PRELIMINARY

Burroughs

B 1700

SOFTWARE DEVELOPMENT LANGUAGE (SDL)
(BNF VERSION)

R

COPYRIGHT @ 1974 BURROUGHS CORPORATION

Printed in U.S. America 28 May 1974 5000847



PUBLICATION CHANGE NOTICE

The following arec replacement pages for the B 1700 Software
Deve lopment Language (SDL) (BNF Version), dated 28 May 1974.

iii 16-27
2-1 16-29
2-3 16-31
6-15 16-33
6-19 16-35
6-23 16-45
10-1 16-47
10-7 17-13
11-3 17-19
12-1 17-27
12-3 17-29
12-5 17-31
12-7 22-3
13-3 23-1
14-1 23-3
16-1 27-1
16-11 27-3

16-13 Alphabetic Index

Printed in U.S. America 11 June 1974 5000847



TABLE OF CONTENTS:

GENERAL ORIENTATION: THE METALANGUAGE
METASYMBOLS OF BNF
BASIC COMPONENTS OF THE SDL LANGUAGE
BASIC STRUCTURE OF THE SDL PROGRAM
FIG 1. PROCEDURE NESTING
FIG 2. SCOPE AND CALLING ABILITY
SEGMENT STATEMENT
DECLARATION STATEMENT
DATA TYPES
DECLARE STATEMENT
NON-STRUCTURED DECLARATIONS
STRUCTURED DECLARATIONS
DYNAMIC DECLARATIONS
PAGED ARRAY DECLARATIONS
FILE DECLARATIONS
SWITCH FILE DECLARATIONS®
DEFINE STATEMENT
FORWARD DECLARATION
USE STATEMENT
PROCEDURE STATEMENT
INTRINSICS
ASSIGNMENT STATEMENTS AND EXPRESSIONS
FIG 3. OPERATOR PRECEDENCE TABLE
UNARY OPERATOR
ARITHMETIC OPERATORS
RELATIONAL OPERATORS
LOGICAL OPERATORS
REPLACE OPERATORS
CONCATENATION
PRIMARY ELEMENTS OF THE EXPRESSION
CONDITIONAL EXPRESSION
CASE EXPRESSION
BUMP
DECREMENT
ASSIGNOR
ADDRESS VARIABLES
INDEXING
ADDRESS GENERATING FUNCTIONS
SUBBIT AND SUBSTR

FETCH.COMMUNICATE .MSG.PTR

DESCRIPTORS
MAKE .DESCRIPTOR
NEXT-PREVIOUS. ITEM

ADDRESS GENERATORS

VALUE VARIABLES

VALUE GENERATING FUNCTIONS
SWAP
SUBBIT AND SUBSTR
DISPATCH
LOCATION

| T T R A O B |
o

COOCVODOINPODOD DU F &6l G = o
DAF— O F = =NV —=ODMAN — = — = N E = — [ —

10-6
10-7
10-8
10-10
11-1
11-1
11-2
11-2
11-3
11-4
1e-1
12-1
12-4
1e-4
12-5
12-6
12-7
12-8
12-8
13-1
13-2
13-3
13-4
13-4

13-5



CONVERT 13-6

LENGTH 13-8
MEMORY SIZE ' 13-8
VALUE DESCRIPTOR 3-8
INTERROGATE INTERRUPT STATUS 13-9
DECIMAL CONVERSION 13-9
BINARY CONVERSION 13-9
TIME FUNCTION 13-10
DATE FUNCTION 13-11
NAME OF DAY 13-11
BASE REGISTER 13-12
LIMIT REGISTER 13-12
CONTROL STACK TOP 13-12
DATA ADDRESS 13-12
SEARCH.LINKED.LIST 13-13
SORT.STEP .DOWN 13-14
SORT . UNBLOCK 13-14%
SORT . SEARCH 13-15
PARITY.ADDRESS 13-16
DYNAMIC MEMORY BASE 13-16
HASH CODE 13-16
NEXT TOKEN 13-17
DELIMITED TOKEN 13-17
EVALUATION STACK TOP 13-18
CONTROL STACK BITS 13-18
NAME STACK TOP 13-18
DISPLAY BASE 13-19
CONSOLE SWITCHES 13-19
SEARCH SERIAL LIST 13-19
SPO INPUT PRESENT 13-20
SEARCH.SDL .STACKS 13-20
EXECUTE ' 13-21
ADDRESS AND VALUE PARAMETE 14-1
[/0 CONTROL STATEMENTS 15-1
OPEN STATEMENT 15-2
CLOSE STATEMENT 15-4
READ STATEMENT 15-6
WRITE STATEMENT 15-8
SEEK STATEMENT 15-11
ACCEPT STATEMENT 15-12
DISPLAY STATEMENT 15-13
SPACE STATEMENT 15-14
SKIP STATEMENT 15-15
EXECUTABLE STATEMENTS 16-1
DO GROUPS 16-2
GROUP TERMINATION STATEMENT 16-4
IF STATEMENT 16-5
CASE STATEMENT 16-7
EXECUTE-PROCEDURE STATEMENT 16-8
- EXECUTE-FUNCTION STATEMENT 16-9
DUMP ' 16-9
TRACE 16-10
SAVE 16-10
RESTORE 16-11

FETCH 16-11



HALT
REINSTATE
ACCESS-FPB
REVERSE STORE
READ CASSETTE
OVERLAY
ACCESS OVERLAY
ERROR COMMUNICATE
SORT
SORT . SWAP
INITIALIZE.VECTOR
THREAD.VECTOR
DISABLE . INTERRUPTS
ENABLE . INTERRUPTS
ACCESS FILE INFORMATION
HARDWARE MONITOR
SAVE STATE
DEBL ANK
FREEZE PROGRAM
THAW PROGRAM
DUMP FOR ANALYSIS
COMPILE CARD INFO
COMMUNICATE
MODIFY INSTRUCTION
NULL STATEMENT

FILE ATTRIBUTE STATEMENT (CHANGE STATEMENT)

STOP STATEMENT

Z1IP STATEMENT

SEARCH STATEMENT

ACCESS FILE HEADER STATEMENT
SEND STATEMENT

RECEIVE STATEMENT

ARRAY PAGE TYPE STATEMENT
CORCUTINE STATEMENT

WAIT STATEMENT

APPENDIX 1: SYNTAX OF THE SDL LANGUAGE
APPENDIX 11: RESERVED AND SPECIAL WORDS
APPENDIX I11: SDL CONTROL CARD OPTIONS

CONTROL CARD OPTIONS FOR B5500
CONTROL CARD OPTIONS FOR B1700
APPENDIX 1V: PROGRAMMING OPTIMIZATION
APPENDIX V: SYSTEM CONTROL CARDS
SYSTEM CONTROL CARDS FOR BS5500
SYSTEM CONTROL CARDS FOR B1700
APPENDIX VI: CONDITIONAL COMPILATION
APPENDIX VII: SDL PROGRAMMING TECHNIQUES

APPENDIX VIII: THE SDL RECOMPILATION FACILITY

APPENDIX 1X: SDL MONITORING FACILITY

APPENDIX X: BURROUGHS B1700 DATA COMMUNICATIONS SDL (DCSDL)

DCSDL EXTENSIONS

DCSDL DECLARATIONS

QUEUE DECLARATIONS
MESSAGE DECLARATION
MESSAGE L INKAGE MECHANISM
DCSDL FUNZTIONS

16-12
16-12
16-13
16-13
16-14%
16-15
16-15
16-15
16-16
16-17
16-17
16-18
16-18
16-18
16-19
16-18
16-20
16-20
16-20
16-20
16-21
16-21
16-22
16-23
16-24
16-25
16-37
16-38
16-39
16-41
16-43
16-45
16-46
16-47
16-49
17-1
18-1
18-1
18-1
19-4
20-1
2l-1
2l-1
21-3
ee-1
23-1
e4-1
25-1
26-1
e6-1
e6-2
26-2
26-5
26-7
26-8



ALLOCATE FUNCTION 26-8

DCSDL. STATEMENTS : 26-10
DC.WRITE STATEMENT 26-10
REMOVE STATEMENT e26-11
QUEUE . INFO STATEMENT ' 26-13
MESSAGE . INFO STATEMENT 26-16
DE.ALLOCATE STATEMENT : 26-17
INSERT STATEMENT 26-17
FLUSH STATEMENT , 26-18
ENABLE .QUEUE STATEMENT e26-20
DISABLE.QUEUE STATEMENT ' 26-21
TRANSFER .MESSAGE STATEMENT 26-22
MCS COMMUNICATE STATEMENT 26-23

APPENDIX X1: SDL CODING SUGGESTIONS 27-1



GENERAL ORIENTATION: THE METALANGUAGE

‘A LANGUAGE USED TO TALK ABOUT A LANGUAGE IS A METALANGUAGE. THE
NATURAL LANGUAGES ARE, IN FACT, METALANGUAGES; FOR EXAMPLE, THE
METALANGUAGE ENGLISH IS USED TO TALK ABOUT THE RELATIONSHIP
E=IR, I.E., VOLTAGE EQUALS THE PRODUCT OF CURRENT AND
RESISTANCE. BACKUS NAUR FORM (BNF), A METALANGUAGE POPULARIZED
BY ITS USE TO DESCRIBE THE SYNTAX OF ALGOL 60 IS USED TO
DESCRIBE THE SYNTAX OF SDL. TO AVOID THE CONFUSION BETWEEN THE
- SYMBOLS OF THE METALANGUAGE AND THOSE OF THE LANGUAGE BEING
DESCRIBED, BNF USES ONLY 4 METALINGUISTIC SYMBOLS. LITERAL
OCCURRENCES OF SYMBOLS, WITH NO BRACKETING CHARACTERS,
REPRESENT THEMSELVES AS TERMINAL SYMBOLS OF THE LANGUAGE.

A GRAMMAR FOR SDL IS WRITTEN AS A SET OF BNF STATEMENTS, EACH OF
WHICH HAS A LEFT PART, FOLLOWED BY THE METASYMBOL "::="

FOLLOWED BY A-LIST OF RIGHT PARTS. THE LEFT PART IS A PHRASE

NAME, AND THE RIGHT PARTS, SEPARATED BY THE METASYMBOL "/" ARE

STRINGS CONTAINING TERMINAL SYMBOLS AND/OR PHRASE NAMES.



1-2

METASYMBOLS OF BNF

METASYMBOL ENGLISH EQUIVALENT USE
1= IS DEFINED AS SEPARATES A PHRASﬁ NAME FROM
ITS DEFINITION
/ OR SEPARATES ALTERNATE DEFINITIONS
OF A PHRASE
<IDENTIFIER> "IDENTIFIER" THE BRACKETING’CHARACTERS INDICATE

THAT THE INTERVENING CHARACTERS
ARE TO BE TREATED AS A UNIT,
[.E., AS A PHRASE NAME

NOTE: BNF ACTUALLY USES A VERTICAL BAR, RATHER THAN
THE SLASH AS INDICATED ABOVE AS A SEPARATOR.
HOWEVER, THE LINE PRINTER WHICH PRODUCES THIS
DOCUMENT HAS NO VERTICAL BAR IN ITS CHARACTER
SET. THEREFORE, A SLASH HAS BEEN USED
THROUGHOUT TO SEPARATE ALTERNATE SYNTACTICAL
DEFINITIONS. WHEN THE SLASH IS ACTUALLY ' PART
OF THE SDL SYNTAX, IT WILL BE WRITTEN AS
{SLASH>.

EACH BNF STATEMENT IS A REWRITING RULE, SUCH THAT WE MAY
SUBSTITUTE ANY RIGHT PART FOR ANY OCCURRENCE OF ITS ASSOCIATED
LEFT PART; AND WE HAVE A CHOICE OF RIGHT PARTS WHICH WE MAY
SUBSTITUTE. THE FOLLOWING EXAMPLE SPECIFIES THE USE OF THESE
RULES TO DETERMINE THOSE STRINGS WHICH ARE GRAMMATICALLY
CORRECT IDENTIFIERS IN SDL.

SLETTERD> ::= A/B/7C/D/EV/VTF /G ) H / I‘/ J / K'/ L/ M/
N/7O/7P/Q/ZRY/ZVS /7T /7 U/V/NVNYIWYZXYITY ) Z

KDIGIT> ::= c/1/e/73/4/7576/77/7/78/789

<DOT> ::=

CIDENTIFIERD = CLETTER>

/ <IDENTIFIER> <LETTER>
/ <IDENTIFIER> <DIGIT>
/ <IDENTIFIER> <DOT>

XYZ12.B4 IS A PROPER SDL <IDENTIFIER> SINCE IT CAN BE GENERATED
AS A TERMINATING SET OF SYMBOLS BY USING THE BNF RULES.



<IDENTIFIER>
<IDENTIFIER>
<IDENTIFIER>
<IDENTIFIER>
<IDENTIFIER>
<IDENTIFIER>
<IDENTIFIER>
<IDENTIFIER>

<DIGIT>
LETTER> 4
<DOT> B4
<DIGIT> .B4
<DIGIT> 2.B4
CLETTER> 12.B4
{LETTER> Z12.B4%

<LETTER> YZ12.B4

XYZ12.B4

NOTICE THAT THE BNF RULES DO NOT, IN ANY WAY, LIMIT THE NUMBER
OF LETTERS, DIGITS, AND DOTS WHICH COMPRISE THE <IDENTIFIERD.
IN SUCH CASES, FURTHER SEMANTIC RULES WILL BE SPECIFIED; E.G.,
AN SDL <IDENTIFIER> IS LIMITED TO A MAXIMUM OF 63 CHARACTERS.



IN ORDER TO UNDERSTAND SDL GRAMMAR, THE USER SHOULD BE FAMILIAR

BASIC COMPONENTS OF THE SDL‘LANGUAGE

WITH THE MOST BASIC ELEMENTS OF THE SDL LANGUAGE BELOW.

KDIGIT> ::=

<LETTER>

{SPECTAL CHARACTER)D

CAMPERSAND>

“SLASH>

i

<BLANK?>

"

NOTE :

CIDENTIFIER> ::=

RESTRICTION

1.

2.

0/ 172/

D A/ B/7C /7 DY/

{AMPERSAND> /

/ = / <SLASH> /

P = 8

/

/ 8/ 9

/X /7Y /2

i/, /w7 K

/ </
/S > R =+
(717

<BLANK>

{BLANK?> IS THE OCCURENCE OF ONE NON-VISIBLE

CHARALTER " ".

/ <IDENTIFIER> <DIGIT>
/ <IDENTIFIER> <DOT>

S:

AN IDENTIFIER MUST BEGIN WITH A LETTER.

AN IDENTIFIER MAY NOT CONTAIN BLANKS.

AN IDENTIFIER MAY CONTAIN A MAXIMUM OF B3

CHARACTERS.

EXCEPT FOR SEGMENT AND  GROUP
RESERVED WORDS MAY NOT BE USED AS

IDENTIFIERS,
IDENTIFIERS.

/

)

CLETTER> 7/ <IDENTIFIER> <LETTER>

/

*



OOT> o=

"SPECIAL" WORDS MAY BE USED FOR SEGMENT AND
DO-GROUP CIDENTIFIERDS WITHOU(« LOSING THEIR
SPECIAL SIGNIFICANCE IN SDL.

IN ALL OTHER CASES, "SPECIAL" WORDS MAY BE
USED AS IDENTIFIERS, HOWEVER, THEY LOSE THEIR
SPECIAL SIGNIFICANCE THROUGHOUT THE ENTIRE
PROGRAM WHEN DECLARED AT LEXIC LEVEL 0. WHEN
DECLARED AT ANY GREATER LEXIC LEVEL, THEY ONLY
LOSE THEIR SPECIAL MEANING  WITHIN = THE
PROCEDURE IN WHICH THEY ARE DECLARED.

(ALSO SEE "BASIC STRUCTURE OF THE SDL PROGRAM"
AND "APPENDIX II1I")

CCOMMENT STRING> ::= (SLASH>* <COMMENT TEXT> #<{SLASH>

RESTRICTIONS:

.

THE PAIR /* PRECEDING THE <COMMENT TEXT> MUST
APPEAR AS ADJACENT SYMBOLS. SIMILARILY, THE
PAIR */ FOLLOWING THE <COMMENT TEXT> MUST ALSO
APPEAR AS ADJACENT SYMBOLS.

CCOMMENT TEXT> ::= <EMPTY>

<EMPTY>

NOTE :

/ (COMMENT TEXT CHARACTER>
/ <COMMENT TEXT CHARACTER>
(COMMENT TEXT>

<CEMPTY? IS THE NULL SET OR THE OCCURENCE OF
NOTHING.

CCOMMENT TEXT

CHARACTER>

{CARD TERMINATOR>

1= PIGIT>

/ LLETTER>
(SPECIAL CHARACTER>
AN BV BV 1

~

X

RESTRICTIONS:

1.

A X IS TREATED AS ANY OTHER STRING CHARACTER
IF 1T IS CONTAINED WITHIN A <CHARACTER STRING>
OR . IN <COMMENT TEXT>. HOWEVER, IN ALL OTHER
CASES, A X WILL AUSE THE SCANNING OF THE
CURRENT SOURCE [IAGE TO TERMINATE, AND CAUSE
SCANNING TO CONTIIJE IN THE NEXT SOURCE IMAGE.



<{NUMBER?>

]

<BINARY DIGIT>

{BINARY DIGITS>

(QUARTAL DIGIT>

{QUARTAL DIGITS

<OCTAL DIGIT>

<OCTAL DIGITS>

it

CHEX DIGITS>

<HEX DIGITS>

<BIT GROUP>: :=

<BIT STRING>

<BITS>::=

RESTRICTIONS:

>

"

"

1}

<DIGIT> 7/ <NUMBER> <DIGIT>

NOTE: RANGE OF SIGNED NUMBERS -(2 EXP 23) TO
(e EXP 23)-1. RANGE OF UNSIGNED
NUMBERS 0 TO (2 EXP 24)-1.
0 /7 1 7/ <COMMENT STRING>

{BINARY DIGIT>
/ <BINARY DIGITS> <(BINARY DIGIT>

{BINARY DIGIT> /7 2 /7 3

{QUARTAL DIGIT>
/ <QUARTAL DIGIT> <QUARTAL DIGITS>

{QUARTAL DIGIT> v 4 /7 5/ 6.7 7

(OCTAL DIGIT>
/ <OCTAL DIGITS> <OCTAL DIGIT>

<OCTAL DIGIT>
/8/9/A/B/C/D/E/F

<HEX DIGIT>
/ <HEX DIGITS> <HEX DIGIT>

(4) <HEX DIGITS>
/ (3) <OCTAL DIGITS>
(2) <QUARTAL DIGITS>
/ (1) <BINARY DIGITS>

~N

e<BITS>®

(BIT GROUP> / <HEX DIGITS>
/ <BITS> <BIT GROUP>
/ <EMPTY)>

1. IF NO BIT MODE 1S SPECIFIED (IE. THE INDICATOR
IN PARENTHESES 1S OMITTED). "HEX" IS

DIGIT
ASSUMED.
STRING DOES NOT START WITH A MODE INDICATOR;
IHE MODE IS SWITCHED TO "HEX", AN
EXPLICIT "(4)" IS REQUIRED.

WHEN

THIS CAN ONLY BE ASSUMED IF THE BIT

e. AS NOTED ABOVE, A <COMMENT STRING> MAY APPEAR
ANYWHERE WITHIN A <BIT STRING>, BUT NOT WITHIN
THE =~ PARENTHESES BOUNDING THE INDICATOR DIGIT.
THE PRESENCE OF A <(COMMENT STRING> WILL, IN NO

WAY,

ALTER THE VALUE OF THE <BIT STRING>



CONTAINING IT.

EXAMPLE:
®(3)6330316260/* THIS */313230/% 1S */63302560/* THE */
4321626360/* LAST */512523465124/* RECORD */e@

<STRING> ::=  (CHARACTER STRING)
/ <BIT STRING>

<CHARACTER STRING> ::= "¢(STRING CHARACTER LIST>"

<STRING CHARACTER LIST> ::= <EMPTY>

/ <STRING CHARACTER>
{STRING CHARACTER LIST>

<STRING CHARACTER> ::= <DIGIT> / <LETTER> / <SPECIAL CHARACTER>
/ won / . / ” / x
RESTRICTIONS:
1. IF A QUOTE SIGN IS DESIRED IN A CHARACTER

STRING, THEN TWO ADJACENT QUOTE SIGNS MUST
APPEAR IN THE TEXT.

EXAMPLE : DECLARE STRING CHARACTER (8);
QUOTE CHARACTER (1)
STRING=-"AB""CDE" ;
QUOTE L . "W ;

AFTER EXECUTION, STRING WILL CONTAIN: AB"CDE,
AND QUOTE WILL CONTAIN: ".

NOTE: A (CHARACTER STRING> MAY CONTAIN A MAXIMUM OF
256 CHARACTERS.

<CONSTANT> ::= <NUMBER> / <STRING> / TODAYS.DATE
’ / SEQUENCE . NUMBER
/ HEX.SEQUENCE .NUMBER

NOTE: “TODAYS.DATE" REPRESENTS THE DATE AND TIME OF
COMPILATION OF THE PROGRAM. IT IS THE SAME AS
THE DATE AND TIME APPEARING AT THE TOP OF THE
PROGRAM LISTING., IT [S A CHARACTER STRING WITH
THE FOLLOWING FORMAT =~=-
"MM/DD/YY HH:MM"

NOTE: "SEQUENCE .NUMBER™" REPRESENTS A {CHARACTER
STRING> OF 8 CHARACTERS WHICH [S THE SEQUENCE

NUMBER OF THE CURRENT SOURCE [IMAGE BEING
CONPILED.

"HEX.SEQUENCE .NUMBER" REPRESENTS A BIT STRING

.



OF 8 (HEX) DIGITS WHICH IS THE SEQUENCE NUMBER
OF THE CURRENT SOURCE IMAGE LINE BEING
COMPILED. IF THIS SEQUENCE FIELD IS BLANK,
THEN HEX.SEQUENCE .NUMBER = @00000000e.

IF THE CURRENT SOURCE [IMAGE LINE SEQUENCE
NUMBER IS 12753000, THEN ON THIS LINE:

SEQUENCE .NUMBER = "12753000" ~
HEX.SEQUENCE .NUMBER = @12753000e .

2-5



BASIC STRUCTURE OF THE SDL PROGRAM

<PROGRAM>

{DECLARATION STATEMENT
LIST> ::=

<DECLARATION STATEMENT>

<{PROCEDURE STATEMENT
LIST> ::=

<{PROCEDURE STATEMENT>

{EXECUTABLE STATEMENT
LIST> ::=

<EXECUTABLE STATEMENT>

NN N N NN NN NN NN NN

{DECLARATION STATEMENT LIST>
{PROCEDURE STATEMENT LIST>
{EXECUTABLE STATEMENT LIST>
FINI

<EMPTY>
(DECLARATION STATEMENT>
(DECLARATION STATEMENT LIST>

{DECLARE STATEMENT>;

<DEFINE STATEMENT>;

(FILE DECLARATION STATEMENT>;
{SWITCH FILE DECLARATION
STATEMENT >;

{FORWARD DECLARATION>

CUSE STATEMENT>;

{SEGMENT STATEMENT>
(DECLARATION STATEMENT>

<EMPTY>
{PROCEDURE STATEMENT>;
{PROCEDURE STATEMENT LIST>

<{PROCEDURE DEFINITION>
{SEGMENT STATEMENT>
{PROCEDURE STATEMENT>

{EXECUTABLE STATEMENT>
{EXECUTABLE STATEMENT>
{EXECUTABLE STATEMENT LIST>

<DO GROUP>;

<IF STATEMENT>

(CASE STATEMENT>;

(ASSIGNMENT STATEMENT>;
{EXECUTE-PROCEDURE STATEMENT>;
{EXECUTE-FUNCTION STATEMENT>;
{GROUP TERMINATION STATEMENT>;
{1/0 CONTROL STATEMENT>
{MODIFY INSTRUCTION>;

(NULL STATEMENT>

{STOP STATEMENT>;

{FILE ATTRIBUTE STATEMENT>;
{SEND STATEMENT>

(RECEIVE STATEMENT>

{ACCESS FILE HEADER STATEMENT>



3-2

(SEARCH STATEMENT>

<ZIP STATEMENT>

{ARRAY PAGE TYPE STATEMENT>
{COROUTINE STATEMENT>

<WAIT STATEMENT>;

{SEGMENT STATEMENT)>
{EXECUTABLE STATEMENT>

N NN NN N

A PROGRAM, WRITTEN IN SDL, MUST FOLLOW THE SEQUENTIAL STRUCTURE
DESCRIBED IN THE ABOVE SYNTAX. THAT IS, THE EXECUTABLE SECTION
OF THE PROGRAM MAY NOT APPEAR UNTIL ALL PROCEDURES HAVE BEEN
DEFINED, AND PROCEDURES MAY NOT BE DEFINED BEFORE THE FORMATS
OF DATA ITEMS (VARIABLES, ARRAYS, ETC.) HAVE BEEN DECLARED.
"FINI" MUST PHYSICALLY OCCUR AS THE FINAL STATEMENT IN THE
PROGRAM.

THE PROCEDURE STATEMENT, (INCLUDING DECLARATION, PROCEDURE, AND
EXECUTABLE STATEMENTS), IS THE BASIC STRUCTURE IN SDL. AN SDL
PROGRAM IS A COLLECTION OF PROCEDURES, EACH OF WHICH CAN BE
DESCRIBED FOR CONCEPTUAL PURPOSES AS A MICROCOSM OF THE
PROGRAM. ANY GIVEN PROCEDURE MAY CONTAIN A COLLECTION OF OTHER
PROCEDURES WITHIN ITSELF. THIS PROCESS IS KNOWN AS "NESTING".

THE "LEXICOGRAPHIC LEVEL" OF ANY STATEMENT IN THE PROGRAM IS
EQUAL TO THE NUMBER OF PROCEDURES IN WHICH IT IS NESTED. THE
PROGRAM ITSELF WILL ALWAYS BE LEXIC LEVEL 0, AND NO PROCEDURE
MAY HAVE A LEXIC LEVEL GREATER THAN 15. THE DIAGRAM IN FIGURE
1 ILLUSTRATES PROCEDURE NESTING AND LEXIC LEVELS.

IT IS IMPORTANT TO UNDERSTAND THE RELATIONSHIPS BETWEEN THESE
NESTED PROCEDURES. AS FIGURE 1. INDICATES, THE NAME OF ANY
GIVEN PROCEDURE IS CONTAINED IN THE PROCEDURE IN WHICH IT IS
NESTED AT THE NEXT LOWER LEXIC LEVEL. FOR EXAMPLE, PROCEDURE D
IS A LEXIC LEVEL 2 PROCEDURE, HOWEVER, ITS NAME, "D", IS PART
OF LEXIC LEVEL 1.

THE "SCOPE" OF ANY GIVEN PROCEDURE IS RECURSIVELY DEFINED AS:
1) THE PROCEDURE ITSELF,
c) ANY PROCEDURE(S) NESTED WITHIN THE PROCEDURE,
3) ANY PROCEDURE (AND ITS NESTED PROCEDURES)
WHOSE NAME APPEARS AT THE SAME LEXIC LEVEL AND
WITHIN THE SAME PROCEDURE AS ITS OWN. NAME, AND

4) THE PROCEDURE IN WHICH ITS OWN NAME IS
DEF INED.



3-3

IN FIGURE 1., ONE CAN SEE THAT THE SCOPE OF PROCEDURE B
INCLUDES:

1) ITSELF, 1.E., PROCEDURE B
2) THE NESTED PROCEDURES WITHIN B (C AND D),
3) THE OTHER PROCEDURES DEFINED AT LLO: E (AND

ITS NESTED PROCEDURES F AND G) AND PROCEDURE
H (AND ITS NESTED PROCEDURES J, K, L, M, N,
AND P.

4) THE PROCEDURE WHICH DEFINES B, IN THIS CASE,
THE PROGRAM A.

NOTE: ALL THE LEXIC LEVEL 0 PROCEDURES HAVE SCOPE TO
EACH OTHER. THIS OCCURS BECAUSE OF RULE 4
ABOVE, WHEREIN THE PROGRAM ITSELF IS THOUGHT
TO BE A "PROCEDURE".

IN THE SAME MANNER, THE SCOPE OF PROCEDURE J INCLUDES J, K, L,
M, N, P, AND H.

BY UNDERSTANDING THE RELATIONSHIPS BETWEEN THE VARIOUS
PROCEDURES, IT IS POSSIBLE TO DETERMINE WHICH PROCEDURES MAY BE
INVOKED BY ANY GIVEN PROCEDURE. SDL HAS BEEN DEFINED SO THAT
ANY PROCEDURE X MAY CALL OR INVOKE ANY PROCEDURE Y, IF THE
SCOPE OF Y ENCOMPASSES X.

IN FIGURE 1., PROCEDURE J MAY CALL PROCEDURES J,K,L,M,H,E, AND
B BECAUSE EACH OF THESE CONTAINS J IN ITS SCOPE.

NOTE: J CANNOT CALL THE PROGRAM A SINCE THE NAME OF
THE PROGRAM, IF THERE IS ONE, EXISTS OUTSIDE
THE PROGRAM AND 1S, THEREFORE, NOT COMPILED;
HOWEVER, J MAY ACCESS THE DATA CONTAINED IN A
(I1.E., Al, A2, A3, AND A4).

FIGURE 2 SHOWS THE RELATIONSHIP BETWEEN SCOPE AND CALLING
ABILITY FOR PROGRAM A.



PROGRAM A

DECLARE A1, A2, A3, AY;

PROCEDURE

PROCEDURE

PROCEDURE

LLO

B;

DECLARE B1, B2, B3;
PROCEDURE C;

DECLARE C1, Ce, C3;
EXECUTABLE STATEMENTS;
END C; :

PROCEDURE D;

EXECUTABLE STATEMENTS;

END D;
EXECUTABLE STATEMENTS;
END B;

E.

DECLARE El, E2;
PROCEDURE F ;

DECLARE F1, F2, F3;
EXECUTABLE STATEMENTS;
END F;

PROCEDURE G;

DECLARE G1, G2;
EXECUTABLE STATEMENTS;

END G;
EXECUTABLE STATEMENTS;
END E;

H.

DECLARE H1, H2, H3, H4;
PROCEDURE J;

PROCEDURE K;

PROCEDURE L;

LL1 LLe LL3*

PROCEDURE M;

PROCEDURE Nj;

PROCEDURE P}

EXECUTABLE STATEMENTS;

FINI

* LL = LEXICOGRAPHIC LEVEL

FIG 1. PROCEDURE NESTING



SEGMENT STATEMENT

(SEGMENT STATEMENT> ::= SEGMENT (<SEGMENT IDENTIFIER>);
/ SEGMENT.PAGE (<SEGMENT IDENTIFIER>
OF <PAGE IDENTIFIER>);

{SEGMENT IDENTIFIER> ::= CIDENTIFIERD

{PAGE IDENTIFIER> ::= CIDENTIFIER>

AS THE BNF INDICATES, THE <SEGMENT STATEMENT> MAY OCCUR ANYWHERE
WITHIN AN SDL PROGRAM. ITS PURPOSE IS TO REDUCE THE CORE
REQUIREMENT OF THE PROGRAM BY ALLOWING SEGMENTS TO OVERLAY EACH
OTHER.

THERE IS A MAXIMUM OF 16 PAGES WITH 64 SEGMENTS PER PAGE. THE
SCGMENT NAMES REPRESENT A PAGE NUMBER-SEGMENT NUMBER PAIR.

IT IS ONLY NECESSARY TO SPECIFY SEGMENT.PAGE ONCE FOR EACH PAGE.
EVERY SUBSEQUENT SEGMENT WILL BE COMPILED TO THAT PAGE UNTIL
ANOTHER SEGMENT.PAGE IS ENCOUNTERED.

IF THERE ARE NO SEGMENT.PAGE SPECIFICATIONS, ALL SEGMENTS WILL
BE COMPILED TO PAGE ZERO, AND THERE MAY BE NO MORE THAN B4
SEGMENTS TOTAL. IF A PROGRAM IS TO BE SEGMENTED, THE FIRST
STATEMENT MUST BE A <SEGMENT STATEMENT>. OTHERWISE A WARNING
MESSAGE WILL APPEAR IN THE SOURCE LISTING.

THERE ARE TWO TYPES OF SEGMENTS: "PERMANENT" AND "TEMPORARY".
EVERY STATEMENT FOLLOWING A PERMANENT <SEGMENT STATEMENT> WILL
BE COMPILED TO THAT SEGMENT UNTIL ANOTHER <SEGMENT STATEMENT>
IS READ. NON-CONSECUTIVE STATEMENTS MAY BE COMPILED TO THE SAME
SEGMENT BY USING THE SAME <SEGMENT IDENTIFIER>. NOTE, HOWEVER,
THAT <DO GROUP>S (SEE "DO GROUPS") AND PROCEDURES MUST END IN
THE SAME SEGMENT IN WHICH THEY BEGIN.

THE FOLLOWING EXAMPLE ILLUSTRATES THE USE OF THE "PERMANENT"
(SEGMENT STATEMENT>.



SEGMENT (XX);

DECLARE Al, A2, A3, AY;

PROCEDURE B;

DECLARE B!, B2, B3;

SEGMENT (YY)
PROCEDURE C;

END C;
PROCEDURE D;

END D;
SEGMENT (XX) ;

END B;

FINI

ONLY PROCEDURES C AND D HAVE BEEN COMPILED TO THE SEGMENT "YY".
SEGMENT "XX" IS SEGMENT ZERO AND INCLUDES EVERYTHING ELSE.

A <SEGMENT STATEMENT> IS TREATED AS

"TEMPORARY"

ONLY WHEN IT

PRECEDES A "SUBORDINATE EXECUTABLE STATEMENT" WITHIN ANY OF THE

FOLLOWING STATEMENTS:

{ACCESS FILE HEADER STATEMENT>

(CASE STATEMENT>
<IF STATEMENT)>
<{READ STATEMENT>
<{RECEIVE STATEMENT>

{SEARCH DIRECTORY STATEMENT>
{SEND STATEMENT>

{SPACE STATEMENT>

{WRITE STATEMENT>

{OPEN STATEMENT>

IN THESE SPECIFIC CASES, THE SEGMENT CHANGE APPLIES ONLY TO THE
SUBORDINATE STATEMENT FOLLOWING IT. FOR EXAMPLE, THE SYNTAX FOR
THE <IF STATEMENT> COULD BE WRITTEN AS FOLLOWS:

{IF STATEMENT> ::=

IF <EXPRESSION

THEN <SUBORDINATE EXECUTABLE STATEMENT>
/ IF <EXPRESSION>

THEN <SUBORDINATE EXECUTABLE STATEMENT>

ELSE <SUBORDINATE EXECUTABLE STATEMENT)>



4-3

THE SEGMENTATION OF A HYPOTHETICAL <IF STATEMENT> 1S PRESENTED
BELOW TO ILLUSTRATE THE USE OF A "TEMPORARY" {SEGMENT
STATEMENT>.

SEGMENT (A);
PROCEDURE X;

IF Y>Z THEN Y:=Z; ELSE
SEGMENT (B);
DO SOME.FUNCTION;

*x X ok Kk ok

END SOME.FUNCTION;

Z := C+D
END X;

* COMPILED TO SEGMENT (B)

BECAUSE THE <DO GROUP>, "SOME.FUNCTION", IS A SUBORDINATE
{EXECUTABLE STATEMENT> IN THE <IF STATEMENT>, SEGMENT  (B)
AUTOMATICALLY ENDS WHEN THE <DO GROUP> IS TERMINATED. ALL
STATEMENTS FOLLOWING ARE COMPILED TO SEGMENT (A).

NOTICE THE DISTINCTION BETWEEN SEGMENT (A), A "PERMANENT"
{SEGMENT STATEMENT>, AND SEGMENT (B), A "TEMPORARY" ONE.



DECLARATION STATEMENT

DATA TYPES

THREE MAIN TYPES OF DATA FIELDS MAY BE DECLARED IN SDL:

1)y BIT
2) CHARACTER
3) FIXED

A BIT FIELD CONSISTS OF A NUMBER OF BITS SPECIFIED BY A NUMBER
IN PARENTHESES FOLLOWING THE RESERVED WORD "BIT". THE FIELD MAY
BE A MAXIMUM OF 65535 BITS.

A CHARACTER FIELD IS A NUMBER OF CHARACTERS, 8 BITS EACH,
SPECIFIED BY A NUMBER IN PARENTHESES FOLLOWING THE RESERVED
WORD "CHARACTER". THE FIELD MAY BE A MAXIMUM OF 8191
CHARACTERS.

A  FIXED DATA FIELD IS A 24-BIT SIGNED NUMERIC FIELD WHERE THE
HIGH ORDER BIT IS INTERPRETED AS THE SIGN. NEGATIVE NUMBERS ARE
REPRESENTED IN 2-S COMPLEMENT FORM.

THE RANGE OF SIGNED NUMBERS (I.E., FIXED DATA FIELDS) IS -(2 EXP
23) TO (2 EXP 23)-1. THE RANGE OF UNSIGNED NUMBERS (BIT DATA

FIELDS) IS 0 TO (2 EXP 24)-1. BIT FIELDS, AS NOTED ABOVE, ARE

NOT RESTRICTED TO 24 BITS. HOWEVER, FOR ARITHMETIC PURPOSES,

ONLY THE LOW-ORDER 24 BITS WILL BE CONSIDERED.



DECLARE STATEMENT

{DECLARE STATEMENT>

DECLARE <DECLARE ELEMENT>
/ <DECLARE STATEMENT>, <DECLARE ELEMENT>

<DECLARE ELEMENT>

{DECLARED PART>
<TYPE PART)>

/ <STRUCTURE LEVEL NUMBER>
{STRUCTURE DECLARED PART>
{STRUCTURE TYPE PART)>

/ DYNAMIC <SIMPLE IDENTIFIER>
{DYNAMIC TYPE PART>

/ PAGED <ELEMENTS-PER-PAGE PART>
<ARRAY IDENTIFIER> <ARRAY BOUND>
{TYPE PART>

THE {DECLARE STATEMENT> SPECIFIES THE ADDRESSES AND
CHARACTERISTICS OF CONTENTS OF CORE STORAGE AREAS.

ANY NUMBER OF <DECLARE ELEMENT>S MAY BE DECLARED IN ONE <DECLARE
STATEMENT>, AND MUST BE SEPARATED BY COMMAS. BEST CODE IS
GENERATED IF ALL ELEMENTS ARE DECLARED WITHIN ONE <DECLARE
STATEMENT>. (SEE APPENDIX VII).

THE MAXIMUM NUMBER OF DATA ELEMENTS (INCLUDING FILLERS, DUMMYS,
AND IMPLICIT FILLERS) CONTAINED IN ONE STRUCTURE VARIES AS TO
THE COMPILIER BEING USED, (CURRENTLY 50 - SMALL VERSION, 75 -
LARGE VERSION). ANY ATTEMPT TO DECLARE MORE WILL CAUSE A TABLE
OVERFLOW ERRCR TC BE DETECTED AT COMPILE TIME.

AN ARRAY MAY HAVE A MAXIMUM OF 65535 ELEMENTS, EACH BEING A
MAXIMUM OF 65535 BITS (8191 CHARACTERS).

THE FIVE TYPES OF <DECLARE ELEMENT>S ARE EACH DISCUSSED BELOW.



6-2

NON-STRUCTURED DECLARATIONS

{DECLARE ELEMENT> ::= {DECLARED PART>
{TYPE PART>/...
<DECLARED PART> {COMPLEX IDENTIFIER>
/ (KCOMPLEX IDENTIFIER LIST>)
/ <COMPLEX IDENTIFIER> REMAPS
(REMAP IDENTIFIER>

<COMPLEX IDENTIFIER
LIST> ::= {COMPLEX IDENTIFIER>
/ <COMPLEX IDENTIFIER>,
{COMPLEX IDENTIFIER LIST>

<COMPLEX IDENTIFIER> ::= {SIMPLE IDENTIFIER>
/ <ARRAY IDENTIFIER> <ARRAY BOUND>

{SIMPLE IDENTIFIER>

CIDENTIFIER>

{ARRAY IDENTIFIER> CIDENTIFIERD

<ARRAY BOUND> (<NUMBER>)

<REMAP IDENTIFIER> BASE
/ <(SIMPLE IDENTIFIER>

/ CARRAY IDENTIFIER>

<TYPE PART> FIXED
/ CHARACTER <FIELD SIZE>

/ BIT <FIELD SIZE>

{FIELD SIZE> (<NUMBER?>)

(

DATA MAY BE DECLARED AS SIMPLE, HAVING ONE OCCURRENCE, OR AS
SUBSCRIPTED, HAVING AS MANY OCCURRENCES AS SPECIFIED BY THE
{ARRAY BOUND>.

THE <TYPE PART> SPECIFIES THE TYPE OF DATA IN THE FIELD AND THE
FIELD SIZE. '

AS THE SYNTAX INDICATES, DIFFERENT DATA FIELDS HAVING THE SAME
FORMAT MAY BE DECLARED COLLECTIVELY AS A <COMPLEX IDENTIFIER
LIST>.



6-3

THE FOLLOWING EXAMPLES ILLUSTRATE THE VARIOUS OPTIONS AVAILABLE
IN THIS TYPE OF <DECLARATION STATEMENT>.

DECLARE A FIXED,
B CHARACTER (10),
C BIT (409,
(D, E, F (5)) BIT (10),
G (20) FIXED,
H (5) CHARACTER (8);

WHERE
1. A IS A 24 BIT SIGNED NUMERIC FIELD.
= B IS A 10 BYTE CHARACTER FIELD.
3. C IS A 40 BIT FIELD.
4. D AND E ARE 10-BIT FIELDS EACH.
5. F 1S ALSO A 10-BIT FIELD AND OCCURS 5 TIMES.
6. G OCCURS 20 TIMES AND IS A 24-BIT SIGNED
NUMERIC FIELD.
7. H 1S A 6-BYTE CHARACTER FIELD OCCURRING 5

TIMES.

DATA FIELDS MAY BE RE-FORMATTED BY THE USE OF THE REMAPPING
DEVICE:

{COMPLEX IDENTIFIER> REMAPS <REMAP IDENTIFIER> <TYPE PART>

REMAPPING 1S SUBJECT TO THE SAME GENERAL RULES DISCUSSED ABOVE.
THE FOLLOWING EXAMPLE BEST ILLUSTRATES ITS USE.

A FIXED, B BIT (509,
AA REMAPS A CHARACTER (3),
BB(2) REMAPS B FIXED;

NOTE THAT BB SPECIFIES 48-BITS (OR 2 ELEMENTS, 24-BITS EACH).
THE LAST TWO BITS WILL BE CONSIDERED AS AN IMPLIED FILLER BY
THE COMPILER. A FIELD MAY NOT BE REMAPPED LARGER THAN ITS
ORIGINAL SIZE.

THERE IS NO LIMIT ON THE NUMBER OF TIMES A FIELD MAY BE
REMAPPED. A FIELD WHICH HAS REMAPPED ANOTHER MAY [ITSELF BE
REMAPPED. THE REMAP OPTION SPECIFIES THAT THE IDENTIFIER ON THE
LEFT SIDE OF THE RESERVED WORD "REMAPS" WILL HAVE THE SAME
STARTING ADDRESS AS THE IDENTIFIER ON THE RIGHT SIDE.



6-4

FOR RULES CONCERNING THE REMAPPING OF DYNAMIC OR FORMAL
DECLARATIONS, SEE THOSE SECTIONS.

A DATA FIELD MAY BE REMAPPED TO BASE WHICH WILL GfVE THE FIELD
A RELATIVE ADDRESS OF ZERO. FOR EXAMPLE:

DECLARE X REMAPS BASE BIT(7);
THIS DEVICE IS USED AS A FREE STANDING DECLARATION SINCE IT DOES

NOT REMAP A PREVIOUSLY DECLARED DATA ITEM AND IS USED PRIMARILY
WITH DATA TO BE INDEXED (SEE "ADDRESS VARIABLES").



STRUCTURED DECLARATIONS

{DECLARE ELEMENT> .../<STRUCTURE LEVEL NUMBER>
{STRUCTURE DECLARED PART>

(STRUCTURE TYPE PART>/...

<{STRUCTURE LEVEL

NUMBER> ::= {NUMBER>

{STRUCTURE DECLARED

PART> ::= {DECLARED PART>
/ FILLER

/ <DUMMY PART> REMAPS <REMAP IDENTIFIER>

<DECLARED PART> SEE "NON-STRUCTURED DECLARATIONS"

<DUMMY PART> ::= DUMMY <ARRAY BOUND PART>

<{ARRAY BOUND PART>

<EMPTY>
/ <ARRAY BOUND>

<ARRAY BOUND> ::= (<NUMBER>)

{REMAP IDENTIFIER> BASE
/ <SIMPLE IDENTIFIER>

/ <ARRAY IDENTIFIER>

<{STRUCTURE TYPE PART> <EMPTY)

/ <TYPE PART>

<TYPE PART> SEE "NON-STRUCTURED DECLARATIONS"

SDL ALLOWS THE STRUCTURING OF DATA WHERE A FIELD MAY BE
SUBDIVIDED INTO A NUMBER OF SUB-FIELDS, EACH OF WHICH HAS ITS
OWN IDENTIFIER. THE WHOLE STRUCTURE IS ORGANIZED IN A
HIERARCHICAL FORM, WHERE THE MOST GENERAL DECLARATION IS A
LEVEL O01(OR 1). NO DECLARATION MAY BE ON A LEVEL GREATER THAN
899. A SUBDIVIDED FIELD IS CALLED A GROUP ITEM, AND A FIELD NOT
SUBDIVIDED IS KNOWN AS AN ELEMENTARY ITEM.

THE TYPE AND LENGTH OF DATA NEED NOT BE SPECIFIED ON THE GROUP
LEVEL. ALL ELEMENTARY ITEMS MUST INDICATE TYPE AND LENGTH, AND
THE COMPILER WILL ASSUME TYPE BIT AND ADD THE LENGTHS OF THE
COMPONENTS TO DETERMINE THE LENGTH OF THE GROUP ITEM. FOR
EXAMPLE :



DECLARE 01 A,
0e C,
03 D BIT(20),
03 E BIT(30),
02 D CHARACTER(5);

- IN THIS EXAMPLE, BOTH A AND C ARE CONSIDERED GROUP ITEMS, WITH
A HAVING A TOTAL LENGTH OF 90 BITS AND C BEING 50 BITS LONG.

FILLERS MAY BE USED TO DESIGNATE CERTAIN ELEMENTARY ITEMS WHICH
THE PROGRAM DOES NOT REFERENCE. IF THE FILLER IS THE LAST ITEM
IN A STRUCTURE, IT MAY BE OMITTED, AND THE COMPILER WILL
CONSIDER THE ITEM TO BE AN IMPLIED FILLER. A FILLER MAY NEVER
BE USED AS A GROUP ITEM.

IF THE 01 LEVEL GROUP ITEM IS AN ARRAY, IT IS MAPPED AS A
CONTIGUOUS AREA IN MEMORY. HOWEVER, SUBDIVISIONS OF THIS ARRAY
ARE NOT CONTIGUOUS. IN THE EXAMPLE STRUCTURE BELOW:

01 A(5) BIT48), 01 A(B),

02 B FIXED, OR 02 B FIXED,

02 C FIXED; 02 C FIXED;
P T T T T T I
| AO | Al I A2 | A3 I A4 I
:80' co!'B1i Cct! BE: C2!'B3 C3! B4 CH:
e4-BITS

48-BITS

IF A GROUP ITEM IS AN ARRAY, AN ARRAY SPECIFICATION MAY NOT
APPEAR IN ANY SUBORDINATE ITEM; THAT IS, ONLY ONE-DIMENSIONAL
ARRAYS ARE ALLOWED. DOWN-LEVEL CARRY OF ARRAY SPECIFICATIONS IS
IMPLIED.

STRUCTURED DATA MAY BE REMAPPED IN THE SAME - MANNER AS
NON-STRUCTURED DATA. IN ADDITION, STRUCTURED DATA MAY BE
REMAPPED WITH A DUMMY GROUP IDENTIFIER. THE PURPOSE OF THIS
CONSTRUCT IS TO ALLOW THE USER TO REMAP DATA [ITEMS WITHOUT
HAVING TO DECLARE ANOTHER GROUP ITEM WHICH DESCRIBES THE SAME
AREA IN CORE. THUS IN THE FOLLOWING EXAMPLE:



6-7

01 A BIT(100),
02 B BIT(20),
02 C BIT(80);

"A" MIGHT BE REMAPPED AS

01 AA REMAPS A BIT(100), 01 DUMMY REMAPS A BIT(100),
02 BB BIT(30), OR 02 BB BIT(30),
02 CC BIT(70); 02 CC BIT(70);

BOTH A AND AA IN THE ABOVE EXAMPLE REFER TO THE SAME AREA IN

CORE. HENCE AA IS REDUNDANT. DURING RUNTIME, THE DESCRIPTOR FOR
AA WILL ALSO BE ON THE STACK.

IF "DUMMY" IS SUBSTITUTED FOR THE IDENTIFIER AA, NO DESCRIPTOR
WILL BE GENERATED, HOWEVER BB AND CC WILL BOTH POINT TO A IN
THE CORRECT FASHION.

THE USER SHOULD NOTE THE DISTINCTION BETWEEN "DUMMY" AND
"FILLER". "DUMMY" IS USED IN CONJUNCTION WITH "REMAPS" TO
ELIMINATE THE NECESSITY OF DECLARING A REDUNDANT GROUP ITEM.
"FILLER" IS USED IF ONE DESIRES TO SKIP OVER AN AREA OF CORE.

THE FOLLOWING RESTRICTIONS APPLY TO THE USE OF "DUMMY REMAPS":

1. "DUMMY " MAY ONLY BE USED WITH REMAP
DECLARATIONS.

2. ALL THE RESTRICTIONS APPLYING TO "REMAPS"
APPLY TO "DUMMY REMAPS".

3. "DUMMY" MUST NOT REMAP ANOTHER "DUMMY",

Y. "DUMMY" GROUP ITEMS MUST HAVE AT LEAST ONE

NON-FILLER COMPONENT.



6-8

DYNAMIC DECLARATIONS

.../ DYNAMIC <SIMPLE IDENTIFIER>
{DYNAMIC TYPE PART>/...

{DECLARE ELEMENT)>

<DYNAMIC TYPE PART> BIT <DYNAMIC FIELD SIZE>

/ CHARACTER <DYNAMIC FIELD SIZE>

<DYNAMIC FIELD SIZE> ::= (<KEXPRESSION>)

THE DYNAMIC DECLARE STATEMENT ALLOWS THE USER TO DECLARE SIMPLE
DATA WITH A NON-STATIC FIELD LENGTH. FOR EXAMPLE:

PROCEDURE ABX;
DECLARE DYNAMIC X BIT(A);

WHERE "A" MAY BE OF VARIABLE LENGTH. THE VALUE OF THE
{EXPRESSION> APPEARING IN THE <DYNAMIC FIELD SIZE> IS USED TO
DETERMINE THE NUMBER OF BITS OR CHARACTERS IN THE DECLARED DATA
ITEM.

RESTRICTIONS:

1. THE VARIABLES USED IN THE <DYNAMIC FIELD SIZE>
MUST HAVE BEEN PREVIOUSLY INITIALIZED.

2. DYNAMICS MAY NOT APPEAR ON LEXIC LEVEL O.

DYNAMIC VARIABLES MAY BE REMAPPED, HOWEVER A WARNING MESSAGE
WILL APPEAR IN THE SOURCE LISTING. IT IS THE PROGRAMMER-S
RESPONSIBILITY TO ENSURE THAT A DYNAMIC IS NOT REMAPPED LARGER
THAN ALLOWED. ‘



PAGED ARRAY DECLARATIONS

<DECLARE ELEMENT > .../ PAGED <ELEMENTS-PER-PAGE PART>
{ARRAY IDENTIFIER> <ARRAY BOUND>

(TYPE PART>

<ELEMENTS-PER-PAGE
PART> ::= (<KNUMBER>)

<ARRAY IDENTIFIER} CIDENTIFIER>

C{ARRAY BOUND> ::= (<NUMBER>)

]

<TYPE PART> FIXED

/ CHARACTER <FIELD SIZE>
/ BIT <FIELD SIZE>
FIELD SIZE> ::= (<NUMBER>)
THE PAGED ARRAY DECLARATION ALLOWS THE USER TO SEGMENT ARRAYS.

THE <ELEMENTS-PER-PAGE PART> SPECIFIES THE NUMBER OF ARRAY
ELEMENTS CONTAINED IN EACH SEGMENT. FOR EXAMPLE:

PAGED (B4) A(4086) BIT(1);

IS AN ARRAY OF 4086, 1-BIT ELEMENTS, SEGMENTED INTO 64,
B4-ELEMENT SEGMENTS.

RESTRICTIONS:

1. PAGED ARRAYS MAY NOT BE INDEXED.

2. ' PAGED ARRAYS MAY NOT BE PART OF A STRUCTURE.
3. PAGED ARRAYS MAY NOT BE REMAPPED.
Y. THE NUMBER OF ELEMENTS PER PAGE MUST BE A

POWER OF 2, AND MAY NOT EXCEED B65535.



FILE DECLARATIONS

{FILE DECLARATION
STATEMENT> ::= FILE <FILE DECLARE ELEMENT LIST>

{FILE DECLARE
ELEMENT LIST>

]

(FILE DECLARE ELEMENT>
/ <FILE DECLARE ELEMENT)>,
{FILE DECLARE ELEMENT LIST>

{FILE DECLARE ELEMENT>

{FILE IDENTIFIER><FILE ATTRIBUTE PART>
{FILE IDENTIFIER> ::= CIDENTIFIERD

<FILE ATTRIBUTE PART>

<EMPTY>
/ (KFILE ATTRIBUTE LIST>)

{FILE ATTRIBUTE LIST>

(FILE ATTRIBUTE>
/ <FILE ATTRIBUTE>,
(FILE ATTRIBUTE LIST>

{FILE ATTRIBUTE>

{LABEL PART>

<DEVICE PART>

<MODE PART>

{BUFFERS PART>

<{VARTABLE RECORD PART>
<LOCK PART>

{SAVE FACTOR PART>
<{RECORD SPECIFICATION PART>
<{REEL NUMBER PART>

{DISK FILE DESCRIPTION PART>
{PACK-ID PART>

<OPEN OPTION PART>
{ALL.AREAS.AT.OPEN PART>
{AREA.BY.CYLINDER PART>
{EU.ASSIGNMENT PART>
{MULTI.PACK PART>

<USE. INPUT.BLOCKING PART>
{SORTER STATION PART>
<END.OF .PAGE PART>
{REMOTE.KEY PART>
<{NUMBER.OF .STATIONS PART>
{QUEUE .FAMILY.SIZE PART>
{FILE TYPE PART>

<WORK FILE PART>

{LABEL TYPE PART>

NN N N N N N N N N N N N N N NN N NN NNNSNNNN

ALL ATTRIBUTES AR: OPTIONAL, AS THE ABOVE SYNTAX INDICATES. DEFAULT
STATUS WILL AUTOMMTICALLY BE SET FOR OMITTED ATTRIBUTES AS FOLLOWS.



SYNTAX: {LABEL PART> ::= LABEL =
(FILE IDENTIFICATION PART>

{FILE IDENTIFICATION
PART> ::= {MULTI-FILE IDENTIFICATION>
/ <MULTI-FILE IDENTIFICATION>
{SLASH>
<FILE IDENTIFICATION>

<{MULTI-FILE
IDENTIFICATION> ::= {CHARACTER STRING>

CFILE IDENTIFICATION> {CHARACTER STRING>

I}

WHERE :

CFILE IDENTIFIER> IS A FILE OR PROGRAM IDENTIFIER
BY WHICH THE PROGRAM IDENTIFIES
THE FILE

(MULTI-FILE IDENTIFICATION>

AND

(FILE IDENTIFICATION> ARE NAME OR CONTENTS OF
IDENTIFICATION FIELD ON FILE
LABEL OR DISK DIRECTORY BY
WHICH THE SYSTEM IDENTIFIES
THE FILE

FORMAT : LABEL = "NAME.1" / "NAME.2"

OR

LABEL = "NAME.1"

EXAMPLE:

DECLARE INV.DATA.1 FILE
(LABEL = "RCD.TAPE" / "FILE.1");

NOTE: THE SYSTEM WILL USE ONLY THE FIRST TEN
CHARACTERS OF THE "NAME".

DEFAULT: IF LABEL (S) IS (ARE) NOT SPECIFIED, THE INTERNAL FILE
NAME, [1.E., <FILE IDENTIFIER>, IS MOVED TO <MULTI-FILE
IDENTIFICATION>, AND BLANKS ARE MOVED TO  <FILE
IDENTIFICATION> IN THE FPB (FILE PARAMETER BLOCK) .



6-12

SYNTAX: {DEVICE PART> ::= DEVICE = <DEVICE SPECIFIER>

<DEVICE SPECIFIER> CARD / TAPE
MULTI.FUNCTION.CARD

TAPE .7

TAPE.9

TAPE.PE

TAPE .NRZ

DISK <ACCESS MODE>

DISK.PACK <ACCESS MODE>
DISK.FILE <ACCESS MODE>
DISK.PACK.CENTURY <ACCESS MODE
DISK.PACK.CAELUS <ACCESS MODE>
CARD.READER

CARD.PUNCH <DEVICE OPTION>
MFCU

PRINTER <DEVICE OPTION>
PUNCH <DEVICE OPTION>
PAPER. TAPE . PUNCH

<DEVICE OPTION>

PUNCH.S6 <DEVICE OPTION>
READER.PUNCH <DEVICE OPTION>
READER.PUNCH.PRINTER

<DEVICE OPTION>
PUNCH.PRINTER <DEVICE OPTION>
READER. 96

PAPER.TAPE .READER
SORTER.READER

READER.SORTER

SPO

CASSETTE

REMOTE

QUEUE

NN N N N N N N NN NN NN NN~

N N N

NN N NN NN NN

(ACCESS MODE> <EMPTY> / SERIAL / RANDOM

{DEVICE OPTION> <EMPTY>

/ <BACKUP OPTION>
(SPECIAL FORMS OPTION>
/ <SPECIAL FORMS OPTION>

{BACKUP OPTION>

~

<BACKUP OPTION> {BACKUP SPECIFIER>

/ OR <BACKUP SPECIFIER>

{BACKUP SPECIFIER> 'BACKUP / BACKUP TAPE

/ BACKUP DISK

(SPECIAL FORMS OPTION> FORMS

"FORMAT: DEVICE = CARD
CARD.READER



* ok ok k Kk %
* ok ok ok ok

* %k k k Kk >k Xk *k >k *k k x Xk Xk

TAPE

MULTI.FUNCTION.CARD
.7
.9
.PE
.NRZ

TAPE
TAPE
TAPE
TAPE
DISK
DISK
DISK
DISK.
DISK
CARD.
PRINT
PRINT
PUNCH
PUNCH
PAPER
PAPER
PUNCH
PUNCH
READE

READER.PUNCH FORMS
READER.PUNCH.PRINTER
READER.PUNCH.PRINTER FORMS

PUNCH

PUNCH.PRINTER FORMS

READE

PAPER.TAPE .READER

SPO
MFCU
SORTE
READE
CASSE
REMOT
QUEUE

.PACK
FILE
PACK.CENTURY
.PACK.CAELUS

PUNCH
ER
ER FORMS

FORMS

. TAPE . PUNCH
. TAPE .PUNCH FORMS

.96
.86 FORMS
R.PUNCH

.PRINTER

R.S6

R.READER
R.SORTER
TTE

E

XMARKED
XMARKED
XMARKED
ZMARKED
XMARKED
XMARKED
XMARKED
ZMARKED
XMARKED
AMARKED
XMARKED
XMARKED
XMARKED
XMARKED
XMARKED

HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE

ONLY
ONLY
ONLY
ONLY
ONLY
ONLY
ONLY
ONLY
ONLY
ONLY
ONLY
ONLY
ONLY
ONLY
ONLY

* MAY OR MAY NOT BE FOLLOWED BY ANY SINGLE OPTION BELOW:

BACKU
BACKU
BACKU
OR BA
OR BA
OR BA

P

P TAPE

P DISK
CKUP

CKUP TAPE
CKUP DISK

** MAY OR MAY NOT BE FOLLOWED BY ANY SINGLE OPTION BELOW:

EXAMPLES:

SERTAL
RANDOM

DEVICE
DEVICE
DEVICE

TAPE

PRINTER BACKUP
PRINTER FORMS BACKUP TAPE



SPECIFICATION,

- MODE =

ASCI1

EVEN

<{MODE
{FILE PARITY
{TRANSLATION
{FILE PARITY
{TRANSLATION
ObD /s EVEN

EBCDIC / ASC

ASCI1

6-14

TAPE WILL BE

SPECIFIER>

PART>
PART>
PART>
PART>

Il 7 BCL / BINARY

DEFAULT IS ODD OR EBCDIC, WHICHEVER IS APPLICABLE.

IF NOT SPECIFIED, BUFFERS WILL BE SET TO 1

DEFAULT: IN THE ABSENCE OF ANY
ASSUMED BY THE FPB.
SYNTAX: <MODE_PART> ::=
<MODE SPECIFIER> ::=
<FILE PARITY PART> ::=
<TRANSLATION PART>::=
FORMAT : MODE = BCL OR
OR MODE =
MODE = EVEN OR
OR MODE =
MODE = EVEN BCL
OR
DEFAULT :
SYNTAX: <BUFFERS PART> ::=
<NUMBER OF BUFFERS> ::=
FORMAT : BUFFERS = NUMBER
DEFAULT :
SYNTAX: <VARIABLE RECORD PART>
FORMAT : VARIABLE
DEFAULT:  NOT VARIABLE, I.E.,

BUFFERS =

{NUMBER OF BUFFERS>

{NUMBER>

VARTABLE

FIXED-SIZE RECORDS.

IN THE FPB.



SYNTAX: CLOCK PART)> ::= LOCK

FORMAT : LOCK

DEFAULT: LOCK IS NOT SET.

SYNTAX : (SAVE FACTOR PART> ::= SAVE = <SAVE FACTOR>
(SAVE FACTOR)> ::= <NUMBER>

FORMAT: SAVE = NUMBER (0OF DAYS TO SAVE FILE)

DEFAULT: IF NOT SPECIFIED, THE SAVE SPECIFIER WILL BE SET TO 30
IN THE FPB.

SYNTAX : (RECORD SPECIFICATION
PART> ::= RECORDS = <RECORD SIZE

SPECIFIER>

<RECORD SIZE SPECIFIER> ::= <PHYSICAL RECORD SIZE>

/ <LOGICAL RECORD SIZE>
{SLASH> ‘
<LOGICAL RECORDS PER
PHYSICAL RECORD>

{PHYSICAL RECORD SIZE> = {NUMBER>

gLOGICAL RECORD SIZE> = <{NUMBER>

<LOGICAL RECORDS PER

PHYSICAL RECORD> ::= <NUMBER>
FORMAT : ggCORDS = NUMBER

RECORDS = NUMBER / NUMBER

NOTE : (PHYSICAL RECORD SIZE> INDICATES THE NUMBER OF
CHARACTERS PER BLOCK; <LOGICAL RECORD SIZE>, THE
NUMBER OF CHARACTERS PER RECORD.

FXAMPLE:
RECORDS = 1200
OR
RECORDS = 120 / 10



DEFAULT:

SYNTAX:

FORMAT :

DEFAULT:

SYNTAX:

FORMAT :

DEFAULT:

IN THE ABSENCE OF RECORD SPECIFICATIONS, UNBLOCKED
RECORDS OF THE FOLLOWING LENGTHS WILL BE ASSUMED.

ANY CARD OR PUNCH CONFIGURATION 80 BYTES
ANY PRINTER CONFIGURATION 132 BYTES
DISK 180 BYTES
SPO 72 BYTES
ALL OTHERS 80 BYTES

{REEL NUMBER PART>

REEL = <REEL NUMBER>

CREEL NUMBER> ::= <NUMBER>
REEL = NUMBER OF REEL

THE FPB ASSUMES #1 IN THE ABSENCE OF ANY SPECIFICATION.

<DISK FILE DESCRIPTION

PART> ::= AREAS = <NUMBER OF AREAS>
<SLASH>
{PHYSICAL RECORDS PER AREA>
{NUMBER OF AREAS> = <{NUMBER>
{PHYSICAL RECORDS
PER AREA> ::= \ {NUMBER>

AREAS = # OF AREAS / #OF BLOCKS PER AREA
EXAMPLE: AREAS = 20 / 80

NOTE: <PHYSICAL RECORDS PER AREA> INDICATES THE NUMBER
OF BLOCKS PER AREA., THIS ATTRIBUTE IS APPLICABLE
FOR DISK FILES ONLY.

IF AREAS ARE NOT SPECIFIED, THE FPB WILL ASSUME 25 AREAS
WITH 100 BLOCKS PER AREA. [F THE RECORD SPECIFICATIONS
HAVE BEEN GIVEN, THE COMPILER WILL COMPUTE THE NUMBER OF
RECORDS PER AREA. HOWEVER, IF RECORD SPECIFICATIONS ARE
OMITTED, THE FPB WILL ASSUME 100 RECORDS PER AREA. IN
EITHER  CASE THEN, WHETHER AREAS ARE SPECIFIED OR NOT,
THE COMPILER WILL HAVE COMPUTED THE NUMBER OF RECORDS
FOR INSERTION IN THE FPB.



SYNTAX:

FORMAT :

DEFAULT:

SYNTAX:

FORMAT :

NOTE :

DEFAULT:

<PACK.ID PART> PACK.ID =

<PACK IDENTIFICATION>

<PACK
IDENTIFICATION>

<CHARACTER STRING>
PACK.ID = "NAME"
EXAMPLE : PACK.ID = "TRANS.BAL"

NOTE: THE SYSTEM WILL USE ONLY THE FIRST TEN CHARACTERS
OF THE "NAME".

IF ABSENT, <PACK IDENTIFICATION> WILL BE SET TO BLANKS
IN THE FPB.

<OPEN OPTION>::= OPEN.OPTION=
<OPEN OPTION ATTRIBUTE LIST>

<OPEN OPTION
ATTRIBUTE LIST>::= {OPEN ATTRIBUTE>
/ <OPEN ATTRIBUTE> <SLASH>
<OPEN OPTION ATTRIBUTE LIST>

{OPEN ATTRIBUTE> ::= SEE "OPEN STATEMENT"
OPEN.OPTION = ATTRIBUTE / ATTRIBUTE...

EXAMPLE: OPEN.OPTION = OUTPUT/NEW

WHILE THE ATTRIBUTES ARE THE SAME, THE <OPEN
ATTRIBUTE>S IN THE <OPEN STATEMENT> ARE
SEPARATED BY COMMAS, AND THE <OPEN ATTRIBUTE>S

IN THE <OPEN OPTION> ABOVE ARE SEPARATED BY
SLASHES.

IF ABSENT, THE <OPEN ATTRIBUTE>S WILL BE SET AS FOLLOWS:

IF <DEVICE> IS <OPEN OPTION> IS
CARD INPUT

PRINTER OUTPUT

PUNCH OUTPUT

DISK INPUT



6-18

ALL .AREAS.AT.OPEN

IF THIS OPTION 1S SET, DISK SPACE FOR EACH AREA WILL BE
IF INSUFFICIENT SPACE
IS AVAILABLE, A SPO MESSAGE WILL INDICATE THAT THERE IS

AREA.BY.CYLINDER

IF THIS OPTION IS SPECIFIED, EACH AREA WILL BE PLACED AT
IF THERE IS NO (MORE) SPACE
AT THE BEGINNING OF ANY CYLINDER, A SPO 'MESSAGE WILL

EU.SPECIAL = <NUMBER>
/ EU.INCREMENTED = <NUMBER>

SPECIFIES ANY INTEGER 0 THROUGH 15.
IS APPLICABLE ONLY WITH HEAD PER TRACK
DISKS AND SYSTEMS DISK PACKS, AND SPECIFIES THE DRIVE ON
"EU.INCREMENTED" SPECIFIES THE
DISK DRIVE ON WHICH THE FIRST AREA OF A FILE IS TO GO.
SUBSEQUENT AREA 1S PLACED ON THE NEXT DRIVE. IF,
IS NOT AVAILABLE,

SPACE FOR FILES AND AREAS IS ALLOCATED ANYNHERE ON DISK.

MULTI.PACK

IF THIS OPTION IS SPECIFIED, THE ENTIRE FILE MAY BE PUT

SYNTAX: CALL.AREAS.AT.OPEN PART> ::=
FUNCTION:
ALLOCATED WHEN THE FILE IS OPENED.
NO USER DISK.
DEFAULT: AREAS ARE CREATED AS NEEDED.
SYNTAX: SAREA.BY.CYLINDER PART> ::=
FUNCTION:
THE BEGINNING OF A CYLINDER.
INDICATE THAT THERE IS NO USER DISK.
DEFAULT: AREAS ARE PLACED ANYWHERE ON DISK.
SYNTAX: <EU ASSIGNMENT PART> =
FUNCTION: THE <{NUMBER>
"EU.SPECIAL"
WHICH THE FILE IS TO GO.
EACH
WITH EITHER OPTION, THE NECESSARY E.U.
E.U. 0 WILL BE TAKEN.
DEFAULT:
SYNTAX: <{MULTI PACK PART)>::=
FUNCTION:
ONTO SEVERAL DISK PACKS.
DEFAULT:

THE FILE WILL BE PLACED ON ONE DISK PACK.



PART> ::= USE . INPUT .BLOCKING
THIS OPTION IS ONLY APPLICABLE WITH INPUT DISK FILES. IF

SPECIFIED, THE RECORD AND BLOCK SIZE SPECIFICATIONS WILL
BE TAKEN FROM THE DISK FILE HEADER AND THE USER-S

THE FILE ATTRIBUTES ARE AS STATED IN THE FILE
DECLARATION. THOSE OPTIONS OMITTED ARE SET TO THEIR

SSORTER STATION PART> ::= SR.STATION = <NUMBER>

THE NUMBER INDICATES WHICH READ STATION(S) IS(ARE) TO BE
USED ON A SORTER-READER FILE. THE POSSIBLE STATIONS ARE
THE MAGNETIC INK CHARACTER READER AND THE OPTICAL
CHARACTER READER. THE READ STATIONS ARE INTERCHANGEABLE,
THUS THE SYSTEM DOCUMENTATION SHOULD BE CONSULTED FOR
SPECIFIC HARDWARE CONFIGURATIONS. THE VALUES ALLOWED ARE

1= FIRST STATION
2= SECOND STATION
3= BOTH STATIONS

{END.OF .PAGE PART)> ::= END.OF .PAGE . ACTION

THIS ATTRIBUTE WILL CAUSE THE <EOF PART> OF A <WRITE
STATEMENT> TO BE EXECUTED AT THE END OF A PAGE ON A
PRINTER FILE. REFER TO "WRITE STATEMENT" FOR DETAILS.

SYNTAX : CUSE . INPUT . BLOCK ING
FUNCTION:
SPECIFICATIONS WILL BE IGNORED.
DEFAULT :
DEFAULT STATUSES.
SYNTAX:
FUNCTION:
AS FOLLOWS:
DEFAULT: SR.STATION = 0
SYNTAX:
FUNCTION:
DEFAULT: NO AUTOMATIC PAGING ACTION



6-20

DEFAULT:

SYNTAX: <REMOTE .KEY PART>::= REMOTE .KEY
FUNCTION: THIS ATTRIBUTE IS USED ONLY WITH FILES OF TYPE "REMOTE".
WHEN PRESENT, IT INDICATES THAT A KEY MAY BE PRESENT ON
A READ OR WRITE TO THAT FILE. IF MISSING, THEN NO KEY
CAN BE USED. THE FORMAT OF THE KEY IS GIVEN BELOW. EACH
FIELD OF THE KEY IS IN DECIMAL CHARACTERS. THE KEY IS A
TOTAL OF 10 CHARACTERS FORMATTED AS FOLLOWS:
STATION NUMBER 3 CHARACTERS
MESSAGE LENGTH (BYTE COUNT) 4 CHARACTERS
MESSAGE TYPE (MUST BE "000") 3 CHARACTERS
DEFAULT:  NO REMOTE KEY
SYNTAX (NUMBER.OF .STATIONS PART>:=  NUMBER.OF.STATIONS = <NUMBER)>
FUNCTION: THIS ATTRIBUTE IS USED ONLY WITH FILES OF TYPE "REMOTE".
WHEN ~ PRESENT, 1T SPECIFIES THE MAXIMUM NUMBER OF
STATIONS THAT CAN BE ATTACHED TO THIS FILE.
DEFAULT:  NUMBER.OF .STATIONS=1
SYNTAX: CQUEUE .FAMILY.SIZE PART>::=  QUEUE.FAMILY.SIZE=<NUMBER>
FUNCTION: THIS ATTRIBUTE IS USED ONLY WITH FILES OF TYPE "QUEUE".
IT SPECIFIES THE NUMBER OF MEMBERS IN A QUEUE FAMILY.
DEFAULT:  QUEUE.FAMILY.SIZE=1
SYNTAX: CFILE TYPE PART>::= FILE.TYPE=<FILE TYPE SPECIFIER>
CFILE TYPE SPECIFIER>::= DATA/ INTERPRETER/CODE/ INTRINSIC
FUNCTION: THIS ATTRIBUTE ALLOWS SDL PROGRAMS TO SPECIFY THE TYPE

OF THE FILES THEY ARE CREATING. IN PARTICULAR, THE
COMPILERS WILL USE THE TYPE "CODE" FOR THEIR CODEFILES.

FILE TYPE PART=DATA



SYNTAX:

FUNCTION:

DEFAULT:

SYNTAX:

FUNCTION:

DEFAULT:

6-21

SWORK FILE PART)>::= WORK.FILE

THIS ATTRIBUTE CAUSES THE JOB NUMBER TO BE INCLUDED AS
PART OF THE FILE IDENTIFIER.

NOT A WORK FILE

<LABEL TYPE PART>::= LABEL.TYPE=<LABEL TYPE SPECIFIER>
<LABEL TYPE SPECIFIER>::= UNLABELED

THIS ATTRIBUTE ALLOWS THE LABEL TYPE TO BE SPECIFIED.
CURRENTLY, "UNLABELED" IS THE ONLY TYPE.

BURROUGHS STANDARD LABEL



6-22

SWITCH FILE DECLARATIONS

{SWITCH FILE
DECLARATION STATEMENTY::= SWITCH.FILE <SWITCH FILE
DECLARE ELEMENT LIST>

{SWITCH FILE
DECLARE ELEMENT LIST>::= {SWITCH FILE DECLARE ELEMENT)>
/ <SWITCH FILE DECLARE ELEMENT>,
{SWITCH FILE DECLARE ELEMENT LIST>

{SWITCH FILE

DECLARE ELEMENT> ::= {SWITCH FILE IDENTIFIER> (<KFILE
IDENTIFIER LIST>)

{SWITCH FILE IDENTIFIER>::= <IDENTIFIER>

<FILE IDENTIFIER LIST>::= {FILE IDENTIFIER>
/ <FILE IDENTIFIER>, <FILE IENTIFIER LIST>

A SWITCH FILE DECLARATION SPECIFIES THE ELEMENTS OF A "CASE",
THESE ELEMENTS BEING FILES. A SUBSCRIPTED <SWITCH FILE
IDENTIFIER> MAY BE USED ANYWHERE THAT A <FILE IDENTIFIER> MAY
BE USED. IF THERE ARE N FILES IN THE <FILE IDENTIFIER LIST)>,
THEN THE SUBSCRIPT MUST RANGE FROM 0 TO N-1. THE VALUE OF THE
SUBSCRIPT SELECTS ONE OF THE N FILES IN THE LIST, DEPENDING
UPON ORDINAL POSITION (THE FILES IN THE <FILE IDENTIFIER LIST>
ARE NUMBERED FROM LEFT TO RIGHT, BEGINING WITH 0). IF ALL FILES
IN THE <FILE IDENTIFIER LIST> ARE OF TYPE "REMOTE", THEN THE
SWITCH FILE IDENTIFIER IS OF TYPE "REMOTE".

THE FOLLOWING EXAMPLE COPIES CARD IMAGES FROM CARDS, TAPE, OR
DISK TO CARDS, PRINTER, TAPE, OR DISK:

FILE
CARDS (DEVICE=CARD)
, TAPEI (DEVICE=TAPE ,USE . INPUT .BLOCKING)
,DISKI (DEVICE=DISK,USE . INPUT.BLOCKING)

FILE
PUNCH (DEV ICE=PUNCH)
yLINE(DEVICE=PRINTER)
, TAPEO(DEVICE=TAPE ,RECORDS=80/4)
,DISKO(DEVICE=DISK,RECORDS=80/9)

SWITCH.FILE
INPUT (CARDS, TAPET ,DISKI)
,OUTPUT (PUNCH,LINE, TAPEO,DISKO)



6-23

DECLARE
INPUT.TYPE BIT(24)
,OUTPUT.TYPE BIT(24)
,BUFFER CHARACTER(80)

DISPLAY "##*x% [NPUT TYPE";
ACCEPT INPUT.TYPE;
INPUT . TYPE - BINARY (SUBSTR (INPUT.TYPE,O0,1)) MOD 3;
DISPLAY "#**#xs OUTPUT TYPE";
ACCEPT OUTPUT.TYPE;
CUTPUT . TYPE «—BINARY (SUBSTR (OUTPUT.TYPE,0,1)) MOD 4;
CPEN INPUT(INPUT.TYPE) INPUT;
OPEN OUTPUT (OUTPUT.TYPE) OUTPUT/NEW;
DO FOREVER;

READ INPUT (INPUT.TYPE) (BUFFER) ;

ON EOF UNDO;

WRITE OUTPUT (OUTPUT.TYPE) (BUFFER) ;
END;
CLOSE OUTPUT (OUTPUT.TYPE) WITH LOCK;
STOP;
FINI



DEFINE STATEMENT

(DECLARATION STATEMENT> ::= .../<DEFINE STATEMENT>;/...
<DEF INE STATEMENT> ::= DEFINE <DEFINE ELEMENT>
/ <DEFINE STATEMENT>,
<DEFINE ELEMENT>

<DEF INE ELEMENT>

(DEFINE IDENTIFIER>
{FORMAL PARAMETER PART>
AS <DEFINE STRING>

{DEFINE IDENTIFIER>

CIDENTIFIERD

{FORMAL PARAMETER PART> ::= (<KFORMAL PARAMETER LIST>)
/ [<KFORMAL PARAMETER LIST>]
/ <EMPTY>

{FORMAL PARAMETER LIST> ::= <FORMAL PARAMETER>

/ <FORMAL PARAMETER>,
{FORMAL PARAMETER LIST>

{FORMAL PARAMETER> <IDENTIFIER>

<DEFINE STRING> ::= #<{WELL-FORMED CONSTRUCT>#
{WELL-FORMED CONSTRUCT> ::= <EMPTY>

/ <BASIC COMPONENT>
<WELL-FORMED CONSTRUCT>

<{BASIC COMPONENT>
CIDENTIFIER>
{SPECIAL CHARACTER>
{COMMENT STRING>
CCONSTANT>

N N NN

THE <DEFINFE STATEMENT> ASSIGNS THE TEXT ENCLOSED BETWEEN THE "#"
SIGNS FOLLOWING THE RESERVED WORD "AS" TO THE <DEF INE
IDENTIFIER>. INVOCATION OF THE <DEFINE IDENTIFIER> CAUSES THE
TEXT TO REPLACE THE IDENTIFIER, THEREBY PROVIDING A FORM OF
SHORTHAND CODE.

AT DECLARATION TIME, THE COMPILER IS UNCONCERNED WITH THE
CONTENTS OF THE <KDEFINE STRING>. HOWEVER, WHEN THE <DEFINE
IDENTIFIER> IS INVOKED, THE <WELL-FORMED CONSTRUCT> MUST
CONFORM TO THE SYNTACTICAL REQUIREMENTS OF THE STATEMENT
CONTAINING THE IDENTIFIER.

{RESERVED WORD> XSEE APPENDIX



7-2

THERE ARE TWO TYPES OF <DEFINE STATEMENT>S: SIMPLE AND
PARAMETRIC, WHERE THE PARAMETERS ARE ENCLOSED IN PARENTHESES

FOLLOWING THE <DEFINE IDENTIFIER>. BELOW ARE EXAMPLES OF BOTH
TYPES:

DEFINE A AS #IF X>10 THEN PROCX#,
CH AS #CHARACTER®#,
B(Y,Z) AS #IF Y<Z THEN Y:=Z #,
C(M) AS # X:=M; A #;

NOTICE THAT <DEFINE STATEMENT>S MAY BE FACTORED, WITH COMMAS
SEPARATING EACH ELEMENT.

THE <DEFINE IDENTIFIER> HAS SCOPE IN THE SAME MANNER AS ANY
OTHER IDENTIFIER (EXCEPT FOR SEGMENT AND DO-GROUP IDENTIFIERS).

RESTRICTIONS ON THE USE OF DEFINES:

1. RESERVED WORDS MAY NOT BE USED AS <DEFINE
IDENTIFIERD>S, HOWEVER, AN IDENTIFIER MAY
DEFINE A RESERVED WORD.

2. "SPECIAL" WORDS MAY BE USED AS <DEF INE
IDENTIFIERDS, HOWEVER, THEIR SPECIAL
SIGNIFICANCE IS LOST WITHIN THE THE SCOPE OF
THAT <DEFINE STATEMENT>.

3, <{DEF INE INVOCATION>S MAY APPEAR WITHIN A
{WELL-FORMED CONSTRUCT>, I.E., A <{DEF INE
IDENTIFIER> MAY APPEAR WITHIN ANOTHER <DEFINE
ELEMENT>. <DEFINE IDENTIFIER>S MAY BE NESTED
NO MORE THAN 12 LEVELS DEEP.

Y. THE IDENTIFIERS LISTED BELOW ARE NEVER LOOKED
UP IN THE LIST OF DEFINE NAMES.

DECLARE, DEFINE, PROCEDURE , AND FORMAL
IDENTIFIERS,

SEGMENT AND DO-GROUP IDENTIFIERS,

FILE, OPEN, AND CLOSE ATTRIBUTES,

<FILE ATTRIBUTE STATEMENT> ATTRIBUTE NAMES
"ON" CONDITION NAMES (EOF, EXCEPTION,
FILE.MISSING, Q.FULL, Q.EMPTY, NO. INPUT.
FILE.LOCKED).

"ACCEPT"/"DISPLAY" SPECIFIERS: END.OF.TEXT AND
CRUNCHED.



IFF ONE OF THESE IDENTIFIERS HAPPENS TO BE THE
SAME AS A <DEFINE IDENTIFIER>, NO SUBSTITUTION
OCCURS. THE <WELL-FORMED CONSTRUCT> OF THE
DEFINE WILL NOT REPLACE THE IDENTIFIER. NOTE,
HOWEVER, THAT DUPLICATE IDENTIFIERS MAY NOT
APPEAR WITHIN THE SAME LEXIC LEVEL; AN ERROR
MESSAGE RESULTS.

5. THERE MAY BE NO MORE THAN 8 {FORMAL
PARAMETER>S IN A <FORMAL PARAMETER LIST>.

6. REFER TO APPENDIX VI FOR RULES CONCERNING
CONDITIONAL INCLUSION CARDS WITHIN DEFINES.

THE FOLLOWING SYNTAX [ILLUSTRATES THE FORMAT USED IN THE
INVOCATION OF A <DEFINE IDENTIFIER>:

{SIMPLE DEFINE IDENTIFIER>
/ <PARAMETRIC DEFINE IDENTIFIER>
(<DEFINE ACTUAL PARAMETER LIST>)
/ <PARAMETRIC DEFINE IDENTIFIER>
[<DEFINE ACTUAL PARAMETER LIST>]

<DEFINE INVOCATION>

{SIMPLE DEFINE
IDENTIFIER> ::= {DEFINE IDENTIFIER>

{PARAMETRIC
DEFINE IDENTIFIER>

<DEFINE IDENTIFIER>

<DEFINE ACTUAL
PARAMETER LIST>

<DEFINE ACTUAL PARAMETER>
/ <DEFINE ACTUAL PARAMETER>,
(DEFINE ACTUAL PARAMETER LIST>

{DEFINE ACTUAL
PARAMETER> ::= {WELL-FORMED CONSTRUCT>

A <DEFINE INVOCATION> MAY OCCUR ANYWHERE WITHIN AN SDL PROGRAM
EXCEPT IN THE CASES LISTED ABOVE IN RESTRICTION 4. AS INDICATED
BY THE ABOVE BNF, THE ACTUAL PARAMETERS OF A DEFINE ARE NOT
CONFINED TO CONSTANTS AND VARIABLES BUT MAY HAVE A WIDE RANGE
OF CONSTRUCTS. FOR EXAMPLE, THE <DEFINE STATEMENT> MENTIONED
ABOVE :

DEFINE C(M) AS# X:=M; A #;
MIGHT BE INVOKED AS FOLLOWS:
C(Z;BUMP I[R,S1);



THE FOLLOWING RESTRICTIONS APPLY TO THE USE OF THE

WHICH EXPANDS TO:
X:=Z; BUMP I[R,S]; IF X>10 THEN PROCX;

INVOCATION>;

1.

NO UNPATRED BRACKETING SYMBOLS, I.E., () OR
(1, MAY APPEAR.

WITHIN A  <DEFINE ACTUAL PARAMETER LIST>,
COMMAS NOT ENCLOSED WITHIN PAIRED BRACKETING
SYMBOLS ACT TO DELIMIT THE <DEFINE ACTUAL
PARAMETERD>S. THEREFORE A <WELL-FORMED
CONSTRUCT> NOT ENCLOSED IN BRACKETING SYMBOLS
MAY NOT CONTAIN COMMAS. FOR EXAMPLE:

DEFINE X(A,B) AS # A(B) #;
AND INVOKED AS:
Z:=X(M,Q,R,S);
WOULD RESULT IN THE ERROR MESSAGE:

DEFINE INVOCATION HAS TOO MANY PARAMETERS
PROPER INVOCATION IS POSSIBLE BY REMOVING THE
PARENS FROM THE DEFINE AND PLACING THEM IN THE
INVOCATION:

DEFINE X(A,B) AS # A B #;
Z:=X(M, (Q,R,S));

COMMENTS ARE ALLOWED BUT WILL BE DELETED FROM
THE ACTUAL PARAMETER TEXT.

<DEF INE



FORWARD DECLARATION

<DECLARATION STATEMENT>
{FORWARD DECLARATION>

<{COMPOUND PROCEDURE
HEAD> ::=

<{PROCEDURE HEAD>
{BASIC PROCEDURE HEAD>

{PROCEDURE NAME> ::=
{PROCEDURE IDENTIFIER>
{TYPED PROCEDURE
IDENTIFIER> ::=

{NON-TYPED PROCEDURE
IDENTIFIER> ::=

{FORMAL PARAMETER PART>

{FORMAL PARAMETER LIST>

]

{FORMAL PARAMETER>

<{PROCEDURE TYPE PART>

{FORMAL TYPE PART>

{TYPE PART>

{TYPE VARYING PART>

1

.. ./<FORWARD DECLARATION>/...
FORWARD <COMPOUND PROCEDURE HEAD>
{PROCEDURE HEAD>

{FORMAL PARAMETER DECLARATION
STATEMENT LIST>

{BASIC PROCEDURE HEAD>
{PROCEDURE TYPE PART>;

{PROCEDURE NAME>
{FORMAL PARAMETER PART>

PROCEDURE <PROCEDURE IDENTIFIER>
{TYPED PROCEDURE IDENTIFIER>
{NON-TYPED PROCEDURE IDENTIFIER>

CIDENTIFIERD

<IDENTIFIER>

<EMPTY>
(<FORMAL PARAMETER LIST>)

{FORMAL PARAMETER>
{FORMAL PARAMETER>,
{FORMAL PARAMETER LIST>

CIDENTIFIER>

<EMPTY>
<{FORMAL TYPE PART>

<TYPE PART>
<TYPE VARYING PART>

FIXED
CHARACTER <FIELD SIZE>
BIT <FIELD SIZE>

VARYING
BIT VARYING
CHARACTER VARYING



<{FORMAL PARAMETER DECLA-
RATION STATEMENT LIST>

<EMPTY)>

/ <FORMAL PARAMETER DECLARATION STATEMENT>;
{FORMAL PARAMETER DECLARATION
STATEMENT LIST>

{FORMAL PARAMETER
DECLARATION STATEMENT> FORMAL <FORMAL ELEMENT>

/ FORMAL.VALUE <FORMAL ELEMENT>

/ <FORMAL PARAMETER DECLARATION STATEMENT>,

{FORMAL ELEMENT>

<{FORMAL ELEMENT>

(<CFORMAL IDENTIFIER LIST>)
{FORMAL TYPE PART>

/ <FORMAL IDENTIFIER>
{FORMAL TYPE PART>

{FORMAL INDENTIFIER
LIST> ::= <FORMAL IDENTIFIER>
/ <FORMAL IDENTIFIER LIST>,
{FORMAL IDENTIFIER>

<{FORMAL IDENTIFIER> ::= (COMPLEX IDENTIFIER>
/ <VARYING ARRAY SPECIFIER>

<COMPLEX IDENTIFIER>

{SIMPLE IDENTIFIER>
/ <ARRAY IDENTIFIER>
{ARRAY BOUND>

<{VARYING ARRAY
SPECIFIER> ::= CARRAY IDENTIFIER>
<VARYING ARRAY BOUND>

<VARYING ARRAY BOUND>

(*)

BEFORE A PROCEDURE MAY BE CALLED, SDL SPECIFIES THAT IT MUST
HAVE BEEN PREVIOUSLY DECLARED. A CONTRADICTION ARISES WHEN ONE
PROCEDURE CALLS ANOTHER PROCEDURE WHICH IN TURN REFERENCES THE
FIRST. IN THIS CASE, WHICHEVER PROCEDURE APPEARS FIRST MUST
NECESSARILY CONTAIN AT LEAST ONE REFERENCE TO THE SECOND WHICH
HAS NOT YET BEEN DECLARED.

THE <FORWARD DECLARATION> ALLOWS THE PROGRAMMER TO USE RECURSIVE
REFERENCES BY PROVIDING A TEMPORARY PROCEDURE DECLARATION. THE
{FORWARD DECLARATION>, HOWEVER, DOES NOT ELIMINATE THE NEED FOR
THE NORMAL PROCEDURE DECLARATION WHICH MUST FOLLOW IN THE
PROGRAM AND MUST HAVE THE SAME SCOPE.

THE PARAMETERS MENTIONED IN THE <FORWARD DECLARATION> MUST BE
THE SAME FORMAL PARAMETERS (IN TYPE AND SIZE, BUT NOT IN NAME)



THAT THE PROCEDURE ITSELF WILL DECLARE.

PROCEDURES MAY BE EITHER TYPED OR NON-TYPED DEPENDING ON THEIR
USE. FORMAL DATA TYPES MAY EITHER BE STATIC OR VARYING, AGAIN
DEPENDING ON THE PROGRAM. THESE SPECIFICATIONS WILL BE
DISCUSSED IN THE SECTION ENTITLED "THE PROCEDURE STATEMENT".

THE FOLLOWING EXAMPLES ILLUSTRATE THE USE OF THE <FORWARD
DECLARATION> :

FORWARD PROCEDURE X CHARACTER VARYING;
FORWARD PROCEDURE J(K,L,M);
FORMAL K(*) BIT VARYING,
FORMAL L(15) CHARACTER (8),
FORMAL M FIXED;



USE STATEMENT

]

{USE STATEMENT> USE (<SIMPLE IDENTIFIER LIST>)

-OF <DEFINE IDENTIFIER>

{SIMPLE IDENTIFIER
LIST> ::= KSIMPLE IDENTIFIER>
/ <SIMPLE IDENTIFIER>,
<SIMPLE IDENTIFIER LIST>

{SIMPLE IDENTIFIER> CIDENTIFIER>

<DEFINE IDENTIFIER> CIDENTIFIER>

THE PURPOSE OF THE <USE STATEMENT> IS TO ALLOW THE PROGRAMMER TO
DECLARE SPECIFIC ELEMENTS IN A DEFINED STRUCTURE WITHIN A

PROCEDURE . BY SPECIFYING ONLY THE DESIRED ELEMENTS, THE NAME

STACK SIZE 1S KEPT TO A MINIMUM, AND PROGRAM MAINTENANCE IS

SIMPLIFIED. THE COMPILER WILL GENERATE THE STRUCTURE USING

FILLERS AND THE SPECIFIED ELEMENTS.

THE FOLLOWING RESTRICTIONS APPLY TO THE <USE STATEMENT)>:

1. IT MUST APPEAR WITHIN A PROCEDURE (I.E., ON A
LEXIC LEVEL GREATER THAN 0).

c. THE REFERENCED <DEFINE IDENTIFIER> MUST DEFINE
ONE STRUCTURED DECLARE STATEMENT.

3. THE STRUCTURE MAY NOT CONTAIN ARRAYS.

4. THE OUTERMOST LEVEL OF THE STRUCTURE (01) MUST

BE A "DUMMY REMAPS",



EXAMPLE :

DEFINE X AS #
DECLARE 01 DUMMY REMAPS A, % MIGHT ALSO REMAP BASE
0e B BIT(5),
03 Bl BIT(2),
03 B2 BIT(3),
0e C CHARACTER(10),
02 b BIT(1),
02 E FIXED,
0e F BIT(24) #;
PROCEDURE FIRST;
USE (C,D) OF X;

FROM THE ABOVE <USE STATEMENT> THE COMPILER WILL GENERATE THE
FOLLOWING STRUCTURE:

01 DUMMY REMAPS A,
02 FILLER BIT(S),
03 FILLER BIT(2),
03 FILLER BIT(3),
02 C CHARACTER(10),
0e D BIT(1),
02 FILLER FIXED,
02 FILLER BIT(24);

NOTE THAT FILLER WAS SUBSTITUTED FOR THE GROUP ITEM B. THIS
WOULD NORMALLY GENERATE A SYNTAX ERROR, AND 1S ALLOWABLE ONLY
IN THE <USE STATEMENT>.



PROCEDURE STATEMENT

<PROCEDURE STATEMENT
LIST> ::= <EMPTY>
/ <PROCEDURE STATEMENT>;
{PROCEDURE STATEMENT LIST>

<{PROCEDURE STATEMENT>

]

{PROCEDURE DEFINITION>
/ <SEGMENT STATEMENT>
{PROCEDURE STATEMENT>

<{PROCEDURE DEFINITION> <COMPOUND PROCEDURE HEAD>

{PROCEDURE BODY>
{SEGMENT STATEMENT> SEE "THE SEGMENT STATEMENT"
<{PROCEDURE BODY> {DECLARATION STATEMENT LIST>
{PROCEDURE STATEMENT LIST>

{PROCEDURE EXECUTABLE STATEMENT LIST>
{PROCEDURE ENDING>

PROCEDURES ARE SELF-CONTAINED FUNCTIONAL UNITS WITHIN AN SDL
PROGRAM WHICH MAY BE ACCESSED ACCORDING TO SPECIFIC RULES
DISCUSSED UNDER "BASIC STRUCTURE OF THE SDL PROGRAM" .
PROCEDURES MAY BE CREATED BY PRECEDING SELF-CONTAINED
STATEMENTS WITH A <COMPOUND PROCEDURE HEAD>, AND TERMINATING IT
WITH A <PROCEDURE ENDING>.

THE <PROCEDURE DEFINITION> IS COMPOSED OF THREE BASIC PARTS: THE
HEADING, BODY, AND ENDING. IDENTIFIERS DECLARED IN A PROCEDURE
MAY BE ACCESSED ONLY IN THE PROCEDURE IN WHICH THEY ARE
DECLARED, AND IN PROCEDURES NESTED WITHIN THE DECLARING
PROCEDURE .

PROCEDURES MAY BE EITHER “TYPED" OR "NON-TYPED". A "TYPED"
PROCEDURE RETURNS SOME VALUE OF THE TYPE SPECIFIED IN THE
PROCEDURE DECLARATION TO THE EXPRESSION WHERE THE PROCEDURE WAS
INVOKED. SEE "VALUE VARIABLES" FOR DETAILS. A "NON-TYPED"
PROCEDURE PERFORMS A FUNCTION, DOES NOT RETURN A VALUE, AND IS
INVOKED IN AN <EXECUTE PROCEDURE STATEMENT>. SEE "EXECUTE
PROCEDURE STATEMENT",

THE SYNTAX FOR THE PROCEDURE HEADING IS:

<{COMPOUND PROCEDURE
HEAD> ::= {PROCEDURE HEAD>



<PROCEDURE HEAD>

{BASIC PROCEDURE HEAD>

]

<{PROCEDURE NAME>
{PROCEDURE IDENTIFIER>

<TYPED PROCEDURE
IDENTIFIER> ::=

<{NON-TYPED PROCEDURE
IDENTIFIERY ::=

CINTRINSIC IDENTIFIER>:=

<TYPED INTRINSIC
IDENTIFIER>::=

{NON-TYPED INTRINSIC
IDENTIFIER>: :=

{FORMAL PARAMETER PART>

{FORMAL PARAMETER LIST>

{FORMAL PARAMETER>

{PROCEDURE TYPE PART>

<{FORMAL TYPE PART>

{TYPE PART>

{TYPE VARYING PART>

{FORMAL PARAMETER DECLA-

g-2
{FORMAL PARAMETER DECLARATION
STATEMENT LIST>

{BASIC PROCEDURE HEAD>
{PROCEDURE TYPE PART>;

{PROCEDURE NAME>
{FORMAL PARAMETER PART>

PROCEDURE <PROCEDURE IDENTIFIER>
INTRINSIC <INTRINSIC IDENTIFIER>

- <TYPED PROCEDURE IDENTIFIER>

{NON-TYPED PROCEDURE IDENTIFIER>
CIDENTIFIERD

CIDENTIFIER>
{TYPED INTRINSIC IDENTIFIER>
{NON-TYPED INTRINSIC IDENTIFIER>

CIDENTIFIERD

CIDENTIFIERD

<EMPTY>
(<FORMAL PARAMETER LIST>)

{FORMAL PARAMETER>
{FORMAL PARAMETER>,
{FORMAL PARAMETER LIST>

CIDENTIFIER>

<EMPTY>
{FORMAL TYPE PART>

<{TYPE PART>
<{TYPE VARYING PART>

FIXED
CHARACTER <FIELD SIZE>
BIT <FIELD SIZE>

VARY ING
BIT VARYING
CHARACTER VARYING



RATION STATEMENT LIST> ::= <EMPTY>
/ <FORMAL PARAMETER DECLARATION STATEMENT>;
{FORMAL PARAMETER DECLARATION

STATEMENT LIST>

<FORMAL PARAMETER
DECLARATION STATEMENT> ::= FORMAL <FORMAL ELEMENT)>
/ FORMAL.VALUE <FORMAL ELEMENT)>
/ {FORMAL PARAMETER DECLARATION STATEMENT>,
(FORMAL ELEMENT>

<FORMAL ELEMENT> ::= (CFORMAL IDENTIFIER LIST>)
(FORMAL TYPE PART>
/ <FORMAL IDENTIFIER>
{FORMAL TYPE PART>

<FORMAL INDENTIFIER
LIST> ::= <FORMAL IDENTIFIER>
/ <FORMAL IDENTIFIER LIST>,
<FORMAL IDENTIFIER>

{FORMAL IDENTIFIER>

{COMPLEX IDENTIFIER>
/ <VARYING ARRAY SPECIFIER>

<COMPLEX IDENTIFIER> {SIMPLE IDENTIFIER>
/ <ARRAY IDENTIFIER>

{ARRAY BOUND>

<VARYING ARRAY
SPECIFIER> ::= C{ARRAY IDENTIFIER>
<VARYING ARRAY BOUND>

<VARYING ARRAY BOUND> (*)

THE PROCEDURE HEADING, I.E., <COMPOUND PROCEDURE HEAD>, CONTAINS
THE <PROCEDURE NAME>, FORMAL PARAMETERS (IF ANY), AND THE
{PROCEDURE TYPE PART>, I.E., THE FIELD TYPE OF THE VALUE TO BE
RETURNED IF THE PROCEDURE IS "TYPED". FOR EXAMPLE:

PROCEDURE X (M,N) FIXED;
FORMAL (M,N) VARYING;

WHICH CORRESPONDS TO THE FOLLOWING SYNTAX:

PROCEDURE <TYPED PROCEDURE IDENTIFIER> :
(<FORMAL PARAMETER>,<FORMAL PARAMETER))
{PROCEDURE TYPE PART>;

FORMAL (<FORMAL IDENTIFIER>,<FORMAL IDENTIFIER>)
{FORMAL TYPE PART>;



9-4

IN THIS CASE, THE VALUE RETURNED TO THE POINT OF INVOCATION
SHOULD BE FIXED. THERE 1S, HOWEVER, NO CHECK FOR THIS AT
COMPILE TIME. IF THE CONTROL CARD OPTION "FORMALCHECK" IS
PRESENT, THE RETURNED VALUES MWILL BE CHECKED AGAINST THE
PROCEDURE TYPE AT RUN TIME.

THE "NON-TYPED" PROCEDURE FOLLOWS THE SAME FORMAT EXCEPT THAT
THE <PROCEDURE TYPE PART> IS OMITTED SINCE NO VALUE IS
RETURNED. FOR INSTANCE:

PROCEDURE A (J,K,L);
FORMAL J FIXED, (K,L) BIT VARYING;

WHICH SYNTACTICALLY IS THE SAME AS:

PROCEDURE <NON-TYPED PROCEDURE IDENTIFIER>
(<FORMAL PARAMETER>,<FORMAL PARAMETER>,
{FORMAL PARAMETER>);
FORMAL <FORMAL IDENTIFIER> <FORMAL TYPE PART>,
(<FORMAL IDENTIFIER>,<FORMAL IDENTIFIER>)
{FORMAL TYPE PART>;

THE FIELD TYPE OF FORMAL PARAMETERS (1.E., COMPONENTS OF THE
{FORMAL TYPE PART>) MAY BE STATIC (BIT, CHARACTER, OR FIXED) OR
VARITABLE (BIT VARYING, CHARACTER VARYING, OR VARYING).

OFTEN HOWEVER, IT IS IMPOSSIBLE TO DETERMINE THE DATA TYPE AT
COMPILE TIME ESPECIALLY IF THE ACTUAL PARAMETERS ARE PASSED TO
THE PROCEDURE FROM DIFFERENT POINTS IN THE PROGRAM AND UNDER
DIFFERING CIRCUMSTANCES. SDL ALLOWS THE USER TO SPECIFY
VARIABLE DATA FIELDS IN THE FORMAL DECLARATION. THE ACTUAL
PARAMETERS PASSED TO THAT PROCEDURE WILL PROVIDE THE SPECIFICS.
THUS FORMALS MAY BE DECLARED AS "BIT VARYING", "CHARACTER
VARYING", OR "VARYING".

IN A VARIABLE BIT OR CHARACTER FIELD, THE TYPE OF DATA PASSED
MUST BE THAT WHICH IS SPECIFIED (I.E., BIT OR CHARACTER). THE
LENGTH, HOWEVER, REMAINS VARIABLE. FORMALS SPECIFIED AS
"VARYING" MAY ACCEPT ANY TYPE OF DATA OF ANY LENGTH.

THE DATA TYPES OF CORRESPONDING FORMAL AND ACTUAL PARAMETERS
WILL NOT BE CHECKED AT COMPILE TIME AND ONLY AT RUN TIME WHEN
"FORMALCHECK" HAS BEEN SPECIFIED AS A CONTROL CARD OPTION.

VARY ING FORMALS MAY BE REMAPPED, BUT IT IS THE PROGRAMMER-S
RESPONSIBILITY TO ENSURE THAT THE REMAPPED FORMAL PARAMETER AND
ITS CORRESPONDING ACTUAL PARAMETER MATCH. A WARNING MESSAGE



8-5

WILL APPEAR IN THE SOURCE LISTING WHERE THE REMAPPING HAS
OCCURRED.

SDL ALSO ALLOWS FORMALLY DECLARED ARRAYS TO HAVE A VARIABLE
NUMBER OF ELEMENTS BY SUBSTITUTING "*" FOR THE NUMBER FOLLOWING
THE <ARRAY IDENTIFIER>. FOR INSTANCE:

PROCEDURE X (A,B);
FORMAL A (*) FIXED, B (*) VARYING;



8-6

INTRINSICS

THE WORD "INTRINSIC" MAY BE USED INTERCHANGEABLY WITH THE WORD
"PROCEDURE". IT 1S, HOWEVER, INTENDED ONLY FOR USE BY THE SDL
GROUP IN ORDER TO PROVIDE SDL INTRINSICS.

THE USE OF "INTRINSIC" FORCES THE INTRINSIC TO HAVE AS ENTRY
POINT THE DISPLACEMENT O WITHIN A NEW SEGMENT.

* % *

THE BODY OF THE PROCEDURE FOLLOWS THE HEADING. INCLUDED ARE
DECLARATION OF LOCAL DATA (DISCUSSED UNDER "THE DECLARATION
STATEMENT"), NESTED PROCEDURES (ALSO SEE "BASIC STRUCTURE OF
THE SDL PROGRAM"), EXECUTABLE STATEMENTS, AND AN ENDING. THE
SYNTAX FOR THE <PROCEDURE EXECUTABLE STATEMENT LIST> FOLLOWS:

{PROCEDURE BODY> ::= <DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
{PROCEDURE EXECUTABLE STATEMENT LIST>
<PROCEDURE ENDING>

{PROCEDURE EXECUTABLE
STATEMENT LIST> ::= {PROCEDURE EXECUTABLE STATEMENT>
/ <PROCEDURE EXECUTABLE STATEMENT>
{PROCEDURE EXECUTABLE STATEMENT LIST>

{PROCEDURE EXECUTABLE
STATEMENT)> ::= " (EXECUTABLE STATEMENT>
/ <RETURN STATEMENT>
/ <(SEGMENT STATEMENT>
{PROCEDURE EXECUTABLE STATEMENT>

THE <EXECUTABLE STATEMENT>S WILL BE DISCUSSED IN THE SECTION
ENTITLED "EXECUTABLE STATEMENTS". AS INDICATED BY THE ABOVE
SYNTAX, EXECUTABLE STATEMENTS WITHIN A PROCEDURE MAY BE
SEGMENTED. HOWEVER, A PROCEDURE MUST END IN THE SAME SEGMENT IN
WHICH 1T BEGINS. FOR OTHER SEGMENTATION RESTRICTIONS SEE "THE
SEGMENT STATEMENT".

THE SYNTAX FOR THE <RETURN STATEMENT> IS:

{RETURN STATEMENT> ::= {TYPED PROCEDURE RETURN STATEMENT>



9-7

/ <NON-TYPED PROCEDURE RETURN STATEMENT>

<TYPED PROCEDURE
RETURN STATEMENT> ::= RETURN <EXPRESSION>

<{NON-TYPED PROCEDURE
RETURN STATEMENT> ::= RETURN
/ RETURN.AND.ENABLE.INTERRUPTS

THE <RETURN STATEMENT> TAKES ONE OF TWO FORMS DEPENDING ON THE
TYPE OF THE PROCEDURE ENCOMPASSING IT. IF THE PROCEDURE IS
"TYPED", AN <EXPRESSION> MUST BE RETURNED TO THE POINT OF
INVOCATION. IN A "NON-TYPED" PROCEDURE, ONLY A SIMPLE RETURN IS
NEEDED. FOR EXPRESSION SPECIFICATIONS REFER TO THE SECTIONS
ENTITLED "EXPRESSIONS" AND "PRIMARIES".

TYPE CHECKING ON A <RETURN STATEMENT)> IS DONE ONLY AT RUN TIME
WHEN "FORMALCHECK" APPEARS AS A CONTROL CARD OPTION.

WITHIN ANY GIVEN PROCEDURE (AT ANY LEXIC LEVEL), CERTAIN
STATEMENTS ARE NESTED WITHIN OTHER STATEMENTS AND ARE ACCESSED,
MUCH LIKE A PROCEDURE, BY AN ADDRESS GENERATED BY THE LARGER
STATEMENT. THE MOST GENERAL NESTING LEVEL IS ZERO, AND THE
NESTING LEVEL OF ANY STATEMENT APPEARS ON AN SDL LISTING UNDER
THE COLUMN "NL". THE MOST COMMON INSTANCE OF STATEMENTS
OCCURRING AT NESTING LEVEL 1 OR GREATER ARE:

1. THE CONDITIONALLY EXECUTED STATEMENTS
FOLLOWING "THEN" AND "ELSE" IN THE <IF
STATEMENT>.

2. STATEMENTS CONTAINED WITHIN A <CASE
STATEMENT>.

3. <{DO-GROUP>S.

IF THE COMPILER CANNOT FIND A <RETURN STATEMENT> ON NL O, IT
WILL GENERATE ONE DIRECTLY PRECEDING THE <PROCEDURE ENDING>.
THIS IS MERELY A SAFETY MEASURE TO INSURE THAT A PROCEDURE CAN
ALWAYS BE PROPERLY EXITED.

A COMPILER-GENERATED RETURN WORKS ESSENTIALLY IN THE SAME MANNER
AS AN EXPLICIT RETURN. IN A NON-TYPED PROCEDURE, CONTROL IS
RETURNED TO THE POINT OF THE PROCEDURE-S INVOCATION. IN A TYPED
PROCEDURE, THE FOLLOWING VALUES ARE RETURNED.



9-8

IF_THE PROCEDURE 1S TYPED: THE COMPILER WILL RETURN:
BIT BITS CONTAINING O

OF LENGTH SPECIFIED
CHARACTER BLANKS OF LENGTH SPECIFIED
FIXED FIXED ZERO
BIT VARYING 8-BITS OF ZERO
CHARACTER VARYING ONE BLANK
VARYING FIXED ZERO

RETURN.AND.ENABLE. INTERRUPTS IS FOR MCP USE ONLY. IT WILL CAUSE
A NORMAL PROCEDURE EXIT TO TAKE PLACE, AND WILL ENABLE
INTERRUPTS AS WELL.

THE <PROCEDURE ENDING> IS THE FINAL STATEMENT OF A PROCEDURE,
AND THE SYNTAX IS:

<PROCEDURE ENDING>

END
/ END <PROCEDURE IDENTIFIER>

THE IDENTIFIER FOLLOWING THE RESERVED WORD "END" IS OPTIONAL.
ITS SOLE PURPOSE IS TO SIMPLIFY THE DOCUMENTATION OF THE
PROGRAM. IF AN IDENTIFIER IS SUPPLIED BY THE USER, THE COMPILER
WILL PERFORM A SYNTAX CHECK TO GUARANTEE THAT THE <PROCEDURE
ENDING> IS APPROPRIATELY PLACED.



ASSIGNMENT STATEMENTS AND EXPRESSIONS

(ASSIGNMENT STATEMENT>

{ADDRESS VARIABLE> ::=
(REPLACE> ::=

{EXPRESSION LIST>

1]

CEXPRESSION>

1}

{STRING EXPRESSION>

{OR-ING OPERATOR>

1}

<{LOGICAL FACTOR>

]

<LOGICAL SECONDARY>

i

<LOGICAL PRIMARY>

CRELATION>

1]

CARITHMETIC
EXPRESSION>

CADDITIVE OPERATOR>

)

(ADDRESS VARIABLE>
{REPLACE>

<EXPRESSION>

SEE

-/

{EXPRESSION>

"ADDRESS VARIABLES"

<EXPRESSION>,
CEXPRESSION LIST>

(STRING EXPRESSION>
{STRING EXPRESSION>
CAT <EXPRESSION>

<LOGICAL FACTOR>
(LOGICAL FACTOR>
{OR-ING OPERATOR>

(STRING EXPRESSION>

OR

/

EXOR

{LOGICAL SECONDARY>
{LOGICAL SECONDARY>

AND <LOGICAL FACTOR>

{LOGICAL PRIMARY>

NOT <LOGICAL PRIMARY>

CARITHMETIC EXPRESSION>
CARITHMETIC EXPRESSION>

<RELATION>

CARITHMETIC EXPRESSION>

<
LSS
GEQ

/

/
/

<TERM>
(TERM>
{ADDITIVE OPERATOR>

{ARITHMETIC EXPRESSION>

+

/

<

/
LEQ
GTR

/

/

#
EQL

/

10-1



10-2

CTERM>::= (SIGNED PRIMARY)>
/ <SIGNED PRIMARY>
{MULTIPLICATIVE OPERATOR>

<TERM>
CMULTIPLICATIVE
OPERATOR) ::= * / MOD / <(SLASH>
<SIGNED PRIMARY>::=  <PRIMARY>
/ <UNARY OPERATOR>
CPRIMARY>
CUNARY OPERATOR)> ::= v/ -

THE ALGORITHM WHICH COMPILES AN SDL EXPRESSION MAY BE BEST
UNDERSTOOD IN TERMS OF POLISH POST-FIX NOTATION. POLISH
NOTATION IS AN ARITHMETICAL OR LOGICAL SYSTEM USING ONLY
OPERANDS AND OPERATORS ARRANGED IN A SEQUENCE WHICH ELIMINATES
THE NECESSITY OF PRIMARY BOUNDARIES (1.E., PARENTHESES).

IN POLISH, OPERANDS ARE EMITTED IN THE SAME LEFT TO RIGHT ORDER
THAT THEY APPEAR IN THE EXPRESSION. OPERATORS ARE EMITTED
ACCORDING TO THE RULES OF OPERATOR PRECEDENCE DEFINED BY SDL.

NOTE THAT THE END RESULTS OF THE EVALUATION OF AN SDL EXPRESSION
AND ITS POLISH EQUIVALENT WILL ALWAYS BE THE SAME. HOWEVER, FOR
OPTIMUM USE OF THE EVALUATION STACK, THE COMPILER MAY NOT LOAD
THE OPERANDS IN THE EXACT ORDER INDICATED BY THE POLISH STRING.

THE PRECEDENCE OF ANY OPERATOR 1S DETERMINED BY COMPARING IT
WITH THE FIRST OPERATOR TO TS LEFT. FIGURE 3 SHOWS THE
PRECEDENCE RELATIONSHIP BETWEEN ANY TWO OPERATORS WHICH MAY
APPEAR IN AN SDL EXPRESSION,

THE FOLLOWING ALGORITHM IS USED TO CONVERT AN SDL EXPRESSION
INTO A POLISH STRING, AND REPRESENTS THE LOGIC BY WHICH THE
COMPILER TRANSLATES AN EXPRESSION. NOTE THAT THIS IS
FUNCTIONALLY WHAT THE COMPILER DOES, NOT WHAT 1T ACTUALLY DOES.

1. GET TOKEN FROM EXPRESSION.

2. IF TOKEN = OPERAND, THEN PLACE IN POLISH
STRING AND GO TO 1.

3. I[F TOKEN (IE., PRESENT OP) = RIGHT PAREN, THEN
IF (TOKEN TOP OF STACK] (IE., PREVIOUS OP) =



10-3

LEFT PAREN, THEN POP STACK AND GO TO 1.

Y. IF TOKEN = ET AND [TOP OF STACK] = BT, THEN
EXIT.

5. IF PRECEDENCE [TOP OF STACK] < PRECEDENCE
[TOKEN], THEN PUT TOKEN ON TOP OF STACK AND GO
T0 1.

6. IF PRECEDENCE (TOP OF STACK] > PRECEDENCE

[TOKEN], THEN PUT [TOKEN TOP OF STACK] IN
POLISH AND GO TO 3.

THE FOLLOWING 1S A LIST OF THE SDL OPERATORS FROM HIGHEST
PRECEDENCE TO LOWEST. THIS LIST OR THE TABLE IN FIGURE 3 MAY BE
USED WHEN EVALUATING AN EXPRESSION.

+, — (UNARY)

*, /, MOD

+, - (BINARY)

<1 Sv =, ¢9 2’ >
NOT

AND

OR, EXOR

CAT

1. THE ASSIGNMENT OPERATOR HAS HIGHER PRECEDENCE
THAN ANY OPERATOR TO ITS LEFT AND LOWER
PRECEDENCE THAN ANY TO ITS RIGHT.

2. THE ORDER OF EVALUATION OF OPERATORS HAVING
‘ EQUAL PRECEDENCE 1S ALWAYS FROM LEFT TO RIGHT.



10-4

PRESENT OP.
NEG + - = NOT AND OR CAT ) ET
NEG | > > > < > > > > >
* < > > < > > > > 1o
+ -] < > > < > > > > >
P ;
R = < < > < > > > > >
E
v NOT | < < < > > > > > >
é AND | < < < < > > > > >
g OR | < < < < < > > > >
0 CAT | < c < < < < < > > >
n = | < < < < < < < > >
( < < < < < < < =
) > > > > > > >
BT | < < < < < < < =
PRECEDENCE <PREVIOUS OP> <RELATION> PRECEDENCE <PRESENT OP>

FORMULA:

NOTE :

NEG

UNARY OPERATORS
MULTIPLICATIVE OPERATORS
RELATIONAL OPERATORS

REPLACE OPERATORS

INFERRED BEGINNING TERMINATOR
INFERRED ENDING TERMINATOR

FIG 3. OPERATOR PRECEDENCE TABLE




10-5

UNARY OPERATOR

THE UNARY OPERATOR ACTS UPON ONE OPERAND AND MAY NEVER APPEAR AS
AN INFIX OPERATOR BETWEEN TWO OPERANDS. IT MAY APPEAR TO THE
RIGHT OF ANY OTHER OPERATOR, INCLUDING ITSELF.

THE UNARY MINUS (-) GENERATES THE TWO-S COMPLEMENT OF THE
OPERAND ASSOCIATED WITH IT (I.E., =X = (NOT X)+1). THE OPERAND
MAY BE ANY DATA TYPE. IF IT IS FIXED, THE UNARY MINUS HAS THE
EFFECT OF REVERSING THE SIGN, AND THE RESULT IS LABELED ON THE
EVALUATION STACK AS FIXED.

IF THE OPERAND IS EITHER A CHARACTER OR BIT STRING, ONLY THE
LOW-ORDER 24 BITS WILL BE EVALUATED. STRINGS LESS THAN 24 BITS
WILL BE PADDED WITH LEADING ZEROES TO 24 BITS. THE TWO-S
COMPLEMENT OF THE STRING IS GENERATED AND RETURNED TO THE STACK
AS TYPE BIT. NOTE, HOWEVER, THAT THE NEGATION OF ANY BIT OR
CHARACTER STRING CAN NEVER RESULT IN A VALUE LESS THAN ZERO.

THE SDL COMPILER GENERATES NO CODE FOR THE UNARY PLUS (+) WHICH
EXISTS SOLELY FOR THE CONVENIENCE OF THE PROGRAMMER.

ARITHMETIC OPERATORS

+ ADDITION

- SUBTRACTION

* MULTIPLICATION

MOD DIVISION YIELDING INTEGER VALUE OF REMAINDER
/ DIVISION YIELDING INTEGER VALUE OF QUOTIENT

THE ARITHMETIC OPERATORS PERFORM 24-BIT ARITHMETIC ON TWO
OPERANDS OF ANY OF THE THREE DATA TYPES. SIGN ANALYSIS WILL BE
DONE ONLY IF BOTH OPERANDS ARE FIXED. WITH ANY OTHER
COMBINATION OF DATA TYPES, THE MAGNITUDES OF THE OPERANDS ARE
EVALUATED.



10-6

FOR BOTH BIT AND CHARACTER DATA, IF THE FIELD IS GREATER THAN 24
BITS, ONLY THE LOW-ORDER 24 BITS WILL BE EVALUATED. IF THE

FIELD IS LESS THAN 24 BITS, LEADING ZEROES WILL BE SUPPLIED
FROM THE LEFT.

A 24-BIT RESULT WILL BE RETURNED TO THE EVALUATION STACK. IF
BOTH OPERANDS ARE FIXED, THE RESULT WILL BE FIXED. OTHERWISE,
THE RESULT WILL BE TYPE BIT.

SDL DIVISION RESULTS IN AN INTEGER VALUE. ANY REMAINDER IS
TRUNCATED THUS:

7/ 3
3/ 7

[}
n

THE MOD OPERATION IS DIVISION RESULTING IN THE INTEGER VALUE OF
THE REMAINDER. IT IS EVALUATED BY THE FOLLOWING FORMULA WHERE
SIGN(Y) = -1, IF Y<0 OR, +1 IF Y20:

Y MOD Z = Y-Z*(SIGN(Y/2Z) * ABSOLUTE VALUE (Y/Z))

FOR EXAMPLE:

7 MOD 3 = 7-3 * (41 * ABS 2) = +]

-7 MOD 3 = -7-3 * (-1 * ABS(-2)) = -1
3 MOD -7 = 3--7 * (-1 * ABS 0) = +3
-3 MOD -7 = -3--7 * (+1 * ABS 0) = -3

N

RELATIONAL OPERATORS

= EQL EQUAL TO

# NEQ NOT EQUAL TO

> GTR GREATER THAN

< LSS LESS THAN

2 GEQ- GREATER THAN OR EQUAL TO
< LEQ LESS THAN OR EQUAL TO

THE RELATIONAL OPERATORS DO A COMPARISON BETWEEN TWO OPERANDS OF
ANY DATA TYPE. A 1-BIT RESULT IS RETURNED -- e(l)le [F THE
CONDITION IS TRUE, e(1)0e IF THE CONDITION IS FALSE.



10-7

IF BOTH OPERANDS ARE FIXED, THE OPERATOR DOES A TRUE SIGNED
COMPARE . [F BOTH OPERANDS ARE CHARACTER STRINGS, THE SHORTER
ONE IS PADDED ON THE RIGHT WITH BLANKS, AND A CHARACTER BY
CHARACTER MAGNITUDE COMPARE BY COLLATING SEQUENCE 1S DONE.

FOR ALL OTHER OPERAND COMBINATIONS, LEADING ZEROES ARE SUPPLIED
TO THE SHORTER OF THE TWO. NO SIGN ANALYSIS IS DONE, AND -
OPERANDS ARE TREATED AS POSITIVE MAGNITUDES.

LOGICAL OPERATORS

THE LOGICAL OPERATORS PERFORM A BIT BY BIT ANALYSIS ON ALL THREE
DATA TYPES. "NOT" 1S CONSIDERED TO BE A UNARY OPERATOR, AND MAY
APPEAR TO THE RIGHT OF ANY OTHER OPERATOR (INCLUDING ITSELF).

THE OTHER OPERATORS REQUIRE TWO OPERANDS. THE SHORTER OF THE TWO
IS PADDED ON THE LEFT WITH ZEROES TO DUPLICATE THE LENGTH OF

THE LARGER. THE FOLLOWING CHART ILLUSTRATES THE USE OF EACH

OPERATOR.

IR X = 0 0 1 1
IFY = 0 1 0 1
NOT X = 1 1 0 0
NoTY- 1 o | 1 | o

X AND®¥_= 0 0 0 1
CxoRv= |0 | 1| 1 |
xexorysl o | 1| 1 | o

[F X = 00101110 AND Y = 10101100 THEN

NOT X = 11010001



10-8

X AND Y = 00101100
XOR Y = 10101110
X EXOR Y = 10000010

REPLACE OPERATORS

H]

CASSTONMENT STATEMENT C{ADDRESS VARIABLE>
{REPLACE>

(EXPRESSION>
CREPLACE> ::= -/ =

CASSIGNOR> CADDRESS VARIABLE>
{NON-DESTRUCTIVE RELACE>

{EXPRESSION>

{NON-DESTRUCTIVE
REPLACE> ::= (REPLACE, DELETE LEFT PART>
/ <REPLACE, DELETE RIGHT PART>

(REPLACE, DELETE
LEFT PARTY> ::= @/ =

{REPLACE, DELETE
RIGHT PART> ::= -/ 1=

THERE ARE TWO BASIC TYPES OF REPLACE OPERATORS: THE DESTRUCTIVE
{REPLACE> ASSOCIATED WITH THE <(ASSIGNMENT STATEMENT>, AND THE
{NON-DESTRUCTIVE REPLACE> WHICH OCCURS ONLY WITHIN AN
EXPRESSION.

THE DESTRUCTIVE <REPLACE> OPERATOR CAUSES THE EXPRESSION ON ITS
RIGHT TO "REPLACE" THE VARIABLE ON ITS LEFT. THE EVALUATION
STACK IS FLUSHED SINCE THIS REPLACE IS NECESSARILY THE LAST
OPERATION IN THE STATEMENT.

THE <NON-DESTRUCTIVE REPLACE> TAKES TWO FORMS: "DELETE LEFT" AND
"DELETE RIGHT". THE "DELETE LEFT" CAUSES THE EXPRESSION TO THE
RIGHT OF THE OPERATOR TO REPLACE THE VARIABLE ON ITS LEFT. THE
VARIABLE IS THEN DELETED FROM THE TOP OF THE EVALUATION STACK,
AND THE EXPRESSION IS LEFT ON THE TOP OF THE STACK.



10-9

THE "DELETE RIGHT" CAUSES THE SAME REPLACEMENT. HOWEVER, THE
EXPRESSION TO THE RIGHT OF THE OPERATOR IS DELETED FROM THE
EVALUATION STACK, AND THE VARIABLE TO THE LEFT REMAINS ON THE
TOP OF THE STACK.

THE FOLLOWING EXAMPLE ILLUSTRATES THE USE OF THE <{NON-
DESTRUCTIVE REPLACE>:

PROCEDURE GOOD BIT VARYING;
DECLARE X BIT(48);
RETURN X ::= "RESULT";

END GOOD;

PROCEDURE BAD BIT VARYING;
DECLARE Y BIT(48);
RETURN Y := "RESULT";

END BAD;

PROCEDURE GOOD WILL EXECUTE PROPERLY SINCE X, DECLARED AS BIT,
IS ASSOCIATED WITH THE PROCEDURE TYPE--BIT VARYING. NOTICE,
HOWEVER, THAT IN PROCEDURE BAD, Y IS DELETED FROM THE STACK AND
THE CHARACTER STRING "RESULT" REMAINS. UNLESS THE CONTROL CARD
OPTION "FORMALCHECK" IS SET AT COMPILE TIME, THERE WILL BE NO
INDICATION THAT THE DATA TYPES (AS IN PROCEDURE BAD) DO NOT
MATCH THE PROCEDURE TYPE. IF "FORMALCHECK" IS SPECIFIED, THE
FOLLOWING EXECUTE TIME ERROR MESSAGE WILL BE PRINTED:

"TYPE ERROR IN RETURNED VALUE"

IF BOTH OPERANDS ASSOCIATED WITH ANY REPLACE OPERATOR ARE
CHARACTER FIELDS, AND THE RECEIVING FIELD IS LONGER THAN THE
SENDING FIELD, TRAILING BLANKS WILL BE ADDED. IF THE RECEIVING
FIELD IS SHORTER, CHARACTERS WILL BE TRUNCATED FROM THE RIGHT.

WITH EVERY OTHER COMBINATION OF DATA TYPES, WHEN THE RECEIVING
FIELD IS NOT EQUAL IN LENGTH TO THE SENDING FIELD, LEADING
BINARY ZEROES WILL BE APPENDED TO THE LARGER RECEIVING FIELD,
OR HIGH-ORDER BITS ARE TRUNCATED FROM THE LARGER SENDING FIELD.

ALSO SEE THE REVERSE STORE OPERATION IN THE SECTION ENTITLED
"EXECUTE-FUNCTION STATEMENT".



10-10

CONCATENATION

DATA ITEMS MAY BE LINKED TOGETHER (CONCATENATED) BY USING THE
"CAT" OPERATOR. ALTHOUGH THIS OPERATOR IS INTENDED TO
CONCATENATE BIT STRINGS OR CHARACTER STRINGS, IT MAY BE USED
WITH ANY COMBINATION OF DATA TYPES. THE RESULT OF ANY
CONCATENATION MAY NOT BE GREATER THAN 8191 CHARACTERS OR 65535
BITS. ) '

IF ALL THE OPERANDS ARE CHARACTER STRINGS, THE RESULT IS A
CHARACTER STRING. FOR ANY OTHER COMBINATION OF DATA TYPES, THE
RESULT IS A BIT STRING. FOR EXAMPLE:

LET A = "B" 1 CHARACTER
B = e(1)10le 3 BITS
C = +10 FIXED
THEN
B CAT B = e(1)101101e BIT STRING, LENGTH 6
A CAT A = "BB" CHARACTER STRING, LENGTH 2
A CAT B = e(1)11000010101e BIT STRING, LENGTH 11
B CAT C = @(3)500000012e BIT STRING, LENGTH 27

(EXPRESSED IN OCTAL)



11-1

PRIMARY ELEMENTS OF THE EXPRESSION

<PRIMARY>

]

(CONSTANT>

<VARITABLE>
(CEXPRESSION>)
{CONDITIONAL EXPRESSION>
{CASE EXPRESSION>
<{BUMPOR>

{DECREMENTOR>

(ASSIGNOR>

N NN NN NN

{VARIABLE> ::= (ADDRESS VARIABLE>
/ <VALUE VARIABLE>

A PRIMARY IS THE MOST BASIC COMPONENT OF THE SDL EXPRESSION. TO
AVOID UNNECESSARY REPETITION, SEE "BASIC COMPONENTS OF THE SDL
LANGUAGE " FOR DISCUSSION OF CONSTANTS, AND SEE "ADDRESS
VARTABLES" AND "VALUE VARIABLES" FOR DISCUSSION OF VARIABLES.

CONDITIONAL EXPRESSION

<CONDITIONAL
EXPRESSION> IF <EXPRESSION>
THEN <EXPRESSION>

ELSE <EXPRESSION>

THE EXPRESSION FOLLOWING THE RESERVED WORD "IF" IS EVALUATED. IF
THE LOW-ORDER BIT OF THE RESULT IS 1, THE EXPRESSION FOLLOWING

"THEN" IS EVALUATED. IF IT IS ZERO, THE EXPRESSION FOLLOWING

"ELSE" IS EVALUATED. UNLIKE THE <IF STATEMENT>, THE "ELSE" PART

OF THE EXPRESSION MUST BE PRESENT.



CASE EXPRESSION

<CASE EXPRESSION>

CASE <EXPRESSION>
OF (<KEXPRESSION LIST>)

{EXPRESSION LIST>

{EXPRESSION>
/ <EXPRESSION>,
{EXPRESSION LIST>

IN THE <CASE EXPRESSION>, THE VALUE OF THE <EXPRESSION>
FOLLOWING THE RESERVED WORD "CASE" IS USED AS AN INDEX INTO THE
LIST OF EXPRESSIONS. THE EXPRESSION THUS SELECTED IS EVALUATED,
AND THE OTHER EXPRESSIONS IN THE LIST IGNORED. THE RANGE OF THE
INDEX IS FROM ZERO TO N-1, WHERE N IS THE NUMBER OF
CEXPRESSION>S IN THE LIST. AN EXAMPLE OF AN <ASSIGNMENT
STATEMENT> CONTAINING A <CASE EXPRESSION> FOLLOWS:

A:=CASE 1 OF (A+B, A-B, A*B, A/B, A MOD B) +
CASE J OF (Q*F-6, 9, 34+B, (A+B) MOD B, C)

IF I=2 AND J=3, THE STATEMENT WILL BE EVALUATED AS FOLLOWS:

A:=(A*B) + (A+B) MOD B;

BUMP

<BUMPOR> = BUMP <ADDRESS VARIABLE>
{MODIFIER>

<{MODIFIER> = <EMPTY>

/ BY <EXPRESSION>

BUMPOR LEAVES ON THE EVALUATION STACK, A DESCRIPTOR OF THE
VARIABLE WHICH HAS BEEN INCREMENTED BY THE VALUE OF THE
MODIFYING <EXPRESSION>. IF <MODIFIER> IS <EMPTY>, THEN THE
VARTABLE IS INCREMENTED BY 1. THE RESULTS OF THE FOLLOWING
EXPRESSIONS (WHERE A IS AN <ARRAY IDENTIFIER>) ARE EQUIVALENT:



11-3

BUMP A(X+Y) BY N
A(X+Y) ::= A(X+Y) + N

THE ADVANTAGE OF USING <BUMPOR> IS THAT THE CODE FOR PUTTING THE
DESCRIPTOR ON THE STACK IS EXECUTED ONLY ONCE. THUS IT IS MORE
EFFICIENT.

LIKE ANY VARIABLE, (<BUMPOR>) WILL CAUSE A VALUE TO BE LOADED TO
THE TOP OF THE STACK. HENCE:

P(BUMP X BY C-D);
PASSES X BY ADDRESS BUT,

P((BUMP X BY C-D));
PASSES X BY VALUE.

<(BUMPOR> OPERATES ON ALL THREE DATA TYPES. CHARACTER STRINGS ARE

TREATED AS IF THEY WERE BIT STRINGS. FOR FIELDS GREATER THAN 24 -
BITS., ONLY THE LOW-ORDER 24 BITS ARE EVALUATED. IF THE FIELD IS
LESS THAN 24 BITS, IT IS PADDED WITH LEADING ZEROES TO 24 BITS.

DECREMENT

<DECREMENTOR> = DECREMENT <ADDRESS VARIABLE>
{MODIFIER>

{MODIFIER> ::= <EMPTY>

BY <EXPRESSION>

THE <DECREMENTOR> WORKS EXACTLY LIKE <BUMPOR> EXCEPT THAT THE
VARIABLE IS DECREASED BY THE VALUE OF THE <EXPRESSION>. SEE
ABOVE .



11-4

ASSIGNOR

o o e o o

CASSIGNOR> ::= {ADDRESS VARIABLE>
<{NON-DESTRUCTIVE REPLACE>
<EXPRESSION> :

<NON-DESTRUCT I VE ,
REPLACE> ::= CREPLACE, DELETE LEFT PART>
/ <REPLACE, DELETE RIGHT PART)>

<{REPLACE, DELETE
LEFT PART> ::= -/ =

<(REPLACE, DELETE
RIGHT PART> ::= -/ =

WITH THE EXCEPTION OF THE <NON-DESTRUCTIVE REPLACE> OPERATOR,
THE (ASSIGNOR> PERFORMS THE SAME FUNCTION AS THE <ASSIGNMENT
STATEMENT>. ALL THE RULES WHICH APPLY . TO THE <ASSIGNMENT
STATEMENT> ALSO APPLY TO THE <ASSIGNOR>. FOR DISCUSSION OF THE
<{NON-DESTRUCTIVE REPLACE>, SEE THE SECTION ENTITLED "THE
REPLACE OPERATOR".



12-1

ADDRESS VARIABLES

CADDRESS VARIABLE> :: (SIMPLE VARIABLE>
' / <SUBSCRIPTED VARIABLE>
/ <INDEXED VARIABLE>

/ <ADDRESS-GENERATING FUNCTION DESIGNATOR>

<SIMPILE VARIABLE>

{SIMPLE IDENTIFIER>

{SIMPLE IDENTIFIER>

i

CIDENTIFIERD

SUBSCRIPTED VARIABLED>

L}

CARRAY IDENTIFIER> (CEXPRESSIONY)

CARRAY IDENTIFIER> ::= CIDENTIFIERD

AS NOTED ABOVE, <ADDRESS VARIABLE>S MAY TAKE THE FORM OF A
(SIMPLE IDENTIFIER>, OR AN (ARRAY IDENTIFIER> FOLLOWED BY AN
{(<EXPRESSION>) DESIGNATING THE ARRAY ELEMENT IN QUESTION. IN
ADDITION, SIMPLE AND ARRAY IDENTIFIERS MAY BE INDEXED.

INDEXING

CINDEXED VARIABLC® (SIMPLE IDENTIFIERY> <INDEX PART)>
/ <ARRAY IDENTIFIER> <INDEX PART>
¢ |
[CEXPRESSION LIST)>]

i

CINDEX PARTS

i

EACH OF THE EXPRESSIONS [N THE <INDEX PART> IS EVALUATED, AND
THE SUM OF THESE IS FORMED. THIS WILL BE CALLED THE INDEX.
THE INDEXING OPERATION OCCURS FUNCTIONALLY AS FOLLOWS:

1. THE SIMPLE OR ARRAY DESCRIPTOR IS LOADED TO
THE TOP OF THE EVALUATION STACK.

2. I[F THE DESCRIPTOR IS AN ARRAY DESCRIPTOR, THEN
IT 1S CONVERTED TO A SIMPLE DESCRIPTOR WHICH



le-e

DESCRIBES THE FIRST (ZERO) ELEMENT OF THE
ARRAY .

3. THE  ADDRESS FIELD OF THE DESCRIPTOR IS
MODIFIED BY ADDING TO IT THE INDEX.

NOTE THAT SELF-RELATIVE DATA ITEMS (I.E., DATA ITEMS WHOSE
LENGTH IS NOT GREATER THAN 24, WHICH ARE NOT IN A STRUCTURE,
AND WHICH DO NOT REMAP SOME OTHER DATA ITEM) MAY NOT BE
INDEXED.

THERE ARE TWO METHODS OF INDEXING:

1. THE DESCRIPTOR PROVIDES THE ADDRESS, AND THE
INDEX PROVIDES THE OFFSET FROM THIS ADDRESS.
2. THE DESCRIPTOR PROVIDES THE OFFSET, AND THE
INDEX PROVIDES THE ADDRESS.
EXAMPLE :
N BITS : 5 BITS : @2 3
T Emm e - - -y-======="
L o D E |
1 B .
A
| FIELD D MAY BE ACCESSED USING EITHER METHOD (1) OR METHOD (2).
ASSUME N CONTAINS THE OFFSET TO B.
METHOD (1):
DECLARE
01 A BIT(5000),
02 8B,
03 CC BIT(5),
03 OD BIT(2),
03 EE BIT(3),
N BIT(24%),
X BIT(2);

/* THE NEXT STATEMENT WILL MOVE DD (WITH THE OFFSET
GIVEN BY N) INTO X */
X<-DDINJ;



METHOD (2):

DECLARE
A BIT(5000),
01 BB REMAPS BASE,
02 CC BIT(5),
02 DD BIT(2),
02 EE BIT(3),
N BIT(24),
X BIT(2);
/* THE NEXT STATEMENT WILL MOVE DD
(WiTH THE OFFSET GIVEN BY N) INTO X */
X=DDIN, DATA.ADDRESS(A)];

£ THE FOLLOWING:

i THE STRUCTURE ABOVE, COMPRISED OF BB, CC, DD,
AND EE, WHICH REMAPS BASE IS CALLED A
"TEMPLATE" .

2. THIS TEMPLATE MAY BE APPLIED TO ANY DATA AREA
MERELY BY PROVIDING THE ADDRESS AS PART OF THE
INDEX. THIS IS NOT THE CASE WHEN METHOD(1)
INDEXING IS USED.

3. THE EXAMPLE ABOVE IS CONTRIVED -- IN METHOD
2y, IF N CONTAINED THE ADDRESS OF B RATHER
THAN THE OFFSET TO B FROM THE BEGINNING OF A,
THEN THE STATEMENTS WHICH STORE D INTO X WOULD
BE IDENTICAL: X<DDINIJ;

12-3



12-4

ADDRESS GENERATING FUNCTIONS

A o o  ——— — — —— — T {— -, - —_ - " " - -~

{ADDRESS-GENERAT ING
FUNCTION DESIGNATOR>

L}

{SUB-STRING ADDRESS DESIGNATOR>
{FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR>

(DESCRIPTOR DESIGNATOR>
{DESCRIPTOR~-GENERATOR DESIGNATOR)>
CADDRESS-MODIFIER DESIGNATOR>

~

NN N

SUBBIT AND SUBSTR

{SUB-STRING ADDRESS
DESIGNATOR> ::= {SUB-STRING FUNCTION IDENTIFIER>
' (¢(STRING ADDRESS>,<OFFSET PART>)
/ <SUB-STRING FUNCTION IDENTIFIER>
(¢(STRING ADDRESS>,<OFFSET PART)>,
(LENGTH PART)>)

{SUB-STRING FUNCTION

IDENTIFIERY ::=  SUBBIT / SUBSTR
¢STRING ADDRESS> ::= CADDRESS GENERATOR>
CADDRESS GENERATOR)> ::= SEE "ADDRESS GENERATOR"
COFFSET PART> ::= CEXPRESS ON>

CLENGTH PART> ::= CEXPRESSION>

SUBSTR YIELDS A SUB-STRING OF A CHARACTER STRING IDENTIFIED BY
THE <STRING ADDRESS>. THE BEGINNING CHARACTER OF THE SUB-STRING
IS SPECIFIED BY THE <OFFSET PART> (WHERE THE FIRST CHARACTER OF
THE STRING IS ZERO). THE <LENGTH PART> SPECIFIES THE LENGTH OF
THE SUB-STRING. [F OMITTED, THE REST OF THE STRING FROM THE
"OFFSET" CHARACTER IS ASSUMED. FOR EXAMPLE:



12-5

IF X=-"CHARACTER"
C<+"COALITION"

THEN
SUBSTR(X,4)< SUBSTR(C,0,4)

YIELDS THE CHARACTER STRING:
"CHARCOAL "

LIKE AlLL CHARACTER-TO-CHARACTER STORE OPERATIONS, IF THE
AECEIVING FIELD IS LARGER THAN THE SENDING FIELD, THE SENDING
FI1ELD [S PADDED WITH BLANKS ON THE RIGHT. IF THE SENDING FIELD
1S 1.ONGER, CHARACTERS ARE TRUNCATED FROM THE RIGHT. NOTE THAT
THIS IS A FUNCTION OF THE STORE OPERATOR AND NOT SUBSTR.

CUBBIT YIELDS A SUB-STRING OF A BIT STRING IDENTIFIED BY THE
“STRING ADDRESS>. THE BEGINNING BIT OF THE SUB-STRING IS
SPECIFIED BY THE <OFFSET PART> (NOTE: THE FIRST BIT OF THE
STRING IS 0). THE LENGTH OF THE SUB-STRING IS SPECIFIED BY THE
{LENGTH PART> WHICH, IF OMITTED, WILL BE ASSUMED TO BE THE REST
OF THE STRING.

EXAMPLE -

[F A<-®(1)0010101101e
B<-@(1)0000111101e®
THEN
SUBBIT(A,2,3) CAT SUBBIT(B,5)
RESULTS IN:
@(})id1lti0le
AND
SUBBIT(A,3) CAT SuBBIT(B,0,6)
RESUL TS IN:
®(1)010:10100001!@

FETCH.COMMUNICATE .M5G.PTR

{FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR> ::= FETCH.COMMUNICATE .MSG.PTR

SEE THE B1700 MCP REFERENCE MANUAL FOR A DESCRIPTION OF THE RUN



12-6
STRUCTURE .

IF THE RS.MCP.BIT IS SET, THEN RS.COMMUNICATE.MSG.PTR IS
ACCESSED. OTHERWISE, RS.REINSTATE.MSG.PTR 1S ACCESSED. THE
ACCESSED FIELD IS ASSUMED TO BE A DESCRIPTOR AND S PLACED ON
THE TOP OF THE EVALUATION STACK.

EXAMPLE :

DESCRIPTOR(COMM.MSG) FETCH.COMMUNICATE .MSG.PTR;

COMM.MSG NOW DESCRIBES THE COMMUNICATE MESSAGE, ASSUMING THAT
THE MESSAGE WAS DESCRIBED BY A NON-SELF-RELATIVE DESCRIPTOR.

DESCRIPTORS

— —mn - - ————

<DESCRIPTOR DESIGNATOR>::= DESCRIPTOR (<SIMPLE IDENTIFIER>)
/ DESCRIPTOR (<ARRAY IDENTIFIER>)

"DESCRIPTOR" PLACES ON THE EVALUATION STACK, A DESCRIPTOR WHICH
DESCRIBES THE DESCRIPTOR OF A <SIMPLE IDENTIFIER> OR AN <ARRAY
IDENTIFIER>. THE DESCRIPTOR FUNCTION MAY APPEAR AS THE OBJECT
OF A REPLACEMENT, THEREBY PROVIDING EASY ACCESS TO ANY PART OF
A DESCRIPTOR. :

EXAMPLE :
1. SUBBIT(DESCRIPTOR(X) ,4,2)=2;
2. DESCRIPTOR(X)= DESCRIPTOR(Y) ;
EXAMPLE (2) FORCES BOTH X AND Y TO DESCRIBE
THE SAME DATA NAME. NOTE, HOWEVER, THAT IF X

AND Y ARE NOT EITHER BOTH SIMPLE ITEMS OR BOTH
ARRAYS, THE RESULT WIiLL BE INCORRECT.



1e-7

MAKE .DESCRIPTOR

{DESCRIPTOR-GENERATOR
DESIGNATOR> ::= MAKE .DESCRIPTOR (CEXPRESSION>)

THE YALUE WHICH IS GENERATED BY THE <EXPRESSION> [S ASSUMED TO
Bt A DESCRIPTOR. THIS DESCRIPTOR REPLACES ON THE EVALUATION
STACK, THZ DESCRIPTOR REPRESENTING THAT <EXPRESSION>, IF THE
MAME -VALUE BIT OF THE EXPRESSION-S DESCRIPTOR ON THE EVALUATION
STACK IS SET, THEN THE VALUE OF THE <EXPRESSION> IS REMOVED
FROM THE VALUE STACK.

A <DESCRIPTOR GENERATOR DESIGNATOR> MAY APPEAR AS THE OBJECT OF
A  REPLACEMENT, HOWEVER THE PROGRAMMER IS RESPONSIBLE TO SEE
THAT THE DESCRIPTOR BUILT GENERATES AN ADDRESS. THERE IS NO
SYNTAX CHECK FOR THIS.

THE FOLLOWING EXAMPLES TLLUSTRATE THE RELATIONSHIPS BETWEEN THE
DESCRIPTOR FUNCTIONS:

DEGSCRIPTOR(X) =VALUE .DESCRIPTOR(X) ,
WHERE X 1S NON-SELF-RELATIVE

MAKE .BESCRIPTOR (DESCRIPTOR(X)) = X,
WHERE X 1S NON-SELF-RELATIVE

MAKE .DESCRIPTOR (VALUE .DESCRIPTOR(E)) = E,
WHERE E IS AN <ADDRESS GENERATOR>

VALUE .DESCRIPTOR (MAKE.DESCRIPTOR(E)) = E,
WHERE THE VALUE OF E IS A VALID <ADDRESS GENERATOR>



12-8

NEXT-PREVIOUS. I TEM

{ADDRESS-MODIF IER
DESIGNATOR> ::= C(ADDRESS-MODIFIER FUNCTION IDENTIFIER>
(<SIMPLE IDENTIFIER>)

(ADDRESS-MODIFIER
FUNCTION IDENTIFIER>

]

NEXT.ITEM
/ PREVIOUS.ITEM

THE NEXT.ITEM FUNCTION CAUSES THE LENGTH FIELD OF THE DESCRIPTOR
REPRESENTED 'BY THE <SIMPLE IDENTIFIER> TO BE ADDED TO THE

ADDRESS FIELD OF THAT DESCRIPTOR. THIS MODIFIED DESCRIPTOR IS

PUT BACK ONTO THE NAME STACK, AND ALSO MOVED TO THE TOP OF THE

EVALUATION STACK. MOVING THE MODIFIED DESCRIPTOR TO THE

EVALUATION STACK IS, IN EFFECT, A LOAD ADDRESS OF THE NEW ITEM

DCSCRIBED BY THE <SIMPLE IDENTIFIER>. HENCE, "NEXT.ITEM" MAY BE

USED AS THE OBJECT OF A REPLACEMENT. FOR EXAMPLE, THE FOLLOWING

STATEMENTS:

DECLARE 01 CHAR.STRING CHARACTER(1000),

02 NEXT.CHAR CHARACTER(1);
NEXT.ITEM (NEXT.CHAR)="D";

HAVE THE EFFECT OF STORING "D" INTO THE SECOND CHARACTER OF
CHAR.STRING, WHICH IS:
SUBSTR(CHAR.STRING,1,1)

THE PREVIOUS.ITEM FUNCTION IS IDENTICAL TO NEXT.ITEM EXCEPT THAT
A SUBTRACTION (OF LENGTH FROM ADDRESS) IS PERFORMED.



ADDRESS GENERATORS

<ADDRESS
GENERATOR LIST>

<ADDRESS GENERATOR>

<{BUMPOR> ::=
{DECREMENTOR> ::=

CCONDITIONAL ADDRESS
GENERATOR> ::=

<CASE ADDRESS
GENERATOR> ::=

{ADDRESS-GENERAT ING
ASSIGNOR> ::=

NN NN N

12-3

{ADDRESS GENERATOR>
CADDRESS GENERATOR>,
{ADDRESS GENERATOR LIST>

{ADDRESS VARIABLE>

{BUMPOR>

{DECREMENTOR>

{CONDITIONAL ADDRESS GENERATOR>
{CASE ADDRESS GENERATOR>
{ADDRESS-GENERATING ASSIGNOR>

SEE "BUMPOR"

SEE "DECREMENTOR"

IF <EXPRESSION>
THEN <ADDRESS GENERATOR>
ELSE <ADDRESS GENERATOR>

CASE <EXPRESSION>
OF (<ADDRESS GENERATOR LIST>)

{ADDRESS VARIABLE>

{REPLACE, DELETE LEFT PART>
{ADDRESS GENERATOR>

<ADDRESS VARIABLE>

<REPLACE, DELETE RIGHT PART>
<EXPRESSION>

THE <ADDRESS GENERATOR> INCLUDES ANY PRIMARY WHICH LEAVES AN
ADDRESS ON THE TOP OF THE EVALUATION STACK. SEE "PRIMARY

ELEMENTS OF THE EXPRESSION"

FOR MORE EXPLICIT DETAIL.



13-1

VALUE VARIABLES

<VALUE VARIABLE>

/ <TYPED PROCEDURE DESIGNATOR>
(<ADDRESS VARIABLE>)
/ <FILE DESIGNATOR>

~

<FILE DESIGNATOR>::

{FILE IDENTIFIER>

{VALUE-GENERATING FUNCTION DESIGNATOR>

/ <SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<TYPED PROCEDURE
DESIGNATOR> ::= {TYPED PROCEDURE IDENTIFIER>
{ACTUAL PARAMETER PART>

<TYPED PROCEDURE
IDENTIFIER> ::= {IDENTIFIER>

CACTUAL PARAMETER PART> ::= <EMPTY>
/ (KACTUAL PARAMETER LIST>)

{ACTUAL PARAMETER LIST> ::= <ACTUAL PARAMETER>
/ <ACTUAL PARAMETER>,
{ACTUAL PARAMETER LIST>

{ACTUAL PARAMETER> <EXPRESSION>

/ <ARRAY DESIGNATOR>

{ARRAY DESIGNATOR> <ARRAY IDENTIFIER>

{ARRAY IDENTIFIER> CIDENTIFIERY

NOTICE FROM THE ABOVE SYNTAX THAT ANY <ADDRESS VARIABLE>
ENCLOSED IN PARENS, SUCH AS (SUBBIT (A,1,J)), WILL BE TREATED
AS A VALUE VARIABLE.

THE VALUE GENERATED BY A <FILE DESIGNATOR> IS THE FPB NUMBER OF
THE SPECIFIED FILE. A WARNING MESSAGE WILL BE ISSUED. '

THE TYPED PROCEDURE (A PROCEDURE WHICH RETURNS A VALUE) IS
INVOKED WITHIN AN EXPRESSION ACCORDING TO THE ABOVE SYNTAX. THE
PROCEDURE IDENTIFIER, FOLLOWED BY ITS PARAMETERS (IF ANY),
ENCLOSED WITHIN PARENS, IS TREATED AS AN OPERAND IN THE
EXPRESSION. FOR DETAILS ON PASSING PARAMETERS, SEE "ADDRESS AND



13-2

VALUE PARAMETERS". THE PROCEDURE IS EVALUATED AND THE RETURNED
VALUE REPLACES THE <TYPED PROCEDURE DESIGNATOR>. FOR EXAMPLE:

DECLARE Z FIXED;
PROCEDURE X(A,B) FIXED;
FORMAL (A,B) FIXED;

END X; ’
Z := X(BUMP M,R)+1;

VALUE GENERATING FUNCTIONS

<VALUE-GENERAT ING
FUNCTION DESIGNATOR>

{SWAP DESIGNATOR>

{SUB-STRING VALUE DESIGNATOR>
<DISPATCH DESIGNATOR>

{LOCATION DESIGNATOR>

{CONVERT DESIGNATOR>

<LENGTH DESIGNATOR>

{MEMORY SIZE DESIGNATOR>
{DESCRIPTOR-VALUE-GENERATOR DESIGNATOR>
{INTERROGATE INTERRUPT STATUS DESIGNATOR>
{DECIMAL CONVERSION DESIGNATOR>
<BINARY CONVERSION DESIGNATOR>
<TIME FUNCTION DESIGNATOR>

<{DATE FUNCTION DESIGNATOR>
<{NAME-OF -DAY FUNCTION DESIGNATOR>
<BASE REGISTER DESIGNATOR>

<LIMIT REGISTER DESIGNATOR>
<CONTROL STACK TOP DESIGNATOR>
<DATA ADDRESS DESIGNATOR>
{SEARCH.LINKED.LIST DESIGNATOR>
{SORT.STEP.DOWN DESIGNATOR>
{SORT.UNBLOCK DESIGNATOR>
{SORT.SEARCH DESIGNATOR>
<PARITY.ADDRESS DESIGNATOR>
<DYNAMIC MEMORY BASE DESIGNATOR>
{HASH CODE DESIGNATOR>

{NEXT TOKEN DESIGNATOR>
<DELIMITED TOKEN DESIGNATOR>
{EVALUATION STACK TOP DESIGNATOR>
{CONTROL STACK BITS DESIGNATOR>
{NAME STACK TOP DESIGNATOR>

N N N N N N N N N N N N N N N N N N N N N NN NNNNNNN



|
W

13

(DISPLAY BASE DESIGNATOR>
{CONSOLE SWITCHES DESIGNATOR>
{SEARCH SERIAL LIST DISIGNATOR>
<SPO [INPUT PRESENT DESIGNATOR>
{SEARCH.SDL..STACKS DESIGNATOR>
(EXECUTE DESIGNATOR>

N NN N NN

SWAPR

{SWAP DESIGNATOR> ::= SWAP (<ADDRESS GENERATOR>,<EXPRESSION>)

THE LENGTH OF THE VALUE DESCRIBED BY THE <ADDRESS GENERATOR> IS
USED AS THE LENGTH, L, OF THE DATA TO BE "SWAPPED". HOWEVER, IF
THE LENGTH OF THE VALUE IS GREATER THAN 24 BITS, L WILL BE &4
BITS, AND ONLY THE LOW-ORDER 24 BITS OF THE <ADDRESS GENERATOR>

WILL BE MODIFIED.

THE RIGHTMOST L BITS OF THE VALUE DESCRIBED BY THE <ADDRESS
GENERATOR> ARE [SOLATED, AND BECOME THE DESTINATION FIELD.

THE RIGHTMOST L BITS OF THE VALUE GENERATED BY THE <EXPRESSION>
ARE ISOLATED. LEADING ZEROES ARE SUPPLIED IF THE LENGTH OF THE
VALUE IS LESS THAN L BITS LONG. THIS FIELD IS KNOWN AS THE

SOURCE FIELD.

THE SOURCE FIELD 1S STORED INTO THE DESTINATION FIELD, THE
ORIGINAL VALUE OF WHICH I3 THE VALUE RETURNED. THE RETURNED
VALUE IS OF TYPE BIT AND OF LENGTH L.

EXAMPLE :

A=-0;
[F SWAP (A,1} THEN DO ... END;
ELSE DO ... END;

IN THE ABOVE EXAMPLE, THE "ELSE" PART OF THE STATEMENT IS
EVALUATED, SINCE A WAS ORIGINALLY SET TO 0 (I.E., FALSE). AT
THE END OF THE EVALUATION, | HAS BEEN STORED INTO A, AND O
RETURNED TO THE TOP OF THE EVALUATION STACK.



13-4

SUBBIT AND SUBSTR

-~ ———— - - - — - oW M-

{SUB-STRING VALUE
DESIGNATOR> ::= (SUB-STRING FUNCTION IDENTIFIER>
({STRING VALUE>,<OFFSET PART))
/ <SUB-STRING FUNCTION IDENTIFIER>
(<STRING VALUE>,<OFFSET PART>,
{LENGTH PART)>)

{SUB-STRING FUNCTION

IDENTIFIER> ::= SUBBIT / SUBSTR
{STRING VALUE)V::= ( {EXPRESSION>
COFFSET PART> = (EXPRESSION>
{LENGTH PART> = CEXPRESSION>

THE <SUB-STRING VALUE DESIGNATOR> AND THE <SUB-STRING ADDRESS
DESIGNATOR> ARE IDENTICAL EXCEPT THAT THE FORMER RETURNS A
VALUE IF ITS <STRING VALUE> IS NOT AN <ADDRESS GENERATOR>.
PLEASE SEE "SUBBIT AND SUBSTR" UNDER "ADDRESS VARIABLES" FOR
THE SPECIFICS OF THE FUNCTION.

THE FOLLOWING EXAMPLES ILLUSTRATE SOME OF THE USES OF THE
{SUB-STRING VALUE DESIGNATOR>:

X<-SUBSTR(A CAT B,5,10);
MAKE .DESCRIPTOR (®48e CAT SUBBIT(A OR B, 0, 16) CAT X)
IF SUBSTR(®06® CAT "ABC", 0) = Y THEN ...;

.
A

DISPATCH

<DISPATCH DESIGNATOR>

.
L]

DISPATCH(<PORT,CHANNEL ,PRIORITY>,
<I1/0 DESPRIPTOR ADDRESS>)

(PORT,CHANNEL ,PRIORITY> ::= <EXPRESSION>

<1/0 DESCRIPTOR

ADDRESS> ::= CEXPRESSION»

THE RIGHTMOST SEVEN BITS OF THE VALUE OF <PORT. CHANNEL,
PRIORITY> CONTAIN THE FOLLOWING INFORMATION FROM LEFT TO RIGHT:

3 BITS 3 BITS 1 BIT



13-5

THE RIGHTMOST 24 BITS OF THE VALUE OF THE <I/0 DESCRIPTOR
ADDRESS> IS THE ABSOLUTE ADDRESS OF THE 1/0 DESCRIPTOR.

USING THESE TWO VALUES, AN 1/0 OPERATION IS INITIATED. A BIT
VALUE WITH THE FOLLOWING MEANINGS IS RETURNED:

0 = DISPATCH REGISTER LOCK BIT SET

1 = SUCCESSFUL DISPATCH

2 = SUCCESSFUL DISPATCH, BUT MISSING DEVICE
LOCATION

<LOCATION DESIGNATOR> LOCATION (<PROCEDURE IDENTIFIER>)
/ LOCATION (<SIMPLE IDENTIFIER>)

/ LOCATION (<ARRAY IDENTIFIER>)

<{PROCEDURE IDENTIFIER> = CIDENTIFIER>
{SIMPLE IDENTIFIER>::= CIDENTIFIERD
CARRAY IDENTIFIER>:: CIDENTIFIER>

FOR PROCEDURES, THE <LOCATION DESIGNATOR> RETURNS A 33-BIT VALUE
(TYPED BIT) CONTAINING, FROM LEFT TO RIGHT:

ADDRESS TYPE, CONTAINING e(3)6e 3 BITS

SEGMENT NUMBER 6 BITS
PAGE NUMBER 4 BITS
DISPLACEMENT 20 BITS

THIS 33-BIT VALUE IS THE ADDRESS OF THE PROCEDURE IN QUESTION.

A FORWARD DECLARATION IS REQUIRED ONLY DURING RECOMPILATION OR
CREATE-MASTER FOR ANY PROCEDURE ON WHICH A LOCATION IS
PERFORMED. AN ERROR IS GIVEN IF THIS IS NOT DONE

FOR SIMPLE AND ARRAY IDENTIFIERS, THE <LOCATION DESIGNATOR>
RETURNS A 16-BIT VALUE (TYPED BIT) CONTAINING, FROM LEFT TO
RIGHT: '

ADDRESS TYPE CONTAINING e(2)0e e BITS



13-6

LEXIC LEVEL 4 BITS
OCCURRENCE NUMBER 10 BITS
CONVERT

<CONVERSION DESIGNATOR>

CONVERT (<EXPRESSION>,
{CONVERSION PART>)

/ CONV (<KEXPRESSION>,
{CONVERSION PART)>)

<CONVERSION PART> {CONVERSION TYPE>
/ <CONVERSION TYPE>,

<BIT GROUP SIZE>

<CONVERSION TYPE> BIT / CHARACTER / FIXED

<BIT GROUP SIZE>

1727 3/ 4

THE <EXPRESSION>, WHICH MAY BE OF ANY DATA TYPE, WILL BE
CONVERTED AS SPECIFIED BY THE <CONVERSION TYPE>. THE CONVERTED
{EXPRESSION> WILL BE RETURNED AS A VALUE.

THE <BIT GROUP SIZE> IS WUSED ONLY WITH BIT-TO-CHARACTER OR
CHARACTER-TO-BIT CONVERSIONS. IT SPECIFIES THE NUMBER OF BITS
(OF THE BIT STRING) WHICH CORRESPOND TO A CHARACTER IN THE
CHARACTER STRING.

NOTE: BIT-TO-CHARACTER CONVERSION DOES NOT YIELD
DECIMAL DIGITS. IF A BIT STRING IS TO BE
CONVERTED TO DECIMAL DIGITS, IT SHOULD BE
STORED IN A FIXED VARIABLE, AND THE FIXED
VARIABLE CONVERTED.



13-7

THE FOLLONING TABLE SHOWS THE POSSIBLE CONVERSION COMBINATIONS:

OUTPUT : BIT CHARACTER FIXED
INPUT :
CONVERT TO CHAR. RETURN 24 BITS
BIT NO CHANGE UNDER CONTROL OF |PROVIDING LEADING
<BIT GROUP SIZE>;| ZEROES OR LEFT
IF OMITTED USE 4 TRUNCATION, AS
NECESSARY
CONVERT TO BITS
CHARACTER UNDER CONTROL OF NO CHANGE SEE NOTE
<BIT GROUP SIZE>;
IF OMITTED USE 4
DECIMAL CONVER-
CHANGE TYPE SION W/ LEADING
FIXED TO BIT ZERQOS & SIGN NOT NO CHANGE
SUPPRESSED. (7
DIGITS + SIGN).
NOTE: THE CHARACTER STRING MAY HAVE LEADING BLANKS,
SIGN (OR NONE), MORE BLANKS, AND DECIMAL
DIGITS. A PLUS SIGN IS IGNORED. THE DECIMAL
DIGITS (ONLY THE LOW-ORDER 7) ARE CONVERTED TO
A  BINARY NUMBER THAT IS RIGHT JUSTIFIED IN A
24-BIT FIELD. IF THE SIGN WAS MINUS, THEN THE
e-S COMPLEMENT OF THE 24-BIT FIELD IS
RETURNED.
EXAMPLES:
CONVERT (" - 72581",F1XED) RETURNS -72581
CONVERT (e(3)752e,CHARACTER,Y4) "1EA"
CONVERT (e(1)11011e,FIXED) 27
CONVERT ("132",BI1T,2) e(2)132e
CONVERT ("132",BIT,4%) e(4)132e
CONVERT ("2 ",BIT) @(4)20e



13-8

LENGTH

<LENGTH DESIGNATOR> ::= LENGTH (<EXPRESSION>)

THE <LENGTH DESIGNATOR> RETURNS A 24-BIT, TYPE BIT FIELD
CONTAINING - THE NUMBER OF UNITS IN THE <EXPRESSION>. [IF THE
{EXPRESSION> IS TYPE CHARACTER, THEN EACH CHARACTER IS A UNIT.
OTHERWISE, EACH BIT IS A UNIT,

MEMORY SIZE

<{MEMORY SIZE

DESIGNATOR> S.MEM.SIZE / M.MEM.SIZE

THE REQUESTED MEMORY SIZE 1S RETURNED AS A 24-BIT DATA ITEM OF
TYPE BIT.

VALUE DESCRIPTOR

<DESCRIPTOR-VALUE GENERATOR |
DESIGNATOR> ::= VALUE .DESCRIPTOR (<ADDRESS GENERATOR>)

(ADDRESS GENERATOR> SEE "ADDRESS GENERATORS"

THE <ADDRESS GENERATOR> 1S REPRESENTED BY A DESCRIPTOR AT THE
TOP OF THE EVALUATION STACK. THIS DESCRIPTOR IS MOVED TO THE
VALUE STACK. IN ITS PLACE ON THE EVALUATION STACK IS LEFT A
DESCRIPTOR DESCRIBING THE ONE JUST MOVED TO THE VALUE STACK.

THE NAME-VALUE BIT IS SET IN THE ﬁESCRIPTOR LEFT IN THE
EVALUATION STACK.



13-9

INTERROGATE INTERRUPT STATUS

C{INTERROGATE INTERRUPT
STATUS DESIGNATOR> ::= INTERROGATE . INTERRUPT .STATUS

A 24-BIT DATA ITEM OF TYPE BIT IS RETURNED. THE VALUE REPRESENTS
THE INTERRUPT BITS OF THE M-MACHINE. THE APPLICABLE M-MACHINE
INTERRUPT BITS ARE RESET. NOTE THAT THE INCN BITS WILL NOT BE
RESET.

DECIMAL CONVERSION

{DECIMAL CONVERSION
DESIGNATOR> ::= DECIMAL (<EXPRESSION>,
<DECIMAL STRING SIZE>)

<DECIMAL STRING SIZE>

{EXPRESSION>

THE VALUE OF THE FIRST <EXPRESSION> FOLLOWING THE RESERVED WORD
"DECIMAL" IS CONVERTED TO A STRING OF DECIMAL CHARACTERS. IF
THE VALUE OF THE <EXPRESSION> GENERATES MORE THAN 24 BITS, THEN
ONLY THE LOW-ORDER 24 BITS ARE USED.

THE NUMBER OF CHARACTERS RETURNED IS GIVEN BY THE VALUE OF THE
<DECIMAL STRING SIZE>. A MAXIMUM OF 8 DECIMAL CHARACTERS WILL
BE RETURNED, EVEN IF THE VALUE OF THE <DECIMAL STRING SIZE> IS
- GREATER. IF THE <DECIMAL STRING SIZE> IS LESS THAN THE NUMBER
OF DECIMAL CHARACTERS, THEN CHARACTERS ARE TRUNCATED FROM THE
LEFT.

BINARY CONVERSION

<BINARY CONVERSION
DESIGNATOR> ::= BINARY (<EXPRESSION>)

THE <BINARY CONVERSION DESIGNATOR> RETURNS A FIXED VALUE WHICH
IS THE BINARY REPRESENTATION OF THE CEXPRESSION>. THE
{EXPRESSION> IS ASSUMED TO BE A CHARACTER STRING CONTAINING
DECIMAL DIGITS. ONLY THE LOW-ORDER 8 CHARACTERS WILL BE
CONVERTED. ZONE BITS ARE IGNORED.



13-10

IF THE CONVERSION RESULTS IN A BINARY VALUE GREATER THAN 24 BITS
(I.E., IF THE DECIMAL NUMBER IS GREATER THAN 16,777,215), THEN
THE LEFT-MOST BITS WILL BE TRUNCATED.

IF THE DECIMAL NUMBER 1S GREATER THAN 8,388,607 (I.E., (2 EXP
23)-1), THEN THE RETURNED VALUE WILL APPEAR TO BE NEGATIVE
(I.E., THE HIGH-ORDER BIT IS 1).

TIME FUNCTION

{TIME FUNCTION
DESIGNATOR> ::= TIME

/ TIME (KTIME FORMAT>,<REPRESENTATION>)
{TIME FORMAT> ::= COUNTER / MILITARY / CIVILIAN

<{REPRESENTATION>

BIT / DIGIT / CHARACTER

THE <TIME FUNCTION DESIGNATOR> RETURNS A BIT OR CHARACTER STRING
WHICH IS THE TIME OF THE FUNCTION-S EXECUTION. THE <TIME
FORMAT> MAY HAVE THREE BASIC FORMATS:

COUNTER RETURNS THE TIME OF DAY IN TENTHS OF

SECONDS.

MILITARY RETURNS THE TIME OF DAY IN THE FOLLOWING
FORM -—  HHMMSST (WHERE T=TENTHS OF
SECONDS) .

CIVILIAN RETURNS HHMMSSTAP (WHERE AP=AM OR PM).

THE TIME OF DAY MAY BE REPRESENTED IN EITHER BITS, DIGITS, OR
CHARACTERS IN THE FOLLOWING FORMATS:

BIT DIGIT CHARACTER
COUNTER 20 BITS 24 BITS 48 BITS
MILITARY 5+6+6+4=21 8+8+8+4=28 16+16+16+8=56
CIVILIAN 4+6+6+4+16=36 B+8+8+4+16=44 16+16+16+8+16=72

NOTE : "TIME" AND "TIME (CIVILIAN,CHARACTER)" ARE
EQUIVALENT. ’



13-11

DATE FUNCTION

<DATE FUNCTION
DESIGNATOR> ::= DATE

/ DATE (<KDATE FORMAT>,<REPRESENTATION>)
{DATE FORMAT> ::= JULIAN /7 MONTH / DAY / YEAR
<{REPRESENTATION> ::= BIT / DIGIT / CHARACTER

THE <DATE FUNCTION DESIGNATOR> RETURNS A BIT OR CHARACTER STRING
WHICH IS THE DATE OF THE EXECUTION OF THE FUNCTION.

"DATE" AND "DATE (MONTH,CHARACTER)" ARE EQUIVALENT.

THE FORMATS (IN BITS) OF THE RETURNED STRINGS ARE:

BIT DIGIT CHARACTER
JULIAN (YYDDD) 7+9=16 8+12=20 16+24=40
MONTH (MMDDYY) 4+5+7=16 8+8+8=24 16+16+16=48
DAY (DDMMYY) 5+4+7=16 8+8+8=24 16+16+16=48
YEAR (YYMMDD) 7+4+45=16 8+8+8=24 16+16+16=48

EXAMPLE: DECLARE D CHARACTER(5);
DDATE (JULIAN,CHARACTER) ;

NAME OF DAY

{NAME OF DAY FUNCTION
DESIGNATOR> ::= NAME . OF . DAY

A CHARACTER STRING, WHICH IS THE NAME OF THE DAY OF THE WEEK, IS
RETURNED AS A S-CHARACTER STRING. THE NAME IS LEFT JUSTIFIED.

EXAMPLE: DECLARE DAY CHARACTER(9);
DAYNAME . OF .DAY



13-12

BASE REGISTER

<BASE REGISTER
DESIGNATOR> ::= BASE .REGISTER

A 24-BIT VALUE OF TYPE BIT IS RETURNED. THE VALUE IS THE
ABSOLUTE ADDRESS OF THE BASE OF THE PROGRAM. IT SHOULD BE NOTED
THAT TWO SEPARATE EXECUTIONS OF "BASE.REGISTER" MAY NOT YIELD

THE SAME RESULTS, SINCE THE MCP MAY HAVE MOVED THE PROGRAM IN
MEMORY .

LIMIT REGISTER

<LIMIT REGISTER
DESIGNATOR> ::= LIMIT.REGISTER

THE <LIMIT REGISTER DESIGNATOR> RETURNS A 24-BIT VALUE (TYPE
BIT) WHICH IS THE BASE RELATIVE ADDRESS OF THE PROGRAM-S RUN
STRUCTURE. FOR FURTHER EXPLANATION, PLEASE REFER TO THE "B1500
MCP MANUAL" .

CONTROL STACK TOP

<CONTROL STACK TOP
DESIGNATOR> ::= CONTROL .STACK. TOP

A 24-BIT VALUE OF TYPE BIT IS RETURNED. THE VALUE IS THE BASE
RELATIVE ADDRESS OF THE NEXT ENTRY TO BE PLACED ON THE CONTROL
STACK.

DATA ADDRESS

{DATA ADDRESS
DESIGNATOR> ::= DATA.ADDRESS (<ADDRESS GENERATOR>)

{ADDRESS GENERATOR> SEE "ADDRESS GENERATORS"

THE <DATA ADDRESS DESIGNATOR> RETURNS A 24-BIT VALUE (TYPE BIT)



13-13

WHICH IS THE BASE RELATIVE ADDRESS GENERATED BY THE <ADDRESS
GENERATOR> .

SEARCH.LINKED.LIST

{SEARCH.LINKED.LIST

DESIGNATOR> ::= SEARCH.LINKED.LIST
(<RECORD ADDRESS>,<ARGUMENT INDEX>,
{COMPARE VARIABLE>,<RELATION>,
<LINK INDEX>)

<RECORD ADDRESS> = <EXPRESSION>

<ARGUMENT INDEX> = {EXPRESSION>

<{COMPARE VARIABLE> = <EXPRESSION>

{RELATION> ::= </ S/ =7 #7277 >/
LSS / LEQ 7/ EQL / NEQ /
GEQ / GTR

<LINK INDEX> = {EXPRESSION>

EACH OF THE FOUR EXPRESSIONS ABOVE GENERATES A 24-BIT VALUE
WHICH IS LOADED TO THE TOP OF THE EVALUATION STACK. THE
MEANINGS OF EACH EXPRESSION IS AS FOLLOWS:

1. THE <RECORD ADDRESS> IS THE BASE RELATIVE
ADDRESS OF THE FIRST STRUCTURE TO BE EXAMINED.

e. THE (ARGUMENT " INDEX> IS THE RELATIVE OFFSET
AND SIZE IN THE STRUCTURE, OF THE 24 (OR LESS)
BIT FIELD BEING COMPARED MWITH THE <COMPARE

VARTABLE>.

3. THE <COMPARE VARIABLE> 1S THE CONTROL AGAINST
WHICH THE SPECIFIED FIELD IN THE STRUCTURE IS
COMPARED.

4. THE <RELATION> SPECIFIES THE DESIRED RELATION

IN THE COMPARISON OF THE TWO VALUES.

5. THE <LINK INDEX> IS THE RELATIVE OFFSET AND
SIZE IN THE STRUCTURE, OF THE 24 (OR LESS) BIT
FIELD CONTAINING THE ADDRESS OF THE NEXT
STRUCTURE TO BE EXAMINED (IF COMPARISON WITH
THE CURRENT STRUCTURE FAILS).



13-14%

THE LAST STRUCTURE IN THE LINKED LIST CONTAINS ALL 1 BITS IN THE
FIELD DESCRIBED BY THE <LINK INDEX>.

THE LINKED LIST IS SEARCHED UNTIL THE DESIRED COMPARISON
SUCCEEDS OR UNTIL THE COMPARISON FAILS WITH THE LAST STRUCTURE.

IF THE SEARCH SUCCEEDS, THE BASE-RELATIVE ADDRESS OF THE CURRENT
STRUCTURE IS LEFT ON THE EVALUATION STACK AS A 24-BIT VALUE. IF
THE SEARCH FAILS, eFFFFFFe IS LEFT ON THE STACK.

SORT .STEP.DOWN

<SORT.STEP.DOWN ~

DESIGNATOR> ::= SORT.STEP.DOWN
(<RECORD 1>,<RECORD 2>,
<KEY TABLE ADDRESS>)

<RECORD 1> = <EXPRESSION>
<RECORD 2> = <EXPRESSION>
<KEY TABLE ADDRESS> ::= CEXPRESSIOND -

FOR USE BY SORT ONLY.

THE <SORT.STEP.DOWN DESIGNATOR> PROVIDES THE INFORMATION
NECESSARY TO COMPARE TWO RECORDS. <RECORD!> AND <RECORD 2> ARE,
RESPECTIVELY, THE FIRST AND SECOND RECORDS WHICH ARE TO BE
COMPARED. THE <KEY TABLE ADDRESS> SPECIFIES THE SORT KEY USED
IN THE COMPARISON.

SORT .UNBLOCK

<SORT .UNBLOCK

DESIGNATOR> = SORT.UNBLOCK (<MINI FIB ADDRESS>,
CLENGTH> ,<SOURCE> ,<DESTINATION>)

<MINI FIB ADDRESS> ::= CADDRESS GENERATOR>

CLENGTH> ::= {EXPRESSION>

<SOURCE> ::= CEXPRESSION>



13-15

<DESTINATION> ::= <EXPRESSION>

FOR USE BY SORT ONLY.

THE <SORT.UNBLOCK DESIGNATOR> MOVES A RECORD TO OR FROM A
BUFFER, UPDATING THE BUFFER POINTER AND BLOCK COUNT. IT
NORMALLY RETURNS A ZERO. WHEN THE BLOCK COUNT GOES TO ZERO, IT
RESTORES THE ORIGINAL BUFFER POINTER AND BLOCK COUNT, AND
RETURNS A 1, SIGNALLING THE NEED FOR AN /0.

A BIT ON THE MINI-FIB SIGNALS SORT.UNBLOCK TO CREATE SORT TAGS.
FOR THIS FUNCTION, IT USES THE SORT KEY TABLE AND SELECTS ONLY
THE KEY INFORMATION TO MOVE FROM THE BUFFER. A VALUE IN THE
MINI-FIB REPRESENTS THE LENGTH OF THE RECEIVING FIELD.

SORT . SEARCH

{SORT .SEARCH
DESIGNATOR> SORT . SEARCH

(<TABLE ADDRESS>,<LIMIT>)

<TABLE ADDRESS>

{ADDRESS GENERATOR>

<LIMITY> ::= {EXPRESSION>

FOR USE BY SORT ONLY.

THE <SORT SEARCH DESIGNATOR> PROVIDES THE INFORMATION TO
EVALUATE A RECORD FOR SORTING PURPOSES. THE <TABLE ADDRESS>
CONTAINS THE ADDRESS, IN AN ARRAY OF RECORDS, OF THE FIRST
RECORD TO BE EXAMINED AND THE CONDITION UNDER WHICH RECORDS
WILL BE SELECTED.

THE <LIMIT> SPECIFIES THE LAST RECORD TO BE EXAMINED.



13-16

PARITY.ADDRESS

<PARITY.ADDRESS
DESIGNATOR> ::= PARITY.ADDRESS

FOR MCP USE ONLY.

THE <PARITY.ADDRESS DESIGNATOR> RETURNS A 24-BIT VALUE WHICH IS
THE ADDRESS OF THE FIRST PARITY ERROR ENCOUNTERED IN S-MEMORY.
IF NO PARITY ERROR IS FOUND, eFFFFFFe IS RETURNED.

DYNAMIC MEMORY BASE

<BYNAMIC MEMORY
BASE DESIGNATOR>

DYNAMIC .MEMORY .BASE

THE <DYNAMIC MEMORY BASE DESIGNATOR> RETURNS A 24-BIT VALUE
WHICH IS THE BASE RELATIVE ADDRESS OF THE PROGRAM-S DYNAMIC
MEMORY.  REFER TO THE SDL S-LANGUAGE DOCUMENTATION FOR
DISCUSSION OF THE USE OF DYNAMIC MEMORY.

HASH CODE
{HASH CODE DESIGNATOR>::= HASH.CODE (<TOKEN>)
{TOKEN>: := {EXPRESSION>

THE HASH.CODE WILL LEAVE ON THE EVALUATION STACK A DESCRIPTOR OF
TYPE BIT AND LENGTH 24. THE VALUE WILL BE A HASH CODE BASED ON
THE FIRST 15 (OR LESS) CHARACTERS OF <TOKEN> AND ON THE LENGTH
OF <TOKEN>. TO BE EFFECTIVE, THE VALUE GENERATED BY HASH.CODE
MUST BE USED MODULO A PRIME NUMBER (WHICH IS USUALLY THE HASH
TABLE SIZE).



13-17

NEXT TOKEN

{NEXT TOKEN DESIGNATOR>::= NEXT.TOKEN (KFIRST CHARACTER>,
{SEPARATOR>, <NUMERIC-TO-ALPHA INDICATOR>,
<RESULT>)

{FIRST CHARACTER>::= CIDENTIFIER>

<{SEPARATOR>: : = {CHARACTER STRING>

<{NUMERIC-TO-ALPHA

INDICATOR>: : = SET

/ RESET

THE <FIRST CHARACTER> IS A SIMPLE IDENTIFIER WHICH DESCRIBES THE
FIRST CHARACTER TO BE EXAMINED. THIS WILL USUALLY BE THE FIRST

CHARACTER OF THE TOKEN. THE <SEPARATOR> IS THE TOKEN SEPARATOR:

"." FOR SDL, "-" FOR COBOL, ETC. IT MUST BE A SINGLE CHARACTER;

IF NONE IS NEEDED, USE "A". <NUMERIC- TO-ALPHA INDICATOR> IS

SET IF SYMBOLS SUCH AS 235AB ARE ALLOWED. IT IS RESET

OTHERWISE.

NEXT.TOKEN WILL LEAVE ON THE TOP OF THE EVALUATION STACK THE
DESCRIPTOR OF THE NEXT TOKEN. THIS TOKEN WILL BE AN IDENTIFIER,
A NUMBER, OR A SPECIAL CHARACTER. THE DESCRIPTOR OF <RESULT>
WILL ALSO BE REPLACED BY THIS DESCRIPTOR. THE ADDRESS FIELD OF
{FIRST CHARACTER> WILL BE CHANGED TO POINT TO THE CHARACTER
FOLLOWING THIS TOKEN. NEXT.TOKEN ASSUMES THAT <FIRST CHARACTER>
DESCRIBES A NON-BLANK CHARACTER.

DELIMITED TOKEN

<DELIMITED TOKEN

DESIGNATOR>: : = DELIMITED.TOKEN (<FIRST CHARACTER>,
<DELIMITERS>, <RESULT>)

{FIRST CHARACTER>::= CIDENTIFIER>

<DELIMITERS>::= {CHARACTER STRING>
/ <BIT STRING>

<RESULT>::= (IDENTIFIER>



13-18

THE <FIRST CHARACTER> IS A SIMPLE IDENTIFIER WHICH DESCRIBES THE
FIRST CHARACTER TO BE EXAMINED. <DELIMITERS> WILL GENERATE 16

BITS OF INFORMATION, EACH OF THE 8-BIT BYTES BEING USED AS A

DELIMITER. FOR SDL, <DELIMITERS> WILL BE """%"; FOR COBOL,

@7F03e (QUOTE FOLLOWED BY ETX).

DELIMITED.TOKEN WILL LEAVE ON THE TOP OF THE EVALUATION STACK
THE DESCRIPTOR OF THE STRING OF CHARACTERS FROM (AND INCLUDING)
{FIRST CHARACTER> UP TO (BUT NOT INCLUDING) WHICHEVER DELIMITER
WAS FOUND. THE DESCRIPTOR OF <RESULT> WILL BE REPLACED BY THIS
DESCRIPTOR. THE ADDRESS FIELD OF <FIRST CHARACTER> WILL BE
CHANGED TO POINT TO THE DELIMITER WHICH STOPPED THE SCAN.

EVALUATION STACK TOP

<EVALUATION STACK
TOP DESIGNATOR>: := EVALUATION.STACK.TOP

THIS FUNCTION LEAVES ON THE TOP OF THE EVALUATION STACK A
e4-BIT, SELF-RELATIVE VALUE OF TYPE BIT WHICH IS THE
BASE-RELATIVE ADDRESS OF THE TOP OF THE EVALUATION STACK
(BEFORE EXECUTION OF THIS FUNCTION) .

CONTROL STACK BITS

<CONTROL STACK
BITS DESIGNATOR>: := CONTROL .STACK.BITS

THIS FUNCTION LEAVES ON THE TOP OF THE EVALUATION STACK A
24-BIT, SELF-RELATIVE VALUE OF TYPE BIT WHICH IS THE NUMBER OF
BITS LEFT IN THE CONTROL STACK UNTIL OVERFLOW.

NAME STACK TOP

{NAME STACK
TOP DESIGNATOR>::= NAME .STACK.TOP



13-19

THIS FUNCTION LEAVES ON THE TOP OF THE EVALUATION STACK A
24-BIT, SELF-RELATIVE VALUE OF TYPE BIT WHICH IS THE
BASE-RELATIVE ADDRESS OF THE TOP OF THE NAME STACK.

DISPLAY BASE

<DISPLAY BASE
DESIGNATOR>: : = DISPLAY .BASE

THIS FUNCTION LEAVES ON THE TOP OF THE EVALUATION STACK A
e4-BIT, SELF-RELATIVE VALUE OF TYPE BIT WHICH IS THE
BASE-RELATIVE ADDRESS OF THE BASE OF THE DISPLAY.

CONSOLE SWITCHES

{CONSOLE SWITCHES
DESIGNATOR>: := CONSOLE .SWITCHES

NOTE: THIS FUNCTION HAS MEANING ONLY ON THE B1726
(OR LARGER). IT LEAVES ON THE TOP OF THE
EVALUATION STACK A 24-BIT, SELF-RELATIVE VALUE
OF THE 24 CONSOLE SWITCHES.

SEARCH SERIAL LIST

{SEARCH SERIAL

LIST DESIGNATOR>: := SEARCH.SERIAL.LIST (<SSL COMPARE VALUE>,
<SSL COMPARE TYPE>, <SSL COMPARE FIELD>,
<SSL FIRST ITEM)>, <SSL TABLE LENGTH>,
{SSL RESULT VARIABLE>)

{SSL COMPARE VALUE>::= <EXPRESSION>

<SSL COMPARE TYPE>:: /S/=/#/2/>

[}

{(SSL COMPARE FIELD>::= {EXPRESSION>

{SSL FIRST ITEM>::= {EXPRESSION>

1]

{SSL TABLE LENGTH>:: {EXPRESSION>

{SSL RESULT VARIABLE>::= (ADDRESS GENERATOR>



13-20

SEARCH.SERTAL.LIST SEARCHES A SERIAL LIST OF ITEMS BEGINNING
WITH THE ITEM DESCRIBED BY <SSL FIRST ITEM>. <SSL COMPARE
VALUE> IS COMPARED (AS SPECIFIED BY <SSL COMPARE TYPE)>) AGAINST
THE FIELD OF THE ITEM DESCRIBED BY <SSL COMPARE FIELD> (<SSL
COMPARE FIELD> IS A TEMPLATE) UNTIL A MATCH HAS BEEN FOUND, OR
UNTIL <SSL TABLE LENGTH> NUMBER OF BITS HAS BEEN SEARCHED.

IF THE SEARCH SUCCEEDS, THE BASE RELATIVE ADDRESS OF THE ITEM
CONTAINING THE "SUCCESSFUL" <SSL COMPARE FIELD> IS STORED 1IN
{SSL RESULT VARIABLE> AND A e(l)le IS RETURNED.

IF THE SEARCH FAILS, THEN THE END ADDRESS OF THE TABLE IF STORED
IN <SSL RESULT VARIABLE> AND A e(1)0e@ IS RETURNED.

SPO INPUT PRESENT

{SPO INPUT
PRESENT DESIGNATOR>::= SPO. INPUT.PRESENT

A "SPECIAL", SPO.INPUT.PRESENT, HAS BEEN ADDED TO ALLOW THE

PRESENCE OF SPO INPUT TO BE TESTED BEFORE HAVING TO PERFORM AN
ACCEPT TO THE MCP.

SEARCH.SDL .STACKS

{SEARCH.SDL .STACKS

DESIGNATOR>: : = SEARCH.SDL . STACKS
(¢STACK BASE>, <(STACK TOP>,
<COMPARE BASE>, <COMPARE TOP>)

{STACK BASE>::= {EXPRESSION>
- <STACK TOP>::= <EXPRESSION>
{COMPARE BASE>::= {EXPRESSION>
{COMPARE TOP>::= <{EXPRESSION>

THE FOUR PARAMETERS ARE EXPECTED TO GENERATE VALUES WHICH ARE
BASE-RELATIVE ADDRESSES OF THE BASE AND TOP OF A STACK OF SDL



13-21

DESCRIPTORS AND OF AN ADDRESS RANGE, RESPECTIVELY. THE STACK
WILL BE SEARCHED FOR A NON-ARRAY, NON-SELF-RELATIVE SDL
DESCRIPTOR WHOSE ADDRESS 1S WITHIN THE GIVEN RANGE. [IF THE

SEARCH IS SUCCESSFUL e(1)1e WILL BE RETURNED; OTHERWISE, e(1)0e
WILL BE RETURNED.

EXECUTE
{EXECUTE DESIGNATOR>::= EXECUTE (<KEXPRESSION LIST>)
{EXPRESSION LIST>::= <EXPRESSION>

/ <EXPRESSION LIST>, <EXPRESSION>

THE VALUE OF THE LAST EXPRESSION IS EXPECTED TO BE AN OPCODE
WHICH WILL THEN BE EXECUTED BY THE INTERPRETER. EXECUTE MAY BE
USED AS A STATEMENT AS WELL AS A <VALUE GENERATING FUNCTION
DESIGNATOR>.



14-1

ADDRESS AND VALUE PARAMETERS

ACTUAL PARAMETERS MAY BE PASSED TO A PROCEDURE EITHER BY NAME
(WHICH PASSES THE ADDRESS OF THE ACTUAL PARAMETER) OR BY VALUE
(WHICH PASSES A DUPLICATE COPY OF THE ACTUAL PARAMETER).

iF AN <ACTUAL PARAMETER> (SEE "VALUE VARIABLES" AND "EXECUTE
PROCEDURE  STATEMENT") 1S PASSED BY ADDRESS, THEN ANY CHANGE TO
THE CORRESPONDING <FORMAL PARAMETER> IN THE PROCEDURE WILL
RESULT IN A CHANGE TO THE ORIGINAL VALUE OF THE <ACTUAL
PARAMETERD .

IF A PARAMETER IS PASSED BY VALUE, THEN ONLY THE DUPLICATE COPY
OF THE <ACTUAL PARAMETER> CAN BE CHANGED. THE ORIGINAL VALUE
REMAINS UNALTERED, AND THE DUPLICATE COPY IS ERASED WHEN THE
PROCEDURE 1S EXITED.

AN C(ACTUAL PARAMETER> MAY BE ANY EXPRESSION OR AN <ARRAY
IDENTIFIER>. SDL HAS SPECIFIED THAT ARRAY IDENTIFIERS MAY ONLY
BE PASSED BY ADDRESS. AN ARRAY ELEMENT, HOWEVER, MAY BE PASSED
EITHER BY ADDRESS OR BY VALUE.

EXPRESSIONS MAY BE DIVIDED INTOC TWO GROUPS:

1. THOSE WHICH MAY BE PASSED EITHER BY ADDRESS OR
BY VALUE, AND

2. THOSE WHICH MAY ONLY BE PASSED BY VALUE.

AN <ADDRESS GENERATOR> 1S PASSED BY ADDRESS UNLESS IT IS
ENCLOSED WITHIN PARENTHESES, OR UNLESS THE FORMAL PARAMETER TO
WHICH IT CORRESPONDS HAS BEEN DECLARED AS "FORMAL.VALUE". IN
THESE TWO CASES <ADDRESS GENERATOR>S WILL BE LOADED BY VALUE.
ALL OTHER EXPRESSIONS ARE LOADED BY VALUE ONLY.

EXAMPLES OF PARAMETERS PASSED BY ADDRESS:
P(BUMP X, A)
P(B(BUMP M), SUBBIT(X,5))
P(NEXT.ITEM(B), A:=-C+D)
EXAMPLES OF PARAMETERS PASSED 8Y VALUE:
P((BUMP X), (A), 3)

PO(B(BUMP M), A+B)
PISWAP(A,0), (SUBSTR(A,S,3)))



I/0 CONTROL STATEMENTS

<I/0 CONTROL STATEMENT> ::= <OPEN STATEMENT>;

: (CLOSE STATEMENT>;
{READ STATEMENT>
{WRITE STATEMENT>
(SEEK STATEMENT>;
(ACCEPT STATEMENT>;
{DISPLAY STATEMENT>;
(SPACE STATEMENT>
{SKIP STATEMENT>;

NN NNN NN N

EACH FILE IS NUMBERED SEQUENTIALLY, BEGINNING WITH ZERO. THIS
NUMBER IS THE <FILE NUMBER> AND WILL EVENTUALLY BE USED AS AN
INDEX INTO THE FIB DICTIONARY. THE FILE DECLARATION MWILL BE
USED TO CONSTRUCT AN FPB IN THE CODE FILE.



OPEN STATEMENT

{OPEN STATEMENT>::=

<OPEN PART>::=
<FILE DESIGNATOR)::=

{OPEN ATTRIBUTE PART>

{OPEN ATTRIBUTE LIST>

CATTRIBUTE SEPARATOR>::=

{OPEN ATTRIBUTE> ::=

<INPUT-OUTPUT MODE>
<LOCK MODE> ::=

{OPEN ACTION MODE>

<CODE FILE MODE>

<{MFCU MODE>::=

(FILE MISSING PART>::

{FILE LOCKED PART>::=

FORMAT OPTIONS:

1. OPEN DECLARED.FILE

.
1

NN

N NN N

15-2

{OPEN PART>

<OPEN PART>;
<OPEN PART>;
{OPEN PART>;
{FILE LOCKED

{FILE MISSING PART>
{FILE LOCKED PART>

{FILE MISSING PART>
PART > '

OPEN <FILE DESIGNATOR>
{OPEN ATTRIBUTE PART>

<FILE IDENTIFIER>

{SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<EMPTY>

{OPEN ATTRIBUTE LIST>

WITH <OPEN ATTRIBUTE LIST>
{OPEN ATTRIBUTE>

<OPEN ATTRIBUTE> <ATTRIBUTE SEPARATOR>
{OPEN ATTRIBUTE LIST>

, / <SLASH> / <EMPTY>
<{INPUT-OUTPUT MODE>

<LOCK MODE>

{OPEN ACTION MODE>

<CODE FILE MODE>

<{MFCU MODE>

INPUT / OUTPUT / NEW

LOCK 7/ LOCK.OUT

NO.REWIND / REVERSE
CODE.FILE

PUNCH / PRINT /
INTERPRET / STACKERS

ON FILE.MISSING <EXECUTABLE STATEMENT>

ON FILE.LOCKED <EXECUTABLE STATEMENT>



15-3

IF NO ATTRIBUTES ARE SPECIFIED, "INPUT" IS ASSUMED.

FOLLOWED BY: AND/OR:
LOCK
: INPUT LOCK.OQUT
2. OPEN DECLARED.FILE OUTPUT NO.REWIND
NEW * REVERSE
INPUT, OUTPUT LOCK, NO.REWIND
3. OPEN DECLARED.FILE WITH [|OUTPUT, NEW LOCK, REVERSE
[INPUT, OUTPUT, NEW |LOCK.OUT, NO.REWIND
x LLOCK.OUT, REVERSE

*  "NEW" ALONE ASSUMES "OUTPUT, NEW".

NOTE: THE COMBINATION “INPUT, NEW" RESULTS IN A
SYNTAX ERROR.

NOTE: "CODE.FILE" IS TO BE USED ONLY BY COMPILERS.
IF THE <OPEN ATTRIBUTE>S HAVE BEEN EXPLICITLY OR IMPLICITLY

INCLUDED IN THE FILE DECLARATION, THEN THE FILE NEED NOT BE
EXPLICITLY OPENED HERE.



CLOSE STATEMENT

{CLOSE STATEMENT>::

{FILE DESIGNATOR>::

{CLOSE ATTRIBUTE PART> ::

{CLOSE ATTRIBUTE LIST> ::

{ATTRIBUTE SEPARATOR>::

<CLOSE ATTRIBUTE> ::=

<CLOSE MODE> ::

FORMAT OPTIONS:

1.

CLOSE DECLARED.FILE;

THERE IS NO DEFAULT.

IF

15-4

CLOSE <FILE DESIGNATOR>
<CLOSE ATTRIBUTE PART>

{FILE IDENTIFIER>
{SWITCH FILE IDENTIFIER> (<KEXPRESSION>)

<EMPTY>

{CLOSE ATTRIBUTE LIST>

WITH <CLOSE ATTRIBUTE LIST>

<CLOSE ATTRIBUTE>

{CLOSE ATTRIBUTE> <ATTRIBUTE SEPARATOR>
{CLOSE ATTRIBUTE LIST>

» / <SLASH> / <EMPTY>

<CLOSE MODE>
CRUNCH / ROLLOUT / IF.NOT.CLOSED

REEL / RELEASE / PURGE / REMOVE
NO.REWIND / LOCK / CODE.FILE

"LOCK" IS SPECIFIED AS PART OF THE

FILE ATTRIBUTES, THE FILE 1S LOCKED. OTHERWISE THE FILE IS

NOT LOCKED.
FOLLOWED BY =~ AND/OR ONE OF:  *
0 OR MORE OF: -
1F .NOT.CLOSED
_ REEL
CLOSE DECLARED.FILE ROLLOUT RELEASE
) — CRUNCH __| PurcE
CLOSE DECLARED.FILE IF .NOT.CLOSED REMOVE
— NO . REWIND
LOCK
CODE.FILE
* IF MORE THAN ONE OPTION IS SPECIFIED, ONLY THE

FINAL ONE IS USED BY THE COMPILER.



15-5

FILES NEED NOT BE EXPLICITLY CLOSED. HOWEVER, CLOSING A FILE
WHEN FINISHED WITH IT WILL FREE MEMORY SPACE FOR OTHER USES.

NOTE: “"CODE.FILE" IS TO BE USED ONLY BY COMPILERS.
WHEN "CODE.FILE" IS USED, IT IS NOT NECESSARY
TO USE "LOCK" OR "CRUNCH".



15-6

READ STATEMENT

—— - ———— ——— —— ——

<READ STATEMENT> ::= {READ PART>;
/ <READ PART)>;<EOF PART>
{READ PART>;<PARITY PART>
/ <READ PART>; <EXCEPTION PART>

~

<READ PART> <READ SPECIFIER>
/ <DISK READ SPECIFIER>
{REMOTE READ SPECIFIER>

/ <QUEUE READ SPECIFIER>

~

{READ SPECIFIER>::= READ <FILE DESIGNATOR>
(<ADDRESS GENERATOR>)
X SEE "ADDRESS VARIABLES"

{FILE DESIGNATOR> <FILE IDENTIFIER>

/ <SWITCH FILE IDENTIFIER> (<KEXPRESSION>)

{DISK READ SPECIFIER>

READ <RECORD LOCK PART>
<FILE DESIGNATOR>
<RECORD ADDRESS PART>
(<ADDRESS GENERATOR>)

<RECORD LOCK PART>

<EMPTY> / LOCK

{RECORD ADDRESS PART> <EMPTY>

[ <KRECORD ADDRESS> ]

{RECORD ADDRESS> ::= {EXPRESSION>

<REMOTE READ SPECIFIER>:

.

1= READ <FILE DESIGNATOR>
{REMOTE KEY PART>
(CADDRESS GENERATOR>)

{REMOTE KEY PART>::= <EMPTY>
/ [KREMOTE KEY>])

(REMOTE KEY>::= {ADDRESS GENERATOR>

{QUEUE READ SPECIFIERD>::

READ <FILE DESIGNATOR>
{QUEUE FAMILY MEMBER PART>
(<ADDRESS GENERATOR>)

CQUEUE FAMILY
MEMBER PART>::= <EMPTY>
/ [<QUEUE FAMILY MEMBER>]

{QUEUE FAMILY MEMBER>:: <EXPRESSION>

L}



15-7

<EOF PART> ::= ON EOF <EXECUTABLE STATEMENT>

<EXCEPTION PART)>::= ON EXCEPTION <EXECUTABLE STATEMENT>

THE <READ STATEMENT> PROVIDES THE NECESSARY INFORMATION TO READ
A FILE: A FILE IDENTIFIER, RECORD ADDRESS, DATA INFORMATION,
AND INSTRUCTIONS TO BE EXECUTED IF AN END-OF-FILE OR A PARITY
ERROR 1S DETECTED.

THE <READ STATEMENT> SEPARATES FILES INTO FOUR CATEGORIES: DISK
FILES, REMOTE FILES, QUEUE FILES, AND ALL OTHERS (CARD, TAPE,
PAPERTAPE, ETC.). THE USER HAS THE OPTION OF SPECIFYING "LOCK"
FOR EXCLUSIVE USE OF THE DISK FILE RECORD. IF THE FILE
ATTRIBUTES INDICATE A RANDOM DISK FILE, THE USER MAY SPECIFY
<{RECORD ADDRESS>. IN ALL OTHER CASES, HE NEED ONLY GIVE THE
<FILE IDENTIFIER> AND <ADDRESS GENERATOR>.

IF THE FILE IS OF TYPE "REMOTE", AND THE "REMOTE.KEY" ATTRIBUTE
IS SET THEN A <REMOTE KEY> MAY BE USED. (FOR THE FORMAT OF
THIS, SEE THE DISCUSSION UNDER "REMOTE.KEY" IN THE FILE
DECLARATION SECTION.) IF THE "REMOTE.KEY" ATTRIBUTE IS NOT SET,
THEN A <REMOTE KEY> MAY.NOT BE USED. AFTER PERFORMING THE READ,
THE "REMOTE KEY" WILL HAVE BEEN STORED IN THE FIELD SPECIFIED
AS THE <REMOTE KEY>.

IF THE FILE IS OF TYPE "QUEUE" AND IS A MULTI-QUEUE FAMILY, THEN
A  <QUEUE FAMILY MEMBER> MAY BE USED. THIS IS AN EXPRESSION
WHOSE VALUE WILL SPECIFY WHICH MEMBER OF THE FAMILY TO READ
FROM. IF THIS IS OMITTED, THEN THE OLDEST MESSAGE IN ALL OF THE
QUEUES WILL BE READ.

THE <EXECUTABLE STATEMENT)>S OF THE <EOF PART> AND <EXCEPTION
PART> ARE CONSIDERED SUBORDINATE TO THE <READ STATEMENT>.
THEREFORE, SEGMENTATION OF THESE STATEMENTS IS TEMPORARY (SEE
"THE SEGMENT STATEMENT").



WRITE STATEMENT

<WRITE STATEMENT> ::=

<WRITE PART)>

<WRITE SPECIFIER>

<FILE DESIGNATOR>

1}

<{CARRIAGE CONTROL PART>

{CARRIAGE CONTROL
SPECIFIER> ::=

{SKI1P-TO-CHANNEL>
{CHANNEL NUMBER> ::=

{DISK WRITE SPECIFIER> ::=

<EOF PART> ::=

{EXCEPTION PART>

{RECORD LOCK FART)>

{RECORD ADDRESS PART>

{RECORD ADDRES'>

{REMOTE WRITE

~

~

15-8

{WRITE PART>;

<WRITE PART>;<EOF PART>

{WRITE PART>;<EXCEPTION PART>

{WRITE PART>;<EOF PART> <EXCEPTION PART>

{WRITE SPECIFIER>

{DISK WRITE SPECIFIER>
{REMOTE WRITE SPECIFIER>
{QUEUE WRITE SPECIFIER>

WRITE <FILE DESIGNATOR>
{CARRIAGE CONTROL PART>
(CEXPRESSION>)

WRITE <FILE IDENTIFIER>
{CARRIAGE CONTROL PART>

{FILE IDENTIFIER>
{SWITCH FILE IDENTIFIER> (<KEXPRESSION>)

<EMPTY>

{CARRIAGE CONTROL SPECIFIER>
NO / SINGLE / DOUBLE / PAGE
{SKIP-TO-CHANNEL> / NEXT
{CHANNEL NUMBER>

17273/ .../ 11/ 12
WRITE <RECORD LOCK PART>
{FILE DESIGNATOR>

<RECORD ADDRESS PART)>
(<EXPRESSION>)

ON EOF <EXECUTABLE STATEMENT)>
ON EXCEPTION <EXECUTABLE STATEMENT>
{EMPTY> / LOCK

<EMPTY>
({ <(RECORD ADDRESS>]

(EXPRESSION>



15-9

SPECIFIER>: := WRITE <FILE DESIGNATOR>
{REMOTE KEY PART>
(<EXPRESSION>)

<{REMOTE KEY PART)>::= <EMPTY)>

/ [<REMOTE KEY>]
{REMOTE KEY>::= (ADDRESS GENERATOR>

{QUEUE WRITE

SPECIAL>: := WRITE <FILE DESIGNATOR>
{QUEUE FAMILY MEMBER PART>
(<ADDRESS GENERATOR>)

{FILE DESIGNATOR>::= <FILE IDENTIFIER>
{SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<{QUEUE FAMILY
MEMBER PART)>::= <EMPTY>
/ [<QUEUE FAMILY MEMBER>]

<{QUEUE FAMILY MEMBER>::= {EXPRESSION>

THE <WRITE STATEMENT> PROVIDES THE NECESSARY INFORMATION TO
WRITE A FILE. THE <WRITE STATEMENT> TREATS DISK FILES
SEPARATELY FROM OTHER FILE TYPES BY ALLOWING THE USER THE
OPTION OF LOCKING DISK FILE RECORDS, AND SPECIFYING <RECORD
ADDRESS> ON HIS RANDOM DISK FILES. THE <CARRIAGE CONTROL PART>
IS INTENDED FOR USE WITH A PRINTER FILE.

IF THE FILE IS OF TYPE "REMOTE", AND THE "REMOTE.KEY" ATTRIBUTE
IS SET THEN A <REMOTE KEY> MAY BE USED. (FOR THE FORMAT OF
THIS, SEE THE DISCUSSION UNDER "REMOTE.KEY" IN THE FILE
DECLARATION SECTION.) IF THE "REMOTE.KEY" ATTRIBUTE IS NOT SET,
THEN A <REMOTE KEY> MAY NOT BE USED. THE <REMOTE KEY> WILL
SPECIFY THE TERMINAL TO WHICH THE WRITE IS TO BE PERFORMED.

IF THE FILE IS OF TYPE "QUEUE" AND IS A MULTI-QUEUE FAMILY, THEN
A  <QUEUE FAMILY MEMBER> MAY BE USED. THIS IS AN EXPRESSION
WHOSE VALUE WILL SPECIFY WHICH MEMBER OF THE FAMILY TO WRITE
TO.

THE <EXECUTABLE STATEMENT>S OF THE <EOF PART> AND <EXCEPTION
PART> ARE CONSIDERED SUBORDINATE TO THE <WRITE STATEMENT>.
THEREFORE, SEGMENTATION OF THESE STATEMENTS IS TEMPORARY (SEE
"THE SEGMENT STATEMENT").

[F. THE <END-OF-PAGE PART> IS SET IN THE FILE ATTRIBUTES, THEN



15-10

WHEN END-OF-PAGE IS DETECTED ON A PRINTER FILE, THE <EOF PART>
WILL BE EXECUTED. THIS FACILITATES, FOR EXAMPLE, PRINTING
TOTALS AND/OR HEADINGS WITHOUT KEEPING A LINE COUNTER.

EXAMPLE :

WRITE PRINTOUT SINGLE (PRINT.LINE);
ON EOF DO;
WRITE PRINTOUT; % SKIP A LINE:
WRITE PRINTOUT PAGE (TOTALS);
WRITE PRINTOUT DOUBLE (HEADER) ;
END;



15-11

SEEK STATEMENT

{SEEK STATEMENT)>

SEEK <RECORD LOCK PART>
{FILE DESIGNATOR>
[<RECORD ADDRESS>]
{RECORD LOCK PART> ::= <EMPTY> / LOCK

{FILE DESIGNATOR>::

<FILE IDENTIFIER>
/ KSWITCH FILE IDENTIFIER> (<EXPRESSION>)

<{RECORD ADDRESS>

{EXPRESSION>

THE <SEEK STATEMENT> CALLS UP A RECORD FROM A RANDOM DISK FILE
IN PREPARATION FOR A READ ON THAT RECORD. THIS STATEMENT SHOULD
ONLY BE USED WITH DISK FILES THAT ARE BEING READ USING A RANDOM
ACCESS TECHNIQUE.

A (SEEK STATEMENT> PERFORMED IMMEDIATELY PRIOR TO A <READ
STATEMENT> IS LESS EFFECTIVE THAN MERELY READING THE RECORD.



- 15-12

ACCEPT STATEMENT

CACCEPT STATEMENT> ::= ACCEPT <ADDRESS GENERATOR>
<END-OF -TEXT SPECIFIER>

<END-OF -TEXT
SPECIFIER> ::

<EMPTY>
/ , END.OF.TEXT

THE <ACCEPT STATEMENT> CAUSES THE EXECUTION OF A PROGRAM TO HALT
UNTIL THE APPROPRIATE INFORMATION IS ENTERED VIA THE SPO BY THE
OPERATOR. THE MESSAGE KEYED IN WILL BE READ INTO THE AREA

SPECIFIED BY THE <ADDRESS GENERATOR> FOLLOWING THE RESERVED
WORD "ACCEPT".

IF ", END.OF.TEXT" 1S SPECIFIED, THE SYSTEM WILL INCLUDE THE
"END OF MESSAGE" CHARACTER WITH THE MESSAGE. OTHERWISE, THE
"END OF MESSAGE" CHARACTER IS OMITTED, AND THE REST OF THE
SPECIFIED AREA IS FILLED WITH BLANKS.

SEE "ADDRESS VARIABLES" FOR THE SYNTAX OF THE <ADDRESS
GENERATOR> .



15-13

DISPLAY STATEMENT

{DISPLAY STATEMENT>

DISPLAY <EXPRESSION>
{CRUNCH SPECIFIER>

{CRUNCH SPECIFIER> ::= <EMPTY>
/ » CRUNCHED

THE <DISPLAY STATEMENT> PRINTS AN OUTPUT MESSAGE ON THE SPO. AS
NOTED, THE <CRUNCH SPECIFIER> IS OPTIONAL. IF ", CRUNCHED" IS
SPECIFIED, THE SYSTEM WILL DELETE TRAILING BLANKS AND ALL
OCCURRENCES OF EMBEDDED BLANKS. ONE BLANK IS SUBSTITUTED FOR
EACH OCCURRENCE OF MULTIPLE EMBEDDED BLANKS.



15-14

SPACE STATEMENT

{SPACE STATEMENT>

{SPACE PART)>;
/ <SPACE PART>; <EOF PART>
{SPACE PART>; <EXCEPTION PART>

~

/ {(SPACE PART>; <EOF PART> <EXCEPTION PART>

{SPACE PART> ::= SPACE <FILE DESIGNATOR>
{SPACING SPECIFIER>

<FILE DESIGNATOR>

{FILE IDENTIFIER>

/ <SWITCH FILE IDENTIFIER> (<KEXPRESSION>)

{SPACING SPECIFIER> CEXPRESSION> / TO <EXPRESSION>

CEOF PART) ::= ON EOF <EXECUTABLE STATEMENT)>

{EXCEPTION PART>::= ON EXCEPTION <EXECUTABLE STATEMENT>

THE <SPACE STATEMENT> ALLOWS THE USER TO SKIP OVER CERTAIN
RECORDS IN A SEQUENTIAL FILE.

THE <SPACING SPECIFIER> MAY TAKE TWO FORMS. AN <EXPRESSION>
ALONE WILL INDICATE THE NUMBER OF RECORDS TO BE SPACED. IT MAY
BE A NEGATIVE NUMBER INDICATING REVERSE SPACING. "T0
<EXPRESSION>" WILL ALWAYS BE A POSITIVE NUMBER AND [INDICATES
THE NUMBER OF THE RECORD TO SPACE TO.

THE <EXECUTABLE STATEMENT>S OF THE <EOF PART> AND <EXCEPTION
PART> ARE CONSIDERED SUBORDINATE TO THE <SPACE STATEMENT>.
THEREFORE, SEGMENTATION OF THESE STATEMENTS IS TEMPORARY (SEE
"THE SEGMENT STATEMENT").



15-15

SKIP STATEMENT

<SKIP STATEMENT>

' SKIP <FILE IDENTIFIER> TO <CHANNEL NUMBER>

<FILE DESIGNATOR> ::= {FILE IDENTIFIER>
/ <SWITCH FILE IDENTIFIER> (KEXPRESSION>)

{SKIP STATEMENT>

1]

SKIP <FILE DESIGNATOR> TO <CHANNEL NUMBER>
<CHANNEL NUMBER>

17273/ ... /11 7/ 12

THE <SKIP STATEMENT> CAUSES THE LINE PRINTER TO SKIP TO A
SPECIFIED CHANNEL NUMBER ON ITS CARRIAGE TAPE. THE CHANNEL
NUMBERS CONTROL THE VERTICAL SPACING OF DATA ON A PRINTED PAGE.



{EXECUTABLE STATEMENT
LIST> ::=

CEXECUTABLE STATEMENT>

CASSIGNMENT STATEMENT>

<1/0 CONTROL STATEMENT

(SEGMENT STATEMENT>

>

EXECUTABLE STATEMENTS

L]

NN N N N N N N N N N N N NN NN NN

<EXECUTABLE STATEMENT)>
<{EXECUTABLE STATEMENT>
(EXECUTABLE STATEMENT LIST>

<DO GROUP>;

{GROUP TERMINATION STATEMENT>;
(IF STATEMENT>

(CASE STATEMENT>;

CASSIGNMENT STATEMENTS;
(EXECUTE-PROCEDURE STATEMENT>;
<EXECUTE-FUNCTION STATEMENT>;
<1/0 CONTROL STATEMENT>
{MODIFY INSTRUCTION>;

{NULL STATEMENT>

(FILE ATTRIBUTE STATEMENT>;
{STOP STATEMENT>;

<ZIP STATEMENT>;

{SEARCH STATEMENT>

{ACCESS FILE HEADER STATEMENT>
<SEND STATEMENT>

(RECEIVE STATEMENT>

{ARRAY PAGE TYPE STATEMENT>
<(WAIT STATEMENT>;

(SEGMENT STATEMENT>
(EXECUTABLE STATEMENT)>

SEE "ASSIGNMENT STATEMENTS
AND EXPRESSIONS"

SEE "1/0 CONTROL STATEMENTS"

SEE "THE SEGMENT STATEMENT"

16-1



16-2

DO GROUPS

{GROUP HEAD>
{GROUP BODY>

<DO GROUP>

i

{GROUP NAME>
{FOREVER PART>;

{GROUP HEAD>

Do
/ DO <GROUP IDENTIFIER>

{GROUP NAME>

<EMPTY>
/ FOREVER

{FOREVER PART>

CIDENTIFIER>

{(GROUP IDENTIFIER>

(GROUP BODY> ::= CEXECUTABLE STATEMENT LIST>
{GROUP ENDING>

END
/ END <GROUP IDENTIFIER>

{GROUP ENDING>

THE <DO GROUP> IS A COLLECTION OF <EXECUTABLE STATEMENT>S WHICH
FUNCT IONS AS A ROUTINE. IT IS EXECUTED ONCE UNLESS "FOREVER"
APPEARS AFTER THE <GROUP NAME).

IF "FOREVER" IS PRESENT, THE <DO GROUP> WILL BE EXECUTED
ITERATIVELY UNTIL A SPECIFIC CONDITION IS MET. ONLY A <GROUP
TERMINATION STATEMENT> (UNDO) OR A <TYPED PROCEDURE RETURN
STATEMENT> (RETURN) CAN GET THE PROGRAM OUT OF THIS LOOP. SEE
THE FOLLOWING EXAMPLE:

DO THIS FOREVER;
READ CARD (A); ON EOF UNDO;
IF 55 GTR BUMP X
THEN WRITE PRINTER (A);

ELSE DO;
X-1;
WRITE PRINTER PAGE (A);
END;
END THIS;

IF IT IS NECESSARY TO EXECUTE THE STATEMENTS IN A <DO GROUP>
FROM DIFFERENT POINTS [N THE PROGRAM, MORE EFFICIENT CODE IS
GENERATED BY MAKING THE BODY OF THE GROUP A PROCEDURE RATHER
THAN BY REPEATING THE <DO GROUP>.



RESTRICTIONS:

1.

IF A <GROUP IDENTIFIER> IS [INCLUDED IN THE
{GROUP NAME>, IT MUST ALSO APPEAR IN THE
{GROUP ENDING>.

IF THE <GROUP NAME> DOES NOT INCLUDE AN
IDENTIFIER, THE <GROUP ENDING> MUST NOT
CONTAIN ONE.

"FOREVER" IS NOT A RESERVED WORD AND MAY
APPEAR AS THE {GROUP IDENTIFIERD>. "DO
FOREVER;" 1S CONSIDERED TO BE THE <GROUP HEAD>
OF AN UN-NAMED, ITERATIVE <DO GROUP>. "DO
FOREVER FOREVER" IS A LEGAL HEADING FOR A
NAMED, ITERATIVE GROUP.

NESTED <DO GROUP>S MAY NOT HAVE DUPLICATE
IDENTIFIERS. IF THIS OCCURS, A WARNING MESSAGE
WILL APPEAR ON THE PROGRAM LISTING.

<D0 GROUP>S MAY BE NESTED 32 LEVELS DEEP.
HOWEVER, A <GROUP TERMINATION STATEMENT> CAN
UNDO ONLY A MAXIMUM OF 16 LEVELS.

16-3



GROUP TERMINATION STATEMENT

<GROUP TERMINATION

STATEMENT>

<GROUP IDENTIFIER>

HERS UNDO
/ UNDO (*)
/ UNDO <GROUP IDENTIFIER>

CIDENTIFIER>

THE <GROUP TERMINATION STATEMENT> WILL CAUSE THE EXECUTION OF A
<DO GROUP> TO CEASE, AND WILL TRANSFER CONTROL TO THE NEXT
STATEMENT FOLLOWING THE <DO GROUP> WHICH HAS BEEN "UNDONE". THE
STATEMENT MAY TAKE ONE OF THREE FORMS:

1.

NOTE :

EXAMPLE :

OCONOOAFWD—

——
nN—o-

"UNDO" WILL TRANSFER CONTROL OUT OF THE <DO
GROUP> WHICH CONTAINS THE STATEMENT.

IF <D0 GROUP>S ARE NESTED, "UNDO (®)"
TRANSFERS CONTROL OUT OF THE OUTERMOST <DO
GROUP> .

"UNDO <GROUP IDENTIFIER>" TAKES CONTROL OUT OF
THE <DO GROUP> SPECIFIED BY THE IDENTIFIER.

UNDO (*) AND UNDO <IDENTIFIER> CAN UNDO A
MAXIMUM OF 16 LEVELS.

DO ONE;
DO TWO FOREVER;
IF <EXPRESSION> THEN
DO THREE;
CASE <EXPRESSION>;
UNDO; /* SAME AS UNDO THREE; */

UNDO TWO;
UNDO (*); /* SAME AS UNDO ONE; */
END CASE;
END THREE;
END TWO;
END ONE;

EXECUTION OF LINE 6 TRANSFERS CONTROL TO LINE 11.
EXECUTION OF LINE 7 TRANSFERS CONTROL TO LINE 12.
EXECUTION OF LINE 8 TRANSFERS CONTROL TO THE NEXT

STATEMENT FOLLOWING LINE 12.



16-5

IF STATEMENT

<IF STATEMENT> <IF CLAUSE>
{EXECUTABLE STATEMENT)>

/ <IF CLAUSE>
{EXECUTABLE STATEMENT)>

ELSE <EXECUTABLE STATEMENT>

<IF CLAUSE> ::= IF <EXPRESSION> THEN

THE <EXPRESSION> IS EVALUATED. IF THE LOW-ORDER BIT OF THE
RESULT IS 1 (I.E., TRUE), THE STATEMENT FOLLOWING "THEN" IS
EXECUTED. IF THE LOW-ORDER BIT IS 0 (l.E., FALSE), THE
STATEMENT FOLLOWING "ELSE" (IF PRESENT) IS EXECUTED. IF THE
RESULT OF THEKEXPRESSION> IS FALSE, AND THE "ELSE" PART IS
OMITTED, CONTROL IS TRANSFERRED TO THE NEXT STATEMENT AFTER THE
<IF STATEMENT)>.

<IF STATEMENT>S MAY BE NESTED. THE OUTERMOST <IF CLAUSE> AND THE
OUTERMOST "ELSE" ARE ON NESTING LEVEL 0. THE <EXECUTABLE
STATEMENT>S FOLLOWING "THEN" AND "ELSE" ARE ON NESTING LEVEL 1.
NESTING MAY BE NO DEEPER THAN 32 LEVELS.

WHEN USING NESTED <IF STATEMENT>S, THE USER MUST MAINTAIN
CORRESPONDENCE BETWEEN THE DELIMITERS "THEN" AND "ELSE" ON EACH
LEVEL. THE INNERMOST "ELSE" WILL ALWAYS BE ASSOCIATED WITH THE
INNERMOST "THEN". FROM THIS POINT CONTINUES AN OUTWARD
PROGRESSION (I.E., FROM HIGHEST NESTING LEVEL TO LOWEST) OF
"THEN-ELSE" ASSOCIATION.

THUS, IF AN <IF STATEMENT> ON NESTING LEVEL N IS TO HAVE AN
"ELSE" ASSOCIATED WITH IT, THEN EVERY <IF STATEMENT> ON A
NESTING LEVEL GREATER THAN N MUST ALSO HAVE "ELSES" ASSOCIATED
WITH THEM. IF THE USER WISHES TO EXECUTE NOTHING ' ON A FALSE
CONDITION, THEN "ELSE" FOLLOWED BY A <NULL STATEMENT> MAY BE
USED.



+ 16—8

EXAMPLE :

LET E-1, E-2, E-3, AND E-4% BE <EXPRESSION>S
LET S-2, S-3, AND S-4 BE <EXECUTABLE STATEMENT)>S

IF E-1
THEN IF E-2
THEN IF E-3
THEN IF E-Y4
THEN S-4;
ELSE;
ELSE S-3;
ELSE S-2;



16-7

CASE STATEMENT

"

CCASE STATEMENT> {CASE HEAD>

(CASE BODY>

<CASE HEAD>

CASE <EXPRESSION>;

<CASE BODY>

{EXECUTABLE STATEMENT LIST>
{CASE ENDING>

<CASE ENDING> ::= END CASE

THE <EXPRESSION> SERVES AS AN INDEX INTO THE LIST OF <EXECUTABLE
STATEMENT>S. THE STATEMENT SELECTED IS EXECUTED, AND THE OTHERS
IGNORED. CONTROL IS THEN TRANSFERRED TO THE STATEMENT FOLLOWING
THE <CASE ENDING> UNLESS, OF COURSE, THE STATEMENT IS A
"RETURN" OR AN "UNDO".

IF THERE ARE N NUMBER OF STATEMENTS IN THE LIST, THEN THE RANGE
OF THE VALUE OF THE <EXPRESSION> MAY BE FROM 0 THROUGH N-1.

THE STATEMENTS IN THE LIST MAY BE ANY LEGAL <EXECUTABLE
STATEMENT> ALLOWED IN SDL. IF THE USER WISHES TO EXECUTE
NOTHING IN A GIVEN CASE, THE <NULL STATEMENT> IS AN APPROPRIATE
STATEMENT.



16-8

EXECUTE-PROCEDURE STATEMENT

e - — o — ———————— ———_——— - ——— o~ -

<EXECUTE-PROCEDURE
STATEMENT> ::= {NON-TYPED PROCEDURE DESIGNATOR>

{NON-TYPED PROCEDURE

DESIGNATOR> ::= <NON-TYPED PROCEDURE IDENTIFIER>
C{ACTUAL PARAMETER PART>

<{NON-TYPED PROCEDURE
IDENTIFIER> ::= CIDENTIFIER>

<{ACTUAL PARAMETER PART> <EMPTY>

/ (KACTUAL PARAMETER LIST>)

{ACTUAL PARAMETER LIST>

C{ACTUAL PARAMETER>
/ <ACTUAL PARAMETER>,
{ACTUAL PARAMETER LIST>

1]

{ACTUAL PARAMETER> {EXPRESSION>

/ <ARRAY DESIGNATOR>

<ARRAY DESIGNATOR>

<ARRAY IDENTIFIER>

A NON-TYPED PROCEDURE, I.E., A PROCEDURE WHICH PERFORMS A
FUNCTION AND DOES NOT RETURN A VALUE, IS [INVOKED THROUGH AN
{EXECUTE-PROCEDURE STATEMENT>. THE NAME OF THE PROCEDURE IS
FOLLOWED BY ITS PARAMETERS ENCLOSED IN PARENS. REFER TO THE
SECTION "ADDRESS AND VALUE PARAMETERS" FOR INFORMATION
CONCERNING PASSING PARAMETERS.

FOR A DESCRIPTION OF THE INVOCATION OF TYPED PROCEDURES, - SEE
“VALUE VARIABLES".



EXECUTE-FUNCTION STATEMENT

<EXECUTE-FUNCTION
STATEMENT> ::=

{FUNCTION DESIGNATOR>

DUMP

<DUMP DESIGNATOR>

NN N N N N N N N NN NN NNNNN N

N NN NN NN N

16-9

{FUNCTION DESIGNATOR>

<DUMP DESIGNATOR>

{TRACE DESIGNATOR>

{SAVE DESIGNATOR>

{RESTORE DESIGNATOR>

{FETCH DESIGNATOE>

{HALT DESIGNATOR>

{REINSTATE DESIGNATOR>
{ACCESS-FPB DESIGNATOR>
<{REVERSE STORE DESIGNATOR>
{READ CASSETTE DESIGNATOR>
<OVERLAY DESIGNATOR>

{ACCESS OVERLAY DESIGNATOR>
<ERROR COMMUNICATE DESIGNATOR>
{SORT DESIGNATOR>

{SORT.SWAP DESIGNATOR>
<INITIALIZE.VECTOR DESIGNATOR>
{THREAD.VECTOR DESIGNATOR>
<ENABLE. INTERRUPTS DESIGNATOR>
{DISABLE.INTERRUPTS DESIGNATOR>
{ACCESS FILE INFORMATION
DESIGNATOR>

{HARDWARE MONITOR DESIGNATOR>
{SAVE STATE DESIGNATOR>
<DEBLANK DESIGNATOR>
{FREEZE-PROGRAM DESIGNATOR>
<THAW-PROGRAM DESIGNATOR>
<DUMP-FOR-ANALYSIS DESIGNATOR>
<COMPILE-CARD-INFO DESIGNATOR>
{COMMUNICATE DESIGNATOR>

DUMP

THE SDL STACKS WILL BE DUMPED TO THE LINE PRINTER IN SOME
REASONABLE FORMAT. PROGRAM EXECUTION WILL CONTINUE AFTER THE

DUMP .



16-10

<TRACE DESIGNATOR> ::= TRACE / NOTRACE / TRACE (<EXPRESSION>)

THE "TRACE" WILL CAUSE THE SDL INSTRUCTIONS OF THE NORMAL STATE
PROGRAM TO BE TRACED ON THE LINE PRINTER. "NOTRACE" WILL TURN
OFF THE TRACE.

"TRACE (<EXPRESSION>)" PROVIDES GREATER CONTROL OF THE TRACING
TO BE DONE. THE LOW-ORDER 10 BITS ARE USED IN THE FOLLOWING WAY
(NUMBERING OF THE 10 IS FROM LEFT TO RIGHT):

BIT USE

0 TRACE ALL COMMANDS EXCEPT THOSE WHICH MODIFY
DATA OR CHANGE THE PROGRAM POINTER STACK.
NORMAL STATE ONLY.

1 TRACE COMMANDS WHICH MODIFY DATA ITEMS (E.G.,
CLR, SNDL, ETC.). NORMAL STATE ONLY,

= TRACE COMMANDS WHICH CHANGE THE PROGRAM
POINTER STACK (E.G., IFTH, CASE, EXIT, ETC,).
NORMAL STATE ONLY.

3 NOT USED.

4-6 SAME AS 0-2, BUT FOR MCP. SEVERAL MCP ROUTINES
(GETSPACE, FORGETSPACE, AND OTHERS) WILL NOT
BE TRACED.

7-9 SAME AS 0-2, BUT WILL TRACE THOSE MCP ROUTINES
NOT TRACED BY 4-6.

NOTE THAT "TRACE(e380e@)" IS THE SAME AS "TRACE", WHILE "TRACE(0)
IS THE SAME AS "NOTRACE".

SAVE

{SAVE DESIGNATOR> SAVE (<EXPRESSION LIST>)

EACH OF THE <EXPRESSION>S, FROM LEFT TO RIGHT, WILL BE
EVALUATED, AND THE VALUE OF EACH LEFT ON THE EVALUATION STACK
(AND VALUE STACK, IF NECESSARY). SEE <RESTORE DESIGNATOR>.



16-11

RESTORE

(RESTORE DESIGNATOR> ::= RESTORE (<ADDRESS GENERATOR LIST>)
CADDRESS GENERATOR
LIST> ::= SEE "ADDRESS GENERATORS"

THE <(RESTORE DESIGNATOR> ASSIGNS THE CURRENT VALUE ON THE TOP OF
THE EVALUATION STACK TO EACH <ADDRESS GENERATOR>, FROM RIGHT TO
LEFT, IN THE LIST. THIS OPERATOR IS USED IN CONJUNCTION WITH
THE <SAVE DESIGNATOR>. SEE ABOVE.

EXAMPLE :

SAVE (A,B,C);

RESTORE (A,B,C);
NOTE THAT "RESTORE (A,B,C)" IS THE SAME AS:
RESTORE (C);

RESTORE (B);
RESTORE (A);

(FETCH DESIGNATOR> ::= FETCH (<1/0 REFERENCE ADDRESS>,
<PORT, CHANNEL, PRIORITY ADDRESS>,
{RESULT DESCRIPTOR ADDRESS>)

<I1/0 REFERENCE

ADDRESS> ::= (EXPRESSION>

(PORT ,CHANNEL ,

PRIORITY ADDRESS)> ::= (ADDRESS GENERATOR>
(ADDRESS GENERATOR> ::= SEE "ADDRESS GENERATORS"

<RESULT DESCRIPTOR
ADDRESS> ::= {ADDRESS GENERATOR>

THE <FETCH DESIGNATOR> FETCHES THE RESULT OF AN [/0 OPERATION.
IF THERE 1S A HIGH PRIORITY INTERRUPT, THEN THAT INTERRUPT WILL
BE REPORTED. OTHERWISE, IF THE <1/0 REFERENCE ADDRESS> IS



16-12

NON-ZERO, THEN ONLY AN INTERRUPT ON AN 1/0 DESCRIPTOR WITH THE
REFERENCE ADDRESS THE SAME AS THE <I/0 REFERENCE ADDRESS> WILL
BE REPORTED. IF NOT FOUND, THE FIRST INTERRUPT ENCOUNTERED (IF
ANY) WILL BE REPORTED. THE PORT (BIT 3), CHANNEL (BIT 3), AND
PRIORITY (BIT 1) OF THE INTERRUPT ARE STORED FROM LEFT TO RIGHT
IN THE LOW-ORDER 7 BITS OF <PORT, CHANNEL, PRIORITY ADDRESS>.
THE I1/0 RESULT DESCRIPTOR REFERENCE ADDRESS IS STORED IN THE
LOW-ORDER 24 BITS OF THE <RESULT DESCRIPTOR ADDRESS>. IF THERE
WERE NO INTERRUPTS, THEN THESE TWO FIELDS WILL BE ZERQ.

HALT

{HALT DESIGNATOR> ::= HALT (<EXPRESSION>)

THE <HALT DESIGNATOR> CAUSES THE VALUE OF THE <EXPRESSION> TO BE
MOVED TO THE M-MACHINE T-REGISTER. IF THE VALUE IS LONGER THAN
24 BITS, ONLY THE LOW-ORDER 24 BITS ARE MOVED. IF THE VALUE IS
LESS THAN 24 BITS, THE VALUE IS RIGHT JUSTIFIED AND LEADING
ZEROES ARE ADDED.

AFTER THE VALUE 1S MOVED, AN M-MACHINE HALT IS EXECUTED.

EXAMPLES:

DECLARE X BIT(24);
HALT (X:<-HEX.SEQUENCE.NUMBER) ;

DECLARE X BIT(24);
HALT (SUBBIT (HEX.SEQUENCE.NUMBER, 0, 24));

REINSTATE

CREINSTATE DESIGNATOR> REINSTATE (<KREINSTATED PROGRAM))

{REINSTATED PROGRAM> ::= (ADDRESS GENERATOR>

THE (REINSTATED PROGRAM> 1S ASSUMED TO DESCRIBE THE FIELD
RS.COMMUNICATE .MSG.PTR OF RS.NUCLEUS OF THE PROGRAM TO BE
REINSTATED (SEE DESCRIPTION OF THE RUN STRUCTURE IN "B1710 MCP
REFERENCE MANUAL").

THE REINSTATING PROGRAM-S M-MACHINE STATE IS STORED IN THE
APPROPRIATE PARTS OF ITS RS.NUCLEUS. THE ADDRESS OF THE



16-13

REINSTATING PROGRAM-S RS.NUCLEUS 1S STORED IN THE REINSTATED
PROGRAM-S RS.COMMUNICATE.LR.

THE PROGRAM WHOSE RS.COMMUNICATE.MSG.PTR IS DESCRIBED BY
{REINSTATED PROGRAM> IS THEN REINSTATED.

ACCESS-FPB

CACCESS-FPB
DESIGNATORY ::= CACCESS-FPB IDENTIFIER>
(CFILE SPECIFIER>,
{SOURCE OR DESTINATION FIELD>)

{ACCESS-FPB IDENTIFIERD READ.FPB / WRITE.FPB

it

(FILE SPECIFIER> ::= <FILE DESIGNATOR>
/ <FILE NUMBER>

i

(FILE DESIGNATOR> <FILE IDENTIFIER>

/ <SWITCH FILE IDENTIFIER> (KEXPRESSION>)

CFILE NUMBER> ::= {EXPRESSION>

{SOURCE OR DESTINATION

FIELD> ::= (ADDRESS GENERATOR>
CADBDRESS GENERATOR> ::= SEE "ADDRESS GENERATORS"

THE FILE PARAMETER BLOCK OF THE FILE INDICATED BY THE <FILE
SPECIFIER> IS READ INTO, OR WRITTEN FROM THE <SOURCE OR
DESTINATION FIELD>.

NOTE THAT THE <SOURCE OR DESTINATION FIELD> SHOULD BE 1440 BITS
IN LENGTH.

REVERSE STORE

(REVERSE STORE
DESIGNATOR> ::= REVERSE . STORE
(<ADDRESS GENERATOR LIST>,<EXPRESSION>)

CADDRESS GENERATOR
LIST> ::= SEE "ADDRESS GENERATORS™"



16-14

THE REVERSE.STORE OPERATION HAS THE EFFECT OF EVALUATING
MULTIPLE STORE OPERATIONS FROM LEFT TO RIGHT INSTEAD OF FROM
RIGHT TO LEFT. SEE "THE REPLACE OPERATORS",

FOR EXAMPLE:

REVERSE .STORE (L ,M,N,P,X+1);
HAS THE SAME EFFECT AS:

L= M;

M=-N;

N=—P:

PeX+1;

WITH THE REVERSE.STORE, HOWEVER, THE DESCRIPTOR FOR EACH
<ADDRESS GENERATOR> IN THE LIST IS DETERMINED ONLY ONCE.

NOTE :
REVERSE .STORE (L ,M,N,P,X+1);
IS NOT THE SAME AS
Lo Me-NeP=X+];

READ CASSETTE

<READ CASSETTE
-DESIGNATOR>: : = READ.CASSETTE (<KDESTINATION SPECIFIER,
{HASH.TOTAL SPECIFIER>, <RESULT SPECIFIER>)

{DESTINATION SPECIFIER>::= {ADDRESS GENERATOR>

<HASH.TOTAL SPECIFIER>::= HASH.TOTAL
/ NO.HASH.TOTAL

<RESULT SPECIFIER>::= CADDRESS GENERATOR>

THE <(READ CASSETTE DESIGNATOR> CAUSES THE NUMBER OF BITS
SPECIFIED BY THE <DESTINATION SPECIFIER> TO BE READ FROM THE
CONSOLE CASSETTE TO THE ADDRESS SPECIFIED BY THAT <DESTINATION
SPECIFIER>. THIS NUMBER OF BITS MUST BE EQUAL TO THE RECORD
SIZE MINUS THE HASH-TOTAL SIZE (IF IT IS PRESENT) OF 16 BITS.
THE (HASH.TOTAL SPECIFIER> INDICATES WHEATHER OR NOT A
HASH-TOTAL 1S EXPECTED AT THE END OF THE RECORD.

A VALUE OF 0 OR 1 WILL BE LEFT IN THE <RESULT SPECIFIER>
INDICATING THAT THE HASH-TOTAL WAS [INCORRECT OR CORRECT,
RESPECTIVELY.



16-15

OVERLAY

{OVERLAY DESIGNATOR> ::= OVERLAY (<EXPRESSION>)

THE <EXPRESSION> WILL BE USED AS AN INDEX INTO THE INTERPRETER
DICTIONARY BY THE INTERPRETER SWAPPER. THE INTERPRETER
DICTIONARY ENTRY WILL SPECIFY THE ACTION TO BE TAKEN. SEE THE
"B1710 MCP REFERENCE MANUAL".

ACCESS OVERLAY

{ACCESS OVERLAY
DESIGNATOR> ::= {ACCESS OVERLAY IDENTIFIER> (<EXPRESSION>)

{ACCESS OVERLAY
IDENTIFIER> ::= READ.OVERLAY / WRITE.OVERLAY

THE VALUE OF THE <EXPRESSION> IS ASSUMED TO BE A 76-BIT FIELD
WITH THE FOLLOWING FORMAT FROM HIGH-ORDER TO LOW-ORDER:

BITS CONTENTS

0-3 EU = 0 (NOT USED)

4-27 BASE RELATIVE BEGINNING ADDRESS
28-51 BASE RELATIVE ENDING ADDRESS

52-75 DISK ADDRESS (RELATIVE TO USER AREA)

THE AREA DESCRIBED BY THE BEGINNING AND ENDING ADDRESSES IS READ
TO, OR WRITTEN FROM THE USER DISK AT THE (RELATIVE) DISK
ADDRESS GIVEN.

ERROR COMMUNICATE

{ERROR COMMUNICATE
DESIGNATOR> ::= ERROR.COMMUNICATE (<EXPRESSION>)

THE VALUE OF THE EXPRESSION SHOULD BE OF THE FOLLOWING FORM:



e BITS 6 BITS

WHERE N IS THE ERROR NUMBER.

16-16

16 BITS 24 BITS

THE VALUE OF THE EXPRESSION WILL BE PUT ON THE EVALUATION STACK
AS A DESCRIPTOR, AND AN MCP COMMUNICATE WILL BE PERFORMED.

SORT

{SORT DESIGNATOR>

[

{SORT INFORMATION TABLE
SPECIFIER> ::=

{ADDRESS GENERATOR> ::=

{SORT KEY TABLE
SPECIFIER> ::=

CINPUT FILE DESIGNATOR :

{OUTPUT FILE
DESIGNATOR> ::=

{FILE DESIGNATOR>::=

THE <SORT DESIGNATOR>

SORT (<SORT INFORMATION TABLE SPECIFIER>,
{SORT KEY TABLE SPECIFIER>,

<INPUT FILE DESIGNATOR>,

<OUTPUT FILE DESIGNATOR>)

{ADDRESS GENERATOR>

SEE "ADDRESS GENERATORS"

{ADDRESS GENERATOR>

{FILE DESIGNATOR>

{FILE DESIGNATOR>

<FILE IDENTIFIER>

/ <SWITCH FILE IDENTIFIER> (<EXPRESSION>)

IS A COMMUNICATE WHICH REQUESTS THE

TRANSFER OF RECORDS FROM THE INPUT FILE TO THE OUTPUT FILE
ACCORDING TO THE SORT KEY TABLE. THE SORT INFORMATION TABLE
INCLUDES CODES FOR SORT TYPE, HARDWARE AVAILABLE, AND OTHER

OPTIONS.

FOR FORMATTING SPECIFICATIONS OF THE SORT INFORMATION TABLE,

REFER TO SORT DOCUMENTATION.



16-17

SORT . SWAP

{SORT.SWAP DESIGNATOR>

SORT.SWAP (<RECORD 1>,<RECORD 2>)

<RECORD 1>

[}

{ADDRESS GENERATOR>

<RECORD 2>

{ADDRESS GENERATOR>

WHILE THE <SORT SWAP DESIGNATOR> IS INTENDED TO BE USED BY THE
SORT, ITS APPLICATION IS SUCH THAT IT MAY BE GENERALLY USEFUL.

THIS DESIGNATOR ALLOWS THE USER TO "SWAP" OR EXCHANGE TWO
RECORDS IN MEMORY WITHOUT ALLOCATING A THIRD AREA FOR STORING
ONE OF THE RECORDS.

SPECIFICALLY, THE RECORD POINTED TO BY <RECORD 1> IS EXCHANGED
WITH THE RECORD POINTED TO BY <RECORD 2>.

NOTE: THE INTERPRETER BEING USED MUST CONTAIN THE
SORT.SWAP OPERATOR.

INITIALIZE.VECTOR

CINITIALIZE.VECTOR
DESIGNATOR> ::= INITIALIZE.VECTOR (<TABLE ADDRESS>)

{TABLE ADDRESS> ::= {ADDRESS GENERATOR>

FOR USE BY SORT ONLY.

THE <TABLE ADDRESS> POINTS TO THE TABLE CONTAINING THE VECTOR
ADDRESS, THE VECTOR LEVEL-1 ADDRESS, THE KEY TABLE ADDRESS, AND
THE VECTOR LIMIT ADDRESS.



16-18

THREAD. VECTOR

{THREAD.VECTOR

DESIGNATOR> ::= THREAD.VECTOR (<TABLE ADDRESS> , <INDEX>)
{TABLE ADDRESS> ::= {ADDRESS GENERATOR>
<INDEX> ::= {EXPRESSION>

FOR USE BY SORT ONLY.

THE <TABLE ADDRESS> POINTS TO THE TABLE CONTAINING THE
INFORMAT ION DESCRIBED UNDER "INITIALIZE.VECTOR". THE <INDEX>
PROVIDES THE OFFSET FROM THE BEGINNING OF THE VECTOR TO THE
NEXT RECORD TO BE USED FOR COMPARISON.

DISABLE . INTERRUPTS

{DISABLE. INTERRUPTS
DESIGNATOR> ::= DISABLE. INTERRUPTS

FOR MCP USE ONLY.

THE <DISABLE INTERRUPTS DESIGNATOR> SUPPRESSES ALL INTERRUPTS
UNTIL AN <ENABLE INTERRUPTS DESIGNATOR> IS ENCOUNTERED.

NOTE THAT THIS CONSTRUCT CANNOT BE EXECUTED BY NORMAL STATE
PROGRAMS.

ENABLE . INTERRUPTS

<ENABLE. INTERRUPTS
DESIGNATOR> ::= ENABLE . INTERRUPTS

FOR MCP USE ONLY.



16-18

THE <ENABLE INTERRUPTS DESIGNATOR> CAUSES THE MCP TO RETURN TO
THE NORMAL INTERRUPT-PROCESSING MODE AFTER THE {DISABLE
INTERRUPTS DESIGNATOR> HAS CHANGED THAT MODE. SEE ABOVE

NOTE THAT THIS CONSTRUCT CANNOT BE EXECUTED BY A NORMAL STATE
PROGRAM.

ACCESS FILE INFORMATION

CACCESS FILE INFORMATION
DESIGNATOR> ::= ACCESS.FILE.INFORMATION (<FILE DESIGNATOR>,
{RETURN TYPE>,<DESTINATION>)

{FILE DESIGNATOR> ::= {FILE IDENTIFIER>
/ <SWITCH FILE IDENTIFIER> (<KEXPRESSION>)

{RETURN TYPE>

BIT / CHARACTER

<DESTINATION>

{ADDRESS GENERATOR>

THE <ACCESS FILE INFORMATION DESIGNATOR> RETURNS THE END-OF-FILE
POINTER AND THE DEVICE TYPE FROM THE FIB OF THE SPECIFIED FILE
TO THE SPECIFIED DESTINATION.

THE INFORMATION MAY BE RETURNED AS EITHER BIT OR CHARACTER. THE
FORMAT 1S AS FOLLOWS:

01 DESTINATION.FIELD,
02 EOF.POINTER BIT(24), X CHARACTER(8)
02 DEVICE.TYPE BIT(B); X CHARACTER(2)

TO ENSURE THAT THE FIB EXISTS, THIS COMMUNICATE SHOULD ONLY BE
USED ON OPEN FILES.

HARDWARE MONITOR

{HARDWARE MONITOR
DESIGNATOR> ::= HARDWARE .MONITOR (<EXPRESSION>)

THE MONITOR MICRO-OPCODE WILL BE EXECUTED USING THE LOW-ORDER 8
BITS OF THE <EXPRESSION> AS ITS OPERAND. ALSO SEE APPENDIX IV.



16-20

SAVE STATE

{SAVE STATE DESIGNATOR> ::= GSAVE.STATE

THE STATE OF THE INTERPRETER WILL BE STORED IN RS.M.MACHINE (SEE
"B1700 MCP REFERENCE MANUAL"). EXECUTION WILL THEN CONTINUE.

DEBLANK
<DEBLANK DESIGNATOR>::= DEBLANK (<FIRST CHARACTER>)
<FIRST CHARACTER>::= CIDENTIFIER>

THE <FIRST CHARACTER> IS A SIMPLE IDENTIFIER WHICH DESCRIBES THE
FIRST CHARACTER TO BE EXAMINED. DEBLANK REPEATLY INCREMENTS THE

ADDRESS FIELD OF THE DESCRIPTOR FOR <FIRST CHARACTER> UNTIL

{FIRST CHARACTER> DESCRIBES A NON-BLANK CHARACTER.

FREEZE PROGRAM

{FREEZE-PROGRAM
DESIGNATOR>: : = FREEZE . PROGRAM

EXECUTION OF THIS FUNCTION WILL PREVENT THE PROGRAM FROM BEING
MOVED IN MEMORY OR FROM BEING ROLLED OUT OF MEMORY.

THAW PROGRAM

{THAW-PROGRAM
DESIGNATORY>: : = THAW.PROGRAM

EXECUTION OF THIS FUNCTION WILL ALLOW THE PROGRAM TO BE ROLLED
OUT OF MEMORY. IT WILL NOT FORCE IT TO BE ROLLED OUT.



16-21

DUMP FOR ANALYSIS

<DUMP-FOR-
ANALYSIS DESIGNATOR>: := DUMP .FOR.ANALYSIS

EXECUTION OF THIS FUNCTION WILL CAUSE A DUMPFILE TO BE CREATED
AND EXECUTION TO COUTINUE.

COMPILE CARD INFO

<COMPILE-CARD-
INFO DESIGNATOR>: := COMPILE.CARD.INFO
(<CCI DESTINATION FIELD>)

<CCI DESTINATION FIELD>::= {ADDRESS GENERATOR>

THIS FUNCTION IS INTENDED FOR USE BY THE COMPILERS® ONLY. THE
INFORMATION ON THE "COMPILE" CARD IS RETURNED IN THE FOLLOWING
FORMAT :

OBJUECT NAME CHARACTER (30)
EXECUTE TYPE (DECIMAL) CHARACTER (2)

"01" EXECUTE

"02" COMPILE AND GO

"03" COMPILE FOR SYNTAX

"O4" COMPILE TO LIBRARY

"05" COMPILE AND SAVE

"06" GO PART OF COMPILE AND GO
"07" GO PART OF COMPILE AND SAVE

COMPILER PACK IDENTIFIER CHARACTER (10)
COMPILER INTERPRETER NAME CHARACTER (30)
COMPILER INTRINSIC NAME CHARACTER (10)
COMPILER PRIORITY (DECIMAL) CHARACTER (2)
COMPILER CHARGE NUMBER (DECIMAL) CHARACTER (6)
COMPILER JOB NUMBER (DECIMAL) CHARACTER (B)
COMPILER2S FIRST NAME CHARACTER (10)
OBJUECT PROGRAM2S FIRST NAME CHARACTER (10)
COMPILER MIX NUMBER (DECIMAL) CHARACTER (8)
COMPILATION DATE BIT (36)

BITS CONTENTS

0-8 JULIAN DAY (BINARY)

9-15 LAST TWO DIGITS OF YEAR (BINARY - BASE 1800)

16-35 TIME (BINARY - TENTHS OF SECONDS)



16-22

COMMUNICATE

(COMMUNICATE DESIGNATOR>::= COMMUNICATE (<EXPRESSION>)

THE <EXPRESSION> 1S EXPECTED TO BE A VALID COMMUNICATE MESSAGE.
THIS IS INTENDED ONLY FOR EXPERIMENTAL TESTING OF COMMUNICATES.



16-23

MODIFY INSTRUCTION

<MODIFY INSTRUCTION>

{CLEAR STATEMENT>
/ <BUMP STATEMENT> -
/ <DECREMENT STATEMENT)>

{CLEAR STATEMENT> ::= CLEAR <ARRAY IDENTIFIER LIST>

ARRAY IDENTIFIER LIST> ::= CARRAY lDENTIFIER)
/ <ARRAY IDENTIFIER>,
{ARRAY IDENTIFIER LIST>

AS THE SYNTAX INDICATES, THE <CLEAR STATEMENT> MAY ONLY "CLEAR"
ARRAYS. IF THE ARRAY HAS BEEN DECLARED BIT OR FIXED, ZEROES ARE
MOVED TO EACH ELEMENT. IF IT WAS DECLARED AS CHARACTER, BLANKS
ARE MOVED TO EACH ELEMENT. PAGED ARRAYS MAY NOT BE "CLEARED".

<BUMP STATEMENT> BUMP <ADDRESS VARIABLE><MODIF IER>

<ADDRESS VARIABLE> SEE "ADDRESS VARIABLES"

<{MODIFIER> ::= <EMPTY>
/ BY <EXPRESSION>

<DECREMENT STATEMENT> DECREMENT <ADDRESS VARIABLE><MODIFIER>

THE BUMP AND DECREMENT STATEMENTS PERFORM THE SAME FUNCTIONS AS
THEIR COUNTERPARTS IN THE <EXPRESSION> (BUMPOR AND
DECREMENTOR). SEE THOSE SECTIONS FOR SPECIFIC USAGE. SINCE
THESE CONSTRUCTS EXIST AS STATEMENTS IN THEIR OWN RIGHTS, AND
NOT MERELY AS PARTS OF THE <EXPRESSION>, THEY ARE INCLUDED
HERE .



16-24

NULL STATEMENT

{NULL STATEMENT)> ::=

THE SEMI-COLON IS CONSIDERED TO BE A STATEMENT IN ITS OWN RIGHT.
IT MAY BE USED IN ANY CONSTRUCT WHERE THE SYNTAX REQUIRES THAT
AN {EXECUTABLE STATEMENT> BE PRESENT, BUT THE USER WISHES TO
EXECUTE NOTHING. IT IS MOST COMMONLY USED IN THE <IF STATEMENT>
AND THE <CASE STATEMENT>, BUT MAY ALSO BE FUNCTIONAL IN THE
READ, WRITE, AND SPACE STATEMENTS. REFER TO THE [INDIVIDUAL
DESCRIPTIONS FOR MORE SPECIFIC DETAILS.

EXAMPLE :
CASE <EXPRESSION>;
IF <EXPRESSION> THEN;
ELSE <STATEMENT>;

DO;
CEXECUTABLE STATEMENT LIST>
END;

END CASE;

NOTICE THAT THE ABOVE <CASE STATEMENT> CONTAINS THREE
{EXECUTABLE STATEMENTS>: AN <IF STATEMENT>, A <NULL STATEMENT>,
AND A <DO GROUP>. IF THE VALUE OF THE <EXPRESSION> FOLLOWING
"CASE" IS 1, THEN NOTHING IS EXECUTED. IN ADDITION, THE ";"
FOLLOWING "THEN" IS A <NULL STATEMENT>.



FILE ATTRIBUTE STATEMENT

<FILE ATTRIBUTE
STATEMENT> ::=

<FILE DESIGNATOR>

<DYNAMIC FILE
ATTRIBUTE LIST>

]

<DYNAMIC FILE
ATTRIBUTE> ::=

THE

16-25

(CHANGE STATEMENT)

NN N N N N N N N NN NN NN NNNN

NN NN N NN NN NN

CHANGE <FILE DESIGNATOR>
TO (<KDYNAMIC FILE ATTRIBUTE LIST>)

{FILE IDENTIFIER>

{SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<DYNAMIC
<DYNAMIC
<DYNAMIC

<DYNAMIC
{DYNAMIC
{DYNAMIC
<DYNAMIC
{DYNAMIC
<DYNAMIC
{DYNAMIC
<DYNAMIC
{DYNAMIC
<DYNAMIC
<DYNAMIC
<DYNAMIC
{DYNAMIC
<DYNAMIC
<DYNAMIC
<DYNAMIC
<DYNAMIC
<DYNAMIC
{DYNAMIC
{DYNAMIC

FILE ATTRIBUTE>
FILE ATTRIBUTE>,
FILE ATTRIBUTE LIST>

MULTI-FILE IDENTIFICATION PART)>

FILE IDENTIFICATION PART>
PACK.ID PART>

DEVICE PART>
TRANSLATION PART>

FILE PARITY PART>
VARIABLE RECORD PART>
LOCK PART>

BUFFERS PART>

SAVE FACTOR PART>
RECORD SIZE PART)>
RECORDS-PER-BLOCK PART>
REEL NUMBER PART>
NUMBER-OF -AREAS PART>
BLOCKS-PER-AREA PART>”
ALL-AREAS-AT-OPEN PART>
AREA-BY-CYLINDER PART>
EU.SPECIAL PART>

EU. INCREMENTED PART)>
USE . INPUT .BLOCKING

DESIGNATOR PART>

<DYNAMIC
<DYNAMIC
{DYNAMIC
<DYNAMIC
<DYNAMIC
<DYNAMIC
{DYNAMIC
<DYNAMIC
<DYNAMIC
<DYNAMIC

SORTER-STATION PART>
MULTI-PACK PART>

END-OF -PAGE PART>
OPEN-OPTION PART)>
REMOTE-KEY PART>
NUMBER-OF-STATIONS PART>
QUEUE-FAMILY-SIZE PART)>
FILE TYPE PART>

WORK FILE PART>

LABEL TYPE PART>

(FILE ATTRIBUTE STATEMENT> ALLOWS THE USER TO DYNAMICALLY

CHANGE THE ATTRIBUTES OF HIS FILE DURING THE EXECUTION OF HIS
PROGRAM. THIS STATEMENT MAY OCCUR AT ANY POINT IN THE PROGRAM,



16-26

BUT THE CHANGE WILL NOT BECOME EFFECTIVE UNTIL THE FILE IS
OPENED. THAT 1S, IF THE FILE IN QUESTION IS OPEN WHEN THE <FILE
ATTRIBUTE STATEMENT> IS EXECUTED, THEN THE CHANGE WILL NOT
OCCUR UNTIL THE FILE IS CLOSED AND RE-OPENED.

EACH <DYNAMIC FILE ATTRIBUTE> SHOULD BE CONSISTENT WITH THE
FORMAT AND RESTRICTIONS OF ITS COUNTERPART LISTED IN THE "FILE

DECLARATIONS". EXCEPTIONS TO THIS ARE SPECIFICALLY STATED
BELOW.

IF A <DYNAMIC FILE ATTRIBUTE> IS OMITTED, THE ATTRIBUTE REMAINS
AS IT WAS PREVIOUSLY SET.

IT SHOULD BE NOTED THAT THE FOLLOWING PROCESS IS MANDATORY WHEN
CHANGING THE ATTRIBUTES OF AN OPEN FILE WHICH IS TO BE
RE-OPENED:

1. CLOSE THE FILE WITH AN ATTRIBUTE WHICH CAUSES SPACE FOR THE
FIB TO BE RETURNED: 1I.E., "LOCK", "RELEASE", ETC. (IF
"CLOSE" IS USED WITHOUT ATTRIBUTES, THE FIB WILL NOT BE
REBUILT FROM THE FPB, AND THE ATTRIBUTE WILL REMAIN
UNCHANGED) .

2. CHANGE THE DESIRED ATTRIBUTES.

3. OPEN THE FILE.



16-27

{DYNAMIC MULTI-FILE
IDENTIFICATION PART> ::= MULTI.FILE.ID =
<DYNAMIC MULTI-FILE IDENTIFICATION>

{(DYNAMIC MULTI-FILE

IDENTIFICATIONY> ::= EXPRESSIOND

{DYNAMIC FILE

IDENTIFICATION PART> ::= FILE.ID<-<DYNAMIC FILE IDENTIFICATION>
<DYNAMIC FILE

{DENTIFICATION> = (EXPRESSION>

(DYNAMIC PACK. ID PART> = PACK . 1D -

(DYNAMIC PACK IDENTIFICATION>

<DYNAMIC PACK
[DENTIFICATION> ::= {EXPRESSION>

THE <EXPRESSION>S OF THESE FOUR ATTRIBUTES ARE EACH ASSUMED TO
BE CHARACTER STRINGS. IF THEY ARE BITS, HOWEVER, THEY WILL BE
CONVERTED TO CHARACTERS IN THE FOLLOWING MANNER:

1. THE BITS ARE LEFT JUSTIFIED.

2. TRAILING BLANKS ARE APPENDED. HOWEVER, IF THE
BITS ARE NOT A MULTIPLE OF 8, THEN THE STRING
WILL APPEAR TO BE INVALID CHARACTERS.

EXAMPLE :
CHANGE F TO (FILE.ID=eF0E®);

WILL RESULT IN THE <FILE IDENTIFICATION>
BEING EQUAL TO:

eF OE4 0404 040404040404 e



<DYNAMIC DEVICE PART> ::=

<DYNAMIC DEVICE
SPECIFIERY> ::=

THE LOW-ORDER 10 BITS OF THE

DEVICE HARDWARE
CARD =3
MULTI.FUNCTION.CARD 4
TAPE 27
TAPE .S 28
TAPE.7 25
TAPE .PE =S
TAPE .NRZ 24
DISK 17
DISK.PACK 16
DISK.FILE 12
DISK.PACK.CENTURY 15
DISK.PACK.CAELUS 14
PRINTER 8
PRINTER FORMS 8
CARD.READER 2l
CARD . PUNCH 2
CARD.PUNCH FORMS e
PUNCH e
PUNCH FORMS e
PUNCH. S6 1
PUNCH.S6 FORMS 1
READER.PUNCH 3
READER.PUNCH FORMS 3
READER.PUNCH.PRINTER 5
READER.PUNCH.PRINTER FORMS 5
PUNCH.PRINTER 18
PUNCH.PRINTER FORMS 18
PAPER. TAPE . PUNCH 20
PAPER. TAPE .PUNCH FORMS 20
PAPER. TAPE .READER 6
READER .96 19

16-28

DEVICE«-<DYNAMIC DEVICE SPECIFIER>

{EXPRESSION>

(EXPRESSION> MUST BE CODED AS
FOLLOWS (WHERE THE VARIANT IS THE HIGH ORDER 4 BITS, AND THE
HARDWARE IS THE LOW-ORDER SIX):

VARIANT

0 = SERIAL

1 = RANDOM

(SAME AS DISK)

(SAME AS DISK)

(SAME AS DISK)

(SAME AS DISK)

0 = BACKUP TAPE OR DISK
= BACKUP TAPE

BACKUP DISK

BACKUP TAPE OR DISK
HARDWARE ONLY
BACKUP TAPE ONLY
BACKUP DISK ONLY
BACKUP TAPE OR DISK
PRINTER VARIANT

OO EF WM —
+ 0 W B B oRoW

(SAME AS PRINTER)
(SAME AS PRINTER FORMS)
(SAME AS PRINTER)
(SAME AS PRINTER FORMS)
(SAME AS PRINTER)
(SAME AS PRINTER FORMS)
(SAME AS PRINTER)
(SAME AS PRINTER FORMS)
(SAME AS PRINTER)
(SAME AS PRINTER FORMS)
(SAME AS PRINTER)
(SAME AS PRINTER FORMS)
(SAME AS PRINTER)
(SAME AS PRINTER FORMS)

ONLY



SORTER.READER
READER.SORTER
SPO

CASSETTE
REMOTE

QUEUE

MFCU

10
10
ee
30
63
62

16-29



16-30

<DYNAMIC TRANSLATION
PART> ::= TRANSLATION <
<DYNAMIC TRANSLATION SPECIFIER>

<DYNAMIC TRANSLATION
SPECIFIER> ::= (EXPRESSION>

THE LOW-ORDER 3 BITS OF THE <EXPRESSION> DETERMINES THE
TRANSLATION AS FOLLOWS:

000 = EBCDIC
001 = ASCII
010 = BCL

{DYNAMIC SORTER STATION
PART> ::= SR.STATION =
{DYNAMIC SORTER STATION SPECIFIER>

{DYNAMIC SORTER

STATION SPECIFIER> {EXPRESSION>

THE LOW-ORDER 3 BITS OF THE <EXPRESSION> DETERMINES THE
TRANSLATION AS FOLLOWS:

FIRST STATION
SECOND STATION
BOTH STATIONS

001
010
111

{DYNAMIC OPEN-
OPTION PART>::= OPEN.OPTION <
{DYNAMIC OPEN.OPTION SPECIFIER>

{DYNAMIC OPEN-
OPTION SPECIFIER>::= <EXPRESSION>

THE LOW-ORDER 12 BITS OF THE EXPRESSION DETERMINE THE TYPE OF
OPEN AS FOLLOWS (BITS ARE NUMBERED FROM LEFT TO RIGHT WITHIN
THE 12):



— D JdJONEFWNMNU— O —

—

—

[T | N (| B [ | I [}

[ ]

FUNCTION (IF 1)
INPUT

OUTPUT

NEW

PUNCH

PRINT

NO.REWIND, INTERPRET
REVERSE, STACKERS
LOCK

LOCK.OUT
CODE.FILE

16-31



<DYNAMIC PARITY PART>

<DYNAMIC PARITY
SPECIFIER> ::=

<DYNAMIC VARIABLE
RECORD PART> ::=
<DYNAMIC VARIABLE
RECORD SPECIFIER> ::=
{DYNAMIC LOCK PART>

<DYNAMIC LOCK
SPECIFIER> ::=

{DYNAMIC ALL-AREAS-
AT-OPEN PART> ::=
{DYNAMIC ALL-AREAS-
AT-OPEN SPECIFIER>

{DYNAMIC AREA-BY
CYL INDER PART>

]

¢DYNAMIC AREA-BY-
CYLINDER SPECIFIER>

<DYNAMIC USE. INPUT.
BLOCKING PART> ::=
$DYNAMIC USE. INPUT.
BLLOCKING SPECIFIER>
<DYNAMIC END-OF -
PAGE PART> ::=

CDYNAMIC END-OF-
PAGE SPECIFIER> :

<DYNAMIC MULTI-
PACK PART>::=

<DYNAMIC MULTI-
PACK SPECIFIER> ::=

L]

16-32
PARITY«-<DYNAMIC PARITY SPECIFIER>
{EXPRESSION>

VARIABLE =
(DYNAMIC VARIABLE RECORD SPECIFIER>

{EXPRESSION>

LOCK=<DYNAMIC LOCK SPECIFIER>
(EXPRESSION>

ALL .AREAS.AT.OPEN =+
{DYNAMIC ALL-AREAS-AT-OPEN SPECIFIER>

{EXPRESSION

AREA.BY.CYLINDER =
{DYNAMIC AREA-BY-CYLINDER SPECIFIER>

(EXPRESSION>

USE . INPUT . BLOCKING -
<DYNAMIC USE.INPUT.BLOCKING SPECIFIER>

(EXPRESSION>

END.OF .PAGE . ACTION =
(DYNAMIC END-OF-PAGE SPECIFIER>

(EXPRESSION>

MULTI .PACK -
(DYNAMIC MULT!-PACK SPECIFIER>

{EXPRESSION>



<DYNAMIC REMOTE-
KEY PART)>::=

<DYNAMIC REMOTE-
KEY SPECIFIER>::=
<{DYNAMIC WORK
FILE PART>::=

<BYNAMIC WORK
TILE SPECIFIER>: :=

16-33

REMOTE-KEY =
<DYNAMIC REMOTE-KEY SPECIFIER>

(EXPRESSION>

WORK .F ILE -
(DYNAMIC WORK FILE SPECIFIER>

CEXPRESSION>

OMLY THE LOW-~ORDER BIT OF EACH OF THE ABOVE <EXPRESSION>S IS
USED TO DETERMINE THE VALUE OF THE ATTRIBUTE. THE CODE

DEFINITIONS ARE AS FOLLOWS:
PARITY
VARTABLE
L.OCK
ALL .AREAS.AT.OPEN
AREA . BY.CYLINDER

USE. INPUT . BLOCKING

END.OF .PAGE .ACTION

MULTI .PACK

REMOTE KEY

WORK . F ILE

- O — O O OO —0O—0
B o0 B 0 ou w0

—

[,

—

H 0o H

L ]

oDD

EVEN

FIXED

VARIABLE

NOT LOCKED

LOCKED

ALLOCATE AREAS AS NEEDED

ALLOCATE ALL SPACE AT OPEN TIME

PUT AREA ANYWHERE ON DISK

ONE AREA PER CYLINDER AT BEGINNING
TAKE ATTRIBUTES FROM FILE DECLARATION
TAKE ATTRIBUTES FROM DISK FILE HEADER
SEE FILE ATTRIBUTES

NO DETECTION OF END-OF-PAGE

BRANCH TO <EOF PART> OF <WRITE
STATEMENT> AT END OF PAGE ON

PRINTER FILE

PLACE FILE ON MULTIPLE DISK PACKS
PLACE FILE ON SINGLE DISK PACK
REMOTE KEY IS PRESENT ON ALL READS
AND WRITES TO THE FILE

REMOTE KEY IS NOT PRESENT

INSERT JOB NUMBER IN FILE IDENTIFIER
LEAVE FILE IDENTIFIER ABOVE



16-34

<DYNAMIC EU,SPECIAL
PART)> ::= EU.SPECIAL =«
<DYNAMIC EU.SPECIAL SPECIFIER>
/ EU.SPECIAL <
<DYNAMIC EU.SPECIAL SPECIFIERY,
EU.DRIVE =
<DYNAMIC EU.DRIVE SPECIFIER>

<DYNAMIC EU.SPECTAL
SPECIFIER> ::= CEXPRESSION>

<DYNAMIC EU.DRIVE
SPECIFIER> ::= {EXPRESSION>

{DYNAMIC EU.
INCREMENTED PART> EU. INCREMENTED =+

<DYNAMIC EU.INCREMENTED SPECIFIER>
/ EU.INCREMENTED =~

(DYNAMIC EU.INCREMENTED SPECIFIER>,

EU. INCREMENT =—

<DYNAMIC EU.INCREMENT SPECIFIER>

i

<DYNAMIC EU.INCREMENTED
SPECIFIER> ::= CEXPRESSION>

{DYNAMIC EU.
INCREMENT SPECIFIER>

]

CEXPRESSION>

THE LOW-ORDER BIT OF THE EU.SPECIAL AND EU. INCREMENTED
SPECIFIERS SERVES TO INDICATE WHETHER OR NOT THE ATTRIBUTE IS
SET (0=0OFF, 1=ON). IF THE ATTRIBUTE 1S OFF, THEN INCLUSION OF
THE EU.DRIVE AND EU.INCREMENT SPECIFIERS IS UNNECESSARY.

IF THESE ATTRIBUTES ARE SET ON, THEN THE DRIVE AND INCREMENT
PARTS SHOULD BE INCLUDED, AND SHOULD CONFORM T0 THE
SPECIFICATIONS IN THE "FILE DECLARATIONS". IF OMITTED, THE
<DYNAMIC EU.DRIVE SPECIFIER> 1S NOT CHANGED. IF THE <DYNAMIC
EU, INCREMENT SPECIFIER> HAS NEVER BEEN SET (l.E., IT IS 0O),
THEN IT 1S SET TO ONE; OTHERWISE, IT TOO REMAINS UNCHANGED.



<DYNAMIC BUFFERS PART>

<DYNAMIC NUMBER
OF BUFFERS> ::=

<OYNAMIC SAVE
FACTOR PART)> ::=

<DYNAMIT SAVE FACTOR>

OYHAMIC RECORD
SlZL PARTY ::=

COVANMIC RECORD S1ZED
<OYMNAMIC RECORDS-
PER-BLOCK PART> ::=
<DYNAMIC RECORDS-
PER-BLOCK> ::=

(DYNAMIC REEL
NUMBER PART> ::=

CDYNAMIC REEL NUMBER>
<DYNAMIC NUMBER-OF -
AREAS PART> ::=
{DYNAMIC NUMBER-

OF ~AREASY> ::=
(DYNAMIC BLOCKS-PER-
AREA PART> ::=
<(DYNAMIC BLOCKS-PER
AREA> ::=

<DYNAMIC QUEUE-FAMILY-
SIZE PARTY>::=
(CYNAMIC QUEUE-
FAMILY-SIZE>::=

<DYNAMIC NUMBER-OF -
STATIONS PARTY::=

W

16-35

BUFFERS<-<DYNAMIC NUMBER OF BUFFERS>

CEXPRESSION>

SAVE+<(DYNAMIC SAVE FACTOR>

<EXPRESSION>

RECORD.SI1ZE=-<DYNAMIC RECORD SIZE>

CEXPRESSION>

RECORDS . PER . BLOCK ~—
{DYNAMIC RECORDS-PER-BLOCK>

{EXPRESSION>

REEL=—<DYNAMIC REEL NUMBER>

{EXPRESSION>

NUMBER.OF . AREAS <—
{DYNAMIC NUMBER-OF -AREAS>

{EXPRESSION>

BLOCKS.PER.AREA <
{DYNAMIC BLOCKS-PER-AREA>

{EXPRESSION>

QUEUVE-FAMILY-SIZE -
{DYNAMIC QUEUE-FAMILY-SIZE>

{EXPRESSION>

NUMBER-OF -STAT [ ONS<—
{DYNAMIC NUMBER-OF-STATIONS SPECIFIER>



<DYNAMIC NUMBER-OF -
STATIONS SPECIFIER>::= {EXPRESSION>

<DYNAMIC FILE
TYPE PART>::= FILE.TYPE =
{DYNAMIC FILE TYPE SPECIFIER>

<DYNAMIC FILE
TYPE SPECIFIER>::= {EXPRESSION>

THE VALUE OF THE EXPRESSION DETERMINES THE FILE TYPE:

VALUE TYPE
0 DATA
7 INTERPRETER
8 CODE
9 DATA

<DYNAMIC LABEL
TYPE PART>::= LABEL , TYPE =
{DYNAMIC LABEL TYPE SPECIFIER>

<DYNAMIC LABEL _
TYPE SPECIFIER>::= <EXPRESSION>

THE VALUE OF THE EXPRESSION DETERMINES THE LABEL TYPE.

VALUE TYPE
0 BURROUGHS STANDARD LABEL
1 UNLABELED

THE ABOVE <EXPRESSION>S RETURN A BIT STRING WHICH SHOULD
CONSISTENT WITH THE FORMATS AND RESTRICTIONS LISTED IN
"FILE DECLARATIONS".

16-36

BE
THE



16-37

STOP STATEMENT

{STOP STATEMENT)>

STOP
/ STOP <EXPRESSION>

THE <STOP STATEMENT> IS A COMMUNICATE TO THE MCP THAT THE
PROGRAM HAS FINISHED. IT SHOULD NOT BE CONFUSED WITH "FINI"
WHICH 1S THE FINAL STATEMENT IN THE PROGRAM.

"STOP <EXPRESSION>" 1S INTENDED FOR USE BY THE COMPILERS ONLY.

THE {EXPRESSION> COMMUNICATES THE NUMBER OF SYNTAX ERRORS TO
THE MCP.



16-38

ZIP STATEMENT

—— > — ————————

<ZIP STATEMENT> ::= ZIP <EXPRESSION>

THE <ZIP STATEMENT> ALLOWS THE USER TO PASS CONTROL INSTRUCTIONS
TO THE MCP. THE <EXPRESSION> SHOULD GENERATE A CHARACTER STRING

WHOSE VALUE IS A VALID MCP CONTROL STATEMENT AS DEFINED IN THE

“B1700 SOFTWARE OPERATIONAL GUIDE".



16-39

SEARCH STATEMENT

f

{SEARCH STATEMENT)> {SEARCH PART>

/ <SEARCH PART>; <FILE MISSING PART>
{SEARCH PART>; <FILE LOCKED PART>
/ <SEARCH PART>; <FILE MISSING PART>

{FILE LOCKED PART>

~

<SEARCH PART> ::= SEARCH.DIRECTORY (<SEARCH OBJECT>,
{SEARCH RESULT>,<SEARCH RESULT MODE>)

{SEARCH OBJECT> C(ADDRESS GENERATOR>

<{SEARCH RESULT>

CADDRESS GENERATOR>

{SEARCH RESULT MODE> BIT / CHARACTER

<FILE MISSING PART>

ON FILE.MISSING <EXECUTABLE STATEMENT)>

<FILE LOCKED PART> ::= ON FILE.LOCKED <EXECUTABLE STATEMENT>

THE <SEARCH STATEMENT> ALLOWS THE USER TO EXTRACT CERTAIN
INFORMATION CONTAINED IN THE DISK FILE HEADER SPECIFIED BY THE
<SEARCH OBJECT>.

THE <SEARCH OBJECT> IS EXPECTED TO BE 30 CHARACTERS IN LENGTH
WHERE THE FIRST 10 CHARACTERS ARE THE PACK IDENTIFICATION, THE
SECOND 10 CHARACTERS ARE THE MULTI-FILE IDENTIFICATION, AND THE
3RD 10 ARE THE FILE IDENTIFICATION. FILE NAMES LESS THAN 10
CHARACTERS MUST BE LEFT-JUSTIFIED IN THEIR RESPECTIVE FIELDS
WITH TRAILING BLANKS APPENDED. IF ONLY ONE FILE NAME EXISTS,
THAT NAME SHOULD BE LEFT-JUSTIFIED IN THE MULTI-FILE
IDENTIFICATION FIELD, AND THE FILE [IDENTIFICATION SHOULD BE
BLANK.

THE <SEARCH RESULT> SPECIFIES THE RECEIVING FIELD AND SHOULD BE
360 BITS LONG IF BIT MODE IS SPECIFIED, OR 58 BYTES IF
CHARACTER MODE IS SPECIFIED.

THE INFORMATION IS RETURNED IN THE FOLLOWING FORMAT:



01 FILE.HEADER.FORMAT,

NOTE :

02
0e
0e
0e
0e
0e
02
02
0e
0e
0e
02
0e
0e
0e

OPEN.TYPE
NO.USERS
RECORD.SIZE
RECORDS .PER.BLOCK
EOF .POINTER :
SEGMENTS.PER. AREA
USER.OPEN.OUTPUT
FILE.TYPE
PERMANENT .FLAG
BLOCKS.PER.AREA
AREAS .REQUESTED
AREA.COUNTER
SAVE.FACTOR
CREATION.DATE
LAST.ACCESS.DATE

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

(e24),
(24),
(24),
(c24),
(e4),
(c24),
(e4),
(24),
(e4),
(e4),
(24,

e4),

(e4),
24),
24),

32 3 2 QN AT 2 QIR 2 e e e e e

THIS FORMAT MAY BE SUBJECT TO CHANGE.

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

16-40

(1)
(2)
(%)
(4
(8)
(8)
(1)
(2)
(2)
(8)
(3)
(3)
(3)
(6)
(B)

THE <FILE MISSING PART> AND <FILE LOCKED PART> ALLOW THE USER TO
SPECIFY THE COURSE OF ACTION SHOULD EITHER OF THESE CONDITIONS

ARISE.



16-41

ACCESS FILE HEADER STATEMENT

{ACCESS FILE HEADER

STATEMENT> ::= (ACCESS FILE HEADER PART>;

/ <ACCESS FILE HEADER PART>;
{FILE MISSING PART>

/ <(ACCESS FILE HEADER PART)>;
{FILE LOCKED PART>

/ <ACCESS FILE HEADER PART>;
{FILE MISSING PART>
{FILE LOCKED PART>

{ACCESS FILE HEADER
PART> ::= READ.FILE.HEADER
(<FILE NAME>, <DESTINATION FIELD>)
/ WRITE.FILE.HEADER
(<FILE NAME>, <SOURCE FIELD>)

CFILE NAME) ::=

<DESTINATION FIELD>

<SOURCE FIELD> ::=

<FILE MISSING PART>

{FILE LOCKED PART>

{ADDRESS GENERATOR>
(ADDRESS GENERATOR>
{ADDRESS GENERATOR>
ON FILE.MISSING <EXECUTABLE STATEMENT)>

ON FILE.LOCKED <EXECUTABLE STATEMENT>

THE <ACCESS FILE HEADER STATEMENT> IS [INTENDED FOR USE IN

SYSTEMS PROGRAMS ONLY.

IT ENABLES THE PROGRAMMER TO EITHER READ

OR WRITE A FILE HEADER.

THE <FILE NAME> IS EXPECTED TO BE A 30-CHARACTER FIELD WHERE THE
FIRST 10 CHARACTERS ARE THE PACK.ID, THE SECOND 10 CHARACTERS
ARE THE MULTI-FILE IDENTIFICATION AND THE THIRD 10, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>