
Printed in U.S.A.

Burroughs

B 1000 Systems

SDL/UPL

REFERENCE MANUAL

{RELATIVE TO MARK 10.0 RELEASE)

Copyright © 1982 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

July 1982 1137833

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subjec:t to change
without notice. Revisions may be issued t.o advise of
such changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
TIO West Documentation, Burroughs Corporation, 1300 John Reed Court.
City of Industry. California 91745. U.S.A.

B 1000 Systems SDL/UPL Reference Manual

LIST OF EFFECTIVE PAGES

Page Issue

Title Original
ii Original
iii Original
iv Blank
v thru xii Original
xiii thru xiv Original
1-1 thru 1-5 Original
1-6 Blank
2-1 thru 2-11 Original
2-12 Blank
3-1 thru 3-7 Original
3-8 Blank
4-1 thru 4-45 Original
4-46 Blank
5-1 thru 5-3 Original
5-4 Blank
6-1 thru 6-14 Original
7-1 thru 7-12 Original
8-1 thru 8-13 Original
8-14 Blank
9-1 thru 9-236 Original
1 0-1 thru 1 0-1 7 Original
10-18 Blank
11-1 thru 11-3 Original
11-4 Blank
A-1 thru A-2 Original
B-1 thru B-18 Original
C-1 thru C-58 Original
D-1 thru D-27 Original
D-28 Blank
1 thru 16 Original

1137833 iii

Section

1

2

3

4

1137833

B 1000 Systems SDL/UPL Reference Manual

PREFACE
INTRODUCTION
Related Documents
Notation Conventions

TABLE Of CONTENTS

Title

Left and Right Broken Brackets (< >)
AT SIGN (@)

Syntax Conventions

Page

xiii
1-1
1-1
1-1
1-1
1-2
1-2

Required Items 1-3
Optional Items 1-3
Loops 1-4
Bridges

FUNDAMENTALS OF THE LANGUAGE
1-5
2-1
2-1 SDL/UPL Properties

SDL/UPL Program Format
SDL/UPL Source File Record Format
Character Set
Identifiers
Array Identifiers
Data Types

FIXED
BIT
CHARACTER
RECORD

Conversion Between I}ata Types
Values and Addresses of Variables
Literals

Numeric Literal
Bit-String Literal
Character-String Literal

Miscellaneous Constants
HEX_SEQUENCE_NUMBER
SEQUENCE_NUMBER
TODA YS_DA TE

Comments
Enclosed Comment
End-of-Record Comment

2-1
2-2
2-2
2-3
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-7
2-7

. 2-7
. . . . 2-9

. 2-10
. . . 2-10

2-10
. 2-10

. . . 2-10
. 2-11

. 2-11
STRUCTURE OF AN SDL/UPL PROGRAM 3-1

3-2
3-4
4-1

Lexicographic Level
Scope of Procedures and Identifiers
DECLARATIONS
Data Declarations Statement 4-1

identifier-part
structured-part
paged-array-part
dynamic-part . .
reference-part
remaps-part
type-part

4-2
. 4-3

4-5
4-6
4-7
4-8

4-10

v

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

4 Array Declaration Information .
(continued) Examples of DECLARE Statements

vi

RECORD Declarations
structured-part .
unstructured-part
identifier-part
remaps-part
type-part
Qualified Record Names
Record-Reference Identifiers

FILE Declarations
ALL_AREAS_A T _OPEN
AREAS
BUFFERS
DEVICE
END _ _GF _p AGE_ACTION
EU_INCREMENTED .
EU_SPECIAL . . .
EXCEPTION __ MASK . .
FILE _ _TYPE
HOST__NAME
INV ALID_CHARACTERS .
LABEL
LABEL_ TYPE
LOCK
MODE
MULTI_PACK
NUMBER_ OF _ST A TIO NS
OPEN_OPTION
OPTIONAL ...
PACK_ID
PROTECTION . .
PROTECTION_IO
RECORDS
REEL
REMOTE_KEY
SAVE
SECURITYTYPE .
SECURITYUSE
SERIAL
TRANSLATE
USE_INPUT _BLOCKING
USER __ NAMED_BACKUP
VARIABLE
WORK__FILE

SWITCH __ FILE Declaration

Page

. 4-10

. 4-11
4-14

. 4-15
4-16
4-16

. . 4-17
4-18

. . 4-19
. 4-20

4-20
. 4-21

. . 4-22

. . 4-22

. . 4-23

.. 4-29

. . 4-29
4-29
4-30
4-30
4-31

. . 4-31
. 4-32

.... 4-33
... 4-33

4-34
4-35

... 4-35
. 4-35
. 4-36

. . 4-37

.. 4-37
.... 4-38

. 4-38
... 4-39

. 4-40
..... 4-40

. 4-41
. ... 4-41

..... 4-42
. 4-42
. 4-43
. 4-43

. .. 4-44
. 4-44
. 4-44

Section

5
6

7

8

9

1137833

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Title Page

DEFINES
EXPRESSIONS

. 5-1

Unary Operators
Minus
Plus

6-1
6-2
6-2
6-3

Arithmetic Operators
Addition

. 6-3
. 6-3

Subtraction 6-4
Multiplication
Division

6-4
6-4

MOD 6-5
Relational Operators
Logical Operators . . .
Cat Operator
Conditional Expression .
Replacement Operators

Delete Left (: =)
Delete Right (:: =)
Replacement Operations in Procedures

Order of Precedence
Address Generators
Indexing (SDL Programs Only)
PROCEDURES
PROCEDURE Declaration Statement and Parameters .

type-part
formal-element-part

Procedure Body
Procedure End Statement
Procedure Invocations
STATEMENTS
Declaration Statements . .
Control Statements

Procedure Call Statement .
DO Statements
DO FOREVER Statement
IF, THEN, and ELSE Statement .
CASE Statement

CASE (format-1)
CASE (format-2)

Assignment Statement
Null Statement
VERBS ,
Format of the Verb Description
ACCEPT
ACCESS_FILE_INFORMA TION
BASE_REGISTER
BINARY
BINARY_SEARCH

. 6-5
6-6
6-7
6-8
6-9
6-9

. . . . 6-10
. 6-11

. 6-11
. . . . 6-12

. . . 6-12
7-1
7-1
7-5
7-6
7-9

7-10
7-10

8-1
8-1
8-1
8-1
8-2

. 8-6
8-6

. 8-9
8-9

8-11
8-13
8-13

9-1
9-1
9-2
9-4
9-6
9-7
9-9

vii

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

9 BUMP
(continued) CHANGE

viii

CHAR_ TABLE . .
CHARACTER __ FILL
CLEAR
CLOSE
COMMUNICATE_ WITH_GISMO
COMMUNICATE
COMPILE_CARD_INFO .
CONSOLE_SWITCHES . .
CONTROL_STACK_BITS
CONTROL_STACK_TOP
CONVERT ...
DATA_ADDRESS
DAT A.__LENGTH
DATA.__TYPE . .
DATE
DC_INITIA TE__JO
DEBLANK
DECIMAL
DECREMENT .. .
DELIMITED_ TOKEN
DESCRIPTOR
DISABLE_INTERRUPTS
DISPATCH
DISPLAY
DISPLAY_BASE
DUMP _FOR_ANAL YSlS
DYNAMIC_MEMORY_BASE
ENABLE_INTERRUPTS
ENTER_COROUTINE
ERROR_COMMUNICATE
EV ALUA TION ___ ST ACK __ TOP
EXECUTE
EXIT_COROUTINE
FETCH
FETCH_COMMUNICATE__MSG_PTR
FIND_DUPLICATE_CHARACTERS
FINI
FREEZE_PROGRAM .
GROW
HALT
HASH_ CODE
INITIALIZE_ VECTOR
LAST_LIO_STATUS
LENGTH
LIMIT_REGISTER .
LOCATION

Page

9-11
9-13
9-21
9-23
9-25
9-27
9-30
9-31
9-32
9-35
9-36
9-37
9-38
9-43
9-44
9-45
9-46
9-51
9-52
9-53
9-55
9-57
9-59
9-60
9-61
9-63
9-65
9-66
9-67
9-68
9-69
9-71
9-73
9-74
9-75
9-76
9-77
9-78
9-80
9-81
9-82
9-84
9-85
9-86
9-87
9-89
9-91
9-92

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Section

9 MAKE_DESCRIPTOR
(continued) MAKE_READ_ONL Y

MAKE_READ_ WRITE
MESSAGE_ COUNT
MONITOR
M_MEM_SIZE . . .
NAME_OF _DAY . .
NAME_ST ACK_ TOP
NEXT_ITEM .
NEXT_TOKEN ..
OPEN
OVERLAY
PARITY_ADDRESS
PREVIOUS_ITEM .
PROCESSOR_ TIME
PROGRAM_SWITCHES
READ

Variable-Length Records
READ_CASSETTE
READ_FILE_HEADER
READ_FPB
READ_OVERLA Y . .
REDUCE
REFER
REFER_ADDRESS .
REFER_LENGTH
REFER_ TYPE . . .
RESTORE
RETURN

Title

RETURN_AND_ENABLE_INTERRUPTS
REVERSE_STORE . .

1137833

SAVE
SA VE_ST A TE
SEARCH_DIRECTORY .
SEARCH_LINKED __ LIST
SEARCH_SDL_ST ACKS
SEARCH_SERIAL_LIST
SEEK
SEGMENT_PAGE
SKIP
SORT
SORT_MERGE .
SORT-'-SEARCH .
SORT_STEP _DOWN
SORT_SWAP
SORT_UNBLOCK . .
SPACE
SPO_INPUT _PRESENT

Page

... 9-96
. 9-97

.. 9-99
. . . 9-100

9-102
9-104
9-105
9-106

. . . . 9-107
9-108
9-110

. ...

..

9-115
9-116
9-117
9-118
9-119
9-122
9-123
9-129

. . 9-131

. . 9-133
. 9-135

. 9-136

. 9-140

. 9-141

. 9-142

. 9-143

. 9-144
. 9-145

. 9-146
. 9-147

. 9-149
. 9-150

. 9-151

. 9-155

. 9-159

. 9-160

. 9-163

. 9-165

. 9-169

. 9-171

. 9-175

. 9-180

. 9-181
. 9-182

. 9-184
. 9-185

. 9-189

ix

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Gont)

Section Title

9 STOP
(continued) SUBBIT

x

10

11

A
B

SUBS TR
SWAP .
S_MEM_SIZE
THAW _PROGRAM
THREAD_ VECTOR
TIME
TIMER
TRACE
TRANSLATE
UNDO .. .
USE
V ALUE_DESCRIPTOR .
WAIT
WRITE

Variable-Length Records
WRITE_FILE_HEADER
WRITE_FPB ...
WRITE_OVERLA Y
X_ADD
)(_DIV
X_MOD
)(_MUL
X_SUB
ZIP ..
COMPILER OPTIONS AND PASSES
Compile Deck
SDL/UPL Compiler Files
Compiler-Directing Options
Conditional Compilation
Functions of Each Compikr Pass
HOW TO WRITE AN SDL/UPL PROGRAM
General
Writing Rules
Form of an SDL/UPL Program . . .
Coding Examples
RESERVED AND SPECIAL WORDS
THE SDL S-MACHINE
Components of the SDL S-Machine

Base-Limit Area
Run Structure Nucleus
Code Segment and Segment Dictionaries .
File Information Block and FIB Dictionary
Registers

the Base-Limit Area
Value Stack
Name Stack ..

Page

9-190
9-191
9-195
9-198
9-200
9-201
9-202
9-203
9-207
9-208
9-209
9-211
9-212
9-214
9-216
9-220
9-223
9-227
9-229
9-230
9-231
9-232
9-233
9-234
9-235
9-236

10-1
10-1
10-1
10-3

10-14
10-17

11-1
11-1
11-1
11-1
11-2
A-1
B-1
B-1
B-1
B-1
B-1
B-1
Il-1
B-2
B-3
B-3

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Appendix Title

B Display Stack
(continued) Control Stack

c

D

1137833

Evaluation Stack
Program Pointer Stack

Data Descriptor .
Paged Array Descriptors
Access of Data Addresses
Code Addresses
Format of the Control Stack and Scratch Pad
Inline Descriptor Formats

Simple Data Descriptor Format
Array Descriptor Format

Use of the Evaluation Stack
Address Operand
Value Operands

Self-Relative
Non-Self-Relative .

Instruction Set .
Relational Operators .
Arithmetic Operators
Extended Arithmetic Operators
Logical Operators
String Operators
Store Operators
Construct Descriptor Operators
Load Operators
Stack Operators
Procedure Operators
Search and Scan Operators
Miscellaneous Operators

SDL/UPL SYNTAX REFERENCE GUIDE
Listing of SDL Railroad Syntax Diagrams

Fundamental Items
File Declarations
Procedure Statement
Expressions
Verbs
Compiler Options .

UPL Railroad Syntax Guide
Fundamentals
Declarations
Procedure Statement
Verbs
Compiler Options

GLOSSARY OF COMMONLY USED TERMS AND ACRONYMS
INDEX

Page

B-3
B-3
B-3
B-4
B-4
B-6
B-7
B-8
B-9

B-10
B-10
B-11
B-12
B-12
B-12
B-12
B-12
B-12
B-12
B-13
B-13
B-13
B-13
B-14
B-14
B-15
B-15
B-16
B-17
B-17

C-1
C-1
C-1
C-4

C-10
C-12
C-12
C-30
C-32
C-32
C-34
C-42
C-44
C-56

D-1

xi

Figure

3-1
3-2
3-3
3-4
4-1
4-2
6-1
6-2
9-1
9-2
9-3
9-4
9-5
9-6
9-7
11-1
11-2
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-11
B-12
B-13

Table

2-1
3-1
6-1
9-1
9-2
9-3
9-4
9-5

xii

B 1000 Systems SDL/UPL Reference Manual

LIST OF ILLUSTRATIONS

Title

Basic Structure of the SDL/lJPL Source Program . .
Relationship of Procedures and Lexie Level Number .
Example Showing Procedures Nested within Procedures
Procedure Nesting
Memory Mapping of Array A and Identifier B and C
Data Space Created for Identifier D
Status of the Evaluation Stack
Status of the Evaluation Stack
Contents of Buffer After a Read Operation.
Before and After Results of the REDUCE Operation
Before and After Results of the REDUCE Operation
Before and After Results of the REDUCE Operation
Contents of A and B Before/ After SORT _SW AP Operation
Movement of Descriptor on Evaluation and Value Stacks
Contents of Program's Buffer After a Write Operation .
Straight Forward SDL/UPL Program
SDL/UPL Program Using Recursive-Procedure Technique
Base-Limit Area of an SDL/UPL Program
Format of Control Stack Entry
Format of the Program Pointer Stack
Format for a 48-bit Long Simple Descriptor
Format of an Array Descriptor
Format of the Type Field
Format of a Paged Array Descriptor
Format of a Data Address
Format of Code Addresses
Format of the Control Stack
Format of Control Stack Information in Scratch Pad
Format of a Simple Data Descriptor
Format of an Array Descriptor

UST OF TABLES

Title

Use of Punctuation Symbols in an SDL/UPL Program
Relationship of Scope and Invoking Procedures
Boolean Logic Table
Valid File Attribute Values
Valid DEVICE Type Values
Data Type Conversion Combinations
Format and Length of each DATE Verb Option
Format of Information Returned from SEARCH_DIRECTORY

Page

3-1
3-2
3-3
3-5

4-11
4-19

6-9
6-10

9-126
9-138
9-138
9-139
9-182
9-214
9-224

11-2
11-3
n-2
B-3
B-4
B-4
B-4
B-5
B-6
B-7
B-8
B-9
B-9

B-10
B-11

Page

2-3
3-7
6-6

9-17
9-18
9-40

. 9-48
. 9-1s1

B 1000 Systems SDL/UPL Reference Manual

PREFACE

This manual describes the SDL/UPL programming language. The manual is divided into 11 sections
and 4 appendixes. Each is briefly described as follows:

1137833

Section Contents

1 INTRODUCTION
Provides a brief introduction to the SDL/UPL language
and compiler. Lists the related documents and describes
the notation and syntax conventions used in this manual.

2 FUNDAMENTALS OF THE LANGUAGE
Defines the valid characters, identifiers, literals,
constants, and data types allowed in an SDL/UPL source
program. The use of comments in an SDL/UPL source
program is also described.

3 STRUCTURE OF AN SDL/UPL PROGRAM
Describes the structure of an SDL/UPL source program.

4 DECLARATIONS
Describes the use of declarations in an SDL/UPL source
program. This includes simple, structured, dynamic,
paged array, file, switch_file, and reference
declarations.

5 DEFINES
Describes the use of defines in an SDL/UPL source program.

6 EXPRESSIONS
Describes the use of expressions in an SDL/UPL
source program. This includes unary, arithmetic,
relational, logical, conditional expression, and
replacement operators and their order of precedence.

7 PROCEDURES
Describes the use of procedures in an SDL/UPL source
program. This includes the use of parameters and the
type option in procedures, procedure invocations, and
forward procedure declarations.

8 ST A TEMENTS
Describes the valid statements allowed in an SDL/UPL
program.

9 VERBS

10

11

Describes the use of the verbs in an SDL/UPL source
program.

COMPILER OPTIONS AND PASSES
Describes the options, conditional compilation
modes, and the passes of the SDL/UPL compiler

HOW TO WRITE AN SDL/UPL PROGRAM
Describes the writing rules and form of an SDL/UPL
program. Also, example programs are provided.

xiii

xiv

B 1000 Systems SDL/UPL Reference Manual
Preface

Section Contents

A SPECIAL AND RESERVED WORDS
Lists the SOL and UPL reserved and special words.

B THE SOL ENVIRONMENT
Describes the SDL program environment.

C SDL/UPL SYNTAX REFERENCE GUIDE
Contains all the railroad syntax diagrams for all
the SDL/UPL declarations and verbs.

D GLOSSARY OF COMMONLY USED TERMS AND ACRONYMS
Describes the terms and acronyms used throughout
this manual.

B 1000 Systems SDL/UPL Reference Manual

SECTION 1
INTRODUCTION

The Burroughs B 1000 computer system is a small, general-purpose computer system. The B 1000 dif
fers from other computer systems in that it is dynamically microprogrammable and is designed to sup
port many independent special-purpose machine architectures, rather than one general-purpose architec
ture.

Each particular machine architecture is realized on a microprogrammable B 1000 processor by means
of multiprogrammed interpreters. The general philosophy of the B 1000 computer system is that each
language that runs on the machine has its own interpreter. For example, the B 1000 computer system
can be a "COBOL machine," a "FORTRAN machine," a "BASIC machine," an "RPG machine,"
and- so forth.

To permit this flexibility, a language (along with its interpreter) was designed to be used for implemen
tation of the Master Control Program (MCP), the various compilers, the Network Definition Language
(NDL), the Data Management System (DMSII), and all the utility programs. This language is called
the Software Development Language (SDL).

SDL is tailored to the B 1000 computer system and provides access to all machine features. Use of
some of the SDL verbs requires that the programmer have intricate "state of the art" knowledge of
the B 1000 system. These verbs are used exclusively for system software development. Therefore, the
User Programming Language (UPL) was created to provide the flexibility of SDL without any of the
potentially dangerous verbs. Throughout the remainder of this manual the term "SDL/UPL" is used
to imply both the SOL and UPL compilers and languages. The terms "SDL" and "UPL" are used
to refer to the respective compiler or language.

UPL is a high-level, problem-oriented language that allows sophisticated computer programs to be writ
ten with relative ease. The flexibility of UPL makes it a powerful programming tool for the system
user as well as the system designer. The language can increase programmer productivity and can make
the solution of complex problems easier. The resultant software reflects this increased productivity.

RELATED DOCUMENTS

The following documents are referenced in this document:

B 1000 Systems System Software Operation Guide, Volume 1, form number 1108982.

B 1800/B 1700 Systems System Software Operation Guide, Volume 2, form number 1108966.

B 1000 Systems SORT Reference Manual, form number 1090594.

NOTATION CONVENTIONS

Left and Right Broken Brackets (< >)

Left and right broken bracket characters are used to enclose letters and digits which are supplied by
the user. The letters and digits can represent a variable, a number, a file name, or a command.

Example:

<iob #>AX<command>

1137833 1-1

B 1000 Systems SDL/UPL Reference Manual
Introduction

AT SIGN (@)

The at sign (@) character is used to enclose hexadecimal information.

Example:

~f3; is the hexaceciwal retresentation of the EBCDIC
character 3.

The @ character is also used to enclose binary or hexadecimal information when the initial @ character
is followed by a (1) or (4), respectively.

Examples:

~<1>1111C011~ is the binary representation of the EBCDIC
char act er 3.

~(4)f 3~ is the he~adecimat reo~esentation of the EBCDIC
character J.

SYNTAX CONVENTIONS

Railroad diagrams show how syntactically valid statements can be constructed.

Traversing a railroad diagram from left to right, or in the direction of the arrow heads, and adhering
to the limits illustrated by bridges will produce a syntactically valid statement. Continuation from one
line of a diagram to another is represented by a right arrow (-+) appearing at the end of the current
line and beginning of the next line. The complete syntax diagram is terminated by a vertical bar (!).

Items contained in broken brackets (< >) are syntactic variables which are further defined, or require
the user to supply the requested information.

Upper-case items must appear literally. Minimum abbreviations of upper-case items are underlined.

--A RAILROAD DIAGRAM CONSISTS OF---- <bridges> _______ }_,____ _________ ~...,.
<loops >--------1

<optional items> ---

<required items> __ ___,

>--AND IS TERMINATED BY A VERTICAl BAR.-------------------------1

1-2

B WOO Systems SDL/UPL Reference Manual
Introduction

The following syntactically valid statements may be constructed from the above diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED BY A VERTI
CAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional items> AND IS TERMINATED BY A
VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND IS TERMINATED BY
A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional items>, <required items>, <bridges>,
<loops> AND IS TERMINATED BY A VERTICAL BAR.

Required Items

No alternate path through the railroad diagram exists for required items or required punctuation.

Example:

Optional Items

Items shown as a vertical list indicate that the user must make a choice of the items specified. An
empty path through the list allows the optional item to be absent.

Example:

--REOUIREDITEM--,.-------------,.---~~------------~~-'

L <optional item-1 > --~-
L <optional item-2 > ___ J..J

The following valid statements may be constructed from the preceding diagram:

REQUIRED ITEM

REQUIRED ITEM <optional item-1 >

REQUIRED ITEM <optional item-2 >

1137833 1-3

B 1000 Syst<~ms SDL/UPL Reference Manual
Introduction

Loops

A loop is a recurrent path through a railroad diagram and has the following general format:

-~---<bridge> <return character> ----
____ L ____ <object of the loop> _________________ __________ -1

Example:

The following statements can be constructed from the railroad diagram in the example.

<optional item-1 >

<optional item-2>

<optional item ... 1 > , <optional item-1 >

<optional item-1 >,<optional item-2>

<optional item-2 >,<optional item-1 >

<optional item-2 > , <optional item-2 >

A <loop> must be traversed in the direction of the arrow heads, and the limits specified by bridges
cannot be exceeded.

1-4

Bridges

B 1000 Systems SDL/UPL Reference Manual
Introduction

A bridge indicates the minimum or maximum number of times a path may be traversed in a railroad
diagram.

There are two forms of <bridges> .

_fn__ n is an integer which specifies the maximum number of times the path may be tra
versed.

fn*\.. n is an integer which specifies the minimum number of times the path must be tra
versed.

Example:

_I
llP-< ____ (2\

<optional item-1 > -----.--J-L--·---------------------1
~ <optional item-2 >-----''

The loop may be traversed a maximum of two times; however, the path for <optional item-2 > must
be traversed at least one time.

The following statements can be constructed from the railroad diagram in the example.

<optional item-2 >

<optional item-1 >,<optional item-2>

<optional item-2 >,<optional item"".2 >,<optional item-1 >

<optional item-2 > , <optional item-2 > , <optional item-2 >

1137833 1-5

B 1000 Systems SDL/UPL Reference Manual

SECTION 2
FUNDAMENTALS OF THE LANGUAGE

The SDL/UPL language is a problem-solving oriented language which requires a series of functions
and constructs that differ significantly from most other problem-oriented languages. The following is
a list of the most common differences.

• Powerful bit and character-string functions.

• Binary-only arithmetic functions.

• No JUMP or GO TO instruction.

• Re-entrant programs (B 1000 computer system characteristic)

• Recursive procedures (subroutines).

• Scope of identifiers contained within procedures.

• Dynamic storage allocation for identifiers at execution time.

All programs that are written in the SDL/UPL source language must be processed by the SDL/UPL
compiler. The SDL/UPL compiler transforms the source statements into a virtual machine form called
the S-Machine language. Refer to Appendix B for a description of the S-Machine. The S-Machine lan
guage is then executed interpretively by a set of micro-instruction routines (firmware).

SDL/UPL PROPERTIES

An SDL/UPL program has a distinct pattern or format that specifies the relative locations of the two
statement types, declaration and executable. Declaration statements provide the information that is
needed to allocate storage or link together various elements of a program. Executable statements
specify the functions or transformations that occur upon the contents in storage.

Statements are composed of symbols that, in turn, are composed of letters, digits, and special charac
ters. Symbol strings are called operands, operators, or control functions. The SDL/UPL syntax is con
cerned with the correct creation of symbol strings and the relative placement of the strings to form
declarative and executable statements.

SDL/UPL PROGRAM FORMAT

SDL/UPL programs are segmented into logical subdivisions called procedures. Each procedure begins
with a head statement and terminates with an end statement. Procedures have a definite relationship
to other procedures within a program, either side-by-side (parallel) or subordinate (nested). This order
ing inherently defines the scope of each procedure and the range over which a procedure can call (or
be called by) another procedure.

All procedures have a rigid internal structure. The procedure structure is as follows: the data declara
tions appear first, all nested procedures appear second, and all executable statements appear last.
Nested procedure structures must be identical.

1137833 2-1

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

SDL/UPL SOURCE FILE RECORD FORMAT

The format of a source file record to the SDL/UPL compiler consists of the following information.

1. Columns 1 through 72 contain the SDL/UPL statements, d{:clarations, or comments.
2. Columns 73 through 80 contain the sequence number of the: source file record.

CHARACTER SET

The following characters are allowed in an SDL/UPL source program.

Letters

Digits

Special
Characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdcf ghijkl mnopqrstuvwxyz

0 1 2 3 4 5 6 7 8 9

+ -*/= < >:;()[]
@ # " OJo ? $ & . - _ I (space)

The collating sequence for letters, digits, and special characters is based on standard EBCDIC represen
tation.

Table 2-1 shows the function of each symbol that is used in an SDL/UPL program.

2-2

Table 2-1. Use of Punctuation Symbols in an SO:L/UPL Program

Symbol

(

)

H

@

.-

Definition

Underscore

Period

Comma

Semicolon

Left parenthesis

Right parenthesis

Quotation mark

Number sign

Space or blank

At sign

Exclamation mark

Colon, equal sign

Use

Concatenation within identifier names

Concatenation within identifier names
for record structures and field
selection

Separator for items

Delimiter for statements

Enclose parameter lists and array
subscripts (leading)

Enclose parameter lists and array
subscripts (trailing)

Left and right character string
delimiter

Left and right define text string
delimiter

Identifier delimiter

Bit string delimiter

Assignment or replacement (delete
left)

Assignment or replacement (delete
left)

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

Table 2-1. Use of Punctuation Symbols in an SDL/UPL Program (Cont)

Symbol

.. -

%

/*

*/

$

&

+

I

*

I=

>
>=

<
<=

IDENTIFIERS

Definition

Colon, colon, equal

Percent sign

Virgule, asterisk

Asterisk, virgule

Dollar sign

Ampersand

Left Bracket

Right Bracket

Plus sign

Minus sign

Virgule

Asterisk

Equal sign

sign

Virgule, equal sign

Greater than sign

Greater than, equal sign

Less than sign

Less than, equal sign

Use

Replacement (delete right) operator
symbol

Remainder of record is a comment

Beginning of comment

End of comment

In position one of a source record,
indicates a compiler control option

In position one of a source record,
indicates a conditional source record
inclusion control statement

Enclose the record key and cospatial
fields of records (leading)

Enclose the record key and cospatial
fieXds of records (trailing)

Addition operator

Subtraction operator

Division operator

Multiplication operator

Equal relation operator

Not equal relation operator

Greater than relation operator

Greater than or equal relation
operator

Less than relation operator

Less than or equal relation operator

An idc:ntifier is a defined name which is a symbolic representation for a location in memory. Identifiers
are often called data names and field names in other computer languages.

An identifier must begin with a letter.

An identifier cannot contain blanks.

An identifier can contain a maximum of 64 characters.

Reserved words cannot be used as identifiers. Reserved words in SDL/UPL are listed in Appendix A.

1137833 2-3

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

Special words are used for segment and DO-group identifiers and do not lose their special significance
in SDL/UPL. Special words lose their special significance when defined as identifiers. When defined
at lexicographic (lexic) level 0, they lose their significance throughout the entire program. Defined at
any higher level, they lose their significance within the procedure in which they are defined. Special
words in SDL/UPL are listed in Appendix A.

Identifiers must contain exactly the same letters in the same case (upper or lower) to be identical. The
identifier THIS_ONE differs from the identifier this_one.

The railroad syntax diagrams of both SDL and UPL are presented.

SDL and UPL Syntax:

- <letter> ---~--.----<letter> ----r---------------------------1
----63]

i----<digit>-

Syntax Semantics:

letter
This field can be any valid letter drefined in the SDL/UPL character set.

digit
This field can be any valid digit dc:fined in the SDL/UPL character set.

The underscore (_) character can be used to concatenate groups of letters and digits.

ARRAY IDENTIFIERS

An array identifier is a defined name which is a symbolic representation for a number of contiguous
locations in memory that correspond to each element within the array.

SDL and UPL Syntax:

--- <identifier> {<subscript>) --------------------------·-----t

Semantics:

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the array.

subscript

2-4

This field can be any valid SDL/UPL expression that returns a binary value and specifies the
element within the array. The elements in an array begin with 0 and end with n - 1, where n is
the total number of elements declared for the array.

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

Examples:

AC10) % References element 10 of array identifier A.

ARRAY CO> % References element 0 of a'ray identifier ARRAY.

DATA TYPES

All data used in an SDL/UPL program must be declared and allocated storage space. There are four
different data types allowed in an SDL/UPL program: FIXED, BIT, CHARACTER, or RECORD.
These data types, or a combination of them, are used to define all data used in an SDL/UPL program.

FIXED

The FIXED data field is a signed, 24-bit field. The leftmost bit is the sign bit. If the sign bit is 1,
the field is negative. If the sign bit is 0, the field is positive. Negative numbers are represented in two's
complement notation.

Examples:

•1 = ~CllOOOOOOOCCCOOOOCOOOCOOOOl~ = ~(4)000001@

-1 = ;ct>llllllllllllllllllllllll@ = ~C41FFFFFF@

+10 = ~Cll000000000000000000001010@ = @(4)00000A@

-10 = ~(1)111111111111111111110110@ = •<4)fffff6~

The numbers 1 and 4 enclosed in parentheses denote binary and hexadecimal representations, respec
tively.

The FIXED data field is the basic computational form in the SDL/UPL program. The values for a
FIXED data field can range from -(2 EXP 23) to (2 EXP 23)-1 [- 8,388,608 to 8,388,607]. Arithme
tic overflow is ignored.

BIT

A BIT data field can be any variable-length string of bits. The maximum length for a string of bits
in an SDL/UPL program is 65,535 bits.

When used in arithmetic computations, bit data is treated as a 24-bit, unsigned number. Values can
range between 0 and (2 EXP 24)- 1 (16, 777 ,215). If a BIT data field is the target field of an arithmetic
computation and the field is greater than 24 bits in length, only the rightmost 24 bits are used. The
resulting leftmost bit is not interpreted as a sign bit. Prior to any arithmetic operation on BIT data
fields, the data is right-aligned and zero-filled on the left.

Examples:

@(1 >111000@
@(1)1@

~Cl>OOOOOOOOOOOOUOOOOOOOllll; = ~(4)00000F@ = 15

1137833 2~

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

CHARACTER

A CHARACTER data field can contain any variable-length string of characters. Each variable-length
string is represented by an 8-bit EBCDIC code. The maximum number of characters allowed in a
CHARACTER data field is 8191 characters.

If a CHARACTER data field is used in an arithmetic operation, the following must be noted.

• The binary value of the CHARACTER data field is used. Blank characters are represented as
@(1)01000000@ or @(4)40@ which is not the same as the binary representation of the number
zero.

• Only the rightmost 24 bits of a CHARACTER data field am used in an arithmetic operation.

The results of CHARACTER-to-CHARACTER operations are aligned on the left and the blank fill
or truncate operations are aligned on the right. CHARACTER-to-BIT or CHARACTER-to-FIXED
arithmetic operations align the data on the right and the zero-fill or truncate operations align the data
on the left.

Most input/ output operations treat theiir operands as CHARACTER data and thus follow the rules
of CHARACTER-to-CHARACTER operations.

RECORD

A record is an addressing template. Declaration of the record causc~s no data space to be allocated.
The declaration only establishes an addressing scheme in the scope of the declaration.

Specifying a record declaration is done by using the RECORD keyword in the declarations .. Refer to
RECORDS DECLARATIONS in Section 5 for a complete description of declaring a record.

CONVERSION BETWEEN DA lr A TYPES

The conversion verbs CONVERT, BINARY, and DECIMAL transform data from one data type to
another. When the value of a number is to be written in a readable form, the DECIMAL verb should
be used.

VALUES AND ADDRESSES OF VARIABLES

An identifier is a symbolic reference to the value at a memory address associated with a type and length
attribute. A reference to an identifier is always a reference to the value at the address associated with
the identifier when the identifier appears to the right of an assignment or replacement operator within
an expression.

When an identifier appears to the left of an assignment or replacement operator, the reference is to
the address of the identifier. To force references to the value rather than the address of an identifier,
enclose the identifier within parentheses.

The identifier is considered a target identifier because its memory address receives the value generated
when the expression on the right of that operator is evaluated.

Literals, operator expressions, and keyword expressions cannot be used as target identifiers because
they generate values rather than addresses.

The verbs which can be used as target identifiers are SUBBIT and SUBSTR.

2-6

LITERALS

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

A literal is an item of data which contains a value identical to the characters being described. There
are three classes of literals in an SDL/UPL source program: numeric, bit strings, and character strings.

Numeric Literal

A numeric literal represents an integer value and cannot be the designation identifier of an assignment
operation.

Numeric literals cannot exceed a value of 16, 777 ,215.

Imbedded blank characters are not allowed.

SDL and UPL Syntax:

---- 6 '-----

__ --w"' _______ .__ __ <digit>----------------------------1

-+---1

Syntax Semantics:

+
The plus sign (+) character makes the numeric literal a positive number.

The minus sign (-) character makes the numeric literal a negative number.

digit
This field can be any valid digit that is in the SDL/UPL character set.

Examples:

12 345
807

-21
• 32

Bit-String Literal

A bit-string literal can be a combination of hexadecimal, octal, quartal, and binary digits. The bit
string literal is delimited by the at sign (@) character. A number from 1 to 4 enclosed within parenthe
ses designates the base integer system.

Imbedded blank characters are not allowed.

1137833 2-7

SDL and UPL Syntax:

-@ (4)

(3)

(2)

(1)

Syntax Semantics:

@

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

1<
<hex-digits> --==-_l@--

r <octal-digits>

r < quartal-digits>

I <bin airy-digits>

The at sign (@) character is used to delimit the bit string.

(4), (3), (2), (1)
The numbers enclosed within parentheses specify that the following digits are hexadecimal (hex),
octal, quartal, and binary digits, re'.spectively. ·

hex-digits
This field can be any of the hexadecimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, or
F.

octal-digits
This field can be any of the octa1 digits 0, 1, 2, 3, 4, 5, 6, or 7.

q uartal-digi ts
This field can be any of the quartal digits 0, l, 2, or 3.

binary-digits
This field can be either of the binary digits 0 or 1.

Examples:

~C 4 >BEEF GI % Hexadeci"al bit strinq and value eQuals 48679.

~CAFE ;i J Hexadeciral bit strinq and vatue equals 51Y66.

~(3)1654:1 % Octal bit strinq and the value equals 4012.

;](2)3210~ % Quartal b1t str inq and the value eQual s 228.

~(1)10101010<11 % Binary bit strinq and the value eauals 170.

2-8

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

Character-String Literal

A character-string literal can be any combination of EBCDIC characters enclosed within quotation
mark (") characters. Character-string literals must be completely described to the SDL/UPL compiler
in one source record.

Character-string literals can be concatenated with others by using the CAT operator to build larger
character-string literals. The maximum length of a character-string literal is 256 characters.

Example of an invalid split of a character-string literal:

F.ecor d n
Record n+l:

•• A B C
x y l "

n represents the relative reco~d nu~ber of~ source file record.

Example of a valid split of a character-string literal:

Record n : " A 8 C "
Fecord n•t: CAT " X Y 2 "

n represents the relati~e record nu~ber of a source file record.

The string concatenator operator CAT must be used to enter long character literals. If the CAT
operator is used, the compiler treats the literal as a single string.

Two adjacent quotation mark (") characters must be used to include a quotation mark (") character
within the character string.

SDL and UPL Syntax:

~L ________ __.~255---------------
1' L - "------ <EBCDIC-character> ____ , "-------------------------------t

Syntax Semantics:

"
The quotation mark (' ') character is used to delimit the character string.

EBCDIC-character
This field can be any valid character defined in the SDL/UPL character set.

Examples:

tit "" "

"ABC""DEF"

1137833

yields
yields

"
ASC"DEF

2-9

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

MISCELLANEOUS CONSTANTS

The following keywords represent values that are compiled into the SDL/UPL program as constants.

HEX_SEQU£NCE_NUM8ER
SEWUENCE_NUMl3Ek
fOOAYS_DATE

HEX_SEQUENCE_NUMBER

The constant HE)(_SEQUENCE_NUMBER represents a bit string of eight (hex) digits. This bit
string is the sequence field, columns 73-80 of the source image, in the source file in which
the HEX_SEQUENCE_NUMBER keyword appears. If this sequence field is blank,
HE)(_SEQUENCE_NUMBER is @00000000@.

Example:

If the current source image line sequence number is 12753000, then on this line:

HEX_SE~UENCE_NUM6f~ = ;L2753000~

SEQUENCE_NUMBER

The constant SEQUENCE_NUMBER represents a character string of eight characters. This character
string is the sequence field, columns 73-80 of the source image, :in the source file in which the
SEQUENCE_NUMBER keyword appears. If this sequence field is blank, SEQUENCE_NUMBER is
00000000.

Example:

If the current source image line sequence number is 12753000, then on this line:

SEQui~CE_NUMdfR = 12753000

TODA YS_DA TE

The constant TODA YS_DA TE represents the date and time of compilation of the SDL/UPL pro
gram. It is the same as the date and time which appears at the top of the SDL/UPL program listing.
The TODA YS_DATE constant is a character string with the format MM/DD/YY hh:mm, where MM
represents the month, DD represents the day, YY represents the year, hh represents the hour, and mm
represents the minutes of the compile.

COMMENTS

Comments are allowed in SDL/UPL programs and have no effect on program execution. There are
two forms of comments. These are:

2-10

1. The enclosed comment, which must be enclosed within the virgule (/) and asterisk (*) character
pair.

2. The end-of-record comment, which is preceded by the percent sign (OJo) character.

Enclosed Comment

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

The enclosed comment begins with a virgule-asterisk (/*) character pair and ends with an asterisk-vir
gule (* /) character pair. When the virgule-asterisk (/*) pair is encountered, the SDL/UPL compiler
continues scanning the current source-image record until the asterisk-virgule (* /) pair is found. If the
current source-image record does not have the ending asterisk-virgule (* /) character pair, the SDL/UPL
compiler scans the next and subsequent source file records until the ending asterisk-virgule (* /) is
found.

SDL and UPL Syntax:

---- I* <comment-text> *I ----------------------------1

Syntax Semantics:

comment-text
This field can contain any comment that the programmer desires to include for documentation pur
poses.

Example:

CCOE /• This is an example of an enclosed com~ent text. This
text beqiPs with the virgule-aster is~ pair and ends with
the asteris~-virqule oair. •/STATEMENT;

End-of-Record Comment

The end-of-record comment begins with the percent sign (%) character and continues to the end of
the source file record. The SDL/UPL compiler discontinues scanning of a source image record when
a percent sign (%) character is encountered. If a percent sign (OJo) character is contained within com
ment text delimited by the virgule-asterisk (/*) and the asterisk-virgule (* /) character pairs, the percent
sign (%) character is treated as a part of the comment text. The SDL/UPL compiler then continues
scanning for the ending asterisk-virgule (* /) character pair.

The percent sign (%) character is not treated as an end-of-record indicator if it is imbedded in a quoted
character string. For example, "% THIS IS A PERCENT SIGN".

SDL and UPL Syntax:

% <comment-text>--------

Syntax Semantics:

The percent sign (%) character indicates that the remainder of the source image is <comment
text >.

comment-text
This field can contain any comment that the programmer desires to include for documentation pur
poses.

Example:

CODE STATEMENT; % This is the end-of-record comment text.

1137833 2-11

B 1000 Systems SDL/UPL Reference Manual

SECTION 3
STRUCTURE OF AN SDL/UPL PROGRAM

The structure of an SDL/UPL source program includes four kinds of statements in this order: declara
tions, procedures, executable statements, and a FINI statement (or end-of-file record).

Figure 3-1 illustrates the basic structure of the SDL/UPL source program.

DECLARATIONS

PROCEDURES

EXECUTABLE STATEMENTS

FINI STATEMENT

G18297

Figure 3-1. Basic Structure of the SDL/UPL Source Program

An SDL/UPL program can have procedures within a procedure. A procedure within a procedure is
called a "nested" procedure and has the same basic structure as the structure of an SDL/UPL pro
gram. Nested procedures consist of declarations, procedures (optional) and executable statements. A
nested procedure begins with PROCEDURE <procedure name> and ends with END <procedure
name>. Refer to Section 7 for a complete description of procedures in an SDL/UPL source program.

1137833 3-1

B 1000 Systems SDL/UPL Reference Manual
Structure;: of an SDL/UPL Program

LEXICOGRAPHIC LEVEL

A lexicographic (lexic) level is a compile··time relationship of each procedure to the outer level of the
program. The outer level is referred to as lexic level 0 (zero). All other procedures are nested within
lexic level 0. They are assigned a lexic level number which represents their depth of nesting from lexic
level 0. Figure 3-2 shows the relationship of procedures and their associated lexic level number.

PROGRAM (level 0)

ONEA (level 1)

[~ TWOA (level 2)

ONES (level 1)

- TWOB (level 2)

[TH REEB (level 3)

G18298

Figure 3-2. Relationship of Procedures and Lexie Level Number

Procedures ONEA and ONEB are at lexic level l, procedures TWOA and TWOB are at lexic level
2, and procedure THREEB is at lexic le!vel 3.

The maximum lexic level is 15. Nested procedures cannot exceed 15 levels in depth. There is no limit
to the number of procedures that can occur on any level or in any procedure.

3-2

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

Declaring a procedure (procedure identifier) must not be confused with the procedure itself. The proce
dure identifier exists at some lexic level and specifies that a procedure is beginning with the next source
statement. The next source statement exists within the procedure and is one lexic level number higher
than the procedure identifier. This separation of the procedure identifier from its procedure has
significance in the scope of a procedure. Figure 3-3 is a coding example showing procedures nested
within other procedures in an SDL/UPL source program.

PROCECUFE u;
OECLAFE Bl' B2P 33;
PROCEI;UR£ Ci

DECLA~E ClP c2,. c3;
Executable State~ents

£NO Ci
Pf.OC£CUhf o;

Executable State~erts
ENC o;

Executable State~ents
ENO u;

PROCECUf.<E [;
OECLAME £1,. E2i
PHOCECURE F;

U£CLA~£ FlP f?.P f3i
PRCCECUF.'f Gi

DECL.t\HE Gl ... G2;
Executable Statements

ENO G;
PRCCLCURE 11;

Executab•e Statements
£.NC H;

Executable State~~rts
~NC Fi
PROCECURE Ji

DECLARE Jl P ..i2;
t.)RCCECURE t<i

DECLARE Kl,. 1<2;
Executable Statements

£NC 10
Executable Statemepts
£ND J;
Executable Statements

ENO [;

EKecutable Statements

run;

Figure 3-3. Example Showing Procedures Nested within Procedures

1137833 3-3

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

SCOPE OF PROCEDURES AIND IDENTIFIERS

The scope of a procedure, determined at compile time by the SDL/UPL compiler, is the range within
a program over which an identifier or procedure identifier can be referenced. The scope of an identifier
is a direct result of the lexic level of procedures and of the storage allocation techniques used by the
SDL/UPL compiler. The scope of an identifier is that portion of the SDL/UPL program which can
reference the identifier. The scope of a global identifier is all the nested procedures and statements,
exclusive of any nested procedures and statements that declare the same identifier. Nested procedures
and statements are procedures and stak~ments embedded within the procedure such that the different
hierarchical (lexic) levels can be performed or accessed recursively.

The scope of an identifier within a procedure is that procedure exclusive of any nested procedures
within the procedure that declares the same identifier.

The format of procedures ensures that only those statements contained within the procedure or in glo
bal procedures (procedures with lower lexic level numbers) are within the scope of the procedure.
Executable statements in a procedure can reference identifiers and procedure identifiers that are de
clared in that procedure.

3-4

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

Figure 3-4 illustrates the scope of a sample program.

Program A
- (LLO)

DECLARE A1, A2, A3, A4;

PROCEDURE 8;

PROCEDURE E;

Executable Statements

G18299

(LL 1)
DECLARE 81, 82, 83;

PROCEDURE C;

PROCEDURE D;

Executable Statements

(LL1)

DECLARE C1, C2;
Executable Statements

[

(LL2)

DECLARE D1, D2;
Executable Statements [

(LL2)

DECLARE E1, E2, E3, E4;

PROCEDURE F; (LL2)
DECLARE F1, F2, F3;

PROCEDURE G;

PROCEDURE H;

Executable Statements

PROCEDURE J; (LL2)
DECLARE J1; J2;

PROCEDURE K;

Executable Statements

Executable Statements

Figure 3-4. Procedure Nesting

[

(LL3)
DECLARE G1 I G2;
Executable

Statements

[

(LL3)
Executable

Statements

(LL3)

[

DECLARE K1, K2;
Executable

Statements

In Figure 3-4, the procedure identifier is assigned the lexic level number of the encompassing procedure.
The procedure itself is assigned the next higher lexic level number. LLl, LL2, and LL3 represent lexic
level numbers l, 2, and 3, respectively. Procedure D is at lexic level 2 while the procedure identifier
D is at lexic level 1.

1137833 3-5

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

The executable statements in lexic level 0 can reference procedure identifiers B and E, but not proce
dure identifiers C, D, F, G, H, J, and K. They cannot because procedures B and E have not been
invoked and procedure identifiers C, D, F, G, H, J and K are not defined.

The executable statements in procedure B can reference procedure identifiers C and D because proce
dure identifiers C and D become available when procedure B is invoked.

The executable statements in procedure B can also reference any identifiers or procedures that are de
clared on lexic level 0. This implies that procedure B can invoke itself. All procedures are recursive.
Any difficulties encountered with duplicate identifiers within a nested procedure are resolved by the
allocation of new space for the most recent occurrence of the duplicate identifier.

The executable statements in procedures G and H can reference identifiers within procedures E and
F. Executable statements in procedure K can reference identifiers within procedures E and J.

Several procedures can have the same lexic level number by occurring at the same depth from lexic
level 0. The relationships that can exist between such procedures depend upon the relationship of the
nested procedures in which they appear.

Procedures that have a common procedure (one lexic level number lower) can invoke each other. Proce
dures that do not have this attribute cannot invoke each other.

The following are conditions for inclusion of an identifier within the scope of a procedure.

• The procedure identifier itself.

• Procedures declared in the procedure, but not their nested procedures. Thus, in Figure 3-4, pro
cedure identifier F is within the scope of procedure E while procedure G is not.

• Any procedure (and its nested procedures) whose procedure identifier is declared at the same
lexic level and within the same procedure as its own identifier.

• The procedure in which its own procedure identifier is declared.

The known scope is limited by the requirement that an identifier must be declared before it can be
referenced. Thus, in Figure 3-4, procedure B cannot reference procedure identifier E, although proce
dure E can reference procedure identifier B. A FORWARD procedure declaration removes this restric
tion. Refer to the Section 7 for a complete description of FORWARD procedures.

The scope of an identifier includes all procedures which can reference the identifier. An identifier can
be either a data name or a procedure name. In Figure 3-4, executable statements in procedure C can
reference procedure identifier B. Procedure identifier C is within the scope of procedure B. Executable
statements in procedure C can invoke procedure identifier B. Executable statements in procedure C can
reference identifiers Bl, B2, and B3.

3-6

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

Table 3-1 is used in conjunction with Figure 3-4 and shows the relationship between the scope of a
procedure and the invoking procedure.

Table 3-1. Relationship of Scope and Invoking Procedures

Invoking Procedure

A B c D E F G H J K

B * * * * * * * * *
c * * *
D * * *

Procedure E * * * * * * * * *
Identifier F * * * * *

G * * *
H * * *
J * * * * *
K *

To find the scope of a procedure in Table 3-1, find the procedure identifier in the first column. The
horizontal rows to the right of each procedure identifier indicate the procedures in its scope. The proce
dur~s which can be invoked by a given procedure are indicated by an asterisk in the vertical columns
below the invoking procedure identifier.

1137833 3-7

B 1000 Systems SDL/UPL Reference Manual

SECTION 4
DECLARATIONS

This section describes data, record, file, and switch-file dedarations that can be specified in an SDL/
UPL program.

The data declaration specifies simple, overlay (remap), structured, reference, dynamic, and paged-array
data items.

The record declaration specifies a data structure which does not allocate memory space and is used
in conjunction with the data declaration.

'The file declaration describes a file to be used by an SDL/UPL program.

'The switch-file declaration, which specifies a group of files that can be used as files, is referenced by
a subscript.

DATA DECLARATIONS STATEMENT

The DECLARE statement specifies simple, overlay (remap), structured, reference, dynamic, and paged
array data items. The fundamental data types that can be declared are BIT, CHARACTER, and
FIXED. Additionally, the programmer can define a combination of these data types in a RECORD
declaration, and subsequently use that RECORD structure as a data type in declaration clauses.

Any error in a declaration statement causes the SDL/UPL compiler to ignore all other declarations
that occur within the same statement and beyond the point of error. Everything between the error and
the end-of-statement token (;) is ignored.

The SDL/UPL compiler generates more efficient code when all declare clauses are in a single DE
CLARE statement.

All of a procedure's declaration statements must appear before any executable statements.

Spaces between the data type keywords BIT and CHARACTER and their parenthesized sizes are op
tional..

Example:

"CHAt\ACT£fH10P' ano "Cl--1\~;~CTf.R C10)"

Spaces ate also optional between an array identifier and its subscript.

Examples:

UECLAR£ A FD£o,.
CHARACT£f?,. e

cc,£~r<sl> FI~£o,
H{5) C~AFACTEPC6);

1137833 4-1

B 1000 Systems SDL/UPL Reference Manual
Declarations

SDL and UPL Syntax:

-DECLARE

L_

' [l
<identifier-part>

<structured-part>

<paged-array-part>

<dynamic-part>

<reference-part>

<remaps part> -

Syntax Semantics:

identifier-part
Refer to identifier-part in this section.

structured-part
Refer to structured-part in this section.

paged-array-part
Refer to paged-array-part in this section.

dynamic-part
Refer to dynamic-part in this section.

ref erence-pa:rt
Refer to reference-part in this section.

remaps-part
Refer to remaps-part in this section.

identifier-part

The syntax and semantics of the identifier-part in the DECLARE statement are described as follows:

SDL and UPL Syntax:

L
<identifier> >

.___ __ (<number-of-elements>) j
r <-id-en-ti-fie-r>-------~=============~~========:_._____)

'-----(<number-of-elements>) ----

>>----- <type-part> -------------------------------------1

4-2

Syntax Semantics:

identifier

B 1000 Systems SDL/UPL Reference Manual
Declarations

This field can be any valid SDL/UPL identifier and specifies the name of a data item or array.

number-of-elements
This field specifies the size of an array and can be any valid SDL/UPL number, identifier, or
expression that returns a binary value.

An SDL/UPL array is a group of memory locations associated with a single identifier. All
elements of an array are identical in structure. Individual array elements are referenced by using
a subscript with the array identifier.

Any identifier followed by a number in parentheses names an array.

Array subscripts are zero-relative. For example, the first element of array ARRAY is ARRAY(O).
Valid subscripts for a 5-element array are 0, 1, . 2, 3, and 4. If the subscript is not between 0 and
n--1 inclusive, where n is the declared number of elements in the array, an invalid subscript error
is generated and the program is terminated by the MCP.

The maximum number of elements that can be specified for an array is 65 ,535. The maximum
length of the array is 65,535 bits (8191 characters).

type-part
Refer to type-part in this section.

structured-part

The structured-part of the DECLARE statement allows the programmer to specify data items in logical
groups. The maximum number of data items allowed in a single structure is 198. The keywords
DUMMY and FILLER are included in this count. Any attempt to declare a larger structure causes
a table overflow error at compile time.

The size of a structure can be specified in the data type of its 01-level identifier. When no data type
is specified, the compiler assigns a structure size equal to the aggregate length in bits of all subfields
of the structure.

The two following structures cause identical structures to be generated. Both DECLARE statements
generate an implied 3-bit filler.

Example:

DECLARE 01 A CHARJ\CTEK(4),
02 B FIXEC,
02 c t IT (5);

UECLA.,£ 01 A CfiAHACTER,
02 f3 f IX£C,
02 c 81T (5};

Data items that are specified with level numbers also called "structured data" can be remapped. If
the REMAP keyword appears on a level greater than 1, the remap is restricted. In this case, the right
.hand identifier must be the last data item in the same structure on the same level as the lefthand identi
fier that is to remap it. If the previous data item was declared with the REMAPS keyword, the right
hand identifier can refer to the original declaration of the memory space.

1137833 4-3

B 1000 Systems SDL/UPL Reference Manual
Declarations

The syntax, semantics, and some examples of the structured-part in the DECLARE statement are de
scribed as follows:

SDL and UPL Syntax:

-----------~----~-----~-----------------·---------------------< A 1<
_ __..__ ---<level-number> B

A

B E <identifier-part> ------·~ <type-part>
FILLER-------------~--------------

< remap-identifier> REMAPS <identifier>

- DUMMY REMAPS <identifiE:r> --------------

Syntax Semantics:

level-number
This field can be any valid SDL/U:PL 2-digit integer and specifies the level of the structure. < lev
el-number> can range from 01 to 99.

identifier-part
Refer to identifier-part in this section.

type-part
Refer to type-part in this section.

FILLER
The keyword FILLER designates the memory areas which the program does not reference. The
FILLER keyword can be used on any level specified by <level-number> which is greater than
01. If the FILLER keyword is the last item in a structure and its parent field specified a length,
it can be omitted. The SDL/UPL compiler supplies an implied filler. An item's parent identifier
is the field which the item subdivides. The parent identifier must have a lower level number than
its subdividing item.

remap-identifier
This field can be any valid SDL/UPL identifier and specifies an alternative identifier for the same
memory space declared by <identifier> .

REMAPS
The keyword REMAPS causes m1~mory space specified by <identifier> to be named <remap
identifier > . When the REMAPS keyword appears on a structure with <level-number> greater
than 01, <identifier> must be the last data item declared in the same structure having a level
number of <identifier> that is equal to the level number of <remap-identifier>. Also, <remap
identifier > must be the last data item declared in the same structure with equal level numbers
unless the last data item is also declared with the REMAPS keyword.

DUMMY

4-4

The keyword DUMMY can be substituted for <remap-identifier>, but a data descriptor is not
generated. The DUMMY keyword can be used only in conjunction with the REMAPS keyword.
The DUMMY keyword eliminate~: the need to declare redundant identifiers.

B 1000 Systems SDL/UPL Reference Manual
Declarations

The DUMMY keyword cannot be used to remap another DUMMY keyword.

If the DUMMY keyword is specified, the subordinate structure must have at least one identifier
that is not the FILLER keyword.

Examples:

Uf.:CLAPE 01 A
02 p

,J

02 f ILLfH
U2 c

01 Al>. HE~JIPS A
02 RB
02 cc
02 B MA f· fiF~AfS

01 DUM"Y ~EMafs ~
02 B8F. (6)
v2 FILL£R

paged-array-part

0 lT (160),.
BIT (60),.

R IT (20),.
ChAf-<ACTER (10) p

CHARACTER (20),
HIT (BO)•
tl I T (80) p

HE CHAFACTEfi C lOh

BIT (160).
FIXED•
8IT (l 6); 4 Thi c; FILLER i 5 optional.

The paged-array-part in the DECLARE statement allows SDL/UPL programs to use the B 1000 sys
tem's dynamic memory facility. This facility allows the amount of memory to vary depending on how
much is actually used and can be set at execution time with the MEMORY program attribute. Refer
to the B 1000 Systems System Software Operation Guide, Volume 1, form number 1108982 for a com
plete description of the MEMORY program attribute. The amount of dynamic memory allocated can
also be set by specifying the $ DYNAMICSIZE compiler option.

The SDL/UPL compiler automatically allocates dynamic memory sufficient for one page of each paged
array declared. From this, the programmer must allocate enough additional dynamic memory based
on the knowledge of how many pages are actually used at any one time. If the amount of dynamic
memory is not enough at execution time, the following program abort message is displayed on the
Operator Display Terminal (ODT):

SOL PAGEC ARRAY ~A~OLrR COULCN'T OBTAIN <number> BITS.
- - I NS U f F I C I EI\ T DY ~ A tot I C ME U. 0 f, Y - r ER UN W I TH Mt= <numb e r >

The syntax, semantics, and an example of the paged-array-part in the DECLARE statement are de
scribed as follows:

SDL and UPL Syntax:

----PAGED (<elements-per-page>) <identifier>------------------+

>-- (<number-of-elements>) <type-part> ---------------------

1137833 4-5

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

PAGED
The keyword PAGED causes the array specified by <identifier> to be segmented. Paged-arrays
cannot be indexed, a part of a structure~ or remapped.

elements-per-page
This field specifies the number of eliements of the array specified by <identifier> to be contained
in an overlayable data segment. It can be any valid SDL/UPL number or expression that returns
a binary value. <elements-per-page> must be one of the following values: 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096, 8192, 16384, or 32768.

identifier
This field can be any valid SDL/lfPL identifier and specifies the name of the array to be seg
mented into pages.

number-of-elements
This field specifies the number of dements in the array and can be any valid SDL/UPL number
or expression that returns a binary value. <number-of-elements> can range from 1 to 65,535,
inclusive. <number-of-elements> can be increased up to 16,777,215 by using the GROW verb.
Refer to Section 9 for complete information on the syntax, semantics, and function of the GROW
verb.

type-part
Refer to type-part in this section.

Example:

CECLAPE PAG£C C64l A C40~6) dYT Clli % Array identifier A is a
% segmented arrav with 64
% elelllents oer seqment• and a
k total of 4096 elements, each
A: orie bit lonq.

dynamic-part

The syntax, semantics, and examples of the dynamic-part in the DECLARE statement are described
as follows:

SDL and UPL Syntax:

-- DYNAMIC <identifier-part> --------------------------------1
--- <remap-part>

Syntax Semantics:

DYNAMIC

4-6

The keyword DYNAMIC allows the array length of < identifo~r > or <number-of-elements> to
be determined at the time the procedure is entered.

The keyword DYNAMIC can be specified only in a procedure. Any variables specified must have
been previously declared and initialized.

The keyword DYNAMIC cannot be specified on lexic level 0.

B 1000 Systems SDL/UPL Reference Manual
Declarations

No length checks are made when a dynamic identifier is remapped. Any remapping of a dynamic
identifier generates an advisory message from the SDL/UPL compiler.

identifier-part
Refer to identifier-part in this section.

remap-part
Refer to remap-part in this section.

Example 1:

PROCEOUfd:. Aec;
CECLAhE OY~A~IC X BIT CAJ;

•
•
•

END Ase;

Example 2:

% The lenqth of identifier X is
Z determined by the value of
% identifier A •

Pf10ClCU~E XYZ;
DECLA~E CY~AMIC ft (6)

•

X The number of elements in
BIT ClO>~ % arrav ~ is determined bv the

4 value of identi tier B •
•
•

£NC XYZi

Example 3:

DECLARE X FIXED;
PFOCECURf NESTED;

DECLARE CY~AMIC AECCXl f IXEC;

•
•

£ND Nf.STEOi
x == 10.i
"ESH.Ci
STOP;
f IN I;

reference-part

% The value of identifier X
% determines the number of
X ele~ents in array ABC.

The syntax, semantics, and an example of the reference-part in the DECLARE statement are described
as follows:

SDL and UPL Syntax:

T <identifier>

L(L<' 'd 'f' >-----1 ent1 1er
) _] --- <record-identifier>-----

>--------REFERENCE -----~----------~·----......... --------------~------t

1137833 4-7

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the reference identifier.

record-identifier
This field can be any valid SDL/UPL record identifier and specifies a RECORD reference identifi
er. RECORD reference identifiers are assigned with a REFER verb and can be written in other
statements as though they were structure identifiers. For examplie, a RECORD reference identifier
can have field qualifiers attached with the period (.) notation. Such an access divides the current
memory areas described by the reference identifier according to the record declaration.

Example:

OECLA~E Lf< DfSCRIPTC~ F.t:FEHENCE; % Identifier X is assiqned
% tc bits 108 throuqh 124

P.EfE~ CF TC SUEBIT C~YAREA, 100P 48); % of the bit string MYAREA.
X :: CR.LEN1

All restrictions which apply to normal rderence identifiers are applicable to RECORD reference identi
fiers. RECORD reference identifiers cannot be specified in the REDUCE verb.

REFERENCE
The keyword REFERENCE causes <identifier> to be a reference identifier. Reference identifiers
are used as pointers to data without allocating memory space. Since reference identifiers are point
ers, the REMAPS keyword cannot have a data type equal to REFERENCE. A reference identifier
is bound to another identifier by using the REFER verb.

Generally, reference identifiers are used as a scanning tool. The reference identifier is bound to
an identifier that has a data type equal to CHARACTER or an expression that returns a value
with a data type equal to CHARACTER. The REFER verb is used to bind a reference identifier
to an identifier. The REDUCE verb is used on the reference identifier to obtain the desired charac
ter string. Refer to Section 9 for information concerning the REFER and REDUCE verbs.

Example:

OfCLA~E A ~EFE~E~CE, % The reference identifier A is
B ~HARACTE~ (20}; % bcun~ to identifier s.

R£fEF A TL E;

remaps-part

The syntax, semantics, and some examples of the remaps-part in the DECLARE statement are de
scribed as follows:

SDL Syntax:

---<remap-identifier> REMAPS

L
<identifier>_, ______ < type~part>

BASE --------·------

UPL Syntax:

- <remap-identifier> REMAPS--------- <identifier> <type-part> __________ ___,

4-8

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

remap-identifier
This field can be any valid SDL/UPL identifier. It specifies the alternative name of the same mem
ory space as <identifier> .

REMAPS
The keyword REMAPS causes the starting address of <remap-identifier> to be the same as
< identifier> .

<remap-identifier> cannot be larger than <identifier> . However, it can be remapped by a
smaller identifier. In that case, the SD,L/UPL compiler provides implied filler bits on the un
mapped rightmost bits.

Example:

DECLARE A BIT ClQ},.
HI rcn~
81TC5);

% An imnlied 3-bit fitter
8 R£t'APS A
C R£t'APS E

% is provided fer identifier
% B and an imol ied 5-bit
% f i l I er i s or o v i de d for
% identifier c.

There is no actual limit to the number of times a field can be remapped. <remap-identifier> can be
remapped by another <remap-identifier> .

BASE
The keyword BASE is valid only for SDL programs and causes <remap-identifier> to have a
starting address at the base-relative address of the program.

The keyword BASE is used as a free-standing declaration since it does not remap a previously
declared identifier and is used primarily with data that is to be indexed. Refer to Section 6 for
a description of indexing in SDL programs.

Examples:

GECLA~E A C~ARACTfR Clo>~ ~ Identifier B remaos

1137833

E fiEMAPS A Ell C~C), % identifier A and identifier
C FEHAPS EASE Ell ClOO>; % C has a startinq address

% ecual to C (the beginninq
% address of the orogram>.

4-9

B 1000 Systems SDL/UPL Reference Manual
Declarations

type-part

The syntax and semantics of the type-part in the DECLARE statement are described as follows:

SDL and UPL Syntax:

t--FIXED

r--BIT

L {<bit-size>)

t--CHARACTER

L (<charact1•r-size>)

--< record-i dent f e > i i r

Syntax Semantics:

BIT
The keyword BIT makes the identifier have a data type equal to BIT. A bit can have a value
equal to 0 (zero) or 1. It is the smalllest unit of data that can be addressed on the B 1000 computer
system.

CHARACTER
The keyword CHARACTER makes the identifier have a data type equal to CHARACTER. A
character is 8-bits long and represents one of the 256 EBCDIC characters.

FIXED
The keyword FIXED makes the identifier have a data type equal to FIXED. A fixed identifier
is 24 bits long with the sign-bit in the leftmost bit position. The sign-bit is used for arithmetic
calculations. A negative number is stored as the two's complement of its like positive number.
Identifiers with a FIXED data type can range in value from - 8,388,608 to + 8,388,607~, inclusive.

bit-size
This field specifies the number of 1bits in <identifier> and can be any valid SDL/UPL number,
identifier, or expression that returns a binary value.

character-size
This field specifies the number of characters in <identifier> and can be any valid SDL/UPL
number, identifier, or expression that returns a binary value.

record-identifier
This field can be any valid SDL/UPL identifier and specifies th1e name of a record structure. Refer
to Record Declarations in this section.

Array Declaration Information

Only I-dimensional, level-structured arrays are allowed. Thus, if a group item is an array, none of
its substructures can be an array. Multidimensional arrays can be created by using record structures.
An array field cannot be declared with a REFERENCE data type. A multidimensional field can be
define by using the RECORD REFERENCE structure.

4-10

B 1000 Systems SDL/UPL Reference Manual
Declarations

If the 01-level identifier is an array, it is mapped as a contiguous area in memory. Subdivisions of
an array are not contiguous. The following shows the way in which subdivisions of an array are
mapped.

Example:

DECLARE 01 ACS> eIT C43l~

02 B FfX£C,.
02 C FTXEC;

Figure 4-1 shows how array A and identifiers B and C are mapped in memory.

A(O)

B(O) l C(O) 8(1)

G18300

A(1) A(2)

l C(1) 8(2) I C(2) 8(3)

NOTE

A(O), A(1), A(2), A(3), and A(4) are all 48 bits in

length. 8(0), C(O), 8(1), C(1), 8(2), C(2), 8(3),

C(3), 8(4), and C(4) are all 24 !bits in length.

A(3)

I C(3) 8(4)

Figure 4-1. Memory Mapping of Array A and Identifier B and C

Examples of DECLARE Statements

The following are examples of DECLARE statements.

Example 1:

CE CLARE TAGA f IX E ['; % Identifier TAG A i s a
% 24-bit binary value.
% is the leftmost bi t.

Example 2:

DECLARE TAGB C~A~ACTEf; % t dent i f i er TAGS is of

A(4)

I C(4)

signed
The sigr

tvoe
x Cli.4RACT£~ and one unit lonq.
% CHAt;ACTE~ i s i n e-bit EBCDIC
r. format.

Example 3:

CE.CLARE TAGC E If (1 7); % Identifier TAGC is of tvoe BIT
x and i s 17 bits tonq.

1137833 4-11

B 1000 Systems SDL/UPL Reference Manual
Declarations

Example 4:

DECLARE TAGA f IXfC,
T AG 6 O! A Fi ACT f F (1) ,
TAGC BIT Cl7>i

Example 5:

UEClAflf 01 C.Af-<C Cl-ftRJICTER C8Q},
ChAfiioCTE~ (72); C2 .INPUT

Example 6:

CECLftflE
01 TAalE A CHAf.JICTER (14),

CHAF~tCTER (6),
CHAf-\~CfEfi (4),

02 ITEM_l
02 ITE~_2

03 SUB
02 If[tt._3
02 ITF~_4

C2 ITEl-1_5

ITfM_2 fl)(£[.,
BIT (l),

FIH.r,,

01 TfltiLE_E
BIT Uh
BIT C~OO>;

Example 7:

C£ Cl AR f

4-12

CA~CS CHAf ACTEP CBO>•
COLU~NS ceo> RE~ftPS CA~CS

ChA~/ICTU• (1),.

01 ~UH_FIELCS (40) FfM'P~ CAFD
CHAFftCTEf. (1},

02 f IhST ~UM CHAfACTEf Cl),
CZ SECONC_NUM CHA~ACTER Cl);

% The identifiers have the sa111e
r. name, data tvoe• and tenqth as
% in examctes l-3, e•cept they
i are declared in one statement
% with the identifiers separated
% by the comma(,) character.

% An imp I ied fit ler of eight
% characters is aLto~aticattv
% assiqn~~d bv the SDl/UPL
% ccmoiter to exoa~d the 02
% level to its reouired ltength cf
i. BO cha1racters.

% A tatle of five items that
% consuwes 14 bvtes is declared.
't fach itero is exclicitlv named
% in the structure, and its tvoe
4 and length are gi~en. Also
Z declared is a second table of
% 200 tits. Identifier SUB_ITEM 2
% furthe1r subdivides IT£M_2 and
'~ u c; es t he f i r .st t hr e e ch aT a c t er s
% (24 ti ts). There is an imol ied
4 Flllf~ o~ the 03 level
?.: follc..,iirq identifier
'Z SU8_ITEM_2.

% An dO-column card is declared
% and then remapoed as an array
% of ec elements, each of
% one character. The card is
Z remaooed aqain as a 40-etement
: array, each of two characters.
t Each 2-character array element
% is further subdivided into
% ~eoarate elements that can be
Z re f ef' enc ed.
% ~dentdiers FIRST_f\UM and
t S £ C 0 t; U __ ~· L M m u s t b e s u b s c r i o t e Cl

t when they are used. The
% subscript values must range
r. from 0 to 59, inctusive.

Example 8:

B 1000 Systems SDL/UPL Reference Manual
Declarations

C£CLAhE ClTEMl,. ITEM2~ ITE~3) fIXEO; % A list of identifiers is

Example 9:

IHCLAf<E
01 IHW_l.AEEL,

02 f\L_l
02 NL_2 (3)

03 f'ILLU~

03 f Il'ST
03 SECOND

02 NL_3

Example 10:

ClCLARE 01 A,.
02 Al
02 A2

03
03

02 A3

1137833

Cl--.AfiACTEF C?S),
Ct-,,RACTf:ti (?.~},

Ct-,PRACTEr; (5),.
Cl"'.ARACH~ ClO},
CJ-lftfHiCTEf\ <1C),.
FIXfL;

(20) Pil (2 0),.
(18) BIT {20),.
Bl 8 IT (15),.
03 8 IT (5),.

(2) E IT (5);

% declared, alt of data tvoe
% FIX£().

% A QfOUO item NEW_LABEL is
% declared and the SOL/UPL
% comoiter as5igns it a BIT
% data tv~e. The lenqth of
r. NlW_LABEl is eoual to the
% sum of the bits ct the 02
% levels t~at follow CC25 + 3
% * ?.5) • 8 • 24 = 8?4 bits>.
% Identifier Nl_2 is an arrav
i of t~ree elements each 25
% characters in length. FILLER
% is Lsed to omit the naming of
% an area that is never
% referenced separately.
% f IllEk can be used as of ten
% as reauired ~ithout causinq
% a duplicate-name svntax
% error. Identifiers FIRST and
~ SECOND are 3-etement subar~avs

% of afrav Nl_2. They are
% referenced ~ith subscripts o.
i. l• and 2 fof the first• second•
l and third elements•
% respecti~ely. Each element is
% 10 characters tong. Ioentifier
% Nl_3. is a FIXED,. signed binary
X null'ber.

X eecatJse of the expl icitlv
X declared array-size specified
t for arra~ 41,. A2• and A3.
% identifiers Al,. A2,. Bl,. 82 and
% A3 must all the ~ucscrioted•

% when re fer enced. The lenqth sum
t of identifiers Bl and 82 must
% be eouat to .. or le5s than,, the
Z length soecified for identifier
% A•

4-13

B 1000 Systems SDL/UPL Reference Manual
Declarations

Example 11:

CECLA~E 01 TA~A C5) Ell (4e). % Identifier TAGA is ma~oed
% into a ccntiquous ~emorv 02 TAGS FIXEC•

02 TAGC FIX£[; % area to contain the data for
% identjfiers TAGS and TAGC.
% TAG6 and TAGC are i1olicit
% 5-unit arrays. but are not
% waoced ccntiquouslv. They
% are ~aoped in an alternatinq
% marner as follows: TAGBCO>•
% TAGCCO). TAG8Cl>• TAGCCl>•
% •••• TAGBC4>• and TAGCC4).

Example 12:

CECL~~E % Identifier BIG_C_N is an array
PAGED C1024) Elf: D t. C4CSE • Bil cu; % with 409E ~lements. each one

% bit lonq. The array is
% seqwented into 1C24 oa~ts. Each
X oart is brouqht into memorvi
% that is• paged whenever it is
X addressed. No soecial
4 statements are reouired to do
:! the paqinq.

RECORD DECLARATIONS

SDL/UPL programs have two ways of creating data structures. They are the level-structure DECLARE
statement and the RECORD statement. Each statement establishes similar structures. The following are
the benefits of using the RECORD statement.

4-14

• RECORD statements reduce run-time space requirements because records do not generate large
name and value stacks.

• RECORD statements provide safer, simpler, and often faster access to linked data structures
than do level-structured DECLARE statements.

• RECORD statements provide a method to structure paged arrays.

• RECORD statements allow arrays to be nested within structural levels.

• RECORD statements reduce the probability of error and increase programming ease by al
lowing structures to be describ1ed once and invoked many times.

NOTE
Data structures cannot be declared with a data type of REFERENCE. The
RECORD REFERENCE construct must be used instead.

B 1000 Systems SDL/UPL Reference Manual
Declarations

Building a record structure requires two statements. First, a RECORD statement must describe the
memory layout of the structure. The RECORD statement essentially describes a new data type that
can be used exactly as data types BIT, CHARACTER, and FIXED. Describing the RECORD structure
does not allocate memory space for the structure.

Memory space is allocated for the RECORD structure when the record identifier is specified as the
data type of an identifier in the DECLARE statement. Thus, a DECLARE statement is the second
statement needed to invoke a RECORD structure.

The syntax and semantics of the RECORD statement are described as follows:

SDL Syntax:

- RECORD----- <structuned-part>------J--

.__ ___ <unstructured-part> ___ ,

UPL Syntax:

- RECORD <unstructured-part>; ------------------------------t

Syntax Semantics:

structured-part
Ref er to structured-part in this section.

unstructured-part
Refer to unstructured-part in this section.

structured-part

The syntax and semantics of the structured-part in the RECORD statement are described as follows:

SDL Syntax:

--<level-number> <record-identifier> <type-part>

r >-------<level-number>

Syntax Semantics:

record-identifier

L
<identifier-part> ------ <type-part> -------1

< remaps-part> -------

This field can be any valid SDL/UPL identifier and specifies the name of the record structure.

level-number
This field can be any valid SDL/UPL number and specifies the level of the record structure. < lev
el-number> can range from 1 to 99. The first level number for a record structure must be 01
or 1.

identifier-part
Refer to identifier-part in this section.

1137833 4-15

B 1000 Systems SDL/UPL Reference Manual
Declarations

remaps-part
Refer to remaps-part in this section.

type-part
Ref er to type-part in this section.

unstructured-part

The syntax and semantics of the unstructured-part in the RECORD statement are described as follows:

SDL and UPL Syntax:

- <record-identifier> ------------------------------·----~

<type-part> --------------------L-------'

--..:..r ____ <identifier-part> < type-part>--·-=]-~-] J
Syntax Semantics:

record-identifier
This field can be any valid SDL/UPL identifier and specifies the name of the record structure.

identifier-part
Ref er to identifier-part in this section.

type-part
Refer to type-part in this section.

[1
The left and right broken bracket characters cause the enclosed identifiers to become an alternative
format for the same area as that represented by the identifier specified immediately before the left
and right broken bracket characters.

identifier-part

The syntax and semantics of the identifier-part in the RECORD s1tatement are described as follows:

SDL and UPL Syntax:

-r <identifier>

(<number-of-elements>) ------t

L__ FILLER --------------------------------'

Syntax Semantics:

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the data item or array.

4-16

number-of-elements

B 1000 Systems SDL/UPL Reference Manual
Declarations

This field specifies the number of elements in the array. It can be any valid SDL/UPL number,
identifier, or expression that returns a binary value.

An SDL/UPL array is a vector which is a group of memory locations associated with a single
identifier. All elements of an array are identical in structure. Individual array elements are refer
enced by using a subscript with the array identifier.

Any identifier followed by a number in parentheses names an array.

Array subscripts are zero-relative. For example, the first element of array ARRAY is ARRAY(O).
Valid subscripts for a 5-element array are 0, 1, 2, 3, and 4. If the subscript is not between 0 and
n-1 inclusive, where n is the declared number of elements in the array, an invalid subscript error
is generated and the program is terminated by the M CP.

The maximum number of elements per array is 65 ,535. Each element has a maximum length of
65,535 bits (8191 characters).

Identifiers specified as an array in the structured part of a record declaration cannot have nested
record structures.

FILLER and parent field
The keyword FILLER designates the memory areas which the program does not reference. A par
ent identifier pf an item is the field which th~ item subdivides. The keyword FILLER can be used
on any level, specified by <level-number>, which is greater than 01. If the FILLER keyword is
the last data item in a structure and its parent field specifies a length, the FILLER keyword can
be omitted. The SDL/UPL compiler supplies an implied FILLER. A parent identifier of an item
is the field which the item subciivides. The parent identifier must have a lower level number than
its subdividing item.

remaps-part

The syntax and semantics of the remaps-part in the RECORD statement are described as follows:

SDL and UPL Syntax:

--- <remap-identifier> REMAPS--------- <identifier>-----------~

Syntax Semantics:

remap-identifier
This field can be any valid SDL/UPL identifier and specifies the alternative name of the same
memory space as <identifier> .

REMAPS
The keyword REMAPS causes the starting address of <remap-identifier> to be the same as
<identifier > .

<remap-identifier> cannot be larger than <identifier> . However, it can be remapped by a
smaller identifier. In that case, the SDL/UPL compiler provides implied-filler bits on the un
mapped ri~htmost bits. There is no actual limit to the number of times a field can be remapped.
<remap-identifier> can lbe remapped by another <remap-identifier> .

1137833 4-17

B 1000 Systems SDL/UPL Reference Manual
Declarations

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the field to be re
mapped.

type-part

The syntax and semantics of the type-part in the RECORD statement are described as follows:

SDL and UPL Syntax:

- ~ ::~E(D<bit-size>) ------·--------4
CHARACTER (<character-size>)

<record-identifier>-------------

Syntax Semantics:

BIT
The keyword BIT causes <identifier> to have a data type equal to BIT. A bit can have a value
equal to 0 or 1 and is the smallest unit of data that can be addressed on the B 1000 computer
system.

CHARACTER
The keyword CHARACTER causes. <identifier> to have a data type equal to CHARACTER.
A character is 8 bits long and represents one of the 256 EBCDIC characters.

FIXED
The keyword FIXED causes <identifier> to have a data type equal to FIXED. An identifier with
a FIXED data type is 24 bits long, with the sign in the leftmost 1bit position, and is used for arith
metic calculations. A negative number is stored as the two's complement of its like positive num
ber. Fixed identifiers can range from - 8,388,608 to + 8,388,607, inclusive.

bit-size
This field specifies the number of bits in <identifier> and can be any valid SDL/UPL number,
identifier, or expression that returns a binary value.

character-size
This field specifies the number of characters in <identifier> and can be any valid SDL/UPL
number, identifier, or expression that returns a binary value.

record-identifier
This field specifies the name of a record structure. This field can be any valid SDL/UPL identifier.

4-18

B 1000 Systems SDL/UPL Reference Manual
Declarations

Qualified Record Names

To reference an identifier within a record, the identifier must include the name of all of its parent
identifiers separated by the period (.) character.

Example:

AECCkO TYPt.f IELD
flcV EIT<1),.
NSh ElTCl } ..
O~TATYPE BITC16);

kECORD OESCPIPTIO~

TYPf TYPEFIELC,
LENGTH ElT (16)•
CADC~ 8ITC24),
VAL eITC24)];

O£CLA~E C DESCRIPTION,
A<5l TYPEFIELO;

D := o;
ACl> := o;
Cl.TYPE.NW:= ~(1)1;;

ACl>.NV := ;cl>O@;
O.LU~GTH := 4;
U.TYPE.NS~ := ~CllC~;
AC~>.~S~ := @Cl}l~;

In the preceding example, two record structures are specified in the DECLARE statement. They are
identifier D and array A. Since identifier D and array A have no parents, each identifier is completely
qualified. If field NV is to be accessed, the name must contain its parent identifiers. Because field NV
has two parents, either D.TYPE.NV or A(n).NV can be specified, where n is the element number
within array A. Figure 4-2 shows the data space created when identifier D is declared.

TYPE LENGTH ADDA or VAL

NV NSR DATA

(1) (1) TYPE
(16)_______II -----____

18 bits 16 bits 24 bits

G18301

Figure 4-2. Data Space Created for Identifier D

In the record named DESCRIPTION, the previously described record named TYPEFIELD is the data
type for field TYPE. This gives TYPE the subfields NV, NSR, and DAT A TYPE. Fields ADDR and
VAL are alternative formats and, in the example, they have the same data type. The data types can
vary.

Defined record identifiers can be used as data types in any DECLARE statement, including a RECORD
statement.

1137833 4-19

B 1000 Systems SDL/UPL Reference Manual
Declarations

Record-Reference Identifiers

In some cases, storage is not to be directly allocated for a record, although some program data can
be in the format specified by the record structure. Record-reference identifiers provide a means to im
pose the record structure on a memory area during program execution.

Record-reference identifiers are bound to an identifier by the REFER verb, as simple reference identifi
ers are bound. Field name qualification, within a record-reference identifier, is the same as with record
structure names. The record-reference id1entifier is the first component of a qualified name used to ac
cess a field within the record.

If the record-reference identifier is bound to an expression, the expression must generate an address.

Record-reference identifiers cannot be specified in the REDUCE ve:rb.

The area length to which the record-reference identifier is bound must equal the length of the record
structure.

Example:

HfCO"D THIS_A~O_TtAT

flfiST
SECCNC
T~If10

FIXEC"
ETTC3l,.
CHAF/iCTEf\ClO J;

~ECLA~l JhFC T~IS ~~D_T•PT REfE~ENCEr
EIG_AfEA EIT C~OQ),.

X FIXEC;

~EFE~ I~F(TC SU 0 EIT<E1(AREA,.75•1071;
X := INFO.FIRST;

Identifier X contains a fixed-number representation of the 24 bits beginning at tb.e 76th (bit 75) bit
of the identifier BIG_AREA. Exactly Jt07 bits are assigned to the record-reference identifier INFO.
Record identifier THIS_AND_ THAT defines exactly 107 bits of information.

FILE DECLARATIONS

The FILE declaration statement describes a file to be used by a program and assigns an internal identi
fier to that file. More than one file attribute can be specified for each file, although all file attributes
of the FILE declaration statement are optional. The default value is automatically set for any omitted
file attribute.

All FILE declarations must appear within the declaration portion of a program or procedure.

All underscore (_) characters used in internal file identifiers are converted to the period (.) character
in the file parameter block (FPB).

A FILE declaration consists of the reserved word FILE followed by one or more file identifiers which
are separated by the comma (,) characte:r. Each file identifier is optionally followed by file attributes
enclosed within parentheses "()" characters.

4-20

B 1000 Systems SDL/UPL Reference Manual
Declarations

The syntax and semantics of the FILE declaration are described as follows:

SDL and UPL Syntax:

~FILE ~<me:dentifie~-·~----~L~----~-~-~-~~-~J~~~~-; ~
(

1<
----<attribute>------)

Syntax Semantics: ·

file-identifier
This field can be any valid B 1000 file name and specifies the internal file name of the file.

attribute
This field can be any valid SDL/UPL file attribute.

The valid file attributes are listed and defined in the following paragraphs.

ALL_AREAS_A T_OPEN
AREAS
BUFFERS
DEVICE
END_OF _p AGE_ACTION
EU_INCREMENTED
EU_SPECIAL
EXCEPTION_MASK
FILE_ TYPE
INVALID __ CHARACTERS
LABE~
LABEL_ TYPE
LOCK
MODE
MULTI_PACK
NUMBER__ OF _ST A TIO NS
OPEN_OPTION

ALL_AREAS_A T_OPEN

OPTIONAL
PACK_ID
PROTECTION
PROTECTION_IO
RECORDS
REEL
REMOTE_KEY
SAVE
SECURITYTYPE
SECURITYUSE
SERIAL
TRANSLATE
USE_INPUT_BLOCKING
USER_NAMED_BACKUP
VARIABLE
WORK_FILE

The ALL_AREAS_A T _OPEN file attribute causes the area disk space to be allocated when the file
is opened. If sufficient disk space is not available, an ODT message is displayed which indicates that
no more disk space is available. The program is then suspended. By default, the value of each disk
area is allocated when the area is needed.

SDL and UPL Syntax:

- AL.L_AREAS_AT_OPEN

Example:

FILE OISKfllE {All_AFEAS_AT_CPEN);

1137833 4-21

AREAS

B 1000 Sysk~ms SDL/UPL Reference Manual
Declarations

The AREAS file attribute assigns the number of disk areas and the number of blocks per area for
a disk file.

This option applies only to disk files.

If the AREAS and RECORDS file attributes are not specified, the SDL/UPL compiler assigns a value
equal to 100 for the records per area.

SDL and UPL Syntax:

Syntax Semantics:

number-of-areas
This field can be any number and specifies the allowed numb<~r of disk areas for the file. The
default value is 25.

blocks-per-area

I

This field can be any number and specifies the number of blocks each area can have. The default
value is 100.

The virgule (/) character is a delimiter and is not the division operator.

Example:

FILE OlSKFILE CA~E~S = ~0/20C);
BUFFERS

The BUFFERS file attribute specifies the number of input/output (1/0) buffers to be assigned to the
file. The BUFFERS file attribute cannot be specified for a file with a device type equal to QUEUE.

SDL and UPL Syntax:

- BUFFERS = <number-of-buffers>-----------------------------,

Semantics:

number-of-buffers
This field can be any number and specifies the number of buffers for the file. The default value
is 1.

Example:

FIL[OlSKfllE CRUFFEh~ = 2);

4-22

DEVICE

B 1000 Systems SDL/UPL Reference Manual
Declarations

The DEVICE file attribute specifies the type of input/output (110) device on which the file is to reside.

SDL and UPL Syntax:

- DEVICE = ---------------------------------~

>---.---CAR D

--CAR D_PUNCH---c= =i
FORMS

-CARD_ READER

-CASSE TTE

DATA_

- DISK-

RECORDER 80

DISK

DISK_

-PORT

PRINT

1137833

-

ESERIAL J
RANDOM

FILEt
-SERIAL --J
-RANDOM

PACK

E-SERIAL3
-RANDOM

ER

[-FORMS =mJ

J
l

~BACKUP

t-- BACKUP DISK

t-- BACKUP TAPE

t--- NO BACKUP

~OR BACKUP

1-- OR BACKUP DISK

.___OR BACKUP TAPE

t--- BACKUP

t--- BACKUP DISK

t--- BACKUP TAPE

~NO BACKUP

t-- OR BACKUP

i--- OR BACKUP DISK ·

"--OR BACKUP TAPE

-u

4-23

4-24

B 1000 Systems SDL/UPL Reference Manual
Declarations

PUNCH_P RINTER

L·FORMS_J ~ BACl<UP

QUEUE (<max-messages>)

READER - PUNCH_PRINTER

SORTER -READER

REMOTE (<max-messages>)

READER -SORTER

TAPE

TAPE_N

TAPE_P

TAPE_7

TAPE_9

RZ

E

-

t-- BACl<UP DISK

~ BACt<UPTAPE

t-- NO BACKUP

t-- OR BACKUP

i--OR BACKUP DISK

.___OR BACKUP TAPE

I FAMILY (<size>) I

c FORMS 1--- BACKUP

1--- BACKUP DISK

1--- BACKUP TAPE

1--- NO BACKUP

~-OR BACKUP

~- OR BACKUP DISK

~- OR BACKUP TAPE

L WITH HEADERS I

"""
....,

Syntax Semantics:

BACKUP

B 1000 Systems SDL/UPL Reference Manual
Declarations

The keyword BACKUP causes the printer or punch file to be written to the designated printer
or punch backup device. The designated printer or punch backup device is set by the MCP options
PBD (Printer/Punch Backup Disk) and PBT (Printer/Punch Backup Tape).

BACKUP DISK
The keywords BACKUP DISK cause the printer or punch file to be written to the backup disk
device. The MCP option PBD must be set.

BACKUP TAPE
The keywords BACKUP TAPE cause the printer or punch file to be written to the backup tape
device. The MCP option PBT must be set.

CARD
The keyword CARD specifies that the device type of the file is a card reader. This keyword is
the same as the CARD_READER keyword.

CARD_PUNCH
The keyword CARD_PUNCH specifies that the device type of the file is a card reader and card
punch.

CARD_READER
The keyword CARD_READER specifies that the device type of the file is a card reader. This
keyword is the same as the CARD keyword.

CASSETTE
The keyword CASSETTE specifies that the device type of the file is a cassette.

DAT A_RECORDER_80
The keyword DAT A_RECORDER_80 specifies that the device type of the file is an 80-column
card reader.

DISK
The keyword DISK specifies that the device type of the file is disk. This keyword is the same as
the DISK_FILE keyword.

DISK_FILE
The keyword DISK_FILE specifies that the device type of the file is disk. The keyword is the
same as the DISK keyword.

DISK_PACK
The keyword DISK_PACK specifies that the device type of the file is disk pack.

FAMILY
The keyword FAMILY causes a group of subqueues to be assigned to the queue file.

FORMS
The keyword FORMS specifies that the printer or punch file has a special form. Operator action
must be taken to insure that the special form is on the device before writing to the file.

1137833 4-25

B 1000 Systems SDL/UPL Reference Manual
Declarations

max-messages
This field specifies the total number of messages that can be written to the file by another program
or process before the file becomes full. This field applies to files that have a device type equal
to QUEUE or REMOTE.

NO BACKUP

OR

The keywords NO BACKUP specify that the printer or punch file is not to be written to a printer
or punch backup device.

The keyword OR specifies that additional backup keywords follow. These keywords are BACKUP,
BACKUP DISK, BACKUP TAPE and NO BACKUP.

PORT
The keyword PORT specifies that the device type of the file is a BNA port file.

PRINTER
The keyword PRINTER specifies that the device type of the file is a line printer.

PUNCH_PRINTER
The keyword PUNCH_PRINTER specifies that the device type of the file is a card punch and
card interpreter.

QUEUE

4-26

The keyword QUEUE specifies that the device type of the file is a queue.

A queue file is a temporary file structure maintained as an input and output file. Queue files are
accessed with read and write operations that are conceptually identical to 1/0 operations which
are performed on all other devices. Queue files can be declared as a family of files.

A queue file is a specialized file structure maintained by the MCP as a means of Inter-Process
Communication (IPC). A queue file contains a list of messages (possibly an empty list) to which
messages can be written and from which messages can be read. Queue files have a head and a
tail record. The head (top) of a queue file is the first message in a queue. This is the message
that is accessed by a read operation and generally is the message that has been in the queue file
the longest time. The tail (end) of a queue file is the last message in the queue file to which the
next written message is linked. A queue file is basically a first-in, first-out (FIFO) structure.

Queue files can be shared by several programs. When a queue file is opened, the queue driver
in the MCP compares the 20-character file identifier with the names of already opened queue files.
If the named queue file is opened by another program or process, the queue file is linked to the
existing queue file and the USER_COUNT field in the disk file header is incremented. If the
queue file is not opened, a new queue file is created as described by the parameters in the file
parameter block (FPB). When a queue file is shared by several programs, the program that
originally opened the queue file controls all file attributes of that queue file.

B 1000 Systems SDL/UPL Reference Manual
Declarations

Messages stored in a queue file can reside on disk or in memory. At the time the queue file is
created, an area of system disk is obtained for the queue. This area is of sufficient size to hold
the entire queue. Queue file messages are stored on disk if one of the following situations occurs.

• The message being written to the queue file makes the count of messages in the queue file great
er than the number of buffers for the queue file. In this case, the tailmost message is written
to disk.

• The B 1000 memory management system needs the space used by an infrequently-accessed queue
file. Therefore, it rolls the messages out to disk.
Messages are stored in a variable-length format. Any record whose length is less than the de
clared record-size uses only the amount of memory required to write the message.

Messages are stored in a queue file as a linked list of message descriptors. Each message descrip
tor is an 80-bit system descriptor with two additional link fields. The system descriptor describes
the text of the message according to standard MCP conventions.

When a queued message is in S-memory, it is stored in a memory link called a message buff er.
No queue file can have more than the declared number of messages in the buffer, including mes
sages that are being moved between disk and S-memory. The buffers are allocated from a com
mon pool of empty buffers.

READER____PUNCH_PRINTER
The keyword READER____PUNCH_PRINTER specifies that the device type of the file is a card
reader, card punch, and card interpreter.

READER____SORTER
The keyword READER____SORTER specifies that the device type of the file is a reader sorter.

REMOTE
The keyword REMOTE specifies that the device type of the file is remote. Files that have a device
type equal to REMOTE can read and write messages to the network controller.

Examples:

FILE ANNOC CCEWICE = RE~OJE);
~£AC A~NOC (~€ssage);

FILE ANNOO CDE~ICE = REMOTEC20) WITH HEACERS);
P£AC A~NOL CE~ffer);
Mes5age :: StESTRCB~ffer,49);

FILE ANNOD CCEVtCE = REMOTEC20>~ REMOTE_KEY~
~UH8ER_CF_ST~TION~ = 2)J

W~ITE ~N~OD CC020C70001 C"messaqe"J;

1137833 4-27

size

B 1000 Systems SDL/UPL Reference Manual
Declarations

This field can be any valid number and specifies the number of subqueues or queue-file families
in the file with a device type equal to QUEUE.

Queue-file families are a group of queues that share I/O descriptors. A group of queues have a
multi-file-identifier and are accessed as a subfield of the queue-file family. A subscript must be
specified in order to identify the subqueue in a queue-file family for read or write operations.

Queue-file families are declared with the FAMILY keyword.

Each member of the queue-file family is accessed with a numeric key, based on the order in which
the queues are declared. The first subqueue has number 0 and the last has number n-1, where
n is the number of subqueues. Specifying an index of -1 requests an unspecified read from the
queue-file family. An unspecified read operation scans through the queues and returns the top mes
sage from the first non-empty queue in the family.

SORTER_READER
The keyword SORTER_READER specifies that the device type of the file is a reader sorter.

TAPE
The keyword TAPE specifies that the device type is tape.

TAPE_NRZ
The keyword TAPE_NRZ specifies that the device type is tape with the Non-Return to Zero
(NRZ) recording mode.

TAPE_PE
The keyword T APE_PE specifies that the device type of the file is tape with the phase encoded
(PE) recording mode.

TAPE_7
The keyword TAPE_ 7 specifies that the device type of the file is a 7-channel tape.

TAPE_9
The keyword T APE_9 specifies that the device type of the file is a 9-channel tape.

WITH HEADERS
The keywords WITH HEADERS applies only to remote files and specifies that a 50-byte message
header is supplied/ expected in all read and write operations to the remote file.

Examples:
FILE CUT_MASll~ CCE~ICE = Phl~T~R % The file OLT_~ASTER is

CR lHCt<t.:F [!SK
(h eHtc;Uf TAPE);

% orinted if t~e line printer
% is availatte. Cther~ise• a
% tac•u~ output file is
% cr·ea1ted en dist< or tape.

FILE SUM~AFY CLABEL = ~f/lRGll"/"h2", % The t~c files, k_2_SUMMARY

4-28

CEVICE = [JSK_PACKJ, l and W 2 REPU~T• are declarec.
~fPO~T CCEVICE = FF1NTE~ f3FMS % k_2_SD~~ARY has the label

GR B~CKUF CISK); % PAYROLL/W2 and device type cf
!. CISK_P~CK. k_2_fi£PO~T has
% the de~ice tvce ot PRINTER
% and special forms with the
% BACKUP DISK option.

B 1000 Systems SDL/UPL Reference Manual
Declarations

END __ OF_PAGE__ACTION

The END_OF _p AGE_ACTION file attribute causes the write operations to return the end-of-file
exception when the end of page is encountered on the line printer. The program can specify action
to be taken with ON EOF keywords in the WRITE verb. The default is no automatic end-of-page re
porting.

SDL and UPL Syntax:

-- END_OF _PAGE_ACTION --------

Example:

fILE OlSKf ILE COf.~lC£ = CISK,
EU_l~CRE~E~T£[= 2);

EU_INCREMENTED

The EU_INCREMENTED fille attribute specifies the disk drive on which the first area of a file is
to be written. Each subsequent area is then written on the next drive. If the next drive does not exist,
the next area of the file is written to the first drive and so on. By default, files are written to one
disk drive.

SDL and UPL Syntax:

~EU_INCREMENTED = <driv•numbe~ -----·~-----------------~

Syntax Semantics:

drive-number
This field can be any valid number within the range 0 to 15 and specifies the disk drive number
of a head-per-track or systems disk pack. If <drive-number> is not an available disk pack, then
0 is used.

Example:

FILE LINE CCEVICE = PRI~TER•
ENO_Of _F~GE_ACTIO~>;

EU_SPECIAL

The EU_SPECIAL file attribute specifies the disk drive on which the file is to be written. By default,
areas of the file are allocated anywhere on disk.

SDL and UPL Syntax:

~ EU_SPECIAL = <driv•num~r~ -----~--~-----------------~

Syntax Semantics:

drive-number
This field can be any number within the range 0 to 15 and specifies the disk drive on which the
fifo is to be written. Only head-per-track and systems disk packs are valid. If the drive is not avail
able, <drive-number> is set to 0.

1137833 4-29

Example:

B 1000 Systems SDL/UPL Reference Manual
Declarations

FILE OISKFILE <DEVICE = DISK.
EU_SP£CJl&l = 2>;

EXCEPTION_MASK

The EXCEPTION_MASK file attribute specifies the types of exceptions that the program can handle
for the file. By default, no exceptions are to be reported in the exception mask.

SDL and UPL Syntax:

~EXCEPTION_MASK = <exception-~u> ~-------------------~---~

Syntax Semantics:

exception-bits
This field must be a 24-bit value. Each bit signifies which exception is to be reported in the excep
tion mask field for read and write operations. The default value is @000000@.

Example:

FILE OISKf Il£ COEVICE =CISK•
EXCEPTIO~ ~AS~ = ;rrrooo;);

FILE_TYPE

The FILE_ TYPE file attribute specifies the file type of the created file. In particular, B 1000 compilers
specify a FILE_TYPE = CODE for their resulting code files. The default is DATA.

SDL and UPL Syntax:

- FILE_ TYPE =

Syntax Semantics:

CODE

--- DATA ----------------------------1~
INTERPRETER -----t

CODE ------

INTRINSIC ------1
PSR_DECK----------

The keyword CODE causes the file being created to be a code file.

DATA
The keyword DAT A causes the file being created to be a data file.

INTERPRETER
The keyword INTERPRETER causes the file being created to be an interpreter file.

INTRINSIC
The keyword INTRINSIC causes the file being created to be an intrinsic file.

4-30

PSR._DECK

B 1000 Systems SDL/UPL Reference Manual
Declarations

The keyword PSR__DECK causes the file being created to be a pseudo-reader file.

Example:

HOST NAME = "~GST~"

HOST_NAME

The HOST_NAME file attribute specifies that the file resides on a remote BNA host system.

SDL and UPL Syntax:

Syntax Semantics:

host-name
The field can be any character string up to 17 characters long which specifies the name of the
remote host system.

Example:

FILE our CCEVTCE = c1·sK~
FlLE_TYPE = CCCE>;

INVALID_CHARACTERS

The INV ALID_CHARACTERS file attribute applies only to printer files and specifies the type of in
valid-character reporting that is to be done.

When a printer file includes a print character that· is not valid on the line printer, an invalid-character
exception is reported to the MCP. The value of the INV ALID_CHARACTERS file attribute deter
mines the action taken when invalid characters are encountered while printing a file. The default value
is 2.

SDL and UPL Syntax:

- INVALID_CHAAACTERS = E; ~

1137833 4-31

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

0

2

3

The keynumber 0 causes the MCP to report all printed lines containing invalid characters.

The keynumber 1 causes the MCP to report the first print line containing any invalid characters
and then to terminate the program.

The keynumber 2 causes the MCP to report only the first print line that contains any invalid char
acters and to continue printing.

The keynumber 3 causes the MCP not to report any print lines that contain invalid characters.

Example:

fILE LINE CCEVICE = P~l~TER•
INVALID_CHA~~CTER~ = ~);

LABEL

The LABEL file attribute specifies an external file name for the file as it appears, or as it is to be
stored in the disk directory. The file identifier in the FILE declaration statement is the default name.
The LABEL file attribute writes the file identifiers in the file parameter block (PPB).

If only the multi-file-identifier is specified, the file identifier is assigned blank characters.

The pack identifier is not affected by the LABEL file attribute.

The MCP uses only the first ten charncters of each identifier.

SDL and UPL Syntax:

- LABEL= "<multi-file-identifier>"

----- I"< file-identifier> " ------'

Syntax Semantics:

multi-file-identifier
This field can be any valid 10-charncter identifier that follows the B 1000 file-naming convention.

file-identifier
This field can be any valid 10-chara.cter identifier that follows the B 1000 file-naming convention.

Example:

FILE OISKFILE <DEVICE = CISK,
LABEL = ~~AST£R"l"fll£");

4-32

LABEL_TYPE

B 1000 Systems SDL/UPL Reference Manual
Declarations

The LABEL_ TYPE file attribute is valid only for tape and printer files and specifies the label type
of the file. The BURROUGHS standard label and the ANSI standard label are the same. The default
LABEL_ TYPE label is the ANSI standard label.

SDL and UPL Syntax:

- LABEL_ TYPE = ~ UNLABELED

BURROUGHS ---i

ANSI!-----_.

Syntax Semantics:

UNLABELED
The keyword UNLABELED causes the file to be unlabeled.

BURROUGHS
The keyword BURROUGHS causes the file to have the Burroughs standard label.

ANSI
The keyword ANSI causes the file to have the ANSI standard label.

Example:

fILf LINE CCEVICE = P~I~TEh~
LAl?.EL_TYPE = EUf<RCUGHS)i

LOCK

The LOCK file attribute requests the MCP to enter the external file name into the disk directory. The
LOCK file attribute is overridden if the file is closed with the purge option.

There are two ways to permanently close a file: with the CLOSE verb, or with an implied close when
the program goes to end of job.

If a tape or disk file is explicitly closed and the LOCK file attribute is specified in the file declaration,
the file identifier remains in the disk directory. The LOCK file attribute is used to close the file when
either a CLOSE REMOVE; or CLOSE CRUNCH; statement is specified. The LOCK file attribute is
not used to close the file when CLOSE PURGE; statement is specified.

An implied close occurs under two conditions: when a program goes to end of job with the file still
open and when a program is discontinued by using the MCP commands DS or DP. A file is not closed
if the system halts.

If an implied close occurs, the file is locked into the disk directory only if the LOCK file attribute
is specified. If not, the file is closed with the release option. Only new files are not entered in the
disk directory if the LOCK file attribute is not spedfied and the file is implicitly closed.

The default is no LOCK.

1137833 4-33

SDL and UPL Syntax:

B 1000 Systems SDL/UPL Reference Manual
Declarations

-LOCK-·------------------------~-~~----~--------------------~----------

Example:

FILE OlSKfllE COEVlCE = CISK,
LOC~);

MODE

The MODE file attribute specifies the type of parity checking and translation that is to be used for
the file. The default is odd parity checking or EBCDIC translation, whichever is applicable.

SDL and UPL Syntax:

-MODE =1ASCll
EBCDIC ----1

BCL---

BINARY--

Syntax Semantics:

ODD

>--EVEN~
......... -ODD----

The keyword ODD specifies that odd-parity checking is to bt~ used.

EVEN
The keyword EVEN specifies that even-parity checking is to be used.

EBCDIC
The keyword EBCDIC specifies that EBCDIC translation is to be used.

ASCII
The keyword ASCII specifies that ASCII translation is to be used.

BCL
The keyword BCL specifies that JBCL translation is to be used.

BINARY
The keyword BINARY specifies that BINARY translation is to be used.

Example:

4-34

FILE TAPlfllE COEVICE = lAPf,
MOCE ::: CCC:);

J
l

MULTl_PACK

B 1000 Systems SDL/UPL Reference Manual
Declarations

The MUL TI_P ACK file attribute specifies that a single file can reside on more than one disk pack.
The default is that the entire file must reside on one disk pack.

SDL and UPL Syntax:

~ MULTl_PACK --~~~~·~~~~~~~~~~~~~~~~~~~~~~~~~~~

Example:

FILE OISKFILE COEVICE = CISK,
MUL TI_PACf();

NUMBER_OF_STATIONS

The NUMBER_OF _STATIONS file attribute specifies the maximum number of stations that are at
tached to this remote file. The maximum number of stations that can be attached is system dependent
and is determined by the network controller. The NUMBER_ OF _ST A TIO NS file attribute must not
specify more stations than the network controller has defined. The default is 1.

SDL and UPL Syntax:

Syntax Semantics:

number
This field specifies the maximum number of stations that are to be attached to the remote file
when the remote file open is approved by the network controller.

Example:

FILE REMCTEFILE COEVICE = fiE~OTE~
~U~BEF Cf STATICNS = SJ;

OPEN_OPTION

The OPEN_OPTION file attribute specifies how the file is to be opened.

SDL and UPL Syntax:

- OPEN_OPTION = ~NPUT~=J
-OUTPUT

-NEW

-DEFAULT

1137833 4-35

Syntax Semantics:

INPUT

B 1000 Systems SDL/UPL Reference Manual
Declarations

The keyword INPUT causes the file to be opened input.

OUTPUT
The keyword OUTPUT causes the file to be opened output.

NEW
The keyword NEW causes the file to be opened as a new me.

DEFAULT
The keyword DEFAULT causes the file to be opened using the following default options for each
device.

Example:

Dt~vice

CARD
PRINTER
PUNCH
DISK
REMOTE
TAPE
QUEUE

Option

INPUT
OUTPUT
OUTPUT
INPUT
INPUT /OUTPUT
INPUT
INPUT /OUTPUT

FILE DISKfILE COEVICE = [ISK,
OPf~_UPTlON = INPUT/OUTPUT/NE~)J

OPTIONAL

The OPTIONAL file attribute specifies that the file can be missing without suspending program execu
tion.

Performing a read operation from a missing file generates the ODT message FILE MISSING. If the
OPTIONAL file attribute is specified, the MCP command OF (optional file) causes the program to
perform the ON EOF branch for any read of the file. Program execution then continues. The default
is no OPTIONAL which requires the file to be present.

SDL and UPL Syntax:

Example:

4-36

FILE DIS~FILE COlVICE = CISK,
Uf'TlONAl };

PACK_ID

B 1000 Systems SDL/UPL Reference Manual
Declarations

The PACK_ID file attribute specifies the disk-pack identifier for the disk file. The default pack identi
fier is the system disk.

SDL and UPL Syntax:

Syntax Semantics:

pack-identifier
This field can be any identifier that follows the B 1000 disk file naming convention for disk files.

Example:

F!Lf UlSKFlLE COEVICl = CISK,
PACK_IC = "USER")i

PROTECTION

The PROTECTION file attribute specifies a security type to the file. The default is 0.

SDL and UPL Syntax:

- PROTECTION = <number> ---------·--------------------1

Syntax Semantics:

number
This field can be any number between 0 and 4, inclusive, and is used to define the security type.
The security type for each value is listed in the following table.

Security
Value Type

0 Default
1 Public
2 Private
3 Guard

Example:

f ILE CISKFILE COEVICE = CISK,
PhCTECTICf\ :: 2);

1137833 4-37

PROTECTION_IO

B 1000 Systems SDL/UPL Reference Manual
Declarations

The PROTECTION_IO file attribute specifies whether the file is to be opened input, output, or both.

SDL and UPL Syntax:

- PROTECTION_IO = <number>

Syntax Semantics:

number
This field can be any number between 0 and 2, inclusive. The meaning of each value of < num
ber> follows.

Value Definition

0 Input/Output (Default)
1 Input
2 Output

Example:

f Il£ OlS~fILE <OEVICE = CISK,
P~ClfCTJON IO = 21;

RECORDS

The RECORDS file attribute specifies the number of characters per record or per block.

The default values in bytes for each device follow.

SDL and UPL Syntax:

Device Bytes

CARD 80
DISK 180
PRINTER 132
ODT 72
All Others 80

- RECORDS= ---c- <physical-size>

<logical-size> I< records-per~block>

4-38

Syntax Semantics:

physical-size

B 1000 Systems SDL/UPL Reference Manual
Declarations

This field can be any number and specifies the number of characters per block.

logical-size
This field can be any number and specifies the number of characters per record.

records·-per-block
This field can be any number and specifies the number of records per block.

Example:

REEL

fILE OISKFlLE <DEVICE = CISK,
RECCRDS = 180110>;

The REEL file attribute applies only to magnetic tape files and specifies the starting reel number.

For output tape files, the MCP uses the supplied reel number as the starting reel number. This reel
number is written in the tape label. If more than one physical tape is needed to hold the file, the MCP
automatically increments the reel number by one and writes the new reel number in the label of the
next tape.

For input tape. files, the MCP starts reading the tape file at the specified reel number. This means
that the MCP looks for the tape whose label contains the same reel number as that specified in the
REEL file attribute, as well as the name of the requested file. As in output, the MCP automatically
increments the reel number by one if the physical tape has been read but the actual end of file has
not been reached.

The default reel number is 1.

SDL and UPL Syntax:

- REEL = <reel-number>--------------------------------.

Syntax Semantics:

reel-number
This field can be any number and specifies the starting reel number in which to read or write.

Example:

FILE TAPEFIL£ COEVICl = TAfE,
PEEL:_-: 5);

1137833 4-39

B IOOO Systems SDL/UPL Reference Manual
Declarations

REMOTE_KEY

The REMOTE_KEY file attribute directs read and write operations to specific stations. The
NUMBER._ OF _ST A TIO NS file attribute must be specified in conjunction with the REMOTE_KEY
file attribute. The remote key is a IO-character field containing station number, message length, and
message type. This IO-character field is the <remote-key-identifier> field in the syntax for the READ
and WRITE verbs. The following is the format of the remote key.

Remote Key Fields

Station number
Message length (bytes)
Message type

The default is no REMOTE_KEY.

SDL and UPL Syntax:

Data Type

CHARACTER
CHARACTER
CHARACTER

Length
in Bytes

3
4
3

Value Range

1 - 999
0 - 4095
000 (write)
or 001 (read)

- HEMOTE_.KEY --------· -------------------------

Example:

FILE ~£MCTEFILE CCEVICE = ff~OTE•
REMOTE_KfY.,
~L~8Fr CF STATIUNS = 4};

SAVE

The SAVE file attribute specifies the number of days the declared file is to be saved. Files are never
removed from the system automatically. The default is 30.

SDL and UPL Syntax:

- SAVE = <number-of-days> ----·--------------------------1

Syntax Semantics:

number-of-days
This field can be any number and specifies the number of days to save the disk file.

Example:

4-40

f IL£ OlSKFll[COE~ICE = CISK,
'SAVE = 45);

SECURITYTYPE

B 1000 Systems SDL/UPL Reference Manual
Declarations

The SECURITYTYPE file attribute specifies a security type to the file. The default is 0.

SDL and UPL Syntax:

- SECURITYTYPE = <number>---------------------------&

Syntax Semantics:

number
This field can be any number between 0 and 4, inclusive, and is used to define the security type.
The security type for each value is listed in the following table.

Security
Value Type

0 Default
1 Public
2 Private
3 Guard

Example:

FILE DISKFILE COEVICE = DISK,
SECLRITYTYPl = 2};

SECURITYUSE

The SECURITYUSE file attribute specifies whether the file is to be opened input, output, or both.

SDL and UPL Syntax:

- SECURITYUSE = <number> ·------------------------------1

Syntax Semantics:

number
This field can be any number between 0 and 2, inclusive. The meaning of each value of < num-
ber> follows.

Value Definition

0 Input/Output (Default)
1 Input
2 Output

Example:

FILE OISKfllE <DEVICE = CISK,
SECLRITYUSE = 2);

1137833 4-41

B 1000 Syst1~ms SDL/UPL Reference Manual
Declarations

SERIAL
The SERIAL file attribute specifies the: serial number of the output media. This media can be tape
or disk. The default is no serial number.

SDL and UPL Syntax:

- SERIAL = ---L-- <number> J
"<character-string>" -----

Syntax Semantics:

number
This field can be any valid numb1~r and specifies the serial number for the output media.

character-string
This field can be any character string and specifies the serial number for the output media.

Examples:

FILE TAPlf ILE CD[VICf = TAPE~
~EFJQL - 123456);

f Ilf TAPEOUT <CEVICE = TAPl~
Sl~IAL = "OUTPLT"l;

TRANSLATE
The TRANSLATE file attribute specifk~s that a translation is to be performed on the file by the MCP.

The MCP supplies a multi-file-identifier to the specified file id1~ntifier. The multi-file-identifier is
TRANSLATE.

The TRANSLATE file attribute sets the translate boolean in the file parameter block (FPB).

SDL and UPL Syntax:

- TRANSLATE = "<file-identifier>"

Syntax Semantics:

file-identifier
This field can be any valid file identifier that follows the B 1000 file naming convention and
specifies the name of the file that contains the translate table.

Example:

fILf Tfllf <DEVICE= CJSK, % The resultinq transtate
TRA~SLATE = "T~A~SFIL["); % file identifier is

I T~~~SLATE/TRA~SfllE

4-42

B 1000 Systems SDL/UPL Reference Manual
Declarations

USE__INPUT_BLOCKING

The USE_INPUT _BLOCKING file attribute applies only to input disk, tape, or card files.

For disk files, the record and block size specifications are taken from the disk file header (DFH). Any
specifications for these file attributes are ignored.

For tape files, the record and block size specifications are taken from the tape label. If this option
is used for an unlabeled tape file, a run-time error results.

For card files, the following record lengths are assumed.

Number of
Columns

80
96
BIN

Length

80 Bytes
96 Bytes
960 Bits

The default is the record and block sizes that are specified in the file declaration. Those options omit
ted are set to default values.

SDL and UPL Syntax:

- USE_INPUT_BLOCKING

Example:

FILE ClS~flLE (DEVICE = crs~,
USE_INPLT_BLOCKI~G);

USER_NAMED_BACKUP

The USER_NAMED_BACKUP file attribute specifies that if the printer file goes to backup, the
name of the printer backup file is the name specified by the LABEL file attribute; otherwise a system
backup number generated by the system. The default uses the system-assigned backup file names.

SDL and UPL Syntax:

- USER_NAMED_BACKUP

Example:

FILE LI~~ CCEVIC£ = PRINTER B'CKUP DISK~
USER_NA~EO_B~CKUP,

LAREL = "LI~E"/"8ACKUP");

1137833 4-43

VARIABLE

B 1000 Systems SDL/UPL Reference Manual
Declarations

The VARIABLE file attribute specifies that the file has variable-length records. The default is fixed
length records.

SDL and UPL Syntax:

- VARIABLE ---------------------·----------------t

Example:

f ILE OISKFILE COEVICE = CIS~,
VAF1t.BtE}i

WORK_FILE

The WORK_FILE file attribute causes. the job number of the program to be included as part of the
file identifier. W orkfiles are temporary files associated with a specific job and are removed when the
program goes to end of job. The default is no workfile.

SDL and UPL Syntax:

-----WORK_FILE ------------------------· ------~-------------------------------------~-------1

Example:

Fflf QISKFilE <DEVICf = CISK,
WU~K_flLEJ;

SWITCH_FILE DECLARATION

The switch-file declaration statement groups files together under a single file identifier. All files
grouped into a switch file must be declared in a file declaration statement before they can be referenced
in the switch-file declaration statement.

A subscripted switch-file identifier is valid anywhere a file identifier is valid.

If there are n files in a switch-file group, the subscript must range from 0 to n-1. The subscript selects
a file from the switch-file group, based on physical order. The first file in the list (from the left) is
switch file zero and the last is switch file n-1.

If all the files in a switch-file group are declared with a device type equal to REMOTE, then the
REMOTE_KEY file attribute can be used with the switch-file identifier. If all the files in the switch
file group are not declared with a device type equal to REMOTE, then the REMOTE_KEY file attri
bute cannot be used.

SDL and UPL Syntax:

r i - SWITCH_FILE <switch-file-identifier> (------------<file-identifier> ---);~

4-44

Syntax Semantics:

switch-file-identifier

B 1000 Systems SDL/UPL Reference Manual
Declarations

This field can be any valid SDL/UPL file identifier and specifies the name of the switch file.

file-identifier
This field can be any valid SDL/UPL file identifier and specifies the name of the file that is to
belong to the group of files in the switch file. Example Program:

E x a '" p t e P r o q f a IJ; :

FILE CAHOS CCEJICE = CARC),
I Af F 1

CJ5KI

PUNCf-1
LINF
r Af>EU

CDEHCt = TAt'f,
USE_I~PUT_ELCCKING),

CC[VlC£ = CISK"
USE_INPUT_ELQCKING),

CCEVICE = FUNC~J,
<DEVICE = FRlNTE~)"
CDEVICE. = TAPE"

R£COHOS = ~0/4)"
DlS~C CUE~ICE = LISK,

Ft..CCFLS :: 30/S);

SWITCH_FJLE I~PUT (C~Ros, TAPE!· DISKI>"
OUTPUT CPU~c~, llNf, r~PEO" CISKO);

DECLA~E I~PUT_TYPE FIXED,
CUTPUT_TYF£ FIX£C,
COT_INPUT C~AR~CTER C3)"
BUFFER CHAhACTER C80);

ClSPLAY (hE~TE~ I~PUT TYPE CR ENTER AYE TO GU TC ENO OF JOB");
ACCEPT or1_INFUf;
If OUT_INPUT = ~BYE" THEN co;

DISPLAY ("GOUD 8YE~);

S HP;
E~o;

I~PUT_TYPE := BlNAHY CSUBSTR CCOT_INPUT, Q,, 1)) MOD 3;
CISPlAY {"ENTE~ OUTPUl TYFE Ok E~TEk BYE TO CO TO ENO Of JOB");
4CCEPT ODT_I~PUT;

IF COT INPUT = "BYEft THEN co;
DISPLAY {"GOOD BYE");
ST(:P;

ENO;
OLTPUT_TYPE := BINA~Y CSLBSTR CODT_JNPUT, c. 1)) MOO 3;
OPEN l~PUI CINPUT_TYPE> I~PLT;

OPEN GUTPUT CLUTPUT_TYPE> WITH CUTPUT~ NEW;
OC fOHE\JER;

READ INPUT CINPUT_TYP£) ceurFEH)~

CN £OF lJNDOi
WRITE LlUTPUT COUTPUT_TYPEJ (BUFFER);

E "D;
CLOSE OUTPUT COUTPUT_TYPE) ~ITH LOCK;
STOP;
FIN i;

1137833 4-45

B 1000 Systems SDL/UPL Reference Manual

SECTION 5
DEFINES

The define statement provides SDL/UPL programs with a macro definition facility by assigning a por
tion of the SDL/UPL source statements to an identifier.

At compile time, every occurrence of define-identifier is textually replaced by a portion of the source
statement specified in <text> . If the compiler control option DETAIL is set, these macro expansions
are included in the source listing. If the DETAIL option is not set, only <define-identifier> is listed.
If the compiler control options EXPAND_DEFINES and XREF are set, the macro expansions are
cross ref etenced.

The SDL/UPL compiler does not check the syntax of the <text> contents. When <define-identifier>
is invoked, <text> must conform to the syntactical requirements of the statement containing <define
identifier > .

<define-identifier> can be nested within another DEFINE statement. Twelve levels of nesting are al
lowed.

SDL and UPL Syntax:

-DEFINEL

--c A

<define-identifier> ---.--~s

(<parameter>
_____ ...___)

<parameter>

A +<------------------------------------~-i-
B >--AS # <text> # ----

Syntax Semantics:

define-identifier
This field can be any valid SDL/UPL identifier and specifies the definition identifier. Reserved
words cannot be specified as <define-identifier> . However, <define-identifier> can be defined
as a reserved word. Special words can be redefined and only lose their special significance within
the scope of the definition. Refer to Appendix A for a complete list of reserved and special words
recognized by the SDL/UPL compiler.

parameter
This field can be any valid SDL/UPL identifier and specifies the parameter that is associated with
<define-identifier> .

If more than one parameter is specified, the left-to-right order in which the parameters appear
in <text> must be the same left-to-right order in which the parameters appear in the parentheses
() or bracket [] characters. The number of parameters in <text> must equal the number of pa
rameters in the parentheses or bracket characters.

The maximum number of parameters allowed is eight per <define-identifier> .

1137833 5-1

B 1000 Systems SDL/UPL Reference Manual
Defines

AS
The keyword AS specifies that the first number sign (#) text-delimiter character is to follow.

The number sign (#) characters specify the delimiters of <text> .

text
This field is the text portion of the define statement that contains any SDL/UPL symbol including
semicolons, but not the number sign (#) or percent sign (OJo) characters. The number sign (#)
character is the end-of-text delimiter and the percent sign (OJo) character indicates that the remain
der of the source-image record is a comment. Specifying comments within the virgule asterisk and
asterisk virgule (/* <comments> * /) characters is allowed and the comment is not copied at invo
cation time.

A maximum of 1024 characters can appear in <text> , excluding comments and superfluous
blanks. Also, no unpaired parentheses or brackets can appear in <text>.

All identifiers specified in <text> must be declared prior to an invocation of <define-identifier>
and need not be declared prior to the define statement.

Example 1:

UEf 1NE PhOC AS #PFCClCLfE#;

Example 2:

OEFI~f CCMPA~E (Xp~) A~

tt If X < Y T Hl ~ <i C 1 H;;
LL Sf @{l)0~ #;

Example 3:

% The SDL/UPL compiler reotaces
4 every occurr~nce of identifier
% PrOC with PROCEDURE.

t When the SDL/UPL compiler
% encounters COMPARE CPl• P2l;
% in a source statement, the
4 folto~inq text is substituted.
Z IF Pl < P2 THEN ~C1>1~;
% ELS£ ~(1)0@;

4 The para~eters Pl and P2 in the
t the define statement are
% interpreted as procedure
4 oarameters.

OEf !~E REPlAf AS #PRC CT~CA. X> #; t The source statement contained
I between the number 5ign (#)

% characters is cooied into the
i. SOL/UPL orngram whenever the

If X E~L 9 lhE~ REPEAT; X identifier REPEAT is ~oecified.
t The IF statement invo~es the
% define statement.

5-2

B 1000 Systems SDL/UJPL Reference Manual
Defines

Example 4:

DEFINE TFIAL CA, 3, Cl AS
lf (A} E~L zrnc THEN A :: B;

ELSE C 11;

Example 5:

DEF n~r T 1;u E
FALSE

Example 6:

~s /1 0Cl>1; 11,
AS It ;;c11c;, It;

CEFI~E MAX A5 # & IF Sl ~ := X;
& E.LSE A := y;
8. ENO Iii

Example 7:

OEFI~F A AS # IF X GrR 10
Tl-EN frCCX 11,

CCM) AS n X := Mi

c { l) ;
8U~P 1 BY (~ + S);

Example 8:

OEFINt MAX_Sllt AS
& IF UATACO~~ 64

~ ELSf 32
~ ENC ii;

1137833

% This statement generates the
Z IF statewent whenever the
% identifier ThIAL i~ specified.

Z Th~ identifiers Tt<U£ and FALSE
% beccme boolean bit strinqs
4 eouat to 1 and o, respectively.

Z This statement is available
;.: to the SOL/UPL como i I er but
t onlv A := X or A := Y is
% compiled, deoendinq on the
% conditional symbol St. If
X the statement & SET St has
% been encountered• A == x; is
% used. If 51 has not be set,
% or t h e & r~ E S E T S 1 h a s be e n
% encountered, t~en A := Y is
% USP.d.

~ The two statements that follok
% the define statement exoand tc
:t the tot lo.winq:
:z x ·- z;
% If X GTR 10 THEN PROCXJ
% 8U~~ I BY CR + S);

% TF a conditional comolter
% contrcl option ~ SET UATACOMM
'Y. is sr;ecifiod, the define
% identifier MAX_SIZE is replaced
'Y. by the number 64. It g SET
% nATACOM~ is not specified or 8.
% ~ESET DATACOMM is 5pecified~
% MAX_S1Z£ is reolaced bv the
Z number 32.

5-3

B 1000 Systems SDL/UPL Reference Manual

SECTION 6
EXPRESSIONS

Expressions are the operational portions of statements. If a statement is analogous to a sentence, then
expressions are the words and phrases within a sentence. All operational functions, such as comparison,
arithmetic, and others, take place within expressions. Exceptions being the assignment and the regular
procedure-call functions.

The format of an expression is similar to the format of an algebraic expression. Operators, such as
+ , - , *, I, and so forth, are used as ''infix'' notation. Also, parentheses can be used to group the
order of evaluation. Each operand can be prefixed with a unary operator.

An expression is defined as recursive and can contain as many operands and operators as are required
to produce the desired result.

Expressions are evaluated by performing the indicated operations in a left-to-right order. The sequence
in which the operations are performed is determined by the rules of operator precedence. The rules
of operator precedence are described in Order of Precedence in this section. When operators have the
same precedence, the sequence of operation is determined by the order of the appearance, from left
to right. Parentheses can be specified to modify the normal hierarchical sequence of evaluation. An
expression within parentheses is evaluated and its value is used in subsequent operations.

The syntax and semantics of an expression are described as follows:

SDL and UPL Syntax:

<operand> -----------------..

--- <unary-operator>

>>-____ r ___ <operator> _, ___________________ <operand> __ ___.._ __

<unary-operator> ----

Syntax Semantics:

unary-operator
This field can be any valid SDL/UPL unary operator. The unary operators are + (plus) and -
(minus).

operand
This field can be any valid SDL/UPL literal or identifier.

6-1

B 1000 Systems SDL/UPL Reference Manual
Expressions

operator
This field can be any valid SDL/UPL operator. The valid SDL/UPL operators follow.

Operator

·-.-
.. -
+

*
I
MOD
=
EQL
I=
NEQ
>
GTR
>=
GEQ
<
LSS
<=
LEQ
NOT
AND
OR
EXOR
CAT

UNARY OPERATORS

The following are the unary operators.

Operatol"

+

Function

replace, delete left part
replace, delete right part
addition
subtraction
multiplication
division
remainder
equal
equal
not equal
not equal
greater than
greater than
greater than or equal
greater than or equal
less than
less than
less than or equal
less than or equal
not
and
or
exclusive-or
concatenation

Function

plus
minus

The unary operator acts upon one operand. It can never appear as an infix operator between two oper
ands. It can appear to the right of any other operator, including itself.

Minus

The unary minus (-) generates the two's complement of the operand associated with it
(- X = (NOT X) + 1). The operand can have any data type. If the data type is FIXED, the unary
minus has the effect of reversing the sign, and the result is stored on the evaluation stack with a
FIXED data type. If the operand is either a character or bit string, only the rightmost 24 bits are
evaluated. Character or bit strings less than 24 bits are padded with leading zeroes up to 24 bits. The
two's complement of the string is generated and returned to the evaluation stack with a FIXED data
type.

6-2

Example:

x : : - 1 .:

x ·- -f,j

Plus

B 1000 Systems SDL/UPL Reference Manual
Expressions

~ Tc~ntitier X i5 a5siqned the value of -1.

Z Identifier X is assigned the two's complement
% of ic~ntifi9r AR

The SDL/UPL compiler generates no code for the unary plus (+). The unary plus exists only for pro
gram documentation purposes.

Example:

% Identifier X is assiqned the value of 1.

% Identifier X is assigned the value of A.

ARITHMETIC OPERATORS

The following are the arithmetic operators.

Operator

+

*
I
MOD

Addition
Subtraction
Multiplication

}"'unction

Division yielding integer value of quotient
Division yielding integer value of remainder

The arithmetic operators perform 24-bit arithmetic on two operands of any of the three data types.
If both operands are declared with FIXED data types, sign analysis is performed. If the operands are
not declared with FIXED data types, only the rightmost 24 bits of each operand are used in the
evaluation. If an operand has a length less than 24 bits and is declared with a BIT or CHARACTER
data type, leading zeroes are padded in the leftmost bits prior to the operation.

The result of an arithmetic operation stores a 24-bit result on the evaluation stack. If both operands
are declared with FIXED data types, the result is a FIXED data type. If either operand is declared
with other than a FIXED data type, the result is a BIT data type.

Addition

The + (addition) operation causes the values of the two operands to be added.

Examples:

X :::: A + B;

X := 1 t A;

1137833

% Identifier X is assigned the sum of
% identifiers A and A.

% Identifier X is assiqned the sum of
% 1 plus the value of identifier A.

6-3

Subtraction

B 1000 Systems SDL/UPL Reference Manual
Expressions

The - (subtraction) operation causes the value of the right operand to be subtracted from the value
of the left operand.

Examples:

X := A - e; % IrJentifier x i s assiqned the value
% of identifier A t es s the value of
?: identifier B.

X : = A - 1 ; l Idertifier)(i s assigried the vatue
% of identifier A t P. s s l.

Multiplication

The * (multiplication) operation causes the values of the two operands to be multiplied together.

Examples:

X := A ~ 13;

x : :: ,, * 25;

Division

z Identifier X is assigned the value of
l identifier~ ~ultiolied bv the value
t of identifier H.

l Identifier Xi~ assiqned the V3lue of
l identifier ~ multiplied bv 25.

The I (division) operation causes the value of the left operand to be divided by the value of the right
operand. Any remainder is truncated.

Examples:

x . - 7 I 3i % lder.titier)(i <; a'isiqned the value 2. . ·-
y . - 3 I 7i % Ideritit;er y i s a5signed the value o. . ·-
l . - A I e; i. !certifier l i s ac;si qr:ed the value of .. -

% id€ritifier A divided t: y the value of
:z identifier !=!.

The multiplication and division operators do not associate.

Examples:

(A ~ Al I C does rct ecuat A ~ CB I C)

X := (4 * 5) I 7i 2 identifier X is a~siqned t~e value 2.

Y := 4 * C~ I 1l; Z ldentifier Y is assigned the value C.

6-4

MOD

B 1000 Systems SDL/UPL Reference Manual
Expressions

The MOD operation is the modular operation. A modular operation is the value that is left (remainder)
after a division operation is performed. The following formula is used in performing a MOD operation
where a and b are any operands.

a MOD b = a - (b * (a I b))

Examples:

A:.:: 7 MLO 3;

6 : = -7 MOD 3i

C := 3 MCD -n

o := -3 ~oc -;

Z Identifier A is assigred the value eouat to
% 7 - (3 • (7 I 31) = 7 - CJ • 2) = 1.

% Identifier B is assigned the value eauat to
2 -7 - C~ ~ C-7 I 3>> = -7 - (3 • C-2) = -\.

% Identifier C is assigned the value eaual to
% 3 - CC-7) * (~ I C-7))) = 3 - CC-7) • Ol = 5.

~ Ideptifier D is assigred the value eoual to
% C-3) - CC-7> • ((•31 I C-7))) = C-3) - CC-7> * 0
% = 3.

Negative arguments do not follow the traditional definitions of modular arithmetic in mathematics.

RELATIONAL OPERA TORS

The following are the relational operators.

Operator

=
I=
>
<
>=
<=
EQL
NEQ
GTR
LSS
GEQ
LEQ

Function

equal
not equal
greater than
less than
greater than or equal
less than or equal
equal to
not equal
greater than
less than
greater than or equal
less than or equal

The relational operators cause a comparison operation between two operands of any data type. If the
comparison is TRUE, the 1-bit result, @(l)l@, is returned. If the comparison is FALSE, the 1-bit
result, @(1)0@, is returned.

If both operands are declared with FIXED data types, the operator does a true-sign comparison. If
both operands are character strings, the shorter operand is padded on the right with blanks and a char
acter-by-character comparison using the EBCDIC collating sequence is performed. For all other oper
and combinations, leading zeroes are padded into the leftmost bits of the shorter operand. No sign
analysis is performed and the operands are treated as positive values.

1137833 6-5

Examples:

)(. - l -:: 2; . -
x . - 1 I= i; . -
x . - 1 > 2; . -
x . ·-. - 1 G[Q ? .•

..... 7

x .. - l LSS 2i . -
x . - 1 l E fl 2 ; . -

B 1000 Systems SDL/UPL Reference Manual
Expressions

7. Identifier)(i 5 assigned the

% Iocntifier)(i 5 dssigned the

~ ldEntifilH x i 5 assigned th'}

i,; Jdertifier)(i s c:iisi9ned the

i. T d e n t i f i e r· x i s assiqned the

:t Idertitier x i 5 a<lsigred the

LOGICAL OPERA TORS

The following are the logical operators.

Operator

NOT
AND
OR
EXOR

Function

not
and
or
exclusive-or

value ~Cl>O~.

value ;;(1)1:~.

value ~(1>041.

value :tCl}O~.

value u 1)1 ~-

value ;'(l)l~.

The logical operators perform a bit-by-bit analysis on all three data types. The NOT logical operator
is considered a unary operator and can appear to the right of any other operator (including itself).
The result of each logical operator for every boolean value of X and Y is summarized in Table 6-1.

Table 6-1. Boolean Logic Table

Boolean
Value Result

NOT NOT
x y x y X ANDY XOR Y X EXOR Y

0 0 1 1 0 0 0
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 1 1 0

6-6

B 1000 Systems SDL/UPL Reference Manual
Expressions

Example:

CECLAFE CA, u, c, c, x, Y> EITC8);
x := ;c1>00101110;;
¥ := ;(1)10101100~;

A . -. - NC T 'r(•
.. ·' % Icentifiar A i ~ assiqned

B . -- '{ A N 0 y;
'~ Icentifier 8 i <; assiqned . -

c . - x Cr)' ; % Iaentlfiet c i s ass1qned . -
0 .. - x EXOH y; % Icentifier c i "i assioned . -

CAT OPERATOR

the value

the value

th t~ vatue

the Va I Uf~

¢(1) 11010001 ;.

<1(1)001011.00~.

01(1)10101110~.

;; (1>10000010 ••

The CAT operator is a concatenate operator that joins two strings of data and forms a new string.
Any combination of data types or data strings can be concatenated. The resultant string cannot exceed
8191 characters or 65,535 bits.

Character string concatenation is the most common concatenation operation. If two strings to be con
catenated are character strings, the result is a character string. Concatenation of any other combina
tions of data types results in a bit string.

Example:

DECLMIE A

c . ·-. -

x . -. -

1137833

io;

l!
c
x
y

2
xx

8 CAT e;

CH/.f..ACTEf',
r3 IT C 3) ~

f IXFO.,
t3IT (6).,
Cl-'iiiHClf.f' (2),.
tllI Ctl),
oIT {27);

% ldentifier A co4llprises a character string
% contdinir.q the fetter 8.

% IdePtifi~r R comprises a bit string that
% contairs the binary vat~e of five. The
io leroth of the identif1ef' is three bits.

% 1cent i fi er c cowprisec; a fixed string th at
% coritains the oositive {,.) decimal value of

% A binary value of 45 'J f @(1)1011014 i s
% createc. The tenqth of the data str-inq
z i s 5 i)(hits and tr e r~sutt of the
% concatenation i 5 assi1ned to the identif;er
% x.

1c.

6-7

B 1000 Systems SDL/UPL Reference Manual
Expressions

Y :=A CAT A; 7. A character strinq, coflllcrised of two bvtes•
z that has a value of "0B" is created. This
% value is assiqned to the identifier Y.

l := ~ C~T E; % A brinarv value of 1557 or ~(1)11000010101~
% is create~. The lergth of the data strinq
% is 11 tits. The result of the concatenatio"
% ii; assiqn+?d to the identifi~r z.

XX := B CAT c; % A tinary ~trin~ eouiva~ent to the SOL/UPL
z cctal pot~tion ~(3)500000012~ is created.
i. The r~sult of the concatenation is assiqned
% tc the identifier XX.

X := A CAT E ·- 4; % The CAT ooerator i5 to~er in orecedence tha~
% t~e :~ assiqnment ope~ator. Identifier B
% is set to a value of folr before identifier
% b i~ cc~catenated ~ith identifier A. The
h r c 5 1.1 t t o f t h e c o n c a t e n a t i o n i c; t h e n
% assigned tc the identifier x.

Example Program:

DECLARE
01 TIME_OF_OAY

03 HOURS
01 MINUTES
03 SECONDS
03 TENTHS_or_SECONOS
0 3 AM_OR_PM

BIT C 72),
BIT C16J.
BIT Clfil•
BIT C16),
BIT CB>•
BIT C 16H

TIME_Of DAY := TIME CCIVILIAN .. CHARACTERH
DISPLAY C"THE CURRENT TIME IS " CAT HOURS CAT •:" CAT MINUTES

CAT ":• CAT SECONDS CAT •.• CAT TENTHS_Of_SECONOS CAT
• • CAT AM_OR_PH);

STOPi
FINH

% This example program obtatns the current time from the HCP.
% displays the hours, minutes, seconds, tenths of a second• and
% AH or PM on the OOT. The CAT operator verb is used to concatenate
% the message.

Output from Example Program:

% TESTO =2403 THE CURRENT TIME IS 12:35:1&.0 PH

CONDITIONAL EXPRESSION

The conditional operator expression uses the keywords IF, THEN and ELSE or the CASE verb. Refer
to Section 9 for a complete description of IF, THEN and ELSE keywords and the CASE verb.

6-8

B 1000 Systems SDL/UPL Reference Manual
Expressions

REPLACEMENT OPERATORS
The following are the replacement operators.

Operator Function

delete left
delete right

The replacement operation is performed within an expression and evaluation continues after the re
placement is made.

Delete Left (: =)

The delete-left operator assigns the value of the operand on the right to the operand on the left. The
new value of the operand on the left remains on the evaluation stack without any change to its attri
butes. Any truncation or realignment of data that takes place during the replacement is not reflected
during evaluation of the expression.

Example:

DECL.\RE CC
PB
/I, fi.

AA ::: ER ::::

CHARACTff' (2),
HH (4),.
ChAt~AC.TEfi (2);

f.C ::". "b";

The following describes the action taken to evaluate the example.

1. The value being assigned is the literal "6" (@F6@).
2. The value@F6@is stored,left-aligned,into identifier CC.It is padded on the right with a blank

@40@ character, because identifier CC has a data type equal to CHARACTER and is longer
than @F6@. The resulting value of identifier CC is @F640@.

3. The value @F6@ is stored, right-aligned with truncation, into identifier BB, because identifier
BB has a data type equal to BIT and is shorter than @F6@. The resulting value of identifier
BB is @6@.

4. The value @F6@ is stored left-aligned into identifier AA and is padded on the right with a
blank @40@ character, because identifier AA has a data type equal to CHARACTER and is
longer than @F6@. The resulting value of identifier AA is @F640@.

Figure 6-1 shows the status of the evaluation stack and each identifier as the evaluation of
AA:= BB : = CC : = "6" is performed.

~] ~ ~ ~ "Empty"

G18302

Figure 6-1. Status of the Evaluation Stack

1137833 6-9

B 1000 Systems SDL/UPL Reference Manual
Expressions

Delete Right (:: =)

The delete-right (:: =) operator evaluates the operand to the right and stores the value into the memory
location referenced by the operand to the left. The value of the operand to the right becomes
unavailable during any further evaluations. The continued evaluation of the operands uses the value
and attributes of the operand to the left of the operator. Any truncation or realignment of data that
takes place during the replacement is reflected during the continued evaluation of the expression.

Example:

CECLA~E CC CHA~ACTER CZ),
Re 81T (4),
AA ChAF~CTE~ {2);

AA := HE : ::.: CC ::= "'f"i

The following describes the action taken to evaluate the example.

1. The value being assigned is the literal "6" (@F6@).
2. The value@F6@is stored,left-aligned,into identifier CC and is padded on the right with a blank

@40@ character, because identifier CC has a data type equal to CHARACTER and is longer
than @F6@. The resulting value of identifier CC is @F640@.

3. The value of identifier CC (@F640@) is stored, right-aligned with truncation, into identifier
BB since identifier BB has a data type equal to BIT and is shorter than @F640@. The resulting
value of identifier BB is @O@.

4. The value of identifier BB (@O@) is stored, right-aligned into identifier AA and is padded on
the left with binary zeros @000@, because identifier BB is a bit string. The resulting value of
identifier AA is @0000@.

Figure 6-2 shows the status of the evaluation stack and each identifier as the evaluation of
AA : = BB :: = CC :: = "6" is performed.

0 ~ @] ~ "Empty"

G18303

Figure 6-2,. Status of the Evaluation Stack

6-10

B 1000 Systems SDL/UPL Reference Manual
Expressions

Replacement Operations in Procedures

The following is an example of a delete left and a delete right replacement in a procedure.

Examples:

PFOCECU~E GGOD BIT VA~Yl~G;
UECLARE X JJT (48);
RETUR~ X ::= "RESUll";

[~D G(LC;

PRCCEOURE 8AD BIT ~ARVl~G;

CECLAff Y BIT (48);
PETUR~ Y := "RESULT";

Er~ C tH. L;

Procedure GOOD returns a bit string, because identifier X remains on the evaluation stack after being
evaluated and the data type of identifier X matches the procedure data type of BIT VAR YING.

Procedure BAD returns a character string as the result, because identifier Y is deleted from the
evaluation stack after being evaluated. The character string ''RESULT,'' which remains on the
evaluation stack, does not match the procedme's data type of BIT VARYING. If the
FORMAL_ CHECK compiler option is specified, procedure BAD produces a run-time error.

ORDER OF PRECEDENCE

The following is the relative binding power (precedence) of the SDL/UPL operators. The operators
are listed from highest to lowest order.

+, - (unary operators)
*, I, MOD
+, - (additive operators)
=,I=,>,<,>=,<=
NOT
AND
OR, EXOR
CAT
CASE
IF-THEN-ELSE
Replacement

Refer to Section 9 for a complete description of CASE and IF, THEN, and ELSE.

The replacement operators have higher precedence than any operator to their left and lower precedence
than any operator to their right.

The order of evaluation of operators having equal precedence is always from left to right within the
expression.

Parentheses and brackets force the enclosed expression to be evaluated completely before any
operations outside the parentheses or brackets are evaluated. When parentheses or brackets are nested,
the inner-most pair is evaluated first. Within the parentheses or brackets, normal rules of precedence
are in effect. /

1137833 6-11

B 1000 Systems SDL/UPL Reference Manual
Expressions

ADDRESS GENERATORS

An address generator includes any expression that leaves an address on the top of the evaluation stack.

The following is the syntax of address generators.

BUMP <identifier> BY <expression>
DECREMENT <identifier> BY <expression>
IF <expression> THEN <identifier> ELSE <identifier>
CASE <expression> OF (<identifier-I>, ... , < identifier-n >)
<identifier-! > : = < identifier-2 >
<identifier-! > : : = <expression>

INDEXING (SOL PROGRAMS ONLY)

There are two methods of indexing in an SOL program. They are:

1. The descriptor provides the add:ress and the index provides the offset from this address.
2. The descriptor provides the offset and the index provides the address.

The indexing operation causes the following three events to occur.

1. The simple or array descriptor is loaded to the top of the evaluation stack.
2. If the descriptor is an array descriptor, it is converted to a simple descriptor which describes

the first (zero) element of the array.
3. The address field of the descriptor is modified by adding the index to it.

Self-relative data items cannot be indexed. For example, data items whose length is not greater than
24 bits, are not in a structure, and do not remap some other data item.

SDL Syntax:

----..--- <simple-identifier> ---

~--<array-identifier> __ _J
r--·
- <expression>------

Syntax Semantics:

simple-identifier
This field can be any valid SOL identifier with a length greater than 24 bits, and specifies the
name of the template used for indexing.

array-identifier
This field can be any valid SDL array identifier and specifies the name of the template used for
indexing.

expression

6-12

This field can be any valid SDL expression and specifies the offset to be used for indexing. If
more than one <expression> is specified, the sum of the expressions is used.

Example:

B 1000 Systems SDL/UPL Reference Manual
Expressions

Assume the following is a memory layout of an SDL program and identifier N has the value of n
(the offset from the beginning of identifier A to identifier B). Identifier D can be accessed using either
of the two methods.

I<
Method 1:

0CCLl',FE ~ 1

f\
x

x . - 0 ()\ l;

Method 2:

DECl.Af'E A
01

N
x

n BITS 5 BITS 2 BITS 3 BITS •••

A
!)3

i.
%

n
03
03
o~ J ...,

~c >I< D >I< E ~
A)I

t IT (5000),.
R,
0 'j r f. H { 5) 11'

05 "' t n (2),. I_;

)5 E PIT (-~ h
tl'T (2 4),.

EI T C:? H

This statewert ~aves identifier D Cwith the offset
q i \I en b " i d ~ ri t i f i er i~ l i n t o 1 dent i f 1 er X •

EIT C5000h
REtJAPS BASE,.

C BIT (5),.
C All (2),.
f P.IT (3),.

8lf (24),.
BIT (2);

X := C (~,. CATA_ACCfiESS {A)J; % This statement moves identifier
Z 0 Cwith the offset qiven bv the
% sum of identifier ~ and

1137833

% D~TA_AOORESS CA)) into identifier
j; x.

6-13

6-14

B 1000 Systems SDL/UPL Reference Manual
Expressions

NOTE
The following must be noted concerning method 2.

• The structure of identifiers B, C, D, and E, which remaps base is called a
''template''.

• This template can be applied to any data area by providing the address part
of the index. This is not the case when method 1 of indexing is used.

• If identifier N contained the address of identifier B rather than the offset to
identifier B from the beginning of identifier A, then the statements which as
sign identifier D into identifier X are identical (X : = D [N];).

B 1000 Systems SDL/UPL Reference Manual

SECTION 7
PROCEDURES

Procedures are the basic program structure in an SDL/UPL program. Each is a self-contained func
tional unit within the program.

This section is divided into four parts. These parts are Procedure Declaration Statement, Procedure
Body, Procedure End Statement, and Procedure Invocations.

PROCEDURE DECLARATION STATEMENT AND PARAMETERS

The PROCEDURE declaration statement specifies the beginning of a new procedure and is optionally
followed by parameters enclosed with the parenthesis "() " characters.

Specifying a parameter in the procedure declaration statement allows the procedure to reference values
of identifiers that are outside the global range of the procedure. A parameter is a local identifier of
the procedure.

Every parameter specified in the procedure declaration must have an associated FORMAL or
FORMAL_ VALUE declaration.

FORMAL declarations must be separate statements from FORMAL_ VALUE declarations.

The data types of formal and formal-value parameters should match the data types of the correspond
ing actual parameters. The SDL/UPL compiler does not automatically check to ensure that these
match. If the compiler control option FORMAL_CHECK is set, data types are checked at run-time.

Varying formal parameters can be remapped. If a varying formal parameter is remapped, the parameter
and its corresponding actual identifier must meet the remap restrictions. A warning message is gener
ated by the SDL/UPL compiler when a formal parameter is remapped.

Formal parameter arrays can be given a variable number of elements by specifying the asterisk (*) char
acter within the parentheses characters in the formal declaration.

Example:

PHCCEOUFE X (A);
FC~~Al AC•) FIXED;

A level-structured identifier can be passed by naming only the 01 level of the structure. The subfields
of the structure do not remain defined when the structure is passed to a procedure. Any attempt to
remap the parameter generates a syntax error.

1137833 7-1

B 1000 Systems SDL/UPL Reference Manual
Procedures

The syntax and semantics of the PROCEDURE declaration are des:cribed as follows:

SDL Syntax:

PROCEDURE <procedure-identifier> ------------>

t FORWARl:T:SIC <intrinsic-identifier> -------·--------

>~----.~~--(----~~L~~~~~-<-p-a-ra_m_e-te_r_>------------~--------)-----~------------- >

..._ __ ..,<type-part>

>>-----------------~------- -------------~------------

L FORMAL--------- <formal-element-part>

LFORMAL_VALUE-----

UPL Syntax:

---......------------- PROCEDURE <procedure-identifier>-------------------~

L FORWARD _J

>>---.L--(-_ r~· ~-----=i---)--~~~~~~~~~~~~~.....,.._;.....
· <parameter> -

<type-part> ----

TORMAL ---------·---· <formal-element-part>

FORMAL_ VALUE

7-2

Syntax Semantics:

FORWARD

B 1000 Systems SDL/UPL Reference Manual
Procedures

The keyword FORWORD causes the procedure to be a forward procedure.

Before a procedure can be invoked, it must be declared. A problem can arise when one procedure
invokes another procedure which in turn invokes the first. In this case, whichever procedure ap
pears first must contain at least one reference to the second procedure which has not yet been
declared. The FORWARD keyword allows the use of forward and recursive references by provid
ing a temporary procedure declaration.

The FORWARD PROCEDURE statement does not eliminate the need for the normal procedure
declaration which must follow in the program.

The FORWARD PROCEDURE statement must be in the same scope as its associated procedure
and it must be specified immediately prior to or after the declarations.

The return data type must also be declared in the FORWARD PROCEDURE statement.

When the FORWARD PROCEDURE statement refers to a procedure with parameters, it must
include those parameters in the FORWARD PROCEDURE declaration. Also, any FORMAL dec
laration statement of the parameters must accompany the FORWARD PROCEDURE statement.
Also, the formal declarations must appear within the actual procedure.

INTRINSIC
The keyword INTRINSIC is used only by SDL programs and causes the file specified by <intrin
sic-identifier> to be included. The intrinsic must begin at displacement 0 in a new segment.

intrinsic·-identifier
This field can be any valid SDL intrinsic file name and specifies the intrinsic file to use.

PROCEDURE
The keyword PROCEDURE is required for a procedure declaration.

procedure-identifier
This field can be any valid SDL/UPL identifier and specifies the name of the procedure.

parameter
This field can be any valid SDL/UPL identifier and specifies the identifier that is used and not
declared in the procedure. If <type-part> follows <parameter> , the value of <parameter> is
returned to the statement that invoked the procedure. If there is no <type-part> specified, the
value of <parameter> is passed from the statement that invokes the procedure. If this field is
specified, a FORMAL or FORMAL_ VALUE statement must immediately follow the procedure
statement.

type-part
Refer to type-part later in this section.

Procedures which return explicitly a value when completed are called "typed" procedures. The
data type of the returned value must be specified in the procedure declaration.

If the data type of the returned value does not match the specified data type, an advisory message
is generated by the SDL/UPL compiler during compilation.

1137833 7-3

B 1000 Systems SDL/UPL Reference Manual
Procedures

FORMAL
When a parameter is specified in the procedure declaration and when it is desirable to have the
corresponding identifier's value changed, the keyword FORMAL is required, provided that any
change to the value of <parameter> is made in the procedure.

When a parameter is declared with the FORMAL keyword, the parameter refers to the address
of the actual identifier. This requires that the parameter correspond to an identifier. All changes
made to <parameter> are made to the actual identifier.

If the parameter in the FORMAL part of the procedure declaration is an array, then only an array
can be passed to the procedure. If an array is to be passed to a procedure as a parameter, the
corresponding FORMAL declaration of the procedure must specify an array.

FORMAL_ VALUE
When a parameter is specified in the procedure declaration and when it is not desirable to have
the value of the corresponding identifier changed, the keyword FORMAL_ VALUE is required,
provided that any change to the value of <parameter> is made in the procedure.

When <parameter> is declared with the FORMAL_ VALUE keyword, <parameter> receives
the value of the actual identifier. This identifier must yield a value. It can be a literal, a number,
or an identifier enclosed in the quotation mark(")characters. The quoted identifier '' < identifi
er> " notation forces references to the value rather than the address of the identifier. Changes
to the formal-value parameter are known only within the scope of the procedure in which the for
mal-value parameter is declared.

When the name (address) of an identifier is passed to a formal-value parameter, the value of the
actual identifier is assigned to the formal-value parameter. Changes made to the formal-value pa
rameter are not reflected in the corresponding actual identifier.

formal-element-part
Refer to formal-element-part in this section.

7-4

B 1000 Systems SDL/UPL Reference Manual
Procedures

type-part

The syntax and semantics of the type-part of the PROCEDURE declaration are described as follows:

SDL and UPL Syntax:

BIT --L---- (<bit-size>)

VARYING----

CHARACTER----L-- (<character-size>)

VARYING ----------t

FIXED ----------------------t
REFERENCE---------------------·

VARYING -------------·

Syntax Semantics:

BIT
The keyword BIT in the procedure declaration specifies that the value of the parameter to be re
turned from the procedure has a data type equal to BIT.

The keyword BIT in the formal declaration specifies that the data type of <parameter> passed
to or returned from the procedure has a data type equal to BIT.

CHARACTER
The keyword CHARACTER in the procedure declaration specifies that the value of the parameter
to be returned from the procedure has a data type equal to CHARACTER.

The keyword CHARACTER in the formal declaration specifies that the data type of
<parameter> passed to or returned from the procedure has a data type equal to CHARACTER.

FIXED
The keyword FIXED in the procedure declaration specifies that the value of the parameter to be
returned from the procedure has a data type equal to FIXED.

The keyword FIXED in the formal declaration specifies that the data type of <parameter> passed
to or returned from the procedure has a data type equal to FIXED.

REFERENCE
The keyword REFERENCE in the procedure declaration specifies that the value of the parameter
to be returned from the procedure has a reference identifier.

The keyword REFERENCE in the formal declaration specifies that the data type of <parameter>
passed to or returned from the procedure has a data type of a reference identifier.

1137833 7-5

B 1000 Systems SDL/UPL Reference Manual
Procedures

VARYING
The keyword VARYING in the procedure declaration specifies that the value of the parameter to
be returned from the procedure can vary in data type and length.

The keyword VAR YING in the formal declaration specifies that the data type of <parameter>
passed to the procedure can vary in data type and length.

If the keyword VARYING follows the keywords BIT or CHARACTER, the length of the bit or
character parameter can vary.

bit-size
This field can be any valid SDL/UPL number or expression that generates a value at compilation
time and specifies the length in bits of the parameter.

character-size
This field can be any valid SDL/UPL number or expression that generates a value at compilation
time and specifies the length in characters of the parameter.

formal-element-part

The syntax and semantics of the formal-element-part of the PROCEDURE declaration are described
as follows:

SDL and UPL Syntax:

(<identifier> ---r----_J-----,-)
L_ (*)

Syntax Semantics:

identifier

(*)

This field can be any valid SDL/U:PL identifier and specifies the name of the field whose address
or value is passed to the procedure.

The asterisk character between the parenthesis characters specifies that the number of elements in
the array specified by <identifier> can vary when the array is passed to the procedure.

If the parameter in the FORMAL part of the procedure declaration is an array, only an array
can be passed to the procedure. If an array is to be passed to a procedure as a parameter, the
corresponding FORMAL declaration of the procedure must specify an array.

type-part
Refer to type-part in this section.

The data type of the identifier which is passed to the procedure is specified by type-part.

7-6

B 1000 Systei;ns SDL/UPL Reference Manual
Procedures

Example 1:

PROCECU~E xvz;

•
END XYZ;

Example 2:

fOnWARC PFCCECU~[x;
•

END X;

Example 3:

P~CCEf.L~(AEC ex, ~p 7);
FC~MAL X FIX£C,

Y CHA~ACTE~ V~RYI~G,

7 (•) BIT VAfiYI~C;

£NO Aec.;

Example 4:

PROC£CU~E SQUA~[(~);

FOF't'Al N Fl)(EOi
•

•
Ff.TU~N;

•
ENC SCUAf'E;

% Procedure id~ntifier XYZ
~ is dect ared •

4 Procedure identifier X is
4 being declared as a forward
% procedure. It can be invoked
% after thi~ orocedure
i. declaration and before the
% oroced~r9 is encountered bv
% the SDL/UPL comoiter.

% Procedur~ identifier ABC ha~

% three parameters that ~ust be
% declared for~att~. Parameter
% X is an ;dentifier with a data
% type ecual to fIXEO. Par a meter
% Y is an identifier with a data
% type eouat to CHARACTER and
z the lenqth is calculated on
% each invocation cf o~ocedure
% A9C. Parameter 1 is an arrav
% identifier with a varvinq
% number of elew.ents <which are
Z calculated on each invocation
% of orocedtre ABC> and a data
% type equal to Bil.

% Procedure identifier SQUARE is
% ir.vo~ed from a point in the
% oroq~am. A value for identifier
% N is ra~sed to the orocedure
% by the invo~inq statement •

1137833 7~

B 1000 Systems SDL/UPL Reference Manual
Procedures

Example 5:

PRCCECUFE CUBE CA, o, (,);
fOfi~Al CA, 6• C) FIXEC;

PROC£0URE SQUA~f CNJ;
fCRt'Al N f lXEO;

IF A THE~ FETU~~;

IF g T~E~ hFTUP~;

fL5f. iJOi
S<i:UARE CC)i
HETLRN;

f" c;
U,O CUBE;

Example 6:

PRCCECUFE ABSVAL CXl FI~EC;

FORMAL X FIXED;
fETU~N CIF X LSS 0 T~Eh - X

ElSf +)(};

Example 7:

P~LCECUfE ~SG CHAFACTf~ C~Ol;

OECLA~E CAIA CH~~ACTlR C20l;
t· E T U f. f\ C A C C E P T C t T A) i

7-8

END MSG;

IF SU8STF (~5(, Q, 3) = ftYES"
THff\ •••••• ,
El SE •••••• ,

% Two crocedures1 one nested
X within the other• are declared.
% The p~ocedure SQUARE can be
% invo~ed crlv fro~ within the
Z procedure CUBE.

Z The function orocedure ABSVAL
% returps tte absolut€ value of
% the par~meter passed. Th~ If
% ex~ressioP within the RETURN
l statement returns the cositive
% value of the oarameter.

% The function o~ocedure MSG
i. accepts a messa~e fro~ the ODT
7. and returps it to t~e invo~inq

% If c;tatement.

PROCEDURE BODY

B 1000 Systems SDL/UPL Reference Manual
Procedures

The procedure body follows the procedure and the formal declaration statement. Declarations of local
data, nested procedures, and statements are included in the procedure body.

The RETURN verb takes one of two forms depending on the type of the procedure encompassing it.
When a data type is specified for the parameters in the procedure declaration, the procedure is a
"typed" procedure. If the procedure is a "typed" procedure; an expression must be returned to the
point of invocation. If the procedure is not "typed", the RETURN does not allow an expression. Pro
cedure type-checking on the RETURN verb is performed at run time when the FORMAL_CHECK
compiler control option is set.

Within any given procedure, certain statements can be nested within other statements and can be ac
cessed like a procedure by an address generated by the larger statement. The most general nesting level
is zero. The nesting level of any statement appears on the SDL/UPL compiler listing under the column
NL. The following are the most common instances of statements occurring at nesting level 01 or great
er.

1. The conditional statements following the THEN and ELSE keywords in the IF verb.
2. Statements contained within a CASE group.
3. Statements contained within a DO group.

The SDL/UPL compiler always generates a RETURN statement (even if not specified) directly preced
ing the END <procedure-identifier> ; statement. This ensures that the exit from a procedure is always
correct.

If the procedure is a "typed" procedure, the following value is returned based on the data type of
the returned data item.

SDL Syntax:

Data Type to
be Returned

BIT
CHARACTER
FIXED
BIT VARYING
CHARACTER VARYING
VARYING

--<declaration-statement>-----

1137833

Value
Returned

Zeros for the length specified
Blank characters for the length specified
Fixed Zero
Eight bits of zeros
One blank character
Fixed zero

<procedure-statements --------------1

RETURN ---

<expression> -----------1
RETURN_AND ENABLE_INTERRUPTS

7-9

B 1000 Systems SDL/UPL Reference Manual
Procedures

UPL Syntax:

<declaration-statement> ___ TL< procedure-statements --------·----i
- CRETURN

L_ <expression>-----

Syntax Semantics:

declaration-statement
Ref er to Data Declarations in Section 5 for a complete description of <declaration-statement> .

procedure-statements
These statements can be any valid SDL/UPL statements.

RETURN
The keyword RETURN causes the procedure to be exited and to resume program execution at the
point where the procedure was invoked.

expression
This field can be any valid SDL/UPL expression and specifies the value that is returned to the
point where the procedure was invoked.

RETURN_AND_ENABLE_INTERRUPTS
The keyword RETURN_AND_ENABLE_INTERRUPTS is used only by the MCP. This key
word causes a normal procedure exit to occur and enables th<;: interrupt bits.

PROCEDURE END STATEMENT
The procedure end statement follows the procedure body and is the last statement in a procedure.

SDL and UPL Syntax:

-END--------------------

'----<procedure-identifier> -----

Examples:

£~C Fr;ccECU~E A;

ENC M~l~_P~CCfCUFE;

PROCEDURE INVOCATIONS
A procedure is invoked when a procedure identifier is specified in lexic level 0 of the program or in
the body of another procedure.

A "typed" procedure invocation produces a value because "typed" procedures return a value. Invok
ing a "typed" procedure requires that th1~ expected parameters be specified in the procedure invocation.
These parameters must be known to the procedure.

Recursive procedure invocations are allowed; that is, a procedure can invoke itself.

7-10

J
l

SDL and UPL Syntax:

Syntax Semantics:

procedure-identifier

B WOO Systems SDL/UPL Reference Manual
Procedures

This field can be any valid SDL/UPL procedure identifier that has been declared in a procedure
declaration statement. It specifies the name of the procedure to invoke.

parameter
This field can be any valid SDL/UPL identifier that is declared as a parameter in the procedure
declaration statement. It specifies the identifier to be passed to or returned from the procedure.

If the parameter in the FORMAL part of the procedure declaration is an array, only an array
can be passed to the procedure. If an array is to be passed as a parameter to a procedure, the
corresponding FORMAL declaration of the procedure must specify an array.

Example 1:

Procedure Ceclaration

Procedure Bcdv

Procedure £nd

Proced~re In~ocaticn

Example 2:

Procedure Cectaration
format Cecla,atior

Proct-)dure End

Procedure lPvocaticn

1137833

PhUCfDUf;E A;

EN 0 A;

A •
·'

P~OCEUURE B (J,.K-Ll;
FOR~Al (J,K) FIXfO;
FGR~AL_VALUE L ~~~YI~G;

fNC a;

a ex .. y,. cz»;

7-11

B 1000 Systems SDL/UPL Reference Manual
Procedures

Example 3:

Procedure Declaration
format OeclaratioP

Procedure 6odv

Procedure Erid

Procedure lrivocatic~

7-12

PhOCEDUkF C CM~N> V~RYING;

FORJJAL M FIXED;
FC~~AL_VALUE ~ C~ARACTE~ VA~YING;

LECLAF'E P FIXED;

RETURN CP};
Ef\C c;

B 1000 Systems SDL/UPL Reference Manual

SECTION 8
STATEMENTS

Statements are the SDL/UPL equivalent of grammatical sentences. They contain a complete sequence
of operations (one complete idea). They are logically separate from other similar sequences. While an
expression evaluation results in a numerical value, statement evaluation specifies functions or assign
ments for the values. For example, the expression A + B results in a numerical value and statement
X : = A + B; (X is replaced by A + B). It assigns the value of the expression to identifier X.

Statements are always terminated by a semicolon (;) character.

Statements fall into three general classifications. These are declaration, control, and assignment state
ments.

DECLARATION STATEMENTS

Declaration statements connect memory space to identifiers and their attributes. Refer to Section 5 for
a complete description of declaration statements.

CONTROL STATEMENTS

Control statements determine the sequence in which statements are executed. They pass control to pro
cedures, bind groups of statements together, or conditionally specify which one of several statements
is to be executed next.

Procedure Call Statement

The major control statement in SDL/UPL is the procedure-calling or invoking statement. It consists
of a procedure identifier followed by any parameters enclosed in parentheses and terminated by a semi
colon (;) character. For example, the procedure ABS, which requires one parameter, is invoked by
ABS (VALUE);.

There are three considerations governing the use of procedure-calling statements:

1. A called procedure must be within the scope of the calling statement. In lexic level terminology,
a called procedure must be at one of the three following lexic levels.

a. The procedure can be one lexic level higher and nested within the calling procedure.
b. The procedure cannot be more than one lexic level lower with a currently invoked procedure

that is on an equal or higher lexic level.
c. The procedure can be a currently invoked procedure on an equal or higher lexic level.

2. A called procedure always returns control back to the calling procedure. There is no GO TO
statement in SDL/UPL. The program logic must be structured to use this return-control action.
The immediately succeeding statement in the calling procedure is performed when control is re
turned.

3. The called procedure must be of the proper class. There are two classes of procedures in SDL/
UPL. These are function procedures and non-function procedures. Function procedures pass
back a value to the function-procedure call and non-function procedures do not.

1137833 8-1

DO Statements

B 1000 Syst·ems SDL/UPL Reference Manual
Statements

The DO statement provides the capability to group a set of related statements together for programmat
ic control purposes. A DO statement consists of the DO statement, optionally followed by <group
name> and/or the FOREVER keyword, and terminated with the semicolon (;) character. The END
statement consists of the END statement, optionally followed by <group-name> , and terminated with
the semicolon (;) character. The UNDO statement consists of the UNDO statement, optionally followed
by <group-name>, and terminated with the semicolon (;) character.

A DO-group consists of a DO statement, one or more executable statements, and an END statement.
A DO-group is regarded as a single statement.

A set of DO-groups can be nested. Overlapping DO-groups are not allowed. Every END statement is
paired with the preceding unmatched DO statement, starting at the innermost set. An END statement
is required for each DO statement. DO-groups can be imbedded in CASE statements, IF statements,
or other DO-groups. A maximum of 32 CASE statements, IF statements, or DO-groups can be im
bedded in one DO-group. However, the UNDO statement only exits up to a maximum of 16 nested
DO-groups. A maximum of 11 levels of labeled DO statements are allowed in an SDL/UPL program.

DO-groups, IF statements, and CASE statements define a source-code nesting level that is placed under
the column marked NL on the compiler-generated source listing. Each nest must be wholly contained
within its outer nest. That is, source-code nesting levels cannot overlap.

The keyword FOREVER causes an unlimited number of DO-group iterations. When an UNDO, RE
TURN, or STOP statement is performed the DO-group is terminated. If an UNDO statement is per
formed, the innermost or DO-group labeled in the UNDO statement is terminated. If a RETURN state
ment is performed, an implicit UNDO statement is performed for an nested DO-groups within the pro"."
cedure and control is passed to the statement that immediately follows the statement that called the
procedure. If a STOP statement is performed, the program goe.s to end of job.

If the keyword FOREVER is not specified, the DO-group is performed only one time.

There is a limit on the size of a DO FOREVER-group. This limit is 4096 bits of object code generated
by the SDL/UPL compiler.

SDL and UPL Syntax:

-DO

L <group-name>--- [-FOREVER~
r
L <statement>; =3

>>---END __ L _____________ _
<group-name> ---

8-2

Syntax Semantics:

group-name

B 1000 Systems SDL/UPL Reference Manual
Statements

This name labels a DO-group and when specified, must immediately follow the DO statement and
ENO statement. For example, DO <group-name> ; and END <group-name> ; . <group-name>
must be the same in the DO-statement (DO <group-name> ;) and in the matching END-statement
(END <group-name>;).

FOREVER
The keyword FOREVER causes the DO-group to be performed until an UNDO or RETURN state
ment is performed for this DO-group.

statement
This field can be any valid SDL/UPL statement. There is no actual limit to the number of state
ments that can be specified in a DO-group. All SDL/UPL statements must end with the semicolon
(;) character.

Example 1:

oc;
BUtiAF SUM;
DECf1Ef'IENl DIFFi

•

Example 2:

lF X EQL 0
ThEf\ cc;

Example 3:

RUMP x;

E 1\0;
ELSE CC OTHEr;

OECf.f f'ENT x;

sui·~p SUM;
END OH·Ef.;

DO THIS LNE FORE~f~;

IF SUt-' LEC ZEi~C
lt--EN !:O;

8tJt-IF SUMi
OECf1EMENT x;

fNO;
ELSE UNOC;

ENO THI S_ON£;

1137833

% The torwat of a DO-Qrouo reouires
% the DO and a corresoondinq ENO
% statemert •

l One of the CO-groups within the
l lf state~ent is e~ecuted, and then
l controt is cassed beyond the If
~ statement. The second DO-qrouo is
% naw.ed UTHEF, and its ENC statement
% must 31so contain the same name.

l The OO-qroup na~e THIS_ONE
% iterates until SUH is greater than
lo. Wher SU~ is greater than o,
% the UNCO statement in the ELSE
% statement terminates the no-group.

8-3

B 1000 Systems SDL/UPL Reference Manual
Statements

Example 4:

P~OCECUf1E Ace;
00 A~Y fGHEVER;

If X GE·~ 0
THEf\ co;

fJECF101E1' T
1:3Ut'f SUt-';

ENO;
If SUM GEQ C

THE.ti. Uft..001
ELSE: P.ETUf;f\;

E~C ANY;

E f\:U A PC;

Example 5:

8-4

DC SETA;
x := x + i;

A_PARtJ. := ?ERO;
RLUTI~E ex~ A_P~RM};

Et\C SfTA;

l This procedure contains several
% OO-qrouos. The RETURN state~ent

2 in the last IF statement terwinates
2 the OO-qroup labeled ANY by passing

x; % control out of trocedure ABC.

l This is a 00 statement that binds
l three statements to the 00 qrouo
l SETA.

Example Program:

DECLARE
TIHE_ONE
TIME_ TWO
CORRECT_ANSWER
ANSWER

B 1000 Systems SDL/UPL Reference Manual
Statements

FIXED•
FIXED,
FIXED•
CHARACTER C8li

DO MAIN_LOOP f OREVERJ

TIHE_ONE := CONVERT CTIHE <COUNTER, BIJJ, FIXED);
TIME_T~O ~= CONVERT <TlME CCOUNTER1 BIJ), FIXED>;
DISPLAY C"HOW MUCH IS " CAT

CONVERT CCTIHE_ONE MOO 57829), CHARACTER) CAT • PLUS "
CAT CONVERT CCJIME_TWO ~OD 10000011 CHARACTER));

ACCEPT ANSWERi
If ANS~ER = "BYE"
THEN oo;

DISPLAY <"GOOD BYE");
STOPi

END;
CORRECT_ANSWER := CTIHE_ONE MOO 57829) + CTIME_TWO HOD 100000);
If COPRECT_ANSWER = CONVERT CANSW£R, FIXED)
THEN DO CORRECT;

DISPLAY C"THAT IS CORRECT, WOULD JOU LIKE TO TRT AGAIN?");
DISPLAY (•ENTER YES FOR AGAIN OR ENTER BYE TO GO TO EOJ");
DO FORE VER;

ACCEPT ANSWERi
If ANSWER = "BYE•
JHEN oo;

DISPLAY C"GOOD BYE">i
sror;

ENO;·
IF ANSWER = "YES" THEN UNDOJ
ELSE DISPLAY <"INCORRECT RESPONSE TRY YES OR BYE•);

EN Di
END CORRECT;

ELSE DO lNCOHRECTi
DISPLAY c•vouR ANSWER IS INCORRECT");
DISPLAY C"THE ANSWER IS • CAT

CONVERT <CORRECT_ANSWER, CHARACTER));
DISPLAY {"WOULD YOU LIKE TO TRY AGAIN?•);
DISPLAY (•ENTER YES fOR ACAIN OR ENTER BYE TO GO TO EOJ•);
00 FOREVER;

1137833

ACCEPT ANSWER;
If ANSWER = •BYE•
JHEN oo;

DISPLAY (•GOOD BY£•);
SJ op_;

!ENO;
If ANSWER = •YES• THEN UNDO;
ELSE DISPLAY <•INCORRECT RESPONSE TRY TES OR BYE•);

EN Di

8-5

B 1000 Systems SDL/UPL Reference Manual
Statements

ENO INCORRECH

END HAIN_LOOPi

FINI;

% This example program illustrates the use of the DO statement. The
% program asks the operator to enter the sum of two numbers
% displayed on the ODT. If the sum is correct• the program asks
% if the operator wishes to continue and try another set of
% two numbers. If the sum is incorrect• the program displays
X the correct number and asks if the operator wishes to continue
% or try another set of two numbers. If the response to continue
% is YES to both the correct and incorrect numbers• the program
% displays another set of numbers. If the response is BYE, the
% program goes to end of job.

DO FOREVER Statement

The DO FOREVER statement indefinitely performs the statements within the DO-group until an
UNDO statement is performed. Or until control is returned from the procedure in which the DO FOR
EVER statement is imbedded.

Example:

DO PRTN fORE"ERi
x := x • 1;
ROUTINE ex. A_PARH);
IF X EQL 5 THEN UNDO;
If X EQL 10 THEN RETURN;

E.ND PIHNi

IF, THEN, and ELSE Statement

% Procedure Call.
% Test Limi1t.
% Return from the current procedure.

The IF, THEN, and ELSE keywords are used to conditionally perform one or two statements in an
SDL/UPL program.

If the rightmost bit of <condition> 1equals 1, the THEN clause is performed. If the rightmost bit
of <condition> equals 0 (zero) and if the ELSE clause is present, the ELSE clause is then performed.
Null THEN (THEN;) and ELSE (ELSE;) clauses are allowed. Once the THEN or ELSE (if specified)
clause is performed, control is transferred to the next statement. The next statement is the one that
immediately follows the THEN clause if no ELSE clause is specified. Or it is the one that immediately
follows the ELSE clause, if specified.

If a group of statements are to be performed which are a result of evaluating <condition> , they must
be specified in a DO-group that immediately follows the THEN or ELSE keywords. Refer to the DO
statement for a complete description on the use of DO-groups.

Nested IF statements are allowed. The maximum number of nested IF statements is 32. The outermost
IF-THEN and ELSE are on nesting level 0. <statement-I> and <statement-2> of the IF-THEN and
ELSE are on nesting level l.

8-6

B 1000 Systems SDL/UPL Reference Manual
Statements

The SDL/UPL compiler matches the IF-THEN and ELSE clauses beginning with the innermost nested
level. For example, if nesting level 2 has an associated ELSE clause, nesting level 4 must also have
an associated ELSE clause.

SDL and UPL Syntax:

- IF <condition> THEN

--- <statement·1> ----

>~~-----~~--------------m=J-----------------~

L__ELSE----.~---------------------------
--~ <statement-2> ___ ,J

Syntax Semantics:

condition
This field can be any valid SDL/UPL literal, identifier, or expression that returns a value. Only
the rightmost bit of <condition> is checked. If the rightmost bit is equal to 1, <condition>
is TRUE. If the rightmost bit is equal to 0, <condition> is FALSE.

statement-I
This statement can be any valid SDL/UPL statement.

statement-2
This statement can be any valid SDL/UPL statement.

ELSE
The keyword ELSE causes the statement which immediately follows to be performed if the right
most bit of <condition> equals 0. Null ELSE clauses (ELSE;) are allowed.

THEN
The keyword THEN causes the statement which immediately follows to be performed if the right
most bit of <condition> equals 1. Null THEN clauses (THEN;) are allowed.

Example 1:

If x = .52 Tf-£N

Example 2:

If x > 1 THEN
ELSE

1137833

y == 4;

y ·- 4; . -
y :: 5;

% Identifier Y is assiqned a value of 4
% if the value of identifier ~ eauals 32.

% Identifier Y is assiqped a value of 4
% if the value of identifier X is qreater
% than l and Y is assigned a value of 5
% if X is not greater than 1.

8-7

B 1000 Systems SDL/UPL Reference Manual
Statements

Example 3:

IF }(= 1 THEN co;
y . -. -
..., ·-L . -

ENO;
fl SE co;

y . -. -
2 : =

ENO;

Example 4:

If x = ?.
Tl-!£~ IF y = 3

Tr E 1' If z = 4
T .. EN " . - 1 ; . -
ELSE A : = 2;

ELSE;
ELSE If y = 20

Th Eh;
tlSE DC;

A := l • ..J,
A :: 4 ;

£ "0;

Example 5:

If A + e GT Ji x
THE I\ i:o;

A . - A - li . -
If A [Ql 0
FTN XYZ; -

t " c ;
ELSE co;

x :: (,. .. u;
A . - o; . -
E == Ci

ENC;

8-8

i.
i; %
2i %

%
%

l: • _, , %
4;

%
k
%
%
k
%
~
%
%

TI-EN

Identifiers y and z at"e assiqned the
values of 1 and z, respectively, i f
the value of identifier x eouals l.
Ctherwise, identifiers y and l are
assigned the values 3 and 4,,

r~soectivelv.

Identifier A is assigned a value of l if
identifier ~ eouals z, Y eauals 3, and
Z eoua\s 4. Identifier A is assiqned
the value cf 2 if identifier X eauats 2,
Y eouals 3, a~d l does not eouat 4.
Identifiers A and 8 are assigned the
~alues 3 and 4, resoecti~ety, if
identifier X do~s not eoual 2 and
identifier Y d-0es not eoual 20.

UNOO;

Example Program:

DECLARE

B 1000 Systems SDL/UPL Reference Manual
Statements

YES_OR_NO CHARACTER (3);

DISPLAY <•THIS PROGRAM ILLUSTRATES THE IF• THEN• AND ELSE VERBS.");
DISPLAY C"If YOU WISH TO CONTINUE, THEN ENTER YES• ELSE ENTER NO");

DO FOREVER;
ACCEPT YES_OR_No;

If YES_OR_NO = "NO"
IHEN oo;

OISPLAT C"GOOD BYE•>;
STOPi

END;
ELSE IF YES_OR_NO = "YES"

THEN DISPLAY ("YOU ENTERED YES. If YOU WISH TO CONTINUE•"
CAT " THEN ENTER YES, ELSE ENTER NO."li

ELSE DISPLAY C"YES OR NO WAS NOT ENTERED, IRY YES OR NO.");
ENOi

FIN Ii

CASE Statement

The CASE statement is an expanded form of the IF statement. The evaluation of a conditional expres
sion determines which statement to perform among all the statements associated with the CASE state
ment. After the statement is performed, control passes to the first statement following CASE statement
(if format 2 is specified) or the END CASE statement (if format 1 is specified). If the conditional ex
pression is out of range during program execution, a run time error is generated.

CASE (format-1)

The CASE statement (format-1) selectively performs only one statement within the CASE group of pro
gram statements.

At execution time, <index> is evaluated as a binary number. This value is used as a selector to choose
from among the program statements in the CASE-group. For example, a value of 2 selects the third
program statement. The program statements in the group are numbered from 0 to n-1 for n program
statements. A negative value or a value greater than the number of program statements in the CASE
group causes an execution-time error.

All valid SDL/UPL program statements, including nested CASE, DO-group, and IF ... THEN ...
ELSE statements, are allowed and are counted as a single statement within the CASE-group of state
ments.

After the selected program statement is performed, the program performs the program statement imme
diately following the END CASE; statement.

Null statements can be used to satisfy a program statement position where no operation is to be per
formed. A null statement is represented by the semicolon (;) character.

If a CASE statement is imbedded in a DO-group and a RETURN verb is specified, the program passes
control back to the statement that invoked the procedure.

1137833 8-9

B 1000 Systems SDL/UPL Reference Manual
Statements

Each statement within the CASE-group must be an executable statement. If several statements are
needed to describe the action to be taken in a given situation, the statements must be blocked in a
DO-group. Null statements are allowed.

SDL and UPL Syntax:

~cASE <index>;----------~------~~---+

.> <statement-O>; ---------,------------------------------~

> <statement-1>; ----·-----------·--------------------#

> <statement-n>; -------·-------------------------------~

> END CASE; -----------------------~---------------------------------t

Syntax Semantics:

index
This field can be any valid SDL/UPL identifier or expression that returns a binary value between
0 and n, inclusive and specifies the statement to be selected.

statement-0 through statement-n
These fields can be any valid SDL/UPL statement and specify the statement to be performed.

Example 1:

CASE x; 4
PflOC A; % -
Pf,OC iH % -PFOC c; x -

E f\ 0 C 1\ S£; k

Example 2:

CASE CA • Bl MlO 2;
cc;

The value of X determire5 ""hich.orocedure is
oerfcr~ed. X can vary in value from 0 throuqh
2. If t~e value of X is greater than the number
of statement5 in the CASE ~tatement~ a r~n~time
errcr occurs.

% The value of the expression is

If x > 15 T~EN L~cc;
x != x • 5;

% used to deter~ine which statement
X tc oerfor~. A 00 state~~rt or
% CASE statew.ent is considered one
i. stateirent. E "4, C;

CASE X;
PrOC_o;
Pi10C_li

PFGC_zo;
E"O CASE;

£~D CASE:;

8-10

B 1000 Systems SDL/UPL Reference Manual
Statements

Example Program:

DECLARE NUMBER FIXED;

NUMBER ·- o; . -
DO FOREVER;

CASE NlJMBER;
DISPLAY "MARY"; % NUMBER - c
DISPLAY •HAD"; % NUMBER -- l
DISPLAY .,. A•; % NUMBER == 2
DISPLAY "LIT TL£•; % NUMBER ·- !
DISPLAY "L AHB"; % NUMBER - 4

END CASEi
If CBUMP NUMBER) > 4 THEN UNDO;

ENO;

FINI;

% This example program uses the CASE statement to
% display "MARY HAD A LITTLE LAHB" on the ODT
% and goes to end of job. Each word is displayed
% on a separate line.

Output from Example Program:

CASED =2037 BOJ. PP=4, HP=4 TIME = 11:57:32.4
% CASEO =2037 NARY
% CASEO =2037 HAD
% CASEO =2031 A
% CASEO =2037 LITTLE
% CASED =2037 LAMB
CASEO =2017 EOJ. TIME= 11:57:38.2

CASE (format-2)

The CASE statement (format-2) uses the value of <index> to determine which expression to evaluate
in the list of expressions contained in the parenthesis "()" characters. The range of <index> is from
0 to n-1, where n is the number of expressions in the list.

SDL and UPL Syntax:

- CASE <index> OF (__ ___.r ___ <expression>------) ---------------t

1137833 8-11

B 1000 Systi~ms SDL/UPL Reference Manual
Statements

Syntax Semantics:

index
This field can be any valid SDL/UPL identifier or expression that returns a binary value between
0 and n - 1, where n is the total number of expressions within the parenthesis "()" characters
and specifies the expression to be selected.

expression
This field can be any valid SDL/UPL number, identifier, or expression that returns a value and
specifies the value. If selected by <index> , it is returned as a result of evaluating the CASE ex
pression.

Example:

ClClARE (A, b, c, r. J, Jr Q) FJXEC;
I : = 2;
J != 3;

CASE J Of {Q~F-f r 9r 34+8, {A+6l MCO Br C);

Example Program:

DEC LARE NUMBER FIXED;

NUMBER := o;
DO r OR EVER.;

% Identifier A is
% assigred the vatue
4 CA•fl) t CA+B) MOO E.

DISPLAY CCASE NUMBER Of C"HARY•, •HAO•, •A•, "LITTLE", "LAHR"));
If CBUHP NUMBER> > 4 THEN UNDOJ

EN Di

STOPi
FINH

% This example program uses the CASE statement Cformat-21 to
% display "MARY HAD A LITTLE LAMB" on the OOT and goes
% to end of job. Each word is displayed on a separate
% line.

Output from Example Program:

CASEO =2037 BOJ. PP=4, HP=4 TIME = 11:57:32.4
% CASEO =2037 MARY
% CASEO =ZOl7 HAD
% CASEO =2037 A
% CASEO =2037 LITTLE
% CASED =2037 LAMB
CASEO =2017 EOJ. TIHE = 11:57:38.2

8-12

B 1000 Systems SDL/UPL Reference Manual
Statements

ASSIGNMENT STATEMENT

The assignment statement is the only data-movement statement in SDL/UPL. Truncation and padding
are performed across the assignment operator (: =). They are dependent upon the data type and length
attributes of the data item as specified in the declaration statements. For data items with a CHARAC
TER data type, truncation of characters and padding of blank characters is on the right. For data items
with a BIT or FIXED data type, truncation of data and padding of zeros is on the left.

Examples:

x . - o; 4 identifier x i 5 assigned the value o. . -
x . - A; % IdentifiH x i 5 assigned the value of . -

"" ideritifiEr t\. ;.

NULL STATEMENT

The null statement performs a no-operation function during program execution. Two adjacent semico
lon (;) characters are used to delimit a null statement.

The null statement is considered a complete statement that can be specified whenever the syntax re
quires a complete statement. Its most common usage is in the CASE and IF verbs to fulfill the syntax
requirements and not to perform operations. The null statement can be specified in the READ,
WRITE, and SP ACE verbs.

The null statement can be specified to control events within a compound IF verb. However, this control
is more readily accomplished if DO-groups are used within the compound IF verb.

SDL and UPL Syntax:

Example:

CASE OECLOE; % The icentifier DECO OE i s used to select one
PROC A; 4 0 % of - s i)(statementc;; within the CASE stat~ment

Pf'OC s; % 1 7. todv. l f the vatue of identifier OECOOE 1 s
; h 2 i. a 2 or a 3. no ooeration i s oerformed.
; :4 .5
Pf. 0 C c; % 4 -
P~CC c; % 5 -

Ef'f C CASE;

1137833 8-13

B 1000 Systems SDL/UPL Reference Manual

SECTION 9
VERBS

FORMAT OF THE VERB DESCRIPTION

All verbs that can be used in an SDL/UPL program are described in this section. Each verb is de
scribed separately. The SDL and UPL verb description is presented first, followed by the railroad syn
tax diagrams, the syntax semantics, examples, and an example program.

The valid constructs for the SDL compiler are presented in the SDL railroad syntax diagrams. The
valid constructs for the UPL compiler are presented in the UPL railroad syntax diagrams, only if the
UPL syntax is different from the SDL syntax. The description, syntax semantics, and examples show
the action taken by the SDL and UPL compilers. Care must be taken to distinguish the differences
between the two compilers when referencing the syntax semantics and examples.

1137833 9-1

ACCEPT

B 1000 Systems SDL/UPL Reference Manual
Verbs

The ACCEPT verb causes the program to be suspended and to wait for input from the Operator Dis
play Terminal (ODT). The input is provided to the program by way of the MCP AX input command
which is entered by the system operator at the ODT.

The ODT input message is stored left-justified into <destination>. [f the ODT input message is larger
than <destination> , the message is truncated on the right. If the message is smaller, the message is
padded on the right with blanks.

The actual input/ output (I/O) operation processes the message as character data, regardless of the de
clared type of <destination> .

When the ACCEPT verb is performed, the MCP suspends the SDL/UPL program and sends the fol
lowing message to the ODT. The (< usercode >) portion is option.al.

(<usercode>) <program name> = <job number> ACCEPT

The following format is required to enter a message on the B 1000 computer system ODT.

<job number> AX <text> < ETX character>

The maximum length for the ODT input message is 69 characters.

SDL and UPL Syntax:

- ACCEPT <destination>; -------------------------------___.

Syntax Semantics:

destination
This field can be any valid SDL/UPL identifier or an expression that generates an address.

9-2

B 1000 Systems SDL/UPL Reference Manual
Verbs

Example Program:

DECLARE MESSAGE CHARACTER CG9li

DO FOREVER;

ACCEPT HESSAGE;

If MESSAGE = "BYE" THEN UNDO;

DISPLAY MESSAGE;

EN Di

STOPi

% This exa•ple program accepts a •essage from
% the ODJ. When a mes5age is input• the program
% displays the message back onto the ODT. If
% BYE i s en t er ed ~ t he pro gr a• go es to end o f j ob.

1137833

ACCEPT

9-3

B 1000 Systems SDL/UPL Reference Manual
Verbs

ACCESS_FILE_INFORMATION

The ACCESS_FILE_INFORMA TION verb causes the end-of-file pointer and the device type in the
File Information Block (FIB) to be stored in <destination>. This information reflects the current stat
us of the file in the program. The end-of-file pointer is the relativ1e record number of the last record
in the file. The device type is an MCP-maintained value that represents the hardware type of the file.
For example, a device type of 16 represents a device type equal to OISK_PACK. Refer to the
CHANGE verb in this section for a complete description of all the valid device types and associated
device type codes.

The end-of-file pointer and the device type can be stored in BIT or CHARACTER data type format.

The following is the format for <destination> of data type BIT.

01 0£STit\ATION_VA~JA8l.E ElIT C30),.
03 £Of _POINTER eITC24l•
03 DEVICE_TYP£ EJT C6};

The following is the format for <destination> of data type CHARACTER.

01 OESTI~ATJCN_VA~IA8LE CH~R~CTE~ ClQ),
03 EOF_PCI~TEr C~A~ACTE~Cd),.

03 OEVILE_TYPE CHAR~CT£~(2);

<file-identifier> must name a declared. file. The return-type indicator (BIT or CHARACTER) must
match the declared type of the variable. The information is returned to the address specified by < desti
nation> . The format of the returned information varies with the rieturn-type indicator. The file being
accessed must be open to ensure that the File Information Block (FIB) exists.

SOL and UPL Syntax:

- ACCESS_FILE_INFORMATION (<file-identifier>, ---------r--- BIT

L CHARACTER __J
> , <destination>) ; -----

Syntax Semantics:

BIT
The keyword BIT specifies that the data type of <destination> is equal to BIT.

CHARACTER
The keyword CHARACTER specifies that the data type of <destination> is equal to CHARAC
TER.

destination
This field can be any valid SOL identifier.

9-4

B 1000 Systems SDL/UPL Reference Manual
Verbs

ACCESS FILE INFORMATION

The following summarizes the format of <destination> in the ACCESS_FILE_INFORMA TION
verb.

file-identifier

Item

EOF _Pointer
Device type

BIT CHARACTER

24 8
6 2

This field is the name of the file to be interrogated. This file must be open prior to performing
the ACCESS_FILE_INFORMATION verb.

Example Program:

FILE
DISKFILE CDEYICE = DISK SERIAL~

RECORDS = 1 /1801
OPEN_OPTION = OUTPUT/NEW>;

DEC LARE
01 DESTINATION_VARIABLE

Ol EOF_POINTER
03 DEVICE_TYPE

DATA

DATA := •1•;
WRIJE DISKFILE CDATA>;

CHARA CT ER (10> •
CHARACTER C8> •
CHARACTER C2l•
CHARACTER C 1 >;

ACCESS_flLE_INFORHATION <DISKFILE• CHARACTER• DESTINATION_VARIABLE>;
DISPLAY "EOF POINTER = • CAT £Of _POINTER CAT • AND DEVICE TYPE IS •

CAT DEVlCE_TYPEi
CLOSE DISKFILE;
FINI;

% This example program writes one record to a disk file
% and obtains the end-of-file pointer and device type
% by using the ACCESS_FILE_INFORHATION verb. The program
% subsequently displays the end-of-file pointer and
l device type on the svste• ODT• closes the disk file• and
% goes to end of job.

Output from Example Program:

% TEST =6311 EOF POINTER = 00000001 AND DEVICE TYPE IS 15

1137833 9-5

BASE_REGISTER

The BASE_REGISTER verb returns a 24-bit value that is the current and absolute main-memory ad
dress of the beginning data space for the program.

In a multiprogramming environment, performing two separate BASE_REGISTER verbs can yield dif
ferent results. Different results occur because the MCP can move the program to a new location in
memory as memory space is required.

SOL Syntax:

- BASE REGISTER ------·

Example:

DECLARE SASE BIT C2~J;

BAS£ :: ~~SE_REGISTER;

Example Program:

% Identifier BASE contains the current
2 memorv address of the proqraG.

DECLARE NEW_BASE_ADDRESS BIT C24>•
SAYE_BASE_ADDRESS BIT C24);

SAVE_BASE_ADDRESS := B ASE_.REGI SIER;

DISPLAY c•rHE CURRENT BASE ADDRESS IS EQUAL TO • CAT
CONYE~T CSAVE_BASE_ADDRESS, CHARACTER));

DISPLAY <•ENTE" ANY INPUT TO GO TO EOJ•);
DO FOR£~[R;

NEW_BASE_AODRESS := BASE_REGISTER;

If < SAVE_BA SE_ADDRESS l= N EW_B ASE_ ADORES Sl1

THEN DISPLAY c•JHE BASE ADDRESS HAS CHANGED• THE NEW ADDRESS IS •
CAT CONVERT COASE_REGISTER• CHARACTER));

If WAIT CTIHE_JENTHS C5>• SPO_INPUT_PRESENT>
THEN SJop;

ENDi
flNli

% T h i s ex a• p l e pro gr a• use s t he II AS E_ REG I ST ER v er b t o d i s pl a y
% the current me•ory address of the beginning of the progra••
% and then goes into a loop to check for a cha~ge in the base
% address. If the address changes• the new address is displayed
% on the oor. If any •essage i5 accepted to the prograa, the
% program goes to end of job.

9-6

BINARY

B 1000 Systems SDL/UPL Reference Manual
Verbs

BINARY

The BINARY verb returns a FIXED data-type value which is the binary representation of the character
string. Only the rightmost eight characters of the string are converted.

If the result of a BINARY verb returns a binary value greater than 24 bits (a decimal number greater
than 16, 777 ,215), the leftmost bits are truncated.

If the decimal number is greater than 8,388,607 ([2 exp 23] - 1), the returned value is a negative value
because the leftmost bit is 1.

SDL and UPL Syntax:

Syntax Semantics:

character-string
This field can be any valid group of characters that contain decimal digits and specifies the value
to be converted.

Examples:

CECLAPE CHAR CHARACTE~ (7),
f'ESlJLT FIXEC;

CHAR := ~1234567";
RESULT :: BINARY <CHAR);

1137833

7. ~ESULT eouals +1234567

9-7

B 1000 Systems SDL/UPL Reference Manual
Verbs

BINARY

Example Program:

DEC LARE
RESULT
ADDEND_ON£
ADDEND_ TWO

DO f OREVERi

FI>t ED•
CHARACTER <l>•
CH "RAC TER C3 H

DISPLAY "ENTER ANY THREE DIGIT NUMBER• LEADING ZEROS ARE REQUIRED·•;
DISPLAY •oR ••BYE•" TO GO TO END-OF-JOB.•;
ACCEPT ADDEND_ONE;
If ADDEND_ONE = "BYE" THEN UNDO;
DISPLAY "ENTER ANY THREE OIGIJS FOR THE SECOND NUMBER• LEADING"J
DISPLAY "ZEROS ARE REQUXREO.";
ACCEPT ADDEND_Two;
If ADDEND_T~O = "BYE" THEN UNDOJ
RESULT := BINARY CADDENO_ONEl • BINARY CADDEND_TWOli
DISPLAY "THE TOTAL EQUALS " CAT CONVERT CRESULT, CHARACTER' 4);

EN Di

FINH

% This exa•ple program acc:epts two numbers in character format
% from the oor- uses the HINARY verb to add two numbers together,
% and displays the result on the OOJ. If BYE is entered• the
% program goes to end of job.

9-8

BINARY_SEARCH

B 1000 Systems SDL/UPL Reference Manual
Verbs

BINARY SEARCH

The BINARY _SEARCH verb searches an ordered list of items that start at <start-record> for
<number-of-records> . The occurrence number of the entry that matches is returned. If there is no
match, an occurrence number equal to the entry immediately after the last entry in the list is returned.

SDL Syntax:

-- BINARY _SEARCH (<start-record>, <compare-field>, <compare-value>,------------"#'

>---<number-of-records>) ---------·----------------------1

Syntax Semantics:

start-record
This field can be any valid SDL identifier or expression that returns a value and specifies the
first structure with which to begin the search.

compare-field
This field is a template which gives the relative offset and size in the structure of the 24-bit field
that is being compared with <compare-value> . A template is an identifier whose address is
relative to the beginning of a structure rather than base relative. A field in a structure declared
REMAPS BASE has such an address.

compare-value
This field is the value that is compared with <compare-field> . <Compare-value> is considered
"on the left" in the compare relation.

number-of-records
This field can be any valid SDL number, identifier, or expression that returns a binary value and
specifies the total number of records to search for.

1137833 9-9

B 1000 Systi:!ms SD L/UPL Reference Manual
Verbs

BINARY SEARCH

Example Program:

RECDRD 1 ABLE
OATA FIXED•
KEY f IXEO;

DECLARE ODJ_INPUT
COUNT

CHARACTER Cit>•
FIXED,

RESULT
COMPARE_ VALUE
T C1024J

FIXED•
FIXED"
TABLE;

COUNT := o;
00 BUILD_LINKS FOREVERi

IF COUNT = 1024 THEN UNDO BUILD_LINKS;
TCCOUNTl.KEY := COUNT;
TCCOUNT>.OATA := CTIME CCOUNTER• BIT> HOD 10Z4);
BUMP COUNT;

END BUILD_LINKSJ

DO FOREVE.Rr
DISPLAY c·ENIEfl ANY NU"BER FROM 0 TO 1021 OR ENTE.R BYE FOR EoJ•);
ACCEPT ODT_INPUTi
If ODT_INPUT = •BYE"

THEN oo;
DISPLAY c•Gooo BYE•);
Sf op;

ENO;
COHPARE_VALUE := CONVERT COOT_INPUJ, FIXED>;
IF COMPARE_VALUE > 1023

THEN DISPLAY COOl_INPUT CAT • IS TOO LARGE");
ELSE IF COHPARE_VALUE < 0

THEN DISPLAY <ODT_INPUl CAT • IS TOO SMALL•);

El SE oo;
RESULT := BINARY_SEARCH CTCO>• KEYCO],

COHPARE_tALUE• 10Z4>;
IF RESULT = CO~PARE_VALUE
THEN DISPLAY <"THE VALUE OF DATA FOUND IS • CAT

CONVERT <OATA lRESULT1• CHARACTER));
ELSE DISPLAY ("SEARCH FAILED");

ENDJ

% This example program shows one way to use the BINARY_SEARCH verb.
% The program fjrst builds a table. The operator is then requested
% to enter any number between O and 1023. Using the accepted value
% the program searches through the table for an equal condition and
% if found displays the base relative address of the beginning of the
% table entry tbat it found. If the search fails• the program displays
% SE Aj(CH F A ILE D • I f 8 YE i s en t ere d1 the pr o gr am goe s to end o f j ob ..

9-10

B 1000 Systems SDL/UPL Reference Manual
Verbs

BUMP

BUMP

The BUMP verb increments <identifier> by <increment-amount> . If the BY keyword is not
specified, <identifier> is incremented by .1. If the BUMP verb is used in an expression, a descriptor
of the identifier is placed on the evaluation stack.

If either <identifier> or <increment-amount> has a length greater than 24 bits, only the rightmost
24 bits are evaluated. If either <identifier> or <increment-amount> has a length less than 24 bits,
<identifier> or <increment-amount> is padded with leading zeros. Character strings are treated as
bit strings.

SDL and UPL Syntax:

- BUMP <identifier> -------....---------·-----------,r-------------;
...__ __ BY <increment-amount>----

Syntax Semantics:

identifier
This identifier can be any valid SDL/UPL identifier and specifies the field to be incremented.

increment-amount
This field can be any valid SDL/UPL integer, identifier, or expression that returns a 24-bit binary
number and specifies the amount to increment <identifier> .

BY
The keyword BY specifies that <increment-amount> follows.

Examples:

EVMP x;

BUMP x ev Id

f.JU~P)(BY l;

A : = BU~P x UY z;

IF (JjlJtJP X EY Z> EQL 2EHO
H'.Ef\ ••• ;
fl SE • • • ;

eUMP ft PY B == c;

X := PUMP A BY 8 := c;

1137833

% Add l to)(.

% Add 4 to x.

l Add the value cf l to x.

% Add the v~lue cf l to x, :Bsiqn
l the sum to y, a r. d assiqr the value
% of x to A.

l Add the vatve cf l to X and store
l in x, and then oerform the comparison.

7. Assign the value of C to 8 and
l then add the value of C to A.
2 ~otice that the value of C is added to
% A tecause of the replacement delete
l l~ft oart operator.

% Reclace B b~ the vatue cf c~ delete
l s~ add trre valLe of C tc ~. and assign
% the value to A and to X.

9-11

B 1000 Systems SDL/UPL Reference Manual
Verbs

BUMP

PflOC 8 <EU~P X);

r~cc_o cceu~P x>J;

Example Program:

DECLARE NUMBER FIXED;

NUMBER := Oi

DO f OR EVER;

% Identifier X is incremented by 1
7. and X is oassed to orocedore PROC_B.

% Identifier Xis incremented by 1
l and the v~lue of X is oassed to
% procedure PFUC_e. The extra set of
l oarentheses c3uses the value to be
% passed tc PF:OC_B instead of the name
l X.

IF CBUHP NUMBER) > 10 THEN UNDO;
DISPLAY CON~ERT CNUHBER• CHARACTER>;

£NO;

sTop;

% This example program uses the BUMP verb to increment
% a number by one. The resulting value of the number is
% displayed on the OOJ. The program increments and displars
% the number ten times and goes to end of job.

Output from the Example Program:

% BUHPO =6501 +0000001
% BUMPO =6501 +0000002
% BUMPO =6501 t-0000003
% BUHPO =6501 •0000004
% BUMPO =6501 •0000005
% BUHPO =6501 •0000006
% BUMPO =6501 •0000007
% BUHPO =6501 •0000008
% BUMPO =6501 •0000009
z BUHPO =6501 •0000010

9-12

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

CHANGE
The CHANGE verb causes the SDL/UPL program to dynamically modify the attributes of a file dur
ing the execution of a program. The CHANGE verb must be specified after the file is declared. The
change does not become effective until the file is opened. If the file to be changed is opened when
the CHANGE verb is performed, the change is not effective until the file is closed and reopened.

Only those file attributes listed in the CHANGE verb are modified. Those omitted remain as previously
set.

To effectively modify the attributes of a file, use the following procedure.

1. Close the file with a file attribute which causes the memory space for the File Information
Block (FIB) to be released. If the memory space for the FIB is not released, the MCP does
not rebuild the FIB, and any attempt to change the file attribute is disallowed. The following
examples show four ways to close a file so that the memory space for the FIB is released.

CLOSE FILE____A WITH LOCK;
CLOSE FILE_B WITH RELEASE;
CLOSE FILE_C WITH CRUNCH;
CLOSE FILE_D WITH PURGE;

2. Modify the desired file attributes using the CHANGE verb.
3. Open the file explicitly by using the OPEN verb or implicitly by using the READ or WRITE

verbs.

Refer to Table 9-1 for a complete description of the file attributes that can be specified with the
CHANGE verb.

SDL and UPL Syntax:

- CHANGE <tile-identifier> TO (----_ r ___ , <attribute>: =<value>---------); --1
Syntax Semantics:

file-identifier
This file identifier can be any valid SDL/UPL file identifier and specifies the file to be modified.

attribute

value

This field can be any valid file attribute and specifies the file attribute to be modified. Refer to
FILE in Section 4 of this manual for a complete list of the valid file attributes.

This field can be any valid SDL/UPL number, identifier, or expression that returns a value and
specifies the file attribute value.

Table 9-1 shows all the valid values for each file attribute.

1137833 9-13

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

Table 9-1. Valid File Attribute Valm~s

File
Attribute

ALL_AREAS_A T _OPEN

AREA_BY _CYLINDER

0
1

0
1

BLOCKS __ PER_AREA n

Value

BUFFERS <number-of-buffers>

DEVICE <hardware variant>
CAT <hardware type>

END_OF _p AGE_ACTION 0

EU_DRIVE <drive-number>

EU_INCREMENT <drive-number>

EU_INCREMENTED 0

1

EU_SPECIAL 0
1

FILE_ID '' <file-identifier> ''

FILE_ TYPE 0 or 9
7

9-14

8
12

Description

Resets the attribute.
Sets the attribute.

Resets the attribute.
Sets the attribute.

Specifies the blocks per
area for the file.

Specifies the number of
buffers.

Ref er to Table 8-2 for
a complete list of the
hardware variants and
lllardware types.

Resets end-of-page
reporting.
:Sets end-of-page reporting.

Specifies the disk drive
number. EU_SPECIAL and
EU_INCREMENTED must
be set.

Specifies the disk drive
number. EU_SPECIAL and
EU_INCREMENTED must
be set.

Resets
EU_INCREMENTED.
Sets EU_INCREMENTED.

Resets EU_SPECIAL.
Sets EU_SPECIAL.

Specifies the file identifier
for the file.

Specifies DAT A file type.
Specifies INTERPRETER
file type.

Specifies CODE file type.
Specifies INTRINSIC file
type.

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

Table 9-1. Valid File Attribute Values (Cont)

File
Attribute

INV ALID_CHARACTERS

LABEL_ TYPE

LOCK

MUL TI_FILE_ID

MULTI_PACK

NUMBER_OF _AREAS

NUMBER_ OF _ST A TIO NS

OPEN __ ON_BEHALF._OF

1137833

0

1

2

3

0
1
2

0
1

Value

"<multi-file-id>"

0

1

n

n

0

1

Description

Reports all lines containing
invalid characters.
Reports all lines containing
invalid characters and stops
the program.
Reports once, that the file
contains invalid characters.
Does not report that the
file contains invalid
characters.

Use ANSI standard label.
File is unlabeled.
Use Burroughs standard
(ANSI) label.

Resets LOCK.
Sets LOCK.

Specifies the multifile
identifier for the file.

Places file on single disk
pack.
Places file on multiple disk
packs.

Specifies the number of disk
areas.

Specifies the maximum
number
of stations for the remote
file. The value of n can
range from 0 to 999.

Resets the
OPEN_ON_BEHALF _OF
boolean.
Sets the
OPEN_ON_BEHALF _OF
boolean.

9-15

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

Table 9-l. Valid File Attribute Values (Cont)

File
Attribute Value

OPEN_OPTION 12-bit field

OPTIONAL 0
1

PACK_ID "<pack-identifier>"

PARITY 0

1

QUEUE_FAMILY_SIZE n

QUEUE_MAK_MESSAGES n

REMOTE_HEADERS 0

1

RECORDS_PER_BLOCK n

RECORD_SIZE n

REEL n

REMOTE_KEY 0

SAVE n

9-16

Description

Bit 0 - INPUT
Bit 1 - OUTPUT
Bit 2 - NEW
Bit 3 - PUNCH
Bit 4 - PRINT
Bit 5 - NO_REWIND,

INTERPRET
Bit 6 - REVERSE,

ST ACKERS
Bit 7 - LOCK
Bit 8 - LOCK_OUT

File must be present.
File is optional.

Specifies the disk pack
identifier.

Specifies odd parity
checking.
Specifies even parity
checking.

Specifies the number of
subqueues in the queue file.

Specifies the maximum
number of messages that the
file can contain.

Resets the headers boolean
for remote files.
Sets the headers boolean
for remote files.

Specifies the number of
records per block for the
file.

Specifies the number of
bytes per record.

Specifies the reel number.

Remote key is present on
all read and write operations
on the file.

Remote key is not present.

Specifies the number of
days
to save the file.

SERIAL

File
Attribute

TRANSLATE

TRANSLATE_FILE

TRANSLATION

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

Table 9-1. Valid File Attribute Values (Cont)

Value

6-character string

0
1

" <file-identifier> "

@(1)000@

@(1)001@
@(1)010@

Description

Specifies the tape serial
number.

Resets translate.
Sets translate.

Specifies the name of the
translate table file
identifier.

Specifies EBCDIC
translation.
Specifies ASCII translation.
Specifies BCL translation.

USE __ INPUT _BLOCKING 0 Takes attributes from file
declaration.

1

VARIABLE 0

WORK_FILE 0

1137833

Takes attributes from disk
file header.

File contains only
fixed-length records.
File contains
variable-length records.

Does not insert job number
in file identifier.
Inserts job number in file
identifier.

9-17

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

Table 9-2 shows the hardware code and variant for each hardware device type. If the device-type name
has an asterisk (*) character on the left, the name is not a valid spelling for use with the CHANGE
verb. The value is a 10-bit value where the leftmost four bits are the variant and the rightmost six
bits are the hardware code.

Table 9-2. Valid DEVICE Type Values

Device Type Name

* DATA RECORDER (80 column)
CARD_PUNCH
CARD_PUNCH FORMS
PUNCH
PUNCH FORMS
* FDC 1
READER_PUNCH PRINTER
READER_PUNCH___,PRINTER FORMS
PUNCH_PRINTER
PUNCH_PRINTER FORMS
PAPER_ T APE_READER
PAPER TAPE READER 1
PRINTER

PRINTER FORMS
READER SORTER 2
SORTER_READER
READER_SORTER
DISK_FILE (any head per
track disk)
DISK_FILE (lA, lC,
system-memory head per
track disk)
DISK (disk cartridge
control 2 or 3)
DISK (disk cartridge
control 1)
DISK_PACK (any 225, 205,
or 206 disk pack)
DISK_PACK
DISK (any disk)

* 5-N DISK
CARD_READER (96 column)

9-18

Hardware Code
(bits 4-9)

01
02
02
02
02
04
05
05
05
05
06
07
08

08
09
10
10
11

12

13
14

15

16
17

18
19

Variant
(bits 0-3)

(Same as PRINTER)
(Same as PRINTER FORMS)
(Same as PRINTER)
(Same as PRINTER FORMS)

(Same as PRINTER)
(Same as PRINTER FORMS)
(Same as PRINTER)
(Same as PRINTER FORMS)

0 -· BACKUP TAPE or DISK
1 -· BACKUP TAPE
2 -· BACKUP DISK
3 -- BACKUP TAPE or DISK
4 -- HARDWARE ONLY
5 -- BACKUP TAPE ONLY
6 -- BACKUP DISK ONLY
7 -- BACKUP TAPE or DISK
only
8 + (PRINTER Variant)

(Same as DISK)

(Same as DISK)
(Same as DISK)

(Same as DISK

(Same as DISK)
0 -- Serial
1 -- Random
(Same as DISK

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

Table 9-2. Valid DEVICE Type Values (Cont)

Device Type Name
PAPER._TAPE_PUNCH
PAPER_TAPE_PUNCH FORMS
CARD_READER (80 column)
CARD_READER
* SPO (supervisory printout)
* ODT (operator display
terminal)
T APE_NRZ (any 9-track
nonreturn-to-zero, tape
unit)
TAPE_7 (any 7-track
upright, tape unit)
TAPE_PE (any 9-track
phase-encoded, tape unit)
TAPE (any tape un~t)
TAPE_9 (any 9-track
tape unit)
CASSETTE
PRINTER (printer control 5)
PRINTER (printer control 5)
DISK_PACK (206 and 207
disk pack)
PRINTER (printer control 7)
PRINTER (printer control 7
PORT
QUEUE
* QUEUE FILE OLD
REMOTE

Examples:

Hardware Code
(bits 4-9)

20
20
21
21
22
23

24

25

26

27
28

30
31
31
32

33
33
60
61
62
63

CHANCE MY_f ILE Tl CFJll IC := "YO~R_FILE"l;

Variant
(bits 0-3)

(Same as PRINTER)
(Same as PRINTER FORMS)

(Same as PRINTER)
(Same as PRINTER FORMS)
(Same as DISK)

(Same as PRINTER)
(Same as PRINTER FORMS)

CHANGE ll~E TO CLA8FL TYPE := 2- ENC_Of PAGE ACTION :: 1);

CHANGf CISK FILf TC CUSE !~PUT BLOCKING := t~ FILE TYPE := Q);

1137833 9-19

CHANGE

Example Program:

B 1000 Systems SDL/UPL Reference Manual
Verbs

FILE WORKFILE CDEVICE = DISK• LABEL = "HASTER•t•otO•);
ZIP •so OPEN";
OPEN WORKFILE WITH NEW;
CLOSE WORKFILE ~ITH RELEASE;
CHANGE WORKFILE TO CFILE_ID := •NEW••

MULTI_.fILE_ID := "HASTER"H
OPEN WORKFILE WITH NEW;
CLOSE WORKFILE kITH RELEASE;
ZIP "RO OPEN•;
srop;
FINH

% The example program shows one way to change the name of a file.
% The program sets the HCP OPEN option, opens the file• closes the
% tile, changes the external file-id of the file• reopens the
% file• closes the file• resets the HCP OPEN option, and goes to
% end of job. the OPEN option is set in order to see the name of
% the tile as it is opened by the HCP.

9-20

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHAR TABLE

CHAR._T ABLE

The CHAR_ TABLE verb builds a 256-bit table string that describes a set-membership table, in which
every member of the set is specified in the table string. Non-graphic characters are denoted in their
hexadecimal (EBCDIC) form by concatenating bit strings into the table string. The table string gener
ated by the CHAR_ TABLE verb is a constant string that is built at compile time. Identifiers and ex
pressions cannot be specified as elements of this table string.

The value of each character in the table string is used as its index into the table string. When a charac
ter is a member of the set described by the table string, its corresponding bit in the table string is
set to @(l)l@. Position in the table string is based on the standard EBCDIC collating sequence.

The CHAR_TABLE verb is frequently used in conjunction with the REDUCE verb.

SDL and UPL Syntax:

(•-----CAT

-CHAR_TABLE (----.... --....---"<EBCDIC-characters>"------..,.......---) -----t
---- @< 2-hexadecimal-numbers> @

Syntax Semantics:

EBCDIC-character
This field can contain one or more EBCDIC characters and specifies the character(s) to be in
cluded as member(s) of the table.

2-hexadecimal-number
The two digits that comprise a hexadecimal number are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, and F. This number specifies the hexadecimal number to be included as a member of the
table.

Example:

[ECLA~E X ~Jf (256);
) := CHAF_TAELf cr1 ~8C" C/.l ;FF~ CAT "123");

% X is a 256-bit str~Pq where ocsitions A, 9, c, @Ff;, l•
l 2, anc 3 are set tc ~Cl)l; anc all ether bit ~csitiors
% are ~et to ;c1>0~.

1137833 9-21

B 1000 Systi;~ms SDL/UPL Reference Manual
Verbs

CHAR TABLE

Example Program:

DECLARE
VOWEL_ TABLE
STRING
OOT_INPUT
EOS_FlAG

BIT (256111
REFERENCE,
CHARACTER C 69>•
BIT Cl>i

VOWEL_TABL£ := CHAR_TABLE cwA£IOUaeiou•);
DO FOREVERi

DISPLAY ("ENTER CHARACTERS OR ENTER BLANK TO GO TO ENO-OF-JOB">i
ACCEPT ODJ_INPUJ;
REFER STRING 10 ODT_INPUJ;
RlOUCE STRING UNTIL FIRST /= • •;

ON EOS srop;
R EDUC E ST RI NG UN TI L f IR S T I N V 0 WE L_ TABLE;

ON EOS no;
DISPLAY C"NO VOWELS IN YOUR INPUJ•);
EOS_FLAG := ~ClJt;;

ENO;
I f N 0 T E 0 S._ f L AG

THEN DISPLAY C"THE FIRST VOWEL IS " CAT SUBSTRCSTRINGPO,llJi
EOS_FLAG := d(l>O•;

ENO;

% This example p.rogra11 accepts input from the ODT and displays
% the first• English-language vowel encountered in the characters
% that are accepted. Entering a blank input message sends the
% program to end of job.

9-22

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHARACTER FILL

CHARACTER_FILL

The CHARACTER_FILL verb causes the leftmost eight bits of the source field to be written through
out the destination field.

SDL and UPL Syntax:

- CHARACTER_ FILL (<destination>, <source>);

Syntax Semantics:

destination
This field can be any valid SDL/UPL identifier and specifies the name of the destination field.
Array ~lements, records, structures, and simple identifiers are valid destination fields for < desti
nation>.

source
This field can be any valid SDL/UPL literal, identifier, or expression that returns a value and
specifies the value to be filled into <destination>. Only the leftmost eight bits (one character)
of < source> are used.

Examples:

DECLAf1E
AFRAYC10)
FIELD

RfCCfiC
f ltl FECCliC

CHAF FlElC
fIXfD_FTEU:
EIT_fIElD_24
EIT_fIELC_lC

CJ-Af<ACTEP. (5),
0-HACTER Cl>;

CH.&FcACTEF Cl),.
f Df o,
~lT C24),.
EIT ClQ);

CHAFACTEF_f lll (A~FAYC~),. " "); i Fills element 5 of array

C~AfACTEf_f ILL (flflC• ;co;>;

% id~ntifier A~fdY ~ith blank
4 charactef's.

% Fills FJELD with hexacecimat
4 valLe ecta' to ;cc¢.

CHAFACTE~_fILL CFJLL_~~CG~C, "A"); % Fills FILL_PECORO with
~ the character a.

1137833 9-23

CHARACTER FILL

Example Program:

DECLARE

B 1000 Systems SDL/UPL Reference Manual
Verbs

ACCEPT_FIELD
OISPLAY_FIELD

CHARACTER C 721•
CHARACTER C 12H

DO FOREVER;
DISPLAY <"ENTER FILL CHARACTER OR BYE TO GO TO END Of Joew>;
ACCEPT ACCEPT_f IELO;
If AC C £PT _f I ELD = "BYE•• THEN U N 0 0;
CHARACTER_f"Ill <OISPLA1r_FIELD• ACCEPT_FI£LDH
DISPLAY <DISPLAJ_FIELO);

ENDi

srop;

fl NH

% This example program accepts characters from the oor. If BYE
% is entered• the progra• goes to end of job. The program uses
% the CHARACTER_FILL verb to fill the DISPLAY_FIELD field.
% The DISPLAY_FIELO field is then displayed on the OOT.

9-24

B 1000 Systems SDL/UPL Reference Manual
Verbs

CLEAR

CLEAR

The CLEAR verb moves zeros (0) to the array if the array is declared with a data type equal to BIT
or FIXED. It also moves blanks to the array identifier if the array is declared with a CHARACTER
data type.

The CLEAR verb is not valid for paged arrays.

SDL and UPL Syntax:

I< I
- CLEAR ____ ___ <array-identifier>------

Syntax Semantics:

array-identifier
This identifier can be any valid SDL/UPL array identifier and specifies the array to be cleared.

Example 1:

C£CLA~£ TAELE C10} C~A~PCTfR;

CLEAfi TAEL£i

Example 2:

CECLAhE TAELE C10)
\dJtiK_At<RllY (20)

CLEA~ TAPLE1 WChK_Af~~y;

1137833

(hAfc.ACTf.R,
.FIXEC;

% Mo~es blan~ character~ to the
% a~ray labeled TABLE.

% Moves bla~~ characters to the
% array labeled TABLE and moves
4 1ercs to the arra~ labeled
% WCi\t<_J\fdHY.

9-25

CLEAR

B 1000 Systems SDL/UPL Reference Manual
Verbs

Example Program:

DECLARE CHAR_A~RAY C2> CHARACTER Cll•
f IXEO_ARRAY C2> flXEDi

CHAR_ARRAY CO) := •A•;
CHAR_ARRAY (1) := "B"i
DISPLAY c•rHE CONTENTS Of CHAR_ARRAY BEFORE CLEAR ARE • CAT a7Fa

CAT CHAR_ARRAT CO> CAT ~7F~ CAT w AND ft CAT a1ra CAT
CHAR_ARRAY Cl) CAT ~If~);

FIXEO_ARRAY COl := 111111~
FIXED_ARRAY Cl) := 222222~
DISPLAY c•JHE CONTENTS Of FIXED_ARRAY BEFORE CLEAR ARE • CAT ~7Fa

CAT CONVERT CFIXED_ARRAf (Q), CHARACTER) CAT a7f~ CAT
ft AND • CAT ~rra CAT CONVERT CFIXEO_ARRAY (1), CHARACTER>
CAT d7f~>i

CLEAR CHAR_ARRAY~ FIXED_ARRAY;

DISPLAY c·rHE CONTENTS OF CHAR_ARRAY AFTER CLEAR ARE • CAT a7F~
CAT CHAR_ARRAY CO) CAT alf ~ CAT " AND • CAJ a1ra CAT
CHAR_ARRAY (1) CAT a1ra1;

DISPLAY c•rHE CONTENTS or FIXEO_ARRAY AFTER CLEAR ARE • CAT ~7ra

CAT CONVERT CfIXED_ARRAf CO). CHARACTER> CAT arra CAT
w AND • CAT ~Tf~ CAT CONVERT CfIXED_ARRAY <t>~ CHARACTER>
CAT •7F4aJ;

DISPLAY c•Gaoo BYEft>;
srop;
FINI;

% This example program uses the CLEAR verb to clear two arrays
% and displays the value of each array before and after the
% CLEAR verb is performed"

Output from Example Program:

CLE AR 0 = 6 91 Z B 0 J. P P = 1.,. MP:: 4 T I HE = 15 : 2 8 : 31. 0
% CLEARO =&912 THE CONTENTS OF CHAR_ARRAY BEFORE CLEAR ARE •A•

AND "8•
% CLEARO =6912 THE CONTENTS or FIXED_ARRAY BEfORE CLEAR ARE •+

0111111" AND "+0222222"
% CLEARO =6912 THE CONTENTS Of CHAR_ARRAY AFTER CLEAR ARE • "

AND " w

% CLEARO ==6912 THE CONTENTS Of FIXED_ARRAY Af"fER CLEAR ARE "•O
OOOOOO• ANO "+0000000"

% CLEARO =691Z GOOD BYE
CLEARO =6912 EOJ. TIME = 15:28:57.2

9-26

B 1000 Systems SDL/UPL Reference Manual
Verbs

CLOSE

CLOSE

The CLOSE verb explicitly terminates program control over a file.

If there are no close attributes specified with the CLOSE verb, the program gives up control of the
file to the MCP and the memory space is not released. If a read or write operation is attempted on
the file, the file is reopened with the existing FIB. Even if an explicit open is done, the FIB is not
rebuilt.

An implicit close is performed by the MCP when the program goes to end of job and when the file
was not explicitly closed by the program. An implicit close with release is performed unless the attri
butes in the FILE declaration override the RELEASE close attribute.

SDL and UPL Syntax:

-CLOSE-r-< file-identifier>

L_ <switch-file-identifier> (<index>)

Syntax Semantics:

file-identifier

CODE_FILE --------1
CRUNCH ------~

IF _NOT_CLOSED -----i
LOCK ----------i
NO_REWIND -----

PURGE---------~

REEL-~------~

RELEASE~-----

R EMOVE --------i
ROLLOUT -------

LWITH~

This file identifier can be any valid SDL/UPL file identifier and specifies the file to be closed.

switch-file-identifier
This file identifier can be any valid SDL/UPL switch file identifier and specifies the file to be
closed.

WITH
The keyword WITH is optional and specifies that dose keyword options are to follow.

CODE_FILE
The keyword CODE_FILE causes the SDL/UPL program to notify the MCP to close a file as
a code file. A code file is a file that can be executed on the B 1000 computer system.

>

1137833 9-27

B 1000 Systems SDL/UPL Reference Manual
Verbs

CLOSE

CRUNCH
The keyword CRUNCH causes the disk file header to be modified such that the AREAS file attri
bute is assigned a value of 1 and the BLOCKS PER AREA file attribute is assigned the actual
size used. Also, the CRUNCH keyword causes the SDL/UPL program to notify the MCP to re
lease all memory space used for the file and to enter the file name into the disk directory. The
CRUNCH keyword applies only to disk files that are opened with the OUTPUT and NEW file
attributes and to those that have only one area allocated.

IF _NOT _CLOSED
The keyword IF _NOT_CLOSED prevents the attempted close of an unopened file. The MCP
terminates a program that attempts to close a file that is not open.

LOCK
The keyword LOCK causes the SDL/UPL program to notify the MCP to enter the file name
into the disk directory and to release all memory space used for the file.

NO_REWIND
The keyword NO_REWIND causes the SDL/UPL program to notify the MCP to close a tape
file without rewinding the tape.

PURGE
The keyword PURGE applies only to disk and tape files.

For disk files, PURGE causes the SDL/UPL program to notify the MCP to remove the file name
from the disk directory, to release all memory space used for the file, and to return the disk
space used by the file to the DISK.AVAILABLE table.

For tape files, PURGE causes the SDL/UPL program to notify the MCP to rewind and scratch
the tape.

REEL
The keyword REEL causes the SDL/UPL program to notify the MCP to close the current reel
of a multireel tape file and leave the actual file open.

RELEASE
The keyword RELEASE applies only to disk and tape files.

For disk files, the RELEASE keyword causes the SDL/UPL program to notify the MCP to re
lease all the memory space used for the file and remove the file name from the disk directory.
If the file is a new disk file, the RELEASE keyword does not lock the disk file in the disk direc
tory. The LOCK keyword must be specified in order to lock a new disk file in the disk directory
when the file is closed.

For tape files, the RELEASE keyword causes the SDL/UPL program to notify the MCP to re
wind the tape and leave the tape in a ready state.

REMOVE

9-28

The keyword REMOVE causes the SDL/UPL program to notify the MCP to check the disk di
rectory for a duplicate file name. 1f a duplicate file name is found, the MCP removes the old
entry and updates the disk available table on the old file's disk pack.

B 1000 Systems SDL/UPL Reference Manual
Verbs

CLOSE

ROLLO UT

I

The keyword ROLLOUT causes the SDL/UPL program to notify the MCP that the file is to
be rolled out to disk.

The keysymbol comma (,) is optional and is used to separate the options of the CLOSE verb.

The keysymbol virgule (/) is optional and is used to separate the options of the CLOSE verb.

Examples:

CLOSE ~ASTE~f Ilfi
CLCSE LI~E RELEA5f, IF_~OT_CLOSEC;
CLC5£ WCfKf ILE PU~(f;

CLOSE TAPfFILE NO_~EWl~C;
CLOSE CISKf ILE CRU~Ct. LCCK;

Example Program:

FILE LINE COEVICE = PRINTER, RECORDS = 132/1), % Declares the
DISK CDEVICE = DISK, RECORDS = 180/ZO}, % files LINE1 DISK,
CARD COEVICE = CARD_READER• RECORDS = 80/1), I CARD, and TAPE.
TAPE <DEVICE = TAP£_p[, RECORDS = 180/l)i

OPEN LINE WITH OUTPUT NEW;
OPEN DISK WITH OUTPUT NEW LOCKi
OPEN CARO ~ITH INPUT;
OPEN TAPE WITH OUTPUT NEW;

ZIP "SO Ctos;•;

CLOSE LINE WITH RELEASE If_NOT_CLOSECJ
CLOSE DISK WITH CRUNCH REHOVEi
CLOSE CARO WITH RELEASE If _NOT_CLOSED;
CLOSE TAPE WITH REEL;

ZIP "RO CLO Si•.;

% Opens the files
X LINE• OISK• CARD•
% and TAPE.

% Sets the ffCP CLOS
% option.

% Closes the files
% LINE• DISK< CARD•
% and TAPE.

% Resets the HCP
% CLOS option.

% This example program shows various ways to close tiles of
% different device types. The HCP CLOS option is set to show
% how the MCP actually closes the file as a result of performing
% the CLOSE verb.

1137833 9-29

B 1000 Systems SDL/UPL Reference Manual
Verbs

COMMUNICATE_WITH_GISMO

The COMMUNICATE_ WITH_GISMO verb is used exclusively by the MCP, or by an SDL program
that is to run without the MCP to communicate with GISMO. If an SDL program uses this verb while
the MCP is running, the system halts with the L-register equal to @OD0040@ (A program other than
the MCP attempted a COMMUNICATE_WITH_GISMO or GISMO_COMMUNICATE
(T =LIMIT _REGISTER).

The value of <communicate> is made non-self-relative by pushing the value to the value stack, if
necessary. The absolute address of <communicate> is stored into the T-register and its length is stored
into the L-register. The appropriate swapper value is stored in the X-register and control is passed to
GISMO. Any value returned by GISMO is described by the same descriptor on the evaluation stack
that was used to pass a value to GISMO.

SDL Syntax:

- COMMUNICATE_WITH_GISMO (<communicate>); --------------------...

Syntax Semantics:

communicate
This field can be any valid SDL literal, identifier or expression and specifies the information to
be passed to GISMO.

Example:

CECLA~E GIS~C_INFC

GJStJC_11'FO := Oi
Ell C24H

cc~~UNlCATE_WITH (JS~(c;44~ CAT ;it11114)i

S TCP;
f Ifd j

% This e~amcte oertor"s the COMML~ICATE_~ITH_CISMC
% verb to pass ~44111111; to GIS~O.

9-30

COMMUNICATE

B 1000 Systems SDL/UPL Reference Manual
Verbs

COMMUNICATE

The COMMUNICATE verb passes control to the MCP. The information stored in < MCP-communi
cate > is given to the MCP to act upon.

SDL Syntax:

~COMMUNICATE (<MCP<ommun~~e>);~~~~~~~~~~~~~~~~~~~~~~~

Syntax Semantics:

MCP-communicate
This field can be any valid SDL literal, identifier, or expression that returns a value and it must
specify a valid MCP communicate.

1137833 9-31

B 1000 Systems SDL/UPL Reference Manual
Verbs

COMPILE_CARD_INFO

The COMPILE_CARD_INFO verb stores the information used to initiate the compilation of this
program into < destination> .

The following is the format of the information that is stored in <destination> .

Item

OBJECT NAME
EXECUTE TYPE
COMPILER PACK IDENTIFIER
COMPILER INTERPRETER NAME
COMPILER INTRINSIC NAME
COMPILER PRIORITY
COMPILER SESSION NUMBER
COMPILER JOB NUMBER
COMPILER IST AND 2ND NAMES
COMPILER CHARGE NUMBER
FILLER
COMPILATION DATE AND TIME
FILLER
COMPILER USERCODE
COMPILER PASSWORD
COMPILER PARENT JOB NUMBER
COMPILER PARENT QUEUE ID
COMPILER_LS_BOOLEAN
SECONDS_BEFORE __ DECA Y
PRIVILEGED
COMPILER_RESTRICTIONS

SDL and UPL Syntax:

Syntax Semantics:

destination

Data Type

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
BIT
BIT
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

Length

30
2
10
30
10
2
6
6
20
7
I
36
4
10
10
4
20
I
4
I
2

This field can be any valid SDL/UPL identifier and specifies the data name in which to store
the compile card information.

Example:

CECLARf CC~PILEk_INFfRMATJC~ CH~RACTER C1€1J; % ~tores the co~oile
CCMPllf CA~[_!~FG CCC~PilE~_l~fCRM~TICN); % card irfcrmation

% into identifier
% COMPILE~_INFO~~ATION.

9-32

B 1000 Systems SDL/UPL Reference Manual
Verbs

Example Program:

DECLARE 01 CCI
03 OBJECT_NAHE
03 EXECUIE_TYPE
03 COMPlLER_PACK_ID
03 COHPILER_INTERPRETER_N~HE
03 COHPILER_INTRINSIC_NAME
03 COHPILER_PRIORITY
03 COMP I LER_SE~_S_~JJ N __ NU MB ER
03 COMPILER_JOB_NUHBER
03 COMPILER_lSJ_AND_ZND_NAHES
03 COHPILER_CHARtE_NUMBER
03 FILLER
03 COMPILATlON_DATE_AND_ lIME
03 FILLER
03 COMPILER~U~t~COOE
03 COMPILER_PASSWORO
03 COMP ILER'"'9-PAR EN T_JOB_N t;MBER
03 COMPILER_PARENT_QUEUE_1D
03 COMPILER_LS_BOOLEAN
03 SECONDS_B£FORE_DECAY
03 COMPILER_PRIVILEGED
03 COHPILER_RESTRICTIONS

COHPILE_CARD_INFO CCCI);

COMPILE CARD INFO

CH AR AC TER1
CH AR AC TE R C 3 0 l •
CHARACTER C2h
CH AR AC IER C 10>,,
CHARACTER {30>•
CHARACTER (10>•
CHARACTER (21.
CH AR AC TER < f» •
CH AR AC TE f~ C 6 >"
CHARACTER C20),,
CHARACTER (71•
CH AR AC TER C 1 l,
BIT C3f>),
BI r C 41 •
CHARACTER C10)11
CH AR AC TER C 10) •
CHARACTER C4l•
CHARACTER (201•
CH AR AC TER C 1l.,
CHARACTER C4>•
CHARACTER en.
CHARACTER <z>;

DISPLAf C"OBJECT NAME IS • CAT OBJECT_NAHE>i
DISPLAY C"E~ECUJE TYPE IS • CAT EXECUTE_TYPE);
DISPLAY ("COMPILER PACK IDENTIFIE~ IS " CAT COHPILER_PACK_ID)i
DISPLAY c•coHPll[R INTERPRETER NAME IS " CAT

COMPILER_INTERPRETER_NAHEJ;
DISPLAY <"COMPILER INTRINSIC NAME IS " CAT COHPILER_INTRINSIC_NAHE);
DISPLAY C"COHPILER PRIORITY IS • CAT COHPILER_PRIORITYli
DISPLAY ("COMPILER SESSION NUMBER IS " CAT COHPILER_SESSION_NUMBERJ;
DISPLAY ("COMPILER JOB NUHBlR IS • C~T COHPILER_JOB_NUHBER);
DISPLAY ("COMPILER 1ST AND 2NO NAMES Of RUNNING PROGRAM IS • CAT

COMPILlR_lST_AN0_2ND_NAHESl;
DISPLAY c•coHPILER CHARGE NUMBER IS • CAT COMPILER_CHARGE_NUMBER>;
DISPLAY <"COMPILATION DATE AND TIME IS " CAT

CONVERT CCOMPILATION_DATE_AND_TIHE• CHARACTER));
DISPLAY c•coMPilER USERCOOE IS • CAT COMPILER_USERCODE);
DISPLAY ("COMPILER PASSWORD IS " CAT COHPILER_PASSWORD>J
DISPLAY c•caMPILER PARENT JUB NUMBER IS " CAT

COHPILER_PARENT_JOB_NUHBER>;
DISPLAY C"COHPILE~ PARENT QUEUE IDENTIFIER IS • CAT

COMPILER_PARENf_QUEUE_IO>i
DISPLAY (ftCOMPILER LS BOOLEAN IS • CAT COHPILER_LS_BOOLEANJ;
DISPLAY c•sECONOS BEFORE DECAY IS • CAT SECONDS_BEFORE_DECAY);
DISPLAY C"COMPILER PRIVILEGED 15 • CAT COHPILER_PRIVILEGED>J
DISPLAY c•coHPILER RESTRICTIONS IS • CAT COHPILER_RESfRICTIONS);
DISPLAY c•Gooo BY£");
srop;

1137833 9-33

B 1000 Systems SDL/UPL Reference Manual
Verbs

COMPILE CARD INFO

% This example program uses the COHPILE_CARD_INFO verb and
% displays the information on the ODT.

Output from Example Program:

co_CA_INFO =7102 BOJ. pp:4, MP=4 TIME = 16:30:4&.2
% co_cA_INFO =7102 OBJECT NAHE IS co_CA_INFO
% co_CA_INFO =7102 EXECUTE JYPE IS 01
% co_cA_INFO =7102 COM~llER PACK IDENTIFIER IS USER
% co_CA_INFO =7102 COMPILER INTERPRETER NAME IS SOL INT

ERPlH
% co_cA_INFU =1102 COMPILER INTRINSIC NAME IS SOL.INTRIN
% co_CA_INFO =7102 COMPILER PRIORITY IS 04
% co_cA_INFO =7102 COMPILER SESSION NUMBER IS 000000
% co_CA_INFO =7102 COMPILER JOB NUMBER IS 007102
% co_CA_INFO =7102 COMPILER lST AND 2ND NAMES OF RUNNING PROGRAM IS

co_CA_INFO
% co_CA_INFO ;7102 COMPILER CHARGE NCHBER IS 0999999
% CO_CA_INFO =7102 COMPILATION DATE AND TIME IS 58508F401
% co_CA_INFO =7102 COHPIL[R USERCOD£ IS
% co_CA_INFO =7102 COMPILER P~SSWORD IS
% co_CA_INFO =7102 COMPILER PARENT JCB NUMBER IS 7000
% co_CA_INFO =7102 COMPILER PARENT QUEUE IDENTIFIER IS SHCS ##0000

0005
% co_CA_INFO =7102 COMPILER LS 800LE~N IS 1
% co_CA_INFO =7102 SECONDS BEFORE DECAY IS 0029
% co_cA_lNFO =7102 COMPILER PRIVILEGED IS 1
% co_CA_INFO =7102 COMPILER RESTRICTIONS IS 00
% co_CA_INFO =7102 GOOD BYE
co_CA_INFO =7102 EOJ. TIME= 1&:31:10.s

9-34

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONSOLE SWITCHES

CONSOLE_SWITCHES

The CONSOLE_SWITCHES verb places a 24-bit, self-relative value of the 24 console switches on the
top of the evaluation stack. This verb only applies to B 1720 computer systems.

SDL and UPL Syntax:

----CONSOLE_SWITCHES ~--~----------~-------------------------------------t

Example:

% Identifier SWITCH_VALUES is DECLARE SWITCH_VALUES BIT CZ4>;
SNITCH_WALUES := CONSOLE_SWITCHEs; % assigned the current value of

% the 24 console switches on the
% B 17ZO system.

Example Program:

DISPLAY (•THE CURRENT VALUE Of THE 24 CONSOLE SWITCHES EQUALS •
CAT CONVERT CCONSOLE_SWITCHES• CHARACTERl>J

Output from Example Program:

SWITCHESO =53&1 BQJ. PP=4• HP=4 TIME = 09:33:30.1
% SWITCHESO =5161 THE CURRENT VALUE or THE 24 CONSOLE SWITCHES

EQUALS AAAAAA
SWITCHESO =5361 EOJ. TIME = 09:33:35.z

1137833 9-35

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONTROL_STACK_BITS

The CONTROL_STACK_BITS verb leaves, on the top of the evaluation stack, a 24-bit, self-relative
value with a BIT data type. The BIT data type is the number of bits left in the control stack until
the control stack overflows.

SDL Syntax:

~CONTROL_STACK_BITS ~--------·~---~~-------------·--------------------------1

Example:

DECLARE BITS_LEFT BIT <24);
9ITS_LEFT := CONTROL_STACK_BITs;

Example Program:

% Assigns the identifier BITS_LEFT
% the number of bits left on the
% control stack before overflow.

DISPLAY C"THE NUMBER OF BITS LEFI ON THE CONTROL STACK EQUALS •
CAT CONVERT CCONTROL_STACK_Birs. CHARACTER));

Output from Example Program:

CONTROLO =5331 BOJ. PP=4· HP=4 TIME ~ oe:s1:1z.5
% CONTROLO =5337 THE NUMBER OF BITS LEFT ON THE CONTROL STACK

EQUALS OOZAO
CONTROLO =5337 EOJ. TIME = oa:sJ:36.7

9-36

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONTROL_STACK_TOP

CONTROL_STACK_ TOP

The CONTROL_ST ACK~ TOP verb returns a 24,.bit value which is the base-relative address of the
next entry to be placed on the control stack.

SDL Syntax:

- CONTROL_STACK_ TOP

Example:

DECLARE TOP_OF_STACK_ADDR BIT C24>J % Identifier TOP_Of_STACK_AODR
TOP_OF_STACK_ADOR := CONfROL_SIACK_TOP; % is assigned the value of the

% next entry to be placed on
% the control stack.

Example Program:

DISPLAY (•THE ADDRESS Of THE NEXT ENTRY TO BE PLACED ON THE CONTROL•
CAT • EQUALS " CAT CONVERT CCONTROL_SJACK_Jop, CHARACTER));

Output from Example Program:

CONTROLO =5349 BOJ. PP=4~ HP=4 TIME = 09:12:25.2
% CONTROLO =5349 THE ADDRESS Of THE NEXT ENTRY TO BE PLACED ON THE

CONTROL EQUALS 002880
CONTROlO =5l49 EOJ. TIME = 09:12:30.5

1137833 9-37

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONVERT

The CONVERT verb causes <convert-value> to be changed from one data type to another. A data
type keyword must be specified.

The keynumbers 1, 2, 3, and 4 are used only with bit-to-character or character-to-bit conversions. The
keynumber specifies the number of bits in the bit string which correspond to a single character in the
character string. The default keynumber is 4, which produces a hexadecimal conversion.

A bit-to-character conversion does not return decimal digits. To convert a bit string to decimal digits,
store the bit string into a FIXED identifier, and then convert the FIXED identifier to a CHARACTER
identifier. The DECIMAL verb can be used for the decimal conversions.

The conversion of data from type FIXED to type CHARACTER results in a sign and seven printable
(EBCDIC) decimal numbers. The leading printable zeros and the arithmetic sign are not suppressed.

The following procedure must be performed to convert a field from data type CHARACTER to
FIXED.

9-38

1. <convert-value> (with a CHARACTER data type) is scanned from left to right until a sign
or non-space character is encountered. If the sign is negative, the FIXED number is expressed
in the complement form of 2.

2. If a sign is encountered, it is noted and removed.
3. After encountering a sign or non space character, only the rightmost seven characters of <con

vert-value> are converted.
4. The rightmost four bits of each character are converted to a value between 0 and 15, inclusive.

The leftmost four bits of each character are ignored. Each value is then multiplied by its re
spective ten's position and summed together. For example, the hexadecimal representation of
the characters "ABS" is @(4)C1C2F5@. The rightmost four bits of each character is 125. The
2 is multiplied by 10, the 1 is multiplied by 100, and the sum of 5 + (2 * 10) + (5 * 100)
is 525. The leftmost (sign) bit is ignored for decimal values in excess of + 8,388,607 or
- 8,388,608.

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONVERT

SDL and UPL Syntax:

-- £Q.!iYERT (<convert-value>, t= FIXED------------------) --1
BIT -------------------.

CHARACTER--- · 1 ~
-1yntax Semantics:

convert-value

BIT

This field can be any valid SDL/UPL literal, identifier, or expression that returns an addressable
item and specifies the value to be converted.

The keyword BIT specifies that the resulting value of <convert-value> is to be a BIT data type.

CHARACTER
The keyword CHARACTER specifies that the resulting value of <convert-value> is to be a
CHARACTER data type.

FIXED

2

3

4

The keyword FIXED specifies that the resulting value of <convert-value> is to be a FIXED
data type.

The keynumber 1 specifies the number of bits to be one and it is valid for character-to-bit and
bit-to-character conversions.

The keynumber 2 specifies the number of bits to be two and it is valid for character-to-bit and
bit-to-character conversions.

The keynumber 3 specifies the number of bits to be three and it is valid for character-to-bit and
bit-to-character conversions.

The keynumber 4 specifies the number of bits to be four and it is valid for character-to-bit and
bit-to-character conversions.

1137833 9-39

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONVERT

Table 9-3 shows the possible data type conversion combinations.

Table 9-3. Data Type Conversion Combinations

Original Data Type
Data Type Desired Result

BIT BIT No change.

BIT CHARACTER Bits are converted to characters based on
bit group size. If no bit group size is
specified, the bit group size defaults to 4.

BIT FIXED The rightmost 24 bits aire returned to the
expression.

CHARACTER BIT Characters are converted to bits based on
bit group size. If no bit group size is
specified, the bit group size defaults to 4.

CHARACTER CHARACTER No change.

CHARACTER FIXED The character expression is converted to a
FIXED data type. The rightmost 4 bits of
the 7 rightmost characte:rs is converted to a
binary number. If the minus sign character
is the eighth character from the right, the
2's complement of the 24-bit field is
returned.

FIXED BIT The data type is changed to BIT.

FIXED CHARACTER The numeric value of the expression is
converted to decimal numbers in 8-bit
EBCDIC character format. Leading zeros are
not suppressed. The result is a CHARACTER
data field of seven characters and a sign
character.

FIXED FIXED No change.

Example 1:

CC~VE~l ("-72581"~ Fl~ECJ % lhe value -72581 is returned.

Example 2:

CCNVE~T {~(!)752~• CHAF-ClE~. 4) % The value "1£A" is ret~rned.

Example 3:

CC~VEFT c;c1111011;, flXEC>

Example 4:

CC~VEFT ("132• RIJ, 21
9-40

% The value 27 is returned.

% The ~alue ~C2l132; is returned.

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONVERT

Example 5:

cc~~E~T <"132", bJ1~ 4l % The value ~(4)132; is returned.

Example 6:

% The value @(4)2~ is returred.

Example 7:

Assume that the identifier CX contains a character whose binary value is @(1)00001111@ and
identifier B is declared as BIT (4).

6 := cc~v~~T ccx, C~PRtCTEk~ 4); % Identifier 8 is assigned the
% he>eadecitral value ;r; er
% Ql(l)llllc&.

Example 8:

Assume that the identifier CX contains a character whose binary value is @(1)00001111@ and
identifier B is declared as BIT (4).

8 := CCNVE~l ccx, CH~~~CTE~~ 3); X lcentifier B is assigned the
% octal val~e cf aC3>74 er

Example 9:

% @(l)ltl;. Only the rightmost
% three tit~ at identifier ex are
% assig11ed to 8.

Assume identifier CARD contains the characters + 4095 and FX is of data type FIXED.

Example 10:

% Idertifier FX is assiqned the
% he>eadeci~at vat~e aOC07Fr;.

Assume identifier N is of data type FIXED with a value of + 5 (000000000000000000000101) and
identifier B is of data type BIT (8) with a value of @BC@ or @(1)10111100@.

CUTPUT :: "ENT~Y ~C. "
CAT CC~VEhT (N, C~Pf~CTfFJ

CAT " ts ''
CAT CL~Vt~T CB• CH~~~CTEP.~ 2>;

1137833

% This statement assiqrs to the
% identifjer OUTP~T the value of
% "[~T~Y NC. •COCGCO~ IS 2330".

9-41

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONVERT

In example 10, the literal value "ENTRY$NO.$", the result of converting identifier N, the literal value
"IS", and the result of converting identifier B, are made into a continuous string of data by using
the CAT operator. The result of converting the FIXED value contained in identifier N to a printable
character is + 0000005, with no suppression of the O's (zeros) or arithmetic sign. The result of convert
ing the BIT value contained in identifier B, when using the chara.cter-to-quartal syntax as specified,
is as follows:

10 11 ll uo
3 r

Cbinar\I)
Couartal} 2 3

F 2 f 3 f 3 fO Chexacecir~l character>

Example Program:

DECLARE
VALUE
B

CHARACTER <16.>•
BIT Ct6J.
FIXED, F

I
FLAG

FIXED,
BIT ClH

DO f OREVERi

DISPLAY <"ENTER 16 l'S OR o~s OR ENTER BYE TO GO TO EOJ");
ACCEPT VALUEi
IF VALUE = •evE· THEN STOP;
FLAG := aHl>o~;
I := o;
DO LOOP FOREVERi

If CCSUBSTRCYALU£.I,1> = •1•) OR CSUBSTRCfALUE-l•l> = -o•>>
THEN IF CBUHP Il > 15 THEN UNDO Loop;

ELSE oa;
ELSE;

FLAG :.:: ~Cl>l~;
UNDO Loop;

END;
END LOOPi

IF fLAG = d{l)Od
lHEN oo;

B := CONVERT CVALUE, BIT• t>;
F == CONVERT ca, FIXED>;
DISPLAY C"THE VALUE = " CAT CCONVERT (f, CHARACTER)));

EN Di
ELSE DISPLAY c•THE VALUE ENTERED WAS NOT ALL t•s ANO O'S">•

FINB

% This example program uses the CONVERT verb to calculate
% the decimal value of a 16-digit binary number. The
% program accepts from the ODT a binary numoer with a data
% type of CHARA£TER and converts this field to a field with
% data type of BIT. The ~it field is converted to a field
% Yith a data type of FIXED which is converted to a data
% type of CHARACTER and displayed on the OOT.

9-42

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATA_ADDRESS

DAT A__ADDRESS

The DAT A_ADDRESS verb returns a 24-bit value that is the base-relative address of <identifier> .

SDL and UPL Syntax:

- DATA_ADDRESS (<identifier>) -------------------------1

Syntax Semantics:

identifier
This identifier can be any valid SDL/UPL identifier and specifies the field name from which the
address is to be determined.

Examples:

DECLARE
BIT_FIELD
CHARACTER_FIELD
FIXED_FIELD
ADDRESS

BIT Cll•
CHAR AC JER,
f IXED•
BIT t21tli

ADDRESS := DATA_AOORESS CBIT_f IELO); % ADDRESS is assigned the
% address of BIT_f IELD.

ADDRESS := D'TA_ADDRESS CCHAR_fIELO>; % ADDRESS is assigned the
% address of CHAR_fIELD.

ADDRESS := DATA_ADDRESS CFIXEO_FIELO); % ADDRESS is assigned the
% address of FIXED_f IELD.

Example Program:

DECLARE FIELD BIT CIJ;
DISPLAY ("THE ADDRESS or FIELD IS "

STOPJ
FINI;

CAT CONVERT CDAJA_ADDRESSCFIELD>·CHARACTER•4));

% This example program displays the base-relative address
% of identifier FIELD and goes to end of job.

1137833 9-43

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATA_LENGTH

The DAT A__LENGTH verb returns the length of <data-item> in bits, regardless of the data type.

SDL Syntax:

-DATA_LENGTH (<data-item>)

Syntax Semantics:

data-item
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the field in which to obtain the length.

Example:

LE~GT~ := DATA lf~CTH <~J;

Example Program:

OECLAfE f f IXf[~
ClO CHA~tCTE~ ClC)#
E2C Elf C20);

% Identifier lE~GTH is assiqred
% lenqth of identifier A.

DISPLA'r "THE LENGTt- Of IC:ENTIFiff' f IS " CAlf
CCt..VE~T CC,.T/.._tfr.GTH Cf), Cl-lAf1ACTEfi);

DJSPlftY ~THE lENGTh CF J[ENTJFIER ClO IS " CAl
CCNVERT CO~T~_LE~GTH CClO), C~AFACTEFl;

C1SPLAY "ThE lEf\iGlt- l!f Il"fNTlflfti 820 IS " C~T
CCNVEf\T CD~T/J_l.fNGTH (820lr C~AKACTER>;

STGP;
f Hdi

% This examcl~ orcgra" u5es the CATA_LE~GTH ve'b to find the
% lenqth off ixed, characterr anc bit fields.

Output from Example Program:

D_Lf~GT~U =2145 BCJ. FF=4r Mf=4 TIME = 15:30:36.9
% C_lf~GT~C =2145 lHf LE~GT~ OF ICENTJFIEf F IS 00001€
% O_LE~GT~O =2145 Thf LE~GTH Of ICENTifIEF ClO IS COOCSO
% O_LENGT~C =2145 THE LE~GTH OF IOENTIFIEP 82C IS COCC14
O_Lf~GT~l =2145 ECJ. TJ~f = 15:30:49.9

9-44

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATA TYPE

DATA_TVPE

The DAT A_ TYPE verb returns a bit string representing the data type of <data-item> . A value of
@44@ represents a FIXED data field. A value of @48@ represents a CHARACTER data field. A
value of @40@ represents a BIT data field.

SDL Syntax:

- DATA_ TYPE (<data-item>) ----------------------------1

Syntax Semantics:

data-item
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
data field in which to determine the data type.

Example:

T¥Pf := CATA_TYPE CA); l Identifier TYPE is assigned the

Example Program:

DECLARE f
ClO
820

7. d3ta tvpe value of identifier A.

FIXED,
CHARACTER CIO>.
BIT CZOH

DISPLAY •THE DATA TYPE Of IDENTIFIER f IS • CAT
CONVERT <DATA_TYPE Cf), CHARACTER);

DISPLAY •THE DATA TYPE OF IDENTIFIER Clo IS • CAT
CONVERT <OATA_TYPE CC1Q), CHARACTER);

DISPLAY •THE DATA TYPE OF IDENTIFIER 820 IS " CAT
CONVERT COATA_TYPE C820), CHARACT,ERH

% This example program displays the data type of f iKed• character•
I and bit fields.

Output from Example Program:

D_TYPEO =2150 BOJ. PP=4• HP=4 TIME = 15:35:27.6
% O_TYPEO =2150 THE DATA TYPE Of IDENTIFIER F IS 000044
l D_TYPEO =2150 THE DATA TYPE Of IDENTIFIER CIO IS 0000~8
% D_TYPEO =2150 THE DATA TYPE Of IDENTIFIER 020 IS 000040
D_JYPEO =2150 EOJ. TIME = 15:35:36.9

1137833 9-45

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATE

The DATE verb returns a bit or character string containing the current (run time) date.

Specifying DATE or DATE (MONTH, CHARACTER) returns the same result.

SDL and UPL Syntax:

~DATE ~~(~1~DAY~r-~.~~~BIT~~~~) ~~
JULIAN - CHARACTER

MONTH - DIGIT -

YEAR--

Syntax Semantics:

DAY
The keyword DAY causes the program to return the current clay, month, year in the DDMMYY
format, where DD is the day of the month, MM is the month, and YY is the year.

JULIAN
The keyword JULIAN causes the program to return the current year and julian day in the
YYDDD format, where YY is the year and DDD is the julian day of the year.

MONTH
The keyword MONTH causes the program to return the current month, day, and year in the
MMDDYY format, where MM is the month, DD is the day of the month, and YY is the year.

YEAR

9-46

The keyword YEAR causes the program to return the current year, month, and day in the
YYMMDD format, where YY is the year, MM is the month, and DD is the day of the month.

BIT

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATE

The keyword BIT causes the program to return the DAY, JULIAN, MONTH, and YEAR specifi
cations in the following formats:

DAY E IT (16),
cc [1T {5),
Mt' P. I T (4),

yy E IT (7);

JULIAN E IT c1u ..
yy E lT (7) ,
cco P. I T { 9);

E lT (16),
fiA~ EH (4),
cc E IT (5) ,
yy El T (7);

YE Ar F. Ir (16),
yy E lT C7),
Mf'f. E IT (4) ,
cc E IT (5);

DIGIT
The keyword DIGIT causes the program to return the DAY, JULIAN, MONTH, and YEAR
specifications in the following formats:

0 " y ~ lT (2 4),.

cc EI T < e h
Mt' f 1T (B),
yy E 1 T (€);

JULlAI\ E IT (20),
n e JT c e l,
CCD E I l Cl 2);

l"'GNTH E IT (2 4),

Mt' e IT Cf),
r. [E 1T < e l,
v ., f IT { 8);

F l T (2 £),
'(y E 1T < e J,.
M tJ e IT Ct),
cc E J T (b);

1137833 9-47

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATE

CHARACTER
The keyword CHARACTER causes the program to return the DAY, JULIAN, MONTH, and
YEAR specifications in the following formats:

CAY E 1T c '4 e >,.
cc t 11 (lf),.

M~ [1T (16),.
VY f IT (16);

JUll~f\ E IT (LC),.

'V 'Y E IT c 16),.
cco El T { 2 if);

El T c i. e >,.
:01 E IT {1 E)..,

r: [E l T (16).
yy E JT (1 f) ;

Y[Afi E IT ('el,.
'0 EI T (1E),.
t-ifol f lT (16),.
cc E ! T (16) ;

Table 9-4 shows the format and length of each option.

9-48

Table 9-4. Format and Length of each DATE Verb Option

Bit Digit Character
Option Format Length Length Length

JULIAN YY/DDD 7/9 2/3 2/3
MONTH MM/DD/YY 41517 21212 21212
DAY DD/MM/YY 51417 21212 21212
YEAR YY/MM/DD 7/4/5 21212 21212

NOTES
YY represents the year, DD or DDD represents the day, and MM represents
the month.

Digits are equal to four bits, which are two decimal digits per byte. Bytes
are 8 bits long.

Characters are equal to eight bits or one byte.

B 1000 Systems SDL/UPL Reference Manual
Verbs

Example:

DECLARE D BIT <24),

D ==
J ==
H ·-·-y ==
% If
% "' %
% D ·-
%
%
z J ·-
% ·-
%
% H ·-
% -
%
% y =
z -

1137833

J CHARACTER C40>•
H BIT Cl6l11
Y BIT C24H

DATECDAY11 DIGIT>
DATECJULIAN• CHARACTER>;
DATE<MONTH11 BITJ;
CATECYEAR, DIGIJ>;

the system•s date f s December 3,.
and Y have the following bit and

ac11000000110000110001001111a
;H4l030A8f4i

1979, then variables
hexadecimal values:

ac111111011111111001111100111111001111110111a
GIC4>f7f9f3f3f7~

a<1>1100000111001111a
aC4>A1AFGI

ac1>1001111110000011~

~<4>9F&la

DATE

D.- J,

9-49

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATE

Example Program:

DECLARE
01 DAY_HONTH_YEAR•

03 D_DD
03 D_HH
03 D_ YY

01 JULIAN_OATE•
03 J_YY
Ol J_DD

01 MONTH_DAY_YEAR•
03 .H_MM
03 M_OD
03 H_ YY

01 YEAR_MONTH_DAY•
03 Y_YY
03 Y_MM
03 Y_DD

CH AR ACTER C 21,.
CHARACTER C2l.
CHARACTER C 2},

CHARACTER C 2),.
CHARACTER C3l•

CH AR ACT ER C 2J •
CH AR ACT ER C 21,.
CHl AR AC TER C 2),.

CHARACTER C2J•
CHARACTER C 21,.
CHIARACTER C2H

DAY_MONTH_YEAR
HONTH_OAY_YEAR
YEAR_HONTh_OAY
JULIAN_DATE

:= DATE CDAY• CHARACTER);

DISPLAY C"THE

:= DATE CMONTH• CHARACTERH
:= DATE CYEAR,. CHARACTER);
:= DATE (JULIAN• CHAR,CTERJ;

JULIAN DATE IS .. CAT J_ YY CAT ._,,., CAT J_Oo>;
DISPLAY <9' THE DAY/MONTH/YEAR IS " CAT D_OD CA1T •t• CAT D_MH

CAT ... ,. CAT 0 YYH
DISPLAY <"THE MONT HIDAY /YE AR IS " CAT M_HH CA1T .,.

CAT .,. CAT H_YYH I

DISPLAY c•rHE YEAR/MONTH/DAY IS • CAT Y_YY C~1 T .,.
CAT "I" CAT Y_DDH

SJQp;
FINI;

t This eKample program displays the current date in
% the JULIAN• DAY, MONTH• YEAR formats ~n tne OOT.

9-50

CAT H_DD

CAT y _MM

B 1000 Systems SDL/UPL Reference Manual
Verbs

DC INITIATE 10

DC_INITIATE_IO

The DC_INITIATE_IO verb causes a data communications read or write operation for the port and
channel address specified by <port> and <channel>, respectively. It also uses the input/ output (1/0)
descriptor address specified by < 1/0-descriptor-address >.

SDL Syntax:

- DC_IN ITIATE_IO (<port>, <channel>, < 1/0-descriptor-address>) ; --------------1

Syntax Semantics:

port
This field can be any valid SDL literal, identifier, or expression that returns a binary value and
specifies the port on which the 1/0 operation is to occur.

channel
This field can be any valid SDL literal, identifier, or expression that returns a binary value and
specifies the channel on which the 1/0 operation is to occur.

I/ 0-descriptor-address
This field can be any valid SDL literal, identifier, or expression that returns a 24-bit value and
specifies the base-relative address of the 1/0 descriptor.

Example::

CECLARE PG~l BIT (4),
C~A~~El BIT (4)~

OESC_ACCRESS BIT (24);
P(Rl : :: 2;
Ct-Ai\l\EL ::: Q;
CESC_AVDFESS := ~COCF~2~;

CC_J~ITIATE_IC CPOfl• ChA~~El• CESr_AOORESS);

1137833

% The input/output•
% defined by the 1/0
% descripto~ at the
% address of identifier
~ OESC_AOCFESS• is
% initiated.

9-51

B 1000 Systems SDL/UPL Reference Manual
Verbs

DEBLANK

The DEBLANK verb repeatedly increments the address field of the descriptor for <first-character>
until <first-character> describes a non-blank character.

SDL Syntax:

- DEB LANK (<first-character>);

Syntax Semantics:

first-character
This field can be any simple SDJL identifier and specifies the first character to be examined.

Example:

C£CLA~E CAT~ C~A~~Clt~ C2Q),
f.Ef _LlATA ~EfE~E~CE;

DATA := " A8CDEFGHl~~LMNijfl;

REFE~ REf _CATA TO SLBST~ COAT~. ~. 1);
OEeLA~K CFEf _DATAl;

Example Program:

DECLARE ODT_INPUT
REfER_ODT

DO FOREVER;

CH AR#~ C TE R C 5 0 > ,,
REfE~: £NC£;

l The reference ident;f ier
% ~Ef _CATA conta;rs the
% first non-tlani character
% "A" after ttie DEBLANK verb
% is i::erformed.

DISPLAY C•ENTER ANY 50 CHARACTERS OR ENTER B TO GO TO EOJ");
ACCEPT ODT_INPUJ;
REFER REFER_ODT TO SUBSTR coor_INPUT, o- 11;

DEBLANK CREFER_OOJ);

Ir REFER_oor = "8" THEN oo;
DISPLAY c•Gooo BY£•);
srop;

END;
DISPLAY ("THE FOLLOWING IS THE FI~ST CHARACTER THAT IS NOT BLANK");
DISPLAY CREFER_ODT>;

ENO;
FINI;

% This example program accepts fro• the ODT any 50-character
% string and displays the fjrst non-blank character in the
% string. If 8 is entered. the prog~a• goes to end of job~

9-52

B 1000 Systems SDL/UPL Reference Manual
Verbs

DECIMAL

DECIMAL

The DECIMAL verb causes the value of <string> to be converted to a string of decimal digits. If
the value generated has a length greater than 24 bits, only the rightmost 24 bits are converted.

The number of characters returned is controlled by the value <string-size> . A maximum of eight
decimal digits can be returned, even if the value of <string-size> is greater than 8. If <string-size>
specifies fewer character positions than the total number of decimal digits in <string> , the resulting
decimal number is truncated on the left.

SDL and UPL Syntax:

Syntax Semantics:

string
This field can be any valid SDL/UPL literal, identifier, or expression that generates a CHARAC
TER data type and specifies the name of the field to be converted.

string-size
This field can be any valid SDL/UPL integer, identifier, or expression that returns a 24-bit binary
value and specifies the number of characters in <string> to be converted to decimal digits. The
range of value for <string-size> is from 1 to 8, inclusive.

Example 1:

NU~At~ := CECIMAL ("123~5",5);

. Example 2:

~U~HE~ := CECI~Al CFIELC A,p);

Example 3:

% Convewtq all five characters of
Z t~e literal 12345 to the deci•al
% diqits 12345 and assiq~s theM to
% identifier NUMBEN •

% Ccrverts eiqht of the characters
% in FHLO_A to decimal. digits
i. aPd assigns them to identifier
% MJM8ffr.

~U~EE~ := % EvalLates the extression,
OECI~AL CCEUMP FIELC_E EY J),5); % converts eight of the characters

% in the ex~res~ion to decimal

Example 4:

NUMB£~ := CfCI~Al (~, 4);

1137833

% dtgits, arid assigns them to
% Nl!t-tl3Eft.

% Identifier A is converted fro•
% a 24-bit binary value to a
% 4-character numeric strinq.
l The value 1s assiqned to
% identifier NUMBEn.

9-53

DECIMAL

Example 5:

B 1000 Sy.stems SDL/UPL Reference Manual
Verbs

~UMFE~ ·- CfCI~AL C~fr;. 3); % Identifier NUM8£R i~ assiqned
% the valtrn 255.

Example Program:

DECLARE f IEL 0 CH AR AC TER C 6 >;

DO FOREVER;
DISPLAY (•ENTER ANY 6 CHARACTERS OR ENTER BYE TO GO TO EOJ");
ACCEPT FIELD;
If FIELD = ·BYE" THEN srop;
DISPLAY CDECIHAL <CONVERT CFIELO• BIT• 4>• 8));

ENDi

FINH

% Jhis example program accepts a 6-character field from
% t h e 0 D T a n d d i s pl a y s i t s hex ad ec i ma l v al u e u s i n g t h e
% DECIMAL verb.

9-54

B 1000 Systems SDL/UPL Reference Manual
Verbs

DECREMENT

DECREMENT

The DECREMENT verb decrements <identifier> by the amount specified by <decrement-amount> .
If the BY keyword is not specified, <identifier> is decremented by 1. If the DECREMENT verb is
used in an expression, a descriptor of <identifier> is placed on the evaluation stack.

If either <identifier> or <decrement-amount> has a length greater than 24 bits, only the rightmost
24 bits are evaluated. If either <identifier> or an expression has a length less than 24 bits, < identifi
er> or <decrement-amount> is padded with leading zeroes. Character strings are treated as bit
strings.

SDL and UPL Syntax:

-- DECREMENT < identifier>---------..-----------------,-----"""""

--- BY < decrement-amount> ----

Syntax Semantics:

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the field to be decre
mented.

BY
The keyword BY is required if <decrement-amount> is specified.

decrement-amount
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value
and specifies the amount that is subtracted from <identifier> .

Examples:

OECE£tJENT x;

CfCREMENT X BY z;

A := C£C~E~E~T X EY z;

IF CCEChEME~T X BY Zl EGL ZERO
Ttitt\ ••• ;
ELSE • • • ;

CEU\£~ENT A BY 8 ·- c; . -

1137833

% Subtract 1 fr om x.

% Subtract 4 from x.

" Subtract the value of l fr Olll x.

l Subtract the value of z fr 0"1 x,.
% assigri the "al Le to x,. and then
% assigr the value 0 f x to A.

% Subtract the vatue of l from x,.
2 a~sign the value to x. ard then
% perform the co~oari5on.

,. A«isign the value of c to B and
% then subtract the vatue of c
% fr om A• Net ice t ti at c i 5

~ subtracted from A because of
% the replacement del.ete left
% oart oceratcr.

9-55

B 1000 Systems SDL/UPL Reference Manual
Verbs

X := OEC~EMENT A fl 8 := Ci

f~OC_B CCEC~EME~T x>;
\

PRCC_a CCClCREMENT Xl);

Example Program:

OECL ARE NUMBER FIXED;

NUMBER := lli

DO FOREVER;

DECREMENT

Z Replace B b) t~e value of c~
% delete e, subtract C frow A,
% and assign the value to A and
% to x.

% Identifier X is decre~ented bv 1
% and then X is passed to p~ocedure
% PRGC_B.

% Iden ti tier X is decre111ented bv 1
% and then the vatue of X is oassec
k to crccedLre P~CC_8. The extra
% set of parentheses causes the
% value to be passed to PROC_B
% instead of the rame x.

IF <DECREMENT NUHBERl = 0 THEN srop;
DISPLAY CONVERT CNUHB[R, CHARACTER);

ENO;

% This example program uses the DECREMENT verb to decrement
X a number by one and display the resutting value of the
% number. The program decre•ents and displays the number
% ten times on the OOT and goes to end of job.

Output from the Example Program:

% OECREHENTO =6501 +0000010
% OECREHENTO =6501 +0000009
l DECREHENTO =6501 +0000008
1 OECREHENTO =6501 •0000007
% DECREHENTO =6501 +0000006
% DECREMENTO =6501 +0000~05
% DECREMENJO =6501 +0000004
% DECREHENTO =6501 +0000003
% DECREHENTO =6501 +OOOOOOZ
% DECREHENTO =6501 +0000001

9-56

B 1000 Systems SDL/UPL Reference Manual
Verbs

DELIMITED_ TOKEN

DELIMITED_TOKEN

The DELIMITED_ TOKEN verb scans the identifier that has <first-character-address> as its first
character until one of the two delimiters specified lby <delimiter> is encountered. The remaining por
tion of the identifier that begins with <first-character-address> is stored in < result-reference-identifi
er >.

The delimiter characters used by the SDL compiler are the percent sign (OJo) and semicolon (;) charac
ters.

SDL Syntax:

- DELIMITED_ TOKEN (<first-character-address> , <delimiters>, ---------------~

> <~sul~reference-identifier>) ~------~---~-~----------~

Syntax Semantics:

first-character-address
This field can be any valid SDL identifier and specifies the address of the first character in the
character string to be scanned.

delimiters
This field can be a character or bit string with a length equal to 16 bits. Each 8-bit byte specifies
one of two delimiter tokens.

result-reference-identifier
This field can be any valid SDL reference identifier and specifies the name of the field in which
to store the string of characters.

Example:

CECLAfiE f IhST_CHAF
f'ESlJLT
0-JAi:l_STPlt\G
l'fSULT_STFING

FEf£f<tNCE11
REFERENCE,
Ct-:,.fiACTEf; C15),
C~AhACT£R (15).;

CHA~_sr~I~G := "12~4567~s;~BC0£";
R£f[F. FIFST_Cl-iAF

TO SUbST~ CC~AR_STRIN(• o, l>;
Rf.SUL T_S JF~ HG :::
OELIMITfC_TCKf~ CflfiST_C~Af~ "JZ", RESULT);

% The identifier
% RESULT_STRING is
l assigned the value
2 of "123456789".

1137833 9-57

B 1000 Systems SDL/UPL Reference Manual
Verbs

DELIMITED TOKEN

Example Program:

DECLARE ODT_INPUT CHARAC1£R C50),
REFERE NC£,
REfERE ~C£i

RESULT
f IRST_CHARACTER

DO FOfi£VERi
DISPLAY c•ENTER ANY SO•CHARAC TERS TO BE SCANNED OR ENTER BYE FOR"

CAT " EOJ")i
ACCEPT ODT_INPUT;
IF ODT_INPUT = ·BYE· THEN oo;

DISPLAY ("GOOD BYE•);
STOP;

END;

REFER FIRST_CHARACTER TO SUBSTR coor_INPUJ. o .. 11;
DISPLAY C"THE DELIMITED CHA~ACTERS FOLLOW•);

DISPLAY CDELIHITED_TOKEN CFIRST_CHARACTER• • %"• RESULT));

ENO;
f INii

% This example program uses the DELIMITED_TOKEN verb to scan a
% character string that is accepted from the DDT. The delimiter
I characters used are the blank character and the percent sign <%>
% character. If BYE is entered• the program goes to end of job.

9-58

DESCRIPTOR

B 1000 Systems SDL/UPL Reference Manual
Verbs

DESCRIPTOR

The DESCRIPTOR verb places a descriptor on the evaluation stack, which is the data descriptor of
an identifier. The DESCRIPTOR verb can appear as the object of a replacement, thereby providing
easy access to any part of a descriptor.

A descriptor contains the data type, length, and base-relative address of <simple-identifier> or < ar
ray-identifier> .

SDL Syntax:

- DESCRIPTOR (-----......--- <simple-identifier> -------) -------------t
i.---- <array-identifier>------'

Syntax Semantics:

simple-identifier
This field can be any valid SDL identifier and specifies the field name to obtain the data descrip
tor information.

array-identifier
This field can be any valid SDL array identifier and specifies the array name needed to obtain
the data descriptor information.

Examples:

SUBBIT CCFSCRIPTOR (X), 4• 2) := 2; % Assigns t~e value 2 to

DESC~IPTCP CX) := CE5C~IPTCF CY);

1137833

% t~e data tvoe portion of
% DESCRIPTOR CX).

% forces both identifiers X
% and Y to describe the sa~e
l data name. However, if X
% aPd Y are not both aimole
% identifiers er arrays the
% results are incorrect.

9-59

B 1000 Systems SDL/UPL Reference Manual
Verbs

DISABLE __ INTERRUPTS

The DISABLE_INTERRUPTS verb suppresses all interrupts until an ENABLE_INTERRUPTS verb
is performed.

This verb is for MCP use only and cannot be used by a program when the MCP is running.

SDL Syntax:

- DISABLE_INTERRUPTS; -----·----------·---------------1

Example:

OIS~BLE l~TEFRUPJS; 1 Causes all inte~rupts to be su~pressed.

9-60

DISPATCH

B 1000 Systems SDL/UPL Reference Manual
Verbs

DISPATCH

The DISPATCH verb causes an input/output (1/0) operation to begin on the port and channel address
specified by <port-and-channel> . It uses the 1/0 descriptor specified by < 1/0-descriptor-address > .
The DISPATCH verb is only used by the MCP or by a standalone SDL program that does not run
with the MCP. If the DISPATCH verb is performed when the MCP is running, the MCP discontinues
the program with the following program abort message:

INVALID OPERATOR

The DISPATCH verb returns one of the following three values.

Value Description

0 Dispatch register lock bit is set
1 Successful dispatch
2 Successful dispatch, but device is missing

SDL Syntax:

- DISPATCH (<port-and-channel>, < 1/0-descriptor-addlress>)

Syntax Semantics:

port-and-channel
This field can be any valid SDL literal, identifier, or expression that returns a binary value and
specifies the port and channel address for the 1/0 operation. The rightmost seven bits of <port
and-channel > are used. The leftmost three bits are the port number and the rightmost four bits
are the channel number.

I/ 0-descri ptor-address
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the absolute address of the 1/0 descriptor. The rightmost 24 bits of < 110-descriptor-address >
are used.

1137833 9-61

B 1000 Systl~ms SDL/UPL Reference Manual
Verbs

DISPATCH

Example:

RECORD IO_DESC
ACTUAL_END
RE.SULT_STATUS
OP
A_ADDRESS
B_ADDRESS
C_ADDRESS

DECLARE 0
RESULT
BUFFER

o.RESULT_STAJUS := o;

BIT C24>•
BIT C24l ..
BIT C24l,,
BIT <24),.
BIT C24J,,
BIT C24>i

I O_IJ[SC•
BIT C24J,.
BIT (1440);

O.OP := ~180000~; % Read Operation
O.A_ADORESS := OATA_AODRESS CBUFFERJ;
O.B_ADORESS := DATA_AODRES~ CBUFFE~> + LENGTH CBUFFERJ;
D.C_ADDRE.SS := ~OTOE41~; % Sector Address

RESULT := DISPATCH C~Cl>llllOOl~. DATA_ADDRESS CD.RESULT_STATUS)J;

% If RESULT = o. then dispatch register lock bit is set.
% If RESULT = l• then successful dispatch.
% If RESULT= z, then successful dispatch• but missing device.

9-62

B 1000 Systems SDL/UPL Reference Manual
Verbs

DISPLAY

DISPLAY

The DISPLAY verb causes the SDL/UPL program to write a message to the Operator Display Termi
nal (ODT).

The following is the format of the output message that is written to the ODT. The (< usercode >) por
tion is optional.

% (< usercode >) <program-name> = <program number> <message text>

The displayed message is distinguished from the MCP-generated messages by the leading percent sign
(%) character.

SDL and UPL Syntax:

-- DISPLAY (<display-identifier>) -------·--..------------

L I CRUNCHED __J
Syntax Semantics:

display-identifier
This field can be any valid SDL/UPL literal, identifier, or expression that returns an addressable
value and specifies the value to be displayed on the ODT.

CRUNCHED
The keyword CRUNCHED deletes trailing blanks and substitutes one blank for each occurrence
of multiple embedded blanks.

Examples:

CISPLAY ("PLEASE LCAO fCR~ " CAT
FOF~_NU~E£~>• C~U~CHEC;

DISPLAY <~ESSAGEJ;

1137833

% Oisotavs on the OOT the
% "essaqe •HI T~tRE".

% Oisotays on t~e OOT the
% message "PLEASE LOAD
% FORM " fotlo~ed bv the
% value cf FC~~_NUMBER.

% Displays on the OOT the
l value of MESSftGE.

9-63

DISPLAY

Example Program:

DECLARE YOUR
COMMA
ROW
BOAT

YOUR ::: • YOUR•;
COMMA := •, •;
ROW := " ROW"i
BOAT := • BOAT•;

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHARACTER C5h
CHARACTER C2>.
CHARACTER C4h
CHARACTER (5Ji

DISPLAY CROW CAT COMMA CAT ROW CAT COMMA CAT ROW CAT YOUR CAT BOAT>;
DISPLAY ("GENTLY DGWN THE STREAM•);

% This example program uses the DISPLAY verb to display on the
% ODT the message "ROW• ROW• ROW YOUR BOAT GENTLY DOWN THE STREAM•.

Output from Example Program:

DISPLAYO =Z467 BOJ. PP=4• MP=4 TIME= 01:55:12.3
% DISPLAYO =2~61 ROW• ROW• ROW YOUR BOAT
% DISPLAYO =2467 GENTLY DOWN THE STREAM
DISPLAYO =2~67 EOJ. TIME = 07:55:11.3

9-64

B 1000 Systems SDL/UPL Reference Manual
Verbs

DISPLAY BASE

DISPLA V_BASE

The DISPLAY _BASE verb stores, on the top of the evaluation stack, a 24-bit, self-relative value with
a BIT data type that is the base-relative address of the base of the display stack.

SDL Syntax:

- DISPLAY _BASE

Example:

DECLARE BASE_ADDRESS BIT C24>;
BASE_AODRESS := DISPLAY_BASEi

% Identifier BASE_AODRESS is assigned
% the value of the base-relative
% address of the display stack.

Example Program:

DISPLAY c•THE ADDRESS OF THE DISPLAY STACK EQUALS • CAT
CONVERT COISPLAY_BASE• CHARACTER>J;

STOP;
f INii

Output from Example Program:

DISPLAYO =5535 BOJ. PP=,, MP=4 TIME = 15:17:54.z
% DISPLAYO =5535 THE ADDRESS OF THE DISPLAY STACK EQUALS 002700
DISPLAYO =5515 EOJ. TIME : 15:17:56.8

1137833 9-65

B 1000 Systems SDL/UPL Reference Manual
Verbs

DUMP_FOR_ANAL YSIS

The DUMP _FOR _ _ANAL YSIS verb causes the MCP to create a file known as the dumpfile. This
dumpfile reflects the status of the program at the point at which the DUMP _FOR_ANALYSIS verb
is performed. After the dumpfile is created, program execution continues with the statement immediate
ly following the DUMP _FOR_ANALYSIS verb. Refer to the B 1000 Systems System Software Oper
ation Guide, Volume 1, form number 1108966, for the syntax of the "PM" MCP command used to
analyze and print the dump.

After the dumpfile is created, enter one of the following commands to execute the DUMP I ANA
LYZER program. The DUMP I ANALYZER program generates a printer listing that shows the status
of the program at the time the DUMP _FOR_ANAL YSIS verb was performed.

PM < dumpfile-id > ; or EXECUTE DUMP I ANALYZER FILE DUMPFILE NAME < dumpfile
id >;

SDL and UPL Syntax:

- DUMP _FOR_ANAL YSIS; ----

Examples:

DUHP;

OUHP_fOR_ANALYSIS;

Example Program:

DISPLAY c•JHIS PROGRAM CAUSES A DUHPFILE TO BE CREATED Of ITSELF•>;

DUHP_fOR_ANALYSis;

% This example program displays •THIS PROGRAM CAUSES A DUHPFILE
% TO BE CREATED Of ITSELF" and goes to end of job.

Output from Example Program:

DUHPO =2640 BOJ. PP=4• HP=4 TIME = 15:28:40.l
% DUHPO =2640 THIS PROGRAM CAUSES A DUHPFILE TO BE CREATED OF ITSELF
OUHPO =2640 ·DUHPFILE/1237•
OUMPO =2640 EQJ. TIME = t5:2a:46.S

9-66

B 1000 Systems SDL/UPL Reference Manual
Verbs

DYNAMIC_MEMORY _BASE

DYNAMIC_MEMORY_BASE

The DYNAMIC_MEMORY_BASE verb returns a 24-bit value that is the base-relative address in
which the dynamic memory portion of the program begins.

SDL and UPL Syntax:

-DYNAMIC_MEMORY _BASE --------------------------4
Example:

CEClA~E ~EKC~Y tlTC24);
MEMO~Y := CYNA~IC_~EMC~Y_BASEJ

Example Program:

% The identifier MEMORY is
% assiqned the address of the
% starting locatio~ of the
X orogram•s dynamic memory.

DISPLAY c•THE DYNAMIC MEMORY FOR THIS PROGRAM BEGINS AT •
CAT CONVERT CDYNAHIC_HEMORY_BASE• CHARACTER>>;

STOP#
FINI;

Output from Example Program:

DYNAMICO =2660 BOJ. PP=4· MP=4 TIME = t6:te:zz.5
% DYNAMICO =2660 THE DYNAMIC MEMORY FOR THIS PROGRAM BEGINS AJ 003200
DYNAHICO =2660 EOJ. TIHE : 16:18:24.9

1137833 9-67

B 1000 Systems SDL/UPL Reference Manual
Verbs

ENABLE_INTERRUPTS

The ENABLE_INTERRUPTS verb causes the MCP to return to the normal interrupt-processing mode
after a DISABLE_INTERRUPTS verb has been performed.

This verb is for MCP use only and a program cannot use this verb when the MCP is running.

SDL Syntax:

Example:

£1\A8lf_INT£ftRUPTS; % Cause5 the MCP to returr to the norftlal
% intefrLot-orocessiPq mode.

9-68

ENTER_COROUTINE

B 1000 Systems SDL/UPL Reference Manual
Verbs

ENTER_ COROUTINE

The ENTER_COROUTINE verb is used in conjunction with the EXIT _COROUTINE verb and
causes the current code address to be placed on the program pointer stack. The number of entries
specified in <coroutine-table> are placed onto the program pointer stack. The address of the next
instruction is taken from the entry address specified in <coroutine-table> .

When the ENTER_COROUTINE verb is performed for the first time, <coroutine-table> must al
ready be set up. This is accomplished by making the first executable statement in <coroutine-table>
an EXIT _COROUTINE statement. The first entrance to the coroutine is then accomplished by a pro
cedure call.

The ENTER_COROUTINE verb is not symmetric. The routine performing the ENTER_
COROUTINE verb is a master to the slave routine performing the EXIT_COROUTINE verb.

SDL Syntax:

Syntax Semantics:

coroutine-table
This field can be any valid SDL table identifier and specifies a table with the following format.

Cl CCRCUT!~E_TAELE,

03 ~UMEEF_Of_E~TFlfS

03 ENTH_ACDFESS
03 PPS_CGPY

Example:

Ell (4),.

EIT (32),.
':IT C32);

TAELE BITC4+17•~2);

PfrCCEf.Ut1£ SLAVU
EXIT_CCRODTINE ClABlE); % Sets uo table
Cf. FCl1E\1Efd

BUMP I BY z;
CISPLAY COfCJ~AL (J,. 6)J;
EXIT_CC~OUTI~E CTIELE); % hesets table

£NDi
E~D SLA\IE;
PFCCECU~F. ~ASTER;

SLAV£; % Call for table set uc
1 := o;
CO Fl~£VEf;

l"1L~P l BY 3i
CISPLAY COECI~AL (J, 6});
E~TE~_CGRCUTI~E CT~Elf); % Uses table

El\ Ci
ENC MASTEf";

1137833 9-69

ENTER COROUTINE

B 1000 Systems SDL/UPL Reference Manual
Verbs

The following is displayed if the example is performed.

Occurrence Value of I
Number Displayed

1 000003
2 000005
3 000008
4 000010

2n 5*n
2n + 1 5*n + 3

9-70

B 1000 Systems SDL/UPL Reference Manual
Verbs

ERROR COMMUNICATE

ERROR_COMMUNICATE

The ERROR_COMMUNICATE verb causes the value of <error-message> to be put on the
evaluation stack as a descriptor. The MCP error communication is then performed, and the program
is discontinued.

If the 6-bit identifier MCP _NUMBER is equal to 29, the MCP uses the 16-bit identifier
MESSAGE_LENGTH as the length of the message and the 24-bit identifier MESSAGE_ADDRESS
as the base-relative address of the program abort message to be displayed on the ODT. If the 6-bit
field MCP _NUMBER is not equal to 29, the predefined MCP program abort message, represented
by the MCP _NUMBER, is displayed on the ODT.

SDL Syntax:

Syntax Semantics:

error-message
This field can be any valid SD L identifier or expression that returns a value and specifies either
a predefined MCP program abort message or a program-defined, program abort message.

The following is the format of <error-message> .

01 ERFO~_~ESSAGE,

03 fill.ER
03 tHP _NtJt-IEE~
03 MESSAGE_LENGl~
03 MESSAGE_~OORESS

BIT C2),.
en <&> ..
811 (16),.
BIT (24);

The following are the predefined MCP program abort messages and their respective numbers.

Error Program Abort
Number Message

1 PROGRAM POINTER/EVALUATION STACK OVERFLOW
2 CONTROL STACK OVERFLOW
3 NAME/VALUE ST ACK OVERFLOW
4 REMAP AREA HAS INSUFFICIENT LENGTH
5 INVALID PARAMETER (passed to a procedure)
6 INVALID SUBSTRING (or SUBBIT)
7 INVALID SUBSCRIPT
8 INVALID RETURN (OF VALUE FROM PROCEDURE)
9 INVALID CASE
10 DIVIDE BY ZERO (could be in a MOD)
11 INVALID INDEX
12 MEMORY PARITY or READ OUT OF BOUNDS ON B1720
13 INVALID OPERA TOR
14 INVALID PARAMETER TO VALUE DESCRIPTOR
15 CONVERT ERROR
16 STACK OVERFLOW
17 UNINITIALIZED DATA ITEM
18 ATTEMPTED TO WRITE OUT OF BOUNDS
19 EXPONENT OVERFLOW

1137833 9-71

B 1000 Systems SDL/UPL Reference Manual
Verbs

ERROR_COMMUNICATE

Error Program Abort
Number Message

20 EXPONENT UNDERFLOW
21 EXPRESSION OUT OF RANGE
22 SUPERFLUOUS EXIT
23 OUT OF MEMORY SPACE
24 INVALID LINK
25 TYPE ERROR
26 INTEGER OVERFLOW
27 MESSAGE TRANSFER DATA AREA IS NOT PRESENT
28 MESSAGE TRANSFER INVALID DATA TEMPLATE
29 (user supplied message)
30 PARAMETER TO DYNAMIC DECLARATION OUT OF RANGE
31 INVALID TRANS LA TE
32 INVALID SUBPROGRAM TYPE
33 REFERENCE ASSIGNMENT LENGTH MISMATCH

Example:

E~RCR CC~~L~ICATE (~020000000000;); X Causes the orogram abort
% message CONTROl STACK

Example Program:

% OVE~FLCW to be disolayed
% on the! oor.

DECLARE OOT_INPUT CHARACTER C501J
DISPLAY <"ENTER THE ERROR MESSAGE DESIRED OR ENTER BYE FOR EOJ")J
ACCEPT OOT_INPUTi
If OOT_INPUT = "BYE" THEN oo;

DISPLAY <"GOOD BYE•);
srop;

END;

ERROR_COHHUNICATE C~lD~ CAT ~0190• CAT DATA_ADORESS CODT_INPUT>J;

SJ op;
FINI

% This exa•ple program accepts the error message frtim the ODT and
% perforMs the ERROR_COMMU~ICATE ~erb. The error message is
1 included in the terminate •essage displayed on the ODT by the
% MCP. If BYE is entered• the program goes to end of job.

9-72

B 1000 Systems SDL/UPL Reference Manual
Verbs

EVALUATION STACK TOP - -
EVALUA'flON_STACK_TOP

The EV ALUA TION_ST ACK_ TOP verb stores a 24-bit value on the top of the evaluation stack. This
value is the base-relative address of the top of the evaluation stack before the verb is performed.

SDL Syntax:

- EVALUATION_STACK_ TOP --------------------------1
Example:

DECLARE TOP_Of_STACK BIT C24J; I Identifier TOP_OF_STACK is
TOP_OF_STACK := EVALUATIDN_STACK_loP; % assigned the base address

% of the top of the evaluation
% stack.

Example Program:

OISPLAY <•THE ADDRESS Of THE TOP Of fHE EVALUATION STACK EQUALS •
CAT CONVERT CEVALUATION_STACK_TOP1 CHARACTER));

srop;
f INii

Output from Example Program:

EVALUATED =5531 BOJ. PP=4• HP=4 TIME = 15:19:29.1
I EVALUATEO ~5537 THE ADDRESS Of THE TOP Of THE EVALUATION STACK

EQUALS 002820
EVALUATEO =5537 EOJ. TIHE = 15:19:3z.9

1137833 9-73

EXECUTE

B 1000 Systems SDL/UPL Reference Manual
Verbs

The EXECUTE verb causes the operation specified in the operation-list to be performed by the SDL
interpreter.

The EXECUTE verb is used only for the experimental design of new operation codes and results in
the display of a BRANCH TO INVALID OP CODE program abort message on the ODT. The pro
gram is then discontinued.

SDL Syntax:

-EXECUTE (--r ___ <operation-lis1> ------) ------------------t

Syntax Semantics:

operation-list
This field can be any valid SDL identifier or expression. It specifies the operation code to be
executed by the interpreter and the operands to be used by the interpreter.

Example:

CECLAFE A
e
c

FIX£[,
FIX£C,
BIT C24);

C := EXECUTE CA~ e, 4Cll1111000001~);

STC?i
f If\Ii

9-74

i Assiqns identifier C
X the result of the ANO
% loqical operation that
% is srecifiec b~ the
% fXECt.;TE vert;.

EXIT __ COROUTINE

B 1000 Systems SDL/UPL Reference Manual
Verbs

EXIT COROUTINE

The EXIT _COROUTINE verb is used in conjunction with the ENTER_COROUTINE verb and
causes the current nesting level to be stored in the number of entries specified in <coroutine-table> .
The current code address is stored in the entry address specified in <coroutine-table> . The number
of the entries that is specified in <coroutine-table>, on the top of the program pointer stack, is then
copied to the program-pointer-stack-copy field (PPS_COPY) specified in <coroutine-table>. If the
number of the entries is 0 (zero), then nothing is copied and an implicit UNDO statement is performed.
The implicit UNDO statement uses the number of entries specified in <coroutine-table> as the num
ber of entries on top of the program pointer stack.

The EXIT _COROUTINE verb can appear only within procedures that have no parameters and no
local data, that is, those procedures which do not change the control stack.

SDL Syntax:

Syntax Semantics:

coroutine-table
This field can be any valid SDL table identifier and specifies the table with the following format.

01 CCRCUTlNE_lABLE~

03 ~UMEE~_CF_E~TFIES

C3 Ef\TrY_A[OFtSS
C3 PPS_CCP'

Example:

BIT (4),.

811 (32},,
Bil C32);

For an example of the EXIT_COROUTINE verb usage, refer to the ENTER_COROUTINE verb.

1137833 9-75

B 1000 Systems SDL/UPL Reference Manual
Verbs

FETCH

The FETCH verb causes the result of an input/output (110) operation to be returned to the SDL pro
gram. If there is a high-priority interrupt, then that interrupt is stored in <result-descriptor-address>.
If there is no high-priority interrupt and < 1/0-reference-address > is non-zero, only an interrupt on
an 1/0 descriptor with a reference address equal to < 1/0-reference-address > is stored in <result-de
scriptor-address >. < 1/0-reference-address > is stored in the leftmost 24 bits of <result-descriptor-ad
dress >. If there are no interrupts, then zeros are stored in <IO-reference-address> and <result-de
scriptor-address > .

The FETCH verb is for MCP use only or for an SDL program that is to run without the MCP.

SDL Syntax:

- FETCH (< 1/0-reference-address>, <port-and-channel-address>,

) <result~e~ripto~addres~);-~~~·~~~~~~~~-~~~~~~~~~~~~~~

Syntax Semantics:

I/ 0-ref erence-address
This field can be any valid SDL identifier or expression that returns a 24-bit value and specifies
the reference address of the 1/0 operation.

port-and-channel-address
This field can be any valid SDL literal, identifier, or expression that returns a 7-bit value and
specifies the port and channel address. The first three bits specify the port address and the last
four bits specify the channel address.

result-descriptor-address
This field can be any valid SDL identifier and specifies the destination field in which to store
the result descriptor address for a high-priority interrupt. This field is zero if there was no high
priority interrupt.

Example:

CECLA~E IO_tiEF_ACLR BIT C24)#
BIT C7h
BIT C24);

9-76

PG~T_CHA~~El_~CCR

f E S U l T _ C E S C _ A [[1;

IC_~Ef _ACCF := o;
PCFT_C~A~~EL_ACC~ := ;(1)010~ C~T ~Cl)OOOO~J

fETC~ CIC_~Ef_ACDF• FC~T_CHA~~EL_AOCF• FEStLT_OESC_AOOR>;

DISPLAY C"lHE FOLLOkI~G RESLLT DESCRIPTO~ l~FOR~~TIO~ IS FOR PORT "
CftT ~2 ~~O C~A~~EL 0");

CISPLAY C"l~E RESLLT CESCRIPTOR •DORESS IS " CAT
CCNVERT <RESLLl_UESC_ACOR• CfA~ACTERlli

CISPLAY C"THE l/C ~EFEFENCE AOO~ESS IS " CAT
CCNVERT CIC_FEF_~CCR• C~AH~CTER));

STOP;
f IN U

B 1000 Systems SDL/UPL Reference Manual
Verbs

FETCH COMMUNICATE MSG PTR

FETCH_. COMMUNICATE_MSG_PTR

The FETCH_COMMUNICATE_MSG_PTR verb returns the RS_COMMUNICATE_MSG_PTR
information if the RS_MCP _BIT field is set. Otherwise, the RS_REINST A TE_MSG_PTR infor
mation is returned.

SDL Syntax:

~FETCH_COMMUNICATE_MSG_PTR -~---~-~--------------~

Example:

CfSC"IFTC~ CCOMM_~~G) :=
VALUE_CESC~TfTLF CFElCt CO~MUNICATE_MSG_PTR>J

% Identifier CC~~-~Sf ~Escribes the communicate massage. that is
% assuminq that the messaqe ~as oescr·ibed bv a non-self-relative
% descr ictcr.

1137833 9-77

B 1000 Systems SDL/UPL Reference Manual
Verbs

FIND_DUPLICATE_CHARACTERS

The FIND_DUPLICATE_CHARACTERS verb scans <reference-identifier-I> for the first three or
more contiguous characters that are identical. For example, the three characters AAA qualify as dupli
cate characters, while the two characters AA do not. The value of <reference-identifier-I> is modified
if duplicate characters are encountered. The new value has the same character string except this charac
ter string begins immediately after the first duplicate character. The value of <count-identifier> is
the number of duplicate characters found. The value of <character-identifier> is the duplicate charac
ter found. The value of < reference-identifier-2 > is the original character string of < reference-identifi
er-I > , except this character string ends with the character immediately preceding the duplicate charac
ters.

The FIND_DUPLICATE_CHARACTERS verb is helpful in a data communications environment
where it can be used to compact messages, especially when blank characters are common.

SDL and UPL Syntax:

-- FIND_DUPLICATE_CHARACTERS (<reference-identifier-1>, -------------------#
~ <count~dentifie~, <character~dentifier>, -------~--------------~

> <reterence~dentifie~2>); ------~----------------------~

Syntax Semantics:

reference-identifier-I
This field can be any valid SDL/UPL reference identifier and specifies the character string that
is to be scanned. The value of this identifier is modified when the FIND_DUPLICATE_
CHARACTERS verb is performed. The new value of <reference-identifier-I> is a character
string that begins with the first character immediately following the duplicate characters that are
found.

count-identifier
This field can be .any valid SDL/UPL identifier with a FIXED data type. After the
FIND_DUPLICATE_CHARACTER verb is performed, the value contained in < count-identifi
er > is the number of duplicate characters found. For example, if the value equaled + 0000007,
the FIND_DUPLICA TE_CHARACTERS verb found seven duplicate characters in the charac
ter string.

character-identifier
This field can be any valid SDL/UPL identifier, one byte in length, a CHARACTER data type.
After the FIND_DUPLICATE __ CHARACTERS verb is performed, the value contained in
<character-identifier> is the duplicate character found. For example, if the value equals the
character A, the FIND_DUPLICATE_CHARACTER verb has found at least three consecutive
characters equal to the character A.

reference-identifier-2

9-78

This field can be any valid SDL/UPL reference identifier. After the FIND_DUPLICATE_
CHARACTERS verb is performed, the value of <reference-identifier-2> is the character string
of <reference-identifier-I. It ends immediately prior to the first duplicate character string.

B 1000 Systems SDL/UPL Reference Manual
Verbs

FIND DUPLICATE CHARACTERS

Example:

Consider the character strirg: "THIS IS THE PLAAAAACE"

fINO_CUPLIC-TE_CfA~ACTE~S verb returrs the fclto~inq ~alues:

reference-identifier-I = "CE"

count-identif i€r ~ •COOOOCS

character-identifTier = "~"

ref€rence-identifier·2 = "THIS IS T~E PL"

Example Program:

DECLARE
ACCEPT _f I ELD
R£f ERENCE_l
REFERENCE_2
COUNT
CHARACTE.R_FIELD

00 f OREVERi

CHARACTE~ C69),
REFER ENC: E•
REFER ENC£,.
FIXED•
CHARACTER cu;

DISPLAY ("ENTER A CHARACTER SJRING OR ENTER BYE TO GO TO EoJ•);
ACCEPT ACCEPT_FIELO;
If ACCEPT_fIELD =·BYE" THEN srop;
REFER kEfERENCE_l TO ACCEPT_FIELDJ

FIND_OUPLICATE_CHARACTERS CREFERENCE_l1COUNT,CHARACTER_FIELO,
REF ER £NCE_2l;

DI SPLA'Y c• THE RESULT Of REF ERE NC E_l IS " CAT REF ERENCE_l>;
DISPLAY C"THE DUPLICATE CHARACTER IS " CAT CHARACTER_FIELD>i
DISPLAY C"THE DUPLICATE CHARACTER APPEAR~ • CAT

CONVERT <COUNT, CHARACTER> CAI
" NUMBER Of TIMES•>;

DI SPLAY C" l H E RESULT 0 f REFER E NC E_ 2 I S " C AT R E F ERE NC E _Z > ;

FINI;

% This example progra11 accepts a cha.:racter string from the
% ODT and locates any duplicate characters. Using the
% FIND_DUfLICATE_CHARACTERS verb~ the values of identifiers
% REFERENCE_l and REfER£NCE_2 are displayed. Also• the
% duplicate character and number of times that the duplicate
% character appears is displayed. Entering BYE terminates
% the program.

1137833 9-79

FINI

B 1000 Systems SDL/UPL Reference Manual
Verbs

The FINI verb notifies the SDL/UPL compiler that this is the end of the source images to be compiled.

The FINI verb is optional. If the FINI verb is not specified, the SDL/UPL compiler uses the end
of-file record in the source file as the end of the source images.

SDL and UPL Syntax:

Example:

CfCLA~t A CHARAClE~ (l)i

A := ,.A"i
OISPLAY CAP
STCP;
FIN I;

9-80

% The FINI verb indicates the end of
~source file tc the SOL/UPL comoiler.

FREEZE_PROGRAM

B 1000 Systems SDL/UPL Reference Manual
Verbs

FREEZE PROGRAM

The FREEZE_PROGRAM verb prevents the program from being rolled out (moved to disk) during
program execution. The MCP keeps the run structure of the program and saves space in the same
memory location, regardless of the situation, until end of job or until the program performs the
THAW_PROGRAM verb.

SDL and UPL Syntax:

Example:

fREE.lf Ffif.JG~AMi

1137833 9-81

GROW

B 1000 Systems SDL/UPL Reference Manual
Verbs

The GROW verb causes the array bound of the specified paged array to be dynamically increased by
the value of <increase-amount> . The value of <increase-amount> cannot be negative and the result
ing array bound cannot be larger than 16,777,215 (@(4)FFFFFF@) bytes.

Paged arrays grow by adding more pages to the array.

SDL and UPL Syntax:

-- GRo·w (<paged-array-identifier>, <inc:rease-amount>); ----------------------.

Syntax Semantics:

page-array-identifier
This identifier can be any valid SDL/UPL paged array.

increase-amount
This field can be any valid SDL/UPL literal, identifier or expression that returns a 24-bit binary
value and specifies the number of elements to be added to the paged array.

Examples:

GRUW (A,. lOH X Causes 10 elements to be added to
% t~e oGqed array A.

G~CW CB• CEUMP X)}; % Causes X • 1 ele~erts to be added to
% tte paqed array e.

9-82

B 1000 Systems SDL/UPL Reference Manual
Verbs

GROW

Example Program:

DECLARE PAGED C2) CHAR_ARRAY C11
INPUT_CHAR
COUNT

D_FIELD := ••;
COUNT := Oi
DO FOREVER;

D_f IELD

CHARACTER Cl),
CHAR AC TE~ < 1> •
FIXED,
CHARACTER C 10);

DISPLAY C"ENlER ONE CHARACTER OR ENTER BYE TO GO TO EOJ•);
ACCEPT INPUT_CHARi
If INPUT_CHAR = •e• OR <CBUHP COUNT> > 9)
THEN oo;

DISPLAY C"GOOD BYE•);
STOPi

END;

GROW <CHAR_ARRAY• 11; % Causes one element to be added to the
% paged array CHAR_ARRAT.

CHAR_ARRAY <COUNT> := INPUT_CHAR1
SUBSTR CD_FIELD•COUNT1l> := CHAR_ARRAY CCOUNJ>;
DISPLAY c•JHE ARRAY EQUALS • CAT D_FIELD>i

EN Di

FINI;

% This example program accepts a character fro11 the ODT and
% causes the paged array to grow by one character to include the
% character. The resulting paged array is dis~layed on the OOT.
% If more than 10 characters are entered• the program goes to
% end of job.

1137833 9-83

HALT

B 1000 Systems SDL/UPL Reference Manual
Verbs

The HALT verb causes <halt-value> to be stored in the T-register and the M-machine halt instruction
to be performed. The T-register can be examined on the console panel of the B 1000 computer system.
The M-machine halt instruction stops the B 1000 processor.

SDL Syntax:

- HALT (<halt-value>); -----·-----------·---------------t

Syntax Semantics:

halt-value
This field can be any SDL literal, identifier, or expression and specifies the value to be loaded
into the T-register. If <halt-value> is longer than 24 bits, only the leftmost 24 bits are stored.
If <halt-value> is less than 24 bits, <halt-value> is stored in the T-register, right-justified with
leading zeros.

Example:

CECLA~£ X BIT C2~);

x := 10;
HALT CXH

9-84

% Causes the value ~OOOOOA; to be stored
% irtc the I-register and the ~-~ac~ine
l halt instruction to be perfo~1ed.

B 1000 Systems SDL/UPL Reference Manual
Verbs

HASH_CODE

HASH_CODE

The HASH_CODE verb causes a 24-bit value to be returned. This value is computed from the length
of the characters in <hash-code-value> . If the character string is longer than 15 characters, only the
leftmost 15 characters are used.

To be effective, the value returned by the HASH_CODE verb must be used with a number that is
divisible by a prime number. The prime number determines the logical hash-table size. Furthermore,
<hash-code-value> modulo a prime number is the most effective hash-table index.

SDL and UPL Syntax:

Syntax Semantics:

hash-code-value
This field can be any valid SDL/UPL literal, identifier, or expression that returns a character
value and specifies the value to be hashed.

Examples:

X := ~~s~ CCOE C"J(~~ CCE"> ~00 13; % ~ashes the literal JOHN
% OOf and assiqr.s the
l resulting value, rodulo
% 13• to the identifier X.

Y := fAS~ CCC£ CC~IR~CTE~S) ~00 29; % Hashes the i~e~tifier

Example Program:

DECLARE

DO f OREVER;

CHARACTERS
HASH_RESULT

% C~ARAClE~S ard assigns the
% resultinq vatue, modulo
% 29, to idertifier Y.

CHARACTER C15l•
BIT C21t);

DISPLAY C"ENlER THE CHARACTERS TO BE HASHED OR ENTER BYE FOR EOJ");
ACCEPT CHARACTERa;
IF CHARACTERS = "BTE· JHEN oo;

DISPLAY C"GOOD BYE");
STOP;

ENDi

HASH_~ESULT := HASH_CODE CCHARACJERS);

DISPLAY c•rHE HASH RESULT IS • CAT CONVERTCHASH_RESULJ,CHARACTER));
ENO;

f INii

% This example program accepts from the ODT up to 15 characters and
% uses the HASH_COOE verb on the accepted characters. The result of
% hashing the characters is displayed on the DDT.

1137833 9-85

INITIALIZE_VECTOR

B 1000 Syst1ems SDL/UPL Reference Manual
Verbs

The INITIALIZE_ VECTOR verb initializes the tables used by the SORT program.

This verb is for SORT program use only.

SDL Syntax:

Syntax Semantics:

table-address

9-86

This field can be any SDL literal, identifier, or expression that returns a 24-bit value and specifies
the address of the table containing the vector addresses, the vector level-1 address, the key table
address, and the vector limit address.

B 1000 Systems SDL/UPL Reference Manual
Verbs

LAST_LIO_STATUS

LAST LIO STATUS

The LAST_LIO_STATUS verb returns a bit value with a length equal to the RS_LAST_Ll
O_STATUS_SIZE field in the run structure nucleus of the SDL program. This value represents the
current status of logical input/output (1/0) operation for the SDL program.

SDL Syntax:

- LAST_LIO_STATUS

Example:

DECLARE LAST_Io_STATUS BIT C24)i
LAST_IO_STATUS := LAST_LIO_STATUSi

Example Program:

FILE PORTFILE CDEVICE = PORT•
RECORDS = 80/11
HOST_NAHE = •e1000•1;

RECORD 01 STATUS_HASK_EXCEPTION BIT
oz ANY_EXCEPTION BIT
02 FILLER BIT
02 INVALID_SUBPORT_INDEX BIT
oz FILLER BIT
02 IO_ERROR BIT
02 FILLER BIT
02 LOGICAL_EOf BIT
02 FILLER BIT
oz SUBPORT_STATE_CHANGE BIT
02 FILLER BIT

DECLARE BUFFER
x

CHARACTER C8Q),
STATUS_HASK_EXCEPTION•

(24)#

Clh
(41.
Cll•
Cl>•
Cll•
Cl>•
Cl),
Cl>•
c11 ..
c31;

MASK BIT C24); % THIS IS THE RESULT MASK

OPEN PORTFILE WITH INPUT• OUTPUT;

MASK :: dfFfFff~; % REPORTS ALL EXCEPTIONS
DO FOREVER;

READ PORTfllE {BUFFER> WITH RESULT_HASK MASKJ
ON EXCEPTION oo;

1137833 9-87

B 1000 Systems SDL/UPL Reference Manual
Verbs

LAST LIO STATUS - -
DISPLAY "EXCEPTION ON READ Of PORTFILE•;
X ~= LAST_LIO_STATUS; % IDENTIFIER X CONTAINS

% ALL EXCEPTIONS WHICH
% OCCURRED.

IF SUBBIT ex, 6. 1> = 1
THEN DISPLAY •INVALID SUBPORT INDEX•;

ENO;
WRITE PORTFILE CBUFFER>;

ON EXCEPTION DISPLAY •EXCEPTION ON WRITE OF PORTFILE•;
DISPLAY CBUFFERJ;

EN Di
FINI;

% This example program uses the LAST_LIO_STATU:S verb to
% assign all the exceptions for a re~d operation to a BNA
% port file. The program reads from the port file• writes
% the sa~e message back Cecho> to the port file~ and disptays
% the message read/written on the ODT.

9-88

B 1000 Systems SDL/UPL Reference Manual
Verbs

LENGTH

LENGTH

The LENGTH verb returns a 24-bit value, which contains the number of units in <identifier> , where
unit is either of the following:

1. The number of characters if <identifier> has a data type of CHARACTER.
2. The numbers of bits if <identifier> has a data type of FIXED or BIT.

SDL and UPL Syntax:

Syntax Semantics:

identifier
This field can be any valid SDL/UPL identifier or expression that returns an addressable value.

Examples:

X :: LE~GT~ CY);

1137833

% The identifier X is a~sig~ed a 24-bit
l ~aluE eoual tc 2 or ~C4>CCCC02e.

% The identifier X is a~signed a 24-bit
% value eol.i31 tc the tel"gth of Y.

9-89

B 1000 Systems SDL/UPL Reference Manual
Verbs

LENGTH

Example Program:

DECLARE CHARACTERS
L£NGTH_OF_CHARACTERS
COUNTER

CHARACTER C1950>•
BIT C24h
FI >c EO;

DO FOREVER;
DISPLAY c•ENJER ANY NUMBER OF CHARACTERS OR ENTER BYE FOR EOJ•);
ACCEPT CHARACTERSJ
COUNTER := o;
DO CHARACTER_LOOP FOREVER;

If SUBSTR CCHARACTERS• COUNTER• 11 = • ~ OR COUNTER > 1948
THEN If SUBSTR CCHARACJERS• O• COUNTER> = •9y[•

THEN no;
DISPLAY c•Gooo BYE");
srop;

ENO;
ELSE oo;

LENGTH_Of _CHARACTERS :=
LENGfH CSUBSJR tCHARACTERS• O• COUNTER>>;

DISPLAY C•THE LENGTH Of THE CHARACTERS ENTERED IS •
CAT DECI"AL CLENGTH_or_CHARACTERS- 6));

UNDO CHARACTER_Loop;
ENO;

BUHP COUNTERi
END CHARACTER_LOOPi

EN Di

FINI;

% T h i s ex a 11 pl e pro gram ac c: e p t s a ch ar act er f ii el d f r o 11 t h e OD T
% and uses the LENGTH vert1 to calculate the number of characters
% entered. If "BYE" is entered the program goes to end of job.

9-90

LIMIT_REGISTER

B 1000 Systems SDL/UPL Reference Manual
Verbs

LIMIT REGISTER

The LIMIT _REGISTER verb returns a 24-bit value which is the base-relative address of the Run
Structure Nucleus for the program.

SDL and UPL Syntax:

-LIMIT_REGISTER ---------------------------------1

Example:

DECLARE X BIT C24li
X := LIMIT_REGISTER;

Example Program:

% Assigns to identifier X a 24-bit value
% which r~presents the limit register of
% the run structure nucleus in the program.

DISPLAY <"THE ADDRESS OF THE RUN STRUCTURE NUCLEUS IN THIS PROGRAM IS "
CAT DECIMAL CLIHIT_REGISTER' 8J);

S'fop;
FINI;

% This example program displays on the ODT the base-relative address
% of the program•s run structure nucleus and goes to end of job.

1137833 9-91

LOCATION

B 1000 Systems SDL/UPL Reference Manual
Verbs

The LOCATION verb returns a bit value that is the base-relative adldress of the specified identifier,
array-identifier, or procedure-identifier.

When a procedure-identifier is specified, a 36-bit value is returned. This 36-bit value contains, as the
first four bits, the address type which is equal to @F@ or @(1)1111@. This value designates that this
36-bit value applies to a procedure identifier. Also, included in this 36-bit value is the page, segment,
and displacement of the specified procedure.

The following is the format of the 36-bit value for a procedure identifier.

Cl PFICCE[URf - ACDf'E~S EIT (36}·

03 A OCH.SS - TY Pf Ell (4)i, 7. Cont airs the vatue ;f.
I) 3 SEOH.t<cf -NUMBE~ EIT CE l'
03 PA c; E f\UMEEf. E lT (6) p

03 CISPLACE~ENT E 1T {2Q);

When an identifier or array-identifier is specified, a 16-bit value is returned. The first two bits of this
field is the address type and equals @(1)00@ or @(2)0@. This 2-bit value designates that the remaining
16-bit value represents an identifier or an array. The remaining information includes the lexic level and
the occurrence number within the lexic level for the identifier or array.

The following is the format of the 16-bit value.

01 ICENTIFI£F_CR_A~RA~_~COfiE5~

03 AUOFf.SS_TYPE
03 LEXIC_LEVEL
03 UCCUR~ENCE_~L~EE~

SDL and UPL Syntax:

BIT (16),.

BIT (2), % Contains the value ~C2)C;
SIT (4)P

13ll (10);

- LOCATION (------... L- <identifier> ------~)
L <array-identifier> _____=]

<procedure-identifier>----

Syntax Semantics:

identifier
This identifier can be any valid SDL/UPL identifier.

array-identifier
This array identifier can be any valid SDL/UPL array identifier.

procedure-identifier

9-92

This procedure identifier can be any valid SDL/UPL procedure identifier. This procedure must
be declared as a FORWARD procedure if a recompilation or create-master compilation is to be
performed.

B 1000 Systems SDL/UPL Reference Manual
Verbs

LOCATION

Examples:

CECl.AFE x
y

ICEf\T!fIEt«
A FHA Y C 2 C)

Ell <16),.
EIT C36),
C~~RPCT£~ ClO),.
Ell C24);

X := lCC~TICN CILE~TIFlEFl; % Assigns to identifier X a 16-bit
% value with ~<l>CO; as the first
X two bits, followed by a 4•bit
% lexic·tevet number equal to
% •CllOODOe and a 10-tit occurrence
% number eoual to ~(1)0000000010~.

X := L(C~TICN CAR~-~); l Assigns to identifier X a 16-bit
% value with ;ct>OO as the first
7. two bits, followed ~) a 4-bit
l le~ic-tevel number eaual to
i @(110000@ ard a 10-hit occu~rence
% number ecual to ~CllCOCCC000119.

Y := LCCATICN CP~CCECU~E ONE); % Assiqrs to id9ntifier Y a 36-bit
~ value ~ith ;f~ as the fir5t four
% bits, followed by a 6-bit segment
% nu~ber,. a 6•bit page ~umber and a
2 20-bit displacement number of
~ procedure PPOCECURE_ONE.

Example Program:

SEGMENT CZEROH

PROCEDURE DISPLAY_ARRAY_AND_fIELO;

DECLARE 01 LOC_Of _ARRAY_OR_FIELD
Ol ADDRESS_TYPE_Af

BIT C 1&>~

1137833

03 LE;<IC_LEVEL
OJ OCCURRENCE_NUMBER

ARRAY ClO)
f IELD

BIT c21,.
BIT C4'l•
BIT ClO>•
CHARACTER ClOl,.
f lXEDi

LOC_Of_ARRAY_OR_FIELD := LOCATION CARRAY>;

DISPLAY <•THE ADDRESS TYPE Of THE ARRAY IS " CAT
CONVERT CADDRESS_TYPE_AF~ CHARACTER));

DISPLAY c•tHE LEXIC LEVEL Of THE ARRAY IS• CAT
CONVERT tLEXIC_LEVEL1 CHARACTER>>;

DISPLAY c•THE QCCURRENCE NUMBER Of THE ARRAY IS " CAT
CONVERT tOCCURRENCE_NU~BER, CHARACTER));

LOC_Of_ARRAY_OR_FIELD := LOCATION <FIELD);

9-93

B 1000 Systems SDL/UPL Reference Manual
Verbs

LOCATION

DISPLAY (•THE ADDRESS TYPE or FIELD IS - CAT
COhV£RT CADORESS_TYPE_Af• CHARACTER));

DISPLAY C•JHE LEXIC LEVEL Of FIELD IS " CAT
CONVERT CLEXIC_LEVEL, CHARACTER));

DISPLAY C"THE OCCURRENCE NUMBER Cf FIELD IS " CAT
CONV£RT COCCURRENCE_NUMB£R• CHARACTER));

END DISPLAY_ARRAY_ANO_FIELO;
%
SE GHENT < ONE1i
%
PROCEDURE DISPLAY_PROCEDUR[;

DECLARE 01 LOC_OF_PROCEDURE
03 AODRESS_TYPE_P
03 SEGMENT_NUHBER
03 PAGE_NUHBER
03 DISPLACEMENJ_NUHBEfl

BIT CJ&>•
BIT <41'
BIT Cf>),
BIT ua.
BI J C20H

LOC_or _PROCEDURE := LOCATION (DI SPLAY_PROCEDUREH

DISPLAY c•rHE ADDRESS TYPE Of DISPLAY_PROCEDURE IS • CAT
CONVERT CADDRESS_TTPE_P, CHARACTER));

DISPLAY C"IHE SEGMENT NUMBER OF DISPLAY_PROCEOURE IS " CAT
CONVERT CSEGMENT_NUHBER1 CHARACTER));

DISPLAY C"THE PAGE NUMBER Of DlSPLAY_PROCEDURE IS " CAT
CON VERT er AGE,_ NUMBER• c HAR ACT ER));

DISPLAY C"JHE DISPLACEMENT Of DISPLAY_PROCEDURE IS " CAT
CONVERT COISPLACEHENT_NUHBER• CHARACTER));

END OISPLAY_PROCEDURE;
%
% MAIN PROGRAM aEGINS HERE
%
SEGHENT CTWOH

DISPLAY_ARRAY_AND_FIELD;

DISPLAY_PROCEOURE;

sToP;

SEGMENT CZERQ);

FINI;

% This exa~~le program displays the location of ARRAY~ FIELD,
% and DISPLAY_PROCEDURE and goes to end of job.

9-94

B 1000 Systems SDL/UPL Reference Manual
Verbs

LOCATION

Output from Example Program:

LOCATIONO =7523 BOJ. PP=4• MP=4 TIME = 15:03:10.7
% LOCATIONO =7523 THE ADDRESS TYPE Of THE ARRAY IS 0
% LOCATIONO =752l THE LEXIC LEYEl Of THE ARRAY IS 1
% LOCATIONO ;7523 THE OCCURRENCE NUMBER Of THE ARRAY IS 006

% LOCATIONO =752l THE ADDRESS TYPE Of FIELD IS 0
% LOCATIONO =7521 THE LEXIC LEVEL Of FIELD IS 1
% LOCATIONO =7523 THE OCCURRENCE NUMBER Of FIELD IS 007

% LOCATIONO =7521 THE ADDRESS TYPE Of DISPLAY_PROCEDURE IS r
% LOCATIONO =7523 THE SEGMENT NUMEER or DI~PLAY_PROCEDURE IS 02
l LOCATIONO =7523 THE PAGE NUMBER or DISPLAf_PROCEDURE IS 00
% LOCATIONO =7523 THE DISPLACEHEhT Of DISPLAY_PROCEOURE IS 00000
LOCAlIONO =7521 EOJ. TIME = 15:03:33.1

1137833 9-95

B 1000 Systems SDL/UPL Reference Manual
Verbs

MAKE_DESCRIPTOR

The MAKE_DESCRIPTOR verb replaces the current entry on the evaluation stack with < descrip
tor>. If the name-value bit of <descriptor> on the evaluation stack is set, the value of <descriptor>
is removed from the value stack.

The DESCRIPTOR verb can appear as the object of a replacement, as long as the descriptor created
generates an address.

SDL Syntax:

- MAKE_DESCRIPTOR (<descriptor>)

Syntax Semantics:

descriptor
This field can be any valid SDL expression that returns a descriptor.

Examples:

~AKE DESC~IPTC~ CCESCRIPTOfi CXJ) = x,
where X is non· set f-retcrtive.

~AKE_CESC~IPTOR CV~LUE_CESCRIPTO~ CE>> = f,
where E generates ar address.

VALUE_CESC~IPTOR C~AKE_tESC~lPTOF CE>> := E•
where the vatue of E is a vat id address qenerator.

9-96

B 1000 Systems SDL/UPL Reference Manual
Verbs

MAKE READ ONLY

MAKE_READ_ONL Y

The MAKE_READ_ONL Y verb applies only to paged arrays and marks the specified page number
of a paged array as READ_ONLY. All pages within a paged array are marked as READ_WRITE
by default. Once a page is marked as READ_ONLY, that page is not copied to disk each time it
is overlaid by the MCP. The programmer is responsible for insuring that information written to a page,
within a paged array, be performed when the page is not marked READ_ONL Y. Refer to the
MAKE __ READ_ WRITE verb to mark a paged array as READ_ WRITE.

The programmer must calculate <page-number> , and also must ensure that <page-number> is a val
id page number. No syntax checking is performed on the value used to reference a page number within
a paged array.

SDL and UPL Syntax:

-- MAKE_READ_ONLY (<paged-array-identifier>), <page-number>); ---------------1

Syntax Semantics:

paged-array-identifier
This field can be any valid SDL/UPL paged-array identifier and specifies the paged array to be
marked as READ_ONLY.

page-number
This field can be any valid SDL/UPL integer, identifier, or expression that returns a 24-bit binary
value and specifies the page number within a paged array.

Examples:

CECLARE PAGfC (32) P Cl024) EIT C3Ul~
I FIXED;

MAKE ·- FE AC - C 1'L Y (p .. 1); l M :i~ es page rumber one of the oaqed
% arvav p a f(f. A 0 - ONLY page.

fojl AKE - F£AC - C ~LY (.p,. I H % Mat< es the o.a ge rumber specified by
l vat lie cf I 8 REAO - Cf\l Y caqe.

~•KE_FEAC_G~lY (p, BUMf J); l Ma~es the cage pumber specified by
l the value cf 1 •1 a REAt_ONLY page.

Example Program:

DECLARE PAGED (2) P CJ2>
I
ODT_INPUT

DO f OREVERi

FI XEO ..
FIXED,
CHARACTER CSli

MAKE_READ_ONLY (p~ BUMP Ili
If I = 15 THEN UNDO;

END;

1137833

the

9-97

B 1000 Systems SDL/UPL Reference Manual
Verbs

MAKE READ ONLY

DO FOREVER;
DISPLAY <"ENTER READ• ENTER WRITE• OR ENTER BYE TO GO TO EOJ");
ACCEPT OOT_INPUT;
IF OOT_INPUT = "BYE· THEN srop;
If ODT_INPUT = "READ"
J'HEN oo;

DISPLAY C"ENTER AN ELEMENT NUMBER BETWEEN 0 AND 31•1;
ACCEPT ODT_INPUT;
I == CONVERT coor_INPUT· FIXED);
If I > 31
l"HEN DISPLAY ("NUMBER £N1ERED IS TOO LARGE•);
ELSE DISPLAY COECIHAL CP CI), 8));

EN Di
ELSE If ODT_INPUT = •wRITE•

IHEN oo;
DISPLAY C"£NTER AN ELEMENT NUMBER aETWEEN 0 AND 31");
ACCEPT ODT~INPUJ;
I := CONVERT <ODT_INPUT, FIXED>;
IF I > 11
THEN DISPLAY c•NUHBER ENTERED IS TOO LARGE"lJ
ELSE oo;

DISPLAY (•ENTER A NUMBER~>;
HAKE_READ_WRITE (p, I/2);
ACCEPT oor_INPUH
P CI> :: CONVERT CODT_INPUT•flXEOl;
HAKE_READ_ONLY (p, I/2);

END;
EN01

ELSE DISPLAY ("INCORRECT COMMAND -- TRY READ• WRITE• OR BYE•);
ENO;

STOPi

% This example program illustrates the use of the HAKE_REAO_ONLY
% and MAKl_REAU_WRlTE verbs on paged arrays. The program first
% accepts from the DOT the entries •READ", "WRITE•, or •eJE•. If
% •BYE 8 is entered the program goes to end of job. If •READ" is
% entered• the progra11 then accepts frora the OOT an element number
% between O and 31 and displays the contents of that element in
% the array. If "WRITE• is entered• the program accepts from the
% oor the element number between 0 and 31 and then a 5-character
% value to be placed into that element within the paged array.
%
% The HAKE_READ_ONLY verb is used to initially make all the pages
% in the paged array READ_ONLY and• also~ after an element in the
% paged array has been changed. The HAKE_READ_WR1TE verb is used
% to make an element in the paged array REAO_riRITE in order to
% change the value of the element.

9-98

B 1000 Systems SDL/UPL Reference Manual
Verbs

MAKE READ WRITE - -
MAKE_READ_WRITE

The MAKE_READ_ WRITE verb changes the status of the page within a paged array specified by
< page·-number > to READ_ WRITE. If the status of a page is READ_ WRITE, the page is copied
to disk each time it is overlaid by the MCP.

The user must calculate <page-number>, and also must ensure that <page-number> is valid. No
syntax checking is performed by the SDL/UPL compiler to verify that <page-number> is valid.

Unless a page has been marked as READ_ONL Y by the MAKE_READ_ONL Y verb, a status of
READ_ WRITE is the default for all pages within a paged array. The MAKE_READ_ WRITE verb
is only needed to override READ_ONL Y status set by the MAKE_READ_ONL Y verb.

SDL and UPL Syntax:

- MAKE_READ_WRITE (<paged-array-identifier>, <page-number>);-------------.....,.

Syntax Semantics:

paged-array-identifier
This field can be any valid SDL/UPL paged-array identifier and specifies the paged array to be
marked as READ_ WRITE.

page-number
This field can be any valid SDL/UPL integer, identifier, or expression that returns a 24-bit binary
number and specifies the page within a paged array.

Examples:

OECLA~E PAGEC C32) P C1024} EIT C30),
I F.IXFC;

MAKE - f< EA [- WrITE (p,. 1); 7. Malres pa<Je number l of the paqed
r. arrav p a ~EAC -ONLY oage.

MAK£ -~EA[- WFlTE (F,. I l; ,. Makes the oaqe nufllber c:;pecified by
i. the va1tJe cf I a READ - ONLY page.

~AKE_fl£AC_W~lTE CF .. 9(Jti.P lH 4 Malt:es the page number specified by
i the· vatLe cf I + 1 a REAO_O~LY paqe.

Example Program:

Refer to the Example Program for the MAKE_READ_ONL Y verb.

1137833 9-99

B 1000 Systems SDL/UPL Reference Manual
Verbs

MESSAGE_COUNT

The MESSAGE_COUNT verb scans the specified queue file and determines the number of messages
currently in the queue. This number is stored in <identifier> wilth a FIXED data type.

When the queue file specified is a queue file family, the MESSAGE_ COUNT verb returns an array
of FIXED values, one for each file in the family. The programmer must ensure that <identifier> is
large enough to hold the generated value.

SDL and UPL Syntax:

-- MESSAGE_COUNT (<queue-file-id>, <:identifier>); -------------------__,.

Syntax Semantics:

queue-file-id
This field can be any valid SDL/UPL file identifier declared with a device type equal to QUEUE
and specifies the queue file name to obtain the message count.

identifier
This field can be any valid SDL/UPL identifier and specifies the destination field for the number
of messages.

Examples:

DECLA~E X (5) f JXEC~
Y f IXEC;

f ILE 'L£Uf_flll CCE~ICE=,UEUE>~

CUEUE_FA~ILY_5 ([EVICE = QUEUE C5))J

~ESSAGE_CCU~T CCUflE_FllE• Y);

MESSAGE_CCU~T CQU£LE_F~~JLY_5• X);

9-100

% Stores the numbef of messages
% oueued for QlEUE_fILE into
% identifier Y.

% Stores the number of messaqes
t oueued for each file withi~
% the QUEUE_FAHILY_S into array
%)t •

Example Program:

B 1000 Systems SDL/UPL Reference Manual
Verbs

DECLARE NUMBER_Of _MESSAGES FIXED,
COUNTER FIXED;

FILE QUEUE CDEYICE = QUEUE ClQ),
OPEN_OPTION = OUTPUT•
RECORDS = to,

COUNTER := o;
DO f OREVERi

BUFFERS = ZH

WRITE QUEUE <COUNTER);

HESSAGE_COUNT (QUEUE• NUHBER_Of _MESSAGES>;

MESSAGE_ COUNT

DISPLAY C"fHE NUMBER OF MESSAGES QUEUED EQUALS • CAT
CONVERT CNUH8£R_OF_MESSAGES, CHARACTER>>;

IF (CBUMP COUNTER> > 9) IHEN ·oo;

END;

0 I SP L A Y C "G 0 OD 8 YE• H
SJQp;

ENO;

% This example program writes a message to the file labeled QUEUE
% and uses the HESSAGE_COUNT verb to interrogate the number of
% messages in the queue file. The number of messages is displayed
% on the OD'T.

Output from Example Program:

MESSAGED =70/6 BOJ. PP=4, HP=4 TI~E = os:21:1s.2
% HESSAGEO =1016 THE NUMBER Of MESSAGES QUEUED EQUALS +0000001
% MESSAGEO =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +0000002
% MESSAGED =101& THE NUMBER Of MESSAGES QUEUED EQUALS +0000003
% MESSAGEO =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +000000~
% HESSAGEO =7076 THE NUMBER Of MESSAGES QUEUED EQUALS +0000005
% MESSAGED =101& THE NUMBER or MESSAGES QUEUED EQUALS +000000&
% HESSAGEO =1076 THE NUMBER Of MESSAGES QUEUED EQUALS +0000007
% HESSAGEO =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +0000008
% HESSAGEO =7076 THE NUMBER Of MESSAGES QUEUED EQUALS •0000009
% HESSAGEO =1016 THE NUMBER or MESSAGES QUEUED EQUALS +0000010
% HESSAGEO =7076 GOOO BYE
HESSAGEO =1076 EOJ. JIHE = oa:21:36.5

1137833 9-101

B 1000 Systems SDL/UPL Reference Manual
Verbs

MONITOR

The MONITOR verb specifies which procedures are candidates to be monitored.

SDL Syntax:

-- MONITOR ------'----..-----·----.,.----...-$ALL-,---------.-----

AND !NOT ---t
OR ------t
+----

$NONE --------------~

<sequencE!-range> -----""""

<procedure-name>------

Syntax Semantics:

AND NOT

OR

+

The keywords AND NOT cause the sequence numbers specified by <sequence-range> or the
procedures specified by <procedure-name> not to be monitored.

The keyword OR causes the sequence numbers specified by <sequence-range> or the procedures
specified by <procedure-name> to be monitored.

The key symbol + causes the sequence numbers specified by <sequence-range> or the proce
dures specified by <procedure-name> to be monitored.

The key symbol - causes the sequence numbers specified by <sequence-range> or the proce
dures specified by <procedure-name> not to be monitored.

The keysymbol , causes the sequence numbers specified by <sequence-range> or the procedures
specified by <procedure-name> to be monitored.

$ALL
The keyword $ALL causes all of the procedures to be monitored.

$NONE
The keyword $NONE causes no procedures to be monitored.

sequence-range
This field can be any sequence range of sequence numbers within the SDL/UPL source file. It
specifies the sequence range for monitoring a designated procedure. The following is the format
for <sequence-range>, where bbbbbbbb specifies the beginning sequence number and eeeeeeee
specifies the ending sequence number.

b b b b b b b b-eeeeeeee

procedure-name

9-102

This field can be any procedure identifier within the SDL/UPL program that is marked to be
monitored and specifies that this procedure is to be monitored.

B 1000 Systems SDL/UPL Reference Manual
Verbs

MONITOR

Example 1:

MC~ITC~ ("!~LL"); % Causes all ~rocedLres t~at are
% candidates for monitoring tc be
% mon-.tored.

Example 2:

~C~ITC~ ("S~ONf");

Example 3:

% Causes ~o prccedtres to be
% mordtcred.

X Causes proced~res ~l and X2 to be
% monitored.

Example 4:

~C~ITC~ ("CCOOGOOC-019S9995"J; % Causes all crocedures between
% seotence nu"ters OCOOOOOO and
i. 01999999 to te monitored.

Example 5:

% Causes procedvre Xl to be monitored
i. but ~ct croced~re X2.

Example Program:

DECLARE ODT_INPUT CHARACTER CJ);
S HONIJOR

PROCEDURE COUNTi
DECLARE COUNT FIXED;
DISPLAY CCONYERT CCBUHP COUNT>• CHARACTER));

END COUNH

DO f OREVER;
DISPLAY (•ENTER YES TO MONITOR PROCEDURE AGAIN OR £NTER BYE fOR £OJ•);
ACCEPT ODT_INPUJ;
If oor_INPUT = "BYE" THEN oo;

DISPLAY <•GOOD BYE");
STOP;

END;
If ODT_INPUT - "YES" THEN HONITOR_SET C"COUNT">J

ELSE HONITOR_RESET C"COUNJ")i

COUNTi
EN Di
FINI;

1137833 9-103

B 1000 Systems SDL/UPL Reference Manual
Verbs

M_MEM_SIZE

The M_MEM_SIZE verb returns a 24-bit value which is the M-memory size in bits, of the B 1720
computer system.

The M_MEM_SIZE verb is only valid for the B 1720 series computer.

SDL and UPL Syntax:

- M_MEM_SIZE --------------------------------!

Example:

DECLARE MEMORY BIT CZ~);
MEMORY :: M_MEH_SIZE;

Example Program:

% Identifier MEMORY is assigned the
% value of the memory sile of the 81720
% computer system.

DISPLAY C"THE H-MEMORY SIZE EQUALS ~· CAT

STOPi
FINI;

CONVERT CCM_MEH_SIZE I B>• CHARACTER> CAT ·~ BYTES");

Output from Example Program:

H_MEH_SIZO =6234 BOJ. PP=4• HP=4 TIME = 10:11:11.~
% M_MEM_SIZO =6234 THE H-HEHORY SIZE EQUALS ~oo&oooa BYTES
H_HEM_S.IZO =6234 EOJ. TIME -= 10:37:16.7

9-104

NAME_OF_DAY

B 1000 Systems SDL/UPL Reference Manual
Verbs

NAME OF DAY - -

The NAME_OF _DAY verb returns a left-justified, 9-character string which is the name of the cur
rent system day of the week. The seven possible values are MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, and SUNDAY.

SDL and UPL Syntax:

Example:

DECLARE NAME CHARACTER C9Ji
NAHE := NAHE_Of_DAY;

% If the current system day name is WEDNESDAY, then
% NAME has the following bit and hexadecimal values.
%
% NAME = ~(4lE6C5C405C4E2C4C1E8~
% = "WEDNESDAY•

Example Program:

DISPLAY <•TODAYS DAY NAME IS • CAT NAME_Of _DAY);
srop;
FINI;

Output from Example Program:

NAMEOFDAYO =S596 BOJ. pp:4, HP=4 TIME = oe:oo:45.9
% NAMEOFDAYO =5598 TODAYS DAY NAME IS FRIDAY
NAMEOFOAYO =5598 EOJ. TIME = oe:oo:so.s

1137833 9-105

B 1000 Systiems SD L/UPL Reference Manual
Verbs

NAME_STACK__ TOP

The NAME_ST ACK_ TOP verb returns a 24-bit, self-relative value with a BIT data type. This 24-bit
value is the base-relative address of the top of the name stack.

SDL Syntax:

Example:

DECLARE NAHE_STACK_ADDR BIT C24J;
NAME_STACK_AODR := NAME_SliACK_TOPi

Example Program:

% Identifier NAHE_STACK_ADDR
% is assigned the address of
% the top of the name stack.

DISPLAY (•JHE ADDRESS Of THE TOP OF THE NAME STACK EQUALS • CAT
CONVERT CNAHE_STACK_TOP• CHARACTER>>;

SJ op;
FINI;

Output from Example Program:

HAHESTACKO =5&01 BOJ. pp:4, MP=4 TIME = oe:o5:47.9
% NAHESTACKO =5&01 THE ADDRESS OF THE TOP Of THE NAME STACK

EQUALS 002700
NAHESTACKO =5&01 EOJ. TIME = oa:os:51.8

9-106

B 1000 Systems SDL/UPL Reference Manual
Verbs

NEXT _ITEM

NEXT_ITEM

The NEXT _ITEM verb causes the length field of the descriptor, represented by <identifier> , to be
added to the address field of that descriptor. This modified descriptor is put back onto the name stack
and is also moved to the top of the evaluation stack. This modified descriptor is the load address of
the new item described by <identifier> .

SDL Syntax:

Syntax Semantics:

identifier r
This field can be any valid SDL simple identifier and specifies the name of the starting identifier.

Example:

CECLA~E 01 CHAF_STf I~C C~AF~CTEfi ClOOO>•
03 NEXT_CHA~ CHAR~CTER Cll7

NEXT_ITE~ CNEXT_C~~RJ := "C";

1137833

% Causes t~e character [
% to be moved into the
% second character of
7. 01AR_STRING.

9-107

NEXT_TOKEN

B 1000 Systems SDL/UPL Reference Manual
Verbs

The NEXT_ TOKEN verb returns the descriptor of the next token. This token can be an identifier,
a number, or a special character. The descriptor of <result-reference-identifier> is also replaced by
this descriptor. < first-character-address> is changed to point to the character which immediately fol
lows this token. The NEXT_TOKEN verb expects that the <first-character-address> references a
non blank character.

SDL Syntax:

-- NEXT_ TOKEN (< first-character-addres!i>, <separator>,

> • <result-reference-identifier>)

Syntax Semantics:

first-character-address

SET

LRESET---

This field can be any valid SDL identifier and specifies the ad.dress of the first character in the
character string to be scanned.

separator

SET

This field can be a character string or a bit string with a length equal to eight bits and specifies
the token separator. The SDL compiler uses the underscore (__) character. If no token separator
is required, specify the character A.

The keyword SET allows the symbols 0 through 9 to be valid symbols. For example, the symbols
235AB are allowed.

RESET
The keyword RESET does not allow the symbols 0 through 9 to be valid symbols. For example,
the symbol 456DF is not allowed.

result-reference-identifier
This identifier can be any valid SDL reference identifier. It specifies the name of the field in
which to store the string of characters. It begins with <first-character-address> and ends with,
but does not include, any <separator> encountered during the scan.

Example:

CECLAFE FIP.ST_CHAF
f;fSULT
c.-~R STRlNC
"ExT:Cl-!A~

FEFEf.ENCt•
fCEFERENCE,
Cf-.AfiACT£H (15),.
0-AliACTEf; ClS);

CHA~_ST~l~G := "12345 7P.9i~8CDE";

.,£ffA FHST_Ct-'A~

TO SUBSTF CC~~R_ST~I~G. o~ tJ;
f\fXT_Cl-iAf; :=

% T~e identifier ~EXT_CHA~

% is assigned the vatue
i "7 ...

OELl~ITEC TCKE~ Cf lhST CHA~. " "• SET• ~ESUllJ;

9-108

>

B 1000 Systems SDL/UPL Reference Manual
Verbs

NEXT TOKEN

Example Program:

DECLARE ODT INPUT
RE SUL 11'

f IRST_CHARACTER

DO FOREVERJ

CHARACTER C50)11
REFERENCE•
REF EREN CE_J

DISPLAY (•ENTER ANY 50-CHARACTERS JO BE SCANNED OR ENTER BYE FOR•
CAT .. EOJ•);

ACCEPT oor_INPUTi
Ir ODT_INPUT = ·BYE" THEN oo;

DISPLAY c•Gooo BY[•);
SJop;

END;
REFER FIRST_CHARACJER ro SUBSTR <ODT_INPUT• o, 1);
DISPLAY (RJHE NEXT TOKEN EQUALS");

DISPLAY <NEXT_TOKEN CFIRST_CHARACTER• •_•, SET, RESULT));
DISPLAY CFIRST_CHARACTER>i
DISPLAY CRESUlT1i

END.;
FINI;

% This example program finds the first token of a 50-character
% message entered from the DDT and displays the token back on
% the ODT. If BYE tis entered• the pf'ograra goes to end of job.

1137833 9-109

OPEN

B 1000 Syst{!ITIS SDL/UPL Reference Manual
Verbs

The OPEN verb allows a program to explicitly open a data file.

The OPEN verb requests permission from the MCP to access a file and to make available the requested
memory space. An implicit open is performed by the MCP when a program reads from or writes to
a data file that has not been explicitly opened with the OPEN verb.

Buffer storage is allocated and file attributes are established when a file is opened. Memory storage
utilization can be significantly optimized by delaying a file open operation until the file is needed.

The open attributes specified with the OPEN verb override any FILE declaration attributes. Attributes
not specified in the OPEN verb maintain the status set in the FILE declaration, or the default status
if not specified.

The NEW open attribute is only valid with the OUTPUT open attrilbute. If the OUTPUT open attri
bute is not specified when the NEW open attribute is specified, OUTPUT is assumed by default.
Specifying the open attributes INPUT and NEW without specifying the OUTPUT open attribute gener
ates a syntax error.

Specifying INPUT OUTPUT NEW is only valid with files whose access attribute is equal to RAN
DOM.

The LOCK open attribute protects the file from write operations by another program.

The LOCK_OUT open attribute protects the file from read operations as well as write operations by
another program.

9-110

B 1000 Systems SDL/UPL Reference Manual
Verbs

OPEN

SDL and UPL Syntax:

- OPEN -r- <file-identifier>

L_ <switch-file-id > (<index >) -----------t

INPUT-------

INTERPRET------•

LOCK~-------

LOCK OUT--------i

NEW----------1

NO REWIND----

OUTPUT ---------1

PRINT -------

PUNCH -------

REVERSE ------

STACKERS ------

I

CWITH~
>

t<
>--~---~L--~-~-------------------------------------~

--y-- ON FILE_MISSING <statement>

L_ON FILE LOCKED <:statement>----

Syntax Semantics:

file-identifier
This field can be any valid SDL/UPL file identifier and specifies the file to be opened.

switch-file-id

index

This field can be any valid SDL/UPL switch-file identifier and specifies the switch file to be
opened.

This field can be any valid SDL/UPL identifier and specifies the number of the switch file to
be opened.

INPUT
The keyword INPUT causes the SDL/UPL program to open an existing file and allows the pro
gram to read from the file.

INTERPRET
The keyword INTERPRET causes the SDL/UPL program to interpret card-image records as each
is written. INTERPRET only affects files with a device type equal to DAT A_RECORDER_80,
PUNCH_PRINTER, READER_PUNCH, or READER_PUNCH_PRINTER.

1137833 9-111

B 1000 Systems SDL/UPL Reference Manual
Verbs

OPEN

LOCK
The keyword LOCK prevents another program from opening the specified file with the OUTPUT
open attribute. Opening the file with the INPUT open attribut 1e by another program is allowed.
Once the file is closed, the file can be opened by another program with the OUTPUT open attri
bute.

LOCK_ OUT

NEW

The keyword LOCK_OUT prevents another program from opening the specified file with the
INPUT or OUTPUT open attributes. Once the file is closed, the file can be opened by another
program with the INPUT or OUTPUT open attributes.

The keyword NEW specifies that the file is to be created.

NO_REWIND
The keyword NO_REWIND applies to files with a device type equal to TAPE, TAPE_9,
TAPE_7, TAPE_PE, and TAPE_NRZ and prevents the MCP from rewinding the tape file
when an end-of-tape mark is encountered.

OUTPUT
The keyword OUTPUT allows th1e SDL/UPL program to write to an existing file.

PRINT
The keyword PRINT applies to files with a device type equal to DAT A_RECORDER_80,
PUNCH_PRINTER, READER__PUNCH, or READER_PUNCH_PRINTER and allows the
SDL/UPL program to interpret and punch card-image records.

REVERSE
The keyword REVERSE applies to files with a device type equal to TAPE, T APE_9, TAPE_ 7,
TAPE_PE, and TAPE_NRZ and notifies the MCP that the tape file is to be written or read
in reverse. The programmer must ensure that the tape file is positioned so that the backspacing
operation can be performed. Read. operations on a tape file, with the REVERSE open attribute
specified, report the end-of-file (EOF) record when the beginning-of-tape (BOT) mark is encoun
tered.

ST ACKERS
The keyword ST ACKERS applies to files with a device type equal to DAT A_RECORDER_80,
PUNCH_PRINTER, READER__PUNCH, or READER_PUNCH_PRINTER and allows the
SDL/UPL program to specify that the stackers on the card device are to be used.

ON FILE_MISSING
The keywords ON FILE_MISSING cause the SDL/UPL program to perform the associated
statement if the file specified is not present at the time the OPEN verb is performed.

ON FILE_LOCKED

9-112

The key words ON FILE_LOCKED cause the SDL/UPL program to perform the associated
statement if the file specified is currently locked by another]program. This can occur in either
of the two following conditions:

1. The INPUT or OUTPUT open attributes were specified and another program has opened the
same file with the LOCK-OUT open attribute.

2. The OUTPUT open attribute was specified and another program has opened the same file with
the LOCK open attribute.

statement

B 1000 Systems SDL/UPL Reference Manual
Verbs

This statement can be any valid SDL/UPL statement.

Examples:

CPE~ CA~C_fILE I~FLT;

CPE~ ClS~_fILE INPLT CLTPUT ~EW;
C~ FILE_MISSJ~G CISflAY <"FILE NCT P~£SE~T");

CPE~ ClS~_flLf INPLT lGCK;
G~ f ILE_LCCK~[CISfl~Y <"FILE LOCKED">;

CPE~ TAPE_f ILE NO_~EWI~C IkPLT;

CPE~ TAPE_f Il~ RE~ERSf CLTPUT~

OPE~ CAf,C_fILE WITr ST~C~ERS INP~T;

CPE~ CAF[_filf WIT~ CUTFUT PUNC~ INTEFP~ET;

CPEN CISK_fllf OUTFUT ~E~;

1137833

C~ FILE_~ISSI~G flSfl~Y C"f llE NOT PFESE~T")J

C~ f JLE_LCCKEC CI~PL~Y ("flLE LOCKfO");

OPEN

9-113

OPEN

Example Program:

B 1000 Systems SDL/UPL Reference Manual
Verbs

FILE DISKFILE COEVICE = DISK1
RECORDS =180/10);

ZIP •so OPEN;•; % Sets the HCP OPEN option

OPEN OISKFILE WITH INPUT;
ON f ILE_HISSING

oo;
DISPLAY c·rILE DISKfilE NOT PRESENT -- PROGRAM IS GOING");
DISPLAY c•ro OPEN THE FILE WITH OUTPUT NEW•);
OPEN DISKf ILE WITH OUTPUT NEW LOCK;
CLOSE DISKFILE WITH LOCK;
OPE~ DISKFILE ~ITH INPUT;

ENDi
CLOSE DISKfILE WITH REMOVE;

OPEN DISKfILE WITH OUTPUT LOCK_our;

CLOSE DISKFILE WITH REMOVE;

FINH

% Resets the HCP OPEN option and
l removes DISKFILE.

% This example program shows various uses of the OPEN verb.

Output from Example Program:

OPENO =7Z75 BGJ. PP=4, HP=4 TIME = 15:37:20.l
OPEN=l
% OPENO =7275 FILE DISKflLE NOT PRESENT -- PROGRAM IS GOING
% OPENO =7275 TO OPEN THE FILE WITH OUTPUT NEW
OPENO =7275 •QISKFILE• OPENED SERIAL EXTEND OUTPUT NEW LOCK DISK
OPENO =7275 "DISKFILE" OPENED SERIAL EXTEND INPUT DISK
OPENO =7275 •OISKFILE" OPENED SERIAL EXTEND OUTPUT LOCKOUT
OPEN=O
"OISKFILE" REMOVED
OPENO =7275 EOJ. TIME = 15:37:41.6

9-114

OVERLAY

B 1000 Systems SDL/UPL Reference Manual
Verbs

The OVERLAY verb is for MCP use only.

SDL Syntax:

OVERLAY

- OVERLAY (<interpreter-index>); --------------------------11

Syntax Semantics:

interpreter-index
This field can be any valid SDL literal, identifier, or expression that returns a value and is used
as an index by the interpreter swapper for the interpreter dictionary. The interpreter dictionary
entry specifies the action that is to be taken.

Example:

CVERLAY CINCEXH

1137833 9-115

B 1000 Systems SDL/UPL Reference Manual
Verbs

PARITY _ADDRESS

The PARITY _ADDRESS verb returns a 24-bit value which is the address of the first parity error in
S-memory. If no parity error is encountered, the value @FFFFFF@ is returned. The
PARITY_ADDRESS verb is used only by the MCP or by a standalone SOL program that: does not
run with the MCP. If the PARITY_A.DDRESS verb is performed when the MCP is running, the MCP
terminates the program.

SDL Syntax:

- PARITY _ADDRESS------

Example:

UECLA~E ~AC_ADC~~S~ 0IT C24J;
EAO ACLFESS := P~~ITY ~CCPES~;

9-116

% The identifier SAO_AOORESS is
X as~igned the add~ess of the
% oarity error.

B 1000 Systems SDL/UPL Reference Manual
Verbs

PREVIOUS ITEM

PREVIOUS_ITEM

The PREVIOUS_ITEM verb causes the length field of the descriptor represented by <identifier> to
be subtracted from the address field of that descriptor. This modified descriptor is put back onto the
name stack and is also moved to the top of the evaluation stack. The modified descriptor that has
been moved is the address of the new item described by < identifier >.

SDL Syntax:

Syntax Semantics:

identifier
This field can be any valid SDL simple identifier.

Example:

CECLARE 01 ChAR_ST~ING CHAR~CTER ClOOO>-
C3 FILLER CHARftCTER (999),
03 LAST_CHAF C~A~~CTEF Cl>;

PR£VICLS ITEM CLAST_C~~~) := "0"1

1137833

% Causes the character C
% to be moved into the
% character i~mediatelv
% prior to LAST_CHAR in
X CHAR_ST~ING.

9-117

B 1000 Systems SDL/UPL Reference Manual
Verbs

PROCESSOR_TIME

The PROCESSOR_ TIME verb returns a 20-bit value that is the accumulated processor (CPU) time
since beginning of job (BOJ). The time is returned in tenths of a second.

SDL and UPL Syntax:

- PROCESSOR_ TIME------

Example:

CEGLA~E X EIT (24);
X := P~OCESSUR_TI~E;

Example Program:

DECLARE HOURS
MINUTES
SECONDS
TENTHS
PROC_TIHE
x
COUNTER

COUNTER := o;
00 fOREVERi

% Assiqns the 20-tit accumulated o~ocessor
k ti~e into the identifier x.

CHARACTER C2>•
CHAR ACT ER C 2J,
CHAR ACT ER < 2)•
CtiARACTER Cl>•
f IXEO,
FIXED•
fl XEO;

x == 9999999 • 9999999;
If CCBUHP COUNTER> > 900000) THEN UNDO;

£ND;

PROC_TIHE := PROCESSOR_TIME;

HOURS
MINU'f ES
SECONDS
TEN l'HS

:= SUBSTR CCONVERT CCPROC_TI~E I 36000>• CHARACTER), 6);
:= SUBSTR CCONVERT C<PROC_TIME HOD 36000 I 600>• CHARACTERJ,G);
:= SUBSTR CCONVERl' <CPROC_TI~E HOO 600 I 10>• CHARACTER>• 6);
~= SU8SJR CCONVERT C<PROC_TIME HOD 10>• CHARACTER), 11;

DISPLAY c•JHE TOTAL CPU TIME EQUALS • CAT HOURS CAT •:"
CAT MINUTES CAT •:• CAT SECONDS CAT "·· CAT TENTHS>;

DISPLAY (•Gooo BY£•);
srop;
FINI;

% This example program multiplies two numbers 9001000 times and then
% uses the PROCESSOR_TIHE verb to interrogate the CPU time. The
% CPU time is then displayed on the ODT and the program goes to
% end of job.

9-118

B 1000 Systems SDL/UPL Reference Manual
vhbs

PROGRAM SWITCHES

PROGRAM_SWITCHES

The PROGRAM_SWITCHES verb returns the current values of the program switches from the pro
gram parameter block (PPB). If <switch-number> is specified, the 4-bit value of the specified pro
gram switch is returned. If <switch-number> is not specified, the 40-bit value of all 10 program
switches is returned.

If <switch-number> contains a value which is less than zero or greater than nine, a run-time error
results.

The program switches can be permanently set in the SDL/UPL program by using the MCP MODIFY
command or set at run-time by using the MCP SWITCH program-attribute command. In either case,
the program parameter block (PPB) for the SDL/UPL program contains the resulting value of the pro
gram switches.

The following shows how to modify the program swhches in an SDL/UPL program at execution time.

MODIFY <program name> SWITCH = @<value-0> <value-I> ... <value-9>@
or

MODIFY <program name> SWITCH <switch number> = @<value>@

The following shows how to permanently modify the program switches in an SDL/UPL program.

EXECUTE <program name> SWITCH = @ < value-0 > < value-2 > . . . < value-9 > @
or

EXECUTE <program name> SWITCH <switch number> = @ <value> @

Refer to the B 1000 Systems System Software Operation Guide, Volume 1, form number 1108982, for
a complete description of the program switch attributes.

SDL and UPL Syntax:

~PROGRAM_SWITCHES~~-----------------------------------1

---- (<switch-number>) ___

Syntax Semantics:

switch-number
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value.
<switch-number> must have a value between 0 and 9, inclusive.

1137833 9-119

B 1000 Systems SDL/UPL Reference Manual
Verbs

PROGRAM SWITCHES

Examples:

X := P~CG~A~ SkITC~ESi

X := PfiCC~~~ SklTC~ES (5):

X := PFC(FA~ SWITC~ES (Y);

% Assigns to identifier x a 40-b i t
% value of a ti 10 orogram switches.

% Assiqns to identifier x a 4-bit
% value cf 01rogram switch s.

l Assigns to identifier X a 4•bit
% value of the orogra• switch
l soecified b) identifier Y.

X := P~OE~A~_SWITC~ES CEUMP ~); % Assigrs to identifier X a 4-bit
l val~e of the orogra~ switch
% soecified tv the vatue of Y + 1.

Example Program:

DECLARE SWITCHES BIT C40l•
INDEX FIXED;:

INDEX := o;

SWITCHES := PROGRAH_SWITCHES;

DO f OR EVER.;
DISPLAY ("SWITCH " CAT SUBSTR CCONYERT <INDEX• CHARACTER>• 7)

CAT • EQUALS • CAT
CONVERT CSUBffiIT CS~ITCHES1 CINDEX • 411 4)1 CHARACTER));

If CCBLHP INDEX> > 9) THEN oo;

END;

FINH

DISPLAY c•GOOD BYE•);
STOP;

ENO;

% This example program displays on the ODT the values of each
% program switch. The PROGRAH_SWITCHES verb is used to interrogate
% the value of all ten ~witches. The progras switches must be set
% prior to or at execution time; otherwise• all the values are equal
% to ~o~.

9-120

B 1000 Systems SDL/UPL Reference Manual
Verbs

PROGRAM SWITCHES

Output from Example Program:

?EXECUTE PRGSWITCHO SWITCH = at2l456789A~i
PRGSWITCHO =7468 BOJ. PP=4• HP=4 TIME = lt:4z:2t.6
% PRGSWITCHO =7468 SWITCH 0 EQUALS 1
% PRGSWITCHO =7468 SWITCH 1 EQUALS 2
% PRGSWITCHO =7468 SWITCH 2 EQUALS 3
% PRGS~ITCHO =1468 SWITCH l EQUALS 4
% PRGSWITCHO =14&8 SWITCH 4 EQUALS 5
% PRGS~ITCHO ~7468 SWITCH 5 EQUALS 6
% PRGSWITCHO =74G8 SWITCH 6 EQUALS 1
% PRGSWITCHO =7468 SWITCH 1 EQUALS 8
% PffGS~ITCHO =7468 SWITCH 8 EQUALS 9
% PRGSWITCHO =1468 SWITCH 9 EQUALS A
% PRGShITCHO =1468 GUOD BYE
PRGSWITCHO =7468 EOJ. TIME = 11:42:43.2

1137833 9-121

READ

B 1000 Systems SDL/UPL Reference Manual
Verbs

The READ verb causes the SDL/UPL program to read a record from the specified file and store the
record in <identifier- I > .

Read operations can be performed on any readable device. Reading a diskette file requires that the
file be copied to a disk file before it is processed.

The file attributes in the FILE declaration statement determine which of the position options (<record
address-identifier >, <remote-key-identifier>, or <queue-family-identifier>) can be specified. The
<record-address-identifier> requires a file with a disk device type and random access or a card device
type with the ST ACKERS open attribute specified at file open time. The <remote-key-identifier> re
quires a file with a device type equal to REMOTE. The <queue-family-identifier> requires two file
attributes to be specified in the file declaration. The two file attributes are a device type equal to
QUEUE and the QUEUE_FAMIL Y _SIZE that is equal to the number of queue families.

SDL and UPL Syntax:

-- READ L<file-identifier>

<switch-file-identifier> (<number>)

)

L [--c <record-address-identifier_> _______ =-] =mJ c <remote-kev··identifier> ~

<queue-family-identifier> -------·

)

)>--- (<identifier-1>) -----------------·--------------.,,.

>~------------------------ ----------------·-------·-------
~---- WITH RESULT _MASK <address-generator> ____ _J
~

...... I l J
/ l

ON EOF <statement-1>;

ON EXCEPTION <statement-2>;

ON INCOMPLETE_IO <statement 3>, .

9-122

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ

UPL Syntax:

-- READ ---y- <tile-identifier>

L__ <switch-file-identifier> (<number>)----------

>-------------------~--+>

L ---...-----<record-address-identifier> -------] _J
1----- <remote-key-identifier> ---------

..._ ___ <queue-family-identifier>-------

>----- (<identifier-1>)

>-----,....--------------------------------.~-

"-------WITH RESULT _MASK <address-generator>

L _r]
,,,,..

ON EOF <statement-1>;

ON EXCEPTION < statement-2>;

E E ON INCOMPL T 10 <statement-3>;

Syntax Semantics:

address-generator
This field can be any valid SDL/UPL address generator. It specifies the name of the exception
mask field.

file-identifier
This field can be any valid SDL/UPL file identifier with exception of a file that is opened OUT
PUT only and specifies the name of the file to be read.

switch-file-identifier
This field can be any valid SDL/UPL switch file identifier with exception of a file that is opened
OUTPUT only and specifies the name of the file to be read.

number
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value
and specifies the file number of <switch-file-identifier>.

record-address-identifier
This field can be any valid SDL/UPL identifier and it specifies the key location of a record
within a file. <record-address-identifier> is valid for files with a device type equal to DISK
RANDOM and DISK_PACK RANDOM. <record-address-identifier> is also valid for card files
that are opened with the ST ACKERS open attribute.

<record-address-identifier> must be a binary value or an expression that returns a binary value.
If the value is greater than 24 bits, only the rightmost 24 bits are used. For card files, the binary
value of <record-address-identifier> must be less than or equal to seven, and must correspond
to a stacker available on the device. For example, if only two stackers are available on the card
device, a <record-address-identifier> equal to three is not valid.

1137833 9-123

J
l

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ

remote-key-identifier
This field can be any valid SDL/UPL identifier and it specifies the relative station number (RSN)
within the remote file on which the READ operation is completed.

<remote-key-identifier> is valid for files with a device type equal to REMOTE. The data type
of <remote-key-identifier> must be equal to CHARACTER and have a length of 10 bytes. A
read operation of a remote file cau:;es the relative station number of a station within the remote
file, message text size and the read operation code ''000'' to be .stored into < remote-key-identifi
er > . The relative station number defaults to the character '' l'' if the maximum number of sta
tions in the remote file is equal to one. The maximum number of stations is specified in the FILE
declarations. For example, DEVICE = REMOTE (5) specifies that the maximum number of sta
tions for this file is five.

queue-family-identifier
This field can be any valid SDL/U:PL identifier and it specifies the family number in the queue
file which the read operation has completed.

<queue-family-identifier> is valid for a file with a device type equal to QUEUE and with the
QUEUE_FAMIL Y _SIZE greater than one. <queue-family-identifier> specifies which queue
family member from which to read. If <queue-family-identifier> is not specified in the READ
verb, the oldest message in the queue file is read.

The end-of-file (EOF) record is treated as a pseudo-message in the queue file. That is, when the
last message has been read from the queue file, the queue file remains not empty for waiting
purposes. A subsequent read operation causes the end-of-file branch to be taken. The queue file
is then empty but still in end-of-file status. If another read operation is issued to the queue file,
the program takes the end-of-file branch. If the reading program closes and reopens the queue
file or a new writing program opens the queue file, the end-of-file condition is reset.

A read operation directed to a specific member of a queue file family is treated as though it were
issued to a simple queue file. A read operation issued to an unspecified member of a queue file
family (unspecific read using <queue-family-identifier> equal to - I) returns the end-of-file con
dition if all the members in the queue file family are empty and no active writing programs have
the queue file open.

identifier-I
This field can be any valid SDL/UPL identifier and it specifies the data address in which to store
the data read.

ON EOF
The keywords ON EOF cause the program to perform <statement-I>, if the end-of-file record
is read from the file. For queue files, if end of file occurs, the queue file is then empty and there
are no programs with the file opened and the OUTPUT open attribute set.

ON EXCEPTION

9-124

The keywords ON EXCEPTION cause the program to either perform < statement-2 > or to store
the 24-bit exception mask into < identifier-2 > . If a parity error is encountered during the read
operation and all the MCP retries have been exhausted, the 24-bit exception is stored in < identi
fier-2 >.

Exceptions for a file can be masked if the EXCEPTION_MASK file attribute is specified in the
FILE declaration statement. If an identifier, enclosed in parentheses, follows the ON EXCEP
TION keywords, a 24-bit value which describes the exception that occurred is returned.

ON INCOMPLETE_IO

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ

The key words ON INCOMPLETE_IO cause the program to perform < statement-3 >, if the
queue file is empty and another program has opened the queue file with the OUTPUT open attri
bute set.

statement-1
This field can be any valid SDL/UPL statement. It is performed when the ON EOF keywords
are specified in the READ verb and the end-of-file record is encountered in the file. If an excep
tion occurs for queue files, an invalid <remote-key-identifier> value has been provided in the
READ verb.

statement-2
This field can be any valid SDL/UPL statement. It is performed when the ON EXCEPTION
keywords are specified in the READ statement and a parity error is encountered while attempting
to read a record from the file.

statement-3
This field can be any valid SDL/UPL statement. It is performed when the ON
INCOMPLETE_IO keywords are specified in the READ statement, when the end-of-file record
was encountered in the queue file, and when there is a program that has the queue file open
with the OUTPUT open attribute.

WITH RESULT_MASK
The keywords WITH RESULT _MASK cause the program to use < address-generator> as the
exception mask identifier. The EXCEPTION_MASK file attribute must be specified in its FILE
declaration statement.

Variable-Length Records

The syntax of the READ verb for variable-length records resembles the syntax for fixed-length records.
The difference between them is the data type and the data length of the identifier.

Variable-length records are allowed only in tape and serial disk files that are declared with the file attri
bute VARIABLE. The RECORDS file attribute of the file must be large enough to hold the largest
record that is to be read or written.

The actual manipulation of variable-length records is invisible to the programmer of the read operation.
An exception is that the programmer must allow for a 4-byte field, which begins in the first position
of each record to be stored in the identifier receiving the data. This 4-byte character field contains
the length, in bytes, of the record that is read. This record length is equal to the number of bytes
in the data file plus four. The record length is specified as a decimal value.

1137833 9-125

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ

Example Program that Reads Variable-Length Records:

FILE PAYROLL COEYICE = DISK,
OPEN_OPTION = INPUT/OUTPUT•
RECORDS = 240/1, VARIABLE>;

DECLARE 01 OISK_BUFFER
02 REC_SIZE
02 DATA

DO FOREVER.;

CHARACHR C80>•
CHARAClER (4),
CHARACTER C76l;

READ PAYROLL CDISK_BUffER>;
ON EOF UNDO;

ENOi

CLOSE PAYROLL LOCKi
STOP;
FINH

To process variable-length records, the MCP builds a single buffer whose size is equal to the declared
record size multiplied by the records per block. The MCP reads into its buffer as many complete logical
records as it can. It never splits a logical record across physical record boundaries.

The following shows those logical records read into the buffer by the MCP. Assume the program
specifies a record size equal to 240 byte:s and the order and length of each record are:

Record
Number

1
2
3
4
5

Record Size in Bytes
t(lncluding Record Size Field)

48
63
80

31

Figure 9-1 shows the contents of the 240-byte program buffer after a read operation is performed.

Record 1 Record 2 Record 3 49 empty bytes
48 bytes 63 bytes 80 bytes (hex zeroes)

------------ 240 bytes

G18304

Figure 9-1. Contents of Buffer After a Read Operation.

Only records 1, 2, and 3 are stored into the buffer because the next record (record 4) is too long to
be stored in the remaining portion of the buff er. The unused portion of the buff er is filled with
hexadecimal zeroes.

9-126

B WOO Systems SDL/UPL Reference Manual
Verbs

Examples:

fEAD OISKFILE CflELC>;
Ci\ EOF STCP;

~EAO DISK CINC£Xl CFIELC);
01\ ECf SluP;
Oh EXCEPTICN CJSPLAY ("~01 fOU~D");

~EAO QUEUEFILE fNUMCERJ CflELU);
Ch l~CO~PLETE_IC CISflAY ("NO MESSA(ES")J
O~ EGF CI~PLAY C"~O ~~ITEFS");

G~ EXCEPTIO~ Dl~PLAY ("IN~ALID KfY");

FEAO ~EMGTEfllE CKE~] CflELC);
ON EXCfPTICN CJSPLAY <~INVALIC KEY");

1137833

?:
%

2
2
%
%

%
%
%
2

l
2
%
l

READ

Reads fr om the file
labeled OlSKfllt:.

Reads from the fit e
labeled DISK at
rec or c address ::

the value of INDEX.

Reads from the f i le
labeled QUEU£flLE
at queue fa1ilv =
the valtJe of f\JUHBE~.

Reads from the fit e
labeled .,EMCTEFILE
at remote kev = the
value of KEY.

9-127

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ

Example Program:

DECLARE FIELD CHARACTER C90li
FILE DISKFILE CDEVICE = DISK•

RECORDS = 90/2);
OPEN DISKFILE WITH INPUTi
DO FOREVERi

CASE WAIT CTIHE_TENTHS ClO>• SPO_INPUT_PRESENJ);
I TIME = 1 SECOND

oo;
READ DISKFILE CFIELO>;

oN ror oo;
DISPLAY C"ENO Of FILE ENCOUNTERED -- GOOD BYE");
srop;

ENO;
ON EXCEPTION oo;

DISPLAY CflELDH

DISPLAY c•PARITY ENCOUNTERED -- GOOD BYE•);
srop;

EN Di

£NDi
% SPO_INPUT_PRESENT

oo;
ACCEPT f I EL Di
IF fIELD = •BYE• THEN oo;

DISPLAY c•Gooo BYE")i
s·rop;

ENO;
EN Di

END CASEi
END;
FINii

% This exa•ple program reads a disk file labeled DISKFILE and
% displays on the ODT each record read. If the end-of-file
% record is encountered or an exception occurs, the progra•
% goes to end of job. If 'BYE is entered to the program. the
% program goes to end of job.

9-128

READ_CASSETTE

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ CASSETTE

The READ_CASSETTE verb causes the number of bits specified by <destination-identifier> to read
from the console cassette drive to the address specified by that <destination-identifier> . This number
of bits must be equal to the record size minus the hash-total size (if it is present) of 16 bits. The key
words HASH_ TOT AL or NO_HASH_ TOT AL indicate whether or not a hash-total is expected at
the end of the record.

SDL Syntax:

- READ_CASSETTE (<destination-identifier>, --------.-- HASH TOTAL ----.-----... >
L NO_~SH_TOTAL ---

> , <result-identifier>);---------------------------

Semantics:

destination-identifier
This field specifies the number of bits to be read from the console cassette drive and specifies
the destination field for the data.

result-identifier
This field contains a value of 0 or 1 after the READ_CASSETTE operation is complete. A value
of 0 indicates that the hash total was incorrect. A value of 1 indicates that the hash total was
correct.

HASH_TOTAL
The keyword HASH_ TOT AL specifies that a hash total is expected at the end of the record.

NO_HASH_TOTAL
The keyword NO_HASH_TOTAL specifies that there is no hash total expected at the end of
the record.

Examples:

~fAC_CASSETTE CCESTI~AT!CN~ ~AS~_TOTAL~ ~fSULT);

1137833 9-129

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ CASSETTE

Example Program:

FILE LINE COEVICE = PRINT£~,
RECORDS = 132/l);

DECLARE CASSETlE_RECORB BIT {60>~
HASH_RESULT BIT Ct>;

OPEN LINE OUTPUT NEW;
DO f OR EVER.;

REAO_CASSETTE <CASSETTE_RECOR01 fiJSH_TOTAL, HASH_RESULJ);
If HASH_RESUlT = 1

ENDi
FINI;

THEN WRITE LINE CCONVERT CCASSETTE_RECORD• CHARACTER));
ELSE oo;

DISPLAY •INCORRECT HASH RESULT";
CLOSE LINE;
s1or;

END;

% This example program reads fro~ the console cassette drive
% using the REAO_CASSETTE verb and writes the data to a printer
% file labeled LINE.

9-130

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ FILE HEADER

READ_FILE_HEADER

The READ_FILE_HEADER verb reads the disk-file-header information for the file specified by
<file-identifier> . This verb is intended for use only in B I 000 system software.

SDL Syntax:

- READ_FILE_HEADER (<file-identifier>, <destination>);----------------__..,.

<
> I ~1 ---~:-~ON FILE_MISSING <statement-1

~ -- - ON FILE_LOCKED <statement-2> ------

Syntax Semantics:

file-identifier
This field specifies the name of the file and can be any valid SDL literal, identifier, or expression
that returns a value with a data type equal to CHARACTER. <file-identifier> is expected to
be a 30-character value, where the first 10 characters are the pack identifier, the second 10 charac
ters are the multifile identifier, and the third I 0 characters are the file identifier. Each file identifi
er is left-justified in its respective field. If only one file name exists (no multifile identifier or
pack identifier), the file name is left-justified in the second 10 characters of <file-identifier>
and the first and third 10 characters are set to blank.

destination
This field can be any valid SDL identifier and it specifies the receiving field for the disk-file
header information. This field is expected to be from 576 to 4320 bits in length depending upon
the number of disk areas allocated for the file.

ON FILE_MISSING
The keywords ON FILE_MISSING cause <statement- I > to be performed if the file name spec
ified by <file-identifier> is not in the disk directory.

ON FILE_LOCKED
The keywords ON FILE_LOCKED cause < statement-2 > to be performed if the file name
specified by <file-identifier> is opened by another program with the LOCK open option set.

statement- I
This field can be any valid SDL statement and it is performed if the keywords ON
FILE_MISSING are specified and <file-identifier> is not in the disk directory.

statement-2
This field can be any valid SDL statement and it is performed if the keywords ON
FILE_LOCKED are specified and <file-identifier> is currently opened with the LOCK open
option set.

1137833 9-131

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ FILE HEADER

Example:

DECLARE DISKFILE CHARACTER (3011
DESTINATION BIT C4320l;

DISKFILE := "USER MASTER FILE
READ_FILE_HEADER CDISKFILE• DESTINATION);

ON FILE_HISSING srop;
ON fILE_LOCKED STOP;

Example Program:

& VSSIZE 80000
& NSSIZE 40

DECLARE FILENAME
DESTINATION
DfH_LENGTH

DO HAIN_LOOP FORE~ER;

CHARACTER C3Q),
BIT C4320>•
BIT Cl6H

% The disk file header
% information of the file

•; % USER/HAST£R/FILE is
% stored in DESTINATION.

DISPLAY ("ENlER THE lO CHARACTER FILE NAHE LEFT JUSTIFIED OR ENTER "
CAT "BYE TO GO TO EOJ");

ACCEPT f ILENAHEi
If FILENAME = "BYE" THEN oo;

DO REAO_DfHi

DISPLAY C"GOOO BYE•);
STOP;

EN Di

READ_f IL£_HEAOER <FILENAME• DESTINATION>;
OH FilE_MlSSING oo;

DISPLAY ("FILE " CAT FILENAME CAT
-~or IS DISK DIRECTORY");

UNDO READ_ Of Hi
ENO;

ON FILE_LOCKED oo;
DISPLAY (•FILE • CAT FILENAME CAT

• IS LOCKED•);
IU ND 0 RE A D _ 0 f" H;

ENO~;

DFH_LENGTH := SUBBIT <DESTINATION• 91• 16);
DISPLAY c•JHE DISK FILE HEADER Of • CAT FILENAME CAT • 1s•1;
DISPLAY CCONVERT CSUBBITCDESTINATION, Q, DFH_LENGTHJ, CHARACTER));

END READ_Df H;
END MA IN_LOOPi
FINI;

% This example program dis~lays the disk-file-header infor~ation

% for the file name that is accepted fro• the OOT. If BYE is
% entered• the program goes to end of job.

9-132

READ_FPB

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ_FPB

The READ_FPB verb reads the file parameter block (FPB) of the file specified by <file-identifier>
or <file-number> and stores the information in <destination> .

SDL Syntax:

-READ_FPB (--L~-- <file-identifier>------, <destination>); ---------1
----- <file-number>-----

Syntax Semantics:

file-identifier
This field can be any valid SDL file identifier and it specifies the file name from which to read
the file parameter block (FPB) information.

file-number
This field can be any valid SDL number and it specifies the relative file number, within the pro
gram, from which to read the file parameter block (FPB) information. The relative file numbers
range from 0 to n-1, where n is the total number of files declared in the SDL program.

destination
This field can be any valid SDL identifier and it specifies the (FPB) information. The length of
this field must be 2096 bits.

Example:

CECLA~E FP8_!~ru BIT Cl44Q);
~EAD_fPd COISKflLE~ FFB_I~FC);

1137833

4 The file parameter blod informatiori
?:: of the file OISKFRE is stored into
% identifier FPS_INfC.

9-133

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ FPB

Example Program:

DECLARE OOT_INPUT CHARACTER Clo>~
01 FPB_RECORD BIT C1440),

03 flLE_NAME CHARACTER ClO);

FILE DISKFILE <DEVICE = DISK•
RECORDS = 180/10);

OPEN DISKFILE WITH OUTPUT NEWJ
DO f OREVERi

READ_FPB CDISKFILE• FPB_RECORO);

DISPLAY C"THE fPB NAME Of OISKFILE IS " CAT FILE_NAME);
DISPLAY (•£NlER ANY 10-CHARACTER FOR THE NEW NAME Of DISKFILE"

CAT w OR ENTER BYE FOR EOJ"};
ACCEPT OOT_INPUT;
IF ODT_INPUT = ·evr· THEN oo;

DISPLAY c•Gooo BYE");
CLOSE DISKFILE WITH RELEASE;
s1op;

ENO;
FILE_NAHE := ODT_INPUTi

WRITE_FPB CDISKFILE• FPff_RECORDli

END;
FlNii

% This example program uses the READ_FPB to read the file parameter
% block information fro• the file DISKFILE and uses the WRITE_fPB
% verb to change the naae of file DISKFILE. The program displays
% the current fite name that is currently storec in the file
% parameter block• accepts a to-character tile name• and stores the
% new file name in the f;te parameter block. If BfE is entered• the
% program goes to end of job.

9-134

READ __ OVERLA Y

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ OVERLAY

The READ_OVERLA Y verb reads from the disk address specified in <overlay-information> and
stores the beginning and ending addresses and disk address of the data segment.

The READ_OVERLA Y verb is used only by the SDL intrinsics.

SDL Syntax:

Syntax Semantics:

over lay-information
This field can be any valid SDL literal, identifier, or expression that returns a 76-bit value and
has the following format.

Bits Description

0-3 EU = 0 (not used).
4-27 Base-relative beginning address.
28-51 Base-relative ending address.
52-75 Disk address, relative to program area.

Example:

CtCLAhE 01 (~EFLAY_HECORC

03 £U

EL := t;

C3 P.EGIN_ACO~

03 fNO_ACCF
03 CISK_J\OCR

BIT (76).,
ElT C4h
EIT C24),
EIT C24h
BJT C24l;

BEGI~_AOD~ := ;11ElA2;;
E~O_ACO~ := @7lf 842~;
CISK_ADOF := @008A7~;;

~EAL_OVEPLAY CCVEBLAY_~fCC~CJ;

1137833

% The data segment at dis~
% address qQ08A78; is stored
% in the base to limit of the
7. oroqram teqinninq at a7lf7AZ;
Z and endirq at @71f P42~.

9-135

REDUCE

B 1000 Systems SDL/UPL Reference Manual
Verbs

The REDUCE verb truncates a reference identifier from the left (right) until the first (last) character
satisfies a specified condition. This is a flexible and efficient means for scanning character strings which
use reference variables, rather than intc!gers which serve as pointers to substrings.

No change is actually made to the value of an identifier when the REDUCE verb is performed. The
identifier is re-bound to a substring of its former reference identifier.

SDL and UPL Syntax:

- REDUCE <reference-identifier-1>

UNTIL -----------.

>
"""----- SETTING < reference-identifier-2> ------

EOL ------.--

NEO

/=---

<literal> --------

<identifier> ---------'

IN <character-table-identifier>

>---i- ON EOS_CYCLE <statem~nt-1>; -------1 c= ON EOS <statement-2>;

Syntax Semantics:

reference-identifier-I
This field can be any valid SDL/UPL reference identifier and it specifies the reference variable
to be reduced.

reference-identifier-2
This field can be any valid SDL/UPL reference identifier and! it specifies the reference variable
that contains the truncated portion of <reference-identifier-I>. < reference-identifier-2 > is as
signed the truncated portion of <reference-identifier-I> when the keyword SETTING is
specified.

SETTING
The keyword SETTING causes the truncated portion of <reference-identifier-I> to be stored
in < reference-identifier-2 > .

UNTIL
The keyword UNTIL is required.

FIRST
The keyword FIRST causes the reduction to end on the first character that is equal or not equal
to the specified literal or identifier or in the specified <character-identifier-table> .

LAST
The keyword LAST causes the reduction to end on the last character that is equal or not equal
to the specified literal or identifier or in the specified <character-identifier-table> .

9-136

>

EQL

NEQ

=

I=

IN

literal

B 1000 Systems SDL/UPL Reference Manual
Verbs

REDUCE

The keyword EQL specifies that the reduction is complete when a character in < reference-identi
fier-I > is equal to the specified literal or identifier.

The keyword NEQ specifies that the reduction is complete when a character in < reference-identi
fier-I > is not equal to the specified literal or identifier.

The keysymbol = has the same meaning as the EQL keyword.

The keysymbols I= have the same meaning as the NEQ keyword.

The keyword IN specifies that the reduction is complete when a character in <ref erence-identifi
er-1 > is in the character table specified by <character-table-identifier> .

This field can be any valid SDL/UPL literal and it specifies the character within < reference-iden
tifier-I > that ends the reduction. This character must be enclosed within the quotation mark (")
characters.

identifier
This field can be any valid SDL/UPL I-character identifier and it specifies the character within
<reference-identifier-I > that ends the reduction.

character-table-identifier
The field can be any valid character table identifier and it specifies the· characters within <refer
ence-identifier-I> that ends the reduction.

ON EOS
The keywords ON EOS cause < statement-2 > to be performed. Control is returned to the state
ment that follows the REDUCE verb if <reference-identifier-I> is reset and no longer null.
<reference-identifier-I> can become null when the reduction ends with <reference-identifier-I>
equal to ''''.

ON EOS_CYCLE
The keywords ON EOS_CYCLE cause <statement-I> to be performed. Control is returned to
the REDUCE verb if <reference-identifier-I> is reset and is no longer null. < reference-identifi
er-I > can become null when the reduction ends with the reference identifier equal to ""

Example I:

~ECLAFE ICE~Tif IfF
~EFFR.f.f\CE_IIJ

Cf-.~~"CTE;; Cf»~
Ff:FEJ;ENCE;

IOE~TIFIE~ := "AECOEF";

f1EFEf\ rEfEfi[NCf_ID TC ICENTifIER;

1137833 9-I37

REDUCE

B 1000 Systems SDL/UPL Reference Manual
Verbs

Figure 9-2 shows the before and after results of example 1.

REFERENCE_ID

Before

"ABCDEF"

G18305

-~ REDUCE

REFERENCE_ ID

After

"DEF"

Figure 9-2. Before and After Results of the REDUCE Operation

The truncated portion of the string can also be referenced by using the SETTING keyword in the RE
DUCE verb.

Example 2:

CECLAPE IDENTIFIER
f.EFFRENCE_IC_l
f\Effhff\C£_IC_2

IDENTIFIER := "AHCOEfn;

U·ARACTER C6h
ft:EfERfl\C[,.
fd:fff1El\CE;

REFEh REFE~ENCE_lO_l TO ICENTIFIER;

fECUCE ~Ef£~£~CE_IO_l SETTING ~EFE~ENCE_I0_2 UNTIL FIRST ="O";

Figure 9-3 shows the before and after results of example 2.

REFERENCE_ID_ 1

Before

"ABCDEF"

G18306

~ REDUCE ~

REFERENCE_.ID_ 1

After

"DEF"

REFERENCE_ID_2

After

"ABC"

Figure 9-3. Before and After Results of the REJl)UCE Operation

The reduction of an identifier can also be performed from right to left by using the keyword LAST
instead of the keyword FIRST.

Example 3:

CE CL A ~ £ I 0 £ N T If IE P C I· " f1 A C T E fl C 6) •
REFERENCE_IC_l ~EFE~E~CE•

REfERENCE_rc_2 h[fEREl\CE;

IDENTIFIER ~= "ABCDEf";

~EFE~ kEfE~ENCE_IO_l TC ICENTIFIER;

~EDUCE ~EFERE~CE_IO_l SETTING FEFE~ENCf_I0_2 UNTIL LAST ="0";

9-138

B 1000 Systems SDL/UPL Reference Manual
Verbs

I REDUCE

Figure 9-4 shows the before and after results of the example 3.

REFERENCE_I0_ 1

Before

REFERENCE_ID_ 1

After

REFERENCE_ID_2

After

"ABCDEF" ~ REDUCE --7" "ABCD"

G18307

Figure 9-4. Before and After Results of the REDUCE Operation

Example Program:

DECLARE ODT_INPUT
REFERENCE_l
REFERENCE_2

DO f OREVERi

CHARACTER (5()),.
REFERENCE,.
REFERENCG

"EF"

DISPLAY {w£N1ER ANY 50 CHARACTERS OR ENTER BYE TO GO TO EOJ");
ACCEPT ODT_INPUTi
REFER REFERENCE_l TO oor_INPUTJ

REDUCE REFERENCE_l UNTIL FIRST NEQ " "i
ON EQS oo;

DISPLAY c•No CHARACTERS WERE ENTERED - BYE ASSUMED");
DISPLAY ("GOOD BYE"li
STOPi

EN Di

REDUCE REFERENCE_l SETTING R£FERENCE_2 UNTIL FIRST EQL " "i

IF REFERENCE_2 = "BYE" THEN oo;
DISPLAY ("GOOD BYE•);
STOPi

ENO;
DISPLAY C"THE FIRST NON-BLANK WORC IS " CAT REFERENCE_2li

EN Di

% This example program accepts up to 50 characters on the ODT
% a n d u s es t he RE 0 UC E verb to s ca n for t he ·f i r s t gr o up o f
% characters delimited by the blank character. The REFER verb
% is used to bind REFERENCE_l to ODT_INPUT.

1137833 9-139

B 1000 Systems SDL/UPL Reference Manual
Verbs

REFER
The REFER verb binds a reference identifier to an addressable data item. It then becomes the referent
of the reference identifier.

The lexic level of the identifier cannot be greater than that of <reference-identifier> .

A reference identifier can be bound to .a. NULL character or a bit string. Testing for NULL is accom
plished by examining the reference identifier for a length of 0 (zero).

SDL and UPL Syntax:

Syntax Semantics:

reference-identifier
This field must be an identifier with a data type equal to REFERENCE.

identifier
This field can be any valid SDL/UPL identifier and it specifies the data item that is to be bound
to <reference-identifier> .

Examples:

CE CLARE CfAt1_IC
Fff'ER_CHA~ IC
eIT_IO
~Ef£H_BIT_lD

(hARACTEfi C2Q),.
fc E F £ R E NC E ,.
I? IT C 20) •
fc E F UH NC E ;

~EfEF ~EFE~ C~AP IC TC C~A~ IO; % F E f El<_ C ·~ A R I 0 i s n o "' b o u n d t o
% CHA!?_IO.

~EFER REFE~ EIT IO TC 811 IO;

Example Program:

% REFER_Bil IO is now bound to
% Blf_IO.

For an example program using the REFER verb, refer to the three REDUCE verb programs.

9-140

B 1000 Systems SDL/UPL Reference Manual
Verbs

REFER ADDRESS

REFER_ADDRESS

The REFER_ADDRESS verb causes the base-relative address of <address> to be stored in the ad
dress part of <reference-identifier> .

SDL Syntax:

- REFER_ADDRESS (<reference-identifier>, <address>);----------------......

Syntax Semantics:

reference-identifier
This field can be any valid SDL reference identifier and it specifies the field that will receive the
base-relative address of < address > .

address
This field can be any valid SDL literal, identifier, or expression that returns a value. The address
of <address> is stored in the address part of <reference-identifier> .

Example:

DECLA~E REF REFERENCE,
A CHARACTER ClQ),

R£FER_ADDR£SS <R£F, Ali

Example Program:

RECORD R
R_A BIT C80);

DECLARE ADDRESS R REFERENCE,
A R;

% The value of identifier A is
% stored in the address part of
% reference identifier REF.

REFER_ADORESS CADDRESS, DATA_ADDRESS CA));
DISPLAY C"THE DATA ADDRESS Of IDENTIFIER A IS • CAT

CONVERT <OATA_ADDRESS CA), CHARACTER));
DISPLAY <"THE DATA ADDRESS Of REFERENCE IDENTIFIER ADDRESS IS • CAT

CONVERT <DATA_ADDRESS <~OORESS), CHARACTER));
STOP.;
FINI;

X This example program stores the address of record R into the
% address part of reference identifier ADDRESS and displays the
% address of each identifier.

Output from Example Program:

ADDRESSO =2159 BOJ. PP=4• HP=4 Tl~E = 15:42:09.3
% AOD~ESSO =2159 THE DATA ADDRESS Of IDENTIFIER A 15 000000
% ADDRESSO =2159 THE DATA ADDRESS OF REFERENCE IDENTIFIER ADDRESS

IS 000000
AODRESSO =2159 EOJ. TIME= 15:42:1&.l

1137833 9-141

B 1000 Sysl[ems SDL/UPL Reference Manual
Verbs

REFER_LENGTH

The REFER_LENGTH verb causes the length of <length> to be stored in the length part of <refer
ence-identifier> .

SDL Syntax:

- REFER_LENGTH (<reference-identifier>, <length>); -------------------...

Syntax Semantics:

reference-identifier
This field can be any valid SDL reference identifier and it specifies the field in which to receive
<length>.

length
This field can be any valid SDL literal, identifier, or expression that returns a value. The length
of <length> is stored in the length part of <reference-identifier> .

Example:

0£ClAPl ~ff R£FERE~CE,
Lf.r-.iGTH fl)(ff);

HEFEF_LE~GTH C~Ef, LE~CT~l;

Example Program:

DECLARE LENGTH REFERENCE•
A FIXED;

% The ten~th of identifier LENGTH
% is stored ir the lergth part of
l reference Tidentifier REF.

REFER_LENGTH CLENGTHP DATA_LENGTH (A));
DISPLAY {"THE DATA LENGTH Of IDENTIFIER A IS " CAT

CONVERT COATA_LENGTH CA), CHARACTER));
DISPLAY c•JHE D~TA LENGTH Of REFERENCE IDENTIFIER LENGTH IS • CAT

CONVERT CDATA_LENGTH CLENGTH), CHARACTER));
STOPi
FINH

% This example program stores the value of identifier LENGTH in
% the length part of reference identifier REF and displays the
% length of each identifier.

Output from Example Program:

LENGT~ =2176 BOJ. PP=4· HP=4 TINE = t6:02:1e.o
% LENGlH =2178 THE DATA LENGTq Of IDENTIFIER A IS 000018
% LENGTH =2118 THE DATA LENGTH Of REFERENCE IDENTIFIER LENGTH IS

000018
LENGTH =2176 EOJ. TIHE = l&:oz:2S.8

9-142

B 1000 Systems SDL/UPL Reference Manual
Verbs

REFER TYPE

REFER_TVPE

The REFER_ TYPE verb causes the data type of <type> to be stored in the data type part of <ref er
ence-identifier > .

SDL Syntax:

- REFER_TYPE (<reference-identifier>, <tvpe>); ---------------------1

Syntax Semantics:

reference-identifier
This field can be any valid SDL reference identifier and it specifies the field that will receive the
data type.

type
This field can be any valid SDL literal, identifier, or expression that returns a value. The data
type of <type> is stored in the data type part of <reference-identifier> .

Example:

CECLARE ~Er RffERE~cE,

TYPE BIT (5);
~ff E~_TY~E (~EF~ TYPE);

% The data tvoe of identifier TYPE
% 1~ stereo in the data type oart
% of referepce identifier fiEF.

Example Program:

DECLARE TYPE REFERENCE,
A FIXED;

REFER_TYPE CTYPE• DATA_TYPE CAJJ;
DISPLAY C"THE DATA TYPE Of IDENTIFIER A IS • CAT

CONVERT CDATA_TYPE CA>1 CHARACTER>>J
DISPLAY C"THE DATA TYPE UF REFERENCE IDENTIFIER TYPE IS • CAT

CONVERT COATA_TYPE CTYPf), CHARACTER));
srop;
f INii

% This example program stores the data type of identifier A in
% the data type part of reference identifier TYPE ano displays
% the data type of each identifier •

. Output from Example Program:

TYPEO =2174 BOJ. PP=4• HP=4 TIME = 15:54:23.2
% TYPEO =2174 THE DATA TYPE or IDENTIFIER A IS 000044
% TYPEO =2174 THE DATA TYPE or REFERENCE IDENTIFIER TYPE IS 000044
lYPEO =2174 EOJ. TIME= 15:54:31.0

1137833 9-143

RESTORE

B 1000 Systems SDL/UPL Reference Manual
Verbs

The RESTORE verb assigns an evaluation stack entry to each specified value, beginning with the top
of the evaluation stack. This verb is used in conjunction with the SAVE verb.

SDL Syntax:

- RESTORE (

·--1
<value> ___ ..._ __) ; -------------------......

Syntax Semantics:

value
This field can be any valid SDL identifier or expression that returns a value and specifies the
value to be placed on the evaluation stack. ·

Example:

SAVE (/;.. 811 C)i

•

FESTU~[([, B~ A);

9-144

RETURN

B 1000 Systems SDL/UPL Reference Manual
Verbs

RETURN

The RETURN verb can take one of two forms, depending on the type of procedure encompassing it.
If the procedure is a typed procedure, an expression must be returned to the point of invocation. If
the procedure is a non-typed procedure, only a simple return is required.

Type checking on the RETURN verb is performed only at run time when the FORMAL_CHECK
compiler option is specified as a compiler control option.

The SDL/UPL compiler generates an implicit RETURN verb if one is not specified and the RETURN
verb is required. Refer to Section 7 for use of the RETURN verb.

SDL and UPL Syntax:

- RETURN--...-------------.--

L <expression> ---

Syntax Semantics:

expression
This field can be any valid SDL/UPL expression and it specifies the value that is to be returned
to the point where the procedure was invoked.

Examples:

1137833 9-145

B 1000 Systems SDL/UPL Reference Manual
Verbs

RETURN_AND_ENABLE_INTERRUPTS

The RETURN_AND_ENABLE_INTERRUPTS verb is used only by the MCP. This verb causes a
normal procedure exit to occur and enables interrupt.

SDL Syntax:

- RETURN_AND ENABLE_INTERRUPTS: ------------------------t

Example:

~EJUHN A~C_ENA£lE_INTfhRLPJS;

9-146

B 1000 Systems SDL/UPL Reference Manual
Verbs

REVERSE STORE

REVERSE_STORE

The REVERSE_STORE verb performs a number of assignment operations and is more efficient than
separately specifying each assignment operation.

The REVERSE_STORE verb assigns each address generator and expression in the following order.
< address-generator-1 > is assigned the value of < address-generator-2 > , < address-generator-2 > is as
signed the value of < address-generator-3 > , . . . , < address-generator-n-1 > is assigned the value of
< address-generator-n > , and < address-generator-n > is assigned the value of <expression> .

SDL and UPL Syntax:

- REVERSE_STORE (<address-generator-1>, <address-generator-2>, --------------...,.

)>---- < --- > , <address-generator-n>, <expression>) ----------------.

Syntax Semantics:

address-generator-1 thru address-generator-n
These fields can be any valid SDL/UPL address generator& where n represents any number and
it specifies the fields that perform the multiple assignment operations.

expression
This field can be any valid SDL/UPL expression and it specifies the value to assign to <address
generator-n > .

Example 1:

~EV£hS£ STOFE CA, E• "1");

Example 2:

~EVf~SE STCFE (A, E• c, C+l)i

Example 3:

F£VEf,SE. STL;f1E.
C-# If. 1 > Z THE~ e flSE C•

CASE v-1 CF (M, ~- C>· x-1);

1137833

% Identifier A is assigned the value
4 of identifier 81 and identifier E
% is assiqned the character 1.

% Identifier A is assigned the
% value cf identifjer e, identifier
% B is assiqned the value cf
% identifier c, and identifier C is
% a~signed t~e value of identifier
% O+l.

4 Identifier A is assigned the
% value cf either identifier 8
% or C dependinq on the result
% of evaluatirg the e~~ression
% 1 > z. Identifier R or C is
~ assiqr.ed the value of identifier
% M~ N, or 0 depending on the
% result of evaluatiPq the
% eKoression V-1. Identifier M• ~~

% or 0 is assigned the value of x-1.

9-147

REVERSE STORE

Example Program:

DECLARE A(9)

COUNTER
B._ TI ME
A._TIHE

COUNTER :-= o;

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHARACTER ClO>•
FIXED•
err c2oh
BIT C20H

B_TIME := PROCESSOR_TIHE;
00 FOREVER;

REVERSE_STORE CA(Q), ACl>• AC2), ACll• AC4>• AC5), AC&>• AC7)1 AC8));
If CCBUMP COUNTER) = 100000) THEN lNOQ;

ENO;
A_TIME := PROCESSOR_TIHE;
DISPLAY C9 THE PROCESSOR TIME FOR PERFORMING 100000 REVERSE_STORE " CAT

"OPERATIONS IS " CAT DECIMAlCCA_TIME - B_TIHEl1 41 CAT
• TENTHS OF SECONDS");

COUNTER := Oi
B_TIME := PROCESSOR_TIHE;
DO FOREVER;

ACOl :: AClH Act> := AC2H AC2l := AClH AC3) := A(4)i
AC4> :;:; AC5H A<5> :: ACoH AC6) := AC7H AC7l := AC8);
If CCBUHP COUNTER) = 100000) THEN UNDOi

EN Di
A_TIHE := PROCESSOR_TIHE;
DISPLAY c•JHE PROCESSOR TIME FOR PERFORMING 100000 SEPAKATE ASSIGNMENT"

CAT • OPERATIONS IS • CAT OECIHALCCA_TIHE - B_TIME>• 4) CAT

srop;
FINI;

" TENTHS Of SECONDS");

% This example program compares the amount of processor time that is
% used for the REVERS£_STORE verb and the assignment operations in
% assigning the same amount of information. The REVERSE_STORE is
% significantly more efficient.

Output from Example Program:

% REVERS£0 =1283 THE PROCESSOR TIME FOR PERFORMING 100000
REVERSE_STORE OPERATIONS IS 0745 TENTHS Of SECONDS

% REVERSED =1283 THE PROCESSOR TIME FOR PERFORMING 100000
SEPARAIE ASSIGNMENT OPERATIONS IS 0981 TENTHS Of SECONDS

9-148

SAVE

B 1000 Systems SDL/UPL Reference Manual
Verbs

SAVE

The SA VE verb causes each value to be evaluated and the result to be left on the evaluation stack
and, if necessary, the value stack. This verb is used in conjunction with the RESTORE verb.

Incorrect entries are left on the evaluation stack if the SAVE and RESTORE verbs are performed in
different procedures.

SDL Syntax:

-SAVE (-_.r __ <value> _____

Syntax Semantics:

value
This field can be any valid SDL identifier or expression that returns a value and specifies the
value to be evaluated. The result is left on the evaluation stack.

Example:

SAVF C.~. 8, (;);

•
•

~ESTC~E <C• b• Ali

1137833 9-149

SAVE_STATE

B 1000 Systems SDL/UPL Reference Manual
Verbs

The SA VE_ST A TE verb causes the state of the interpreter to be stored in the RS_M_MACHINE
field of the program run structure nucleus and to then continue execution.

SDL Syntax:

- SAVE_STATE;

Example:

9-'150

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH_DIRECTORY

SEARCH DIRECTORY

The SEARCH_DIRECTORY verb searches the disk directory for the requested file. If the file is
found, information is gathered from the disk-file-header record and stored in <identifier>.

Table 9-5 shows the format of the information returned by the SEARCH_DIRECTORY verb. The
format and content of the table are subject to change.

Table 9-5. Format of Information Returned from SEARCH_DIRECTORY

Item

OPEN_ TYPE
NO_USERS
RECORD_SIZE_IN_BITS
RECORDS_PER_BLOCK
EOF _POINTER
SEGMENTS_PER_AREA
USER_OPEN_OUTPUT
FILE_ TYPE
PERMANENT _FLAG
BLOCKS_PER_AREA
AREAS_REQUESTED
AREA_ COUNTER
SAVE_FACTOR
CREA TION_DATE
LAST_ACCESS_DATE

SDL and UPL Syntax:

BIT CHARACTER

24 1
24 2
24 4
24 4
24 8
24 8
24 1'
24 2
24 2
24 6
24 3
24 3
24 3
24 5
24 5

-SEARCH_DIRECTORY (<file-identifier, <identifier>,------------------

); ----------------------------+> >--r-- BIT

L CHARACTER -- ----ON FILE MISSING <statement-1>; ----

>~----r---------------------------------------1

--- ON FILE..,..LOCKED <statement-2>; ----

Syntax Semantics:

file-identifier
This field can be any valid SDL/UPL 30-character file identifier. The first 10 characters of <file
identifier > specify the pack identifier, the middle 10 characters specify the family identifier, and
the last 10 characters specify the file identifier.

A one name file identifier must be left-justified in the middle 10 characters of <file-identifier>.
All 30 characters must contain data, with each name left-justified and blank-filled on the right
to the full IO-character length.

1137833 9-151

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH DIRECTORY

identifier

BIT

This field can be any valid SDL/UPL identifier that has a BIT or CHARACTER data type. If
the data type is BIT, the identifkr must be 360 bits long. If the data type is CHARACTER,
the identifier must be 59 bytes (characters) long.

The keyword BIT causes the disk directory information to be stored in the identifier with a BIT
data type.

CHARACTER
The keyword CHARACTER causes the disk directory information to be stored in the identifier
with a CHARACTER data type.

ON FILE_MISSING
The keywords ON FILE MISSING cause <statement-I> to be performed if the file specified
by <file-identifier> is not found in the disk directory.

ON FILE_LOCKED
The keywords ON FILE_LOCKED cause < statement-2 > to be performed if the file specified
by <file-identifier> is locked.

statement-I
This field can be any valid SDL/UPL statement and it is performed if the file specified by <file
identifier > is not found.

statement-2

9-I52

This field can be any valid SDL/UPL statement and it is performed if the file specified by <file
identifier > is locked.

B 1000 Systems SDL/UPL Reference Manual
Verbs

Example Program:

DECLARE 01 OISK_fILE_HEAOER
Ol OPEN_TYPE
03 NO_USERS
03 RECORO_SIZE
Ol RECORDS_PER_BLOCK
03 EOF_POINTER
Ol SEGMENTS_PER_AREA
03 USER_OPEN_OUTPUT
03 FILE_TYPE
01 PERMANENT_fLAG
03 BLOCKS_PER_AREA
03 AREAS_REQUESTED
03 AREA_COUNTER
03 SAVE_f ACTOR
03 CREA TION_DATE
OJ LAST_ACCESS_OATE

FILE_NAHE

FILE_NAME := • SYSTEM

SEARCH DIRECTORY

CHARACTER C 59),
CHARACTER C 1> •
CHARACTER (2),.

CHARACTER C411
CH AR AC TE R C 4 >,.
CHARACTER C8)1
CHARACTER (8),.

CHARACTER < 1>,.
CHARACTER C2>•
CHARACTER <2>•
CHARACTER C6),
CHARACTER en ..
CHARACTER CH,.
CHARACTER <3>•
CHARACTER (5),.

CHARACTER C5),
CH AR AC TER C 30);

BACK UP ". I

SEARCH_DIRECTORY CFILE_NAME, DISK_FILE_HEADER• CHARACTER>J
ON FILE_MISSING DOJ

DISPLAY c•sYSTEH/BACKUP NOT PRESENT•);
DISPLAY C"GOOD BYE");
SlOPJ

ENO;
ON f ILE_LOCKED oo;

DISPLAY C"SYSTE~/BACKUP IS LOCKED•);
DISPLAY C"GOOO EYE");
STOP;

EN Dr

DISPLAY c·rHE FOLLOWING IS THE DISK FILE HEADER FOR SYSTEM/BACKUP•);
DISPLAY ("OPEN TYPE EQUALS " CAT OPEN_TYPE>J
DISPLAY ("NUMBER OF USERS EQUALS ff C~T NO_USERS);
DISPLAY C"RECORil SIZE EQUALS • CAT RECORO_SIZE CAT " BITS");
DISPLAY C"RECORDS PER BLOCK EGUALS • CAT RECORDS_PER_BLOCK>;
DISPLAY c•END Of FILE EQUALS • CAT EGf_POINTERJ;
DISPLAY ("SEGMENTS PER AREA EQUALS " CAT SEGMENTS_PER_AREA>J
DISPLAY C"USER OPEN OUTPUT EQUALS • CAT USER_OPEN_OUTPUT>;
DISPLAY C"FILE TYPE EQUALS " CAT FILE_TYPE>;
DISPLAY C"PERHANENT FLAG EQUALS " CAT PERHANENT_FLAG);
DISPLAY (•BLOCKS PER AREA EQUALS " C~T BLOCKS_PER_AREA>J
DISPLAY ("NUMBER or AREAS REQU£SfED [QUALS ft CAT AREAS_REQUESTED>i
DISPLAY ("NUMBER OF AREAS EQUALS " C-T AREA_COUNTERJ;
DISPLAY C"SAVE FACTOR EQUALS • CAT SAVE_FACTORJ;
DISPLAY <"CREATION OATE EQUALS " CAT CREAilON_DATEJJ
DISPLAY ("LAST ACCESS DATE EQUALS " CAT LAST_ACCESS_DATE);
DISPLAY c•Gooo BYE");
srop;
FINI;

1137833 9-153

SEARCH DIRECTORY

B 1000 Systems SD L/UPL Reference Manual
Verbs

Output from Example Program:

SEARCHO =1370 00J. PP=4• HP=4 TIHE : 14:06:31.2
% SEARCHO =157~ THE FOLLO~I~G IS THl DISK FILE HEADER FOR SYSTEM/BACKUP
% SEARCHO =1370 OPEN TYPE EQUALS 0
% SEARCHO =1370 NUMBER OF USERS EQUALS 01
% SEARCHO =1370 RECORD ~IZE EQUALS 1440
% SEARCHO =1310 RECORDS PER BLOCK EQlALS 0001
% SEARCHO =1370 END OF FILE EQUALS OC000092
% SEARCHO =1370 SEGMENTS PER AREA EQCALS 00000092
% SEARCHO =1370 USER OPEN OUTPUT EQ~ALS 0
% SEARCHO =1370 FILE TYPE EQUALS 08
% SEARCHO =1370 PERMANENT FLAG EQUALS 01
% SEARCHO =1370 BLOCKS PER AREA EQUALS 000092
% SEARCHO =1370 NUMBER or AREAS REQUEST£D EQUALS 001
% SEARCHO =1370 NUHBER OF AREAS EQUALS 001
% SEARCHO =1170 SAVE FACTOR EQUALS OCO
% SEARCHO =1370 CREATION DATE EQUALS 79312
% SEARCHO =1370 LAST ACCESS DATE EQUALS 80136
% SEARCHO =1370 GOOD BYE
SEARCHO =1310 £OJ. TIHE = 14:06:56.S

9-154

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH LIN KEO _LIST

SEARCH_LINKED_LIST

The SEARCH_LINKED_LIST verb compares the value specified by <compare-value> with <com
pare-field>. If the comparison does not satisfy the relation, the next structure specified by <link
field > is used for the next comparison. This is an efficient way to search through a list of structures
for a specific structure.

If the search succeeds, a 24-bit value is returned which is the base-relative address of the current struc
ture. If the search fails, the value @FFFFFF@ is returned.

The last structure in the list must have all the bits equal to 1 for <link-field>.

SDL and UPL Syntax:

-SEARCH_LINKED_LIST (<first-item>, <compare-field>,-----------------

>-- <compare-value>, <relation>, <link-field>) ; ---------------------1

Syntax Semantics:

first-item
This field can be any valid SDL/UPL identifier or expression that returns a value and specifies
the first structure to be examined.

compare-field
This field is a template which specifies the relative offset and size in the structure of the 24-bit
field being compared with <compare-value> . A template is an identifier whose address is
relative to the beginning of a structure rather than base relative. A field in a structure declared
REMAPS BASE has such an address.

compare-value
This field is the value that is compared with <compare-field>. <compare-value> is considered
"on the left" in the compare relation.

relation
This field specifies the desired relation in the comparison of <compare-field> and <compare
value >. The following is a list of the valid relation specifiers.

1137833

Relation

<
<=

I=
>=
>
LSS
LEQ
EQL
NEQ
GEQ
GTR

Description

less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than
less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than

9-155

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH LINKED LIST

link-field
This field is a template which specifies the relative offset and size in the structure of the 24-bit
(or less) field that contains the address of the next structure to be examined. <link-field> is
examined if the comparison with the current structure failed. A template is an identifier whose
address is relative to the beginning of a structure rather than base relative. A field in a structure
declared REMAPS BASE has such an address.

Example:

BASE_RELATIVE_AOOR := % Identifier 8ASE_RELATIVE_ADOR
SEARCH_lINKEO_LIST CFIRST_AOORESS• % is assigned the base-relative

9-156

COMPARE_FIELD• COHPARE_VALUE• % address of the structure that
=1 NEXT_llNKJ; 1 the search completed on and is

% assigned the value ~FFffff~ if
% the search failed.

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH LINKED LIST

Example Program:

R£CORD
fl>'.ED•

TABLE
DATA
KEY
LINK

f IXED1
BIT C24H

DECLARE ODT_INPUT
COUNT
RESULT
COMPARE_ VALUE
T Cl024)

COUNT := o;
DO BUILD_LINKS FOREVER;

CHARACTER C4l•
FIXED•
FIXED,
FIXED•
TABLE;

If COUNT = 1023 THEN UNDO BUILD_LINKS;
TCCOUNT>.KEY := COUNTJ
tCCOUNJ).OATA := CTIHE CCOUNIER1 £Ill MOD 10Z4JJ
TCCOUNT>.LINK := DATA_ADDRESS CTCBUHP COUNT>.DATA>;

END BUILD_LINKS;
TC1021l.LINK := ~ffffff~;

00 f OREVERi
DISPLAY C"ENJER ANY NUMBER FROM 0 TO lOZl OR ENTER RYE FOR EOJ•);
ACCEPT OOT_INPUT1
If OOT_INPUT = "BYE"

THEN oo;
DISPLAY ("GOOD BYE");
STOPi

ENO;
COMPARE_VALUE := CONVERT CODT_INPUT• fIX£0);
If COHPARE_VALUE > 1021

THEN DISPLAY CODT_INPUT CAT " IS TOO LARGE">;
ELSE IF COHPARE_~ALUE < 0

THEN DISPLAY CODT_INPUl CAT " IS TOO SMALL">J
EL s£ oo;

RESULT := SEARCH_LINKED_LIST CTCO), KEYCOl•
COMPARE_VALUE• =• LINK£0]);

IF RESULT= ~ffFFff ~
THEN DISPLAY c•SEARCH FAILED•);
ELSE DISPLAY ("RESULT EQUALS • CAT

CONVERT CRESUlf, CHARACTER));

EN Di
FINH

1137833

ENO;

9-157

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH LINKED LIST

% This example program shows one way to use the SEARCH_LINKED_LIST
% verb. The program first builds a linked list using a table.
% The operator is then requested to &nter any number between 0
% and 1023. Using the accepted value• the program searches through
% the linked list for an equal condition and• if found• displays
% the base relative address of the beginning of the tabte entry that
% it found. If the search fails~ the progrdm displays SEARCH FAILED.
% If BYE is entered. the program goes to end of job.

9-158

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH SOL STACKS

SEARCH_SDL_STACKS

The SEARCH_SDL_ST ACKS verb searches for a non-array or non-self-relative SDL descriptor
whose address is within the given range of <compare-base> and <compare-top> . If the search is
successful, @(l)l@ is returned. If the search is not successful, @(1)0@ is returned.

The SEARCH_SDL_STACKS verb is used by the SDL memory management intrinsics to determine
which segments in memory can be rolled out to disk.

SDL Syntax:

- SEARCH_SDL_STACKS (<stack-base>, <stack-top>, <compare-base>, ------------4

> <compare-top>) -------------------------------1

Syntax Semantics:

stack-base
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the beginning address of an SDL stack.

stack-top
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the address of the top of an SDL stack.

compare-base
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the address within the program at where the search is to begin.

compare-top
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the address within the program at where the search is to end.

Example:

CECLAFL LOWEf1
UP FER
RESULT

LOWER := o;
UPPEh:= 10000;

EIT <24),
EIT (24) ..
EIT Cl>;

~ESULT := SfA~CH SLL_ST~CKS CCONTRQL_ST~CK_TOP + CONTROL_STACK_BITS,
CONT~Ul_STAC~_TOP• LOWE~• UPP£~);

If NUT qfSULT THE~ OISFL~Y ("SEARCH NOT SUCCESSFUL");
ELSE CISFLAY C"SEAFCH SUCCESSFUL">;

STGP;
FIN Ii

1137833 9-159

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH_SERIAL_LIST

The SEARCH_SERIAL_LIST verb searches a serial list of items beginning with the structure de
scribed by <first-item>. <compare-value> is compared with <compare-field> using the relation
specified by <relation> until a match is found, or until <table-length> number of bits have been
searched.

If <relation> is non-commutative, for example <, < =, >, > =, LSS, LEQ, GTR, or GEQ, the
comparison is made as though <compare-value> is on the left of the relation.

If the search succeeds, the base-relative address of the item containing the successful <compare-field>
is stored into <result-identifier> and the value @(l)l@ is returned. If the search fails, the end base
relative address of the table is stored into < result~identifier > and the value @(l)O is returned.

SDL Syntax:

-- SEARCH_SERIAL_LIST (<compare-value>, <relation>, <compare-field> -----------~

>>---- , <first-item>, <table-length>, <result-identifier>) ; ---·----------------1

Syntax Semantics:

compare-value
This field is the value that is compared with <compare-field>. <compare-value> is considered
the left portion of a compare relation.

relation
This field specifies the desired relation in the comparison of <compare-field> and <compare
value > . The following is a list of the valid relation specifiers.

compare-field

Relation

<
<=

I=
>=
>
LSS
LEQ
EQL
NEQ
GEQ
GTR

Description

less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than
less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than

This field is a template that gives the relative off set and size in the structure of the 24-bit field
being compared with< compare-value>. A template is an identifier whose address is relative to
the beginning of a structure rather than base relative. A field in a structure declared REMAPS
BASE has such an address.

first-item
This field can be any valid SDL identifier or expression that returns a value and specifies the
first structure to be examined.

9-160

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH SERIAL LIST

table-length
This field can be any valid SOL literal, identifier, or expression that returns a value and specifies
the number of bits to search before stopping the search.

result-identifier
This field can be any valid SDL 24-bit identifier and contains the value of the end base-relative ad
dress of the table.

Example Program:

RECORD TABLE
DATA
KEY
LINK

FIXED•
FIXED ..
BIT C24H

DECLARE ODT_INPUT
COUNT
RESULT
COMPARE_ VALUE
T C1024l

COUNT := o;
DO BUILO_LINKS FOREVER;

CHARACTER C4>•
FIXED•
FIXED•
FIXED ..
TABLE;

If COUNT = 1023 THEN UNDO BUILO_LINKS;
TCCOUNT).KEY := COUNT;
TCCOUNT>.DATA := CTIHE (COUNTER• BIT> HOO 1024);
TCCOUNT>.LINK := OATA_ADDRESS CT<EUMP COUNTl.DATAli

END BUILD_LINKS;
TC1023).LINK := ~FFFFff~;

00 FOREVER;
DISPLAY ("ENTER ANY NUMBER FROM 0 TO 1021 OR ENTER BYE FOR EOJ");
ACCEPT ODT_INPUTi
If OOT_INPUT = •eYE"

THEN oo;
DISPLAY <"GOOD BYE"li
srop;

£ND;
COHPA~E_VALUE := CONVERT <ODJ_INPUT• FIXED>;
IF COMPAPE_VALUE > 10Z3

EN Di
FINI;

1137833

THEN DISPLAY (QDT_INPUT CAT • IS TOO LARGE•);
ELSE IF COMPARE_VALUE < 0

T~EN DISPLAY COOT_INPUT CAT " IS TOO SHALL");

ELSE If S£ARCH_SERIAL_LIST CCOMPARE_VALU[, =1 KETCOl•
TCOl• 73728, RESULT>

THEN DISPLAY ("RESULT EQUALS • CAT
CONVERT CRESULT, CHARACTER));

ELSE DISPLAY ("SEARCH FAILED");

9-161

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEARCH SERIAL LIST

% This eKample program shows one way to use the SEARCH_SERIAL_LIST
% verb. The program first builds a serial linked list using a table.
% The operator is then requested to enter any number betveen 0
% and 1023. Using the accepted value, the program searches through
% the linked list for an equai condition andP if found• displays
% the base-relative address of the beginning of the table entry that
% it found. If the search fails• the program displays SEARCH FAILED.
% If BYE is entered,. the orogram goes to end of job.

9-162

SEEK

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEEK

The SEEK verb performs an actual hardware read and then stores the data in a buff er until the data
is requested by a read operation. Use of the SEEK verb allows a programmer to overlap input/output
(110) operations with processor operations.

When reading a file randomly and the next random record is known, the SEEK verb can be used to
efficiently read random files. Specifying the SEEK verb immediately prior to a READ verb is less effi
cient than specifying the READ verb.

SDL and UPL Syntax:

- SE EK <file-identifier> [<record-address-identifier> 1

Syntax Semantics:

file-identifier
This field can be any valid SDL/UPL file identifier and it specifies the file in which to perform
the seek operation.

record-address-identifier
This field can be any valid SDL/UPL identifier and specifies the record address within the file
to seek. This identifier must be either a binary value of 24 bits or fewer in length, or an expres
sion that generates a binary value.

Example:

SEEK OiS~FILE ClOO)i l Causes a ohvsical read of record number

1137833

l 110 from the dist file OISKfll£. The data
% read is not made available untit the orogram
% ccrfcrms a READ statement.

9-163

SEEK

B 1000 Systems SDL/UPL Reference Manual
Verbs

Example Program:

DECLARE DATA BIT C400>•
CHARACTER C50)11
f IX EDi

oor_INPUT
RECORD_ ADDRESS

FILE DISKFILE <DEVICE = DISK RANDOM•
RECORDS = 180/10•
BUFF £RS = 1 OH

R£CORD_ADDRESS := o;
OPEN OISKFILE INPUT;
SEEK DlSKfILE IRECORD_ADDRESSJ;

DO f OR EVER.;

DISPLAY ("ENlER BLANK TO DISPLAY THE NEXT RECORD OR BYE FOR EOJ");
ACCEPT oor_INPUJ;
If OOT_INPUT = ·BYE" THEN oo;

DISPLAY C"GOOD BYE">;
STOP;

ENO;
READ DISKFILE IRECORD_AODRESS1 CD~TA);

ON [Of oo;
DISPLAY (•END Of FILE ENCOUNTERED -- GOOD BYE");
STOP;

END;
ON EXCEPTION DISPLAY ("RECORD " CAT RECORD_ADDRESS CAT

.. N 0 T f 0 UN D • l ;:
BUMP flECORO_AODRESSJ

SEEK OISKFILE CRECORD ADDRESS];

DISPLAY CCONVERTCDATA11 CHARACTER>JJ
ENO;

FHll;

% This example program uses the SEEK verb to physical!~ read
% a record into the program•s file buffer, and upon entering a blank
% message, the program performs a read operation to obtain
% the record. Once the program performs a read operation~ the
% program uses the SEEK verb to physically read the next record
% and displays the data within the racord that was previously read.

9-164

SEGMENT_PAGE

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEGMENT PAGE

The SEGMENT _PAGE verb divides the object code of a program into overlayable sections. When
writing SDL/UPL programs, the programmer must explicitly segment programs if overlaying is to be
allowed. If no SEGMENT_PAGE verbs appear, the entire program is compiled as one code segment.
Run-time memory requirements for a program decrease when that program is segmented, because not
all code segments must be resident in memory simultaneously.

When a program references a nonresident code segment, that code segment must be moved into main
memory from disk. If no memory space is available, the newly called code segment is written (overlaid)
into the space occupied by a less important code segment. The IMPORTANT keyword gives a code
segment more protection from being overlaid.

The SEGMENT _PAGE verb can appear anywhere within an SDL/UPL program. The maximum num
ber of code segments per page is 64. The maximum number of pages per program is 32.

There a.re two types of segmentation: permanent and temporary. Every SDL/UPL statement following
a permanent segment statement is compiled to that code segment until another segment statement is
encountered. Nonconsecutive groups of SDL/UPL statements can be compiled to the same code seg
ment by specifying the same <segment-identifier> for each. The following example illustrates the use
of the permanent segment statement.

S£GMlNT_PAGE CXX)i
CEClAflE Al, A21 A3, A~;

Ff:OCECURl ~;

CECLA~f bt~ 82~ 93;
SEC~f~T_FAGl CYV);
?~GCEC:UhE ~;

•

E~U Ni
Pf;CCF.:CUEf p;

•
•

HdJ P;
5EGMlNT_PAGE (XXJ;

•
•

•
•
•

FINI;

1137833 9-165

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEGMENT PAGE

Only procedures N and P have been compiled to the code segment labeled YY. The code segment la
beled XX is segment zero and includes the remainder of the program. A SEGMENT _PAGE verb is
temporary when it precedes any of the following verbs.

ACCESS_FILE_INFORMA TION
CASE
IF
OPEN
READ

RECEIVE
SEARCH __ DIRECTORY
SEND
SPACE
WRITE

The following example illustrates the use of temporary segmentation when an IF statement is specified.

5EG~~NT_PAG£ !Ali
PFUCECURE x;

If Y > 7
Tl-1£N Y := 2;
ELSE SEGMfNT Cb);

CG 50~[FL~CTIC~;

fND SUM£ fUNCTIC~;

Ef\iD x;

't
% The OJ-qrcuo
1. SC~E_rt;NCTIUN is
% comoi led to code
i. seqment 8.

The DO-group SOME_FUNCTION in the preceding example is compiled into code segment B. Seg
ment B automatically ends when the DO-group SOME_FUNCTION is terminated. All statements fol
lowing the DO-group SOME_FUNCTION are compiled to segment A. Segment A is a permanent seg
ment and segment B is a temporary segment.

DO-groups and procedures must begin and end in the same code segment. If this is not the case, the
SDL/UPL compiler generates the following warning message and inserts code into the SDL/UPL pro
gram to bring the program back to the proper segment so that the DO-group and procedure can be
exited correctly.

"DO GROUP" SHOULD TERMINATE IN SEGMENT IN WHICH IT BEGAN

PROCEDURE SHOULD TERMINATE IN SEGMENT IN WHICH IT BEGAN

Refer to the MCP MEMORY MANAGEMENT Appendix in the B 1000 Systems System Software
Operation Guide, Volume 1, form number 1108982, for complete information on the Memory Manage
ment System.

9-166

B 1000 Systems SDL/UPL Reference Manual
Verbs

SEGMENT _PAGE

SDL and UPL Syntax:

>
r ~~~~0-~~~~~~--L I IMPORTANT _______ _......__); ____________,.

OF <page-identifier>-----~

Syntax Semantics:

segment-identifier
This field can be any valid SDL/UPL identifier and specifies the name of a segment.

IMPORTANT
The keyword IMPORTANT causes the program code segment to remain in main memory. The
segment is overlaid when the MCP requires additional memory space and no other portion of
main memory is available for use.

OF
The keyword OF specifies that the <page-identifier> is to follow in the specification of the
SEGMENT_PAGE verb.

page-identifier
This field can be any valid identifier and specifies the page in which the segment is to belong.

Example 1:

SEGMENT PAGE <ZEhG);
CO A;

END A;

Example 2:

SEGMENT_PAGE CTW01 IMPC~TANJ);

PROCEDURE PROC_X;
•

END P?CC_X;

Example 3:

% Assiqns the DO-qroup A to the
% code segmert labeled ZE~O.

% Assiqns the orocedur~ P~OC_X
t to the code seqment ident1f ied
% a> TWC. This code s~gment is
% imoortant.

SEGMENT_PAGE <Two, IMPC~TANT OF PAGE_!); % Assiqns P~OC_D to the
PRUC_D; : segment ta~eied TWO.

ENC c;

1137833

% At~o~ this seqment is ar
% imoortant seqment of the
% oaqe labeled PA~E_t.

9-167

SEGMENT PAGE

B 1000 Systems SDL/UPL Reference Manual
Verbs

Example Program: For an example of the use of the SEGMENT __ PAGE verb, refer to the LOCA
TION verb.

9-168

SKIP

B 1000 Systems SDL/UPL Reference Manual
Verbs

SKIP

The SKIP verb causes the line printer to skip to a specified channel number on the carriage control
tape. These channel numbers correspond to holes punched in the carriage control tape. The channel
numbers control the vertical spacing of records on a printed page and are defined by the carriage con
trol tape on the printing device.

- SKIP <file-identifier> TO <channel-number>;

Syntax Semantics:

file-identifier
This field can be any valid SDL/UPL file identifier that is declared with a device type equal to
PRINTER and specifies the file to perform the skip operation.

channel-number
This field can be any valid SDL/UPL number between 1 and 12, inclusive and specifies the chan
nel number to skip to on the carriage control tape.

Example 1:

SKif' l1N£ TC t;

Example 2:

% The file labeled LINE must be an outout file
% on the printing de~ice. The orintinq device
l acvar~e5 to channel 1 Cusuallv the top of a
% nei..- page).

SKIP PRNI TC 12; % The ~rintino device advances to channel 12
% <usuallv at or near the end of a oaqe).

1137833 9-169

SKIP

Example Program:

DECLARE ODT_INPUT

B 1000 Syf;tems SDL/UPL Reference Manual
Verbs

CHARACTER (50)i

FILE LINE COEVICE = PRINTER,
RECORDS =132/1);

OPEN LINE OUTPUJ;
DO FOREVER;

DISPLAY <"ENTER CHARACTERS FOR THE PRINTER OR BYE TO GO TO EOJ"JJ
ACCEPT ODT_INPUT;
IF ODT_INPUT ~ "BYE" THEN oo;

SKIP LINE TO 1;
WRITE LINE COOT_INPUTJJ

ON EXCEPTION oo;

DISPLAY c•Gooo BYE"Ji
STOP;

ENO;

DISPLAY ("EXCEPTION ON WRITE -- GOOD BYE");
srop;

END,;
ENO;

FINI;

% This eKample program accepts a record from the OOT and uses the
% SKIP verb to advance to channel 1 on the printing device prior
% to writing a record. Enter BYE to send the program to end of job.

9-170

SORT

B 1000 Systems SDL/UPL Reference Manual
Verbs

The following B 1000 utility programs can be invoked by the SORT verb.

SORT/MERGE
SORT/QSORT
SORT/TAPESORT
SORT/VSORT

SORT

These utility programs sort the specified input file and create the output file. <key-table> specifies
the collating sequence desired in the sort. <sort-information-table> describes the options the sort is
to use. Refer to B 1000 Systems SORT Reference Manual, form number 1090594 for a complete de
scription of the B 1000 sort mechanism.

SDL and UPL Syntax:

:>>----<input-file-identifier>, <output-file-identifier> -------------------.....;i.
>>------..---);-----------------------1

l, ____ , <translate-file-identifier:>

Syntax Semantics:

sort-information-table
This field specifies the information required to sort a file. Refer to the B 1000 Systems SORT
Reference Manual, form number 1090594, for the description and the format required in <sort
information-table > .

key-table
This field specifies the sort key information required to sort a file. Refer to the B 1000 Systems
SORT Reference Manual, form number 1090594, for the description and the format required for
the <key-table> .

input-file-identifier
This field can be any valid SDL/UPL file identifier that is declared in the file declaration section,
and specifies the file in which to sort.

output-file-identifier
This field can be any valid SDL/UPL file identifier that is declared in the file declaration section,
and specifies the resulting file identifier of the sorted file.

translate-file-identifier
This field can be any valid SDL/UPL file identifier and specifies the file to use for translating
purposes.

Examples:

SCFT <IhFCR_lABLE, KfY_TAELE• IN_fILE• OUT_fllf);
SURT cr~ro~_TARLE· KEY_lA~LE· IN_FILE· OUT_FILE· TRANS FILE);

1137833 9-i 71

B 1000 Systems SDL/UPL Reference Manual
Verbs

SORT

Example Program:

DECLARE ODT INPUT CH AR AC TER (1 0),

01 SORT_INFORMATION_TABLE,
02 SORT_TYPE BIT (2>.
02 SORT_HOWR BIT { 6)"
02 SORT_fILES BIT { 24).
02 SORJ_RECSIZE BIT (24),
02 SORT _IN_HO WR BIT c 6)"
02 SORT_IN_RECSIZE BIT (24).
02 SORf _I~_BLKSIZE BIT (24)·
02 SORT_I~_CLOSE BIT (12).
02 SORT_IN_VARIABLE BIT (1),
02 SORT_OUT_HOWR BIT { 6)"
02 SORT_OUT_RECSIZE BIT c 24),
02 SORT_our_BLKSIZE BIT (24).
02 SORT_OUT_CLOSE BIT (12).
02 SORT_OUT_VARIARLE BIT c 1).

02 SORT_DELETING BIT (ll •
02 SORT_STABILIZE BIT { 1.,,
02 SORT_PARITY BIT (1).

02 SORT_RESTART BIT c 1).
02 SORT_BIAS BIT (7),
02 SORT_RECOROS BIT (24).
02 SORT_ TI HING BIT (1),
02 SORT_NUHBER_K£YS BIT (5).
02 SORT_TIHE_IT BIT (1) ...
02 SORT_IN_OVERRIOE BIT c 1)"

02 FILLER BIT (6),
02 SORT_KEY._LE NGTH BIT (16),
02 FILLER BIT c 16).
02 SORT_PARTITION BIT (24} ~
02 SORT_OELETE_KEYS BIT (4).
02 SORT_!) UPC HECK Bl T (1),

02 SORI - TAGRPG BIT (1) JI

02 SORT_Wl_PIO BIT (ll •
02 SORT_W2_PIO BIT Cl>•
02 SORT_TAGCOBOL BIT c n.
02 FILLER BIT ClS),
02 SORT_HEMORY BIT (24),
02 SORT_TAGSEARCH 81 T c n.
02 SORT_COLLATE BIT (1J,
02 FILLER BIT (lll.
02 SORT_RESTART_J08 BIT (24).

9-172

B 1000 Systems SDL/UPL Reference Manual
Verbs

01 SORJ_KEY_TABLE BIT ClllGl•
02 KEY (30) BIT (36),.

01 KfY_fIELD BIT (36).
02 SIGN_fLAG BIT c 1),
02 DIRECTION BIT Clh
02 FILLER BIT Cl),
02 COLLATE_KEY BIT en.
02 KEY_LENGTH BIT (121,
02 KEY_DISPLACEMENT Bl T (20);

FILE IN CDEVICE = DISK,
RECORDS = 180/11•

OUT COEVICE = DISK,
RECORDS= 160/l);

SORT_TYPE := o; % USE SORT/VSORT
SORT_HDWR := ~Cll010001~; % USE DISK FOR WORK FILES
SORT_fILES := o; % NO WORK TAPES
SORT_RECSIZE := ~0005AO~; % HAX RECORD SIZE = 180
SdRT_I~_HDWR := ~(1)010001~; % DISK
SORT_IN_RECSIZE := ~0005AOaJ % RECORD SIZE = 180
SORT_IN_BLKSIZE :~ ~OOOOOAa; % BLOCK SIZE = 10
SORT_IN_CLOSE := d400~; % CLOSE WIT~ RELEASE
SORT_IN_VARIABLE := o; % NOT VARIABLE RECORDS
SORT_OUT_HOW~ := ~Cll010001~; % DIS~
SORT_OUT_RECSIZE := @OOOSAoa; % RECORDSIZE = 160
SORT_OUT_BLKSIZE :: ~OOOOOAa: % BLOCKSIZE : 10
SORT_OUT_CLOSE := a400~; % CLOSE WITH RELEASE
SORT_aur_VARIABLE :: o; % NOT VARIABLE RECORDS
SORT_DELETING := o; % NO DELETING
SORT_STAEILIZE := o; % SORT DUPLICATES IN ANY ORDER
SORT_PARITY := o; % 00 NOT DISCARD RECORDS WITH PARITY ERROR
SORT_RESTART := OJ % NO RESTART
SORT_BIAS := ~CllOllOOlO~; % 50 PERCENT BIAS
SORT_RECOROS := ~0003E8-; I 1000 RECORDS
SORT_TIHING :: ~C1>1~; % REPORT SORT PARAMETERS
SORf_NUHBER_KEYS := ~CllOOOOt~; % 1 KEY
SORT_TIHE_IT := ac1>1~; % DISPLAY SORT TIME ON ODT
SORT_IN_OVERRIDE := Oi i DO NOT USE INPUT BLOCKING
SORT_KEY_LENGTH := ~soa; % KEY LE~GTH = 80 BITS OR 10 BYTES
SORT_PARTITION := o; % NO PARTITION
SORT_OELETE_KEYS := o; % NO INCLUDE OR DELETE KEYS
SORT_DUPCHECK != ac111~; % REPORT DCPLICATE RECORDS
SORT_TAGRPG := o; % NOT RPG TAG FILE
SORT_Wl_PID := o; l NO WO~K PACK
SORT_W2_PID := o; % NO WORK PACK
SORT_TAGCOBOL := o; % NOT COBOL TAG FILE
SORT_HEHORY == a0493Eoa; % 300000 BITS Of MEMORY
SORT_TAGSEARCH := o; % NO TAG SEARCH
SORT_COLLATE := o; X NO COLLATE FIL£
SORT_RESTART_J08 := o; % NO RESTA~T

1137833

SORT

9-173

B 1000 Systems SDL/UPL Reference Manual
Verbs

SORT

SIGN_FLAG :: o; % NOT SIGNED
DIRECTION :: o; % ASCENDING ORDER
COLLATE_KEY :: o; % NO COLLATE TABLE
KEY_LENGTH == aso~; % KEY LENGTH = 80 BITS OR 10 BYTES
KEY_OISPLACEMENT == ~oooooa; % KEY STARTS IN FIRST POSITION

KEY CO> := KEY_fIELO;

DO f OR EVER;
DISPLAY ("ENTER INPUT FILE NAME OR ENTER BYE FOR EOJ•);
ACCEPT ODT_INPUJ;
If ODT_INPUT = "BYE" THEN oo;

DISPLAY ("GOODBYE");
STOP;

ENO;
CHANGE IN TO CHULTl_f ILE_ID := ODT_INPUJ);
DISPLAY <"ENTER OUTPUT FILE NAME OR ENTER BYE FOR EOJ")J
ACCEPT ODT_INPUTi
If ODT_INPUT = ·BYE" THEN oo;

DISPLAY cwGOODBYE"li
STOP;

ENO;
CHANGE OUT TO CMULTI_fILE_ID := OCT_INPUT);
SORT CSORT_INFORMATIUN_TABLE• SORT_KEY_TABLE, IN• OUT)J

END;
FINI;

% This example progra~ shows the information required to
% use the SORT verb. The program accepts from the ODT a
% lo-character file name for the input fit.e ~nd then accepts
% a sec~nd 10-charac~er file name for the output file. The
% input file must have a record size equal to 160 and blocking
% factor equal to 1. If BYE is entered, the oroqram goes to
% end of job. Once the two file names are entered, the progra~
% invokes the SORT/VSORT sort utility program and sorts the
% file.

9-174

SORT __ MERGE

B 1000 Systems SDL/UPL Reference Manual
Verbs

SORT MERGE

The SORT_MERGE verb invokes the SORT/MERGE utility program. The SORT/MERGE program
merges the specified input files and creates the output file. <key-table> specifies the collating sequence
desired in the sort. <sort-information-table> describes the options the merge is to use. <merge-input
table > provides the relative file numbers of the files within the SDL/UPL program to merge. Refer
to the B 1000 Systems SORT Reference Manual, form number 1090594, for a complete description of
the B 1000 merge mechanism.

SDL and UPL Syntax:

- SORT _MERGE (<sort-information-table>, <key-table>, -----------------~

> ·<merge-input-table>, <output-file-identifier> --------------------_.

----- , <translate-file-identifier> ------~

Syntax Semantics:

sort-information-table
This field specifies the information required to sort a file. Refer to the B 1000 Systems SORT
Reference Manual, form number 1090594, for the description and the format required in <sort
information-table > .

key-table
This field specifies the sort key information required to sort a file. Ref er to the B 1000 Systems
SORT Reference Manual, form number 1090594, for the description and the format required for
<key-table::> .

merge-input-table
This field specifies the information required to sort a file. Refer to the B 1000 Systems SORT
Reference Manual, form number 1090594, for the description and the format required for
<merge-input-table>. <merge-input-table> specifies the relative file number within the SDL/
UPL program to merge. A maximum of eight files can be merged.

output-file-identifier
This field can be any valid SDL/UPL file identifier that is declared in the file declaration section.
It specifies the resulting file identifier of the sorted file.

translate-·file-identifier
This field can be any valid SDL/UPL file identifier and specifies the file to use for translating
purposes.

Example::

SORT_~l~GE ClNFO~_lAElEr KEY_TAHLE, HERGE_lNPUT_TABlf• CUT_FILE);

1137833 9-175

B 1000 Systems SDL/UPL Reference Manual
Verbs

SORT MERGE

Example Program:

DEClARE ODT_INPUT
COUNTER

CH l~RAC TER C 1 Ol •
f!){[Q,

9-176

01 SORT_INFORMATION_TABLE,
02 SORT_TYPE
02 SORT_HOilR
02 SORT _f I LES·
02 SORT_RECSlZE
02 SORT_IN_HD WR
02 SORT_IN_RECSIZE
02 SORT_IN_BLKSIZE
02 SORT_IN_CL.OSE
02 SORT_IN_VARIABLE
OZ SORT_OUT_HDWR
02 SORT_OUT_RECSIZE
02 SORT_OUT_BLKSIZE
02 SORT_OUT_CLOSE
02 SORT_OUT_VARIABLE
02 SORT_DELETING
02 SORT_STABILIZE
02 SOR l_PAR I l"Y
02 SOR T_REST P1RT
02 SORT_BIAS
02 SORT_RECOR'DS
02 SORT_TIHHI G
02 SORT_NUHBER_KEYS
0 2 S 0 RT_ TI HE_. I T
02 SORT_IN_OVERRIOE
02 FILLER
02 SORT_KEY_l.ENGTH
02 FILLER
02 SORT_PARTITION
02 SORT_DELETE_KEYS
02 SORT_OUPCHECK
02 SORT_TAGRPG
02 SORT_Wl_PIO
02 SORT_W2_PID
02 SORT_TAGCnBoL
02 FILLER
OZ SORf_HEHORY
02 SORT_TAGSEARCH
02 SORT_COLLA.TE
02 FILLER
02 SORT_RESTART_JOB

01 SORl_KEY_TABLE
02 KEY ClO>

BIT C 2)t,.
BIT C6),
BIT C2lt),
BIT C2t•l•
BIT C6],
BIT C2t•>•
BIT C2t•J,
BIT Cl2h
BIT CU,.
BIT C6),
BIT C 21.>.
BIT C24J,.
BIT CU~),.

BIT C 1 h
BIT C l]l,
BIT Cu ..
BIT C lJI,
BIT Cu~.
BIT C71t ...
BIT C2~t),.

BIT (1),.

BIT CSJI,
BIT C 1 ll,
BI f C 1 l,,
BIT C6),
BIT C 16),.
BIT C lfi,),
BIT C2t"),
BIT (4),
BIT C 11,
BIT C 1l •
BIT C 1 },
BIT C 11,
BIT C 1 >,
BIT C 15i),.
BIT czo,.
BIT C 1>,.
BIT Cll1 1

BIT C31.),.
BIT C24l1

BIT C1116),.
BIT C 36 >,.

f ILE INO

INl

IN2

IN3

OUT

01

B 1000 Systems SDL/UPL Reference Manual/
Verbs

KEY_fIELD BIT (36),
02 SIGN_fLAG BIT (1),

02 DIRECTION BIT c 1),

oz FILLER BIT c n.
02 COLLATE_KEY BIT (ll JI
02 KEY_LENGTH BIT (121.
Ol KEY_DISPLACEHENT BIT C ZO >,.

01 HERGE_INPUT_TABLE BIT (80).
02 FILLER BIT (8),
02 MERGE_DISK_IN BIT (8)1

02 MERGE_I~PUT_FILEC6l BIT C8H

COEVICE = DISK•
RECORDS = 180/1)11

CDEVICE ·= DISK"
RECORDS = 160/1)JI

<DEVICE = ·oISK"
RECORDS = 180/1),

CDEVICE = DlSK"
RECORDS = 180/t) ..

CDEVICE = DISK•
RECORDS = 180/l)i

SORT_TYPE == ac1>11a; % USE SORT/MERGE
SORT_HDWR := o; % DOES NOT APPLY
SORT_f ILES := ~000004~; % 4 INPUT FILES
SORT_RECSIZE :: aooosAo~; % HAX RECCRD SIZE = 180
SORT_I~_HDWH := ac11010001a; % DISK
SORT_IN_RECSIZE := ~0005A02J % RECORD SIZE = 180
SORT IN BLKSIZE := ~OOOOOA~; % BLOCK SIZE = 10
soRr:rr~:ctOSE := ~400~; % CLOS.£ WITH RELEASE
SORT_IN_VA~IABLE := o; % NOT VARIABLE RECORDS
SORT_OUT_HDWR := ~Cl>Ol0001~; % DISK
SORT_OUT_RECSIZE := aooosAo~; % RECCROSIZE = 180
SORT_OUT_BLKSl!E := ~OOOOOA~; % BLOCKSIZE = 10
SORT_OUT_CLOSE := ~400~; % CLOSE WITH RELEASE
SORI_OUT_VARIA~LE := o; % NOT VARIABLE RECORDS
SORT_OELElING := OJ % NO DfLETING

SORT MERGE

SORT_STAEILIZE := Oi % SORT DUPLICATES IN ANY OR~ER
SORf_PARITY :: o; % DO NOT DISCARD RECORDS WITH PARITY ERROR
SORT_RESTART := Oi % NO RESTART
SORT_BIAS := ~(110110010~; % 50 PERCENT BIAS
SORT_RECORDS := ~0003£8~; % 1000 RECORDS
SORT_TIMING :: ~c111a; % REPORT SORT PARAMETERS
SORT_NUMBER_KEYS := ~(1100001~; % 1 KEY
SORT_TIHE_IT ~= ~(111~; % DISPLAY SORT TIME ON DDT
SORT_IN_OVERRIOE := o; % DO NOT USE INPUT BLOrKING
SORT_KEY_LENGTH := ~50~J % KEY LENGTH = 180 BITS OR 10 BYTES
SORT_PARTITION := o; % NO PARTITION

1137833 9-177

B 1000 Systems SDL/UPL Reference Manual
Verbs

SORT MERGE

SORT_DELETE_KEYS := o; % NO INCLUDE OR DELETE KEYS
SORT_DUPCHECK ~= ~Cl>l~; % REPORT DUPLICATE RECORDS
SORT_fAG~PG := o; % NOT RPG TAG FILE
SORT_Wl_PID := o; % NO WORK PACK
SORT_W2_P1D :: o; % NO WORK PACK
SORT_TAGCOBOL := o; % NOT COBOL TAG FILE
SORT_MEHORY := ~493EO~: % 30000Q BIT OF MEMORY
SORT_TAGSEARCH := o; % NO TAG SEARCH
SORT_COLLATE :: o; % NO COLLATE FILE
SORT_RESTART_JOB := o; % NO RESTART

SIGN_FLAG := O~ % NOT SIGNED
DIRECTION := OJ % ASCENDING ORDER
COLLATE_KEY := o; % NO COLLATE TABLE
KEY_LENGTH == ~so~; % KEY LENGTH = 180 BITS OR 10 BYTES
KEY_DISPLACEMENT := ~00000~; % KEY STARTS IN FIRST POSITION

KEY COl := KEY_FIELD;

MERGE_DISK_IN := ~CllOOOOOlOO~; % 4 INPUT FILES ON DISK
MERGE_INPUT_fILECOl := ~CllOOOOOOOO~; % RELATIVE FILE 0
MERGE_INPUT_FILECll := ~Cl1000Q0001~; % RELATIVE FILE 1
MERGE_INPUT_FILEC2l := ~Cl>OOOOOOlO~; % RELATIVE FILE 2
MERGE_INPUT_FILEC3) := ~CllOOOOOOlO~; % RELATliE fILE 3

COUNTER :·= Oi
DO FOREVER;

DO ENTER_INPUT_FILENAHE FORE\IERi
DISPLAY ("ENTER INPUT FILE NAME -- NUMBER " CAT

DECIMAL CCQUNTER1 ll CAT n OR ENTER BYE FOR EOJ")J
ACCEPT ODT_INPUT;
If ODT_INPUT = "BYE~ THEN oo;

DISPLAY C"GOODBYE">J
STOPJ

ENO;
If COUNTER = 0 THEN CHANGE INO TO CMULTI_FILE_ID := ODT_INPUJ);
IF COUNTER = l THEN CHANGE I~l TO CMULTI_FILE_IO := OOT_INPUJ);
IF COUNJE~ = 2 THEN CHANGE IN2 TO CHULTI_f ILE_IO := ODT_INPUT>i
IF COUNTER = J THEN CHANGE IN3 TO CHULTI_FILE_IO := OOT_INPUf);
IF CCBUMP COUNTER> ~ 4) THEN u~oo ENTER_INPUT_FILENAME;

ENO ENlER_INPUT_f ILENA~[;

DISPLAY ("ENTER OUTPUT FILE NAME OR ENTER BYE FOR EOJ")J
ACCEPT ODT_INPUT;
IF OOT_INPUT = "6YE" THEN oo;

DISPLAY C"GOODBYE•J;
S Top;

EN Di
CHANGE OUT TO CHULTI_FILE_ID := OOT_INPUtJ;
SORT_MERGE CSORT_INFORMATION_TABLE, SORT_KEY_TABLE1

HERGE_INPUT_TABLE, OUJ);
END;
FINI;

9-178

B 1000 Systems SDL/UPL Reference Manual
Verbs

SORT_MERGE

% This example program uses the SORT_HERGE verb to merge four
% input files to create one outp~t file. The program accepts
% from the OOT the names of each input file and the name of the

1137833 9-179

B 1000 Systems SDL/UPL Reference Manual
Verbs

SORT_SEARCH

The SORT_SEARCH verb is used only by the SORT programs and provides the information required
to evaluate a record for sorting purposes. <first-table-entry-address> contains the address in an array
of records of the first record to examine and <limit> specifies the last record to be examined.

SDL and UPL Syntax:

- SORT _SEARCH (<first-table-entry-address>, <limit>);

Syntax Semantics:

first-table-entry-address

limit

This field can be any valid SDL/UPL literal, identifier, or expression that returns a value and
specifies the base-relative address of the first entry in the table of records to be examined and
the condition under which records are to be selected.

This field can be any valid SDL/UPL literal, identifier, or expression that returns a value and
specifies the last record to be examined.

9-180

B 1000 Systems SDL/UPL Reference Manual
Verbs

SORT._STEP_DOWN

SORT _STEP _DOWN

The SORT_STEP _DOWN verb provides the information necessary to compare two records. <rec
ord-I > and < record-2 > are the first and second records to be compared. <key-table-address>
specifies the sort key used in the comparison.

This verb is for SORT program use only.

SDL Syntax:

- SORT _STEP _DOWN (<record· 1>, < record-2 >, <key-table-address>) ; -------------

Syntax Semantics:

record-I
This field can be any valid SDL literal, identifier, or expression and specifies the first of two
records that are to be compared.

record-2
This field can be any valid SDL literal, identifier, or expression and specifies the second of two
records that are to be compared.

key-table-address
This field can be any valid SDL literal, identifier, or expression that returns a 24-bit value and
specifies the address of the key table that the sort key uses for the comparison.

I137833 9-181

SORT_SWAP

B 1000 Systems SDL/UPL Reference Manual
Verbs

The SORT_SWAP verb exchanges the values of two identifiers in memory without allocating a tempo
rary storage area.

SDL and UPL Syntax:

Syntax Semantics:

identifier-1
This field can be any valid SDL/UPL identifier and specifies the first of two fields to be ex
changed.

identifier-2
This field can be any valid SDL/UPL identifier and specifies the second of two fields to be ex
changed.

Example:

DECLARE A ChA1ACTER ClUl,
e C~AFAClE~ ClO);

A ::= "18".:
8 := "49t2";
SOFf S~AP CA, e>; 7. Exchanqe5 the values cor.tained iP identifiers

'1. ll ard P.

Figure 9-5 shows the contents of identifiers A and B before and after the SORT_SWAP operation.

Before After

A: C1s A: I 4982 l
B: 4982 B: I 18

G18308

Figure 9-5. Contents of A and B Before/ After SORT_SW AP Operation

9-182

B 1000 Systems SDL/UPL Reference Manual
Verbs

SORT_SWAP

Example Program:

DECLARE INPUT! CHARACTER ClQ),
INPUT2 CHARACTER ClOJ;

DISPLAY ("ENTER THE FIRST 10 CHAR~CTERS");
ACCEPT INPUTli
DISPLAY (•ENTER THE SECOND 10 CHARACTERS•);
ACCEPT INPUT2;
DISPLAY C"VALUE Of INPUT1 BEFORE - " CAT INPUT!);
DISPLAY {"VALUE Of INPUT2 BEFORE = " CAT INPUT2);

SORT_ShAP CINPUTl~ INPUT2);

DISPLAY ("VALUE Of INPUT! AFTER = • CAT INPUTlli
DISPLAY C"VALUE Of I~PUT2 AFTER = " CAT INPUT2);
DISPLAY <"GOOD BYE"li
srop;
FINI;

% This exa~ple program accepts two 10-character fields from
% the oor. displays the values of the fields before performing
% the SORT_SWAP verb• and disptays the values of the fields
% after performing the SORT_SWAP verb.

1137833 9-183

SORT_UNBLOCK

B 1000 Systems SDL/UPL Reference Manual
Verbs

The SORT_UNBLOCK verb moves a record to and from a buffer and updates the buffer pointer
and block count. This verb normally returns a 0 (zero). When the block count goes to 0 (zero), this
verb restores the original buffer pointer and block count and retlllrns @(1)1@. If the verb returns
@(l)l@, the input/output (110) operation can take place.

A bit in the mini-FIB indicates to the SORT_UNBLOCK operation to create sort tags. If this bit is
TRUE, the SORT_UNBLOCK operation uses the sort key table and selects only the key information
to move from the buffer. A value in the mini-FIB represents the length of the receiving field.

This verb is for SORT program use only.

SDL Syntax:

- SORT _UNBLOCK (<mini-FIB-address>, <length>, <source>,

> <destination>);

Syntax Semantics:

mini-FIB-address
This field can be any valid SDL identifier or expression that generates an address and specifies
the address of the mini-FIB used by the SORT program.

length
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the length of the destination field.

source
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the buffer from which the record is moved.

destination

9-184

This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the buffer to which the record is moved.

B 1000 Systems SDL/UPL Reference Manual
Verbs

SPACE

SPACE

The SPACE verb causes the SDL/UPL program to position the file's current record pointer to the
record specified by <space-amount> if the keyword TO is specified, or to skip the number of records
specified by <space-amount> if the the keyword TO is not specified.

SDL and UPL Syntax:

- SPACE <file-identifier>---------------- <space-amount>-----

~~~-EOF ----------------------~ 
> 

>~~-r ____________________________________ ~ 
~1 ----- ON EOF <statement-1>; -------.... 

~------ON EXCEPTION <statt!ntent-2>; -----

Syntax Semantics: 

file-identifier 

TO 

This field can be any valid SDL/UPL file identifier and specifies the file on which to perform 
the space operation. 

The keyword TO specifies that skipping to the record number specified by integer, identifier, or 
expression is to be performed. The value of <space-amount> must be positive. 

TO_EOF 
The keyword TO_EOF causes the SDL/UPL program to skip to the end-of-file record within 
the file. 

space-amount 
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value 
and specifies the number of records to skip over or the specific record to skip to in a sequential, 
fixed-length file. The value of <space-amount> must be positive. 

ON EOF 
The keywords ON EOF cause the SDL/UPL program to perform <statement-I > if the SP ACE 
operation results in reaching the end-of-file record. 

ON EXCEPTION 
The keywords ON EXCEPTION cause the SDL/UPL program to perform <statement-I> if the 
SP ACE operation cannot be completed because of an error condition. 

statement-I 
This field can be any valid SDL/UPL statement and is performed when the program encounters 
the end-of-file record. 

statement-2 
This field can be any valid SDL/UPL statement and is performed when the program encounters 
an exception in the file. 

1137833 9-185 



SPACE 

Example 1: 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

SPACE LI i\E 3i l The LINE file is spaced three print 
% ltnes on the tine printer. 

Example 2: 

SPACE TAPEFILE TO x; 
C ~~ E G f S T 0 P ; 

Example 3: 

% The TAPEFILE file sttios to the taoe 
l record specified ty the tiparv value 
% cf the identifier x. If the end-of-file 
Z record is e~countered• the o~ogra~ qoes 
% to end of job. 

SPAC£ CI5~FILE TO EU~F x; l The OISKFILE file s~ios to the disk 
G~ EOf STOP; % record 5oecified by the binarv value of 
CN EXCEPTIQf'; SffJp; l. 8llf>1P x. If the end-of-file record or a 

;.; r: .1 r i t v e f r or o c cur s - the or o qr am ll o es to 
% End cf iob. 

9-186 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

Example Program: 

DECLARE ODT_INPUT 
DISK_RECORO 

CHARACTER C lC>• 
CHARACTER C teOJ; 

FILE IN CDEVICE =- DISK~ 
RECORDS = 180/1'• 
USE_INPUT_BLOCKING); 

DISPLAY <•ENTER 10-CHARACTER FILE NAME OR ENTER BYE FOR EOJ•); 
ACCEPT ODJ_INPUT; 
If ODT_INPUT = ·BYE" THEN no; 

DISPLAY <"GOOD BYE"); 
STOPi 

ENO; 
CHANGE IN TO CMULTI_FILE_IO := OOT_INPUT); 
OPEN IN WITH INPUTJ 

ON FILE_MISSING oo; 
DISPLAY c•rILE " CAT ODT_INPUT CAT 

DO FOREVER; 

srop; 
EN Di 

" NOT PRESENT -- GOOD BYE"); 

SPACE 

DISPLAY <"ENTER THE RECORD NUMBER TO SKIP TO OR ENTER BYE FOR EOJ"); 
ACCEPT OOT_INPUTi 
Ir ODT_INPUT = "BYE" THEN oo; 

CLOS£ IN WITH RELEASE; 
DISPLAY C"GOOD BYE"); 
STOPJ 

ENO; 

SPACE IN TO CONVERT COOT INPUT• FIXED); 
ON EOf oo; 

DISPLAY C"EOF ENCOUNTERED ON SPACE -- GOOD BYE•); 
STOP.; 

ENO; 
ON EXCEPTION oo; 

DISPLAY <"PARITY ENCOUNTERED ON SPACE -- GOOD BYE"); 
STOP; 

ENO; 

READ IN CDISK_RECORO); 
ON EXCEPTION oo; 

DISPLAY (•PARITY ENCOUNTERED ON READ -- GOOD BY£"); 
sror; 

END; 
DISPLAY C"THE CONTENTS Of THE DISK RECORD ARE"); 
DISPLAY <DISK_RECOROJ; 

ENOi 

fl NB 

1137833 9-187 



SPACE 

B 1000 Systems SDL/UPL Reference :Manual 
Verbs 

% This example program uses the SPACE verb to position the 
% disk file to the relative record number that is accepted 
% from the ODT. The program first accepts a lo-character 
% tile name from the OOJ, then accepts the record number within 
% the file to be displayed. If RYE is entered• the program goes 
% to end of job. If the file requested is not present• or the 
% program encounters a parity error while spacingp or the 
% ~rogram encounters the end-of-file record• the program 
% goes to end of job. 

9-188 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

SPO INPUT PRESENT 

SPO_INPUT_PRESENT 

The SPO_INPUT_PRESENT verb returns the value @(l)l@ if ODT input is present and returns 
the value @(l)O@if ODT input is not present.The SPO_INPUT_PRESENT verb assures that the 
ACCEPT verb has input, and does not suspend the program waiting for ODT input. 

SDL and UPL Syntax: 

- SPO __ INPUT_PRESENT--

Example: 

OECLAFE BOOLEAN Ell ll); 
BOOLEAN := SPO_INPLT P~:Sf.NT; 

4 The identifier BOOLEAN is assiqned 
% the value @(1)1~ if COT inout is 
Z aueued for the oToqram and the 
z value ~Cl>a; if OOT inout is not 
~' ou~ued for the pro qr am. 

Example Program: 

DECLARE ODT_INPUT CHARACTER C50)J 
DO FOREVER; 

IF SPO_INPUT_PRESENT 

ENO; 
FINH 

THEN no; 
ACCEPT ODT_INPUTi 
IF ODT_INPUT ="BYE• THEN STOPJ 
DISPLAY CODT_INPUTJ; 

ENO.; 
ELSE IF NOT WAIT CT!HE_TENTHS C100)) 

THEN DISPLAY ("1-0 SECONDS HAVE EXPIRED"lJ 

% This example program uses the SPO_INPUT_PRESENT verb to check 
% for any message in the DDT Queue. If there is a message, the 
% program accepts the messaqe and displays it on the oor. 
% If there is no message, the prosram waits 10 seconds for a 
% message. If no message is ente~ed• the program displays 
% 10 SECONDS HAVE EXPIRED on the ODT and continues to 'ait another 
% 10 seconds. If BYE is entered, the program goes to end of job. 

1137833 9-189 



STOP 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

The STOP verb causes the programmatic end of a program and notifies the MCP that the program 
has finished executing. The STOP and the FINI verbs have different functions. The FINI verb is the 
final statement in a SDL/UPL source program and marks the physical end of the source file. 

<syntax-errors> is for use by B 1000 SDL/UPL compilers and causes the MCP to display the value 
as the number of syntax errors encountered when compiling a progiram. The value is displayed in the 
end-of-job message on the ODT. 

SDL and UPL Syntax: 

- STOP -......-----------------

---<syntax-errors> __ _J 

Syntax Semantics: 

syntax-errors 
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value 
and specifies the number of syntax errors that occurred. 

Examples: 

STOP; 

STOP 10; 

Example Program: 

% C a u s e s t h e n f' o qr a m t o d i s c o n t 1 n u e e x e cu t i n q • 

% Causes the proqram to discontinue executinq 
% and tc notifv the MCP to show in the end·of·iob 
k ·'11 e s s a q E~ t h a t l 0 s v n t a x e r r c r s o c c u f' r e d • 

DECLARE ODY INPUT CHARACTER ClOH 

DISPLAY ("ENTER THE NUMBER or SYNTAX ERRORS DESIRED IN THE EOJ" 
CAT " MESSAGE"); 

ACCEPT oor_INPUT; 
DISPLAY C"GOOD ~YE"); 

IF ODT_INPUT = "" 
THEN STOPi 
ELSE STOP CONVERT<ODT INPUT, FIXED); 

FINI; 

% This example program accepts from the ODT the n~m~er of syntax 
% errors that are desired to be included in the HCP end-of-job 
% message. If zeros or blanks are entered. no syntax errors 
% are included. 

9-190 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

SU BB IT 

SUB BIT 

The SUBBIT verb provides the capability to address one or more bits within a bit string. 

The SDL/UPL compiler does not verify that <start-position> and <length> are within bounds. In
stead, a range check is performed at execution time on <start-position> and <length>, and an out
of-bounds value causes the program to terminate with an INVALID SUBSTRING program abort. In 
other words, <start-position> must reference a position in the bit string and <length> must not 
specify more bits than exist between <start-position> and the end of the string. 

If the SUB BIT verb appears to the left of a assignment operator, the SUB BIT verb is treated as an 
address generator. Truncation, fill, and data alignment are performed by the operator with a BIT data 
type being the destination data type. In other words, if the source field is not declared with a BIT 
data type, the alignment is to the right and is controlled by the value of <start-position> and the 
number of bits specified by the value of <length> . 

If <start-position> and <length> are declared with a BIT data type, each is evaluated as being a 
binary number. For example, if a literal "l" is specified, the EBCDIC value "l" is @Fl@. This value 
converts to a binary value of 241, which results in specifying 241 as the <start-position> or specifying 
241 as the length. 

SDL and UPL Syntax: 

- SUBBIT (<string-identifier>, <start-position> --------r----------....--L ) ----4 
, <length> 

UPL Syntax: 

L ) ----i 
, <length> 

-- SUBBIT (<string-identifier>, <start-position> --------------------

Syntax Semantics: 

string-identifier 
This field can be any valid SDL/UPL identifier or expression that returns a value. If <string
identifier > is an expression, the data type returned is assumed to be equal to BIT. < string-identi
fier > specifies the name of the character string to be scanned. 

start-position 
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value 
and specifies the first element of the new string. <start-position> is a zero-relative offset to the 
beginning of <string-identifier>. 

length 
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value 
and specifies the number of elements that are to be included in the new string beginning with 
<start-position>. If <length> is not specified, all of the string beginning with < start-posi
tion > is included in the new string. Padding and truncation follow the standard SDL/UPL rules. 
If length has a value equal to zero, no string of bits is returned. 

1137833 9-191 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

SU BB IT 

Example 1: 

DECLAAE SEIT FlXEC; 
SBIT := ;(1)00100~; 

A := 5UREIT cse1r. ~3, 11; 

Example 2: 

OECLA~E SEIT FIX£r; 
SBIT := ~(l)0010u@; 

A := SU3EIT C56IT• 21, lJ; 

Example 3: 

CECLA~f SBIT RIT Cl), 
AX2 BIT (S); 

SBIT :: ;(1)1101111001«; 
AX2 := ~{l)lUOOlOlCO;; 

SU8Blf CAX2, 3) := 
SUR6IT <S6!T• 3, L>; 

Example 4: 

UECLA~E LrJ_COCE EIT C16l• 
SOC_ CO CE F DEC; 

SUBBIT CCBJ_COCE• e. dl := 
sac_cccE; 

Example 5: 

DECLA~E x err ce1. 
C 8IT CeJ; 

x := ;(1)111111111«; 
c == ;(l}OvOvOOOOO~; 
suHeI r ex, 4) == 

SUBBIT ((, o, 4J; 

9-192 

% Identifier A iis assigned the vatue 
2 eaual to ~Ct>O;. 

J Identifier ~ is assiqned the value 
% eaual to ~(1)1~. 

l Identifier AX2 is assiqned a resultinq 
% value ecuat to ;c11100110000;. 

% The riqhtmost eight bits of identifier 
% soc_COD( are assiqned to the riqhtmost 
2 eiqht oositicns of 08J_COD£. 

% Identifier X is assigned the 
% resulting value eo~al to 
% ~(1)00001111; .. , 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

Example Program: 

DECLARE oor_INPUT 
STR I N-G 
LENGTH 
START_POSITION 
DISPLAY_fIELD 

CHARACTER CS>• 
BIT C401• 
f IXEDr 
FIX£D,. 
CHARACTER CSH 

DISPLAY C"ENTER ANY S-CHARACTER STRING OR ENTER BYE FOR EOJ•); 
ACCEPT ODT_INPUTJ 
IF OOT_INPUT = ·BYE· THEN oo; 

STRING := OOT_INPUT; 
DO FOREVER; 

DO fO~EVERi 

DISPLAY c·Gooo BYE•); 
srop; 

ENO; 

SU BB IT 

DISPLAY <"ENTER ANY Of THE FOLLOWING 2-CHARACTER NUMBERS FOR" 
CAT " THE START POSITION OR ENTER BYE FOR EOJ -- O•ft 
CAT " 8• 16• 24r 12•1; 

ACCEPT ODJ_INPUJ; 
IF ODT_INPUT = "BYE" THEN oo; 

DISPLAY C"GOOO 0JE"li 
STOP; 

END• 
START_POSITION := CONVERTCOOT_INPUT• FIXED>; 
If NOT CSTART_POSITION.> 39) AND NOT CSTART_POSITION < 0) 
THEN UNDOi 
ELSE DISPLAY ("THE \'ALUE FOR START POSITION IS' OUT or RANGE•); 

END; 
00 FOREVER; 

DISPLAY C"ENTER ANY Of THE FOLLOWING 2-CHARACTER NUMBERS FOR" 
CAT " THE LENGTH OR ENTER BYE FOR EOJ -- o, 8• lG• 24" 
CAT " 32 • 4 o• H 

ACCEPT OOl_INPUf; 
If ODT_INPUT = "BYE" THEN oo; 

DISPLAY C"GOOO BYE"); 
STOPi 

ENOi 
LENGTH := CONVERTCOOT_INPUT1 fIXEDli 
If NOT CCSTART_POSITION • LENGTH) > 401 
THEN UNDO; 
ELSE oo; 

DISPLAY (•THE VALUE ENTERED FOR LENGTH IS OUT or RANGE"); 
DISPLAY ("LENGTH MUST NOT BE G~EATER THAN " 

CAT CONVERTCC40 - START_POSITION1r CHARACTER)); 
EN Di 

END; 

DISPLAY_fIELO := SUBBIT CSTRING1 START_POSITION1 LENGTH>; 

DISPLAY C"THE SUBBIT VALUE IS " CAT CISPLAY_FIELOlJ 
END; 

1137833 9-193 



SU BB IT 

FINH 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

% This example program uses the SUBBIT verb to display a partial 
% character string in bits. The program accepts from the ODT 
% the character st~ing• and then accepts two• 2-character numbers 
% for the starting position and length. The resulting partial 
% character string is then displayed on the DDT. If BYE is 
% entered• the program goes to e~d of job. 

9-194 



SUBSTR 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

SUBSTR 

The SUBSTR verb provides the capability to address one or more characters within a character string. 

The SDL/UPL compiler does not verify that <start-position> and <length> are within bounds. In
stead, a range check is performed at execution time on <start-position> and <length> , and an out
of-bounds value causes the program to terminate with an INVALID SUBSTRING program abort. In 
other words, <start-position> must reference a position in the character string and <length> must 
not specify more characters than exist between <start-position> and the end of the string. 

If the SUBS TR verb appears to the left of an assignment operator, it is treated as an address generator. 
Truncation, fill, and data alignment are performed by the SUBSTR verb and the destination data type 
is CHARACTER. In other words, if the source field is not declared with a CHARACTER data type, 
the alignment is to the right and is controlled by <start-position> and the number of characters 
specified by <length> . If the source field is declared with a CHARACTER data type, the alignment 
is left-justified to the position as specified by <start-position> and is controlled by the value of 
<start-position> and the number of characters in the value of <length> . 

If <start-position> and <length> are declared with a CHARACTER data type, each is evaluated 
as a binary number. For example, if a literal one (" l ") is specified, the EBCDIC value "1" is @Fl@. 
This value converts to a binary value of 241, which results in specifying 241 as <start-position> or 
specifying 241 as the length. 

A value of zero for <length> is valid and describes a null substring. Any attempt to assign data to 
a null string causes no data to be stored and no errors to be generated. 

SDL and UPL Syntax: 

- SUBSTR (<string-identifier>, <start-position> 

---- , <length> __ __, 

Syntax Semantics: 

string-identifier 
This field can be any valid SDL/UPL identifier or expression that returns a value. If <string
identifier > is an expression, the data type of <string-identifier> is assumed to be equal to 
CHARACTER. <string-identifier> specifies the name of the character string to be scanned. If 
<string-identifier> is the name of a file, then a 24-bit integer value is generated, representing 
the file number of the file as it is declared in the source file. · 

start-position 
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value 
and specifies the first element of the new string. <start-position> is a zero-relative off set to the 
beginning of <string-identifier>. 

length 
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value 
and specifies the number of elements that are to be included in the new string beginning with 
<start-position>. If <length> is not specified, all of the string beginning with < start-posi
tion > is included in the new string. Padding and truncation follow the standard SDL/UPL rules. 
If <length> has a value equal to 0 (zero), then no string of characters is returned. If < length> 
is omitted, <start-position> must be modulo 8. 

1137833 9-195 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

SUBSTR 

Example 1: 

DECLA~E ~LfA CHAF~CTE~ C26); 
ALFA := "'BC0EFGHIJKLMNOPQ~STUVWXYZ"; 

X := SUBSTriCAlfA, c. lJ; % Identifier X contains the value 
r. equal to "A". 

Example 2: 

OECLPRl AlfA CHAF-Clf~ C26>; 
Alf A := ftABCDEfGHIJKLMNOP~RSTUVWXYZ"; 
X := SU85T~CALfA, 24); X Identifier ~contains the value 

% equal to "YZ". 

Example 3: 

~ == o; X ld~nti fier N has a data tyoe 
DG CCC fC~£Vlf'i % equal to FIXED. Identifier PRINT 

SU~ST~CP~INT• ~, 1) := 
SIJESTflCAl.fA, 2 tr f\• 1); 

IF (2 • CBUMP ~)) GTR ?5 

% contains every other letter in the 
% strinq1 for examole, ACE ••• W Y. 

T ~i E N lJ N D 0 0 CJ C ; 
ENO uoc; 

Example 4: 

ABC := "OPPOSITE"; 
CH != "VAULT .. ; 
SUBST~CABC, Q, 1) := 

SUBSTfiCCh• 1, l)i 

Example 5: 

X := "CHARACTE~"i 

C := "COPLITION"; 

X The value of identifier ABC is 
% changed from ~OPPOSITE" to 
% "APPOSITE". 

% The value of identifier X 
% becomes "CHARCOAL". 

SU85T~cx~4) := SUESTfi((,Q.4); 

Example Program: 

DEC LARE oor_INPUT 
STRING 
LENGTH 
STARJ_POSIJION 
DISPLAY_F1£LD 

CHARACTER (40>• 
CHARACTER (40), 
f I X£O,. 
FIXED,. 
CHARACTEfi C40)i 

DISPLAY cwENTER ANY 40-CHARACTER STRING OR ENTER BYE FOR EOJ"l1 
ACCEPT ODJ_INPUT; 
If ODJ_INPUT = ·av£• THEN oo; 

DISPLAY C"GOOD BYE•); 
STOP; 

IENO; 

9-196 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

SUBSTR 

STRING == oor_INPUT; 
DO FOREVER: 

DO fOREYERi 
DISPLAY C"£NTER ANY 2-CHARACT£R NUMBER FOR THE START POSITION OR• 

CAT " ENTER BYE FOR EOJ"}; 
ACCEPT ODT_INPUTJ 
If aor_INPUT = ·BYE" THEN oo; 

DISPLAY <"GOOD BYE•); 
STOP; 

ENOi 
START_POSITION :~ CONVERTCODT_INPUT• FIXED); 
If NOT CSTART_POSITION > 39) AND NOT CSTART_POSITION < 0) 
THEN UNDOi 
ELSE 01$PLAY c•THE VALUE FOR START POSITION ts OUT or RANGE")J 

END; 
00 fORfVER; 

DISPLAY (•ENTER ANY 2-CHARACTER NUMBER FOR THE LENGTH OR ENTER" 
CAT " BYE FOR EOJ"); 

ACCEPT ODT_INPUT; 
IF oor_INPUT = "BYE" THEN oo; 

DISPLAY ("GOOD BYE"); 
STOPi 

ENOi 
LENGTH := CONVENTCODT_INPUT• FIXED>; 
If NOT <tSTART_POSITION • LENGTH> > 40) 
THEN UNOOi 
ELSE oo; 

DISPLAY C"THE VALUE ENTERED FOR LENGTH IS OUT OF RANGE"); 
DISPLAY (•LENGTH HUST NOT BE GREATER. THAN " 

CAT CONfERTCC40 - START_POSITION), CHARACTER)); 
EN Di 

END; 

DISPLAY_FIELD := SUBSTRCSfRING• START_POSITION' LENGTH>; 

DISPLAY ("THE SUBSTRING VALUE IS " CAT OISPlAY_fIELO); 
EN Di 
FIN Ii 

% This example program uses the SUBSTR verb to display a 
% substring of a character string. The program accepts from 
% the ODT the character string• and then acceots two~ 2-character 
% numbers for the st3rting position and length and displays on the 
% OOT the substring that results. If BYE is entered• the program 
% goes to end of job. 

1137833 9-197 



SWAP 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

The SW AP verb returns the current value of <destination> and stores the value of <source> into 
<destination>. The value of <source> remains unchanged after the SW AP operation. · 

The length of <destination> determines the number of bytes of <source> that are stored into <des
tination>. If the length of <destination> is greater than 24 bits, then only the rightmost 24 bits of 
<source> are stored. If the length of <source> is less than <destination> and <destination> is 
less than or equal to 24 bits, <destination> is padded with leading zeros. 

SDL and UPL Syntax: 

- SWAP (<destination>, <source> 

SDL Syntax Semantics: 

destination 
This field can be any valid SDL/UPL identifier and specifies the destination field of the SW AP 
operation. 

source 
This field can be any valid SDL/UPL literal, identifier, or expression that returns a value and 
specifies the source field for the SWAP operation. 

UPL Syntax Semantics: 

Refer to the SORT_SWAP verb for the semantics of the UPL syntax. 

Example 1: 

DECLARE A f IXEO• 
e f IXEO .. 
C fIXECi 

A . - q "j; . -
B . - 1; . -
c . - SwAP CA,, t:J ) ; . -

Example 2: 

0£CLAF£ A FIXEO; 
A := J; 
If" SWAP CA, ll 
r1-1E~ oc; 

Ef\f c; 
ELSE cc; 

• 

9-198 

Z The value cf identifiar R is stored 
% i ri to i dent i f i er ti, and i dent i f i er- C 
% is assigned t~e value of identifier A. 

% T~e ELSE part of the statement is 
% e~atuated• sipce t~e value of identifier 
i A was oriQinally assiqned a value of 
% O (that is, FASLEJ. At the end of the 
i. S~AP coeration, t~e value 1 is stored 
% irto identifier A and the value 0 is 
% returned to the top of the evatuation 
X ·>tac'-'. 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

Example Program: 

DECLARE ODT_INPUT 
ODT_SAYE 
SWAP_FIELD 

DO FOREVER; 

CHARACTER C 3), 
CHARACTER Cl>• 
CHARACTER C3H 

SWAP 

DISPLAY ("ENTER 3 CHARACTERS FOR NEW VALUE OF ODT_INPUT OR ENTER" 
CAT " BYE FOR EOJ"); 

ACCEPT ODT_INPUT; 
Ir ODT_INPUT = "BYE" THEN no; 

DISPLAY <"GOOD BY£•); 
srop; 

ENO; 

SWAP_FIELD := SWAP CODT_SAVE, ODT_INPUJJ; 

DISPLAY C"THE VALUE Of ODT_INPUT ~ " CAT ODT_INPUJJ; 
DISPLAY C"THE VALUE Of ODT_SAVE = " CAT ODT_SAVE>i 
DISPLAY c·rHE VALUE Of SWAP_FIELO = • CAT SWAP_fIELD); 

END; 
flNii 

% This example program uses the SWAP verb to store the value 
% accepted from the ODT in identifier ODT_SAVE and assigns the 
% old vatue of ODT_SAVE to identifier SWAP_FIELO. Jhe value of 
% identifiers OOT_INPUT• ODT_SAYE• and SWAP_FIELD are displayed 
% on the OOJ. If BYE is entered• the program goes to end of job. 

1137833 9-199 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

S_MEM_SIZE 

The S_MEM ___ SIZE verb returns a 24-bit value which is the S-memory size in bits of the B 1000 com-
puter system. 

SDL Syntax: 

- S_MEM_SIZE --------·----------·---------------t 
Example: 

DECLARE MEMORY BIT C24); 
MEMORY != S_MEH_SIZE; 

Example Program: 

% Identifier MEMORY is assigned the 
% value of the memory size of the 
% B lCOO computer system. 

DISPLAY C"THE S-MEMORY SIZE EQUALS ~· CAT 

STOPr 
FINii 

CONVERT CCS_HEH_SIZE I e1, CHARACTER> CAT ·~ BYTES"); 

Output from Example Program: 

S_MEH_SIZO =6234 BOJ. PP=4• MP=4 TIME= 10:37~11.4 
% S_HEM_SIZO =6234 THE S-HEHORY SIZE EQUALS ~100000~ BYTES 
S_MEH_SIZO :6234 EOJ. TIME= 10:37:16.7 

9-200 



THAW_PROGRAM 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

THAW PROGRAM 

The THAW _PROGRAM verb resets the memory and rollout lock bits set by the FREEZE_ -
PROGRAM verb. The THAW _PROGRAM verb allows the run structure nucleus of the program to 
be moved in and out of memory as required by the MCP. 

The THAW _PROGRAM verb has no effect if the memory and rollout lock bits are not set. 

SDL and UPL Syntax: 

- THAW_PROGRAM; 

Example: 

TH AW_Pf' OGF A~; 

1137833 

i Causes the run structure nucleus of the oroqra~ 
% to be ~oved in ana out of memory as reo~ired bv 
l th~ '1CP. 

9-201 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

THREAD_VECTOR 

The THREAD_ VECTOR verb is used only by the SORT program. 

SDL Syntax: 

- THREAD_ VECTOR ( <table-address>, <index>) ; 

Syntax Semantics: 

table-address 

index 

9-202 

This field can be any valid SDL literal, identifier, or expression that returns the table address 
of the table containing the information described in the INITIALIZE_ VECTOR verb. 

This field can be any valid SDL literal, identifier, or expression that returns a value and specifies 
the offset from the beginning of the table to the next record to be used for comparison. 



TIME 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

The TIME verb returns a bit or character string whose value is the current system time. 

TIME and TIME(CIVILIAN, CHARACTER) are equivalent. 

SDL and UPL Syntax: 

TIME 

-TIME·~~~~(-~~~~C,-V-IL-IA-N~~~~~~.-~~~-8-IT~~~~::~~~:~~-)-~~~~~ 

c COUNTER CHARACTER ---
MILITARY DIGIT ____ __, 

Syntax Semantics: 

CIVILIAN 
The keyword CIVILIAN causes the time to be returned in the HHMMSST AP format, where HH 
is the hours, MM is the minutes, SS is the seconds, T is tenths of a second, and AP is AM or 
PM. 

COUNTER 
The keyword COUNTER causes the time to be returned in the TTTTT format, where TTTTT 
is the time in tenths of seconds. 

MILITARY 

BIT 

The keyword MI LIT ARY causes the time to be returned in the HHMMSST format, where HH 
is the hours, MM is the minutes, SS is the seconds, and T is tenths of a second. 

The keyword BIT specifies the time to be in the bit format. The following is the bit format for 
CIVILIAN, COUNTER, and MILITARY time. 

01 CIVILl#\N E IT (36),. 

03 HH BIT { 4),, 
03 MM BIT ( 6),. 
f) 3 SS 8 IT ( 6),. 
'.) 3 T !31 T ( 4),. 
03 p.p BIT (16); 

0 1 CLUt\TEfi 6 IT (20); 

0 1 MIL!Hf'Y BIT ( 21), 
03 t-lh BIT ( 5). 

03 MM Bil ( 6),. 
03 SS 8 IT ( f. ) ,. 

03 T 8 IT ( 4 ) ; 

1137833 9-203 



TIME 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

CHARACTER 
The keyword CHARACTER specifies the time to be in the character format. The following is 
the character format for CIVILIAN, COUNTER, and MILITARY time. 

01 CIVILIAN CH.4RACTEr ( q), 

03 HH c.-.~RAClEi:; ( 2),. 

03 ~M C~ARAC1Et1 ( 2 ) , 
03 SS ci-;JIFACTEF ( 2),. 
03 T C~~RACT£f< ( 1 ) ,. 
03 t. p Cf-.~~4CTEf; ( ?. ).; 

Cl C 0 Ur~ TE f1 Cf-..,RACTER ( 6); 

'.H Mll.lTA~Y CHAf<AC1Ef1 ( 7),. 

03 HH Ct-PRACJEF ( 2),. 

03 MM Ct-<ARACTEf. ( 2),. 
Q3 SS CHHlACHF ( 2), 
03 T Ct.JfsFAClEf; ( l ) ; 

DIGIT 
The keyword DIGIT specifies the time to be in the digit format. The following is the digit format 
for CIVILIAN, COUNTER, and MILITARY time. 

0 l 

0 1 

01 

Example: 

OECLAf'£ 

CIVlllt'N e IT 
03 Hh E IT 
03 MM BIT 
tj .3 SS BIT 
03 T e IT 
03 AP 8 IT 

COUI\T£fe t3 IT 

MILITARY BIT 
03 HH BIT 
03 trn BIT 
03 SS 8 IT 

CIVILIAN_ TIM f 
COUNTEF_TlME 
Mlll TARY_ 1 IME 

{ ld.), 

( 8) .• 

"el , 
( P.), 

c 4) , 

(16); 

{ 2 4); 

c 2 e >,. 
( 8 ) , 
{ 8) ,, 

c e l; 

CHARACTER C9>• 
EIT C20),. 
BIT C28H 

CIVILIAN_Tlt'£ 
CCUNTER_TIHf 
MILITARY_ Tl.,[ 

:= TI~ECCJVILI~N• CHARACTER); 
:= TIMECCOLNT£R,. DIGIT>; 
:= TIMt(~ILITA~Y, BIT>; 

9-204 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

TIME 

If the current system time is 11:30:50.4 AM, then CIVILIAN_TIME, COUNTER_TIME, and 
MILITARY_TIME have the following bit and hexadecimal values. 

CIVILIAN_TI~E = ~(1)1111 0001 1111 0001 1111 0011 1111 0000 1111 
0101 1111 0000 1111 0100 1100 0001 1101 0100~ 

= ~(4)f1Flf3FOF5FOF4Cl04~ 

COUNTER TI~E = ~(110110 0101 0011 0010 1010~ 
= @(4)6532A; 

MILITA~Y Tl~E = ;{1)0001 0001 0011 0000 0101 0000 0100; 
= @(4)1130504~ 

Example Program: 

DECLARE 01 CIYJLIAN_TIME 
Ol CiV_HH 
03 CIY_HH 
03 CIV_SS 
03 CIV_T 
03 C IV_AP 

01 COUNTER_TIME 
01 HILIIARY_TIME 

03 HIL_HH 
03 MIL_MH 
03 Mll_SS 
03 MIL_T 

CHARACTER C 9), 
CHARACTER C2h 
CHAR ACT ER C 21. 
CHARACTER (2), 
CHARACTER ( 111 
CH AR ACT ER C 2 >. 
CHAR ACT ER C 6 J. 
CHARACTER Cl>• 
CHARACTER C2h 
CHAR ACT ER C 21.
CHAR ACT ER (2), 
CHARACTER ClJ; 

CIVILIAN_ TIME 
COUNTER_T1HE 
MILITARY_ TIME 

:= TIME CCIVIlIAN• CHARACTER>i 
:= TIME CCOUNTER• CHAR~CTERJJ 

:= TIME CHILITARY, CHARACTER>J 

[f CIV_AP = "AM• THEN 
DISPLAY c•JHE CURRENT SYSTEM TIME IN CIVILIAN FORMAT IS " CAT e1v_HH 

CAT " HOURS· " CAT CIV_MH CJT " MINUTES· " CAT CIV_ss CAT 
• SECONDS• AND • CAT CIV_T CAT " TENTHS Of A SECOND IN• 
CAT " lHE HORNING"); 

If CIV_AP = "PH" THEN 
DISPLAY c•rHE CURRENT SYSTEM TIME IN CIVILIAN FORMAT IS " CAT CIV_HH 

CAT " HOURS• " CAT CIV_HH CIT • MINUTES, " CAT CIV_SS CAT 
" SECONDS• AND " CAT CIV_T CAT " TENTHS Of A SECOND IN• 
CAT " THE AFTERNOON"); 

DISPLAY C"THE C~RRtNT SYSTEM TIME IN COUNTER FORMAT IS • CAT 
COUNTER_TIHE CAT " TENTHS OF A SECOND"); 

DISPLAY C"THE CURRENT SYSTEM TIME IN MILITARY FORMAT IS " CAT 
HIL_HH CAT " HOURS• " CAT HIL_HM CAT • MINUTES• • CAT 
MIL_SS CAT " SECONDS, ANO " CAT MIL_T CAT 

srop; 
FINI; 

• TENTHS OF A SECOND•); 

% This example program uses the TIME verb with the civilian~ 
% counter• and military format and djsplays the current system 
% usin·g each format with a data type equal to CHARACTER. 

1137833 9-205 



TIME 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

Output from Example Program: 

TIMEO =4186 BOJ. PP=41 HP=4 TIME = 12:27:39.9 
% TIMEO =4186 THE CURRENT SYSTEM TIME IN CIVILIAN FORMAT IS 12 

HOURS, 27 MINUTES, 41 SECONDS, AND 6 TENTHS Of A SECOND IN 
THE AFTERNOON 

% TIHEO ~4186 THE CURRENT SYSTEM TIME IN COUNTER FORMAT IS 448 
616 TENTHS Of A SECOND 

% TIMEO =4186 THE CURRENT SYSTEM TIME IN MILITARY FORMAT IS 12 
HOURS, ll MINUTES• 41 SECONDS• AND G TENTH~ Of A SECOND 

TIHEO =4166 EOJ. TIME= 12:27:47.5 

9-206 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

TIMER 

TIMER 

The TIMER verb returns a 24-bit value that is the current setting of the time register. 

SDL Syntax: 

~TIMER ----------------~------------------------------------------------------------------------------------------------------------------1 

Example: 

DECLARE X BIT C24J; 
X := TIMER; 

Example Program: 

% Identifier X is assigned the current 
% value of the ti~e register. 

DISPLAY C"THE VALUE Of THE TIME REGISTER IS • CAJ 
CONVERT CTIHER• CHARACTER)); 

STOP; 
FINI; 

% This example program displays the current setting of the 
% time register. 

Output from Example Program: 

TIHERO =2270 BOJ. PP=4, HP=4 TIME= 08:40:15.0 
% TIHERO =2270 THE VALUE Of THE TIME REGISTER IS 04F4f5 
TIMERO =2270 EOJ. TIME = oa:40:1a.o 

1137833 9-207 



TRACE 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

The TRACE verb causes the SDL instructions of the normal state program to be traced on the line 
printer. Specifying the NOTRACE verb turns off the trace. The tradng is effective only when the pro
gram is executed with the SDL trace interpreter. 

The following is the meaning of each of the 10 bits in <trace-option> . 

SDL Syntax: 

Btt U~ 

0 Trace all commands except those which modify data or 
change the program pointer stack. This bit applies to 
normal state programs. 

1 Trace all commands which modify data items, for example, 
CLR, SNDL, and so forth. This bit applies to normal state 
programs. 

2 Trace all commands which change the program pointer 
stack; for example, IFTH, CASE, EXIT, and so forth. This 
bit applies to normal state programs. 

3 Not used. 

4-6 These bits have the same respective meanings as bits 0 
through 2 and are used only for the MCP. Several MCP 
routines (for example, GETSPACE, FORGETSPACE, and 
so forth) are not traced. 

7-9 These bits have the same respective meanings as bits 0 
through 2 and are used only for the MCP. The MCP 
routines not traced by setting bits 4 through 6 are traced. 

~----------...--TRACE~----------------~------------------..-

- NO _J --- (<trace-options>) ----

Syntax Semantics: 

trace-options 
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies 
which trace option to use. The leftmost 10 bits specify which option to use. 

Examples: 

NOTRAC£i 

TRACE; 

Tl1AC£ C2H 

9-208 

l Turns off the tracing of the oroqram. 

~ Turns en the tracing of the proQram. 

% Turrs on the tracinq of the program and 
% a~o traces commands k~ich change the 
2 proqram tointer stac~. 



TRANSLATE 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

TRANSLATE 

The TRANSLATE verb translates each item in <source-identifier> , using the <translate-table> , and 
stores the value in <result-identifier> . The translation continues until one of the following conditions 
occurs. 

1. The source string is exhausted. 
2. <result-identifier> becomes full. 
3 .. An error occurs in the translation operation. 

The <source-item-size> specifies the number of bits per item in <source-identifier> . <translate-item
size > specifies the bits per item in <translate-table> and <result-identifier>. The maximum length 
for <translate-item-size> and <source-item-size> is 24 bits. If the length of either < source-identifi
er > or <result-identifier> is not a multiple of its respective <translate-item-size> , the translation 
of the last item is undefined. 

<translate-table> must be large enough to hold an items in <source-identifier> . Each item in 
<source-identifier> is used as a subscript into <translate-table> in order to determine the translated 
value. Refer to the B 1000 Systems SORT Reference Manual, form number 1090594, for complete in
formation about the translation string. 

SDL and UPL Syntax: 

-- TRANSLATE (<source-identifier>, <source-item-size>,-------------··--------... 

> <translate-table>, <translate-item-size>, <result-identifier> ----------------.. 

Syntax Semantics: 

source-identifier 
This field can be any valid SDL/UPL identifier and specifies the source string for the TRANS
LATE verb. 

source-item-size 
This field can be any valid SDL/UPL literal, identifier, or expression that returns a binary value 
and specifies the number of bits per item in <source-identifier> . 

translate-table 
This field can be any valid SDL/UPL literal, identifier, or expression that returns a binary value 
and specifies the table to use for translating <source-identifier> into the desired result. 

translate-item-size 
This field can be any valid SDL/UPL literal, identifier, or expression that returns a value and 
specifies the number of bits per item in <translate-table> and <result-identifier>. 

result-identifier 
This field can any valid SDL/UPL identifier and specifies the destination of the TRANSLATE 
verb. 

1137833 9-209 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

TRANSLATE 

Example: 

OECLA~f EECCIC_TAELE 
ASCII_FIELC 
E6CCIC_f IELC 

tIT <1C24),. 
tIT (70), 
EJT CBOH 

EBCCIC_TftBLE == ;oco102c3372C2E2f 1605250BOCOOOEOF~ 
CAT @101ll~l33C3C322618193f271Cl01Elf~ 
CAT @404F7F7B586C50704D505C4E686C4B61~ 

CAT GFCF1F2f3F4f5F6F7fdf97A5E4C7E6£6F~ 
CAT @7CClC2C3C4f5C6C7C8C90102D304C506@ 
CAT ~C70fOSE2~3E££5£6E7E8E94AE05A5f60~ 
CAT ~7~Bl828384858687886991929394959G~ 
CAT ~97Q8Q~~2A3A4A5~6A7A8A9C06ADDA107;; 

l~A~SLATE (~SClf_f IELL, 1,. EECOIC_TABL[, 8,. EeCOIC_FIELU>; 

X This examnle trar.ilate~ a LSASCII-7 field into an EBCDIC field. 

Example Program: 

DECLARE TRANSLATE_ TABLE 
ODl_INPUf 
ODT_OUTPUT 

BIT Cl 28 l11 
CHARACTER C20)11 
CHARACTER (40); 

TRANSLATE_TABLE := ~FOflFZf3f4f 5FEF7f8F9ClC2C3C4C5C6~; 

DO FOREVERi 
DISPLAY (•ENTER ANY 20 CHARACTERS OR ENTER BYE FOR EQJ•); 
ACCEPT OOT_INPUJ; 
If oor_INPUT = ·aYE" THEN oo; 

DISPLAY C"GOOO BYE"Ji 
STOPi 

EN Di 

TRANSl.A IE CODT_INPUT• tu TR AN SLATE_ TABLE• 5,. ODT_OUTPUT>; 

DISPLAY C•THE CHARACTERS ACCEPTED ARE EQUAL TO ~· CAT OOT_OUTPUT 
CAT ·~ IN HEXADECIMAL NOTATION"); 

END; 
FINH 

% This example program accepts a 20-character field from the ODT 
% and displays the hexadecimal value using the TRANSLATE verb. 
% If BYE is entered• the program goes to end of job. 

9-210 



UNDO 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

UNDO 

The UNDO verb causes the program to exit a DO-group. Control is transferred to the statement imme
diately :following the END statement for the corresponding DO-group. 

A maximum of 16 nesting levels can be exited with the UNDO verb. 

SDL and UPL Syntax: 

- UNDO-----------------

--- <identifier> ----

Syntax Semantics: 

identifier 
This field can be any valid DO-group identifier and specifies the name of the DO-group to exit. 

Examples: 

UNDO; % Causes the DO-qrouo to be exited. 

UNDO ~AI~_LOOP; % Causes the DO-qrouo MAIN_LCOP to be exited. 

Example Program: 

Refer to the DO verb example program for an example program using the UNDO verb. 

1137833 9-211 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

USE 

The USE verb causes specific elements in a DEFINE statement to be declared in a procedure. This 
eliminates the need to declare all of the elements in a structure when only a portion are required. The 
name stack size is kept to a minimum and program maintenance is simplified. The SDL/UPL compiler 
generates the structure using fillers and the specified elements. 

The USE verb must appear within a procedure and cannot appear on lexic level 0. 

The referenced <defined-identifier> must define one structured DECLARE statement. 

The structured DECLARE statement cannot contain arrays. 

The DUMMY REMAPS keywords must be specified on the outermost level (01 level) of the structured 
DECLARE statement. 

SDL and UPL Syntax: 

r - USE ( --·---- <declared-identifier> ---------- ) OF <defined-identifier>; -------a 
Syntax Semantics: 

declared-identifier 
This field can be any valid SDL/UPL identifier that is declared within a DEFINE statement. 

define-identifier 
This field can be any valid SDL/CPL define identifier that defines a declaration statement which 
contains <declared-identifier> . 

Example 1: 

OECLA~E Pf€ BIT (1440); 

CEFI~E PPB_CEC AS # 

CECLA~£ Cl CUMHY ~EMAPS PPB• 
03 PFOC:_~AME 

Ol PROG_OAT~_CICT 

03 PROG_SEG_OICT 
03 FROG_SC~T_SPAO 

% The space is to be remapoed. 

% The DEFINE for the USE statement. 

% The reauired DUMMY 01 level. 
CHAR~CTEk ClO), 
BIT C112),. 
6IT C112), 
filT (28) ti; 

F~OCEDUfiE G£T_CICT; % The procedure in 
USE CPRUG_DATA_DICT, P~OE_SEG_OICTl Of PPB_OEC; % which the USE 

% statement appears. 

9-212 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

Example 2: 

OEf Ifllf X AS Ii 
CECLAht 01 ou~~y F£MAPS ~. 

C -~ B 
05 El 
05 €2 

c 3 c 
03 0 
03 £ 
': 3 F 

PROCECUFE FIRST; 
USE cc, C> Of x; 

BIT (5),, 
fJIT C2),, 
8IT (3),. 
CrARACTER ClQ),. 
BIT (1),,. 

FIXED,. 
13IT C24) N.; 

USE 

The following is the structure that the SDL/UPL compiler generates from the USE statement in proce
dure FIRST. 

01 OU~MY FEtvl.PS A,. 
C3 F Jlll R 13 IT (5) # 

05 FILLEF BIT {?.). 

05 f IllfR 8 IT ( ~). 

03 (, Ct-1.f\fl.ACTEf' ( 10) I' 
0 .5 c HT Cl). 
03 f IllU~ fIX£C, 
03 FILLEfi 2 IT (24); 

The keyword FILLER is substituted for the group identifier B. Normally, the. SDL/UPL compiler gen
erates a syntax error if FILLER is specified as the group-level identifier. This is allowed with the USE 
statement. 

1137833 9-213 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

VALUE_DESCRIPTOR 

The VALUE_DESCRIPTOR verb returns the descriptor of <address-field>. The value of an ad
dressable item is represented by a descriptor on the top of ithe evaluation stack. When the 
VALUE_DESCRIPTOR verb is performed, this descriptor is placed on top of the value stack. The 
descriptor of the descriptor which is moved to value stack is placed on top of the evaluation stack 
with the NAME_ VALUE STACK bit set. 

SDL Syntax: 

-- VALUE_DESCRIPTOR (<address-field>); 

Syntax Semantics: 

identifier 
This field can be any valid SDL identifier or expression that generates an address and specifies 
the name of the descriptor to be moved to the value stack. 

Figure 9-6 shows the movement of th"e descriptor on the evaluation and value stacks when the 
VALUE_DESCRIPTOR verb is performed. 

EVENT 

BEFORE 

AFTER 

G18324 

EVALUATION 
STACK 

(DESCRIPTOR OF X) 

(DESCRIPTOR OF 

DESCRIPTOR X) 

VALUE 
STACK 

(VALUE OF X) 

(DESCRIPTOR OF X) 

(VALUE OF X) 

Figure 9-6. Movement of Descriptor on Evaluation and Value Stacks 

Example: 

DECLARE ACO~ESS EIT C24)i 
VALUE_CESCRIPTOR C~DDRESSl; 

9-214 



B 1000 Systems ~DL/UPL Reference Manual 
Verbs 

VALUE DESCRIPTOR 

Example Program: 

DECLARE f IXED_FIELD 
BII_f IELD 
CHAR_f IELIJ 

FIXED, 
BIT C4), 
CHARACTER ClJ; 

DISPLAY C"THE FOLLOWING IS THE DESCRIPTOR OF A FIXED FIELD:"); 
DISPLAY <"TYPE = " CAT 

CONVERT CSUBBIT CVALUE_DESCRIPTOR CFIXEO_FIELQJ, Q, 8), CHARACTER>>; 
DISPLAY cwLENGTH = " CAT 

CONVERT CSUBBIT CVALUE_DESCRIPTOR CFIXEO_FIELO>• a. 16JP CHARACTER>>; 
DISPLAY <•ADOR[SS = • CAT 

CONVERT CSUB0If CVALUE_DESCRIPTOR CFIXEO_FIELOJ, 24, 24}, CHARACTER)); 

DISPLAY C"THE FOLLOWING IS THE DESCRIPTOR OF A BIT FIELD:•J; 
DISPLAY c•TYPE = " CAT 

CONVERT CSUBBll (VALUE_DESCRIPTOR CBIT_FIELD>• o, 8), CHARACTER)); 
DISPLAY <•LENGTH = " CAT 

CONVERT <SUBBIT CVALUE_DESCRIPTOR CBIT_FIELD), 6• 16>• CHARACTER)); 
DISPLAY ("ADDRESS = • CAT 

CONVERT CSUBBIT CVALUE_DESCRIPTOR CBIT_FIELD>• 24, 24>• CHARACTER)); 

DISPLAY {ftTHE FOLLOWING IS THE DESCRIPTOR OF A CHARACTER FIELD:"); 
DISPLAY (•TYPE ~ " CAT 

CONVERT <SURBIJ CVALUE_OESCRIPJOR CCHAR_FIELD>• o, 8), CHARACTER>>; 
DISPLAY ("LENGTH = n CAT 

CONVERT CSUBBIJ CVALUE_DESCRIPJOR <CHAR_FIELDl• 8• 16>• CHARACTER>>; 
DISPLAY (•ADDRESS = " CAT 

CONVERT CSUBBII CVALUE_DESCRIPTOR CCHAR_FIELD>• 24• 24), CHARACTER)); 

DISPLAY C"GOOO BYE"); 
stop; 
FINB 

% This example program displays.the descriptor af fixed• bit• and 
% character ftelds. The type• length, and address are displayed 
% for each descriptor. 

\ 

1137833 9-215 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WAIT 

The WAIT verb stops the program from processing until one of the events specified in the event list 
is TRUE. The WAIT verb returns a FIXED value which is the ordinal position (zero-relative) of the 
position in the event list of a TRUE event. Scanning begins with the ordinal position within the event 
list specified by <start-position> and continues to the last event. If no events are TRUE, the scanning 
continues with the first event in the ev1~nt list until an event becomes TRUE. The events in the event 
list are identified by the keywords TJME_TENTHS, SPO_INPUT_PRESENT, DC_IO_COM
PLETE, Q_WRITE_OCCURRED, READ_OK, and WRITE_OK. If <start-position> is not spec
ified, <start-position> defaults to 0 (zero). If the value of <start-position> is greater than (number 
of events in the event list) minus 1, the MCP terminates the program with the following message. 

INVALID COMPLEX.WAIT COMMUNICATE RECEIVED 

SDL and UPL Syntax: 

~WAIT-------------------~---~-------~~--------------·------~ 

~-- [<start-position>] ____ J 

>">---( 
r _----------------~-----------·---~: : 

L TIME_ TENTHS (<wait-time>) )o C 

B C>oo--- SPO_INPUT _PRESENT C 

A 

DC_IO_COMPLETE------------~---------------------------------·-----t 

O_WRITE_OCCURRED ( <file-id-1>) 

READ_OK ( <file-id-2> -----------· --------------------- ) 

----- [ < queue-family-id-1 >)----

WRITE_OK ( <tile-id-3> --------L.------------·--------------) 
·----- [ <queue-family-id-2>] -------

c >---------------------~----); 
....__ __ WHEN <when-expression>----

Syntax Semantics: 

start-position 
This field can be any valid integer, identifier, or expression that returns a binary value and 
specifies the ordinal position (zero relative) within the event list in which to begin the scanning 
for a TRUE event. If <start-position> is not specified, the value of <start-position> defaults 
to 0 (zero). 

TIME_ TENTHS 

9-216 

The keyword TIME_ TENTHS is an event in the event list. The value of <wait-time> deter
mines when the TIME_ TENTHS event becomes TRUE. If the value of <wait-time> is equal 
to 0 (zero), the event is always TRUE. If TIME_TENTHS is specified in the event list, it must 
be the first event in the event list. 



wait-time 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WAIT 

This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value 
and specifies the length of time in tenths of a second to wait in order for the TIME_ TENTHS 
event to become TRUE. The maximum value for <wait-time> is 864,000 (24 hours). 

SPO_INPUT _PRESENT 
The keyword SPO_INPUT _PRESENT is an event in the event list and becomes TRUE when 
a message from the operator at the ODT has been queued to the program. 

DC_IO_COMPLETE 
The keyword DC_IO_COMPLETE is an event in the event list and becomes TRUE when a 
previously initiated data communications read or write operation has been completed. 

Q_ WRITE_OCCURRED 
The keyword Q_ WRITE_OCCURRED is an event in the event list and becomes TRUE when 
a write operation has been performed by another program or process for the queue file specified 
by < file-id-1 >. 

file-id-1 
This field can be any valid SDL/UPL queue file identifier that is opened INPUT or INPUT I 
OUTPUT and specifies the queue file identifier for the Q_ WRITE_OCCURRED keyword. 

READ __ OK 
The keyword READ_OK is an event in the event list and becomes TRUE when the buffer for 
the file specified by < file-id-2 > contains a record waiting to be read. 

file-id-2 
This field can be any valid SDL/UPL file identifier that is opened IN:eUT or INPUT /OUTPUT 
and specifies the file for the READ_OK keyword. 

If < file-id-2 > is the file identifier for a queue file and < queue-family-id-1 > is not Specified, 
the READ_OK returns a TRUE condition even if there are no messages to read. 

queue-family-id-1 
This field can be any valid SDL/UPL identifier and specifies the subscript as the member of the 
queue file family. When the READ_OK becomes TRUE for a member within a queue file 
family, < queue-family-id-1 > contains the value of the member within the queue file that has 
a record in the buffer to be read. 

WRITE._ OK 
The keyword WRITE_OK is an event in the event list and becomes TRUE when the buffer for 
the file specified by < file-id-3 > is empty and waiting for another write operation. If <queue
family-id-2 > is specified, the WRITE_OK event applies to that queue family member. 

file-id-3 
This field can be any valid SDL/UPL file that is opened OUTPUT or INPUT/OUTPUT and 
specifies the file for the WRITE_OK keyword. 

queue-family-id-2 
This field can be any valid SDL/UPL identifier and specifies the subscript as the member of the 
queue file family. 

1137833 9-217 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WAIT 

WHEN 
The keyword WHEN causes an additional restriction of the occurrence of the associated event. 
If <when-expression> evaluates TRUE (rightmost bit equal to 1) and the associated event oc
curs, the event is TRUE. If <when-expression> evaluates FAL,SE (rightmost bit equal to 0) and 
the associated event is TRUE, the event is FALSE. 

when-expression 
This field can be any valid SDL/UPL identifier or expression and specifies the additional restric
tion for the WHEN keyword. 

Example: 

UECLAR£ £V£~T f IXfC, 
5TAf;f f!Xf[; 

EVENT := ·wAlT CSTftFTl CTIME_TE~THS ClO>• 

9-218 

SPO I~PUT PRESE~T, 
,_W~tTf_ofcuR~fO CINQUEUE>· 
~EAO_CK CREMOTEFILE CSTATION1>• 
wRITE_OK CTAPEfilf)); 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WAIT 

Example Program: 

DECLARE OOT_INPUT 
ST AIH_POSITION 
EVENT 

CHARACTER C 3C),. 
FIXED,. 
FIXED; 

FILE DISKFILE CDEVICE = DISK• 
RECORDS = 30/&J; 

DISPLAY c•rHIS PROGRAM USES INPUT ACCEPT FROM THE ODT TO WRITE TO AW 
CAT " FILE CALLED DISKFILE. ENTER BYE AT ANYTIME TO GO TO EOJ•); 

OPEN DISKFILE OUTPUT NEW; 
START_POSif ION := i; 
DO FOREVER.r 

EVENT := WAIT CSTART_POSITION1 CTIME_TENTHS C100)1 % WAIT 10 SECONDS 
SPO_INPUT_PRESENT• 
WRITE_OK CDISKFILE)J; 

CASE EVEN r; 
I• 0 */ DISPLAY C"10 SECONDS HAVE PASSED SINCE LAST WRIT£"); 
1• 1 *' oo; 

ACCEPT ODT_INPUT; 
If OOT_INPUT = "BYE" THEN oo; 

DISPLAY C"GOOD BYE"li 
CLOSE DISKFILE LOCKJ 
STOP; 

END; 
DISPLAY c•oor INPUT ACCEPTED AND WRITE INITIATED"); 
WRITE DISKFILE CODT_INPUT>; 

END; 
I• 2 •I DO FOREVERJ 

DISPLAY (•OK TO WRITE -- ENTER DATA FOR WRITE•); 
IF WAIT CJIME_TENTHS ClOOJ, SPO_INPUT_PRESENT> THEN UNDO; 

EN Di 
END CASE; 

EN Di 
FINI.;: 

% Th-is example 
% until either 
% a message to 
% If a message 
% to DISJffILE. 

1137833 

program uses the WAIT verb to suspend the program 
10 seconds have expired, the operator has queued 
the program• or the buffer of DISKFILE is empty. 
is queued to the program• the message is written 
If BYE is entered the program goes to end of job. 

9-219 



WRITE 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

The WRITE verb causes the SDL/UPL program to write a record to the specified file. 

The file attributes in the FILE declaration statement determine which of the position options (<record
address-identifier >, < remote~key-identifier >, <queue-family-identifier>, or carriage control keyword 
or <channel-number> )can be specified. <record-address-identifier> requires a file with a disk device 
type and random access or a card device type with the ST ACKERS open attribute specified at file open 
time. <remote-key-identifier> requires a file with a device type equal to REMOTE. <queue-family
identifier > requires two file attributes to be specified in the FILE declaration. A device type equal 
to QUEUE and the QUEUE_FAMIL Y_SIZE equal to the number of queue families are required. 
A device type equal to PRINTER is required for the carriage control position options. 

SDL and UPL Syntax: 

-WRITE -------~---... L-- <file-identifier> 

L LOCK,__J <switch-file-id> ( <identifier-1>) ---------
~ .,, 

1--00UBLE -
1-- NEXT 

i--NO 

1-- PAGE 

t--SINGLE 

t-- <channel-number> 

~ 
.. --<record address 1dent1f1er > 

~ ..... ---- <remote-key-identifier>------j 

L_____ <queue-family-identifier> 

"' 

-

>~----~------T-

0
-p----=-i-----(<record>)i----------------------------------------------------------• 

>~---~~~~~~-~~~~~--i--

___ WITH RESULT _MASK <address-generator> _____ _J 

>~----------~---~---J--~--------~-------., 

--- ON EOF <statement-1>; -------

>>----....-----------------------------------------------.----------------------------------------~ 

---- ON EXCEPTION <statement-2> ; 

>>---......---------------------------------------~-------------------------------------,.------------~ 

--- ON INCOMPLETE 10 <statement-3>; 

Syntax Semantics: 

address-generator 

9-220 

This field can be any valid SDL/UPL address generator and specifies the name of the exception 
mask field. 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WRITE 

LOCK 
The keyword LOCK reserves a disk record for exclusive use of the program until a write 
operation is performed that does not specify LOCK. 

file-identifier 
This field can be any valid SDL/UPL file identifier that is declared in the FILE declarations and 
specifies the file in which the write operation is to take place. 

switch-file-id 
This field can be any valid SDL/UPL switch-file identifier that is declared in the FILE declara
tions and specifies the file in which the write operation is to take place. 

identifier- I 
This field can be any valid SDL/UPL identifier and specifies the switch file number. 

DOUBLE 
The keyword DOUBLE is used for files that are declared with a device type equal to PRINTER 
and causes the paper on the line printer to space forward two lines. 

NEXT 

NO 

The keyword NEXT is used for files that are declared with a device type equal to PRINTER 
and causes the paper on the line printer to skip to the next channel. 

The keyword NO is used for files that are declared with a device type equal to PRINTER and 
causes the paper on the line printer not to space forward. 

PAGE 
The keyword PAGE is used for files that are declared with a device type equal to PRINTER 
and causes the paper on the line printer to space to the top of page. 

SINGLE 
The keyword SINGLE is used for files that are declared with a device type equal to PRINTER 
and causes the paper on the line printer to space forward one line. 

channel-number 
This field can be any valid SDL/UDL integer and is used for files that are declared with a de
vice type equal to PRINTER. < channel-number > specifies the channel number to advance 
to. The valid values for < channel-number > can be between 1 and 12, inclusive. 

record-address-identifier 
This field can be any valid SDL/UPL identifier and specifies the key location of a record within 
a file. <record-address-identifier> is valid for files with a device type equal to DISK RANDOM 
and DISK____PACK RANDOM. <record-address-identifier> is also valid for card files that are 
opened with the ST ACKERS open attribute. 

<record-address-identifier> must be a binary value or an expression that returns a binary value. 
If the value is greater than 24 bits, only the rightmost 24 bits are used. For card files, the binary 
value of <record-address-identifier> must be less than or equal to 7, corresponding to a stacker 
available on the device. For example, if only two stackers are available on the card device, <rec
ord-address-identifier> equal to 3 is not valid. 

1137833 9-221 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WRITE 

remote-key-identifier 
This field can be any valid SDL/UPL identifier and specifies the relative station number (RSN) 
in the remote file to which the record is to be written. 

<remote-key-identifier> is valid for files with a device type equal to REMOTE. The data type 
of <remote-key-identifier> must be equal to CHARACTER with a length of 10 bytes. The first 
three bytes (relative station number) of <remote-key-identifier> defaults to the character "001" 
if the maximum number of stations in the remote file is equal to 1. The maximum number of 
stations is specified in the FILE declarations. For example, specifying the following file attributes 
for a remote file causes the maximum number of stations for the remote file to be five. 

(DEVICE = REMOTE, NUMBER_OF_STATIONS = 5, REMOTE_KEY) 

Refer to the REMOTE_KEY file attribute for the format of <remote-key-identifier>. 

queue-family-identifier 

TOP 

This field can be any valid SDL/UPL identifier and specifies the family number in the queue 
file in which to write the record. 

<queue-family-identifier> is valid for files with a device type equal to QUEUE and with the 
QUEUE_F AMIL Y _SIZE greater than 1. 

The keyword TOP is used for fil1~s that are declared with a device type equal to QUEUE and 
causes the record to be written at the front of the queue instead of at the tail. If a record is 
written at the front, a program that reads from the queue file reads this record. 

record 
This field can be any valid SDL/UPL literal, identifier, or expression that returns a value and 
specifies the data record to be written. 

ON EOF 
For printer files, the keywords ON EOF cause the program to perform <statement-· I> if the 
end of page was encountered on the line printer. A printer file can take the ON EOF branch 
on reaching the end of page if the END_OF _p AGE_ACTION file attribute is specified in the 
FILE declaration statement. 

For queue files, the keywords ON EOF cause the program to perform <statement-I> if the val
ue of <queue-family-identifier> was out of range. 

ON EXCEPTION 
The keywords ON EXCEPTION cause the program to perform < statement-2 > when an excep
tion is encountered on the write operation and all the MCP retries are exhausted. For queue files, 
< statement-2 > is performed wh~:n <queue-family-identifier> is out of range. 

ON INCOMPLETE_IO 

9-222 

The keywords ON INCOMPLETE_IO cause the program to perform < statement-3 > . For 
queue files, the INCOMPLETE_JO branch is performed when the number of records in the 
queue contains the value specified in QUEUE_MAx_MESSAGES file attribute. For other files, 
the INCOMPLETE_IO branch is performed when the write operation could not complete be
cause the MCP had not physically completed writing the previous record. This occurs frequently 
with printer files. 



statement- I 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WRITE 

This field can be any valid SDL/UPL statement and is performed when the ON EOF keywords, 
are specified in the WRITE statement for a printer file, and the end of the page is encountered 
on the line printer during the write operation. For queue files, if an exception occurs, the value 
for <queue-family-identifier> is out of range. 

statement-2 
This field can be any valid SDL/UPL statement and is performed when the ON EXCEPTION 
keywords are specified, an exception is encountered, and the MCP has exhausted all the retries. 

statement-3 
This field can be any valid SDL/UPL statement and is performed when the ON 
INCOMPLETE_IO keywords are specified for a queue file and the queue is full, or the write 
operation could not complete because the previous write operation was not complete. 

WITH RESULT_MASK 
The keywords WITH RESULT _MASK cause the program to use < address-generator> as the 
exception mask identifier. 

Variable-Length Records 

The syntax of variable-length record write operations is identical to the syntax on fixed length records; 
however, the structure of the identifier and the value of the length field for the data differ from those 
for a fixed-length identifier. 

Variable-length records are allowed only in tape and serial disk files that are declared with the file attri
bute VARIABLE. The RECORDS file attribute of the file must be large enough to hold the largest 
record to be written. 

The first four bytes (characters) of the variable-length identifier contain record length information. On 
write operations, this record-size value must be included in the record. 

The record length is equal to the number of bytes in the record plus the number of bytes in the record
size field (always 4). The record size is specified as a decimal value. 

Example Program that Writes Variable-Length Records: 

FILE PAY~Oll CCEvICE = CISK• VARIABLE>; 

CECLA~E 01 CISK_~ECC~C 
02 HEC_SIZE 
02 OATt\ 

x 

DATA :: "ABCOE"; 
liEFEf. X lC CATA; 
REDUCE X U~lJL LAST Nf' ~ n; 
REC_SIZE := l(NGTrCXl i 4; 
WRITE PAY~Oll CO!S~_fiECCFO); 

CLCS£ PAYROLL LOCK; 
STLJPi 
FINI; 

1137833 

CHAFACTEhC80)• 
CHARi\CTff.(4),. 
CHM~ACT£RC76)., 

~EF£f1£NC£; 

9-223 



WRITE 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

To process variable-length records, the MCP builds a single buffer whose size is equal to the declared 
record size multiplied by the blocking factor. Variable-length records usually have a blocking factor 
equal to 1 (RECORDS = N/l). The MCP reads into its buffer as many complete logical records as 
it can. Logical records are not divided across physical record boundaries. 

The following table shows example record numbers and associated record sizes in bytes. Assume the 
program specifies a record size equal to 240 bytes and the records and record sizes are: 

Record Data Record Size in Byltes 
Number (Including Record Size Field) 

1 48 
2 63 
3 80 
4 53 
5 31 

Figure 9-7 shows the contents of the 240-byte program buffer after a write operation is performed. 

Record 1 

48 bytes 
* 
* 

Record 2 

63 bytes 

* 

* 
Record 3 

80 bytes 

* 

* 

49 empty bytes 

(hex zeroes) 

------------- 240 bytes ---------------t 
G18310 

Figure 9-7. Contents of Program's Buffer After a Write Operation 

Only records 1, 2, and 3 are written into the buffer because the next record (record 4) is too long 
to be stored in the remaining portion of the buff er. The unused portion of the buff er is filled with 
hexadecimal zeros. 

Examples: 

WRITE DISKf lLE Cf IELO); 
CN fOf STOP; 

WRIT£ CI5K CINDEXJ Cf IflC); 
ON fOF STOP; 
LN EXCEPTIO~ DISPLAY <"EXCEPTION"); 

WRITE ~UEU£fllE fN~MBE~J <FIELD>; 
CN INCOHPLETE_IC DISPl~Y ("QUEUE FULL"); 
ON EXCEPTIO~ DISfl~Y ("INVALID KEY"li 

WRITE REMOTEFILE CKEYJ CFIELC); 
CN EXCEPTIC~ OISfL~Y C"JNV~LID KEY"); 

9-224 

., 
'• 
% 

' ., ,,. 
% 
% 

% 
•1 ,. 
% 
% 
x 

% 
•t 
~ 

% 
x 

Wr i t es to the tit e 
labeled OISKFILE. 

Wr it es to the file 
labeled DISK at 
record address = 
the value of INDEX. 

Writes to the f i le 
labeled QUEUEFILE 
at oueue famitv = 
the value of 
fttUMBfR. 

Writes to the f i le 
labeled R£MOTEFILE 
at remote tc ev = the 
value of KEY. 



Example Program: 

DECLARE OOT_INPUT 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

CHARACTER C30); 

FILE DISK CDEVICE = DISK, 
RECORDS = 30 /6 h 

PRINT COEVICE = PRINTER, 
RECORDS = 132/ll• 

TAPE CDEVICE = TAP£, 
RECORDS = 180/tJ, 

CARD CDEVICE = PUNCH BACKUP DISK, 
RECORDS = 80/lH 

OPEN DISK OUTPUT NEW; 
OPEN PRINT OUTPUT NEW; 
OPEN TAPE OUTPUT NEWJ 
OPEN CARD OUTPUJ NEW; 
DO HAIN_LOOP FORE~ERi 

WRITE 

DISPLAY C"ENTER ANY 30 CHARACTERS FOR THE DATA RECORD OR ENTER" 
CAT " BYE FOR EOJ•); 

ACCEPT oor_INPUTi 
IF OOT_INPUT = "BYE" THEN UNDO MAIN_LOOP~ 

WRITE DISK CODT_INPUT>; 
ON EXCEPTION oo; 

DISPLAY (•EXCEPTION ENCOUNTERED ON DISK WRITE">; 
UNOO MAIN_Loop; 

END; 

WRITE PRINT COOT_INPUTJJ 
ON EXCEPTION oo; 

DISPLAY <"EXCEPTION ENCOUNTERED ON P~INT WRIJE•J; 
UNDO MAIN_LOOPi 

ENO; 

WRITE TAPE coor_INPUJ); 
ON EXCEPTION oo; 

DISPLAY ("EXCEPTION ENCOUNTERED ON TAPE WRITE"li 
UNDO MAIN_LOQP; 

ENO; 

1137833 9-225 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WRITE 

WRITE CARD CODT_INPUJ); 
ON EXCEPTION oo; 

DISPLAY <"EXCEPTION ENCOUNTERED ON CARD WRlJ[•); 
UNDO MAIN_LOQP; 

EN Di 

E"ND MA 1 N_l OOP; 
DISPLAY C"GOOD BYE•>; 
CLOSE DISK RELEASE; 
CLOSE PRINT RELEASE; 
CLOSE TAPE RELEASE; 
CLOSE CARD RELEASE1 
STOPi 
FINI; 

% This example program accepts input from the ODT and uses the 
% WRITE verb to write to a diskP printer, tape, and card file. 
% If BYE is entered. the program goes to end of job. 

9-226 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WRITE FILE HEADER 

WRITE_FILE_HEADER 

The WRITE_FILE_HEADER verb writes the disk file header information for the file specified by 
<file-identifier> . This verb is intended only for use in B 1000 system software, and extreme caution 
is advised when writing disk file header information. 

SDL Syntax: 

- WRITE_FILE_HEADER (<file-identifier>, <destination>); ----------------+ 

> r ~11 --- ON FILE_MISSING <statement·1>; --------..&.-------------t 
------ ON FILE_LOCKED <statement-2>; ------

Syntax Semantics: 

file-identifier 
This field can be any valid SDL literal, identifier, or expression that returns a character value 
with a CHARACTER data type and specifies the name of the file. <file-identifier> is expected 
to be a 30-character value, where the first 10 characters are the pack identifier, the second 10 
characters are the multifile identifier, and the third 10 characters are the file identifier. Each of 
the file identifiers is left-justified in their respective fields. If only one file name exists, the file 
name is left-justified in the second 10 characters of the file name and the first and third 10 char
acters are set to blank. 

destination 
This field can be any valid SDL identifier and specifies the receiving field for the disk-file-header 
information. This field is expected to be from 576 to 4320 bits in length, depending upon the 
number of disk areas allocated for the file. 

ON FILE_MISSING 
The keywords ON FILE_MISSING cause <statement- I > to be performed if the file name spec
ified by < file-identifier> is not in the disk directory. 

ON FILE_LOCKED 
The keywords ON FILE_LOCKED cause < statement-2 > to be performed if the file name 
specified by <file-identifier> is opened by another program with the LOCK open option set. 

statement- I 
This field can be any valid SDL statement and is performed if the keywords ON 
FILE_MISSING are specified and <file-identifier> is not in the disk directory. 

statement-2 
This field can be any valid SDL statement and is performed if the keywords ON 
FILE_LOCKED are specified and <file-identifier> is currently opened with the LOCK open 
option set. 

1137833 9-227 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WRITE FILE HEADER 

Example: 

OECLA~E DISKFILE CH~R~CT[R (30>• 
SCUhCE BIT C4320); 

DISKf llE := 
"USE~ ~ASTE~ FILE "; 

~EAO_Flll_HEAOER CCIS~f Ilf, SOURCf); 
c~ f ILE_~ISSI~G s1op; 
ON f Ilf_LOCKEC STlP; 

Example Program: 

DECLARE FILENAME 
DESTINATION 
SOURCE 
DfH_LENGTH 

DO HAIN_LOOP FOREVERi 

CHARACTER C30) • 
BIT C4.J2Q),. 
SIT C4320J, 
BIT C16H 

% The dis~ file header for 
% the fife identifier 
% USEP/MASTEP/FILE is 
% \olritten usinq the 
~ information in identifier 
? SOUiRCE. 

DISPLAY (•ENTER THE lO CHARACTER FILE NAME LEFT JUSTIFIED OR ENTER • 
CAT •BYE TO GO TO EOJ•); 

ACCEPT FILENAME; 
IF FILENAME = ·BYE· THEN on; 

DO READ_OfH; 

DISPL~Y c·~ono BYE•); 
STOP; 

END; 

READ_FILE_HEADER CFILENAME,. OESTINATION)i 
ON fILE_HISSING oo; 

DISPLAY c•rtLE • CAT FILENAME CAT 
"NOT IN THE DISK DIRECTORY"li 

UNDO R EAD_DfH; 
ENO; 

ON FILE_LOCKED no; 

ENO READ_Df H; 

DISPLAY (•FILE • CAT FILENAME CAT 
" IS LOCKED .. H 

UNDO RE AO_Df Hi 
END; 

DFH_LENGTH :: SUBBIT CDESTINATION• 91• 16); 
SOURCE := DESTINATION; 

WRITE_FILE_HEADER CFILENAHE• SUBBIT CSOURCE~ o, OFH_LENGfHJ); 

DISPLAY c•JHE FOLLOWl~G DISK FILE KEADER INFORMATION WAS WRITTEN•); 
DISPLAY <CONVERT CSUBBIT CSOURCE, o. OFH_LENGTHJ, CHARACTER)); 

END HAIN_LOQP; 
FINli 

% This example program accepts from the ODT a 30-character file name 
% and rewrites the disk file header information on top of the 
% existing disk file header-0 If BYE is entered• the program goes 
% to end of job. 

9-228 



WRITE_FPB 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WRITE FPB 

The WRITE_FPB verb writes the file parameter block (FPB) of the file indicated by <file-identifier> 
or <file-number> and uses the FPB information stored in <source> . 

SOL Syntax;: 

- WRrrE_FPB ( ------- <tile-identifier> ------....--- , <source>); --------11 
--- <tile-number>-----

Syntax Semantics: 

file-identifier 
This field can be any valid SDL file identifier and specifies the file name from which to write 
the FPB information. 

file-number 
This field can be any valid SDL switch file number and specifies the file number within the pro
gram from which to write the FPB information. 

source 
This field can be any valid SDL identifier and specifies the name of the field used to obtain the 
FPB information. The length of this field must be 2096 bits. 

Example: 

DEClA~E fPB_INFO Ell C1440J; 
WRITE_FPB CCIS~f ILE• ffE_INf(); 

Example Program: 

% The file oarameter bloc~ 
X information of the file OISKfllE 
~ i s st c r e d into ·i dent i f i er 
% fPB_HffO. 

Refer to the READ_FPB verb for an example program using the WRITE_FPB verb. 

1137833 9-229 



B 1000 Systems SDL/UPL Reference Manual 
Verbs 

WRITE __ OVERLA Y 

The WRITE_OVERLA Y verb writes to the disk address specified in <overlay-information> and uses 
the data segment beginning and ending addresses specified in <overlay-information>. 

The WRITE_OVERLA Y verb is used by the SDL intrinsics. 

SDL Syntax: 

~-WRITE_OVERLAY (<overlay~nformation>); ~~~~~~~--~~~~~~~~~~~~~~ 

Syntax Semantics: 

overlay-information 
This field can be any valid SDL literal, identifier, or expression that returns a 76-bit value and 
has the following format. 

Bits Description 

0-3 EU == 0 (not used) 
4-27 Base-relative beginning address 
28-51 Base-relative ending address 
52-75 Disk address, relative to program area. 

Example: 

UECLARE 01 OYE~LAY_RECC~[ 

0 3 EU 

EU := li 

03 BEG!l\_Af:Cft 
03 END_'10CF 
03 LISK_~OOJ, 

BEGI~ AOOF := ;11E1A2;; 
E~O_ACC~ := @71f842~; 

BIT C76>• 
BIT C4>~ 

SIT (24>• 
BIT (24}• 
BIT C24); 

CISK_AUOF := ~008A7e~; 
W~ITE_LV[FLAY COVfFLAY FECOB[); 

9-230 

% The data seqment at dis~ 

% address ~ooeA7f; ;s 
% stored in the p~oqram's 
% base-to-limit area 
l beqin~inQ at ~71E7A2~ 
% and e~dinq at ;11F8420~. 



X_ADD 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

X ADD 

The X_ADD verb causes the add operation to be performed with < expression-1 > and <expression-
2 >. < expression-1 > and < expression-2 > are treated as bit strings and the full length of each is used, 
not just the rightmost 24 bits. 

If < expression-1 > or < expression-2 > are different lengths, the shorter is padded on the left with 
binary zeros. The length of the sum is equal to the length of the longer of < expression-1 > or <ex
pression-2 > . 

SDL and UPL Syntax: 

- X_ADD ( <expression-1>, <expression-2>) 

Syntax Semantics: 

expression-1 
This field can be any valid SDL/UPL expression and specifies the first operand for the extended 
arithmetic add operation. 

expression-2 
This field can be any valid SDL/UPL expression and specifies the second operand for the ex
tended arithmetic add operation. 

Examples: 

X := X ACC {TIMER~ CTI~E~ - 1000)); 

1137833 9-231 



X_DIV 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

The )(_DIV verb causes the divide operation to be performed with <expression-I > and <expression-
2 > . <expression-I > is divided by < expression-2 > . <expression-I > and < expression-2 > are treated 
as bit strings and the full length of each is used, not just the rightmost 24 bits. 

The length of the quotient is the length of <expression- I > . 

SDL and UPL Syntax: 

- X_DIV ( <expression-1>, <expression-2> ) 

Syntax Semantics: 

expression- I 
This field can be any valid SDL/UPL expression and specifies the first operand for the extended 
arithmetic divide operation. 

expression-2 
This field can be any valid SDL/UPL expression and specifi<~s the second operand for the ex
tended arithmetic divide operation. 

Examples: 

X := X DIV <TIMER~ CTI~f~ - 100~)); 

9-232 



X_MOD 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

X MOD 

The X __ MOD verb causes the modulo operation to be performed with <expression-I> and < expres
sion-2 > . < expression-2 > is the modulus. <expression-I > and < expression-2 > are treated as bit 
strings and the full length of each is used, not just the rightmost 24 bits. 

The length of the residue is the length of <expression-I > . 

SDL and UPL Syntax: 

-X_MOD ( <expression-1>, <expression-2>) 

Syntax Semantics: 

expression-I 
This field can be any valid SDL/UPL expression and specifies the first operand for the extended 
arithmetic modulo operation. · 

expression-2 
This field can be any valid SDL/UPL expression and specifies the second operand for the ex
tended arithmetic modulo operation. 

Examples: 

X := X MCO C~12J45~K~. ~2374~); 

X := X MCC CTIME~. CTl~E~ - 10001}; 

1137833 9-233 



X_MUL 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

The )(_MUL verb causes the multiply operation to be performed with <expression-I > and < expres
sion-2 > . <expression-I > and < expression-2 > are treated as bit :strings and the full length of each 
is used, not just the rightmost 24 bits. 

The length of the product is the sum of the lengths of <expression-I > and < expression-2 > . This 
sum cannot exceed 65,535 bits. 

SDL and UPL Syntax: 

~x_MUL(<~p~~o~1>.<~P~"ioo~>)-----------------------~ 

Syntax Semantics: 

expression- I 
This field can be any valid SDL/UPL expression and specifies the first operand for the extended 
arithmetic multiply operation. 

expression-2 
This field can be any valid SDL/UPL expression and specifies the second operand for the ex
tended arithmetic multiply operation. 

Examples: 

X ·- X MUL C@45HK@, ~2374~); 

X := X MLL CTTME~~ CTI~E~ - 10U0)); 

9-234 



X_SUB 

B 1000 Systems SDL/UPL Reference Manual 
Verbs 

The X __ SUB verb causes the subtraction operation to be performed with <expression-I > and <ex
pression-2 >. <expression-I> and < expression-2 > are treated as bit strings and the full length of 
each is used, not just the rightmost 24 bits. 

If <expression-I> and < expression-2 > are of different lengths, the shorter is padded on the left with 
binary zeros. The length of the difference is equal to the length of the longer of <expression-I> or 
< expression-2 > . 

SDL and UPL Syntax: 

Syntax Semantics: 

expression-I 
This field can be any valid SDL/UPL expression and specifies the first op<"rand for the extended 
arithmetic subtraction operation. 

expression-2 
This field can be any valid SDL/UPL expression and specifies the second operand for the ex
tended arithmetic subtraction operation. 

Examples: 

x := x_sue C@A9FF~K@, @2374@); 

X := X SUE CTIMEF, CTI~E~ - 1000)); 

1137833 9-235 



ZIP 

B 1000 Systems SDL/UPL Reference Manual· 
Verbs 

The ZIP verb passes control information to the MCP. 

SDL and UPL Syntax: 

- ZIP < MCP-command>; -----------------~-----------------i 

Syntax Semantics: 

MCP-command 
This field can be any valid SDL/UPL literal, identifier, or expression that returns a value and 
specifies a valid MCP control statement as defined in the B 1000 Systems System Software 
Operation Guide, Volume 1, form number 1108982. 

Examples: 

ZIP "SC OPE~"; % Sets the OPEN ootion in the MCP. 

ZIP "EX CMf~LL"; % ~eqins the execut1on of the 
% OMPALL proqram. 

ZIP "CGMPILE P~INT UPL SYNTAX"; % Program PRINT is to be compiled 
7. for svnt~x ontv. 

ZIP "SV LPA"; % The MCP is reouested to reserve 
l ljne print~r LPA. 

9-236 



B 1000 Systems SDL/UPL Reference Manual 

SECTION 10 
COMPILER OPTIONS AND PASSES 

This section describes the compiler options and the conditional compilation facility available in the 
SDL/UPL compiler. Additionally, a brief description of the function of the four passes of the SDL/ 
UPL compiler is presented. 

COMPILE DECK 

The compile deck is a card file that contains the MCP control commands and the SDL/UPL source 
program. 

To compile an SDL/UPL program from cards, the following control cards are required: 

2COMPILE <program-nawe> ~ITH UFL LIBRARY 
~DATA CAHJS 

• 
• 
<SOL/UPL 5ource cards> 

• 
':ENO 

To compile an SDL/UPL program from a disk file, the following control information is required: 

?COMPILE <program-name> WITH UPL LIBRARY; 
?FILE CARDS NAME <disk-file-name> DISK DEFAULT; 

SDL/UPL COMPILER FILES 

The following are the files used by the SDL/UPL compiler. 

File Description 

CARDS Input file to read source records. 

SOURCE Primary source if the $MERGE compiler-directing 
option is specified. 

NEWSOURCE Updated source output file if the $NEW 
compiler-directing option is specified. 

LINE Line printer file used to print the compile source 
listing. 

ERROR.LINE Line printer file used to print errors generated 
during the compile. 

1137833 10-1 



B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

The $NEW compiler-directing option creates a source file on disk that can have other source images 
merged during compilations. 

Example 

To compile using a source file on disk and to merge additional source images, use the following control 
information. 

?COMPILE <proqr~m-rawe> WITH UPL LIBRARY 
<file stateme~t fer SCURCE file> 
<file statement fer Nf~SOURCE file> 

?DATA CAf;os 
! Ml:FGE 
$ ~EW 

<UPL sou~ce ima~es tc be werqed> 

FUil 
?E~ C 

10-2 



B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

COMPILER-DIRECTING OPTIONS 

All compiler option control records must have an ampersand (&) or dollar sign ($) character in position 
1. The keywords can appear anywhere from positions 2 through 72 and must be separated by a blank 
character. Positions 73 through 80 are reserved for the sequence numbers. 

SDL Syntax: 

T: ~._...,r--r-L--c-R_E_A_T_E_M_A_S_T_E_R_~----..L,,____R_E_c_o_M_P_1 L-E---_ -_ -_ --r---_ -_ -_ -_-_ -_ -_ -_ -_-_ -_ -_ -_ -:_ -_ -_ -_ -:_ -_ -_:----+> A 

L "<multi-file-id>" ----

rE~----------------------------------------------------------------------------<< B 
A r--l C 

1137833 

CSSIZE < cssize-num ber> -----------------------------------1 
DEB UG <sequence-number> ----------------------------------4 
DYNAMICSIZE <dynamicsize-number> ---------------

ESSIZE <essize-number> ----------------------------------1 
INTERPRETER "<file-identifier>" --------------------

INTRINSIC "<multi-file-identifier>" ---------------------------1 
LI B RARY " <file-identifier>" ------------------------

LIB RARY PACK "<pack-identifier>" 

MERGE ----------------------------------------------4 
NSSIZE < nssize-number> ----------------------------1 
PAGE ----------------------------------------------1 
PPSSIZE < ppssize-number> ---------------------------1 
RECOMPILE_ TIMES ---------------------1 
SEQ <base-sequence-number>---------------------------

+ <increment> 

vo10-------------------------------------------------------1 

---- <ending-sequence-number> 

VSSIZE < vssize-number> -----------------------------

10-3 



B 

c 

10-4 

NO 

B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

-
--

ISORY ADV 

AMP 

CHEC 

COD 

CON 

CON 

DETA 

DOU 

ERRO 

EXPA 

FOR 

FREE 

LIST 

LIST 

LOCK 

MON 

MON 

NEST 

NEW 

NO_ 

NO 

PASS 

PROF 

ERSANID 

K 

E 

TROL · 

VERTDOTS 

IL 

BLE 

R FILE -
ND_DEFINES 

MAL_ CHECK 

ZE 

---
ALL 

1---

ITOR -

ITOR_OFF 

ED_PFIOCEDURE 

DUPLICATES 

SOURCE 

END· -
ILE 

FILE -

LE 

RESS· 

BLOCKS -

MCP -
PROCEDURES -

TIMES -

PPRO 

SGL 

SING 

SIZE 

SUPP 

TIME 

TIME 

TIME 

UNO 

USE 

WOR 

ERSCORES_IN FILE NAMES--·-- -
DOTS -

KING_ SET _BYTES ,.., 

l I 



UPL Syntax: 

B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

XMAP~-~~---~~~~~-~~-1 

XREF~~~~~~~~~~~~~~~-1 

XR EF LITERALS ------------1 
XREF _ONLY------------

L :mJ ----c--C-R_E_A_T_E_M_A_S_T_E_R_~---r--rc--R-E_C_O_M_P_I L-E--~~~~~~~~~~~~~~~~~~~~~~~~~~-r--::'.>~ A 

L 11 <multi-file-id>" ---
L_ 

A>-r 
t-- CSSIZE <cssize-number> 

i-- DEBUG <sequence-number> 

t-- DYNAMICSIZE <dynamicsize-number> 

t-- ESSIZE <essize-number> 

t-- INTERPRETER "<file-identifier>" 

t-- INTRINSIC "<multi-file-identifier>" 

1-- LIBRARY "<file-identifier>" 

1-- LIBRARY - PACK 11 <pack-identifier>" 

1-- MERGE 

t-- NSSIZE <nssize-number> 

t-- PAGE 

t-- PPSSIZE <ppssize-number> 

t-- RECOMPILE TIMES -
t--- SEO <base-sequence-number> 

~vo10 

l <ending-sequence-number> 
.....__ 

VSSIZE <vss1ze number> . 

1137833 

+ <increment> 

T 

........ 

...::::... 
-;ii" 

B 

c 

10-5 



B 

c 

10-6 

NO 

B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

-----

-
() 

ADVISORY 

AMPERSAN 

CHECK-

CODE--

CONTROL -

CONVERTD 

DETAIL 

-

-
OTS 

LE 

DOUBLE 

ERROR_F! 

EXPAND_D 

FORMAL_C 

FREEZE 

LIST 

EFINES 

HECK 

LIST ALL 

LOCKI 

NESTED P HOCEDURE 

NEW 

NO_DUPLIC 

NO_SOURC 

PASS_END 

SGL-

SINGLE -

;ATES 

E 

-

;KS 

CEDURES 

TIMES -

SIZE 

SUPPRESS 

TIME_BLO< 

TIME_MCP 

TIME_PRO 

UNDERSCO 

USEDOTS -

WORKING 

XMAP 

RES IN FILE NAMES----- -

SET BYTES -

ERALS 

· XREF 

XREF LIT 

XREF _ONI .Y 

-

] I 



B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

Syntax Semantics: 

$ 

& 

The dollar sign ($) character must be specified in the first position of the control record. If a 
new source file is to be generated by the SDL/UPL compiler, the dollar sign ($) character in 
this control record causes the control record to be excluded in the new source file which is labeled 
NEWSOURCE. 

The ampersand (&) character must be specified in the first position of the control record. If a 
new source file is to be generated by the SDL/UPL compiler, the ampersand (&) character causes 
this control record to be included in the new source file. 

ADVISORY 
The keyword ADVISORY causes the SDL/UPL compiler to include advisory messages in the pro
gram listing. The default is to include advisory messages. 

AMPERSAND 
The keyword AMPERSAND causes the SDL/UPL compiler to include the control records that 
contain the ampersand (&) character in the first position. 

base-sequence-number 
This field can be any 8-digit number and specifies the sequence number where resequencing of 
the source file is to begin. The field is used in conjunction with the SEQ keyword and defaults 
to 1000. 

CHECK 
The keyword CHECK causes the SDL/UPL compiler to check the source file for sequence errors. 

CODE 
The keyword CODE causes the SDL/UPL compiler to list the generated S-machine code in the 
program listing. 

CONTROL 
The keyword CONTROL causes the SDL/UPL compiler to list the compiler control record in 
the program listing. 

CONVERTDOTS 
The keyword CONVERTDOTS causes all the period (.) characters to be converted to underscore 
( __ ) characters for all the SDL/UPL compiler output files. This control option does not change 
the period (.) character in file identifiers to the underscore (_) character. 

CREA TE_MASTER 
The keyword CREA TE_MASTER causes the master information file to be created for subse
quent partial compilation. This control option must be specified in the first record in the source 
file. 

The XMAP compiler option is not allowed when the CREATE_MASTER compiler option is 
specified. 

CSSIZE 
The keyword CSSIZE causes the control stack to be changed to the value specified by < cssize
number > . The SDL/UPL compiler determines the default control stack size used for each pro
gram based on standard algorithms. 

1137833 10-7 



B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

cssize-num ber 
This field can contain any number and specifies the number of entries in the control stack. 

DEBUG 
The keyword DEBUG is only for use in debugging the SDJL/UPL compiler. 

DETAIL 
The keyword DETAIL causes all define identifiers used in the SDL/UPL program to be expanded 
in the program listing. 

DOUBLE 
The keyword DOUBLE causes the program listing to be double spaced. 

DYNAMICSIZE 
The keyword DYNAMICSIZE causes the amount of dynamic memory (in bits) specified by 
< dynamicsize-number > to be used for paged-array pages. The SDL/UPL compiler generates a 
default value based on standard algorithms. 

dynamicsize-number 
This field can contain any number and specifies the amount of dynamic memory in bits to use 
for paged-array pages. 

ending-sequence-number 
This field can be any 8-digit number and specifies the upper-bound sequence number of the 
source records to be excluded in the new source file and compilation of the program. This field 
is used in conjunction with the VOID keyword. 

ERROR_FILE 
The keyword ERROR_FILE causes a separate file to be cr1eated: this file contains only syntax 
errors and warning messages for applicable source images generated during the compilation of 
the SDL/UPL program. 

ES SIZE 
The keyword ESSIZE causes the number specified by < essize-number > to be used for the 
evaluation stack size. The SDL/UPL compiler determines the default evaluation stack size used 
for each program based on standard algorithms. 

essize-num ber 
This field can contain any number and specifies the number of entries allowed in the evaluation 
stack. 

EXP AND_DEFINES 
The EXP AND_DEFINES keyword causes all identifiers used in define identifiers to be included 
in the cross-reference file. This keyword is used in conjunction with the compiler options XREF 
and XREF_ONLY. 

file-identifier 
This field can be any file identifier that follows the B 1000 file-naming convention and specifies 
the file name of the interpreter or the file name of a library file. 

FORMAL_ CHECK 

10-8 

The keyword FORMAL_CHECK causes the actual parameters and values passed to or returned 
from procedures to be checked against their corresponding formal parameters and procedure for
mal types. 



B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

FREEZE 
The keyword FREEZE causes the freeze bit to be set in the object of the File Parameter Block 
(PPB) of the program, and prevents the run structure nucleus of the program from being rolled 
out to disk during execution. 

increment 
This field can contain any number and specifies the number with which to increment the sequence 
number. This field is used in conjunction with the SEQ keyword and defaults to 1000. 

INTERPRETER 
The keyword INTERPRETER changes the name of the interpreter to the name specified by 
<file-identifier>. The default interpreter name is SDL/INTERP 1 S. 

INTRINSIC 
The keyword INTRINSIC changes the multifile identifier of the intrinsic files that are to be used. 
The default multifile identifier is SDL.INTRIN. 

LIBRARY 
The keyword LIBRARY causes the SDL/UPL compiler to include the source records in the file 
specified by <file-identifier> in the compilation of the program. 

LIBRARY _PACK 

LIST 

The keyword LIBRARY_PACK causes the SDL/UPL compiler to expect all library files to be 
on the disk pack specified by <pack-identifier>. 

The keyword LIST causes the program listing to be created. The default is to create the program 
listing. 

LIST ALL 
The keyword LIST ALL causes all of the source file to be listed in the program listing, whether 
or not it was conditionally excluded. Specifying LISTALL turns on LIST while NO LISTALL 
does not turn off LIST. To turn both options off, specify NO LIST. 

LOCK! 
The keyword LOCK! causes the intermediate work files of the SDL/UPL compiler to be locked 
in the disk directory as they are created. 

MERGE 
The keyword MERGE specifies that the primary source file is in a tape or disk file labeled 
SOURCE and the secondary or merging file is a card file labeled CARDS. The card file is merged 
with the tape or disk file based on the sequence number of the input records. 

MONITOR 
The keyword MONITOR causes the run-time tracing of procedure calls to be invoked. 

MONITOR_OFF 
The keyword MONITOR_OFF causes the MONITOR option to be reset. 

multi-file-id 
This field can be any multifile identifier that follows the B 1000 file-naming convention. 

1137833 10-9 



NEW 

NO 

B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

The keyword NEW causes a new source file labeled NEWSOURCE to be created. 

The keyword NO turns off the applicable compiler option that follows the keyword NO. 

NO_DUPLICA TES 
The keyword NO_DUPLICATES causes the SDL/UPL compiler to suppress the check for 
unique identifiers in the source file. This reduces the amount of time needed to compile the pro
gram. 

NO_SOURCE 
The keyword NO_SOURCE causes the SDL/UPL compiler to suppress creation of a program 
listing. This option shortens the size of the SDL/UPL work files and decreases the compile time. 

NSSIZE 
The keyword NSSIZE causes the number specified by < nssize--number > to be used as the name 
stack size. The SDL/UPL compiler generates the default nam1~ stack size used by each program 
based on standard algorithms. 

nssize-n umber 
This field can contain any number and specifies the number of entries allowed in the name stack. 

pack-identifier 
This field can be any valid pack identifier that follows the B 1000 file-naming convention and 
specifies the disk pack name for library files. 

PAGE 
The keyword PAGE causes the SDL/UPL compiler to continue printing the program listing on 
the top of a new page. 

PASS__END 
The keyword P ASS_END causes the SDL/UPL compiler to display the total number of syntax 
errors that have been generated and the total elapsed processor time at the end of each pass of 
the compiler. 

PPSSIZE 
The keyword PPSSIZE causes the number specified by < ppssize-number > to be used as the pro
gram pointer stack size. The SDL/UPL compiler generates the default program pointer stack used 
by each program based on standard algorithms. 

ppssize-n umber 
This field can contain any number and specifies the number of entries allowed in the program 
pointer stack. 

PROFILE 

10-10 

The keyword PROFILE causes a dynamic array to be generated. Each element in the array is 
a counter of the number of times that a transfer of control statement (DO-group, IF statement, 
or CASE statement) is performed. An index into the array appears in the program listing fol
lowing the statement in which control is transferred. The statements with the highest counter val
ue are the most used statements. 



B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

PPROFILE 
The keyword PPROFILE causes a dynamic array to be generated. Each element in the array is 
a counter of the number of times that a procedure is entered. An index into the array appears 
in the program listing following the procedure declaration. The procedures with the highest count
er value are the most used procedures. 

RECOMPILE 
The keyword RECOMPILE invokes the partial compilation facility of the SDL/UPL compiler 
using master information files from a previous compile in which the CREA TE_MASTER control 
option was specified. The RECOMPILE keyword must appear in the first source record to the 
SDL/UPL compiler. 

The XMAP compiler option is not allowed when the RECOMPILE compiler option is specified. 

RECOMPILE_ TIMES 

SEQ 

SGL 

The keyword RECOMPILE_ TIMES causes the SDL/UPL compiler to print the start and stop 
times of each phase of the binding pass when the CREATE_MASTER or RECOMPILE control 
option is specified. 

The keyword SEQ causes the file labeled NEWSOURCE to be resequenced using < base-se
quence-number > as the beginning sequence number and <increment> as the incrementing value. 
The default is to begin at sequence number 1000 and to increment by 1000. 

Refer to the SINGLE keyword. 

SINGLE 

SIZE 

The keyword SINGLE causes the program listing to be single spaced. The default is single space. 

The keyword SIZE causes the SDL/UPL compiler to print the code segment sizes by name at 
the end of the program listing. 

SUPPRESS 
The keyword SUPPRESS causes the SDL/UPL compiler to suppress warning messages in the pro
gram listing. To suppress sequence error messages, specify NO CHECK. 

1137833 10-11 



B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

UNDERSCORES_IN_FILE_NAMES 
The keyword UNDERSCORES_JN_FILE_NAMES is used in conjunction with the CON
VERTDOTS compiler option and causes all the period (.) characters in a file identifier to be con
verted to the underscore (_) character. 

USE DOTS 
The keyword USEDOTS allows the use of the period (.) character as a separator in identifiers. 
The period (.) character separator remains in all output file identifiers. 

VOID 
The keyword VOID interacts wit.h certain records in the file labeled SOURCE. All records that 
have a sequence number which is equal to the sequence number on the VOID compiler option 
record and up to the sequence number specified by <ending-sequence-number> are excluded in 
the NEWSOURCE file and in the compilation. If <ending-sequence-number> is not specified, 
only the record with the sequence number corresponding to the sequence number of the VOID 
control option is omitted. The VOID control option does not delete records in the secondary 
source file that is labeled CARDS. 

VSSIZE 
The keyword VSSIZE causes the number specified by < vssize-number > to be used as the value 
stack size. The SDL/UPL compiler generates the default value stack size used by each program 
based on standard algorithms. 

vssize-number 
This field can contain any number and specifies the size in bits of the value stack. 

XMAP 
The keyword XMAP causes the SDL/UPL compiler to generate a file for use by the SDL/XMAP 
program. The S-machine code generated is associated with the sequence number in the source file. 
The name of the file passed to the SDL/XMAP program is XMAPnnnnnn, where nnnnnn is the 
job number of the compile. The file attributes of the cross-map printer file can be controlled 
through the use of XMAP _LINE internal file identifier in the SDL/UPL compiler. 

The XMAP compiler option is not allowed with a partial recompilation or a create-master com
pile. The partial recompilation is invoked by the RECOMPILE compiler option and the create
master compile is invoked by the CREATE_MASTER compiler option. 

XREF 

10-12 

The keyword XREF causes the SDL/UPL compiler to generate a file for use by the SDL/XREF 
program in which all identifiers specified in the source file are printed in alphabetical order with 
the associated sequence number. The name of the file passed to the SDL/XREF program by the 
SDL/UPL compiler is XREFmmddyy I< time>, where mm is the month, dd is the day, yy is 
the year, and <time> is the current system time. The file attributes of cross-reference printer 
file can be controlled through the use of XREF _LINE internal file identifier in the SDL/UPL 
compiler. The EXP AND_DEFINES compiler directing option must be specified in order for the 
SDL/UPL compiler to cross refrrence define identifiers. 



XREF _LITERALS 

B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

The keyword XREF _LITERALS causes the SDL/UPL compiler to generate a file for use by 
the SDL/XREF program in which all literals specified in the source file are printed in alphabetical 
order with the associated sequence number. The name of the file passed to the SDL/XREF pro
gram by the SDL/UPL compiler is XREFmmddyy/ <time>, where mm is the month, dd is the 
day, yy is the year, and <time> is the current system time. The file attributes of cross-reference 
printer file can be controlled through the use of XREF _LINE internal file identifier in the SDL/ 
UPL compiler. When used in conjunction with the XREF compiler option, the literals and identi
fiers are merged together into the same file. 

XREF_ONLY 
The keyword XREF _ONLY causes the SDL/UPL compiler to generate a file for use by the 
SDL/XREF program in which all identifiers specified in the source file are printed in alphabetical 
order with the associated sequence number. The name of the file passed to the SDL/XREF pro
gram by the SDL/UPL compiler is XREFmmddyy I< time>, where mm is the month, dd is the 
day, yy is the year, and <time> is the current system time. The file attributes of cross-reference 
printer file can be controlled through the use of XREF _LINE internal file identifier in the SDL/ 
UPL compiler. The SDL/UPL compiler does not compile the program. The EXPAND_
DEFINES compiler directing option must be specified in order for the SDL/UPL compiler to 
cross reference define identifiers. 

Examples: 

fositicrs in the Sou,ce Record 
------·----~---~-~-~---------------~--~-----~-~---~---~-~----~-~----~ 
1 I<--·----~---~-~ 2-72 ---------~----~------~--~--------~-~>I 73-80 

~ XFEF X~AP XfEF_LillHALS CHEC~ FO~MAL_CHECK 00000100 

& lltiRARY "CEFINE5fl 00000200 

R LIST CCNTRUL 

1137833 10-13 



CONDITIONAL COMPILATION 

The conditional compilation facility selectively includes or excludes blocks of source images without 
physically adding or removing the source images. 

The conditionally included records are always written to a new file (if one is created), whether or not 
the records are compiled. However, if the conditionally excluded records are to be printed with the 
source listing, the LIST ALL compiler option must be specified. If the LIST ALL compiler option is 
not specified, only those conditionally included source images that are compiled are printed. 

All source images containing conditional compilation statements must have an ampersand (&) character 
in position 1 of the record, with the exception of <nested-block> . In addition, a complete conditional 
inclusion statement must be contained in one ampersand record. The conditional statement can be spec
ified in free-form format on the source record in positions 2 through 72. Positions 73 through 80 can 
contain sequence numbers. 

SDL and UPL Syntax: 

r l -& -r- SET -----_,j_.__ ___ <boolean-identifier> ------'----------------1 
L__ RESET __ ___. 

i - & IF ---''---c---N-

0
-T-~------- < boolean-identfier> -------r--A-N-

0
--~_..... ______ >, 

OR 

>>------- <source-images> J 
'-----<nested-block> --- L ELSE 

> 
---- <source-images> ----1 

L __ <nested-block>----

> END-------------------~-------------~-----------~----~ 

10-14 



B 1000 Systems SDL/UPL Reference Manual 
Compiler Options and Passes 

Syntax Semantics: 

& 
The ampersand (&) character specifies that a conditional compilation statement follows. 

SET 
The keyword SET causes <boolean-identifier> to have a TRUE value. 

RESET 
The keyword RESET causes <boolean-identifier> to have a FALSE value. 

boolean-identifier 

IF 

NOT 

AND 

OK· 

This field can be any identifier and specifies the boolean indicator used to set, reset, or to test 
in the IF condition compilation statement. 

The keyword IF designates <boolean-identifier> to be tested for a TRUE or FALSE value. 

The keyword NOT negates the current value of <boolean-identifier> in the test for a TRUE 
or FALSE value. 

The keyword AND requires that the two boolean identifiers both evaluate to a TRUE value in 
order for the condition to be TRUE. 

The keyword OR requires that at least one of the boolean identifiers evaluate to a TRUE value 
in order for the condition to be TRUE. 

source-images 
This field can have any group of valid SDL/UPL statements specified and are included in the 
compilation of the program if the evaluation of the IF condition is TRUE. 

nested-block 
This field can be another IF conditional compilation statement. 

ELSE 
The keyword ELSE causes <source-images> or <nested-block> to be included in the 
compilation of the program if the evaluation· of the IF condition is FALSE. 

1137833 10-15 



Example: 

B 1000 Systems SDL/UPL Reference;: Manual 
Compiler Options and Passes 

The following is the result of compiling the example. 

Positions in the Source Record 

t 1<~-~--~--~------------- z-12 -------------~-~---~-~-~---->1 13~eo 

& SET A B DEBUG 
& RESET 0 E 
DECLARE CA.Bl FIXEDJ 
& If A ANO E 
A : = Bi 
& ELSE 
A := B CAT 8+5; %WHOLE SOURCE IMAGE IS INCLUDED 
l IF DEBUG 
B := A; 
& END 
& END 
& IF B OR 0 
BUMP Bi 
& ELSE 
BUMP A; 
& ENO 

The following is the result of co•piling the example. 

DECLARE <A•Bl FIXEDi 
A := B CAT 8+5; %WHOLE SOURCE I~AGE IS INCLUDED 
B := A; 
BUMP e; 

10-16 

00000100 
00000200 
00000300 
00000400 
00000500 
00000600 
00000700 
00000800 
00000900 
00001000 
00001100 
00001200 
00001100 
00001400 
00001500 
00001600 

00000300 
00000700 
00000900 
00001300 



FUNCTIONS OF EACH COMPILER PASS 

The first compiler pass merges patches from the file labeled CARDS with the file labeled SOURCE, 
expands all definitions declared with the DEFINE statement, handles file declarations, and writes the 
results to an intermediate file labeled PFILE. 

The second pass uses the PFILE to parse data declarations, forward procedure declarations, switch
file dedarations, and procedure declarations, including formal parameter declarations. The results are 
written to a second intermediate file labeled IFILE. 

The third pass uses the IFILE to parse statements and generate object code for all statements. If the 
CREATE_MASTER or RECOMPILE compiler control options are not specified, this object code is 
bound into a final code file. 

The fourth (bind) pass is invoked only if the CREATE_MASTER or RECOMPILE is specified. In 
this case, the SDL compiler binds intermediate code file information into the final code file. 

The organization of an SDL/UPL program is reflected in the structure of each of the three main passes 
of the SDL/UPL compiler. Each pass consists of: 1) a procedure that handles declarations, 2) a proce
dure which handles procedure declarations (this procedure handles declarations, procedures, and state
ments using recursion), and 3) a procedure which handles statements. At the beginning of each pass 
the initialization procedure is invoked and at the end of each pass the termination procedure is invoked. 
The last (bind) pass consists of four parts. These parts are the combine phase (if CREA TE_MASTER 
is specified), the merge phase (if RECOMPILE is specified), the address-fixup phase, and the create
final-code-file phase. 

1137833 10-17 



B 1000 Systems SDL/UPL Reference Manual 

SECTION 11 
HOW TO WRITE AN SDL/UPL PROGRAM 

GENERAL 

The writing of a computer program presupposes an understanding of the problem to be solved and 
a selection of the programming language most suitable to efficiently solving that problem. Assuming 
that these conditions are satisfied, the following considerations should be kept in mind as a guide in 
writing a SDL/UPL source language program. 

WRITING RULES 

The SDL/UPL compiler accepts a card-image input file of records where columns 1 through 72 can 
be used for statements, declarations, or comments and where columns 73-80 are the record sequence 
numbers and/or identification field. 

The coding can be specified in a completely free form, that is, any number of statements, declarations, 
or comments can appear on a single record or over as many records as desired. Column 72 is consid
ered adjacent to column 1 of the next record. Extra spaces can be used freely throughout the SDL/ 
UPL record line to improve the readability of the text. A percent sign (OJo) character denotes that the 
rest of the record is composed of comments. It can be used to delimit the scan procedure, thus increas
ing compile speed. The following shows an example of using the IF statement. 

IF X EQL Y THEN X := o; i. Each t ;n.e on the oaqe represents 
ELSE X := 1; % a separate reccrd. 

FORM OF AN SDL/UPL PROGRAM 

Programs are divided into logical units called procedures, each having a procedure head at its beginning 
and being terminated with, and END statement. Procedures have an internal structure as described in 
Section 7. A procedur~ has a definite ordered relationship to all other procedures within a program 
from either a side-by-side (parallel procedure) or subordinate (nested procedure) position in that pro
gram. The ordering inherently defines the scope or range of an identifier and the procedures that can 
invoke from a given procedure. 

The main program (lexicographic level 0) is considered a procedure except that it has no procedure 
head or END statements and therefore cannot be recursively invoked. · 

Identifiers and nested procedures that are used within a procedure must be declared and completed 
before any executable statements in that procedure. 

The outer-most procedure is considered to be the program. The procedures contained within the pro
gram are considered nested at least one level down, that is, they are on lexicographic level 1 or greater, 
with the maximum depth of 15 sublevels for UPL and 31 sublevels for SOL. Refer to Section 3 for 
a description on the structure of an SDL/UPL program. 

Execution of an object SDL/UPL program starts at the first executable statement in the outermost 
procedure and is the statement that immediately follows all nested procedures. The statements ate per
formed successively from statement to statement within the outermost procedure or until a STOP state
ment is encountered. 

1137833 11-1 



B 1000 Systems SDL/UPL Reference Manual 
How to Write an SDL/UPL Program 

Since the record line format in an SDL/UPL program is very flexible, it is suggested that statement 
levels be indented on new records to improved the documentation references and the general under
standing of a program. Thus, each new procedure can be indented to a new margin, and its corre
sponding END statement can be placed on that same margin. Also, since statements can contain other 
statements (such as DO, IF, and CASE), each lower level statement level can be indented. When a 
higher level is resumed, its statements should be placed at the proper level margin. This is only a sug
gestion. Indentation of statements does not affect the operation of the SDL/UPL program. 

Studying the examples and the detailed descriptions of the SDL/UPL statements and declarations in 
this manual should aid in understanding SDL/UPL program structure. 

CODING EXAMPLES 

Two SDL/UPL programs that read a record, extract 11 fields of seven columns each, convert each 
field to a FIXED number are shown in Figures 11-1 and 11-2. Each shows one method that can be 
used to perform this task. Figure 11-1 shows a straight-forward approach and Figure 11-2 shows the 
recursive-procedure technique which is more typical of an SDL/UPL program. 

I 1-2 

?COMPILE TEST WITH UPL; 
?DATA CARDS 
DECLARE BUFFER CHARACTER C60>• 

CHAR CHARACTER C241-
CF • H• COL) FIXED; 

FILE IN CDEVICE = OISK~ 
RECORDS = 80/lh 

OUT CDEVICE = PRINTER, 
RECORDS = 132/l)i 

OPEN IN INPUH 
OPEN OUT OUTPUT Nfw; 
COL := -7; 
READ IN CBLFFERl; 
DO EXTRACT_fIELO FOREVER; 

IF CBUMP COL BY 7> GTR 70 THEN UNDO EXTRACT_FIELDi 
f := CONV CSUOSTR CBUFFER• COL, 7), FIXED); 
H := Oi 
DO CONVERT_BITS FOREVER~ 

SUBSTR CCHAR· M· 1) == CONY CSUBBIT er~ MP 11. CHARACTER>J 
IF CBUHP H> GTR 23 THEN UNDO CONVERT_BITs; 

END CONVERT_BITSi 
WRlfE OUT CCHAR>; 

END EXTRACT_fIELOi 
CLOSE IN; 
CLOSE our; 
STOPi 
FINI; 
?ENO 

Figure 11-1. S,traight Forward SDL/UPL Program 



B 1000 Systems SDL/UPL Reference Manual 
How to Write an SDL/UPL Program 

?COMPILE TEST WITH UPL; 
?DATA CARDS 
S CSSIZE 40 
S PPSSIZE 50 
fILE IN <DEVICE = DISK• 

RECORDS = 80/11111 
OUT <DEVICE = PRINTER• 

RECORDS = 132/1); 
DECLARE BUFFER CHARACTER CBO>• 

CHAR CHARACTER C24); 
PROCEDURE PROCESS_FIELD CW• Yl; 
FORMAL cw, Y> FIXED; 

SUBSTR CCHAR1 CY-1>· 1) == CONVERT CSUBBIJcw. CY-11, 11, CHARACTER); 
If COECREHENT Y> GTR 0 THEN PROCES~FIELD CW111 Y>; % Recursive Call 

ELSE WRITE orT CCHAR)J 
RE TUR Ni 

END PROCESS_f IELD; 
PROCEDURE PROCESS_SUFFER cx1; 
FORMAL CXl FIXED; 

DECLARE COL FIXED• 
f FIXED; 

COL := 7 * -ex - 111; 
f := CONVERT CSUBSJR CSUffER• COL• 71• FIXEDlJ 
PROCESS_FIELD er, 24); 
IF CDECREMENT X) GTR 0 THEN PROCESS_BUFFER CXJ; % Recursive Call 

ELSE RETURNi 
END PROCESS_BUff ER; 
OPEN IN INPUH 
OP EN OUT OUTPUT; 
READ IN CBUFFER>; 
PROCESS_BtffER Clt); 
Sf op; 
FINli 
?END 

Figure 11-2. SDI./UPL Program Using Recursive-Procedure Technique 

1137833 11-3 



B 1000 Systems SDL/UPL Reference Manual 

APPENDIX A 
RESERVED AND SPECIAL WORDS 

The reserved words used by the SDL/UPL compiler are listed below. 

ACCEPT 
AND 
AS 
BASE 

FILE 
FILLER 
FINI 
FIXED 

REDUCE 
REFER 
REFERENCE 
REMAPS 

BIT 
BUMP 
BY 

FORMAL 
FORMAL_ VALUE 
FORWARD 

RETURN 
RETURN_AND_ENABLE_INTERRUPTS 
SEARCH_DIRECTORY 

CASE 
CAT 
CHANGE 
CHARACTER 
CLEAR 
CLOSE 
DECLARE 
DECREMENT 
DEFINE 
DISPLAY 
DO 
DUMMY 
DYNAMIC 
ELSE 
END 
EQL 
ENTER_ COROUTINE 
EXIT _COROUTINE 
EXOR 

FROM 
GEQ 
GTR 
IF 
INTRINSIC 
LEQ 
LOCK 
LSS 
MOD 
NEQ 
NOT 
OF 
ON 
OPEN 
PAGED 
PROCEDURE 
READ 
READ_FILE_HEADER 
RECORD 

SEEK 
SEGMENT 
SEGMENT_PAGE 
SKIP 
SPACE 
STOP 
SUBBIT 
SUBS TR 
SWITCH_FILE 
THEN 
TO 
UNDO 
USE 
VARYING 
WRITE 
WRITE_FILE_HEADER 
ZIP 

The special words used by the SDL/UPL compiler are listed below. 

1137833 

ACCESS_FILE_INFORMA TION 
BASE_REGISTER 
BINARY 
BINARY_SEARCH 
CHANGE_ST ACK_SIZES 
CHARACTER_FILL 
CHAR_ TABLE 
COMMUNICATE 
COMPILE_CARD_INFO 
COMMUNICATE_ WITH_GISMO 
CONTROL_ST ACK_BITS 
CONTROL_STACK_TOP 
CONSOLE __ SWITCHES 
CONV 
CONVERT 
DATA_ADDRESS 
DAT A_LENGTH 

M_MEM_SIZE 
MONITOR_CHANGE 
MONITOR_RESET 
MONITOR_SET 
NAME_OF _DAY 
NAME_ST ACK_ TOP 
NDL_OP 
NEXT_ITEM 
NEXT_TOKEN 
NOTRACE 
NULL 
OVERLAY 
PARITY _ADDRESS 
PREVIOUS_ITEM 
PROGRAM_SWITCHES 
READ_CASSETTE 
READ_FPB 

A-1 



A-2 

B 1000 Systems SDL/UPL Reference Manual 
Reserved and Special Words 

DATA_ TYPE 
DATE 
DC_INITIA TE_IO 
DE BLANK 
DECIMAL 
DELIMITED_ TOKEN 
DESCRIPTOR 
DISABLE_INTERRUPTS 
DISPATCH 
DISPLAY_BASE 
DMS_CALL 
DUMP 
DUMP _FOR_ANAL YSIS 
DYNAMIC_MEMORY_BASE 
ENABLE_INTERRUPTS 
ERROR_COMMUNICATE 
EV ALU A TION_STAC.K__TOP 
EXECUTE 
FETCH 
FETCH_COMMUNICA TE_MSG_PTR 
FETCH_AND_SA VE 
FIND_DUPLICATE_CHARACTERS 
FREEZE_PROGRAM 
GROW 
HALT 
HARDW ARE_MONITOR 
HASH_ CODE 
HASH_UNPACK 
INITIALIZE_ VECTOR 
INTERROGA TE_INTERRUPT _STATUS 
LENGTH 
LIMIT _REGISTER 
LOCATION 
MAKE_DESCRIPTOR 
MAKE_READ_ONLY 
MAKE_READ_ WRITE 
MESSAGE_ COUNT 

READ __ OVERLA Y 
REFER_ADDRESS 
REFER_LENGTH 
REFER_ TYPE 
REINSTATE 
RESTORE 
REVERSE_STORE 
SAVE 
SA VE _ _8T ATE 
SEARCH_LINKED_LIST 
SEARCH_SERIAL_LIST 
S_MEM_SIZE 
SEARCH_SDL_ST ACKS 
SORT 
SORT __ DELETE 
SORT __ FILE_FIXUP 
SORT __ MERGE 
SORT __ RETURN 
SORT_.-8EARCH 
SORT_.STEP _DOWN 
SORT_.SWAP 
SORT_UNBLOCK 
SWAP 
SPO_INPUT _PRESENT 
THA W __ PROGRAM 
THREAD_ VECTOR 
TIME 
TRACE 
TRANSLATE 
V ALUE._DESCRIPTOR 
WAIT 
WRITE __ FPB 
WRITE __ OVERLA Y 
X_ADD 
)(_DIV 
)(_MOD 
)(_MUlL 
x_suB 



B 1000 Systems SDL/UPL Reference Manual 

APPENDIX B 
THE SOL S-MACHINE 

The SDL S-machine is described in this appendix. 

COMPONENTS OF THE SOL S-MACHINE 

The five basic components of the SDL S-Machine are described as follows. 

Base-Limit Area 
Run Structure Nucleus 
Code segments and segment dictionaries 
File Information Blocks (FIB) and FIB dictionary 
Registers 

Base-Limit Area 

The base-limit area is the memory area for program data. The contents of this area are directly address
able and modifiable by SDL S-operators. This area is bound by the base and limit registers. All data 
addresses in the S-machine are expressed as a bit off set from the base register. Addresses are made 
machine absolute by adding the contents of the base register to the address. The area is broken into 
two divisions: 1) static memory (from base register to dynamic memory base) which is occupied by 
the SDL stacks, and 2) dynamic memory (from dynamic memory base to the limit register) which is 
used for virtual data memory. SDL paged-array page tables and resident pages can occupy the dynamic 
memory area. 

Run Structure Nucleus 

The Run Structure Nucleus of a program contains information used by the MCP and the SDL interpre
ter to run an SDL/UPL program. 

Code Segment and Segment Dictionaries 

Code segments are virtual as in the other S-machines, but the Code Segment Dictionary is segmented, 
corresponding to the page-segment concept in the SDL/UPL language. Each entry in a Master Segment 
Dictionary represents a page of segments in the source. program and points to a subdictionary with 
the entries for those segments. The Master Segment Dictionary cannot be overlayed; the subdictionaries 
can be overlaid. 

File Information Block and FIB Dictionary 

The File Information Block (FIB) and the FIB Dictionary appear in memory, one FIB for each open 
file in use by the running program. The FIB and FIB Dictionary are used by the B 1000 operating 
system for input/output operations. 

Registers 

Registers can be hardware registers or they can be stored in the Run Structure Nucleus, depending on 
the state of the S-machine. The exact format and number of registers is important only to the SDL 
Interpreter. Logically, the registers consist of the next instruction pointer (page, segment and displace
ment), the current lexic level, and the stack top pointers for all stacks. The current lexic level and Dis
play stack pointer are contained in the same register. The registers contain enough information about 
the stacks to check for stack overflows. Underflows are not detected. Registers are initialized from the 

1137833 B-1 



B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

scratchpad area of the Program Parameter Block in the code file. The format of an SDL/UPL scratch 
pad in the code file follows. 

01 SCFATCl-iPAD, 
02 FILLER EJH48),. 
02 PPS - EASE E1TC24},. 

02 ES - E:: ASE BIT<:24h 
02 ES PPS BI rs EITC24h - -()2 vs - EASE BIT<24), 
02 F Ill fR EH<241, 
02 cs BASE EIT<24), -
02 cs - IHTS EITC24), 
02 NS - BASE BITC24), 
02 f lll[h EITC24),, 
02 DISPLAY ti ASE EITC?L&h 
02 f llLER 8ITC4), 
oz PFOFILE _FLA( P.IT<ll, 
02 f ILL[R 8ITC19h 
02 VS BITS EIT<2L+), -
CZ NS - E ITS 6IH24), 
02 f S - BITS E!TC24), 
02 pf' s - EITS EIT<2'4l; 

The concepts just presented are common to all the B 1000 S-machines. The SDL/UPL language does 
not use data segments and data segment dictionaries. These are handled by way of an SDL intrinsic. 

THE BASE-LIMIT AREA 

The base-limit area of main memory is divided as shown in Figure B-1. The arrows indicate the direc
tions of growth. 

B-2 

VALUE NAME DISPLAY 
STACK STACK STACK 

~ L.. ~ 
--;;;>"" ~ -

""'I<-- BASE REGISTER 

G18311 

CONTROL EVALUATION 
STACK STACK 

~ ~ .- ,,,.,. 

PROGRAM 
POINTER 
STACK 

L_ 

" 

DY 
ME =1 :J 

LIMIT REGISTEH ~ 

Figure B-1. Base-Limit Area of an SDL/UPL Program 



Value Stack 

B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

The Value stack contains the value of a data item. The length and data type are kept in the Name 
and Evaluation stack. 

Name Stack 

The Name stack contains the data descriptors, each 48 bits long with one descriptor for every data 
identifier which is currently active (not necessarily addressable) in the program. The data descriptor 
for an array is 96 bits long and occupies two Name stack entries. The Name stack is divided into stack 
frames, each frame containing the descriptors for the names declared in one invocation of a procedure. 
Not all of these stack frames contain currently accessible descriptors. 

Display Stack 

The Display stack contains pointers into the Name stack, one pointer for each lexic level less than or 
equal to the current lexic level. Each pointer locates the base of the frame for currently addressable 
names at that lexic level. Each pointer entry is 32 bits long. 

Control Stack 

The Control stack contains the Name stack pointers which locate the stack frames for every active pro
cedure. Each time a procedure which requires local data or parameter allocations, that is, requires 
space on the Name stack, is entered, a new entry is pushed onto the Control stack to point to its Name 
stack frame. 

Because the data associated with Name stack descriptors is contained in the Value stack, this stack 
is also divided into frames and the base of each frame is recorded in the Control stack as it is allocated. 
In addition to these two pointers, each entry contains the lexic level of the calling procedure and the 
lexic level of the current entry. These are used by the S-machine to maintain the Display stack. Figure 
B-2 shows the format of a Control stack entry. 

[ NAME STACK POINTER EXITED ENTERED VALUE STACK POINTER 
LEXIC LEXIC 
LEVEL LEVEL 

20 BITS 4 BITS 4 BITS 20 BITS 

G18312 

Figure B-2. Format of Control Stack Entry 

Evaluation Stack 

The Evaluation stack is used to hold data descriptors for the evaluation of expressions, which are com
piled into reverse polish strings. The Evaluation stack is also used to build actual parameter descriptors 
before they are transferred to the Name stack for a procedure call. Space for data during expression 
evaluation is allocated on top of the Value stack, which is kept up to date as descriptors are pushed 
onto or removed from the Evaluation stack. 

1137833 B-3 



B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

Program Pointer Stack 

The Program Pointer stack contains the next instruction pointer of a program. With the exception of 
the cycle operator used for looping, all transfers of control in the SDL S-machine are done by means 
of call-type operators. The next instruction pointer is saved for subsequent return by pushing it onto 
the Program Pointer stack. Figure B-3 shows the format of an entry in the Program Pointer stack. 

I SEGMENT 

6 BITS 

G18313 

PAGE 

6 BITS 

DISPLACEM~ 
20 BITS 

Figure B-3. Format of the Program Pointer Stack 

DATA DESCRIPTOR 

The data descriptor is the descriptor in the Name and Evaluation stack. 

Figure B-4 shows the format for a 48-bit long simple, scalar descriptor . 

.__ __ TY~PE~------L-E_N_G_T_H ____ -L-_____ A_D_D_~ 
8 BITS 16 BITS 24 BITS 

G18314 

Figure B-4. Format for a 48-bit Long Simple Descriptor 

The address, expressed in bits, is specified as a bit offset from the base register regardless of the data 
type. 

One of the bits in the type field indicates whether a descriptor is an array descriptor. When this bit 
is on, an additional 48 bits of information is appended. Figure B-5 shows the format for an array 
descriptor. 

TYPE LENGTH OF ADDRESS OF 
ENTRY ARRAY 

PAGE LENGTH BETWEEN NUMBER OF 
SUBSCRIPT ENTRIES ENTRIES 
SIZE 

8 BITS 16 BITS 24 BITS 

G18315 

Figure B·.S. Format of an Array Descriptor 

B-4 



B 1000 Systems SDL/UPL Reference Manual 
The SD L S-Machine 

The page subscript size is used only when the paged array bit is ON in the type field. The page sub
script size specifies the number of bits to shift an array subscript to obtain the corresponding page 
subscript. Page subscript sizes are always a power of two. 

The length between entries is the difference between the address of one element and the address of 
the previous element. This length must be greater than or equal to the length of one entry. 

The type field of a descriptor has a single format, even though some bits are not meaningful in all 
contexts. Figure B-6 shows the bit format of the type field. 

Bit Binary 
Number Value 

0 0 
1 

0 

1 

2 0 

3 0 
1 

4-5 00 
01 
10 

11 

1137833 

BIT 
0 

n = binary 0 or 1 
G18316 

Description 

Indicates a Name stack entry. 
Indicates a Value stack entry. 

This bit is only used when 
the descriptor is on the 
Evaluation stack. 

Indicates a self-relative 
descriptor. 
Indicates a non-self-relative 
descriptor. This bit must be 
ON if bit 2 equals 1. 

Descriptor is not an array 
descriptor. 
Descriptor is an array 
descriptor. 

Not contiguous array. 
Contiguous array. The length 
between elements equals the 
length of one element (bit 2 
must be equal to 1). 

Indicates a BIT data type. 
Indicates a FIXED data type. 
Indicates a CHARACTER 
data type. 
Indicates a VARYING data 
type. Used only in the type 
field of inline descriptors 
which are arguments of a 
construct descriptor formal 
check (CDFC) operator and 
in the argument to a return 

Bit 
Number 

6 

7 

BIT 
7 

Binary 
Value 

0 
1 

0 
1 

Figure B-6. Format of the Type Field 

Description 

formal check (RTNC) 
operator. The CDFC operator 
also uses bit 6 in a different 
way: it indicates a varying 
array bound. Inline 
descriptors for other 
operators use bit 0 to 
indicate the presence of a 
filler field. Refer to INLINE 
DESCRIPTOR FORMATS in 
this appendix. 

Not a paged array. 
Indicates a paged array (bit 2 
must also equal 1). 

Not a VARYING length. 
Indicates a VARYING length. 
Used only in the type field 
of inline descriptors which 
are arguments of a construct 
descriptor formal check 
(CDFC) operator and in the 
argument to a return formal 
check (RTNC) operator. The 
CDFC operator also uses bit 
6 in a different way: it 
indicates a varying array 
bound. Inline descriptors for 
other operators use bit 0 to 
indicate the presence of a 
filler field. Refer to INLINE 
DESCRIPTOR FORMATS in 
this appendix. 

B-5 



B 1000 Systems SDL/UPL Reference Manual 
The SD L S-Machine 

When the data item is 24 bits or less in length, it can be contained directly in the address portion 
of the descriptor, thus requiring less storage space. In this case, the descriptor is said to be self-relative 
and the non-self-relative bit is off. 

The use of the name-value bit, in the Evaluation stack, is to distinguish between descriptors that had 
an associated value loaded on the Value stack when they were pushed on the Evaluation stack, and 
those that did not. The purpose is to signal that a data item must be removed from the Value stack 
whenever this descriptor is removed from the Evaluation stack. The bit can be set only in non-self
relative descriptors. 

PAGED ARRAV DESCRIPTORS 

When the paged array bit is ON in an array descriptor, the address field of the descriptor does not 
point directly to the array, but is initialized to 0 (zero). An array load operator (ALA, AL) detects 
the first access to the array and invokes the SDL virtual memory manager to build a page table- in 
dynamic memory. This table is non-overlayable and the descriptor address field is set to the page table 
address. Figure B-7 shows the format: of a paged array descriptor. 

Bit 
Number 

0 

2 

3 

Bit 
Value 

0 
1 

c:~us ADDRESS ~ 
4 BITS 24 BITS 

G18317 

Description 

Address is present and is a disk address. 
Address is present and is a base relative memory 
address. 

0 Not to be read. 
1 To be read. The next time this page is rolled out, this 

bit is set to 0 and bit 2 is set to 1. 

0 

1 

This paged array cannot be overlaid without rolling it 
out to disk. 
This page array can be overlaid without rolling it out 
to disk. 

This bit is not used. 

Figure B-7. Format of a Paged Array Descriptor 

An address field of 0 (zero) indicates that this is a previously unaccessed paged array and can be cre
ated without rolling it in. 

B-6 



B 1000 Systems SDL/UPL Reference Manual 
The SD L S-Machine 

ACCESS OF DATA ADDRESSES 
Data addresses are accessed with the SDL S-machine language by means of descriptors on the Name 
stack. At any point in an SDL/UPL program, every accessible data item can be described by the lexic 
level at which it was declared by its ordinal location (occurrence number) within the declaration section 
at that level. A data address consists of these two numbers which uniquely locate a descriptor in the 
Name 'stack. Addressing is done by using the Display stack to locate the Name stack frame correspond
.ing to the required lexic level, and by using the occurrence number to locate the descriptor within that 
frame. To make data addresses more compact, they have a type field which indicates the sizes of the 
other fields. Figure B-8 shows the format of a data address. 

1137833 

TYPE LEXIC LEVEL OCCURRENCE NUMBER 

2 BITS 1 OR 4 BITS 5 OR 10 BITS 

G18318 

Lexie Level Occurrence Total 
Type Bits Number Bits Bits 

00 4 10 16 
01 4 5 11 
10 1 10 13 
11 1 5 8 

When only one bit is used for lexic level, 0 indicates lexicographic level 0 and 
1 indicates the current lexic level. 

Figure B-8. Format of a Data Address 

B-7 



B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

CODE ADDRESSES 

Code addresses appear as arguments of operators which affect transfers of control. They are divided 
into three parts: the page number which selects the segment dictionary page, the segment which selects 
the segment dictionary entry within that page, and the displacement which specifies a bit off set within 
the segment. To make data code addrE:sses more compact, these numbers are encoded in different field 
sizes which are determined by a type field. Figure B-9 shows the format of code addresses. 

B-8 

TYPE SEGMENT I PAGE DISPLACEMENT~ 
3 BITS 0 or 6 BITS 0, 4, or 6 BITS 12, 16, or 20 BITS 

G18319 

Displacement Total 
Type Segment Bits Page Bits Bits Bits 

000 Current Current 12 15 
001 Current Current 16 19 
010 6 Current 12 21 
011 6 Current 16 25 
100 6 4 12 25 
101 6 4 16 29 
110 6 4 20 33 
111(0) Null Address 

(1) 6 6 20 36 

Type 111 with the following bit OFF and with a Null Address, is used only 
to mark null .entries in a CASE operator. The length of this code type is the 
same as the code address type specified by the CASE operator. 

Figure B-9. Format of Code Addresses 



B 1000 Systems SDL/UPL Reference Manual 
The SD L S-Machine 

FORMAT OF THE CONTROL STACK AND SCRATCH PAD 

Figure B-10 shows the format of the CONTROL stack. 

20 bits 4 4 20 bits 

CONTROL 
STACK 

NAME STACK POINTER 

EXITED LEXIC LEVEL ENTERED LEXIC LEVEL 

G18320 

Figure B-10. Format of the Control Stack 

CONTROL 
STACK 
POINTER 

Figure B-11 shows the current Control stack information contained in the scratch pad. 

CURRENT CONTROL REGISTER 

20 BITS 4 BITS 4 BITS 20 BITS 

CUR RENT NAME CURRENT VALUE 
STACK POINTER STACK POINTER 

CURRENT LEXIC LEVEL J l FILLER l I 
G18321 

Figure B-11. Format of Control Stack Information in Scratch Pad 

1137833 B-9 



B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

The following SDL declaration shows the format of the Control stack and Current Control register. 

CECLAJ;E 
01 CONTROl_STACK (CS_SI7£) 

02 CS_NSP 
02 CS_EXITEC_ll 
02 CS_ENTE~f[_Ll 

02 cs_vsF 

01 CCF~V.~T_CC~T~Cl 

02 CUf?RENT_~!:P 

02 CUf<t\ENT_LL 
02 f lLLEf\ 
02 CURRENT_VSP 

CCSP,TCSP> 

CSP::O; 

81T(48),. 
BITC2Ch 
6ITC4h 
OITC4), 
BITC20), 

EITC48h 
8ITC2C>~ 

BITC4),. 
BITC 4), 
BITC20),. 
flXEC; 

The following SDL operators are used in the Control stack mechanism. 

SDL 
Operator 

MKS 
CDFM 
CDFC 
MKU 
EXIT 
RTRN 
RTNC 
XTEI 

Descriptor 

MARK STACK 
CONSTRUCT DESCRIPTOR, FORMAL 
CONSTRUCT DESCRIPTOR, FORMAL CHECK 
MARK ST ACK AND UPDATE 
EXIT 
RETURN 
RETURN FORMAL CHECK 
EXIT, ENABLE INTERRUPTS 

INLINE DESCRIPTOR FORMATS 

Inline descriptors, which are used by the construct descriptor operators, have the following format. 
The type field has the same format as that in the data descriptors. 

Simple Data Descriptor Format 

Figure B-12 shows the format of a simple data descriptor. 

8 BITS 6 or 17 BITS i6 or 17 BITS 

L TYPE [ LENGTH FILLER 

OPTIONAL 

G18322 

NOTES 
The filler option is present only when bit 0 of the type field is ON. 

Bit 2 of the type field is always 0 (zero). 

Figure B-12. }'ormat of a Simple Data Descriptor 

B-10 



B 1000 Systems SDL/UPL Reference Manual 
The SD L S-Machine 

Array Descriptor Format 

Figure B-13 shows the format of an array descriptor. 

1137833 

8BITS 

TYPE 

6 or 17 BITS 

LENGTH BETWEEN 

G18323 

6 or 17 BITS 6 or 17 BITS 

LENGTH OF ENTRY FILLER 

8 BITS 

NOTES 

I 
OPTIONAL 

6 or 17 BITS 

NUMBER OF ENTRIES 

For paged arrays, this is the number 
of bits of the subscript need to 
obtain the page subscript 

The filler option is present only when bit 0 of the type field is equal to 1. 

The length between option is present only when bit 3 of the type. field is equal 
to 0 (zero). 

Bit 2 of the type field is always equal to 1. 

The page subscript size field is present only when bit 6 of the type field is 
equal to 1. 

If bit 6 of the type field is on, then bits 0 (zero) and 3 are equal to 0 (zero). 

The field that contains six bits always has a 0 (zero) in the leftmost bit posi
tion. The field that contains 17 bits always has a 1 in the leftmost bit posi
tion. 

First Bit Meaning 

0 5 bits follow 
1 16 bits follow 

Figure B-13. Format of an Array Descriptor 

B-11 



B 1000 Systems SDL/UPL Reference Manual 
The SD L S-Machine 

USE OF THE EVALUATION STACK 

Many of the SDL/UPL S-machine operators (S-ops) take operands from or leave results on the 
Evaluation stack. Only the descriptor of the operand is on the Evaluation stack while the data (the 
value 1 of the operand) can be in the descriptor or elsewhere in the base-limit area. Conceptually, the 
S-operator is working with an operand. There are two classes of operands or results on the Evaluation 
stack: address operands and value operands. 

Address Operand 

The address operand is a pointer to the: value of a declared data item. The descriptor on the Evaluation 
stack is non-self-relative and its name-value bit is off. This type of operand is appropriate for use as 
the destination of an S-operator that moves data. 

A particular S-operator often requires that its operands be of a particular class. It does not make sense, 
for example, for the destination operand of a STOD (store destructive) to be a value operand. Some 
S-operators put other restrictions on their operands, usually concerning type or length. Unless 
specifically indicated, these restrictions are not checked by the interpreter and, if not met, the results 
of the operations are undefined. 

Value Operands 

There are two classes of value operands. These are self-relative operands and non-self-relative operands. 

Self-Relative 

The descriptor on the Evaluation stack is marked self-relative and its name-value bit is equal to 0. In
stead of the address field of the descriptor being a pointer to the data, the data itself is contained 
in the address field of the descriptor. 

Non-Self-Relative 

The descriptor on the Evaluation stack is marked non-self-relative: and its name-value bit is equal to 
1. The data is on top of the Value stack, located by the address field in the descriptor. When this 
type of operand is removed from the Evaluation stack, its value also is removed from the Value stack. 

Value operands are temporary values as opposed to actual variables of the program. 

INSTRUCTION SET 

The instruction set in the SDL S-machine language contains operation codes that are four, six, ten, 
or thirteen bits in length. The lengths have been assigned according to static frequency of the S
operator, thus compacting code space as much as possible. 

Relational Operators 
The following are the relational operators. 

B-12 

EQUAL TO 
LESS THAN 

Name 

LESS THAN OR EQUAL TO 
GREATER THAN 
GREATER THAN OR EQUAL TO 
NOT EQUAL TO 

Mnemonic 

EQL 
LSS 
LEQ 
GTR 
GEQ 
NEQ 

Operation Code 

1010 01 
1111 01 1010 
1111 00 1110 
1111 00 1001 
1111001101 
1010 10 



B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

Arithmetic Operators 

The following are the arithmetic operators. 

Name 

ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 
MODULO 
REVERSE SUBTRACT 
REVERSE DIVIDE 
REVERSE MODULO 
NEGATE 
CONVERT TO DECIMAL 
CONVERT TO BINARY 

Extended Arithmetic Operators 

Mnemonic 

ADD 
SUB 
MUL 
DIV 
MOD 
RSUB 
RDIV 
RMCD 
NEG 
DEC 
BIN 

Operation Code 

1011 01 
1011 10 
1111 00 0101 
1111 00 0110 
1111 00 0111 
1111101100 
1111 10 1101 
1111 10 1110 
1111 01 0111 
1111 10 1000 
1111 10 1001 

The following are the extended arithmetic operators. 

Name Mnemonic Operation Code 

EXTENDED ADD XADD 1111 11 1100 01 
EXTENDED SUBTRACT XSUB 1111 11 1100 100 
EXTENDED MULTIPLY XMUL 1111 11 1100 101 
EXTENDED DIVIDE XDIV 1111 11 1100 110 
EXTENDED MODULO XMOD 1111 11 1100 111 

Logical Operators 

The following are the logical operators. 

Name Mnemonic Operation Code 

1111 00 0001 
1111 00 0000 
1111 00 0010 
1111 00 1011 

AND AND 
OR OR 
EXCLUSIVE-OR EXOR 
NOT NOT 

String Operators 

The following are the string operators. 

Name Mnemonic 

CONCATENATE CAT 
SUBSTRING ONE SSl 
SUBSTRING TWO SS2 
SUBSTRING THREE SS3 

1137833 

Operation Code 

1100 11 
1111 11 0100 
1111 00 1000 
1010 00 

Arguments 

T,V,Q,L 
T,V 
T,V 

B-13 



Store Operators 

B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

The following are the store operators. 

Name Mnemonic 

STORE DESTRUCTIVE ST'OD 

Operation Code 

0010 
STORE NON-DESTRUCTIVE LEFT SNDL 1010 11 
STORE NON-DESTRUCTIVE RIGHT SNDR 1111 00 0100 

Construct Descriptor Operators 

The following are the construct descriptor operators. 

Name Mnemonic Operntion Code Arguments 

CONSTRUCT DESCRIPTOR CDBZ 1111 10 0100 DESCRIPTOR 
BASE ZERO 

CONSTRUCT DESCRIPTOR CDLD 1110 00 N,DES#l, ... , 
LOCAL DATA DES#n 

CONSTRUCT DESCRIPTOR FORMAL CDFM 1111 01 0001 LL,E 

CONSTRUCT DESCRIPTOR FORMAL CDFC 1111 11 1101 000 LL,E,DES#l, ... 
CHECK DES#n 

CONSTRUCT DESCRIPTOR FROM CDPR 1110 10 N,DES#l, ... , 
PREVIOUS DES#n 

CONSTRUCT DESCRIPTOR FROM CDAD 1110 01 N,DES#l, ... , 
PREVIOUS AND ADD DES#n 

DES#n 

CONSTRUCT DESCRIPTOR FROM CDMP 1111 10 0101 N,DES#l, ... , 
PREVIOUS AND MULTIPLY DES#n 

CONSTRUCT DESCRIPTOR LEXIC CDLL 1111 10 0011 TYPE-LL-OC, 
LEVEL DESCRIPTOR 

CONSTRUCT DESCRIPTOR REMAPS CDRM 1111 00 1111 DESCRIPTOR 

CONSTRUCT DESCRIPTOR DYNAMIC CDDY 1111 11 1110 000 TYPE 

B-14 



B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

Load Operators 

The following are the load operators. 

Name Mnemonic 

MAKE DESCRIPTOR MDSC 

VALUE DESCRIPTOR VDSC 

DESCRIPTOR DESC 

NEXT OR PREVIOUS ITEM NPIT 

LOAD L 

LOAD ADDRESS LA 

LOAD ARRAY FIELD ADpR. LAPA 

LOAD FIELD ADDRESS LFA 

LOAD FIELD ADDRESS 
FROM PREVIOUS LFAP 

ARRAY LOAD VALUE AL 

ARRAY LOAD ADDRESS ALA 

INDEXED LOAD VALUE IL 

INDEXED LOAD ADDRESS ILA 

INDEXED LOAD FIELD ILFA 
ADDRESS 

LOAD LITERAL LIT 

LOAD NUMERIC LITERAL LITN 

LOAD NUMERIC ZERO ZOT 

LOAD NUMERIC ONE ONE 

REFER REDR 

Stack Operators 

The following are the stack operators. 

Name 

BUMP VALUE STACK POINTER 
DUPLICATE 
DELETE 
EXCHANGE 

FORCE VALUE ST ACK 

1137833 

Operation Code Arguments 

1111 10 1010 

1111 01 1000 

1100 10 TYPE-LL-OC 

1111 01 1101 V,TYPE-LL 

1101 00 TYPE-LL-OC 

0000 TYPE-LL-OC 

1111 11 1111 011 TYPE,LENGTH 

1111 11 1111 001 TYPE,OFFSET 
LENGTH, 
TYPE-LL-OC 

1111 11 1111 010 TYPE,OFFSET 
LENGTH 

1111 01 1100 TYPE-LL-OC 

1101 01 TYPE-LL-OC 

1111 01 0000 TYPE-LL-OC 

0001 TYPE-LL-OC 

1111 11 1111 000 TYPE, OFFSET, 
LENGTH 

0100 TYPE,LENGTH, 
LITERAL 

0011 LITERAL 

0101 

0110 

1111 11 1111 100 

Mnemonic 

BVSP 
DUP 

Operation Code 

1111 10 1011 
1100 00 

DEL 
XCH 

FVS 

1111 00 0011 
1011 00 

1100 01 

B-15 



B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

Procedure Operators 

The following are the procedure operarors. 

Name Mnemonic Operation Code Arguments 

CALL CALL 0111 TYPE-SEO-
PAGE-DISP 

IF THEN IFTH 1001 TYPE-SEO-
PAGE-DISP 

IF THEN ELSE IFEL 1101 10 ADDR TYPE,TYPE-
SEG-PAGE-DISP 

CASE CASE 1111 01 0100 # OF ADDR, ADD 
TYPE, TYPE-SEG-
PAGE-DISP, ... , 
TYPE-SEG-P AGE-
DISP 

UNDO UNDO 1000 #OF LEVELS 

UNDO CONDITIONALLY UNDO 1111 01 0011 #OF LEVELS 

RETURN RTRN 1111 01 0101 #OF LEVELS 

RETURN FORMAL CHECK RTNC 1111 11 1101 001 #OF LEVELS, 
TYPE,LENGTH 

EXIT EXIT 1101 11 #OF LEVELS 

CYCLE CYCL 1110 11 DISPLACEMENT 

MARK STACK MKS 1011 11 

MARK STACK AND UPDATE MKU 1111 01 1111 LL 

ENABLE-DISABLE INTERRUPTS EDI 1111 11 0101 v 
EXIT-ENABLE INTERRUPTS XTEI 1111 11 0110 V,# OF LEVELS 

CO-ROUTINE ENTRY CNTR 1111 11 1010 000 

CO-ROUTINE EXIT CXIT 1111 11 1010 001 #OF LEVELS 

DMS-CALL DMCL 1111 11 1110 011 

B-16 



B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

Search and Scan Operators 

The following are the search and scan operators. 

Name Mnemonic Operation Code 

REDUCE RDUC 1111 11 1001 101 

SEARCH SDL STACKS SSS 1111 11 1110 001 

SEARCH LINKED LIST SLL 1111 01 1010 

SEARCH SERIAL LIST SSL 1111 11 1000 000 

SORT SEARCH SSCH 1111 11 1011 100 

THREAD VECTOR TVEC 1111 11 1011 011 

INITIALIZE VECTOR IVEC 1111 11 1011 000 

START STEP DOWN SSD 1111 11 1011 010 

START SWAP SSWP 1111 11 1011 101 

START UNBLOCK UBLK 1111 11 1011 011 

DELIMITED TOKEN DTKN 1111 11 1001 001 

NEXT-TOKEN NTKN 1111 11 1001 000 

DEBLANK DBLK 1111 11 1001 010 

CHARACTER FILL CHFL 1111 11 1001 100 

TRANSLATE XLAT 1111 11 1110 101 

FIND DUPLICATE CHARACTERS FDUP 1111 11 1001 011 

Miscellaneous Operators 

The following are the other operators. 

Name Mnemonic Operation Code 

TRANSFER MESSAGE XFRM 1111 11 1010 010 

HASH CODE HASH 1111 11 1000 001 

HASP UNPACK HASP 1111 11 1111 101 

SWAP SWAP 111 01 0110 

FETCH FECH 111001100 

DISPATCH DISP 1111 01 1011 

HALT HALT 1111 11 0010 

READ CASSETTE RDCS 1111 01 0010 

LENGTH LENG 1111 10 0000 

1137833 

Arguments 

VARIANTS, 
TYPE-LL-OC 

COMPARE TYPE 

COMPARE TYPE 

TYPE-LL-OC, 
DEL1,DEL2 

TYPE-LL-OC 
SEPARATOR,V 

TYPE-LL-OC 

Arguments 

DEST, VARIABLES 
SOURCE 
VARIABLES 

LL,ON 

B-17 



Name 

LOAD SPECIAL 

NDL SOPS 

CLEAR ARRAY 

COMMUNICATE 

REINSTATE 

FETCH CMP 

DATA ADDRESS 

SAVE STATE 

OVERLAY 

PROFILE 

PARITY ADDRESS 

EXECUTE 

B 1000 Systems SDL/UPL Reference Manual 
The SDL S-Machine 

Mnemonic Operation Code Arguments 

LSP 1111 01 1110 VARIANT 

NDL 1111 11 1111 110 TYPE,# DESC 

CLR 1111 10 0111 

COMM 1111 10 0110 

REIN 1111 10 0001 

FCMP 1111 10 0010 

ADDR 1111 01 1001 

SVST 1111 11 0001 

OVLY 1111 11 0000 

PRFL 1111 10 1111 ENTRY NUMBER 

PADR 1111 11 0111 

EXEC 1111 11 1110 010 

COMMUNICATE WITH GISMO CWG 1111 11 1110 110 

ADD TIMER ADDT 1111 11 1100 000 

SUBTRACT TIMER SUBT 1111 11 1100 001 

B-18 



B 1000 Systems SDL/UPL Reference Manual 

APPENDIX C 
SDL/UPL SYNTAX REFERENCE GUIDE 

All of the railroad syntax diagrams previously used in this manual are also listed in this appendix. The 
SDL compiler railroad syntax diagrams are presented first, followed by the UPL compiler railroad syn
tax diagrams. 

LISTING OF SOL RAILROAD SYNTAX DIAGRAMS 

The railroad syntax diagrams valid for the SDL compiler are as follows: 

Fundamental Items 

The following are the syntax diagrams for the fundamental items. 

Identifiers 

---- 63 ------

- <letter> ___ ....___ ____ <letter>---r----''----------------------1 

---<digit>----1 

Numeric Literal 

--- 6 .__ __ _ 

--------~---<digit>--------------------------

+ ----1 

Bit-String Literal 

- @-·-_.._ _____ (4) -----<hex-digits>--____,.__ ____ .....__@ -----------t 

(3)--.L.-..--<octal-digits>-----------i 

(2) _ ___.. __ < quartal-digits> ------...... 

( 1) -----<binary-digits>-------' 

1137833 C-1 



Character-String Literal 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

~L~~--~t::).255-~~~-~~~-r J - " ____ ._ __ <EBCDIC-character> -·--------

Enclosed Comment 

---- I * <comment-text> * I 

End-of-Record Comment 

---- % <comment-text>----· ------------------------------1 

Declarations 

The following are the syntax diagrams for the data, record, file, and switch-file declarations. 

Data Declarations 

-DECLARE 

L_ 

' [ 1 
<identifier-part> 

<structured-part> 

<paged-array-part> 

<dynamic-part> 

<reference-part> 

<remaps part> -
<identifier-part> 

L
<identifier> j > 

.__ __ (<number-of-elements>) 

r <-i-de-n-tif-ie-r> _____ -....... -_ -:~---_ -_-:_ -_ -_ --~--_ -_ -_ -_ -_-_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -__ -______ ) 

------ (<number-of-elements>) -----

>>----- < type-part>-------------------------------·------t 

C-2 



<structured-part> 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

r ---------------------------------------------------------------<- A 
--------<level-number> B 

A ~-------------------------------------------------------------------------, 

B E <identifier-part> ------------------------------- <type-part> 

-- FILLER ---------------------1 

-- <remap-identifier> REMAPS <identi~ier> 

DUMMY REMAPS <identifier>-------------' 

< paged..:array-part > 

----- PAGED (<elements-per-page>) <identifier>--------------------------------~ 

>--- (<number-of-elements>) <type-part> -----------------------------------1 

<dynamic-part> 

-- DYNAMIC <identifier-part> ------------------------------...-------------t 
----- <remap-part> __ __, 

<reference-part> 

L<identifier> 

( L ~identifier> ------

<record-identifier>-----

)-----REFERENCE ----------------------------------t 

<remaps-part> 

<remap-identifier> REMAPS ----------,L.....----- <identifier> ------- <type-part> 

BASE --------------' 

<type-part> 

-FIXED-----------------------------------1 

-BIT---------------------------------------~ 

(<bit-size>) ----------~ 

-CHARACTER----.--------------------1 

(<character-size>) -------~ 

- <record-identifier> -------------------------.J 

1137833 C-3 



Record Declarations 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

--RECORD··---- <structured-part>---------- ; -----------------

,__ ___ <unstructured-part> ----

<structured-part> 

--<level-number> <record-identifier> <type-part>-------·----------·----~ 

>> ___ [E _____ <level-number> ---[----- <identifier-part> 

- <remaps-part> ---------

·---- <type-part> ___ __.___. 

<unstructured-part> 

-- <record-ideqtifier> -------·----------------------------~ 

~-~~~<identifie~pMt> <tvp~part>-------------------~-~----~ 

1< J 
-------- <identifier-part> <type-part> , __ __._ __ ] 

<identifier-part> 

-r- <identifier> 

( <number-of-elements>) ------i 
L__ FILLER ---------------------------------

< remaps-part> 

--- <remap-identifier> REMAPS --------<identifier> --------·-----J 

<type-part> 

::~E(D<bit·size>) -------------
CHARACTER (<character-size>) ------

<record-identifier> -----·---------

File Declarations 

-F~E~<rn~~~~~-------[-----------------)-J-~~:~ 
( r - <attribute> ----'--

C-4 



ALL_AREAS_A T _OPEN 

AREAS 

BUFFERS 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

- BUFFERS = <number-of-buffers>----------------------------1 

DEVICE 

- DEVICE = ---------------------------------~ 

~---CAR D J 
l 

-CAR D - PUNCH 

=FORMS t--BACKUP 

~ BACKUP DISK 

~ BACKUP TAPE 

~NO BACKUP 

t-- OR BACKUP 

~ OR BACKUP DISK 

......_OR BACKUP TAPE 

-CARD READER -
-CASS ETTE 

-DATA RECORDER 80 - -
DISK 

i--- SERIAL 

'---- RANDOM -

-DISK FILE -
~SERIAL 

....__RANDOM -

-DISK PACK 

~SERIAL 

....___RANDOM -

PORT 
v 

1137833 C-5 



C-6 

PRINT ER 

PUNCH PRINTER -

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

LFORMS ~ ~BACKUP-

t---- BACKUP DISK 

~ BACKUP TAPE 

~NO BACKUP 

~OR BACKUP 

~OR BACKUP DISK 

i.-- OR BACKUP TAPE 

LFORMS_J ~BACKUP 

~BACKUP DISK 

t-- BACKUP TAPE 

~NOBACKUP 

~OR BACKUP 

i--OR BACKUP DISK 

'--OR BJ!\CKUP TAPE 

OUEU E (<max-messages>) 

I J FAMILY (<size>) 

ER_PUNCH_PRINTER ---c _J 
FORMS ~BACKUP 

READ 

R_SORTER READE 

REM OT 

SO RTE 

TAPE 

TAPE_ 

TAPE 

TAPE 

TAPE_ 

E ( <max-messages>) 

R READER -

NRZ 

PE 

7 

9 

t---- BACKUP DISK 

t-- BACKUP TAPE 

t-- NO BACKUP 

t-- OR BACKUP 

t-- OR BACKUP DISK 

..__ OR BACKUP TAPE 

-

L WITH HEADERS J 
-

,.!'--" 



B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

END_OF _p AGE_ACTION 

- END_OF _PAGE_ACTION -----------------------------1 

EU_INCREMENTED 

~EU_INCREMENTED = <driv~numbe~ ----------------------~ 

EU_SPECIAL 

- EU_SPECIAL = <drive-number> --------------------------! 

EXCEPTION_MASK 

~EXCEPTION_MASK = <exception~iu> ----------------------~ 

FILE_TYPE 

- FILE_ TYPE= ----DATA------------------------------1~ 

INTERPRETE\::l --.--i 
CODE ------.--i 
INTRINSIC -----1 
PSR_DECK -----

HOST ___ NAME 

- HOST_NAME = "<host-name>"---------------------------1 

INV ALID_CHARACTERS 

- INVALID_CHARACTERS = ~ ~ 

LABEL 

- LABEL= ''<multi-file~dentifier>'' ------~--------------~--~ 

LABEL._ TYPE 

- LABEL_ TYPE = t= UNLABELED 

BURROUGHS --

ANSI!-----

1137833 

'----- I"< file-identifier> " ___ _, 

C-7 



B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

LOCK 

MODE 

-MODE =~ASCII 
EBCDIC---4 

BCL ----4 
BINARY _ ___, 

MULTI_PACK 

~-EVEN ==3 
...__ ODD ___ __, 

- MUL Tl_PACK ------------------------------------1 
NUMBER_ OF _ST A TIO NS 

-NUMBER_OF_STATIONS = <numbet~ ------~------------~---~ 

OPEN_OPTION 

- OPEN_OPTION = 

OPTIONAL 

~1----1 
---"'-----INPUT----------L------------------~ 

OUTPUT--

NEW ------i 
DEFAULT--..... 

- OPTIONAL --------------------------------------t 

PACK_ID 

- PACK_ID = "<pack-identifier>" 

PROTECTION 

- PROTECTION = <number> ---,--------------------------1 

PROTECTION_IO 

- PROTECTION_IO =<number> 

RECORDS 

- RECORDS= ---c- <physical-size> 

<logical-size> I< records-per-block> 

C-8 



REEL 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

- REEL = <reel-number> ------------------------------1 

REMOTE_KEY 

-REMOTE_KEY----~·----------------------------1 

SAVE 

- SAVE = <number-of-days> -------------------------------1 

SECURITY 

- SECURITYTYPE = <number> ----------------------------1 

SECURITYUSE 

- SECURITYUSE = <number> ---------------------------1 

SERIAL 

- SERIAL = ---c-- <number> 

"<character-string>" ---------

TRANSLATE 

-·TRANSLATE= "<file-identifier>" --------------------------1 

USE_INPUT _BLOCKING 

- USE __ INPUT _BLOCKING -----------------------------1 

USER_NAMED_BACKUP 

~USER_NAMED_BACKUP -----------------------------1 
VARIABLE 

-VARIABLE -------------------------------------1 
WORK__FILE 

~WORK_FILE ---------------------------------1 

1137833 C-9 



Switch File Declarations 

B 1000 Systems SDL/UPL Referenc1e Manual 
SDL/UPL Syntax Reference Guide 

1< 
- SWITCH FILE <switch-file-identifier> ( ______ ... ____ <file-identifier>-----); --1 
Define Statement 

-DEFINEL 

------------·---------------------------------------------------<(A 
<define-identifier> ------.-----------------·-------------------------+B 

1< ( _______ ..___ 
<parameter> __ ..___) 

r· <parameter> 

A ~<-------------------------

8 >--AS # <text> # ---· ; ----------·---------·--------1 

Procedure Statement 

The following are the syntax diagrams for the procedure declaration, procedure body, procedure end, 
and procedure invocation statements. 

Procedure Declaration 

-------.------------------ PROCEDURE <procedure-identifier> -------------------->~ 

b FORWARl:T:SIC <intrinsic-identifier> ------·---------

>>------~-----(--~~ ... r~---_-_-_--<_p_a-ra_m_e_t-er·->--------~---~-------)----------------------------.---

----·<type-part> 

>>---L---F-O_R_M_A_L ___ -_-_-:_-:_-_-_-_-_-_-_-~---<-t-o--rm_a_l-e--le_m_e_n_t ___ pa_r_t> ___________ _ 

LFORMAL_VALUE----

C-10 



<type-part> 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

~BIT L (<bit-size>) I VARYING 

t--CHARACTER I (<character-size>) 

VARYING 

t--F!XED 

t-- REFERENCE 

~ VARYING 

<formal-element-part> 

J 
l 

--~--<id~ti~~---~L ___ <_*_)_~--~--------J----<fy~pMt>--~~ 

r--
- ( <identifier> ---..... c--(-*-)-~-----) 

Procedure Body 

--- <declaration-statement>------

Procedure End 

-END 

<procedure-statements ------------

RETURN --------------------1 
<expression>------"""" 

RETURN_AND ENABLE_INTERRUPTS 

----<procedure-identifier>------

Procedure Invocations 

-- <pr~:edure~dentif~r>-----~~--(-~~~~'~<~~~~-<-pa-r-am-et-e-r>-~~~~~~~~-)-~---~ 

1137833 C-11 



Expressions 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

The following are the syntax diagrams for the expressions. 

~--<operand> 

--- <unary-operator> -

:>>---_ .... r ___ <operator> --,-- ~ <operand> 

L __ <unary-operator> __ _J 

Verbs 

The following are the syntax diagrams for the verbs. 

ACCEPT 

- ACCEPT <destination>; -----·-----------·--------------'""1 

ACCESS_FILE_INFORMA TION 

- ACCESS_FILE_INFORMATION ( <tile·identifier>, ------·---...-- BIT 

L CHARACTER _ _J 
> 

> , <destination>);----- -----------------------------1 

BASE_REGISTER 

-- BASE_REGISTER ---------------------·---------------.. 

BINARY 

-BINARY (<~arach~rtrin~)---·---·------------------~ ----~~ 

BINARY _SEARCH 

-- BINARY SEARCH (<start-record>, <compare-field>, <compare-value>,-------------# 

> <number-of-records>) ----------------------------------1 

BUMP 

- BUMP <identifier>-------------------·----------------

L_ BY <increment-amount>-----

C-12 



CASE (format-1) 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

- CASE <index>;----------------------------------• 

>--<-<statement-a>; ----------------------------!II> 
>---- <statement-1>; ---------------------------7 

>- <statement·n>; ---------------------------~ 

>- END CASE; --------------------------------1 
CASE (format-2 

- CASE <index> OF ( __ ___.L ___ <expression>----- ) ---------------1 

CHANGE 

-· CHANGE <tile-identifier> TO ( _______ r ___ <attribute> : = <value> ---....&--); ---i 
CHAR_TABLE 

lll!!or-----CAT ------------

-CHAR_ TABLE ( ____ .._ _____ ,,<EBCDIC-characters>" _______ _.___ ) ------t 
---- @< 2-hexadecimal-numbers> @ 

CHARACTER_FILL 

- CHARACTER_FILL (<destination>, <source>); 

CLEAR 

r' - CLEAR ---.&.----<array-identifier>--------

1137833 C-13 



CLOSE 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

-CLOSE-,--< file-identifier> _J 
L__ <switch-file-identifier> (<index>)------, 

CODE_FILE ------

CRUNCH ---------1 
IF _NOT _CLOSED -----1 
LOCK ----------1 
NO_REWIND -----

PURGE----, 

REEL------------t 

RELEASE---------

REMOVE ---------11 
ROLLOUT --~-------

COMMUNICATE_ WITH_GISMO 

=i 
LWITH~ 

- COMMUNICATE_WITH_GISMO (<communicate>); ---------------------t 

COMMUNICATE 

- COMMUNICATE { < MCP-communicate>); --------------------------1 

COMPILE_CARD_INFO 

-COMPILE_CARD_INFO(<d~tination~>); -----------~·---------~---~ 

CONSOLE_SWITCHES 

- CONSOLE_SWITCHES ---------

CONTROL_STACK_BITS 

- CONTROL_STACK_BITS 

CONTROL_STACK_TOP 

--CONTROL_STACK_TOP---------~-----------------------------1 

C-14 



CONVERT 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

- ~ERT ( <convert~value>, t= FIXED----------------) ---1 
BIT-~~----.---.~------------1 

CHARACTER --- • E ~ 
DAT A_ _ _ADDRESS 

-DATA_ADDRESS (<identifier>)-------------------------~ 

DAT A__LENGTH 

- DATA_LENGTH (<data-item>) --------------------------1 

DATA_ TYPE 

- DATA_ TYPE (<data-item>)---------------------------' 

DATE 

-DATE -..-----------------------------------------------------1 
L ( 1~::iA~·· • -c ~~A-RA_C_T_E_R_] ___ ) =i 

MONTH c DIGIT -------

YEAR 

DC_INITIATE_IO 

- DC __ INITIATE_IO (<port> I <channel> I < 1/0-descriptor-address>); --------------------1 

DEB LANK 

~DEBLANK (<fi~~charachr>); ------------------------------~ 

DECIMAL. 

-DECIMAL (<strin~.<rtring~ize>) -----------------------------------~ 

1137833 C-15 



DECREMENT 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

-- DECREMENT< identif~r>---~-~--~~----------------------~-J~---~ 

--- BY < decrement-amoun~ ------

DELIMITED_ TOKEN 

- DELIMITED_ TOKEN (<first-character-address> , <delimiters>, 

> <result-reference-identifier>) 

DESCRIPTOR 

- DESCRIPTOR ( --......--.-- <simple-identifier>------) ---------------1 
.___ __ <array-identifier> -----' 

DISABLE_INTERRUPTS 

--DISABLE_INTERRUPTS; ~------~~---------~-----------------1 

DISPATCH 

- DISPATCH (<port-and-channel>, < 1/0-descriptor-address>) 

DISPLAY 

-- DISPLAY (<display-identifier>) 

DISPLAY _BASE 

- DISPLAY _BASE 

DO 

-DO 

L <group-name>--- [-FOREVER~ 
>~---END--c=r----------------.--

<group-name> ----

DUMP _FOR__ANAL YSIS 

[_ , CRUNCHED =:J 

L <statemen~; ~ 
> 

--DUMP_FOR_ANALYSIS;--------------·------------------------1 

C-16 



B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

DYNAMIC_MEMORY_BASE 

ENABLE_INTERRUPTS 

-- ENABLE_INTERRUPTS; 

ENTER__COROUTINE 

--ENTER_COROUTINE (<coroutine4a~e>); ---------------------~ 

ERROR_COMMUNICATE 

--ERROR_COMMUNICATE (<erro~me~a~>):----------------------~ 

EV ALU A TION_ST ACK_ TOP 

~ EVALUATION_STACK_TOP------------------------------------t 

EXECUTE 

1< 
-EXECUTE (-..... ·---<operation-list>------ ) 

EXIT _COROUTINE 

~ EXIT_COROUTINE (<coroutine4a~e>); -------------~-~---~~~~ 

FETCH 

- FETCH ( < 1/0-reference--address>, <port-and-channel-address>, ____ ,,....._ ______________ ~ 

> <resul~descripto~address>);~-----------------------------~ 

FETCH ___ COMMUNICATE_MSG_PTR 

-FETCH_COMMUNICATE_MSG_PTR -----------------------------~ 

FIND_DUPLICATE_CHARACTERS 

- FIND_DUPLICATE_CHARACTERS ( <reference-identifier-1>, ------------------

> -<count~dentifier>, <characte~identifier>, ~--------------------~ 

> <reference~dentifie~2>); ----------------------------~ 

FINI 

--FINI ------~---------------------------------1 

1137833 C-17 



FREEZE_PROGRAM 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

-FREEZE_PROGRAM; ------·~--~·---------------------------------1 

GROW 

- GROW (<paged-array-identifier>, <increase-amount>); ----------------------1 
HALT 

- HALT (<halt-value>); ---------·--------------------------1 
HASH_ CODE 

-HASH_CODE (<hash-code-value>) 

IF, THEN, and ELSE (Conditionals) 

- IF <condition> THEN 

--- <statement-1> ----

>~-----------------·------~---r---------------------1 
L_ELSE----.--------·~~-----,----

--- <statement-2> -·---

INITIALIZE_ VECTOR 

- INITIALIZE_VECTOR (<table-address>);-----------------------~ 

LAST_LIO_STATUS 

- LAST _LIO_STATUS ------------------------------------1 

LENGTH 

- LENGTH (<identifier>) --------------------------------1 

LIMIT_REGISTER 

- LIMIT _REGISTER -------·---·-----------------------i 

LOCATION 

- LOCATION ( ------... L- <identifier> ------~ ) 
L <array-identifier> ~ 

<procedure-identifier> ----

C-18 



MAKE __ DESCRIPTOR 

MAKE_.READ_ONL Y 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

- MAKE_READ_ONL Y (<paged-array-identifier>), <page-number>); --------------1 

MAKE_READ_ WRITE 

- MAKE_READ_WRITE (<paged-array-identifier>, <page··number>), ---------------1 

MESSAGE_ COUNT 

- MESSAGE_ COUNT (<queue-file-id>, <identifier>); --------------------t 

MONITOR 

- MONITOR -----.......-------------$ALL _________ __... __ 

M_MEM_SIZE 

ANDNOT---c 

OR-----

+ -----

$NONE 

<sequence-range> -------1 
<procedure-name> -----

- M_MEM_SIZE --------------------------------t 

NAME_OF _DAY 

-NAME __ OF _DAY--------------------------------1 

NAME __ STACK_TOP 

- NAME __ STACK_ TOP -------------------------------c 

NEXT_ITEM 

-NEXT_ITEM (<identifie~) -~------------------------~ 

1137833 C-19 



NEXT_TOKEN 

B 1000 Systems SDL/UPL Reference! Manual 
SDL/UPL Syntax Reference Guide 

-- NEXT_ TOKEN ( < first-character-address>, <separator> ,----·-----..-L-SET 

RESET ---

OPEN 

- OPEN --r- <file-identifier > ---

L_ <switch-file-id > ( <index >) ------------1 

-

RET 

-
OUT---

-

INPUT 

INTERP 

LOCK

LOCK 

NEW

NO RE WIND----

OUT PU 

PRINT 

PUNCH 

REV ER 

T 

SE 

ST ACKERS 

-

I--

L.--

LwlTH~ 
> 

1< ~ 
)~----------L--c==-------,------------0-N--F-1-L-E_--M·-IS_S_l_N_G_<_s_ta-t-em--en-t->--------.---iL...----------------t 

l__ON FILE LOCKED <statement>------"' 

OVERLAY 

- OVERLAY (<interpreter-index>); 

PARITY _ADDRESS 

-- PARITY _ADDRESS------- ·--------------------------------·---------1 

PREVIOUS_ITEM 

--PREVIOUS_ITEM (<identifier>) 

C-20 



B 1000 Systems SDL/UPL Reference Manual 
· SDL/UPL Syntax Reference Guide 

PROCESSOR._ TIME 

PROGRAM_SWITCHES 

- PROGRAM_SWITCHES ----r---------------,...---------------t 
--- (<switch-number>) ----

READ 

- READ L<tile-identifier> 

< switch-file·identifier> (<number>) 

) 

>~-~Lr--~~~~~~~~.~~~~~~~_J.~ .. ---~~---+) 
[ ~ < record-address~identifier> 

<remote-key-identifier> ----------

' <queue-family-identifier>---------

>----- ( <identifier-1>) ------------------------------

....__ ____ WITH RESULT _MASK <address-generator>------

> 

..:::::... r l J 
l 

ON EOF <statement-1>; 

ON EXCEPTION < statement-2>; 

ONIN COMPLETE_IO <statement 3>, . 

READ_CASSETTE 

- READ_CASSETTE (<destination-identifier>, ----~-------~· HASH TOTAL 

L NO_H~SH_TOTAL __ __, 

) 

> • <result-identifier>); ------------------------------1 

READ_FILE_HEADER 

- READ_FILE_HEADER (<tile-identifier>, <destination>); -----------------~ 

r
< 
~1 .___ __ ON FILE MISSING <statement-1 

~ ON FILE_LOCKED <statement-2> 

1137833 c~21 



READ_FPB 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

--READ FPB ------ < file··identifier> ----..--- , <destination>); ---------1 
'----- < file··number> ----,_Jj 

READ_OVERLA Y 

--READ_OVERLAY (<overlay-information>);--------------------~-----~ 

REDUCE 

-- REDUCE < reference-identifier-1> 

UNTIL 

'------ SETTING < reference-identifier·2> -------' 

>::i---c-- FIRST 

LAST----' 

EOL 

NEO 

/= ---

<literal>-----------

<identifier> --------....j 

IM <character-table-identifier> 

> 

>:--~~---0-N_E_O_S_-C_Y_C_L_E_<_s-ta-tetTI--en-t--1->-; ~~~~--~-----~-:J:---------------------t 

ON EOS < statement-2>; --

REFER 

-- REFER <reference-iden~fier> TO <identifier>;----------------~-----~ 

REFER_ADDRESS 

- REFER_ADDRESS (<reference-identifier>, <address>);----

REFER_LENGTH 

-- REFER_ LENGTH ( <reference-identifier>, <length>) ; ---------------·-----~ 

REFER_ TYPE 

-- REFER_ TYPE ( <reference-identifier>, <type>) ; ------·-----------------t 

RESTORE 

- RESTORE <value> ----- ); ~-------------------------------4 

C-22 



RETURN 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

- RETURN---.-----------....--

L <expression> __ ___. 

RETURN_AND_ENABLE_INTERRUPTS 

- RETURN_AND_ENABLE_INTERRUPTS: ----------------------------. 

REVERSE_STORE 

- REVERSE_STORE ( <address-generator-1>. <address-generator-2>, --------------~ 

> < - - - > , < address-generator·n>, <expression>) ----------------___. 

SAVE 

r- · ----1 
-SAVE (--------·-<value> _J_ ); ---------

SAVE_STATE 

- SAVE._STATE; 

SEARCH_DIRECTORY 

- SEARCH_DIRECTORY (<file-identifier, <identifier>,-------------------+ 

>>--..-- BIT --------.,---- ) ; ----.r-----------------------------~ 

L CHARACTER --- ---- ON FILE_MISSING <statement-1>; -----

>~---------------------------~---------------------1 L, ___ ON FILE_LOCKED <statement-2>; ___ __, 

SEARCH__LINKED_LIST 

-SEARCH_LINKED_LIST (<first-item>, <compare-field>,-----------------~ 

>---<compare-value>, <relation>, <link-field>); -----------------------t 

SEARCH __ SDL_ST ACKS 

- SEARCH_SDL_STACKS (<stack-base>, <stack-top>, <compare-base>, 

> n <compare-top>) ------------------------------! 

1137833 C-23 



SEARCH_SERIAL_LIST 

B 1000 Systems SDL/UPL Referenc~ Manual 
SDL/UPL Syntax Reference Guide 

-- SEARCH_SER IAL_LIST (<compare-value>, <relation>, <compare-field> -------------+ 
"">----- , <first-item>, <table-length> . <result-identifier>) ; -------------------

SEEK 

-- SEEK <file-identifier> [<record-address-identifier>] 

SEGMENT _PAGE 

~L ______ f7'\., -------------- ------~---. r ---·-------------- ) ; >>-----c-- . IMPORTANT 

OF <page-identifier> 

SKIP 

-- SKIP <file-identifier> TO <channel-number>; 

SORT 

~SORT (<~~i~Mm~ion~awe>, <~v4aWe>·. ----~--~·--------------~ 

> <input-file-identifier>, <output-file-identifier> 

>~----c--------------~--~~---------,.---);~------------

• < translate-file-idem:ifier> 

SORT_MERGE 

- SORT _MERGE (<sort-information-table>, <key-table>, -------------------

> ·<merge-input-table>, <output-file-identifier> ----------------------~ 

----- , <translate-file-identifier> 

SORT_SEARCH 

-- SORT _SEARCH (<first-table-entry-address>, <limit>); 

SORT_STEP _DOWN 

-- SORT_STEP DOWN (<record-1>, <record-2>, <key-table-address>); --------------1 

C-24 



SORT __ SWAP 

SPACE 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

- SPACE <file-identifier>-------------- <space-amount>-----

~~~-EOF ~----------------------" 
>

1<
>>-----~--~------------------------~------------1

~ ON EOF <statement-1>; ------------1
~------ ON EXCEPTION <statement-2>;

SPO_INPUT _PRESENT

- SPO._INPUT _PRESENT---------------------------

STOP

- STOP------------------

--- <syntax-errors> ___ _,

SUB BIT

- SUBBIT (<string-identifier>, <start-position> --------L-----------) ---i
, <length> __ __,

SUBS TR

- SUBSTR (<string-identifier>, <start-position> ---~--------------------)----i
...__ __ , <length>

SWAP

~SWAP (<d~tinMion>, <souree> -------------------------~

S_MEM_SIZE

- S_MEM_SIZE ------------------------------------1
THAW __ PROGRAM

- THAW_PROGRAM;

1137833 C-25

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

THREAD_ VECTOR

- THREAD_ VECTOR (<table-address>. <index>);

TIME

-TIME~~~~(-~-~~C-IV-IL-l-AN-~-~~~---.-~-~-Bl-T~=·====~~~~~-)~~-1~-~

COUNTER - CHARACTER ---1

MILITARY - DIGIT ____ ___,

TIMER

TRACE

--------TRACE -----------------....-

-NO _J ---- (<trace-options>) ----

TRANSLATE

- TRANSLATE (<source-identifier>, <source-item-size>,-----·-------------~

> <translate-table>, < translate-item~size>, <result-identifier>)

UNDO

- UNDO-----------------

~-- <identifier> ·---

USE

I I - USE (-"'-· --- <declared-identifier> -----------) m= <defined-identifier>; -------1

V ALUE_DESCRIPTOR

--VALUE DESCRIPTOR (<addres•field>); -------------------~---~

C-26

WAIT

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

-WJldT--.---------------r---------------------~>

)---(

B>-

--- [<start-position>]

_____ r _____________________________ __...) :
L TIME_ TENTHS (<wait-time>) ------------------~ C

SPO_INPUT_PRESENT---------------------------~~c

DC_IO_COMPLETE------------------------------------1

O_WAITE_OCCURAED (<file-id-1>)

READ_OK (<file-id-2>----------------------....---)

---- [<que-family-id-1>) ------

WRITE_OK (<file-id-3> -----r-------------------...--)
[< queue-family-id-2>] ----

A <EE-------------------~----~-----.

c>------------------------------~---r----);

--- WHEN <when-expression>----

1137833 C-27

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

WRITE

-WRITE --1----~----.L-- <file-identifier>

L__ LOCK~ <switch-file-id> (<identifier-1>) ---------

DOUBLE ---'"""1
NEXT ---1
NO---~

PAGE--,

SINGLE ~-----------------------~--------------------------------------~

<channel-number> ---1
< record-address-identifier_> __________ ·=-r-] -

~--- <remote-key-identifier> ~

---- <queue-family-identifier>

>>---------------....--- (<record>) -----------------------------------~

LTOP_J

>~------------------------~~--------=i
---- WITH RESULT _MASK <address-generator> -------·

>>--~---r---------~---7>

--- ON EOF <statement-1>; -----

>~--~--------.,---------------------------------------:::!I'">

---- ON EXCEPTION <statement·2> ;

>
--- ON INCOMPLETE 10 <statement·3>;

WRITE_FILE_HEADER

- WRITE_FILE_HEADER (<file-identifier>, <destination>); --------------------------->~

> r ~1 ----ON FILE_MISSING <statement-1>; ---·---"T"---"--------------1

ON FILE_LOCKED <statement-2>; -----·----~

WRITE_FPB

- WRITE_FPB (----------- <file-identifier>--------, <source>);---------------~

'----- <file-number>-------

C-28

WRITE_OVERLA Y

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

~-WRITE_OVERLAY (<overlay~nformation>); ~~~-----------------~~

X__ADD

- X_ADD (<expression-1>, <expression-2>)

x_n1v

- X_DIV (<expression-1>, <expression-2>)

)(_MOD

X_MUL

X_SUB

ZIP

- ZIP <MCP-command>; --------------------------------1

1137833 C-29

Compiler Options

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

The following are the syntax diagrams for the compiler options.

Compiler-Directing Options

,-$&_JL rr--·~~~~-~~~~~~>A

L CREATE_MASTER __ I L_ RECOMPILE ------------------t
L_ " <multi-file-id>" __

C-30

~--------------------~-~---~<

-
<cssize-number> -CSSIZE

DEBUG

DYNA

ESSIZ

INTER

<sequence-number>

MICSIZE <dvnamicsize-number>

E <essize-number> -

PRETER "<file-identifier>"

NSIC "<multi-file-identifier>" INTRI

LIBRA

LIBRA

MERG

NSSIZ

PAGE

PPSSIZ

AECOM

SEQ<

RY "<file-identifier>"

RY - PACK " <pack-identifier>"

E

E <nssize-number> ·

E <ppssize-number>

PILE - TIMES

base-sequence-num be!r >

I <ending-sequence-number>

VOID

VSSIZE <vss1ze number> -

~ ,,,.

L.+ <increment> -
I

B

c

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

B ~~~~--------------------------11

c L_ NO _J

1137833

t-- ADVISORY -------------1
t-- AMPERSAND -------------1
t-- CHECK ---------~-----1

t--CODE-----------------1

t-- CONTROL -------------1
t-- CONVERTDOTS ------------.

t-- DETAIL --------------""""

t-- DOUBLE ----------------1

t-- ERROR_FILE-------------t

t-- EXPAND_DEFINES-----------t

t--FORMAL_CHECK-------------1

t-- FREEZE -----------------.

t-- LIST ----------------1
t-- LISTALL ----------------1
t--LOCKl----------------t

i-- MONITOR --------------1
t-- MONITOR_ OFF ------------1
t-- NEW-----------------i

t-- NO _DUPLICATES ------------1
t--NO_SOURCE------------1

i--PASS_END------·--------t

t--PROFILE-----------------i

t-- PPROFILE ---------------1
t--SGL-----------------i

t-- SINGLE ---------------t
t--- SIZE ----------------1
t-- SUPPRESS --------------t
t-- UNDERSCORES_IN_FllE_NAMES ----

1-- USEDOTS --------------i

_.t- WORKING_SET _BYTES --------"'"',.i.-

J
I

C-31

Conditional Compilation

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

XMAP---·~--·----------------t

XREF---~-~--------~------·----t

XREF _LITERALS --------------1
X REF_ ONLY ----------------

-&

L SET -
__ .__jl~ __ <=== ____ , ____ , ___ ----~-]~------~

· <boolean-identifier> --

RESET ---

r 1
_ & 1 F -------c--N-O_T_=1 _____ <boolean-identfier> ------E--:-:-

0

-3---_.__ _____ ~

>~-----<soore~m~~>----J-----------------------~~

---<nested-block> --- L ELSE ---L- <source-images>

-- <nested-block>

> END---------------------------------·----------------------

UPL RAILROAD SYNTAX GUIDE

All of the railroad syntax diagrams valid for the UPL compiler are presented in this subsection.

Fundamentals

The following are the syntax diagrams for the fundamental items.

Identifiers

- <letter> ------r---< letter> ----.----------------·-----------·------1
i----< digit>-

Numeric Literal

-----------------<digit>
-9J

+--~

C-32

Bit-String Literal

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

- @---.....-- (4)---+---<hex-digits>---_._---........ ---@ -----------

(3)-----<octal-digits>-------

(2) __ ...__ __ <quartal-digits> ____ _.___

(1) -----<binary-digits>---------

Character-String Literal

I ·<------__,g ___________ __
- "---'-· -- <EBCDIC-character> ______ ,____

Enclosed Comment

----- I* <comment-text> *I ----------------------------1

End-of-Record Comment

---,·· % <comment-text>--------------------------------11

1137833 C-33

Declarations

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

The following are the syntax diagrams for the data, record, file, and switch-file declarations.

Data Declarations

-DECLARE

L_ ,
f l

< identifier··part>

<structured-part>

< paged-arr.ay-part>

< dynamic-:Part>

<reference-part>

<remaps p.ut> - .

<identifier-part>

L <identifier> L_ (<number-of-elements>) ~
1< ---·-----·-------

__.__ -- <identifier> -------------------)

----(< number-of-eluments>) -----

:>>----- <type-part>------ -----------------------------t

<structured-part>

----------------------------------<<A 1<
-------<level-number> ------·------------------------------------...> B
A

B E <identifier-part> --------~<type-part>
FILLER -------------~-------

<remap-identifier> REMAPS <identifier>

DUMMY REMAPS <identifier>----------·

<paged-array-part>

----PAGED (<elements-per-page>) <identifier>---------------------~

>--(<number-of-elements>) <type-part>-------------------------1

C-34

<dynamic-part>

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

-- DYNAMIC <identifier-part> -------------------r-------------1
~--<remap-part>

<reference-part>

L<identifier>

(L ~identifier> ------
) _] --- <record-identifier>-----

>---~REFERENCE --t

<remaps-part>

-- <remap-identifier> REMAPS·-------------------- <identifier> <type-part> ------------1

<type-part>

-FIXED------------------------------~

-BIT~----------------------------~

(<bit-size>) ------------------------t
uCHARACTER--1

(<character-size>) -------~

·· <record-identifier> ------------------------

Record Declarations

-- RECORD <unstructured-part>; -----------------------------------~

<unstructured-part>

-- <record-identifier> --------------------------------------__,.

J[< i~entifier-part>
1<

[------------ <identifier-part>

<type-part>----------------------.--_.._ ____ .,...

<type-part> _____ ___....__ __) J
<identifier-part>

---r- <identifier>

---- (<number-of-elements>) ----1
Lu FILLER ---

1137833 C-35

<remaps-part>

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

--- <remap~identifier> REMAPS -------<identifier> ---------------1

<type-part>

::~E(D<bit-size>) ---------------'
CHARACTER (<character-size>)·---·----'

<record-identifier> -----·-------

File Declarations

~FILE ~<m.:dentifie~---~·~--L~---~------------J-~~--;~
(.r_

- <attribute>-----)

ALL_AREAS_A T __ OPEN

-ALL_AREAS_AT_OPEN----~·----~---------·----------------------------1

AREAS

BUFFERS

- BUFFERS = <number-of-buffers>

C-36

DEVICE

B 1000 Systems SDL/UPL Reference Manual
SD L/UPL Syntax Reference Guide

- DEVICE = ---------------------------------~

>--..--~CARD---------------------------------------iJ

1137833

~CARD PUNCH---.......... --------r----r-----------------~

LFORMS-- ~ BACKUP -----------1

f--- BACKUP DISK ----

~ BACKUPTAPE----------1

~NOBACKUP--------1

~ORBACKUP----------1

~ OR BACKUP DISK ---

..__ OR BACKUP TAPE----

-CASSETTE-----------------------------------

-DATA_RECORDER_80----------------------------t

-DISK~---------------.-----_.;.------------------1

i--SERIAL--

.___ RANDOM -

·-DISK FILE -----------~--------------------t

t---SERIAL --""""

-- RAN DOM ----"

-DISK PACK----.....------------------------------1

t--- SERIAL ----i

-RANDOM-

-PORT---1

-PRINTER-----..-------------~-------------------1

LFORMS __J ~BACKUP--------1

t--- BACKUP D ISK----------i

t---BACKUPTAPE------

~ NO BACKUP-------""""

t--ORBACKUP---------

1--- OR BACKUP DISK ----""""

~OR BACKUP TAPE----

C-37

C-38

B 1000 Sys1:ems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

PUNCH PRINTER -

LFORMS -==i t-- BACKUP

OUEU E (<max-messages>) ---

READ ER_PUNCH_PRINTER

R_SORTER READE

REMOT

SO RTE

TAPE

TAPE

TAPE

TAPE

TAPE

E (<max-messages>)

R_READER

NRZ

PE

7

9

t-- BACKUP DISK

t-- BACKUP TAPE

t-- NO BACKUP

t-- OR BACKUP

t-- OR BACKUP DISK

,__OR BACKUP TAPE

[
FAMILY (<size>) I

c FORMS t-- BACKUP

r-- BACKUP DISK

t-- BACKUP TAPE

t-- INO BACKUP

t-- OR BACKUP

t-- OR BACKUP DISK

-- OR BACKUP TAPE

L WITH HEADERS J

,,,.

""'

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

END __ OF _p AGE_ACTION

- END_OF _PAGE_ACTION ---------------------------"""'"""

EU_INCREMENTED

~ EU_INCREMENTED = <driv~numbe~ ----------------------~

EU_SPECIAL

- EU_SPECIAL = <drive-number> --------------------------1

EXCEPTION_MASK

-EXCEPTION_MASK = <exception~ib> ----------------------~

FILE __ TYPE

- FILE_ TYPE = --- DATA-----------------------------.~

INTERPRETER ---

CODE-----~

INTRINSIC -----a
PSR_DECK-----

HOST__NAME

- HOST_NAME = "<host-name>"---------------------------t

INV ALID_CHARACTERS

- INVALID_CHARACTERS = ~ ~

LABEL

- LA.BEL= ''<multi-file-identifier>''------~--------------~--~

LABEL_ TYPE

- LABEL_ TYPE = t= UNLABELED

BURROUGHS ---1

ANSI!------

1137833

---- I "<file-identifier> " ------'

C-39

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

LOCK

MODE

-MODE =~ASCII
EBCDIC -----1

BCL -----1
BINARY--'

MULTI_PACK

~EVEN~
..____ ODD -----'

- MUL Tl_PACK --------

NUMBER_OF _ST A TIONS

--NUMBER_OF_STATIONS =<number~>------------------------~

OPEN_OPTION

- OPEN_OPTION =

OPTIONAL

-1-----1
---"---INPUT ------'----------------------1

OUTPUT--""'"'

NEW ----""""

DEFAULT----'

-- OPTIONAL-------------·-----------~------------~---~

PACK_ID

- PACK_ID = "<pack·identifier>"

PROTECTION

-- PROTECTION = <number> ------------------------------1

PROTECTION_IO

-- PROTECTION_IO = <number>

C-40

RECORDS

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

- RECORDS= ---c- <physical-size>

<logical-size>/< records-per-block> ---------

REEL

- REEL = <reel-number> --------------------------------1

REMOTE_KEY

---REMOTE_KEY------------------------------------1

SAVE

- SAVE = <number-of-days> ------------------------------1

SECURITYTYPE

- SECURITYTYPE = <number> ----------------------------1

SECURITYUSE

- SECURITYUSE = <number> -------------------------------1

SERIAL

- SERIAL = --..-c-- <number>

"<character-string>"------

TRANSLATE

- TRANSLATE= ''<file-identifier>''------------------------~

USE_INPUT _BLOCKING

- USE __ INPUT _BLOCKING ------------------------------!

USER_NAMED_BACKUP

- USEB_NAMED_BACKUP ----------·-------------------;

VARIABLE

- VARIABLE ---------------·---------------------1

1137833 C-41

WORK_FILE

Switch File Declarations

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

(
- SWITCH_FILE <switch-file-identifier> (-----------<file-identifier>-----) : --1
Define Statement

A

-DEFINEL <define-identifier> ---.,.----------------------------•B
r (------ <parameter> ---)

r· <parameter>

A +(------------
8 >--AS # <text> # ---- ; --------------------------1

Procedure Statement

The following are the syntax diagrams for the procedure declaration, procedure body, procedure end,
and procedure invocation statements.

Procedure Declaration

-------------- PROCEDURE <procedure-identifier>--------------.

L FORWARD __J

>::--[--(~--~-L~~~-<-p-ar_a_m-et-er_>_-=J ____) ~~~~~~~~~~~~~~~~~~~~~~--
----- <type.part> ---

>>------------------------' ~--~~--------------------t=. FORMAL -------·--- <formal-element-part> ---

FORMAL_ VALUE

C-42

-I

<type-part>

1-- BIT L
1--- CHARACTER

r--- FIXED

r--- REFERENCE

'----V RYI A NG

<formal-element-part>

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

(<bit-size>)

I VARYING

I (<character-size>)

VARYING

I
l

I

-~-,--<id~~~~----L ___ <_*_)_~-----------J----<w~~rv--~~

,-<-
(<identifier> ----c--(-*-)-~---""----)

Procedure Body

---· <declaration-statemenv------'J

. J;>rocedure End

i.-- <procedure-statements

.___RETURN---

1
------------------~

._ __ <expression>-----

-END---------------------

...__ ___ <procedure-identifier> -------

Procedure Invocations

1137833

I
l

C-43

Expressions

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

The following are the syntax diagrams for the expressions.

,.___ __ <unary-operator> _m=]
<operand>

:>::-----L ___ <operator> --r- --,-- <operand>

L __ <unary-operator> __ _J

Verbs

The following are the syntax diagrams for the verbs.

ACCEPT

- ACCEPT <destination>; -----·--------------------------~

ACCESS_FILE_INFORMA TION

- ACCESS_FILE_INFORMATION (<file-identifier>, --------.-- BIT

L CHARACTER __J
>

> , <destination>); -----·-----------------------------1

BINARY

~BINARY (<charac~~string>)------------------------------~

BUMP

- BUMP <identifier> ------------------------------------1
L_ BY <increment-amount>·-----'

CASE (format-1)

---CASE <index>;------------------------·-----------------~

> <statement-O>; -------------------------------~

> <statement-1>; --------------------------·----__..,,,.

:> <statement·n>; -------------------------------~

>---END CASE;

C-44

CASE (format-2)

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

- CASE <index> OF (_____ r ___ <expression>------) ---------------.

CHANGE

1<
- CHANGE <file-identifier> TO (----------<attribute> : = <value>------); -----1
CHAR_TABLE:

t< ~-----~CAT--------------------------
-CHAR_TABLE (----.... --.....----"<EBCDIC-characters>"------.....----)---

.__ __ @< 2-hexadecimal-numbers> @

CHARACTER_FILL

- CHARACTER_FILL (<destination>, <source>);

CLEAR

1<
- CLEAR ___ ...____ ___ <array-identifier> ------

CLOSE

-CLOSE--r-< file-identifier>

L_ <switch-file-ideritifier> (<index>) -------- Lw1TH~

>>----------------------------....------------....----''-----

1137833

CODE_FILE -----

CRUNCH -----------1
IF _NOT _CLOSED ---'"""'

LOCK-------

NO_REWIND -------i
PURGE -------'"""'

REEL --------......

RELEASE-----------.....i

REMOVE ----------.....i

ROLLOUT ------

C-45

COMPILE_CARD_INFO

CONSOLE_SWITCHES

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

-- CONSOLE_SWITCHES ----- ·---·------------------------t

CONVERT

- ~ERT (<convert-value>, --i= FIXED -----------------r--) ---1
BIT--~----~r--~---------~--1

CHARACTER---- • 1 ~
DAT A_ADDRESS

-DATA_ADDRESS (<identifier>)

DATE

-DATE-c----(~------------------~--------------------~------------1

1
~::i~r • -c ~~TA_R_A_C~)
MONTH - c DIGIT -

YEAR-

DECIMAL

-DECIMAL (<strin~.<"ring~ize>) -------~------------~----~

DECREMENT

-- DECREMENT< identifier>----~---~-----~----------~J-----~

--- BY < decrement-amount> ---

DISPLAY

-- DISPLAY (<display-identifier>) ---------..-L---·----_J----
, CRUNCHED

C-46

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

DO

-001
--<group-name>--- LFOREVER ~

>:>-----END -·-L--------~--T"""

<group-name> ---

DUMP ..,..._FOR_.ANAL YSIS

- DUM£>_FOR_ANALYSIS;

DYNAMIC_MEMORY_BASE

r
L <statement>; =:J

)

---DYNAMIC_MEMORY_BASE--...--1

FIND_DUPLICATE_CHARACTERS

- FIND_DUPLICATE_CHARACTERS (<reference-identifier-1>, ----------------------__.,.

> <count~dentifie~. <character~dentifie~. -------~---------------------------~

> - <reference~dentifie~2>); ---~

FINI

--FINI -----------------..----.......... _,...,,__ ______ _,..,.........,...---------------------------------1

FREEZE_PROGRAM

---FREEZE_PROGRAM; ---.--------1
GROW

-GROW (<paged-array-identifier>, <increase-amount>); -------------------------------1

HASH __ CODE

IF, THEN, and ELSE (Conditionals)

- IF <condition> THEN

--- <statement-1> ----

>~----~c---E-LS-E=============-=-=-=--=--=--=--=---m=J~-----------------~
[___ <statement-2> -----

1137833 C-47

LENGTH

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

- LENGTH (<identifier>) ----------------,---------------1

LIMIT _REGISTER

- LIMIT _REGISTER----------------------------------!

LOCATION

-LOCATION L <:identifier> _____ ==r-)
L <array-identifier> ~

<procedure-identifier> ---

MAKE_READ_ONL Y

-- MAKE_READ_ONLY (<paged-array-identifier>), <page-number>); ---------------1

MAKE_READ_ WRITE

- MAKE_READ_WRITE (<paged-array-identifier>, <page-number>), ---------------1

MESSAGE_ COUNT

-- MESSAGE_ COUNT (<queue-file-id>, <identifier>) ; -----·----------------1

M_MEM_SIZE

-M MEM SIZE - --

NAME_OF _DAY

-NAME_OF _DAY'

C-48

OPEN

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

- OPEN --r- <file-identifier>

L__ <switch-file-id > (< index >) -----------

>~-----------~---

INPUT ---------1

INTERPRET ------•

LOCK---------1

LOCK OUT--------1

NEW --------

NO REWIND-----

OUTPUT-------

PR INT-------~

-PUNCH---

REVERSE ---·---

STACK ERS ---------

I

L -r- ON FILE _r.11SSING <statement>

L__ON FILE LOCKED <statement>----

PROCESSOR_ TIME

Lw1TH~
>

~PROCESSOR_TIME-------------~--------~---------------

PROGRAM_SWITCHES

- PROGRAM_SWITCHES --------

...___ __ (<switch-number>) ___ __,

1137833 C-49

READ

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

-- READ --r- <file-identifier>

L_ <switch-file-identifier> (<n:.imber>) -----------'

>~--~---------------------·--------~

L <rec:ord-address-identifier> _____ ===r] _J
----<remote-key-identifier> ~

----- <queue•family-identifier> ----

(< identifier-1 >)

~--- WITH RESULT _MASK <address-generator>
L_

...... r l
/

ON EOF <statement-1>;

ON EXCEPTION < statement-2>;

: < t tement-3> · ON INCOMPLETE 10 s a

REDUCE

-- REDUCE < reference-identifier-1>

>>--------------------------------~---------------~ UNTIL

'-------SETTING <reference-identifier-2> --------

>~--c-. -FIRST

LAST----'

EOL

NEO

<literal>., ____________ _

<identifier>

/=

IN <character-table-identifier>

I
l

>

>>----..,.-----------------------------~--'----t

REFER

ON EOS_CYCLE <stateme!nt-1>; ------1
ON EOS <statement-2>; ·--------

~-REFER <reterenc~identif~r> TO <identifier>;~-----~---------------------------~-~

C-50

RETURN

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

- RETURN--------------

L <expression> ---

REVERSE_STORE

- REVERSE_STORE (<address-generator-1>, <address-generator-2>, --------------~

>---' < --- > , < address-generator-n>, <expression>)

SEARCH_DIRECTORY

- SEARCH_DIRECTORY (<tile-identifier, <identifier>,------------------ ~

~ BIT -------.---) ; ---......---------·--------------.--~>

L CHARACTER --- ----- ON FILE MISSING <statement-1>; ------'

>~-r-L·~----------------~---------------------t
.._ ____ ON FILE LOCKED <statement-2>; ___ __...

SEARCH_LINKED_LIST

--SEARCH_LINKED_LIST (<first-item>, <compare-field>.-----------------

>-<compare-value>, <relation>, <link-field>);

SEEK

- SEEK <file-identifier> [<record-address-identifier>] --------1
SEGMENT _PAGE

-- SEGMENT_PAGE (<segmen~identifier> ------------------------~

~ --'1'----
>>---~L__,___ IMPORTANT ________ =1 ____) ;

L· T
OF <page-identifier>

SKIP

- SKIP <tile-identifier> TO <channel-number>; ----·-------

1137833 C-51

SORT

B 1000 Systems SDL/UPL Reference Manual
SDL/UPL Syntax Reference Guide

- SORT (<ror~information~awe>, <key~aWe>, --------------~------~-----~

> <input-file-identifier>, <output-file-identifier> ---------------------~

>>----[------ ----~-------~---r----); ------------------
..... _____ , <translate-file-identifier>

SORT_MERGE

- SORT _MERGE (<sort-information-table>, <key-table>, ----·--------------

> <merge-input-table>, <output-file-identifier> ---------------------~

-------- , <translate-file-identifier>

SORT_SWAP

~SORT_SWAP (<~entif~~l>, <identifie~2>): ---~-------------~-----~

SPACE

- SPACE <tile-identifier> ------r----------.-- <space-amount:>-------

~~~-EOF -----------------------

>~---~r __________ ~----------~-----------1 
~-------- ON EOF <statement-1>; ----------1 
~ ON EXCEPTION <statement-2>; 

SPO_INPUT _FRESENT 

-SPO_INPUT_PRESENT----------·-----~--------------·---------------------------. 

STOP 

-STOP-----------~------

--- <syntax-errors> -

SUB BIT 

- SUBBIT (<string-identifier>, <start-position>---------·------------) ----4 
-~ -- , <length> ----

C-52 



SUBSTR 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

- SUBSTR (<string-identifier>, <start-position> - ----,.--------- ) -I 
--- , <length> 

SWAP 

THAW __ PROGRAM 

- THAW_PROGRAM; 

TIME 

-TIME---c=----(-------c=--~--C-IV-IL-IA_N ____ -------r--______ '_t ____ ~B-IT----------------~--------~ 
c COUNTER ~ CHARACTER ---

MILITARY DIGIT -----

TRANSLATE 

TRANSLATE (<source-identifier>, <source-item-size>, 

> <:translate-table>, <translate-item-size>, <result-identifier> -----------------1 

UNDO 

- UNDO ------------------r--
...._ __ <identifier> ----

USE 

I - USE ( _.__ --- <declared-identifier>----------- ) OF <defined-identifier>; -------1 

1137833 C-53 



WAIT 

>>--- ( 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

,___ __ [<start-position>] 

_____ r __ ~--~---------~------------------~: L TIME_ TENTHS (<wait-time>) -------------------~ C 

B ~--- SPO_INPUT_PRESENT-------------·---------,---- C 

DC_IO_COMPLETE --- -----------------------~ 

O_WRITE_OCCURRED ( <file-id-1>) 

READ_OK ( <file-id-2> ---------------------------------- ) 
,___ ___ [ <que-family-id-1>) -----

WRITE_OK (<file-id-3> -----.......------------------) 

[ < queue-family-id-2> ] -----

~>~------------------------~-----~-----r----); -------------------------t 
,___ __ WHEN <when-expre~;sion> -----

C-54 



WRITE 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

-WRITE --c----~----..... L.--- <file-identifier> 

LOCK,____I <switch-file-id> ( <identifier-1>) ---------

-
to·- DOUBLE 

to·- NEXT 

t-·-NO 

t-·-PAGE 

·-SINGLE 

- <channel-number> 

- . . .. -<record address 1dent1f1er> 

11----- <remote-key-identifier> --------11 
< queue-family-identifier> 

~ ,,, 

>--r-· --------(<record>) ------------------------...,. 

L-TOP __J 

L __ WITH RESULT _MASK <address-generator> ______ __, 

>~~--r---------------------------------,r----------------------------------------7> 

..... L ___ ON EOF <statement-1>; ----

>~------··---------------------------------------------------------------------->· 
L_ ON EXCEPTION <statement-2> ; 

>>---..~·--------------------------------------------.---------------------------~ 

L_ ON INCOMPLETE_IO <statement-3>; 

X.-_ADD 

- X ADD ( < expression-1 >, < expression-2>) 

X_DIV 

-- X_DIV ( <expression-1>, <expression-2> ) 

X_MOD 

-X._MOO ( <expression-1>, <expression-2>) 

X_MUL 

--X_MUL (<expre~io~1>, <expre~ion~>) ------~------------------------------~ 

1137833 C-55 



X_SUB 

ZIP 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

-- ZIP < MCP--command>; -------------------------------------1 

Compiler Options 

The following are the syntax diagrams for the compiler options. 

Compiler-Directing Options 

L :-=1--L--c-R-EA_T_E_M_A-sT_E_R_~~J·---c--R-Ec_o_M_P_IL_E ________________ '""'T""~> A 

L __ "<multi-file-id>" __ ___, 

~ 

A r 
...__ CSSIZE < cssize-num be r > 
....__DEBUG <sequence-number> 

~ DYNAMICSIZE <dynamicsize-number> 

1-- ESSIZE <essize-number> 

1-- INTERPRETER "<file-identifier>" 

1-- INTRINSIC "<multi-file-identifier>" 

1-- LIBRARY "<file-identifier>" 

1-- LIBRARY - PACK "<pack-identifier>" 

...__MERGE 

...__ NSSIZE < nssize-number> 

1-- PAGE 

1--- PPSSIZE <ppssize-number> 

1-- RECOMPILE TIMES -
1-- SEO <base-sequence-number> 

1-- VOID I <ending-sequence-number> 

..__ -VSSIZE < vss1ze number> 

C-56 

L_+ <increment> -

-~~ 

( 

~ ....,. 

B 

c 



B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guide 

8 ~·~~~~~~~~~~~~~~~---1 

c LNO=r 

1137833 

1-- ADVISORY --------------t 
1-- AMPE ASANO ---------------1 
1-- CHECK -----------------t 
t-- CODE ----------------t 
.,...__ CONTROL ---------------1 
1-- CONVERTDOTS ----------~ 

1-- DETAIL --------------t 
1-- DOUBLE ---------------t 
t-- ERROR_FI LE--------------1 

t-- EXPAND_DEFINES------------1 

t--FORMAL_CHECK------------1 

1-- FREEZE -----------------1 
1-- LIST ------------------1 
1--- LISTALL ---------------t 
t---LOCKI-------------------~ 

f-- MONITOR ----------------1 
t-- MONITOR_OFF 

1-- NEW -----------------.i 

1-- NO_DUPLICATES -----------1 
1--- NO _SOU ACE --------------.i 

.--PASS_END----------------i 

t-- PROFILE ---------------1 
l---PPROFILE----------------1 

t--SGL-------------------1 

t-- SINGLE -----------------1 

1--- SIZE -------------------1 

i---SUPPRESS -------------~~ 

1-- UNDERSCORES_IN_FILE_NAMES ____ _, 

t--- USEDOTS------------------1 

,t-- WORKING_SET _BYTES ......... 

J 
l 

C-57 



Conditional Compilation 

B 1000 Systems SDL/UPL Reference Manual 
SDL/UPL Syntax Reference Guidi~ 

XMAP---·---~----~-------

XREF -~~-------------------------1 

XREF LITERALS------·-----

XREF ONLY -----------·---

1< l 
- & -r-SET------------ <:boolean-identifier> ----·----------------~ 

L_ RESET----

>~------<~~~ma~>---]---~----------------~ 

---<nested-block> --- L ELSE --..-L-· <source-images> -

-- <nested-block> 

> END---------- ------------------------------·---------1 

C-58 



B 1000 Systems SDL/UPL Reference Manual 

APPENDIX D 
GLOSSARY OF COMMONLY USED TERMS AND ACRONYMS 

absolute address 

1. An address that identifies a storage location or a device without the use of any intermediate 
reference. 

2. An address that is permanently assigned by the machine designer to a storage facility. 

address 

1. A character or group of characters that identifies a register, a particular part of storage, or 
some other data source or destination. 

2. To refer to a device or an item of data by its address. 

address part 
A part of an instruction that usually contains only an address or part of an address. 

address register 
A register in which an address is stored. 

algorithm 
A finite set of well-defined rules for the solution of a problem in a finite number of steps. 

alphabet 
An ordered set of all the letters used in a language, but does not include punctuation marks. 

alphabetic character set 
A character set that contains letters and may contain control characters, special characters, and 
the space character, but not digits. 

alphanumeric 
Pertaining to a character set that contains letters, digits, and usually other characters such as 
punctuation marks. 

alphanumeric character set 
A character set that contains both letters and digits and may contain control characters, special 
characters, and the space character. 

alphanumeric data 
Data represented by letters and digits, perhaps with special characters and the space character. 

American Standard Code for Information Interchange (ASCII) 

AND 

The standard code, using a coded character set of 7-bit coded characters (8-bits including parity 
check), used for information interchange among data processing systems, data communication 
systems, and associated equipment. The ASCII set consists of control characters and graphic 
characters. 

A logic operator having the property that if P is a statement, Q is a statement, R is a statement, 
... , then the AND of P, Q, R, ... is TRUE if all statements are TRUE, FALSE if any statement 
is FALSE. 

1137833 D-1 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

application program 
A user-written program that performs tasks. 

arithmetic instruction 
An instruction in which the operation part specifies an arithmetic operation. 

arithmetic operation 
An operation that follows the rules of arithmetic. 

array 
An arrangement of elements in one or more dimensions. 

ASCII 
The acronym for American Standard Code for Information Interchange. 

assignment statement 
An instruction used to express a sequence of operations, or used to assign operands to specified 
variables, symbols, or both. 

base address 

1. A numeric value that is used as a reference in the calculation of addresses in the execution 
of a computer program. 

2. A given address from which an absolute address is derived by combination with a relative ad
dress. 

beginning of job (BOJ) 
The execution of a single program unit to be performed by the system. 

binary 
Pertaining to a selection, choice, or condition that has two possible different values or states. 

binary arithmetic operation 
An arithmetic operation in which the operands and the result are represented in the pure binary 
system. 

binary code 
A code that makes use of only two distinct characters, usually 0 and 1. 

binary digit (bit) 
In binary notation, either of the characters 0 or 1. 

binary search 

bit 

A search in which, at each step of the search, the set of items is partitioned into two equal parts, 
some appropriate action being taken in the case of an odd number of items. 

In the pure binary system, either the digit 0 and 1. Synonymous with binary digit. 

bit string 
A string consisting solely of bits. 

blank 
A part of a data medium in which no characters are recorded. 

D-2 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

blank character 
A graphic representation of the space character. 

block length 

BOJ 

1. The number of records, words, or characters in a block. 
2. A measure of the size of a block, usually specified in units such as records, words, computer 

words, or characters. 

The acronym for beginning of job. 

boolean 
Pertaining to the processes used in the algebra formulated by George Boole. 

boolean operation 

1. An operation in which each of the operands and the result take one of two values. 
2. An operation that follows the rules of boolean algebra. 

boolean operator 
An operator in which each of the operands and the result take one of two values. 

buffer 
A storage area used to compensate for a difference in rate of flow of data, or in time of occur
rence of events, when transferring data from one device to another. 

buff er storage 

byte 

call 

A storage device that is used to compensate for differences fo the rate of flow of data between 
components or, within an automatic data processing system, for the time of occurrence of events 
in the components. 

A binary character string operated upon as a unit and usually shorter than a computer word. 

1. The action of bringing a computer program, a routine, or a subroutine into effect, usually 
by specifying the entry conditions and jumping to an entry point. 

2. In data communication, the action performed by the calling party, or the operations necessary 
in making a call, or the effective use of a connection between two stations. 

3. To transfer control to a specified closed subroutine. 

card image 
A one-to-one representation of the hole patterns of a punched card. 

carriage control tape 

1. A tape that is used to control vertical tabulation of printing positions or display positions. 
2. A tape that contains line feed control data for a printing device. 

central processing unit (CPU) 
A unit of a computer that includes circuits that control the interpretation and execution of in
structions. 

1137833 D-3 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

channel 

1. A path along which signals can be sent: for example, data channel, output channel. 
2. In data communication, a means of one-way transmission. 

character 
A digit, letter, or special character. 

character set 

clear 

An agreed upon, finite set of unique characters. 

1. To put one or more storage locations or registers into a prescribed state, usually that denoting 
0 (zero). 

2. To cause one or more storage locations to be in a prescribed state, usually corresponding to 
0 (zero) or corresponding to the space character. 

comment 
A description, reference, or explanation added to or interspersed among the statements of the 
source language. Comments do not affect program execution. 

compare 
To examine two items to determine their relative magnitudes, their relative positions in an order 
or sequence, or to determine wh1~ther they are identical in given characteristics. 

compile 

1. To translate a computer program expressed in a problem-oriented language into a computer
oriented language. 

2. To prepare a machine language program from a computer program written in another pro
gramming language by: 1) making use of the overall logic structure of the program, or 2) gen
erating more than one computer instruction for each symbolic statement, or a combination 
of (1) and (2), and (3) performing the function of an assembler. 

compiler 
A computer program used to compile. 

complement 
A number that can be derived from a specified number by subtracting it from a second specified 
number. 

computer instruction 
An instruction that can be recognized by the central processing unit of the computer for which 
it is designed. 

computer language 
A language in which the instructions consist only of computer instructions. 

computer-oriented language 

D-4 

A programming language that reflects the structure of a particular computer or class of com
puters. A programming language iln which the words and syntax are designed for use on a specific 
class of computers. 



B WOO Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

computer program 
A program expressed in a form suitable for execution by a computer. 

constant 
See figurative constant. 

control character 
A character occurring in a particular context to initiate, modify, or stop a control operation. A 
control character may be recorded for use in a subsequent action. A control character is not a 
graphic character, but may have a graphic representation in some circumstances. 

control operation 
An action that affects the recording, processing, transmission, or interpretation of data: for ex
ample, starting or stopping a process, carriage return, rewind, and end of transmission. 

control state 
A term used to refer to a program that can assume control of the system's processor with privi
leged operands. The type of control state program suggested here usually means an operating sys
tem or MCP. 

convert 

CPU 

cycle 

data 

To change the representation of data from one form to another without changing the information 
they convey. 

The acronym for central processing unit. 

An interval of space or time in which one set of events or phenomena is completed. Any set 
of operations that is repeated regularly in the same sequence. The operations may be subjected 
to variations on each repetition. 

1. A representation of facts, concepts, or instructions in a formalized manner suitable for com
munication, interpretation, or processing manually or automatically. 

2. Any representations such as characters or analog quantities to which meaning can be assigned. 

data attribute 
A characteristic of a unit of data such as length, value, or method of representation. 

data base 
A set of data, the whole or part of another set of data, and consisting of at least one file that 
is sufficient for a given purpose or for a given data processing system. 

data type 
Declares the identifier as BIT, CHARACTER, or FIXED. 

debug 
To detect, trace, and eliminate mistakes in computer programs or other software. 

decimal 

1. Pertaining to a selection, choice, or condition that has ten possible values or states. 
2. Pertaining to a number system having ten digit places. 

1137833 D-5 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

decimal digit 
In decimal notation, or in the decimal number system, one of the digits 0 to 9. 

decimal notation 
A notation that uses ten different characters, usually the decimal digits. 

declaration 
In a programming language, a meaningful expression that affects the interpretation of other ex
pressions in that language. 

declare statement 
A statement that names a variable and assigns a memory location and data attributes to that 
name. 

default option 
An implicit option that is assumed when no option is explicitly stated. 

define 
Assigns a section of source code to an identifier. 

delimiter 
A flag that separates and organizes items of data. 

difference 

digit 

In a subtraction operation, the number or quantity that is the result of subtracting the subtrahend 
from the minuend. 

A graphic character that represents an integer: for example, one of the characters 0 to 9. 

directory 
A table of identifiers and references to the corresponding items of data. 

disk cartridge 
A secondary data storage device much the same as a disk pack and usually smaller in size. It 
can be moved on line or off line. 

disk directory 
A disk-resident table that contains the name and type of file, together with a pointer to the disk 
file header or subdirectory for all permanent files which reside on the disk. 

disk pack 
A removeable assembly of magnetic disks. A portable set of flat, recording surfaces used in a 
disk storage device. 

display 
A visual presentation of data. 

display device 
An output unit that gives a visual representation of data. Usually the data are displayed tempo
rarily; however, arrangements may be made for making a permanent record. 

dividend 
In a division operation, the number or quantity to be divided. 

D-6 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

divisor 
In a division operation, the number or quantity by which the dividend is divided. 

EBCDIC 
The acronym for Extended Binary Coded Decimal Interchange Code 

element 
In a set, an object, entity, or concept having the properties that define a set. 

end of job (EOJ) 

EOJ 

error 

The termination of a single program unit to be performed by the system. 

The acronym for end of job. 

A discrepancy between a computed, observed, or measured value or condition and the TRUE, 
specified, or theoretically correct value or condition. 

error message 
An indication that an error has been detected. 

exclusion 
The 2-operand boolean operation whose result has the boolean value 1 if the first operand has 
the boolean value 1 and the second has the boolean value 0. 

exclusive-OR 
A logic operator having the property that if P is a statement and Q is a statement, then P exclu
sive-OR Q is TRUE if either but not both statements are TRUE, FALSE if both are TRUE or 
both are FALSE. 

exclusive-OR element 
A logic element that performs the boolean nonequivalence operation. 

execute 
In programming, to change the state of a computer in accordance with the rules of the operations 
it recognizes. To perform the execution of an instruction or of a computer program. 

execution 
The process by which a computer program or subroutine changes the state of a computer in ac
cordance with the rules of the operations that a computer recognizes. The process of carrying 
out an instruction by a computer. The process of carrying out the instructions of a computer 
program by a computer. 

expression 
The operational portion of a program statement that produces a value. 

Extended Binary Coded Decimal Interchange Code (EBCDIC) 
A coded character set consisting of 8-bit coded characters used to represent unique letters, num
bers, and special characters. 

factor 
In a multiplication operation, any of the numbers or quantities that are the operands. 

1137833 D-7 



B 1000 Systems SDL/UPL Reference: Manual 
Glossary of Commonly Used Terms and Acronyms 

family name 

fetch 

field 

An identifier used as a file name, or the name assigned to identify a main file with subdirectory 
entries. Same as multifile-id. 

To locate and load a quantity of data from storage. 

In a record, a specified area used for a particular category of data; for example, a group of posi
tions in which a wage rate is recorded. 

FIFO (first-in-first-out) 
A queuing technique in which the text item to be retrieved is the item that has remained in the 
queue the longest. 

figurative constant 

file 

A data name that is reserved for a specified constant in a specified programming language. 

A set of related records treated as a unit; for example, in stock control, a file could consist of 
a set of invoices. .ne 10 

file identifier (file-id) 
All disk file identifiers used on the system must be unique to prevent duplicate file names. A 
file identifier can be composed of any combination of the following file identifier options: 

file-id 
multifile-id/file-id 
disk-id/multifile-id/file-id 

file maintenance 

filler 

The activity of keeping a file up to date by adding, changing, or deleting records .. 

One or more characters adjacent to an item of data that serve to bring its representation up to 
a specified size. 

file security 
The procedures or special devices used to prevent access to or use of data or programs without 
authorization. 

fixed storage 

flag 

A storage device whose contents are inherently nonerasable, nonerasable by a particular user, or 
nonerasable when operating under particular conditions. 

1. Any of various types of indicators used for identification; for example, a word mark. 
2. A character that signals the occurrence of some condition, such as the end of a word. 

format 
The arrangement or layout of data in or on a data medium. 

D-8 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

generate 
To produce a computer program by a selection of subsets from skeletal code under the controls 
of parameters. 

generator 
A controlling routine that performs a generating function; for example, report generator, 1/0 
generator. 

global 
Pertaining to that which is defined in one subdivision of a computer program, and then used 
in at least one other subdivision of that computer program. 

graphic 
A symbol produced by a process such as handwriting, drawing, or printing. 

graphic character 
A character, other than a control character, which is normally represented by a graphic. 

hardware 
Physical equipment used in data processing, as opposed to computer program, procedures, rules, 
and associated documentation. 

hash total 
The result obtained by applying an algorithm to a set of data for checking purposes; for example, 
a summation obtained by treating data items as numbers. 

heading 
In ASCII and data communication, a sequence of characters preceded by the start-of-heading 
character used as machine sensible address or routing information. 

high-level language 
A programming language that does not reflect the structure of any one given computer or that 
of any given class of computers. 

identifier 
A character or group of characters used to identify or name an item of data and possibly to 
indicate certain properties of that data. 

inclusive-OR element 

index 

A logic element that performs the boolean operation of disjunction. 

1. In programming, a subscript of integer value that identifies the position of an item of data 
with respect to some other item of data. 

2. A list of the contents of a file or of a document, together with keys or references for locating 
the contents. 

3. A symbol or numeral used to identify a particular quantity in an array of similar quantities. 

indexed address 
An address that is modified by the content of an index register prior to or during the execution 
of a computer instruction. 

1137833 D-9 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

index register 
A register whose contents may be used to modify an operand address during the execution of 
computer instructions, so as to operate as a clock or counter.. An index register may be used to 
control the execution of a loop, to control the use of an array, as a switch, for table lookup, 
as a pointer, etc. 

initialize 

input 

To set counters, switches, addresses, or contents of storage to zero or other starting values at 
the beginning of, or at prescribed points in, the operation of a computer routine. 

1. One, or a sequence of, input states. 
2. Pertaining to a device, process, or channel involved in an input process, or to the data or 

states involved in an input process. 

input area 
An area of storage reserved for input. 

input data 
Data being received or to be received into a device or computer program. 

input-output (110) 
Pertaining to a device or to a channel that may be involved in an input process and, at a different 
time, in an output process. 

input unit 
A device in a data processing system by which data may be entered into the system. 

instruction 
In a programming language, a meaningful expression that specifies one operation and identifies 
its operands, if any. 

instruction address register 
A register from whose contents the address of the next instruction is derived. An instruction ad
dress register may also be a portion of a storage device specifically designated for the derivation 
of the address of the next instruction by a translator, compik~r, interpreter, language processor, 
operating system, and so forth. 

instruction control unit 
In central processing unit, the part that receives instructions in proper sequence, interprets each 
instruction, and applies the proper signal to the arithmetic and logic unit and other parts in accor
dance with this interpretation. 

instruction counter 
A counter that indicates the location of the next computer instruction to be interpreted. 

instruction format 
The layout of an instruction showing its constituent parts. 

instruction register 
A register that is used to hold an instruction for interpretatilon. 

D-10 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

instruction set 
The set of instructions of a computer, of a programming language, or the programming languages 
in a programming system. 

integer 
One of the numbers 0, + 1, - 1, + 2, - 2, and so forth. 

internal storage 
A storage device directly controlled by the central processing unit of a digital computer. 

interpret 
To translate and to execute each source language statement of a computer program before trans
lating and executing the next statement. 

interpreter 
A computer program used to interpret. 

interrupt 
To stop a process in such a way that it can be resumed. 

interruption 

1/0 

item 

job 

A suspension of a process, such as the execution of a computer program, normally caused by 
an event external to that process, and performed in such a way that it can be resumed. 

The acronym for input/ output. 

One member of a group. A file may consist of a number of items, such as records, which in 
turn may consist of other items. A collection of related characters treated as a unit. 

A set of data that completely defines a unit of work for a computer. A job usually includes all 
necessary computer programs, linkages, files, and instructions to the operating system. 

justify 

K 

key 

1. To control the printing positions of characters on a page so that both the left-hand and right
hand margins of the printing are regular. 

2. To shift the contents of a register, if necessary, so that the character at a specified end of 
the data that has been read or loaded into the register is at a specified position in the register. 

3. To align characters horizontally or vertically to fit the positioning constraints of a required 
format. 

When referring to storage capacity, two to the tenth power (1024). 

One or more characters, within a set of data, that contains information about the set, including 
its identification. 

keypunch 
A keyboard-actuated device that punches holes in a punch card or a punched card. 

1137833 D-11 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

keyword 

label 

One of the predefined words of an artificial language. 

One or more characters, within or attached to a set of data, that contains information about the 
set, including its identification. 

language 
A set of characters, conventions, and rules, that are used for conveying information. The three 
aspects of language are pragmatics, semantics, and syntax. 

language processor 
A computer program that performs such functions as translating and interpreting and other tasks 
required for processing a specified programming language. 

leading zero 
In positional notation, a zero in a more significant digit place than the digit place of the 
significant nonzero digit of a numeral. .ne 8 

left-justify 

letter 

level 

To shift the contents of a register so that the data is moved to a specified position. To control 
the printing positions of characters on a page so that the left-hand margin of the printing is 
regular. 

A graphic character which when used alone or combined with others, represents in a written lan
guage one or more sound elements of a spoken language,_ but excludes marks used alone and 
punctuation. 

The degree of subordination of an item in a hierarchic arrangement. 

level number 
A reference number that indicates the position of an item in a hierarchic arrangement. 

lexicographic level 
A lexicographic (lexic) level is a compile-time relationship of each procedure to the outer level 
of the program. The outer level is referred to as level 0 (zero). All other procedures are nested 
within lexic level 0 and are assigned a lexic level number representing their depth of nesting 
from lexic level 0. 

library 
A collection of related files. For example, one line of an invoice may form an item, a complete 
invoice may form a file, the collection of inventory control files may form a library, and the 
libraries used by an organization are known as its data bank. 

library routine 
A computer program in or from a program library. 

LIFO (last-in-first-out) 
A queuing technique in which the next item to be retrieved is the item most recently placed in 
the queue. 

line printer 
A device that prints a line of characters as a unit. 

D-12 



link 

list 

literal 

load 

local 

B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

In computer programming, the part of a computer program, in some cases a single instruction 
or an address, that passes control and parameters between separate portions of the computer pro
gram. 

An ordered set of items of data. 

In a source program, an explicit representation of the item value which must be unaltered during 
any translation. 

In computer programming, to enter data into storage or working registers. 

Pertaining to that which is defined and used only in one subdivision of a computer program. 

location 
Any place in which data may be stored. 

logical record 

loop 

A record independent of its physical environment. Portions of the same logical record may be 
located in different physical records, or several logical records or parts of logical records may 
be located in one physical record. 

A set of instructions that may be executed repeatedly while a certain condition prevails. In some 
implementations, no test is made to discover whether the condition prevails until the loop has 
been executed once. 

machine language 
A language that is used directly by a machine. 

machine-readable medium 

mask 

A medium that can convey data to a given sensing device. 

A pattern of characters used to control the retention or elimination of portions of another pattern 
of characters. To use a pa,ttern of characters to control the retention or elimination of portions 
of another pattern of characters. 

master file 
A file which is used as an authority in a given job and which is relatively permanent, even though 
its contents may change. 

memory 
See main storage. 

merge 
To combine the items of two or more sets that are each in the same given order into one set 
in that order. 

minuend 
In subtraction, the number or quantity from which another number or quantity is subtracted. 

1137833 D-13 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

mnemonic symbol 
A symbol chosen to assist the human memory; for example, an abbreviation such as "mpy" for 
"multiply". 

module 
A program unit that is discrete and identifiable with respect to compiling, combining with other 
units, and loading: for example, the input to and output from, an assembler, compiler, or 
executive routine. 

modulo-n counter 
A counter in which the number represented reverts to zero in the sequence of counting after 
reaching a maximum value of n - 1. 

multi file-id 
See family name. 

multiplicand 
In a multiplication operation, the factor that is multiplied by another number or quantity. 

multiplier 
In multiplication, the number or quantity by which the multiplicand is multiplied. 

multiprocessing 
A mode of operating a multiprocessor that provides for the parallel processing of two or more 
computer programs. Pertaining to the simultaneous execution of two or more computer programs 
or sequences of instructions by a computer or computer network. 

multiprocessor 
A computer employing two or more central processing units under integrated control. 

multiprogramming 

n-ary 

A mode of operation that provides for the interleaved execution of two or more computer pro
grams by a single central processing unit. Pertaining to the concurrent execution of two or more 
computer programs by a computer. 

Pertaining to a selection, choice, or condition that has n possible different values or states. 

negate 
To perform the operation of negation. 

negation 

nest 

A boolean operation the result of which has the boolean value opposite to that of the operand. 

To embed procedures or DO-groups into other procedures or DO-groups at a different hierarchi
cal level such that the different levels can be performed or accessed recursively. 

no-op 
No-operation instruction. 

no-operation instruction 

D-14 

An instruction whose execution causes the computer to do nothing and then proceed to the next 
instruction to be executed. 



NOR 

NOT 

B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

A logic operator having the property that if P is a statement, Q is a statement, R is a statement, 
... , then the NOR of P, Q, R, ... is TRUE if all statements are FALSE, FALSE if a least one 
statement is TRUE. 

A logic operator having the property that if P is a statement, then NOT of P is TRUE if P is 
FALSE, FALSE if P is TRUE. 

notation 
A set of symbols, and the rules for their use in representation of data. 

null string 
A string containing no entity. 

number 
A mathematical entity that indicates quantity or amount of units. 

numeral 
A discrete representation of a number. 

numeric 
Pertaining to data or to physical quantities represented by numerals. 

numeric data 
Data represented by numerals. 

object code 
Output from a compiler or assembler which is itself executable machine code or is suitable for 
processing to produce executable machine code. 

object program 
A fully compiled or assembled program that is ready to be loaded into the computer. 

octet 
A byte composed of eight binary elements. 

operand 
An entity to which an operation is applied. That which is operated upon. An operand is usually 
identified by an address part of an instruction. 

operating system 
Software that controls the execution of computer programs and provides scheduling, debugging, 
input-output control, accounting, compilation, storage assignment, data management, and other 
related services. 

operation 

1. A well-defined action that, when applied to any permissible combination of known entities, 
produces a new entity. 

2. A defined action, namely, the act of obtaining a result from one or more operands in accor
dance with a rule that completely specifies the result for any permissible combination of oper
ands. 

3. A program step undertaken or executed by a computer. 
4. The event or specific action performed by a logic element. 

1137833 D-15 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

operation code 
A code used to represent the operations of a computer. 

operator 

1. A symbol that represents the action to be performed in a mathematical operation. In the de
scription of a process, that which indicates the action to be performed on operands. 

2. A person who operates a machine. 

operator console 

OR 

A functional unit containing d1evices that are used for communication between a computer 
operator and an automatic data processing system. 

A logic operator having the property that if P is a statement, Q is a statement, R is statement, 
... then the OR of P, Q, R, ... is TRUE if at least one statement is TRUE, FALSE if all state
ments are FALSE. 

output 
Pertaining to a device, process, or channel involved in an output process, or to the data or states 
involved in an output process. 

output area 
An area of storage reserved for output. 

output data 
Data being delivered or to be delivered from a device or from a computer program. 

overlay 

1. In a computer program, a segment that is not permanently maintained in internal storage. 
2. The technique of repeatedly using the same areas of internal storage during different stages 

of a program. 
3. In the execution of a computer program, to load a segment of the computer program in a 

storage area previously occupied by parts of the computer program that are not currently 
needed. 

padding 

page 

A technique that incorporates fillers in data. 

A block of instructions, or data, or both, that can be located in main storage or in auxiliary 
storage. Segmentation and loading of these blocks is automatically controlled by a computer. 

parameter 
A variable that is given a constant value for a specified application that denotes the application. 

parity bit 
A check bit appended to an array of binary digits to make the sum of all the binary digits, includ
ing the check bit, always odd or always even. 

parity check 

D-16 

A check that tests whether the number of ones (or zeros) in an array of binary digits is odd or 
even. 



pass 

patch 

B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

One cycle of processing a body of data. 

To make an improvised modification. To modify a routine in an expedient way. 

pointer 
An identifier that indicates the location of an item of data. 

position 
In a string, each location that may be occupied by a character or binary element and identified 
by a serial number. 

process 
A course of events that occur according to an intended purpose or effect. A systematic sequence 
of operations to produce a specified result. 

processor 
A computer program that performs functions such as compiling, assembling, and translating for 
a specific programming language. 

product 
The number or quantity that results from multiplication. 

program 

1. A schedule or plan that specifies actions that may or may not be taken. 
2. To design, write, and test computer programs. 

program execution time 
The interval during which the instructions of an object program are executed. 

program library 
An organized collection of computer programs that are sufficiently documented to allow them 
to be used by persons other than their authors. 

programmer 
A person who designs, writes, and tests computer programs. 

programming 
The designing, writing, and testing of computer programs. 

programming language 
An artificial language established for expressing computer programs. 

pushdown list 
A list that is constructed and maintained so that the next item to be retrieved is the most recently 
stored item in the list, for example last-in-first-out (LIFO). Synonymous with stack. 

pushdown storage 
A storage device that handles data in such a way that the next item to be retrieved is the most 
recently stored item still in the storage device; for example, last-in-first-out (LIFO). 

1137833 D-17 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

pushup list 
A list that is constructed and maintained so that the next item to retrieved is the earliest stored 
item still in the list, for example, first-in-first-out (FIFO). 

pushup storage 
A storage device that handles data in such a way that the next item to be retrieved is the earliest 
stored item still in the storage device; for example, first-in-first-out (FIFO). 

qualified name 
A data name explicitly accompanied by a specification of the class to which it belongs in a 
specified classification system. 

queued access method 
Any access method that synchronizes the transfer of data between the computer program using 
the access method and input-output devices, thereby minimizing delays for input-output 
operations. 

quotient 
The number or quantity that results from dividing the dividend by the divisor. 

railroad syntax 
A technique used to show how syntactically valid statements can be constructed. 

random access 

range 

read 

An access mode in which specific logical records are obtained from or placed into a mass storage 
file in a nonsequential manner. 

1. The set of values that a quantity or function may take. 
2. The difference between the highest and lowest value that a quantity or function may assume. 

To acquire or to interpret data from a storage device, from a data medium, or from another 
source. 

reading 
The acquisition or interpretation of data from a storage device, from a data medium, or from 
another source. 

real address 
The address of an actual storage location in real storage. 

real time 

D-18 

1. Pertaining to the actual time during which a physical process occurs. 
2. Pertaining to the performance of a computation during the actual time that the related 

physical process occurs, in order that results of the computation can be used in guiding the 
physical process. 



real-time processing 

B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

1. A mode of operation of a data processing system when performing real-time jobs. 
2. The manipulation of data that are required or generated by some process while the process 

is in operation; usually the results are used to influence the process, and perhaps related pro
cesses, while it is occurring. 

record 
A collection of related data or words as a unit; for example, in stock control, each invoice could 
constitute one record. 

record layout 
The arrangement and structure of data or words in a record including the order and size of the 
components of the record. 

record length 
The number of characters forming a record. 

recursive routine 
A routine that may be used as a routine of itself, calling itself directly or being called by another 
routine, one that it itself has called. The use of a recursive routine or computer program usually 
requires the keeping of records of the status of its unfinished uses in, for example, a pushdown 
list. 

recursive subroutine 
A recursive subroutine that may be used as a subroutine of itself calling itself directly or being 
called by another subroutine, but one that it has called. The use of a recursive subroutine or 
computer program usually requires the keeping of records of the status of its unfinished uses in, 
for example, a pushdown list. 

re-entrant code 
A segment of object code that may be entered repeatedly and may be entered before any prior 
executions of the same segment of object code have been completed, and subject to the require
ment that neither its external program parameters nor any instructions are modified during execu
tion. A re-entrant segment of object code may be used simultaneously by more than one com
puter program simultaneously. 

re-entrant program 
A computer program that may be entered repeatedly and may be entered before any prior execu
tions of the same computer program have been completed, and subject to the requirement that 
neither its external program parameters nor any instructions are modified during ·execution. A 
re-entrant program may be used simultaneously by more than one computer program. 

re-entrant routine 
A routine that may be entered repeatedly and may be entered before any prior executions of the 
same routine have been completed, and subject to the requirement that neither its external pro
gram parameters nor any instructions are modified during execution. A re-entrant routine may 
be used simultaneously by more than one computer program. 

re-entrant subroutine 
A subroutine that may be entered repeatedly and may be entered before any prior executions of 
the same subroutine have been completed, and subject to the requirement that neither its external 
program parameters nor any instructions are modified during execution. A re-entrant subroutine 
may be used by more than one computer program simultaneously. 

1137833 D-19 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

re-entry point 
The address or the label of the instruction at which the computer program that called a subrou
tine is re-entered from the subroutine. 

register 
In a computer, a storage device usually intended for some special purpose, capable of storing 
a specified amount of data such as a bit or a word. 

relative address 
An address expressed as a difference with respect to a base address. 

relocatable address 
An address that is adjusted when the computer program containing it is relocated. 

relocate 
To move a computer program or part of a computer program, and to adjust the necessary ad
dress references so that the computer program can be executed after being moved. 

reserved word 

reset 

A word of a source language having meaning fixed by rules of that language and which cannot 
be altered for the convenience of any one computer program expressed in the source language. 
Computer programs expressed in the source language may be prohibited from using reserved 
words in other contexts. 

To cause a counter to take the state that corresponds to a specified initial number. 

restart 
The resumed execution of a computer program that uses data recorded at a checkpoint. 

result 
An entity produced by the performance of an operation. 

return 
With a subroutine, to bind a variable in the computer program that called the subroutine or to 
effect a link to the computer program that called the subroutine. 

right-justify 

1. To shift the contents of a register so that the character at the right-hand end of the data within 
the register is moved to a specified position in the register. 

2. To control the positions of characters on a page so that the right-hand margin of printing 
is regular. 

3. To align characters horizontally so that the rightmost character of a string is in a specified 
position. 

roll-in 
To restore in main storage, data or one or more computer programs that were previously rolled 
out. 

roll-out 

D-20 

To transfer data or one or more computer programs from main storage to auxiliary storage for 
the purpose of freeing main storage for another use. 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

round 
To delete or omit one or more of the least significant digits in a positional representation and 
to adjust the part retained according to a specified rule. The purpose of rounding is usually to 
limit the precision of the numeral or to reduce the number of characters in the numeral, or to 
do both. 

routine 
An ordered set of instructions that may have some general or frequent use. 

run 

1. A single performance of one or more jobs. 
2. A single, continuous performance of a computer program or routine. 

running time 

scalar 

scope 

SDL 

The elasped time taken for the execution of a computer program. 

A quantity characterized by a single number. 

The scope of a procedure is determined at compile time by the SDL/UPL compiler and is the 
range within a program over which an identifier or procedure identifier can be referenced. 

The scope of an identifier is a direct result of the lexic level of procedures and the storage alloca
tion techniques used by the SDL/UPL compiler. The scope of an identifier is that portion of 
the SDL/UPL program which can reference the identifier. 

The acronym for Software Development Language. 

search 

1. The examination of a set of items for one or more items having a given property. 
2. To examine a set of items for one or more having a given property. 

search key 
In the conduct of a search, the data to be compared to a specified part of each item. 

sector 
A part of a track or band on a magnetic drum, magnetic disk, or disk pack. 

seek 
To selectively position the access mechanism of a direct access device. 

segment 
A self-contained portion of a computer program that may be executed without the entire com
puter program necessarily being maintained in internal storage at any one time. 

self-relative address 
A relative address that uses the address of the instruction in which it appears as the base address. 

self-relative addressing 
A method of addressing in which the address part of an instruction contains a self-relative ad
dress. 

11378333 D-21 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

semantics 

1. The relationships of characters or groups of characters to their meanings, independent of the 
manner of their interpretation and use. 

2. The relationships between symbols and their meanings. 

sequence 

1. A series of items that have been sequenced. 
2. An arrangement of items according to a specified set of rules. For example, items arranged 

alphabetically, numerically, or chronologically. , 

serial access 

set 

1. The facility to obtain data from a storage device or to enter data into a storage device in such 
a way that the process depends on the location of that data and on a reference to data previ
ously accessed. 

2. Pertaining to the sequential or consecutive transmission of data to or from storage. 

1. A finite or infinite number of objects of any kind, of entities, or of concepts, that have a 
given property or properties in common. 

2. To cause a counter to take the state corresponding to a specified number. 
3. To place a storage device into a specified state, usually other than that denoting zero. 

sign bit 
A bit or a binary element that occupies a sign position and indicates the algebraic sign of the 
number represented by the numeral with which it is associated. 

sign character 
A character that occupies a sign position and indicates the algebraic sign of the number repre
sented by the numeral with which it is associated. 

sign digit 
A digit that occupies a sign position and indicates the algebraic sign of the number represented 
by the numeral with which it is associated. 

significant digit 
In a numeral, a digit that is needed for a given purpose; in particular, a digit that must be kept 
to preserve a given accuracy or a given precision. 

sign position 

skip 

A position, normally located at one end of a numeral, that contains an indicator denoting the 
algebraic sign of the number represented by the numeral. 

1. To ignore one or more instructions in a sequence of instructions. 
2. To pass over one or more positions on a data medium, for example, to perform one or more 

line feed operations. 

software 

D-22 

Computer programs, procedures~. rules, and other documentation concerned with the operation 
of a data processing system. 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

Software Development Language (SDL) 
A B 1000 programming language that is used to write B 1000 system software. 

source language 
A language from which statements are translated. 

source program 
A computer program expressed in a source language. 

space 

1. A site intended for the storage of data; for example, a site on a printed page or a location 
in a storage medium. 

2. A basic unit of area, usually the size of a single character. 
3. One or more space characters. 
4. To advance the reading or display position according to a prescribed format: for example, to 

advance the printing or display position horizontally to the right or vertically down. 

span 
The difference between the highest and the lowest values that a quantity or function may take. 

special character 
A graphic character in a _,~haracter set that is not a letter, digit, or a space character. 

stack 
Synonym for pushdown list. 

statements 
Meaningful expressions that describe or specify operations which are complete in the context of 
the programming language. 

step 

1. One operation in a computer routine. 
2. To cause a computer to execute one operation. 

stop instruction 
An exit that specifies the termination of the execution of a computer program. 

storage 

1. The action of placing data into a storage device and retaining it for subsequent use. 
2. The retention of data in a storage device. 

store 

1. To enter data into a storage device or to retain data in a storage device. 
2. In computer programming, to copy data from registers into internal storage. 

string 
A linear sequence of entities such as characters or physical elements. 

structured programming 
The art of combining logically independent algorithms to solve complex problems. 

1137833 D-23 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

subroutine 

1. A sequenced set of statements that may be used in one or more computer programs and at 
one or more points in a computer program. 

2. Part of another routine. 

subroutine call 
The subroutine, in object coding, that performs the call function. 

subscript 
A symbol associated with the name of a set to identify a particular subset or element. 

subset 
A set, each element of which is an element of a specified other set. 

subtrahend 
In a subtraction operation, the number or quantity subtractied from the minuend. 

sum 
The number or quantity that is the result of the addition of two or more numbers or quantities. 

supervisory program 
A computer program, usually part of an operating system, that controls the execution of other 
computer programs and regulates the flow of work in a data processing system. 

supervisory routine 
A routine, usually part of an operating system, that controls the execution of other routines and 
regulates the flow of work in a data processing system. 

switch 

1. In a computer program, a parameter that controls branching and is bound prior to the branch
point being reached. 

2. A device or programming technique for making a selection; for example, a toggle, a condition
al jump. 

switch indicator 
In computer programming, an indicator that determines or :shows the setting of a switch. 

symbol 

1. A conventional representation of a concept or a representation of a concept upon which agree
ment has been reached. 

2. A representation of something by reason of relationship, association, or convention. 

syntax 

1. The relationship among characters or groups of characters, independent of their meanings or 
the manner of their interpretation and use. 

2. The structure of expressions in a language. 
3. The rules governing the structure of a language. 
4. The relationships among symbols. 

D-24 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

system 

table 

In data processing, a collection of people, machines, and methods organized to accomplish a set 
of specific functions. 

1. An array of data, each item of which is unambiguously identified by means of one or more 
arguments. 

2. A collection of data in which each item is uniquely identified by a label, by its position relative 
to the other items, or by some other means. 

table lookup 

tag 

task 

trace 

A procedure for obtaining the value corresponding to an argument from a table of values. 

One or more characters, attached to a set of data that contains information about the set, includ
ing its identification. 

1. The basic unit of work from the standpoint of a control program. 
2. In a multiprogramming or multiprocessing environment, a computer program, or portion 

thereof, capable of being specified to the control program as a unit of work. Tasks compete . 
for system resources. 

A record of the execution of a computer program; it exhibits the sequences in which the instruc
tions were executed. 

trailing zero 
In positional notation, a zero in a less significant digit place than the digit place of the least sig
nificant nonzero digit of a numeral. 

transfer 
To send data from one place and to receive the data at another place. 

translate 
To transform data from one language to another. 

transmission 

1. The sending of data to one or more locations or rec1p1ents. 
2. The sending of data from one place for reception elsewhere. 
3. In ASCII and data communication, a series of characters including headings and texts. 

transmit 
To send data from one place for reception elsewhere. 

truncate 
To terminate a computational process in accordance with some rule. For example, to end the 
evaluation of a power series at a specified term. 

1137833 D-25 



B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

truncation 

1. The deletion or omission of a leading or of a trailing portion of a string in accordance with 
specified criteria. 

2. The termination of a computation process, before any final conclusion or natural termination, 
according to specified rules. 

unary operation 
An operation with one and only one operand. 

unary operator 
An operator that represents an operation on one and only one operand. 

unit 

1. A device having a special function. 
2. A basic element. 

UPL 
The acronym for User Programming Language. 

User Programming Language (UPL) 
A B 1000 computer system language that is a subset of the B 1000 Software Development Lan
guage (SDL). 

variable 

1. A character or group of characters which ref er to a value and which, in the execution of a 
computer program, correspond to an address. 

2. A quantity that can assume any of the given set of values. 

variable-length record 
Pertaining to a file in which the records need not be uniform in length. 

virtual address 
The address of a storage location in virtual storage. 

virtual memory 
See virtual storage. 

virtual storage 

write 

Space on storage devices which is used as main storage (by the user of) a computing system, and 
in which virtual addresses are mapped into real addresses. The size of the storage is limited only 
by the addressing scheme of the computing system and by the amount of auxiliary storage 
available, rather than by the actual number of main storage locations. 

To make a permanent or temporary recording of data in a storage device or on a data medium. 

writing 

D-26 

The action of making a permanent or temporary recording of data in a storage device or on a 
data medium. 



zero 

B 1000 Systems SDL/UPL Reference Manual 
Glossary of Commonly Used Terms and Acronyms 

In data processing, the number which does not alter the value of another number through addi
tion or subtraction. 

zero fill 
To character fill with representation of the character zero. 

zero suppression 
The elimination of zeros from a numeral to which they have no significance. Zeros that have 
110 significance include t the left of the nonzero digits in the integral part of a numeral and those 
to the right of the nonzero digits in the fractional part. 

1137833 D-27 



B 1000 Systems SDL/UPL Reference Manual 

INDEX 

4 2- 11 
{$] i1-l'O 
(*} 7-6 
( 4 ) , ( ~ ) p ( z ) ,. { l > 2 - .1 
+ 2- 7, 9-102 
8. 10•7, 10•15 
$ l 0 .. 7 
$All 9-102 
$N'JNf 9·-102 

2-7, 9-102 
I 4-22, 9•29 
I= 9•137 
,. ')-29 .. 9·-102 

z-4 
l i; - 2 
@ 2•t 
= 9- 131 
" 2- 9 
abiolute a1dress J-1 
Acct.PT 9-2 
ACCESS FIL[ INfCRtt~f IO\ J-4 
AddHion 6-=3 
addres~ 9-141, 0-1 
Address Generators 6-12 
Address Operan1 H-1~ 
3ddress part ~-1 
address re1~ster 0-1 
addres5-qener ator 9-1? _), 9-·~20 
address-generator·l thru adaress-qenerator-n 1-147 
ADVISC9Y 10·7 
1lqor1thm D-1 
ALL.AREAS_~T OPEN 4•21 
alpoat~t '.}-T 
alp ha bet i c char act er s \: t C - l 
alohanumeric D-1 
alp nan um er i c char act er sa t ') - l 
alonanum~ric data c-1 
American StandJrd Code for Intor~ation 

Interchanqe CA5CIIl C-l 
I\ M? £RS AN C 10 - 7 
ANJ 10-15_. u-1 
AND NOT 9-102 
ANSII 4•33 
applic~tion orogram D-2 
ARE AS 4-22 
arithmetic jnstruction n-2 
arithmetic operation n-2 
Ar i th 1'!I et i c Go er at or s r; - ~ , B - 1 3 
array c-2 
Array Declaration Information '4•1;J 
Arr av Des er ip tor for mat: f;• 11 
Arrav Identifiers 2-4 
arrav-identdier G-12 .. :1-z5, ::>-59, 9-92 
AS S·.2 
ASCH 4-3ft, D·-2 
as~iqn~ent statement n-2 
As~jcnment Statement ~-13 
AT S!GN (41) t-2 
attrib~te 4-21, 9-13 
BACKUP 4-25 
BACKUP DISK 4-25 
BACKUP TAPE 4-25 
BAS£ 4-9 
base address ~-2 
Base-Limit Area B-1, B-~ 

1137833 1 



2 

B 1000 Systems SDL/UPL Reference Manual 

llNDEX (Cont.) 

hase-sequence-nu~ber 10-7 
dASE REGISTER 9•6 
BCL - 4·- H 
beqinninq of job C~OJ) 9-? 
binary 0-?. 
8INARY 4-34, 9-7 
binary ar 1 th,nt:H if: op er Hi or C-? 
binary code 0-2 
binary diqit Cbit> D-?. 
binary se~rch D·2 
binary-digits 2-8 
BI~ARY_S£ARCH 9•9 
bit 0-2 
BIT 2-SP 4•10• 4-1811 r-.:;, -J•fo 9-LI,, 9-47,. 

~-1s2. 9-7-03 
b1t string O-? 
bit-size 4-10. 4-1~, 1-s 
Bit-String Literal ?-7 
'.blan~ D-2 
bl1nlr' char::icter o-3 
bloc~ length J-3 
bloc~s-per-area 4-2~ 
80J C-3 
boolean :J-3 
boolean operation C-3 
boolean operator 0-3 
boolean-id2ntifj0r 10-15 
dri ages 1-s 
bufter o-~ 
8UFFER 4-22 
buffer storage D-J 
f:) U:-.. F S - 1 l . 
8U':~~GUGHS 4-B 
BY 9•11• \l•55 
byte 0-3 
call J-3 
C Aa C '• - 2 5 
car c image D-~ 
CARC PUNCH 4-?5 
CARO-~EADLR 4-zs 
car r_:"i aqe con t:ro l tap .. ~ o- 3 
CA~t (format-1) 3-1 
CA5£ (format-2) H-11 
CASE State~ent B-? 
CA5~ETTE 4-25 
CAf Operator S-7 
cert tr at orocec;<; inq unit C CPU> r-3 
CHA1\GE 9-t.3 
channel 9-51, 0-4 
ch1nnel-nu~ter ?-lb9, 9-221 
C H A H Ta. :3 l [ 1 - 7 l 
character :)-4 
C H .fl\ H A C T [ !\ 2 - 6 ~ 4 - 1 ;) ~ 4 - \ t , 1 - 5 ,. 9 - 4 # 1 - .3 J ,, 

9-4J~ ~-t5l, 9-?04 
ch~racter ~et Q-4 
Character Set 2-z 
character-identifier· 1-re 
character-size 4-10, 4-tt .. 7-& 
character-3trin1 4-4?.- 9-7 
Ch.:iracter-String lit~r'1l z-·J 
c hara ct er - t ah l e - i den t i f i '=" J • 1 ~ 7 
C~A~ACTfR FILL 9-23 
CHE CK 10-::7 



B 1000 Systems SDL/UPL Reference Manual 

INDEX (Cont.) 

CIVILIAN J-203 
cl.ear 0-4 
CLEAR 9•25 
CLOSE 9-27 
CUDE 4-30,. 10-7 
Code Adoresses 8-8 
Code s~~1ment and SE~g"1ent Ci ct ioriar1es d-1 
CO:)E: FILE 9•27 
Codi~g fxa~plei !1-? 
coinment 0-4 
com[ent-text ?-11 
Comments 2-10 
co~municate 9-30 
co~~UNICAT~ 9-Jl 
CO~MU~ICATE WITH GISWG 9-30 
c 0121 oar e D - 4 -
co~pare-base 9-159 
comp a r ~ - field 9- 9, 9 -1 55 , 9- 1 r, C 
co~pare-top 9-159 
c om pare - v 3 l u e 9- 9,. ? -1 55 • 9- l c, n 
c o:n p i l e D - 4 
Co~pile Ceck 10-1 
CO~PILE CA~O INFO 9-3? 
c Qin p il -~ r f) -4 
Compiler Pass,. Functions of ~:act- 10-17 
Co~piler-Oirecting Gotions 10-~ 
c 0'11 pl em en t J -4 
computer instruction 0-4 
computer lan1uage 0-4 
computer pro1r1m 0-5 
coiiputer-oriented tanq•Jaqe )-4 
con di t1on e-7 · 
Conditional Coinoilation tJ-14,. C-5a 
Conditional Exoression 6-~ 
CJ~SOLE SWITCHES 9-35 
constant n-s 
Coflstruct Oescr iptor Onar a tors U-14 
CU;\lfRCL l:J·/ 
control character D-5 
controt operation o-i; 
Control Stack a-:3 
Con tr o l St .:i ck ,. for 11 at o f 8 - '.> 
control. st.ate D-5 
Control Statements 3-1 
CONTROL ST4CK ~ITS 9-3& 
CONTROL-STACK-TOP 9-31 
ConversTon Beiween Data Tynes ?-6 
convert 0 .. 5 
CONVERT 9-30 
convert-value 9-39 
CONVERTOOTS 10-7 
coroutine-tabl·~ 9-69,. J-75 
count-identifier 1-78 
COUNT£1~ 9-203 
CPU C-5 
CREATE MASTEH 1{)-7 
CHUNCh- 9-2d 
CRUNCHED 'l-63 
CSSIZE 10-7 
cssize-numher 10-8 
eye le o-s 
data D-5 
DATA 4-30 
Oata Adaresses~ Access of e-7 

1137833 3 



4 

B 1000 Systems SDL/UPL Reference Manual 

INDEX (Cont.) 

data attribute 0-5 
data tase U-5 
Data Q<;tc(Jrations '.ltat,.~mnnt 4-1 
Data Cescriptor b-4 
data tvpe U-5 
Data Types ?.-'5 
data-itum ;-44. 9-45 
DATA AQOR£SS J-43 
o.arA-L€NGTH 9-44 
OATA:RECORQER go 4-25 
g~t~-r~~~ 6 :i-4'> 
DAt ~- 46 
fJ C HI If I AT': I 0 9 -1 1 
oc-10 CO~PLETf ~-~11 
DE~lAhK 9-)2 
de~J ug D-5 
OE:HG 10 -~ 
dee lmal o-5 
!) C.: C I t-t A l 9 - ) 3 
Jecimal d11it 0-6 
decuat notati0n D·-6 
declaration D-6 
D e c l a r a t 1 o n S t a t e m ~ n t 'i ·~ - 1 
declaration-statement 1-11 
declare state~ent G-G 
0£CLA~f Statdm~nt5• Ex1moles of 4-11 
d9r:lar~a-1d3ntifier 9-!.12 
0 E C k [ f-'. E N T ') - 5 '.> 
decrement-a~ount 1-~5 
D£FAULT 4-36 
default opt~on o-~ 
define D-6 
define-identifier :>-1 .. 'J-:~p 
Delete Left(~=> 5-J 
Delete Right(::=> r)-lG 
DELI~ITlO TCKEN 9-Sf 
del i1liter- r.;-6 
.. fo l 1 'Tl 1t e r s 9 - ·:, l 
DE 5 CR I P Pm 'J - ':>9 
de'lcrintor 9-16 
d e 5 t i n 1 t i o n 9 - 2 , 1 - 4 ,, 'i - !.: 3 • Y - ~ 2 , 9 - l ~ 1 , i ,. l .3 ) , 

s-1~4, ?-19~, 9-2~1 
de.:;tir.ation-id~ntlfier 9-ln 
OETAIL 10-d 
JfV1C£ 4-?.3 
rliffer~nce D-)) 
djq1t z-4, 2-1, o-6 
UIGIT 9-214 
OIGIT 'J-41 
diractory Q-6 
iJI ~ Al! L t: r N T cm u P r ~; ') -,>J 
DISK 4=zs 
dis~ c~rtrid1~ ry-; 
di~~ directory o-& 
dis~ pacic 0-6 

:n ~ ~- ~ l ~ k 4 : ~ ~ 
J I i Pl T CH 1 - 6 1 
di<:iplav O-b 
OI~PlAY 9-o_) 
display device D-~ 
'Jispl av St:ic~ d-3 
:HCiplav-id~ntlfier 9-;d 



I 

B 1000 Systems SDL/UPL Reference Manual 

INDEX (Cont.) 

DISPLAY BASE ?-65 
div1dena D-6 
Division 6-4 
divisor D·/ 
00 FOREVER 5tate~ent ~-; 
DO Stateme~ts 0-2 
DOUBLE 9·?(~1~ 10-B 
d r i v e .. n u m b ·e r '• - ? 9 
OU"lf":Y 4-4 
DUMP FOR A~ALYSI5 9-6; 
DYNAMIC -4-o 
dynamic-part 4-2· 4-S 
DY~AMIC ME~CRY ~ASE J-67 
OY~AMIC~!ZE lJ-9 
dynamicsize-number 10-3 
EUCDIC 4-34• O-l 
EBCCIC-character 2-9. J-21 
element D-7 
elements-per·p~qe 4-& 
EL''i[ ~-7. 10·15 
ENABLE INTERRUPTS 9•68 
Enclosed Comme'lt ?.'-11 
en1 of job (£OJ> 0-7 
End-of-Record Comment ~-11 
EN0_0F_PAGE_ACTICN 4-~} 
end1ng-sequence-numoer tc-~ 
ENTER COROUTINE 9-&9 
[OJ TI·! 
f..Jl S-tH 
err or 0-1 
error message 0-7 
error-message 9-7! 

~~~~~-~~r2UNf g~~E J-11 
ESSIZt 10-8
es1ize-number 10-R
EU I~CRlMENTED 4-29
E u- SP E C I AL 4 - ?. 9
Eviluation Stac~ B-3
Evaluation 5tack• Use of the A-J2
EVALUATIO~ STACK TOP 9-73
EVEN 4-34- -
Examples of DECLARE Statements 4-11
exception-bits 4-10
EXCEPTION ~ASK 4•10
exclusion- D-7
exclusive-OR 0-1
exclusive-OR ele~ent 0-1
execute D-7
EX£CUT£ 9•74
exf:!cution C-7
EXIT COROUTINE 9-15
EX?A°FJC DEFINES 10-8
exores5ion 6-12,, 1-10. ~-12. 9-145,,. 9•147• C-7
axores~ion-1 ?-231, 9-232, >-?~3, 9-234, 9-?35
exoresc;ion-2 9-231,, 9-?32, J·.?.B, 9-z,~4,. 9-235
Extended Ar 1thmet 1c Operator'i f-13
Extended dinary Coded Qecimal Interchange Code CEBCOIC> D-7
factor D-7
FAMILY 4 25
family nam·~ D-8

1137833 5

6

B 1000 Systems SDL/UPL Reference Manual

fetch c-e
f £fCH 9-76

llNDEX (Cont.)

F [T C ~ C 0 MM U N I C A T E ~ S G _ ~ 1 T >~ "i - 7 l
f i~ld- D-8
FIFO (first-in-first-out> o-,e
f iqurativo constant D·d
flle D-8
file Declarations 4-20
fit e identifier C ti la-id) C-iJ
File Infor~ation block a~d FIE Cictionary d-1
file maintenance D-8
file securitv D-8
fit e-i<1-1 9-211
file-id-2 1J-.?.l.l
fit e-11-3 9-217
fite·identif1er 4-21,. 4-3?.,. 4-~?.,. 4-45, 'J-5~ 9-13,.

9-21, 9-111, 9-123.,, 9-131, 9-1.n, ?-151 ... 9-1&3,
9-1&9,. 9-ts':>,. 9-2?1,. 9--,_z.7,. 9-zz9,. 10-B

f 1 l e ·• n um be r 9 - 1 -~ 3 (J - 2 .?. 9
FIL£ TYPE lt•31J
Fil es of the SJL/UPL C·J'1tl it.er 10-1
fitter o-~
FILLER 4-4
FILLER and parent fjeld 4-tr
FI~O CUPLICATE CH1H;ri\CTEHS 9-74i
f I~C 9-e.o -
FI1{ST 9-136
fir st-character 9-52
f 1 r st - char act er - address 9 - 5 r ~ <j-1 OH
first·item 9·155~ 9-1so
first·table-entry-3ddr~si 9-18C
FIXED z-5, 4-lOP 4-1a~ 7-5, 9-39
f 1xed storage o-8
flag 11-e
fOREV[i1 3-3
form of an :JDlfU?L ProH:im tl-1
F CR 1-' ~l 7-4
formal-ele~ent-part 7-4
for ma l - el e :tt en t - oar t 7-6
rc~~AL CHECK tb-8
fQ!~MAL-VALU£ 7-4
format- D-8
FOR~S 4-2L)
f"Ot~t;ARO 7-3
fHt:£Z£ 1.0-9
FRFEZE PROGRAM 9-,1
gen~r ate 0-9
qenerator 0-9
qlo'bal 0-9
qr~phic D-9
qraphic chnacter D-9
~Ho1..ip·name FJ-~
GHJW 9-ez
H All 9-8 4
hal t·\laluH 9-84
hardware 1)-9
hash total 1-9
hash-code-value 9-es
HASH CODE 9-85
H A .) h - LJT AL 9 - t Z 9
he a di nq D- 9
hex-diqits 2-~
HEX SE~UENCE NUMq[R Z·lJ
hiqf-level languag~ 0-9
ho5c-na111~ 4-H

B 1000 Systems SDL/UPL Reference Manual

INDEX (Cont.)

~~gr-~~~i 4-31
I/fJ-descriptor-address !J-5!"' '}•61
I / IJ ·de s c r i o tor - ad dr f) s. s ') - 6 1
I/O-reference-ad1r~s5 9-76
identifier 0-}, 2-4. 4-3, 4·6· 4-e, 4-16~ 4-1s, 7-6.

9-]1, 9•4)• 9-5\"j,. 9-€9i, 9-G2• 9-l'JO- 9•107•
9 ·- l 1 7 , 9 - 1 3 .7 , 9 ... 1 '• 0 , 9 .. 1 5 ?. " 9 - 2 1 1 , 9 - 2 1 4

identifier-part 4-l• 4-4, 4-7~ 4-151 4-16
ident i fier-1 9-124- 9-1 a?. 9-?21
identifier-2 ?-182
I d e n t i f t er s 2 - .)
If lC·-15
If• ThEN• and flSE State~ert 8·6

.If_NOT_CLOSEO :J-.Za
I MP CRT .4 NT ~ - 1 ill
[N 9-l.H
inclusive-UR etement l-J
increa5e-arnount 9-8(~
increment 10-9
increment-amount 9·11
inJex e-10. a-12. 9-111# 9-~02. 0-9
index regjster D-10
indexe1 addres5 0-9
! n .. ~ e ~ in g (S Ol Pro gr ams On t y > 6 -12
1n1t1at11e 0-10
INITIALIZE VECTOR 9-3;
Inline Oe:icriptor format~ ti·lO
inout 0-10
INPUT 4•36, 9-111
input area D-to
in~ u t data 0 -10
inout unit 0-10
i no u t - f 1 t e - 1 dent i f 1 er 9- 1 7 l
jnout·outout Cl/0) 0-10
instruction 0-10
jnstruction addrqss reqister D-10
instruction control un1t r-10
instruction counter D-ln
instruct'ion format O-lO
instruction reqjster 0-10
Instruction Set B-12
instruction set D-11
integer D- t 1
internal storage 0-11
interpret 0-11
INTERPRET 9-11.l
inter~reter 0-11
INT£Rpq£TER 4-30, 10-J
interpreter-index 9-115
interrupt u-11
interru~tion 0-11
INTRI~SIC 4-30, 7-3~ t0-9
intrinsic-identifier 7-J
INVALIO CHAHACTERS 4-11
item n=u
job 0 -11
JULJAl\ 9•46
j ust1 f. y 0-tl
K D- 11
key c-11
~ey-table 9-111, 9-175
kev·table-~ddress 9-l~l
kevounch D-ll

1137833 7

8

B 1000 Systems SDL/UPL Reference Manual

INDEX (Cont.)

lceyworiJ D-12
la!Jel 0-12
LA;H.l 4-3:?
l A '.l £ l T Y P [4 - 3 .S
l anguaqe 0-12
languaqe processor 0-12
LAST 9-1.H)
LAST LIC >TATUS 9•37
l e :i d 1 n ·1 2 er o J - t 2
left ana Right Broken Hrac~ets (<>) 1-1
left-justify ~-12
tength 9-142~ 9-1~4, J-tst~ ~-195
LE~Glh 9-~9
letter 2-4, 0-12
levet D-12
level numoer a-12
level-number 4-4, 4-15
lexicoqraphic level 0-12
Ledcoqraotdc Level 3·Z
library D-12
L I rm A R Y 1 0 - 9
library routjne c-12
LI3fiARY PACK 10-9
LIFG Clast-in-first-out) C-12
lif'lit 9-180
LI~IT RE~ISffR 9-?t
lina 6rinter 0-12
linlc: D-13
lin~-fietd 9·t:J6
lic;t 0-13
LIST 10-9
LISTALL 10-9
literal :l-137,. 0-13
literals ?.-7
loaa D-13
lo~d Ooerators 1-15
local 0-13
l oc at ion D -1 3
LUCATI!Jt~ 9-92
LOCK 4·3j, 9-28~ 9-11?1 9-?~ l
LOCX uur ·1-11:~
LOC:K! 10·9
Lo'1ica1 Cpr-?r~t~H5 6-610 3-1-~
loqjcal record D-tl
lo4icat-si1e 4-39
lo:1p ;J-13
loo gs 1-4
M t-4[M 5[ZE 9•104
m~chi~~ langua1e n-13
machine-reaJ3ble mediu~ C-ts
MAKE OESCRf PTQq 9-JG
MAK£-HEAC ONLY 9-9/
~AKE-RfAC-~RITE 9•99
ma-;~- c-1:5
m~'iter file D·l3
max-messages 4-26
~CP·command 9-236
MC?·co~municat~ ~-31
ru: iii or y D - l 5
merse G-H
MEHuE 10·9
merge-inout·tatle ~-l!S
~ESSAGf CJU~T 9•100
~HLITA::(y 9-203

1137833

B 1000 Systems SDL/UPL Reference Manual

INDEX (Cont.)

minj-fIB-addrass ?-134
m1nt.end D·l3
Minus 6-2
Miscall aneous Constant:; 2•1J
Miscellaneous Operator~ P-1!
mnemonic svmbol D-14
MOD 6-5
MOOE 4-34
module C-14
rnod~lo-n co~nter 0-14
M 0 N IT C rl l 3 - 9
Mo~~noi:~ J-102
MO~ITOR Off 10-q
?hlNTH ~-45
mu l t; .. f i le - i D 1 O -9
mutt; ··fl le-1dentif;9r 4"" 32
MULTI P J\ CK 4 - Vi
mut tilile-id D-14
lflul t; pl ica110 D-14
Multi olicat1on 6-4
mul tipller D-14
mul tipr·ocessin·.J D-14
multiprocessor· D-14
mu.•.-- tiproJrimming U·14
n-.uy O·t 4
Name Stac~ B-3
NAMf CF DAY 1-105
NAME-STlCK TOP 9-10~
neq ate o-! 4
ne 11ation n-14
Nf-J S-137
nest 0•14
nested-block 10•15
NESTED PROCEDURE TIMES 10-9
NEd 4:35, 9-112; 10-10
NEXT 9-221
NEXT ITEM 9-107
NEXT-TOKEN 9-108
NO 9-221, 10-10
NO BACKUP 4-2&
no-op C-14
no-operation instruction C-14

~8-fi~~hI~~J~~ ~~i~i
NO-HEWI~O 9-28, 9-112
NO-SOUHCE 10-10
Non-Set f-Relative B-12
NOf{ 0-15
NOT .ti:l-15• Q-15
notation D-15
Notation Conventions l-1
NSSIZ£ 10-10
nssize-number 10-10
Nut l State'llent 8-1. 3
null strinq D-15
n um t e r 4 - .J 5 .- 4 - 3 7 .~ 4 - .> 8 - 4 -1. 1 "' 4 - 4 2 , '> - 1 2) , C - 1 5
number-of-areas 4-22
number-of-butters 4-22
numter-of·days 4·40
number-of-elements 4-3, 4-6, 4-17
number-of-records 9•9
NUMBER OF STATIONS 4-35
n um er a T U - 1 5
nume.ric D-15

9

10

B 1000 Systems SDL/UPL Reference Manual

INDEX (Cont.)

numeric data -D-15
Nu'Aeric Literal z-7
object code o-15
ob1ect program D-15
octal-digits ~-8
octet C-15
ODD 4-34
OF 9-167
ON £CF 9-1l4, 9-165~ ?-?Z?
ON t.:OS 9-137
ON lOS CYCLE J-137
ON EXCtPTIO~ 9-124, 9-165- ~-?22
ON FILE LOCKED 9-112, 9-131• 9-152. 9•22f
ON FILE-MISSING 9-112~ ?-t31, 9-tsz, ~-227
ON INCO~PLET€ IO 9-12~- 9-2~2
OPEf\ 9-110 -
OPEN CPTION 4•35
ooeran~ f-t, 0-11
operatinq system 0-15
operat;on 0-15
operation code 0-16
operation-list 9-74
operator ~-2, o-16
operator console D-16
uPf IOt-.AL ft-36
Jptional Items l-3
OR 4-?6- 1-10~, 10-15P 0-16
Order of Precedence 6-11
output D-16
OUTPUT 4-35, ~-112
output area D-16
output data 0-16
output-file-identifier 1-111, q-1!5
overlay 0-16
OV£HlAY 9-115
over I 3y•infor:nat1on 9-us .. >-'.1- 30
oacl~-identifier 4-37, l'J-10
PACK .IO 4-37
padc1nq 0-16
OcHJ?. ~)-16
?Afat. 9-22111 10-10
oaqe-arr1y-identifier 9- 10

oa'le-identitier 9-167
page-number 9-97, 9-99
P Ali E 0 4 • 6
Paqed 4rray Oeicriptors f-b
oa1ed-array-identif jer 9-77, 9-99
pa1ed-arrav-part 4-z, 4-5
parameter 5-1· t--s, 7-11, O-lil
Parameters 7-l
oar ity bit ~)-16
parity chectc· o-16
PARITY AOO~ESS 9-llG
oa·>s Q-1/
PA5S ENO l0-10
oaten 0-11
ohyjical-s1ze 4-39
Plus 5-3
oointer 0-11
PURT 4-26
oar t 9-51
por t-and-chann~l 'J-61
oort-and-channel-adaress J-76

1137833

B 1000 Systems SDL/UPL Reference Manual

INDEX (Cont.)

oosition 0-11
PPWOfILE l.G-11
PPSSIZE 10-10
ops si ze-num;ber· 10-10
PR£\/I GUS ITEM 9-11 7
PHINT 9-:112
P ! U .N T E :l 4 - 2 6
PR1CEDUHE l-3
Procedure Body 7-9
Proceoure Call Stateme"t ~-1
Procedure Declaration Statement 7-t
Procedure End Statement 7•1J
Procedure Invocations 1-10
Procedure Operators 8-1&
proceaure-jdentjf~er r-3, 1-11, 9·?2
procedure-name 9-102
orocedure-,tatements 7-10
procesr; D-17
pr'.lcessor 0-17
PROCESSOR TIME 9•118
oraouct n-17
PRO f IL [10 -1 0
orogram 0-17
orograrn exP.cution time ;J-l/
orogram li~rarv D-17
Program Pointer Staci<. J-4
PROGRAM SWITCHES 9-119
programmer 0-11
orogra~ming 0-17
prog.ramming tanquaqe n-11
PROJECTION 4•37
PROTECTION IO 4-31
?SH DECK 4·31
PU~?H PRINTER 4-26
pur~GE- 9-2f1
pushdown list 0-11
pusrdown storage n-17
ousnup list D-18
PUShUQ storaqe O·td
Q WNITE OCCURREU 9-217
oualified name D-18
Qualif~ed Record N~mes ~-19
Qu~rtal-d12its 2-e
Q u t_ u £ 4 - 2 . ,
Queue·family-id-1 9•217
queue-family-id-2 9-Ztl
queue-family-identifier 9-124# 9-222
queue·file-1d 9-100
Queued access ~ethod n-18
quotient D-18
railroad syntax 0-18
random acce,s 0-1~
range 0-13
re-entrant cod~ D-19
re-entrant program 0-19
re-entrant routjne 0-19
r e - en t ·r a n t s u b r- o u t i n e D- 1 9
re-entry point 0-20
reael 'J-le
REAC 9-12?
REAC CASSETTE 9•129
REAO-F!lf HEADER 9-131
REACfPB -9-lB
HE A. c: 0 K 9 - 2 l 7

11

12

B 1000 Systems SDL/UPL Reference Manual

INDEX (Cont.)

REAG OVERLAY 9-135
REAC'ER PUNCH PRINTEH 4-?.7
r~£ACER-SCHT£~ 4-27
read1nq D-18
real a 1:1dress D-ld
real time 0-18
real-time nrocdss1nq 0-19
aECCMPIL£ 10-tl
RECCMP!l£_TIMES tJ-11
record 9-~22P o-1?
RECCHC 2•6
Record Oeclarat1ons 4-14
record layQut o-19
record lenqth D-19
rer.oro·adar er;s-1dent if •er J-l?. ~
record·adoress-identUier '-J-b .,
record-addrt!ss··identifier 9·2Z1
record-identifier 4-a, 4·10P 4-15,. 4·t6.,. 4-18
Record-kef9rence I1entifjers 4-20
record-1 9-ldl
recoro-2 ':1-18t
RECCROS 4-Jd
records-oer-blo~k 4-3q
rec~rsive routine LJ-11
recursive ~ubroutine J-19
.REOLC£ 9-13&
REEL 4-3h 9-?8
ree l-n11mbar 4·3:i
REFEH 9•140
REFER ADDRESS 9-141
REFER-LENGTH 9-142
~Ef [H-TYPE 9-143
REFERrNCE 4-e, 7-5
reference-identifier 1-140, 9-141, 9-142• 9-143
reference-jdentifier-1 1-1~. l·l36
reference-identif ier-2 J-78• J-136
reference-part 4-z, 4-r
reqist(-?r 0•20
Registers U•l
Related Oocu~ents 1-1
re\ at ion 9·-15"), 9-1+10
~elationdl Gparators 5-::>,, 8-12
relatjve address n-20
H£l£ASE 9-28
relocatable a1Jdress o-ZJ
relocate D-20
reinap-identifier 4-4. 4-9. 4-17
remap·nart 4-7
HE4APS 4-4· 4-9~ 4-17
re~aos-part 4-2, ~-3, 4-15, 4-17
t{E'IOH: 4•?../
re rn o t e - It. e ·y - i dent i f i er J - 1 ? 4"' 9 .. ? 2?.
RD1CT£ KfY 4-40
R£"iGV£- 9•2cl
Reolacement Operations in Proce~~res 5-lt
Replacement Oper~tors ~-9
ReQuired Ite~s 1-J
reserved word D-20
reset o-zo
RESET 9-lOcl• tJ-lS
restart 0-20
RE'iTOHE 9•144
rec;ul t O-?.O
result-descriptor·id1r~ss J-/6

1137833

B 1000 Systems SDL/UPL Reference Manual

INDEX (Cont.)

result-identifier g-pg,. 9-~0?
resut t-referenr;e-identi ti er 9-c7, 9-H>B
'°eturn 0-20
~ETURN 7·to, 9-145
RETUR~ AND £NA3LE INTEPRUPTS 7•10, 9-14fi
REV£HSr 9~112 -
REVERSE STJ~E 9•147
right-justify 0-2 1)

rot l•in 0•20
roll-out 1-20
ROLL 0 LT 9 -z 9
round c-21
routinH D-21
run c-21
Hun Structure Nucleus 8-1
runQin9 ~(me n-21
S ~fM J!ZE 9·200
SAVE -4-40• j-149
SAVE STATE ?-1~0
scalar c-?.1
scope 0-21
Scope of Identifjers 1-4
Scope of Procedures S-4
Scratch Pad, tormat of 1·9
SDL 0-21
SUL Rai lroard Syntax Guide C-1
SOL S·Machine, Component~ cf the e-1
SOL/UPL Proqralll Format 2-1
SDL/UPL Properties 2-t
search 0-21
Search ::.nd Sc an Op~r atr>r"i 8-17
se u.c h "ey D-21
SEARCh CIRECTO?Y 9-15!
SEA~CH-LINKED LIST 9-155
SEARCH-SOL STlCKS 9-159
SEAHCh-SERlAL LIST 9-!&J
sec tor- D-21 -
SECURITYTYPE 4-41
SECLRITYUSE 4-41
seet< n-21
SEf.'K 9-l6~
seqment D-21
seqment-identif~er 9-167
SEGMENT PAGE 9-165
Sel f·ReT at i ve a-12
s el f- rel at i v a .:id dress o- 2 1
self-relative addressing c-~1
sem an ti cs D-22
seoarator 9-108
SEQ 10-11
seQt..ience D-22
seQuence-range 9-102
SEQUENCE NUMBER 2-10
SERIAL 'Z-42
serial access 0-2?
set 0-22
SET 9-1oa~ 10-15
SETTING 9-136
SGL 10-ll
siqn ~it n·-22
sign character D-22
siqn cigi-t D-22
siqn ooiition 0-22

13

14

B 1000 Systems SDL/UPL Reference Manual

INDEX (Cont.)

siqni ficant diqit D-2'?
Simple Data Oescriotor format f-10
simple-identifier &-1?· 9-51
5imple-identifier 9-5q
SINGLE 9-zz1, 10-11
5 Il E 1 O·- t t
size 4-28
sld p 0-22
SKIP 9-l&Q
sof tward D-22
Software D ,n el o pm en t L .Jnq u a g ~ < S C:L > C-2 3
SORT 9-171
s or t - i n for m a t i on - t ab l e 'J - 1 11 , Q - 1 7 5
SORT Mf~GE 9•175
S 0 R r- S £ ARC H 9 - 1 8 0
SORT-STEP ~OWN 9-131
SOf~ Y- SW AP- '9- 182
SORT-UNULOCK 9-184
SO~TrR READER 4-23
~ource- 9-~3. 9-184, ~-11e, 1-2?9
source language J-23
source program 0-23
source-identifier 9-209
5ource-i~aqes 10-15
source-item-size 9-?0J
space D-23
SPA CE 9 -1~5
sp~ce-a~ount 1-185
Sp(JO D-23
special charactor iJ-23
SPQ INPUT PHESENT 9-n9. 9-?17
stlc~ o-~3
Stac~ Oper1tor~ 8-15
5tacl-base 9-159
stactc·top 9-159
ST~CKEHS J-1L~
c;tart-oositlon :1··191, 9-H:J, '1-216
start-record J-9
statement a-3, 9-·l 13
statement-a through stdtement·n 8-10
st1tement·l ti•T, 9-125, 9-1i1, 9-152, 9-165, J-223• 9-2?1
s ta t e rn en t - '2 e - r. ? - l 2 ·5 , <; .. 1 ~ 1, 9 -1 tj 2 , <;- PVi ,, J - 2 2 ~ , 9- 2 2 7
st~tement-1 9-125, 9-~Z3
st::item?.nts 0•7-3
step D-23
STOP 9-19'J
stop instruction D-23
storage D-23
store 0-2~
Store 1oer~tors 8-14
string 9-'):S,, D-2J;
Str 1nq Operators H-13
string-1dentifier 9·-1Jl, 9-lS")
str ing-siz?. 9-53
s tr uc tured pr oqr amm i ng D -? J
str uct 1Jr;~d-par t l1•2, 4-~, 4-1')
su•-1et1 9-111
sulJroutine D·?4
subroutine call 0-~4
subscr~pt 2-4~ 0-74
subset 0-24
SUdSTR 9•115
Subtraction 6-4

1137833

B 1000 Systems SDL/UPL Reference Manual

INDEX (Cont.)

subtrahend o-·?.4
sum D-24
suoer\11 sorv orograrn D-L4
s u o er v i s or v r o !J t i n e IJ - ? 4
SUPPR£5S 10-11
SWAP 9··1'1'1
switch o·-24
switch indicator D-:~4
s w i t c h - f i l ·3 - i d 9 -1 1 l ,, ·)- 2 ,'!_ 1
switch-file-iddntifier 4-45. 9•27• 9-123
swi tch-numbr:!r 9-119
SWITCH FILE Declaration 4•44
s ym tJ o l - 0 • 2 4
syn tax c-~4
Syntax Conventjons t-~
5yntax-errors J-190
sys t~in D-~s
tahle 0-25
tab le l o o k-u p 0 -2 5
tahte-addr~ss ~-as, 9-ZJZ
table-length 1-161
tag 0-25
TAP£ 4-28
T AP £ t'm z l+ - 2 a
TA?£-Pf 4-za
TAP£- 7 4- 2 13
T AP £- 9 4- 2 f~
tas I<- D·-25
text r5-2
TH-W PROGR~M 9-201
THt:rr a-1
THREAD VECTOR 9-202 r H1 £ .,, - 2 o J
TI\1£ BtCCKS 10-11
T IME-MCP lJ-ll
TI~E-PRUCEOURES 10-12
TI~E-TENTHS 9-216
TIM E'R 9 -2 0 7
TO 9·185
TO EOF 9-185
TODAYS OATE 2-10
TOP 1r=222
trace 0-25
TRACE 9-208
tr~ce·options 1-2oa
trait in g nH·o 0-25
trans for 0-25
tr ans late D-?.5
TRANSL~TE 4-42, 9-209
transl~te-fjte-identifier 9-111, 9-173
translate·ite~-siz~ 9-209
translate-table 9-209
tran5mission 0-25
transmit D·-25
truncate ::>-25
truncation 0-?.6
type 9 -14 .J
tyoe·part 4-3,. 4-4, 4-6, 4-to. 4-1& .. 4-lfh 1-3, 1-5,. 7-6
unary operation D-26
unary operator 6-1, 0-26
Unary Operators 6-2
UNO ERSCbRES IN f ILE NA;"f£5 1'J -1?
UNDO 9•211- - -
unit 0-26
UNLAB£LEO '•·33
unstructur~a-part 4·15• 4·1&

15

16

B 1000 Systems SDL/UPL Reference Manual

!INDEX (Cont.)

UNTIL 9-136
UPL C-26
UPL Rai troad Syntax Gui de C-32
USE 9-212
USE INPUT BLOCKING 4•43
USEDOTS T0-12
User Programming Lanqu.:iqe ClJ?L> D-26
USER NAMED BACKOP 4•43
value 9-11" 9-144• 9-149
Val~e Oper~nds s-12
Value Stac.- 8-3
VALUE_DESCRIPTOR 9-214
Values and Addresses of Variables 2-6
variable 0-26
VARIABLE 4-44
variab,e-length record 0-7-6
Var I able-Length Records 9-1~5· 9-22.3
VAR YI NG 7-6
Vert Description .. format of the 9•1
virtual adr1ress D-26
virtual ~emory 0-?6
virtual storag~ 0-26
VOID t0-12
VSSIZE 10-12
vs~ize-number 10-12
WAIT 9-216
wait-time 9-211
WHEN. 9-218
when-expression 9-218
WITH 9-27
WITH HEADEqS 4-26
WITH RESULT MASK 9-125~ 9-2~1
WORK FILE 4-44
write D-26
WRITE 9-220
WRITE FILE HEADER 9-227

~~iJ~=~k 8 ;~lI~ 9

WRITE-OVERLAY 9-230
wri tinq D-26
Writinq Rules 11•1
X ADO 9-231
x-01v 9-212
x-M OD 9-2 3 3
X-MUL 9-234
x-s tB 9-2 35
X~AP l 0·-12
XREF J.0-12
XREf LITERALS 10-13
X RE f- 0 N l Y 10 - 1 3
YEAfC 9-46
zero 0-27
zero suppr~ssion D-27
zerofjt I. D-27
ZIP 9-236
0 4- 32
1 4-3?.. 9-]9
2 4-32,. 9-B
2-hexadeci~al-number ?-21
3 4-32. 9-39
4 9- 39

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-001
	09-002
	09-003
	09-004
	09-005
	09-006
	09-007
	09-008
	09-009
	09-010
	09-011
	09-012
	09-013
	09-014
	09-015
	09-016
	09-017
	09-018
	09-019
	09-020
	09-021
	09-022
	09-023
	09-024
	09-025
	09-026
	09-027
	09-028
	09-029
	09-030
	09-031
	09-032
	09-033
	09-034
	09-035
	09-036
	09-037
	09-038
	09-039
	09-040
	09-041
	09-042
	09-043
	09-044
	09-045
	09-046
	09-047
	09-048
	09-049
	09-050
	09-051
	09-052
	09-053
	09-054
	09-055
	09-056
	09-057
	09-058
	09-059
	09-060
	09-061
	09-062
	09-063
	09-064
	09-065
	09-066
	09-067
	09-068
	09-069
	09-070
	09-071
	09-072
	09-073
	09-074
	09-075
	09-076
	09-077
	09-078
	09-079
	09-080
	09-081
	09-082
	09-083
	09-084
	09-085
	09-086
	09-087
	09-088
	09-089
	09-090
	09-091
	09-092
	09-093
	09-094
	09-095
	09-096
	09-097
	09-098
	09-099
	09-100
	09-101
	09-102
	09-103
	09-104
	09-105
	09-106
	09-107
	09-108
	09-109
	09-110
	09-111
	09-112
	09-113
	09-114
	09-115
	09-116
	09-117
	09-118
	09-119
	09-120
	09-121
	09-122
	09-123
	09-124
	09-125
	09-126
	09-127
	09-128
	09-129
	09-130
	09-131
	09-132
	09-133
	09-134
	09-135
	09-136
	09-137
	09-138
	09-139
	09-140
	09-141
	09-142
	09-143
	09-144
	09-145
	09-146
	09-147
	09-148
	09-149
	09-150
	09-151
	09-152
	09-153
	09-154
	09-155
	09-156
	09-157
	09-158
	09-159
	09-160
	09-161
	09-162
	09-163
	09-164
	09-165
	09-166
	09-167
	09-168
	09-169
	09-170
	09-171
	09-172
	09-173
	09-174
	09-175
	09-176
	09-177
	09-178
	09-179
	09-180
	09-181
	09-182
	09-183
	09-184
	09-185
	09-186
	09-187
	09-188
	09-189
	09-190
	09-191
	09-192
	09-193
	09-194
	09-195
	09-196
	09-197
	09-198
	09-199
	09-200
	09-201
	09-202
	09-203
	09-204
	09-205
	09-206
	09-207
	09-208
	09-209
	09-210
	09-211
	09-212
	09-213
	09-214
	09-215
	09-216
	09-217
	09-218
	09-219
	09-220
	09-221
	09-222
	09-223
	09-224
	09-225
	09-226
	09-227
	09-228
	09-229
	09-230
	09-231
	09-232
	09-233
	09-234
	09-235
	09-236
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	11-01
	11-02
	11-03
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55
	C-56
	C-57
	C-58
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16

