
Distribution Code SC

Language
Manual

Priced Item
Printed in U.S.A.
September 1986

Burroughs

5025265

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material, includ
ing direct, indirect, special or consequential dam
ages. There are no warranties extended or granted
by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with re
spect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Comments or suggestions regarding this document should be submitted on a
Field Communication Form (FCF) with the CLASS specified as 2 (S.W:System
Software), and the Type specified as 1 (F.T.R.), and the product specified as the
7-digit form number of the manual (for example, 5025265).

B 1000 Systems WFL Language Manual

TABLE OF CONTENTS

Sec:tion Title Page

INTRODUCTION 1-1
Purpose and Scope . 1-1
WFL Concepts .. . 1-1
WFL Advantages .. . 1-1
Related Documents .. . 1-1

2 BASIC ELEMENTS AND CONSTRUCTS 2-1
General .. . 2-1
WFL Source File and Record Format 2-1
Character Set . 2-1
Invalid Character .. . 2-1
Comments .. . 2-1
Character Elements .. . 2-2
Identifier 2-2
Constants .. . 2-3

String Constant .. . 2-3
Integer Constant 2-4
Boolean Constant .. . 2-4

Name .. · · 2-5
Basic Constructs . 2-7

Family Name 2-7
Hostname .. . 2-7
U sercode . 2-7
Password 2-7
User Specification 2-7

File Names and Titles .. . 2-8
Filename 2-8
File Title 2-9

Directory Names and Titles 2-10
Directory Name . 2-10
Directory Title .. . 2-10

3 JOB 3-1
Begin Job Options 3-2

Job Parameter List 3-2
Job Disposition .. . 3-4

Job Attribute Specification 3-4
FETCH Specification . 3-5
ST AR TTIME Specification 3-5
CLASS Specification .. . 3-8

Job Declaration List .. . 3-8

4 DECLARATIONS 4-1
Declaration List 4-1
Declaration . 4-1
Variable Declarations . 4-1

Initial Value .. . 4-2
Integer Declaration 4-2
Boolean Declaration .. . 4-2
String Declaration . 4-3

5025265 v

Section

5

6

7

Vl

B 1000 Systems WFL Language Manual

TABLE OF CONTENTS (Cont.)

Title Page

Task Declaration . 4-4
Subroutine Declaration . 4-5
Function Declaration . 4-6
Constant Declaration . 4-8

Scope of Variables . 4-9

TASK ATTRIBUTES .. .
Task Attribute Assignment
Chargecode
Task Mnemonic Primary

FILE ATTRIBUTES
File Equation
Intname .. .
File Attribute Assignment
File Device Mnemonics .
File Mnemonic Primary .

EXPRESSIONS
Boolean Expression .. .

Logical Operators .. .
Order of Evaluation .. .
Boolean Primary .

Function Invocation .. .
Arithmetic Comparison
Relational Operators .. .
String Comparison
Task Mnemonic Comparison
Task State .. .
File Residency Test .. .

Integer and Real Expressions
Integer Expression
Arithmetic Operators
Order of Evaluation .. .
Integer Primary .. .

Function Invocation .. .
Real Expression .
Real Primary
LENGTH Function .. .
OCT AL Function .. .
HEX Function .. .
DECIMAL Function .. .
INTEGER Function .. .

String Expression .. .
Concatenation Operation
Other Concatenation Operators
String Overflow .
String Primary ..

Function Invocation .. .
TAKE and DROP Functions

5-1
5-1
5-2
5-3

6-1
6-1
6-1
6-2
6-3
6-4

7-1
7-1
7-1
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-5
7-6
7-7
7-7
7-7
7-8
7-8
7-9
7-9
7-9
7-9
7-9

7-10
7-10
7-10
7-11
7-11
7-11
7-11
7-12
7-12
7-13

Sec:tion

8

5025265

B 1000 Systems WFL Language Manual

TABLE OF CONTENTS (Cont.)

Title Page

HEAD and TAIL Functions . 7-13
Character Set . 7-14
ACCEPT Function . 7-14
STRING Function . 7-14
TIMEDATE Function . 7-16
SYSTEM Function . 7-18

Constant Expressions . 7-19
Boolean Constant Expression . 7-19
Boolean Constant Primary . 7-19
Constant Arithmetic Comparison . 7-19
String Constant Comparison . 7-20

Integer Constant Expression . 7-20
Integer Constant Primary . 7-21

String Constant Expression . 7-21
String Constant Primary . 7-22
TAKE and DROP Constant Functions . 7-22
HEAD and TAIL Constant Functions . 7-22
STRING Constant Function . 7-23

ST A TEMENTS .. .
Statement List .. .
Statement .. .
Assignment Statement .. .

Integer Assignment Statement
Task Assignment Statement
Boolean Assignment Statement
String Assignment Statement

Flow of Control Statement
Subroutine Control Statement
Task Initiation Statement

Task Attributes and File Equation
Reuse of Task Variable
Task Equation List
Compile Task Equation List

Data Specification
Task Control Statement
File Management Statement
Communication Statement
ABORT Statement
CASE Statement

Case Expression
Case Constant

CHANGE Statement
COMPILE Statement
COMPOUND Statement
COPY Statement .. .

Copy Options List .
Copy Date .. .
Copy Request
Copy From Group

8-1
8-1
8-1
8-2
8-2
8-2
8-2
8-3
8-3
8-3
8-4
8-5
8-6
8-7
8-7
8-8
8-9
8-9

8-10
8-10
8-11
8-11
8-12
8-12
8-14
8-16
8-16
8-17
8-18
8-19
8-19

Vll

Section

9

10

11

12

Vlll

B 1000 Systems WFL Language Manual

TABLE OF CONTENTS (Cont.)

Title Page

File Spec . 8-20
Creation File Attr List . 8-20
Input Volume Spec . 8-20
Input Volume Attribute List . 8-21
Copy Kind . 8-21
Output Volume Spec . 8-21
Output Volume Attribute List . 8-22
Copy Density . 8-22
Copy Order . 8-23

DISPLAY Statement . 8-24
DO Statement . 8-24
IF Statement . 8-25
INITIALIZE Statement . 8-26
INSTRUCTION Statement . 8-26
MODIFY Statement . 8-27
ON Statement . 8-28
PASSWORD Statement . 8-31
PROCESS Statement . 8-32
REMOVE Statement . 8-32
RETURN Statement . 8-34
RUN Statement . 8-35
SECURITY Statement . 8-39
ST ART Statement . 8-40
STOP Statement . 8-42
Subroutine Invocation Statement . 8-42
WAIT Statement . 8-44
WHILE Statement . 8-46

RESERVED, SPECIAL, AND KEY WORDS
Reserved Words .
Special Words .. .
Keywords .. .

COMPILER CONTROL IMAGES (CCI)

PORTABILITY WARNINGS

OPERATION .. .
Job Initiation
RUN and COMPILE as ODT Commands
MODIFY Statement as ODT Command
Password Statement as ODT Command
File Management Statements as ODT Commands
SYSTEM/WFL Program .
Error Messages .. .
Job Summary

Source Listing .
Job Log .. .
Printing the Job Summary

9-1
9-1
9-2
9-2

10-1

11-1

12-1
12-1
12-1
12-2
12-3
12-3
12-4
12-4
12-5
12-5
12-5
12-5

B 1000 Systems WFL Language Manual

TABLE OF CONTENTS (Cont.)

Sect ii on Title Page

A TASK ATTRIBUTES AND MNEMONICS IN WFL A-1
ACCUMPROCTIME A-1
BlOOOMEMORY .. . A-2
BlOOOVIRTUALDISK .. . A-2
CHARGE .. . A-2
DEBUG A-2
ELAPSEDTIME A-2
INVISIBLE A-2
JOBNUMBER .. . A-2
JOBSUMMARY A-3
MAX CARDS A-3
MAXLINES .. . A-3
MAXPROCTIME A-3
MAX TIME A-4
MAXWAIT A-4
MIXNUMBER .. . A-4
PRIORITY A-4
PROTECTED A-4
STATUS A-4
SWl, SW2, SW3, SW4, SW5, SW6, SW7, SW8 A-4
TASKVALUE A-5
TITLE A-5
USER CODE .. . A-5

B FILE ATTRIBUTES AND MNEMONICS IN WFL B-1
AREABLOCKS B-1
AREAS .. . B-1
BlOOOAUDITED .. . B-1
BACKUPKIND B-1
BACKUPPERMITTED B-2
BLOCKSIZE .. . B-2
BLOCKSTRUCTURE .. . B-2
BUFFERS .. . B-3
DEPENDENTSPECS B-3
DIRECTION B-3
DUMMYFILE .. . B-3
EXTMODE .. . B-4
FAMILYNAME B-4
FILE KIND B-4
FILENAME .. . B-6
FLEXIBLE B-6
FRAMESIZE B-6
HOSTNAME B-6
KIND B-7
LABEL .. . B-8
MAXRECSIZE .. . B-8
MAXSUBFILES B-8
MINRECSIZE .. . B-9
MYNAM.E B-9
MYUSE B-9

5025265 lX

x

Section

c

D

B 1000 Systems WFL Language Manual

TABLE OF CONTENTS (Cont.)

Title Page

NEWFILE . B-9
OPTIONAL . B-10
OTHERUSE . B-10
PAGESIZE . B-10
PARITY . B-10
PRINTCOPIES . B-11
PRINTDISPOSITION . B-11
PROTECTION . B-11
SAVEFACTOR . B-12
SECURITYTYPE . B-12
SECURITYUSE . B-12
TITLE . B-13
USERBACKUPNAME . B-13

CONVERTING CONTROL CARD ATTRIBUTES TO WFL
ATTRIBUTES .. .
Task Attributes .. .
File Attributes .. .

SYNTAX AND NOTATION CONVENTIONS
General .. .
Required Items .. .
Optional Items .. .
Loops
Bridges .. .

C-1
C-1
C-2

D-1
D-1
D-1
D-2
D-2
D-3

INDEX .. .

Table

A-1

5025265

B 1000 Systems WFL Language Manual

Task Attributes

LIST OF TABLES

Title Page

A-1

Xl

B 1000 Systems WFL Language Manual

PURPOSE AND SCOPE

SECTION 1

INTRODUCTION

This manual describes the Work Flow Language (WFL) as implemented on the B 1000 Systems. It pro
vides the information necessary to write source-code programs.

This manual is written for programmers.

WFL CONCEPTS
A task is the execution of a program. Tasks can be divided into job task, dependent task, and indepen
dent task.

A job task is the execution of a program written in the Work Flow Language. A dependent task is any
task initiated by a job task or called by another task. An independent task is any task initiated by the EX
ECUTE ODT-command.

A job i:s a collection of tasks including the job task (or an independent task) and all the dependent tasks
initiated by tasks in the job. Work Flow Language (WFL) is the means by which a job is described and
presented to the B 1000 computer system. The language allows the user to programmatically control the
execution of a set of interrelated tasks. A job can decide, at run-time, whether to run a program, which
programs to run, and in what order to run them.

WFL ADVANTAGES
WFL allows a user to easily describe a complex system of programs.

WFL i:s more flexible than using control cards in pseudo readers and is easier to use than writing a job
spawner.

B 1000 WFL is a subset of the B 5000/B 6000/B 7000/ A Series WFL and as such it allows for distributed
networks with common sources and allows for growth to a larger system. Refer to section 11, Portability
Warnings, for a list of constructs which are not a subset of B 5000/B 6000/B 7000/ A Series WFL.

RELATED DOCUMENTS
The following documents are referenced in this document:

B 1000 Systems System Software Operation Guide, Volume 1, form number 5024508.

B 1000 Systems System Software Operation Guide, Volume 2, form number 1169091.

5025265 1-1

B 1000 Systems WFL Language Manual

SECTION 2
BASIC ELEMENTS AND CONSTRUCTS

GENERAL

This section describes the basic elements and constructs in the Work Flow Language. These basic
elements and constructs are used throughout this manual.

WFL SOURCE FILE AND RECORD FORMAT

A WFL source program file should have a FILEKIND of JOBSYMBOL. The format of a record in
a JOBSYMBOL file consists of the following information:

1. Columns 1 through 80 contain text of WFL job.
2. Columns 81 through 82 are not used.
3. Columns 83 through 90 contain the sequence number of the source record.

A WFL source program may also have a FILEKIND of DAT A. The record size of the file should
be 80 characters and contain only the text of a WFL job.

A WFL job entered as an ODT command or from the statements of the various programming lan
guages is considered all one record of text; sequence numbers are not included.

CHARACTER SET

The Work Flow Language uses the EBCDIC character set. An invalid character is not allowed except
in column one.

INVALID CHARACTER

Throughout this document, the symbol < i > is used to signify an invalid character in column one of
a source record. An invalid character is any character that is not a valid EBCDIC character. If the
source file is a storage media such as disk or tape, which cannot represent an invalid punch, then the
invalid character < i > is represented by an EBCDIC question mark character (?).

The invalid character < i > is allowed in several syntax diagrams. It may also be used as a substitute
for a semicolon.

Statements are separated by a semicolon or the invalid character < i > . Source records may contain
more than one statement (properly separated by semicolons), except that WFL input from the ODT
or from statements of the various programming languages may present only one source record. In this
case, the question mark character (substituting for the invalid character < i >) may occur only in the
first character of the input.

COMMENTS
Source records can be terminated by a percent sign (OJo), if such a character is not part of a string
of characters within quotation marks. The remainder of the record is ignored and may contain com
ments.

Although comments are ignored, they are included in any listing of the job.

5025265 2-1

B 1000 Systems WFL Language Manual
Basic Elements and Constructs

CHARACTER ELEMENTS
<letter>

Any one of the 26 upper-case English alphabet characters from A to Z.

<digit>
Any one of th~ 10 numerals 0 to 9.

<hyphen>
The hyphen character (-).

< underscore>
The underscore character (_).

< string char >
Any EBCDIC character except the quotation mark (").

IDENTIFIER
<Identifier> s are names for variables and subroutines.

<identifier> syntax:

- <letter>------------------.-------------------

---29 <1etter>------
<digit>

An <identifier> is terminated by any non-alphanumeric character (including a blank), or the end of
the record image. An <identifier> must not be broken across a record boundary.

An <identifier> must not be spelled the same as a reserved word. An <identifier> may be spelled
the same as a special word; however, the special word loses its special meaning for the scope of the
declaration.

Reserved and special words are listed in section 9.

Examples:

2-2

Valid Identifiers

A
Z123
ABC123

Invalid Identifiers

1234
lABC
W-2
A$
BEGlN

CONSTANTS

B 1000 Systems WFL Language Manual
Basic Elements and Constructs

Constants are data items whose value is implied by the characters of which they are composed, or by
the specification of a reserved word. There are three classes of constants: string, integer, and boolean.

String Constant

A <string constant> may be composed of any set of EBCDIC characters and represents that set of
characters.

<string constant> syntax:

"

r ~ ~:tring char> ___] __ _

A pair of quotation mark characters (" ") appearing alone represents a null string (a string of length
zero). A pair of quotation mark characters (" ") appearing in a string represents a single quotation mark
charact,~r (") within the string.

Examples:

5025265

String Constant

"ABC"
"defg"
"12345"
"-123.45"
"?*->"
"""WORD"""
11111111

""
"A""B"

Value Represented

ABC
defg
12345
-123.45
?*->
"WORD"
"

A"B

2-3

Integer Constant

B 1000 Systems WFL Language Manual
Basic Elements and Constructs

<Integer constant> s are used to represent numeric values that are whole positive numbers.

<integer constant> syntax:

<
_ _._I ____.f-i__ <digit> ---'---------------------------------!

An <integer constant> is terminated by any non-numeric character, including a blank, or by the end
of the record image. An <integer constant> must not be broken across a record boundary. The
maximum value allowed for an <integer constant> is 8388607.

Examples:

1
1234567

Boolean Constant

<Boolean constant> s represent logical values.

<boolean constant> syntax:

~TRUE

L_ FALSE

2-4

NAME

B 1000 Systems WFL Language Manual
Basic Elements and Constructs

A <name> is used to identify constructs such as filenames, family names, usercodes, and so forth.

<name constant> syntax:

~10~--<t~~----~-------------------------~
<digii>----

<hyphen> ---

<underscore>

Some it~ems restrict the maximum number of characters that can be used in a <name> to other than
10 characters.

<name> syntax:

L <name constant> _J
- <string primary>

The <string primary> must evaluate to a <name constant> at run-time. <String primary> is de
scribed in section 7, Expressions.

The #<string primary> syntax may be used to dynamically build constructs such as filenames, family
names, usercodes, and so forth.

Examples:

A
zzz
123456789
1A2B
A1B2
W-2
2_BE
#"SPECIAL"
#PACK OJo PACK is a string variable

5025265 2-5

<name17> syntax:

B 1000 Systems WFL Language Manual
Basic Elements and Constructs

A < namel 7 > can be composed of no more than 17 characters.

< name9 > syntax:

A < name9 > can be composed of no more than nine characters.

< name8 > syntax:

A < name8 > can be composed of no more than eight characters.

2-6

B 1000 Systems WFL Language Manual
Basic Elements and Constructs

BASIC CONSTRUCTS

Several special purpose constructs are described in the following paragraphs.

Family Name

A <family name> is the name of a disk, pack, or tape volume.

<family name> syntax:

-- <mime> -------------------------------------t

A <family name> of DISK may be used to specify the system disk. DISK overrides the default pack
associated with a usercode.

Hostnaime

A < hostname > is the name assigned to a system for the purpose of intersystem communication.

< hostname > syntax:

-- <name17> ----·---------------------------------1

Usercode

A < usercode > is the name assigned to a user to secure system and file access.

< usercode > syntax:

-- <names>

Password

A <password> is a name used to authenticate a < usercode > .

<password> syntax:

--- <name> ----~----------------------------------1

User Specification

A <user specification> identifies and authenticates a user.

<user specification> syntax:

--<usercode>-----------------------------------~

L / ---<password>_J

5025265 2-7

B 1000 Systems WFL Language Manual
Basic Elements and Constructs

FILE NAMES AND TITLES

<Filename> s and <file title> s are used to identify physical files.

Filename

A <filename> identifies a physical file without consideration for the volume upon which it resides.

<filename> syntax:

IL~name><name9>=i L /-<name~
L ~- <usercode>-) -<name>----·:_j

An asterisk (*) is used in a <filename> or <directory name> to override the default usercode (and
the default <family name> associated with that usercode). It is only necessary to use an asterisk in
a < filename> or < directory name> if the file is not stored in a usercode directory. Use a < family
name> of DISK to override the default pack.

The use of <name> I< name> without a preceding asterisk in a program run under a usercode will
override the default usercode (but not the default <family name>).

NOTE
Users are strongly encouraged to use a <family name> of DISK instead of
an asterisk to override the default pack. When it is necessary to override both
the default usercode and the default pack, the use of both an asterisk and
a <family name> of DISK is strongly encouraged.

When specifying a dynamic name or title, a <string primary> may contain the entire name or title.
When a <string primary> is used for a part of the name or title, the string can contain any portion
of the name or title, as long as the result conforms to the correct form.

Examples:

2-8

XYZ
*A/B
(ZOT)XYZ

File Ti1tle

B 1000 Systems WFL Language Manual
Basic Element~ and Constructs

A <file title> identifies a physical file and the disk on which it resides.

<file title> syntax:

-- <mename> ---------------------------------

L oN -<family name>__}

Examples:

MYNM
*A/B ON MYPACK
(ZOT)XYZ ON MYPACK
MYNM ON DISK
*COBOL ON DISK

5025265 2-9

B 1000 Systems WFL Language Manual
Basic Elements and Constructs

DIRECTORY NAMES AND TITLES

<Directory name> s and <directory title> s are used to identify a group of physical files that have
the same first names or belong to the same user.

Directory Name

A <'.directory name> identifies a group of physical files without consideration for the volume upon
which they reside.

<directory name> syntax:

<name>- /

*
<name9>- /

(- <user code> -)

Directory Title

; - <string primary>~

A <directory title> identifies a group of physical files and the disk on which they reside.

<directory title>

-- <directory name>--------------...-------------------

L ON - <family name>_)

Examples:

2-10

*Al= ON 1A2B
(XYZ) = ON ZZZ
= ON DISK
*= ON DISK

B 1000 Systems WFL Language Manual

SECTION 3

JOB

A program written in the Work Flow Language describes a job.

<job> syntax:

----r----- BEGIN - JOB

L<;>_j L <begin job options>~
>------,.---~----------------,..---------------~>

.__ r_ <job attribute specification>- ;

>------....-------------<statement·list>--------------

L <job declaration list> _J
>----------- END - JOB ----....----.....--------------------1

L<i>J L; _J

A job allows the user to describe sophisticated control over the initiation of tasks and system functions.
The user may specify sequences of tasks.

There is a limit to the number of <statement> s in the <statement list> of a < job>, <subroutine
declaration>, or <function declaration>. WFL is guaranteed to handle a minimum of 600
<statement>s. In most cases it handles 10 times that amount. An error is displayed if this limit is
reached. Should this happen, the < statement>s may be split into separate subroutines. For a description
of a <:subroutine declaration>, refer to Subroutine Declaration in section 4. For a description of a
<function declaration>, refer to Function Declaration in section 4.

Examples:

1. BEGIN JOB A/JOB; % compile and execute job A/JOB
USERCODE = CID; % the job will run under usercode C
FETCH= "A/JOB REQUIRES MYPACK(DISK)";
MAXLINES = 100; % the job may print a maximum of 100 lines
COMPILE X WITH COBOL LIBRARY;

COMPILER FILE CARD (TITLE=X/Y);
RUNX;
END JOB

2. <i> BEGIN JOB ANOTHER/JOB SYNTAX; % syntactically check the job
RUNX;
RUNY

<i> RUN Z
<i> END JOB

5025265 3-1

B 1000 Systems WFL Language Manual
Job

BEGIN JOB OPTIONS
The <begin job options> are used to specify the title, parameters, and disposition of a job.

<begin job options> syntax:

-<file titte>--.------------------------------------1

L <job parameter list> _J L <job disposition> _J

The <file title> is used to identify the job task when the job is initiated. It appears on the heading page
of the job summary. (Refer to section 12, Operation, for more information about job summaries.) The
<file title> has no other significance.

If the <begin job options> are omitted, the job task is titled "JOB" followed by the JOBNUMBER of
the job.

Job Parameter List
A <job parameter list> specifies the formal parameter identifiers for the job and their types.

<job parameter list> syntax:

- (

<optional boolean> ----1

INTEGER <identifier> ------·--------1

L <optional integer> ---

STRING <identifier>----------------

<optional string> ---

<boolean parameter id> syntax:

)

- <identifier> ---------------·--------------------t

The <identifier> must have been specified in a <job parameter list> with a type of BOOLEAN.

<integer parameter id> syntax:

-- <identifier>---------------------------------~

The <identifier> must have been specified in a <job parameter list> with a type of INTEGER.

3-2

<string parameter id> syntax:

B 1000 Systems WFL Language Manual
Job

- <identifier> -------------------------------------1

The <identifier> must have been specified in a <job parameter list> with a type of STRING.

<Optional boolean> syntax:

- OPTIONAL --T""------------------------y--------------1

L DEFAULT = <boolean constant expression> ---

<Optional integer> syntax:

-- OPTIONAL--r-----------'------------.------------_,

L DEFAULT = <integer constant expression> ___ __,

<Optional string> syntax:

--OPTIONAL------------------------...,.-------------.

L DEFAULT = <string constant expression>----

A parameter identifier of the appropriate type may be used in any context where a <boolean constant>,
<integer constant>, or <string constant> is allowed. It cannot be assigned a value by using an
<assignment statement>. Its value is derived from the corresponding actual parameter in a< start pa
rameter list>.

The keyword OPTIONAL indicates that an expression need not be passed, or provided, in the <Start pa
rameter list>. If an expression is not passed, then default values are assigned as follows: FALSE when
assigned to a boolean parameter, zero when assigned to an integer parameter, and a zero length string
when assigned to a string parameter.

A WFL <job> with parameters must be either started with a matching <Start parameter list> parameter
for each non-optional parameter, or compiled for SYNTAX without providing a <start parameter list>.

Default values can also be manually specified using the DEFAULT= constant expression branch of the
<Optional boolean>, <optional integer>, or <optional string> syntax diagrams. The specified default
value is ignored if a ST ART parameter is provided.

5025265 3-3

B 1000 Systems WFL Language Manual
Job

Job Disposition

The <job disposition> specifies that a job is not to be executed.

<job disposition> syntax:

~~~~-----..---SYNTAX~----~~~~----~------------------------------------1 

LFOR_J 

A job with a disposition of SYNTAX is checked for syntax errors. It will not be executed. 

JOB ATTRIBUTE SPECIFICATION 
A <job attribute specification> is used to assign task attributes to the job task. 

<job attribute specification> syntax: 

1 
<fetch specification> 

<task attribute assignment> 

< starttime specification> 

< class specification> ---

<Task attribute assignment> is described under Task Attribute Assignment in section 5, Task 
Attributes. 

The <task attribute assignment> may contain only constants and must not contain file equations. (A file 
equation changes the attributes of a file and is described under File Equation in section 6, File 
Attributes.) 

Examples: 

3-4 

FETCH = "MOUNT MASTER TAPE" 

PRIORITY= 9 

STARTTIME = 12:00 

CLASS= 90 



FETCH Specification 

B 1000 Systems WFL Language Manual 
Job 

A <fetch specification> causes the job to wait for operator action before beginning execution. 

<fetch specification> syntax: 

-- FETCH - = _..._r_ <string constant expression> -----'"------------------t 

A job may contain a maximum of one <fetch specification>. The aggregate length of all the strings must 
not exceed 1840 characters. 

The <fetch specification> informs the operator which resources are required to run the job. When the 
job is initiated, the operator is informed that there is a job requiring operator action. The operator can 
display the message using the PF ODT-command. The job task is placed in the waiting schedule until 
the operator responds with an OK ODT-command. Refer to the B 1000 Systems System Software Opera
tion Guide, Volume 1, for more information on the PF and OK commands. 

Example: 

Disk file ARCHIYE/INVENTORY contains the following job: 

BEGIN JOB ARCHIVE/INVENTORY; 
FETCH = "PACK PARTS REQUIRED", 

"MOUNT SCRATCH TAPE FOR ARCHIVE"; 
COPY INVENTORY/= FROM PARTS TO ARCHIVE (KIND=TAPE); 

END JOB 

Invocation of the above job: 

START ARCHIVE/INVENTORY 
JOB 7706 CONTAINS FETCH MESSAGE; 11 PF 11 REQUESTED 

7706 PF 
7706 FETCH: PACK PARTS REQUIRED, MOUNT SCRATCH TAPE FOR ARCHIVE 

7706 OK 
7706 OK-ED 
ARCHIVE/INVENTORY= 7706 BOJ PR=4 TIME=l8:07:15.2 

ST AFtTTIME Specification 

A <STARTTIME specification> causes the job to wait for a specified amount of time before begin
ning execution. 

<STARTTIME specification> syntax: 

- STARTTIME = ----.-L- <starttime specification> 

# <string primary> ___ _. 

5025265 3-5 



B 1000 Systems WFL Language Manual 
Job 

<Starttime spec> syntax: 

L<time> _J 
+ <time interval> LoNL<date> ~ 

+ < day interval> 

<time> syntax: 

_ ..... r_f2\._ <digit>--.L.-.- _ _..L_fi*\__ <digit>-----'--------------~ 

<Time> is the time of day on a 24-hour clock in the form HH:MM. The hours must be less than 24, 
the minutes must be less than 60. 

<date> syntax: 

. ~l<dd>l<vv> 

~<digit>---------' 
<Date> is in the form MM/DD/YY or YYDDD. 

<mm> syntax: 

_-1,r_r;L._ <digit> ------L.---------------·------------t 

<dd> syntax: 

r '2L-- <digit> ____ __L __________________________ ........ 

<YY> syntax: 

_ ....... r_f2*\__ <digit> ------<f-----------------------------4 

3-6 



<time interval> syntax: 

B 1000 Systems WFL Language Manual 
Job 

___t~ <digit> __ ..___ _ ...... r_f2*\_ <digit> __ ___._ ____________ ~ 

<Time interval> is of the form HH:MM. The hours must be less than 24, the minutes must be less 
than 60. 

<day interval> syntax: 

~<digit>--------------------------------
When a <STARTTIME specification> is included in a <job attribute specification>, the job is han
dled in the normal fashion, except it is not selected to run until either the current time is greater than 
or equal to the specified start time or the job is forced from the schedule by way of the FS system 
command. 

The #<:string primary> must evaluate to a valid <starttime spec>. #<string primary> is only valid 
for a ST ART statement within a job. 

WFL determines the absolute time and date at which a job should begin execution from the 
<starttime spec>. 

If a <time interval> is specified, that <time interval> is added to the current time. 

If a <day interval> is specified, that number of days is added to the current date. 

If <time> is specified without a <date> or <day interval>, the current date is used. 

Example: 

The folllowing job begins execution after 10:00 P.M. on March 20, 1981: 

BEGIN JOB EXAMPLE!; 
ST ARTTIME = 22:00 ON 03/20/81; 

END JOB 

The following job begins execution a minimum of one hour and 30 minutes after entering the system: 

BEGIN JOB EXAMPLE2; 
STARTTIME= +1:30; 

END JOB 

5025265 3-7 



CLASS Specification 

B 1000 Systems WFL Language Manual 
Job 

A <class specification> assigns the job to a specific job queue. 

<class specification> syntax: 

- CLASS = <integer constant express"ion > ---------· 

The <class specification> assigns the CLASS task attribute (the number of the queue desired) for the job. 
All tasks initiated by the job have this class. CLASS values may range between 0 and 1022. 

Example: 

The following job is assigned to queue 77: 

BEGIN JOB CLASS/EXAMPLE; 
CLASS = 77; 

END JOB 

Job Declaration List 
A <job declaration list> declares variables, subroutines, or both for the entire WFL program. 

<job declaration list> syntax: 

-<declaration list>------------------------------

<Declaration list> is described in section 4, Declarations. 

3-8 



B 1000 Systems WFL Language Manual 

SECTION 4 

DECLARATIONS 

A <declaration> creates a variable and defines its type. 

DECLARATION LIST 
A <declaration list> is a list of one or more declarations. 

<declaration list> syntax: 

___L <declaration>-

DECLARATION 
A <decllaration> allocates a variable and associates an <identifier> with that variable. 

<declaration> syntax: 

--.--- <integer declaration>----.---------------------------

<boolean declaration> 

<string declaration> ------1 

< task declaration>----t 

<subroutine declaration> 

<function declaration> 

<constant declaration> 

All variables must be explicitly declared before they are used. The use of a variable must be consistent 
with its declaration. 

All declarations within a job must follow the <job attribute specification> list and precede any executa
ble statement within the job. All declarations within a WFL subroutine or function must precede any ex
ecutable statement within the subroutine or function. Declarations may occur in any order. 

VARI.ABLE DECLARATIONS 
A variable declaration creates a new variable, gives it a type, and, optionally, an initial value. 

5025265 4-1 



Initial Value 

B 1000 Systems WFL Language Manual 
Declarations 

Variables can be assigned an initial value by using the assignment operator(:=) after the <identifier> 
which is being declared. (Task variables can be assigned an initial value by giving a list of <task attribute 
assignment>s or <file equation>s in parentheses.) 

Variables which have not been assigned an initial value will have an unpredictable default value. Care 
must be taken to assign a value to variables before they are used. 

Integer Declaration 
Integer variables contain the value of <integer expression>s. (<Integer expression> is described in sec
tion 7, Expressions.) 

<integer declaration> syntax: 

'< ~ INTEGER~~-~<i~ntifier> --------~-----~-_J-~~--------~ 

L : = <integer constant expression> 

Examples: 

INTEGER A2D 

INTEGER X := 128, Y := 32 * 8 

<integer id> syntax: 

- <identifier>-----------------------

The <identifier> must have been specified m either an <integer declaration> or a <specified 
parameters> declaration. 

Boolean Declaration 
Boolean variables contain the value of <boolean exprcssion>s. (<Boolean expression> is described in 
section 7, Expressions.) 

<boolean declaration> syntax: 

~OOOL~N~~r~<i~~~~-----------------~--~------~ 
L : = <boolean constant expression> . 

4-2 



Examples: 

BOOLEAN B 

B I 000 Systems WFL Language Manual 
Declarations 

BOOLEAN T :=TRUE, F :=FALSE, Bl :==TRUE OR FALSE 

<boolean id> syntax: 

- <identifier> ----------------------------------1 

The <identifier> must have been specified m either a <boolean declaration> or a <specified 
parameters> declaration. 

String Declaration 

String variables contain the value of <String expression>s. (<String expression> is described in section 
7, Expr1essions.) 

<string declaration> syntax: 

I - STRING_..._ __ <identifier> - ...... ---------------,r--.....1..-----------t 
L : = <string constant expression> _J 

The length of the last <String expression> assigned to a string variable is retained by that variable. 

Examples: 

STRINGS 

STRING STR : = "THIS IS A STRING" , SI : = "A STRING" & "CONST ANT EXPRESSION" 

<String id> syntax: 

- <identifier>-------------------------------------' 

The <identifier> must have been specified in either a <string declaration> or a <Specified parameters> 
declaration. 

5025265 4-3 



B 1000 Systems WFL Language Manual 
Declarations 

Task Declaration 
Task variables contain the value of task and file attributes. 

<task declaration> syntax: 

1< 
~T~K---<i~~~~-L--(--r--1--<----,-----~------)-j-~~~ 

task attribute assignmenl/" _J __ __.__ 
<file equation> ___ ____. 

Task variables are initialized (as though they were used in an <INITIALIZE statement>) when they are 
declared. 

Examples of task declarations: 

TASK TlZX 

TASK A (PRIORITY= 3, PROTECTED) 

TASK A,B (PRIORITY= 7), C 

<task id> syntax: 

- <identifier> -----------------------------------1 

The <identifier> must have been specified in either a <task declaration> or a <Specified parameters> 
declaration. 

MYSELF and MYJOB are predeclared task variables. They are used in exactly the same way as any 
<task id> except that they may not be assigned to a task because their assignment is already implied. 

MYJOB is a task variable which provides access to the values of the task attributes of the job. 

Example: 

MYJOB (PRIORITY = 9); % Sets the priority value for the job. 

MYSELF is a task variable which provides access to the values of the task attributes of the task making 
the request. 

Examples: 

4-4 

I :=MYSELF (MIXNUMBER) % Stores the mix number of the task 
% in the integer variable I. 

MYSELF (PR I OR I TY = 9) ; % Sets the priority of the task. 



B 1000 Systems WFL Language Manual 
Declarations 

SUBROUTINE DECLARATION 
A subroutine declares a block internal to the job (a procedure) which can be activated by a <subroutine 
invocation statement>. 

<subroutine declaration> syntax: 

-- SUBROUTINE <identifier> L ~ 

<specified parameter> 

BEGIN 

L <declaration list> _J 
>- --- <statement list> -- END - ...... ------------------------1 

L <identifier> _J 

<Specified parameter> syntax: 

' ~--------------------

-( _ _.__~ 15 ---- INTEGER <identifier> __________ __......__ ) 

VALUE---

BOOLEAN <identifier>--------

VALUE---

STA I NG <identifier> -~-------------

VALUE---

-TASK <identifier>----------

Subroutine and function declarations may be nested to a combined depth of 10. No limit exists on non
nested subroutines. 

There is a limit to the number of <statement> sin the <Statement list> of a< subroutine declaration>. 
Refer to section 3, JOB, for a discussion of the limit. 

The type of each parameter is specified by the key word preceding the name of the parameter. The key 
word VALUE indicates that the parameter is "call by value" rather than " call by reference." 

For a parameter which is "call by value," any changes made to the parameter within the subroutine are 
not reflected in the variable which was passed to the subroutine. For a parameter which is "call by 
reference," all changes made to the parameter within the subroutine also change the value of the variable 
which was passed to the subroutine. 

The same scope rules apply to the name of parameters as apply to local variables. Note that declarations 
within a subroutine may not declare an identifier whose name is the same as any of the parameters to 
that routine. 

5025265 4-5 



B 1000 Systems WFL Language Manual 
Declarations 

Example subroutine declaration: 

BEGIN JOB EXAMPLE SYNTAX; 
% declarations 
TASK T; 
BOOLEAN B; 
INTEGER I; 
SUBROUTINE SUB (INTEGER X) ; 
BEGIN 

RUN X; FILE Fl (KIND=DISK, MAXRECSIZE=30); 
% initiates program X, 
% the file with internal name Fl 
% will be assigned to a DISK 
% and have a maximum record size of 30. 

RUN Y; 
I := I + l; 

END; % end of subroutine declaration 
% 
RUN Z; % this is the first executable statement 
I :=O; % initiates the subroutine 
SUB(I); 
B:= TRUE; 
RUN X [T]; 

END JOB 

<subroutine id> syntax: 

- <identifier> ---------------·--------------------1 

The <identifier> must have been specified in a <subroutine declaration>. 

FUNCTION DECLARATION 
A function declares a block internal to the job (a procedure) which can be activated by <function 
invocation>. 

<function declaration> syntax: 

--<return type> FUNCTION <~entif~r>--~------------~--------->

L < specified parameters> _J 
>>----- BEGIN --------------·<statement list> ___________ .,. 

L <declaration list > _J 
>>---- END ----r---------------.-----------------------t 

L <identifier>-------

4-6 



B 1000 Systems WFL Language Manual 
Declarations 

Function and subroutine declarations may be nested to a combined depth of 10. No limit exists on non
nested functions. 

There is a limit to the number of <statement> s in the <Statement list> of a < function declaration>. 
Refer to section 3, JOB, for a discussion of the limit. 

<return type> syntax: 

t
. BOOLEAN 

· INTEGER---

. STRING -----

The <return type> is the type of the expression returned by the function. It is a syntax error if the 
<RETURN statement> from a function does not contain an expression, if the expression returned has 
a different type from the specified <return type>, or if a <RETURN statement> has not been encoun
tered by the time the end of <FUNCTION declaration> is reached. Not returning an expression, that 
is, reaching the END statement of the function during execution, results in a run time error. 

Example: 

BOOLEAN FUNCTION FUNCl (INTEGER LEN, STRING STR); 
BEGIN 

IF LENGTH (STR) EQL LEN THEN 
RETURN TRUE; 

ELSE 
RETURN FALSE; 

END FUNCl; 

BOOLEAN FUNCTION FUNC2 (INTEGER LEN, STRING STR); 
BEGIN 

RETURN LENGTH (STR) EQL LEN 
END FUNC2; 

5025265 4-7 



B 1000 Systems WFL Language Manual 
Declarations 

CONST ANT DECLARATION 

A constant identifier contains the value of the evaluated expression, and can be used anywhere a con
stant of the same type may be used. 

<Constant declaration> syntax: 

- CONSTANT-------< identifier> = <boolean constant expression> ____ ..i..._ _______ ____. 

< identifier> = < integer constant expression>--__. 

<identifier> = <string constant expression> ___ ....,. 

<boolean constant id> syntax: 

- <identifier>--------__,.--------------------------~ 

The <identifier> must have been specified in a <constant declaration> and assigned a <boolean con
stant expression>. 

<integer constant id> syntax: 

- <identifier>----------------------------------~ 

The <identifier> must have been specified in a <constant declaration> and assigned an <integer con
stant expression>. 

<string constant id> syntax: 

- <identifier>----------.-----------------

The <identifier> must have been specified in a <Constant declaration> and assigned a <string constant 
expression>. 

A constant identifier of the appropriate type may be used in any context where a <boolean constant>, 
<integer constant>, or <string constant> is allowed. It cannot be assigned a value by using an 
<assignment statement>. 

Examples: 

4-8 

CONSTANT 
TISTURE 
SEVEN 
HOS TN AME 

TRUE AND TRUE, 
12 - 5, 
"SB" & "P " 



Scop•~ of Variables 

B 1000 Systems WFL Language Manual 
Declarations 

Declarations may occur either at the job level (globals) or within WFL subroutines. All declarations with
in a WFL subroutine specify variables that are local to that subroutine. 

WFL is. a block-structured language, meaning that blocks may be nested inside other blocks. In WFL, a 
block is the job (the global block) or any subroutine. A block includes any blocks declared within it. Block 
structure allows the same <identifier> to be used in different blocks to denote different items, even 
though one block is nested within another. 

Consider the following example: 

BEGIN JOB Bl; 
INTEGER I, J; 
SUBROUTINE B2; 

. BEGIN 
INTEGER J; 
l:=l; %REFERS TO I INSIDE Bl 
J:=2; %REFERS TO J INSIDE B2 

END; 

%K HAS NOT BEEN DECLARED YET 
%so IT CAN NOT BE REFERENCED 
%EVEN THOUGH IT IS DECLARED IN THE GLOBAL BLOCK 

INTEGER K; 
SUBROUTINE B3; 

BEGIN 
INTEGER I; 
SUBROUTINE B4; 

BEGIN 
INTEGER J; 
l:=l; %REFERS TO I INSIDE B3 
J:=2; %REFERS TO J INSIDE B4 
K:=3; %REFERS TO K INSIDE Bl 

END; 
B4 

END; 
l:=l; %REFERS TO I INSIDE Bl 
J:=2; %REFERS TO J INSIDE Bl 
K:=3; %REFERS TO K INSIDE Bl 

END JOB 

An <identifier> declared within block B 1 can be used only within block B 1. If another block B2 is de
clared within B 1, then any <identifier> declared in B 1 can be used inside B2, unless an <identifier> 
spelled the same is declared in B2. 

5025265 4-9 



B 1000 Systems WFL Language Manual 

SECTION 5 
TASK ATTRIBUTES 

Task attributes allow the job to monitor and control the execution of tasks. 

Append.ix A lists all attributes implemented in B 1000 WFL, the allowed c:;e (Read only, Read/Write), 
and contains a description of the function of each attribute. 

TASK ATTRIBUTE ASSIGNMENT 

A <task attribute assignment> sets the value of an attribute within a task variable or a task. 

<task attribute assignment> syntax: 

----·<integer task attribute> -- = -- <integer expression> --------------------ii 
·<real task attribute>- = -- <real expression> -------1 

·<boolean task attribute>---.------------------1 

L = --<boolean expression>---1 

· <mnemonic task attribute>-- = - <task mnemonic primary> -

· USERCODE -- = -- <user specification>--------

·CHARGE--= --<chargecode>---·------------' 

Misusing an attribute (for example, attempting to set USER CODE to an invalid <user specification>) 
results in a fatal run-time error. 

<Integer expression>, <real expression>, and <boolean expression> are described in section 7, Ex
pressions. 

Semantics: 

<integer task attribute> 
Any task attribute of type Integer. 

<real task attribute> 
Any task attribute of type Real. 

<boolean task attribute> 
Any task attribute of type Boolean. 

<mnemonic task attribute> 
Any task attribute of type Mnemonic. 

5025265 5-1 



CHARGECODE 

B 1000 Systems WFL Language Manual 
Task Attributes 

< Chargecode > is a user assigned code and is used by the logging function of the MCP. 

< chargecode > syntax: 

L <integer constant> ~ 

# -- <string primary> 

A < chargecode > must be numeric and no greater than seven digits in length, otherwise a run-time 
error will occur. 

<String primary> is described in section 7, Expressions. 

5-2 



B 1000 Systems WFL Language Manual 
Task Attributes 

TASK MNEMONIC PRIMARY 

A' < taslk mnemonic primary> is used to compute the value of <mnemonic task attribute> s. 

<task mnemonic primary> syntax: 

L <task mnemonic> c <task id> - ( -- <mnemonic task attribute> -- ) ---j 
# - <string primary>------------~ 

Semantics: 

<task mnemonic> 
Any member of the set of named constants associated with a mnemonic task attribute. 

<String primary> is described in section 7, Expressions. 

<Task mnemonic primary> allows mnemonic valued attributes to be used in comparisons and assign
ments. It is important to note that the specific mnemonics must be compatible. Two attributes are com
patible if any of their mnemonic values are the same. An attribute and a mnemonic are compatible 
if the mnemonic is a valid value for that attribute. 

Example: 

The manner in which task attributes are used depends on the particular application. The following job 
includes examples of how task attributes might be used to control the execution of tasks within the 
job. 

BEGIN JOB SAMPLE; 
OJo 

OJo 

TASK A, B; 
A (MAXTIME = 30); 
B (PRIORITY = 8); 

RUN TESTl [A]; 
OJo Will be DSed if it exceeds 30 seconds elapsed time 
OJo 

OJo 

IF A IS COMPLETEDOK THEN OJo if TESTl completed normally 
BEGIN 

COMPILE BNOR WITH COBOL [B]; 
COMPILER FILE CARDS (TITLE = COBFILE, DISK); 
COMPILER MAXTIME = 600; % elapsed time limit for COBOL 

RUN TEST2 [A]; FILE TINPUT (TITLE = X/Y); 
END; 

END JOB 

5025265 5-3 



B 1000 Systems WFL Language Manual 

SECTION 6 
FILE ATTRIBUTES 

Each file attribute defines a characteristic of the file. Changing the state of a single attribute changes 
the characteristic of the file defined by that attribute and may cause the states of other attributes to 
be changed. Further explanation of each individual attribute is contained in the attribute descriptions 
in appendix B. 

FILE EQUATION 

A <file~ equation> specifies changes to the attributes of a file declared in a program to which it is 
applied. 

<file equation> syntax: 

- FILE - <intname> -- ( 
1< 

_..__ - <file attribute assignment>_...____ ) 

The <file equation> is applied to the file that is declared with an identifier (in the object program) 
the same as the < intname >. If the object program to which the <file equation> is applied did not 
declare a file with an identifier the same as < intname >, the program will fail initiation. 

If more than one <file equation> is specified for the same < intname > , the file attributes are merged 
and the last value for a given attribute is used. 

When a file is opened, file attributes are set in the same order as task attributes. Refer to Task Attri
butes and File Equation in section 8, Statements, for additional information. 

I NTN.AME 
An < intname > is the name given to a logical file when it was declared in a program (COBOL FD 
file-name, RPG F specification filename, and so forth). 

< intname > syntax: 

- <name>--------------------------------------! 

An < intname > may have an unrestricted number of characters, but only the first ten ( 10) characters 
are used to match the logical file as declared in the program. 

5025265 

NOTE 
Users are strongly encouraged to use all the characters of the logical file 
name when forming an < intname > for compatibility with other systems. 

6-1 



B 1000 Systems WFL Language Manual 
File Attributes 

FILE ATTRIBUTE ASSIGNMENT 

A <file attribute assignment> is used to assign a value to a file attribute. 

<file attribute assignment> syntax: 

----<integer file attribute>- = -<integer expression>-------------------1~ 
<boolean file attribute> - ......... ----------------1 

L = - <boolean expression>--1 

<mnemonic file attribute>-- = -- <file mnemonic primary>---1 

---------- <file device mnemonic> --------t 
KIND-= 

TITLE - = -- <file title> -------,------t 
FAMILYNAME- = -- <family name> -----------1 
HOSTNAME - = - <hostname> ------------1 
MYNAME--::::: -<name>------------~ 

Semantics: 

<integer file attribute> 
Any file attribute of type Integer. 

<boolean file attribute> 
Any file attribute of type Boolean. 

<mnemonic file attribute> 
Any file attribute of type Mnemonic. 

Misusing an attribute (for example, attempting to set TITLE to an invalid <title> using a <string 
expression>) results in a fatal run-time error. 

6-2 



B 1000 Systems WFL Language Manual 
File Attributes 

FILE DEVICE MNEMONICS 

A <file device mnemonic> is a value which is compatible with the KIND mnemonic file attribute. 

<file device mnemonic> syntax: 

~----DISK ------~--....,.-~~~~~~~--~----~~--~~~~~~------~~----1i 
- PAPERPUNCH---

- PAPER READER -

- PORT ------1 
- PRINTER----

- PUNCH----------

- READER -----1 

- READERSORTER ---

- REMOTE---------

-TAPE ------1 
- TAPECASSETTE-

- TAPEPE -------1 

-TAPE7----~--

- T APE9 ---------' 

For more information see the description of the KIND file attribute in appendix B. 

5025265 6-3 



B 1000 Systems WFL Language Manual 
File Attributes 

FILE MNEMONIC PRIMARY 

A <file mnemonic primary> is used to compute the value of <mnemonic file attribute> s. 

<file mnemonic primary> syntax: 

L <file mnemonic> _J 
# -- <string primary~ 

Semantics: 

< file mnemonic> 
Any member of the set of named constants associated with a mnemonic file attribute. 

<String primary> is described in section 7, Expressions. 

<File mnemonic primary> allows mnemonic valued attributes to be used in comparisons and assign
ments. It is important to note that in mnemonic attribute comparisons and assignments, the specific 
attributes and mnemonics must be compatible. Two attributes are compatible if any of their mnemonic 
values are the same. For example, the MYUSE attribute of one file (mnemonics IN, OUT, or IO) may 
be compared with or assigned to the MYUSE attribute or the OTHERUSE attribute (mnemonics SE
CURED, IN, OUT, IO) of the same or some other file identifier. The MYUSE and KIND file attri
butes are not compatible because none of their mnemonic values are the same. An attribute and a mne
monic are compatible if the mnemonic is a valid value for that attribute. 

Examples: 

RUN P; 
Fl (KIND 
Fl (KIND 

RUN X; 

DISK) OJo Syntactically correct. 
DONTCARE) OJo Incorrect because DONTCARE is 

OJo not a valid mnemonic for the file 
OJo attribute KIND. 

FILE Fl (TITLE = X/Y, KIND = DISK); 

In this example, when program X opens file Fl, the physical file associated with Fl will be a disk 
file called "X/Y". 

6-4 



B 1000 Systems WFL Language Manual 

SECTION 7 

EXPRESSIONS 

Lx.Drc~:;wns are ttseJ Lu compute values by applying various operators to variables, functions, and 
=~Jx· {prcssion.l (prirnarie,>). 

A <boolean expression> is used to compute logical values. 

<boolean expression> syntax: 

-~,--_J--- <boolean primary> 

L._ NOT 

--~-·-,--·--·---~~~~------------] 

AND~ ____ L ___ __J ____ <b~lean primary> _J 
OR- NOT , 

IMP 

EOV 

Examples: 

NOT Bl 
Bl AND NOT B2 
PIMP Q AND Bl EQV NOT B2 OR B3 

Logical Operators 

Truth Table 

1-r1-~-SE--+---FA_B_L_SE +~c;·-~-:----~-AA-:s~--~l~}~fr 4~~=:·~- -A-rR~E~: B 

i !;ALSE TRUE TRUE FALSE TRUE TRUE FALSE 
j TRUE FAU:E FALSE FALSE TRUE FALSE FALSE 

L !·rt'.-
1

.~=----· _2~~UF -··-·'---~~~ .. ~-~E __ TF~-~1. .. ~:_. ___ r_R_u_rE .2~-~~-~~ .. -·-- __ T_R_~E-

5025265 7-1 



B 1000 Systems WFL Language Manual 
Expressions 

Order of Evaluation 

The order of precedence (highest first) for the execution of logical operators is as follows: 

1. <boolean primary> 
2. NOT 
3. AND 
4. OR 
5. IMP 
6. EQV 

First, all <boolean primary>s are evaluated. Second, the NOT operators are applied to the <boolean 
primary> that they precede. Finally, the operations are performed in the appropriate order of priority. 
If two operations have the same priority, the leftmost operation is performed first. Note that a <boolean 
expression> enclosed in parentheses becomes a <boolean primary>. 
Boolean Primary 

A <boolean primary> represents a logical value. 

<boolean primary> syntax: 

ant> ---<boolean const 

<boolean cons tant id> 

7-2 

< boo lean id > 

<function invo cation> 

meter id> <boolean para 

< arithmetic co 

< string compa 

<task mnemon 

mparison> 

rlson> 

ic comparison> 

<task state> 

<task id> ( < 

Fl LE <file tit 

boolean task attribute> ) 

le> c::NT=:J 
e n ( < boolean expr ss10 > ) 

RESIDENT-

J 
l 



B 1000 Systems WFL Language Manual 
Expressions 

FUNCTION INVOCATION 
<function invocation> syntax: 

- <function id> L 
<actual parameters> _j 

The <function invocation> causes the function denoted by <function id> to be executed. See Subrou
tine Invocation Statement in section 8 for a description of <actual parameters>. 

If a <function invocation> is used as a <boolean primary>, the function must have a <return type> of 
BOOLEAN. 
Arithmetic Comparison 
An <arithmetic comparison> allows the values of two <integer expressions> to be compared. 

<arithmetic comparison> syntax: 

-- <integer expression> <relational operator> <integer expression>----------------

Relational Operators 

<relational operator> syntax: 

< 
LSS 

LEO 

= 
EOL 

GEO 

> 
GTR 

NEO 

Relational operators perform a comparison between two operands and produce a boolean result. 

5025265 7-3 



B 1000 Systems WFL Language Manual 
Expressions 

String Comparison 

Operator 

< 
LSS 
LEQ 

EQL 
GEQ 
> 
GTR 
NEQ 

Function 

less than 
less than 
less than or equal 
equal 
equal 
greater than or equal 
greater than 
greater than 
not equal 

A <String comparison> allows the value of two <String expression>s to be compared. 

<String comparison> syntax: 

- <string expression> i= = ~<string expression> 

EOL 

NEO 

Two strings are equal only if all characters in the first string occur in the same order in the second string 
and the lengths of the two strings are equal. 

Task Mnemonic Comparison 

A <task mnemonic comparison> allows the comparison of a <mnemonic task attribute> to a <task 
mnemonic primary>. 

<task mnemonic comparison> syntax: 

- <task id> -- ( --<mnemonic task attribute>-- ) -i- IS ---i--<task mnemonic primary>~ 
L1sNT_J 

Examples: 

7-4 

T(JOBSUMMARY) IS SUPPRESSED 

Tl(JOBSUMMARY) ISNT T2(JOBSUMMARY) 



Task State 

B 1000 Systems WFL Language Manual 
Expressions 

<Task state> allows the status of a task to be monitored. 

<task state> syntax: 

-- <task ;d>L ::N-T-----::~,::Eo -------------------.. ·---·-··---·---·-·1 

Semantics: 

ABORTED 

COMPILE DOK ----~

COMPLETED ---

COMPLETEDOK ---· 

INUSE ------· 

SCHEDULED---

STOPPED ---·--·---

The task failed initiation or was abnormally terminated with a DP or DS system command. 

ACTIVE 
The task is currently running. 

COMP][LEDOK 
A compiler task completed without detecting syntax errors. 

COMPLETED 
The task was initiated and has terminated. A task id that fails initiation is in the COMPLETED 
state. A task id not used in a task initiation statement since it was declared or used in an 
INITIALIZE statement, is not in any of the <task state> syntax states. 

COMPLETEDOK 
The task completed and was terminated without faulting or being aborted. 

I NUSE 
The task is in the SCHEDULED, ACTIVE, or STOPPED state. 

SCHEDULED 
The task has not yet been entered in the mix. 

STOPPED 
The task has been stopped by the operator, suspended by the system, or programmatically 
suspended. 

5025265 7-5 



File Residency Test 

B 1000 Systems WFL Language Manual 
Expressions 

The test for file resident returns TRUE if the permanent file exists for the current user. It does not cause 
the logical file to be opened or the job to be suspended. 

Examples: 

FILE *COBOL IS RESIDENT 

FILE (ZOT)XYZ ON MYPACK ISNT RESIDENT 

7-6 



B 1000 Systems WFL Language Manual 
Expressions 

INTEGER AND REAL EXPRESSIONS 
Integer and Real expressions yield numerical values by combining primaries with arithmetic operators. 

Integer Expression 

An <integer expression> is used to compute an integer value. 

<integer expression> syntax: 

~<integer primary> 

Arithmetic Operators 

+ ----<integer primary> 

*--
DIV 

MOD 

The operators +, -, and * have the conventional mathematical meanings of addition, subtraction, and 
multiplication, respectively. The real division operator(/) is not implemented. The DIV operator pro
duces a quotient with a truncated fractional part.. The MOD operator returns the remainder of a divide 
operation. 

5025265 7-7 



B 1000 Systems WFL L.tnguage Manual 
Express1c1!1s 

Order of Evaluation 
The order of precedence (highest first) for the execution of arithmetic operators is as follows: 

1. <Integer primary> 
2. Prefix + or -
3. *, DIV, or MOD 
4. Infix + or -

First, all primaries are evaluated. Second, ihe prefix operak·r +- nr ---, iLmy, i~ cipi_)lied to the pr1;:1;. : ) that 
it precedes. Finally, the operations are performed in the order : ir],_,ri1 ;, . 1 f rvvo operal;ons ~-:-' . .;t' the 
same priority, the left operation is performed first. Note that when an (°.\p• i.:;::;sicm is .::"ndos\.;d in ~·drr;nthe
ses, it becomes a primary. 

Integer Primary 
An <integer primary> represents an integer number. 

<integer primary> syntax: 

--- <integer constant> ________________ 

1 

_____ _ 

< integer constant id> . 

<integer id> -----------------· 

<function invocation> --·, 

7-8 

<integer parameter id> -----------· ---~ 
<task id> (<integer task attribute>)----- -·-·1 

i 

LENGTH ( <string expression> ) -------· 

OCTAL ( <string expression> ) ---------~ 

HEX ( <string expression> ) -------· 

DECIMAL ( <string expression> ) -·------......... 

INTEGER ( <real expression> ) --------~ 

( <integer expression> ) ------------



Func:tion Invocation 

B 1000 Systems WFL Language Manual 
Expressions 

<function invocation> syntax: 

- " <function id> L ·--y--------- --·---- .. -·-·----- ., __ ---·-·-· --·-· 

<actual parameters> _J 
The <function invocation> causes the function denoted by <function id> to be executed. See 
<Suhrcutine invocatjon statement-- for a description of <actual parameters>. 

If a <ft11.icticm invocation> is used as an <integci· primary~:::·. the function must have a <return type> 
equal to INTEGER. 

Real Expression 

B l 0\)0 \VFL suonorts only integer arithmet1c, it does not support real arithmetic. Certain task anributes 
a~c: :Jl type real and may be used as a real expression. in order to perform arithmetic on a real number, 
th~ : ;"i i EGER function must be used to convert the real number to an c· integer prirn:ffy . 

~:'oi• .. pression .. " '\yntax.: 

' 
~-~--<:re~ primary~~~-~~~~~~~--~~-~~~~~~~-------------~----~-~~-~ 

L <integer expression> _J 

Re.al Primary 

A .--.::real primary> represents a real number. 

<-Real prirnan1> syntax: 

LENGTH Function 

The LENGTH function returns the number of characters within the value of <string exprrs:::ion>. 

OCTAL Function 

The OCT AL function returns an integer value equal to the octal (base 8) number represented by the value 
of <String expression>. <String expression> must contain at least one character and not more than eight 
characters and must not be larger than "37777777". All the characters within the value of <string 
expression> must be within the set of characters "O 1234567". A run-time error is given if <string 
expression> does not satisfy these requirements. 

sms26s 7-9 



B 1000 Systems WFL Language Manual 
Expressions 

HEX Function 

The HEX function returns an integer value equal to the hexadecimal (base 16) number represented by 
the value of <String expression>. <Sting expression> must contain at least one character and not more 
than six characters and must not be larger than "7FFFFF". All the characters within the value of <String 
expression> must be within the set of characters "0123456789ABCDEF". A run-time error is given if 
<String expression> does not satisfy these requirements. 

DECIMAL Function 
The DECIMAL function returns an integer value equal to the decimal (base 10) number represented by 
the value of <String expression>. <String expression> must contain at least one character and not more 
than seven characters and must not be larger than "8388607". All the characters within the value of 
<String expression> must be within the set of characters "0123456789". A run-time error is given if 
<string expression> does not satisfy these requirements. 

INTEGER Function 

The INTEGER function returns the <real expression> without a fractional part. 

Examples: 

7-10 

Function 

INTEGER (MYSELF (ELAPSEDTIME)) 

LENGTH (" ABCDEF") 

OCT AL (" 1 O") 
OCTAL ("377") 

HEX (" 10") 
HEX ("FF") 

DECIMAL(" 1 O") 
DECIMAL ("255") 

Result 

The number of whole seconds 
the WFL program has been 
running. 

6 

8 
255 

16 
255 

10 
255 



B 1000 Systems WFL Language Manual 
Expressions 

STRING EXPRESSION 
A <String expression> is used to compute a string value. 

<string expression> syntax: 

~·<string primary> 

~ ~<string primary> 

Concatenation Operation 

/= ON <string primary> 

The concatenate operator(&) is applied to two strings to produce a new string. The length of the new 
string is the sum of the lengths of the two original strings. The value of the new string is formed by joining 
a copy of the second string immediately onto the end of a copy of the first string. 

Other' Concatenation Operators 

Four oither string concatenation operators are provided. These operators make it easier to build <file 
title>s from strings, although they are not limited to this purpose. The operators are: 

* 
I 
ON 
I= 

unary prefix asterisk 
binary infix slash 
binary infix ON 
unary postfix slash-equal 

The action of these operators is described in terms of the string concatenation operator(&); s 1 and s2 
represent any possible <string primary>s: 

Strin~1 Overflow 

*sl 
sl/s2 
sl ON s2 
sll= 

is equivalent to 
is equivalent to 
is equivalent to 
is equivalent to 

"*" & s 1 
sl & "/" & s2 
s 1 & " ON " & s2 
sl & "!=" 

An attempt to evaluate a <String expression> with a length greater then 255 characters causes a run-time 
error. 

5025265 7-11 



B 1000 Systems WFL Language Manual 
Expressions 

String Primary 

A <String prirnary> represents a string. 

<string primacy> syn rnx: 

- - · ·<:-;:ring consta: 

T~~ ~-~ < r:;tring const 

L.~~ i ·< strinq id> 

nt> 

ant id> 

r-"- - <function inv 
j 

ocation> 
~ !· ··~ < :;;tr~ng param eter id> -"=x::<---··· .. ,._ --- . 

nctions> 

ctions> 

~ <take drop fu 

~- <head tail f"'1 

i----., <::accept tune 
I 

t1on> -~---~~--- -~~---·~----·-----

~~- <:string functi on> ·-
~ 
~~.,·-- • -· tirnedate tu 
~ ......... nction> 
I t--··- < svstem tune 

~··.,~-· <task 1d > ( 
tion> ..................... _, 

! <mnemonic task attribute> t USERCODE 

CHARGE 

rec;sion { _,< string exp ~ > ) r--.--_......., .... ___ ---- ..._......~-

r:JNCTION INVOCATION 

<~ ~-,mction invocation.> syntax: 

j 
) --

J 
l 

-·-j 

The <function invocation> causes the function denoted by <function id> to be executed. See 
<subroutine invocation statement> in section 8 for a description of <actual parameters>. 

If~ <function invocation> is used as a <string primary>, the function must have a <return type> equal 
to STRING. 

7-12 



B 1000 Systems WFL Language Manual 
Expressions 

TAKE and DROP Functions 

The TAKE and DROP functions return a string whose value is some number of characters from the be
ginning or end of another string expression. 

<take drop functions> syntax: 

L 
TAKE -r- ( - <string expression> -- ' -- <integer expression> -- ) 

DROP __J 

The TAKE function returns a new string whose value is a copy of the first <integer expression> number 
of characters taken from the <string expression> . If the value of <integer expression> is greater than 
the number of characters in <string expression> or <integer expression> is less than zero, a run-time 
error occurs. 

The DROP function returns a new string whose value is a copy of the characters remaining in <string 
expression> after the first <integer expression> number of characters have been discarded. The value 
of <integer expression> is limited as in the TAKE function. 

For any <string expression> Sand any <integer expression> I in the range 0 LEQ I LEQ LENGTH(S), 
the following relation is always true: 

S = T AKE(S,I) & DROP(S,I) 

HEAD and TAIL Functions 
The HEAD and TAIL functions return a string whose value is some number of characters from the begin
ning or end of another string expression. The number of characters to use is determined by scanning the 
string expression for a <character set>. 

<head tail functions> syntax: 

--i-- HEAD --i-- ( -
L_ TAIL __J 

<string expression> - ' -- <character set> -- ) 

The HEAD function returns a new string consisting of a copy of all the leading characters in <--String 
expressiion> that belong to the set of characters specified by <character set>. If the first character in 
<string expression> is not a member of the <character set>, a null (zero length) string is returned. 

The TAIL function returns a new string consisting of a copy of all the characters in <string expression> 
that remain after the removal of all the leading characters that belong to <character set>. If all characters 
in <String expression> are members of the specified <character set>, a null string is returned. 

For any <String expression> S and any <character set> C, the following relation is always true: 

S =, HEAD(S, C) & T AIL(S, C) 

5025265 7-13 



B 1000 Systems WFL Language Manual 
Expressions 

Character Set 

A <character set> is a collection of characters used to control the action of the HEAD and TAIL 
functions. 

<character set> syntax: 

LNOT~ 
L <string constant expression> 

ALPHA 

The built-in <character set> ALPHA consists of all the upper-case English alphabet letters A through Z 
and the digits 0 through 9. The <String constant expression> may have characters in any order. The NOT 
keyword indicates a character set consisting of all EBCDIC characters except those specified. 

ACCEPT Function 

The <accept function> returns a string entered by the operator. 

<accept function> syntax: 

- ACCEPT - ( - <string expression> - ) ----------------------1 

The ACCEPT function displays its <string expression> parameter on the system ODT and waits for the 
operator to respond with an AX ODT-command. Refer to the B 1000 Systems System Software Opera
tion Guide, Volume 1, for more information on the AX ODT-command. 

The first 255 characters of the operator response are returned as the value of the ACCEPT function. 
STRING Function 
The <String function> converts an <integer expression> into a < string expression>. 

<String function> syntax: 

-- STRING -- ( - <integer expression> - ' ---- <integer expression> ---- ) -----

* 

The <String function> generates a new string whose value is the decimal representation of the absolute 
value of the first <integer expression>. The length of the returned string is specified by the second pa
rameter; if this second parameter is an <integer expression> with a value less than or equal to zero, the 
returned string is oflength zero. If the value of this second <integer expression> is greater than the mini
mum number of characters needed to represent the first argument, a sufficient number of leading zero 
characters are provided. If the value of the second <integer expression> is less than the number of char
acters needed to represent the first <integer expression> then the rightmost characters are returned. If 
the second parameter of the STRING function is an asterisk(*) the string will be just long enough to con
tain all digits of the integer character representation of the first argument with no leading zero characters. 

7-14 



B 1000 Systems WFL Language Manual 
Expressions 

Examplles: 

String Declaration 

STRING STRl, STR2, PGMNAME; 

5025265 

String Expressions and Assignment 

STRl := II ABCDEF"; 
STR2 := TAKE(STRl, 2); 
STR2 := DROP(STRl, 2); 

STR 1 : = II A B c II ; 

STR2 : = HEAD(STR 1, II "); 

STR2 : = T AIL(STR 1, II "); 

STRl := "FILE/NAME"; 
STR2 := HEAD(STRl,NOT "/ "); 
STR2 : = T AIL(STR l ,NOT II I "); 

STRl := STRING(l23, *); 
STR2 : = STRING(l 23, 6); 
STR2 := STRING(1234, 3); 

STR 1 : = ACCEPT("CONTINUE? "); 

STR 1 : = "XI"; 
STR2 := "Y"; 
PGMNAME := STRl & STR2 ; 

II AB" 
"CDEF" 

II II 

"ABC" 

"FILE" 
"/NAME" 

"123" 
"000123" 
"234" 

Result 

The phrase "CONTINUE?" 
is displayed on the system 
0 DT. The program then 
waits for operator 
response by means of the 
AX ODT-command. This 
response becomes the value 
of STRl. 

"X/Y" 

7-15 



B 1000 Systems WFL Language Manual 
Expressions 

TiMEDATE FuncUon 

't~I.\..: TH"1ffJ)i~Tf. iunctioE re-·. urns various time-related items as strings. The function has one parameter 
wiuch 1s a mnemonic description of the function being requested. 

HHMMSS 

yyy YMMDDHHMMSS 

DISP 

MON 

DAY 

LAY 

TH 

UMBER 

D 

DAYN 

YYDD 

YYM 

MMD 

MOD 

DYY 

MYY --DOM 
yyyy DOD 

yyyy MMDD 

DYYYY MMD 

DDMMYYYY 

All strings returned by the <timedate function> are in upper case. The forms available are described 
below. Each description includes an example that indicates the result that would be returned at 5:09 PM 
Friday, March 4, 1983. In all cases, the name of the month and the name of the day are returned in 
English. 

J fl!M MSS 
Returns the time as a string of six characters. The first two characters are the hours on a 24 hour 
ck-d, the next t"vo are the minutes, and the last two are the seconds. 

Example: 11 170900" 

YYYYMMDDHHMfVISS 
Returns the time and date as a string of fourteen characters. The first eight are the date as descriued 
f,;r "'! YYYivHvlDD. The last six characters are the time as described for HHMMSS. 

Example: "19830304170900" 

DISPLAY 

7-16 

Returns the time. day of week, and date in an English-like format. The length of the sum~:'., vanes 
from 2 7 to 3 8 characters. 

Example: "5:09 PM FRIDAY, MARCH 4, 1983" 



MONTH 

B 1000 Systems WFL Language Manual 
Expressions 

Returns the name of the month as a string. The length of the string varies from 3 to 9 characters. 

Example: "MARCH" 

DAY 
Returns the name of the day of the week as a string. The length of the string varies from 6 to 9 
characters. 

Example: "FRIDAY" 

DAYNUMBER 
Returns the number of the day of the week as a string of one character. The days of the week are num
ben.~d as follows: Sunday = 0, Monday = 1, Tuesday = 2, Wednesday = 3, Thursday = 4, Friday = 
5, Saturday = 6. 

Example: "5" 

YYDDD 
Returns the date as a string of five characters. The first two characters are the year modulo 100, and 
the last three are the day of the year. 

Example: "83063" 

YYMMDD 
Returns the date as a string of six characters. The first two characters are the year modulo l 00, the 
next two are the month, and the last two are the day of the month. 

Example: "830304" 

MMDDYY 
Returns the date as a string of six characters. The first two characters are the month, the next two 
are the day of the month, and the last two are the year modulo 100. 

Example: "030483" 

DDMMYY 
Returns the date as a string of six characters. The first two characters are the day of the month, the 
next two are the month, and the last two are the year modulo 100. 

Example: "040383" 

YYYYDDD 
Returns the date as a string of seven characters. The first four characters are the year, and the last 
thr1ee are the day of the year. 

Example: "1983063" 

5025265 7-17 



YYYYMMDD 

B 1000 Systems WFL Language Manual 
Expressions 

Returns the date as a string of eight characters. The first four characters are the year, the next two 
are the month, and the last two are the day of the month. 

Example: "19830304" 

MMDDYYYY 
Returns the date as a string of eight characters. The first two characters are the month, the next two 
are the day of the month, and the last four are the year. 

Example: "03041983" 

DDMMYYYY 
Returns the date as a string of eight characters. The first two characters are the day of the month, 
the next two are the month, and the last four are the year. 

Example: "04031983" 

SYSTEM Function 

The <system function> is a string function that returns system identification information. 

<system function> syntax: 

- SYSTEM - ( --i- TYPE ) 

Semantics: 

L_ MCPLEVEL ---

TYPE 

MCPLEVEL 

Returns the machine type as a string of five characters. 

Example: "B 1900" 

Returns the MCP release, level and version as a string 
of eight characters. 

Example: "12.0.078" 

The format and length of the values returned are as described for B 1000 systems. These descriptions 
might not be accurate should the WFL <job> containing them be run on other Burroughs systems. 

7-18 



B 1000 Systems WFL Language Manual 
Expressions 

CONST ANT EXPRESSIONS 

A constant expression is a combination of basic elements whose value can be determined at compile 
time. These basic elements can be boolean constants, integer constants, string constants, boolean con
stant ids, integer constant ids, or string constant ids. 

Boolean Constant Expression 

A <boolean constant expression> computes logical values at compile time. 

<boolean constant expression> syntax: 

-r--t------r-- <boolean constant primary> 

The logical operators have the same meaning as those for boolean expressions. 

Boolean Constant Primary 

A <boolean constant primary> represents a logical value. 

<boolean constant primary> syntax: 

-.......--··<boolean constant> ---------------------------------1~ 
· <boolean constant id> -------------

- <boolean parameter id> -------·-----1 

· <constant arithmetic comparison > ----------1 
• <string constant comparison> -----·---

( < boolean constant expression > ) --------

Constant Arithmetic Comparison 

A <constant arithmetic comparison> compares the values of t.wo <integer constant expressions>. 

<constant arithmetic comparison> syntax: 

-- < iinteger constant expression> < relational operator> <integer constant expression> ---------

5025265 7-19 



B 1000 Systems WFL Language Manual 
Expressions 

String Constant Comparison 

A <String constant comparison> compares the value of two <String constant expression>s. 

<string constant comparison> syntax: 

-- <string constant expression> 1= = ~<string constant expression> 

EOL 

NEO 

The two string constant expressions are equal only if, once evaluated, all characters in the first string 
occur in the same order in the second string and the lengths of the two strings are equal. 

INTEGER CONST ANT EXPRESSION 
An <integer constant expression> computes an integer value at compile time. 

<integer constant expression> syntax: 

~~<integer constant primary> 

+ ----.-- < integer constant primary> J 
* -

DIV

MOD 

The arithmetic operators have the same meaning as those for integer expressions. Refer to Arithmetic 
Operators in this section for detailed information. 

7-20 



B 1000 Systems WFL Language Manual 
Expressions 

Integer Constant Primary 
An <integer constant primary> represents an integer number. 

<integer constant primary> syntax: 

<integer constant> 

<integer constant id 

< integer parameter 

> 

id> 

·DECIMAL ( <string 

·HEX ( <string cons 

OCTAL ( <string c 

·LENGTH ( <string 

constant expression> 

tant expression> ) 

onstant expression> ) 

constant expression> 

· ( < integer constant expression> ) 

) . 

) 

Refer to Integer Expression in this section for an explanation of the various integer functions. 

STRING CONST ANT EXPRESSION 
A <String constant expression> computes a string value at compile time. 

<String constant expression> syntax: 

~ ~ < string constant primary> 

~ /=~ LON <string constant primary>~ 
The concatenation operators have the same meaning as those for string expressions. Refer to String Ex
pression in this section for detailed information. 

5025265 7-21 

I 
l 



B 1000 Systems WFL Language Manual 
Expressions 

String Constant Primary 

A <String constant primary> represents a string. 

<string constant primary> syntax: 

-.....--- <string constant:> ------------.--~~ 

<string constant id:> --------

<string parameter id>--------

<string constant function> ---------1 

< take drop constant function'/-----

<head tail constant function'/ --------1 

( <string constant expression:> ) -----

TAKE and DROP Constant Functions 

The TAKE and DROP constant functions return a string whose value is some number of characters from 
the beginning or end of another string constant expression. 

<take drop constant function> syntax: 

-i-- TAKE_J--....-- ( <string constant expression> ' <integer constant expression> ) --------1 

L_ DROP 

The TAKE and DROP constant functions operate the same as the TAKE and DROP functions. Refer 
to TAKE and DROP Functions in this section. 

HEAD and TAIL Constant Functions 

The HEAD and TAIL constant functions return a string whose value is some number of characters from 
the beginning or end of another string expression. The number of characters to use is determined by scan
ning the string expression for a <character set>. 

<head tail constant function> syntax: 

--i- HEAD_J---- (<string constant expression> ' <character set> ) -----------

L__ TAIL 

The HEAD and TAIL constant functions operate the same as the HEAD and TAIL functions. Refer to 
HEAD and TAIL Functions in this section. 

7-22 



B 1000 Systems WFL Language Manual 
Expressions 

STRU~G Constant Function 

The <string constant function> converts an <integer constant expression> into a string. 

<String constant function> syntax: 

-- STRING ( <integer constant expression> • L: integer constant expression> )---.i 

The <String constant function> operates the same as the <String function>. Refer to STRING Function 
in this section for additional information. 

5025265 7-23 



B 1000 Systems WFL Language Manual 

SECTION 8 

STATEMENTS 

This section describes the statements used in the Work Flow Language. Information which is common 
to several statements is described at the beginning of this section. The individual statements are de
scribed in alphabetical order after the common information. 

STATEMENT LIST 
<Statement>s are normally executed sequentially in the order in which they are written. 

<statement list> syntax: 

STATEMENT 
A <Statement> indicates some type of action to be performed. 

<Statement> syntax: 

- <assignment statement> -----1 
- <flow of control statement>----

- <subroutine control statement> 

- <task initiation statement>----

- <task control statement> ----

- <file management statement> ----t 

- <communication statement> ---

The path through the syntax diagram that does not cross any token is an empty statement. 

5025265 8-1 



B 1000 Systems WFL Language Manual 
Statements 

ASSIGNMENT STATEMENT 
The <assignment statement> is used to replace the current value of a variable (or attribute) by a new 
value. 

<assignment statement> syntax: 

1 
<integer assignment statement> 

<task assignment statement>----1 

< boolean assignment statement> 

<string assignment statement> 

Integer Assignment Statement 

An <integer assignment statement> is used to replace the current value of an integer variable by a new 
value. 

<integer assignment statement> syntax: 

- <integer id> - : = - <integer expression> ----------------------"""' 

Task Assignment Statement 

A <task assignment statement> is used to replace the current value of an attribute by a new value. 

<task assignment statement> syntax: 

-- <task id> - ( 

L 
<task attribute assignment> 

<file equation>------

Boolean Assignment Statement 

) 

A <boolean assignment statement> is used to replace the current value of a boolean variable by a new 
value. 

<boolean assignment statement> syntax: 

- <boolean id> - : = -- <boolean expression>----------------------1 

8-2 



B 1000 Systems WFL Language Manual 
Statements 

Strin~1 Assignment Statement 
A <String assignment statement> is used to replace the value of a string variable by a new value. 

<String assignment statement> 

-<string id>- : = - <string expression>--------------------~ 

Examples: 

INTEGER X, Y; 
TASK A, B; 
BOOLEAN C; 
STRINGS; 

x := 128; y := 256; 
A (PRIORITY= 7); B (PROTECTED); 
C :=TRUE; 
S := "JOBSUMMARY =" & MYSELF (JOBSUMMARY); 

FLO'N OF CONTROL STATEMENT 
The sequential flow of control can be altered by a < statement> which indicates that its successor is to 
be a <:Statement> other than the one which foHows it in the program. 

<flow of control statement> syntax: 

-......---- <CASE statement> -----------------------------1 

- <compound statement> 

- <DO statement> 

- <IF statement> 

- <WHILE statement> 

SUBROUTINE CONTROL STATEMENT 
The subroutine control statements consist of an invocation and a return statement. 

<Subroutine control statement> syntax: 

---i-- <subroutine invocation statement> 

L_ <RETURN statement> ____ __, 

5025265 8-3 



B 1000 Systems WFL Language Manual 
Statements 

TASK INITIATION STATEMENT 
A <task initiation statement> starts application programs and system functions as separate dependent 
tasks. 

<task initiation statement> syntax: 

--- <COMPILE statement> -------r------------------------1~ 
<copy statement> ----------1 
< RUN statement> -------

<ST ART statement> --------1 
< PROCESS statement> ____ __, 

The COMPILE, copy, RUN, and START statements run synchronously, that is, the execution of the job 
task (WFL program) is suspended until the dependent task is completed. For example, 

RUN X: 
RUN Y: 

Program X runs first. When it is finished, program Y runs. 

The <PROCESS statement> initiates asynchronous tasks. For more information refer to PROCESS 
Statement in this section. 

The <START statement> initiates a synchronous dependent task and then an independent job task. For 
more information refer to ST ART Statement in this section. 

The job task becomes the parent task of the dependent task started with a task initiation statement. A 
job task does not have a parent. The independent task initiated by a <START statement> does not have 
a parent task. (A program which is called by a task initiate, IPC call, program call, or sort has a parent 
which is the calling task. A program initiated by the EXECUTE ODT-command, including a ZIP, does 
not have a parent.) 

A task variable can be attached to a task by placing the < task id>, enclosed in brackets, after the title 
of the task. The task variable can then be used to set attributes before the task is initiated or to inquire 
about the value of attributes after the task completes. 

In the following examples, T and T2 have been declared as TASKs. 

Examples: 

8-4 

COMPILE ARO [T] WITH COBOL [T2]; 
% T is attached to the object program ARO 
% T2 is attached to COBOL. 

RUN x [T]; 
% T is attached to the program x. 

COPY A TO B [T]; 
% T is attached to the SYSTEM/COPY program. 

START A/JOB [T]; 
% T is attached to the SYSTEM/WF L program. 

PROCESS RUN Y [T]; 
% T is attached to the program Y. 
% Y runs asynchronously with the job. 



B 1000 Systems WFL Language Manual 
Statements 

Task Attributes and File Equation 
Tasks have properties, called task attributes, that contain the information needed to find, run, and keep 
track of the task. Misusing an attribute (for example, setting USERCODE to an invalid <user 
specification>) results in a fatal run-time error. For specifics on task attributes refer to section 5, Task 
Attributes. 

A <file equation> is used to specify changes to the various files declared within the program being initi
ated. For specifics on file attributes refer to section 6, File Attributes. 

Task attributes and <file equation>s can be specified in several ways: 

1. System or user defaults. 
2. Inherited from parent task. 
3. Language source (such as WFL <job attribute specification>). 
4. <Compile task equation list> without COMPILER. 
5. MODIFY ODT-command. 
6. <Task equation list> as part of a task initiation statement. 
7. ODT-commands (such as PR or DY), <task assignment statement> after task initiated (such as 

MYSELF (PRIORITY =9)). 

Attributes are assigned values in the order listed above starting with 1 and proceeding to 7. If the values 
conflict, the value specified in the highest number assignment is used. 

Examplle: 

COMPILE X COBOL LIBRARY; 
COMPILER PRIORITY= 5; %priority of compilation 
PRIORITY =6; % sets priority in code file X 

RUN X; % runs at PRIORITY 6 

RUN X; 
PRIORITY = ]; % overrides compiled-in PRIORITY 

5025265 8-5 



B 1000 Systems WFL Language Manual 
Statements 

Reuse of Task Variable 
WFL saves all the information associated with a task variable until the job is completed or until the task 
is initialized. Special care must be taken when reusing a task variable for a new task. 

In the following example, there is one task declared, T, which is used for two <RUN statement>s. In the 
second <RUN statement>, the PRIORITY information, file-equation information, and the setting of 
CHARGE are all still in effect for the execution of Y. · 

Example 1: 

BEGIN JOB EXAMPLEl; 
TASK T; 
T (PR I OR I TY=5) ; 
RUN X[T]; 

FILE F (KIND=DISK); 
T (CHARGE= 123) ; 
RUN Y[T]; 

END JOB 

There may also be less-obvious side effects of reusing Tin the manner shown in example 1. For example, 
the operator may have changed the PRIORITY of program X or X may have changed its MAXW AIT. 
The changed PRIORITY and MAXW AIT would still be in effect when program Y is executed, and could 
have an undesired effect on Y. 

Retaining the information about the previous task is normally not desired when reusing a task variable. 

In the next example, Tis initialized. After that point, the PRIORITY information and the previous file
equation information are no longer in effect. 

Example 2: 

BEGIN JOB EXAMPLE2; 
TASK T; 
T(PRIORITY=5); 
RUN X[T]; 

FILE F (KIND=DISK); 
I N I T I AL I Z E (T) ; 
RUN Y[T]; 

END JOB 

It is not possible for WFL to automatically clear the information associated with a task variable. If the 
information were cleared just before the task was initiated, information such as the PRIORITY in the 
above example would be lost. If the information were cleared just after the task is completed, important 
result information such as TASK ST A TE would be lost. 

The safest way to reuse a task variable is to always INITIALIZE it before associating the variable with 
another task, as is shown in example 2. 

8-6 



Task Equation List 

B 1000 Systems WFL Language Manual 
Statements 

All task initiation statements allow an optional <task equation list>. A <task equation list> is used to 
specify task and file attribute values at task initiation time. 

<task equation list> syntax: 

~<~k~~~M~~mM~------------------------~ 
L__ <tile equation> ____ ___. 

Compile Task Equation List 
A <Compile task equation list> is used to specify task and file attribute values for either the compiler or 
the object program when a compile is initiated. 

<compile task equation list> syntax: 

~~L------_J-~~L~<~skattri~~aui~m~~-~~-------------~ 
COMPILER <file equation>-----~ 

<Task attribute assignment> and< file equation> specifications preceded by the word COMPILER and 
those not preceded by the word COMPILER may be intermixed. 

Task attributes preceded by the word COMPILER are assigned to the compiler. 

Examplle: 

COMPILE ARO WITH COBOL LIBRARY; 
COMPILER FILE CARDS (TITLE=AR, DISK);• 

% COBOL source is in file AR 
COMPILER MAXPROCTIME = 100; 

% the compiler will have 
% a maximum processor time of 100 seconds 

COMPILER MAXLINES = 130 
% the compiler will have 
% a maximum of 130 printed lines 

5025265 8-7 



B 1000 Systems WFL Language Manual 
Statements 

Attributes not preceded by the word COMPILER override any attributes speCified in the programming 
language file and in a task variable if it is attached to the object code file. The attributes are assigned to 
the task whenever the compiled program is executed, unless the attribute values are overriden by run
time task attribute values (refer to the <RUN statement>). 

Example: 

COMPILE ARO WITH COBOL LIBRARY; 
COMPILER FILE CARDS (TITLE=AR, DISK); 
PRIORITY = 5; 

% the compiled program wi 11 run at priority 5 
FILE F (TITLE= Y/Z) 

% file F of the compiled program 
% will have a title of Y/Z 

DAT A SPECIFICATION 

A <data specification> is used in a <COMPILE statement> or a <RUN statement> to give input data 
to a running object program. 

<data specification> syntax: 

L DATA ----..--<file name> <deck of data cards><i > 

EBCDIC---

The <file name> must appear on the same source record as DATA or EBCDIC. The remainder of that 
record must be blank. <Data specification> is not valid in an ODT-command. 

A deck of data cards can contain a maximum of 94500 records. 

A <data specification> specifies the external recording mode (EXTMODE) and external file name 
(FILENAME) file attributes of the file. An EXTMODE declared by DAT A or EBCDIC specifies that the 
data deck is recorded in EBCDIC. 

When a task tries to open a card file, it is assigned the first unread deck with the correct-name located 
between its task invocation and the next task invocation. A data deck is read only once during an invoca
tion of the task it follows. 

The statement.following a data deck must start with an invalid character <i> in column 1. The< i> indi
cates the physical end of the data card deck and any semicolon that follows the data specification. In the 
following example (JOB J), a semicolon between the <i> and the IF is not required, and a semicolon be
tween the < i> and the ELSE is not allowed. 

8-8 



Example: 

B 1000 Systems WFL Language Manual 
Statements 

BEGIN JOB J (BOOLEAN B) ; 
RUN P 1 ; 
DATA Dl 

<i> IF B THEN 
RUN P2; 
DATA D2 

<i> ELSE 
RUN P3; 

RUN TEST/PROGRAM; 
DATA INPUT/FILE 

<i> EBCDIC DECKl 

<i> END JOB 

TASK CONTROL STATEMENT 
A <task control statement> is used to control a task. 

<task control statement> syntax: 

---- <ABORT statement>---------------------------

<INITIALIZE statement> 

<MOD I FY statement> -----1 

<ON statement> ----

<PAS~ORD statement> 

<STOP statement>---~ 

<WAIT statement>---

FILE MANAGEMENT STATEMENT 
File management statements are used to change the name, attributes, or residence of disk files. 

<file management statement> syntax: 

-c_<CHANGE statement> 

c<REMOVE statement> 

<SECUR ITV statement>-j 

5025265 8-9 



B 1000 Systems WFL Language Manual 
Statements 

COMMUNICATION STATEMENT 
A communication statement is used to communicate with the person running a <job>. 

<communication statement> syntax: 

L <DISPLAY statement> 

< INSTRUCTION statement> --

ABORT STATEMENT 
The <ABORT statement> discontinues tasks. 

<ABORT statement> syntax: 

If a <task id> is specified for an <ABORT statement>, the task associated with that <task id> is termi
nated. If a <task id> is not specified, the job and any tasks initiated by the job are terminated. The 
<String expression> is displayed prior to the abort. 

Examples: 

IF T ISNT COMPILEDOK THEN ABORT; 

ABORT "THIS JOB HAS BEEN ABORTED"; 

IF T2(TASKVALUE) = 3 THEN ABORT [Tl] "SUB TASK ABORTED"; 

8-10 



CASE STATEMENT 

B 1000 Systems WFL Language Manual 
Statements 

The <CASE statement> dynamically selects one of several alternative <Statement>s for execution. 

<CASE statement> syntax: 

--CASE --<case expression> OF-----------------------

>----BEGIN~-~-----------------------------~--~ 

Cc..., co~stani> ----- ) 

>---- L --ELSE-: --<statement>~ 
--<statement>---L--------->+ 

> 

>---L .~ END----------------------------------

' 

The <CASE statement> executes only the <Statement> associated with the < case constant> that is 
equal to the value of the <case expression>. 

If no matching <Case constant> is found and an ELSE specification is given for the < CASE statement>, 
the statement associated with the ELSE is executed. If no matching <Case constant> is found and no 
ELSE :specification appears for the <CASE statement>, a run-time error occurs. 

Case Expression 
A <Case expression> is used to select which <Statement> is executed. 

<case expression> syntax: 

---c- <integer expression~ 
- <string expression> 

5025265 8-11 



B 1000 Systems WFL Language Manual 
Statements 

Case Constant 
A <case constant> is used to label the <Statement>s. 

<Case constant> syntax: 

~ <integer constant expression> 

L_ <string constant expression> ___ __. 

All <case constant>s must be of the same type as the <Case expression>. In addition, no two 
<case constants>s within the same <CASE statement> may have the same value. 

A maximum of 256 <case constant>s are allowed. 

Example: 

CASE I OF BEGIN 
(0) : 

; % NO ACTION TO BE TAKEN 
( l) : 

RUN X; 
ELSE: 

ABORT "INVALID VALUE FOR 111 

END 

CHANGE STATEMENT 
The <CHANGE statement> changes the name of files on disk. 

<CHANGE statement> syntax: 

-- CHANGE --r------- <file title>-- TO-< filename>------.-------...------

<directory title>--TO -- <directory name> 

._____,___ <name change pair> -........--------------..----'..___, 

FROM--<tamily name> 

<name change pair> syntax: 

L <filename> - TO -- <filename> 

<directory name>--TO-- <directory name> _J 

8-12 



B 1000 Systems WFL Language Manual 
Statements 

If a directory is specified, the names of all files in that directory are changed. The new directory must not 
exist prior to the change. 

The FROM clause indicates that the list of files preceding it (but not any files prior to a preceding FROM 
clause) reside on the disk specified by <family name>. 

If a <family name> is not specified and the file is present on the default family, the file on the default 
family will be changed. If the file is not present on the default family but is present on DISK, the file on 
DISK will be changed. If the file is present on both the default family and DISK, only the file on the de
fault family will be changed. A directory is treated as a whole in the same manner. 

Examples: 

STRING Sl, S2, S3; 

CHANGE X TO Y; 
% Change the name of file X to Y. 

CHANGE A/B ON USERS TO C/D; 
% Change the name of file A/Bon the disk USERS to C/D. 

CHANGE X TO Y, X/X TO Y/Y FROM MYPACK, 
XX TO YY FROM USERS, Z TO ZZ; 
% Change the name of file X on disk MYPACK to Y. 
% Change the name of file X/X on the disk MYPACK to Y/Y. 
% Change the name of file XX on the disk USERS to YY. 
% Change the name of file Z on the default family to ZZ. 

CHANGE X/= TO Y/=; 
% Change all the files in the X directory to be in the Y 
% directory. The Y directory must not exist prior to 
% the change. 

s·1:= 11 A/= 11
; 

s:~ : = 11 1 NVENTORY 11
; 

s3 := 11 8/= 11
; 

CHANGE #Sl ON #S2 TO #S3; 
% Change all the files in the A directory on the disk 
% INVENTORY to be in the B directory. 

5025265 8-13 



B 1000 Systems WFL Language Manual 
Statements 

COMPILE STATEMENT 
The <COMPILE statement> is used to initiate a compiler to compile an object program. 

<COMPILE statement> syntax: 

~COMPILE~<filetitle>-~L---------~--_j~----~-~------->~ 

[ - <task id> -

G0--------1 

LIBRARY ------1 

SYNTAX -----1 

LIBRARY --GO 

; - <compile task equation list>~ 

> 

L: _t COMPILER <data specification>iJ [; L <data specification>---

The first <file title> is the name of the resulting code file. The second <file title> is the name of the com
piler to be used. If a disposition for the code file is not specified, GO is assumed. The semantics of the 
dispositions are: 

GO 
Execute the code file if it compiles without errors. The object code file is not entered into the disk 
directory and must be compiled again to be used again. 

LIBRARY 
Enter the code file in the directory if it compiles without errors. 

SYNTAX 
Compile for syntax only. 

LIBRARY GO 
If no syntax errors are present, the code file is entered in the directory and executed. 

The <COMPILE statement> initiates the compiler task (and object task ifa disposition of GO was speci
fied) as synchronous dependent tasks. The job waits for the compiler task (and the object task if it is initi
ated) before continuing to the next statement. 

If a <task id> is specified following the code <file title> and the GO disposition has been specified, the 
task variable is attached to the execution of the object code file. The task variable specified following the 
compiler name is attached to the compiler. 

If a <task id> is specified for the object code file and the LIBRARY disposition has been specified, the 
non-default values in the task variable are permanently attached to the object code file. 

8-14 



B I 000 Systems WFL Language Manual 
Statements 

The word COMPILER must precede the DAT A or EBCIDIC specification on decks to be read by a com
piler. This prevents a compiler from reading data decks intended for the 'go' part and prevents the 'go' 
from reading decks intended for a compiler. All <data specifications>s preceded by the word COMPIL
ER mus:t appear prior to those not preceded by the word COMPILER, and all attribute specifications 
must precede any data decks. 

Exampl1e: 

TASK Tl, T2; 

COMPILE X/Y WITH COBOL LIBRARY GO; 
COMPILER PRIORITY= 5; % COBOL runs at priority 5 
FILE F (TITLE=Y/Z); % file F in X/Y has a title of Y/Z 

COMPILE A WITH RPG SYNTAX; 
COMPILE SOX WITH FORTRAN; 

Tl (PR I OR I TY = 3) ; 
T2 (PR I OR I TY = 5) ; 
COMPILE X/Y [Tl] WITH COBOL [T2] LIBRARY GO; PRIORITY 7; 

% The priority attribute of Tl is overridden 
% by the object compile task equation list, 
!t (that is, PRIORITY= 7). 
!t 
% COBOL runs at a priority of 5. 
!t 
% When the GO part of the LIBRARY GO runs, 
% Tl is attached to the task running X/Y. 
!t 
!t T 2 i s a t tac he d to the comp i l e task ( C 0 B 0 L) • 

RUN X/Y; 
% X/Y wi l 1 run at a priority of 7. 

Tl (PR I OR I TY = 6) ; 
COMPILE X/Y WITH COBOL [Tl] LIBRARY; 

% COBOL wi 1 l run at a priority of 6. 

COMPILE X WITH COBOL74 GO; 
COMPILER MAXLINES = 1000; 
MAXL INES = 2000; 
COMPILER DATA CARD 

<i>DATA DECKl 

<i> 

5025265 8-15 



B 1000 Systems WFL Language Manual 
Statements 

COMPOUND STATEMENT 
A <compound statement> specifies that the statements in the <statement list> are to be executed as a 
group. 

<Compound statement> syntax: 

-- BEGIN -<statement list>-- END--------------------------. 

Example: 

BEGIN 
RUN X; 
I : = l ; 

END 

COPY STATEMENT 
The <copy statement> is used to copy disk and tape files. 

<copy statement> syntax: 

~oo~_J---~~------------------~r~<oo~~ue~> 
L_ ADD & COf>11PARE ---------t 

A~D~ L SET <copy option list>---

>~---:-1--[---_-<-t-as_k_i_d_>------J-~-....-~C---;~---<-t-as_k_e_q-ua-t-io_n_l_ist->-~--------------------c 

If the verb ADD is used instead of COPY, the files are copied to each outout volume where they are not 
already resident. ADD cannot be requested if an output volume is a tape or ifa HOSTNAME is specified 
for an input or output volume. 

The AND COMPARE phrase sets the COMPARE option to TRUE. For more information about the 
COMP ARE option, refer to Copy Options List in this section. 

A <copy statement> in a job which is not running under a privileged usercode can copy only files that 
may be accessed by the usercode of the job. 

The <copy statement> initiates a RUN of the program in the CPY entry of the Name Table, normally 
the SYSTEM/COPY program, as a synchronous dependent task. For more information about the 
SYSTEM/CO PY program, refer to the B 1000 Systems System Software Operation Guide, Volume 2. 

8-16 



Cop~r Options List 

B 1000 Systems WFL Language Manual 
Statements 

A <copy options list> is used to specify the options that apply to the entire <Copy statement>. 

<Copy options list> syntax: 

- (---""'T'""- )----

= --<boolean expression> 

DATE - = 1<copy date> 

BEFORE -- <copy date> 

AFTER-- <copy date>--

<copy date> TO <copy date> 

~suMMARY---------------------4 

= --<boolean expression>---

COMPARE---------------------4 

= --<boolean expression>---

All options are assumed to be FALSE unless explicitly set in the options list. If a boolean option appears 
in the option list, it is assigned the value of the <boolean expression> . If the <boolean expression> is 
omith~d, the option is assigned the value TRUE. 

The MANDATORY option in a COPY or ADD statement means the SYSTEM/COPY program will ei
ther successfully complete the entire statement or it will be abnormally terminated. For errors that an op
erator can correct, such as missing files or packs, the SYSTEM/COPY program will request operator 
assistance. The operator will have only two choices: correct the situation so that the request can continue 
or abnormally terminate (DS or DP) the program. For errors that the operator cannot correct, such as 
hard I/O errors or comparison errors, SYSTEM/COPY will abnormally terminate without operator 
intervention. 

The DATE copy option refers to the date of the last file update (as nearly as the host system can deter
mine it). Only those files whose update date is within the specified range are copied. The BEFORE and 
AFTER clauses are exclusive of the specified date and the date range is inclusive of the delimiting dates. 
The first date of a date range must be less than or equal to the second date. 

The SUMMARY copy option causes the SYSTEM/COPY program to produce a printer listing of the 
results. 

The COMPARE copy option causes each file to be compared immediately after it is copied. The COM
PARE option must not be set if either the input or output volume specifies a HOSTNAME. 

5025265 8-17 



Copy Date 

B 1000 Systems WFL Language Manual 
Statements 

A <copy date> is used to specify the month, day, and year an event occurred. 

<Copy date> syntax: 

-y-- <mm>- I - <dd> - I - <vy> 

L_ # -- <string primary>-----------

A <Copy date> must specify a valid date. If the #<string primary> form is used, the <string primary> 
is evaluated at run-time and must contain a string in the form <mm> I <dd>/ <YY>. 

<mm> syntax: 

- <integer constant primary> --------------------·-----------1 

The <integer constant> must be only one or two digits and must be in the range 1 through 12. It repre
sents the month of the year. 

<dd> syntax: 

- <integer constant primary> -------------------------------1 

The <integer constant> must be only one or two digits and must be in the range 1 through 31. It repre
sents the day of the month. 

<YY> syntax: 

- <integer constant primary> -------------------------------1 

The <integer constant>, a MOD 100 representation of the year, must be exactly two digits. 

8-18 



Copy !Request 

B 1000 Systems WFL Language Manual 
Statements 

A <copy request> identifies the files (including the volume on which they reside) that are to be copied 
and the volume or volumes to which they are to be copied. 

<copy request> syntax: 

_L <copy fro~ group> __ __.__ ____ E ___________ __._ __ ..-------------1 

TO <output volume spec>---

Either a FROM phrase or a TO phrase must appear in each <copy request>, unless all <file spec>s con
tain an AS phrase. 

Each TO phrase in a list of TO phrases (one or more adjacent TO phrases) applies to the <copy from 
group>s (list of <file spec>s and FROM phrases) preceding it in the same <Copy request> (but not the 
<Copy from group>s separated by another list of TO phrases). If a <copy request> does not contain a 
TO phrase, the output volume is the default family (KIND=DISK). 

When more than one destination volume is associated with a list of files, the TO clauses must be adja
cent. A <copy request> can have a maximum of eight TO phrases. Files associated with more than one 
destination volume are copied, at the same time and in the same order, to all the associated destination 
volumes. 

Copy From Group 

A <copy from group> identifies the files and the volume on which they reside that are to be copied to 
a given volume or volumes. 

<Copy from group> syntax: 

_ _C < fil.'spec >---l]f--.,.L----------------.--------------1 

FRQrA <input volume spec> __J 
Each FR.OM phrase applies to the list of <file spec>s preceding it in the same <copy from group>, but 
not those <file spec> s separated by a TO phrase or another FROM phrase. If a< copy from group> does 
not contain a FROM phrase, (a FROM phrase does not occur between the list of <file spec>s and the 
following TO phrase or the end of the statement), the input volume is the default family, that is, the user's 
default pack, (KIND=DISK). A copy statement can have a maximum of 32 FROM phrases. 

5025265 8-19 



File Spec 

B 1000 Systems WFL Language Manual 
Statements 

A <file spec> is used to specify the name of a file or directory to be copied and, optionally, a different 
name for the new file or directory. 

<file spec> syntax: 

L <filename> ~ L 
<directory name> AS L<filename> ~ - -J 

<directory name> L <creation file attr list> 

If a file specification is of the form name AS name, then either both names must be <filename>s, or both 
names must be <directory name>s. 

Creation File Attr List 
A <creation file attr list> is used to specify file attributes for the new file. 

<creation file attr list> syntax: 

- ( -- SAVEFACTOR-- =--<integer expression>- ) 

SAVEFACTOR may only be specified if the output volume is a disk. 

Input Volume Spec 
An <input volume spec> is used to specify the disk or tape from which files are copied. 

<input volume spec> syntax: 

- <family name>--,-------------'T""'"------------------1 

L <input volume attribute list> _J 

8-20 



B 1000 Systems WFL Language Manual 
Statements 

Input Volume Attribute List 
An <input volume attribute list> specifies the file attributes used to select the disk or tape from which 
the files are copied. 

<input volume attribute list> syntax: 

KIND - = ---,--<copy kind> )----

L_ #-<string primary> 

HOSTNAME - = - <hostname> -------1 

VOLUMEINDEX = <integer express'ion >-----

The <string primary> in the KIND assignment must evaluate to a <copy kind>. 

HOSTNAME may only be specified if the input volume is a disk and the COMPARE copy option is 
FALSE. HOSTNAME must not be specified with the ADD verb. If HOSTNAME is specified, all 
<file spec>s for that volume must contain only <filename>s, that is, they must not contain <directory 
name>s. 

VOLUMEINDEX may only be specified if the input volume is a tape. 

For more information about KIND, HOSTNAME, or VOLUMEINDEX, refer to appendix B. 

Copy Kind 
A <Copy kind> is used to specify whether the input or output volume is a disk or tape. 

<copy kind> syntax: 

1
DISK 

TAPE 

TAPE9 

TAPE PE 

The default KIND is DISK. 

For further information, refer to the KIND file attribute in appendix B. 

Output Volume Spec 
An <OU1tput volume spec> is used to specify the disk or tape to which the new files are copied. 

<output volume spec> syntax: 

- <family name>-,.-------------"T""-----------------~ 

L<output volume attribute list> _I 

5025265 8-21 



B 1000 Systems WFL Language Manual 
Statements 

Output Volume Attribute List 

An <output volume attribute list> is used to specify the file attributes used to create the disk or tape to 
which the new files are copied. 

<Output volume attribute list> syntax: 

-( KIND - = --,-- <copy kind> 

L_ # - <string primary>---

HOSTNAME - = - <hostname> --------1 
SAVEFACTOR- = - <integer expression>------1 

DENSITY - = --r- <copy density> 

L_ # - <string primary> -

J ) 

HOSTNAME may only be specified if the output volume is a disk and the COMPARE copy option is 
FALSE. HOSTNAME must not be specified with the ADD verb. 

SA VEFACTOR may only be specified if the output volume is a tape. 

DENSITY may only be specified ifthe output volume is a tape. If both DENSITY and a specific KIND 
are specified, they must be compatible, that is, BPI800 may be specified for only TAPE or T APE9 and 
BPI 1600 may be specified for only TAPE or T APEPE. 

The KIND and DENSITY <String primary>s must evaluate to a <copy kind> or < copy density>, 
respectively. 

For more information about KIND, HOSTNAME, or SAVEFACTOR refer to appendix B. 

Copy Density 

A <copy density> is used to specify the recording density for an output tape volume. 

<copy density> syntax: 

LBP1800 

BP11600 

8-22 



COPlf Order 

B 1000 Systems WFL Language Manual 
Statements 

All files are copied in the same order as they are specified in the <Copy statement> except that ( 1) all cop
ies from tape are arranged to correspond to the order in which files appear in the tape directory, and (2) 
all copies from the same input tape volume that are specified in adjacent FROM clauses are performed 
as an indivisible group, that is, the tape volume is copied in one pass. 

Examples: 

COPY A, B FROM Tl (KIND= TAPE), C, E FROM T2 (KIND= TAPE) 
TO P 1 (KIND=DISK), D, F FROM T2 (KIND= TAPE) TO P2 (KIND=DISK); 

Note that two of the FROM CLAUSES specify the same input tape volume. Files A and B are copied 
from the tape T 1. Files C and E are copied to the disk P 1. Files D and F are copied to the disk P2. 

COPY I, J TO Pl (KIND=DISK), K, L FROM Tl (KIND= TAPE) TO Pl 
(KIND=DISK), TO T2 (KIND= TAPE); 

Files I and J are copied from the default disk family. The FROM T 1 does not apply to the file I and J 
because of the intervening TOP 1 clause. Files Kand Lare copied from the tape T 1. Files I and J are cop
ied to the disk P 1. Files K and L are copied to both the disk P 1 and the tape T2. 

Examples: 

COPY XTO Y (KIND = DISK) [T]; 
Copy file X from the user's default pack to the disk labelled Y, attaching task variable T to the copy
ing task. 

COPY X FROM Y (KIND= TAPE); 
Copies file X from tape Y to the user's default pack. 

COPY XIY, ZI= FROM P (KIND=DISK) TO Tl (KIND = TAPE), 
TO T2 (KIND = TAPE); 

Copy file XIY and all files under directory Z from the disk P to both tapes T 1 and T2. 

COPY X AS Y; 
Copy X from disk to disk, changing the name of the new file to Y. 

COPY X FROM DISK TO DISK (HOSTNAME = HOSTB); 
Copy X on the system disk at own host to system disk at host HOSTB. 

COPY XI= AS YI= FROM DISK, A FROM B (KIND =DISK) 
TO T (KIND = TAPE); 

Copy all files in the X directory from the system disk to tape T, changing all the names to be in the 
Y directory. Also, copy file A (without changing its name) from disk B to tape T. 

COPY= FROM DISK TOT (KIND= TAPE); 
If the job is run with a usercode, copy all files in the user's directory from the system disk to tape 
T. If the job is run without a usercode, copy all files on the system disk to tape T. 

COPY AND SET(COMPARE) =FROM T (KIND= TAPE) 
TOD (KIND = DISK); 

Copy all files from tape T to disk D. Immediately after each file is copied to disk D, it is compared 
with the original file on tape T. 

5025265 8-23 



B 1000 Systems WFL Language Manual 
Statements 

ADD XIY FROM T (KIND= TAPE); 
Copy file X/Y from tape T to disk, only if there is not already a resident disk file named X/Y. 

ADD ZI= FROM T(KIND =TAPE) TOR (KIND= DISK), TO DISK; 
May copy different files to R and to the system disk, depending on what is resident on each destina
tion volume. 

DISPLAY STATEMENT 
The <DISPLAY statement> displays a <string expression> on the Operator Display Terminal (ODT). 

<DISPLAY statement> syntax: 

-- DISPLAY- <string expression>-------------------------t 

Example: 

DISPLAY "BEGIN UPDATE RUN"; 

DO STATEMENT 
The <DO statement> allows the user to execute a <Statement> until a condition is TRUE. 

<DO statement> syntax: 

- DO - <statement> --c---mJ---- UNTIL - <boolean expression> -----------i 

The <statement> following the keyword DO is executed, then the <boolean expression> is evaluated. 
If the expression is FALSE, the < statement> is executed again and the <boolean expression> is re
evaluated. This sequence continues until the value of the <boolean expression> is TRUE, at which time 
control passes to the next statement. 

The <Statement> is executed at least once. 

Example: 

8-24 

DO 
BEGIN 

A := A + I; 
RUN X [T]; 

END 
UNTIL A= X; 



IF STATEMENT 

B 1000 Systems WFL Language Manual 
Statements 

The <IF statement> allows the user to execute a <Statement> only if a condition is TRUE. 

<IF statement> syntax: 

- IF ·-<boolean expression>-THEN- <statement>-------------------. 

l.~ ELSE ---<statement> __ _.. 

' 

Each time the reserved-word ELSE appears in an <IF statement>, it is paired with the nearest preceding 
unpaired reserved-word THEN. 

The <Statement> following the reserved-word THEN is executed ifthe <boolean expression> is TRUE. 
In this case, the optional second < statement> is not executed. 

If the <boolean expression> is FALSE, the <statement> following the reserved-word THEN is not exe
cuted. In this case, if the optional second < statement> is specified, it is executed; otherwise, control 
passes to the next executable statement. 

Examples: 

IF B THEN 
.ABORT 11 8 IS TRUE 11 

IF T IS COMPLETED THEN 
I : = l+l; 

ELSE 
I := l 

IF FILE X/Y ISNT RESIDENT tHEN 
DISPLAY 11 NO FILE X/Y 11 

ELSE 
RUN X/Y 

IF l=J THEN 
BEGIN 

RUN X; 
RUN Y 

END 
ELSE 

RUN Z 

5025265 8-25 



B 1000 Systems WFL Language Manual 
Statements 

INITIALIZE STATEMENT 
The <INITIALIZE statement> causes all attributes in a <task id> to be set to their default value. 

<INITIALIZE statement> syntax: 

-INITIALIZE- ( - <task id> - ) 

The specified <task id> is reinitialized to a status of uninitiated and all other attributes are set to their 
default values. 

NOTE 
The default values are system defaults and not the values originally speci
fied by the user. The default values are given in appendix A. 

Example: 

INITIALIZE (Tl); 

INSTRUCTION STATEMENT 
The INSTRUCTION statement is used to supply job instructions to operators. 

<INSTRUCTION statement> syntax: 

- INSTRUCT I ON <instruction number> ~ <any EBCDIC character except semicolon (;) > ----.1-----1 

<instruction number> syntax: 

- <integer constant primary> ------------------------------t 

The <instruction number> must be in the range 1 to 63 inclusive. 

Each <INSTRUCTION statement> in a WFLjob must have a unique <instruction number> and must 
be followed by a semicolon (;) character. Also, there must be at least one non-blank character between 
the <instruction number> and the semicolon. 

At any point during a job execution, the operator can display an individual instruction by number. When 
an <INSTRUCTION statement> is encountered during execution of the job, it is marked as the most 
recently executed instruction. If the operator enters an IB ODT-command without an instruction num
ber, the most recently executed instruction is displayed. If an< INSTRUCTION statement> was not ex
ecuted, a message is displayed informing the operator of that fact. 

8-26 



Examples: 

B 1000 Systems WFL Language Manual 
Statements 

BEGIN JOB COMPILE/TESTS; 

INSTRUCTION l TESTTAPE IS IN TAPE RACK 3.; 
COPY & SET (COMPARE) = 

FROM TESTTAPE (KI ND=TAPE) TO USERS (KI ND=D I SK) ; 

INSTRUCTION 2 IF Tl7 OR Tl7A WERE NOT COPIED FROM 
TESTTAPE TO USERS, PLEASE OS THIS JOB AND LEAVE 
JK A NOTE.; 

COMPILE TEST/17 WITH COBOL LIBRARY; 
COMPILER FILE CARD (TITLE=Tl7, KIND=DISK); 
FILE F (TITLE=T17A); 

IF FILE TEST/17 ISNT RESIDENT THEN 
ABORT "BAD COMPILE"; 

END JOB 

During execution of the above job, the system will need tape TESTT APE. If the operator asks for the 
most recent instruction, instruction 1 will be displayed, indicating where TESTT APE can be found. 
Later, the job will need files T 17 and T 1 7 A. An instruction request will display instruction 2, specifying 
what to do if T 1 7 and T 1 7 A are not present. 

MODllFY STATEMENT 
The <MODIFY statement> is used to permanently change attributes within a program. 

<MODIFY statement> syntax: 

- MODIFY-<file title>- ; -<task equation list>-----------------

The <task equation list> can contain only permanent attributes. (Refer to appendix A for information 
about the attributes that are permanently stored with the code file.) 

A T ASKF A ULT condition occurs for any of the following errors: 

File not present 
Attempt to modify a non-executable file 
Intname not present in code file 

All other errors cause the job to terminate abnormally. 

Examples: 

MODIFY PAYROLL; PRIORITY= 5; PROTECTED 

MODIFY ACCTSRCV; 
FILE INPUT (TITLE= TODAY/TASKS); 
PRIORITY= 7; SWl; 

5025265 8-27 



ON STATEMENT 

B 1000 Systems WFL Language Manual 
Statements 

The <ON statement> causes the job task to branch to the statement specified when a taskfault or restart 
occurs. 

<ON statement> syntax: 

-ON ___,,--TASKFAULT 

L__ RESTART--- L ' <statement>~ 
A taskfault occurs when a task is abnormally terminated or a compilation terminates having detected 
syntax errors. A restart occurs when the system is clear/started and the job is automatically restarted by 
the operating system. 

The statement ONT ASKFAULT, <statement>; enables the taskfault condition. Subsequently, the ab
normal termination of any task initiated by the job causes the statement to be executed. This includes 
operator or programmatic discontinuation as well as arithmetic faults. The statement 
ONT ASKFA ULT; disables the condition so that an abnormal task termination does not have any effect 
on the job. 

Similarly, the statement ON RESTART,< statement>~ enables the restart condition. Subsequently, the 
system being clear/started and the job automatically restarting causes the statement to be executed. The 
statement ON REST ART; disables the condition. 

If a condition is enabled, then when that condition occurs, the statement part is executed as a subroutine. 
The ON condition which caused the statement to be executed is disabled immediately before executing 
the statement and returned to what it was when the condition occurred immediately after executing the 
statement. The job resumes execution at the point where it would have been if the condition had been 
disabled. 

A "snapshot" of the job is taken at specific places during the execution of the job. These "snapshots" are 
taken: 1) before every task initiate, 2) after every synchronous task initiate, and 3) at the end of an 
ON RESTART, <Statement>;. A "snapshot" is not taken if there are any tasks active which were initiat
ed by the job (asynchronous tasks running). If the system is clear/started during the execution of a job, 
the job restarts at the most recent "snapshot." The values of all boolean, integer, and string variables are 
reset to their values at the point ofrestart (prior to invoking the statement of any enabled REST ART con
dition). Task variables are initialized to default values. 

Only one ON TASKFAULT, <statement>; can be enabled at any given time. Also, only one 
ON RESTART, < statement>; can be enabled at any given time. Thus, any ON statement disables any 
previous ON statement. If a subroutine executes an ON statement, it disables any previous ON state
ment until the subroutine is finished or the ON condition is disabled. Exiting the subroutine or executing 
a disabling ON statement returns the condition to what it was before the subroutine was called. 

8-28 



Example 1: 

BEGIN JOB J; 
SUBROUTINE SUB; 
BEGIN 

ON TASKFAULT, 

B 1000 Systems WFL Language Manual 
Statements 

ABORT "SUB FAULT TAKEN"; 

RUN X; % if X aborts, "SUB FAULT TAKEN" is displayed 
ON TASKFAULT; 
RUN Y; % if Y aborts, "JOB FAULT" is displayed 

END SUB; 

RUN A; % if A aborts, no taskfault is executed 
ON TASKFAULT, 

ABORT "JOB FAULT"; 
RUN B; % if B aborts, 11 JOB FAULT" is displayed 
SUB; 

END JOB 

In example 2, "**SOMETHING ABORTED**" is displayed and C is run after either A or B aborts. 

Example 2: 

BEGIN JOB K; 
ON TASKFAULT, 

BEGIN 
DI SPLAY 11 ,'dc SOMETHING ABORTED io'c 11

; 

RUN C; 
END; 

RUN A; 
RUN B; 

ENID JOB 

5025265 8-29 



B 1000 Systems WFL Language Manual 
Statements 

Example 3: 

BEGIN JOB DRIVER; 
TASK T; 
INTEGER COUNTER; 

ON RESTART, 
BEGIN 

IF COUNTER= 1 THEN 
T ( F I LE CARD (T I TL E = S 0 UR CE IF I L E , D I SK) ) ; 

ELSE IF COUNTER= 2 THEN 
T (PRIORITY = 6); 

END; 

COUNTER : = 1; 
T ( F I L E CARD (T I TL E = S 0 UR CE IF I LE , D I SK) ) ; 
COMPILE OBJECT/FILE WITH COBOL74 [T] LIBRARY; 
INITIALIZE (T) ; 
COUNTER : = 2; 
T (PR I OR I TY = 6) ; 
RUN OBJECT/FILE [T]; 

END JOB 

In example 4, the DUMMY/PROGRAM program waits for an accept message and then goes to EOT. 
The ZIP /IT program accepts a message, zips the string, and then goes to EQT. 

Example 4: 

8-30 

BEGIN JOB RESTART/EXAMPLE; 
TASK T; 
STRING S; 

ON RESTART, DISPLAY 11 DUMMY/PROGRAM NOT RUNNING"; 

RUN ONE; 
RUN TWO; 

ON RESTART, DISPLAY 11 DUMMY/PROGRAM RUNNING 11
; 

PROCESS RUN DUMMY/PROGRAM [T]; % DUMMY/PROGRAM RUNS ASYNCHRONOUSLY 

RUN THREE; 
RUN FOUR; 

S :=STRING ( T (MIXNUMBER), ,•,) & 11 AX 11
; % GET DUMMY/PROGRAM'S 

% MIXNUMBER & APPEND 11 AX 11 

RUN ZIP/IT (S); % TERMINATE DUMMY/PROGRAM NORMALLY 

WAIT (T); % WAIT FOR DUMMY/PROGRAM TO TERMINATE 

ON RESTART, DISPLAY 11 DUMMY/PROGRAM NOT RUNNING 11
; 

RUN FIVE; 
RUN SIX; 

END JOB 



B 1000 Systems WFL Language Manual 
Statements 

Ifthe system is clear/started while ONE, TWO, FIVE, or SIX are executing, the job is restarted, the string 
DUMMY/PROGRAM NOT RUNNING is displayed, and the program which was executing is initiated 
again. If the system is clear/started while THREE, FOUR, or ZIP/IT are executing, the job is restarted, 
the string DUMMY/PROGRAM RUNNING is displayed, and the program named DUMMY/ 
PROGRAM is initiated. This is because, before the WAIT statement, the initiation of DUMMY/ 
PROGRAM is the last place where no other tasks are running. 

PASSWORD STATEMENT 
The <PASSWORD statement> is used to change the password associated with the usercode of the job. 

<PASSWORD statement> syntax: 

- PASSWORD - = - <password> - I - <password> ---------------1 

The first <password> must be the password for the current usercode of the job. The password associated 
with the current usercode of the job in the (SYSTEM)USERCODE file is changed to the second 
<password>. 

Example: 

BEGIN JOB CHANGE/PASSWORD; 
USERCODE = ME/OLD; 

% job runs under usercode ME 
PASSWORD = OLD/NEW; 

% changes ME's password from OLD to NEW 
ENID JOB 

5025265 8-31 



B 1000 Systems WFL Language Manual 
Statements 

PROCESS STATEMENT 
The PROCESS statement initiates tasks asynchronously. 

<PROCESS statement> syntax: 

- PROCESS 1 <RUN statement> 

<COMPILE statement>------

<copy statement> -------

<START statement>-------

If a task variable is attached, the job can subsequently wait for the process to terminate (see WAIT state
ment), monitor its execution (see IF statement), or alter its execution (see task assignment statement). 
The job does not terminate until all asynchronous tasks have terminated. 

Example: 

NOTE 
The use of implied task variables requires more memory per job; therefore, 
it is recommended that a task variable be attached to all PROCESS 
statements. 

PROCESS COPY A TO B [T]; 

REMOVE STATEMENT 
The <REMOVE statement> removes files from disk. 

<REMOVE statement> syntax: 

J 
I 

- REMOVE---------< file title>------,r-~-----------------.----~ 

<directory title> _J 

<directory name> FROM -<family name> 

If a <directory title> or <directory name> is specified, all files in that directory are removed. 

The FROM clause indicates that the list of files preceding it (but not any files prior to a preceding FROM 
clause) reside on the disk specified by <family name>. 

If a <family name> is not specified and the file is present on the default family, the file on the default 
family will be removed. If the file is not present on the default family but is present on DISK, the file on 
DISK will be removed. If the file is present on both the default family and DISK, only the file 011 the de
fault family will be removed. A directory is treated as a whole in the same manner. 

8-32 



Examples: 

STRING S l, 52; 

REMOVE X; 

B 1000 Systems WFL Language Manual 
Statements 

% Removes the file X. 

REMOVE A/B ON USERS; 
% Removes the file A/B from the disk USERS. 

REMOVE X,Y FROM MYPACK, X/Y FROM INVENTORY, Z; 
% Removes the files X and Y from the disk MYPACK. 
% Removes the file X/Y from the disk INVENTORY. 
% Removes the file Z from the default family. 

REMOVE X, Y ON USERS FROM MYPACK; % lnval id syntax 
% This <REMOVE statement> is not val id because it uses 
% both ON USERS and FROM MYPACK. 

REMOVE X/=; 
% Removes all files in the X directory. 

Sl := 11 A/= 11
; 

52 := 11 MYPACK 11
; 

REMOVE #Sl, #Sl ON #S2; 
% Removes all files in the A directory from the default 
% family and all files in the A directory from the disk 
% MYPACK. 

5025265 8-33 



B 1000 Systems WFL Language Manual 
Statements 

RETURN STATEMENT 
The <RETURN statement> terminates the execution of a subroutine. 

<RETURN statement> syntax: 

1-- <boolean expression> -------

1--- <integer expression>-------

L-- <string expression > -------

Execution control is returned to the statement following the <function invocation> or < subroutine in
vocation statement>. 

An expression may not be supplied on a return from an ON statement, or from a subroutine. Ifreturning 
from a function, the expression type being returned must be the same type as in the <return type> of the 
function. It is an error not to return an expression when returning from a function. 

Example: 

8-34 

BEGIN JOB RETURN/EXAMPLE; 
BOOLEAN B; 
SUBROUTINE SUB; 

BEGIN 
RUN PROG/l; 
IF B THEN RETUR~; 
RUN PROG/2; 

END; 
B := FALSE; 
SUB; % runs PROG/l and PROG/2 
B := TRUE; 
SUB; % runs just PROG/l 

END JOB 

BEGIN JOB RETURN/EXPRESSION; 
STRING STRl, STR2; 
INTEGER LEN; 
STRING FUNCTION GETSTRING; 

BEGIN 
RETURN ACCEPT ("WAITING FOR AN INPUT STRING", OK); 

END GETSTRING; 
INTEGER FUN CT I ON MAX (INTEGER I, INTEGER J) ; 

BEGIN 
IF I GEQ J THEN 

RETURN I; 
ELSE 

RETURN J; 
END MAX; 

STRl := GETSTRING; 
STR2 := GETSTRING; 
LEN : = MAX (LENGTH (STR l) , LENGTH (STR2)) ; 
DI SPLAY "THE MAX I LENGTH = 11 & STRING (LEN, ,•c) ; 

END JOB 



RUN STATEMENT 

B 1000 Systems WFL Language Manual 
Statements 

The <RUN statement> initiates a previously created code file. 

<RUN statement> syntax: 

-- RUN <file title> ---.,..L--<-ru_n_p_a-ra_m_e_t-er-.1-is-t >-~-.,.---rL--[-.-<-t-as_k_i_d_>_l_~-~-----~> 

L_ 
; <task equation list> ---

<run parameter list> syntax: 

-( 

<integer expression > --------------

REFERENCE------1 

<string expression> ----..--------------

L REFERENCE----~ 

)-----

The path through the <run parameter list> diagram that does not cross any token is an empty expression. 
The value of an empty expression is zero when assigned to an integer, a zero length string when assigned 
to a string variable, and blanks when assigned to a character variable. 

NOTE 
Empty expressions may only be passed to optional parameters declared 
within the code file. 

When a task is initiated, the parameters in the <run parameter list> are compared to those in the code 
file denoted by <file title>. The number of parameters in <run param.eter list> must be the same as, or 
less than, the number of parameters expected by the code file. If the <run parameter list> contains fewer 
parameters than expected by the code file, the <run parameter list> is treated as though there were suffi
cient empty expressions before the right parenthesis to match the number of parameters expected by the 
code file. There is a correspondence between parameters in <run parameter list> and those in the code 
file which is established by the position of the parameters in the lists. Each expression in <run parameter 
list> must be of a similar data type as its corresponding parameter in the code file. If the number of pa
rameters in <run parameter list> is greater than the number of parameters in the code file, or any of the 
corresponding parameters do not have a similar type, or an empty expression is given and the code file 
does not allow for an optional parameter, the job is discontinued. By default, all parameters are passed 
"by value." The keyword REFERENCE indicates that the parameter is passed "by value/result" rather 
than "by value," and is valid only if the preceding expression is an identifier. 

5025265 8-35 



B 1000 Systems WFL Language Manual 
Statements 

Parameters may be passed only to UPL, UPL2, SDL, SDL2, and Mark 13.0 COBOL 7 4B code files. Pa
rameters of type BOOLEAN may not be passed. A syntax error occurs if a BOOLEAN parameter is 
passed. Parameters to UPL, UPL2, SDL, and SDL2 code files must be a <string expression> and may 
not be passed "by value/result" (REFERENCE may not be specified). If both of these conditions are not 
met, a run-time error occurs. The parameters are passed as early AC messages. Parameters may only be 
passed to Mark 13.0 COBOL 74B code files that contain the PROCEDURE DIVISION 
USING ... phrase. The parameters to Mark 13.0 COBOL 74B programs are not passed as early AC mes
sages. Valid parameter passes to Mark 13.0 COBOL74B programs are as follows: 1) parameters of type 
INTEGER may be passed to a PIC 9 field with USAGE of DISPLAY or COMPUTATIONAL (ifa SIGN 
is present, it must be LEADING), and 2) parameters of type STRING may be passed to a PIC X field. 

The <RUN statement> initiates a synchronous dependent task. The job waits for that task to complete 
before continuing to the next statement. 

A list of task attribute assignments can be given to set attributes in the task. These values override any 
attributes contained in the code file. Refer to Task Attributes and File Equation in this section. 

For parameters which are passed "by value," the expression is evaluated and the value is passed to the 
initiated task. When the task is completed, no value is passed back to the job by means of the run parame
ter. The value of the expression, or more likely identifier, is not changed. 

For parameters which are passed "by value/result," as described above, the expression must be an identi
fier. The value of the identifier is passed to the initiated task. When the task completes, the value is cop
ied from the task back to the job's run parameter. Thus, the run parameter of the job is updated when 
the task completes (EQT). For asynchronous tasks, two "sync points" have been provided where the 
value of parameters may be copied back from the task to the job. These syncpoints are: 1) when the job 
suspends the initiated task (that is, setting STATUS = SUSPENDED), and 2) at task EOT. This allows 
for information to be passed back and forth from a job to an asynchronous task. Parameter values are 
copied from the job to the asynchronous task when the job resumes the task; that is, setting ST A TUS = 

ACTIVE. 

8-36 

NOTE 
Any attempt to SUSPEND a task which is currently waiting for a CALLed 
program to complete will be ignored. 



Example: 

TASK T, Tl; 

RUN X; 

B 1000 Systems WFL Language Manual 
Statements 

RUN A/B [T]; MAXCARDS = 500; 

RUN A/B [Tl]; 
FILE F (BLOCKSIZE = 10, KIND=TAPEPE); 
FILE G(KIND=DISK); 

RUN A/B; PRIORITY = 8; 

RUN A/B [T]; PRIORITY= 9; 
% In this example, if task T contains a priority 
% attribute, it is overridden by the run-time priority 
~~ at tr i but e (that i s , PR I 0 R I TY = 9) • 

RUN DMPALL (11 L I ST USER4/PAYROLL/ A SK IP 50 11
, 

1111
); 

% DMPALL is initiated and each string is passed as an 
% early AC message. 

RUN COBOL74B/PROGRAM (24, MYSELF (TITLE)); 
!t Initiates COBOL74B/PROGRAM passing an integer 24 
% and a string containing the TITLE of the job. 

The following example of a job initiating an asynchronous task and the passing of information back and 
forth from the job to the task. The task ADD/PARAMS is a COBOL 7 4B program which requires three 
parameters (PIC 9(8)). The first two parameters are added together and the result put in the third param
eter. The COBOL 7 4B program notifies the job that the numbers have been added together by setting its 
own T ASKV ALUE to 1, CHANGE ATTRIBUTE T ASKV ALUE OF MYSELF TO 1, and executing a 
CAUSE AND RESET ATTRIBUTE EXCEPTIONEVENT OF MY JOB statement. The job notifies the 
COBOL74B task that another set of numbers is available to be added by setting TASKVALUE to 0 for 
the task. Thus the COBOL74B program must wait for its own TASKVALUE to be changed to 0 before 
continuing. 

5025265 8-37 



B 1000 Systems WFL Language Manual 
Statements 

Example: 

8-38 

BEGIN JOB ASYNC/EXAMPLE; 
TASK T; 
INTEGER 11 := 1, 12 := 2, 13 := 44; 

PROCESS RUN ADD/PARAMS (I l REFERENCE, I 2 REFERENCE, 
13 REFERENCE) [T]; 

WAIT (T (TASKVALUE) = 1); % WAIT FOR TASK TO ADD PARAMS 
T (STATUS = SUSPENDED) ; % SUSPEND TASK SO PARAMETER VALUES 

% WILL BE RETURNED TO THE JOB 
IF 13 = 3 THEN 

DISPLAY 11 SUCCESS 11
; 

ELSE 
DISPLAY 11 FAILURE 11

; 

11 := 14; % ASSIGN NEW VALUES 
12 := 10; % TO BE PASSED TO THE TASK 

T (TASKVALUE = 0); % NOTIFY TASK TO ADD PARAMETERS AGAIN 
T (STATUS = ACTIVE); % ALLOW PROGRAM TO RUN AGAIN 

WAIT (T (TASKVALUE) = 1); % WAIT FOR TASK TO ADD PARAMS 
T (STATUS = SUSPENDED) ; % GET THE RE SUL TS BACK 

IF 13 = 24 THEN 
DISPLAY "SUCCESS AGAIN"; 

ELSE 
DISPLAY "FAILURE AGAIN"; 

T (STATUS =TERMINATED); % OS THE TASK 

END JOB 



B 1000 Systems WFL Language Manual 
Statements 

SECURITY STATEMENT 

The <SECURITY statement> changes the SECURITYTYPE and SECURITYUSE of files on disk. 

<SECURITY statement> syntax: 

-- SECURITY-....----.....-- <file title>------___._----------------.---~ 

<directory title> 

.____....__--,....- <filename> ---........----.--------------.,..--_.____. 

<directory name> FROM -<family name> 

>--r-· PRIVATE~ 10 3 
L. PUBLIC IN 

OUT 

If a diriectory is specified, the security of all files in that directory is changed. 

The FROM clause indicates that the list of files preceding it (but not any files prior to a preceding FROM 
clause) reside on the disk specified by <family name>. 

For a description of PUBLIC and PRIVATE refer to the description of th~ SECURITYTYPE file attrib
ute in appendix B. For a description ofIO, IN, or OUT, refer to the description of the SECURITYUSE 
file attribute in appendix B. 

If a <family name> is not specified and the file is present on the default family, the security of the file 
on the default family is changed. If the file is not present on the default family but is present on DISK, 
the security of the file on DISK is changed. If the file is present on both the default family and DISK, 
the security of only the file on the default family is changed. A directory is treated as a whole in the same 
manner. 

Examples: 

STRING Sl, S2; 

SECURITY AB/XY PRIVATE 10; 
% Changes the SECURITYTYPE of file AB/XY to PRIVATE and 
% its SECURITYUSE_ to input and output. 

SECURITY Z ON PACK PUBLIC IN; 
% Changes the SECURITYTYPE of file Z on the disk PACK to 
% PUBLIC and its SECURITYUSE to input only. 

Sl := 11 A/B 11
; 

52 := 11 C/D ON MYPACK 11
; 

SECURITY #Sl, #52, PUBLIC 10; 
% Changes the SECURITYTYPE of the file A/Bon the default 
% family and file C/D on the disk MYPACK to PUBLIC and 
% their SECURITYUSE to input and output. 

5025265 8-39 



B 1000 Systems WFL Language Manual 
Statements 

START STATEMENT 
The <ST ART statement> is used to initiate a job which is independent of the requesting task. 

<ST ART statement> syntax: 

--START- <file title>-...,-----------"T""---r----

L <start parameter list> _J L [ -- <task id> - _J 

SYNTAX] E J 
; <job attribute specification> 

<start parameter list> syntax: 

-( ------<boolean expression>----

< integer expression> 

<string expression> 

) 

The <START statement> initiates a RUN of the SYSTEM/WFL program as a synchronous dependent 
task. After the SYSTEM/WFL program completes, the resultant WFL program is initiated as a job task. 
The job waits for SYSTEM/WFL, but not the started job, to complete before continuing to the next 
statement. 

The started job is independent of the job that started it and runs according to its own attributes. If the 
started job does not have a USERCODEjob attribute, the usercode of the job that performed the START 
operation is used. 

The <file title> must refer to a file containing the source of a WFL <job> to be started. 

The path through the <Start parameter list> diagram that does not cross any token is an empty expres
sion. The value of an empty expression is FALSE when assigned to a boolean variable, zero when as
signed to an integer variable, and a zero length string when assigned to a string variable. However, ifthe 
job has user defined DEFAULT values, they override these default values. 

8-40 

NOTE 
Empty expressions may only be passed to a corresponding job parameter 
which has been declared as OPTIONAL. 



B 1000 Systems WFL Language Manual 
Statements 

The expressions in the <start parameter list> are substituted for the parameter identifiers in the <job 
parameter list> of the started job. The number of parameters in the <start parameter list> must be less 
than, or equal to, the number of parameters in the <job parameter list> of the started job. A correspon
dence between the parameters in the <Start parameter list> and the <job parameter list> is established 
by the position of the parameters in the lists. Each expression in the <start parameter list> must be the 
same type as the parameter identifier in the <job parameter list>. If the number of parameters in the 
<Start parameter list> is less than the number of parameter identifiers in the <job parameter list>, the 
<start parameter list> is treated as though there were sufficient empty expressions before the right pa
renthesis to match the number of parameters in the <job parameter list>. If the empty expressions in 
<Start parameter list> do not have corresponding OPTIONAL job parameters, or if the number of pa
rameters in the <Start parameter list> is greater than the number of job parameters, or if the parameters 
are not of the same type, the started job gets a syntax error. However, the startingjob is not affected and 
continuies executing. All parameters in the <start parameter list> are passed by value. The expressions 
are evaluated in the job performing the <START statement>. The actual parameters are passed to the 
SYSTEM/WFL program which passes these parameters to the job being started. 

A <string expression> in the <start parameter list> must be less than or equal to 255 characters in 
length. ][f this restriction is violated, the starting job is abnormally terminated. 

The <task id> is associated with the starting of the job, that is, the SYSTEM/WFL program. 

The SYNTAX specification indicates that the started job is to be compiled for syntax only and execution 
is not to occur. 

The <job attribute specification> specifies task attributes, a FETCH specification, a CLASS specifica
tion, or a STARTTIME specification for the initiated job. An out-of-range value in a <job attribute 
specification> causes a syntax error in the started job; the starting job is not affected and continues 
executing. 

Example: 

Disk Fille INVENTORY/RB contains WFL symbolic statements as follows: 

BEGIN JOB REPORT/BACKUP (STRING REPORTNAME, STRING TAPENAME 
OPTIONAL DEFAULT = 11 ARCHIVE 11

) 

RUN #REPORTNAME/REPORT; 
FI LE LI NE (PR I NTD I SPOS IT I ON=CLOSE) ; 
PRIORITY=4; 

COPY #REPORTNAME/= FROM PARTS TO #TAPENAME (KIND=TAPE); 
END JOB 

Sample invocation of the above job: 

START INVENTORY /RB (11 I NVENTORr 1
) ; PR I OR I TY=7; 

% The job REPORT/BACKUP will run at a priority of 7. 
% The starting job will continue without waiting 
% for the job REPORT/BACKUP. 

5025265 8-41 



B 1000 Systems WFL Language Manual 
Statements 

STOP STATEMENT 
The <STOP statement> terminates the job task. 

<STOP statement> syntax: 

The <STOP statement> differs from the <ABORT statement> in that an <ABORT statement> causes 
an abnormal termination of the job task, while the <STOP statement> causes a normal termination. The 
<String expression> specified is displayed prior to termination of the job. 

Example: 

STOP "END OF UPDATE RUN"; 

SUBROUTINE INVOCATION STATEMENT 
The <Subroutine invocation statement> transfers control to a subroutine. 

<subroutine invocation statement> syntax: 

--<subroutine id>--T""----------....-------------------------1 

L <actual parameters> _J 
< actual parameters> syntax: 

-- ( _.....__--.-- < integer expression> ---------.---

<boolean expression> -------

<string expression> ---------1 

<task id>------------

) ---------------~ 

The <subroutine invocation statement> causes the subroutine denoted by <subroutine id> to be execut
ed. The statement may contain a list of <actual parameters> that are substituted for their corresponding 
<specified parameters>. 

The number of parameters in <actual parameters> must be the same as the number of parameters in 
<Specified parameters> when <subroutine id> was declared. There is a correspondence between 
<actual parameters> and <specified parameters> that is established by the position of the parameters 
in the lists. Each expression in <actual parameters> must be assignment compatible with its 
corrresponding specified parameter, that is, the type of the expression must be such that an <assignment 
statement> of that expression to the actual parameter would be allowed. 

8-42 



Examplle 1: 

B 1000 Systems WFL Language Manual 
Statements 

BEGIN JOB SUBROUTINE/EXAMPLE; 
SUBROUTINE SUB; 

BEGIN 
RUN PROG; 

END· 
SUB; t runs PROG 

END JOB 

Example 2: 

BEGIN JOB COMPILE/SUBROUTINE; 
SUBROUTINE COMPL (STRING COMP I LERNAME, INTEGER MAX) ; 

BEGIN 
COMPILE X ITH #COMPILENAME LIBRARY; 

COMPILER ILE CARD (TITLE=X/DATA, DISK); 
COMPILER MAXTIME =MAX; 

END; 
COMPL (11 PASCAL 11

, l 2,•c5) ; 
END JOB 

5025265 8-43 



B 1000 Systems WFL Language Manual 
Statements 

WAIT STATEMENT 
The <WAIT statement> suspends execution of the job task until a specified time period elapses or an 
event occurs. 

<WAIT statement> syntax: 

--WAIT---rcm:=--(-----~-==========================-<--w-ai-t-sp_e_c-if-ic-at-io_n_> __ )-~----------------'~ 
L <string expression> ' _J 

If a <string expression> appears in the <WAIT statement>, it is displayed on the Operator Display Ter
minal (ODT) prior to performing the wait. 

<Wait specification> syntax: 

<integer expression>-------------

<task id> ----------------1 
< task state> -----------------------'! 

<simple task relation>-------------1 

<task mnemonic comparison>---------

<task id> ( <boolean task attribute> ) -----

<simple task relation> syntax: 

- <task id> ( <integer task attribute> ) <relational operator> <integer expression>---------

Semantics: 

OK 
Suspends the job until the operator enters an OK ODT-command. 

<integer expression> 
Suspends the job for <integer expression> seconds and then execution resumes. 

<task id> 
Suspends the job until the task has completed. 

<task state> 
Suspends the job until either the task is completed or the task achieves the given state. 

<simple task relation> 

8-44 

Suspends the job until either the task is completed or the task attribute satisfies the relation. The job 
waits for its own EXCEPTIONEVENT. The job does not resume execution until this event 



B 1000 Systems WFL Language Manual 
Statements 

<task mnemonic comparision> 
Suspends the job until either the task is complete or the task mnemonic comparison evaluates to 
TRUE. The job waits for its own EXCEPTIONEVENT to be caused. The job does not resume exe
cution until this event is caused and one of the above conditions is TRUE. 

<task id> ( <boolean task attribute> ) 
Suspends the job until either the task is completed or the <boolean task attribute> is TRUE. The 
job waits for its own EXCEPTIONEVENT to be caused. The job does not resume execution until 
this event is caused and one of the above conditions is TRUE. 

no <wait specification> 
Suspends the job until its own EXCEPTIONEVENT occurs. An EXCEPTIONEVENT is caused 
every time the status of a subtask changes. An EXCEPTIONEVENT can also be caused by using the 
HI system command, or by programmatically setting the task attribute EXCEPTIONEVENT to 
TRUE. is caused and one of the above conditions is TRUE. 

The EXCEPTIONEVENT of the job can be caused by the following: 

1. A task that changes task state. 
2. Entry of <job number> HI from ODT. 
3. Programmatic cause· from the task. For example, in a COBOL74B task: 

CAUSE AND RESET ATTRIBUTE EXCEPTIONEVENT OF MYJOB. 

Examples: 

TASK T; 

WAIT (5) % suspends the job for 5 seconds. 

WAIT ("ENTER OK WHEN READY", OK); 

WAIT (T); % suspends the job until task T has completed. 

5025265 8-45 



WHILE STATEMENT 

B 1000 Systems WFL Language Manual 
Statements 

The <WHILE statement> performs a <statement> while a condition is TRUE. 

<WHILE statement> syntax: 

- WHILE- <boolean expression>- DO- <statement>------------------1 

The <boolean expression> is evaluated and if the result is TRUE, the <statement> following the key
word DO is executed. This sequence of events continues until the value becomes FALSE. 

If the <boolean expression> is FALSE the first time it is evaluated, the <Statement> is not executed at 
all. 

Example: 

8-46 

WHILE I LSS 10 DO 
BEGIN 

RUN X [T] 
RUN Y [T] , 
I : = I + l; 

END 



B 1000 Systems WFL Language Manual 

SECTION 9 

RESERVED, SPECIAL, AND KEY WORDS 

Each word in WFL belongs to one of the following categories: RESERVED WORDS, SPECIAL 
WORDS, or KEY WORDS. 

Note that a RESERVED, SPECIAL, or KEY WORD may be used as a <name constant> without any 
difficulty. 

RESERVED WORDS 
These words may not be used as an <identifier> in WFL. 

5025265 

BCL 

CONSTANT 

DATA 

EBCDIC 

FALSE 

INTEGER 

JOB 

LABEL 

REAL 

STRING 

TASK 

UNTIL 

BEGIN 

ELSE 

FILE 

SUBROUTINE 

THEN 

BINARY 

END 

FUNCTION 

TRUE 

BOOLEAN 

9-1 



SPECIAL WORDS 

B 1000 Systems WFL Language Manual 
Reserved, Special, and Key Words 

These words have a special meaning in WFL. They may be declared as an <identifier>; however, they 
lose their special meaning for the scope of the declaration. 

ABORT ACCEPT ADD 

CASE CHANGE COMPILE COPY 

DECIMAL DISPLAY DO DROP 

GO 

HEAD HEX 

IF INITIALIZE INSTRUCTION 

LENGTH 

MODIFY MY JOB MYSELF 

NOT 

OCTAL OK ON 

PASSWORD 

REMOVE RETURN RUN 

SECURITY START STOP SYSTEM 

TAIL TAKE TIMEDATE 

WAIT WHILE 

KEYWORDS 
All words not listed as reserved or special are key words. Key words are context-sensitive. If they appear 
in the correct context, their predefined meaning is used; otherwise, they are assumed to be an 
<identifier>. 

9-2 



B 1000 Systems WFL Language Manual 

SECTION 10 
COMPILER CONTROL IMAGES (CCI} 

The compiler control image, <CCI> , is used to control certain options which are available during 
the compilation process. A <CCI> may appear anywhere in the source file and becomes active or 
inactive at that point. 

<CCI> syntax: 

- $ --------------SET~ <boolean option> 

$ RESET 

POP 

<immediate option>---------1 

<value option>--------

The first dollar sign ($) must appear in the first character position of the record. If present, the second 
dollar sign must appear in the second character position of the record. The second dollar sign is al
lowed for compatibility with other languages but has no other function. 

A <CCI> is terminated by the end of the record image. 

< Boolc~an option> s must be preceded by SET, RESET, or POP. Each <boolean option> has a stack 
which can contain up to 48 entries. Overflow and underflow of this stack are undetected. 

SET 
SET causes the previous value of the specified <boolean option> to be stacked and the current 
value to be set to TRUE. 

RESET 
RESET causes the previous value of the specified <boolean option> to be stacked and the current 
value to be set to FALSE. 

POP 
POP causes the current value of the specified <boolean option> to be discarded and then set 
to the immediately previous value from the top of the <boolean option> 's stack. 

< Boolc~an option> syntax: 

t ·CODE 

- LIST 

·WARNSUPRJ 

5025265 10-1 



B 1000 Systems WFL Language Manual 
Compiler Control Images (CCI) 

CODE 
When enabled, the CODE option causes the compiler to list the object code produced by the com
pilation process. The default value is FALSE. 

LIST 
When enabled, the LIST option causes the compiler to list the source language accepted for com
pilation. The default value is TRUE if the job is being compiled as the result of a START state
ment. A <job> entered as an ODT command will not be listed, but will appear in the job sum
mary as operator input. If a job had syntax errors or it was compiled FOR SYNTAX, the listing 
is removed without being printed (as though the default for LIST was FALSE). Explicitly setting 
LIST to TRUE causes the listing to be printed even if there were syntax errors or the job was 
compiled FOR SYNTAX. For more information refer to Source Listing in section 12, Operation. 

WARNSUPR 
When enabled, the W ARNSUPR option causes the compiler to suppress the printing of warning 
messages. The default value is FALSE. For more information refer to PORTABILITY WARN
INGS, section 11. 

<Immediate option> syntax: 

--INCLUDE-< file title>--------------------------------t 

INCLUDE 
The INCLUDE option causes the compiler to suspend reading input to read input from the file 
specified by the <file title> . No CCI options may follow the <file title> . The file which is in
cluded may itself contain CCis but must not contain INCLUDE CCis. The source language images 
included as a result of enabling INCLUDE are listed if the LIST option is enabled. 

<Value option> syntax: 

-·-ERROR LIMIT- = - <integer constant> ------------------------t 

ERRORLIMIT 

1 ()..2 

The ERRORLIMIT option specifies the maximum number of errors allowed before a compilation 
is terminated. If the error limit is exceeded, the compiler informs the user that the error limit was 
exceeded and terminates the compile. The default value is 7 for a START or job entered at a ter
minal, and 100 otherwise. 



B 1000 Systems WFL Language Manual 

SECTION 11 

PORT ABILITY WARNINGS 

B 1000 WFL is a subset ofB 5000/B 6000/B 7000/ A Series WFL with certain exceptions. A warning mes
sage is given for using any construct that is not in the subset. Following are the constructs that receive 
warning messages. 

1. The task attributes BlOOOMEMORY, BlOOOVIRTUALDISK, DEBUG, INVISIBLE, 
MAXTIME, and PROTECTED. 

2. The file attributes AREABLOCKS, BlOOOAUDITED, BACKUPPERMITTED, 
DUMMYFILE, KIND=TAPECASSETTE, OTHERUSE=IN, and PRINTDISPOSITION. 

3. <COMPILE statement> with a <task id> after the object code file title and a disposition of LI
BRARY. 

4. <Compile task equation list> with an attribute not preceded by the word COMPILER and a 
disposition of GO. 

5. <START statement> with a SYNTAX clause or a <task equation list>. 

6. <Copy options list>. 

7. <Input volume spec> or < output volume spec> without an explicit KIND attribute. 

8. <Creation file attr list>. 

9. <Input volume attribute list> with VOLUMEINDEX. 

10. <Output volume attribute list> with SAVEFACTOR or DENSITY. 

11. <SECURITY statement> with a <directory name>. 

12. <FUNCTION declaration> 

13. DEFAULT values for OPTIONAL job parameters. 

A non-suppressible warning message is printed at the end of the program if any of the above constructs 
were used in the program. If the W ARNSUPR CCI option is set, the warning will be printed in the job 
summary, but will not be displayed. For more information, refer to Error Messages in section 12, Opera
tion. 

5025265 11-1 



B 1000 Systems WFL Language Manual 

SECTION 12 

OPERATION 

This section describes job initiation and how an initiated job interfaces to the MCP, the SYSTEM/WFL 
program, and the SYSTEM/BACKUP program. 

The following pages describe ODT commands that have WFL syntax. Some of the examples have the 
word "WFL" preceding them. This prefix may or may not be required. For more information, see the 
WFL system command and the WFL system option in the B 1000 Systems System Software Operation 
Guide, Volume 1. 

JOB INITIATION 
A job is initiated by using the ST ART ODT command to refer to a file which contains the text of a WFL 
program or by entering the <job> as an ODTcommand. Both the START ODTcommand and a <job> 
may also be the object of a ZIP statement (or CALL SYSTEM WFL) in the various programming lan
guages. 

Both the ST ART and the <job> ODT commands require that the command end with the end of the text, 
that is, another ODT command may not follow the START or <job> . 

The START ODT command has the same semantics and pragmatics as the <START statement>. The 
syntax differs only in the fact that a [<task-id>] cannot appear in a ST ART ODT-command. For more 
information, refer to the ST ART Statement in section 8, Statements. 

If a job is started under a non-privileged usercode and it has syntax errors, a security error message is dis
played when attempting to remove the JOBPRT file. 

RUN .AND COMPILE AS ODT COMMANDS 
Both the RUN and COMPILE statements can be entered as ODT commands. The syntax is the same as 
the corresponding WFL statement except for the following: 

1. No task variables can be specified. 

2. All expressions must be constants of the type of the expression. For example, an integer expres
sion becomes an integer constant. 

3. <Data specifications>s are not allowed. 

Any tasks involved will be initiated as INDEPENDENT tasks. 

5025265 12-1 



B 1000 Systems WFL Language Manual 
Operation 

MODIFY STATEMENT AS ODT COMMAND 
The <MODIFY statement> can be entered directly as an ODT-command. 

To distinguish the WFL <MODIFY statement> from a Control Card MODIFY command, the WFL 
<MODIFY statement> must be preceded by the word WFL. 

There is a limit to the length of the <task equation list>. WFL is guaranteed to handle at least 3 lines of 
input from an ODT (240 characters of text). This is a worst case instance and, in general use, 10 lines 
to a full screen can be handled. An error message is displayed ifthe list is too long. In this case, the MODI
FY must be split into separate statements. 

Examples (including equivalent Control Card (CC) syntax): 

12-2 

WFL MODIFY (ZOT)CODEO ON DISK; 
PRIORITY= 5; 
FI LE SOURCE (KI ND=D I SK) ; 

CC MO DISK/(ZOT)/CODEO PR 5 Fl SOURCE DISK; 

WFL MODIFY *DMPALL; 
MAXLINES = 5000; 
PRIORITY= l; 
SWl; 
F I LE SPEC (T I TL E = D I SKF I LE , K I ND = D I SK) ; 
FI LE LI STF I LE (PR I NTD I SPOS IT I ON = EOJ) ; 

CC MODIFY *DMPALL; 
% MAXLINES HAS NO EQUIVALENT 
PR l; SW l = l; FILE SPEC TITLE= DISKFILE DISK; 
% PRINTDISPOSITION = EOJ HAS NO EQUIVALENT 



B 1000 Systems WFL Language Manual 
Operation 

PASSWORD STATEMENT AS ODT COMMAND 
The <PASSWORD statement> can be entered directly as an ODT-command. This allows users to 
change their passwords without writing a WFL job. 

Example: 

WFL PASSWORD= THEOLD/THENEW 
PASSWORD= THENEW/SECRET 

FILE MANAGEMENT STATEMENTS AS ODT COMMANDS 
The <CHANGE statement>, <REMOVE statement>, and <SECURITY statement> may be entered 
directly as 0 DT commands. 

In order to distinguish between the REMOVE ODT-command and the <REMOVE statement> as well 
as between the CHANGE ODT-command and the <CHANGE statement> , the <REMOVE 
statement> and <CHANGE statement> must be preceded by the word WFL. 

Examples: 

WFL REMOVE A/B ON USERS % WFL statement 
WFL REMOVE X, Y FROM MYPACK % WFL statement 
REMOVE USERS/A/B % ODT command 
RE MYPACK/X/, MYPACK/Y/ % ODT command 
WFL CHANGE A/B ON USERS TO C/D % WFL statement 
WFL CHANGE X TO X/X, Y TO Y/Y FROM MYPACK % WFL statement 
CHANGE USERS/A/B TO USERS/CID % DDT command 
CH MYPACK/X/ MYPACK/X/X, % ODT command 

MYPACK/Y/ MYPACK/Y/Y 
SECURITY A/B ON USERS PRIVATE 10 % WFL statement 
WFL SECURITY X, Y FROM MYPACK PUBLIC IN % WFL statement 
MH USERS/A/B. SEC PRIVATE % DDT command 
MH USERS/A/B SUS I .O % ODT command 

5025265 12-3 



B 1000 Systems WFL Language Manual 
Operation 

SYSTEM/WFLPROGRAM 
The MCP executes a copy of the SYSTEM/WFL program to process START ODT-commands and 
<job>s entered as ODT commands. The SYSTEM/WFL program continues to process jobs until it is 
terminated. Jobs are queued and processed sequentially, one at a time. The SYSTEM/WFL program 
does not wait for the job task to complete before processing the next job. When there are no jobs to be 
processed, the SYSTEM/WFL program waits for another START ODT-command or <job> to be en
tered. 

While the SYSTEM/WFL program is waiting for another START ODT-command or <job> to be en
tered, it does not use any processor time and is rolled out of memory if memory space is needed. When 
rolled out, it uses less than 1000 bits of memory. With the SYSTEM/WFL program in this state, it is 
using a very small amount of resources and can process the next START ODT-command or< job> 
quickly (without having to go through beginning of job processing and initialization). 

The SYSTEM/WFL program can be terminated by entering WFL EOJ, WFL END, or WFL STOP as as 
ODT-command. They all cause the program to terminate before processing the next ODT command. 

A <ST ART statement> (within a< job>) executes a copy of the SYSTEM/WFL program. This copy ter
minates when it finishes processing the one job referenced in the <START statement>. 

A file titled "*JOB" & STRING (jobnumber, *) & "/CODE ON DISK" is created for each job initiated 
without syntax errors and without a job disposition of SYNTAX. The file is removed when the job task 
terminates. 

ERROR MESSAGES 
If a <job> is entered at the Operator Display Terminal (ODT) or if a ST ART ODT-command or< job> 
is entered by means of a ZIP with LS set, error messages are displayed. For each error, the message con
tains the line of source text up to the point where the error occurred followed by a diagnostic message. 

If a START ODT-command is entered at the ODT or if a START ODT-command or <job> is entered 
by means of a ZIP with LS not set, error diagnostic messages appear on the source listing following the 
source language with which they are associated. 

12-4 



JOB SUMMARY 

B 1000 Systems WFL Language Manual 
Operation 

A job summary consists of a WFL source program listing, a job log showing how the job ran, and any 
backup print files created by the job with a PRINTDISPOSITION of EOJ. Heading and trailing pages 
are printed which include the jobnumber, usercode, and title of the job. 

If a job ils to be initiated (it did not have syntax errors and it was not started FOR SYNTAX), printing 
of the job summary is based upon the setting of the JOBSUMMARY task attribute. All backup print files 
created by the job with a PRINTDISPOSITION of EOJ will be printed in the summary regardless of the 
setting of the JOBSUMMARY task attribute. 

If the job will not be initiated and the LIST option is set, the job summary will be printed. If there were 
syntax errors and the errors were not displayed the job summary will be printed. 

For more information refer to the LIST option in section 10, Compiler Control Images, the 
JOBSUMMARY task attribute in appendix A, and the PRINTDISPOSITION file attribute in appendix 
B. 

Sourc•3 Listing 
The source listing consists of input source language (including that resulting from any INCLUDE op
tions), diagnostic messages (error and warning), and summary information. 

The source listing is in a file named" *JOBPRT/" & STRING (jobnumber, *)and will be on the backup 
designated disk. If the job summary is not printed, the source listing file is removed. 

Job Lc>g 
The job log contains user input and MCP output messages associated with the job and all tasks initiated 
by the job. 

It is in a file named "*JOBLOG/" & STRING (jobnumber, *)and will be on the backup designated disk. 
If the job summary is not printed, the log file is removed. 

Printinig the Job Summary 
The job summary is automatically printed by the SYSTEM/BACKUP program only if the number of 
auto backup servers (AB) is greater than zero. 

If auto backup is not used, the job summary may be printed by specifying JOB <jobnumber> in a PB 
ODT-command. 

The job log may be printed by specifying JO BLOG/< jobnumber> in a PB ODT-command. 

After the job summary is printed, the source listing and job log files are removed. 

5025265 12-5 



B 1000 Systems WFL Language Manual 

APPENDIX A 

TASK ATTRIBUTES AND MNEMONICS IN WFL 

Table A-1 contains a list of task attribute names, the attribute data type, when the attribute can be quer
ied, when the attribute can be set, whether the attribute is permanently stored with the code file, and 
whether the attribute is inherited. 

If an attribute can be set only when it is not INUSE, it may not be set when the task is scheduled, execut
ing, or stopped. 

If an attribute is inherited, a task, when initiated, receives the current value of the parent task's attribute, 
unless the parent task explicitly set the attribute prior to initiating the task. For more information, refer 
to Task Attributes and File Equation in section 8, Statements. 

Table A-1. Task Attributes 

Name Type Get Set Perma- Inher-
nent ited 

ACCUMPROCTIME Real Anytime 
BlOOOMEMORY Integer Anytime Not INUSE Yes 
BlOOOVIRTUALDISK Integer Anytime Not INUSE Yes 
CHARGE String Anytime Not INUSE Yes Yes 
DEBUG Boolean Anytime Anytime Yes 
ELAPSEDTIME Real Anytime 
INVISIBLE Boolean Anytime Anytime Yes 
JOBNUMBER Integer Anytime 
JOlBSUMMARY Mnemonic Anytime Anytime Yes 
MAX CARDS Integer Anytime Not INUSE Yes Yes 
MAX LINES Integer Anytime Not INUSE Yes Yes 
MAXPROCTIME Real Anytime Not INUSE Yes Yes 
MAX TIME Real Anytime Not INUSE Yes 
MAXWAIT Real Anytime Anytime Yes Yes 
MIXNUMBER Integer I NUSE 
PRIORITY Integer Anytime Anytime Yes Yes 
PROTECTED Boolean Anytime Not INUSE Yes Yes 
STATUS Mnemonic Anytime Anytime 
SW1-SW8 Boolean Anytime Anytime Yes 
TASKVALUE Integer Anytime Anytime Yes 
TITLE String Anytime 
USERCODE String Anytime Not INUSE Yes 

Following are descriptions of the task attributes. 

ACCIUMPROCTIME 
The ACCUMPROCTIME task attribute is the amount of accumulated processor time for the task in sec
onds. This attribute is intended to be a measure of the processor resources consumed by the task. The 
default value is 0. 

5025265 A-1 



B1000MEMORY 

B 1000 Systems WFL Language Manual 
Task Attributes and Mnemonics in WFL 

This task attribute is the amoun-; of dynamic memory in bits· allocated for data overlays. The default 
value is 0. 

B1 OOOVIRTUALDISK 

The B 1 OOOVIRTU ALDI SK task attribute is the number of disk segments assigned to hold non-memory
resident data overlays during execution. Vi~tual disk is the secondary store for overlayable data whereas 
dynamic memory is the primary store. The default value is 0. 

CHARGE 

The CHARGE task attribute is used in the logging function of the MCP. A task is terminated if it at
tempts to set CHARGE to an invc.lid <chargecode> for a particular installation. (See also <chargecode> 
in section 5, Task Attributes). The default value is the charge number of the job. 

DEBUG 

This task attribute invokes run-time debugging in COBOL 7 4 programs. The default value is FALSE. 

ELAPSEDTIME 

The ELAPSEDTIME task attribute is the elapsed clock time in seconds since task initiation. The default 
value is 0. 

INVISIBLE 

This task attribute prevents the task from appearing in a display of the mix when it is active. Only the 
mix commands (MX and WY) containing the ALL qualifier will cause the INVISIBLE tasks to appear 
in the mix. The default value is FALSE. 

JOBNUMBER 

The JOBNUMBER task attribute: is the MIXNUMBER of the job task under which the task is being run. 

A-2 



JOBSUMMARY 

B 1000 Systems WFL Language Manual 
Task Attributes and Mnemonics in WFL 

This task attribute provides a means by which the job summary can be suppressed or made available. 
The use of "job summary" here includes WFL statements and the ODT log of the job. 

Mnemonic values are: 

UN CONDITIONAL 
The full job summary is printed unconditionally. 

CONDITIONAL 
The job summary is printed only if a task terminates abnormally, a compile detected syntax errors, 
or a task created printer backup file(s) with PRINTDISPOSITION set to EOJ. 

SUPPRESSED 
No job summary is printed (even if backup files are produced). All backup files created within the 
job with PRINTDISPOSITION set to EOJ are printed bound together with the usual heading and 
trailing pages. 

The default value is UNCONDITIONAL, however, a site may change the default to CONDITIONAL 
by setting SYSTEM/WFL SWl = TRUE. 

The vallue of this attribute is not used until EOJ. Therefore, JOBSUMMARY can be set a number of 
times, but only the last setting before EOJ has meaning. Because this attribute has meaning only to a job 
and not to a task, the task designator MYJOB should be used to set JOBSUMMARY rather than MY
SELF. 

MAXCARDS 
The MAX CARDS task attribute is the maximum number of cards which may be punched by a task and 
its dependent tasks. When the maximum is reached, the task is abnormally terminated. A task inherits 
a value: for MAXCARDS which is the MAXCARDS from the parent task less the number of cards 
punched by the parent task (and its dependent tasks). Explicitly setting MAXCARDS assigns the mini
mum of the amount requested or the amount remaining for the parent task. The default value is 0. 

MAXLINES 
This task attribute is the maximum number of lines which may be printed by the task and its dependent 
tasks. When the maximum is reached, the task is abnormally terminated. A task inherits a value for 
MAXLINES which is the MAXLINES from the parent task less the number oflines printed by the parent 
task (and its dependent tasks). Explicitly setting MAXLINES assigns the minimum of the amount re
quested or the amount remaining for the parent task. The default value is 0. 

MAXPROCTIME 
The MAXPROCTIME task attribute is the maximum amount of accumulated processor time in seconds 
which may be used by the task and its dependent tasks. The task is abnormally terminated when the max
imum is reached. A task inherits a value for MAXPROCTIME which is the MAXPROCTIME from the 
parent task less the amount of processor time used by the parent task (and its dependent tasks). Explicitly 
setting MAXPROCTIME assigns the minimum of the amount requested or the amount remaining for 
the parent task. The default value is 0. 

5025265 A-3 



MAXTIME 

B 1000 Systems WFL Language Manual 
Task Attributes and Mnemonics in WFL 

This task attribute is the maximum amount of elapsed clock time in seconds which the task may run. The 
task is abnormally terminated when the maximum is reached. The default value is 0. 

MAXV\fAIT 

The MAXW AIT task attribute i:; the maximum amount of time in seconds a task will wait for certain 
DMS functions to complete. Explicitly setting MAXWAIT assigns the minimum of the amount request
ed or the MAXW AIT of the parent task. The default value is 0. 

MIXNUMBER 

This task attribute is the MIX r umber of the task. 

PRIORITY 

The PRIORITY task attribute is the processor priority for the task. Priority informs the system of the 
urgency with which the task should be completed. The integer must be in the range 0 to 15 inclusive. The 
default value is the priority at which the job is running. 

PROTECTED 

This task attribute prevents certa:.n keyboard commands from affecting an initiated task. For more infor
mation refer to the LP 0 DT-com mand in the B 1000 Systems System Software Operation Guide, Volume 
l. The default value is the same as the PROTECTED attribute of the job. 

STATUS 

This task attribute starts, stops, or aborts an active task. See Task State in section 7 for a more extensive 
method to query the status ofa ta~lk. Assignments to inactive task variables result in run-time errors. 

ACTIVE 
The task is activated. The ACTIVE mnemonic has no effect unless the task is STOPPED. 

BADINITIATE 
This is a read only mnemonic. The task failed initiation. 

NEVER USED 
This is a read only mnemonic. The task variable has not been used for a task initiation. 

SCHEDULED 
This is a read only mnemonic. The task is in the schedule. 

SUSPENDED 
The task is suspended. 

TERMINATED 
The task is terminated (DS{:d or DPed). 

The ST A TUS task attribute may not be used in the task equation list of a task initiation. 

SW1, SW2, SW3, SW4, sws, SW6, SW7, swa 
The eight switch attributes allow 1he user to alter the path of control of a task. They are a set of eight Bool
ean values that can be interrogated in various language dependent ways. For more information refer to 
the B 1000 language manuals. T1e default values are FALSE. 

A-4 



TASKVALUE 

B 1000 Systems WFL Language Manual 
Task Attributes and Mnemonics in WFL 

This attribute may be set or tested for specific purposes as desired by the programmer. Values are speci
fied by the programmer. This attribute is generally used as a means of communication between processes 
that share a task variable, The default value is 0. 

TITLE 
The TITLE task attribute is the title of the task. The default value is "". 

USER CODE 
The USERCODE task attribute is the usercode under which the task is run. When an attempt is made 
to set U:SERCODE to a non-existent <user specification>, a run-time error occurs. The USERCODE re
turned by this attribute will not contain the <password>. The default value is the USERCODE of the 
job. 

5025265 A-5 



B 1000 Systems WFL Language Manual 

APPENDIX B 

FILE ATTRIBUTES AND MNEMONICS IN WFL 

Each of the file attributes is described in this appendix. 

AREABLOCKS 
This attribute is for disk files only, and is type Integer. 

The value of the attribute AREABLOCKS is the number of blocks (physical records) in an area of the 
disk file. When a file is created, this value is associated with the physical file. 

The default value is 100. 

AREAS 
The AREAS attribute is valid for disk files only, and is type Integer. 

The value of the attribute AREAS is the maximum number ofareas (or rows) a disk file can allocate. 

The AREAS attribute may be set only when the file is closed. If AREAS is zero, the default value of 25 
is used when creating a new disk file. The maximum value is 105. The setting of the AREAS attribute 
is ignored when opening a permanent disk file, or reopening a file closed with retention. The AREAS at
tribute can be overridden when expanding the end of file if the attribute FLEXIBLE has been set to 
TRUE. 

81 ODOAUDITED 
This attribute is type BOOLEAN. 

If the attribute B 1 OOOAUDITED is TRUE, the user program is held waiting until each 1/0 operation to 
this file is complete. The B lOOOAUDITED attribute may be set only when the file is closed. 

The default value is FALSE. 

BACKUPKIND 
This attribute is valid for printer and punch files, and is type Mnemonic. 

The BACKUPKIND attribute indicates the peripheral associated with a logical file as an intermediate 
peripheral. The 1/0 operations of the logical file take place on the intermediate file but all the restrictions 
and capabilities of the peripheral specified by the KIND attribute are applied to the logical file. After the 
logical file is closed, the intermediate file may be transferred to a peripheral as specified by the KIND 
attribute. The TITLE attribute specifies the TITLE of the file when it is ultimately transferred to the pe
ripheral specified by the KIND attribute. The title of the intermediate file may be determined with the 
TITLE and USERBACKUPNAME attributes. 

5025265 B-1 



The mnemonic values are: 

DISK 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

Backup peripheral is DISK. 

TAPE 
Backup peripheral is TAPE. 

DONTCARE 
Backup peripheral is site dependent. For further information, refer to the PBD and PBT system op
tions in the B 1000 System~· System Software Operation Guide, Volume 1. 

BACKUPPERMITTED 

This attribute is valid for prinkr and punchfiles, and is type Mnemonic. 

The BACKUPPERMITTED attribute indicates whether an intermediate peripheral may be associated 
with the logical file. 

The mnemonic values are: 

DONTBACKUP 
No intermediate peripheral usage is allowed. 

DONTCARE 
Intermediate peripheral usage is allowed. A task which is part of a WFL job will use an intermediate 
peripheral for printer files rn that the file is included in the job summary. 

MUSTBACKUP 
Intermediate peripheral usage is required. 

BLOCKSIZE 

The BLOCKSIZE attribute is type Integer. 

The values of the BLOCKSIZE .1ttribute is the length of a block in FRAMESIZE units. BLOCKSIZE 
may be set only when the file is closed. If BLOCKSIZE is less than MAXRECSIZE, it is set to 
MAXRECSIZE when the file is opened. The default value of BLOCKSIZE is dependent upon the physi
cal unit (KIND) assigned to the file and the value of the attribute MAXRECSIZE. Refer to the discussion 
under the MAXRECSIZE attribute in this appendix. 

BLOCKSTRUCTURE 

This attribute is type Mnemonic. 

The attribute BLOCKSTRUCTURE specifies the format of the records and the structure of the file. 

The mnemonics values are: 

FIXED 
Blocked or unblocked fixed-.Jength records. 

VARIABLE 
Variable-length records. The record length is contained in the first four characters of the record. 

The default value is FIXED. 

B-2 



BUFFERS 
This attribute is type Integer. 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

The attribute BUFFERS specifies the number of buffers assigned to the file. The maximum number of 
buffers which may be assigned to a file is 255. Only in exceptional conditions do more than two buffers 
add to the efficiency of the 1/0 operations of a file. 

If the number of buffers is not specified, a maximum of two buffers wrll be assigned. 

DEPENDENTSPECS 
This attribute is type Boolean. 

If the attribute DEPENDENTSPECS is TRUE, the format of the records and the structure of the logical 
file are to be determined by the structure of the associated labeled permanent file; that is to say, the attri
butes BLOCKSTRUCTURE, MINRECSIZE, MAXRECSIZE, BLOCKSIZE, and FRAMESIZE are 
changed to agree with the values used to create the permanent file. Ifno permanent file is associated with 
the logical file (that is, a new file is being created), or if the permanent file is unlabeled, the attribute 
DEPENDENTSPECS is ignored. 

DIRECTION 
This attribute is valid for tape and paper tape reader files, and is type Mnemonic. 

The attribute DIRECTION indicates the direction in which records are accessed from a file. 

The mnemonics values are: 

FORWARD 

REVERSE 

The default value is FORWARD. 

Only BLOCKSTRUCTURE equal to FIXED files can be read in a reverse direction. 

DUMIMYFILE 
This attribute is type Boolean. 

When the attribute DUMMYFILE is TRUE, any READ from the file causes the END-OF-FILE condi
tion, any WRITE to the file causes the END-OF-FILE condition if it is tested, otherwise it is a no-op. 
OPEN returns no errors and CLOSE returns no errors. All other 1/0 operations function as if the file was 
a non-resident optional file to which the operator responded with an OF ODT-command. 

The default value for DUMMYFILE is FALSE. 

5025265 B-3 



EXTMODE 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

This attribute is type Mnemon [c. 

The attribute EXTMODE specifies the external or physical character size (mode) of the records in a file. 

The mnemonic values are: 

BINARY 
For card files 12 bits per column, 960 bits per record. 

EBCDIC 
8-bit. 

ASCII 
8-bit. 

FAMILYNAME 
This attribute is valid for disk ::iles only, and is type String. 

The attribute FAMIL YNAME indicates the family on which the physical file is located. FAMIL YNAME 
must be a <name>. The default FAMILYNAME is"", implying system disk, unless the task is running 
under a USERCODE with a default PACKID. In that case, FAMIL YNAME '"' will imply the 
USERCODE default PACKID. 

FILEKIND 
This attribute is valid for disk Jiles only, is type Mnemonic, and may be modified at any time. 

The FILEKIND attribute describes the internal structure and/or purpose of a record of a disk file. The 
mnemonic values are: 

B-4 

Data files: 
DATA 
BASICSYMBOL 
COBOLSYMBOL 
DASDALSYMBOL 
FORTRANSYMBOL 
NDLSYMBOL 
SEQDATA 
JOBSYMBOL 
RPG SYMBOL 
FORTRAN77SYMBOL 
PASCALSYMBOL 
SORTSYMBOL 
COBOL 7 4SYMBOL 



B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

Code files: 
CO DEFILE 
BASICCODE 
COBOLCODE 
FORTRANCODE 
NDLCODE 
JOBCODE 
INTRINSICS FILE 
MCPCODEFILE 
RPGCODE 
FORTRAN77CODE 
PASCALCODE 
SORTCODE 
COBOL74CODE 
COBOLINTERPRETER 
FORTRANINTERPRETER 
RPG INTERPRETER 
INTERPRETERFILE 
SDLINTERPRETER 
SDL2INTERPRETER 
COBOL 7 4INTERPRETER 
FOR TRAN77INTERPRETER 
BASICINTERPRETER 
IBASICINTERPRETER 
PASCALINTERPRETER 
B500INTERPRETER 
IBM 1400INTERPRETER 

System files: 
DIRECTORY 
BACKUPDISK 
BACKUPPUNCH 
CONTROLDECK 

The default value is DAT A. 

NOTES 
1. Only data files are expected to be portable between systems. 

5025265 

2. The type of a disk file, as defined for CANDE, is similar to the 
FILEKIND attribute. The CANDE type omits the "SYMBOL" or 
"CODE" suffix and only allows a subset of the FILEKINDs. 

B-5 



FILENAME 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

This attribute is type String. It must be a valid < filename>. 

The attribute FILENAME is an external filename and is used to associate a logical file with a physical 
or permanent file. The default value is the value of the INTNAME attribute. 

FLEXIBLE 
This attribute is valid for disk files only, and is type Boolean. 

The attribute FLEXIBLE indicates whether or not a disk file can be allocated more areas, if needed, than 
the number originally specified by the AREAS attribute. The setting of FLEXIBLE is ignored if the file 
has been crunched or ALLOCATE.ALL.AT.OPEN is true. 

Setting FLEXIBLE is equivalent to requesting a maximum of 105 AREAS. 

FRAMESIZE 
The FRAMESIZE attribute is type Integer. 

The attribute FRAMESIZE ind tcates the number of bits to be transferred as a unit of data. The values 
of the attributes MINRECSIZE, MAXRECSIZE, BLOCKSIZE, and AREALENGTH are expressed in 
FRAMESIZE units. 

The default value is 8. 

HOSTNAME 
This attribute is type String. 

The HOSTNAME attribute specifies the logical system host name in a BNA network at which the physi
cal file is expected to reside. 

B-6 



KIND 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

The KIND attribute is type Mnemonic. 

The KIND attribute indicates the peripheral associated with the logical file. Each logical file has exactly 
one value for KIND. Peripherals may be specified in two ways: a "specific" KIND which indicates only 
that peripheral and a "general" KIND which indicates a set of specified peripherals. The default value 
for KIND is language dependent. 

The mnemonic values are: 

DISK 
Any mass storage peripheral. 

PAPERREADER 
Paper tape reader. 

PAPERPUNCH 
Paper tape punch. 

PORT 

READER 
Any card reader. 

PUNCH 
Any card punch. 

PRINTER 
Any line printer. 

READERSORTER 
Any MICR or OCR reader and document sorter. 

REMOTE 
Data communications station. 

TAPE 
Any magnetic tape. 

TAPE? 
7-track magnetic tape. 

TAPE9 
9-track NRZ magnetic tape (DENSITY = BPI800). 

TAPEPE 
9-track Phase Encoded magnetic tape (DENSITY = BPI1600). 

T APECASSETTE 
· Magnetic tape cassette. 

5025265 B-7 



LABEL 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

This attribute is type Mnemonic. 

The attribute LABEL specifies whether or not the file has label records. 

The mnemonic values are: 

STANDARD 
ANSI labels are written as the beginning and ending records of the file. 

OMITTED 
Label records are not included in the file. 

The value of LABEL is ignored for Data Comm files and the value OMITTED is used. 

The default value is STANDARD. 

MAXRECSIZE 
This attribute is type Integer. 

The attribute MAXRECSIZE specifies the maximum size of records in the logical file in FRAMESIZE 
units. 

The attributes MAXRECSIZE, MINRECSIZE, BLOCKSTRUCTURE, and KIND are closely related. 
MAXRECSIZE must be less than or equal to BLOCKSIZE. If MAXRECSIZE is larger than 
BLOCKSIZE, BLOCKSIZE wiL be changed to MAXRECSIZE. If BLOCKSTRUCTURE is equal to 
FIXED, BLOCKSIZE must be a multiple of MAXRECSIZE. If MINRECSIZE is set greater than 
MAXRECSIZE, it will be set to MAXRECSIZE. If MAXRECSIZE is equal to zero and BLOCKSIZE is 
greater than zero, the value of MAXRECSIZE is set to the value of BLOCKSIZE. 

MAXSUBFILES 
The MAXSUBFILES attribute is valid for Ports only, and is type Integer. 

The MAXSUBFILES attribute defines the maximum number of subfiles that the PORT may have open 
at any given time. 

The largest value for MAXSUBFILES is 255. 

B-8 



MINRECSIZE 
This attribute is type Integer. 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

The attribute MINRECSIZE specifies the minimum size of records in the logical file in FRAMESIZE 
units. If MINRECSIZE is left unset or is set to zero, a default value will be assigned when the file is 
opened, which depends upon the value of the attribute MAXRECSIZE. If MINRECSIZE was set greater 
than the value of MAXRECSIZE, it will be set equal to MAXRECSIZE. 

The minimum record size, used by thefogical I/O subsystem for deblocking the file, is determined by tak
ing the largest of: 1) logical minimum record size (MINRECSIZE), 2) the minimum record size used 
when creating the physical file, or 3) the minimum allowable record size (which is dependent upon the 
value of the BLOCKSTRUCTURE attribute). 

Files with BLOCKSTRUCTURE other than FIXED require the minimum record size to be large enough 
to contain the record length information of 4 characters. If MINRECSIZE is set smaller than 4 charac
ters, its value is changed to 4. This attribute has meaning for variable length records only. 

MYNAME 
This attribute is valid for Ports only, and is type String. 

The MYNAME attribute is the name by which a process wishes to be known when opening a port. 

MY USE 
The MYUSE attribute is type Mnemonic. 

The attribute MYUSE specifies how the file will be used. 

The mnemonic values are: 

IN 
Input only. 

OUT 
Output only. 

IO 
Both Input and Output. 

NEWFILE 
This attribute is type Boolean. 

When a file is opened and can potentially be assigned to a device that is capable of both input and output, 
such as disk or tape, the NEWFILE attribute determines if an existing permanent file is desired 
(NEWFILE=FALSE) or a file is being newly created (NEWFILE= TRUE). 

5025265 B-9 



OPTIONAL 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

The OPTIONAL attribute is type Boolean. 

The attribute OPTIONAL indicates whether or not (TRUE or FALSE) the assignment of a permanent 
file is optional. If the permanent file described by the attributes TITLE, KIND, and so forth is not pres
ent when the file is opened, a "NO FILE" message is sent to the operator display terminal and the pro
gram is suspended. If OPTIONAL is TRUE, the operator may respond with an OF ODT-command and 
the program proceeds without a physical file assigned to the logical file. 

The default value for OPTIONAL is FALSE. 

OTHER USE 
This attribute is type Mnemonic. 

The attribute OTHER USE specifies how the file may be used by other programs during the time that this 
program has the file open. 

The mnemonic values are: 

IO 
Both Input and Output. 

IN 
Input only. 

SECURED 
Neither input nor output. 

The default value is IO. 

PAGESIZE 
The PAGESIZE attribute is valld for printer files only, and is type Integer. 

The attribute PAGESIZE indicates the number of lines on a logical page. PAGESIZE can have a value 
between zero (0) and 255 inclm.ive. 

PAGESIZE cannot change frorr zero to non-zero, or vice versa, when the file is open. 

PARITY 

This attribute is valid for tape and paper tape punch files only, and is type Mnemonic. 

The attribute PARITY specifies the parity used on the file. 

The mnemonic values are: 

ODD 
Binary or standard parity. 

EVEN 
Alpha or non-standard parity. 

PARITY may be set to EVEN for only 7-track magnetic tape and paper tape files. 

The default value is ODD. 

B-10 



PRINTCOPIES 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

This attribute is valid for printer and punch files, and is type Integer. 

The attribute PRINTCOPIES specifies the number of copies of the file to be printed. The maximum 
number of PRINTCOPIES is 63. 

The default value is one copy. 

PRINTDISPOSITION 
This attribute is valid for printer files only, and is type Mnemonic. 

The attribute PRINTDISPOSITION specifies whether and when a backup print file is to be automatical
ly printed. 

The mnemonic values are: 

DONTPRINT 
The file is not automatically printed. 

CLOSE 
The file is automatically printed as soon as the file is closed, provided the maximum number of auto 
backup servers (AB) is greater than zero. 

EOJ 
Tht:: file is included in the job summary if it belongs to a task within a WFL job. Otherwise; EOJ is 
the same as CLOSE. 

The default value is EOJ. 

PROTECTION 
The PROTECTION attribute is valid for disk files only, and is type Mnemonic. 

The attribute PROTECTION indicates the amount of extra effort desired to preserve a file in case of a 
system :failure. The mnemonic values are: 

TEMPORARY 
A new disk file is not retained when the program is discontinued, unless the file is explicitly closed 
with an overriding close statement. If the disk file is locked or crunched, an entry is then made in 
the directory and the file is saved. 

SAVE 
An entry in the directory is made immediately when the disk file is opened. The file becomes a per
manent file and remains on disk unless the file is explicitly purged. 

PROTECTED 
An entry in the directory is made immediately when the disk file is opened. The file becomes a per
·manent file and remains on disk unless the file is explicitly purged. All PROTECTED files are also 
SAVE. In addition, conceptually, a known pattern is written to disk in order to be able to recover 
the end of file pointer. The actual process is transparent to the user. Please refer to appendix C of 
the B 1000 Systems System Software Operation Guide Volume 1, for more information. 

The default value is TEMPORARY. Files with an ORGANIZATION of RELATIVE or INDEXED will 
always have a PROTECTION of SA VE. 

5025265 B-11 



SAVEFACTOR 

H 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

This attribute is valid for disk and tape files, and is type Integer. 

The attribute SA VEFACTOR indicates the expiration date of a file in terms of the number of days past 
the creation date. 

The system does not purge a tape whose SAVEFACTOR has expired unless explicitly told to do so. 

The SAVEFACTOR has no system-defined meaning for a disk file. 

SECURITYTYPE 

1 liis attribute is valid for disk 1)r port files only, and is type Mnemonic. 

For disk files, the attribute SECURITYTYPE specifies what users, apart from the owner (creator) of a 
permanent disk file (as identified by the USERCODE), may access the file. 

For port files, the attribute SECURITYTYPE specifies the class of users who may access the port. 
The values for SECURITYTYPE are: 

PRIVATE 
The file may be accessed by only the owner or a privileged user. 

PUBLIC 
The file may be accessed by any user. 

The default value for disk files is PRIVATE if the file is created under a usercode, and PUBLIC other
wise. The default value for port files is PRIVATE. 

SECURITYUSE 
This attribute is valid for disk files only, and is type Mnemonic. 

The attribute SECURITYUSE wecifies the manner in which a disk file may be accessed. 

The values for SECURITYUSE are: 

IO 
Read and write access is allowed. 

IN 
Only read access is allowed. 

OUT 
Only write access is allowed. 

The default value is IO. 

B-12 



TITLE 

B 1000 Systems WFL Language Manual 
File Attributes and Mnemonics in WFL 

The TITLE attribute is type String. It must be a valid <title>. 

The attribute TITLE is an external filename and family name. It is used to associate a logical file with 
a physical or permanent file. The default TITLE for a file is the value of the INTNAME attribute. 

Setting the TITLE attribute changes the values of the FILENAME and FAMIL YNAME attributes. 

USERBACKUPNAME 
This attribute is valid for printer files only, and is type Boolean. 

Setting the USERBACKUPNAME attribute specifies that the TITLE attribute be used rather than the 
default BACKUP-FILE-ID (BACKUP/PRT <integer> or BACKUP/PCH<integer>) when entering the 
filename in the directory. 

5025265 B-13 



B 1000 Systems WFL Language Manual 

APPENDIX C 

CONVERTING CONTROL CARD ATTRIBUTES TO WFL 
ATTRIBUTES 

TASK ATTRIBUTES 

cc Control Card WFL 
Abrev Program Attribute Task Attribute 

AT ATTRIBUTES none 
CG CHARGE CHARGE 
DS DYNAMIC.SPACES none 
FI FILE FILE 
FR FREEZE none 
ID INTRINSIC. D !RECTORY none 
IN INTERPRETER B 1 OOOINTERPRETER 
IT INTRINSIC.NAME none 
IV INVISIBLE INVISIBLE 
LE LEVEL none 
ME MEMORY BlOOOMEMORY 
MP MEMORY.PRIORITY none 
MS MEMORY.STATIC none 

MAX TIME MAX TIME 
MW MAXWAIT MAXWAIT 
NOD IF NO.DEATH.IN.FAMILY none 
ov OVERRIDE none 
pp PROCESSOR.PRIORITY PRIORITY 
PR PRIORITY PRIORITY 
PT PROTECTED PROTECTED 
SB SECONDS.BEFORE.DECAY none 
SC SCHEDULE.PRIORITY none 
SQN SYMBOLIC QUEUE NAME none 
SW SWITCH SWl - SW8, DEBUG 
TC TRACE none 
TI TIME MAXPROCTIME 
UF UNFREEZE none 
UV UN OVERRIDE none 
VI VIRTUAL.DISK BlOOOVIRTUALDISK 
AF AFTER Use synchronous tasks 
AN AFTER.NUMBER Use synchronous tasks 
CA CONDITIONAL IF task-id IS COMPLETEDOK 
HO HOLD Use FETCH for job task 
OBJ Do not specify COMPILER 
TH THEN Use synchronous tasks 
UC UNCONDITIONAL WFL default 

5025265 C-1 



B 1000 Systems WFL Language Manual 
Converting Control Card Attributes 

to WFL Attributes 

FILE ATTRIBUTES 

CC Abrev Control Card File Attribute WFL File Attribute 

ALL ALLOCATE.AT.OPEN none 
ARE AREAS AREAS 
ASC ASCII EXTMODE=ASCII 
ATP AUTO PRINT PRINTDISPOSITION 
BAC BACKUP BACKUPPERMITTED 
BDK BACKUP.DISK BACKUPKIND 
BTP BACKUP.TAPE BACKUPKIND 
BCL BCL none 
BIN BINARY EXTMODE=BINARY 
B.A BLOCKS.AREA ARE AB LOCKS 
BUF BUFFER:; BUFFERS 
CAS CASSETTE KIND= T APECASSETTE 
CPC CARD.PUNCH KIND=PUNCH 
CPY COPY none 
CRD CARD.READER KIND=READER 
DCG DISK.CARTRIDGE none 
DFL DISK.FILE none 
DEF DEFAULT DEPENDENTSPECS 
DPC DISK.PACK none 
D.R DELAYED.RANDOM none 
DRC DATA.RECORDER.80 none 
D.F DUMMY.FILE DUMMYFILE 
DRl DRIVE none 
DSK DISK KIND=DISK 
EBC EBCDIC EXTMODE=EBCDIC 
EMT EMULATOR.TAPE none 
EOP EOP none 
EU EU none 
EVN EVEN PARITY =EVEN 
EXT EXTEND none 
FLE FLEXIBLE FLEXIBLE 
FTP FILE.TYPE FILEKIND 
FMS FORMS none 
FOOT FOOTING none 
HAR HARDWARE BACKUPPERMITTED 
HDR HEADER none 
HNM HOSTNAME HOSTNAME 
IMP IMPLIED.OPEN none 
INP INPUT MYUSE 
INV INV AUD.CHARACTERS none 
LAB LABEL.TYPE LABEL 
LIN LINEFORMAT none 
LOC LOCK Suggest PROTECTION =SA VE 
L.M LOWER.MARGIN none 
MAX MAXIMLM.BLOCK.SIZE none 

MAXRECSIZE MAXRECSIZE 
MINREC~)IZE MINRECSIZE 

C-2 



CC Abrev 

MSF 
MUL 
MYN 
NAM 
NEW 
NST 
ODD 

OLK 
OLO 
OPT 
OUT 
P.S 
PID 
PKY 
PORT 
PTL 
PTP 
PTR 

PRT 
PSE 
QFO 
QFS 
QMX 
QUE 
R96 
RAN 
R.B 
REE 
REM 
REP 
REV 
REW 
RPP 
RS2 
RSR 
RST 
RSZ 
S.H 
SAA 
SAY 
SEC 
SEQ 
SER 
SNO 
STA 
SUS 
TAP 
TPN 

- -~ 

5025265 

B 1000 Systems WFL Language Manual 
Converting Control Card Attributes 

to WFL Attributes 

Control Card File Attribute WFL File Attribute 

MAXSUBFILES MAX SUBFILES 
MULTI.PACK none 
MYNAME MYNAME 
NAME TITLE 
NEW.FILE NEWFILE 
NUMBER.STATIONS none 
ODD PARITY=ODD 

OPEN.LOCK OTHERUSE=IN 
OPEN.LOCKOUT OTHER USE= SECURED 
OPTIONAL OPTIONAL 
OUTPUT MYUSE 
PAGE.SIZE PAGESIZE 
PACK.ID FAMILYNAME 
PORT.KEY none 
PORT.FILE KIND= PORT 
PROTOCOL none 
PAPER.TAPE.PUNCH KIND=PAPERPUNCH 
PAPER.TAPE.READER KIND= PAPERREADER 
PROTECTION PROTECTION 
PRINTER KIND= PRINTER 
PSEUDO none 
QUEUE.OLD none 
Q.FAMILY.SIZE MAXSUBFILES 
Q.MAX.MESSAGES none 
QUEUE none 
READER.96 none 
RANDOM none 
RECORDS.BLOCK BLOCKSIZE 
REEL none 
REMOTE KIND=REMOTE 
REPETITIONS PRINTCOPIES 
REVERSE DIRECTION 
REWIND none 
READER.PUNCH.PRINTER none 
READER.SOR TER.2 none 
READER.SORTER KIND= READERSORTER 
READER.SORTER.STATIONS none 
RECORD.SIZE MAXRECSIZE 
SIMPLE.HEADERS none 
SEND ALL none 
SAVE SAVEFACTOR 
SECURITYTYPE SECURITYTYPE 
SEQUENTIAL none 
SERIAL none 
SERIAL.NUMBER none 
STATIONS none 
SECURITYUSE SECURITYUSE 
TAPE KIND= TAPE 
T APE.NRZ (9 track) KIND=TAPE9 

C-3 



CC Abrev 

TP7 
TP9 
TPE 

TRN 
TNM 
UNI 
UNL 
U.M 
U.N 
VAR 
WIN 
WPR 
WPC 
WST 
WFL 

C-4 

B 1000 Systems WFL Language Manual 
Converting Control Card Attributes 

to WFL Attributes 

Control Card File Attribute WFL File Attribute 

TAPE.7 KIND=TAPE7 
TAPE.9 1NRZ or PE) none 
TAPE.PE KIND= T APEPE 
TITLE TITLE 
TRANSLATE none 
TRANSLATE.NAME none 
UNIT.NAME none 
UNLABELED LABEL 
UPPERMARGIN none 
USER.BACKUP.NAME USERBACKUPNAME 
VARIABLE BLOCKSTRUCTURE 
WITH.INTERPRET none 
WITH.PRINT none 
WITH.PUNCH none 
WITH.STACKERS none 
WORK.FILE none 



B 1000 Systems WFL Language Manual 

APPENDIX D 
SYNTAX AND NOTATION CONVENTIONS 

GENERAL 

Railroad syntax diagrams show how syntactically valid statements can be constructed. Traversing a rail
road syntax diagram from left to right, down on the left vertical line, up on the right vertical line, 
or in the direction of the arrow heads, and adhering to the limits illustrated by bridges produces a 
syntactically valid statement. Continuation from one line of the diagram to another is represented by 
a right arrow appearing at the end of the current line and beginning of the next line. The complete 
syntax diagram is terminated by a vertical bar (I). 

Items contained in broken brackets ( < >) are syntactic variables which must be further defined, or 
for which the user is required to supply the information requested. 

Upper-case items must appear literally. 

--A SYNTAX DIAGRAM CONSISTS OF r f4\__~ <bridges> 

<1oops>------1 

< optional items> 

<required items> 

>--AIND IS TERMINATED BY A VERTICAL BAR. 

The following syntactically valid statements can be constructed from the above diagram: 

A SYNTAX DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED BY A VERTICAL 
BAR. 

A SYNTAX DIAGRAM CONSISTS OF <optional items> AND IS TERMINATED BY A VER
TICAL BAR. 

A SYNTAX DIAGRAM CONSISTS OF <bridges>, <loops> AND IS TERMINATED BY A 
VERTICAL BAR. 

A SYNTAX DIAGRAM CONSISTS OF <optional items>, <required items>, <bridges>, 
<loops> AND IS TERMINATED BY A VERTICAL BAR. 

REQUIRED ITEMS 

No alternate path through the syntax diagram exists for required items or required punctuation. 

- REClUIRED ITEM 

5025265 D-1 



B I 000 Systems WFL Language Manual 
Syntax and Notation Conventions 

OPTIONAL ITEMS 

A vertical list of items indicates that the user must make a choice of the items specified. An empty 
path through the list allows the optional item to be absent. 

Example: 

- REOUIRED-JTEM--i=== 

c:::::onal item-1>:j 
<optional item-2> 

The following valid statements can be constructed from the above diagram: 

REQUIRED ITEM 

REQUIRED ITEM <optional item-I> 

REQUIRED ITEM <optional item-2 > 

LOOPS 

A loop is a recurrent path throt.gh a syntax diagram and has the following general format. 

rE"- <return character> 

_L_<bridge>--<object of the oop>-....a.------------------------1 

Example: 

L (:\2 ---~< . 
L optional item-1:>~ 

<optional item-2.> 

The following statements can be constructed from the syntax diagram in the example. 

<optional item-I> 

<optional item-I>,< optional item-I> 

<optional item-2 >,<optional item-I> 

A loop must be traversed in the direction of the arrow heads, and the limits specified by bridges cannot 
be exceeded. 

D-2 



BRIDGES 

B 1000 Systems WFL Language Manual 
Syntax and Notation Conventions 

A bridge illustrates the minimum or maximum number of times a path can be traversed in a syntax 
diagram. 

There are two forms of bridges. 

_ _J,0__ n is an integer which specifies the maximum number of times the path can be tra
versed. 

-~ When n is followed by an asterisk (*), n is an integer which specifies the minimum 
number of times the path must be traversed. 

Example: 

~~<~~~~>---_J-~---------------------~ 
Lr,;\__< optional item-2> 

The loop can be traversed a maximum of two times; however, the path for <optional item-2 > must 
be trav~ersed at least one time. 

The following statements can be constructed from the syntax diagram in the example. 

<optional item-1 >,<optional item-2 > 

<optional item-2 > , <optional item-2 >,<optional item-1 > 

<optional item-2 > 

502526.S D-3 



B 1000 Systems WFL Language Manual 

< 7-3, 7-4 
<i> 2- ll, 3-1, 8-8 
+ 7-20 
& 7-11, 7-21 
* 2-8, 2-10, 7-7, 7-11, 7-20, 7-21, 7-23 
- 7-20 
I 7-11, 7-21 
I= 7-11, 7-21 
> 7-3, 7-4 
= 2-10, 7-3, 7-4, 7-20 
ABORT 8-10 
ABORT statement 8-9, 8-10, 8-28 
ABORTED 7-5 
ACCEPT 7-14 
accept function 7-12, 7-14 
ACCUMPROCTIME A-1 
ACTIVE 7-5 
actual parameters 7-3, 7-8, 7-12, 8-42 
ADD 8-16, 8-21, 8-22 
AFTER 8-17 
ALPHA 7-14 
AND 7-1, 7-19, 8-16 
AREABLOCKS 11-1, B-1 
AREALENGTH B-6 
AREAS B-1, B-6 
arithmetic comparison 7 .. 2, 7-3 
arithmetic operators 7-7 

order of evaluation 7-7 
AS 8-20 
ASCII B-4 
assignment statement 3-3, 8-1, 8-2 
AX ODT-command 7-14 
BACKUPKIND B-1 
BACKUPPERMITTED 11-1, B-2 
BEFORE 8-17 
BEGIN 3-1, 4-5, 4-6, 8-11, 8-16 
begin job options 3-1, 3-2 
block sltructure 4-9 
BLOCK.SIZE B-2, B-3, B-6 
BLOCK.STRUCTURE B-2, B-3, B-8, B-9 
BOOLEAN 3-2, 4-2, 4-5, 4-7 
boolean assignment statement 8-2 
boolean constant 2-4, 7-2, 7-19 
boolean constant expression 4-2, 4-8, 7-19 
boolean constant id 4-8, 7-2, 7-19 
boolean constant primary 7-19 
boolean declaration 4-1, 4-2 

5025265 

INDEX 



B 1000 Systems WFL Language Manual 

boolean expression 5-1, 6-2, 7-1, 7-2, 8-2, 
8-17, 8-24, a-25, 8-34, 
8-40, 8-42, a-46 

order of evaluation 7-2 
Boolean file attribute 6-2 
boolean file attribute 6-2 
boolean id 4-3, 7-2, 8-2 
boolean option 10-1 
boolean parameter id 3-2, 7-2, '7-19 
boolean primary 7-1, 7-2 
boolean task attribute 5-1, 7-2, 8-44 
Boolean task attribute 5-1 
BPI 1600 8-22 
BPI800 8-22 
BUFFERS B-3 
BlOOOAUDITED 11-1, B-1 
BlOOOMEMORY 11-1, A-1, A-2 
BlOOOVIRTUALDISK 11-1, A-1, A-2 
CARD 10-2 
CASE 8-11 
case constant 8-11, 8-12 
case expression 8-11 
CASE statement 8-3, 8-11 
CCI 10-1 
CHANGE 8-12 
CHANGE ODT-command 12-3 
CHANGE statement 8-9, 8-12 
character elements 2-2 
character set 2-1, 7-13, 7-14, 7-22 
CHARGE 5-1, 7-12, A-1, A-2 
chargecode 5-1, 5-2, A-2 
CLASS 3-8 
class specification 3-4, 3-8 
CODE 10-1 
comment 2-1 
communication statement 8-1, ,~-10 
COMPARE 8-16, 8-17 
COMPARE copy option 8-17, H-21, 8-22 
COMPILE 8-14 
COMPILE ODT-command 12-l 
COMPILE statement 8-4, 8-14 

object <task id> 11-1 
compile task equation list 8-7, 8-14, 11-1 
COMPILEDOK 7-5 
COMPILER 8-7, 8-14 
compiler control image 10-1 

Boolean option 10-1 
immediate option 10-2 
syntax 10-1 
value option 10-2 

COMPLETED 7-5 
COMPLETEDOK 7-5 
compound statement 8-3, 8-16 

2 



concatenation operation 7-11 
CONST ANT 4-8 

B 1000 Systems WFL Language Manual 

constant arithmetic comparison 7-19 
constant declaration 4-1, 4-8 
constant expression 7-19 
constants 2-3 
COPY 8-16 
copy add file 8-16 
copy add volume 8-16 
copy date 8-17, 8-18 
copy d1ensity 8-22 
copy from group 8-19 
copy kind 8-21, 8-22 
copy options list 8-16, 8·-1 7, 11-1 
copy order 8-23 
copy request 8-16, 8-19 
copy statement 8-4, 8-16, 8-32 
creation file attr list 8-20, 11-1 
DATA 8-8 
data specification 8-8, 8-14 
date 3-6 
DATE 8-17 
DA TE copy option 8-1 7 
DAY 7-16 
day interval 3-6, 3-7 
DAYNUMBER 7-16 
dd 3-fr, 8-18 
DDMMYY 7-16 
DDMMYYYY 7-16 
DEBUG 11-1, A-1, A-2 
DECIMAL 7-8, 7-21 
DECIMAL function 7-10 
deck of data cards 8-8 
declaration 4-1 

initial value 4-2, 11-1 
declaration list 3-8, 4-1, 4-5, 4-6 
default family name 8-13, 8-32, 8-39 

override 2-8 
default pack override 2-7, 2-8 
default usercode override 2-8 
DENSITY 8-22 
dependent task 1-1 
DEPENDENTSPECS B-3 
digit 2-2, 2-4, 2-5, 3-6, 3-7 
DIRECTION B-3 
directory name 2-8, 2-10, 8-12, 8-20, 8-32, 

8-39 
directory title 2-10, 8-12, 8-32, 8-39 
DISK 2-7, 2-8, 6-3, 8-13, 8-21, 8-32, 8-39 
DISPLAY 7-16 
DISPLAY statement 8-10, 8-24 
DIV 7--7, 7-20 
DO 8-46 

5025265 3 



DO statement 8-3, 8-24 
DROP 7-13, 7-22 
DROP constant function 7-22 
DROP function 7-13 
DUMMYFILE B-3 
EBCDIC 8-8 
ELAPSEDTIME A-1, A-2 
ELSE 8-11, 8-25 
empty statement 8-1 
END 3-1, 4-5, 4-6, 8-11 
EQL 7-3, 7-4, 7-20 
EQV 7-1, 7-19 
error messages 12-4 
ERRORLIMIT 10-2 

B 1000 Systems WFL Language Manual 

EXECUTE ODT-command 1-1. 8-4 
expressions 7-1 
EXTMODE B-4 
FALSE 2-4 
family name 2-7, 2-8, 2-9, 2-10, 6-2, 8-12, 

8-20, 8-21, 8-32, 8 -39 
FAMILYNAME 6-2, B-4, B-13 
FETCH 3-5 
fetch specification 3-4, 3-5 
FILE 6-1, 7-2 
file attribute 6-1, B-1, C-2 
file attribute assignment 6-1, 6-:~ 
file device mnemonic 6-2, 6-3 
file equation 4-4, 6-1, 8-2, 8-5, :5-7 
file management statement 8-1, 8-9, 12-3 
file mnemonic 6-4, B-1 
file mnemonic primary 6-2, 6-4 
file name 8-8 
file residency 7-6 
file spec 8-19, 8-20, 8-21 
file title 2-9, 3-2, 6-2, 7-2, 8-12, 8-14, 8-27 

8-32, 8-35, 8-39, 8-40, 10-2 
FILEKIND B-4 
filename 2-8, 2-9, 8-12, 8-20, 8-32, 8-39 
FILENAME B-6, B-13 
FLEXIBLE B-1, B-6 
flow of control statement 8-1, 8-3 
FOR 3-4, 8-40 
FRAMESIZE B-3, B-6 
FROM 8-12, 8-19, 8-32, 8-39 
FUNCTION 4-6 
function declaration 4-6 
function id 7-3, 7-8, 7-12 
function invocation 7-2, 7-3, 7-:5, 7-12 
functional declaration 4-1 
GEQ 7-3, 7-4 
GO 8-14 
GTR 7-3, 7-4 
HEAD 7-13, 7-22 

4 



HEAD constant function 7-22 
HEAD function 7-13 

B 1000 Systems WFL Language Manual 

head tail constant function 7-22 
head tail functions 7-12, 7-13 
HEX T-8, 7-21 
HEX function 7-10 
HHMMSS 7-16 
hostname 2-7, 6-2, 8-21, 8-22 
HOSTNAME 6-2, 8-16, 8-17, 8-21, 8-22, B-6 
hyphen 2-2, 2-5 
identifier 2-2, 3-2, 3-3, 4-2, 4-3, 4-4, 

4-5, 4-6, 4-8 
IF 8-25 
IF statt:~ment 8-3, 8-25 
immediate option 10-1, l 0-2 
IMP 7-1, 7-19 
IN 8-39, 11-1 
INCLUDE 10-2 
INCLUDE option 12-5 
independent task 1-1 
INDEXED B-11 
inherited A-1 
initial value 4-2, 4-4, 11-1 
INITIALIZE 8-26 
INITIALIZE statement 8~9, 8-26 
input volume attribute list 8-20, 8-21 

string expression 11-1 
VOLUMEINDEX 11-1 

input volume spec 8-19, 8-20 
KIND 11-1 

INSTRUCTION 8-26 
instruction number 8-26 
INSTRUCTION statement 8-10, 8-26 
INTEGER 3-2, 4-2, 4-5, 4-7, 7-8 
integer assignment statement 8-2 
integer constant 2-4, 5-2, 7-8, 7-21, 10-2 
integer constant expression 3-8, 4-2, 4-8, 

7-19, 7-20, 7-21, 
7-22, 7-23, 8-12 

integer constant id 4-8, 7-8, 7-21 
integer constant maximum 2-4 
integer constant primary 7-20, 7-21, 8-18, 8-26 
integer declaration 4-1, 4-2 
integer expression 5-1, 6-2, 7-3, 7-7, 7-8, 

7-9, 7-13, 7-14, 8-2, 8-11, 
8-20, 8-21, 8-22, 8-34, 
8-35, 8-40, 8-42, 8-44, 
8-44 

order of evaluation 7-7 
integer file attribute 6-2 
INTEGER function 7-10 
integer id 4-2, 7-8, 8-2 
integer parameter id 3-2, 7-8, 7-21 

5025265 5 



B 1000 Systems WFL Language Manual 

integer primary 7-7, 7-8 
integer task attribute 5-1, 7-8, 8-44 
intname 6-1 
INTNAME B-13 
INUSE 7-5, A-1 
in valid character 2-1 
INVISIBLE A-1, A-2 
IO 8-39 
IS 7-2, 7-4, 7-5 
ISNT 7-2, 7-4, 7-5 
job 1-1, 3-1 
JOB 3-1 
job attribute specification 3-1, ,:,_4 
job declaration list 3-1, 3-8 
job disposition 3-2, 3-4 
job initiation 12-1 
job log 12-5 
job parameter list 3-2 
job source FILEKIND 2-1 
job source record format 2-1 
job summary 12-5 

printing 12-5 
job task 1-1 
JOBNUMBER A-1, A-2 
JOBSUMMARY 12-5, A-1, A-3 

default A-3 
JOBSYMBOL 2-1 
keywords 9-2 
KIND 6-2, 8-21, 8-22, 11-1, B-~', B-8 
LABEL B-8 
LENGTH 7-8, 7-21 
LENGTH- function 7-9 
LEQ 7-3, 7-4 
letter 2-2, 2-5 
LIBRARY 8-14 
LIST 10-1, 12-5 
logical operators 7-1 

order of evaluation 7-2 
LP ODT-command A-4 
LSS 7-3, 7-4 
MANDATORY 8-17 
MANDATORY copy option 8-l 7 
MAXCARDS A-1, A-3 
MAXLINES A-1, A-3 
MAXPROCTIME A-1, A-3 
MAXRECSIZE B-2, B-3, B-6, E-8, B-9 
MAXSUBFILES B-8 
MAXTIME 11-1, A-1, A-4 
MAXWAIT A-1, A-4 
MCPLEVEL 7-18 
MINRECSIZE B-3, B-6, B-8, B-9 
MIXNUMBER A-1, A-2, A-4 
mm 3-6, 8-18 

6 



MMDDYY 7-16 
MMDDYYYY 7-16 
mnemonic file attribute 6-2 

B 1000 Systems WFL Language Manual 

mnemonic task attribute 5-1, 5-3, 7-4, 7-12 
MOD 7-7, 7-20 
MODIFY 8-27 
MODIFY ODT-command 12-2 
MODIFY statement 8-9, 8-27, 12-2 
MONTH 7-16 
MYJOB 4-4, 7-9 
MYNAME 6-2, B-9 
MYSELF 4-4, 7-9 
MYUSE B-9 
name 2-5, 2-6, 2-7, 2-8, 2-10, 6-1, 6-2 
name change pair 8-12 
name constant 2-5 
namel 7 2-6, 2-7 
name8 2-6, 2-7 
name9 2-6, 2-8, 2-10 
NEQ 7 .. 3 7-4 7-20 

' ' NEWFILE B-9 
NOT 7--1, 7-14, 7-19 
OCTAL 7-8, 7-21 
OCTAL function 7-9 
ODT command job 12-1 
ODT command START 12-1 
ODT-command 

AX 7-14 
CHANGE 12-3 
COMPILE 12-1 
EXECUTE 1-1 
job 2-1 
LP A-4 
MODIFY 12-2 
OK 3-5, 8-44 
PASSWORD 12-3 
PB 12-5 
PF 3-5 
REMOVE 12-3 
RUN 12-1 
SECURITY 12-3 
WFL 12-3 
WFL statements 12-3 

OF 8-11 
OK 8-44 
OK ODT-command 3-5, 8-44 
ON 3-6, 7-11, 7-21, 8-28 
ON statement 8-9, 8-28 
OPTIONAL B-10 
optional boolean 3-2 
optional integer 3-2 
optional string 3-2 
OR 7-1, 7-19 

5025265 7 



Order of evaluation 
Boolean expression 7-2 
integer expressions 7-7 

ORGANIZATION B-11 

B 1000 Systems WFL Language Manual 

Other Concatenation Operators 7-11 
OTHERUSE 11-1, B-10 
OUT 8-39 
output volume attribute list 8-21, 8-22 

DENSITY 11-1 
SAVEFACTOR 11-1 
string expression 11-1 

output volume spec 8-19, 8-21 
output volume spec KIND 11-1 
PAGESIZE B-10 
PAPERPUNCH 6-3 
PAPERREAD 6-3 
parent 8-4 
PARITY B-10 
password 2-7, 8-31, A-5 
PASSWORD 8-31 
PASSWORD ODT-command 12-3 
PASSWORD statement 8-9, 8-~ 1 
PB ODT-command 12-5 
PF ODT-command 3-5 
POP 10-1 
PORT 6-3 
portability warning 11-1 
Precedence 

boolean expression 7-2 
integer expressions 7-7 

PRINTCOPIES B-11 
PRINTDISPOSITION 11-1, 12-5, A-3, B-11 
PRINTER 6-3 
PRIORITY A-1, A-4 
PRIVATE 8-39 
PROCESS 8-32 
PROCESS statement 8-4, 8-32 
PROTECTED 11-1, A-1, A-4 
PROTECTION B-11 
PUBLIC 8-39 
PUNCH 6-3 
READER 6-3 
READERSORTER 6-3 
real expression 5-1, 7-8, 7-9 
real primary 7-9 
real task attribute 5-1, 7-9 
REFERENCE 8-35 
relational operator 7-3, 7-4, 7-19, 8-44 
RELATIVE B-11 
REMOTE 6-3 
REMOVE 8-32 
REMOVE ODT-command 12-3 
REMOVE statement 8-9, 8-32 

8 



reserved word 2-2 
reserved words 9-1 
RESET 10-1 
RESIDENT 7-2 
RESTART 8-28 
RETURN 8-34 
RETURN statement 8-3, 8-34 
return type 4-6 
RUN 8-35 
RUN ODT-command 12-1 
run parameter list 8-3 5 

B 1000 Systems WFL Language Manual 

RUN statement 8-4, 8-32, 8-35 
SAVEFACTOR 8-20, 8-22, B-12 
SCHEDULED 7-5 
scope of variables 4-9 
SECURITY 8-39 
SECURITY ODT command 12-3 
SECURITY statement 8-9, 8-39 

filename list 11-1 
SECURITYTYPE B-12 
SECURITYUSE B-12 
SET 8-·16, 10-1 
simple task relation 8-44 
source FILEKIND, WFL 2-1 
source listing 12-5 
source record format, WFL 2-1 
special word 2-2 
special words 9-2 
specified parameter 4-5 
specified parameters 4-6 
START 8-40 
START ODT command 12-1 
start parameter list 3-3, 8-40 
START statement 8-4, 8-32, 8-40, 12-1, 12-4 

SYNTAX 11-1 
task equation list 11-1 

ST ARTTIME 3-5 
starttime spec 3-5 
starttime specification 3-4, 3-5 
statement 8-1, 8-11, 8-24, 8-25, 8-28, 8-46 
statement list 3-1, 4-5, 4-6, 8-1, 8-16 
STATUS A-4 
STOP 8-42 
STOP statement 8-9, 8-28, 8-42 
STOPPED 7-5 
STRING 3-2, 4-3, 4-5, 4-7, 7-14, 7-23 
string assignment statement 8-2, 8-3 
string char 2-2, 2-3 
string comparison 7-2, 7-4 
string constant 2-3, 7-12, 7-22 
string constant comparison 7-19, 7-20 
string constant expression 3-5, 4-3, 4-8, 7-14, 

7-20, 7-21, 7-22, 8-12 

5025265 9 



B 1000 Systems WFL Language Manual 

string constant function 7-22, 7-23 
string constant id 4-8, 7-12, 7-2:~ 
string constant primary 7-21, 7-22 
string declaration 4-1, 4-3 
string expression 7-4, 7-8, 7-11, 7-12, 7-13, 

7-14, 8-3, 8-10, 8-11, 8-24, 
8-34, 8-35, 8-40, 8-42, 
8-42, 8-44 

string function 7-12, 7-14 
string id 4-3, 7-12, 8-3 
String Overflow 7-11 
string parameter id 3-3, 7-12, 7-22 
string primary 2-5, 2-10, 3-5, 5-:!, 5-3, 6-4, 

7-11, 7-12, 8-21, 8-22 
SUBROUTINE 4-5 
subroutine control statement 8-l , 8-3 
subroutine declaration 4-1, 4-5 

depth 4-5 
identifier at end 11-1 

subroutine id 4-6, 8-42 
subroutine invocation statement 8-3, 8-42 
SUMMARY 8-17 
SUMMARY copy option 8-1 7 
suspend execution 8-44 
SWl SYSTEM/WFL program A-3 
SWl, SW2, SW3, SW4, SW5, SW6 A-1, A-4 
SYNTAX 3-4, 8-14, 8-40 
SYSTEM 7-18 
system function 7-12, 7-18 
SYSTEM/BACKUP program 12-1, 12-5 
SYSTEM/COPY program 8-16 
SYSTEM/WFL program 8-40, 1 2-1, 12-4 

SWl A-3 
TAIL 7-13, 7-22 
TAIL constant function 7-22 
TAIL function 7-13 
TAKE 7-13, 7-22 
TAKE constant function 7-22 
take drop constant function 7-2:~ 
take drop functions 7-12, 7-13 
TAKE function 7-13 
TAPE 6-3, 8-21 
TAPECASSETTE 6-3, 11-1 
T APEPE 6-3, 8-21 
TAPE7 6-3 
T APE9 6-3, 8-21 
task 1-1 
TASK 4-4, 4-5 
task assignment statement 8-2 
task attribute 5-1, 8-5, A-1, C-1 

assignment 3-4, 4-4, 5-1, 8-2, :~-7 
misusing 8-5 

10 



B 1000 Systems WFL Language Manual 

task control statement 8~ 1, 8-9 
task declaration 4-1, 4-4 
task equation list 8-7, 8-16, 8-27, 8-35, 

8-40 
task id 4-4, 5-3, 7-2, 7-4, 7-5, 7-8, 7-9, 

7-12, 8-2, 8-4, 8-10,' 8-14, 8-16, 
8-26, 8-35, 8-40, 8-42, 8-44 

task initiation statement 8-1, 8-4 
task mnemonic 5-3, A-1 
task mnemonic comparison 7-2, 7-4, 8-44 
task mnemonic primary 5-1, 5-3, 7-4 
task state 7-2, 7-5, 8-44 
task variable 8-4, 8-6 

initialized 8-6 
reuse 8-6 

TASKFAULT 8-27, 8-28 
TASKVALUE A-1, A-5 
Terminate 

abnormal 8-10 
normal 8-42 

THEN 8-25 
time 3--6 
time interval 3-6, 3-7 
TIMEDATE 7-16 
TIMEDATE function 7-12, 7-16 
TITLE 6-2, A-1, A-5, B-1, B-13 
TO 8-12, 8-17, 8-19 
TRUE 2-4 
TYPE 7-18 
underscore 2-2, 2-5 
UNTIL 8-24 
user specification 2-7, 5-· 1, A-5 
USERBACKUPNAME B-1, B-13 
usercode 2-7, 2-8, 2-10 
USERCODE 5-1, 7-12, A-1, A-5 
usercode A-5 
VALUE 4-5 
value option 10-1, 10-2 
variable declaration 4-1 
VOLUMEINDEX 8-21 
WAIT 8-44 
wait specification 8-44 
WAIT statement 8-9, 8-44 
warning, portability 11-1 
WARNSUPR 10-1, 11-1 
WFL advantages 1-1 
WFL concepts 1-1 
WFL END 12-4 
WFL EOJ 12-4 
WFL STOP 12-4 
WHILE 8-46 
WHILE statement 8-3, 8-46 
WITH 8-14 

5025265 11 



B 1000 Systems WFL Language Manual 

yy 3-6, 8-18 
YYDDD 7-16 
YYMMDD 7-16 
YYYYDDD 7-16 
YYYYMMDD 7-16 
YYYYMMDDHHMMSS 7-16 

12 



Documentation Evaluation Form 

Title: ..lLlOOO Systems Work Flow Lai;i~ua~e (WFL) 

Language Manual 
Form No: _5~0~2~5·2~6~5~~~~~~

Date:. September 1986 

Burroughs Corporation is interested in receiving your comments 
and suggestions, regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual. 

Please ch~eck type of Suggestion: 

Cl Addition 

Commen1ts: 

From: 

Name 

Title 

Company 

Address 

0 Deletion D Revision 0 Error 

Phone Number --------------- Date----------

Remove form and mail to: 

Burroughs Corporation 
Documentation Dept., TIO - West 

1300 John Reed Court 
City of Industry, CA 91745 

U.S.A. 


	0001
	0002
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	09-01
	09-02
	10-01
	10-02
	11-01
	12-01
	12-02
	12-03
	12-04
	12-05
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	replya

