appending the EJECT option to a (dummy) 
print step which prints no characters: 

BDX10 
=OUTPUT 0 BYTES CORE PRINT.AREA FILE 

PRINTER OPT EJECT 



Line 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

?EXECUTE MCMIL 
?CONVERT 
?DATA CARDS 

DEFINE PRINTER = 0 # 
DEFINE CARD.READER = 1 # 
DEFINE BASE.OF.INTERPRETER= S1A #%SEE TEXT FOR EXPLANATION 
DECLARE 
DISPLAY.MESSAGE 
INAREA 
PRINT.AREA 

CHARACTER ( 8) , 
CHARACTER ( 80 ) , 
CHARACTER ( 80 ) ; 

11 =INITIALIZE 
12 % EXECUTABLE PORTION OF MIL PROGRAM BEGINS HERE 
13 =SECTION CARD.INVRT 
14 BDX2AND3 
15 =BUFFER READ USING INAREA FILE CARD.READER ON EDF GD TD BDX10 
16 % BDX4 
17 =BUFFER WRITE USING INAREA FILE PRINTER OPT SINGLE 
18 % 
19 
20 
21 
22 
23 
24 
25 % 

BEGIN % INNER LOOP, 
LOCAL.DEFINES 

DEFINE LEN.OF.INAREA = 640 # % IN BITS 
DEFINE BR.VALUE = SOA # 
DEFINE IMAGE.ADDRESS = S2A # 
DEFINE IMAGE.DESCRIPTOR = S2 # 

COMPUTE CARD IMAGE.ADDRESS AND SAVE A COPY 

0) 
I\) 

.... 
':r 
CD 
m ..... 
...... 
0 
0 
(") 
0 
3 

"O 
s. 
DI -s· 
:I 
m 
:I 
< a· 
:I 
3 
CD 
:I -



26 MOVE BR TD BR.VALUE 
27 MOVE PRINT.AREA TD FA 
28 ADD BR.VALUE TO FA 
29 MOVE FA TD IMAGE.ADDRESS 
30 BDX6 
31 MOVE LEN.OF.INAREA TD FL % SET PART OF BDX6 
32 .LP IF FL=O GD TD BDX9 % ESCAPE FROM INNER LOOP 
33 % BDX7.USE Y AS THE CHARACTER RECEIVER 
34 READ 8 BITS REVERSE TD Y DEC FA AND DEC FL % DEC PART OF BOX6 
35 XCH IMAGE.DESCRIPTOR F IMAGE.DESCRIPTOR 
36 WRITE 8 BITS FROM Y INC FA % INC PART OF BDX8 
37 XCH IMAGE.DESCRIPTOR F IMAGE.DESCRIPTOR 
38 GD TD -LP 
39 END % INNER LOOP 
40 BDX9 
41 =BUFFER WRITE USING PRINT.AREA FILE PRINTER OPT DOUBLE 
42 GD TD BDX2AND3 
43 BDX10 
44 =OUTPUT 0 BYTES CORE PRINT.AREA FILE PRINTER DPT EJECT 
45 % BDX11 
46 =BUFFER WRITE USING DISPLAY.MESSAGE FILE PRINTER OPT DOUBLE 
47 % BDX12 
48 =STOP 
49 =TERMINATE CARD.INVRT 
50 ?END 

Figure 4.6. Source deck for card inversion program coded in MIL and 
McMIL. 
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4.6.1 Declaring files 

Notice that CARD. READER and PRINTER are declared in flowchart 
box 1 as the file names we intend to associate with the card reader and 
printer devices. We need to declare these devices as files and open 
them. But actually, the information specified in FILE declarations 
belongs in the codefile, rather than in the MIL program, so these 
declarations will be placed in the program that the LOADER will 
process. 

Both the codefile and the MIL program must know about the input 
and output devices and files used in the program by some correlated 
numbering scheme. As indicated in box 1.1 of Figure 4.2, the output 
device is to be known as file 0 and the input device as file 1 of the 
program. (Of course, within the MIL program we use the mnemonics 
PRINTER and CARD . READER in place of their numeric (internal) names 
0 and 1. 

Each file is automatically opened on the first attempt to read from it 
(or write to it). Files are also automatically closed upon termination of 
the computation. The implicit open and close operations are achieved 
via the SMACK subroutines called by MIL code generated from the = 
BUFFER READ and =BUFFER WRITE McMIL statements. McMIL state
ments for explicit open and close look like this: 

and 

=OPEN INVENTORY.FILE WITH INPUT 
=OPEN CHECKS WITH OUTPUT 

=CLOSE INVENTORY.FILE 
=CLOSE CHECKS 

Before we look at the LOADER details and what is needed for this 
problem, we had better tie up all the loose strands developed so far. 
Figure 4.6 shows a McMIL program listing which, when assembled, will 
comprise the MIL object code equivalent to Figure 4.2. New code, not 
yet motivated, appears underscored (in Figure 4.6) and is explained in 
the next paragraphs. 

Explanation of the underscored statements in Figure 4.6 MCP control 
cards. Line 1 invokes the Mc MIL preprocessor. Line 2 asks the MCP to 
translate our deck from BCD (026) to EBCDIC (029) codes, before it is 
processed by the SMACK subsystem; the data to be converted to 
EBCDIC are in the file named CARDS, as indicated on line 3. Line 50, 
?END, marks the end of the data deck. 

Line 6 (DEFINE BASE. OF. INTERPRETER = S1A) is a SMACK 
requirement. SMACK needs to have one scratchpad register, which it 
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knows by the name BASE. OF. INTERPRETER, set aside for its own 
housekeeping chores. By reserving it using the DEFINE statement, we 
satisfy this SMACK requirement. Any 24-bit scratchpad register may be 
selected except SOA. We chose S1A. 

The next SMACK requirement appears on line 11, ahead of the first 
executable statement of the program (= INITIALIZE). This macro call 
causes SMACK to insert at the very beginning of the MIL program a 
section of code which includes a set of subroutines needed for MCP 
communication. 

These instructions compute and place at a strategic place within the 
run structure nucleus the resume point of our MIL program (regarded, 
you will recall, as a coroutine to the MCP). Other instructions in this 
section save and restore the scratchpad registers just before and just 
after control is shifted to and from the MCP, respectively. 

The first statement following =INITIALIZE should be an =SECTION 
card such as the one on line 13 (=SECTION CARD. INVRT), which names 
the section that follows CARD . INVRT. The principal purpose of an = 
SECTION statement is to indicate that you want SMACK to generate 
comment cards for each succeeding McMIL statement so the source 
code to the MIL assembler will be readable (well documented) when you 
get the assembly listing from the MIL assembler (see Figure 4.7). 
SMACK will also reproduce the name you give on the =SECTION card 
on each line of the assembly listing that follows (until another = 
SECTION card is encountered, if any, after which the name for that 
section would be reproduced). Each =SECTION card generates an END 
for the preceding section and a BEGIN for the current section. (The final 
END-i.e., the one just before FINI in Figure 4.7-is generated by the= 
TERMINATE statement discussed below.) Study Figure 4.7 to see the 
effect of the =SECTION on line 13 of Figure 4.6. 

Line 48 (=STOP) generates code such that execution of our micropro
gram will be terminated, storage released, all files not otherwise closed 
explicitly closed, and control returned to the MCP. 

Line 49 contains the terminate macro call (=TERMINATE 
CARD. INVRT). This macro call is used to terminate the SMACK 
processing of our program (phase l) and shift control to the MIL 
assembler to process our "expanded" MIL program. By placing an 
identifier of our choice on this =TERMINATE card (in this case 
CARD. INVRT), we name the file of microcode that the MIL assembler 
will produce and place it on disk storage. We can retrieve our MIL 
object code or apply it later as an interpreter by referring to it as 
CARD . INVRT. 

We have just cited the essential SMACK requirements that must be 



BURROUGHS BlTOO MIL COMPILER• MARI( v.o<Ol/24/76 18:05) 

CARO. !NVR T MONDAY• HAY Oz, 1977, 06:28 PM. 

BLOCK CODE MEMORY SOURCE IMAGE SEQUENCE SEGH ENT OBJ DECK 
NAME ADDRESS : : NAME A OD RESS 

Off INE PRINTER = 0 • [0000011 c 

en DEFINE CA RD.REA CER = 1 t C000002J C 

a> DEFINE BASE.Of. INTERPRETER= SlA I % SEE TEXT FOR EXPLANATION [000003) c 
DECLARE COOOOOltl C 

[ 000000] OlSPL AY .MESSAGE CH AR AC TE R < 8 0 >. [0000051 c 
( 0002801 I NA REA CH AR AC TE R < 8 0 >. [0000061 c 
( 0005001 PRINT.AREA CHARACTER (80); [0000071 c 

BE GI N CA RO • I NV Rf (0001861 c 
%M% SECTION CARC.tNYRT cooo 1871 c 
BO X2 AN 03 (0001881 c 
%Mt BUFFER ROD USING INARO FlLE CARO.READER ON E or G 0 TO BOX 10 (0001891 c 
t BO Xlt (000199] c 
%H% BUFFER WRITE USING INAREA FILE PRINTER OPT SINGLE (0002001 c 
% (0002081 c 

BEGIN % INNER LOOP. (000209) c 
LOCAL.DEFINES (0002101 c 

DEf IN E LEN. Of .I NA REA = 6 40 ' % IN BITS (000 211) c 
DEFINE BR.VALUE = SOA # (000212) c 
DEFINE IMAGE.ADDRESS = SZA t C000213J c 
DEFINE IHAGE.CESCRIPTOR = S2 ' (0002141 c 

% COMPUTE CARD !HAGE.ADDRESS ANO SAVE A COPY (0002151 c 
CARD.JNVRT 2680 AT COOBBOJ HOVE BR TO BR.VALUE (000216) c co 08801 
CARD.INVRT 9800 AT COOBCOJ MOVE PRINT.AREA TO FA (0002171 c COOBCOJ 



en ..... 

CARD. INVRT 0500 AT COOBDOI & 
CARD. INVRT 08CO AT COOBEOI ADD BR. VALUE TO fA [0002181 c 
CARD. !NVR T 28 82 AT COOBFOJ MOVE FA TO IMAGE.ADDRESS {000 219) c 

BOX6 (0002201 c 
CARO. INVRT 9AOO AT CoOCOOI MOVE LEN. or .1 NA REA TO fl % SET PART OF BOXI cooo2211 c 
i;ARD. INVRT 0280 AT COOClOl G 
CARD. INVRT ues AT [00C20l .LP If Fl = 0 GO TO aOX9 % ESCAPE FRQH INNER LOOP co 00 2221 c 

% BOX7 USE Y AS THE CMARACTER RECEIVER [0002231 c 
CARD. INVRT 7768 AT C00C30J READ e BITS REVERSE TO y DEC FA ANO DEC Fl T DEC PART or BOX6C000221tl c 
C4RO. INVRT 0722 AT COOC40l XCtl IMAGE.DESCRIPTOR F !HAGE.DESCRIPTOR [000 2251 c 
CARO. INVRT 7948 AT COOC5Cl WRITE 8 BITS FROM Y I~C FA % INC PART OF BQX8C0002Z6l C 
CARO. INVRT 0722 AT COOC601 XCH IMAGE.DESCRIPTOR F IHAGE·DESCRIPTOR 
CARO. INVRT 0006 AT COOC701 GO TO •LP 

ENO % INNER LOOP 
BOX9 
IM% BUFFER NRITE USING PRINT.AREA FILE PRINTER OPT DOUBLE 

CAR o. IN VRT DO 2C AT COOD10l GO ro BOX2AND3 
BOXl 0 
%H% OUTPUT 0 BYTES CORE PRINT.AREA FILE PRINTER OPT EJECT 
% BOX 11 
%H% BUFFER NRITE USING OISPLAY.HESSAGE FILE PRINTER 
% 
%M% 

NUMBER OF ERRORS DETECTEO = 000 
NUMBER OF WAR~I NG HES SAGES = 000 
MICRO INSTRUCTION COUNT= 00236 

BOX12 
STOP 

ENO 
FI NI 

CAUTION: s SUBSET WAS NOT SPECinrn: THERErORE· THIS 
PROG~H SHOULD NOT BE USED ON A B171Z/B1714. 

Figure 4.7. 

OPT DOUBLE 

C0002271 c 
C0002281 c 
cooo 2291 c 
[0002301 c 
{0 00231J c 
[000 2391 c 
[0002401 c 
co 00 2411 c 
[0002501 t 
[0 00251] c 
[0002591 c 
[0002601 c 
(0002661 t 
(0002671 c 

COOBDOl 
COOBEOl 
COOBFOI 

(0 oc 001 
co oc 101 
COOC20l 

[O OC30l 
[00C40J 
rooc soi 
[0 OC60l 
cooc 101 

co 00101 
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present in every MIL program processed by SMACK 

1. A BASE. OF. INTERPRETER definition 
2. An =INITIATE 
3. An =SECTION 
4. An =STOP 
5. An =TERMINATE 

A number of other SMACK macros will be found useful even for MIL 
beginners. 

In calling SMACK macros the user must understand one important 
constraint that is imposed in the version described in this text: All 
SMACK macro calls involving input and output generate code that 
assumes there is nothing of interest to the user in the hardware stack. 
For example, if the MIL programmer leaves anything in the stack before 
issuing an =BUFFER READ ... , that information will have been de
stroyed when control reaches the user's next MIL statement. This 
means that one may only issue such E-statements in the top level of a 
MIL program. E-statement i/o cannot therefore be executed from within 
a user-coded MIL subroutine called in the usual way from the top level, 
because the return pointer to the caller will be lost. 

Usually the programmer can get around this limitation in one of 
several ways. He may for example, set a global switch which is tested 
upon return to the top level, to determine if the i/o step should be 
executed. Alternatively, routines that must issue i/o calls can be treated 
as coroutines to the top-level program (i.e., routines reached by GD TOs 
rather than by CALLs and returned from by GD TDs rather than by 
EXITs). 

At this point, the reader is advised to study (once, quickly) the McMil 
and SMACK User's Guide (Appendix C) for an overview of the 
available macros and the the services they perform and also for a review 
of what has been said so far about this important support system. 

4.7 THE LOADER (DETAIL$) 

In our overview discussion of the LOADER we said that a LOADER 
program is a sequence of statements which is compiled into a codefile 
description. For each MIL program we wish to make operational, we 
must provide an appropriate LOADER program. Let us do this, by way 
of example, for CARD. INVRT, the MIL program of Figure 4.5. [Full 
details on the LOADER can be found in Appendix D.] 
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The information we are expected to supply falls into three categories 
(and should be supplied in that order). 

1. program parameter specifications 
2. scratchpad settings 
3. FILE and DATA declarations 

Under program parameter specifications we may supply a number of 
attributes of the associated MIL program, including the overall dimen
sions and makeup of the workspace. For example, INTERP = 
CARD. INVRT gives the name of the associated MIL program, and 
STATIC = 5500 is an example of a workspace parameter. In fact, for 
the simple MIL programs we will be writing these two specifications, 
name of MIL program and size of STATIC, are really all we need to 
make. 

If we want specific initial scratchpad settings other than all zeros, we 
could next specify their values. We are not likely to want to specify 
nonzero initial values for our codefiles, so the scratchpad-settings 
component of our LOADER program may be left empty. 

We will always want to give some file descriptions, even in the case 
where our MIL program uses the card-reader and line-printer devices as 
the only files. Each FILE statement associates an internal name with a 
physical input/output device and supplies, implicitly or explicitly, a list 
of attributes for that device. File numbers (internal names) are assigned 
from 0 in the order of appearance of the FILE statements in the 
LOADER program. For example, if the first FILE statement is 

FILE NAME = PRINTER PRINTER 
~~ 

Local Hardware 
name type 

then the file named PRINTER will be understood by the MCP as file O of 
this codefile. The file 0 is of hardware type PRINTER (as opposed to 
TAPE, etc.). Default attributes of the declared hardware type (e.g., 80-
byte records) will be generated by the LOADER for eventual placement 
in the file information block9 for file 0. (Note that our MIL program 
defines PRINTER as 0 on line 4 of Figure 4.6, so the names used for file 
0 in the MIL program and in the codefile are actually correlated via the 
number 0 and not by use of the identical local names on both programs. 
Different local names could have been used with the same net effect.) 

9 The run-structure nucleus has a few noncontiguous appendages. Among these is afile 
dictionary with pointers to a set of file information blocks, one for each declared file. 
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If the next FILE statement is 

FILE NAME = CARD.READR READER; 
Local Hardware 
name type 

then the LOADER will be given sufficient information to permit the 
generation of a file information block for file 1, the CARD. READR file, by 
specifying READER as the hardware type. [Most of the options and file 
attributes (e.g., number of buffers, locks, record size, blocking factors, 
etc.) recognized by the operating system and which can be specified in 
FILE declarations in higher-level languages such as UPL, can be 
expressed in FILE statements of the LOADER language, but we won't 
need to use these refinements for our beginning work.] 

The final item in the LOADER program is the DATA statement for 
specifying initial values for the STATIC section of the workspace. For 
example 

DATA "THE END"; 

specifies that the first 8 character positions of the workspace (beginning 
at base-relative 0) are to be initialized with the string "THE END". For 
our MIL program the variable whose address begins at base-relative 0 is 
DISPLAY. MESSAGE. No value is input for this variable, yet in box 10 
we print out its contents (line 46). The above DATA statement guarantees 
that when equivalent of line 46 is executed, the message THE END will be 
printed. 

The last statement of a LOADER program is FINI. Figure 4.8 shows 

?COMPILE CARD/INVERTER WITH LOADER LIBRARY 
?CONVERT 
?DATA CARDS 

INTERP=CARD.INVRT STATIC=5500; } 

FILE NAME=PRINTER PRINTER; 
FILE NAME=CARD.READR READER; 
DATA "THE END"; 
FINI; 
?END 

} 

} 

Program parameter specs 

Scratchpad settings (empty) 

FILE and DATA declarations 

Figure 4.8. The LOADER program named for use with the CARD. INVERT 
interpreter. 
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?EXECUTE CARD/INVERTER 
?DATA CARD.READR 
NOW IS THE TIME FDR ALL ... 
ABLE WAS I ERE I SAW ELBA 
MADAM IM ADAM 

... EVE ... 
?END 

Figure 4.9. The job deck for testing CARD/INVERTER. 
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the LOADER program ready for the card reader, complete with MCP 
control cards. We ask to compile the program, arbitrarily named 
CARD/INVERTER, using LOADER as our compiler, and we ask to place 
the compiled codefile in the library. 

Once we have both the MIL object program and the codefile in the 
LIBRARY, we can execute the codefile using a job deck like the one 
shown in Figure 4.9. The output will appear as in Figure 4.10. 

Since our MIL program fails to trim off trailing blanks from each data 
card that is processed, each output line appears right-justified, in 
contrast with the echoed data card images, which appear left-justified at 
least for those data cards with nonblanks in column 1). 

Exercise. Modify CARD . INVRT so that blanks are stripped off the right 
end of each data card before the inversion is made into PRINT. AREA, 
thus producing inverted card images that are left justified as shown in 
Figure 4 .11. Data cards that are entirely blank should be echoed, but 
their inverses should not be printed. 

o NOW IS THE TIME FOR ALL... o 

0 
... LLA ROF EMIT EHT SI WON o 

0 ABLE WAS I ERE I SAW ELBA 
0 

o ABLE WAS I ERE I SAW ELBA o 
0 0 

0 
MADA MI MADAM 0 

0 MADAM IM ADAM 0 

0 ... EVE ... 0 

... EVE... o ~ 
0 - - - - - - - - - - - - - - - - - - - - - - - o ~ new sheet 

0 

0 

o THE END 

~ 

Figure 4.10. Output of program executing CARD/INVERTER. 
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0 NOW IS THE TIME 
0 ... LLA ROF EMIT 
0 

ABLE WAS I ERE 
0 ABLE WAS I ERE 
0 

0 MADAM IM ADAM 
0 MADA MI MADAM 

0 ... EVE ... 
o ... EVE ... 
0 

0 

o THE END 

FOR 
EHT 

I SAW 
I SAW 

ALL ... 
SI WON 

ELBA 
ELBA 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Figure 4.11. Desired output achieved by trimming off trailing blanks 
before inverting each card image. 

5a Sa.I 

} -==::> 
5b 5a.2 

T 

INAREA, = "0" 
F and 

5c j40 

5b 

5a.3 

j <-j 
j 4 0 

j<-j- I 

T 

9 

PRINT. AREA• <- INAREA, 

8 

k<-k+I 

Figure 4.12. Modified logic of inner loop for CARD. INVERT to left justify 
the output. 
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The overall structure of CARD. INVRT can remain the same. The loop 
structure of boxes 5 through 8 can be replaced as shown in Figure 4.12 
to suggest the logic now required. To solve this problem requires more 
practice in MIL coding. No new McMIL statements are needed, 
however. Will any change be needed to the CARD/INVERTER, i.e., to 
the LOADER program? 



Chapter 5 
The structure of an interpreter 

An interpreter algorithm, as we discuss it in this chapter, is one that 
imitates the fetch-execute cycle of a particular von Neumann-style 
computer. Figure 5 .1 suggests the characteristic structure of such an 
interpreter. Its main feature is a loop, each transit of which corresponds 
to the fetch and execute of one instruction in the program of the target 
machine. To be sure, not every interpreter need be structured precisely 
this way, but this skeleton is sufficiently representative to be instructive. 
As we discuss this structure we will expand it both top down, by 
providing more of its details, and also bottom up, by suggesting 
environment structure in which the interpreter is nested. 

5.1 DETECTION AND RESPONSE TO FAULTS AND INTERRUPTS 

An interpreter algorithm should be capable of detecting when things 
go wrong with the program being interpreted (faults). The interpreter can 
signal the nature of the fault encountered in two ways. 

1. By printing explicit messages and shifting control to code in its 
environment, i.e., to its host; 

2. By reflecting to its caller (here we regard the interpreter as a 
subroutine) the nature of the fault and returning control to its 
caller, leaving to the caller the responsibility for reacting properly. 

The second approach is attractive, and we shall mainly pursue it in 
subsequent discussions. This approach allows us to keep the size of the 
interpreter procedure small and at the same time purchase adequate 
flexibility through modularity. 

Normally the designer of an interpreter cannot be expected to 
recognize in advance all possible faults. Usually he can think of the most 
obvious ones such as those listed in Table 5. l . 

Switches set within the loop's body (details of boxes 3 through 6 of 
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Interpret program 

initialize 
IC, 
etc. 

OK to 
continue 

T 

Fetch next 
instruction 
from cell 
at IC 

ith operator 
subroutine 

* 

2 

3 

4 

5 

F 

Figure 5.1. Skeletal structure of an interpreter. IC refers to the instruc
tion counter of the target machine. The point marked * is discussed later 
in the text. 
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TABLE 5.1 Partial List of Faults to Be Sensed by an Interpreter 

FAULT TYPE OR OTHER 

SPECIAL CONDITION 

Runaway computation 

Invalid opcode 

Invalid operand address 

Invalid IC value 

End of file sensed on 
attempt to execute an 
input step 

MECHANISM FOR SENSING RESPONSEa 

Number of interpreted Abort the program 
instructions (a work 
counter value) exceeds 
some given or declared 
limit 

Failure of a table lookup Abort the program 
or other search 

Comparison against Abort the program 
storage address limits 

Comparison against Abort the program 
storage address limits 

System-sensed using the Possibly terminate the 
ON EOF option in = run 
BUFFER READ 

a The easiest response to each fault is to cause the interpretation process to be 
terminated (abort the program) and possibly give a dump (display storage registers.) More 
sophisticated responses, such as restarts using a new data set or some given IC value, may 
be possible. [In this book we shall not emphasize responses.] 

Figure 5 .1) will be tested in the "interior" of box 2, 

2 

OK to continue 
F 

1---H RETURN 

T 

to cause return to the interpreter's host or caller. We shall examine 
some of these details momentarily. 

In addition to faults encountered that are intrinsic to the program 
being interpreted, there may be other reasons for discontinuing interpre
tation, at least temporarily. Our interpreter must be responsive to the 
needs of its host environment. System interrupt signals may arrive while 
the interpreter is executing its loop body. Some of these signals imply 
that the host system should respond "immediately"; others are less 
urgent. The interpreter must periodically pass control back to some 
system routine which specializes in analyzing and responding to these 
interrupt conditions. [On the B1700, that specialist routine is called 
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GISMO; it interfaces with various routines of the MCP when a compre
hensive response to an interrupt is called for.] 

A courteous interpreter must not execute too long "at one stretch" 
without checking to see if such system interrupts have arrived, or else it 
may be too late for the host system to give proper response. In our 
perhaps naive first design, we shall assume that such a check need be 
made only once in each transit of the interpretation loop, as suggested in 
the details of box 2, given in Figure 5.2. 

We should bear in mind that an actual computer usually executes a 
hardware check for interrupts at the completion of each fetch/execute 
(instruction) cycle, so by letting our interpreter make a (software) check 
for interrupts at the corresponding point in its cyclic process, we cause it 
to mimic an actual machine. If, for certain exit paths from box 5 of the 
interpreter (Figure 5.1), the total time for executing one transit of the 
interpretation loop will actually be "discourteous" to the system that 
hosts this interpreter, then it is the responsibility of the interpreter 
designer to insert additional checks for interrupts along such ''long 
paths". 

Fortunately it is very easy for a MIL coder to insert a check for 
interrupts. The McMIL macro call =CHECK INTERRUPTS generates 
MIL code that calls a SMACK subroutine that checks the state of all 
physical devices and determines if any system service is required at this 
time. If so, the scratchpads are saved, and control is passed (in the 
coroutine sense) to the MCP (via GISMO). Upon resumption of control, 
scratchpads are restored; but note that register values for X, Y, T, L, CA, 
CB, FA, FB, and TAS will have been lost. The statement immediately 
following =CHECK INTERRUPTS is then executed. We see, therefore, 
that the logic of boxes 2.1 and 2.2 of Figure 5.2 is accomplished for us 
by this single McMIL statement. 

The other test in box 2, namely 

termination.code 
= "notyetset" 

T 

2.3 

F 

suggests that we may use one multivalued switch, here named termina
tion. code which can be preset in box 1 of the interpreter to a value 
equivalent to "notyetset". Interpretation continues as long as the 
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Figure 5.2. Details of box 2. The symbol ~I !<-- means resumption after control is passed back from the system 
procedures after some delay while servicing interrupts. It is assumed that the variable termination. code is 
initialized in box 1 of Figure 5.1 to the value "notyetset'', and may be altered in the body of the loop controlled by 
box 2. 
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switch remains in this condition. It is assumed that recognition of any 
fault such as those in Table 5.1 results in setting termination. code 
to a specific value properly understood by the interpreter's caller. 
Likewise, any normal termination of the interpreted program, such as 
results from executing a halt instruction or from attempting to read past 
an end-of-file condition, is also assumed to set termination. code to 
a value meaningful to the interpreter's caller. 

From the above discussion, we see that 

I. Box I of the interpreter should now include the detail 

1 
Initialize: 
IC, 
work. counter, 
termination.code 

The variable work. counter is to be used as a counter to keep 
track of the number of instructions that have been interpreted. 

2. The point marked by * in Figure 5.1 [prior to return (looping back) 
to box 2] should now be represented by the additional steps 

Increment 
work.counter 

7 

8 

work.counter> work.limit 

T 

9 

termination. code~ "overworked" 

F 
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3. Various places within the interior of boxes 3, 4, 5, and 6 may 
(should) include tests for fault or termination conditions that, 
when encountered, result in the setting of termination. code 
to an appropriate value. 

5.2 THE HOST ENVIRONMENT 

Before looking further into details of the interpreter's loop body, one 
should consider the choices available for possible environments in which 
to embed the interpreter structure. Basically, there are two choices. 

1. Embed the interpreter directly in the MCP (the MCP treats the 
interpreter as a coroutine and spawns it directly). 

2. Embed the interpreter within an outer shell, which in tum is 
embedded directly in the MCP (the MCP treats the shell as a 
coroutine and the shell communicates with the interpreter in some 
appropriate manner-e.g., as a coroutine or as a subordinate 
procedure). 

We shall consider the ramifications of each choice. 
If we opt for choice 1, we will be using the interpreter much as the 

Bl700 designers intended. Namely, each time the MCP passes control to 
an interpreter, there already exists in the compiled run structure some 
code that is ready to be interpreted. For interpreters like UPL, FOR
TRAN, COBOL, etc., that code is a compiled user program, originating 
from UPL, COBOL, or FORTRAN source text in the respective 
language. A new codefile is needed for each such user program that is to 
be interpreted. However, for interpreters which are machine simulators, 
the code that is initially resident in the run structure at the start of 
interpretation may be either a user program or a system program. Let us 
consider each case in tum using the PDP-9 simulator for illustration. 

Ifwe want the simulator to interpret only one PDP-9 program (e.g., a 
PDP-9 user program), then it is sufficient to compile into the run 
structure a copy of that user code, and this code will be interpreted by 
the simulator. When interpretation is complete, control will return to the 
MCP. To interpret another PDP-9 user program would then require a 
new codefile be created. 

More than likely, however, we will want our simulator to be capable 
of interpreting a series of PDP-9 user programs. For this purpose code 
initially compiled into the run structure should be one or more PDP-9 
system programs. The emulator begins execution of these programs, 
which in tum cause the loading of still other PDP-9 programs, e.g., user 
programs. In fact, all we would need to preload into the run structure is 
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a small PDP-9-coded self-loader. Of course, the run structure must be 
large enough to represent the storage space for the full PDP-9 simulated 
storage, so that PDP-9 programs much larger than the self-loader will 
also fit in. 

Most of the early general-purpose digital computers, especially those 
built before modern read-only memories were available, were designed 
for use with self-loader programs in mind. The self-loader was itself 
loaded by a simple hardware circuit. When activated, this circuit would 
read one data record containing the self-loader code into a preset (fixed) 
base address of storage, set the instruction counter to this base address, 
and commence execution. 

Here is a further ramification of choice 1 to embed the interpreter 
directly in the MCP. The MCP will not know anything about our 
interpreter (e.g., the PDP-9 simulator). Therefore, to handle PDP-9 
program faults, it will be the interpreter's responsibility to supply 
specific calls on the MCP (i/o req_uests coded as McMIL £-statements) 
which spell out precisely what and how error messages, dumps, etc. are 
to be displayed. Such i/o requests will have to be completed before the 
interpreter can pass control back to the MCP for the purpose of 
terminating the execution. 

If we opt for choice 2, an interpreter within an outer shell, we have 
somewhat greater flexibility (at least for simulators) at somewhat added 
cost. The shell, also coded in MIL, can provide the structure of an 
environment tailored for the machine we want to simulate. With the 
advent of integrated-circuit technology, many operating-system features, 
(e.g., self-loaders and editors) are being built into the hardware and/or 
read-only firmware. For example, in the case of the SAMOS machine 
the loader function (described in Appendix F) is regarded as built into 
the hardware. Any number of such built-in features can be simulated by 
coding them into the shell. In the next section we elaborate further on 
implementation using a shell. To make the discussion more concrete we 
shall assume, with little loss of generality, that the shell being designed 
is for the SAMOS computer. 

5.3 THE SHELL CONCEPT 

Figure 5.3 suggests the structure of a simple shell which has some 
very useful properties. This shell calls on the interpreter (box 7 of Figure 
5.3) only when it has successfully copied a complete (SAMOS) program 
from the input card file into the simulated (SAMOS) storage located 
within the workspace of the run structure. Whenever the interpreter 
returns control to the shell, the latter is able to respond intelligently to 
the termination. code reflected back to it by the interpreter, and 
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Figure 5.3. First view of a possible shell for an interpreter. This shell 
behaves like a simple batch operating system that processes jobs from a 
single input file and halts when this file is exhausted. 
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following this response, Process another (and another) SAMOS "job" 
from the input file in a similar way. (No new codefile need be prepared 
for the new job.) 

The particular shell of Figure 5.3 behaves like a simple batch 
operating system for the SAMOS computer. The shell is programmed 
under the assumption that the input file is a sequence of jobs, each 
headed by a control card (identified by * in column 1, for example). 

When the end-of-file indicator on the input file is sensed, the master
switch that controls the outermost loop is set to force a return to the 
shell's environment (in this case to the MCP). Any of the subprocedures 
called by the shell (box 3, 5, or 7) can sense the end-of-file ( eof) 
condition. In case interpret. program senses the eof condition, the 
code in box 8 can set the masterswitch. 

We are persuaded here to add further detail for the shell. For 
example, Figures 5.4 and 5.5 define possible structures for the 
find. a.job. card and load. a. program procedures. 

The find. a.job. card procedure is basically a search loop, looking 
for a card image corresponding to a control card (* card). If, during the 
search, an end-of-file condition is reached, the masterswitch is set (box 
4). When a * card is found, the foundswi tch is set to 1 to force exit 
from the loop at box 1. This switch may be reset upon return to the shell 
proper, which must decide (box 4 of Figure 5.3) which condition caused 
control to return from find. a.job. card. The details of box 4 are 
shown in Figure 5.6. The very first time find. a.job. card is called, 
we must guarantee that the foundswi tch is in the reset position. This 
requirement is satisfied simply by initializing the foundswi tch in box 1 
of the shell, i.e., by revising it to 

masterswitch ~ 0 
foundswitch ~ 0 

The logic of load. a. program is clear from inspecting the top-level 
description on the left of Figure 5.5. The details for box 2 and box 3 of 
this description will depend on the particular machine being simulated. 
Even so, the details given in Figure 5.5 are as independent of the 
particular target machine as we know how to make them. We have in 
mind that after clearing the registers and storage of the target machine 
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Figure 5.4. A possible structure for find. a.job. card. 

(or after initializing these cells to some value representing "undefined 
value"), the procedure would read a sequence of cards (actually 
program cards), each containing one (or more) target-machine instruc
tions, which are to be moved into consecutive cells of the simulated 
storage. The addresses of these cells are governed in this case by the 
lo ca ti on. counter, set initially to zero. [Actually, any other starting 
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value for the location. counter would do if the starting value were 
specified as an input parameter of the procedure.] 

The end of the program-card sequence is sensed by recognizing some 
kind of sentinel card, e.g., a blank card, as in the case of SAMOS. When 
all program cards have been processed, loading is completed, and this 
fact is reflected back to the shell by recording an "DK" value for the 
indicator variable, code. If, prior to sensing the sentinel card, a control 

load.a.program 

Clear simulated 
registers and 

storage 

Load storage from 
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code+-"toobig" 

Figure S.S. A possible structure for load. a. program. 
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4 4.1 

foundswitch = 1 

T 
4.2 

foundswitch <- 0 

Figure 5.6. 

card such as the * card is sensed, the program deck is deemed 
incomplete; the loading process is regarded as a failure, and this fact is 
reflected back to the shell by assigning the "*" value to code. 
Likewise, if the end-of-file condition is sensed before the expected 
sentinel is reached, that condition must be reflected back to the shell 
also. 

Another condition which should be sensed to denote failure of the 
loading process is an attempt to load a program which cannot fit into 
storage of the simulated (target) machine. This condition is easily 
detected (box 3.11 of Figure 5.5), and the value "TODBIG" is reflected 
back. We have now motivated all the details of boxes 6 and 9 of the shell 
that are suggested in Figure 5. 7. 

Now that we have considered one possible control structure for the 
shell of an interpreter, you can probably improve on it or embellish it to 
achieve one of a series of other objectives to make the interpreter's 
human interface more effective for your purposes. But before you begin 
making improvements, it is a good idea to see how well you can code 
this shell in MIL. You'll have to make some additional design choices, 
depending on the particular computer you decide to simulate. 

When coding the shell in MIL you should recall the admonition in 
Section 4.5 that MIL subroutines cannot execute i/o steps directly (i.e., 
cannot execute SMACK macro calls for i/o). Therefore, routines like 
find.a.job.card, load.a.program, and interpret.program 
must either be reached by GD TOs or be coded such that only the shell 
issues these macro calls. Rather than pursue this approach here (MIL
coding the shell), we will instead return to further consideration of the 
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9.7 

interpret. program procedure, assuming it is called by a shell like 
the one in Figure 5.3. 

5.4 MOVING TOP DOWN ON THE INTERPRETER STRUCTURE 

To flesh out with further details the interpreter skeleton described in 
Section 5 .1, we will now have to make some specific design choices. In 
particular, we will need to notice more and more of the properties of the 
target machine as we descend to levels of greater detail. In the context 
of the typical simulation project, the target machine and its full definition 
is known at the outset. We will therefore assume this context and select 
the SAMOS machine as our target from here on, although we will try to 
keep our discussion as general as possible. By way of review, we gather 
up some loose ends and present in Figure 5.8 an updated version of 
Figure 5 .1 based on the discussions in Section 5. I . 
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Figure 5.8. Updated interpreter skeleton. 

2.2 

5.4.1 Storage representation for the target machine 

2.1 

To focus on the details of boxes 3, 5, and 6 we must deeide how to 
represent the SAMOS registers and storage in G-store. Recall that each 
SAMOS word consists of a sign position followed by IO character 
positions. The SAMOS machine can be emulated from its original 
description which specified 61-bit words (1 bit for sign and 6 bits for 
each character.) We would therefore prefer to emulate each SAMOS 
word as a 61-bit field in G-store; but if we do this, we will miss the 
opportunity to exploit certain hardware features of the B 1700' s micro 
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processor which explicitly support the processing of 8-bit EBCDIC 
character codes and do not support the processing of (say) 6-bit BCD 
codes or 7-bit ASCII codes, etc. (Despite advertisements to the con
trary, 8-bit EBCDIC characters are favored over other character coding 
on the "protean" B1700.) We are then faced with this tradeoff (di
lemma): If we want to take advantage of the character processing 
potential of our B 1700 microprocessor, we will have to waste G-store by 
representing each SAM OS word as 11 EBCDIC characters (8x11 =88 
bits, rather than 61 bits as originally specified). Either way we go will be 
instructive here. It isn't critical that we make a choice between these 
two options at this point in our top-down approach, because only the 
details of certain declarations and utility subroutines are affected. 
Nevertheless it will be convenient for this exercise if we assume we are 
going to opt for the second approach (8-bit EBCDIC character codes), 
so we can eventually illustrate some of the character-processing features 
of the Bl700. 

The first implication for the above choice is that the SAMOS store of 
SIZE words may be declared as 

DEFINE SIZE = (a value chosen by the designer, e.g. 100) # 
DECLARE 01 SAMOS.STORE(SIZE), 

02 WORD BIT(88), 
03 SIGN CHARACTER(1), 
03 OPCODE CHARACTER(3), 
03 INDEXES CHARACTER(3), % SEE 

% FOOTNOTE 
03 ADDRESS CHARACTER(4); 

To refer to each of the individual index-register subfields by a unique 
name, we may redeclare SAMOS. STORE using the REMAPS feature, e.g., 

DECLARE 01 DUMMY REMAPS SAMOS.STORE, BIT(88), 
02 FILLER BIT(88), 

03 FILLER CHARACTER(4), 
03 INDEX1 CHARACTER(1), 
03 INDEX2 CHARACTER(1), 
03 INDEX3 CHARACTER(1); 

How should the registers of the SAMOS processor be represented in 
G-store? As separately named fields? Perhaps, but an attractive alterna
tive is to treat each register the same as an ordinary word of SAMOS 
storage, letting these registers constitute an extension to the SAMOS 
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store with registers having negative addresses, e.g., 

- 1 for the accumulator, ACC 
- 2 for the instruction counter, IC 
- 3 for the index registers, IX1, 
- 4 IX2, 
- 5 IX3, 
etc. (any pseudo registers we need can go here) 

Presently, we will see how this alternative way of addressing these 
registers can prove useful. Storage allocation for these registers can be 
made contiguous with the base of SAMOS . STORE by having the DE
CLAREs for these registers immediately precede the DECLARE for 
SAMOS. STORE, e.g., 

DECLARE (IX3, IX2, IX1, IC, ACC) BIT(88); 
DECLARE 01 SAMOS.STORE(SIZE), 
etc. as before. 

Letting all SAMOS registers and storage words have the same G
storage structure means that all arithmetic operations on them can be 
performed by the same set of decimal arithmetic operations. Binary 
arithmetic will be used mainly to convert SAMOS locations (decimal 
numbers) to the absolute binary G-store addresses needed to access 
SAMOS registers and storage words. 

In short, we may use (B1700 4-bit) decimal arithmetic for simulating 
SAMOS address calculations that involve the instruction counter, ad
dress fields, and index registers. [We can of course also use B1700 
decimal arithmetic for simulating the decimal arithmetic used by SA
MOS for calculations involving the accumulator.] 

One mapping rule suffices to compute the absolute G-store address of 
a SAMOS storage word or register. That rule is 

map(s) = s x 88 + SAMOS. ZERO 

Here s is the SAMOS location and SAMOS . ZERO is the absolute G-store 
address of SAMOS location zero (0000). The value of s will be a small 
negative integer if it represents a SAMOS register (or pseudo register) 
and will be a nonnegative integer less than SIZE if it represents a 
SAMOS storage location. Note the following points. 

1. SAMOS . ZERO may be computed as the sum of SAMOS. STORE and 
BR, i.e., 

map(s) = s x 88 + (SAMOS . STORE + BR) 
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Since the value of BR can change whenever control is handed over 
to the MCP via GISMO (as during an interrupt check), it is 
necessary to recompute the sum SAMDS. STORE + BR during each 
transit of the main loop of interpret program (Figure 5.8). 
But this sum can then be kept in a scratchpad for the duration of 
that transit. 

2. Since map(s) is an absolute G-store address, which is a binary 
number, it makes sense to compute it using binary arithmetic. 
Hence s in the above formula should be the binary equivalent of 
the (decimal) SAMOS storage location. 

SAMOS register locations, unlike SAMOS storage locations, are 
represented only implicitly in the SAMOS instruction, so it is never 
necessary to represent the location s of a SAMOS register as a decimal 
character string. This means, for example, that when we want to access 
the accumulator, we need only use the declared binary literal (-1) 
equivalent of the accumulator. There is no need to convert a decimal 
character number to binary integer before computing map(s) by the 
above formula. We can declare these literals by using DEFINES such as 

DEFINE ACC.ADDR = -1# % AS 2'S COMPLEMENT 
DEFINE IC.ADDR = -2# % AS 2'S COMPLEMENT 
DEFINE IX1 .ADDR = -3# % AS 2'S COMPLEMENT 
etc. 

or 

DEFINE ACC.ADDR = @800001@# 
%-1 AS SIGNED MAGNITUDE 

DEFINE IC.ADDR @800002@# 
%-2 AS SIGNED MAGNITUDE 

DEFINE IX1.ADDR @800003@# 
%-3 AS SIGNED MAGNITUDE 

But let us take a closer look at the problem we encounter when we 
need to access a SAMOS storage word whose location is determined 
from its explicit representation in an instruction, for example, such as 
STD 000 0051. Here the address 0051 is represented as a string of 
decimal characters whose G-store representation is 

1111 0000 : 1111 0000 : 1111 0101 : 1111 0001 ~ Bit string 
F 0 F 0 : F 5 F 1 ~ Hex char string 

We need to convert this value to the binary integer, s = 110011, so we '11 



TABLE 5.2 Possible Utility Routines Useful in the SAMOS Interpreter 

NAME AND FUNCTION 

VALIDATE.DECIMAL 
checks a SAMOS storage 

location for +, - , and decimal 
characters. 

ADDRESS.TD.BINARY 
converts a 4-character decimal 

address field to binary and 
checks that the result is a 
valid SAMOS storage 
location, i.e., that 0 :5 result 
<SIZE. 

BINARY.TD.FA 
converts the binary value, s, 

representing a SAMOS 
storage location to the 
absolute G-store address of 
that storage location. 

EFFECTIVE.ADDR 
computes the effective address 

as a decimal character string 
of a SAMOS operand or 
instruction. 

ADD 
adds two decimal character 

values. 

SUB 
subtracts two decimal character 

values. 

COPY.WORD 
copies a word from one SAMOS 

location to another. 

SPECIFICATIONS 

Parameter: Binary absolute G-store address, 
s, of SAMOS location containing word to 
be tested is in FA. 

Return: Flag telling if input parameter points 
to a valid 11-character decimal number. 
The first character should be " +" or 
" - ". Each of the remaining 10 characters 
should be a decimal digit. 

Parameter: Binary address, s, of SAMOS 
location for a storage word or register 
containing a decimal character address. 

Returns: a. The binary value, s, equivalent 
to decimal value pointed to by the 
parameter. The value s is left in an agreed 
upon register. 
b. Flag telling if the location specified by 
the parameter is a valid SAMOS storage 
address in the range 0 to SIZE. 

Parameter: Binary address, s, of a SAMOS 
location. 

Returns: The corresponding absolute G
store address of that location in FA. 

Parameter: FA points to the index register 
subfield, INDEX, of the SAMOS 
instruction being interpreted. 

Returns: The effective address as a decimal 
value is left in the pseudo SAMOS register 
(e.g., EA) equivalent to location -6. 

Parameters: Two binary addresses, s I and 
s2, of SAMOS locations holding the 
operands. 

Returns: The sum (as a decimal character 
value) stored in the location indicated by 
second parameter. 

Parameters: Same as for ADD 
Returns: The difference (as a decimal 

character value) stored in the location 
indicated by the second parameter. 

Parameters: Two binary addresses, source 
and sink, of SAMOS locations. 

Returns: Nothing. 

92 
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certainly need a subroutine to convert decimal character strings to 
integers. 

Of course, each SAMOS operand fetch or store is more complex than 
this. In general what is wanted is an effective address for the operand. 
Thus in the instruction 

we want the sum of 0051 and the contents of IX2. So before converting 
the character string 0051 to binary, it might be worth while to compute 
the required sum using a decimal-arithmetic addition routine. We 
anticipate the need for a subroutine (we might name it EFFEC
TIVE. ADDR) which would draw on several more primitive utility rou
tines to deliver the required binary value s. Table 5.2 offers a possible 
set of these utility routines and their functional descriptions. Take a few 
minutes to study these specifications. You may wish to modify or 
improve them before seriously beginning to develop flowcharts and MIL 
code for them. 

We can now begin detailing boxes 3, 5, and 6 of Figure 5.8. Consider 
box 3 first and the suggested expansion of its detail as seen in Figure 5.9. 

We note from the plan in Figure 5.8 that there has as yet been no 
check made that the IC, incremented in box 4 while executing in the 
preceding loop transit, is within bounds. So this should be the first step 
in the interior of box 3; if the answer is no, we assign "out of bounds 
IC" as the new value for termination. code, to force a return to the 
shell. These details are given in boxes 3.1 and 3.2 of Figure 5.9. Next, 
the absolute G-store address of the instruction pointed to by IC must be 
computed as an FA pointer for fetching parts of the next instruction from 
G-store. To mimic SAMOS as it ignores the sign position of an 
instruction word, we simply "advance" FA by one character (bump FA 
by 8 bits). This respositions FA at the low-order address of the 3-
character op-code field, which is then moved to a receiver register (X) 
within the microprocessor. 

By taking advantage of the utility routines suggested in Table 5.2, it is 
easy to see how we could write the MIL code corresponding to boxes 
3.1 through 3.4 of Figure 5.8. We give such code in Figure 5.10. This 
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Figure 5.9. First level of detail for instruction fetch. 
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FETCH.NEXT.INSTRUCTION 
MOVE IC.ADDR TD T 
CALL ADDRESS.TO.BINARY 
IF FLAG = 0 THEN 

BEGIN 

% WHERE ARGUMENT FDR 
% THIS ROUTINE IS EXPECTED 

MOVE OUT.OF.BOUNDS TD TERMINATION.CODE 
GD TD -BDX2 

END 
BDX3.3 

95 

CALL BINARY.TD.FA % CONVERTS VALUE POINTED AT 
% BY IC.ADDR TD AN ABSOLUTE 
% BIT ADDRESS IN G-STDRE. 

COUNT FA UP BY 8 % BUMP FA WHICH NOW POINTS 
% TO BEGINNING OF OPCODE 
% 

READ 24 BITS TD X INC FA % GETS OPCODE 
Figure 5.10. Possible MIL code for box-3 details of Figure 5.9 

code is assumed to be within the scope of declarations such as 

DEFINE IC.ADDR = @800002@ # 

DEFINE FLAG = Y # 

DEFINE OUT.OF.BOUNDS= 5 # 

DEFINE TERMINATION.CODE= S10B 

% AS MENTIONED 
% EARLIER 
% ANY REGISTER DR 
% BIT THAT CAN BE 
% TESTED FDR ZERO 
% THIS VALUE IS 
% ARBITRARY 
% ANY SCRATCHPAD 
% WILL DD 

Note how useful the proposed ADDRESS. TD. BINARY subroutine 
turns out to be for us. Nearly every time we need a binary equivalent of 
a decimal address field at some SAMOS location, we also want a bounds 
check made. The routine ADDRESS. TO . BINARY does both, leaving a 
zero value in some flag register which can be checked for zero using a 
simple IF test. (Zero means out of bounds.) To check that the IC is in 
bounds, we simply call ADDRESS . TO . BINARY, giving as an argument 
the binary SAMOS location of the IC, in this case the literal IC. ADDR. 
The subroutine then converts the address field of the IC from a decimal 
string to the binary equivalent, checks that this binary value is in 
bounds, and sets the flag. 

Now we can begin to see the advantage of representing the IC as a full 
SAMOS (I I-character field). Had we chosen to represent IC as a 4-
character field, we would have needed a separate routine to check the 
IC for a bounds error. 
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5.1 

op.code = "LDA" MOVE "LDA' ' TO Y 
IF X=Y THEN GO TO LDA .. 

F 5.2 

op.code = "STD" MOVE "STD" TO Y 
IF X=Y THEN GO TO STD .. 

F 5.3 

1-'. "ADD') :::;> MOVE "ADD" TO Y 
IF X=Y THEN GO TO ADD .. 

op.code 

F 5.4 

op.code = "SUB" 

F 

F 5.22 

op.code = "SHL" 
T)-.. ' / 

F 

6.n+l 

termination.code 
... "badopcode" 

MOVE "SUB" TO Y 
IF X=Y THEN GO TO SUB .. 

MOVE "SHL'' TO Y 
IF X=Y THEN GOTO SHL .. 

MOVE BADDPCDDE TD TERMINATION.CODE 

Figure 5.11. Multlway branch ton different opcode routines. 
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Figure 5.12. Guide for structuring details of box 6.i, the ith operator 
routine for interpret. program 
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Box 5 of interpret. program is an n-way select, where n is the 
number of distinct SAMOS opcodes. This multiway selection must be 
coded the ''hard way'', i.e., as a sequence of n 2-way tests, as suggested 
in Figure 5 .11. (Unfortunately, we can think of no simpler method for 
achieving a quick jump to the required operator routine. The indexed 
jump discussed in Section 3.4 is unfortunately not applicable here, 
because SAMOS op-codes are not small binary numbers but 3-charac
ter-i.e., 24-bit~fields.) 

Each op-code routine requires that an explicit operand be "evalu
ated". In SAMOS instructions, only one operand is given explicitly; the 
other, if present, is implicitly designated by the op-code. An index 
register indicator can be thought of as an explicit operand, but we prefer 
to regard it as a modifier for the one explicit operand. For example, in 
the instruction LDA 010 0051, the explicit operand is 0051. Its modifier 
is IX2, and the implicit operand is the accumulator. 

For some op-codes only one operand (the explicit operand) need be 
checked for validity after it is "evaluated". For others both operands 
must be checked before the operations indicated by the op-code can be 
performed. In interpreting LDA 010 0051, for example, first the 
effective address must be found to be valid. Then the value of the 
operand at the effective address must be checked to be sure it is a 
decimal character string. Likewise, the accumulator (implicit operand) 
must be checked to be sure that it too contains a decimal character 
string. On the other hand, in interpreting BRU 001 0016, only the 
effective address (explicit operand) need be checked for validity (within 
bounds). The implicit operand, which is the instruction counter, requires 
no check for validity, since we use it here as a destination rather than a 
source. 

Because of the wide variations in logic required in coding each 
operator routine, it is difficult to arrive at a prototypical one. The best 
we can do is offer Figure 5.12, which is intended as a guide (rather than 
a template) and is intended to be helpful in constructing each of the 
specific operator-routine flowcharts. 

With Figure 5.12 as a guide, we next show in Figure 5.13 how the 
flowchart would look for an ADD instruction. Figure 5.14 shows an 
equivalent MIL coding for this flowchart. 

5.4.2 Discussion of MIL code for ADD routine (Figure 5.13) 

This figure merits study. Observe that the code is remarkably com
pact-hardly more than one line of MIL code per flowchart box. Why is 
this so? Largely because of our choice of the "utility" routines, which 
do most of the work (and which perhaps do too much work.) 

Even more compact code might be obtained using macros. We could 
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Figure 5.13. First-level details for ADD routine. 
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Line No. 
1 ADD .. 
2 

% ADD ROUTINE BEGINS HERE 
CALL EFFECTIVE.ADDR % ARGUMENT POINTED TO BY FA. 

% RESULT IS LEFT IN PSEUDO
% REGISTER EA 

3 
4 
5 
6 

: [ 10 
11 
12 
13 
14 
15 
16 

17 [ 18 
19 
20 
21 
22 
23 
24 

25 [ 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

MOVE EA.ADDR TO T 

CALL ADDRESS.TO.BINARY 

IF FLAG = 0 THEN 
BEGIN 

% 
% GETS (LOGICAL) POINTER ARGUMENT 
% FROM T. SEE TEXT DISCUSSION 

MOVE INVALID.ADDRESS TO TERMINATION.CODE 
GO TD -BOX2 

% BOX 6.3.3 

END 
CALL BINARY.TD.FA 

CALL VALIDATE.DECIMAL 
IF FLAG = 0 THEN 

BEGIN 

% PICKS UP ARGUMENT FROM REGISTER 
% WHERE ADDRESS.TO.BINARY 
% LEAVES ITS RESULT. 
% ARGUMENT POINTED TD FROM FA 

MOVE NDNNUMERIC.DPERAND TO TERMINATION.CODE % BOX 6.3.6 
GO TO -BOX2 

END 
MOVE FA TD SOA 
MOVE ACC.ADDR TD T 

CALL BINARY.TO.FA 

% SAVE ADDRESS OF lST OPERAND 
% GET SECOND OPERAND AND VERIFY. 
% ACC.ADDR IS A BINARY NUMBER 

CALL VALIDATE.DECIMAL % ARGUMENT POINTED TD FROM FA 
IF FLAG = 0 THEN 

BEGIN 
MOVE NDNNUMERIC.ACC TD TERMINATION.CODE % BOX 6.3.9 
GO TD -BDX2 

END 
CALL ADD 

GD TD INC.WORK.COUNTER 

% ARGUMENTS ARE THE POINTERS 
% CURRENTLY IN SOA AND FA; 
% RESULT LEFT IN SAMDS CELL 
% POINTED TO BY FA. 
% GD TD BOX 7 

Figure 5.14. Possible MIL code for the ADD operator routine flowcharted 
in Figure 5.13. 

replace some of the repeating patterns by macro calls if the macro 
facility in the current MIL assembler were improved. Notice the 
similarity in form between the code in each of the three bracketed 
sequences (lines 7-13, 17-22, and 26-31). We could define the macro: 

MACRO VALIDATE (UTILITY.NAME, ERROR.CODE, INDICATOR)= 
CALL UTILITY.NAME 
IF FLAG = 0 THEN 

BEGIN 
MOVE ERROR.CODE TD INDICATOR 
GOTO -BDX2 

END # 
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provided label arguments and parameters like UTILITY. NAME were 
allowed. Were this the case, we could then replace each bracketed code 
sequence in Figure 5.14 as follows: 

VALIDATE (ADDRESS.TD.BINARY, INVALID.ADDRESS, 
TERMINATION.CODE) 

in place of lines 7 through 13, 

VALIDATE (VALIDATE.DECIMAL, NDNNUMERIC.DPERAND, 
TERMINATION.CODE) 

in place of lines 17 through 22, and 

VALIDATE (VALIDATE.DECIMAL, NONNUMERIC.ACC, 
TERMINATION CODE) 

in place of lines 26 through 31. 

In the next chapter we will examine the details of these utilities. 
Undoubtedly there is some tradeoff between compactness of code 
(related to choice of utilities) and efficiency as measured in execution 
time. For example, the utility EFFECTIVE. ADDRESS must itself call on 
VALIDATE.DECIMAL and then on ADD, or else accomplish the equiva
lent operations in a more specialized manner. Recall that to compute an 
effective address, one forms the sum of the contents of the instruction's 
address field and the contents of the indicated index register. It is not 
necessary to check that the index register has a valid decimal number 
(because that value will have been previously validated), but it is 
necessary to decimal-validate the address field. 

Notice also that the arguments of ADD are pointers to the actual 
operands in G-store and not to registers of the H-processor. These same 
arguments, however, had to be brought to the processor by VALI
DATE. DECIMAL. They could have been left there, say in the scratch
pads, but the code in Figure 5.14 implies that ADD doesn't know this. 

In short, the coding plan suggested in Figure 5.14 is attractively 
compact, but its efficiency is apt to be relatively poor. It may be 
possible to establish more effective (but more implicit) communication 
among the utility routines to increase efficiency, though this may lead to 
code that is harder to understand or modify. These issues will be 
considered in the next chapter. The point to be made here is that if we 
decide efficiency is not important, then we can now proceed to code all 
the other operator routines (e.g., STD .. , LOA .. , SUB .. ), postponing 
until later the coding of the utility routines. However, if we suspect we 
will want to redesign the utilities and their interfaces, then we had better 
look into this matter before continuing to code the operator routines. 
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This is because redesign of the utility interfaces will directly affect the 
coding of almost every operator routine. 

A few more remarks are in order before concluding this chapter. 

I. The overall design of our interpreter and a shell surrounding it is 
now substantially complete. True, we have not yet flowcharted 
the individual operator routines (except for ADD), but this task is a 
relatively simple one though tedious. 

2. We have not yet developed the details of the routines used by the 
operator routines, nor the utility routines needed by the shell 
(e.g., dumps and other displays). Details for the operator-routine 
utilities depend heavily on the representation of SAMOS registers 
and storage and on the degree of mutual interaction we wish these 
utilities to have for the sake of efficiency. 

3. Although at the outset we said we would opt for the 8-bit 
EBCDIC representation of SAMOS characters in preference to 
other forms, such as the originally specified 6-bit BCD characters, 
very little of our design so far has really depended on this choice. 
We can still go either way without much undoing. This flexibility 
is now at an end. To detail the operator-routine utilities we must 
now bind this choice into our design. 

4. Thus far we have been tacitly assuming that MIL coding should 
be accomplished only as a direct mapping from a higher-level 
language, such as our flowchart language. Moreover we have been 
careful to assure that each of our suggested flowcharts is well 
structured (in the Dijkstra sense). Since a primary justification for 
coding programs at as low a level as MIL is to take advantage of a 
particular microprocessor's architecture (that of the BI726), we 
can expect that to gain maximum efficiency in speed and/or space 
it will often be desirable to use MIL statement sequences that do 
not exhibit the same clean structure as the flowcharts do. Depar
ture from clean structure for the sake of efficiency may, for 
example, occur in coding escapes from loops, or in treating 
exception conditions. 

Many programmers whose aim is to achieve optimal coding become 
impatient with the apparent discrepencies between the flowchart struc
ture and that of their optimal code. They tend to abandon the flowchart 
rather than update it to reflect at a higher level the compromises or 
changes they make at the lower level. Instead, they rely on comments 
inserted in the MIL code to provide adequate documentation. Indeed, 
some programmers don't even start at the flowchart level, but code 
directly in MIL. 
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These notes are not intended to be a style manual, but we are 
attempting to stress the importance of first looking at what we are trying 
to achieve at each stage before considering how to code the MIL 
equivalent. Occasionally the way we express an objective at the higher 
level will tend to restrict our imagination to suboptimal ways of 
implementing higher-level ideas. This often occurs when we have 
decomposed a process into too much detail (and consequently with the 
wrong machine model in mind) before beginning the MIL-coding proc
ess. We cannot always succeed in achieving the best balance. In the 
next chapter we will show a number of coding examples, and in a few 
cases show, for those interested in efficiency issues, how different ways 
of implementing the intent of certain utility subroutines can significantly 
influence the efficiency of the entire interpreter. 



Chapter 6 
MIL coding for data manipulation 

Most of the MIL coding seen so far has been related to the control 
structure and decoding logic of an interpreter. We are now ready to 
become familiar with the coding techniques associated with data manip
ulation needed, for example, in utility routines such as those suggested 
in Table 5.2. 

Several of the utility routines involve addition, subtraction, and 
multiplication for address computation and for conversion of decimal to 
binary values. Moreover, a basic decimal addition routine is needed to 
implement the SAMOS operators ADD, SUB, MPY, and DIV. Successful 
design of these utility routines will therefore depend on gaining a more 
complete understanding of the B 1726 24-bit function box for addition 
and subtraction, and especially of the base-IO (decimal) feature. Section 
6.1 explains the structure of the addition and subtraction mechanisms, 
and each subsequent section then develops the design of one of the 
needed utilities. 

6.1 ARITHMETIC OF THE 24-BIT FUNCTION BOX 

Recall that addition and subtraction are achieved under control of the 
CP register, as suggested in Figure 6.1. The inputs to the function box 
are X, Y, and CYF, where CYF is the one-bit carry-in register. The 
arithmetic outputs are SUM, DIFF, CYL, and CYD. The last two one-bit 
"registers" are explained later. 

The results, SUM and DIFF, are governed by CPU and CPL. When CPU 
= 012 , values in X and Y are regarded as unsigned decimal integers up to 
6 digits in length, where each digit is in 4-bit binary code. We shall refer 
to such coding as "packed decimal". Therefore, when CPU = 012 , the 
results in SUM and DIFF are the packed decimal sum and difference of 
the packed decimal inputs X and Y augmented by CYF. 

When a one-bit carry-out results for SUM, that value goes to CYL. 
Likewise, a one-bit borrow into DIFF sets CYD. [For other values of 
CPU, namely when CPU = 102 or 112 , the values of SUM, DIFF, CYD, 
CYL are undefined; when CPU = 002 , addition and subtraction are 
binary, but carries out and borrows in are registered in CYL and CYD in a 
similar fashion.] 
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CP 

x 

y 

CYF' CPU CPL 

24-bit 
function box 

SUM 

DIF'F' 

Figure 6.1. Control flow(---->-) and data flow(~) in the function box 
for addition and subtraction. 

The value in CPL controls the length of SUM and DIFF. Thus the 
carry-out bit for a sum value that would exceed CPL bits is registered in 
CYL. We therefore say that the values in SUM, DIFF, and CYL are 
conditioned by CPL. For some (unknown) reason, the B1726 designers 
did not also condition CYD by CPL. Hence CYD is set to 1 only when a 
borrow into the 24th bit of DIFF has occurred. 

Examples. Suppose CP = 001100002 (i.e., CYF = 02 , CPU = 012 , CPL 
= 100002), which specifies no carry in, 4-bit decimal mode, and results 
16 bits (4 decimal digits) wide. Let X = @123456@, Y = @654321@ (i.e., 
decimal numbers 123456 and 654321). The results in SUM and DIFF are 
SUM = @007777@, DIFF = @009135@ (decimal quantities 7777 and 
9135); CYL = 02 and CYD = 12 • 

Now suppose that CP = 001101002 (i.e., CYF = 02 , CPU= 012 , CPL = 
101002), which specifies no carry in, 4-bit decimal mode, and 20-bit (5 
decimal digits) width. The same quantities in X and Y will produce SUM 
= @077777@, DIFF = @069135@, CYL = 02 , and CYD = 12 • 

Here are two points to remember when CPU = 012 ; 

1. The 4-bit quantities corresponding to hex digits A, B, C, D, E, 
and F cannot be evaluated by the 24-bit function box. 

2. The only valid width settings (valud values of CPL) are 0, 4, 8, 12, 
16, 20, and 24; other settings of CPL yield undefined results. 

When the arithmetic fields to be added or subtracted exceed 24 bits in 
width, two or more separate loadings of X and Y must be made. The SUM 
and DIFF values for each loading of X and Y (and CYF) must be moved 
to some other registers (and if necessary to G-store) before reloading X 
and Y to obtain the higher-order portions of the results. Of course, the 
carry-out or borrow-in indicator must be recycled into CYF for the next 
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respective cycle of addition or subtraction. Recycling is accomplished 
by executing the MIL statements CARRY SUM and CARRY DIFFERENCE. 

The MIL statement 

CARRY SUM means CYF ~ CYL 

and the MIL statement 

CARRY DIFFERENCE means CYF ~ CYD 

Understanding how the function box works for decimal arithmetic 
now allows us to decide between two alternative strategies for imple
menting SAMOS arithmetic with IO-decimal operands A and B. The first 
strategy might have us perform addition by extracting the digits from the 
decimal characters A and B and adding pairwise right to left in G-store, 
until all ten digit pairs are summed or differenced, with suitably recycled 
carries. Of course it is essential, prior to addition or subtraction, to 
check that the characters of A and B represent valid decimal digits. 

The alternative strategy might have us input from G-store all ten 
characters of each SAMOS operand, check each character for valid 
decimal, pack the characters into 4-bit decimal form, and then add (or 
subtract) the two 10-digit operands in no more than two successive 
loadings of X and Y-say 4 digits in the first load, and the remaining 6 
digits in the second load. Further examination of this issue in the next 
section leads us to select this second strategy as the more efficient one. 

6.2 VALIDATE.DECIMAL: CASE STUDY FOR A UTILITY ROUTINE 

Figure 6.2 shows a top-level view of the details for VALI
DATE. DECIMAL. The parameter PTR is a pointer to the sign position of 
an 11-character SAMOS word held in G-store. The procedure sets the 
variable Flag to "Nogood" when the sign character is not a valid one 
("+" or "-") or when one of the subsequent characters is not a 
decimal digit. 

Since VALIDATE. DECIMAL is usually called prior to using its vali
dated result as an arithmetic operand, we will reconsider later the 
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Figure 6.2. First overview of VALIDATE. DECIMAL. 
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possibility of extending the objectives of this procedure so it not only 
validates a SAMOS word (fetched from G-store) as numeric, but also 
constructs and caches a 4-bit packed decimal representation of the 
SAMOS word in a more accessible scratchpad, such as S5 

s 
I~ 

I 
Sign bit 

S5A 
2 3 4 

S5B 
5 6 7 8 

Ten 4-bit decimal digits 

9 10 

I I 

For the moment, however, we shall concentrate only on the functions 
implied by Figure 6.2. 

If we bear in mind that READs from G-store take up to six times as 
long as most other microinstructions in the B 1726, it seems worthwhile 
to minimize the number of READs. Since the maximum number of bytes 
per READ is 3, and since 11 bytes must be transferred, no fewer than 4 
READs are needed. One way to transfer 11 bytes in 4 READs is to use 
chunks of 2, 3, 3, and 3 bytes. This is the plan used in Figure 6.3. 

The structure shown in Figure 6.4 is even more B1726-specific. The 
parameter PTR is now represented as the register FA. The scanning 
control is achieved by letting the register FL serve as the counter. FL is 
decremented by 24 after each fetch of 3 bytes. 

Assuming we are happy with the control structure exhibited in Figure 
6.4, we can now consider ideas for implementing the details, especially 
those of boxes 3 and 7: 

1. Let us assume that bytes from G-store are transferred to the T
register. 

2. The sign byte can then be moved to the X-register and compared 
for equality against the literals "+" and " - " moved to Y. 

3. The remaining bytes may be tested as follows: We observe that 
the EBCDIC decimal characters "O", "1", "2", .. ., "9" are 
represented as the ordered (and dense) set of 8-bit binary integers, 
@( 1) 11110000@, @( 1) 11110001@, @( 1) 11110010@, 
.. ., @( 1) 11111001@, or, if you like, @FO@, @Fi@, ... , 
@F9@. Hence, any 8-bit integer less than @FO@ or greater than 
@F9@ is not a valid decimal character. Therefore, the byte to be 
tested can be placed in X and compared with bounds values "O" 
and "9" placed successively in Y. 

4. The Flag variable takes only two values, so any available 1-bit 
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Figure 6.4. Third overview of VALIDATE.DECIMAL. 
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Figure 6.5. Fourth overview of VALIDATE. DECIMAL. 
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subregister, e.g. CB(O), can serve as the flag (1 for "DK" and 0 for 
"Nogood" .) 

One final observation is in order in anticipation of mapping a control 
structure like Figure 6.4 into MIL code. A number of low-level tests 
must be made on the characters of the SAMOS word. (Boxes 3 and 7 
each decompose into several low-level tests.) We want to avoid coding 
the resetting of Flag to "Nogood" each time one of these tests fails. 
More compact code will be obtained if Flag is initially set to 
"Nogood". In this way Flag need only be reset once (to "DK") when 
and if the success exit is reached. The control structure in Figure 6.5 
reflects this observation and is the one we will use for conversion to the 
MIL code we now show in Figure 6.6. Note that the flowchart in Figure 
6.5 no longer exhibits the good structure we would like were efficiency 
not an important consideration. 

Taking stock, we have now developed a method for validating a 
decimal SAMOS word so it can then be used as an operand in a SAMOS 
ADD, SUB, MPY, or DIV instruction. Unfortunately, the method does not 
also save a copy of the validated word where it would be highly 
accessible for the subsequent arithmetic operation. 

What changes are needed so VALIDATE. DECIMAL caches in the 
processor registers a packed decimal representation of the validated 
word? A possible form for the packed decimal representation (sign and 
ten 4-bit decimal digits), reflecting the SAMOS signed-magnitude repre
sentation in G-store, is suggested in Figure 6.7, using a double scratch
pad, in this case S5, as the cache. 

Clearly, boxes 3, 6, and 7 of Figure 6.5 will require modification to 
include steps for saving the sign and decimal digits in the cache. But 
how will we decide whether to leave the result in T CAT L or in a 
scratchpad, and if the latter, which one? One approach would be to pick 
the same cache each time, e.g., S5. Or, we could "gild the lily" by 
specifying one more parameter, a 4-bit integer, and let the matching 
arguments serve as an index for a wanted scratchpad. If we choose the 
second approach, then each reference to the scratchpad will have to be 
modified by DRing into M the integer argument. A 4-bit register like CA or 
CB may be used to transmit the argument. Let us take the "easier", first 
approach. Later we can consider the more general alternate approach. 

One possible strategy for the revised box-3 details is shown in Figure 
6.8. First we clear L, and then, if the sign is " - ", we set L ( 0 ) to 1 (box 
3.5). Later, when we determine that the second byte of the SAMOS 
word is a valid decimal character, we copy TF, which holds the decimal 
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VALIDATE.DECIMAL 

BEGIN 
LOCAL.DEFINES 
DEFINE FLAG = CB(O) # 

SET FLAG 
READ 16 BITS TO T INC FA 
EXTRACT 8 BITS FROM T(8) TO X 
MOVE "+" TO Y 
IF X NEQ Y THEN 

BEGIN 
MOVE "-" TO Y 
IF X NEQ Y THEN EXIT 
MOVE @(1)1000@ TO LA 

END 
BYTE. TEST ( 16) 
MOVE 72 TO FL 

.LOOP IF FL EQL 0 GO TO +OK.EXIT 

% VALIDATES A SAMOS WORD POINTED TO 
% BY THE CONTENTS OF FA AS A DECIMAL 
% INTEGER. IF NOT.CB(O) IS SET TO 1, ELSE 
% IT IS SET TO 0. THIS ROUTINE USES FL, 
% X, Y, AND T. CPL ASSUMED TO BE ~ 8. 

% SET FLAG TO NOGOOD 
% OBTAIN SIGN AND FIRST DIGIT 
% SIGN BYTE TO X 

% TRY "-" 

% EXIT WITH FLAG SET TO "NOGOOD" 

% TEST SECOND BYTE 
% SET LOOP COUNTER 

READ 24 BITS TO T INC FA AND DEC FL 

BYTE.TEST (0) 
BYTE.TEST (8) 
BYTE.TEST (16) 
GO TO -LOOP 

.OK.EXIT 
RESET FLAG 
EXIT 
END 

% GET NEXT 3 BYTES 
% TEST FIRST BYTE OF GROUP 
% TEST SECOND BYTE OF GROUP 
% TEST THIRD BYTE OF GROUP 

% SET FLAG TO OK 

Figure 6.6. MIL code for the Figure 6.5 flowchart. Note the use of a 
locally defined MACRO called BYTE . TEST which tests a byte found in the T
register and EXITS if the byte is not a decimal character. 

Tor S5A Lor S5B 

s 2 3 4 5 6 7 8 9 IO 

I~ 
24 24 

Figure 6.7 
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Is the first byte a "+" or a 
" - " and is the second byte a 
decimal digit? 

Yes 

3 
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3.2 

Move 2nd byte of T 
to X 

3.3 

x = "+" 

T 

3.6 

Is 3rd byte 
of T a decimal 

digit? 

F 

F 

No 

Figure 6.8. Shaded boxes show the changes to the details of box 3 
necessary for caching a 4-bit decimal representation of a validated 
decimal SAMOS word into a scratchpad word. 

code, into LC. At this point L contains the first 2 codes (sign and one 
digit) of the 11 required. 

C D E F 
L __ lo _ __..ololol 

s 2 3 4 

The shaded portions are now properly filled. Positions LD, LE, and LF in 
L will be filled with appropriate decimal code after the next 3 bytes of 
the SAM OS word are brought to T, and the remainder of L will be 
ignored. 
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In Figure 6.9 we see the details for extracting and caching digits for 
positions 2 through IO of the SAMOS word in S5. 

Exercise. Based on the flowchart details given in Figures 6.5, 6.8, and 
6.9, recode the VALIDATE. DECIMAL routine in MIL so it saves a 
packed decimal representation of the validated SAMOS word in scratch
pad S5. 

We may wish to generalize these changes so the packed decimal 
representation is saved in a specified scratchpad rather than always in 
S5. It is very easy to do this, because, as we can see from Figure 6.9, 
only two flowchart steps refer to the scratchpads. These are boxes 7.5 
and 7.7. 

7.5 

S5A ~ L MOVE L TO S5A 

7.7 

S5B ~ L => MOVE L TO S5B 

Only these two steps require modification. 
We suppose that register CA holds the integer argument (0 through 15) 

specifying the scratchpad. Then Figure 6.10 shows the needed changes 
to the two instructions. 

If speed is of paramount importance, additional improvements can be 
made to reduce execution time of VALIDATE. DECIMAL. 

l. We might remove the loop by straight-line coding, thus eliminat
ing the loop-control steps, but at the cost of inserting more lines of 
code in the routine. For example, the two control steps in Figure 
6.6, 

.LOOP IF FL EQL 0 GO TO +OK.EXIT 

and 

GO TO -LOOP 

are executed on each of the three loop transits. Hence, the time to 
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7.0 

Is each byte 
in this group a 
decimal digit? 

No 
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LD <-TB 
LE <- TD 
LF <- TF 

7.2' 

Y<>~ '' ? 
First or third No # LA<- TB 

LB<- TD 
LC <- TF 

7.3' 

1---~---~ 

group? ·~ 
Yes / / 

7.2 

Move group from 
T to lower half 

of L 

First group 
moved? 

Yes 

7.4 

7.5 

S5A <- L 

l/l.3 
Move group from 

T to lipper half 
of L 

7.6 

Key to moving groups of digits from 
L to T: 

group: T 

ABCDEF 
First or third~ 

L 

Second group: A B C D E F 

~: 
Figure 6.9. How box 7 might be augmented to cache additional decimal 
digits in L and then save them in S5A or S5B. 

BEFORE AFTER 

MOVE L TD S5A MOVE CA TD M % DR THE INDEX INTO M 
MOVE L TD SOA % TD COMPUTE THE 

% DESIGNATED PAD A 
MOVE CA TO M 

MOVE L TD S5B MOVE L TD SOB % DR THE INDEX INTO M 

% TO COMPUTE THE 
% DESIGNATED PAD B 

Figure 6.10. Code for generalizing the cache. 



VALIDATE. DECIMAL: Case Study for a Utility Routine 117 

execute six microinstructions can be saved with straight-line 
coding. But notice how many more lines of code will be needed if 
no other improvements are made. The loop body (Figure 6.6) 
contains one READ instruction and three macro calls, each of 
which expands to five microinstructions. So straight-line coding 
would result in 16X3 or 48 lines of code, a net increase of 28 lines. 
If the increase were smaller, straight-line coding would be more 
attractive. 

2. We might take advantage of more special knowledge on how the 
B1700 function box works. Only a B1700 specialist would nor
mally know that the decimal adder of the 24-bit function box is 
built so it is guaranteed to malfunction if nondecimal digits are 
given as inputs in X or Y. Thus, if Y = 0 and if X contains at least 
one invalid decimal digit, the decimal adder is guaranteed to form 
a value in SUM that is not equal to X. For example, with CPU = 

012, 

0 + 0 + garbage =!. garbage 

I I I I 
Carry Value Value Value 

in in Y inX in SUM 

when garbage contains at least one invalid decimal digit. 

We can exploit this special feature of the B1700 by testing up to 6 of 
the SAM OS digits at one time, but to do this will require a major 
restructuring of the algorithm. Here is one idea for the new structure: 

The sign byte is tested first, as before, but the next 10 characters are 
notfully tested before packing into L. We will only test the high-order 4 
bits of each decimal character before packing the lower half into L. 
After the packing is completed, each 24-bit portion of the packed 
representation is then used as an addend for the X-register in the test to 
determine if X = X + 0. 

In particular, let us once again suppose that S5 contains the packed 
decimal representation of the SAMOS word now possibly invalid. Then 
only two tests are needed to validate all 10 decimal digits, as shown in 
the logic of Figure 6.11. Notice that for the sake of this test, the sign bit 
at the left end of S5A will be treated as part of a valid 4-bit decimal digit 
(either _9000 or j 000). 

Since the expensive part of checking the decimal digits can be delayed 
until after packing, the new lines of code needed for straight-line coding 
of the loop body (boxes 6 and 7 of Figure 6.5) can now be significantly 
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Set CP for 
24-bit width, 

decimal add, and 
no carry in 

X +- S5A 

x = x + y 

T 

X +- S5B 

x = x + y 
T 

F 

F 

MIL Coding for Data Manipulation 

I I 
I I 

MOVE @(1)0:01i11000@ TO CP 
I I 
I I 

MOVE S5A TO X 
CLEAR Y 
MOVE SUM TO Y 
IF X NEQ Y THEN EXIT 

MOVE S5B TO X 
CLEAR Y 
MOVE SUM TO Y 
IF X NEQ Y THEN EXIT 

Figure 6.11. Logic for checking validity of 1 O decimal digits in only 8 
microinstructions. · 

reduced. Figure 6.12 shows the new strategy combining the best ideas in 
Figures 6.4, 6.8, 6.9, and 6.11. The MIL code for Figure 6.12 is shown in 
Figure 6.13. 

Now we can see the savings effected by the combination of straight
line coding for the loop and use of our special knowledge of the B 1700 
circuitry for checking up to six decimal digits at one time. The Figure 
6. 13 code requires execution of 44 microinstructions for validating and 
packing a valid SAM OS number, as compared with 70 microinstructions 
for the Figure 6.6 code, where validity checking but no packing was 
achieved. There are only 11 more lines of code in Figure 6.13 then in 
Figure 6.6 

Exercise 
1. Can you see a way to "shave off' any more instructions from the 

code in Figure 6.13? Explain. 
2. Revise the flowchart in Figure 6.12 and the MIL code in Figure 6.13 

so VALIDA TE . DECIMAL leaves its packed decimal result in T CAT L 
instead of S5. Choose a method that minimizes or eliminates the use of 
scratchpad registers as temporary storage. 



VALIDATE.DECIMAL 
(FA) 

Read 2 bytes to T from 
G-store; inc FA 

First byte 
is a··+" 

T 

Set CP for 
24-bit width. 
decimal add, 

no carry 

8.1 

9.1 

TA. TC, and TE 
are each= @F@ 

LA 
LB 
LC 

T 9.3 

TA. TC. and TE 
are each = @F@ 

LO 
LE 
LF 

T 9.6 

9.7 

9.4 

Figure 6.12. Fifth view of VALIDATE.DECIMAL. 
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VALIDATE.DECIMAL % VALIDATE A SAMDS WORD POINTED TD BY THE 
% CONTENTS OF FA AS A DECIMAL INTEGER AND 
% PACKS A 4-BIT DECIMAL REPRESENTATION IN S5. 
% IF NOT VALID, CB(O) IS SET TD 1, ELSE IT IS SET 
% TD 0. THIS ROUTINE USES X, Y, T, L, AND CP. 

BEGIN 
LOCAL.DEFINES 
DEFINE FLAG = CB(O) # 
MACRO CHECK.F(TK) = 

IF TK NEQ @F@ THEN EXIT # 
CLEAR L 
SET FLAG 
READ 16 BITS TD T INC FA 
EXTRACT 8 BITS FROM T(8) TD X 
MOVE "+" TO Y 
IF X NEQ Y THEN 

BEGIN 
MOVE "-" TO Y 
IF X NEQ Y THEN EXIT 
MOVE @(1)1000@ TO LA 

END 
CHECK.F(TE) 
MOVE TF TO LC 

READ 24 BITS TD T INC FA 
CHECK.F(TA) 
CHECK.F(TC) 
CHECK.F(TE) 
MOVE TB TO LD 
MOVE TD TO LE 
MOVE TF TO LF 

MOVE L TO S5A 
READ 24 BITS TD T INC FA 

CHECK.F(TA) 
CHECK.F(TC) 
CHECK.F(TE) 
MOVE TB TD LA 
MOVE TB TO LB 
MOVE TF TD LC 

READ 24 BITS TD T 
CHECK.F(TA) 
CHECK.F(TC) 
CHECK.F(TE) 
MOVE TB TD LD 
MOVE TD TO LE 
MOVE TF TD LF 

MOVE L TD S5B 
MOVE @(1)00111000@ TO CP 
MOVE S5A TD X 
CLEAR Y 
MOVE SUM TO Y 
IF X NEQ Y THEN EXIT 
MOVE S5B TO X 
CLEAR Y 
MOVE SUM TD Y 
IF X NEQ Y THEN EXIT 
RESET FLAG 
EXIT 
END 

% FLAG = NDGDOD 
% GET FIRST 2 BYTES IN TC THRU TF 
% SIGN BYTE TD X 

% TRY "-" 

% BOX 7 
% BOX 8 

% BOX 9 

% BOX 10 

% BOX 10.3 

% BOX 10.5 

%.BOX 11 

% CHECK AND PACK INTO L 

% CHECK AND PACK INTO L 

% CHECK AND PACK INTO L 

SET FLAG TD DK 

Figure 6.13. MIL code for Figure 6.12 flowchart. 
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This concludes our discussion of VALIDATE. DECIMAL as a case 
study of how one might descend through levels of abstraction from high
level, machine-independent constructs to very low-level, B 1726-depend
ent constructs through a succession of binding decisions. We will now 
examine much more briefly the code for the other important utility 
routines. 

6.3 BINARY. TD . FA 

The BINARY. TO . FA utility routine is used to convert the binary 
integer SAMOS address into an absolute address in G-store for the 
desired SAMOS word. The input parameter S ranges from small 
negative values (indicating SAMOS registers and pseudo registers as 
explained in Section 5.4) to positive values, 0 through SIZE (indicating 
ordinary SAMOS storage words). The procedure must produce and 
leave in FA the value of map (S), defined in Section 5.4, as 

map(S) = S x 88 + (SAMOS.STORE + BR) 

The function box of the B 1726 cannot perform multiplication directly; 
it can only add or subtract positive integers. But the argument Smay be 
negative. How will S be represented? We have three choices. 

1. Signed magnitude, e.g., 

Sign 
,......-II --------. 

L I<- 23-bit integer------4j 
r-24-bit signed integer 4 

2. Twos complement (24 bits) 
3. Ones complement (24 bits) 

The flowchart logic in Figure 6.14 assumes signed-magnitude repre
sentation for S. MIL actually caters to the programmer who favors 2s
complement representation in the sense that negative literals are always 
mapped to 2s-complement representation. For example, the MIL state
ment MOVE -5 TO X is equivalent to 

MOVE @FFFFFB@ TD X @ 2'S COMPLEMENT OF -5 
@ IN 24-BIT BINARY TD X 

One can, of course always specify a signed-magnitude representation by 



.... 
I\) 
I\) 

Save sign bit of S 
in Neg. sign, 

and reset sign bit of S 
if negative 

Set CP for 24-bit 
binary arithmetic 

2 

IDENTIFIER 

s 
FA 

X, y 
NEWS 
TEMP 

BR 
SAMOS.STORE 

Legend 

TREATMENT 

Input parameter 
Output parameter 
Local 
Local 
Local 
Global 
Constant 

3' 

3 

I NEWS ~ JsJ xss I c::37 
NEWS+- Isl xs + Isl x 16 + Isl x64 

4 

TEMP ~ SAMOS.STDRE + BR 

5 
F 

Neg.sign 11---------, 

T 
6 

FA ~ TEMP - NEWS FA ~ TEMP + NEWS 

7 

~j 
X ~ Jslx8 

Y ~ Jslx 16 

x~x + Y 

Y ~ lslx64 

3" 

NEws~x+Y 

1 
Figure 6.14. Logic for the BINARY. TD . FA routine. 

DESCRIPTION 

T-register 
Register 
Registers 
L-register 
X-register 
Register 
Global declaration 
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giving the coding for the literal explicitly-for example, 

MOVE @800005@ TD X % SIGNED MAGNITUDE REPRESENTATION 
% OF -5 TD X 

See Section 6.7 for further discussion of complement arithmetic on the 
Bl726. 

To obtain the product S x 88 we would then first strip off the sign bit 
from Sand get Is lx88. The box-3 details of Figure 6.14 suggest a way to 
perform this multiplication by summing products of Is and powers of 2. 
Once the product Is lx88 is formed, it is either added to or subtracted 
from the sum SAMDS. STORE + BR, depending on the saved sign of S. 
The legend of the flowchart indicates the B 1726 registers that may 
(should) be used for local storage in the MIL implementation. 

The MIL code shown in Figure 6.15 is straightforward. But those 
interested in efficiency should note the following points. 

I. Had it first occurred to us to express flowchart box I of Figure 
6.14 as 

Save sign bit of S 
in Neg. sign and 
replace S by Is I 

I' 

the following more efficient and more compact code might have 
occurred to us for box 1 (This code assumes that CB ( 1 ) , CB ( 2 ) 
and CB ( 3) can be destroyed.) 

MOVE TA TO CB % SAVE SIGN OF S IN NEG.SIGN 
RESET T ( 0 ) % REPLACE s BY IS I 

2. In any case, the instruction to reset the sign bit, T ( 0), is really 
not needed. We can take advantage of the fact that S is an even 
number (88 in this case). Hence the powers of two multipliers, 2n, 
that sum to S are such that n ~ 1. Multiplication of S by these 
powers of 2 is accomplished by left shift of the T-register (at least 
one bit to the left). Only left-shifted copies of T are moved to X or 
to Y. The sign bit is lost in the process. (Remember, too, that a 
left shift of T to some other register leaves T unchanged.) 
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BINARY.TO.FA % INPUT VALUE, S, IS IN T REGISTER 
% OUTPUT RESULT IS IN FA 

%BOX1 

%BOX5 

% X, Y, CB(O), AND LARE USED AS LOCAL STORAGE 
BEGIN 
LOCAL.DEFINES 
DEFINE NEG.SIGN = CB(O) # 
DEFINE NEWS = L # 

IF T(O) THEN 
BEGIN 

SET NEG.SIGN 
RESET T(O) 

END ELSE 
BEGIN 

RESET NEG.SIGN 
END 

MOVE 24 TO CP 
SHIFT T LEFT BY 3 BITS TO X 
SHIFT T LEFT BY 4 BITS TO Y 
MOVE SUM TO X 
SHIFT T LEFT BY 6 BITS TO Y 
MOVE SUM TO NEWS 
MOVE BR TO X 
MOVE SAMOS.STORE(O) TO Y 
MOVE SUM TO X 
MOVE NEWS TO Y 

IF NEG.SIGN THEN 
BEGIN 

MOVE DIFF TO FA 
END ELSE 
BEGIN 

MOVE SUM TO FA 
END 

EXIT 
END 

% SAVE SIGN OF S 
% AND REPLACE S 
% BY Isl 
% NECESSARY INSTRUCTION ? 

% SETUP FOR ARITHMETIC 
% BXS TO X (SIGN BIT SHIFTED OFF) 
% 16XS TO Y 
% 24XS IN X 
% 64XS TO Y 
% 88XS IN NEWS (L) 

% BR+ SAMOS.STORE IN X 

Figure 6.15. 

3. By analogy with point 1 above, the code for box 5 may be coded 
much more compactly as 

MOVE SUM TD FA 
IF NEG.SIGN THEN MOVE DIFF TD FA 

6.4 ADDRESS . TD . BINARY 

The ADDRESS . TD . BINARY routine is used in computing effective 
addresses in SAMOS. Figure 6.16 shows the logic defining this utility 
routine, which converts a 4-character SAMOS address field, known in 
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DDRESS. TO. BINARY 
(S) 

Adjust FA 
by 6 bytes; 

geld3 
and assign 

to T 

Get next 3 bytes 
containing d2 , d 1 • 

and d0 in L 

4-character 
SAMOS address 

field, where d3 , d2 , d 1 , and d0 

are decimal digits 

COUNT UP FA BY 24 
COUNT UP FA BY 24 
READ 16 BITS TO L INC FA % FA NOW POINTS AT 
MOVE LF TO T % SEVENTH BYTE 

%D3ISNOWINT 

READ 24 BITS TO L 

4' 

T ~ ((d,x 10+d,)x10+d,)x10 + d,, 
T - IOXT + d 2 

T - IOXT + d 1 

T - IOXT + d 0 

FLAG .- 0 

MOVE 24 TO CP % SET UP FOR 24-BIT 
TEN.T.PLUS.D(LB) % BINARY ARITH. 
TEN.T.PLUS.D(LD) 
TEN.T.PLUS.D(LF) 
where 
MACRO TEN. T. PLUS .D(K) 

SHIFT T LEFT BY 1 BIT TO X 
SHIFT T LEFT BY 3 BITS TO Y 

Legend for ADDRESS. TO. BINARY MOVE SUM TO X 
-...,.------------------- MOVE K TO Y 

IDENTIFIER TREATMENT DESCRIPTION MOVE SUM TO T # 

T 
Flag 

L. X. etc. 

Input par In T-register (binary value of SAMOS 
register holding address field) 

Result Binary value of decimal address field 
Result In Y-register (0 if invalid. J if valid) 
Local 

Figure 6.16. 

advance to represent a valid decimal address, to a binary integer. The 
input parameter, S, is a (binary) address of the SAMOS storage word 
that contains the address field. The legend of the flowchart suggests that 
the input parameter and output result are assumed to be taken from and 
deposited in the T-register. 

The first step (box 1) converts S to an absolute pointer into G-store 
via a call to BINARY. TD. FA. The resulting value is left in FA (see 
Section 6.3). The second step (box 2) adjusts this pointer within 
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"striking distance" of digit d3 , fetches the next 2 bytes to L, and then 
transfers d 3 to T. 

Address field 
--~~~~~~~~~ ~~~~ 

4 bytes 

}--- 16 bits 

!Adjusted 
pointer 

F 

Here F is the hexadecimal digit @F@, and d3 , d2 , d1 , and d0 are the 
binary-coded decimal digits of the address. It is only necessary to 
extract these digits and evaluate the polynomial 

or, in the more efficient factored form, 

as suggested in the details shown in boxes 3, 4, and 5 of the flowchart. 
The computation can be performed in binary arithmetic using only 
registers T, L, X, and Y. Multiplication by 10 is accomplished by shifting 
multiples of T out of T to X and to Y and adding them (2XT + 8XT). 
Examination of box 4' shows repeated use of the same multiply-add 
step, 

k=2,l,and0. 

This suggests the use of a macro for the purpose, named 
TEN. T. PLUS. D, whose definition and use is also illustrated in Figure 
6.16. The final steps of the routine (boxes 5, 6, 7, and 8) check that the 
polynomial evaluation results in a valid SAMOS storage address, i.e., a 
non-negative integer that is less than SIZE. 

Figure 6.17 shows the complete MIL code for ADDRESS. TO . BINARY. 
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ADDRESS.TO.BINARY % ROUTINE BEGINS HERE 

BEGIN 
LOCAL.DEFINES 
MACRO TEN.T.PLUS.D (LX) = 

SHIFT T LEFT BY 1 BIT TD X 
SHIFT T LEFT BY 3 BITS TO Y 

% INPUT VALUE, S, IS IN T REGISTER 
% OUTPUT RESULTS: BINARY ADDRESS IN T 
% FLAG IN Y (0 IF INVALID 
% 1 IF VALID) 
% USES X, Y, L, FA, S1A AS LOCAL STORAGE 

MOVE SUM TD X % TX10 IN X 

% BDX1 

MOVE LX TD Y 
MOVE SUM TO T 

CALL BINARY.TD.FA 

% BDX2 
COUNT FA UP BY 24 
COUNT FA UP BY 24 

# 

READ 16 BITS TD L INC FA 
MOVE LF TD T 

% BDX3 
READ 24 BITS TD L 

% BDX4 
MOVE 24 TD CP 
TEN.T.PLUS.D (LB) 
TEN.T.PLUS.D (LO) 
TEN.T.PLUS.O (LF) 

% BDX5 
MOVE T TD X 

% BDX6 
MOVE SIZE TD Y 
IF X LSS Y THEN 

BEGIN 
MOVE 1 TD Y 

END ELSE 
MOVE 0 TD Y 

END 

% TX10 + D IN T 

% WITH VALUE IN T AS ARGUMENT 

% COUNT FA UP BY 
% 6 BYTES 
% 03 NOW IN LF 

% 02 IN LB, 01 IN LO, AND DO IN LF 

% 10XT + 02 
% 10XT + 01 
% 10XT + DO 

GOES TD T (SEE MACRO DEF.) 
GOES TD T (SEE MACRO DEF.) 
GOES TD T (SEE MACRO DEF.) 

% SIZE IS A GLOBAL CONSTANT 

% VALID SAMDS ADDRESS 

% INVALID SAMDS ADDRESS 

EXIT % END OF ADDRESS.TO.BINARY ROUTINE 

END 

Figure 6.17. MIL code for the ADDRESS. TD. BINARY routine flowcharted 
in Figure 6.16. 

The next section describes the use of this routine in computing an 
effective address. 

6.5 EFFECTIVE. ADDRESS 

This section describes the rather powerful utility routine needed for 
computing an effective address. Figure 6.18 gives the top-level logic. 



EFFECTIVE.ADDR 
(FA) 

Check for validity 
of index field by 
setting CTR and 
INDICATOR. (CTR is 
count of registers 
specified. INDICATOR 
is pseudo address of 
specified register.) 

NO 
4 

FLAG<- 1 

Yes 

Put binary 
value of indicated 
index register in 

TEMP 

Get 4-byte address 
field. check for 
decimal value. and 
pack into L 

No 
Valid decimal? 

Yes 

6 

Convert packed decimal 
address in L to 
binary value in T 

10 

X <- T +TEMP 

x < 

FLAG 

FLAG<- 2 

IDENTIFIER 

FA 

EA 
FLAG 

CTR 
INDICATOR 

TEMP 
T, L. X, Y, CP 

Legend for EFFECTIVE. ADDR 

TREATMENT DESCRIPTION 

Input parameter Points to index field of SAM OS 
instruction 

Result Scratchpad register 
Result FLF register 

Local 
Local 
Local 
Locals 

0 ~OK 
1 = too many index registers 

specified 
2 = address field not decimal 
4 = effective address too big 

FLE register 
SOB " 

S1B 
Registers as needed 

Figure 6.18. 
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Check for validity 
of index field by 
setting CTR and 
INDICATOR 

2 

4 

FLAG <- 1 

MIL code: 
%BOX 2, 3, AND 4 

RESET CTR 
MOVE "0" TO Y 

EXTRACT 8 BITS FROM T(O) TO X 
IF X ,,! Y THEN 

BEGIN 
INC CTR BY 1 
MOVE IX1.ADDR TO INDICATOR 

END 
EXTRACT 8 BITS FROM T(8) TO X 

BEGIN 
INC CTR BY 1 
MOVE IX2.ADDR TO INDICATOR 

END 
EXTRACT 8 BITS FROM T(16) TO X 
IF X ,,! Y THEN 

BEGIN 
INC CTR BY 1 
MOVE IX3.ADDR TO INDICATOR 

END 
IF CTR(2) THEN 

BEGIN 
SET FLAG TO 

END 

2.1 
CTR ~o 

2.2 

F 2.3 
CTR <- CTR + 1 
INDICATOR<- IX1.ADDR 

INDEX2*"0" 

F 2.5 
CTR <- CTR + 1 
INDICATOR <- IX2.ADDR 

2.6 

INDEX3,!"0" 

F 

2.8 

CTR <- CTR + 1 
INDICATOR <- IX3 

Yes 
CTR> 1? 1---->IFLAG <- 1 

No 

% MOVE INDEX1 TO X 

% MOVE INDEX2 TO X 

% MOVE INDEX3 TO X 

% IS CTR ;;,,, 2 

2.7 

Figure 6.19. 
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The input parameter, assumed to be left in FA, is an absolute G-store 
address pointer to the index field (5th byte) of the SAMOS instruction 
being interpreted. . 

The first steps (boxes 1, 2, and 3) fetch the index field and determine if 
no more than one index register is marked. If more than one is, a flag is 
set for an error return (box 4). Figure 6.19 shows one possible imple
mentation for this validity check. If the index field is valid and indicates 
an index register, then. the value of that index register must be fetched 
from the register in G-store. Recall that index registers are represented 
as 11-character SAMOS storage words with negative addresses. It is 
further assumed that an index register is found in the address-field 
position of the storage word, i.e., in the rightmost four character 
positions. 

Put binary value 
of index register, 
if any, in TEMP 

MIL code: 
% BDX5 DETAIL 

5 

IF CTR(3) THEN 
BEGIN 

MOVE INDICATOR TD T 
CALL ADDRESS.TO.BINARY 
MOVE T TD TEMP 

END ELSE 
BEGIN 

5.1 
F 

CTR= I 

T 
5.2 

T ~ INDICATOR 

5.3 

ADDRESS.TD.BINARY(T) 

5.4 

TEMP ~ T 

MOVE NULL TD TEMP 
END 

% ,MOVE 0 TD TEMP 

5.5 

TEMP ~ 0 

Figure 6.20. Details for box 5. Note that there is a special NULL r,gister on 
the 81726 which always contains zero and which is always available. 
Alternatively we could have coded box 5.5 as MOVE o TD TEMP. Those 
interested in efficiency should observe, however, that if a literal is moved 
to a scratchpad, as in this case (since TEMP is a scratchpad), two 
instructions will be compiled by the MIL assembler, e.g., MOVE O TD TAS 
and MOVE TAS TD TEMP. 
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The negative address of the indicated index register is determined by 
the logic of Figure 6.19 and left in a scratchpad called INDICATOR. This 
value is then used as in the next step (box 5), whose detail is seen in 
Figure 6.20. The indicator value, after being moved to T, becomes the 
argument in a call on ADDRESS . TD . BINARY, which fetches the value 
from the index register and converts the decimal value to a binary 
integer. (See Section 6.4.) 

We can now see why ADDRESS. TD. BINARY is coded assuming its 
argument points to a valid decimal address. We can always ensure in our 
interpreter that any value stored in the address field of an index register 
storage word will consist of only valid decimal characters. If the value is 
valid when it is stored, it will be valid when next retrieved so we need 
no further check. In any case, the (index register) value returned by 
ADDRESS . TD . BINARY is saved in a scratchpad named TEMP for use as 
a summand when the address part of the same instruction is obtained 
from G-store. That address part is obtained and "decimally validated" 
in the logic of boxes 6 and 7, whose details are shown in Figure 6.21. 
This logic is similar to that of the VALIDATE. DECIMAL routine, except 
here we check only 4 bytes instead of 10. If invalid, the flag is set to an 
appropriate value (box 8). If valid, the four decimal digits are extracted 
and packed into L. 

The next step (box 9) converts the packed decimal integer in L to a 
binary value, leaving this value in T (see details of box 9 in Figure 6.22). 
Here again, use may be made of the macro named TEN. T . PLUS . D first 
described in Figure 6.16. 

The last step is to form the sum of the (binary) index-register value 
saved in TEMP and the (binary) address value just left in T. The sum 
must be a nonnegative integer less than SIZE (the size of our SAMOS 
store). The flag must be set to an appropriate value (0 or 4) to indicate a 
valid or out-of-bounds effective address. 

Whether valid or out of bounds, the computed effective address is 
deposited in a scratchpad register representing the EA pseudo register. 
The MIL coding for these last steps, boxes 10 through 14, is shown in 
Figure 6.23. Note that we have now discarded the idea of using the 
pseudo register EA, as first suggested in the specifications for EFFEC
TIVE. ADDR in Table 5.2. [The use of a pseudo register requiring 
conversion to and reconversion from character representation now 
seems wasteful.] 

Exercises 
I. Put all the pieces together that were suggested in Figures 6.18 

through 6.23 to make one complete MIL subroutine. The following is a 



Get 4-byte address 
field, check for 
decimal value, and 
pack into L 

7 

Valid decimal? 

Yes 

6 

8 

2 

6.1 

L 

6.2 

6.5 

TA = @F@ 
and 

TC = @F'@ 
and 

TE = @F@ 
T 

LO +- TB 
LE +- TD 
LF +- TF 

T 6.8 

L contains 
a packed decimal 

integer 

F 

F 

6.9 

FLAG +- 2 

6.8.I 

I 
Set CP for decimal add 

6.8.2 

Figure 6.21. 
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X +- L 
y +- 0 
Y +- SUM 

6.8.3 
F 

T 



MIL code: 
CLEAR L AND y 
READ 8 BITS TD T INC FA 
IF TE = @F@ FALSE THEN 
MOVE TF TD LC 
READ 24 BITS TD T 
IF TA = @F@ FALSE 
IF TC = @F@ FALSE 
IF TE = @F@ FALSE 

MOVE TB TD LD 
MOVE TD TD LE 
MOVE TF TD LF 

THEN 
THEN 
THEN 

MOVE @(1)00111000@TO CP 

=> 
MOVE L TD X 

GD 

GD 
GD 
GO 

TD +SET.FLAG.EXIT 

TD 
TD 
TD 

+SET.FLAG.EXIT 
+SET.FLAG.EXIT 
+SET.FLAG.EXIT 

% SET CP FDR PACKED DECIMAL 
% ADD (24 BITS) 

% CLEAR Y ALREADY 
MOVE SUM TD Y 

ACCOMPLISHED 

IF X °"" Y THEN 
BEGIN 

.SET.FLAG.EXIT SET FLAG TD 2 
EXIT 

END 

% TESTS L + 0 = L 
% IF SD, L MUST HAVE BEEN A 
% VALID PACKED DECIMAL INTEGER 

133 
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Convert packed decimal 
address in L to a 
binary value in T 

MIL code: 
MOVE 24 TD CP 
MOVE LC TD T 
TEN.T.PLUS.D(LD) 
TEN.T.PLUS.D(LE) 
TEN.T.PLUS.D(LF) 

10 

X +- T + TEMP 

F x 

9 

=> 

d-
% MACRO 
% MACRO 
% MACRO 

Figure 6.22. 

12 ..--_..i._---,13 ~ 
FLAG +- 4 FLAG +- 0 

Save X in scratch
pad register EA 

14 

Figure 6.23. 

T 
T 

Set CP for 
24-bit binary 
add 

+- LC 
~ 10XT + 
+- 10XT + 

LO 
LE 

~ 10XT + LF 

CALL 
CALL 
CALL 

MOVE T TO X 
MOVE TEMP TO Y 
MOVE SUM TO X 
MOVE SIZE TO Y 
IF X < Y THEN 

BEGIN 
RESET FLAG 

END ELSE 
BEGIN 

SET FLAG TD 4 
END 

MOVE X TD EA 
EXIT 
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possible beginning: 

EFFECTIVE.ADDR % ROUTINE BEGINS HERE 
% INPUT IS POINTER IN FA TD INDEX 
% FIELD 
% OUTPUT IS FLAG (FLF REGISTER) 
% 0 - DK 
% 1 = TOO MANY INDEXES SPECIFIED 
% 2 = NON DECIMAL ADDRESS FIELD 
% 4 = EFFECTIVE ADDRESS OUT OF 
% BOUNDS 

% ROUTINE USES X, Y, T, L, CP, FL, SOB 
% AND S1B AS LOCALS 

BEGIN 

LOCAL.DEFINES 
DEFINE FLAG = FLF # 
DEFINE CTR = FLE 
DEFINE INDICATOR = SOB 
DEFINE TEMP = S1B 

# 
# 
# 

% MACRO TEN.T.PLUS.D GOES HERE? 

2. Recode the logic of Figure 6.19 as a loop of the form shown in 
Figure 6.24. How many fewer instructions, if any, are required? Com
ment on the relative merits of the loop approach versus straight-line 
coding in this case. 

3. An exercise for those interested in efficient MIL coding. The 
straightforward way to code a two-way selection step is to start with the 
flowchart structure shown in Figure 6.25. However, in the special case 
when step 1 and step 2 are such that executing the sequence 

Step I 
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Set up 

i E- 3 
=0 

Figure 6.24. 

has precisely the same net effect as executing just 

alone, the selection step can be restructed in the form shown in Figure 
6.26. Note that this special, but less obvious 2-way selection structure 
leads to slightly more efficient and compact MIL code. (One GD TD 

which you 
code in 

the form 

IF TEST THEN 
BEGIN 
step I 
END ELSE 
BEGIN 
step:! 
END 

Figure 6.25. 

and which the MIL 
assembler transforms 

~to 

.F 

.NEXT 

IF TEST FALSE THEN GO TO +F 
step I 
GO TD +NEXT 
step 2 
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which you 
F code in 

==> 
the form 

step 2 
IF TEST THEN 

BEGIN 
step I 

END 

.NEXT 

Figure 6.26. 

and the MIL 
assembler 

. transforms 

itto ~ 

step 2 
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IF TEST FALSE THEN GO TO +NEXT 
step I 

instruction is saved.) Apply this principle to shave off one instruction 
from the code shown in Figure 6.20. 

6.6 THE ADD ROUTINE 

Recall that our principal objective in this chapter is to show the 
development of the utility routines useful for interpretation of SAMOS 
op-codes such as ADD. Back in Figure 5.11 we showed the (tentative) 
first-level details of that routine. At this point we seem to have 
developed all the utility routines except those needed to perform the 
actual decimal addition on two signed IO-decimal-digit SAMOS num
bers. But in Chapter 5 we assumed that the operands of the addition 
routine would be found in G-store, so the arguments for addition would 
no doubt be pointers into G-store to these values. Since then, we have 
learned to convert operands into packed decimal representation and 
save them in double scratchpads. It will be much more efficient to 
perform addition (or for that matter, subtraction, multiplication, etc.) 
from validated packed decimal values. Thus, in coding step 6.3.10 of 
Figure 5.13, 

6.3.10 

ACC ~ ACC + operand 

we should assume that values of both ACC and operand are already 
represented in packed decimal form. For this to be a realistic assump
tion, we will also need one more utility routine. This one must unpack 
the result of the arithmetic operation (addition, subtraction, etc.) and 
move it to a designated 11-byte field of G-store. We will examine this 
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new routine, named UNPACK . AND. WRITE, after we consider the details 
for the routines needed to perform the actual addition. 

Observe that the operand values stored in double scratch pads are of 
signed magnitude form. The leading bit is a sign, and the low-order 40 
bits constitutes the magnitude. (See Figure 6.7.) If we only had to add 
(or subtract) the magnitudes, the addition (or subtraction) would be 
comparatively simple, as suggested in Figures 6.27 and 6.28, which show 
the utility routines, PLUS and MINUS, that form the sum DP1 + DP2 and 
difference DP1 - OP2, and assign the results to OP1. 

The logic of addition (or subtraction) is more complex when the 
integer operands may be negative or positive. But the particular coding 
depends on whether we continue to represent the operands in signed
magnitude form and perform signed-magnitude arithmetic or convert 
negative operands to complement form, perform the addition, and then 
reconvert complement results to signed-magnitude results. 

It turns out that !Os-complement arithmetic is quite convenient and 
efficient on the B 1726, and we shall have a look at this approach at the 
end of this section. We examine first the signed-magnitude method, 
since it seems natural to simulate the signed-magnitude arithmetic of 
SAMOS via signed-magnitude logic on the B1726 (this reasoning does 
not necessarily lead to the most efficient simulation, however). 

With signed operands, we must perform subtraction if the operands 
are of unlike sign, and moreover, the sign of that result depends on 
which of the two operands has the greater magnitude. The following 
table suggests the sign control logic we require, where the asterisk in the 
table signifies the sign of whichever operand had the larger magnitude. 

Sign of DP1 + + 

Sign of DP2 + + 

Sign of addition result + * * 

A further complication arises in the event we are adding equal 
magnitudes of unlike sign. The result must be a positive zero, not a 
negative one. 

Figure 6.29 illustrates the logic that implements the above sign control 
for signed-magnitude addition. Box 16 in this figure is a call on the utility 
routine PLUS which was illustrated in Figure 6.27. PLUS is called when 
the operands are found to be of like sign. The routine MINUS (Figure 
6.28) is called (box 7) when the operands are of unlike sign but different 
in magnitude. Note that since MINUS is called only when the first 
operand exceeds the second one in magnitude, there is no possibility for 
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overflow as there was in the PLUS routine. The Flag parameter of ADD 
is reset in box 10 of the Figure 6.28 flowchart to reflect the fact that if 
control reaches this point there can be no overflow. 

Exercises 
1. Code in MIL the ADD routine that is flowcharted in Figure 6.29. 
2. The following table suggests the sign control logic for forming the 

difference between two signed magnitude integers, DP1 and DP2. 

Sign of DP1 + + 

Sign of OP2 + + 

Sign of result for IDP2 I > IDP1 I + + 

Sign of result for IDP11 > IDP2 I + + 

Construct a flowchart for a procedure SUBTRACT which computes the 
difference, OP1 - OP2, and assigns this result to OP1. One of two 
approaches might be taken: 

(i) Make the same assumptions used in the procedure ADD that was 
flowcharted in Figure 6.29. SUBTRACT should call on the PLUS 
and MINUS utility routines defined in Figures 6.27 and 6.28, and 
should obey the logic of the above table for control over the sign 
of the result. When DP1 and DP2 are of like sign and equal 
magnitude, the result assigned to DP1 should be a positive zero. 
Overflow indication is also needed in SUBTRACT. 

(ii) Let SUBTRACT reverse the sign of either the first or the second 
operand and then call ADD. 

3. What are the relative merits of the two approaches for constructing 
SUBTRACT, as discussed in the preceding exercise? 

As many logic designers know, if we convert negative decimal 
operands to a IOs-complement form, add (or subtract), and then recon
vert complement results to signed-magnitude representation, the logic is 
simpler. For one thing, we cannot generate a minus zero in IOs
complement arithmetic, so that hazard (peculiar to signed-magnitude and 
to 9s-complement arithmetic) is avoided. Figure 6.30 shows the new and 
simpler logic for addition in the routine ADD. 10. CDMPL. The structure 
for a routine to perform l Os-complement subtraction would be almost 
identical. Only the name of the routine need be changed, and box 3 



Setup for 
24-bit-wide 

decimal arithmetic 

X <- B-part of DP1 
Y <- B-part of OP2 

B-part of OP1 <- SUM 

Recycle the carry 

X <- A-part of DP1 
Y <- A-part of OP2 

A-part of OP1 <- SUM 

8 

Overflow carry? 

4 

6 

7 

Yes 

Set Flag 

(a) 

9 

IDENTIFIER 

OP1, OP2 

OP1 
Flag 
x. y 

TREATMENT DESCRIPTION 

Input parameters Double scratchpads (IO-decimal-digit 
magnitude) 

Output parameter Same 
Output parameter I-bit register to indicate overflow 
Local 

(b) 

Figure 6.27. Subroutine for decimal addition of two ten-digit unsigned 
operands DP1 and DP2. The sum is assigned to DP1 and a flag is set in 
case of overflow. (a) Flowchart; (b) legend for PLUS; (c) subroutine. 
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PLUS % SUMS TWO UNSIGNED 10-DECIMAL INTEGERS 
% IN DOUBLE SCRATCHPADS DP1 AND DP2 

% BOX 8 

% AND LEAVES RESULT IN DP1. IF OVERFLOW, THE 
% FLAG BIT IS SET ELSE RESET 
% THIS ROUTINE USES S5, SS AND CB(O) AS PARAMETERS 
% AND T, X AND Y AS LOCAL STORAGE 

BEGIN 
LOCAL.DEFINES 
DEFINE DP1A = S5A# 
DEFINE DP1B = S5B# 
DEFINE DP2A = SSA# 
DEFINE OP2B = SSB# 
DEFINE FLAG = CB(O)# 

RESET FLAG 
MOVE @(1)00111000@ TD CP 

MOVE DP1B TD X 
MOVE DP2B TO Y 

MOVE SUM TD OP1B 
CARRY SUM 

MOVE DP1A TD X 
MOVE DP2A TO Y 
MOVE SUM TD OP1A 

MOVE SUM TD T 
IF TB(3) THEN SET FLAG 

EXIT 
END 

(c) 

% OVERFLOW 

% SETUP FOR 24-BIT DECIMAL 
% ARITHMETIC WITH 0 CARRYIN 

% RECYCLES CYL TD CYF 

% OVERFLOW DIGIT IS IN TB 
% OVERFLOW, THEN SET FLAG 

changed to 

3' 
OP1 ~ OP1 - OP2 

A simplifying feature of the Figure 6.30 flowchart is the suggestion 
that use of a procedure for complementing numbers can make the code 
more compact. Boxes 8, 9, and 10 show references to a function COMP. 
In boxes 8 and 9 the arguments to COMP are the magnitude parts of 
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MINUS (DP1, OP2) 

Set up for 24-bit
wide decimal 

arithmetic 

X <- B-part of OP1 
Y <- B-part of OP2 

B-part of OP1 <- DIFFERENCE 

MIL Coding for Data Manipulation 

MINUS % FORMS DIFFERENCE OF TWO 
% UNSIGNED 10-DECIMAL INTEGERS 
% IN DOUBLE SCRATCHPADS, OP1 
% AND OP2 AND LEAVES RESULTS IN 
% OP1. THIS ROUTINE USES S5, 
% S6 AS PARAMETERS, AND X AND Y 
% AS LOCAL STORAGE. 

BEGIN 
LOCAL.DEFINES 
DEFINE OP1A = S5A# 
DEFINE OP1B = S5B# 
DEFINE OP2A = SSA# 
DEFINE OP2B = S6B# 

MOVE @(1)00111000@ TO CP 
MOVE OP1B TO X 
MOVE DP2B TO Y 
MOVE OIFF TO OP1B 
CARRY DIFFERENCE % CYF <- CYD 

4~ 
MOVE OP1A TO X 
MOVE OP2A TO Y 
MOVE DIFF TO OP1A 

X <- A-part of OP1 
Y <- A-part of OP2 

A-part of OP1 <- DIFFERENCE 

6 

EXIT 
END 

Figure 6.28. MINUS routine for subtracting two unsigned 1 O·decimal-digit 
intergers. OP1 is assumed to be larger than DP2. ~ 

operands DP1 and DP2, respectively. If the result of the addition in box 
3 is a number in complement form, then COMP is applied once again in 
box 10, this time to the result (which is regarded as an unsigned integer). 
A minus sign is then attached to the recomplemented result. Overflow, if 
any, is then detected at box 5. 

Example Suppose we were dealing with signed, 2-decimal-digit 
integers. Table 6.1 shows traces of the Figure 6.30 algorithm for three 
different sets of operand values. 

In applying the algorithm in Figure 6.30 to the task of simulating the 
SAMOS ADD operator, remember that DP1 would represent a copy of 
the accumulator and OP2 a copy of the operand fetched from the 
effective address location. So it does not matter that the value of DP2 is 
altered upon exit from the ADD .10. CDMPL procedure. 



ADD 
(OPl, OP2, Flag) 

sign 1 <-----sign hit of OPl 
sign 2 ._sign hit of OP2 

sign 1 = sign 2 
T 

F 

Reset interchangeswi tch 

IDPlAI ~ IDP2AI 

F ((or )I 

IDPlA I > IDP2 I 

F (<I 

Interchange 
DPl and DP2: 

T 

set interchangeswitch 

MINUS (OPl, DP2, Flag) 

ls interchangeswi tch 

IDPlBI ~ IDP2BI 

F 

IDP1BI > IDP2BI 

F 

Interchange 
DPl and DP2: 

12 
T 

13 
T 

set interchangeswitch 

II 

14 

lo 

PLUS(DP1,DP2,Flag 

DPl <- 0 

Attach sign 1 
to OP! 

17 

Figure 6.29. Logic for sign control in addition of signed 10-decimal-digit 
integers which may be of unlike sign. The integer operands OP1 and OP2 
are assumed to be represented as packed decimal values in double 
scratch pads. 
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ADD.10.COMPL 
(OP1, OP2, Flag) 

OP1 negative? 

No 

2 

8 
Yes 

OP1 ~ COMP ( jOP1 i) 

9 

OP2 negative? 
Yes 

OP2 ~ COMP( IOP2i) 

No 

3 

OP1 ~ OP1 + OP2 

4 

OP1 a complement? 
Yes 

OP1 ~ - COMP ( IOP1 i) 

No 5 

OP1 overflow? 
Yes 

7 

Set Flag 

Reset Flag 

10 

Figure 6.30. Logic for 10s-complement addition. The function procedure 
COMP returns the 10s complement of its argument. 
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ADD.10.CDMP % ROUTINE BEGINS HERE. THE 

%BDX1 

%BDX2 

%BDX3 

%BDX4 

% ARGUMENTS ARE DP1, IN S5, DP2 IN S6 
% IN SIGNED MAGNITUDE FORM AS IN FIG. 6.7. RESULT IS 
% LEFT IN DP1, ,IE., S5, AND OVERFLOW FLAG IN CB(O). 
% THE STACK, X, Y, T, AND LARE USED AS LOCAL STORAGE 
% THE PROCEDURE CDMPL.T.L. CONVERTS T CAT L TO 10'S COMPLEMENT 

BEGIN 
LOCAL.DEFINES 
DEFINE DPlA = S5A # 
DEFINE DPlB = S5B # 
DEFINE DP2A = S6A # 
DEFINE DP2B = S6B # 
DEFINE FLAG = CB(O) # 

MOVE @(1)00111000@ TD CP 

MOVE DP1A TO T 
MOVE DP1B TO L 
IF T(O) THEN 

BEGIN 
RESET T(O) 
CALL CDMPL T.L. 

END 
MOVE T TO TAS 
MOVE L TD TAS 

MOVE OP2A TO T 
MOVE OP2B TO L 
IF T(O) THEN 

BEGIN 
RESET T(O) 
CALL CDMPL T.L. 

END 

MOVE TAS TO X 
MOVE L TO Y 
MOVE SUM TO L 
CARRY SUM 
MOVE TAS TD X 
MOVE T TO Y 
MOVE SUM TO T 

IF T(O) THEN 
BEGIN 

CALL CDMPL T.L. 
SET T(O) 

END 

% SETUP FDR 24-BIT DECIMAL ARITHMETIC 

% IF DP1 NEGATIVE 
% COMPLEMENT IDP1 I. 

% SAVE OP1 ON STACK 
% FOR LATER USE 

% IF OP2 IS NEGATIVE, 
% COMPLEMENT IDP21. 

% LOW-ORDER PARTS OF OP1 AND 
% DP2 IN X AND Y, RESPECTIVELY 
% LOW PART OF OP1 + OP2 IN L 
% RECYCLE CARRY DIGIT 
% HIGH-ORDER PARTS OF DP1 AND 
% DP2 IN X AND Y, RESPECTIVELY. 
% HIGH PART OF DP1 + DP2 IN T 

% IF RESULT IS A COMPLEMENT 
% IF HIGH-ORDER DI°GIT IS AN 8 DR A 9 
% COMPLEMENT AND 
% MARK MINUS 

%BOX 5 
IF TB NEQ 0 THEN 

BEGIN 
SET FLAG 

END ELSE 
BEGIN 

RESET FLAG 
END 

MOVE T TO DP1A 
MOVE L TO DP1B 
EXIT 
END 

% IF llTH DIGIT OF SUM NDN ZERO, 
% THEN WE HAVE OVERFLOW 

% NEW RESULT LEFT IN OP1 

Figure 6.31. MIL code corresponding to flowchart in Figure 6.30. See 
Figure 6.32 for CDMPL. T. L procedure code. 
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TABLE 6.1 

JUST CASE: 2 3 
BEFORE 

EXECUTING OP1 DP2 DP1 OP2 OP1 DP2 

Box I 77 35 -77 35 -29 -82 
Box 2 77 35 923 35 971 -82 
Box 3 77 35 923 35 971 918 
Box 4 102 35 958 35 889 918 

(not a complement) (complement) (complement) 
Box 5 102 -42 -Ill 918 

(overflow) (no overflow) (overflow) 

Figures 6.31 and 6.32 show MIL coding for ADD. 10 . CDMPL . The 
code in Figure 6.31 illustrates for the first time in this text how we may 
use the top of the hardware stack for fast-access temporary storage, 
avoiding the need to use scratchpads, which on some occasions may be 
in short supply. 

The "double register" T CAT L is used as the principal working 
register. After moving DP1 (from S5) into T CAT L, T ( 0) is tested for 
the presence of a sign bit. If on, then CDMPL . T. L (Figure 6.32) is called 
to complement the contents of T CAT L. In any case, T CAT Lis then 
saved on the top of the stack, freeing T CAT L to receive a copy of DP2 
(from S6). Later, when executing the addition step (box 3), the value of 
DP1 (possibly complemented) is popped off from the stack and moved to 
X as input to the 24-bit function box. The code in Figure 6.31 can be 
shortened if DP1 is assumed already to be in T CAT L upon entry to the 
subroutine and if the result can be left in T CAT L. 

The subroutine CDMPL. T . L is shown in Figure 6.32. A 10s comple
ment is produced by subtracting that value from 0. The setup instruc
tions initiate the 24-bit function-box controls and set X to 0. The last 
instruction, CARRY 0, "tidies up" the function box for subsequent use in 
24-bit decimal arithmetic by resetting CYF. 

Exercises 
1. Write MIL code for the routine SUB .10. COMPL (subtract using 

lOs-complement arithmetic, following the logic of Figure 6.30, but with 
needed changes to reflect subtraction). Can we again make use of the 
subroutine CDMPL . T . L? 

2. Is there a simpler way to code the routine SUB .10. CDMPL, 
described in the preceding exercise? Hint: How about coding 
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COMP.T.L % PROCEDURE BEGINS HERE. 
% THIS PROCEDURE COMPUTES THE 10'S COMPLEMENT OF 
% T CAT L AND LEAVES THE RESULT IN T CAT L, 
% USING X AND Y AS LOCAL STORAGE 

MOVE @(1)00111000@ TO CP % TO BE SURE OF ARITH. SETUP 
CLEAR X % MORE SET UP 
MOVE L TO Y 
MOVE DIFF TD L 
CARRY DIFFERENCE 
MOVE T TD Y 
MOVE DIFF TO T 
CARRY 0 
EXIT 

% LOW ORDER PART OF CDMPL. IN L 
% RECYCLE THE BORROW 

% COMPLEMENT IN T CAT L 
% LEAVE CARRY IN "CLEAN STATE" 

Figure 6.32 

SUB .10. CDMPL so it calls on ADD .10. CDMPL after first reversing the 
sign of DP2? What are the relative merits of these two approaches for 
cocling SUB. 10. CDMPL? 

3. Compare the MIL cocling needed for the signed magnitude ADD 
routine (Figure 6.29) with the MIL coding developed for lOs-comple
ment adclition (Figure 6.30). Which code has more lines? How many 
more? Which code executes in fewer instructions? How many fewer? 

4. A student has studied the MIL code in Figures 6.31 and 6.32 and 
claims that a net decrease of 2 lines of code can be achieved. She says 
that the two instructions RESET T ( O ) in boxes 1 and 3 and the 
instruction SET T ( 0 ) in box 10 could be eliminated if the instruction 
RESET T ( 0 ) were inserted at the beginning of the code for 
COMPL . T . L . Verify whether or not she is correct, and if correct, 
explain why. 

6.7 UNPACK.AND. WRITE 

The last utility routine to be discussed in this chapter is one which will 
take the packed decimal result of the 10-digit decimal addition, subtrac
tion, etc., unpack it, and store it in a SAMOS word in G-store. Only 
after this step is taken will the interpretation of a SAMOS ADD, SUB, MPY, 
or DIV instruction be completed. 

The procedure UNPACK. AND. WRITE, shown in Figure 6.33, takes the 
signed decimal integer in S5 and stores it as an equivalent 11-byte 
character field pointed to by the parameter value in FA. The logic of this 
procedure is in essence the inverse of that used for packing in VALI
DATE. DECIMAL. 



UNPACK.AND.WRITE 
(FA) 

Convert sign and 
first digit of S5A 
into a 2-byte field 
and write out to 
G-store; inc. FA 

Convert next 3 digits 
of S5A into a 3-byte 
field and write out 
to G-store; inc FA 

Convert first 3 digits 
of S5B into a 3-byte 
field and write out to 
G-store; inc FA 

Convert last 3 digits 
of S5B into a 3-byte 
field and write out 
to G-store 

4.1 

TB ~ LD 
TD ~ LE 
TF ~ LF 

Write 3 bytes 
to G-store 

4.2 

2 

L(O) 1 

F 

TF ~ LC 

3.1 

L ~ S5B 

TB ~ LA 
TD ~ LB 
TF ~ LC 

3.2 

Write 3 bytes 
to G-store; 

inc FA 

T 

3.2 

1.4 
T +- "-0 11 

TB~ LD 
TD ~ LE 
TF ~ LF 

Write 3 bytes 
to G-store; 

inc FA 

sign character 
moved to T 

2.3 

Figure 6.33. Procedure for unpacking a signed 10-decimal-digit integer in 
a double scratchpad (S5) and storing it as an 11-character field in G-store 
at the address given by the value in FA. 
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Exercise Produce the MIL-code equivalent of the flowchart given for 
UNPACK. AND. WRITE in Figure 6.33. 

6.8 CHAPTER SUMMARY 

We began this chapter with the task of designing all the routines 
needed for coding the details of the SAMOS ADD operator routine charted 
in Figure 5.I3. We thought those utility routines listed in Table 5.2 were 
what we wanted. As often happens when one gets down to the details, 
new ideas crept in, and we departed from our earlier implementation 
concepts. It became clear in this chapter that we should input decimal 
character fields from G-store, but convert them to packed decimal 
representation for use as arithmetic operands and then upack the results 
and send them to G-store as decimal character byte strings. 

The utility routine specifications listed in Table 5.2 now need to be 
updated to reflect these changes. We leave this task to the reader as a 
useful stock-taking exercise. Note that we did not change the specifica
tions on two of the most basic routines, BINARY. TO. FA and AD
DRESS. TO. BINARY, so the plans suggested in Figures 5.9, 5.10, and 
5. I I for decoding are still quite valid. But the logic suggested for the top 
level of the ADD operator routine, as given in Figures 5. I3 and 5. I4, must 
be altered (and augmented) to reflect the new specifications for V ALI
DATE. DECIMAL, EFFECTIVE.ADDRESS, PLUS, MINUS, ADD (or 
ADD .10. COMPL, SUB .10. COMPL, COMPL, and COMPL. T. L), and UN
PACK. AND. WRITE. We also leave to the reader the modification of 
Figures 5 .13 and 5. I 4 as useful summarizing exercises. 

For those not wishing to indulge in exercises, Appendix E presents 
solutions in the form of a tested McMIL version of the flowcharts in this 
and the preceding chapter. This appendix gives an abridged version of 
SAMOS (a basic set of eight instructions), an accompanying LOADER 
program for defining the needed workspace, and a sample data deck and 
execution. 

As a final remark, we observe that our odyssey through the design 
exercises of this chapter has exposed us to nearly all the power and 
limitations of the BI 726 microprocessor architecture and to many coding 
techniques. We have used nearly all the instructions in one way or 
another, and in doing so have begun to appreciate what is involved in 
achieving optimal or near-optimal MIL code. The astute reader should 
be able to apply many of these methods to the design of other 
interpreters. 



Chapter 7 
The split-level control store 

One of the most interesting aspects of the B 1726 architecture, so far only 
hinted at (end of Chapter 1), is the feature that allows microinstructions 
to be processed directly out of G-store as well as out of H-store. Thus, 
in addition to serving primarily as a store for guest-language code and 
data, G-store is also used as an "extension" of H-store. This feature is 
attractive because if an interpreter is too large to fit into the more 
expensive and faster H-store, then the less frequently used parts of the 
interpreter can be kept in the same physical storage medium as G-store 
and executed directly from this store, 1 perhaps without seriously degrad
ing the performance of the interpreter. If necessary, it is still possible to 
use overlay methods and move a block of microinstructions from G
store to H-store whenever such a block needs, for reasons of efficiency, 
to be executed from H-store. In addition, in the extreme case where no 
space in H-store is available, an interpreter would be executable entirely 
from G-store. 

We mentioned in Chapter l that the Bl800 uses a cache store for 
holding most-recently fetched microinstructions. This approach creates 
the effect of having a large fast H-store without requiring the system 

1 In Chapter I we introduced H-store and G-store as conceptual stores (host and guest), 
but subsequently we have discussed them as if they are also actual physical storage 
devices. We could do this without blushing because, to a first approximation, H-store 
maps onto what Burroughs calls M-memory, and G-store maps onto what Burroughs calls 
S-memory, two physically different stores. The truth, however, is that microinstructions 
can be fetched and processed from either physical storage, which means that H-store maps 
in part onto M-memory and in part onto S-memory. There is a dilemma to be faced here 
with regard to the notation we should use in this chapter. Shall we be technically correct 
and refer to the physical stores by different names (M and S) to distinguish them from the 
conceptual names (Hand G)? If so, we will have four storage names to keep straight, and 
this will become tedious. Or shall we risk confusion by continuing to apply to the physical 
storage devices and the conceptual storage devices the same names (Hand G)? We opt for 
the latter, but hope the reader will realize that in the remainder of this chapter all 
references to H- and G-store are to the physical stores (M and S respectively). They are 
only coincidentally to be regarded as names for conceptual stores-and then, only if 
applicable. 
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programmer to manage it as a scarce resource. The B 1800 approach is 
clearly simpler (for the programmer) than the solution used in the B 1726. 
In fact, most of the programming problems discussed in this chapter are 
precisely the ones which have been eliminated using the cache microin
struction store of the B 1800. By way of illustration, one of the technical 
problems whose solution is discussed fully in the body of this chapter is 
mentioned briefly here. 

Often we have read-only tables and other long literals which are 
convenient to embed directly in the program part of an interpreter. 
However, H-store is organized to optimize the fetching of 16-bit 
microinstructions, and G-store is organized to optimize the fetching of 
data in chunks of up to 24 bits. Hence, different microinstructions must 
be used to read data to the processor, depending on which store the data 
reside in. 2 Given that the MCP has control over allocation of H-store to 
various interpreters and given that such allocation may vary according 
to the workload on the system, it is not practical for a MIL programmer 
to read data embedded in code that resides in H-store, since he has no 
assurance it will indeed reside in H-store when his interpreter is 
executed. Therefore as a practical matter, when data are to be read from 
the interpreter (apart from 8- or 24-bit literals transferred as part of a 
MOVE instruction), they must be read from the G-store-resident part of 
the interpreter. This can be done and is done, although the address 
arithmetic needed to calculate the absolute G-store address of such data 
is more awkward than we might wish (and more awkward than for 
fetching data from G-store workspace, which is simply based on the 
value of the base register~ BR). As part of the solution to this problem, 
the system designers provide a MIL programmer the option to specify a 
part of an interpreter that must reside in G-store while the interpreter is 
being executed, and the system obeys and respects this specification. 
Use of this provision then offers the programmer the assurance of 
knowing precisely how to transfer data embedded in such code. 

In this chapter we will explain in detail how the B 1726 processes 
instructions from either store. Armed with this information, it will be 
easy to explain the precise way that control is switched from one 
interpreter to another, and thus to explain the nature of the interface 
between user interpreters and system service modules (the MCP and the 
central i/o-control, interrupt-handling, and process-switching module 
known as GISMO). 

2 0n the Bl726 the READ MSML TO X and WRITE MSML FROM X microinstructions, 
primarily used for diagnostic tests of H-store, allow the reading and writing of 16-bit fields 
from/to H-store and the X-register. We have not described this instruction elsewhere in this 
text, except to mention it in Appendices A and B. 
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7.1 CONTROL OVER THE USE OF H-STORE 

Since H-store is considered a scarce resource, interpreters that run 
under control of the MCP are allocated space in H-store by the MCP. 
The MCP manages H-store, in part by relying on software modules like 
the MIL assembler to adhere to certain agreed-upon conventions. In this 
section we will not look in detail at the MCP allocation strategies, but 
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Figure 7.1. (a) Interpretation of part of G-store as an addressable 
extension of H-store. (b) Settings of MBR and TDPM for executing the SOL 
Interpreter. (c) Settings of MBR and TDPM for executing the FORTRAN 
Interpreter. 
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rather examine how the H-store might be managed, considering the 
hardware features provided. 

Figure 7. l(a) suggests how a portion of G-store may be viewed as an 
addressable extension of H-store when executing an interpreter whose 
total length is 2444 microinstructions, whose first 512 microinstructions 
reside in a 512-word block of H-store, and whose remaining (1932) 
microinstructions reside in G-store. In this figure it is assumed that the 
H-store has a capacity for storing only 2048 microinstructions. 

As pictured, microinstructions at logical addresses 0 through 511 
should be fetched from H-store when the A-register has values 1536 
through 2047 respectively. Instructions at higher logical addresses (512 
through 2443) should be fetched from their locations in G-store when the 
A-register has values of 2048 and above (in particular, up to and 
including 3979, which is 1536 + 2444 - 1). The use of two key registers, 
named TDPM and MBR, enables the B1726 processor to accomplish this 
feat. How it is done is explained in detail in the next sections. 

What is important to note here is that the particular block of H-store 
where the first part of the interpreter is stored and the particular section 
of G-store where the remainder of the interpreter is kept can be chosen 
with some degree of freedom. It is only necessary to preset in a 
compatible way the values for TDPM and MBR. As we will see later, the 
TDPM register sets the bound on values of A for instructions to be 
fetched from H-store, and the MBR provides the base address such that 
the value A + MBR becomes the effective G-store address for instruc
tions in the G-store part of the interpreter. 

With these concepts in mind we can now picture that the first parts of 
two or more interpreters may be loaded into H-store and their respective 
second parts placed in G-store wherever adequate and available space 
can be found. Figure 7.l(b,c) shows a possible allocation of H-store 
which is feasible when only one user program (e.g., a FORTRAN 
program) is executing on the B1726. For comparison, part (b) of Figure 
7 .1 shows the MBR and TDPM settings when the SDL3 interpreter is 
executing, and part (c) shows the MBR and TOPM settings when the 
FORTRAN interpreter is executing. (Again an H-store size of 2048 16-
bit words is assumed.) The second parts of each of these interpreters are 
shown in G-store. (We assume GISMO can also be regarded as an 
interpreter.) There is no particular relationship required between the 

3 The SDL or Systems Development Language is an ALGOL-like language in which the 
MCP has been coded. See "Bl700 Systems System Software Development Language 
(SDL) Reference Manual," Burroughs Corporation, Detroit, December 1973, Form 
1072493. 
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relative positions of the part-1 portions in H-store and the relative 
positions of the part-2 portions in G-store. 

7.2 MICROINSTRUCTION FETCH FROM H-STORE OR G-STORE 

The address range of a single B 1726 microprogram spans 214 (or l 6K) 
microinstructions, governed by the structure and function of the A
register which serves as the processor's instruction counter: 

------ 14 bits --------+ 

~------ 18 bits ----------7 

Because the low-order 4 bits of the 18-bit register A are always zero, the 
A-register can refer only to bit addresses at 16-bit "word boundaries". 

A limit register, known as TDPM, is set under program control to mark 
the upper-bound address in H-store. Instructions whose addresses are 
higher than the mark set by TDPM, but less than 214, are fetched from G
store at an offset from a G-store base address determined by the 
contents of the MBR register, as suggested in Figure 7.2. In this figure the 
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~ 
512 words 
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J536X 16 bits 

L_ "'""24 bits ~ 

+----f==:::=J MBR 

Figure 7.2. 
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3 

Figure 7.3. Fetch and increment logic details. 

presumption is made that the processor is executing the SDL interpreter 
loaded in H- and G-store as first suggested in Figure 7.l(b,c). 

Figure 7 .3 shows the logic used in the hardware during each fetch 
cycle for selecting addresses from either H- or G-store, as the case may 
be. First the value of4 [A/16) is compared with the product TDPM x 512. 
If less than TOPM x 512, then the microinstruction is fetched from H
store at the bit address whose value is A, or else the microinstruction is 
fetched from G-store at the bit address whose value is A+MBR. In either 
case the fetched 16-bit instruction is ORed into the M-register and the A
register incremented by 16. 

In the example given in Figure 7.2, TOPM would have the value 3; 
hence any value of [A/16) that is greater than or equal to 3 x 512 (i.e., ;::::: 
1536) refers to a microinstruction located at bit address A + MBR in G
store (a base-register value plus a single offset). We can now see why 

4 The square brackets represent the so-called greatest integer function. Thus [A/ 16] is 
the integer quotient of A divided by 16. 
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the proper value for MBR is the G-store address at a distance of 1536 x 
16 below the address of the first microinstruction in part 2 of the SDL 
interpreter. In Figure 7.2 this "image" of H-store from locations 0 
through 1535 is shown as the black segment in G-store. Of course, the 
information stored in the black section need have no relation whatsoever 
to the SDL interpreter. The black section is shown in the diagram 
merely to indicate how the value of MBR must be preset before the 
fetching of SDL interpreter instructions from G-store can be done 
properly. 

Two additional observations regarding these described hardware fea
tures are worth noting. 

1. When TOPM is preset to zero before executing an interpreter, the 
test in box l of Figure 7.3 will always be false; hence all 
microinstructions will be fetched from G-store. This is the impor
tant special case we alluded to earlier, where no H-store space is 
avaiable that can be allotted to an interpreter. 

2. The maximum value of TOPM is 15, since TOPM is a 4-bit register. 
Hence, the largest size for H-store in a BI726 is 15 x 512 or 7680 
microinstructions. 

7.3 EMBEDDING TABULATED DATA IN MIL PROGRAMS 

If tables of data are to be embedded in the interpreter, for reference 
during execution of the interpreter, it is essential that such tables reside 
in G-store. The programmer can ensure this eventuality by use of the 
special MIL pseudoinstruction M. MEMORY. BOUNDARY MAXIMUM. Any 
code or table that follows this instruction in a MIL program will be 
earmarked by the assembler so that at load time this section of the 
program will appear in G-store. 

Before enlarging on this remark with an example, we digress here to 
describe the TABLE declaration available in MIL which has not been 
discussed earlier. A TABLE declaration has the format 

TABLE label 
BEGIN 

first literal 
second literal 

last Ii te ral 
END 
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For example, 

The Split-Level Control Store 

TABLE MESSAGES 
BEGIN 

"OVERFLOW" 
"UNDERFLOW" 
"_INVALID CHARACTER" 
"INFINITE LOOP" 
@( 1) 1111@ 
@F2F3@ 

END 

Such a declaration will cause the MIL assembler to generate and insert 
in line a sequence of bit strings representing the declared literals in the 
sequence given. 

To read from the table into X, Y, T, or Lit is necessary to compute the 
absolute address of the table so that that address can be placed in FA. 
The required computation can best be appreciated by a study of Figure 
7.4. 

lh this figure we picture an interpreter which is partly resident in H
store (part 1) and partly resident in G-store (part 2). To compute the 
address of MESSAGES, it is necessary to add two offsets to MBR. The 
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first offset, called interpreter displacement in the diagram, is the offset 
from address 0 in H-store at which the first instruction of the interpreter 
(part I) has been loaded. (Note that if indeed the interpreter is entirely 
resident in G-store, then interpreter displacement would be zero and 
Part I of the interpreter would reside in the shaded region marked A in 
G-store.) The second offset, ADDRESS (MESSAGES), is the location 
value generated by the MIL assembler for the label MESSAGES. 
(ADDRESS is a built-in MIL-language function which takes a label as an 
argument and returns a location relative to the beginning of the assem
bled microprogram.) 

The code shown in Figure 7.5(a) suggests how a subroutine named 
LOCATE. TABLE. ADDRESS may be defined which computes the abso
lute G-store address of a named table. Figure 7.5(b) illustrates a call on 
this subroutine to compute the G-store address of MESSAGES to read the 
first 3 characters of this table to X. 

The foregoing discussion, of course, assumes that the declared table 
resides in G-store, which can be guaranteed only if the declaration 
appears after the statement M. MEMORY. BOUNDARY MAXIMUM. A MIL 
program TABLE declaration is illustrated in Figure 7.6. (This piece of 
code appears in a Sequential Pascal interpreter developed by Mark 

LOCATE.TABLE.ADDRESS 

MOVE 24 TO CP 
MOVE ADDRESS(+HERE) TO Y 
MOVE A TO X 

.HERE 
MOVE DIFF TO X 

MOVE L TO Y 
MOVE SUM TO X 
MOVE MBR TO Y 
MOVE SUM TO FA 
EXIT 

(a) 
MOVE ADDRESS(MESSAGES) TO L 
CALL LOCATE.TABLE.ADDRESS 
READ 24 BITS TO X INC FA 

(b) 

%ROUTINE COMPUTES ABSOLUTE G-STORE 
%ADDRESS OF A TABLE WHOSE 
%MIL-ASSEMBLED RELATIVE ADDRESS IS 
%IN L. THE RESULT IS PLACED IN FA. 
%ROUTINE USES X AND Y. 
% 
%COMPUTE THE FIRST OFFSET AS FOLLOWS: 
%RELATIVE ADDRESS OF .HERE IN Y 
%ACTUAL ADDRESS OF .HERE IN X 

%INTERPRETER DISPLACEMENT IN X 
%NOW AUGMENT BY SECOND OFFSET WHICH IS 
%THE ARGUMENT IN L. 
%SUM OF TWO OFFSETS IN X 
%NOW AUGMENT BT MBR 
%AND ASSIGN IT TO FA 

Figure 7.5. (a) Subroutine for computing absolute G-store address of a 
table, given its label value. (b} Illustrative use of subroutine in (a) to read 
first 3 characters of the table labeled MESSAGES. 
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Figure 7.6. 

Swanson and Richard Belgard at Utah.) The tables are used for 
converting characters to and from ASCII and EBCDIC codes. 

Figure 7.6(b) shows the code for two subroutines that use these tables. 
The routines appear ahead of the M . MEMORY . BOUNDARY MAXIMUM 
statement shown in Figure 7.6(a). Code in the two subroutines assumes 
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that BASE. OF. INTERPRETER (a scratchpad register) holds the current 
value for the interpreter displacement. 

Another statement, M. MEMORY. BOUNDARY MINIMUM, may be in
serted in a MIL program to indicate the minimum amount of the 
interpreter one would like loaded in H-store during execution. Normally 
one would insert such a statement immediately following the most 
frequently used portion of an interpreter. The statement is treated as 
advice to the system and not as a command. Hence there is no guarantee 
that during every execution of the interpreter the minimum amount of H
store requested by the programmer will actuatly be awarded. Award of 
H-store for this purpose is a function of the current work load on the 
system, the actual size of H-store, and the version of MCP being used. 

7.4 TRANSFER OF MICROCODE FROM G-STORE TO H-STORE 

Blocks of one or more microinstructions may be transferred from G
store to H-store by executing the OVERLAY microinstruction. This single 
microinstruction executes a hardware subroutine whose logic is given in 
Figure 7. 7. The hardware subroutine has three parameters whose 
matching argument values are assumed to be present in the L, FL, and 
FA registers. L should contain the starting address of the overlay area in 
H-store. FL should contain the number of microinstructions to be 
copied, and FA should point to the starting address in G-store of the 
microinstructions to be copied. 

As can be seen from the flowchart logic in Figure 7. 7, at least one 
microinstruction will be overlaid as a result of executing this instruction. 
Each transit of the loop copies a 16-bit field from G-store directly into H
store at the address specified by the A-register, which serves as an 
auxiliary pointer into H-store during the overlay operation. 

The value of A prior to the start of the OVERLAY instruction execution 
is safe-stored on the stack (box 1) and later restored (box 6). This action 
frees up A for use as.an auxiliary register which is initialized to the value 
of the argument L (box 2) prior to entering the loop. 

The elapsed time for each transit of the transfer loop is quite short 
(less than a microsecond on the B1726). Still, the cost in time for 
overlaying a large block of microcode is not insignificant, so the 
OVERLAY instruction is used sparingly. The OVERLAY instruction is used 
principally by GISMO to ensure the presence in H-store of an inter
preter as decided by the MCP. That is, if, prior to transferring control to 
some interpreter, its H-store-resident portion as determined by MCP is 
not in place, then GISMO will perform the required OVERLAY. 

To illustrate the use of OVERLAY, the following is a hypothetical 
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OVERLAY.AREA 
H.STORE.MULTIPLY %AN 

ADJUST LOCATION TO LOCATION + 100 

MAT.MULTIPLY 

} See text. 

M.MEMORY.BOUNDARY MINIMUM 

M.MEMORY.BOUNDARY MAXIMUM 

MULTIPLY 

END 
FINI 

I 73 microinstructions 

ALIAS FOR OVERLAY.AREA 
%INSERT 100 NO-OP 
%INSTRUCTIONS HERE 
%SEE APPENDIX A FOR FURTHER 
%EXPLANATION OF ADJUST 

Figllre 7.8. 
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application. Let there be a MIL subroutine called MAT. MULTIPLY. 
Upon entry to this routine we would like to transfer into H-store an 
otherwise infrequently used MULTIPLY routine which would appear in 
our MIL program following the M. MEMORY. BOUNDARY MAXIMUM state
ment. In this way we are assured that the MULTIPLY routine to be 
copied from G-store is indeed in G-store when the DVERLA Y instruction 
is used. Assume that MULTIPLY is a routine known to comprise 73 
microinstructions (by actual count). Further assume that we have coded 
near the beginning of our program an overlay area of 100 microinstruc
tions, large enough to hold the MULTIPLY routine. The overlay area is 
labeled OVERLAY. AREA, and its initial contents is filled with no-op 
instructions. This program structure is illustrated in Figure 7.8. 

The code at the entry point of MAT. MULTIPLY to transfer the 
MULTIPLY subroutine into H-store might be written as follows. 

MAT.MULTIPLY 

.HERE 

MOVE ADDRESS(DVERLAY.AREA) TD 
MOVE ADDRESS(+HERE) TO Y 

MOVE A TD X 

MOVE DIFF TO X 

MOVE MBR TD Y 
MOVE SUM TD X 
MOVE ADDRESS(MULTIPLY) TD Y 

MOVE SUM TD FA 
MOVE MULTIPLY.LENGTH TO FL 

OVERLAY 

L 
%COMPUTE 
%INTERPRETER 
%DISPLACEMENT 

%INTERP. 
%DISPLACEMENT IN X 

%ABSOLUTE G-STDRE 
%ADDRESS 
%NOW MOVED TD FA 
%MULTIPLY.LENGTH 
%DEFINED EQUAL 
%TD 73*16 

%NOW MULTIPLY IS IN H-STORE AND CAN BE CALLED 
%WITHIN MAT·.MULTIPLY BY A STATEMENT OF THE FORM: 

%CALL H.STDRE.MULTIPLY 
%DR ALTERNATELY, 

%CALL OVERLAY.AREA 

Note that the region labeled OVERLAY. AREA may have as many alias 
labels as the programmer may wish to give it. In our example, only one 
other, H.STDRE.MULTIPLY, is shown in Figure 7.8. Another point to 
note is that the code illustrated above lacks adequate generality. It 
works fine, but only when the overlay area is certain to be in H-store 
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and only when the copied ("overlay") version of MULTIPLY does not 
call or jump to any other routine. Any jumps within the copied version 
of MULTIPLY will be incorrect unless they are local jumps, i.e., jumps 
within MULTIPLY itself. A more advanced description of the MIL 
assembler would explain the special declarations needed to circumvent 
this problem. 

Misuse of the OVERLAY instruction can quickly destroy the integrity 
of the operating system, since sensitive code (GISMO and the MCP's 
interpreter) usually occupy the lower half of H-store. For this reason use 
of OVERLAY, as suggested in the above example, is proscribed (forbid
den as harmful) in the MCP environment. Such use of OVERLAY may be 
made only for programs executing as stand-alone code. 

7.5 TRANSFERRING CONTROL TO ANOTHER INTERPRETER 

To transfer from one interpreter to another requires, in general, more 
than a simple jump or GD TO instruction. It is easy to see why this is so if 
we again consult Figures 7 .1 and 7 .2 for a case in point. Let us assume it 
is desired to transfer from some point in the SDL interpreter at say 
address 220 to the first instruction of the FORTRAN interpreter, located 
at address 1536 in H-store. Note that while executing in SDL, TDPM will 
in this case have the value 3, indicating that the effective top of H-store 
is currently one less than 3X512, or 1535. A simple transfer by a GD TD 
will cause a jump to an instruction in the SDL interpreter of G-store and 
not to location 1536 in H-store. This result is simply a consequertce of 
the logic shown in Figure 7.3. 

A little thought should convince the reader that it is not possible to 
jump out of the SDL interpreter into another interpreter without 
changing values in TOPM and MBR simultaneously with the change in 
the A-register that results from a GD TD. In this particular case we need 
to change A from 220 to 1536, change TOPM from 3 to 4, and change MBR 
from its present value to one that refers to a point that is 2048x 16 bits 
below the remainder of the FORTRAN interpreter held in G-store. 
These three changes must be accomplished in one indivisible operation, 
i.e., by one microinstruction, or else the job of transferring from one 
interpreter to another simply cannot be accomplished. 

In fact, such a microinstruction is part of the B 1726 repertoire, but 
because it is such a subtle and perhaps dangerous instruction for an 
"amateur" MIL programmer to use, we elected not to mention it until 
this point. Thus, the instruction takes the symbolic form 
TRANSFER. CONTROL, which is mapped to the hex string @0004@. A 
TRANSFER. CONTROL instruction expects its 3 argument values (for A, 
TDPM, and MBR) to be present in the T- and L-registers as follows. 
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T 000000 I A 

~18bits~ 

L [MBR/16] I TOPM I 
~ 20 bits --->I 4 ~ 

Execution of TRANSFER. CONTROL then has the following semantics. 

A ~ Ts.2a 
TOPM ~ L20.2a 
MBR20.2a ~ 0 
MBRo.19 ~ Lo,rn 

The notation R1,u 

used here means the 
field in register R from 
bit position I to bit 
position u inclusive. 

If interpreter l 1 needs to transfer control to some other interpreter I 2 
(or to GISMO, which may in this context be regarded as another 
interpreter), then 11 must know how to restore the MBR and TOPM 
values of 12. Some system conventions must be established by which 
one interpreter knows where to find saved copies of the MBR, TDPM 
values of the other. 

A user's interpreter normally only needs to transfer control to 
GISMO. The transfer to the MCP's interpreter (SDL) is always handled 
by GISMO. Accompanying a transfer to GISMO will be some message 
which indicates the purpose of the transfer. This message is a simple 
integer code left in the X-register. Thus, if the message indicates an 
intent to activate the MCP, then GISMO will send control to the 
appropriate point in the SDL interpreter with the limit register, LR, set 
properly for the MCP. 

Transfer of control to GISMO is made easy by an established system 
convention that some fixed field in G-store will always hold the (MBR, 
TDPM) value pair for GISMO. Moreover there is the further convention 
established that the entry point into GISMO is always at A = 0. So a 
typical sequence for transfer of control to GISMO could be something 
like Figure 7.9. 

Observe that such a sequence does not supply GISMO with any 
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Put message in 
the X-register 

% ASSIGN SOME INTEGER VALUE TD X 

2 

Get MBR, TOPM 
pair from 
standard location 
in G-store to L 

MOVE GISMD.MBR.TDPM TD FA 
% VALUE MOVED TD FA IS PREDEFINED 

READ 24 BITS TO L 
%MBR.TDPM READ TD L 

SetTtoO MOVE NULL TD T 
% TD SET A TD ZERO 

4 

Transfer control TRANSFER.CONTROL 

Figure 7.9. 

explicit "return values" for A, MBR, and TOPM. In general, GISMO is 
called in the sense of a subroutine, and it is necessary to supply return 
values as arguments in the transfer of control. 

Actually, it is not very difficult to supply return values for A, MBR, and 
TOPM. The coding scheme shown in Figure 7. IO illustrates how in 
principle one interpreter can transfer control to another interpreter to 
implement a "conversation" between two microprograms (i.e., back
and-forth coroutining). This code is similar to the current conventions 
for invoking GISMO. 

After placing an integer message in the X-register for the other 
interpreter (box 1), a general-purpose switching routine, 
INVOKE. OTHER, is called. This routine is almost straightforward. 

Box 1 

Box 2 

Box 3 

composes and pushes as two stack words the present MBR, 
TOPM, and A register values for this interpreter. (The other 
interpreter will retrieve this information when it receives 
control). 
is based on the assumption that this interpreter has previously 
recorded the values of MBR, TOPM, and A for the other 
interpreter (see Box 4 below). The action of box 2 then copies 
those recorded values into MBR, TOPM, and A. 
The transfer of control is executed which will ''pass the 
baton" to the other interpreter. When the other interpreter is 
thus activated, it can as its next step first examine X to decide 
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Send message 
and transfer 
control to 
other interpreter 

Place message 
to other 
interpreter in 
the X-register 

INVOKE.OTHER ~ .......______,,...---" v--v 

(a) 

MOVE MESSAGE.FOR.OTHER TO X 
CALL INVOKE.OTHER 

INVOKE.OTHER 

Push present 
values for 
this interpreter 
(MBR, TOPM. and A) 

Set values of 
MBR, TOPM, and A 
for other interpreter 

Transfer control 

Pop and record return 
values for 
other interpreter 
(MBR, TOPM, and A) 

NEXT.STEP %THIS IS THE EFFECTIVE 
%POINT OF RETURN 

%EXAMINE X TD DECIDE WHAT TO DO 

INVOKE. OTHER 
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CALL +SAVE.MY.RETURN 
RETURN.POINT.R 

%PUSH RETURN.PDINT.R, I.E., THE VALUE OF A 
% 

MOVE TASTO OTHER.TDPM.MBR 
MOVE TAS TD OTHER.A.VAL 
EXIT 

.SAVE.MY.RETURN 
MOVE MBR TD L 
MOVE TDPM TO LF 
MOVE L TD TAS 
MOVE OTHER.MBR.TDPM TD L 
MOVE OTHER.A.VAL TD T 
TRANSFER.CONTROL 

(b) 

%PDP AND RECORD RETURN 
%INFO OF OTHER INTERPRETER. 

%"PACKAGE" MBR AND 
%TDPM INTO ONE 24-BIT 
%REGISTER AND PUSH IT. 
%SET L AND T FROM 
%PREVIOUSLY RECORDED VALUE 

Figure 7.10. (a) Flowchart logic for orderly switch of control from one 
interpreter to another. (b) MIL code for flowcharts in (a). 
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Box 4 

The Split-Level Control Store 

why it was activated. Eventually the other interpreter will 
execute a call on INVOKE. OTHER, and when it does, and box 
3 is again executed, control can return to this interpreter at 
the point marked with a circled R in the flowchart. 
The first action upon reactivation of this interpreter is taken 
here, which is to pop the top two words of the stack 
containing MBR, TOPM, and A values for the other interpreter 
and to record these values somewhere (e.g. scratchpads) for 
safekeeping. 

A trivial extension to the switching code given in Figure 7. l 0 will 
allow efficient implementation of coroutining between two microcode 
modules. Complete symmetry is assumed, i.e., both modules would 
have essentially identical switching code. 

Any interprocess or interinterpreter communication scheme, such as 
the one just discussed, requires a first and crucial step of initialization 
before the conversation mechanism can function properly. In the above 
illustration, if one module sends the first message, then it must by some 
special, explicit, or ad hoc means be told how to locate the other one, 
i.e., be told the other module's (MBR, TOPM) and A values. Ordinarily, 
some central data structure must be maintained which holds information 
about the states of active processes (or interpreters), and more often 
than not, some central agent (supervisory routine) is made responsible 
for the management of such a central data base. In Burroughs software 
the location of each interpreter is determined through an information 
structure managed by the MCP. Details of this information structure and 
the specific functions of the MCP and GISMO are not covered here. 

7.6 SUMMARY 

We have now reviewed all the hardware features of the B1726 related 
to execution of microprograms from two levels of store and to switching 
back and forth between independent microprograms. There is much 
more to know about the particular way the H-store is managed, and the 
particular implementation schemes for intercommunication between 
user-coded microprograms and the operating system. Such details how
ever are strongly dependent on the system software architecture of the 
MCP and GISMO. We have regarded such details as a separate topic 
entirely, and for this reason have avoided bringing them to the reader's 
attention in this book. Other literature may be consulted for information 
on the MCP and GISMO. 
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Our justification in "suppressing" such information has been twofold: 

I. To give beginning microprogrammers a chance to practice writing 
microcode as quickly as possible (minimum overhead). 

2. To give the sophisticated computer professional a feeling for the 
architecture of the B 1726 and its potential independent of the 
specific software products the Burroughs Corporation elected to 
implement on the B 1726. 
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Abridged MIL reference guide 1 

DIRECTORY 

Page 
NOTATION 172 
EXECUTABLE MIL STATEMENTS 173 

ADD (scratchpad) 173 
AND 173 
BIAS 174 
CALL 176 

CARRY 176 
CASSETTE - 2 

CLEAR 177 
COMPLEMENT 177 

COUNT 178 
DEC 179 
DISPATCH 
EDR 181 

EXIT 181 
EXTRACT 181 
GD TO 183 
HALT 

IF 183 
INC 185 
JUMP 186 
LIT 

LOAD 187 
LOAD.MSMA 
LOAD.SMEM 
MICRO (See Appendix B) 

1 See also "B 1700 MICRO Implementation Language (MIL) Reference Manual", 
Burroughs Corporation, December IQ73, Form 1072568. 

2 Dash denotes MIL statements not covered in these notes. 
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MONITOR 
MOVE 
NOP (See Appendix B) 
NORMALIZE 

DR 
OVERLAY 
READ 
READ MSML 

RESET 
ROTATE DR SHIFT T 
ROTATE DR SHIFT X, Y, AND XY 
SET 

SKIP 
STORE 
SUBTRACT (scratchpad) 
SWAP 

TRANSFER.CONTROL 
WRITE 
WRITE MSML 
WRITE.STRING 

XCH 

NONEXECUTABLE MIL Si:ATEMENTS (DECLARATIONS) 

ADJUST LOCATION 
DEFINE 
DEFINE.VALUE 
DECLARE 

MACRO 
SEGMENT 
TABLE 

SPECIAL MIL EXPRESSIONS 

ADDRESS 
DATA.LENGTH 
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200 

202 
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1 NOTATION 

Each description of a statement contains the following three suben
tries 

Syntax of the MIL statement 
Semantics 
Page reference, if any, to portions of the text that illustrate (use) the 

statement, or discuss its syntax or semantics 

Syntax notation 

Terminals (or key words) are capitalized. 
Nonterminals are given in lower case (without the angle brackets 

customarily used in BNP notation). 
Optional words or phrases are enclosed in square brackets, [ ]. 
Choose one from a set of alternatives. The set of choices is enclosed 

in curly brackets, { }. 

Example 

READ literal BITS [REVERSE] TO { ~ } {~~g} {~~}] [AND {;~g} {~~}] 
Here the key word REVERSE is optional, as are the phrases 

{~:~} {~~} 
and 

{ INC} {FL} AND DEC FA . 

Within the latter two optional phrases, choices may be made such as 
INC FL or AND DEC FA, but note that these choices must be consistent 
with one another. The syntax notation is not so precise as we might like. 
Thus, the semantics of READ would tell us that 

READ 8 BITS TO X INC FA AND DEC FA 

\ / 
Inconsistent choice of 
optional phrases 

incorporates a contradiction (or nonsense) 
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Semantics notation 

Flowchart language is used wherever possible 
Bit fields for registers or for G-store are notated as follows: 

(i) Single bits as simple subscripts or subscript expressions3, e.g., 

L3 means L ( 3 ) 

(ii) Multibit fields as parenthesized subscript spans, e.g., 

Tu.HJ> means the subfield of T that spans from T1 to Ti+; 
(inclusive), 

G-store(FA,FA+k> means the subfield ofG-store that spans from 
address FA to FA+k (inclusive). 

2 EXECUTABLE MIL STATEMENTS 

IADDI 
Syntax 

j SOA) S1A 
ADD : TD FA 

S14A 
S15A 

Semantics 

ADD S7A TD FA means FA ~ FA + S7A 

Page references: 35, 39, 54 

IANDj 
Syntax 

. {literal } AND register-1 WITH . t 2 regis er-

where register-1 and 
register-2 are 4-bit registers and 
literal is any integer 0 thru 15. 

3 In MIL notations, bit positions of all registers are indexed left to right starting at zero. 
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~continued 

Semantics 

l 
register-1 ~bit-wise AND {register-1, {literal }) 

~ register-2 

Page references: None 

Syntax 

Semantics 

BIAS BY F means 

CPL ~ min (24, FL) 

F 

Set CPU 

BIAS BY F AND {~p} means 

CPL ~min (24, FL, {;~~}) 



Executable MIL Statements 175 

F 

BIAS BY UNIT means 

CPL~ FU 

BIAS BY. . . TEST means 

CPL 4 0 

Page references: 22, 23, 27, 28 
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!CALLI 

Syntax 

Semantics 

push ~ 
TAS~A 

A +- label~ 

Page references: 41, 95, 100 

!CARRY! 

Syntax 

Abridged MIL Reference Guide 

CALL label 

label is an address 
whose distance from 
value in A prior to 
this step is ::54095 
microinstructions 

1 
{ 

0 } 
CARRY SUM 

DIFFERENCE 

Semantics 

CARRY {~} means 

CYF ~ {~} 
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CARRY SUM means 

CARRY DIFFERENCE means 

Page references: 106, 147 

JCLEARJ 

Syntax 

~ 
CLEAR register-1 [register-2 [register-3 
... [register-n] ... ]] 

Semantics 

register-1 +- 0 
register-2 +- 0 

same as MOVE 0 TD REGISTER-1 
MOVE 0 TD REGISTER-2 

Page references: 118, 120 

I COMPLEMENT'! 

Syntax 

COMPLEMENT register (literal-1) 
[AND register (literal-2) 

[AND register (literal-3) 
[AND register (literal-4)]]] 

177 

where register refers to a 4-bit register or a 4-bit subfield of FL, FB, 
L, orT 
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I COMPLEMENT I continued 

Semantics 

COMPLEMENT TA ( 2) means 

TA(2) = 0 

T 

TA(2) +- 1 

Abridged MIL Reference Guide 

F 

TA(2) +- 0 

COMPLEMENT LE(O) AND LE(2) means 

LE(O) = 0 

T 

LE( 0) +- 1 

LE(2) = 0 

T 

LE(2) +- 1 

Page references: None 

I COUNT[ 

Syntax 

F 

LE(O) +- 0 

F 

LE(2) +- 0 

COUNT {~~} {~~WN} [AND {~~} {~~WN}J [sy {~~~era1}J 
where literal is any integer in the range 0 to 24 
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Semantics 

COUNT FA UP AND FL DOWN BY CPL means 

FA + CPL> 22:' 
F 

T 

FA • FA + CPL - 2° 

F 
FL - CPL< 0 

T 

FL<--- 0 

COUNT FA DOWN AND FL UP BY CPL means 

wraparound 
through 0 

Page references: 95, 127 

Syntax 

FA - CPL< 0 
F 

T 

FA • FA - CPL + 2 23 + I 

FL+CPL>2 16 F 

T 

FL • FL + CPL - 2 16 

179 

FA • FA + CPL 

FL • FL - CPL 

FA • FA - CPL 

FL • FL + CPL 

DEC register-1 BY {lit~ratl 2} [TEST] 
regis er-

where 
register-1 and register-2 are any 4-bit registers, 
1 it er al is any integer 0 through 15 
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I DEC j continued 

Semantics 

DEC LB BY { ~~} means 

LB - <0 

LB ~ LB -

DEC TC BY 3 TEST means 

TC - 3 < 0 

F 

TC ~ TC - 3 

Page references: None 

Abridged MIL Reference Guide 

T (underflow) 

LB ~ 16 + (Ls-{;~}) 

T (underflow) 

TC E- 16 + (TC - 3) 
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I EORj(exclusive DR) 

Syntax 

. {literal } EOR register-1 WITH . t 2 reg1s er-

where 

register-1 and register-2 are any 4-bit registers, 
literal is any integer 0 through 15 

Semantics 

181 

· t b" · 1 · ( . t {literal }) reg1s er-1 - 1tw1se exc us1ve OR reg1s er-1, . t 2 reg1s er-

Page references: None 

Syntax 
EXIT 

Semantics 

A~TAS (same as MOVE TAS TO A) 

Page references: 41 

I EXTRACT! 

Syntax 

EXTRACT literal-1 BITS FROM T (literal-2) [TO register] 

where li teral-1 is any integer 0 through 24, 
li teral-2 is any integer 0 through 23, 
register is T, L, X, or Y 
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J EXTRACT J continued 

Semantics 

Given 

T 
0 

where 

Then 

Abridged MIL Reference Guide 

3 ... j ... k ... 23 ----
Tu,k> 

EXTRACT M BITS FROM T(i) means 

EXTRACT m BITS FROM T(i) TD register means 

register E- Tu,Hm-1> 

Page references: 29 
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!GO TOI 

Syntax 

{
global-label } 

GD TD +point-label 
-point-label 

Semantics 

global-label is any label whose run-time address has a displace
ment of less than 4096 microinstructions from the address of the GD TD. 
+point-label refers to the firstforward instance of . point-label 
- point-label refers to the first backward instance of . point
label 

Page reference: 39 

Syntax 

IF{relation }[{TRUE }J THEN simple-MIL-statement 
bit-expression FALSE 

IF{~~~~!~~~ession}[{~~~~E}J THEN 

BEGIN 

END [ELSE 
BEGIN 

END] 

rel a ti on is any relational expression or bit designation listed under 
Condition Syntax in Section 2 of Appendix B. 

bit-expression designates one or more bits of the same 4-bit 
register. Up to 2 bits may be designated on or off using AND, DR as 
logical operators, e.g., 

TC(1) 
TB(O) 
LA(O) 
CA(1) 
CB(1) 

AND TB(2) 
DR LA(3) 

FALSE AND CA(3) FALSE 
FALSE DR CB(2) FALSE 
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[![] continued 

To test more than 2 bits, the 4-bit register must be equated to a literal, 
e.g., 

TC = 12 
LA= @(1)0101@ 

simple-MIL-statement is any executable MIL statement other 
than another IF statement. 

Semantics 
IF TC ( 2) THEN EXIT means 

IF ANY.INTERRUPT THEN MOVE LA TD X means 

XYST(I) = I 

IF FL > SFL THEN 
BEGIN 

MOVE X TD Y 
END ELSE 
BEGIN 

MOVE SUM TO Y 
END 

means 

T 

X -LA 
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F 
FL> SFL 

Y E-- SUM 

Page references: 30, 31 

Syntax 

. {literal } INC register-1 BY . t 2 [TEST] regis er-

where 

register-1 and register-2 are 4-bit registers, 
1 it er al is any integer 0 through 15. 

Semantics 

INC LA BY fa~ } means 

LA+ 
T (overflow) 

LA E-- LA + { ~~} LA E-- LA + { ~~} - 16 

185 
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I INC I continued 

INC CA BY CB TEST means 

CA+ CB> 15 
T (overflow) 

F 

CA - CA+ CB CA - CA + CB - 16 

Page references: 129 

JJUMP I 
Syntax 

JUMP {FORWARD } 
TD label 

Semantics 

JUMP TD label means the same as GD TD label 
JUMP FORWARD means JUMP to here + 0 
This instruction is usually preceded by an instruction that DRs a 

displacement value into the M-register, e.g., 

MOVE L TD M 
JUMP FORWARD 

Page references: 39 
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JLOAD FJ 

Syntax 

LOAD F FROM l ~~ ) 
S14 
S15 

Semantics 

LOAD F FROM S5 means 

FA - S5A 
FB - S5B 

Page references: None 

I MONITOR I 
Syntax 

MONITOR 8-bi t literal 

Semantics 

187 

The 8-bi t literal is sent out as a set of 8 signals on a set of 8 
lines. External connections may be made to the ends of these lines for 
sensing the value of the literal. A literal may be sensed whenever the 
MONITOR instruction is executed. Such literals may be recorded and/or 
displayed for purposes of performance measurement and evaluation. 

Page references: None 

IMOVEI 

Syntax 

MOVE source TD destination 
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I MOVE I continued 

where 

source is either a literal, a 24-bit scratchpad, or a register that 
can serve as a source, 

destination is a 24-bit scratchpad, or a register that can serve as a 
destination, 

literal is any integer 0 through 224 expressed either as 
a decimal number (O to 16777215), 
a binary number (@(1)0@ to @(1)1111 ... 111@) 
a hexadecimal number (@O@ to @FFFFFF@) 

Semantics 

MOVE s TO d means 

d is a 24-bit F 
s c rat ch pad 

1--~~~~~~~---

T 

s is a 24-bit scratch- F 
pad or s is literal 

T 

push 
TAS~s 

Assign 
s to d 

Assign 
s to d 

d~TAS 

~-,_____,!/ II 
/j (! 

Bit length( d) vs Bit length( s) < 

d ~ Left.zero.fill(s) d ~s d ~ Left.truncate(s) 
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Examples 

MOVE 162 TO S2A means 

MOVE 162 TO TAS --7 
MOVE TAS TO S2A -/ 

MOVE S15B TO S3A means 

MOVE S15B TO TAS ~ 
MOVE TAS TO S3A / 

MOVE X TD S1B means 

MOVE @ ( 1 ) 1111@ TO LA means 

MOVE @( 1) 111@ TO LA means 

TAS~162 
S2A~TAS 

TAS~S15B 
S3A~TAS 

S1B ~x 

189 
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j MOVE I continued 

MOVE @( 1) 11110@ TO LA means 

MOVE X TO TE means 

TE ~ X<20, 23i 

MOVE TE TO Y means 

Y ~TE 

Page references: 18, 28, 35 

I NORMALIZE I 
Syntax 

Semantics 

FL =F- 0 
and 

MSBX =F- I 

T 

Shift X to the 
left I bit 

FL~ FL - I 

Page references: None 

NORMALIZE 

i.e., shift X to the left until either 
FL = 0 or the most significant 
bit of X (MSBX), as conditioned 
by CPL, is 1. 
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Syntax 

. {literal } DR register-1 WITH . t 2 reg1s er-

where 

register-1 and register-2 are any 4-bit registers, 
and literal is any integer 0 through 15. 

Semantics 

register-1 .___bitwise DR~( register-1, {~~~~:~~r-2 }) 

Page references: None 

I OVERLAY I 

Syntax 

OVERLAY 

Semantics 

After setting L to point at the overlay region in H-store, 
FA to point to the region in G-store, and 
FL to a count of the number of microinstructions to be copied, 

191 

OVERLAY causes FL microinstructions to be successively copied from G
store beginning at FA to H-store beginning at L. The copying is 
prematurely halted if the address in H-store of the next microinstruc
tion overlay would exceed TDPMX512. 

Page references: 161, 164 



192 Abridged MIL Reference Guide 

!READ[ 

Syntax 

READ literal BITS [REVERSE] TD m [{~;~}{~~}][AND{~~~}{~;}] 
where literal is any integer 0 through 24 

Semantics 

READ I BITS TD T means 

READ I BITS REVERSE TD X 

READ TD L means 

X <-- G-store!FA-t.FA-n 

L <-- G-store<FA.FA+cPL-D 

READ 23 BITS TO Y INC FA AND DEC FL means 

L <-- 0 
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Y E- G-store<FA.FA+22> 

FAE- FA+ 23 
FL E- FL - 23 

2* 

* Execution of box 2 overlaps execution of box 1. 

Page references: 14, 18, 25 

I READ MSML 

Syntax 

READ MSML TD X 

Semantics 

X E- H-storeL.L+is 

Page references: None 

I RESET I 

Syntax 

RESET register(literal-1)[AND register(literal-2) 
[AND ... register(literal-4)]]] 

where 
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register is any 4-bit register or 4-bit subregister of FL, L, or T, or bit 
of FB, L, or T, that can serve as a destination, 

li teral-i is any integer, 0 through 3 for a 4-bit register, 0 through 15 
for a subregister of FL, or 0 through 23 for a subregister of L or T. 
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I RESET I continued 

Semantics 

RESET TD ( 1 ) means 

RESET LB(O) AND LB(2) AND LB(3) means 

LB0 E- 0 
LB2 E- 0 
LB3 E- 0 

RESET T(14) means$ 
Page references: 113, 120, 124 

I ROTATE OR SHIFT Tl 

Syntax 

{~~~~~E} T LEFT BY {~~~eral BITS} [TD register] 

ROTATE T RIGHT BY literal BITS [TD register] 

SHIFT T RIGHT BY 1i teral BITS [TD { ~}] 
where 
literal is any integer 0 through 23, 
register is any register that can serve as a destination, including T 

itself. 
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Semantics 

ROTATE T LEFT BY I BITS TD register means 

register <-copy of T rotated 
I bits to the left 

SHIFT T LEFT BY I BITS TD S1A means 

S1A <-copy of T shifted 
I bits to the left 
(with right zero fill) 

SHIFT T LEFT BY CPL means 

T ~ copy of T shifted 
to the left CPL bits 
with right zero fill 

ROTATE T RIGHT BY I BITS TD register 
means ROTATE T LEFT BY 24-/ BITS TD register 

SHIFT T RIGHT BY I BITS [TD { ~}] 

means EXTRACT 24'-1 BITS FROM T(O) [TD { ~} ] 
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This extract instruction is generated by the MIL assembler, since the 
B1700 cannot shift T right directly. See page 181. 

Page references: 125, 127 
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I ROTATE OR SHIFT X, Y, or XYI 

Syntax 

{~~~i~E} {~y} {~~~;;.,}BY literal BITS 
where XY means X concatenate Y and 

1 i teral is any integer 0 through 23, or, when XY is used, any 
integer 0 through 47. 

Semantics 

{LEFT } 
SHIFT X RIGHT BY 8 BITS means 

X ~ copy of X shited 
. left } 

8 bits to the right 

. fright} 
with zero fill on Ueft 

Page references: None 

Syntax 

SET reg TD literal 

or 

SET reg(literal-1)[AND REG(literal-2)[AND ... 
[AND reg(literal-4)]]]] 

where 

reg is any 4-bit register or any 4 bit subregister of FL, L, or T that can 
serve as a destination, 

li teral-i is any integer, 0 through 3 for a 4-bit register, 0 through 15 
for a subregister of FL, or 0 through 23 for a subregister of L or T. 
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Semantics 

SET TC TO 14 means 

TC~ @(1)1110@ 

SET LE ( 0 ) and LE ( 3 ) means 

LE0 ~I 

LE3 ~I 

Page references: 113, 120, 124, 129 

I SKIP[ 

Syntax 

{
ALL [CLEAR]} 

SKIP WHEN register ANY mask [FALSE] 
EQL 
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where register is any 4-bit register and mask is any integer 0 through 
15 (represented as decimal, binary, or hexadecimal). 

SKIP WHEN condition [FALSE] 

where condition is any condition available from the condition regis
ter, BICN, XYCN, XYST, FLCN, or INCN. (See Condition Syntax 
in Section 2 of Appendix B.) 
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I SKIP I continued 

Semantics 

SKIP WHEN FLD ANY mask means 

There is a I -bit in FLD 
that matches a corresponding 
I -bit in mask 

SKIP WHEN TC ALL CLEAR @(1)1101@ means 

Note: 

1 

Every 1-bit of TC 
matches every 1-bit 
in @(1)1101@ 

F 

T 

Clear all matched 1-bits of TC 
2 

T 

3 Boxes 2 and 3 
are inserted into 
the logic as a 
result of the 
CLEAR option 

Clear all matched 1-bits of TC 
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SKIP WHEN TB EQL 12 FALSE means 

SKIP WHEN ANY.INTERRUPT means 

T 
XYST(l) = I 

Page references: 39 

I STOREF I 
Syntax 

STORE F INTO l ~~ I 
S14 
S15 
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I STORE F I continued 

Semantics 

STORE F INTO S5 means 

Page references: None 

·1 SUBTRACT I 

Syntax 

S5A ~ FA 
S5B ~ FB 

S1A 
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SUBTRACT : FROM FA l SOA l 
S14A 
S15A 

Semantics 

SUBTRACT S3A FROM FA means 

FA ~ FA - S3A 

Page references: 35 

ISWAPI 

Syntax 

SWAP literal BITS [REVERSE] WITH { ~} 
where literal is any integer, 0 through 24. 
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Semantics 

SWAP I BITS WITH T means 

hidden register E-- G-store(FA,FA+I-1> 

G-store(FA,FA+1-o E-- T<24-i,23l 

Right-justified 
with left zero 
fill 

TE-- hidden register 
.,.. 

SWAP I BITS REVERSE WITH X means 

hidden register E-- G-store(FA-l.FA-1) 

G-store(FA-/,FA-1) E-- x(24-/,23) 

X E-- hidden register 
~ 

SWAP 0 BITS WITH L means 

( 
hidden register E-- G-store(FA.FA+crL-I> 

G-store(FA,FA+CPL-o E-- L<cPL-24,23> 

~L E-- hidden register 

Page references: None 
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I TRANSFER.CONTROL I 

Syntax 

TRANSFER.CONTROL 

Semantics 

See also the BIND instruction in Appendix B. 
This instruction is to be issued after L and T have been preset as 

indicated 

r-- 18 

T ~ A.image 

I 20 4 

L [MBR/ 16] .image 

TO PM.image 

Execution of this instruction causes new values to be assigned to the A, 
TOPM, and MBR registers as follows 

A +- A . image from T 
TOPM +- TOPM.image from L 

MBR +- 16x[MBR/16] .image from L 

Page References: 164-169 

I WRITE I 
Syntax 

WRITE literal BITS [REVERSE] FROM 

where literal is any integer 0 through 24 
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Semantics 

WRITE I BITS FROM T means 

G-store<FA.FA+1-1 <-- T124-1.2J1 

WRITE I BITS REVERSE FROM X means 

G-store/FA-l.FA-11 <-- x/24-1.2'1 

WRITE 0 BITS FROM L means 

1-~-F~~~~~~~ CPL-=!oO ~ 

T 

G-store1FA.FA+/-1 <--- L<24-t.23l 

WRITE 18 BITS FROM Y INC FA AND DEC FL means 

G-store1FA.FA+ 17l <--- Y10.23l 

2* 

FA<--- FA + 18 
FL<--- FL - 18 

* Execution of box 2 overlaps execution of box I. 

Page references: 15, 22-26 
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I WRITE MSML I 

Syntax 

WRITE MSML FROM X 

Semantics 

H-store(L,L+15) ~ x(S,23) 

Page reference: None 

lxcHI 
Syntax 

XCH l!~:) F l!~:) 
S15 S15 

Semantics 

XCH S3 F S5 means 

XCH S4 

Page reference: 25-27 

hidden register ~ F 
F ~ S3 

S5 ~ hidden register 

register ~ F 
F ~ S4 

S4 ~ hidden register 
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3 Nonexecutable MIL STATEMENTS 

I ADJUST LOCATION I 
Syntax 

ADJUST LOCATION TO {i~~=~~~. {Pr:is} literal} 
where literal must be a number = 0 modulo 16 

Example ADJUST LOCATION TD LOCATION + 1600 

Semantics 

The ADJUST declaration is a command to the MIL assembler to 
change the value of its location counter. The assembler initializes a 
location counter to zero at the beginning of its operation and increments 
this counter by 16 after each microinstruction is assembled, so the 
counter's value corresponds to the address of the next microinstruction 
to be assembled relative to an H-store base address of zero. 

Examples 

ADJUST LOCATION TO 160 forces the counter to be changed to 160. 
ADJUST LOCATION TO LOCATION PLUS 256 forces the counter to be 

incremented by 256 and is equivalent to inserting a sequence of 16 NOP 
instructions (256 zero bits) into the generated code stream at this point. 

Page references: 162 

!DEFINE I 
Syntax 

DEFINE identifier =string# 

Semantics 

Any subsequent reference to identifier will be replaced by 
string. 

Examples 

DEFINE 
DEFINE 
DEFINE 
DEFINE 

# 
# 

= CA # 
= CB(O) # 

BASE.OF.INTERPRETER= 
NUMBER.OF.TERMINALS= 

SOA 
3 

I 
FLAG 
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I DEFINE I continued 

Ordinarily, the scope of a DEFINE is the entire MIL program. 
However DEFINE scopes may be nested, as are ALGOL declarations, 
using a similar blocking device: 

BEGIN 
LOCAL DEFINES 

END 

A given identifier may be DEFINEd or reDEFINEd within such a block, 
just as an ALGOL identifier may be declared or redeclared within a 
begin, end block. (See especially Figure 4.4 on p. 53.) 

Page references: 51-53 

I DECLARE! 

Syntax 

DECLARE declare-element-1 
[, declare-element-2 [, . . . ] ... ] ; 

where the format of a declare element is either simple or structured. 
A simple declare element has the syntax 

{identi fier-1 [ (array-size)] } 
(identifier-and-array-size-list) 

[REMAPS{identifier-2}] {~~~~~CTER(length)} [REVERSE] 
BASE.ZERO BIT(length) 

where identifier-and-array-size-list has the syntax 

id-1[(array-size-1)][,id-2[(array-size-2)] 
[, id-2[(array-size-3)] ... ] 

Examples using simple declare elements are 

DECLARE 
DECLARE 

DECLARE 

A CHARACTER(20) REVERSE; 
A FIXED, 
B CHARACTER ( 3 ) , 
C BIT(20), 
( D, E, F, ( 5 ) ) BIT ( 4) 
G(20) FIXED, 
H(3) CHARACTER(6) 
AA REMAPS A CHARACTER(3), 
CC(4) REMAPS C BIT(5); 
P REMAPS BASE.ZERO BIT(200); 
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A structured declare element has the syntax 

{
identifier-1} 

level number FILLER ~(array-size)] 
DUMMY 

[REMAPS identifier2] 

Example 

{
FIXED 
CHARACTER( length) 
BIT( length) 

Optional for 
group elements 
only 

[REVERSE] 

DECLARE 01 MABEL REVERSE, 
02 BAKER, 

03 CHARLIE BIT(20); 
03 DOG BIT(30); 

02 ELLEN CHARACTER(5); 
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(Group elements, such as MABEL and BAKER, need not contain type
length attributes.) 

Semantics 

The DECLAREs of a MIL program define (but do not allocate) 
successive field addresses of G-store relative to BASE. ZERO, the value 
of the BR resiter. Each declare element carries with it an explicit or 
implicit length based on the given type-length attribute, so a G-store 
address is associated with each DECLAREd identifier. 

If an identifier is given the additional attribute REVERSE, then the G
store address associated with that identifier is the address that would be 
needed for a READ REVERSE or WRITE REVERSE of the corresponding 
object from G-store, i.e., the bit address that is one higher than the 
rightmost bit of the field corresponding to that identifier. 

If a group item is declared REVERSE, then each of its subitems will be 
treated as if it were declared REVERSE. 

DECLAREd arrays may only be one-dimensional, so that if a group 
item of a structure is an array, then an array specification may not 
appear in any subordinate group item. Such subordinate group items are 
regarded as descriptions of array elements. 



208 Abridged MIL Reference Guide 

I DECLARE I continued 

Example 
01 ABEL(5) BIT(48) 

02 BAKER FIXED, 
02 CHARLY FIXED; 

declares that ABEL is an array of 5 elements, each 48 bits long. Each 
element of ABEL is further described by declare items at level 02. 

Any piece of G-store previously declared as either a simple or a 
structured item may be renamed as a REMAPS item. For example, 

DECLARE ABEL1 
01 

REMAPS ABLE BIT(240), 
ABEL2 (10) REMAPS ABEL BIT(24), 
02 BAGEL BIT(3) 
02 CABEL BIT(20); 

remaps the declared structure ABEL in the following two ways 

1. ABEL1 is a single field of 240 bits that exactly covers ABEL 
2. ABEL2 is a 10-element array exactly covering ABEL, but each 

element of ABEL2 consists of a 3-bit field, BAGEL, a 20-bit field 
CABEL, and an implied I-bit filler field. 

If only the subfields of a REMAPS group item will ever be referred to, 
then it is not necessary to give a unique identifier for that group item. A 
DUMMY REMAPS item may be used, e.g., 

DECLARE 01 DUMMY(10) REMAPS ABEL BIT(24), 
02 BAGEL BIT(3), 
03 CABEL BIT(20); 

Page references: 51-56 

I MACRO I 
SYNTAX 

MACRO macro-name[(fp-1[,fp-2[, ... [,fp-n] .. . ]])] = 

statement-1 
[statement-2] 

[statement-n] # 
where fp-i is the ith formal parameter. 
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Semantics 

A macro-name is declared with no, one, or more formal parameters, 
which in turn may occur within the statement(s) of the macro's body. 
When the macro is referred to in a subsequent MIL statement, the text 
of the macro body is inserted, with string replacements of each occur
rence of a formal parameter by its corresponding actual parameter. A 
formal parameter may not represent a label. All MACRO definitions must 
appear ahead of any executable statement. 

Example 

MACRO WRITE.ITEM (ITEM1, ITEM2, ITEM3) = 
XCH ITEM1 F ITEM1 
WRITE 24 BITS FROM ITEM2 ITEM3 FA AND DEC FL 
XCH ITEM1 F ITEM1 # 

When later referenced as 

WRITE.ITEM(S2, X, INC) 

this reference will be replaced by the in-line MIL code 

XCH S2 F S2 
WRITE 24 BITS FROM X INC FA AND DEC FL 
XCH S2 F S2 

Page references: 56, 57, 100 

I TABLE I 

Syntax 

TABLE label 
BEGIN 

first literal 
second literal 

last literal 
END 

Allowed literals include character strings, binary, and hexadecimal 
constants. Decimal constants are not allowed. The label following 
TABLE is treated by the MIL assembler as an addressable label. 
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J TABLE j continued 

Example (See also Section 7.3) 

TABLE MIL.OPCODES 

Semantics 

BEGIN 
"MOVE" 
"IF" 
"GD TD" 
"BIAS" 
"SET" 
"RESET" 

END 

The MIL assembler presets a space in the microcode beginning at an 
address corresponding to 1abe1 with a sequence of values corresponding 
to the literals given between the BEGIN, END pair of the TABLE 
declaration. 

Page references: 157-160 

4 SPECIAL MIL EXPRESSIONS 

4.1 ADDRESS 

An expression of the form 

ADDRESS(label) 

may appear in a MIL statement in place of a literal. The ADDRESS value 
of a label is the value of the MIL assembler's location counter that 
corresponds to that label's occurrence in the MIL program. An address 
value of a label is necessarily congruent to zero modulo 16. 

Examples 

MOVE ADDRESS(MULTIPLY) TD S1A moves the address value of the 
label MULTIPLY to S1A. This address value is relative to the beginning 
of the assembled program. 

MOVE ADDRESS (-HERE) TD X moves the address value of the point 
label . HERE (the first one that precedes this statement) to X. 
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4.2 DAT A. LENGTH 

An expression of the form 

DAT A. LENGTH( declared identifier) 

may appear in a MIL statement in place of a literal. A declared identifier 
is any simple or array identifier that appears in a DECLARE statement. 
The DAT A. LENGTH for that identifier is its length in bits. 

Examples Given 

then 

DECLARE 01 MABEL ( 5) BIT ( 56) , 
02 BAKER FIXED, 
02 CHARLY CHARACTER(4); 

MOVE DATA.LENGTH(MABEL) TO X 

would assign the value 5 x 56 or 280 to X, 

MOVE DATA.LENGTH (CHARLY) TD FL 

would assign 32 to FL, and 

WRITE DATA.LENGTH(BAKER) BITS FROM Y 

would write 24 bits from Y. 
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Abridged reference guide to the 81726 

1 81726 REGISTER SUMMARY 

REGISTER 

NAME 

X, y 

Each is a 24-bit register which can be used as a receiver register 
(source/sink) for G-store transfers. 

Each is always one of the inputs to the 24-bit function box. 
Neither is composed of 4-bit subregisters. 
Inspection of the high and low bits of Xis possible (MSBX, LSUX). 
Inspection of only the low bit of Y (LSUY) is possible. 
Each can be compared against zero or against the other (X=O, X40, 

X > Y, X :5 Y, etc., Y=O. 
X and Y can each be shifted or rotated right or left. 
The 48-bit field formed by concatenating X and Y may be shifted or 

rotated left or right. 

T 

A 24 bit register which can be used as a receiver register (source/sink) 
for G-store transfers. 

T is composed of 4-bit subregisters in the following fashion: 

I TA I TB I TC I TD I TE I TF I 
This allows any bit of the T-register to be tested [bits are numbered 

from left (0) to right (23)]. 
Bits of any subregister may be tested [bits of a subregister are 

numbered from left (0) to right (3), e.g., TE ( 2) is the third bit from 
the left of TE and can also be referred to as T ( 18)]. 

T does not act as an input to the 24-bit function box. 

212 
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The T register may be shifted or rotated left and the result may be 
transferred to any other register. 

A group of contiguous bits may be extracted from anywhere within T 
and the group transferred to X, Y, T, or L. 

L 

A 24-bit register which can be used as a receiver register (source/sink) 
for G-store transfers. 

L is composed of 4-bit subregisters in the following fashion: 

L 

LB LC LD LE LF 

L may not be rotated or shifted. 
L does not act as an input to the 24-bit function box. 

CP 

An 8-bit control register 

I CP 
t·~~ 

CYFJ CPU CPL 

The subfields of CP are 
CYF (1 bit), the "carry-in" for the 24-bit function box (for SUM, 

DIFF) 
CPU (2 bits), the arithmetic mode of the 24-bit function box: 

00 binary 
01 4-bit decimal 
10 not defined 
11 not defined 

CPL (5 bits), the width of the 24-bit function box; any precision up 
to and including 24 bits may be specified. 

If CP = 0, the 24-bit function box is in essence turned off, since the 
length (CPL) is zero. 

CP cannot be used for general storage. 

FA 

A 24-bit register. 
It is not composed of 4-bit registers. 
The contents of FA specify the location of G-store to be accessed 

during a G-store transfer (READ, WRITE, or SWAP). 
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FA may not be shifted or rotated. 
It is not possible to test a particular bit within FA or to compare the 

contents of FA with any register or value. 
A fast 24-bit adder is attached to FA. The adder can be used to add or 

subtract a small constant (0-24) to FA or to add or subtract the 24-
bit contents of the left half of a scratchpad to FA (S1A, for 
example). 

FB 

A 24-bit register composed of 4-bit registers in the following manner 

FB 

FU FT FLC FLO FLE FLF 

----FL---

This structure allows any bit of FB to be tested. 
Some of the subfields of FB have special uses: 

FU can alter the contents of CP when used with the BIAS BY UNIT 
instruction. 

FLC, FLO, FLE, FLF comprise a 16-bit register called FL. The FL 
register has a fast adder attached which can increment or decre
ment FL by a small constant (0-24). 

The 16-bit value of FL can be compared with zero or with the value 
represented by the low-order 16 bits of SOB. This 16-bit field of SOB 
is called SFL. 

T AS (The stack) 

A group of 32 registers (24 bits wide) of which only one (the top) is 
available (i.e., addressable) at any time. 

The LIFO discipline is observed. 
Any data may be placed on the stack and retrieved later. 
The hardware will automatically place a microcode return address on 

the stack when entering a microsubroutine, facilitating the return 
from a subroutine. 

Overflow or underflow (i.e., pushing too many values or popping too 
many values) is not detected, and care must be taken to prevent 
incorrect operation of a microcode subroutine. 

The scratchpads 

This is an array of 32 registers (each 24 bits wide) that is organized in 
the following fashion. 
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so 
Si 

S15 

A (left half) 

Access to any A or B half is allowed. 
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B (right half) 

Access to a left, right pair (e.g., S3A, S3B) as a 48-bit register is also 
allowed when transferring to/from or exchanging with the FA, FB 
register pair (see instructions LOAD, STORE, XCH). 

In addition, the A half of a scratchpad register may be added to or 
subtracted from the FA register. 

4-bit registers 

Any bit of a 4-bit register can be examined. 
Up to two bits of a single 4-bit register can be tested in a single 

microinstruction. 
Many of the four-bit registers have preassigned meanings and reflect 

the status of X, Y, FL, etc. 
Most other four-bit registers are subfields of 24-bit registers (T, L, FB). 
There are only two four-bit registers that have no preassigned mean

ings and are not part of a larger register. These are CA and CB. 

A 

A 16-bit register which serves as the microinstruction address register. 
This is the program counter. (On many conventional machines this 

register is not addressable.) 
A jump can be achieved by moving a value to A. 
A return address can be generated by moving from A, e.g., to the 

stack (TAS). 
While executing an instruction, the A-register reflects the address of 

the instruction that follows the current instruction. 

M 

A 16-bit register that contains the current microinstruction. 
This register is not useful as a source of data. However, the next 
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S-pads 
H-store M-register A B x 

#D so OOFSOO OOFOOO 

#i Si 

#2 MOVE 5 TD M S2 

#3 MOVE SOA TD X S3 

S4 

S5 100600 

A 

G 
Figure 8.1. Snapshot just before instruction #2 is executed. 

S-pads 
H-store M A B x 

#D 0000 so OOFSOO 100600 

Si 
#i 

S2 
#2 MOVE 5 TD M S3 

#3 MOVE SOA TD X S4 

S5 100600 

A 

~ 
Figure 8.2. Snapshot just after instruction #3 is executed. 
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instruction that the hardware executes can be modified by a value 
moved to M; for example, 

MOVE 5 TO M 
MOVE SOA TD X 

will actually perform as follows. We begin as shown in Figure B.1. 

Instruction cycle for A = 0002 The hardware 
1. ORs microinstruction #2 to M, which is assumed to have been 

cleared to zero as a result of step 4 of the preceding instruction 
cycle 

2. Increments A to 0003 
3. Decodes the MOVE 5 TD M instruction 
4. Clears M 
5. Executes MOVE 5 TOM, which results in 

MI 0005 I 
Instruction cycle for A = 0003 The hardware 

1. DRs microinstruction #3 with M, forming MOVE S5A TD X in M 
2. Increments A to 0004 
3. Decodes the modified instruction 
4. Clears M 
5. Executes MOVE S5A TD X, yielding the snapshot in Figure B.2. 

Note that the #3 microinstruction is not changed. 
Also note that the M-register retains the "0005" (modification) for only 

one instruction cycle. 

2 TESTABLE BITS FOR IF STATEMENTS 

The following testable conditions all reside in 4-bit registers. The bit 
numbering is the software convention, starting with bit 0 on the extreme 
left (high-order position). 

REGISTER 

WHERE BIT IS 

LOCATED 

BICN 

XYCN 

CONDITION SYNTAX 

PRIMARY 

LSUY 
CYF 
CYD 
CYL 

MSBX 
X=Y 

ALTERNATE NOTES 

Binary conditions-Read only 
BI CN ( 0) Low-order bit of ya 
BI CN ( 1) Carry input for ALU 
BICN(2) Borrow out from ALUb 
BICN ( 3) Carry out from ALUc 

X-Y Conditions-Read only 
XYCN ( 0) High-order bit of xc 
XYCN ( 1) 24-bit comparisonb 
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REGISTER CONDITION SYNTAX 
WHERE BIT IS 

LOCATED PRIMARY ALTERNATE NOTES 

X<Y XYCN(2) 24-bit comparisonb 
X>Y XYCN(3) 24-bit comparisonb 

XYST X-Y states-Read only 
LSUX XYST(O) Low-order bit of xa 

ANY.INTERRUPT XYST(1) On if any interrupt bit is set 
Y:iO XYST(2) 
X:iO XYST(3) 

FLCN Field-length conditions-Read 
only 

FL=SFL FLCN(O) 16 bit comparison 
FL>SFL FLCN(1) 16-bit comparison 
FL<SFL FLCN(2) 16-bit comparison 
FL:iO FLCN(3) 

cc External interruptsd-read and 
write 

CC(O) State light 
CC(1) Set by hardware timer every -io 

sec (no nmemonic)d 
CC(2) Set by 1/0 controllers for service 

requestd 
CC(3) Set by switch labeled "INT" on 

front paneld 
CD Abnormal main memory 

conditions-read and write 
CD(O) Set by parity error detected in 

main memoryd 
CD(1) Set by program to allow writes 

to all of storage (override) 
CD(2) Set when a read out of bounds is 

attempted 
CD(3) Set when a write out of bounds 

is attemptedd 
T Tx(i) T(j) Any bit of T or L or of a 
L Lx(i) L(j) subregister of T or L, 

x::=AIBICIDIEIF 
i::=Ol11213 
j:: =O 111213 I ... 121122123 

CA CA(i) Any bit of CA or CB 
CB CB(i) i::=Ol112l3 
FB FU(i) Any bit of FB or of a subregister 

FT(i) ofFB 
FLC(i) FL(k) i::=Ol112l3 
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FLD(i) 
FLE(i) 
FLF(i) 

a Conditioned by CPU. 
b Not conditioned by CPL. 
c Conditioned by CPL. 
d This interrupt aiso set:, XYST(l). 

FL(k) 
FL(k) 
FL(k) 

3 MICROINSTRUCTIONS: SYNTAX AND SEMANTICS2 
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This section lists the B 1726 microinstructions alphabetically by their 
mnemonics. Summary charts are given at the end. 

Notation 

The syntax notation is self-explanatory. The semantics notation is the 
same as that used in Appendix A except that we add one new 
convention to express modular arithmetic as follows: 

{
<O, then A {±}B+C, 

(A{±}B) mod C means ifA{±}B = 2:C, then A {±}B-C, 
else A{±}B. 

FA <-(FA +dFA) mod 2 24 

values of FA +dFA 

other 

FA<- FA +dFA 

FA <- FA + dF A + 2 24 FA <- FA + dF A - 2 24 

2 Bit positions for microinstructions are indexed from right to left to conform with 
hardware conventions. 



220 

BIAS 

Syntax 

Hex 15 14 

l 0 l 0 l 3 l"I lo 
0 

Semantics 

Abridged Reference Guide to the 81726 

13 12 II 10 9 

o I o 0 

Binary 

7 6 4 3 2 I 

o I o I I v 
i 

I 
Variant value 

o .. . .. 7 

F 
SFU=4t-~~~~-. 

T 

0 

I TEST I 

CPU <-- 0 

CPL <--FU 

CPL <-- min(24, FL) 

CPL <-- min(24, SFL) 

CPL ~ min(24, FL,SFL) 

CPL <-- min(24, CPL,FL) 

CPL <-- min(24, CPL, FL, SFL) 



Microinstructions: Syntax and Semantics 

TEST= I 
and 

CPL of- 0 

F 

T 

Note: Variants V = 4 and V = 6 have no effect on CPL. 

I BIND ksame as TRANSFER. CONTROL MIL statement) 

Syntax 

Binary 
Hex 15 14 13 12 II 10 9 8 7 6 5 4 3 

I 0 I 0 I 0 14 1 I I 0 I I I I 0 I 0 0 0 0 0 0 0 0 0 0 0 

Semantics 

A <--- T6,23 

TD PM <--- L20.23 

MBR2o.23 <--- 0 

MBRo,19 <--- Lo.19 

221 

2 0 

0 I 0 I 
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BIT TEST 
RELATIVE BRANCH FALSE 

Syntax 
Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Semantics 

Select register, REG 
from ROW and COL 

T 
REG, = 0 1------

F 

A .- A + 16X(signed 
relative 
displacement) ROW 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 

4-bit source 
registers 

COL 0 I 
TA FU 
TB FT 
TC FLC 
TD FLO 
TE FLE 
TF FLF 
CA BICN 
CB FLCN 
LA TOPM 
LB -
LC -
LD -
LE XYCN 
LF XYST 
cc INCN 
CD CPU 

* The hardware assumes that register bits are indexed from right to 
left: 

3 2 0 ~Bit index "understood" 

REG I I I I I 
by the hardware 
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BIT TEST 
RELATIVE BRANCH TRUE 

Syntax 
Binary 

Hex 15 14 13 12 11 10 9 8 7 6 

Semantics 

Select register, REG 
from ROW and COL 

T 
REG, = 11------..i 

F 

A <--- A + 16X(signed 
relative 
displacement) 

223 

4 3 2 0 

4-bit source 
registers 

ROW COL 0 I 
0 TA FU 
I TB FT 
2 TC FLC 
3 TD FLO 
4 TE FLE 
5 TF FLF 
6 CA BICN 
7 CB FLCN 
8 LA TOPM 
9 LB -

10 LC -
II LO -

12 LE XYCN 
13 LF XYST 
14 cc INCN 
15 CD CPU 

* The hardware assumes that register bits are indexed from right to 
left: 

3 2 0 ~Bit index '"understood" 

REG 

I I I I I 
by the hardware 
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BRANCH RELATIVE FORWARD 

Syntax 
Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

IC] n In In I ~---o __ o~ __ R_e_Ia_t_iv_e_d_is_p_Ia_c_e_m_e_n_t_m_a_g_n_it_u_d_e_~ 

Semantics 

A ~A + I6x (Relative displacement magnitude) 

I BRANCH RELATIVE BACKWARD I 
Syntax 

microinstructions 
from next 
instruction 

Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

ID l n I n I n I ~---o __ ~_R_e_Ia_t_iv_e_d_i_s_pl_a_c_em_e_n_t _m_a_g_n_it_u_d_e _ _, 



Microinstructions: Syntax and Semantics 

Semantics 

A ~A - t6x(Relative displacement magnitude) 

I CALL REL FORWARD I 
Syntax 

Branch backward 
up to 4095 
microinstructions 
from next 

Binary 

225 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I E I n I n I n 11 0 Relative displacement magnitude 

Semantics 

push 
TAS E--A 

A ~A + 16X(Relative displacement magnitude) 
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I CALL REL BACKWARD I 
Syntax 

Binary 
Hex 15 14 13 12 11 IO 9 8 7 6 5 4 3 2 l 0 

1 1 Relative displacement magnitude 

Semantics 

TAS~A 

A ~A - 16X(Relative displacement magnitude) 

I CLEAR REGISTERS 

Syntax 

Hex 15 14 13 12 

~ 0 0 0 0 

Branch backward 
up to 4095 
microinstructions 
from next 

Binary 

11 10 9 8 7 6 5 4 3 2 I 0 

Flags for 8 registers 



I COUNT FA AND FL I 
Syntax 

Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 0 

oooojo v Literal 

\ 
Range is 0 to 24 

inclusive 
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COUNT FA AND FL I continued 

Semantics 

CPL furnishes the 
increment or 
decrement when 
a zero value is 
specified for 
Literal 

Computer increment/ 
decrement for 
FA and FL 
according to the 
value of V 

Literal = 0 

F 

FA .,._(FA + AFA) mod 2 24 

Value of FL + AFL 

Other 

FL .,._FL+ AFL 

AFA c- LIT 

AFL c- LIT 

AFA c- LIT 
AFA c- -LIT 

AFA c- -LIT 
AFL c- LIT 

AFA c- -LIT 

AFL c- -LIT 

aFA c- -LIT. 
~FL.,._ -LIT 

FL .,._FL + AFL - 2 16 

Note: This instruction cannot count FA and FL up. 
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I EXTRACT FROM T I 
Syntax 

Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

R (right edge s W (field width) 1 0 1 1 index) (sink 
1 through 24 reg.) 

1 through 24 

S MEANS 

()() x 
01 y 
IO T 
II L 

Semantics 

An EXTRACT microinstruction specifies as its arguments 

R, the rightmost index plus 1 of the field to be extracted 
S, the sink register (X, Y, T, or L) to receive the extracted field 
W, the width of the field to be extracted 

A MIL instruction of the form 

EXTRACT w-BITS FROM TU) ... 

is mapped by the MIL assembler into an EXTRACT microinstruction by 
computing microargument R from the MIL argumentsj and w: 

j R 
i i 

0 2 15 16 ... 21 22 23 MIL MICRO 

T j+w R 
w w 
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I EXTRACT FROM T I continued 

Let Tcopy and Mask be 24-bit hidden registers as shown. 

Tcopy <-- 0 

2 
T 

W=O 

F 
3 

Tcopy <-- T 

4 

Rotate Tcopy to the 

left by R bits / 

~5~ 
Set to zero the 24-W ~ 
high-order bits of 

Tcopy 

6 

S <-- Tcopy 

IHALT I 
Syntax 

Hex 15 14 13 12 11 IO 

1°1°1°1 1 11° 0 0 0 lo 0 

Semantics 

Masko.23 -w <-- 0 
Mask24_w.23 ~ I 

5.1 

Tcopy <-- AND(Mask, Tcopy) 

Binary 
9 8 7 6 5 4 3 2 1 

0 olo 0 0 olo 0 0 

5.2 

0 

• I 
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I LOADF I 
Syntax 

Hex 

[jjjjl 
Source 

0 
1 

15 

Semantics 

Binary 

15 14 13 12 11 IO 9 8 7 

0 0 0 0 lo 0 0 oio 
MEANS 

so 
S1 

S15 

(48 bits) 

FA ~ left half of Source 
FB ~right half of Source 

231 

6 5 4 3 2 l 0 

0 1 lsource I 
(Scratchpad) 
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I MANIPULATE 4-BIT I 
Binary 

Hex 15 14 13 12 11 10 9 8 7 654 3210 

~ Affected 4-bit 
Register 

RO w COL 0 I 

0 TA FU 
I TB FT 
2 TC FLC 
3 TD FLO 

4 TE FLE 
5 TF FLF 
6 CA -
7 CB FLCN 

8 LA TOPM 
9 LB -
0 LC -
I LD -

2 LE 
3 LF 
4 cc 
5 CD 



Microinstructions: Syntax and Semantics 233 

Semantics 

Let 

R <-L 

MONITOR 

Syntax 

Hex 15 

I 0 191nIn11 0 

Semantics 

R = the specified register, 
L = the specified literal. 

~7 

R <- (R+L) mod 16 

R <- (R+L) mod 16 

,,----"---...T 
R- L < 16 

F 

R <- (R-L) mod 16 

A <-A+ 16 

Binary 
14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 0 0 0 0 Literal 

Literal is sent out on 8 monitor lines, one per bit of the literal, to be 
sensed by any device designed for the purpose. 
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I MOVE 8-BIT LITERAL 

Syntax 
Binary 

Hex 15 14 13 12 11 IO 9 8 7 6 5 4 3 2 0 

ffiIJ Register row 
8nnn 000 Literal 

'-~~~~~-(c_o_Iu_m_n_2_o_nl_Y_l~~~~~~~~~~~~--' 

Semantics 

Let R be the specified register. 

ROW 
Registers 
(col. 2) 

0 x 
I y 
2 T 

L 

4 A 
5 M 
6 BR 
7 LR 

8 FA 
9 FB 

IO FL 
11 TAS 

12 CP 
13 
14 
15 
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I MOVE 24-BIT LITERAL I 
Syntax 

Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 0 

9 n n 0 0 

n 

Register row 
(col 2 only) 

Literal (first 8· bits) 

Binary 

9 8 7 6 5 4 3 2 I 0 

Literal (last 16 bits) 

REGISTER 

Row (COL 2) 

0 x 
I y 
2 T 
3 L 

4 A 
5 
6 BR 
7 LR 

8 FA 
9 FB 

10 FL 
II TAS 

12 CP 
13 
14 
15 

235 
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I MOVE 24-BIT LITERAL I continued 

Semantics 

Let R be the specified register. 

R ~Literal 

I NOOP I 
Syntax 

Binary 
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1°1°1°1°11° 0 0 ol 0 0 0 olo 0 0 o I o 0 0 ol 

Semantics 

Operation is null. 

I NORMALIZE x I 
Syntax 

Binary 
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1°1°1°1 3 11° 0 0 0 lo 0 0 olo 0 0 olo 0 1 I 
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Semantics 

FL::# 0 
and 

MSBX = 0 

T 

Shift X left 
I bit with 
right zero fill 

FL -FL-I 

237 

Note: MSBX means most significant bit of X as referenced by CPL. If 
CPL=O, the relation MSBX=O is set to true. 

I OVERLAY I 
Syntax 

Binary 
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

1°1°1°1 2 11° 0 0 0 lo 0 0 o I o 0 0 olo 0 oj 
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I OVERLAY I continued 

Semantics 
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push A 
TAS~ 

2 

3 

H-storeA ~ G-storeFA.FA+" 

FA~ FA+ 16 
FL~ FL - 1 

FL 4 0 
and 

4 

[A/16] < TDPMX512 

F 6 

A~TAS 
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READ/WRITE G-store 

Syntax 
Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 

0 =READ REG MEANS 

I= WRITE 
00 x 
01 y 

10 T 
II L 

Semantics 

Let I be a hidden register, and F /R = FDR/REV. 

T 
Length= 0 

F 

I <-Length I <--CPL 

(read) T 
R/W = 0 

F (write) 

F/R = 0 
F (reverse) 

F/R = 0 

4 3 2 I 0 

0 =FORWARD 
I= REVERSE 

F (reverse) 

239 

Reg E-0-store(FA.FA+i-n G-store<FA.FA+l- ll E- Reg12)-1.rn 

COUNT FA AND FL 
(using V and I) 

Seep. 227 

G-store,rA-I. FA- n E- REGcn-1.rn 
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I READ/WRITE H-store I 
Syntax 

Abridged Reference Guide to the 81726 

Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 

loioJ1J·l I· 0 0 ·I 0 0 0 ·I 0 I I I~ 

0 =READ 
I =WRITE 

Semantics 

T F 
R/W = 0 

X ~ H-storeL.L+rs H-storeL.L+rs ~ Xs.23 
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I REGISTER MOVE I 
Syntax 

Binary 
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Source reg Source Dest 
Destination 

0 0 0 I Reg ROW COL COL ROW 

Registers 

COL 0 2 3a 

0 TA FU x SUM 
1 TB FT y CMPX 
2 TC FLC T CMPY 
3 TD FLO L XANY 
4 TE FLE A XEDY 
5 TF FLF M MSKX 
6 CA BICNa BR MSKY 
7 CB FLCNa LR XDRY 
8 LA TOPM FA DIFF 
9 LB FB MAXS 

10 LC FL MAXM 
11 LD TAS 
12 LE XYCNa CP MBR 
13 LF XYSTa MSMA DATA 
14 cc INCNa CMND 
15 CD CPUb NULL 

a Source only. 
b Destination only. 
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I REGISTER MOVE I continued 

Semantics 

F 
Destination =I= M 

where M* is a copy of the next microinstruction. 
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SCRATCHPAD MOVE 

Syntax 

Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 0 

0 
Source/Dest Source/Dest 

ROW COL 0 0 

0 through 15 

O=TO = move is to the scratchpad 
l=FR =move isfrom the scratchpad 

Registers 

ROW COL 0 2 3• 

0 TA FU x SUM 
1 TB FT y CMPX 
2 TC FLC T CMPY 
3 TD FLD L XANY 
4 TE FLE A XEOY 
5 TF FLF M MSKX 
6 CA BICN" BR MSKY 
7 CB FLCN" LR XORY 
8 LA TOPM FA DIFF 
9 LB FB MAXS 

10 LC FL MAXM 
11 LD TAS 
12 LE XYCN" CP MBR 
13 LF XYST" MSMA DATA 
14 cc INCN" CMND 
15 CD CPUb NULL 

a Source only. 
11 Destination only. 
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I SCRATCHPAD MOVE I continued 

Semantics 

F 
Destination 4 M 

where M* is a copy of the next microinstruction. 

I SCRATCHPAD RELATE FA I 
Syntax 

Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

0 0 0 0 0 0 0 

0 = + specifies 
l = - SnA 

where 
n = 0. l ..... 15 
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Semantics 

FA f-- FA ± SnA 

I SETCYF I 
Syntax 

Binary 
Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l0 l0 l6 lnll 0 0 0 0 lo 0 0 olo ol v 

Semantics 

Values ofV 
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I SHIFf/ROTATE T I 
Syntax 
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Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 43210 

0 0 Destination reg Dest reg 
ROW COL 

Shift/rotate 
Count 

I to 24 

Registers 

ROW COL 0 2 

0 TA FU x 
I TB FT y 
2 TC FLC T 
3 TD FLD L 
4 TE FLE. A 
5 TF FLF M 
6 CA BR 
7 CB LR 
8 LA TOPM FA 
9 LB FB 
10 LC FL 
II LD TAS 
12 LE CP 
13 LF MSMA 
14 cc 
15 CD CPU 
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Semantics 

Let !en and Tcopy be hidden registers. 

T 

(Shift) 

Shift Tcopy 
left 1 en bits 
with right 
zero fill 

F 
Count~ 0 

T 

!en~ Count !en E- CPL 

Tcopy E- T 

SHT/RDT = 0 
(Rotate) 

Rotate Tcopy 
left !en 
bits 

247 
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SHIFT/ROTATE X OR Y 

Syntax 
Binary 

Hex 15 14 13 12 II 10 9 8 7 6 

ITIIJ 0 0 0 0 0 0 0 

Semantics 

Let len be a hidden register. 

len <-Count 

(Shift) 

Shift REG 
left len bits 
with right 
zero fill 

(Left) T 
LFT/RT = 0 

SHT/ROT = 0 

(Rotate) 

Rotate REG 
left l en bits 

F (Right) 

(Shift) 

Shift REG 
right len 
bits with 
left zero 
fill 

5 4 3 2 I 0 

REG Shift/rotate 
Count (I to 24) 

REG MEANS 

0 x 
I y 

SHT/ROT = 0 

(Rotate) 

Rotate REG 
right l en bits 
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SHIFT/ROTATE XY I 
Syntax 

Binary 

Hex 15 14 13 12 II 10 9 8 7 6 543210 

ITEEJ 0 0 0 0 0 0 
Shift/rotate 

Count (1 to 48) 

Semantics 

Register XY is X cat Y (48 bits). Let len be a hidden register. 

(Shift) 

Shift XY left 
len bits 
with right 
zero fill 

T 

len <-Count 

(Left) T 
LFT/RT = 0 

SHT/ROT = 0 

(Rotate) 

RotateXY 
left 1 en bits 

(Right) 

(Shift) 

Shift XY right 
len bits with 
left zero fill 

SHT/ROT = 0 

(Rotate) 

RotateXY 
right len bits 
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SKIP WHEN 

Syntax 
Binary 

Hex 15 14 13 12 11 JO 9 8 7 6543210 

0 

The MIL assembler maps the 

{
ALL[ CLEAR]} 
ANY [FALSE] 
EQL 

specification of the MIL SKIP 
instruction into a value of the 
variant V of the SKIP WHEN 
microinstruction as follows 

MIL SPEC. v 
ANY 0 
ALL I 
EQL 2 
ALL CLEAR 3 
ANY FALSE 4 
ALL FALSE 5 
EQL FALSE 6 
ALL CLEAR FALSE 7 

0 
Source key 

ROW 
Reg 
COL 

RO~ 
0 
I 
2 
3 

4 
5 
6 
7 

8 
9 

10 
II 

12 
13 
14 
15 

v 4-bit TEST 
Mask 

COL 0 I 

TA FU 
TB FT 
TC FLC 
TD FLD 

TE FLE 
TF FLF 
CA BICN" 
CB FLCN" 

LA TOPM" 
LB -
LC -
LD -

LE XYCN" 
LF XYST" 
cc INCN" 
CD 

' 1 May not be specified with V-valucs of .3 
and 7. 
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Semantics 

Let bool be a hidden Boolean (l-bit) register. 

=Oor4 
(ANY) 

bool ~ Mask " @(1)0000@ 
and there is a 1-
bit in REG that 
matches a cor
responding I-bit 
of Mask 

(V=O and bool = true) 
or 

(V=4 and bool =false) 

F 

Values of V 

(ALL) 

bool ~ Mask,.@(1)0000@ 
and every I-bit 
of Reg matches 
every I-bit of 
Mask 

V=3 or V=? 

T 

Clear all matched 
I-bits in Reg 

((V= I or V=3) and bool = true 
or 

((V=5 or V=7) and bool =false) 

F 

STORE F INTO DOUBLE WORD 

Syntax 

=2 or6 
(EQL) 

bool ~Reg = Mask 

(V=2 and boo! = true) 
or 

(V=6 and bool =false) 

F 

A~A + 16 

T 

A ~A+ 16 

Binary 

Hex I5 I4 I3 I2 II IO 9 8 

tEilJ 0 0 0 0 0 0 0 0 

7 6 5 4 

0 0 0 

Destination 

0 

3 2 0 

Destination 
(scratch pad) 

MEANS 

SO (48 bits) 
S1 

I5 S15 

251 
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I STORE F INTO DOUBLE WORD j continued 

Semantics 

I SWAP MEMORY I 
Syntax 

Hex 15 

[f[}] 0 

Semantics 

A-half of destination ~ FA 
B-half of destination ~ FB 

Binary 

14 13 12 II 10 9 8 7 6 

0 0 0 0 0 0 

5 4 3 2 I 0 

Field Length 
0 to 24 

0 =FDR 
I= REV 

REG MEANS 

00 x 
01 y 

10 T 
11 L 

Let copy be a hidden register the same length as that specified in 
Field Length. Let I be a hidden register. 

F 
Field Length "'- 0 

T 

I +-Field Length 

(Forward) T F (Reverse) 
FOR/REV= 0 
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copy <- G-store .. ,_,,.,_ 11 

G-store,FA.FA+t-ii ~ REG<24-i.:m 

REG<- copy 

XCH DOUBLEPAD WORD WITH F 

Syntax 
Binary 

Hex 15 14 13 12 II 10 9 8 

Hill 0 0 0 0 0 

7 

copy <- G-store .. ,_,_.,_ 11 

G-store1FA-I. FA- I) ~ REGc?4- 1. 231 

REG<- copy 

6 5 4 3 2 I 0 

Destination Source 
(double (double 

scratchpad) scratchpad) 

DESTINATION, 

SOURCE MEANS 

253 

0 SO (48 bits) 
S1 

Seman ties 

Leth be a 48-bit hidden register. 

h ~FA,FB 
FA, FB ~Source 

Destination ~ h 

1.5 S15 



TABLE 1 B1726 Microinstructions-an Abridged Summary 

Binary 

Hex 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Register Move 1 0 0 0 1 
Source reg Source Dest Destination 

n n n ROW COL COL reg ROW 

Scratchpad Move 2 0 0 1 0 
Source/Dest Source/ ~ Scratch pad 

n n n ROW Dest COL number B 

Manipulate 4-bit 3 0 0 1 1 REG ROW REG ya Literal n n n COL 

Bit Test False 4 0 1 0 0 REC ROW REG Bit s Relative 
n n n COL index displacement 

Bit Test True 5 0 1 0 1 REG ROW REG Bit s Relative 
n n n COL Index displacement 

Skip When 6 0 I 1 0 
Source reg REG y• 4-bit Test 

n n n ROW COL Mask 

Read/Write 7 n n n 0 1 I 1t1 ya REG ~ y Length 

Move 8-bit literal 8 n n n 1 0 0 0 REG ROW Literal 

{'. 1 0 0 1 
REG ROW 

Literal (first 8 bits) 
Move 24-bit literal 

n n n 
(col 2 only) 

n n n Literal (last 16 bits) 

Shift/Rotate T A 1 0 1 0 
Dest. reg Dest reg ~ Shift/rotate 

n n n ROW COL count T 

Extract from T B n n n I 0 I I 
R (right 

S (sink) W (field width) 
edge index) 

Branch Relative Forward c n n n 1 1 0 0 Relative displacement magnitude 

Branch Relative Backward D n n n 1 1 0 I Relative displacement magnitude 

Call Relative Forward E n n n 1 I 1 0 Relative displacement magnitude 

Call Relative Backward F n n n I I I I Relative displacement magnitude 

N 
(II 

.i:o. 

> er .. 
i5: 
'i a. 
:a 
CD 
;-
;; 
::s n 
CD 
Ci) 
c 
f 
() 

i 
m .... ..... 
N 
OI 



Swap memory 

Clear registers 

Shift/Rotate X or Y 

Shift/Rotate XY 

Count FA and FL 

XCH (exchange) 

Scratchpad Relate 

Monitor 

Bias 

Store F 

Load F 

Set CYF 

Read/Write (H-store) 

Halt 

Overlay 

Normalize X 

Bind 

No-Op 

0 I 2 I n I n 0 0 0 OI 0 0 I 

0 I 3 I n I n 0 0 0 01 0 0 I 

0 I 4 In I n 0 0 0 01 0 I 0 

0 I 5 I n I n O O 0 OI O I 0 

0 I 6 I n I n 0 0 0 01 0 I I 

0 I 7 I n I n 0 0 0 OI 0 I I 

IFDVI OI REG ~ 

I I L I T I Y 

~jREG 0 RO RT 

I~ 
o I v• 

Destination 
(scratchpad) 

Field Length 

x I FAIFLIFUI CP 

Shift/rotate 
Count 

Shift/rotate 
count 

Literal 

Source 
(scratchpad) 

0 I 8 I n I n 0 0 0 OI I 0 0 0 ~ Scratch pad 
number n 

0 I 9 I n I n 
0 0 3 n 

0 0 0 01 I 0 0 

O O O OI O O O 0 

OIOl41nllOOOOIO 0 0 0 

OIOl5lnllOOOOIO 0 0 0 

OIOl6lnllOOOOIO 0 0 0 

OIOl71nllOOOOIO 0 0 0 

0001 00000000 

0002 00000 0 0 0 

0003 00000 0 0 0 

0004 00000 0 0 0 

0000 00000 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Literal 

0 

0 

0 

0 

0 

0 

0 

v• J TEST 

Destination 
(scratchpad) 

Source 
(scratchpad) 

v• 

0 0 ~ 
0 0 0 I 

0 0 I 0 

0 0 I I 

0 I 0 0 

0 0 0 0 

• For explanation of variant field V, see Table 2. 

~ c;· 
a 
s· 
en 
2 
0 g. 
::i en .. 
(/) 

'§ 
ii;" 
)( 

Ill 
::i 
0.. 

g> 
3 
Ill 
::i .... 
~· 

N 
en 
en 
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O» 

TABLE 2 Explanation of Microinstruction Variants V 

MANIPULATE 4-BIT EXTRACT 
(3nnn) Variants (8 nnn) Variants 

BITS 6-4 CONDITIONS BITS 6-5 CONDITIONS 

000 SET 00 X REG 
001 AND 01 YREG 
010 DR 10 T REG 
011 EDR 11 L REG 
100 INC 
101 INC/TEST > 
110 DEC er .. 
111 DEC/TEST a: cs. 

SKIP WHEN (6nnn) SKIP COUNT FA AND FL a. 
:a Test Variants (06nn) Variants Ill 
if 

BITS 6-4 CONDITIONS BITS 7-5 CONDITIONS ii 
~ n 

000 ANY SKIP 000 NOP Ill 

G> 
001 ALL SKIP 001 FA t f 010 EQU SKIP 010 FLt 
011 ALL CLR SKIP 011 FA t FL! -0 
100 NOT ANY SKIP 100 FA! FL t -':Z' 
101 NOT ALL SKIP 101 FA! Ill 

110 NOT EQU SKIP 110 FL! m ... 
111 NOT ALL CLR SKIP 111 FA! FL! .... 

~ 



READ/WRITE MEMORY 
(7nnn) Variants 

BITS 7-6 CONDITIONS 

00 X REG 
01 Y REG 
10 T REG 
11 L REG 

BITS 10-8 CONDITIONS 

000 NOP 
001 FA j 
010 FLj 
011 FA j FL! 
100 FA! FL j 
101 FA! 
110 FL! 
111 FA! FL! 

BITS 7-6 

00 
01 
10 
11 

BITS 3-1 

000 
001 
010 
011 
100 
101 
110 
111 

SWAP MEMORY 
(02nn) Variants 

CONDITIONS 

X REG 
Y REG 
T REG 
L REG 

BIAS (003n) Variants 

CONDITIONS 

FU 
24 DR FL 

24 DR SFL 
24 DR FL DR SFL 

NOP 
24 OR CPL OR FL 

NOP 
24 DR CPL DR FL DR SFL 
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Appendix C 
A user's guide to McMIL and SMACK 

SMACK is a macro-based system designed to translate statements 
written in a superset of MIL (the Micro Implementation Language for 
the Burroughs B-1700) into standard MIL for subsequent processing by 
the MIL assembler. The superset of MIL, hereafter referred to as 
McMil, includes statements for the operating-system interface, debug
ging, and documentation. Utility subroutines are included with and 
activated by a user's Mc MIL program to provide the interface and 
debugging services. SMACK gives the casual user the impression of 
translating a McMIL source program into a microprogram for the B1700. 
The McMIL architecture is slightly different from that imposed by the 
B1700 operating system (MCP). This architectural change involves 
calculating a restart address so that logical flow of control in a 
microcode routine is n.ot disturbed by calls upon the operating system. 
Also included are storage mapping statements to help keep track of data 
areas within the data region (BR-LR, base to limit register) assigned by 
the MCP. 

The requirements of the SMACK system are few. One half scratchpad 
(24 bits) must be assigned to the SMACK system by giving it the name 
BASE. OF. INTERPRETER. This register is used to calculate return 
addresses, and holds the absolute address of the first instruction of the 
microcode routine. The SMACK utility subroutines must be placed 
ahead of any user code (except DEFINEs and MACROs) for proper 
address calculation of the restart address. In addition, the SMACK 
routines use a data region for the MCP communication message that lies 
in the BR-LR region. This area is reserved by the use of McMIL storage 
allocation statements so that conflicts with other data areas can be 
avoided. 

The SMACK processor is easily activated with two control cards, and 
upon terminating will automatically link to the MIL assembler with no 
operator intervention. SMACK handles disk maintenance of relevant 
files, purging old files and creating the new microcode (interpreter) file. 
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1 McMIL STATEMENT SYNTAX 

All McMIL statements begin with an equal sign ( =) in column 1 and 
are called E-statements. Each McMIL statement must fit on one card. 
One or more blanks separate the items on a McMIL statement, and 
commas can be freely used as an alternate for a blank. In any place 
where an arithmetic expression is indicated (OPEN options, sizes) no 
blanks are allowed within the expression. 

2 McMIL STATEMENTS FOR THE OPERATION 
OF THE SMACK PROCESSOR 

One register (a 24-bit scratchpad) must be devoted to the housekeep
ing chores that the SMACK subroutines perform. This register is given 
the name BASE. OF. INTERPRETER. For example, to assign scratchpad 
S13B for this purpose, the following line would be coded 

DEFINE BASE.OF.INTERPRETER= S13B # 

Alternatively the "=DF" McMIL statement could be used as follows 

=DF BASE.OF.INTERPRETER=S13B 

See Section 4, statement type 8, in this Appendix. 
After the BASE. OF. INTERPRETER register is assigned, the SMACK 

subroutines must be included. This is done with the following McMIL 
statement. 

1. =INITIALIZE 

This statement initiates the standard section (see =SECTION) named 
"SMACK"; it also allocates areas in the BR-LR data region for system 
communication. These areas are used by SMACK, so user microcode 
should not rely on the contents of these areas. If the "=BSS" statement 
is used to mark off storage, the user should have no problems. 

To end the McMIL expansion phase and invoke the MIL assembler, 
use the statement 

2. =TERMINATE name 

The name appearing on the TERMINATE statement will be the name of 
the assembled microcode when stored on disk after successful assembly. 
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3 McMIL STATEMENTS FOR DOCUMENTATION 

3. =SECTION name 

The appearance of a SECTION statement will separate the listing of 
the code following from that which appeared prior to the SECTION 
statement. Also, the name of the section is printed on the left side of the 
listing. 

The source code generated by the expansion of £-statements is 
usually suppressed, but may be turned on for a complete section by the 
appearance of the following statement 

4. =MLIST name1 name2 ... 

The names of sections appearing on an MLIST statement will have all 
generated statements (from the McMIL expansion) listed along with the 
rest of the output. The "=MLIST" statement must appear before any 
section to which it refers. 

5. =NDLIST name1 name2 

The NDLIST statement will cause suppression of the listing of any 
section whose name appears on that statement. The NDLIST statement, 
like the MLIST statement, must appear before any section named on the 
statement. 

The listing of the SMACK subroutines is usually suppressed. How
ever, it may be reselected by inserting the section name "SMACK" on 
an MLIST statement. In this case an MLIST card must appear before the 
INITIAL statement. 

There can be any number of "=MLIST" or "=NDLIST" statements in 
a McMIL program. 

4 McMIL STATEMENTS USED TO FORMAT THE LISTING 

6. =STARS or =STARS n 

This statement produces lines of asterisks on the listing, helping to 
visually separate lines of code from each other. The n indicates that 
2n + 1 lines of asterisks are placed on the listing. 
7. ==any-text=more-text= 

This statement, containing four equal signs, will cause a comment line 
with the following format to appear: 

%* *any-text *more-text * 
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8. =DFsymbol=text 

This line results in a MIL DEFINE with the following form: 

DEFINE symbol =text # 

giving a neater listing than DEFINE with arbitrary formats. 
Similar in appearance is the following McMIL statement: 

9. =DVsymbol=arithmetic-expression 

All four operators ( + - * /) and parentheses can be used to evaluate 
an integer expression. Operator precedence is as usual. The maximum 
value of any operation is 2**15-1. There can be no spaces (blanks) in 
any arithmetic expression. The effect of this statement is to issue a MIL 
define to set the value of symbol to the proper numerical result. 

Example 

=DV TRACE.FILE=8*5+3*3 
produces 

DEFINE TRACE.FILE =49 # 

5 McMIL STATEMENTS FOR STORAGE ALLOCATION 
AND ADDRESSING 

10. =data-name BSS size-in-bits 

This statement defines the data-name as a displacement from BR and 
assigns the length in bits (evaluated as an arithmetic expression) as the 
length of the datum. The next BSS will assign the displacement from the 
next available bit position. Note that this statement does not actually 
reserve space but "marks off'' the existing space between BR and LR. 
This statement is completely equivalent to the MIL statement 

DECLARE DATA.NAME BIT(SIZE.IN.BITS); 

11. =ADD OF datum 

This statement generates code to cause FA to point to the absolute 
address (not base-relative) of the indicated datum. The semantics is 

FA ~ BR+datum 
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This statement does not change the value of any other register. The 
datum should have been declared with the DECLARE or "=BSS" 
statement. 

6 McMIL STATEMENTS FOR DEBUGGING 

It is possible to take a snapshot of any single register (except TAS) at 
any time. The output will be directed to the line printer. The state of all 
registers will be restored upon completion of the snap function, and 
execution will continue as if there were no debugging statements in the 
microprogram. 

The debug option should not be used if relocation of the interpreter is 
possible. This could happen in a multiprogramming environment. The 
addresses in the stack corresponding to return addresses in the micro 
code could be incorrect in such a case. 

The debug option can be set for any section of code (see =SECTION) 
with the following statement 

12. =DEBUG name1 name2 

There may be any number of names on the DEBUG statement. Each 
such section will have SNAP statements (see below) expanded; if the . 
DEBUG statement has not selected a section, then any SNAP statements 
in that section are ignored. 

{
24-bit literal] {OCTAL ] 

13. =SNAP . AS number HEX CHARS 
register EBCDIC 

The literal or the value of the register will be placed in the trace 
buffer. Control returns to the statement immediately following the SNAP 
statement. 

14. =PRINT SNAP 

This statement causes the trace buffer to be dumped to the line 
printer. The buffer will automatically print if more than 110 characters 
are in it. The PRINT SNAP also returns control to the next statement and 
restores all the registers. 

If the debug feature is desired, then at least one DEBUG statement 
must precede the =INITIALIZE statement to cause the inclusion of the 
proper subroutines. 
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6.1 Optional suppression of invoked DEBUG feature 

When using the debug feature of SMACK, the leftmost console switch 
will suppress the printing of the trace buffer if set to the up position. In 
the down position, the trace buffer is printed normally. 

7 McMIL STATEMENTS FOR MCP INTERFACE 

ALL of the following statements restore the scratchpads, but destroy 
all other registers. 

15. =DUMPFILE 

The execution of this statement will cause all of the data between BR 
and LR to be placed on a disk file (DUMPFILE/number). Execution will 
continue. The dumpfile can be analyzed and printed by using the console 
command "PM number" (where the number is the same as was printed 
on the console printer at the time of the dump). 

16. =STOP 

Generates code such that execution of the microprogram is termi
nated, memory is released, all files are closed, and MCP regains control. 

17. =IF NO INTERRUPTS GD TD label 

When this McMIL statement is executed the hardware checks the 
state of all physical devices (card reader, disk, etc.) to determine if any 
drastic change in the state of the machine is indicated; if not, control will 
transfer to label. If there is a real need to return to MCP (temporarily), 
control will pass on to the next statement. Any housekeeping that the 
programmer desires to do before control is released is performed (care is 
necessary to preserve the system information in the "L" register). A 
=SERVICE INTERRUPTS (see statement 18) is then executed. 

18. =SERVICE INTERRUPTS 

This McMIL statement releases control of the processor to MCP. 
Upon return to the user, all scratchpads are restored. Control is then 
passed to the next sequential statement. 

19. =CHECK INTERRUPTS 

This statement is a combination of the above two statements; no 
further processing of interrupts is necessary. 
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Examples of interrupt handling are 

INSTRUCTION.FETCH 
=CHECK INTERRUPTS 

and 

MOVE NEXT.INSTR.POINTER TO FA 
READ 16 BITS TO T INC FA 
MOVE FA TO NEXT.INSTR.POINTER 
: % DECODE INSTRUCTION 

INSTRUCTION.FETCH 
=IF NO INTERRUPTS GO TO +OK 

MOVE COUNT.OF.ESCAPES TO X 
MOVE 1 TO Y 
MOVE SUM TO COUNT.OF.ESCAPES 

=SERVICE.INTERRUPTS 
.OK MOVE NEXT.INSTR.POINTER TO FA 

READ 16 BITS TO T INC FA 
MOVE FA TO NEXT.INSTR.POINTER 
: % DECODE INSTRUCTION 

8 McMIL STATEMENTS FOR MCP COMMUNICATION 

20. =OPEN file-id WITH 

Possible open options are 

NEWFILE 
INPUT 
OUTPUT 

or 512 
or 2048 
or 1024 

(option) 

Force new disk file 
Allow reading to occur 
Allow writes to file 

OPEN options are specified either alone or with simple addition (e.g., 
INPUT+OUTPUT). Parentheses are optional in this arithmetic expression, 
but no spaces are allowed. 

Examples of OPEN and CLOSE statements are 

=OPEN PRINT.FILE WITH 
=OPEN PRINT.FILE WITH 

21. =CLOSE file-id WITH (option) 
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Possible CLOSE options are 

REEL or 2048 Close a reel of multireel file 
RELEASE or 1024 Return buffers to memory 
PURGE or 512 Remove the file from disk directory 
REMOVE or 256 Substitute this file for another in directory 
CRUNCH or 128 Release unused disk space 
NREWIND or 64 Do not rewind 
CODE or 32 Set file type as executable 
LOCK or 16 Enter file in disk directory 
conditional 8 Do not abort if already closed 

An example of a CLOSE statement is 

=CLOSE DISK.OUT.FILE WITH (REMOVE) 

A rewind request on a file is done by a CLOSE with no options 
followed by an OPEN. Only one CLOSE option may be specified at a 
time. 

The "general MCP request" statement is the most powerful state
ment, because of the many forms and variants permitted. Items that 
occur within square brackets are optional and, if included, modify the 
effect of the request. Items within braces indicate that one and only one 
is to be chosen. 

22. 
={BUFFER request USING buffer-name } 

request size {:;~~s} CORE address 

[FILE file-id [KEY register]] 

[{OOPNT} {IN register } 
option-expression [{~~T~o} label]] 

The BUFFER option will use the size of a datum as defined with a 
DECLARE or as a BSS pseudo-op; otherwise the size must be explicitly 
specified with the BITS or BYTES option. The address specified after 
CORE is a base-relative displacement (i.e., absolute address-BR). If a file 
(i/o unit) is implied by the operation, then the FILE option must be 
specified, and file-id indicates (as a number) which file (logical i/o 
device) is to be selected (see LOADER description in Appendix D). If 
the file is a random-access disk file, the KEY variant must appear, and 
the key or record number specified in a register. (Note that random
access files start at record number 1.) Some i/o operations imply certain 
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options (e.g., spacing the printer) which may be specified by the 
appearance of the keyword DPT (or ON). If the option resides in a 
register, select the IN variant. GD TD will transfer to the label only if the 
proper variant has been requested (e.g., EDF). 

The keyword OPT is equivalent to ON, and the keywords GD TD are 
equivalent to GOTO. 
Some examples of this general request statement are 

=BUFFER INPUT USING CARD.AREA FILE CARD.READER 
% WITHOUT END FILE CHECKING 

=BUFFER OUTPUT USING PRINT.LINE FILE PRINT OPT DOUBLE 
=READ 180 BYTES CORE DISK.IN.AREA FILE RANDOM.DISK KEY S2B 
=BUFFER ZIP USING ZIP.CONSTANT 
=SEEK 0 BYTES CORE 0 FILE RANDOM.DISK KEY S2B 
=OUTPUT 0 BITS CORE PRINT.AREA FILE PRINTER OPT EJECT 

A complete list of the possible requests follows. 

INPUT or READ 
OUTPUT or WRITE 
SEEK (needs KEY) 
DISPLAY (no file) 
ACCEPT (no file) 
ZIP (no file) 

Possible options are 

SINGLE 
DOUBLE 
EJECT 

(printer only) 
(printer only) 
(printer only) 

Transfer data from storage to file 
Transfer data to file from storage 
Position random-access file 
Write message to console teletypewriter 
Get message from operator 
Send control card to operating system 

or 14 
or 15 
or 1 

EDF (detect end file) or 2048 
or 1024 
or 0 

Allows GO TO variant 
Allows GD TD variant PARITY (detect parity) 

NO-ADVANCE (overprint) 

Multiple options are specified by simple addition, for example, 

EJECT+ PARITY 

No blanks are allowed. 
Figure C.1 shows a sample deck structure and corresponding mapping 

of base-limit memory area. To access (the first bit of) the area named 
SECOND, set FA to BR+SECDND or use "=ADD OF SECOND". The SMACK 
storage region will be quite large if the "=DEBUG" option is used. The 
question mark indicates an MCP system control card which contains a 
(1-2-3) overpunch in column 1. 
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?END LR 

not allocated 
=TERMINATE DUMMY 

=SECOND BSS 100*2 
SECOND (200 bits) 

=INITIALIZE 

=FIRST BSS 100 
SMACK storage 

?DATA CARDS 

?EX SMACK 

FIRST (100 bits) 

BR 

Figure C.1. 

Caution Incorrect code may be generated by the general request 
statement 22 if any of the parameters are specified in the volatile 
registers X, Y, T, L or any of the outputs from the ALU (SUM, DIFF, 
... ). If a situation occurs where the user really needs to specify one of 
the parameters as one of these registers, it is up to the user to verify that 
the resulting code sequence will not clobber one of the registers used as 
a parameter. 

The most general construct will always generate code as follows. 

=request size BYTES CORE location FILE file-id 
KEY key OPT IN option 

generates 
MOVE key TD TAS 
MOVE location TD TAS 
MOVE size TD T 
SHIFT T LEFT BY 3 BITS TO TAS 
MOVE request TD X 
MOVE file TD Y 
MOVE option TD L ~ ~ 

~~~~ ~X~~ TAS < ~~~~ 
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TABLE C.1 Summary of McMIL E-Statements 

1 =INITIALIZE 
2 =TERMINATE 
3 =SECTION 
4 =MLISTa 
5 =NDLISTa 
6 =STARS 
7 ==any-text=text= 
8 =DF 
9 =DV 

10 =data.name BSS 
11 =ADD OF 
12 =DEBUGa 
13 =SNAP 
14 =PRINT SNAP 
15 =DUMPFILEb 
16 =STOPb 
17 =IF NO INTERRUPTS GO TOb 
18 =SERVICE INTERRUPTSb 
19 =CHECK INTERRUPTSb 
20 =OPENb 
21 =CLOSEb 
22 =(general i/o request)b 

a Nonexecutable. Place before =INITIALIZE. 
b Destroys contents of X, Y, T, L, FA, FB, CA, CB, CP, and the stack. 
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Loader primer 

In most programming languages, the data and possibly input-output units 
are specified along with the code that operates on the data and reads and 
writes to the i/o devices. For example, in FORTRAN the DATA 
statement will preset variables, the DIMENSION statement will reserve 
storage, and the files (i/o units) may be declared in the program header 
statements. The COMPASS assembler for the CDC-6400 has many 
statement types (pseudo-ops) for defining data, octal constants and file 
tables. In one language, however, a clear distinction is made between 
code and data and input-output units. This language is COBOL, where 
data appear only in a DATA section, code only in a PROCEDURE section, 
and input-output assignments only in the INPUT-OUTPUT section. 

In the B1700 operating environment this separation is carried to an 
extreme in that the data definition and code (microcode) specification 
are handled by completely different compilers. The code section is 
handled by the SMACK-MIL system, and the specification of data and 
input-output assignments by the LOADER. This total separation may be 
cumbersome and sometimes difficult to utilize in a student environment. 
The justification for this separation is the fact that microcode can be 
shared by many different users. Each user would be represented by a 
different data area. 

All of this implies that to run a program on the B 1700 one must 

1. Specify the data area, the interpreter, and the input-output assign
ments (with the LOADER) 

2. Specify the proper operations on the data area (with SMACK
MIL) 

3. Request the MCP to execute the codefile-microcode package 
using a suitable command sequence in a job-control language 
(JCL). 

1 THEJCLCOMMANDSEQUENCES 

The above operations will be performed by the following skeleton JCL 
stream. In the example given in Table D.1 the microcode will be named 
SENATOR and the data (codefile) will be named SENATE/BILL245. 
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TABLE D.1 Skeleton JCL Stream 

JCL 

?CD SENATE/BILL245 WITH 
LOADER TD LIBRARYa 

?DATA CARDS 

Interpreter, scratch~ad settings, data,} 
and file assignments 

?ENDa 
?EX MCMILa 
?DATA CARDSa 

=TERMINATE SENATOR 

?ENDa 
?EX SENATE/BILL245 

INTERPRETER=SENATDR a,b 

Loader Primer 

COMMENTS 

Call loader to analyze data 
specifications contained on card deck. 

Loader card deck. 

Call SMACK to expand, then 
assemble the MIL cards that follow. 

McMIL program 
Specify the name of. microcode on disk 

storage. 

Specify the microcode for proper 
execution. 

a The first column of a control card marked, "?", is a 1-2-3 multipunch. 
b This command is given to the operating system after the loader and MIL assembly 

have been successfully completed. 

In this description the term microcode has been consistently used to 
describe the operations on data. However, the operating system refers 
to the microcode as the INTERPRETER, and refers to the data as a 
program or codefile. Unfortunately, keywords like INTERPRETER are 
not truly descriptive, but they are in agreement with Burroughs conven
tions. 

2 SYNTAX OF THE LOADER CARD DECK 

(card deck for loader> : : = 
(program parameter specifications>; 
(scratchpad settings); 
(file descriptions) 
DAT A (data specifications>; 
FINI 

Card boundaries are ignored, except that a decitnal constant or data 
name (such as an input-output unit name) may not be split by a card 
boundary. A semicolon (;) separates the different sections (e.g., each 
input-output specification is terminated by a semicolon). 

(file descriptions> : : = (empty> I (file> (file descriptions> 
(file)::= FILE (input-output-attributes); 
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2.1 Program parameter specifications 

The following items are specified in the (program parameter specifica
tions) part: 

(program parameter specifications) : : = (empty) I (ppb spec) 
(at least one blank) 

(ppb spe-;) ::= 
INTERP . P = (name) 
INTERP = (name) I 
INTERP. S =(name) I 
STATIC = (decimal integer) 

(program parameter specifications) 

pack name where microcode resides 
(first) name of microcode 
second name of microcode (if any) 
size in bits of memory (this is where 

the DATA segment, if any, is loaded) 

The actual length of the BR-LR region, as determined by the 
LOADER program, will be the maximum of the STATIC specification 
and the length implied by the DATA segments (described in Section 2.4). 

Example 

INTERP=SENATOR STATIC=150QO; 

will select microcode SENATOR with a BR-LR region of at least 15,000 
bits. 

2.2 Scratchpad settings 

The initial scratchpad settings for microcode execution may be 
specified as binary, quartal, octal, hex, or decimal constants, or as 
character strings. 

The form of the data specification for scratchpad settings is precisely 
as for "the DATA segments (see Section 2.4 of this appendix). The data 
are assigned to the scratchpads as follows: the first 24-bit quantity goes 
to SOA, the second to SOB, the next to S1A, etc. If the scratchpad 
settings are empty (with only the semicolon specified) all scratch
pads will be set to zero. Note that the scratchpad selected for 
BASE. OF. INTERPRETER (see SMACK Discussion, Appendix C) must 
be initially set to zero. 

Example 

~ 
1024 @)5050EE(3)01234567 See Section 2.4 of this Appendix 

for further explanation. 
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will assign the bit pattern 

0000 0000 0000 
0101 0000 0101 
0000 0101 0011 
LJLJLJLJ 

0100 0000 0000 
0000 1110 1110 
1001 OUl 0111 
LJ LJ LJ LJ 

toSOA 
to SOB 
to S1A 

(0 1 2 3 4 5 6 7) 

and zerQ to all other scratchpad registers. 

2.3 File descriptions 

Each file is assigned a number according to its position relative to the 
other FILE specifications. The first FILE is given the number 0, the 
next 1, and so on. The microcode refers to the input-output units by this 
number. The DATA segment is automatically brought into memory at the 
location pointed to by the base register (BR). 

The FILE specification supplies information about the actual data 
path for program communication with input-output devices. Most of the 
available options under the operating system can be set with the 
LOADER. They are 

(input-output attributes) ::= (empty) l (i-o-attribute}(input-output attri
butes) 

(i-o-attribute) : : = 
PACK=(name) 
NAME=(name) 

SUBNAME=(name) I 
HARDWARE=(decimal integer) I 
BUFFERS= (decimal integer) I 
LOCK J 

DEFAULT 

READER 

DISK 

TAPE 

PRINTER 
QUEUE I 

disk pack name for disk file 
name for file (internal and exter
nal) 
second name of file 
special hardware type 
number of buffers 
save this file after termination 
of job 
use record length and blocking 
factor of file as it appears in 
disk directory 
hardware type is 80-column 
card reader 
hardware type is any available 
disk 
hardware type is any magnetic 
tape 
hardware type is line printer 
queue file for interprogram 
communication 
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NO.LABEL I 

REC=(decimal integer) I 
REC . P. BLK =(decimal integer) 

ADVERB=(decimal integer) 

RANDOM I 

AREAS= (decimal integer) 

BLK . P . AREA= (decimal integer) I 

REC. P. AREA= (decimal integer) I 

BINARY 

273 

suppress page eject on open and 
close 
record size in bits (fixed length) 
number of records in block 
(fixed length) 
options for open when implied 
by i/o on a closed file 
disk-file random-access flag (set 
BUFFERS to 1) 
maximum number of disk areas 
(default is 40) 
sets size of one area to number 
of blocks 
sets size of one area to 
number of records (record size 
and records per block already 
set) 
on 80-column card reader use 
binary reads/writes 

Note: specify only one hardware type (don't ask for a DISK QUEUE 
type file, etc.). Do not ask for zero buffers. 

Example 

FILE NAME=INF DISK REC=640 DEFAULT; 

-a disk file with record size of 80 characters. 

FILE NAME=CARDS READER BINARY 

-card reader allowing binary reads. 

FILE NAME=PR PRINTER NO.LABEL REC=960 REC.P.BLK=1 

-printer file with 120 characters per line and no page ejects at open/ 
close time. 
Note. The microcode would refer to the disk file as file 0, the card 
reader as file 1 and the printer file as file 2. The operating system would 
refer to these files as INF, CARDS, and PR respectively. 

2.4 DATA segment 

Information for the DAT A segment is specified in any of the following 
formats. 

Bit string A string enclosed in "at" signs (@) is hexadecimal. If 
another base is desired, specify the desired bit grouping within 
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parentheses [e.g., (l)for binary, (2) for quartal, (3) for octal, and (4) 
for hexadecimal]. The base may be changed at any time within a bit 
string. For example the following bit pattern 1010111010111 can be 
specified in any of the following ways: 

@AEB(1)1@ = @(2)223(3)5(4)7@ = @(3)53(1)10101(2)3@ 
= @(1)1010111010111@ 

Bit strings may be of any length, blanks are ignored, and a bit string 
may cross a card boundary. 

Character string a string of characters enclosed in double quotes (") 
will be treated as a sequence of EBCDIC (8-bit) characters. Two 
consecutive double quotes will be taken as one occurrence of a 
double quote. Blanks are not ignored, but card boundaries are. 

Decimal data a decimal integer (not enclosed in double quotes or "at" 
signs) will be converted to its 24-bit binary representation. The 
suffix P (precision) followed by an integer describing the bit length 
will set the data item to be 0 to 24 bits long. The above string 
@AEB( 1) 1@ could be specified as 10P4 14P4 11P4 1P1. 

Note. The DATA segment may be of arbitrary length and the various 
types of specifications may be mixed freely. 

3 EXAMPLE 

An input deck for the LOADER is as follows. 

?CO FRAME/WORK WITH LOADER LIBRARY 
?DATA CARDS 
INTERP=EXAMPLE STATIC=5500; 
FILE NAME=PRINTER PRINTER; 
FILE NAME=CARDS READER; 
DATA "THE END"; 
FINI 
?END 



Appendix E 

McMIL listing for an abridged SAMOS 
interpreter 

This appendix presents the rudimentary or skeleton version of the 
SAMOS Interpreter discussed in Chapters 5 and 6, together with the 
LOADER program, data deck, and sample output. 

Page 
Part 1 Source listing of the SAMOS interpreter input to 

the McMIL processor 275 
Part 2 MIL assembler listing of the SAMOS interpreter 285 
Part 3 Source listing of the LOADER program for gener-

ating the codefile for the SAMOS interpreter 301 
Part 4 Output listing of the LOADER program 301 
Part 5 Listing for a simple data deck (one SAMOS pro-

gr.am) to be executed by the SAMOS interpreter 301 
Part 6 Output produced by the SAMOS interpreter when 

processing the data deck given in Part 5 302 
Part 7 Sequence of enhancements for the SAMOS inter-

prete( 302 

1 SOURCE LISTING OF THE SAMOS INTERPRETER INPUT TO 
THE McMIL PROCESSOR 

Each card image is preceded by a card number followed by a colon. 

1 :?EX HCMIL 
2 :?DATA CARDS 
3 : DEFINE CARO.READER 
4 : DEFINE PRINTER 
5 : DEFINE FIFTY.SIX 
6 : DEFINE MESSAGE.BASE 
7 : DEFINE BASE.OF.INTERPRETER 
8 : DEFINE SAHOS.STDRE.AODR 
9 : DEFINE INAREA.AODR 

10 : DEFINE PRINT.AREA.AODR 
11 : DEFINE EA 
12 DEFINE MESSAGE.LENGTH 
13 :% DEFINE LOCATION.COUNTER 
14 DEFINE WORK.COUNTER 
15 DEFINE TERMINATION.CODE 
16 DEFINE LOAD.CODE 
17 DEFIN£ FOUND.SWITCH 
18 DEFINt: MASTER.SWITCH 
19 : DEFINE FLAG 
20 DEFINE YES 
21 DEFINE NOT.YET.SET 
22 DEFINE SIZE 
23 : DEFINE WORK.LIMIT 
24 DEFINE OK 
25 DEFINE EOF 
26 DEFINE STAR 
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=1 # 
=O # 
=S 3A # 
=S4A I 
=SlU I 
=S13A # 
=SHA# 
=S15A# 
=SIB# 
=STB# 
=S9B# DEFINED IN LOAO.A.PROG 
=S 118 I 
=S12B# 
=SUB# 
=S 148 # 
=5158' 
=FLF# 
= 1 ' =O # 
=100# 
=15001 
=O # %VALUES FOR 
=1 # %LOAD.CODE 
=2 # 
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27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
Ill 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 

McMIL Listing for an Abridged SAMOS Interpreter 

l 

DEFINE TDDBIG 
DffINE IXJ.ADDR 
DEfINE IX2.ADDR 
DEfINE Ixt.ADOR 
DEflNE IC.ADOR 
OEfINE ACC.ADDR 
OEfINE CHAR 

DECLARES 
DECLARE 

MESSAGES 
MESS.1 CHAR(18l• 
MESS.2 CHAR(15), 
MESS.3 CHARtllJ, 
~ESS.4 CHAR<lll• 
HESS.5 CHAR< IO>• 
MESS.& CHAR<19l• 
MESS.7 CHAR<12>• 
HESS.8 CHAR<l2J, 
HESS.9 CHAR(19J, 
MESS.10 CHAR<l5l• 
HESS.11 CHAR<l&J, 
MESS.12 CHAR<l&J, 
MESS.13 CHAR<24l• 
MESS.14 CHAR<25>• 
INAREA CHAR<80l• 
PRINT.AREA CHAR<80J; 

DECLARE 01 STORAGE.fOR.SAMOS, 
02 REGISTERS. 

03 IX3 BIT<88), 
03 IX2 BIH88J, 
03 IX1 BITC88>• 
03 IC BIT(88l• 
03 ACC BIT(86l• 

02 SAMOS.STOR£CSIZEl• 
03 SIGN CHARCl>• 
03 OPCODE CHARC 3 >, 
03 INDEXES, 

04 INDEX1 CHARCIJ, 
04 INDEX2 CHAR<!>• 

: 04 !NOE X3 CHAR< 1 lo 
: 03 AODRESSS CHARC4); :z MACRO DEfINITIONSCGLOBALl 

MACRO Eff.ADDR.TO.fA 

=3 ' =a8oooo5a ' % -5 IN 
=08000044 

' % 
-4 IN 

=a8oooo3a ' % ~3 IN 
=<18000024 

' % 
-2 IN 

=•800001• # % -1 IN 
=CHA RAC TE Rt 

%'PROGRAM INCOMPLETE' 
%1 PROGRAH TOO BIG' 
%'NORMAL HALT' 
%'BAO DP CODE' 
%'0VERllORKED 1 

SIGNED 
SIGNED 
SIGNED 
SIGNED 
SIGNED 

% 1 BAO OPERAND ADDRESS• 
%'BAO IC VALUE' 
%'E0f ON INPUT' 
i!~B~=~~=~~fg ~~~~AND' 
%1 ADDR NOT DECIMAL' 
%1 TOO MANY INDICES• 
%1 ERROR IN THE INTERPRETER' 
%'BEGIN BATCH RUN fOR SAHDS 1 

% CARO IHAliE 
% LINE !HAGE 

% RELA TIYE 
% 

AODR -5 
-4 

% 
% 
% 
% 
% 
% 

-3 
-2 
-1 

SAHOS STORE BEGINS HERE. 
IT IS SIZE llORDS LONG. 
EACH WORD HAS 11 CHARS. 

HAG. 
MAG. 
MAG. 
MAG. 
HAG. 

%COMPUTES EffECTIVE ADDRESS ANO 
%LEAVES EQUIVALENT ABSOLUTE AOOR 
%IN fA 

:z 
: 
: 
: 
: 
: 
: 

CALL EffECTIVE.AOOR 
If fLf NEQ 0 THEN 

HOYE EA TO T 
GO TO 

%ALSO LEAVE REL ADOR IN EA CS1B> 
EA.ERROR 

:% :z 
•% :z 
• 

CALL BINARY.TO.FA I 
END MACRO 

MACRO TEN.T.PLUS.D<LXI 
SHIFT T LEfT BY l BIT TO X 
SHIFT T LEfT BY 3 BITS TO Y 
HOVE SUM TO X 
HOVE LX TO Y 
HOVE SUH TO l 

•% END MACRO 
:=INlll'IALIZE 
:=SECT ION SHELL 
: % SEE f!G. 5-3 
:z SET UP SCRA TCHPJ\D 
: HOVE PRINT.AREA TO PRINT.AREA.ADOR 
: HOYE INAREA TO INAREA.ADDR 
: HOVE SAHOS.STORECOJ TO SAHOS.STORE.ADDR 
: MOVE 56 TO flfTY.SIX 
:=OUTPUT DATA.LENGTH<HESS.14> BITS CORE MESS.14 f!LE PRINTER DPT EJECT 
: HOVE NULL TO HASTER.SlllTCH %80X1 
: HOVE NULL TO fOUNO.SlllTCH 
:. HAIN. SHELL.LOOP 
i ~~vi ~~~T~Ri~r~T~M l8 !sTOP.STEP 
:Z CALL fINO.A.JOB.CARD ROUTINE 
: GO TO FINO.A.JOB.CARD 
i.BOX4.SHELL 
: MOVE FOUND.SWITCH TO X 
: HOVE l TO Y 
: If X NEQ Y THEN GO TO -HAIN.SHELL.LOOP 
: HOVE NULL TO FOUND.SWITCH 
:% CALL LOAD.A.PROGRAM ROUTINE 
: GO TO LOAD.A.PROGRAM 
:.BOX6.SHELL 

HOVE LOAD.CODE TO X 
HOVE OK TO Y 
If X EQL Y THEN GO TO +BOX7 
MOVE EOf TO Y 
[f X EQL Y THEN GO TO -HAIN.SHELL.LOOP 
HOYE STAR TO Y 
If X EQL Y THEN 

TO BOX3 

% FROM BOX3 

% BOX 4.1 
% BOX 4. 2 

TO BOX5 

% FROM 80X5 

% BOX 9.1 

% BOX 9.3 

: BEGIN %PROGRAM INCOMPLETE. BOX 9.4 
:=OUTPUT DATA.LENGTHCHESS.ll BITS CORE MESS.1 FILE PRINTER OPT DOUBLE 
;=OUTPUT 80 BYTES CORE INAREA FILE PRINTE~.~~flg~N~~~ A STAR CARD 

HOVE l TO fOUNO.SllITCH 
END ELSE 
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125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
163 
164 
165 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 

BEGIN 
i=DUTPUT DATA.LENGTH!MESS.2> BITS CORE M~~~~~R~hl 0~RU~ER OPT DOUBLE 
: ENO 
: GO TD -HAIN.SHELL.LOOP :.eon :z CALL INTERP.PROGRAM ROUTINE 
: GO TD INTERPRET.PROGRAM 
:.BOX8.SHELL 
: MOYE TERHINATIDN.CODE TO X 
: HOYE NOT. YET. SET TO Y 
: If X EQL Y THEN Z SHOULD NOT HAPPEN 
: BEGIN % ERROR IN INTERPRETER 
: HOVE 1 TO MASTER.SWITCH 
:=OUTPUT DATA.LENGTH<HESS.131 BITS CORE HESS. 13 FILE PRINTER OPT DOUBLE 
: END 
: GO TD -MAIN.SHELL.LOOP 
:z END or MAIN SHELL LOOP 
:. STOP. STEP 
•=OUTPUT DATA.LENGTH<MESS.81 errs CORE HESS-8 FILE PRINTER OPT SINGLE 
:=STOP 
:=SECTION FINO.A.JOB. 
:flND.A.JOB.CARD %ROUTINE BEGINS HERE. SEE FIG.5-4 
:. f I ND. LOOP 
: HOVE FOUND.SWITCH TO X 
: If x NEQ 0 THEN GO TO -BOX4.SHELL 
: HOYE MASTER.SWITCH TO X 
: If x NEQ 0 THEN GO TO -BOX4.SHELL 
:=BUffER READ USING INAREA f ILE CARD.READER ON EOf GO TO •BOX4.f INO 
: MOVE BR TO fA 
: ADO INAREA.ADDR TO f A 
: READ 8 BITS TO X %CHECK fOR STAR 
: MOVE ••• TO Y 
: If X EQL Y THEN 
: BEGIN % FOUND A STAR 
:=OUTPUT 80 BYTES CORE INAREA fllE PRINTER OPT DOUBLE 
: MOVE 1 TO FOUND.SW ITCH 
: END 
: GO TO -flND.LOOP 
:.BOX4.f!ND 
: MOVE 1 TO MASTER.SWITCH 
: GO TO -flND.LOOP 
:% END or flNO.A.JOB.CARD 
:=SECTION LOAD 
:LOAD.A.PROGRAM %ROUTINE BEGINS HERE. SEE FIG.5-5 
: LOCAL.DEf INES 
: DEFINE LOCATION.COUNTER =S9B• 
: DEFINE UNDEFINED =4 I % VALUE FOR LOAD.CODE 
1% 
: HOVE -I TD LOCATION.COUNTER 

%CLEAR EMULATED SAHOS STORAGE. 
HOVE DATA.LENGTH!STORAGE.FOR.SAMOSI TO fl % INITIALIZE fL,fA•X 
HOVE STORAGE.fOR.SAHOS TO SlA 
HOVE BR TO FA 
ADD SlA TO H 
MOVE •ooo• TO x 

• HOVE •+o• TO Y 
:.CLEAR.LOOP 
: If fl NEQ 0 THEN 

BEGIN 
WRITE 
WRITE 
WRITE 
WRITE 
GO TO 

END 

16 BITS fROH Y INC fA AND DEC fl 
24 BITS FROM X INC FA AND DEC FL 
24 BITS fROM X INC f A AND DEC fl 
24 BITS fROH X INC f A AND DEC fl 
-CLEAR.LOOP 

HOVE UNDEFINED TO LOAD.CODE 
.LOAD.LOOP 

MOVE LOAD.CODE TO X 
HOVE UNDEFINED TO Y 
If x NEQ y THEN GO TO -BOX6.SHELL 

% CHAR. ZEROES IN X 

=BUFFER READ USING INAREA flLE CARD.READER ON EOf GD TO +BOX3.5 

HOVE 
HOVE 
ADO 
MOVE 
HOVE 

78•8 TO rL 

BR 
INAREA.ADDR 

FA 

.CHECK.LOOP 

TO FA 
TO fA 
TO SIA 
TO y 

If fl EQL O THEN GO TO +LAST2.CHECK 
READ 24 BITS TO X INC FA AND DEC fl 
If X EQL Y THEN GD TO -CHECK.LOOP 
G 0 TO +BOX3.8 

.LAST2.CHECll 
COUNT fA DOWN BY 8 
READ 24 BITS TO X 
IF X EQL Y THEN 

.BOX3.6 

BEGIN 
MOVE 011 TO LOAD.CODE 
GD TO -LOAD.LOOP 

ENO 
MOVE SlA TO fA 
READ 6 BITS TO X 
MOVE "•" TO Y 
If X EQL Y THEN 

BEGIN 
MOVE STAR TO LOAD.CODE 
GO TO -LOAD.LOOP 

END 

% CHECK fOR A BLANK CARO 
~ /~~~fA}Az~H~ggpol0c~~~~f~ 
% GROUPS Of THREE 

% SAYE ABS ADDR Of INAREA 
% 3 BLANKS TO Y 

3 CHARS Of THE CARO 

% BOX3.7 THE CARD IS BLANK 

% RESTORE ABS ADDR Of INAREA 
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226 
227 
226 
229 
230 
231 
2 32 
233 
2 34 
235 
236 
237 
236 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266'· 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
306 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 

McMIL Listing for an Abridged SAMOS Interpreter 

:% BOX3.10 
MOVE LOCATION.COUNTER TO fl 
COUNT fl UP BY 1 
MOVE fl TO LOCATION.COUNTER 
HOVE SIZE TO SOB 
If FL GEQ Sfl THEN 

BEGIN· 
HOVE TOOBIG TO LOAO.COOE 
GO TO •LOAD.LOOP 

ENO 
MOVE fl TO T 
CALL BINARY.TO.FA 
X CH Sl f S 1 
HOVE 68 TO fl 
CALL COPY 

:% BOX 3.14 
:=BUHER WRITE USING INAREA 
: GO TO ·LOAD.LOOP 

i.BOX3.5 
: HOVE EOf TO LOAD.CODE 

FILE PR! NTER 

; ~8Vfo1-[8AS~~i&~·SWITCH 
:%ENO Of LOAD.A.PROGRAM ROUTINE 
:=SECTION INTERPRET 
:INTERPRET.PROGRAM 
: 
: 
: 

%INCREMENT LOCATION.COUNTER 

% SIZE NOW IN SfL 

% BOX 3.13 
%PUT ARGUMENT FDR NEXT CALL 
%IN T TO GET ABS AOOR Of SINK. 
% COPY FIRST 11 COLUMNS or CARO 
% INTO SAHOS STORAGE WORD USING 
% COPY SUBROUTINE. RECALL.SOURCE 
% ADDRESS WAS SAVED IN SlA 
OPT SINGLE 

%ANO FINALLY• 

% SEE f IG. 5•7 
% THE IC IS ALREADY INITIALIZED 
% TO •oooo• BY VIRTUE OF THE 
%CLEAR LOOP IN THE 
%LOAO.A.PROGRAH MODULE 

MOVE 
HOVE ~8~~y~~-~~~K.CO¥~Tl~RHINATIDN.COOE 

LI NTERP.LOOP 
:=CHECK INTERRUPTS 
: MOVE TERMINATION.CODE TO X 
: HOVE NOT.YET.SET TO Y 
: If X NEQ Y THEN GO TO •BOX8.SHELL 
: HOVE IC.AODR TO T 
: CALL ADDRESS.TO.BINARY 
: If Y EQL 0 THEN 

BEGIN 
• HOVE YES TO TERMINATION.CODE 
·=OUTPUT DATA.LENGTH<HESS.7> BITS CORE 

GO TO •INTERP.LDOP 
ENO 

CALL BINARY.TO.FA 
COUNT FA UP BY 8 
READ 24 BITS TO X INC FA 
HOVE fA TO TAS 
HOVE X TO TAS 
HOVE re. AOOR TO T 
CALL BINARY.TO.FA 
HOVE FA TO S1A 
CALL VALIDATE.DECIMAL 
HOVE NUl,.L TD S6A 
HOVE 1 TO S6B 
CALL A00.10.CDHPL 
HOVE SlA TO fA 
CALL UNPACK.ANO.WRITE 
HOVE TAS TD X 
HOVE T AS TD f A 

HOVE •LOA" TD y 
If x EQL y THEN GD TD L DA •• 

HOVE •sro• TO y 
If X ECIL Y THEN GO TO STD •• 
HOVE •Aao• TD Y 
If x ECIL Y THEN GD TD ADO •• 

HOVE •Bff U• TO Y 
If x ECIL y THEN GD TD BRU •• 
HOVE "BMI" TD y 
If X ECIL Y THEN GD TD BHI •• 

MOVE "RWO" TO y 
If x [Ql y THEN GO TO R WO •• 
HOVE •wwo• TO y 
If x EQL y THEN GO TO wwo •• 
HOVE "HL T" TO Y 
If X EQL Y THEN GO TO HLT •• 
MOVE YES TO TERHINATION.COOE 

% BOX 2 

%RETURN TO THE SHELL 
% FETCH NEXT INSTRUCTION• 
% LEAVES FLAG IN Y ANO BINARY 
% ADDRESS Of INSTR. IN T 

HESS.7 FILE PRINTER OPT SINGLE 

% POINT TO NEXT INSTRUCTION 
% AT THE OP CODE 
% GET OP CODE 
% SAVE POINTER TO REMAINDER Of 
% INSTRUCTION ANO SAVE OPCODE 
% 
% INCREMENT THE IC 

% SAVE ABS AOOR Of IC 
% PACKS IC INTO SSA ANO S5B 

% RESTORE ABS AOOR Of IC 
% STORES INCREMENTED re 
% RESTORE OP CODE TO X 
% RESTORE FA PTR TO REH Of INSTR 
% 
%DECODE SECTION 

% 

% 

% BAO OP CODE 

=OUTPUT OATA.LENGTH<HESS.4> BITS CORE MESS.4 FILE PRINTER OPT SINGLE 
GO TO •INTERP.LOOP 

% ENO Of DECODE SECTION 
% BEGIN WORK.COUNTER UPOATE<BOXES 7•9 Of FIG. 5•7J 

.INC.WORK.COUNTER 
MOVE 24 TO CP %INCREMENT WORK.COUNTER 
MOVE WORK.COUNTER TO Y 
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324 
325 
326 
327 
326 
329 
330 
331 
332 
333 
334 
335 
336 
337 
336 
339 
340 
341 
342 
343 
344 
345 
346 
347 
346 
349 
350 
351 
352 
353 
354 
355 
356 
357 
356 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 ng 
~H 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
09 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
4?1 

HOVE l TO X 
HOVE SUH TO WORK.COUNTER 
HOVE WORK.LIMIT ro x 
If X LSS Y THEN 

BEGIN· 
% IF BORROW, 
% ~ORK.LIHIT EXCEEDED 
% OVERWORKED 

: HOVE YES TO TERHINATION.CODE 
:;OUTPUT DATA.LENGTH<MESS.51 BITS CORE HESS.5 f!LE PRINTER OPT SINGLE 
: E~O 
: GO TO -INTERP.LOOP 
:% ENO or INTERPRET.PROGRAM 
:% SAMOS OPERATOR ROUTINES BEGIN HERE 
:% 
:Aoo •• 
: EfF.ADOR.TO.fA 
: CALL VALIDATE.DECIMAL 
: 

IF CB( OJ THEN 
BEGIN 

Z ADD OPERATOR BEGINS HERE 
%MACRO CALL 

%LEAVES fLAG IN CB<Ol 
% l If NOGOOD• 0 If OK 
%ANO <VALID> OPERAND IN S5 
%NON-NUMERIC OPERAND 

: HOVE YES TO TERMINATION.CODE 
:;OUTPUT OATA.LENGTH!MESS.91 BITS CORE HESS.9 FILE PRINTER OPT SINGLE 
: GO TO -INTERP.LOOP 
: END 
: XCH S5 F SS 
: XCH S6 f S6 
: HOVE ACC.ADDR TO T 

CALL BINARY.TO.FA 
HOVE FA TO S2A 
CALL VALIDATE.DECIMAL 
IF CB!Ol THEN 

BEGIN 

% MOVES VALIDATED OPERAND fROM 
X S5 TO S6 · 

ABS ADDR OF ACC IN f A 
% SAVE AODR TEMPORARILY 
% LEAVES fLAG IN CB<Ol AND 
%!VALID OPERAND IN S5 
% NON-NUMERIC ACC 

: HOYE YES TO TERHINATION.COOE 
:=OUTPUT DATA.LENGTH<HESS.101 BITS CORE HESS.10 FILE PRINTER OPT SINGLE 
: GO TO -INTERP.LOOP 
: END 
: CALL A00.10.COMPL 

HOVE S2A TO fA 
: CALL UNPACK.ANO. WRITE 
: GO TO -INC.WORK.COUNTER 
:% END or ADD OPERATOR 
:x 
:LO A •• 

ix 
•% 
:ST O •• 

EH .AOOR. ro.rA 
HOVE f A TD SlA 

HOVE ACC. ADDR TO 
CALL BINARY.TD.FA 
XCH S 1 f S l 
HOYE 88 TO fl 
CALL COPY 
GO TO -INC.WORK.COUNTER 

: EFF.AODR.TO.fA ; ~m ~~ rn ~P 

ix 
•% 
•BRU •• 

HOVE ACC.AOOR TO 
CALL BINARY.TO.FA 
CALL COPY 
GO TO -INC.WORK.COUNTER 

: CALL EFFECTIYE.ADDR 

%ADDS TWO PACKED DECIMAL VALUES 
% IN S5 AND S& ANO LEAVES RESULT 
% IN SS. 
%NOW RESTORE ABS ADDR or ACC 
% STORES CHAR. REPRES. IN ACC 

% LOA OPERATOR BEGINS HERE 
XGET SOURCE PTR 
·%SAVE IT IN SlA 
% GET SINK POINTER 

<MACRO CALL l 

isET LENGTH or VALUE TO BE COPYO 
% ARGS READY FOR COPY CALL 

% STO OPERATOR BEGINS HERE 
%GET SINK PTR <MACRO CALLI 
i~~YEL~~Gl~ 3/AVALUE TO BE COPYD 
XGET SOURCE PTR 
% ARGS NOW READY FOR COPY CALL 

% BRU OPERATOR BEGINS HERE 
X LEAVES EFFECTIVE ADDRESS AS A 
% BINARY VALUE IN EA ANO FLAG IN : 

: If flf NEQ 0 THEN GO TO EA.ERROR 
CALL BINARY.TO.DECIMAL 

%flf 
% LEAVES PACKED DECIMAL EQUIV. 
% or EA IN 55. 

ix 
:% 
: BH I •• 

MOVE IC.AODR TO T 
CALL BlNARY.TO.fA 
CALL UNPACK.ANO.WRITE 
GO TO·-INC.WORK.COUNTER 

: MOVE fA TO S2A 
: HOVE ACC.ADDR TO T 
: CALL BINARY.TO.FA 
: READ 6 BITS TO X 
: HOVE •+• TO Y 

x GET ABS ADDR or IC 

% ASSIGN NEW VALUE TO IC 

% BH! OPERATOR BEGINS HERE 
%SAVE POINTER TO REST OF INSTR 
% CHECK SIGN OF ACC 

: If X EQL Y THEN GO TO -INC.WORK.COUNTER X NO BRANCHING <A NO OPI 
: HOYE S2A TO 

GO TO BRU. • 
fA % RESTORE PTR TD REST or INSTR 

:x 
:% 
:RWD •• 
: Eff.AODR.TO.FA 
: HOVE FA TO SlA 
:=BUFFER READ USING INAREA FILE 
: HOYE BR TO f A 
: ADO INAREA.AOOR TD fA 

HOVE 66 TD fl 
CALL COPY 
GO TO -INC.WORK.COUNTER 

:.EOf 

% RWD OPERATOR BEGINS HERE 
% GET ABS PTR TO SINK AND PUT IN 
% S lA 

CARD.READER ON EOf GO TO +EOF 
% GET ABS PTR TO 
% INAREA 
% SET LENGTH Of INPUT 
% COMPLETES RWO ACTION 

: HOVE YES TO TERMINATION.CODE ZAND <VAL!Dl OPERAND IN S5 
HESS.8 fILE PRINTER OPT SINGLE :;OUTPUT DATA.LENGTH<HESS.61 BITS CORE 
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422 
423 
424 
425 
426 
427 
4 28 
429 
4 30 
4 31 
4 32 
433 
434 
435 
4 l6 
4 37 
4 38 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
4 59 
460 
4 61 
462 
463 
464 
4 65 
466 
467 
468 
4 69 
470 
4 71 
472 
4 73 
4 74 
475 
4 76 
477 
4 78 
4 79 
480 
4 81 
4 82 
483 
484 
485 
4 86 
487 
488 
489 
490 
491 
492 
493 
4 94 
495 
4 96 
497 
498 
4 99 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 

McMIL Listing for an Abridged SAMOS Interpreter 

l 
% 

GO TD -INTERP.LOOP 

wwo •• % WWD OPERATOR BEGINS HERE 
[ff. AOOR. TO.r A 
HOVE fA TO SIA 

HOVE BR TO fA 
ADO PRINT. AREA.A DOR TD fA 
xctt s 1 r s 1 
11DVE 88 TO fl 

• CALL COPY 
:=OUTPUT 88 BITS CORE PR INT. A REA 
: GO TO -INC.WORK.COUNTER 
:% :x 
:HL T ·~ 

% SAVE ABS PTR TD SOURCE IN 
% SIA 
% GET ABS PTR TO SINK• 
% IE. PRINT.AREA 
% SWAP ARGS fOR CALL ON 
% S[T LENGTH Of OUTPUT 

fILE PRINTER OPT SINGLE 

COPY 

: MOVE YES TO TERMINATION.CODE % NORMAL HALT 
:=OUTPUT OATA.UNGTH<HESS. 3J BITS CORE HESS. 3 f!LE PRINTER OPT SINGLE 
: GO TO -INTERP.LOOP :x 
:EA.ERROR 
: If fLfC31 THEN 
: BEGIN 
:=OUTPUT OATA.LENGTHCHESS.121 BITS 
: END 

If fLH21 THEN 
: BEGIN 
:=OUTPUT DATA.LENGTHCHESS.111 BITS 
: END 

If fLfCll THEN 
: BEGIN 
:=OUTPUT OATA.LENGTHCHESS.6J BITS 
: END 

MOVE YES TO TERMINATION.CODE 
SET fLf TO O 

• GO TO -INTERP.LOOP 
:=SECTION SUBROUTINES :x 

CORE 

CORE 

CORE 

%Eff[CTIV[ ADDRESS ERR MESSAGES 

% TOO ~ANY INDICES 
HE ss.12 fll[ PRINTER OPT SINGLE 

%ADOR NOT DECIMAL 
HESS.11 f!L[ PRINTER OPT SINGLE 

%BAO OP[RANO AOOR 
MESS.6 f!LE PRINTER OPT SINGLE 

% RE SET THE EA fLAG 

:% U~PACK.ANO.WRITE PACKED OECIHAL VALUE IN 55 IS 
%UNPACKED ANO WRITTEN TO G-STORE 
%AT ADDRESS GIVEN BY fA. 

;UNPACK.ANO.WRIT£ 
%USES T.L.x.y AS LOCAL STORAGE 

: HOVE •+o• TO T 
: HOVE SSA TD L 
: If LCOJ THEN HOVE "-O" TOT 

HOVE LC TO Tf 

:% 
:% 

WRITE 16 BlTS fROH T INC fA 

HOVE ·ooo· TO 
MOVE LO TO TB 
MOVE LE TD TO 
HOVE Lf TO ff 
~RITE 24 BITS fROM T INC f A 

HOVE S5B 
MOVE LA 
MOVE LB 
HOVE LC 
WRITE 24 

TO L 
TO TB 
ro TO 
TO Tf 
BITS fRDH 

MOVE LO ro TB 
MOVE LE TO TO 
HOVE Lf TO Tf 
WRITE 24 BITS fROH 

EXIT 

T INC fA 

% UNPACK ANO WRITE 
% FIRST 2 BYTES 
% IN CASE Of NEGATIVE NUMBER 

% UNPACK ANO WRITE NEXT 3 BYTES 
% PUT arororoa IN T. 

% UNPACK ANO WRITE NEXT 3 BYTES 

% UNPACK ANO WRITE LAST 3 BYTES 

% 

:% BINARY.TO.OECIHAL % HAXIHUH VALUE TO BE CONVERTED IS 9999, 
% !.[., LSS 2 TO THE 14TH POWER 

;BINARY.TO.OECIHAL 
: HOVE EA TD T 
: CLEAR X 

HOVE •<1>00111000• TO CP 
: HOVE 14 TD fl 
: • LOOP 
: If fl N[Q 0 THEN 

:% 
:% 

BEGIN 
HOVE X TO Y 
HOVE SUH TO Y 
EXTRACT 1 BIT fROH TCIO I TO X 

SHIFT T LEFT BY 1 BIT 
HOVE SUH TO X 

COUNT fl DOWN BY 1 
GO TD -LOOP 

ENO 
HOVE NULL TO SSA 
~OVE X TO S5B 

EXIT 

%THE INPUT ARG IS IN EA CS1Bl 
%THE OUTPUT RESULT IS LffT IN 
%SS AS A PACKED DECIMAL YALU[ 

% 
% SET UP fOR DECIMAL ARITH. 

%HOVE TWICE THE VALUE Of 
% TO Y 
% GET NEXT DIGIT 

THE NEW SUH NOW IN X 

% STORED IN S5 

% 

:% COPY % COPIES A SOURCE MESSAGE.WHOSE ADDRESS IS 
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520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
5 30 
5 31 
532 
533 
534 
5 35 
5 36 
5 37 
538 
539 
540 
541 
542 
543 
544 
545 
54& 
547 
548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 
575 
576 
577 
H8 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
61l 
613 
614 
615 
616 
617 

COPY 

Z IN fA, TO A SINK AREA.WHOSE ADDRESS IS 
Z IN SlA. z LENGTH or SOURCE IS IN FL. 
Z USES CPL ANO T. z LEAVES A COPY or INITIAL VALUE Of Fl IN 
Z SFL. 

HOYE FL TO SOB 
.L QOP 

Z ENO 
z z z 

IF FL EQL 0 THEN EXIT 
BIAS BY F 
READ TO T INC FA ANO DEC FL 
XCH 51 f Sl 
WRITE FROM T INC FA 
XCH Sl F S 1 
GO TO -LOOP 

Of COPY 

Z CPL GETS HIN(24,fll 
Z READ CPL BITS 
Z NRI TE CPL BITS 

VALi DATE.DEC! HAL %ROUTINE BEGINS HERE. SEE FIG.6-13. 
%VALIDATES A SAHOS NORD POINTED TO 

BEGIN 
LOCAL.DEFINES 
DEF I NE FLAG 

ZBY THE CONTENTS or FA AS A DECIMAL 
%INTEGER ANO PACKS A 4-BIT DECIMAL 
%REPRESENTATION IN S5. IF NOT VALID, 
ZCBCOJ IS. SET TD l• ELSE IT IS SET JD O. 
z THIS ROUTINE USES x.Y.T.L• ANO CP. 

=cB<.O> • 
MACRO CHECK.FCTK> = 

If TK NEQ <If<! THEN E X!T 
CLEAR L 
SET FLAG % T 0 NOGOOO 

XBOXl 

READ 16 BITS TO T INC FA 
EXTRACT 8 BITS FROM TC8l TO X 

%GET FIRST 2 BYTES IN TC TH 
%BOXES ·~ 
%AND 6 

MOYE "+" TO Y 
If X NEQ Y THEN 

BEGIN 
HOYE "-" TO Y 
IF X NEQ Y THEN EXIT 
MOVE <l(lllOOO;i TO LA 

ENO 
CHECK.FOE J 
MOYE Tf TO LC 

READ 24 BITS TO T INC FA 

% TRY 1 -1 

CHECK.f<TA> %CHECK AND PACK INTO L 
CHECK.F<TC I 
CHECK.F<TE > 

MOVE TB TO LO 
MOVE TD TO LE 
HOVE TF TO LF 

MOYE L TD SSA 

READ 24 BITS TO T INC FA 
CHECK.f<TA> %CHECK AND PACK INTO L 
CHECK.F<TC I 
CHECK.F<TE I 

HOYE TB TO LA 
MOYE TD TO LB 
MOVE Tf TO LC 

READ 24 BITS TO 
CHECK.f<TA> %CHECK ANO PACK INTO L 
CHECK.HTC> 
C HECK.F <TE> 

MOYE TB TO LO 
MOVE TD TO LE 
MOVE Tf TO Lf 

MOVE L TO S5B 
MOVE <1-11100111000<1 TO CP %BOX 10.1 
HOVE S5A TO X % 10. Z 
CLEAR Y % 10. 3 
HOVE SUM TO Y 
IF X NEQ Y THEN EXIT 
MOVE S5B TO X %BOX 10. 4 
CLEAR Y ZBOX 10.5 
MOVE SUH TO Y 
IF X NEQ Y THEN EXIT 

%BOX7 

%BOX6 

%BOX9 

ZBOXlO 

RESET FLAG ZBOXll 
EXIT 
ENO % or VALIOATE.OECIHAL ROUTINE 

BlNARY.TO.fA %ROUTINE BEGINS HERE SEE FIG. 6-15. 
%INPUT VALUE•S• IS IN T REGISTER 
%OUTPUT RESULT rs IN fA 

BEGIN 
LOCAL.DEFINES 
DH INE NEG.SIGN 
DEFINE NEN.S 
IF T<Ol THEN 

BEGIN 

ZUSES x.Y.CBCOJ.ANO L AS LOCAL STORAGE 

=CBC OU 
=l• 
ZSAVE SIGN or s 
ZAND REPLACE S 

SET NEG.SIGN ZBY ABS VALUE or s 

%BOX1 
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618 
619 
6 20 
621 
622 
623 
624 
625 
626 
627 
628 
629 
6 30 
631 
6 32 
633 
634 
635 
6 36 
637 
638 
639 
640 
641 
642 
64 3 
644 
645 
646 
647 
648 
649 
650 
651 
652 
653 
654 
655 
656 
657 
658 
659 
660 
661 
662 
663 
&64 
6&5 
66& 
6&7 
&68 
669 
6 70 
671 
672 
673 
6H 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 
717 
718 
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RESET T<Ol 
ENO ELSE 
BEGIN 

RESET NEG.SIGN 
ENO 

HOVE 24 TO CP 
SHIFT T LEFT BY 3 BITS TO X 
SHIFT T LEFT BY 4 BITS TO Y 
HOVE SUH TO X 
SHIFT T LEFT BY 6 BITS TO Y 
HOVE SUH TO NEW.S 
MOVE BR TO X 
MOVE SAMOS.STORE<Ol TO Y 
HOVE SUH TO X 
MOVE NEW.S TO Y 

If NEG.SIGN THEN 
BEGIN 

HOVE OIFF TO FA 
END ELSE 
BEGIN 

HOVE SUH TO FA 
END 

E X!T 
END % BINARY.TO.FA ROUTINE 

%15 THIS INSTRUCTlON NECESSARY? 

%SET UP FOR ARITHMETlC 
%8 TIMES S TO XCSIGN BIT LOST> 
%16 TIMES S TO Y 
%24 TIMES S TO X 
%64 TIMES S TO Y 
%88 TIMES S IN NEW.S CU 

%BR • SAHOS.STORE IN 

%BOX5 

% 
ADDRESS.TO.BINARY %ROUTINE BEGINS 

%INPUT VALUE, S, 
%OUTPUT RESULTS 
% 

HERE. SEE FIG 6-17. 

% 

% 

% 
% 

IS IN REGlSTER 
BINARY ADDRESS IN 
FLAG IN Y 

0 IF INVALID 
1 If VALID 

%USES x.Y.L.FA AS LOCAL STORAGE 

CALL BINARY.TO.FA 

COUNT FA UP BY 24 
COUNT FA UP BY 24 

%WITH ARGUMENT IN T 

%COUNT Fll UP BY 
%6 BYTES 

%BOX1 

%BDX2 

READ 16 BITS TO L INC FA 
HOVE LF TO T 

%0SUB3 NOW IN LF 

READ 24 BITS TO L 

MOVE 24 TD CP 
TEN.T.PLUS.DCLB> 
TEN.T.PLUS.O<LDl 
TEN.T.PLUS.O<LF> 

MOVE T TO X 

MOVE SIZE TO Y 
If X LSS Y THEN 

BEGIN 
HOVE 1 TO Y 

END ELSE 
BEGIN 

MOVE 0 TO 
ENO 

%DSUB2 IN LB 
%0SUB1 lN LO 
%DSUB·O IN LF 

%BOX3 

%BOX4 

%10 TIMES T • OSUB2 TO T 
%10 TIMES T + OSUBl TO T 
%10 TIMES T + OSUBO TO T 

%BOX5 

%BOX& 
%SIZE IS A GLOBAL CONSTANT 

%VALID SAMOS ADDRESS 

%INVALID SAHOS ADDRESS 

EXIT %ENO Of ADDRESS.TO.BINARY ROUTINE 

EFFECT IVE.ADOR %ROUTINE BEGINS HERE. SEE FIG. 6-19. 
%INPUT IS A POINTER IN FA TO INDEX f!ELO 
%OUTPUT IS A FLAG CFLF REGISTER> 
% 0 OK 
% 1 = TOO MANY INDICES 
% 2 = AOOR NOT DEC !HAL 
% 4 = BAO OPERAND AOOR 

%ANO THE EFFECTIVE ADDRESS IN EA 
%AS A BINARY VALUE 

% ROUTINE USES x.Y.T.L.CP.FL.SOB.ANO SlB 
% AS LOCALS 

BEG IN 
LOCAL.DEFINES 
Off !NE FLAG 
Off !NE CTR 
DEFINE INDICATOR 
OEF!NE TEMP 
READ 24 BITS TO T INC FA 
SET CTR TO 0 
HOVE "0" TO Y 
EXTRACT 8 BITS FROH TCO> TO X 
If X NEQ Y THEN 

BEGIN 
INC CTR BY 1 
HOVE IXl.ADOR TO INDICATOR 

ENO 
EXTRACT 8 BITS FROM TC8> TO X 
IF X NEQ Y THEN 

BEGIN 
INC CTR BY 1 
HOVE IX2.AOOR TO INDICATOR 

ENO 
EXTRACT 8 BITS FROM T(l&l TO X 
IF X NEQ Y THEN 

BEGIN 
INC CTR BY 1 
HOVE IX3.ADOR TO INDICATOR 

ENO 

FLF # 
FLU 
SOB# 
SlB# 

%BO x 1 

%MOVE ,INOEXl TO X 

%MOVE !NOEX2 TO X 

%MOVE !NOEX3 TO X 
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119 
720 
721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
7 35 
736 
737 
738 
739 
740 
741 
742 
74 3 
744 
745 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 
779 
760 
781 
782 
763 
784 
765 
766 
787 
788 
789 
790 
791 
792 
79l 
794 
795 
796 
797 
798 
199 
800 
801 
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 
817 

: 

Ir CTR(2) THEN 
BEGIN Z TOO MANY INDICES 

SET FLAG TO 
EXIT 

ENO 
IF CTR<3> THEN 

BEGIN 
HOVE INDICATOR TO T 
HOVE FA TO TAS 
CALL ADDRESS.TO.BINARY 
HOVE TAS TO FA 
HOVE T TO TEMP 

ENO ELSE 
BEGIN 

HOVE NULL TO TEMP 
ENO 

CLEAR L Y 

ZISCTRGEQ2 

%BOX5 

SAVE ADDRESS FIELD PTR. 
% RESTORE ADO~ESS FIELD PTR. 

%BOX6 
~fA¥E8 E~(T~F~OFIL~~CT~~N GO TO +SET.FLAG.EXIT 
HOVE Tf TO LC 
~EAD 24 BITS TO T 
IF TA EQl dFa FALS£ THEN GO TD +SET.FLAG.EXIT 
\~ l~ fSl 3a ~~ln rnf ~ ~g rn :m:R~~:HH 

HOVE TB TO LO 
MOVE TO TO LE 
HOVE TF TO LF 

MOVE a(1J00111000d TO CP 
HOVE L TO ){ 
%CLEAR Y ALREADY ACCOMPLISHED 
MOVE SUH TO Y 
If X NEQ Y THEN 

BEGIN 
.SET.FLAG.EXIT Z ADDRESS NOT DECIMAL 

SET FLAG TO 2 
EXIT 

END 
HOVE 24 TO CP 
HOVE LC TO T 
TEN.T.PLUS.O<LOI 
TEN.T.PLUS.O<LE l 
TEN.T.PLUS.OCLF> 
MOVE T TO X 
MOVE TE MP TO Y 
HOVE SUM TO X 
HOVE SIZE TO Y 
IF X LSS Y THEN 

BEGIN 
SET FLAG TO 

ENO ELSE 

%MACRO CALL 
%MACRO CALL 
%MACRO CALL 

BEGIN %BAO OPERAND AOOR 
SET FLAG TO 4 

ENO 
MOVE X TO EA %EFFECTIVE ADDRESS 
EXIT 
ENO % OF EFFECTIVE.AODR ROUTINE 

% NOW L HOLDS THE PACKED DECIMAL z VALUE or THE ADDRESS FIELD 
%SET CP FOR PACKED DEC !HAL 
%ADD (24 BITS> 

%TESTS L+O=L 
ZIF so.L HUST HAVE BEEN A 
ZVALID,PACKEO DECIMAL 

%BOX9 
% SET UP FOR BINARY ARITH. 

%BOXES 10 
%THRU 14 

SAVED IN EA AS A BINARY VALUE 

•% 
:A00.10.COHPL %ROUTINE BEGINS HERE. SE£ FIG. 6-29. ARGUMENTS ARE 

% OPl IN s5, OP2 IN S6• IN SIGNED MAGNITUDE FORM 

: 

: 

•% 

% AS IN FIG.6-7. THE RESULT IS LEFT IN OP1.IE.IN SS, 
% ANO OVERFLOW FLAG IN CBCOJ. 
% THE STACK•X•Y• T• AND L ARE USED AS LOCAL STORAGE. 
% THE PROCEDURE COHP.T.L CONVERTS T CAT L TO 10 1 5 
% COMPLEMENT FORM 

BEGIN 
LDC AL .llEF INES 
OHINE IJPlA 
DEFINE OP1B 
DEFINE OP2A 
DEF !NE OP2B 
DEFINE FLAG 

MOVE ac1100111oooa TO CP 

MOVE OPlA TO T 
HOVE OPl B TO L 
IF J( OJ THEN 

BEGIN 
RESET HO> 
CALL COMPL. T .L 

END 
MOVE T TO TAS 
MOVE L TO TAS 
~OVE OP2 A TO T 
MOVE OP2B TO L 
IF TCOJ THEN 

BEGIN 
RESET T<Ol 
CALL COMPL.T.l 

ENO 

MOVE TAS TO X 
HOVE L TO Y 
HOVE SUH TO L 
CARRY SUM 

=SSA I 
=S5B , 
=S6A I 
=S6B I 
=CB<OH 

ZSETUP FOR 24•BIT 
ZOECI~AL ARITHMETIC 

ZBOXl 

ZIF OPl NEGATIVE 
%COMPLEMENT ABS OF OPl 

%SAVE OPl ON STACK 

ZIF OP2 NEGAHVE 
%COMPLEMENT ABS OF OP2 

%BOX2 

%80X3 
ZLOW-ORDER PARTS OF OPl AND 
%0P2 IN X AND Y·RESP. 
%LOW-ORDER PART OF OP1+0P2 IN l 
%RECYCLE CARRY DIGIT 
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818 
819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
831 
832 
833 
834 
835 
836 
837 
838 
839 
840 
841 
842 
843 
844 
845 
846 
847 
848 
849 
850 
851 
852 
853 
•5..4 
855 

% 
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HOVE TAS TO X 
HOVE T TD Y 
HOVE SUH TO T 

If TCOJ THEN 
BEGIN 

CALL C OMPL. T. L 
SET H OJ 

END 
IF TB NEQ 0 THEN 

BEGIN 
SET FLAG 

END ELSE 
BEGIN 

RESET FLAG 
ENO 

%HIGH-ORDER PARTS or OPl AND 
%0P2 IN X AND Yo RESP. 
%HIGH-ORDER PART or DPl•OP2 IN 

%BOU 
%IF LEADING DIGIT IS 9 DR 8 

%THEN 
% COMPLEMENT IT ANO 
% HARK IT MINUS 

%BDX5 
%IF 11TH DIGIT or SUH NON-ZERO 
%THE WE HAVE OVERFLOW 

%EPILOGUE 
HOVE T TD DPlA %NEW RESULT urr IN OPlA 
HOVE L TD OPlB % ANO OPlB 
EXIT 
ENO % Of A00.10.COHPL ROUTINE 

•% 
:COllPL.T.L 
: 

%PROCEDURE COMPUTES THE 1o•s COMPLEMENT or T CAT L 
% AND LEAVES THE RESULT IN T CAT Lo 

: 
: 
: 
: 

' : 
: 
: 

% US ING X AND Y AS LOCAL STORAGE. 
HOVE au100111oooa TD CP %TO BE SURE or ARITH. SETUP 
CLEAR X %HORE SETUP 
MOVE L TO Y 
MOVE 0 lff TO L 
CARRY DI FHRENCE 
HOVE T TO Y 
HOVE oirr TO T 
CARRY 0 

%LOW-ORDER PART or COHPL IN L 
%RECYCLE THE BORROW 

%COMPLEMENT NOW IN T CAT l 
%LEAVE CARRY IN 'CLEAN' STATE 

• EXIT %END or COHPL.T.L 
:sTERHINATE SAHOS/INTERP 
•TEND 



2 MIL ASSEMBLER LISTING OF THE SAMOS INTERPRETER 

BURROUGHS 81700 ~IL COMPILER• MARK v.OCOl/24176 18:05> 

SA MOS/ IN TERP FRIDAY, JUNE 04• 1976• 09:03 AH. 

BLOCK C OOE MEMORY SOURCE IMAGE SEQUENCE SE GHENT OBJ DECK 
NAME AOORESS : : NAME ADDRESS 

DEFINE CARO.READER =l , [0000011 c 
DEFINE PRINTER =O # [0000021 c 
OEflNE FIFTY.SIX =S3A # [ 0000031 c 
DEFINE MESSAGE.BASE =S4A# [0000041 c 
DEFINE BASE.OF. INTERPRETER =Sl2A I [0000051 c 
OEflNE SAMOS.STORE.ADOR =S lJA I [0000061 c 
OEFINE !NAREA.ADDR =S 14A I [ 0000071 c 
OEFINE PR!NT.AREA.AODR =Sl5A# [0000081 c 
Off !NE EA =SlBI [ 0000091 c 
OEFINE MESSAGE.LENGTH =S78# (0000101 c 
OEflNE LOCATION.COUNTER =S98# O~F!NEO IN LOAO.A.PROG~gggg:ii g 
OEFINE WORK.COUNTER =S llB I 
DEFINE TERMINATION.CODE =S12BI [0000131 c 
Off !NE LOAO.COOE =S13B# [0000141 c 
OEf!NE FOUND.SWITCH =S 14 Bl [0000151 c 
DEFINE MASTER.SWITCH =S158# £0000161 c 
DEF !NE FLAG =FLFI [000017) c 
DH !NE YES = 1 , [0000181 c 

I\) DEFINE NOT.YET.SET =O # [0000191 c 
CD OEF!NE SIZE =100# [0000201 c 
en DEFINE WORK.LIMIT =1500# [ 0000 211 c 

Off!NE OK =O # %VALUES FOR [0000221 c 
Off!NE EDF = 1 • %LOAO.COOE [0000231 c 
DEFINE STAR =2 • [0000241 c 
DEFINE TOOB!G = 3 # [0000251 c 

Off !NE IX3. ADOR =aeoooo5a I % -5 IN S IGNEO MAG. [ 0000 261 C 
OEF!NE IX2.ADOR =aeoooo4a I % -4 IN SIGNED MAG.£0000271 C 
DEFINE !Xl.ADDR =a8ooooH # % -3 IN S IGNEO MAG. C 0000 281 C 
Off !NE IC.A DOR =aeoooo2a # % -z IN SIGNED MAG.[0000291 C 
DEFINE ACC.AOOR =a800001~ # % -1 IN SIGNED MAG.[0000301 C 
OEFINE CHAR =CHA RAC TERI [0000311 c 

% DECLARES [0000321 c 
OE CLARE £0000331 c 

MESSAGES [0000341 c 
[0000001 MESS.l CH ARC 18J. %'PROGRAM INCOMPLETE• [0000351 c 
£0000901 HESS. 2 CHARC15l• %'PROGRAM TOO BIG' mss!~l ~ (0001081 MESS.3 CHARCllJ, %'NORMAL HALT' 
£0001601 MESS.4 CHAR <11 I, %'BAO OP COOE' £0000381 c 
[0001B81 MESS. 5 CHARClOJ, %'OVERWORKED' [0000391 c 
[0002081 MESS.6 CHARC19l. %'BAO OPERAND ADDRESS' [0000401 c 
C0002AOl MESS.7 CHARC!2J. %'BAO IC VALUE' [0000411 c 
[000300 l MESS.8 CHAR(12J, %'EOF ON INPUT' [0000421 c 
[0003601 MESS.9 CH ARC 191 • %'NON-NUMERIC OPERAND• [0000431 c 
C0003f81 MESS.10 CHARC15J. %'NON-NUMERIC ACC' [ 000044 l c 
[0004701 MESS.11 CHAR C!6 >. %'ADDR NOT DECIMAL' £0000451 c 
[0004FOl MESS.12 CHARC!&J. %'TOO MANY INO!CES' [000046] c 
[0005701 MESS;.13 CHARC241. %'ERROR IN THE INTERPRETER• (0000471 c 
[0006301 HESS.14 CHARC25 J. %'BEGIN BATCH RUN FOR SAMOS' (0000481 c 
C0006F81 !~AREA CHARC80 I, % CARO IMAGE [ 000049 l c 
[0009761 PRINT.AREA CHARC80H % LINE IMAGE [0000501 c 
[ OOOBF 81 DECLARE 01 STORAGE.FQR.SAMOS• [0000511 c 
COOOBF 8 l 02 REG IS TE RS, [0000521 c 
COOOBF81 03 IX 3 BIT<88l. %RELATIVE ADOR = -5 (0000531 c 



I\) 

CCI 
0) 

SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 

SHELL 
SHELL 

SHELL 
SHELL 
SHELL 

SHELL 

SHELL 
SHELL 
SHELL 
SHELL 

SHELL 

COOOC501 
C00008 I 
[0000001 
[0000581 
[0000801 
COOOOBOJ 
COOOOB8l 
[0000001 
[0000001 
[000008 l 
COOOOEOl 
COOODE8l 

9BOO AT COOA60l 
0978 AT COOA701 
2B8F AT COOA80l 
9BOO AT [00A901 
06F8 AT COOAAOl 
288E AT COO ABO l 
9BOO AT COOACOI 
OOBO AT COOAOOl 
2880 AT COOAEOJ 
8838 AT COOAFOI 
2883 AT [008001 

2FOF AT C008901 
2FOE AT COOBAOl 

208F AT COOBBOl 
4081 AT COOBCOl 
C039 AT COOBOOI 

C045 AT COOBEOl 

20BE AT COOBFO l 
8101 AT COOCOOl 
4COf AT COOClOl 
2FDE AT COOC201 

C066 AT COOC301 

03 IX2 8IT<661. 
03 !Xl BIT<661. 
03 IC BIT!86>• 
03 ACC BITC86>• 

02 SAMOS.STORE<SIZE>• 
03 SIGN CHAR< 11• 
03 OPCODE CHAR! 3>• 
03 INDEXES, 

04 INDEX! CHAR!ll• 
04 INOEX2 CHAR<ll• 
04 INOEX3 CHAR< lb 

% -4 
I -3 
% -2 
% -1 
I SAMOS STORE REGINS HERE· 
% IT IS SIZE WORDS LONG. 
% EACH WORD HAS 11 CHARS. 

% MACRO 
% 

03 AOORESSS CHAR(4l; 
OEFINITIONS<GLOBALI 

[ 000054 l c 
C0000551 C 
[0000561 c 
[ 0000 571 c 
[ 000056 l c 
C0000591 C 
(0000601 c 
( 0000611 c 
(0000621 c 
(0000631 c 
(0000641 c 
( 0000651 c 
(0000661 c 
( 0000 67] c 

%COMPUTES EHECTIV E AO ORE SS ANO C OOM681 C 
%LEAVES EQUIVALENT ABSOLUTE AOORC000069l C 
%IN FA (0000701 C 
%ALSO LEAVE REL AOOR IN EA <S1B>C0000711 C 

% 
% 
% 
% 

% 

%M% 

% 

MACRO EFF.AOOR.TO.FA 

CALL EFFECTIVE.AOOR 
IF FLF NEQ 0 THEN GO TO 

MOVE EA TO T 
CALL BINARY. TO.FA 
ENO MACRO 

MACRO TEN.T.PLUS.O!LXl 
SHIFT T LEFT BY 1 BIT TO X 
SHIFT T LEFT BY 3 BITS TO Y 
MOVE SUM TO X 
MOVE LX TO Y 
MOVE SUM TO T 
ENO MACRO 

BEGIN SHELL 
SECT ION SHE LL 

EA.ERROR (0000721 C 
(0000731 c 
[0000741 c 
[0000751 c 
( 0000 761 c 
[ 0000 77] c 
(0000761 c 
(0000791 c 
( 0000601 c 
[ 0000611 c 
[0000621 c 
( 0000631 c 
(0000641 c 
[0000651 c 
~ggg~m E 

% SH FIG. 5-3 
SET UP SCRATCHPAO 

[0002651 c 
MOVE PRINT.AREA TO PRINT.AREA.AOOR {SSSml ~ 

G 
G 

[000266 l c 
G 
G 

[0002691 c 

MOVE INAREA TO INAREA.AOOR 

HOVE SAMOS.STORE!OI TO SAMOS.STORE.AOOR 
G 

MOVE 56 TO FIFTY.SIX ( 000270] ~ 
G 

IHI OUTPUT OATA.LENGrH! MESS.14) BITS CORE MESS.14 FILE PRINTER 
%BOX 1 

OPTC000271 I C 
[0002791 c 
( 0002601 c 
[ 0002811 c 

HOVE NULL TO HA STER. SW ITCH 
MOVE NULL TO FO UNO. SWITCH 

• MAIN.SHELL.LOOP 
MOVE MASTER.SWITCH TO X 
If X NEQ 0 THEN GO TO +STOP. STEP 

% CALL F !NO. A.JOB.CARO ROUTINE 
GO TO FINO.A.JOB.CARO 

• BOX4. SHELL 
HOVE FOUND.SWITCH TO X 
HOVE 1 TO Y 
IF X NEQ Y THEN GO TO -HAIN.SHELL.LOOP 
HOVE NULL TO FOUND.SWITCH 

CALL LOAD.A.PROGRAM ROUTINE 
GO TO LOAD.A.PROGRAM 

TO BOX3 

% FROM BOX3 

% BOX 4.1 
% BOX 4.2 

TO BOX5 

~sss~m ~ 
[ 0002641 
cooo 265 J 
(000286] 
[0002871 
[ 000266] 
(000289 J 
[ 0002901 
[0002911 
[000292 l 

~ 
c 
c c 
c 
c 
c 
c 
c 

C00A60l 
COOA70J 
COOA80 l 
COOA90l 
COOAAOJ 

~im&\ 
COOAOOJ 
[ OOAEOJ 
COOAFOJ 
coosoo l 

[00890] 
C OOBAOJ 

~ 88R~8J 
COOBOOl 

[00BE01 

C OOBFOJ 

masi 
cooc201 

COOC3 OJ 



N 

SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 
SHELL 

SHELL 
SHELL 
SHELL 

SHELL 

SHELL 

SHELL 
SHELL 
SHELL 

20BD AT COOC401 
6100 AT COOC501 
4CC1 AT COOC601 
C020 AT COOC701 
8101 AT cooc8o 1 
5CDF AT COOC901 
8102 AT COOCAOl 
5CC1 AT C OOCBOl 
COll AT COOCCO J 

8B01 AT C000001 
ZB9E AT COODEOl 
C007 AT COODFOJ 

DOZD AT COOE701 

C09C AT COOE80l 

2oac AT COOE901 
8100 AT COOEAO I 
4CCA AT COOEBOI 

QI SHELL 
..... SHELL 

6B01 AT COOECOl 
ZB9F AT COOEDOJ 

SHELL 003C AT COOF60J 

FINO.A.JOB 20BE AT 
FINO.A.JOB 4081 AT 
FINO.A.JOB 0048 AT 
FINO.A.JOB 20BF AT 

fl~&:1:1&~ ~82§ ~f 

(010401 
[0-10501 
[01060 J 
C 0107 OJ 
[010801 
[01090J 

FINO.A.JOB 16A8 AT COl160J 
FINO.A.JOB 060E AT [011701 
FINO.A.JOB 7008 AT (011801 
FINO.A.JOB 815C AT C01190J 
FINO.A.JOB 4CCB AT COllAOJ 

f!NO.A.JOB 6B01 AT £012401 
f!NO.A.JOB 2B9E AT [012501 

.BOX6.SHELL 
HOVE LOAD.COO£ TO X 
HOVE OK TO Y 

% FROM BOX5 C000293J 
[ 000294J ~ 

%H% 

%M% 

%M% 

.BOX7 
% 

If X EQL Y THEN GO TO +BOX7 

HOVE rnr TO y 
IF X EOL Y THEN GO TO -HAIN.SHELL.LOOP 
HOVE STAR TO Y 
If X EQL Y THEN 

% BOX 9.1 

% BOX 9.3 

BEGIN %PROGRAM INCDHPLET[, BOX 9.4 
OUTPUT DATA.LENGTH!HE5S.11 BITS CORE HESS.1 FILE PRINTER OPT 

% ACTION fOR A STAR CARD 
OUTPUT 80 BYTES CORE INAREA f!LE PRINTER OPT SINGLE 
HOVE 1 TO fOUNO.SWITCH 

END ELSE 
BEG IN 

OUTPUT DATA.LENGTH!HESS.ZI 
END 

GO TO -HA IN. SHELL. LOOP 

CALL INTERP.PROGRAM ROUTINE 
GO TO INTERPRET.PROGRAM 

BlTS%P~g~~A~£1g~2BtYL£ PRINTER DPT 

.BOX8.SHELL 
HOVE TERMINATION.CODE TO X 
HOVE NOT.YET.SET TO Y 
If X EQL Y THEN 

BEGIN 
MOVE 1 TO MASTER.SWITCH 

% SHOULD NOT HAPPEN 
% ERROR IN INTERPRETER 

rngg~m 
( 000297 J 
[ 000298J 
cooo2991 
(0003001 

omsm~ 
E&&&mi 
(0003201 

c 
c 
~ c 
c 
c 
I c 
c 
c 
c 
c 
G 

[0003211 c 
[ 0003221 c 

o~m1m ~ 
E888!m ~ 
( 000334J c c 0003351 c 
[0003361 c 

f sssrni g 
c 000339 J c 
[0003401 c 
c 0003411 c 
[000342J c 

%M% OUTPUT DATA.LENGTH!HESS.131 BITS CORE MESS.13 FILE PRINTER OPTC0003431 ~ 
Gl?~ -MAIN.SHELL.LOOP 

% END Of HAIN SHELL LOOP 
E~~~~~~J ~ 
[0003531 c 

• STOP.STEP 
%H% OUTPUT DATA.LENGTH!HESS.81 BITS CORE HESS.8 f!LE PRINTER OPT srl888!m ~ 

[0003631 c 
c 000369 J c 
[0003701 c 

%H% STOP 
END 
PAGE 
BEGIN FIND.A.JOB. 

%H% SECTION f!NO.A.JOB. 
FINO.A.JOB.CARD %ROUTINE BEGINS HERE. SEE FIG.5-4 
.fl NO.LOOP 

HOVE fOU NO. SW ITCH TO X 
If X NEQ 0 THEN GO TO -BOX4. SHELL 

HOVE MASTER.SWITCH TO X . 
IF X NEQ 0 THEN GO TO -BOX4.SHELL 

%M% BUFFER READ USING !NAREA FILE CARO.READER ON fOf GO TO 
MOVE BR TO FA 
ADD !NAREA.ADDR TO fA 
READ 6 BITS TO X %CHECK fOR STAR 
HOVE "*" TO Y 
ff X EQL Y THEN 

BEGIN % fOUND A STAR 
%M% OUTPUT 80 BYTES CORE !NAREA FILE PRINTER OPT DOUBLE 

MOVE 1 TO FOUND.SWITCH 

END 

(0003711 
[000372J 
[0003731 
{888F~l (0003~6] 

c c 
c 
c 
8 
I 

ms~m ~ 
I 

+BOX4.FIC000379J C 
rnssniJ c 
C000391J £ 
!0003921 c 
[000393] c 
msn~1 ~ 
[ 0004041 c 

G 
[ 0004051 c 

rno~~O) c o8c 68J 
COOC701 

rnm&i 
COOCAOJ 
COOCBOJ 
COOCCOJ 

coooo-0 J 
COOOEOJ 
COODfOJ 

[00£70J 

COOE80J 

COOE9Dl 

\88fa8\ 
COOECOJ 
COOED OJ 

c oor 60J 

(01040J 
(010501 
l01060l 
c8\8~8J 
[010901 

f8lU81 
C01180J mim 
[ 012401 
(012501 



N 
CD 
CD 

FIND.A.JOB 0023 AT [012601 

FINO.A.JOB 6B01 AT C012701 
FINO.A.JOB 2B9F AT [012801 
FINO.A.JOB 0026 AT [012901 

LOAD 
LOAD 
LOAD 

LOAD 
LOAD 
LOAD 
LOAD 
LO AO 
LOAD 
LOAO 
LOAD 
LOAO 
LOAD 
LOAD 

LOAD 

LOAD 
LOAD 
LOAD 
LOAD 
LOAD 

LOAD 
LOAD 

LOAD 
LOAD 
LO AO 
LOAD 

LO AD 
LOAD 

LOAO 
LOAD 
LOAO 
LOAD 
LO AD 

LOAD 
LOAD 
LOAD 
LOAD 

9BFF AT C012AOI 
rrrr AT co12Bo1 
2899 AT C012COl 

9AOO AT [012001 
2418 AT C012EOl 
9600 Ar co12ro l 
OBF8 AT [013001 
2B81 AT [013101 
16A8 AT [013201 
0801 AT C01330 I 
90FO AT £013401 
roro AT co11501 
9100 AT £013601 
HFO AT [013701 

4785 AT [013801 

7B50 AT (013901 
7818 AT (013A0l 
7818 AT C013BOI 
7818 AT COUCOI 
0006 AT C013D0l 

8804 AT C013EOl 
289D AT C013FOl 

2080 AT [014001 
8104 AT [014101 
5CC1 AT [014201 
0080 AT £014301 

9AOO AT [ 015001 
0270 AT [015101 

16A8 AT [015201 
080E AT [015301 
2881 AT [01540 l 
9140 AT [015501 
4040 AT (015601 

4783 AT C01570l 
7318 AT (015801 
5CD3 AT (015901 
COO& AT [015AOJ 

GO TO ·FIND.LOOP 
.BOX4.FINO 

MOVE 1 TO MASTER.SWITCH 

GO TO •FIND.LOOP 
END or FINO.A.JOB.CARD 

END 
PAGE 

BEGIN LOAO 
%M% SECTION LOAD 
LOAO.A.PROGRAH %ROUTINE BEGINS HERE· SEE FIG.5·5 

LOCAL.DH INES 
DEFINE LOCATION.COUNTER •S9B# 
DEFINE UNDEFINED =4 # % VALUE FOR LOA.D.COOE 

MOVE •1 TO LOCATION.COUNTER 

%CLEAR EMULATED SAHOS STORAGE. 
MOVE DATA.LENGTH<STORAGE.fOq.SAMOSl TO fl % INITIALIZE FL•FA•X 

HOVE STORAGE.FOR.SA~OS TO SlA 

HOVE BR TO FA 
ADO SIA TO FA 
MOVE •ooo· TO x 
MOVE "•O" TO Y 

.CLEAR.LOOP 
IF FL NEQ 0 THEN 

BEGIN 
WRITE 16 BITS FROM Y INC FA AND DEC FL 
WRITE 24 BITS FROM X INC FA AND DEC FL 
WRITE 24 BITS FROM X INC FA ANO DEC FL 
WRITE 24 BITS FROM X INC FA ANO DEC FL 
GO TO ·CLEAR.LOOP 

ENO 
MOVE UNDEFINED fO LOAD.CODE 

.LOAD.LOOP 
MOVE LOAD.CODE TO X 
MOVE UNOEFINEO TO Y 
IF X NEQ Y THEN GO TO ·BOX6.SHELL 

% CHAR. ZEROES IN X 

%BOX 3.1 

%BOX 3.2 

{0004061 c 
c 0004 071 c 
( 0004081 c 

G 
[ 0004091 c 
{0004101 c 
(0004111 c 
c 0004121 c 

COOD413] c 
(0004141 c 
(0004151 c 
l%88HH ~ 
c 0004181 c 
~iiiim ~ 

G 
G 

{0004211 c 
{0004 221 c 

[0004231 ~ 
G 
G 

[0004241 c 
{0004251 c 
{0004261 c 

G 
(0004271 c 

G 
[ 0004 281 c 
{0004291 c 
{0004301 c 
[0004311 c 
{0004321 c 
{0004331 c 
{0004341 c 
[ 0004 351 c 
l%%%HH E 
E000438l 
{0004391 
10004401 
10004411 

G c 
c 
c c 
I 

%M% BUFFER READ USING INAREA FILE CARD.READER ON ror GO TO •BOX3.5 [0004421 c 
MOVE 78•8 TO FL ~ \~~~~A~~~EAL~~~N~oc~~~RCH l%%&i~)l ~ 

MOVE BR TO FA 
ADD !NAREA.AODR TO FA 
MOVE FA TO SlA 
MOVE " " TO Y 

.CHECK.LOOP 
IF FL EQL 0 THEN GO TO +LAST2.CHECK 
READ 24 BITS TO X INC FA AND DEC FL 
IF X EQL Y THEN GO TO •CHECK.LOOP 
GO TO •BOX3.8 

• LAST2. CHECK 

FIRST 78 CHARS or CARD.IN 
GROUPS or THREE 

= ~AIEA==~ ~go~ or lNAREA 

G 
{000454] c 
miim g 
[0004571 c 
{0004581 c 
{0004591 
{0004601 
[000461 l 
c 0004&21 
{0004631 
{0004641 

G 
c 
c 
c 
~ 
c 

1012601 

[01270] 
1012801 
[012901 

C012A<ll 
C012BOl 
co12co1 

[012001 
C 012E01 
C012FOl 
COllOOl 
[013101 

c~uw 
~0134 o\ 
( 013501 
[013601 
(013701 

[013801 

c 013901 
{013A01 
{013601 
C013COl 
{ 013001 

(013E01 
C013F01 

(014001 
(014101 
{01420] 
(01430] 

[01500] 
{015101 

{015201 
c 015301 

f8t~~g\ 
[015601 

f8m8\ 
{015901 
C015AOJ 



N 
QI 
ID 

LOAD 
LOAD 
LOAD 

LOAD 
LOAD 
LOAD 

LOAD 
LOAD 
LOAD 
LOAD 

LOAD 
LOAD 
LOAD 

LOAD 
LOAD 
LOAD 
LOAD 
LOAD 
LOAD 

LOAD 
LOAO 
LOAD 

LOAO 
LOAD 
LOAD 
LOAD 
LOAD 

LOAD 

LOAD 
LOAD 
LOAD 
LOAD 
LOAD 

06A6 Ar C015BOI 
7016 Ar C015COI 
4CC3 Ar [015001 

6600 Ar [015EOl 
2890 AT [015f01 
0021 AT (016001 

26Al AT [016101 
7006 AT C016201 
615C AT [016301 
4CC3 AT (016401 

6802 AT [01650 I 
2B90 AT (016601 
0026 AT [016701 

2AB9 AT (016601 
0641 Ar [016901 
2A99 AT C016AOI 
6864 Ar [016BO l 
2890 AT [0!6C01 
57Al AT [016001 

6803 AT C016E01 
2B90 AT C016f01 
0031 AT [017001 

1AA2 AT [017101 
ElA4 AT [017201 
0711 AT C017301 
6A56 AT [017401 
E !SE AT [017501 

0040 AT COl7f0l 

6B01 AT [016001 
2B90 AT C01610J 
6B01 AT C01620 I 
2B9f AT (016301 
0045 AT [018401 

INTERPRET HOB Ar (016501 
INTERPRET 6BOO Ar [016601 
INTERPRET 2B9C AT [016701 

COUNT FA DOWN BY 6 
READ 24 BITS TO X 
IF X EQL Y rHEN 

BEGIN 
HOVE OK TO LOAD.CODE 

GO TO -LOAD.LOOP 

ENO 
.BOX3.8 

HOVE SIA TO fA 
READ 6 BirS TO X 
HOVE • •" TO Y 
If X EQL Y THEN 

BEGIN 
HOVE STAR TO lOAQ.COOE 

GO TO -LOAD.LOOP 
ENO 

% BOXJ.10 
HOVE LOCATION.COUNTER TO fl 
COUNT fl UP BY 1 
HOVE fl TO LO CAT I ON. C OUN TE R 
MOVE SIZE TO SOB 

If fl GEQ Sfl THEN 
BEG IN 

MOVE TOOBIG TO LOAQ.COOE 

GO TO -LOAD.LOOP 
ENO 

HOVE fl TO T 
CALL BINARY.TO.FA 
XCH SI F Si 
HOVE 66 TO fl 
CALL COPY 

% BOX 3.14 
%H% BUFFER WRITE USING INAREA FILE 

GO TO -LOAD.LOOP 

.BOX 3 H~VE EDF TO LOAD.CODE 

HOVE 1 TO MASTER.SWITCH 

GO TO -LOAD.LOOP 
%ENO Of LOAD.A.PROGRAM ROUTINE 

ENO 
PAGE 

BEGIN INTERPRET 
%H% SECTION INTERPRET 
INTERPRET.PROGRAM 

MOVE NULL TO WORK.COUNTER 

% 3 CHARS Of THE CARO 

BOX 3. 7 THE CARO IS BLANK 

% RESTORE ABS AOOR Of INAREA 

%INCREMENT LOCATION.COUNTER 

% SIZE NOW IN SH 

[0004651 
£0004661 
Cvv~4671 
C OGO• 681 
[000•691 

c 
c 
c 
c c 
G 

[ 0004701 c 
l 0004 71 l c 
10004721 c 
[ 0004 731 c 
rn&&HH c 
[000476] ~ 
10004771 c 
(0004761 c 
10004 79 I 
10004601 

rngg~m 
[000483] 
( 0004 641 
10004651 

G 
c 
c 
c c 
c c 
c 
G 

[0004661 c 
l 0004 87] c 
[ 0004881 c 
[ 000469 l 
(0004901 

G 

~ 
% BOX 3.13 £0004911 c c 

c c 
c 
c 

%PUT AR GU HE NT FOR NEx T CALL C 0004921 

iI~O~YTPI~~~ ~¥scaeB~N~fo~I~~RO 1%%%ti!J 
% INTO SAHOS STORAGE WORD USING [0004951 
% COPY SUBROUTINE. RECALL.SOURCEC0004961 
% ADDRESS WAS SAVED IN SIA [0004971 ~ PRINTER OPT SINGLE (0004981 

%AND FINALLY• 

~ ~~~ ~~Gis 5 A[REAOY INITIALIZED 
% TO •oooo• BY VIRTUE Of THE 
%CLEAR LOOP IN rHE 
%LOAQ.A.PROGRAM MODULE 

[ 0005061 
[0005071 

I&%%~%tJ 

c 
c 
c 
c 
G 

10005101 c 
l 0005111 
l 0005 lZl 
(0005131 
(0005141 

G 

~ 
c 
c 

10005151 c 
[0005161 c 
[0005171 c 
~ggg~ 1H E 
[0005~01 c 
[000521 l c 

MOVE NOT.YET.SET TO rERHINATION.COOE ~ggg~m ~ 
% 80X2 

• INTERP.LOOP 

G 
(0005241 c 
( Q00525l c 

C015B0l 
C015COl 
[015001 

[015EOl 
[015f01 
[016001 

~Of~lgJ 
cS16~01 
( 016401 

l 016501 rnmsi 
mtrn 
l Ol&AOl 
[ 016BOl 
l 016C 01 
[ 016001 

(016[01 
C016f Ol 
[ 01700] 

mns~ 
l 017301 

uu~gJ 

[ 017f0l 

[016001 

mu&~ 
(016301 
[018401 

1018501 
1018601 
[01870] 



IHI GO TO •XXOK If ALL OK [0005261 c 
%H% RELINQUISH CONTROL TO HCP c 0005 34] c 
• XXOK ms~m g INTERPRET 20BC AT [019601 HOVE TERMINATION.CODE TO X [019601 

INTERPRET 6100 AT C019701 HOVE NOT.YET.SET TO Y [0005441 c ~in~&\ INTERPRET 5CC1 AT COl 980 J If X NEQ Y THEN GO TO -B OX8.SHELL %RETURN TO THE SHELL ( 0005451 c 
INTERPRET 0081 AT £019901 I (0199 OJ 
INTERPRET 9260 AT C019A0l HOVE IC.AOOR TO T % FETCH NEXT INSTRUCTION. c 00054& l c C 019AOJ 
INTERPRET 0002 AT C019BOl G \8m0 \ INTERPRET E18f AT C019C0l CALL ADDRESS.TO.BINARY i ~5~~~~srh~ 6 1~~Tk. A~~ Bf NARy ~ggg~m ~ INTERPRET 50AB AT £019001 Ir Y EQL 0 THEN COl90S1 

BEGIN [000549) c 
INTERPRET 8B01 AT C019EOJ HOVE YES TO TER~!NAT!ON.COOE [0005501 c C019EOJ 
INTERPRET 2B9C AT C019FOJ G C019FOJ 

%H% OUTPUT DATA.LENGTHCMESS.71 BlfS CORE MESS.7 FILE PRINTER OPT SIC000551l C 
INTERPRET 0021 AT C01A80l GO TO -INTERP.LOOP [000559] C C01A60J 

END ~sss~m E INTERPRET E160 AT C01A901 CALL BINARY. TO. FA % POINT TO NEXT INSTRUCTION w~m INTERPRET 0628 AT [OlAAOJ COUNT FA UP BY 8 % AT THE OP CODE (0005621 c 
INTERPRET 7118 AT COUBOJ REAO 24 BITS TO X !NC FA % GET OP CODE (0005631 c COlABOJ 
INTERPRET l8AB AT C OlACOl MOVE FA TO TAS % SAVE POINTER TO REMAINDER or (0005641 c rnmgi INTERPRET lOAB AT C01A001 MOVE X TO TAS % INSTRUCTION AND SAVE OPCODE [000565) c 

% [0005661 c 
INTERPRET 9280 AT C01AE01 HOVE !C.ADDR TO T % INCREMENT THE IC c 0005 671 c COlAEOJ 
INTERPRET 0002 AT COlAFOJ G rnms1 INTERPRET El&li AT COlBOO l CALL BINARY.TO.FA c 0005 681 c 
INTERPRET 2881 AT COlBlOJ HOVE FA TO S lA % SAVE ABS AODR or IC ms~m ~ C01Bl0J 
INTERPRET E12A AT C01B20l CALL VALIDATE.DECIMAL % PACKS IC INTO SSA ANO SSB c 01B20J 
INTERPRET 2rc6 AT co1B301 HOVE NULL TO S6A (0005711 c rnmsi INTERPRET 8801 AT C01B401 HOVE 1 TO S68 [0005721 c 

I\) INTERPRET 2B96 AT C01B50l G C01B501 
INTERPRET E1E2 AT £018601 CALL AOD.10.COHPL c 0005 731 c [018601 co INTERPRET 28Al AT C 01B701 HOVE SlA ro rA % RESTORE ABS AOOR OF IC £0005741 c (018701 

0 INTERPRET EOF4 AT (01B801 CALL UNPACK.ANO.WRITE % STORES INCREMENTED IC !0005751 c C01B80l 
INTERPRET lBAO AT C01B901 HOVE TAS TO X % RESTORE OP CODE TO X {0005 76 J c [ 01B901 
INTERPRET 18A8 AT COlBAOl HOVE TAS TO FA % RESTORE FA PTR TO REM or !NSTRC0005771 c COlBAOI 

% [000578] c 
XOECOOE SECTION [0005791 c 

INTERPRET 9103 AT [018801 HOVE "LOA" TO Y C000560 I C Col BB OJ 
!NTE RPRET C4Cl AT COlBCOl 

( 0005811 @ rnm,si INTERPRET 4CC1 AT COlBDOl Ir X EQL Y THEN GO TO LOA •• 
INTERPRET C062 AT C018E01 I COlBEOl 

% [0005821 c 
INTERPRET 91EZ AT COlBFOI HOVE •sro• TO y [0005831 c COlBFOJ 
INTERPRET E301i AT COlCOOl G m~~g~ INTERPRET 4cc1 AT co1c101 Ir x EQL y THEN GO TO sro •• c 000584) c 
INTERPRET C068 AT C01C201 I C01C201 

% [ 000585 I c 
INTERPRET 91Cl AT C01C301 HOVE "AOO" TO Y (00058&1 c C01C301 

INTERPRET C4C4 AT C01C40l 
[0005871 ~ C01C40l 

INTERPRET 4CC1 AT C01C50 l Ir X EQL Y THEN GO TO ADO •• C01C50l 
INTERPRET C031 AT C01C601 I C01C601 

% £0005881 c 
!NTE RP RE T 91C2 AT C01C701 HOVE "8RU" TO Y c 0005891 c C01C701 
INTERPRET 09E4 AT C01C601 G C01C60I 
INTERPRET 4CC1 AT C01C901 Ir x EQL y THEN GO TO BRu •• [0005901 c C01C901 
INTERPRET C06f AT COlCAOI 

(0005911 e COlCAOJ 
% 

INTERPRET 91C2 AT COlCBOl HOVE "BM!" TO Y c 0005921 c C OlCBOJ 
INTERPRET 04C9 AT COlCCOJ G C01CC01 
INTERPRET 4CC1 AT COlCOOJ Ir X EQL Y THEN GO TO BM! •• ( 0005931 c C OlCOOI 
INTERPRET C074 AT COlCEOJ I COlCEOJ 

c 000594] c 



INTERPRET 91D9 AT C01Cf0l HOVE "RWD" TO Y c 0005951 c C01Cf0l 
INTERPRET E6C4 AT COlDOOl G mg~s1 INTERPRET 4CC1 AT (010101 If X EQL Y THEN GO TO RWD •• (0005961 c 
INTERPRET COTA AT COlDZOl I COlDZOl 

% (000597) c 
INTERPRET 91E6 AT C01Dl0l HOVE "WNO" TO Y 10005981 C (010301 
INTERPRET E6C4 AT 1010401 G ~8\g~SI INTERPRET 4CC1 AT C01D501 If X EQL Y THEN GO TO WNO •• C000S99l c 
INTERPRET C098 AT 1010601 I C01 D60J 

% [ 000600 l c 
INTERPRET 91C8 AT COlOTOl HOVE "HL T" TO Y ( 000601) c ( OlOTOl 
INTERPRET D3E3 AT (010801 G mgis1 INTERPRET 4CC1 AT C01D901 If X EQL Y THEN GO TO HLT •• C00060Zl C 
INTERPRET COA8 AT COlOAOl I COlOAOl 

% BAO OP CODE ~ssstm § (010801 INTERPRET 8801 AT COlOBOI HOVE YES TO TERHINATION.CDOE 
INTERPRET ZB9C AT COlDCOJ G C010COJ 

%H% OUTPUT OATA.LENGTH<HESS.4> BITS CORE HESS.4 rILE PRINTER DPT SIC00060Sl C 
INTERPRET 005E AT C01E50l GO TO -INTERP.LDOP ( 0006 lll c co 1E50 l 

% ENO Of OECDDE SECTION (0006141 c 
% BEGIN WORK.COUNTER UPDATECBOXES T-9 Of FIG. 5-T> (0006151 c 

.INC.WORK.COUNTER ( 0006161 c 
INTERPRET 8C18 AT C01E601 HOVE Z4 TO CP %INCRE~ENT WORK.COUNTER (000617) c C01E60J 
INTERPRET ZlBB AT COlETOl HOVE WORK.COUNTER TO Y (000618] c COlETOl 
INTERPRET 8001 AT C01E80l HOVE 1 TO X (0006191 c C01E80l 
INTERPRET ZODB AT C01E90l HOVE SUH TO WORK.COUNTER [0006201 c ~suxs~ INTERPRET 9000 AT COlEAOI HOVE WORK.LIHIT TO X % IF BORROW• C 0006 Zl l C 
INTERPRET 05DC AT COtEBOI G ~&\HSI INTERPRET 4CAA AT COlECOJ IF X LSS y THEN % WORK.LIHIT EXCEEDED (0006221 c 

BEGIN % OVERWORKED f 0006 231 c 
101 EOo l N INTERPRET 8801 AT COlEOOI HOVE YES TO TERHINATION.CODE 0006241 c co INTERPRET ZB9C AT COtEEOI G COlEEOl .... %H% OUTPUT OATA.LENGTHCHESS.5 l BITS CORE HESS. S rILE PRINTER OPT SI 10006251 C 

DOTO AT COlHO l 
ENO (0006331 c 

C01F701 INTERPRET GO TO -INTERP.LOOP (0006141 c 
% ENO Of INTERPRET.PROGRAM im:m E % SAHOS OPERATOR ROUTINES BEGIN HERE 
% ~sss~m ~ ADO •• % ADO OPERATOR BEGINS HERE • Err .AOOR. TO.FA 

%LEAVES FLAG IN CBcO~HACRO CALL \888~~~\ g cot roo l INTERPRET EODf AT COlFOOI CALL VALIOATE.OEC!HAL 
% 1 Ir NOGOOo. 0 If OK (0006411 c 

COlfEOJ INTERPRET 4768 AT COlfEOl IF CBCO> THEN XAND CVALIOJ OPERAND IN 55 C00064Zl C 
BEGIN %NON-NUMERIC OPERAND mg~m g COlHOl INTERPRET 8801 AT COlHOl HOVE YES TO TERHINAT ION.CODE 

INTERPRET ZB9C AT COZOOOl 
OUTPUT OATA.LENGTHCHESS.9> BITS CORE MESS.9 f!LE PRINTER OPT SIC0006451 ~ COZOOOl 

%H% 

INTERPRET 0082 AT C020901 GO TO -INTERP.LOOP [0006531 c [020901 
END ~ssstm ~ INTERPRET OT55 AT C020AOI XCH 55 f SS % HDVES VALIUATED OPERAND fRDH [OZOAOl 

INTERPRET OT6& AT C020BOJ X CH S6 f 56 % 55 TO 56 rnsst~~J E mg2g1 INTERPRET 9280 AT C020COJ HOVE ACC.AODR TO T 
INTERPRET 0001 AT £020001 G \8~8~8~ INTERPRET E108 AT C020EOJ CALL BINARY.TO.FA % ABS AODR Of ACC IN fA [ 0006S81 c 
INTERPRET Z882 AT C020f01 HOVE fA TO S2A % SAVE ADDR TEMPORARILY msim c 18~Y~81 INTERPRET EOCC AT 1021001 CALL VALIDATE.DECIMAL % LEAVES fLAG IN CB<Ol ANO 

C 000661 I t INTERPRET 476B AT [021101 If CB<O l THEN %!VALID OPERAND IN SS (021101 
BEG IN % NON-NUMERIC ACC rngg~m g COZ120l INTERPRET 8801 AT COZlZOl HOVE YES TO TERMINATION.CODE 

INTERPRET ZB9C AT [021301 
OUTPUT DATA.LENGTH<HESS.10> BITS CORE HESS.10 fJLE PRINTER OPT [0006641 ~ COZ130l 

%HZ 
coz1co1 lNTE RPRE T D09S AT C021COI GO TO -INTERPoLOOP [0006TZl C 



I\) 
co 
I\) 

INTERPRET E17B AT C021001 

INTERPRET 
INTERPRET 
INTERPRET 

INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 

INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 

28A2 AT C021E01 
E080 AT [ 021ro1 
0038 AT (022001 

288 l AT I 022601 
9280 AT ( 022701 
0001 AT C022801 
EOEO AT £022901 
0711 AT C02ZA01 
8A58 AT [ 022801 
EOAf AT C 022C01 
0048 AT (022001 

2881 AJ [023301 
8A58 AT C 023401 
9280 AT £023501 
0001 AT (02360 1 
EOor AT (023701 
E098 AT £023801 
0054 AT £023901 

INTERPRET ElOE AT C023A01 

INTERPRET &SAO 
INTERPllET C051 
INTERPRET E081 

AT £023801 
AT C023C01 
AT (023001 

INTERPRET 9280 AT C023EO I 
AT C023F01 
AT C024001 
AT (024101 
AT C02420l 

INTERPRET 0002 
INTERPRET EOD6 
INTERPRET E068 
INTERPRET 0050 

INTERPRET 
INTE RPREf 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 
INTERPRET 

INTERPRET 

2882 AT (024301 
9280 AT £02440 I 
0001 AT £02450 J 
E ODO AT ( 02460 J 
70~8 AT £024701 
814E AT (024801 
4CC1 AT £024901 
0065 AT C024AOJ 
28A2 AT (024801 
OOll AT C024CO I 

2881 AT [025201 

# 

' 

ENO 
CALL AOQ.10.COHPL 

MOVE S2A TO FA 
CALL UNPACK.AND.WRITE 
GO TO ·INC.WORK.COUNTER 

%ADOS TWO PACKED DECIMAL VALUES \%%St~~~~ 
% IN S5 ANO S6 ANO LEAVES RESULTC000675J C 

~No~ i~srnRE ABS AooR oF Ace E%%%~~g g 
% STORES CHAR. REPRES. IN AcC [0006781 C 

% 
% 

ENO or AOD OPERATOR rngg:m g 
LOA •• 

% 
% 
sro •• 

% 
% 

EH.ADDR. TO.FA 
HOVE FA TO SlA 

HOVE ACC.ADDR TO T 

CALL BINARY.TO.FA 
KCHSlFSl 
HOVE 88 TO FL 
CALL COPY 
GO TO ·INC.WORK.COUNTER 

EFF .ADDR. TO.FA 
HOVE FA TO SlA 
MOVE 88 TO FL 
MOVE ACC.ADDR TO 

CALL BINARY.TO.FA 
CALL COPY 
GO TO -INC. WORK.COUNTER 

£000681 l c 
(0006821 c % LDA OPERATOR BEGINS HERE 

%GET SOURCE PTR 
%SAVE IT IN SlA 

<H ACRO CALL)[ 0006831 C 

% GET SINK POINTER rnssi:~i g 
G 

[ 0006861 c 
% [000687 l c 
%SET LENGTH OF VALUE TO BE COPYOC0006881 C 
% ARGS READY FOR COPY CALL (0006891 C 

[ 0006901 c 
£0006911 c 

% STD OPERATOR BEGINS HERE 
%GET SINK PTR (MACRO 

~ltlELl~G·~ ~·AVALUE TO BE 
%GET SOURCE PTR 

[0006921 c 
[0006931 c 

CALL)[ 0006941 C 

coPYOrnss:n\ g 
[ 000697) c 

G 
% ARGS NOW READY FOR COPY CALL (0006981 C 

(0006991 c 
(0007001 c 
(0007011 c 
[0007021 c 

BRU •• CALL EFFECT IVE.ADDR % BRU DPER~Te~AV~~Gl~~E~~~~E ADDRESS AS A .Egss~st\ g 
% BINARY VALUE IN EA AND FLAG INI0007051 C 

% 
% 

BHI •• 

% 
% 
RWO •• 

IF FLF NEQ 0 THEN GO TO EA.ERROR 

CALL BINARY.TO.DECIMAL 

MOVE IC.ADOR TO T 

CALL BINARY.TO.FA 
CALL UNPACK.ANO.WRITE 
GD TD •I NC. WORK .CO UN TE R 

%FLF ( 0007061 C 
G 

% LEAVES PACKED DECIMAL EQUIV. (0007071 C 
% OF EA IN S5. (0007081 C 
% GET ABS ADDR OF IC C 0007091 C 

% ASSIGN NEW VALUE TO IC 
[ 0007101 
(0007111 
[ 0007121 
(000713] 
(0007141 

G 

~ 
c 
c 
c 

% BHI OPERATOR BEGINS HERE 
%SAVE POINTER TO REST OF INSTR 
% CHECK SIGN OF ACC 

(0007151 c 
[00071&1 c 
(0007171 c MOVE FA TO S2A 

HOVE ACC.AOOR TO 

CALL BINARY.TO.fA (0007181 
READ 8 BITS TO K £0007191 

r~VEK"E~LT~ y THEN GO TO ·INC.WORK.COUNTER% NO BRANCHING <A NO OPl~ggg~~r! 
MOVE S2A TO FA 
GO TO BRU •• 

% RWO 
EFF .AOOR. TO.FA 
HOVE fA TO SlA 

% RESTORE PTR TO REST or INSTR 

OPERATOR BEGINS HERE 
% GET ABS PTR TO SINK ANO PUT 
% SIA 

(0007221 
(0007231 
[0007241 
(0007251 
[0007261 

INC0007271 
(000728! 

G c c 
c 
c 
e 
c 
c 
c c 
c 
c 

(021001 

~gmgi 
C022001 

f%~~'8) 
E%~~~0 ~ 
C022A81 
[022BOl 

E8~~~g\ 

ESBUl 
Eo23soJ c&ms1 
(023801 
(023901 

[023A0l 

(023801 

ES~~8J 
C023EOl 
C023FOl 
(024001 

m:~gi 

(024301 
COZ440l mim 
COZ470J 
(02480] 
£0249 OJ 
C024AOJ 
[024BOl 
C024COl 

C02520l 



% M% BUFFER READ USING INAREA FILE CARD.READER ON ror GO TO •EOf [0007291 c 
INTERPRET 16A6 AT C025f01 MOVE BR TO FA % GET ABS PTR TO (0007 39] c f 025f0l 
INTERPRET 060E AT (026001 ADD INAREA.ADDR TO FA % INAREA (0007401 c 02600 l 
INTERPRET 8A58 AT C026101 MOVE 88 TO fl % SET LENGTH or INPUT (0007 41 l c 1026101 
INTERPRET E071 AT (026201 CALL COPY % COMPLETES RhO ACTION (0007421 c [026201 
INTERPRET 007E AT !026301 GO TO ·INC. WORK.COUNTER (0007431 c c 026301 

.Ear [0007441 c 
INTE RP RE T 8B01 AT C026401 MOVE YES TO TERMINATION.CODE %ANO <VALID> OPERAND IN S5 [000745] c C 0264 OJ 
INTERPRET 2B9C AT C026501 G 102650] 

% M% OUTPUT OATA.LENGTH<MESS.8> BITS CORE MESS.8 FILE PRINTER OPT Sil000746l C 
IN TE RP RE T DOE7 AT I 026EOJ GO TO ·INTERP.LODP 10007541 c C026EOl 

% (0007551 c 
% [0007561 c 
wwo •• % WWO OPERATOR BEG INS HERE I 0007571 c 

' Eff.ADDR.TO.fA % SAVE ABS PTR TO SOURCE IN (0007581 c 
INTERPRET 2861 AT (027401 MOVE fA TO SlA % S lA (0007591 c 1027401 
INTERPRET l 6A6 AT ( 02750 l MOVE BR TO f A % GET ABS PTR TO SINK. 10007601 c 102750] 
INTERPRET o8or AT co27601 ADO PRINT.AREA.ADDR TO FA % IE• PRINT.AREA [0007611 c 1027601 
INTERPRET 0711 AT 1027701 X CH Sl f Sl % SWAP ARGS FOR CALL ON COPY 10007621 c 1027701 
INTERPRET 6A56 AT (02760 l MOVE 88 TO fl % SET LENGTH or OUTPUT 10007631 c I 027801 
INTERPRET E05A AT C027901 CALL COPY c 0007641 c 102790 l 

%M% OUTPUT 88 BITS CORE PRINT.AREA FILE PRINTER OPT SINGLE I00076Sl c 
INTERPRET D09D AT 1028201 GO TO -INC.WORK.COUNTER I 0007731 c (026201 

% 10007741 c 
% 10007751 c 
HLT •• ~giim~ E CNTE RPRE T 6B01 AT 1028301 MOVE YES TO TERMINATION.CODE % NORMAL HALT I 02830] 

INTERPRET 2B9C AT I 02840 I G (026401 
%H% OUTPUT DATA.LENGTH<MESS.3> BITS CORE MESS.3 FILE PRINTER OPT SIC000778l C 

INTERPRET Dl06 AT I028D0l GO TO -INTERP.LOOP 10007861 C 1028001 
II) % (0007 87] c 
co EA.ERROR %EFFECTIVE ADDRESS ERR MESSAGES 10007881 C 
w INTE RP RE T 4S88 AT C028EOI If flf(3) THEN 10007891 c I028EOl 

% M% BEgi~PuT oATA.LENGTH<MESs.12> BilsTggR~A~ls~~~~cf~LE PRINTER OPT E%%%~ii1 E 
END rniiai1 E INTERPRET 4 SAS AT !02970 l If fLf( 2> THEN I 029701 
BEGIN %ADOR NOT DECIMAL 10008011 C 

% H% OUTPUT OATA.LENGTH(MESS.lll BITS CORE MESS.11 FILE PRINTER OPT (0008021 C 
ENO I 0008101 c 

INTERPRET 4SC8 AT I02A001 IF fLfCll THEN I 000811 J c 102AOOl 
BEGIN %BAO OPERAND AOOR 10008121 C 

%M% OUTPUT OATA.LENGTH<MESS.6> BI TS CORE MESS.& fILE PRINTER OPT C0008131 C 
ENO I 0008 21] c 

INTERPRET 8B01 AT C02A901 MOVE YES TO TERMINATION.CODE (0008221 c 102A90J 

INTERPRET 2B9C AT 102AAO l G 102AA0l 
INTERPRET 3580 AT l02AB01 SET fLf TO O % RESET THE EA FLAG 10008231 c C02 ABO l 
INTERPRET 0 125 AT 102AC0l GO TO •INTERP.LOOP 10008241 c 102AC0l 

ENO (0008251 c 
PAGE 10008261 c 

BEGIN SUBROUTINES 10008271 c 
%H% SECTION SUBROUTINES 10006281 c 
% 10008291 c 
% UNPACK.ANO.WRITE PACKED DECIMAL VALUE IN SS IS f000830l c 

%UNPACKED ANO WRITTEN TO G-STORE 
%AT A 00 RE SS G I VEN B Y fA. 1S88BH ~ 
%USES T•L•X•Y AS LOCAL STORAGE [0008331 c 

UNPACK.ANO.WRITE 10008341 c 



SUBROUTINE 9200 AT C02ADOJ HOVE •+o• TD T % UNPACK AND WRITE (0008 35] c f8U~8l SUBROUTINE 4Ef0 AT COZAEOJ G 

~81~8Hf l~f f~~~ :f l&~:~g) MOVE S5A TO L % f IRST 2 BYTES i888:m g C02AfOJ 
If L<Ol THEN MOVE •-o• TO T % IN CASE Of NEGATIVE NUM~ER C02BOOJ 

~~1~8~ll~~ :~~g ~f · i8~1~8\ G (02810) 
G \8~UgJ 

~H:R88f m H~~ H rn~lf8l HOVE LC TO Tf rnss:m g WRITE 16 BITS fROH T INC FA [ 02B 40) 

SUBROUTINE 92f0 AT (028501 HOVE ·ooo• TD T ~ ~~~AC~~~%F~~IT~NNE~~ 3: BYTES fggggm g 
~ o2:~8l SUBROUTINE FOfO AT (028601 G 

SUBROUTINE lBOl AT C02B70l '!DYE LD TD TB ( 0008 421 c cS~B101 
SUBROUTINE 1C03 AT CD2B801 HOVE LE TO TD ( 0008431 c mK3°! SUBROUTINE 1005 AT (028901 MOYE LF TD TF E&88:!~l g SUBROUTINE 7998 AT C02BAOI WRITE 24 BITS FROM T INC FA C 02BA 81 

% UNPACK ANO WRITE NEXT/3 BYTES C000846l C 
SUBROUTINE 2385 AT C02BBOI =g~f EiB rn L . (000847) c m12°\ SUBROUTINE 1801 AT C02BCOI TB [ 0008481 c 
SUBROUTINE 1903 AT C02BOOl MOVE LB TD TD C 000849 I C c 02B~81 
SUBROUTINE lAOS AT C02BEOI HOVE LC TO Tf [ 0008501 c C02B OJ 
SUBROUTINE 7998 AT C02BFOI WRITE 24 BITS FROM T INC FA ( 000851 l c C02BfOI 

% UNPACK AND HRITE LASl 3 BYTES £0008521 C 
SUBROUTINE lBOl AT C02COOI MOVE LO TO TB £000853) c C02COOJ 
SUBROUTINE 1C03 AT C02C10l HOVE LE TO TD £0008541 c ~02Cl0l 
SUBROUTINE 1005 AT C02C201 HOVE Lr TO Tf £000855) c 02C20l 
SUBROUTINE 7898 AT C02C30J WRITE 24 BITS FRDH T (000856 J c C02C301 

% £0008571 c 
SUBROUTINE 1BA4 AT C02C401 EXIT [0008581 c [02C401 

% [000859) c 
% (0008601 c 

N % BINARY.TD.DECIMAL % MAXIMUM VALUE TD BE CONVERTED! rs 9999, (0008611 c 

co % I.E., LSS 2 TO THE 14T~ POWER [0008621 c 

~ 
%THE INPUT ARG IS IN EA <SIB> [0008631 c 
%THE OUTPUT RESULT. IS LEFT IN [0008641 c 

BINARY.TO.DECIMAL 
%S5 AS A PACKED DEClHAL VALUE [0008&51 c 

£0008661 c 
SUBROUTINE 22Bl AT C02C50l HOVE EA TO T £0008671 c \g~g~g\ SUBROUTINE 0310 AT C02C60l CLEAR X £0008681 c 

SUBROUTINE 8C38 Af C02C70l HOVE a<l>OOlllOOOa TO CP i SET UP fDR OECIM'AL ARITH. i&ssgn1 g C02C70J 
SUBROUTINE 8AGE A [02C801 HOVE 14 TD FL [0008711 c co2ceo1 

.LOOP ~sss~m ~ SUBROUTINE 4787 AT C02C90l If FL NE Q 0 THEN [02C90J 
BEGIN 

% HOVE TWICE THE VALUE OF X \8S8H~1 g SUBROUTINE lOAl AT C02CAOI HOVE X TD Y C02CA01 
SUBROUTINE 10El AT C02CB01 HOVE SUH TD Y % TO y C 0008 76 I C \g~g2g\ SUBROUT !NE 8581 AT C02CC 0 I EXTRACT 1 BIT FROM T<lO> TO X % GET NEXT DIGIT. [ 0008 771 c 
SUBROUTINE A281 AT C02CD01 SHIFT T LEFT BY 1 BIT [0008781 c C02C001 
SUBROUT !NE 10£0 AT C02CEOI MOVE SUH TD X % THE NEW SU~ Nqw IN X rngggm ~ C02CEOI 
SUBRDU TINE 0 &Cl AT C02CFO 1 COUNT FL DOHN BY 1 m~~g\ SUBROUTINE 0008 AT £020001 GD TO ·LOOP [0008811 c 

END [0008821 c 
SUBROUTINE 2fC5 AT £020101 HOVE NULL TD S5A % STORED IN 55 [ 0008831 c [020101 

SUBROUTINE 2095 AT £02020! HOVE X TO S5B £0008841 c £020201 
% ( 000885 I C 

SUBROUTINE 1BA4 AT £020301 EXIT [ 0008861 c [ 020301 
% . ~ggggg~) g % 
% COPY ~ f~P,~~ ~OS~UR~iN~[~~~~~w~~2~EA~g2~~~s1~ 5 \88&:~~1 ~ 

% IN SlA. £0008911 C 
~ h~~gTHc~[ K~~R~~ 1s IN FL. {gggg~~) g 
% LEAVES A COPY OF INIT!Al VALUE OF FL IN £0008941 C 
% SFL. £000895) C 



COPY [0008961 c 
SUBROUTINE 2A90 AT C02040l HOVE fl TO SOB ( 000897] c (020401 

.LOOP 
~&&&gm g SUBROUTINE 5781 AT [020501 ff H EQL 0 THEN EXIT C02D50J 

SUBROUTINE 1BA4 AT C02D60l G E02D&OJ SUBROUTINE 0032 AT (020701 BIAS BY f % CPL GETS HINC24,fLJ (000900] c 0207 OJ 
SUBROUTINE 7380 AT C02D80J READ TO T INC f A AND DEC fl % READ CPL BITS [0009011 c C02DsOJ 
SUBROUTINE 0711 AT C02D901 XCH Sl f S 1 [0009021 c [02D90] 
SUBROUTINE 7980 AT C020AOJ WRITE fROH T l~C FA % WRITE CPL BITS [0009031 c C02DAOl SUBROUTINE 0711 AT C020BOJ XCH S 1 F S 1 E888§~~ g SUBROUTINE 0008 AT C020COJ GO T 0 •LOOP mg2s1 

% ENO Of COPY C000906J C 
% [0009071 c 
% [000908] c 
% C 000909 I C 
VALIDATE.DECIMAL %ROUTINE BEGINS HERE. SEE f !G. 6-13. [0009101 c 

%VALIDATES A SAMOS WORD POINTED TO [0009111 c 

~y~T~~ERC~~JE=r~K~fAft-~~TAO~~~A:tl [ 0009121 c 
(000913] c 

%REPRESENTATION IN S5. If NOT VALID, [0009141 c 
%CBCOJ IS SET TO 1, ELSE IT IS SET TO O. C000915JC 
% THIS ROUTINE USES x.Y.T.L. ANO CP. [0009161 c 

BEGIN C0009171 C 
LOCAL.DEFINES [0009181 c 
OEf INE fLAG =CBCOJ # c 000919 J c 
MACRO CHECK.fCTKl = [0009201 c 

If TK NEQ oFo THEN EXIT • [0009211 c 
%BOX1 c 0009 221 c 

SUBROUTINE 0380 AT £020001 CLE AR L [ 0009 23) c Eo2000~ SUBROUTINE 3728 AT C020EOJ SET fLAG ~Ga ~m~o 2 BYTES IN TC THRU rr\88%§~~\ g c8~8~81 I\) SUBROUTINE 7190 AT C020fOJ R £A 0 16 8 ITS T 0 T I NC f A co %BOXES 4,5, C000926l C 
UI SUBROUTINE B808 AT C02EOOI EXTRACT 8 BITS FROM TC8l TO X %ANO 6 (0009271 C E02EOO~ SUBROUTINE 814E AT C02E10J MOVE "+" TO Y [000928 J c 

SUBROUTINE 5CC4 AT C02E20J If X N£Q Y THEN [0009291 c c8~a&1 
BEGIN % TRY ·-. [000930] c 

SUBROUTINE 8160 AT C02E301 MOVE "·" TO Y c 0009 311 c mEi8~ SUBROUTINE 5CC1 AT C02E401 If X NEQ Y THEN EXIT ( 0009 321 c 
SUBROUTINE 1BA4 AT C02E50l G mHg~ SUBROUTINE 3808 AT [02£601 MOVE Hl 110000 TO LA [0009331 c 

ENO [0009341 c 
%BOX7 £0009351 c 

CHECK.re TE l [0009361 c 
SUBROUTINE 150A AT C02£90J MOVE Tf TO LC [0009 371 c C02E90J 

%BOX8 [0009381 c 
SUBROUTINE 7198 AT C02EA01 REAO 24 BITS TO T INC FA [000939] c C02EAOJ 

CHECK.fCTAl %CHECK ANO PACK INTO L (000940 l c 
CHECK.re TCl (0009411 c 
CHECK. FC TE l c 0009421 c 

SUBROUTINE llOB AT C02f101 MOVE TB TO LO (000943] c C02fl0J SUBROUTINE 130C AT C02f201 HOVE TO TO LE c 000944) c \mm SUBROUTINE 1500 AT C02f 30J MOVE Tf TO Lf {ggg~m g SUBROUTINE 2385 AT C02f40l HOVE L TO SSA C 02f4 OJ 
SUBROUTINE 7198 AT C02f50l 

%BOX9 ( 0009 471 c 
READ 24 BITS TO T INC fA (000948] c [02f50] 

# CHECK.fCTAl %CHECK ANO PACK INTO L (000949 l c 

' CHECK.fl TC I c 0009 501 c • CHECK. f<TE I (0009511 c SUBROUTINE 1108 AT C02fCOl HOVE TB TO LA ( 0009521 c c 02rco1 SUBROUTINE 1309 AT C02f001 MOVE TO TO LB [ 0009 53] c co2roo 1 SUBROUTINE 150A AT C02fEOJ MOVE Tf TO LC [ 000954 l c C02fEOl SUBROUTINE 7098 AT C02ff01 READ 24 BITS TO T (0009551 c C02ffOJ 



s CHtCK.tllAJ %CHECK ANO t'ACK !NIU L [00095bl C 
I CHECK.FOCI [0009571 C 
# CHECK.F<TEI !000958] C 

~83~&8ll~f t~8~ ~f f8l8~8l =8~f fg fg t~ cggg;~i 1 ~ E 0 1°~0 J 
SUBROUTINE 1500 AT !030801 HOVE TF TO LF foo09611 c c83SeS1 
SUBROUT !NE 2395 AT C03090J HOVE L TO S5B (0009621 C C03090J 

%BOX10 !0009631 C 

~u~~88lI~t ~g1~ :J f8!8a8J ~8~l ~~1 1 r8 1: 1000 ~ TO CP iBOX t8:~ E888:~~1 ~ fsi~&l 
SUBROUTINE 0320 AT C030COI CLEAR Y % 10.3 C0009661 C C030COJ 

~8~~88Jf~f ~~~f :J ~8l8~8l 1~v~ ~~g ~ 0 T~EN EXIT f888~~~l E E&ig~gJ 
SUBROUTINE 1BA4 AT C030FOJ G C030FOJ 
SUBROUTINE 20B5 AT !031001 HOVE S5B TO X %BOX 10.4 (0009691 C !031001 

~8~~88li~f ~~fY :J f8ll~8l ~~~~RS~M TO y %BOX 10 • 5 \ggg;~f l ~ E8 3l181 
SUBROUTINE 5CC1 AT [031301 If x NEQ y THEN EXIT !0009721 c co!1~01 
~a~a88lf~f '~'~ :J ~&11~&1 RESET FLAG %BOX11 [0009731 ! E&i1~&1 
SUBROUTINE 1BA4 AT C03160l f~~T % OF VALIOATE.OECIHAL ROUTINE f8&&;~~l ~ [031601 

BINARY.TO.FA %ROUTINE BEGINS HERE SEE FIG. 6-15. C000976J C 
%INPUT VALUE•S• IS IN T REGISTER [0009771 C 
%OUTPUT RESULT IS IN FA !0009781 C 
%USES x.Y.CBCOl.ANO L AS LOCAL STORAGE [0009791 c 

BEGIN !0009601 C 
LOCAL.DEFINES C000981J C 
DEFINE NEG.SIGN =CBCOH [0009621 C 
DEFINE NEW.S =LI C000983J C 

I\) %BOX1 [0009641 C 
CO SUBROUTINE 4063 AT C03170J If TCO l THEN %SAVE SIGN OF S (0009651 C [03170] 

m suBRouTINE 3728 AT 1011801 BEH~ NEG.s 1GN ia~0 A~~pv~tnEsor s \ggg~g~J ~ 1031601 
SUBROUT !NE 3017 AT £031901 RESET TCOI %IS THIS INSTRUCTION NECESSARY? !0009681 C [031901 
SUBROUTINE COOl AT C031AOJ ENO ELSE !0009891 C [031A01 

SUBROUTINE 3717 AT COllBOl BE~t~ET NEG.SIGN f88Sn~l ~ C031B01 

SUBROUTINE 6Cl8 AT C031CO I MO~~OZ4 TO CP %SET UP FOR ARITHMETIC fSS&;;~} ~ C031C01 
SUBROUTINE A083 AT !031001 SHIFT T LEFT BY 3 BITS TO X %8 TIMES S TO X<SIGN BIT LOST> !0009941 C C031001 

~~:~g~~~~f :A~~ :i fg~tfgJ ~~J~TS~MLfbTxBY 4 BITS TO y i~~ ~~~E~ ~ rg ~ ~888i:~J ~ cg~tf8 1 
SUBROUTINE Al86 AT [032001 SHIFT T LEFT BY 6 BITS TO y %64 n~!s s TO y [0009971 c ~03Zool 
SUBROUTINE 10E3 AT 1032101 HOVE SU~ TO NEw.s %88 TIMES s IN NEW.S <LI 1300995) c [032101 
SUBROUTINE 16AO AT (032201 HOVE BR TO X C 009991 C [032201 
SUBROUTINE 9100 AT !032301 MOVE SAHOS.STORECOl TO Y 10010001 C [032301 
SUBROUTINE OOBO AT C03240l G (032401 
SUBROUTINE lOEO AT [032501 HOVE SUH TO X %BR+ SAMOS.STORE IN X [0010011 C £032501 
SUBROUTINE 13Al AT [03260) MOVE NEW.S TO y [0010021 c C03260L 

SUBROUTINE 4762 AT !032701 IF NEG.SIGN THEN %BOX 5 {88\SSiJ ~ [032701 
BEGIN !0010051 C 

SUBROUTINE 16E8 AT !032801 MOVE Olff TO FA [0010061 C !032801 
SUBROUTINE COOl AT !032901 ENO ELSE [0010071 C C03290l 

SU BR OUT INE 10E8 AT C032A01 BE~b~E SUH TO FA l88l88iJ £ COJZAOl 
END !0010101 C 

SUBROUTINE 1BA4 AT (032801 EXIT !0010111 C C032B01 
END % BINARY.JO.FA ROUTINE [0010121 C 

[0010131 c 



ADDRESS.TO.BINARY %ROUTINE BEGINS HERE. SEE FIG 6-17. (0010141 c 
%INPUT VALUE•S• IS IN T REGISTER [0010151 c 
%OUTPUT RESULTS BINARY ADDRESS IN T [0010161 c 
% FLAG IN Y [()010171 c 
% O IF INVALID (0010181 c 
% 1 IF VALID [0010191 c 
%USES x.Y.L.FA AS LOCAL STORAGE (0010201 c 

%B 0 Xl [001021) c 
SU BR OUT !NE F016 AT C032C01 CALL BINARY.TO.FA %WITH ARGUMENT IN T [0010221 c [032COl 

%BOX2 [0010231 c 
SUBROUTINE 0638 AT [032001 COUNT FA UP BY 24 %COUNT FA UP BY [0010241 c [032001 
SUBROUTINE 0636 AT C032EOl COUNT FA UP BY 24 %6 BYTES [0010251 c C032E01 
SUBROUTINE 7100 AT C032FOl REAO 16 BITS TO L INC FA %OSUB3 NOW IN Lt [0010261 c C032FOl 
SUBROUTINE 1022 AT [033001 HOVE LF TO T [0010271 c [033001 

%BOX3 [0010261 c 
SUBROUTINE 7008 AT £033101 REAO 24 BITS TO L %0SUB2 IN LB [0010291 c [033101 

%0SUB 1 IN LO [0010301 c 
%DSUBO IN LF [0010311 c 

%BOX4 [0010321 c 
SUBROUTINE 6Cl8 AT [033201 MOVE 24 TO CP [0010331 c [ 033201 

• TEN. T.PLUS. D<LB I %10 TIMES T + OSUB2 TO T [0010341 c 

• TEN. T.PLUS. DCLD I %10 T!~ES T + OSUBl TO T [0010351 c 
# TEN.T.PLUS.OCLFI %10 TIMES T + OSUBO TO T [0010361 c 

%BOX5 [0010371 c 
SUBROUTINE lZAO AT [034201 HOVE T TO X [0010381 c [ 034201 

%BOX6 mrnm ~ SUBROUTINE 6164 AT [034301 HOVE SIZE TO Y %SIZE IS A GLOBAL CONSTANT [034301 
SUBROUTrnE 4CA2 AT £034401 If X LSS Y THEN [001041] c [034401 

BEGIN [ 0010421 c 
SUBROUTINE 8101 AT [034501 HOVE 1 TO Y %VALID SAMOS ADDRESS [001043] c [ 034501 

I\) SUBROUTINE COOl AT [034601 ENO ELSE [0010441 c (034601 
co BEGIN ~ssrnm ~ °"' SUBROUTINE 8100 AT [034701 HOVE 0 TO Y %INVALID SAMOS ADDRESS [034701 

END [0010471 c 
% [0010461 c 

SUBROUTINE 1 BA4 AT [034801 EXIT %ENO or ADDRESS.TO.BINARY ROUTINE [001049] c [03480 l 
% ~ssrnm ~ EffECT IVE. AODR %ROUTINE BEGINS HERE. SEE F I G. 6- 1 9. 

%INPUT IS A POINTER IN FA TO INDEX FIELD [ 0010521 c 
IOUTPUT IS A FLAG CFLF REG!STERJ [0010531 c 
% 0 = OK [0010541 c 
% 1 = TOO MANY INDICES [0010551 c 
% 2 = AODR NOT DECIMAL [0010561 c 
% 4 = BAD OPERAND AODR [0010571 C 

IAND THE EFFECTIVE ADDRESS IN EAC001058l C 
%AS A BINARY VALUE [0010591 C 

% ROUTINE USES x.Y.T·L•CP.rL.SOB.ANO SlB [0010601 c 
% AS LOCALS [0010611 c 

BEGIN [0010621 c 
LOCAL.DEflNES [0010631 c 
DEFINE FLAG =FLF I [001064] c 
DEf !NE CTR =FLE # [0010651 c 
DEFINE INDICATOR =SOB# [0010661 c 
DEF !NE TEMP =S 18# [0010671 c 

SUBROUTINE 7198 AT (034901 READ 24 BITS TO T INC FA %BOX1 [0010&81 c [034901 
SUBROUTINE 3480 AT [034AOJ SET CTR TO 0 [0010691 c ~mm SUBROUTINE 81FO AT [034B01 HOVE •o• TO Y %HOVE INOEXl TO XC001070l C 
SUBROUTINE B408 AT C034COJ EXTRACT 8 BITS FROM T<OI TO X [0010 71 l c C034C01 
SUBROUTINE 5CC4 AT C034DOl IF X NEQ Y THEN [ 0010721 c [ 034DOJ 

BEGIN [0010731 c 
SUBROUTINE 34Cl AT C034EOJ INC CTR BY 1 [001074) c i8W:8~ SUBROUTINE 9B80 AT C034FOI HOVE !Xl.ADDR Tr INDICATOR [0010751 c 



N 
co 
0) 

SUBROUTINE 0003 AT [035001 
SUBROUTINE 2B90 AT (035101 

SUBROUTINE B606 AT (035201 
SUBROUTINE 5CC4 AT (035301 

SUBROUTINE 34Cl AT C03540l 
SUBROUTINE 9B80 AT [035501 
SUBROUTINE 0004 AT [035&01 
SUBROUTINE 2890 AT (035701 

SUBROUTINE BC06 AT [035801 
SUBROUTINE 5CC4 AT [035901 

SUBROUTINE 34Cl AT C035A01 
SUBROUTINE 9B60 AT {035BOl 
SUBROUTINE 0005 AT C035C01 
SUBROUTINE 2B90 AT [035001 

SUBROUTINE 44A2 AT C035EOl 

SUBROUTINE 3581 AT C035FOl 
SUBROUTINE 1BA4 AT [03&001 

SUBROUTINE 4486 AT C03&10l 

SUBROUTINE 22BO AT C03&20l 
SUBROUTINE 16AB AT [03&301 
SUBROUTINE F039 AT C03&40l 
SUBROUTINE 1BA8 AT [03&501 
SUBROUTINE 2291 AT (036601 
SUBROUTINE C001 AT [036701 

SUBROUTINE 2F01 AT [03660 l 

SUBROUTINE 03AO AT (036901 
SUBROUTINE 7166 AT (036A0l 
SUBROUTINE 642F AT C036B01 
SUBROUTINE COOF AT C036COl 
SUBROUTINE 150A AT C03600l 
SUBROUTINE 7096 AT C036EOl 
SUBROUTINE 602F AT C036FOJ 
SUBROUTINE COOB AT [037001 
SUBROUTINE 622F AT [037101 
SUBROUTINE C009 AT [037201 
SUBROUTINE 642F AT [037301 
SUBROUTINE COOT AT [037401 
SU BR OUT INE l lOB AT [037501 
SUBROUTINE 130C AT [037601 
SUBROUTINE 15 00 AT C0377 01 

SUBROUTINE 6C36 AT [037601 
SUBROUTINE 13AO AT [03790 l 

SUBROUTINE lOEl AT C037A0l 
SUBROUTINE 5CC2 AT £037801 

SUBROUTINE 3582 AT C037COJ 
SUBROUTINE 1BA4 AT (037001 

SUBROUTINE 8Cl8 AT C037E0l 
SUBROUTINE 1A22 AT C037FOI 

ENO 
EXTRACT 8 BITS FROH TC8l TO X 
IF X NEQ Y THEN 

BEGIN 
INC CTR BY 1 
HOVE IX2.ADOR TO INDICATOR 

ENO 
EXTRACT 8 BITS FROH TC16l TO X 
IF X NEQ Y THEN 

BEGIN 
INC CTR BY 1 
HOVE IX3.AOOR TO INDICATOR 

ENO 

%HOVE INOEX2 TO 

%MOVE INDEX3 TO 

If CTRC2J THEN % IS CTR GEQ 2 
BEGIN % TOO HANY INDICES 

SET FLAG TO 1 
EXIT 

END 
'F CTRC3J THEN %BOX5 

BEGIN 
HOVE INDICATOR TO T 
MOVE FA TO TAS % SAVE ADDRESS FIELD PTR. 
CALL ADDRESS.TD.BINARY 
MOVE TAS TO FA % RESTORE ADDRESS FIELD PTR. 
HOVE T TO TEMP 

ENO ELSE 
BEGIN 

HOVE NULL T 0 TE ~p 
ENO 

CLEAR L Y %BOX& 
READ 8 BITS TO T INC FA 
If TE £QL :IF:I FALSE THEN GO TO +SET.FLAG.EXIT 

HOVE TF TO LC 
READ 24 BITS TO T 
If TA EQL ;jF;j FALSE THEN GO TO +SET.HAG.EXIT 

IF re EQL ;jF;j FALSE THEN GO TO •SET-FLAG.EXIT 

G 
G 

[001076] c 
XC001077J C 

[0010781 c 
£0010791 c 
[0010801 c 
(001081] c 

G 
G xrnsism ~ 

(0010841 c 
[0010851 c 
[0010861 c 
[ 001087] c 

G 
G 

(0010881 c 
[001089] c 
[0010901 c 
(0010911 c 
£0010921 c 
[0010931 c 
£001094] c 
[0010951 c 
[0010961 c 
[0010971 c 
[ 001098] c 
[0010991 c 
[0011001 c 
[0011011 c 
[0011021 c 
[0011031 c 
[0011041 c 
[0011051 c 
[0011061 c 
[0011071 c 

[001108] 
[001109] 
[0011101 

[0011111 

~ 
c 
c 
~ 

IF TE EQL ;iF;i FALSE THEN GO TO +SET.FLAG.EXIT 
G 

[0011121 c 
G 

[0011131 c 
(0011141 c 

% l'«lll L HOLDS THE PACKED OECIMAL[001115l C 

HOVE TB TO LO 
HOVE TO TO LE 
MOVE TF TO LF 

MOVE ;j{ll00111000~ TO CP 
HOVE L TO X 
%CLEAR Y ALREADY ACCOHPLISHEO 
HOVE SUH TO Y 
IF X NEQ Y THEN 

BEGIN 
.SET.FLAG.EXIT % ADDRESS NOT DECIMAL 

SET FLAG TD 2 
EXIT 

ENO 

HOVE 24 TD CP 
HOVE LC TO T 

is~~L~~ ~~RT~~c~~gR~~~I~l[LD f SS\\\}) ~ 
%ADO (24 BITS> £0011181 C 

%TESTS L+D=L 
%IF so.L HUST HAVE BEEN A 
%VALID.PACKED DECIMAL 

%BOX9 
% SET UP FOR BINARY ARITH. 

[0011191 c 
£0011201 c 
£0011211 c 
[0011221 c 
[0011231 c 
[0011241 c 
[0011251 c 
[(J01126l c 
[0011271 c 
[0011281 c 
[ClOll 29 J c 

[035001 
£035101 

~gm·g~ 
[035401 
(03550 l 
[03560] 
[035701 

[ 035801 
£0359 OJ 

fi~~m 
[035COJ 
[035001 

C035EOJ 

C035F OJ 
[ 03600] 

[036101 

[036201 

m~~8J 
[ 03650] 
[036601 
[03670] 

[ 03680] 

£mm 
[036BOJ 
C 036C01 

m~~g~ 
[036FOJ 

f8m&l 
~ 8~Vi8~ 
[037401 
[ 037501 mnn 
£03780] 
[ 03790] 

COHAOJ 
[037BOJ 

C037C01 
[037001 

C037E01 
C037FOJ 



N 
<O 
<O 

SUBROUTINE 12AO AT C038FOJ 
SUBROUTINE 21B1 AT [039001 
SUBROUTINE lOEO AT C039101 
SUBROUTINE 8164 AT [039201 
SUBROUTINE 4CA2 AT [039301 

SUBROUTINE 3580 AT £039401 
SUBROUTINE COOl AT £039501 

SUBROUTINE 3584 AT £039601 

SUBROUTINE 2091 AT (039701 
SUBROUTINE 1BA4 AT [039801 

SUBROUTINE 8C38 AT (039901 

SUBROUTINE 22A5 AT l039A01 
SUBROUTINE 23B5 AT C039BOI 
SUBROUTINE 4062 AT l039COJ 

SUBROUTINE 3017 AT [039001 
SUBROUTINE E019 AT C039EOJ 

SUBROUTINE 12AB AT C039FOJ 
SUBROUTINE 13AB AT C03A00l 
SUBROUTINE 22A& AT C03AlOJ 

~8~~88f f~~ ~6~~ ~f [g~:~&l 
SUBROUTINE 3017 AT C03A401 
SUBROUTINE E012 AT l03A50l 

SUBROUTINE lBAO AT C03A601 
SUBROUTINE 13A1 AT C03A70J 
SUBROUT !NE 10E3 AT C03A801 
SUBROUTINE 0064 AT l03A90l 
SUBROUTINE lBAO AT C03AA01 
SUBROUTINE 12A1 AT C03ABOJ 
SUBROUTINE 10E2 AT C03ACOl 

' ' ' 
TEN. I.PLUS. D!LD l 
TEN. T.PLUS. O<LE l 
TEN.T.PLUS.O!LF l 

%MAC RO CALL 
%MAC RO CALL 
%MACRO CALL 

[0011301 c 
[001131! c 
(0011321 c 

%BOXES 10 [0011331 C 
HOVE T TO X %THRU 1' [0011341 C 
HOVE TEMP ro Y £0011351 C 
HOVE SUH TO X [0011361 C 
HOVE SIZE TO Y £0011371 C 
Ir X LSS Y THEN £001138] C 

BEGIN C 0011391 C 
SET FLAG TO 0 [0011'01 C 

ENO ELSE [0011411 C 
BEGIN %BAD OPERAND AOOR C001H2l C 

SET FLAG TD 4 [0011431 C 
ENO [00114'1 C 

HOVE X ro EA %HHCTIVE ADDRESS SAVED IN EA AS A BINARY VALUE [0011'51 C 
EXIT [0011'61 C 
ENO % or EHECTIVE.AOOR ROUT!~[ [0011'71 c 

% 
A00.10.COHPL 

BEG IN 
LOCAL.DErINES 
DEFINE OPlA 
Off !NE OP lB 
OffINE OP2A 
DEFINE OP2B 
DEFINE FLAG 

(001148] c 
%ROUTINE BEGINS HERE. SEE FIG. 6-29. ARGUMENTS ARE (0011491 C 
% DP! IN SS• OP2 IN S6· IN SIGNED MAGNITUDE FORM [0011501 C 
% AS IN FIG.6-7. THE RESULT rs LEFT IN OPl.IE.IN S5,[001151] c 
% AND OVERFLOW FLAG IN CB<OJ. [0011521 C 
% THE STACK.x.Y. T· AND L ARE USED AS LOCAL STORAGE.[0011531 c 
% THE PROCEDURE C OHP. T .L CON~ERTS T CAT L TO 10 1 S [0011541 C 
% COMPLEMENT FORM [001155] C 

=SSA # 
=SSB I 
=S6A I 
=S6B # 
=CB< 0 l# 

[0011561 c 

MOVE ~<1>00111000~ TO CP %SETUP FOR 24-BlT 
%DECIMAL ARITHMETIC 

[0011571 c 
[0011581 c 
[0011591 c 
[0011601 c 
[0011(>1! c 
[0011621 c 
[0011631 c 
[0011641 c 

MOVE OP IA TO T 
HOVE OPIB TO L 
IF T<Ol THEN 

BEG IN 
RESET TCO> 
CALL COMPL.T.L 

ENO 

HOVE T TO TAS 
HOVE L TO TAS 
HOVE OP2A TO T 
HOVE OP2B TO L 
IF T<Ol THEN 

BEG IN 
RESET TC 01 
CALL COHPL.T.L 

END 

HOVE TAS TO X 
HOVE L T 0 Y 
HOVE SUM TO L 
CARRY SUH 
MOVE TAS TO X 
HO VE T TO Y 
HOVE SUM TO T 

%BOX1 

%IF OPl NEGATIVE 
%COMPLEMENT ABS or OPl 

%SAVE OPl ON STACK 

%IF OP2 NEGATIVE 
%COMPLEMENT ABS Of OP2 

%LOW-ORDER PARTS or OPl AND 
%0P2 IN X AND Y.RESP. 

%BOX2 

%BOX3 

%LOW-ORDER PART OF OPltOP2 IN L 
%RECYCLE CARRY DIGIT 
%HIGH-ORDER PARTS or OPl ANO 
%0P2 IN X ANO Y, RESP. 
XHIGH-OROER PART Dr 0Pl+OP2 IN T 

%BOX4 

[0011651 c 
[001166] c 
[001167] c 
[0011681 c 
[0011691 c 
[0011701 c 
[001171 l c 
[0011721 c 
[0011731 c 
[0011741 c 
[0011751 c 
[0011761 c 
mumE 
[0011791 c 
[0011801 c 
[0011811 c 
[0011821 c 
[0011831 c 
[001184] c 
[0011851 c 
[0011861 c 
[0011871 c 
[0011881 c 
[0011891 c 
[0011901 c 
C00119ll c 

m~~g~ 
[039101 
[039201 
[039301 

[ 039401 
(039501 

[039601 

[ 039701 
[039801 

[039901 

C039AO 1 
( 039B 0 l 
C OJ9COl 

[0390 OJ 
[039E01 

C039FOl 

mm\ 
C OlA 201 
[ 03A30l 

£ 03M OJ 
C03A501 

C03A601 
C03A70l 
[03A801 
[ 03A90J 
[03AA01 
[ 03ABOJ 
C 03ACOJ 



w 
0 
0 

SUBROUTINE 406Z AT C03ADOJ 
SUBROUTINE E009 AT C03AEOJ 
SUBROUTINE 30Z8 AT C03Af OJ 

SUBROUTINE 6160 AT [038001 
SUBROUTINE COOZ AT C03B101 

SUBROUTINE 37Z8 AT C03BZOI 
SUBROUTINE C001 AT C03B301 
SUBROUTINE 3717 AT C03B40J 

SUBROUTINE ZZ85 AT C03B501 
SUBROUTINE Z395 AT C03B60J 
SUBROUTINE 1BA4 AT C03B701 

% 

IF T<Ol THEN 
BEG IN 

CALL COMPL. T.L 
SET r<O> 

ENO 
If TB NEQ 0 THEN 

BEG IN 
SET fLAG 

END ELSE 
BEGIN 

RESET FLAG 
END 

%If LEADING DIGIT IS 9 OR 8 
%THEN 
% COMPLEMENT IT AND 
% MARK IT H INUS 

%BOX5 
%IF 11TH DIGIT Of SUH NON-ZERO 

%THE WE HAVE OVERFLOW 

%EPILOGUE 
HOVE T TO OP1A %NEW RESULT LEf T IN OPlA 
HOVE L TO OPlB % ANO OPlB 
EXIT 
END % Of ADD.10.COHPL ROUTINE 

% 
COHPL.T.L %PROCEDURE COMPUTES THE 10 1 S COMPLEMENT Of T CAT L 

% AND LEAVES THE RESULT IN T CAT Lo 

SUBROUTINE 8C38 AT C03B60J 
SUBROUTINE 0310 AT C03B901 
SUBROUTINE 13A1 AT C03BAOJ 
SUBROUTINE 18E3 AT C03BBOI 
SUBROUTINE 0066 AT C03BC01 
SUBROUTINE 1ZA1 AT C03BOOJ 
SUBROUTINE 18EZ AT C03BEOI 
SUBROUTINE 0061 AT C03Bf01 
SUBROUTINE 1BA4 AT C03COOJ 

NUMBER Of ERRORS OETECTEO = 000 
NUMBER OF WARNING MESSAGES = 000 
MICRO INSTRUCTION COUNT = 00965 

% USING X ANO Y AS LOCAL STORAGE. 
HOVE actlOOlllOOOa TD CP %TD BE SURE Of ARITH. SETUP 
CLEAR X %HORE SETUP 
HOVE L TO Y 
MOVE Olff TO L 
CARRY DlffERENCE 
HOVE T TD Y 
HOVE Olff TD T 
CARRY 0 
EXIT 

END 
fl NI 

IE ND Of C OHPL. T. L 

%LOW-ORDER PART Of COMPL IN L 
%RECYCLE THE BORROW . 
%COMPLEMENT NOW IN T CAT L 
%LEAVE CARRY IN •CLEAN' STATE 

CAUTION: $ SUBSET WAS NOT SPECIFIED; THEREFORE. THIS 
PROGRAM SHOULD NOT BE USED ON A B171Z/B1714. 

C00119ZI C 
[001193) c 
[0011941 c 
[0011951 c 
CQOU96J C 
[0011971 c 
CQOll 98 I C 

I 
[0011991 c 
C001ZOOJ C 
C001Z01J C 
C001ZOZJ C 
C001Z03J C 
C001Z04J C 
C001Z05J C 
C001Z06l C 
C001Z07J C 
C001Z081 C 
c 001209) c 
C001Z10l C 
C001Z111 C 
C001Z1Zl C 
C001Z131 C 
rnn~1~1 ~ 
C001Z16J C 
E001Z17i c 
c&SUH1 ~ 
C001ZZOJ C 
E001ZZ1i c 
c&SU~11 ~ 
CB012Z4J C 
C001Z25J C 

C03A001 

E8m8i 
[03B00] 
C03B101 

C03BZ01 
C03B30] 
[03840] 

C03B5 OJ 
C03B601 
C03B70] 

[03880) 
i03B90i 
c&U~S1 
C03BCOJ 
Eon~o\ 
cS3eFSJ 
C 03COOJ 
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3 SOURCE LISTING OF THE LOADER PROGRAM FOR 
GENERATING THE CODEFILE FOR THE SAMOS INTERPRETER 

1 :?CO SAMOSrSYSTEM WITH LOADER TO LIBRARY 
2 :?OATA CARDS 
3 : INTERP= SAMOS 
4 INTERP.S=INTERP STATIC=25000 
5 :; 
6 rILE NAME=PRINTER PRINTER; 
7 rILE NAME=CRD.REAOR READER; 
6 DATA 
9 "PROGRA'I INCOMPLETE" 

10 "PROGRAM TOO BIG• 
11 "NORMAL HALT" 
12 "BAD OP CODE" 
13 "OVERWORKED" 
14 "BAO OPERAND ADDRESS" 
15 "BAO IC VALUE" 
16 "EDr ON INPUT" 
17 "NON-NUMERIC OPERAND" 
18 "NON-NUMERIC ACC" 
19 "ADOR NOT DECIMAL• 
20 "TOO MANY INDICES" 
21 "ERROR IN THE INTERPRETER• 
22 "BEGIN BATCH RUN roR SAMOS" 
23 rINI 
24 :?END 

4 OUTPUT LISTING OF THE LOADER PROGRAM 

5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

INTERP= SAMDS 
INTERP.S=INTERP STArlC=25000 

r!LE 
rILE 
DATA 

rI NI 

NAME=PRINTER PRINTER; 
NAME=CRD.READR READER; 

"PROGRAM INCOMPLETE" 
"PROGRAM TOO BIG" 
"NORMAL HALT" 
"BAD OP CODE" 
"OVERWORKED" 
"BAD OPERAND ADDRESS" 
"BAD IC VALUE" 
•rnr ON INPUT" 
"NON•NUMERIC OPERAND" 
"NON-NUMERIC ACC" 
"AOOR NOT DECIMAL" 
•roo MANY INDICES" 
"ERROR IN THE INTERPRETER" 
"BEGIN BATCH RUN roR SAMOS" 

%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 
%%%% 

LISTING FOR A SIMPLE DATA DECK (ONE SAMOS PROGRAM) 
TO BE EXECUTED BY THE SAMOS INTERPRETER 

:?EX ENRICO MEMORY.STATIC 75000; 
:1rILE er NAME SAMOS/SYSTEM; 
:?DATA CARDS 
:• rIBONNACI A LA CS 105 
:+LOA0000017 THIS IS rIBONNACI 
:+ST00000050 NEXT 
:+LDA0000018 
:+ST00000051 
;ag~ggggg~i 
:+ ST00000052 
:+L DA 0000052 
:+AOD0000019 
:+BMI0000012 
:+ WW00000052 
:+HL TOOOOOOO 

LATEST 
LATEST 

NEXT 
SUM 
SUM 
C NEGATIVE 
TO BOX 4A 
PRINT SUH 

or LIMIT PLUS ONE> 

:+LOA0000051 THIS IS BOX4A 
:+ ST00000050 
:+LDA0000052 
:+ST00000051 
:+BRU0000004 TO BOX2 
:+0000000000 (0) 
:+0000000001 (1) 
:-0000000009 (•91 

:?ENO 
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6 OUTPUT PRODUCED BY THE SAMOS INTERPRETER WHEN 
PROCESSING THE DATA DECK GIVEN IN PART 5 

INTRP SAHOS IN TERP 

BEGIN BATCH RUN fOR SAMOS 

* fIBONNACI A LA CS 105 

•LOA 0000017 
•STOOOOOOSO 
•LOA0000018 
•ST00000051 
•LOA0000051 
•AOD0000050 
•ST00000052 
•LOA 0000052 
+AOD0000019 
+BHl0000012 
+WWD 0000052 
+HLT 0000000 
+LOA0000051 
+s rooooooso 
+LOA0000052 
+ST00000051 
•BRU0000004 
+0000000000 
+0000000001 
-0000000009 
•0000000013 
NORMAL HALT 
EOf ON INPUT 

THIS IS fIBONNACI 
NEXT 

LATEST 
LATEST 

NEXT 
SUH 
SUM 
CNEGATIVE Of LIMIT PLUS ONE> 
TO BOX 4A 
PRINT SUM 

THIS IS BOX4A 

TO BOX2 
( 0) 
( 1 ) 
( -9) 

7 SEQUENCE OF ENHANCEMENTS FOR THE SKELETAL 
VERSION OF THE SAMOS INTERPRETER 

The interpreter displayed in this appendix may be enhanced or 
modified by a series of interesting exercises. The following are exercises 
that were assigned to students at the University of Utah in an undergrad
uate software laboratory course, Spring quarter 1976. Readers having 
access to a Bl726 may wish to consider working similar problems. 

l. The ADD instruction in the base interpreter does not take advan
tage of the overflow-sensing ability of the ADD .10. CDMPL rou
tine. Modify the ADD instruction coding to abort program execu
tion upon sensing accumulator overflow. 

2. Extend the instruction set of the base interpreter by coding the 
SAMOS subtract instruction. (No more than about six new 
microinstructions are needed.) 

3. Add a dump routine to the interpreter which is called whenever a 
fatal error is encountered in executing a SAMOS program (e.g., 
INVALID OPERAND). The dump routine should produce a pretty
print display of all the SAMOS registers and all the storage cells. 
The name of each register should be displayed above or beside its 
content. In dumping the SAMOS storage, display the contents of 
at least 5 SAMOS storage cells per line. Display at the extreme 
left of each such line the location of the leftmost cell shown on 
that line. As a further enhancement of the dump, display the 
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number of SAMOS instructions that have been executed, the 
number of data cards that were read, and the number of lines 
printed. 

4. Enhance the appearance of the output produced by the 
LOAD. A. PROGRAM module of the interpreter so the location of 
each loaded instruction appears to the left of each displayed 
instruction. Skip a line after the last loaded instruction word is 
displayed and/or display a line like 

SAMOS PROGRAM HAS BEEN LOADED. 

5. Extend the instruction set supported by the interpreter to include 
MPY, DIV, the shift instructions SHL and SHR, and the indexing 
instructions, Lix, Six, and Tix (load index, store index, and test 
index instructions). See Appendix F for definitions of these 
instructions. 

6. The base interpreter wastes space in representing storage words. 
It uses 88 bits per word [11 EBCDIC characters], but a SAMOS 
word as originally defined uses 61 bits per word [a sign bit and 10 
BCD (6-bit) characters]. Modify the utility routines and all other 
code required to represent SAMOS storage words in 61 bits (and 
also modify the representation of the SAM OS registers in a similar 
way). After completing these modifications, discuss the trade-offs 
(space versus time) between the "88-bit" and the "61-bit" inter
preter. 

7. The interpreter as presented in the base case suffers in speed 
because SAMOS registers are represented in G-store. Some or all 
of the SAMOS registers might instead be represented in scratch
pads with increased speed of interpretation-provided, of course, 
there is sufficient scratchpad space available. Note that there is a 
better chance to find the space needed in the scratchpads if the 
index registers are represented faithfully as four 6-bit characters 
rather than as 88-bit or even 61-bit words (see preceding exercise). 

Make all the necessary modifications so as to represent as many of the 
SAMOS registers as possible in the scratchpads. Design and run speed 
tests to determine the increase in speed achieved by these modifications 
for a set of representative SAMOS programs. How much bigger or 
smaller (number of microinstructions) is the modified interpreter? 



Appendix F 
The SAMOS computer 

SAMOS is a hypothetical computer, introduced for pedagogical pur
poses in 1965 in the introductory text Algorithms, Computation and 
Mathematics, produced for high-school students by the School Math 
Study Group at Stanford University. SAMOS appeared again in some 
college-level texts, also for pedagogical purposes. 1 

It has been common to simulate SAMOS at institutions where 
students are asked to write a few practice programs in SAMOS machine 
language or in an equivalent symbolic assembly language. SAMOS 
simulators often take the form of programs coded in FORTRAN, BASIC 
or similar high-level languages. 

SAMOS is a one-address von Neumann-style computer. Its storage
address space ranges from 0000 to 9999. Each storage word is ten 
characters in length. There is also an eleventh (sign) position in each 
storage word for use in representing signed, ten-decimal-digit integers. 
Figure F .1 illustrates the use of SAM OS storage words for representing 
integers, ten-character strings, and SAMOS instructions. 

The control unit of SAMOS contains the following six registers. 

I. Instruction counter IC 4 decimal digits 

2. Operation register DR 3 characters 

3. Address register AR 4 decimal digits 

4. Index registers (3) R1 

R2 4 decimal digits each 

R3 

1 The most recent full description is in A. I. Forsythe et al., Computer Science: A First 
Course (2nd Ed., Wiley, 1975). 
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Decimal integer s 0 2 3 4 5 6 7 8 9 
numbers 

l+l 5 6 7 8 9 1 2 3 4 51 

1-1° 0 1 2 3 4 5 6 7 81 

Character 
strings I IJ 0 E D S M I T H ol 

I lo W H E A T I E S ol 

I lo A B C 9 8 7 6 B 11 

SAM OS 
instructions 

I Is M rlo 0 ol o 9 8 71 

I IA D ojo 1 oj 1 2 5 81 
Figure F.1. 

The processing unit of SAM OS contains only a single register, the 
accumulator, or ACC, as shown. 

s0123456789 

I I I I I ~ I I I I I 1-==========J 
ACC 

operations 
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The sign position, s, participates only in arithmetic operations whose 
operands must be signed decimal integers (ADD, SUB, MPY, and DIV; see 
Table F.1 below). For example, the instruction 

s 0 2 3 4 5 6 7 8 9 

I IA D Djo 1 oj1 2 5 sj 

means: add to the contents of the ACC the value copied from the storage 
word whose (effective) address is 1258 plus the contents of index 
register R2, mod 104• The sign position of the ADD instruction is ignored, 
but the operands referred to by the ADD instruction, namely the ACC 
register and the value found at the effective address, must be properly 
signed decimal integer. A nonzero digit in position 3, 4, or 5 indicates 
that index registers R1, R2, or R3, respectively, ''participates'' in the 
computation of the effective address. Thus, if the contents of R2 in the 
above ADD instruction were 8889, the effective address would be (1258 + 
8889) mod 104 or 0147. 2 In most simulated versions of SAMOS more 
than one nonzero digit in positions 3, 4, and 5 of an instruction is 
regarded as an error, implying that only one index register may 
participate in the interpretation of a SAMOS instruction. (But note that 
some SAMOS simulators permit all three index registers to participate, 
in which case they participate in an additive fashion.) 

1 THE SAMOS EXECUTION CYCLE 

Steps in the execution cycle of the SAM OS machine may be described 
as follows 

1. Fetch a copy of the instruction whose storage location is given by 
the IC (instruction counter) register. 

2. The operation code of the fetched instruction (positions 0, 1, 2) is 
assigned to the DR (operation) register; the address field of the 
fetched instruction (positions 6, 7, 8, 9) is assigned to the AR 
(address) register. If there is one nonzero digit in position 3, 4, or 
5, the index register R1, R2, or R3 respectively is enabled. 

3. The I G register is incremented by 1. 
4. The instruction, whose op-code is defined by the contents of the 

DR register, and whose effective address is defined by the con
tents of the AR register and the enabled index register, if any, is 
executed according to the semantics given in Table F .1. 

2 If a SAMOS computer is simulated with a smaller storage size (for example, one with 
only 200 storage words), it is appropriate to simulate an error condition, signaling an out
of-bounds address, whenever the effective address exceeds 200. 
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2 INSTRUCTION REPERTOIRE 

Table F. I uses the following notation to express the semantics of 
SAMOS instructions. 

Parentheses surrounding a register name or storage! location signify 
the contents of that register or storage location. 

Thus, (ACC) means the contents of ACC; (0151) means the contents of 
storage location 0151. Also, (ACC) E- (0151) means that the contents of 
the ACC become a copy of the contents of storage location 0151. 
Moreover, 

(ACC) E- (0153 + (R2)) 
~ 

Effective address 

m,eans that the contents of the ACC become a copy of the contents of 
storage -location 0153 + (R2), i.e., of storage location 0153 plus the 
contents index register R2. Note that (0153 + (R2)) is actually a 
shorthand in this case for {(0153 + (R2))} mod 104• It is to be 
understood that the effective address is always computed mod I 04• 

3 ERROR CONDITIONS 

Error conditions are sensed as follows: 

I. Two or more nonzero digits or characters are present in positions 
3, 4, 5 of a fetched instruction. (Exception: Such an instruction is 
acceptable when the opcode is SHL or SHR. 

2. Nondigits in positions 6, 7, 8, 9 of the fetched instruction. 
(Exception: such an instruction is acceptable when the opcode is 
HLT.) 

3. Either the ACC or the operand fetched from the effective address 
of an instruction about to be executed is not a signed decimal· 
integer when the opcode is ADD, SUB, MPY, or DIV. 

4 THE SAMOS LOADER 

The LOAD button on the console of the SAMOS computer is used to 
load a program and to transfer control to that program. Pressing the 
LOAD button amounts to invoking a built-in (primitive) load instruction 
whose semantics are as follows. 

The computer reads successive cards one after another until a card is 
read that is blank in columns I through 11 inclusive. For each nonblank 



TABLE F.1 The SAMOS Instruction Repertoire 

OP- EXAMPLE 

CODE 

LDA 
STD 
ADD a 

SUB a 

MPYb 
DIVC 
HLT 

BRU 

BMI 

RWD 

WWD 

LI1 
LI2 
LI3 

SI1 
SI2 
SI3 

TI1 
TI2 
TI3 

INSTRUCTION 

LDA 000 0151 
STD 001 0041 
ADD 200 1001 
SUB 000 1011 
MPY 010 0049 
DIV 000 1079 
HLT 000 2011 

BRU 000 1108 

BMI 001 1045 

RWD 000 0056 

WWD 010 0059 

SHL 100 0006e 

SHR 000 0004e 

LI2 000 1741 

SI3 000 2229 

TI1 000 7711 

MEANING 

(ACC) .,.._ (0151) 
(0041) + (R3)) .,.._ (ACC) 
(ACC) .,.._ (ACC) + (1001 + (R1)) 
(ACC) .,.._ (ACC) - (1011) 
(ACC) .,.._ (ACC) x (0049 + (R2)) 
(ACC) .,.._ (ACC) I (1079) 
The machine stops. If the START button on 

the operator's console is then pressed, the 
next instruction will be taken from 
location 2011; i.e., resumption after the 
halt is specified by (IC).,.._ 2011. 

Branch unconditionally to 1108, i.e., 
(IC) <--- 1108. 

Branch on minus sign in the ACC, i.e., if sign 
of ACC is"-" then (IC).,.._ 1045 + (R3). 

Read the next card and assign the data value 
in the first 11 columns of the card (sign 
and 10 characters) to location 0056; i.e., 
(0056) .,.._(first 11 columns of the next 
data card). 

Write on a new output line a copy of the 
value found at location 0059 + (R2). 

Shift the accumulator value left 6 positions, 
with zero right fill. The sign position of the 
ACC is left unchanged. (Positions 3, 4, 5 of 
the instructions are ignored.) 

Shift the accumulator value right 4 positions, 
with zero left fill. The sign position of the 
ACC is left unchanged. 

Load index register R2 with a copy of the 
address part (character positions 6, 7, 8, 
9) of the value at storage location 1741; 
(R2) .,.._ (1741)6_ 9 

Store a copy of the value in index register 
R3 in the address part (character positions 
6, 7, 8, 9) of storage location 2229; i.e., 
(2229)6_ 9 .,.._ (R3). The remainder of the 
storage word at location 2229 is left 
unchanged. 

Index register R1 is decremented by 1. 
Then, if the resulting value is zero, the IC 
is assigned 7711. 

a Overflow digits are lost, but if overflow occurs, the machine halts. 
b The lowest-order IO digits of the product go to the ACC. Overflow digits are lost, but if 

overflow occurs, the machine halts. 
c The integer quotient goes to the ACC. Digits of the remainder, if any, are lost. Attempt 

to divide with a zero divisor leaves the ACC unchanged, and the machine halts. 
d If the number of shift positions exceeds 9, the ACC will contain 0 (IO zero digits) upon 

completion of a SHL or a SHR instruction. 
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card read, the contents of columns I through 11 (corresponding to the 
positions s, 0, I, ... , 8, 9 of a storage word) are assigned to successive 
storage locations beginning with storage location 0000. When the blank 
card is sensed, the value of the IC register is set to 0000 and the 
execution cycle is initiated. If there are no cards in the input hopper at 
the time the LOAD button is pressed, SAMOS simply hangs until the 
cards are placed in the hopper. 
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