
Burroughs m

PRICED ITEM

Printed in U.S.A. D~~~mber 197 3
' _,_ l 71') . '~

I
I
•

Printed in U.S.A.

Burroughs m .

B 1700 Systems
User Programming

Language (UPLJ

REFEREN.CE MANUAL

Copyright © 1973, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

December 197 3 1067170

COPYRIGHT© 1973 BURROUGHS CORPORATION
AA494075

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this materiaL The information contained herein is
subject to chang~. Revisions may be issued to advise of such
changes and/ or additions.

Any comments or suggestions regarding this publication should be forwarded to Publications Department, Technical
Information Organization, TIO-West, Burroughs Corporation, 9451 Telstar Avenue, El Monte, California 91731.

Section

1

3

Table of Contents

Ti t le

INTRODUCTION

LANGUAGE CHARACTERISTICS
General
UPL Properties
UP~ Progr~m Format

Procedure Format
Metalanqu:Jge

Key 1r.!ords
L o w e r C a s e \~ o r rJ s
Braces
Brackets
Consecutive Periods
Perio,.i
Type (Length)

Basic Sy~1bols

f < e s e r v e d ~I o r d s
Language Statement Types
Functions

BASIC CONCEPTS
General •
Data r:oncepts

n xed Data Type
Bit Data Type •
Character Dat1 Type
Data Tyoe ConvPrsion
Arr~ys •
Data Storage Allocation
Duplicate Data-N3mes

Assignment ••
Replacement
Single-Pass Compiler
Procedures

Procedure Tnvocation
Parameters to Procedures
Actual Parameters
Formal Parameters
Pass-by-VC1lue
Pass-by-Name

Procedure Types
Regular Procedure
Function Procedure

Lexicographic Level
Scooe

EXPRESSIONS
General

Page

xiii

1- 1
1- 1
1- ~

1- 1
1- 1
1- 1
1-?
1-?
1-2
1- 2
1-2
1-?
1-2
1- 1

1-s
1-s
1-6

2-1
2-1
2-1
2-1
2-1
2-1.
2-?
2-?
2-?
2-?
2-3
2- 3
2-4
2-4
2-s
2-s
2-s
2-6
?-6

2-6
2-7
2-1
?-7
2-9
2-9

Section

3 Cr:ont)

4

s

i v

Table of Contents (cont)

Tit l p

Format Of An Expr~ssioh

Data·Na11es
SimplP Data··N.:•rne
A r r a y D a t a - ~J a rn e
Substrings rrf Data-Names

Variable
Literal
Data-~ame Vr:dues
Value Function Procedure Call
Eval~ation of ~n Expression
Substrinqs

Operator Precedence in Expressions
Expression Types

Arithmetic Cxnressi ons
Fixed Arithmetic Expressions
Non-Fixei Arithmetic Expressi·ons
Relational or Conditional Expressions
Loqic~l Exoressions
Function Expressions

STATE~ENTS

General
Declaration Statements
Control Stateme~ts

Procedure Call Statement
Do Statement
Do Forever 5t~tement

If Statement
Case St.:itement

Assignment Statement

DECLARATION STATEMENTS
Geno.ral
Declare Statement

Syntax
Description
Examples

Define Statement
Syntax
Description
Examples

Formal Statement
Syntax
Description
Examples

Forward Procedure St~tement
Syntax •.
Description
Examples

•

•

P 'l<:J e

3- 1
3-?
3-?
3-?.
3-1
3- ~

3-4
3-4
3- 4
3-5
3-5
3-5
3-6
3-6
3-6
3- 6
3-7
3- 8
3- 8

4-1
4-1
4-1
4-1
4- 1
4-2
4-2
4-?
4-1
4- 3

s-1
s-1
5-?
s- ~)

5- 3
s-s
5-9
5-9
S-9
s-10
5-12
5-12
s-12
s-13
s-1s
s-1s
s-1s
s-16

Section

5 (cont)

6

Table of Cont~nts (cont)

r i t le

Procedure St3tement
Syntax
Description
Examoles

Segment Statement
Syntax
Description
Examples

Segment.Page Statement
Synt:n
Description
Examoles

Use Declaration Statement
Syr1tax
Oescription
Examples

EXECUTABLE STATEMENTS
Generri
Array Page Type Statement

Synt3x
Description

Assignment Statement
Syntax
Description
Examples

Burno Statement
Syntax
Description
Examoles

Case St3tement
Syntax
Description
Examples

Change Statement
Syn Un
Description
Dynamic Attributes
MULTI.FILE.ID

Examples
FILE.ID

Example
LABEL.TYPE
DEVICE
PARITY
TRANSLATION
BUFFERS
LOCK
OPTIONAL
VARIABLE

Page

c-;- l 7 s-, 7
S-19
s- 21
s- '? 3
5-?3
5-?3
5-?3
5-?5
5-?5

• S-?5
5-?5
5-27
~-?l

5-?7
5-?7

6-l
6-1
6-?
6-?
6-?
6- 3
6-~

6- 3
6-5
6-11
6-11
6-11
6- 11
6-13
6-13
6-1 3
6-14
6-15
6- 1 5
6-15
6-15
6-15
6-15
6-16
6-16
6-16
6-16
6-18
6-1 8
6-19
6-19
6- 1 9
6-19

v

Table of ·contents (cont)

Section Title Page

6 (cont)

vi

SAVE
RECfJRO.SIZE
RECORDS.PER.BLOCK
REEL
NUMBER.OF .AFtEAS
B L 0 C K S • P E R • t1 R E A
PACK.ID
SINGLE.P~CK

ALL.AREAS.AT.OPEN
AREA.BY.CYLINDER
EU.SPECIAL
EU. INCREMENTED
USE.INPUT.BLOCKING
SR.STATION
END.OF.PAGE ACTION
Examples

C Lear St~tement

Syntax
Description

Conrlitional Inclusion Statement
Syntax
Description
Examples

Conditional 0 age Statement
Syntax
Description

Conditional Symbol Statement
S y n t ,, x
Description
Examples

Decrement Statement
Syntax
Description
Examples

Do Statement
Synt3x
Description
Examples

Fini Statement
Syntax
Description

If Statement
Syntax
Description
Examples

Library Statement
Syntax
Description

Null Statement
Synt·:ix
Description

6-19
6-19
6-20
6-2:)
6-2J
6- 2:.J
6-2J
6- 21
6-21
6- 21
6-21
6- 21
6-22
6- 22
6-22
6- 2~::

6-?3
6-23
6-?3
6-24
6-?4
6-24
6-?4
6-?6
6-?6
6-?6
6-?7
6-27
6-?7
6-27
6-28
6-28
6-?8
6-28
6-?9
6-29
6-?9
6-38
6-3?
6-32
6-32
6-33
6-33
6-33
6-~4

6-36
6-16
6-36
6-37
6-37
6-37

Table of Contents (cont)

Section Th le Page

6 Ccont> Examples • 6- 37
Procedure Cal l Statement • • • • 6- 38

Syntax • • 6-38
Description 6- 38
Examples • • 6-38

Return Statement 6-40
Syntax • • • • 6-40
Descdption • 6-40
Examples • • . 6-40

Reverse.Store.Statement • 6-42
Syntax • • • • • • • 6-42
Description • 6-42
Examples • • • • • • • • • • 6-42

Stop Statement • • • 6-43
Syntax • • • • • • • 6-43
Description • • • 6-43

Undo Statement • '6•44
Syntax • • • • • 6-44
Description • • • • 6-44
Examples • 6-44

Zip Statement • • • • • • • • 6-46
Syntax 6-46
Description • • 6-46
Examples • • • • • 6-46

7 INPUT /OUTPUT STATEMENTS • 7-1
General • • • • • • • 7-1
Accept Statement • 7-2

Syntax 7-2
Description • • 7-2
Examples 7-2

Access.Fi le.Information Statement 7- 3
Syntax • 7- 3
Description • • 7- 3

Close Statement • 7-4
Syntax • • 7-4
Description • .. • 7-4
Examples • • • 7-5

Display Statement • 7-6
Syntax • • • • • • • • • 7-6
Description • • 7-6
Examples 7-6

Fi le Statement • 7-7
Syntax 7-7
Description • 7-8

Fi le Statement • • 7-8
Label Option • • 7-8

Examples 7-8
Label.Type Option • 7-9
Device Option 7-9

vi i

Section

7 Ccont)

vi i i

Table of Contents Ccont)

Ti t le

Access Mode notion
Forrns Option
i33ckuo notion

Exampl13s
Mode llption
Puffer Clption
Lock Option
Dotional f.lption
Variable flption
s ~ v e r1 p t i o n
~ecorris Clotion

[xc:imples
Dehult Options
RePl nption
t..r~:=.is Ootion
Pack. If) Ootion
Open flption
ALL.Areas.at.Open Option
Area.by.Cylin~er Option
Sinqle.Pack notion
E lJ. Spec i a l 0 pt i on
EU.Incrementei Option
Use.Input.3lo~king nption
SR.Station Option
End.of.Page.Action Option

Open Statement
Synt::ix
Description
Examples

Read ~tr:itement

Syntax
Description
Examples

Receive Statement
Syntax
Description

Search.Directory St~tement
Syntax
Description

Seek Statement
Synt8x
Description
Examples

Send Statement
Syntax
Descriptior

Skip Statement
Syntax
Description
Examples

Soace Statement

Page

7-10
7-10
7-lj
7-10
7- 11
7-11
7- 11
7-11
7-11
7- 11
7-11
7- 1 l
7-12
7-12
7-12
7-12
7-12
7-13
7- 1 3
7-1 3
7 .. 1 3
7-13

!t 7-13
7-14
7- 1 4
7-1 5
7-15
7-15
7-16
7-17
7- 1 7
7-1 7
7-18
7-19
7-19
7-19
7-20
1-20
7-20
7- 2?
7-2?
7- 2?.
7- ?2
7-23
7-23
7-?3
7-24
7•?4
7- 24
7-24
7-?S

Section

7 (cont)

8

Table of Contents (cont)

Syntax
Description
Examples

Write SUitement
Syntsix
Description
Examples

FUNCTIONS
General

Tit le

Base.Register Funr.tion
Syntax
Description

Binary Function
Syntax
Description
Examples

Case Function
Syntax
Description
Examples

Cat Function
Syntax
Description
Examples

Convert Function
Syntax
Description
Examples

Date Function
Syntax
Description

Decimal Function
Syntax
Description
Examples

•

Hex.Sequence.Number Function
S·y n tax
Description
Example

If Function
Synt-?x
Description
Examoles

Length Function
Syntax •
Description
Examples

Limit.Register Function
Syntax

•

Page

7-?.5
7-25
7•?5
7• ?_7

7-?. 7
7-?7
7-?8

B·l
8-1
.3-2
s-....,
' t'

8-?
s- 3
8-3
s-3
8-3
8-4
8-4
8-l!
g-4
s-s
3-1~

8-5
8-S
8-7
8-7
8-7
8-18
8-] 2
8-12
8-1 2
8• l 3
s-, 3
A- 1 3
8-13
8- 1 4
s-14
a-14
s-14
a-15
8-15

• 13-1 s
8-ts
8-16
8-16
8-16
8-16
8-17
a-11

i x

Section

8 (cont)

9

10

x

Table of Co1tents (cont)

r it t e

Description
Memory Size ~unction

Synt~x

Descripti:on
Mod Function

S y n t ::i x
Description
Example

Name.of.Day Function
Syntdx
Description

Search.Linked.List Function
S y n t A x
Description

Sequence.Number Function
Syntax
Description
Examole

Subbit Function
Syntax
Description
Examples

Substr Function
Synt3x
Description
Exam::> Les

Swap Function
Syntax
Description
Examples

Time Function
Syntax
Description

Todays.Date Function
Syntrix
Description

HnW TO WRITE A UPL _PROGRAM
General
Writing Rules

Examples
Form of a UPL Program
Procedure Calling

Concept of Scope
Relationships

Coding Exampl!'.!s

UPL COMPILER CONTROL
Compile Deck

Page

8-17
8-1 P,

8-18
8-18
8-19
8-19
8-19
8- ~ 9

• s-20
8-2:.)
8•2Q
8-21.
a-21
s-21
8-2?
8-22
8-22
8- 22
8-?3
8-?3
s-23
8-?4
8-?5
8-25
8-?5
8-?6
8-27
8•?7
8-?. 7
8-27
8-28
8-?8
8-28
8-?9
8-2 9
8-?9

9-,
9-1
9-1
9-1
9-1
9-!J
9-4
9-4
9-6

1o-1
10-1

Section

10 Ccont>

APPENDIX A
APPENDIX B
APPENDIX C

INDEX

Figure

8-1
9-1
9-2
9-3
9-4
9-5
9-6

Table

Table of Contents Ccont)

Tit le

Compiler Control Card Options ••

CLASS I RESERVED WORDS •
CLASS II RESERVED WORDS •
CLASS III RESERVED WORDS

•
• • • . .

.
• .

List of Illustrations

Title

Data Type Conversion Chart • • • •
Typical UPL Program Schematic Diagram
Procedure Compile Time Relationships
Nesting Examples. • • • • • ••
Programming Flow Chart •••
Programming Example 1 • • • ••••
Programming Example 2 • • • ••••

List of Tables

Title

Logical Operator Usage . . .

• • • • • • . • •
• . • . .
• • • • • . . • . • • • •
• • • • •

.

Page

A-1
B-1
c-1

one

Page

8-9
9- 3
9-5
9-6
9-7
9-8
9-10

Page

3-8

xi

INTRODUCTION

The User Programmin~ Language CUPL) has been developed specifically
for ~riting the system software for the 8 1700 Series. UPL is a
high-level' problem-oriented language that allows sophisticated
computer programs to be written with relative ease.

This referenc~ manual has been de.signed and written for experienced
programmers. It can be used to learn the lanquage, however, if the
programmer is familiar with bit-manipulation concepts and language
independent principles of programming.

UPL is a compiler-level language that increases programmer oroduc
tivity and solves complex oroblems. The resultant system software
reflects this increased productivity.

xiii

SECTION 1

LANGUAGE CHARACTERISTICS

GE~EBA~&
The type of problems to be solved by UPL has required a series of
functions and constructs that differ significantly from most other
problem-oriented languages. A few of these differences are as follows:

a. Powerful bit and character-string functions.
b. Binary-only arithmetic functions.
c. No JUMP or GO TO instruction.
d. Re-entrant programs.
e. Recursive procedures <subroutines).
f. Scope of data-names contained within procedures.
g. Dynamic storage allocation for data-names at execution time.
h. Single-pass compilation.

All programs that are written in UPL source language must be processed
by another program, the UPL Campi ler. The compiler transforms the
source statements into a virtual machine form called S·code. The
s-code is then executed interpretatively by a set of micro-instruction
routines (firmware).

ue~.EBOEEail~S&
A UPL Program has a distinct pattern or format that specifies the
relative locations of the two statement types, declarative and execut
able. Declarations provide the information that is needed to allocate
storage or link together various elements of a program. Executable
statements specify the functions or transformations to be performed
upon the contents of storage.

Statements are composed of symbols that, in turn, are composed of
letters, digits, and special characters. Symbol strings are called
operands, operators, or control functions. The UPL syntax is concerned
with the correct creation of symbol strings and the relative placement
of the strings to form declarative or executable statements.

ue~.EBQGB6~-EOB~6!&
UPL Programs are segmented into logical subdivisions called procedures.
Each procedure begins with a head statement and terminates with an end
statement. Procedures have a definite relationship to other procedures
within a program, either side-by-side Coarallel) or subordinate
(nested). This ordering inherently defines the scope of each procedure
and the range over which a procedure can call or be called.

PROCEDURE FORMAT.
All procedures have a rigid internal structure. The procedure
structure is as follows: first, data-name declarations; second, all
nested procedures; and last, all executable statements. The structure
of nested procedures must be exactly the same.

~EIA~A~Gua~E~
A metalanguage is a language that is used to describe other languages.
Symbols in the metalanguage are called metalinguistic symbols. Meta•

linguistic symbols are used in forming metalinguistic formulas. The
formulas define the rules of allowable sequences of characters and sym
bols in the language being described. Thus, a set of metalinguistic
formulas defines the syntax of a Language.

The following set of metalinguistic symbols is used throughout this
manual to describe the UPL syntax.

KEY WORDS.
All underlined, upper case words are key words within a statement and
at~-t~gui~~d when the functions they are part of are utilized. Their
omission causes error conditions at compilation time. Examples of key
words are as follows:

1£
f literal l
) data-name (
~expression}

ItiE~ statement; CELSE statementiJ

The key words are IF, THEN, and ELSE.
for exception.)

LOWER CASE WORDS.

CRef er to paragraph on brackets

All lower case words represent generic terms that must be supplied in
the specified format position by the programmer. Literal, data-name,
expression, and statement are generic terms in the preceding example.

BRACES.
When words or phrases are enclosed in braces c{ }), a choice of one of
the entries mu~t be made. With reference to the preceding example, one
of the items <Literal, data-~ame1 or expression> wu~t be included in
the statement.

BRACKETS.
Words and phrases enclosed in brackets CC J) represent optional por·
tions of a statement. In terms of the preceding example, the CELSE
statementiJ 'ao be included in the statement as an option; otherwise,
it is omitted.

CONSECUTIVE PERIODS.
The presence of an ellipsis(•••) within any format indicates that the
syntax immediately preceding the notation can be successively repeated,
depending upon the requirements of problem solving.

PERIOD.
The period, or dot, is used only to concatenate parts of data-names,
for example,

WORK.SPACE.ONE.

TYPE CLENGTH).
The type C length) phrase always represents the following syntactical
not at ion:

{
El~ED }
~~6B!CIEB <length>
61! C length>

Any mark or symbol in a metalinguistic formula that is not one of the
metalinguistic symbols denotes itself. The juxtaposition of symbols in
the formula denotes juxtaposition of the elements in the language being
described. ,

Metalinguistic formulas give an accurate and detailed description of
the legal sequences of symbols within a language. They do not, how
ever, assign meaning or indicate the events performed by the statements
in the target language. Such a description is called the semantics of
a language. Therefore, for each syntactical description of an SOL con
struct w i th i n th i s manual , a s e m,a n t i cs port i b n al so appears •

EU~lC.~HHHlL.~a
The UPL character set is composed of the following:

a. The upper case letters A through Z are used to form
names and strings.

b. The digits 0 through 9 are used to form numbers in
literals and in strings.

c. The arithmetic operators + (addition), - (subtraction),
* (multiplication), and I Cdivision) provide mathematical
capabilities.

d. The relational operators > or GTR (greater than), < or LSS
Cless than), =or EQL Cequal to), ~or NEQ Cnot equal to),
~or GEQ (greater than or equal tb)J and~ or LEQ Cless
than or equal to> provide com~a~i~on capabilities.

e. The logical operators are ANDJ QR, EXOR <exclusive OR), and
NOT (negation>.

f. The functional operators CAT Cconcatenation), MOD Cresults
in the remainder of a divide), and := or ..- (replacement)
provide additional functions that are required.

g., The following punctuation defin~s the function of each
symbol that is used in UPL.

O~.f iciti'2D

Period or dot Concatenation within data names

Comma Se~arator for items

; Semicolon Delimiter for statements

(Left parenthesis Enclose parameter lists

1-3

)

"

: -

··-

.. -.. -

/*

?

'?

$

&

Qef icitiQo

Right parenthesis

Quotation mark

Pound sign

Space or blank

Arr ow

Colon, arrow

At sign

Colon, equal

Colon, colon, equal

Per cent sign

Slash, asterisk

Asterisb slash

Question mark

Invalid punch

Dollar sign

Ampersand

Enclose parameter lists

Left and right character
delimiter

Left and right define text
string delimiter

Data-name delimiter

Assignment or replacement
(delete left} operator symbol

Replacement (delete right>
operator symbol

String delimiter

Assignment or replacement
(delete left} operator symbol

Replacement (delete right)
operator symbol

Remainder of card is a comment

Beginning of comment

End of comment

In column 1 of a 96-column
card, indicates an MCP control
card

In column 1 of an BO-column
card, indicates an MCP control
card

In column 1, ihdicates a
compiler control card

In column 1, denotes condi
tional source code inclusion
control card

BE:S.Ea~H:o_rtQBUS.a
UPL contains a set of character strings, called reserved words,
with pre-assigned meanings. Three classes of reserved words are
defined.

Class I reserved words have pre-assigned meanings throughout the pro·
g•am, for example, DECLARE, PROCEDURE, oo, END. Incorrect usage of a
class I reserved word results in a syntax error.

Class II reserved words can be re-assigned meanings. They then lose
their original meanings for the duration or scope of their new assign
ment, for example, CONV, DECIMAL, LENGTH. Re-assignment of a class II
reserved word results in a warning message, but no syntax error.

Class III reserved words have pre-assigned meanings only within some
input/output ~tatements, for example, DISK, LOCK, PRINTER, TAPE.
Incorrect usage of a class III reserved word within a specific UPL
statement results in a syntax error. The words, when used in input/
output statements, must appear as shown in the syntax and cannot be
DEFINEd. The usage of a class III reserved word in any other portion
of the program is considered as a separate and distinct usage and does
not result in a syntax error.

A helpful list of all classes of reserved words is given in appendixes
A, s, and c.

~6~GUAGE-S.I6IE~E~I-I~eESa
There are seven types of statements in UPL. Their names, forms, and a
brief description of their functions are as follows:

Assignment

Declaration

Condi ti on al

Control

Data· name := expression;

DECLARE data·name
attributes;

DECLARE data-name
REMAPS data-name
at tr i but e l is t ;

IF expression THEN state
ment; ELSE statement;

DO FOREVER name;
statement;
statement;

•

Performs calculations and
assigns a value to a data·
name

Reserves space for, and
assigns attributes to,
data-names

Controls the execution of
individual statements or
groups of statements

Iterates, groups, or trans
fers control to sets of
statements

Procedure

Simple

Compiler
information

EU~Hal~HJS&

statement;
END name;

CASE expression;
statement;
statement;

statement;
END CASEi

RETURNi
UNDOi

A procedure is a set of
statements.

BUMP data·namei
DECREMENT data·namei

DEFINE

FORWARD PROCEDURE

SEGMENT

Oef ines a subset of the
program to be used as a
subroutine

Performs some simple
function on a data-name

Assists the programmer in
preparing and comr:::i ling a
program

There are several functions in UPLi they have been incorporated into
UPL to facilitate ease of use and speed of execution. Examples of a
few functions and a brief description of them are as follows:

SUBSTR Addresses substring within a character field

SUB BIT Addresses substring with a bit field

LENGTH Obtains the length of a substring

CONV Converts between data types

MOD Obtains the remainder of a divide operation

CAT Concatenates substrings

~HI~

BINARY

DECIMAL

Euc1a;igc

Converts from pr;ntable dec;mal to b;nary

Converts from binary to printable decimal

The use of each function is described in section 8 •

•

SECTION 2

BASIC CONCEPTS

~E~E~~~a
UPL has a number of basic concepts that a programmer must understand in
order to fully utilize the Language. These concepts are explained in
the following paragraphs.

Q~I~-~Q~'EeIS&
A data-name is the symbolic name associated with a memory space. The
data-name is DECLAREd with a set of attributes describing the space and
how it is to be manipulated. An occurrence of a data-name references
the contents of the memory space with its associated attributes.

There are three declarable classifications of data in UPL.

FIXED DATA TYPE.
The type FIXED data format is a signed 24-bit field. It is the primary
computational form in the language. The most significant bit is the
sign. A O denotes a oositive number; a 1 denotes a negative number.
The remaining 23 bits are the value in binary. If the number is nega
tive, the value is in the complement notation of 2. The maximum and
minimum values are 2, raised to the 23rd power -1 (8,3881607 in
decimal> and -2, raised to the 23rd power C-8,388,608). All calcula
tions are in binary, and any overflow beyond the Largest expressible
value is ignored.

BIT DATA TYPE.
The type BIT data format assumes a string of binary digits that can be
manipulated or interpreted in any manner the programmer chooses. Bit
strings may be declared from 1 to 651535 bits in length. Bit-literals
are also available in 1-, 2-, 3-, and 4-bit groups. Type BIT data can
be used in arithmetic operations and is always considered a 24-bit
positive number; that is, the maximum and minimum values are 2 raised
to the 24th power -1 (16,777,215 in decimal) and O Czero). If the data
item is greater than 24 bits, the high order positions are converted to
O's during arithmetic operations. Comparison operations are performed
on the whole bit-string in a right-to-Left manner with leading O's
padded on the shorter string; that is, 110 compares less than 1000.

The data-name that is declared a bit-string manipulates the whole
string. Substrings of the data-name can be manipulated with the SUBBIT
function.

CHARACTER DATA TYPE.
The type CHARACTER data format is an 8-bit·string grouping defined as
standard EBCDIC. All input/output CI/0) peripheral devices~ excluding
data-communication devices, send and/or receive in the CHARACTER for
mat. Arithmetic operations can be performed with CHARACTER datai how
ever, the binary value of the CHARACTER bit-string is its binary
arithmetic value. That is, a O character from a peripheral device has
a binary value of 240 (11110000). Also, only the least significant
Cright·most) 24 bits of a CHARACTER data-name are used in arithmetic
operations.

All high-order bits are converted to O's (zeros). Comparisons are
of two classes:

a. Character·to·character1 which is compared left-to-right
with EBCDIC spaces <hexadecimal 40) padded to the right
of the shorter string.

b. Character to any other data format, which is compared
right-to-left with binary O's padded to the left of the
shorter string.

Substrings of character-strings may be addressed with the SUBSTR
function.

DATA TYPE CONVERSION.
Several conversion functions in UPL can transform from one data
type to another. They are CONV, BINARY, and DECIMAL.

The same memory space can be declared as being of different data types
each with unique data-names by the use of the REMAPS aption and/or the
structured options in the DECLARE statement.

ARRAYS.
An array is a repetitive set of data-elements. The data-name becomes
the name of the whole array~ and individual elements in the array are
addressed by subscripting the data-name. Arrays are single dimen
sionali that is, they allow only one value in the subscript. The array
declaration (*) can be used with all three data·types.

DATA STORAGE ALLOCATION.
Data storage allocation is divided into two distinct periods of time.
The first is the compiler·t~me encounter of a DECLARE statement in
which the compi Ler generates the code that performs the run-time allo
cations. The second occurs at.object run-time when the actual storage
allocations are performed upon entrance into a procedure and then only
for those data-names DECLAR£d in that procedure. When the procedure is
RETURNed from, that is, exited' the physical memory Locations again
become available for allocation to any data-name that may be DECLAREd
in the next procedure to be entered. That is, storage allocations and
de-allocations are performed during entrance to or exit from each pro
cedure at object run•time. The same physical memory space can, there
fore' be used many times during the execution of a program (dynamic
storage utilization).

DUPLICATE DATA-NAMES.
It is possible to have duplicate data·na~es in UPL that are not a
compile-time error. This is true whenever the duplicate data-names
are DECLAREd in different procedures. The occurrence of duplicate
data-names within one procedure is an error and results in a compiler
error message.

Duplicate data-names do not interfere because they exist only within
the scope of their procedures. The case occurs, however, when the
procedure that contains the duplicate data-name is nested within the

procedure that contains the first occurrence of the data-name. The
language resolves this conflict by referencing the most recent occur·
rence of the data-name over the scope of the nested procedure. When
this procedure returns control, the original data-name is again
available.

ASSlG~~E~!&
The assignment operation moves the contents of one data-name, called
the source field~ into the memory space of another data-name, called
the destination field. Alignment~ truncation, or padding is performed
during the assignment operation and is controlled by the type and
length attributes of the data-names involved.

The type attribute divides alignment control into two cases. The first
case is character-to-character, which aligns the data-names on their
left-most or high-order characters. The assignment is, then, performed
in a left-to-right order until one of the fields is exhausted. If the
destination field is shorter, the operation ends. If the source field
is shorter, the destination field is padded, on its right, with space
characters (hexadecimal 40).

The second case includes every other possible combination of data
types. The fields are aligned on their right-most or low-order bits,
and the assignment proceeds from right·to·left until one of the fields
is exhausted. If the destination field is shorter, the operation ends.
If the source field is shorter, the destination field is padded with
binary O's.

BEE~ACE~E~!&
The replacement operator is similar to the assignment operator because
both transfer data into a data-name and perform alignment, truncation,
and padding during the transfer.

Differences between assignment and replacement operators involve use of
a machine register and completion or incompletion of the source lan
guage statement. The assignment operator clears the register as it
moves the contents into memory and, thus' ends a statement. The
replacement operator, however, does not clear the register as it moves
its contents into memory. The value or address remaining in the regis
ter wu~t be used in further operations until the assignment operation
;s executed or until the register contents are no longer needed. This
case occurs with an expression evaluation and is used as a conditional
indicator as in the IF or CASE statements. For example:

X := A + CB := C)i

The := symbol between data-names 8 and C is a replacement operator
because a value or address of a value must be available to be added to
data-name A. The := symbol between data-names X and A, however, is an
assignment operator because nothing remains after the operation to be
combined with another term; that is, the source language statement is
completed.

~xactly what remains behind or, more formally, not deleted after a
f~placement operatian is und~r control of the programmer. That is, the
programmer can choose to leave behind either side of the replacement
'operation, which is then combined with the next term in the expression.

There are, therefore, two forms of the replacement operator: the
delete left form, := , and the delete right form1 ::= • Normal usage
is the delete left form. U$age of the delete right part is often con
venient in parameter passing-to procedures. For example, if the pro
cedure SQF requires a parameter of six characters and the programmer
would like to use the procedure with a 4-character data-name, x4, the
programmer can declare or use an existing 6-character data·name1 X61
and do a replace, delete right part (::=) in the procedure call. For
example,

SQF CX6 ::= X4)i

Sl~GLE:EASS.CO~ElLEBa
The UPL Compiler is designed to pass the source language only once.
This design has several ramifications in the program structure of the
source language.

A rigid sequence of statement types is required in order to guarantee
that the proper information is available to the compiler at the proper
time. All DECLARE statements, for example, must appear within each
procedure before any executable statements occur in that procedure.
Also, each procedure must begin and end, in the view of the compi ler1
before any executable statement in so~e other procedure can reference
it. Procedures, therefore, have a range or scooe over which they can
be referenced and are active. This scope is dependent on when a pro
cedure occurs, in the view of the compi Leri in what procedure nest it
occurs; and how deep it is in the nest.

A special statement, the FORWARD statement, is available to resolve the
problem of forward referencing a procedure that has not yet been seen
by the compiler.

Procedures cannot overlap; however, they can be .nested. Procedures
also can be side-by-side (parallel), not nested, within an outer pro·
cedure, each of which can itself contain more nested or side-by-side
procedures.

eBO~ECUBES&
A procedure is the basic structural element in UPL. It contains local
d~ta and the executable code for manipulating that data. It can also
communicate values and/or addresses, that is, parameters, to and from
other procedures. A procedure; in addition, can manipulate any data in
the other procedures that are within scope Cglobal>.

A procedure is divided into the following five parts: the head
declaration, the data decla~ations, the nested procedure declarations,
the executable statements, and the ENO statement, in that order.

For example:

HEAD DECLARATIONS
DATA NAME
DECLARATIONS

PROCEDURE
DECLARATIONS
IN SAME
FORMAT

EXECUTABLE
STATEMENTS

END STATEMENT

Procedures are analogous to subroutines in other languages. They
execute repetitively the same set of statements by manipulating a
different set of parameters on each invocation.

The outer-most Level of code, that is, the Level not imbedded in any
procedure, conforms to the format of procedures except that it has no
head declaration and cannot, therefore, be invoked by a procedure.
This outer-most, procedure-Like structure is referred to as the global
level or lexicographical <Lexie) level O (zero). Each subsequent
procedure has a Lexie Level-number greater than o.

PROCEDURE INVOCATION.
A procedure is invoked or called by use of the procedure-name in an
executable statement. If the procedure has parameters, they must
appear following the procedure-name and be surrounded by parentheses.
The parameters associated with each call of a procedure are the actual
parameters, and those within the procedure are the formal parameters.

PARAMETERS TO PROCEDURES.
A parameters-to-procedures transfer is considered a special case of
storage allocation at procedure invocation time.

The procedure head declaration contains a data·name for every parameter
that is passed. This data-name. is called the formal parameter ·name and
is used within the procedure to reference the passed information. A
FORMAL declaration statement must follow the procedure head declaration
and specify the type and attributes of the para~eters.

At compile-time, code is generated to allocate memory space for these
parameters. At run-time, the memory. space is allocated and the actual
parameter is loaded. Run-time comparisons of the actual parameter
types and lengths against the formal types and lengths are performed
only if the$ FORMAL.CHECK compiler option is specified. A mismatch
causes program termination. A VARYING option in the FORMAL statement
is available. It results in the use of the type and length of the
actual parameter as the type and length of the corresponding formal
parameter on each invocation of the procedure.~

ACTUAL PARAMETERS.
Actual parameters are the data-names or the values contained in the
data-names that are passed to procedures. They are matched in a left-

to-right order with the formal parameters in the procedure head
declaration. They also must agree in number with the number of formal
parameters.

FORMAL PARAMETERS.
Formal parameters are the symbolic data-names that are used in a
procedure to reference and manipulate the actual parameters that are
passed.

PASS· BY-VALUE.
The value of a data-name can be passed to a procedure. When the
procedure is invoked, a copy of the value is loaded into the local
memory space associated with the corresponding formal-name.

A parameter always passes-by•value as the result of an arithmetic
operation upon the parameter or by surrounding the parameter with
another set of parentheses, for example,

SQRF CA + 9, A * 9, CA));

The procedure SQRF has three actual parameters that all pass-by-value.

Array elements can be passed-by 0 value or by-name. The whole array can
only be passed-by-name. The formal parameter declaration within the
procedure can use the FORMAL~VALUE option; the parameter then always
passes-by-value.

A pass-by-value has no Lexie level restrictions. An inner procedure
can invoke an outer procedure that is in scope and pass to it the value
of a data-name that is out of the scope of the outer procedure.

PASS-BY-NAME.
The memory-space address of a data-name used as an actual parameter
can be passed to a procedure!• Local space is not allocated within the
procedure; instead, the formal ~arameter is loaded with the address as
passed. The procedure can, then, manipulate the original value as ref
erenced by the data-name. The procedure can alter this original value.
This occurs only if the formal parameter is the object of a replacement
or assignment operation during the execution of the procedure.

The pass-by-name occurs whenever t~e actual parameter is not involved
in an arithmetic operation or surrounded by an extra set of
parentheses, for example,

SQRF CA, 9, C + 2)i

The actual parameters A and B are passed-by-name and the C + 2 is
passed-by-value.

Notice that a pass-by-name has no Lexie level restrictions. A
procedure can pass the name of a data-name at a lower Lexie level
(higher number> to an outer procedure at a higher Lexie level Clower
number>. The outer procedure eventually executes a RETURN to the

2-6

inner procedure; however, it had access to the memory space of a non
existent data-name and could have altered its value. Notice that data
name space continues to exist for every procedure invoked until that
procedure executes a RETURN statement. This is true regardless of the
Lexie level or levels of any procedures invoked while a procedure
exists. Only those data-names that are within scope' however, may be
referenced. For example' a duplicate data-name at a lower Lexie level
inhibits the outer data-name during the time its procedure is active.

EBQ,EQUBE-I~EES&
Two types of procedures exist in UPL: one that performs a set of
statements and then returns control' called a regular procedure, and
another that performs a set of statements and returns a value when it
returns control, called a function procedure.

REGULAR PROCEDURE.
A regular procedure call is a complete executable statement. That is,
its name and parameter list are followed by a semicolon.

For example,

SQROOT CABS>i

is a regular procedure call.

A regular procedure may appear as a statement in the IF statement.

IF ABS NEQ ZERO THEN SQROOT CABS>i

After the regular procedure executes a RETURN statement, control passes
to the next sequential statement following the call.

A regular procedure can communicate data by referencing global
data-names.

FUNCTION PROCEDURE.
A function procedure call is considered a value and is used within
expressions. It can be the source of a replacement operator Con the
right of the replacement sign)i or it can be operated upon by any of
the arithmetic or logical functions, that is, added to or compared to.

When a function procedure RETURNs a value, it is used in place of the
function call within the expression. The function procedure head
statement contains a type-length attribute' and the RETURN statement
contains an expression. The value of the expression must have this
type-length attribute and is then passed back into the invoking
expression.

For example:

PRICE := COST.SQFT * SQRT CLGTH, WDTH)i

A value is RETURNed from the SQRT CLGTH,WOTH> function call and
multiplied by data-name COST~SQFT~

And:

IF SUBSTRCMSG.JN,Q,3) EQL "YEStt THEN ••• ;
ELSE ••• ;

The procedure MSG.IN accepts an input message from the SPO and returns
a character-string that is testHd for the first three characters equal
to the word YES.

A number of functions exist ~n UPL that may be used as if the
programmer has written function procedures for them. These
functions are described in section a.

~E~l~QGBAe~I~-~E~EL~
A lexicographic level is the compile-time relationship of each proce-
dure to the outer level of the program. This outer level is referred
to as lexicographic level O Czero). All other procedures are nested
within it and are assigned a lexicographic level-number representing
their depth of nesting from level o. Thus, in the following example,

LEVEL 0

[

ONEA

[TWOA

ONES

TWOS

[THREES

procedures ONEA and ONES are at lexicographic level 1; TWOA and TWOS
are ~t level 2; and procedure THREEB is at level 3.

The maximum lexicographic level is 15. That is, nested procedures can
not exceed 15 levels in depth. There is no limit, however, to the
number of procedures that can occur on any level or in any procedure.

The naming of a procedure shpuld not be confused with the procedure
itself. The name of a proce~ure exists at some Lexie level and denotes
that a procedure is beginnin with the next source language statement.
This next source statement e ists within the named procedure and is one

2-a

Lexie level lower than the nam~ of the procedure. That is, the name of
a procedure exists one Lexie level above the procedure that it names.
This separation of the name and the procedure being named has
significance in the concept of scope.

~~OEE£
Scope is the range within a program over which a data-name or
procedure-name can be referenced. The scope of a name is a direct
result of the lexicographic level of procedures and the storage
allocation techniques employed.

Before a procedure is invoked, the names declared within the procedure
do not exist yet and cannot be referenced. After the procedure is
invoked, the names within the procedure can be referenced. The format
of procedures ensures that only those statements contained within this
procedure or in global procedures are within scope. That is, execut
able statements within a procedure can reference the names declared in
this procedure or in any outer procedure. For example:

PROGRAM

CLEXIC LEVEL 0)

PROCEDURE.X

CL LEVEL 1>

PROCEDURE.Y

CLL 2)

STATEMENTS IN Y

STATEMENTS IN X

STATEMENTS IN LEXIC LEVEL 0

The statements in Lexie level O may reference PRDCEDURE.X but not
PROCEDURE.Y because PROCEDURE.X has not been invoked and, therefore,
the name of PROCEDURE.Y does not exist yet.

The statements in PROCEDURE.X can, however, reference PROCEDURE.Y
because the name of PROCEDURE.Y becomes available when PROCEDURE.X
is invoked.

The statements in PROCEDURE.X also can reference any names of data or
procedures that are declared .on Lexie level o. This implies that
PROCEDURE.X can invoke itself, which is true; all procedures in UPL are
recursive. Any difficulties encountered with duplicate names whether
they be from recursive procedure invocations or just duplicate names
within a nested procedure are resolved by the allocation of new space
for the most recent occurrencie of the duplicate name. Notice that the
name of the whole program, the name of the Lexie level O procedure, is
outside of Lexie level O and cannot be referenced from within the pro
gram. That is, the program cannot be called recursively because its
name is not within scope.

Statements in PROCEDURE.Y can reference names within PROCEDURE.Y and
PROCEDURE.X and on Lexie level o. That is, in this program, the state
ments in PROCEDURE.Y can reference any data-name and any procedure
name. Notice that the name PROCEOURE.Y exists when PROCEDURE.X is
entered. That is, the name df a procedure is made available in its
outer procedure.

Several procedures can have the same Lexie level number by occurring at
the same depth from Lexie level o. The relationships that can exist
between such procedures d~pends upon the relationship of the nests in
which they appear.

Procedures that have a common procedure one Lexie Level up can invoke
each other. Procedures that do not have this attribute can not invoke
each other. This condition is called not being within scope. For
example:

2-10

PROGRAM

CLEXIC LEVEL 0)

PRO.A

CLL-1)

PRO.B

CLL-2)

CALL PRO.A

CALL PRO.C

PRO.C

CLL-1)

PRO.D .

CLL•2)

CALL PRO.D

·CALL PRO.B

CALL PRO.A

The procedures PRO.A and PRO.Care both on Lexie level 1 CLL-1> and
have a common procedure C Lexie level o is considered a procedure in
the above exam p le) t hat i s o'n e le xi c l eve l hi g h er • They can both.•
therefore' contain executable statements that invoke the other. The
single-pass characteristic of UPL• however, requires a FORWARD state·
ment before this is allowed.

Procedures PRO.B and PRO.D also have a common Lexie level number; how
ever, they are not nested in a common, immediate Ly preceding procedure
and cannot, therefore' refer~nce each other.

A question now arises: What happens if PRO.B invokes PRO.A and t~en
PRO.A invokes PRO.C? Can PRO.C now reference PRO.B or any of its data
names? It is, after all' sti LL active because it has not yet E!Xecuted
a RETURN statement.

The answer is no. At og tim~ can any statement in PRO.C reference
PRO.B or any data-name in PRO.B~ The programmer, however, never loses
control because this run·tim~ nest of invocations is eventually
unwound. Each procedure mu~l eventually execute a RETURN statement and
pass control back to its invoking procedure, thus unwinding the nest.

The scope of a data-name is similar to the scope of a procedure-name.
A data-name can be referenced by any executable statement within the
procedure in which it is declaredfl It also can be referenced by any
active procedure nested within its declaring procedure. It can DQ1
be referenced by any procedure with a lower Lexie level number. Its
value or name can, however, be oassed as a parameter to such
procedures. <Refer to page 2-6~>

For example:

PROGRAtv1

DECLARE CAA1 ABC) FIXED;

PROCEDURE PRO.A;

DECLARE BB FIXED;

PROCEDURE PRO.s.;

DECLARE CC FIXEOi

ABC := AA + BB + cc;

ABC:= AA+ ss;

PROCEDURE PRO.C

DECLARE DD FIXED;

ABC·- AA+ DD;

ABC := AA;

The data-names ABC and AA can be seen by Care within the scope of) all
procedures. The data-name BB can be seen only by procedures PRO.A and
PRO.B. That is, PRO.C and the outer level O code cannot reference
data-names BB or cc.

2-13

SECTION 3

EXPRESSIONS

~E~EB6L.a
Expressions are the operational portions of statements. If a statement
is analogous to a sentence, then expressions are the words and phrases
within a sentence. All operational functions, that is, comparison,
arithmetic, etc., take place within expressions except the assignment
and the regular procedure-call functions.

The format of an expression is similar to the format of an algebraic
expression. Infix notation .is used, and parentheses can be used, to
group the order of evaluation. Each variable also can contain a prefix
unary operator.

An expression is defined to be recursive and can, therefore, contain
as many variables and operators as are required to produce the desired
result.

Expressions are evaluated by performing the indicated operations in a
Left·to•right order. The sequence in which the operations are per
formed is determined by rules of precedence. CAn operator precedence
chart is given on page 3-5.) When operators have the same precedence,
the sequence of operation is determined by the order of their appear
ance, from left-to-right. Parentheses can be used to modify the normal
hierarchical sequence of execution. An expression within the parenthe
ses is evaluated, and this value is then used in subsequent operations.

ECB~4I.OE.A~-E~EBESS10~&
The expression syntax is as follows:

[
UNARY J

OPERATOR

f data-name) [[[UNARY J
~ OPERATOR 1 variable 5 OPERATOR

~ dat a•name jl J ... J
~variable

The elements of the syntax are defined as follows:

data-name

simple data-name

array data-name

{

SUBBIT)
substring (

SUBSTR)
Cdata·name, expression,
expression >

BUMP data-name BY expression

DECREMENT data-name BY expression

IF expression THEN data-name ELSE data-name

CASE expression OF Cdata·name Li st>

3-1

variable

QAIA:~At:1E;S&

literal

(data-name)

value function procedure call (parameter
expression list>

evaluation of an expression

BUMP data-name BY expression

DECREMENT data-name BY expression

IF expression THEN expression ELSE expression

CASE expression OF (expression list)

SUBBIT Cdata-name, expression , expression

SUBSTR Cdata·name, expression , expression)

CONV

LENGTH

BINARY

DECIMAL

TIME

DATE

NAME.OF.DAY

A data-name is a memory address with a type and length attribute. It
is considered to have a value when used in an expression unless it
appears to the left of a replacement or assignment operator, in which
case it is the receiver of a value. A data-name differs from a vari
able because of this last characteristic. That is, a variable is
always a value and can never be the receiver of other values. It can
only be operationally combined with other values to produce a new
value.

SIMPLE DATA-NAME.
A simple data-name is the data-name as given in a DECLARE statement.

ARRAY DATA-NAME.
An array data-name must be subscripted. The subscript that is enclosed
in parentheses can be an arbitrary complex expression. For example:

3-2

X CBUMP I BY 2)

X is the array data-name, and the binary value of
the simple data-name I is the array element being
accessed. The first array element is number o.

Every other element of the array X is to be accessed.

SUBSTRINGS OF DATA-NAMES.
Two substring functions are available: the SUBBIT, to reference a
string of bits within a data-name~ and the SUBSTR, to reference a
string of characters. Both functions require the data-name, the dis
placement starting Locations, and the Length of the substring. For
example:

SUBSTR ex, 2, 1)

SUBBIT CA, 7)

The third character in the data-name X is
referenced.

It references the eighth bit through the end
of data-name A. The default option on the
length is through the end of the data-name.

The arguments of the substring function can be expressions and,
therefore, contain substring functions. For example:

SUBBIT (SUBSTR ex, 2, 1), o, 2) This references the first two
Cleft-most) bits of th~ third
character in data-name x.

The BUMP, CASE, DECREMENT, and IF expressions are discussed in detail
in section 6.

~AB166~E~
A variable is a value within an expression. It can be explicit, such
as a literal' or implicit, such as the sum ,of two data-names.

3-3

LITERAL.
A literal is a constant whose value is used in the expression as it
appears. Three types of literals correspond to the three possible
data·types.

a. The first is the fixed or constant literal. Fixed
literals are signed number values. For example:

43
-17

b. The second is the character or character-strin9 literal.
Character literals must be enclosed by quote (") symbols.
They are 8-bit groups CEBCDIC>. If a quote sign is desired
in the character literal, two adjacent quote marks are
required. The maximum number of characters is 256. For
example:

"YES"
" "
"QUOTEC"")"

c. The third type is the bit or bit-string literal. Bit
literals are available in groupings of 1 Cbinary), 2
Cquartal), 3 <octal), or 4 <hexadecimal>. The bit literal
is enclosed by ~ signs and contains a grouping indicator
enclosed in parentheses. For example:

@Cl) 11011011@
@(2) 01201122~
@(3) 0123577t!il
@(4) 0148ACF@

binary
quart al
o c t a l
h ex a d.e c i ma l

If the grouping indicator is omitted, 4 (hexadecimal) is
assumed. The grouping can be changed within the literal.
For example,

@Cl) 101 (2) 210 CJ) 765 C4) F@

is a 22-bit literal.

DATA-NAME VALUES.
Any data-name that is enclosed in an extra set of parentheses has only
its value used in the expression. This is often useful when passing
parameters to procedures.

VALUE FUNCTION PROCEDURE CALL.
A function procedure call is the use of the function-name in an
expression. It passes cont r.o l to any function procedure w r i t ten
by the programmer or to one of the intrinsic functions. It always
results in a value.

EVALUATION OF AN EXPRESSION.
The evaluation of an expression is the combining of any two or more
operands with an operator, for example, A + 8. The evaluation always
results in a value.

SUBSTRINGS.
The bit substring function SUBBIT is used to isolate a set of bits from
a data-name. The character substring function performs the same opera
tion, but considers its data as type CHARACTER. When a substring
function is used as a variable, it returns a value.

The BINARY, CONVERT, DATE, DECIMAL, LENGT~, NAME.OF.DAY, and TIME are
• described in section a.

OEEBAIQB.eBECEOE~CE.l~-E~eBESSlO~S&
Operator precedence in expressions is as follows:

highest l . -. -
.. -.. -
: .__

+

+

*
I
MOD

= EQL
1- NE Q
> GTR
~ GEQ

< LSS
:$ LEQ

NOT
AND
OR
EXOR

replace delete
left part

replace delete
right part

plus

minus

addition
subtraction
multiplication
division
remainder

equal
not equal
greater than

·greater than or
equal to
less than
less than or
equal to

not
and
or
exclusive-or

h: Cf:

replacement

unary

arithmetic

relational

logical

3-5

CAT concatenation miscellaneous

~ r- replace delete . -.... Left part
lowest

(
replacement r ·- replace delete .. -

: ..,..__ right part

The replacement operator is lower than any operator to its right, but
higher than any operator to its left. Also, the replacement operator
is distinct from the assignment operator in that the replacement must
be within an expression while the assignment defines a statement.

~~eB~SSlO~-I~E~s~
Expressions can be divided into several types with corresponding
properties. They all, howev~r, can be combined or imbedded in any
order and are collectively referred to as ~~Dt~~~igc in the syntax.

ARITHMETIC EXPRESSIONS.
The arithmetic operations are as follows:

a. Addition (+).
b. Subtraction C->.
c. Multiplication (*).

d. Division en.
e. Remainder of division CMOD).

The arithmetic operations are always performed on the low-order or
right-most 24-bits of data-names, and the calculations are in binary
regardless of the data-name declared type. Intermediate results are
held in UPL machine registers, Leaving the original contents of all
data-names unaltered. An assignment or replacement operator is
required to move the results of a calculation into a data-name.

Data-names can have preceding (post-fix) unary operators to the right
of the arithmetic operators that are between Cin-fixl the data-names.

FIXED ARITHMETIC EXPRESSIONS.
Arithmetic operations in whi~h both operands are of type FIXED always
produce a type FIXED result. The maximum numbers are +2 raised to the
23rd power -1 (+8,388,607) and q2 raised to the 23rd power C-8,388,608).
Values in excess of these limits have their high-order bit ignored.
Negative values are expressed in the complement notation of 2.

NON-FIXED ARITHMETIC EXPRESSIONS.
All arithmetic operations in which one or both of the operands are c~t
of type FIXED are handled in a 24-bit mode.

The operands are considered as 24-bit unsigned positive numbers. The
maximum value is 2 raised to the 24th power (16,777,216). If an
expression containing non-FIXED data results in a value greater than
2 raised to the 23rd power -1, and it is then assigned or replaced into

3-6

a FIXED data-name, the result is a negative FIXED value. Use of the
unary minus sign (-) with a non-FIXED data-name converts all 24-bits to
2's complement notation. This value is not a negative number, but it
can add to other data-names to produce the equivalent of subtraction.

RELATIONAL OR CONDITIONAL EXPRESSIONS.
A relational expression determines the truth or falsity of a relation
ship between data-names. The result of a relation test can be used to
control an IF statement or as an expression in further operations.

For example:

IF A EQL 8 THEN STMT.TRUE;
ELSE STMT.FALSE;

The relationship of eQuality is used to choose between the two
statements in the IF statement.

The relational test results in a single bit indicator, called the
conditional-bit. Truth of the test sets this conditional-bit equal to
a 1 Cone), and falsity sets it equal to a O Czero>.

Other operations uti Li zing the conditional-bit are allowed. For
example, X := A EQL s; assigns X a value of binary 1 if A equals
B or B value of O if A is unequal to B. The statement X := CA LSS 8) +
CA GTR B); results in X = O only if A equals 8.

Relational comparisons are divided into three types:

a. A character-to-character comparison is left-aligned and bit
by-bit. Therefore, B is greater than A because B is
hexadecimal C2 and A is hexadecimal Cl. Shorter fields are
padded with space characters (hexadecimal 40).

b. A fixed-to-fixed comparison is left-aligned ~nd a true
algebraic compare. That is, a -1 (negative one> is less than
a O Czero>.

c. All other combinations of data-types are right-aligned and
bit-by-bit.

Any combination of operators can be included within a relational
expression. For example,

IF CCA NEQ 8) OR CCA * 8) NEQ ZERC) + 1)
THEN ••• ;
ELSE ••• ;

The relational operators are as follows:

s~wbgl t:iC~IJJ'2Ci' t:1~acicg

= EQL equal to

'/. NEQ not equal to

> GTR grE~at:er than

< LSS less than

2: GE Q gr Hater than or equal to

~ LEQ less than or equal to

LOGICAL EXPRESSIONS.
The logical operators perform a right-adjusted bit-by-bit combination
of their operands. All data types are operated upon in the same manner
for their full length. The shorter of the two is padded on its Left
with binary O's. Notice that character-to-character logical opera
tions are performed in the same manner as all other combinations of
data types.

Table 3-1 illustrates the use of each logical operator.

T.ab le 3-1

Logical Operator Usage

Vadables Bit Configuration

IF x = 0 0 1 1
IF y = 0 1 0 1

NOT x = 1 1 0 0
NOT y = 1 0 1 0

x AND y = 0 0 0 1
x OR y = 0 1 1 1
x EXOR y = 0 1 1 0

"Not" is considered a unary operator and may appear adjacent to any
other operator including itself.

FUNCTION EXPRESSIONS.
A function expression is a call upon a user-written function procedure
or upon one of the UPL-supplied functions as described in section 8.

3-8

In either case, the function returns a term to be combined with other
terms to produce a result. Th~ terms can be values or addresses.

Values can be operated upon directly as if they were Literals to pro
duce a result, while addresses point to memory space that can then be
the source or destination of a value. That is, address-generating
functions differ from value functions because they can be the object of
an assignment or replacement operator.

For example:

A := LENGTH Cx> ;

The LENGTH function returns a value equal to the number of units of x,
and this value is assigned to the data-name. The LENGTH function can
never appear to the Left of an assignment or replacement operator.

The SUBBIT and SUBSTR functions, however, are address-generating
functions and can appear on either side of an assignment or replace
ment operator. That is, SUBSTRCCARD1018); := SUBSTRCCARD,7218); moves
the right-most eight characters of the data-name CARD to the left-most
eight character positions.

NOTE
Data-name CARD is assumed to
be an so-character card image.

The VALUE-generating functions in UPL are as follows:

SUBBIT
SUBS TR
CONVERT
LENGTH
DECIMAL
CASE
IF ••• THEN ••• ELSE

BINARY
TIME
DAY
NAME OF DAY
BUMP
DECREMENT

The ADDRESS-generating functions in UPL are as follows:

SUBBIT
SUBS TR
IF ••• THEN address generator ELSE address g~nerator

CASE ••• OF (address-generating List>

The IF ••• THEN ••• ELSE ••• and CASE ••• OF functions must contain address·
generating functions gol~ if they appear to the left of an assignment or
replacement operator.

3-9

SECTION 4

STATEMENTS

~E~EB!~&
Statements are the UPL equivalent of grammatical sentences. They con
tain a complete sequence of operations Cone complete idea) that is log
ical Ly separate from other similar sequences. While an expression
evaluation results in a numerical value, statement evaluation specifies
functions or assignments for the values. For example, the expression
A+B results in a numerical value; but the statement X := A + s; (read
X is replaced by A + 8) assigns the value of the expression to data·
name X.

Statements are always terminated by a semicolon.

Statewents fall into three general classifications: declaration,
control, and assignment.

O'~~AB6!10~-SI6I,~E~!S&
Declaration statements relate memory space to data-names and their
attributes. They are described in detail in sections.

~Q~IBQ~.SIAI,~E~!S&
Control statements determine the sequence in which statements are to be
executed. They pass control to procedures, bind groups of statements
together, or conditionally specify which one of several statements is
to be executed next.

PROCEDURE CALL STATEMENT.
The major control statement in UPL is the procedure-calling or invoking
statement. It consists of a procedure-name followed by any parameters
enclosed in parentheses and terminated by a semicolon. For example,
the procedure ABS, which requires one parameter, would be invcked by
ABS CVALUE)i •

There are three considerations governing the use of procedure-calling
statements. First, a called procedure must be within the scope of the
calling procedure.

In Lexie level terms, a called procedure must be:

a. One lower Lexie le~el nested within the calling procedure,

b. Not more than one lower Lexie level within a currently invoked
procedure that itself is on an equal or higher Lexie level, or

c. A currently invoked procedure on an equal or higher Lexie
level.

Second, a called procedure al~a~~ returns control back to its calling
procedure. There is no GO TO statement in UPL. The programmer must,
therefore, structure the program logic to use this return-control
action. The immediately succeed;ng executable statement in the calL;ng
procedure is executed when control is returned.

Third, the called procedure must be of the proper class. There are two
classes of procedures in UPL. One, which dg~~ cgt pass back a value
when it returns control, is referred to as a regular ~rocedure; the
other, which dQ~~ pass back a value, is referred to as a function
procedur~. The function-procedure call is considered an expression,
not a statement. It is described in section 3.

DO STATEMENT.
Statements may be bound or grouped together by the DO, IF ••• THEN •••
ELSE, or CASE, statements. The DO statement binds all following state
ments to its matched END statement as if they were one statement. For
example:

00 SETA;
X := X+li
A.PARM := ZERO;
ROUTINE ex, A.PARM)i

END SETA;
CThis is a procedure call

with two parameters.>

Once a DO group is started it is completed. The individual statements
within the group can, however, be any executable statem~nts including
imbedded DO statements.

DO FOREVER STATEMENT.
The DO FOREVER statement performs iterations of the statements within
the group until an UNDO statement is executed or control is returned
from the procedure in which the DO FOREVER is imbedded. For example:

DO PRTN FOREVER;
x := x+i;
RCUTINE ex, A.PARM);
IF X EQL 5 THEN UNDO;
IF X EQL 10 THEN RETURN;

END PRTN;

IF STATEMENT.

(procedure call>
Ctest limit>
Creturn from the current procedure>

The conditional-expression within the IF statement, when evaluated,
designates which of two statements is to be executed. The OD group
statement is often used with the IF statement in order to execute a
set of statements conditionally. For example:

IF A+B GTR x THEN oo;
A:= A-1;
IF A EQL 0 THEN UNoo;
RTN.XYZi
EN Di

ELSE oo;
X := A+B;
A : = 0;
B : = 0;
EN Di

After the chosen statement executes, control passes beyond the end of
the IF statement.

CASE STATEMENT.
The CASE statement is an expanded form of the IF statement. The
evaluation of a condition~l expression chooses one statement from among
all the following statements up to the END CASE statement for execution.
After that one statement is executed, control passes to the first
statement beyond the END CASE statement.

CASE, oo, IF, and PROCEDURE invocations or assignment statements may be
imbedded in any of the above statements in any order and to any depth.

~SSlG~~E~I.SI~lE~E~I&
The a~§igcwect.§tat~m~Ct is the primary data-movement statement in UPL.
Truncation and padding are performed across the assignment operator and
are dependent upon the type and length attributes of the data-names as
given in the declaration statements.

SECTION 5

DECLARATION STATEMENTS

~E~EBAl.1.
Declaration statements specify memory allocation and data attributes or
link together portions of a program. They can also be compiler direc
tory information, as in the DEFINE or FORWARD PROCEDURE statement.

This section describes each declaration statement in alphabetical
order. The format of each statement is as follows;

a. Purpose.
b. Syntax.
c. Description.
d. Examples.

s-1

UECL8BE.SI8IE~E~I&
The OECLARE statement reserves memory space for data-names and assigns
type, length, and hierarchical attributes.

SYNTAX.
The syntactical structure of the DECLARf statement is as follows:

f\lormal Format

aECL8BE [E~~EQJ Lpage-sizel data·name-1 Ctarr~y-sizelJ [BE~AES

{
EHEQ }

data-name-?] t~!BaClEB Llengthl l
EH! tlenqthl

a----------------------------------·------------------------------·---------
List Format

[[:.data-name-:? [(array•sizelJ] •••] l

..._ ___ , ________ .J

Structured Format

---·---------.

).

(. data·name-1 [.{array-si zel] 'l
OECLABE level·n~mber J ElL~EB f

QU~~~

{
ErH:a }

[BE~AE~ data-name-2] ~~8B8~IEB tlengthl l
arr .{lenqthl ._ __ . ________

Dynamic Format

..-- ~ data-name-! j <:t:JaBHIE!l idata-name-2.2 t i.
1l 61I .{data·name-3l) ._ _________________________________ , ____________________________ __

s-2

DECLARE
cont

DESCRIPTION.
DECLARE statements must appear at the beginning of the program or at
the beginning of a procedure.

The word DECLARE need not be repeated when commas separate repetitive
declarations. Repetitive declarations within one statement can mix
format types.

The most efficient code is generated if all data-names are declared in
one statement.

Data-name 1 is the name to be assigned memory space and attributes.
The data-name must begin with a letter; may contain letters, digits,
or dots; must not exceed 63 characters; and may not contain imbedded
blanks.

The PAGED option applies to arrays only. It allows the programmer to
specify ~he number of array elements to be contained in one page that
is in one segment. The page size must be a power of 2. The ~aximum
number of bits in a page Cpage size times bit length> is 65,535. The
maximum number of characters in a page is 8191. PAGED arrays cannot
be part of a structure and cannot be remapped.

Page accessing is performed automatically during program execution.

Array•size specifies the number of elements in an array. Parentheses
are required. Arrays are not dimensional and begin at subscript O
(zero). Array elements are referenced O through N-1 for an N element
array. The maximum array size is 65,535 elements. Maximum element
sizes are 65,535 bits or 8191 characters.

REMAPS re-assigns the memory space of data-name 2 to data-name 1. The
type Clength> attributes apply to data-name 1, but cannot exceed the
length in bits of data-name 2. Any data-names that have been declared
can be remapped, including those that remap other data-names.

The type Clength> attributes are as follows:

a. FIXED is a sign and a 23-bit binary integer.
b. CHARACTER is an 8•bit unit.
c. BIT is a 1-bit unit.

Detailed specifications regarding data types can be found in section 2.

The Clength} specifies how many of the CHARACTER or BIT units to
assign. The maximum lengths are as follows: CHARACTERS 8191 and
BITS 65,535.

The list format allows repetitive data-names all of the same type
Clength}. They can be of different array-size.

The structured format creates a hierarchy of data-names. The level
numbers assign positions in the structure. The 1 or 01 level must be
the first level in any structure. All higher numbers define lower

5-3

DECLARE
cont

levels and reDECLARE the memory space of their higher levels. All
elements within a structure must contain level numbers. A maximum of
99 levels is allowed for one structure.

Any data-name that is further substructured is called a group data-name.
A data-name with no substructure is called an elementary data-name.
Elementary data-names must contain a type <Length) specification. The
group data-names need not contain type Clength) soecifications. They
are assigned the type BIT by the co~piler, and their length is the sum
in bits of all the elementary data-names below them in the structure.

The word FILLER can be used to avoid naming portions of structures that
are not referenced. If the lower portion of any level in a structure
does not allocate all of its higher level, the compiler supplies a
FILLER. FILLER 'aoo~l be used for group data-names.

The word DUMMY is used only with the REMAPS option. It is used to
avoid the naming of data-name 1~ A DUMMY cannot remap another DUMMY,
and it must have at least one non-FILLER data-name.

The maximum number of data elements within one structure, including
FILLERs, DUMMYs, and implicit FILLERs, is 64.

Arrays are mapped as continuous areas of memory. If the array is part·
of a structure, its substructure re-allocates each of the array ele
ments. That is, the substructure array is not maoped into contiquous
areas of memory. Each subelement is implicitly an array and must be
addressed with subscripts. Structured arrays ~aCOQt contain arrays as
subelements.

The dynamic format allows simple data-names to be DECLARED with their
field lengths for calculation upon each occurrence of the declaration
at execution time. The dynamic format can be used only at Lexie level
1 or greater. That is, it must be contained within some procedure.
Data-name 1 must be either of type BIT or CHARACTER and is assigned a
length in units of the binary value of data-name 2 or data-name 3.
Data-name 2 or data-name 3 must be DECLAREd, te initialized, and be
within scope before the procedure that contains the dynamic declaration
is invoked. Data-name 2 or data-name 3 can also be format declarations
within the procedure in which they appear in a dynamic declaration.
Dynamic declarations cannot contain arrays or structure data-names.

Dynamic declarations can be remapped, but it is the proqrammer's
responsibility to ensure that the remapped declaration does not exceed
the length of the dynamic data-name. Unpredictable data results if
references are made beyond a dynamic data-name via the REMAPS
referencing techniaue.

5-4

NOTE
There is no syntax check made for the
initialization of data-name 2 or
data-name 3.

DECLARE
cont

The scope of declarations is the same as the scope of the procedure
in which they are DECLAREd. That is, they are addressable in their
declaring procedure and in any nested procedures. They are not
addressable in any global procedures. This addressability is a result
of the execution-time, memory-space allocations of declarations.

The execution allocation of memory space is entirely dependent upon the
execution sequence of procedures. When a procedure is entered, memory
space is allocated for every data declaration in the procedure. When a
procedure is exited, that is, a RETURN statement is executed, the
declaration memory space becomes available for re-assignment. Data
names declared within a procedure are, therefore, available to the pro
cedure and all of its nested procedures. They are unavailable to any
of its global procedures, that is~ procedures in which it is nested.

Duplicate data-names can occur in different procedures at compi Le-time.
If the scope of the names overlaps, the compiler references the name at
the lower Lexie level (within the nested procedure> within the over
lapped area. A duplicate data-name within one procedure is a syntax
error.

Recursive invocation of a procedure results in a new memory-space
allocation for every data-name declared in the procedure.

All data that is used as global data for the ~otic~_gcggcaw.m~~l be
completely DECLAREd before any other statement types. That is, they
must appear in the source program b~fgc~ all nested procedures and
befgc~ any executable statement.

Class I reserved words cannot be used as data-names.

Class II reserved words can be used as data-names; but, if used, they
lose their significance for the scope of the declaration. A warning
message appears on the print-out.

Class III reserved words can be used anywhere without confusion except
within the specific statement and position that requires them; for
e~ample, PUNCH can be declared a data-name. PUNCH in the FILE state·
ment DEVICE portion refers to the I/O device and not the data-name.
Class III reserved words may not be defined when used as reserved
words.

EXAMPLES.
Examples of .the DECLARE statement are as follows:

DECLARE TAGA FIXED;

DECLARE TAGB CHARACTER Cl);

TAGA is a signed 23-bit binary
value. The sign is the most
significant Cleft-most> bit.

TAGB is of type CHARACTER and
1-unit long. The type

5-5

DECLARE
cont

DECLARE TAGC BIT C17);

DECLARE TAGA FIXED'
TAGS CHARACTER Cl),
TAGC BIT (17);

DECLARE NAMES C12) CHARACTER {25);

DECLARE
01 CARD CHARACTER C80),

02 INPUT CHARACTER C72);

DECLARE
01 TABLE.A CHARACTER (15),

02 ITEM.l CHARACTER (6),
02 ITEM.2 CHARACTER (4),

03 SUB.ITEM.2 FIXED,
I* There is an implicit FILLER of

8 bits here */

02 ITEM.3 BIT c 1) ,
02 IT EM. 4 FIX ED
02 ITEM.5 BIT c 7)

I* DECLARES may be continued with
appropriate commas */

01 TABLE.B BIT (200);

DECLARE CARDS CHARACTER (80),
COLUMNS C80) REMAPS CARDS

C H A'R A C T ER C 1 > ,

5-6

01 NUM.FIELDS C40) REMAPS
CARDS CHARACTER (2),
02 FIRST.NUM CHARACTER

c 1) ,
02 SECOND.NUM CHARACTER

c 1);

CHARACTER is in 8-bit EBCDIC
format.

TAGC is of type BIT and is 17
bits in length.

Same as preceding examples
except it is a single state·
ment with the items separated
by commas.

NAMES is an array of 12 items
each with 25 characters per
item.

A FILLER of eight characters
is automatically assigned by
the UPL Compiler to round off
the 02 level to its required
length of 80 characters.

A table of five items that con
sumes 15 bytes is DECLAREd.
Each item is explicitly named
in the structure, and its type
and length are given. Also
DECLAREd is a second table of
200 bi ts.

The SUB.ITEM.2 further sub
divides ITEM.2 and uses the
first Cleft-most) three char
acters C24 bits>. The /*•••*/
is a comment.

An BO-column card is DECLAREd
and then remapped as an array
of 80 elements, each element
of one character. The card is
again remapped as a 40-element
array, each of two characters.
Each 2-character array element
is further subdivided into
separate elements that can be
referenced. Notice that
FIRST.NUM and SECONO.NUM must
~e subscripted when they are
used and that 39 is the maxi-

DECLARE CITEM.1, ITEM.2, ITEM.3)
FIXEDi

DECLARE
01 NEW.LABEL,

02 NL.1 CHARACTER (25),
02 NL.2 (3) CHARACTER C25),

03 FILLER CHARACTER CS),

03 FIRST CHARACTER ClQ),
03 SECOND CHARACTER

ClQ),
02 NL.3 FIXED;

DECLARE
01 A1

DECLARE

02 Al C20) BIT C2Q),
02 A2 C18) BIT C20),

03 81 BIT C15)1
03 82 BIT C5),

02 A3 C2) BIT C5)i

01 TAGA C5) BIT C48),
02 TAGS FIXED,
02 TAGC FIXEDi

DECLARE
cont

mum value of the subscript.

A list of data-names is
DECLAREd, all of type FIXED.

A group item NEW.LABEL is
DECLAREd, and the compiler
assigns it type BIT. It is
equal to the sum of the bits
of the 02 level below. CC25 +
3 * 25> * 8 + 24 = 824 bits)

NL.2 is an array of three ele·
ments each 25 characters in
length. FILLER is used to
omit the naming of an area
that is never referenced sepa
rately. FILLER can be used as
often as required without
causing a duplicate-name syn·
tax error. FIRST and SECOND
are 3-element subarrays of the
NL.2 array. They are refer·
enced with subscripts o, 1,
and 2, for the first, second,
and third elements. Each ele
ment is 10 characters. NL.3
is a FIXED signed binary
number.

The data-names Al, A2, Bl, 82,
and A3 must all be sub·
scripted, when used, because
of the explicitly declared
array-sizes specified for Al,
A21 and A3.

The length sum of data-names
Bl + 82 must be equal to, or
less than, that specified for
data·name A2.

TAGA is mapped in a contig•
uous memory area to contain
the data developed for TAGB
and TAGC. TAGB and TAGC are
implicit 5-unit arrays, but are
cgt maoped contiguously. They
are mapped alternatingly as
follows: TAGBCQ), TAGCCQ),

5-7

DECLARE
cont

DEtLARE PAGED C64) BIG.O.N. (5000)
BIT Cl);

S-8

TAGBCl), TAGCCl), ••• • ,
TAGBC4), TAGCC4).

BIG.O.N. is an array of 5000
elements, each of one bit.
The array is segmented into
64 parts. Each part is
brought into memory, that is,
paged, whenever it is
addressed. No special stat~

ments are required to do the
paging.

CEEl~E.SI!IE~E~I&
The DEFINE statement provides the capability of inserting multiple
copies of specified UPL source text from only one image of the source
text into a program during compilation.

SYNTAX.
The syntactical structure of the DEFINE statement is as follows:

[{parameter-1 [~ parameter-2] ••• l]

AS ! text [parameter-1 [text parameter-2] • ••] 4 i

DESCRIPTION.
The data specified between the # signs, called the text, is paired
with the definition-name. When the definition-name appears in any sub
sequent location in the program, the compiler replaces the definition
name with the text. The text must conform to the syntactical
requirements of the statements into which it is placed.

The DEFINE statement mu~l appear within the declaration section of the
program or of a procedure. The scope of a DEFINE statement is the same
as the scope of any data-names in that declaration section. That is,
the scope exists in its declaring procedure and all directly nested
procedures. Multiple DEFINEs can appear within one DEFINE statement
and must be separated by commas. DEFINE statements can be nested to a
depth of 12 levels. That i s, the text can cont a i n pr e·v i o us l y de c la red
definition-names. The compiler expands all nested DEFINE statements
into their appropriate text strings.

The text can contain any UPL symbol including semicolons, but it cannot
contain the# or % signs. The # sign is the text delimiter, and the %
sign indicates that the remainder of the card is a comment. The com
ments sign, /*•••*/, can appear within a DEFINE statement, but it is
not copied at invocation time. A maximum of 1024 characters can appear
in a DEFINE string, excluding comments and superfluous blanks. Also, no
unpaired bracketing symbols CC> or CJ> may appear within a define.

All data-names that are coded within the text must be DECLAREd prior to
an invocation of the definition-name, but need not be DECLAREd prior to
the DEFINE statement.

Re-usage, that is, duplication, of a definition-name on a lower Lexie
level for any of the following names inhibits. the substitution of the
text for the scope of the duplicate name. The names are as follows:

a. DECLARE names.
b. PROCEDURE names.
c. FORMAL names.
d. SEGMENT names.
e. DO group names.
f. FILE, OPEN, WRITE, and CLOSE attributes.

5-9

DEFINE
cont

A duplicate name within scope and on the same Lexie level is a syntax
error.

Duplicate definition-names, which can be encountered between lexico
graphical levels, are resolved .at compile-time by using the most cur
rent name Con the highest level). When a lexicographical level is
ex i t e d C ex i t from a pro c e du r;e), t he names on th e hi g her lex i co ~Ir a p h i c a l
level are lost and can be re-used~ Reserved words of class I cannot be
used as definition-names. A definition-name can, however, define a
reserved word. Reserved words of class II can be used as definition
names, but their special significance is lost within the scope of the
DEFINE statement.

The actual parameters associated with an occurrence of a definition
name are not restricted to simple data-names. They can contain complex
constructs, but must be delimited by O-level commas, that is, commas
not enclosed within paired parentheses or braces.

The actual oarameters replace the format parameters in the DEFINE
statement in a left-to-right order, and their number must be equal.
The maximum number of parameters is limited to eight per definition
name.

Conditional compile cards Ccards with an & sign in column 1> may appear
as part of a DEFINE string. A $DETAIL compiler option card prints the
expansion of OEFINEs on the compiler print-out.

EXAMPLES.
Examples of the DEFINE statement are as follows:

DEFINE REPEAT AS #ABC CTAGA, X) #i

IF X EQL 9 THEN REPEAT;

DEFINE CH AS # CHARACTER #'
FX AS # FIXED #

THEN DECLARE X CH CS),
Y FX, Z CHC2)i

DEFINE TRIAL (A,s,c> AS

s-10

IF CA) EQL ZERO THEN A := Bi
ELSE C #;

The source code contained
between the # signs of the
DEFINE statement is copied
into the UPL Program when
ever the word REPEAT is
used.

This statement is equiva
lent to IF X EQL 9 THEN ABC
CTAGA, X);

The source code generated
would be:

DECLARE X CHARACTER (5),
Y FIXED,
Z CHARACTER (2);

This statement generates
the following: IF CTAGA)
EQL ZERO THEN TAGA := ABS

DEFINE T AS #@(1)1@,
f AS #@Cl)O@i

DEFINE X AS # ABC #
ABC AS # X #i

DEFINE MAX AS # & IF Sl
A : = X;
& ELSE A : = YJ
& ENO #;

DEFINE A AS #IF X GTR 10 THEN
PROCX#,

CCM> AS #X := Mi A #i
ccz; BUMP I CR + S))

DEFINE MAX.SIZE AS & IF DATACOMM
64

& ELSE
32

& END

DEFINE
cont

CBX); ELSE ex := SQRF CBX);

The T and F become Boolean
bit strings of 1 or o,
resoectively.

This statement causes an
error diagnostic at
compile-time when the com
piler attempts to expand
either X or ABC into TEXT.

This whole statement is
available to the compiler,
but only A := X or A := Y
is compiled, depending on
the condition of the
conditional symbol Sl. IF
the statement & SET Sl has
been encountered, A := Xi
is used. IF Sl has not
been set or is reset, that
is, & RESET s1, then A := Y
is used.

This statement expands to
X := z; BUMP I CR+S)i IF X
GTR 10 THEN PROCXi

If a conditional compile
card of & SET DATACOMM
appears, the DEFINE
MAX.SIZE would result in
64. If the &SET does not
occur or if a &RESET
DATACOMM occurs, MAX.SIZE
is defined as 32.

s-11

EQB~A~-SIAI~~f:~I&
The FORMAL statement is used to assign data attributes to the
parameter-name in the procedure head statement and the FORWARD
PROCEDURE statement.

SYNTAX.
The syntactical structure of the FORMAL statement is as follows:

Normal Format

dat a-name-1 [~ ! t J t 'array-size,l ~

El~f:Q

l
l ~llBHtlG

~ti8Bei~IEB
,{lenqthl i l ~8BHtJ~ \ !HI

'lengthl

Li st Format

[~ ! l.]-
({. a r r a y - s i z e l ~- J .. ~ ~~B:t:ltHi l

{ .c. lenothl

~ ~~En:1~~ l
{ tlengthl

2

6lI

DESCRIPTION.
All of the data·namas in the procedure head statement and FORWARD
PROCEDURE statement WU~i be declared in the FOR~AL statement. Only the
data-names in the procedure head statement or a FORWARD PROCEDURE
statement may appear in a FORMAL statement.

s-12

FORMAL
cont

The data-names in the procedure head or FORWARD PROCEDURE statements
should agree in type and length attributes with the actual data-names
that are passed at object-time. Run-time checking is performed only if
the compiler option $FORMAL CHECK is requested. No checking occurs
during compilation. If checking is requested and a mismatch occurs,
the program is terminated.

The names given ~n a FORWARD PROCEDURE statement, however, need not
agree with their corresponding names in the procedure head statement.
The type and length attributes of the data-names in· the FORWARD
PROCEDURE statement and the procedure head statement must agree.

Object-time adjustment of type and length attributes between the actual
parameters passed and the specified formal parameter data-name is
performed with the VARYING option or array-size with the* (asterisk)
option. Memory allocation is dependent on the actual parameters passed
during each invocation of the procedure.

The words FORMAL or FORMAL.VALUE can be omitted between repetitive
declarations when the declarations are separated by commas.

The type Clength) attribute specification in the list format applies to
all the data-names in the immediately preceding list.

The FORMAL statement must appear immediately after the procedure head
statement or the FORWARD PROCEDURE statement. That is, the FORMAL
statement must appear before any local data declarations within a
procedure.

Level numbers are not allowed in a FORMAL declaration.

Data-names that appear in a FORMAL statement can be remapped by local
data declarations. If they contain the VARYING or • options, a warning
message appears on the print-out. It is the programmer's responsi-
b; lity to ensure proper remapp;ng.

The FORMAL.VALUE option causes the actual parameter always to be
passed-by-value.

EXAMPLES.
Examples of the FORMAL statement are as follows:

PROCEDURE ABC ex, y, Z)i
FORMAL X FIXED, Y CHARACTER

VARYING, Z (*) BIT
VARYING;

Procedure ABC has three
parameters that must be declared
FORMALly. X is a simple FIXED
data-name. Y is of type
CHARACTER. The length ;s cal·
culated on each call of the pro·
cedure. Z is an array of a vary
ing number of elements of type

5-13

FORMAL
cont

s-14

BIT where each element is also
calculated on each call of the
procedure.

FORWARD PROCEDURE

EQB~ABC-EBCCECUBE.SIAIE~E~I£
The FORWARD PROCEDURE statement declares a procedure-name as being
valid prior to the encountering by the compiler of the named procedure.

SYNTAX.
The syntactical structure of the FORWARD PROCEDURE statement is as
follows: ·

EOB~~BO.EBQCECUBE

[(parameter-1

,... r

DESCRIPTION.

procedure-name

[L parameter-2] •••l]

The FORWARD PROCEDURE statement is the same as, and must conform to,
the rules of the procedure head statement. It is, however, a declara
tion statement and, as such, must appear within a DECLARE section of a
procedure or of the program.

The FORWARD PROCEDURE statement is a compiler control-statement, and
its presence does not eliminate the syntactical requirement of a pro
cedure head statement. It resolves all forward address references for
a call to a procedure when the procedure has ogt yet been seen by the
compiler. This is necessary because UPL is a 1-pass compiler.

T h e F OR W A R D P RO C E 0 UR E s ·t a t e me n t m us t c o n t a i n i t s n am e d pr o c e d u r e w i t h i n
scope. That is, the FORWARD PROCEDURE statement must be global to the
referenced procedure. The type Clength> clause is used only with func
tion procedures. It specifies the type and Length of t.he value that is
returned when the function procedure passes back control. Use of the
VARYING option inhibits the checking of Length or type and length of
the returned value.

When a FORWARD PROCEDURE statement contains a parameter, a FORMAL dec
laration statement must immediately follow with the same data-names as
those in the FORWARD PROCEDURE statement. The types and lengths of the
parameters that are used in the FORMAL statement must correspond with
the types and lengths that are declared FORMALLY in the procedure. The
data-names, however, need not be the same.

5-15

FORWARD PROCEDURE
cont

EXAMPLES.
Examples of the FORWARD PROCEDURE statement are as follows:

FORWARD PROCEDURE Xi

FORWARD PROCEDURE ABS CH, r, J)
BIT VARYINGi

5-16

FORMAL CH, I> FIXED, J, CHARACTER
(4)i

Procedure X is being FORWARD
declared. It may be referenced
after this statement and before
the procedure is actually
encountered by the compiler.

Procedure ABS has three param
eters that are also declared
FORMALly. The procedure is a
function procedure that returns
a VARYING length bit-string.

(PROCEDURE

eBCCEQUBE.SI6I~~E~Ia
The PROCEDURE statement is used to delineate a group of statements and
their data declarations. Also, it provides a method whereby the group
can be executed from many places although the procedure appears only
once.

SYNTAX.
The syntactical structure of the PROCEDURE statement is as follows:

5-17

5-18

PROCEDURE
cont

EBIJCEQUBE name-1 [iparameter-1 [1. parameter-2 ••• J l J

[EIJBtHL • • • i.]

[DECLABE ···i.]

El~EQ

[EIJB~ABO EBIJCEQUBE • • • i.]
[EBCCEOUBE name-2 • ··i]
[EIJBt:jAL • • .£ J
[QEC~ABE • • ·i.]
[ECBlUBQ • • ·i. J

EBCtEDUBE name-n

.
• • • L

••• ;. <Include executable

l i

statements of procedure-n.)

Cinclude executable statements for PROCEDURE 2 at this
point.)

E~Q name-2;.

C Inc l u de exec u t a'b le statement for PR 0 CED URE 1 at th i s
point.)

PROCEDURE
cont

DESCRIPTION.
There are two classes of procedures that differ principally in manner
of invocation and in what they pass back to their invoking statements.

a. Regular procedures execute a set of code and RETURN control
back to the state~ent that fgllg~~ their calling statement.

b. Function procedures execute a set of code and RETURN control
and a value ictg their calling statement. The RETURNed
value is, then, used instead of the function designator in the
calling statement. The statement evaluation is then
continued.

Procedures can be created by surrounding a body of self-contained
statements with a procedure head statement and an END statement. The
body is divided into two parts.: first, the declaration portion in
which all loca(data-names and all nested procedures are DECLAREd;
second, the executable portion containing all of the executable
statements of the procedure.

The procedure head statement consists of the following:

a. A name that is used to cause an invocation of the
procedure.

b. A set of data-names that must agree in number with
the parameters actually passed.

c. A type Clength> specification if the procedure is to
RETURN a value. COnly a function procedure RETURNs a value.>

d. A FORMAL data declaration to specify the type Clength>
and array size of all parameters named in the procedure
head statement. These specifications should, therefore,
also agree with those of the actual parameters that are
being passed.

At execution time, when a PROCEDURE statement is invoked, the declara
tion portion performs several functions. Formal declarations assign
attributes for all parameters specified in the procedure head state
ment. Memory space assignment is made for all parameters passed·by
value, and the current value is loaded. Parameters passed-by-name use
the original memory space, but are referenced with the name in the
FORMAL statement. Declared data-names are assigned memory space and
attribute characteristics. Initial. values are not loaded and must be
supplied by the programmer with executable statements. The possibility
exists that the procedure being invoked contains a data-name that is
the same as one that is contained in an already invoked procedure. For
example, procedure SQU can contain data-name X1 and procedure ABS that
is being called can also contain data-name x. The duplicate names
problem is resolved across procedure bounds by making the most current
occurrence of the duplicate data-name available, that is1 data-name X
in procedure ABS. Data-name X in procedure SQU becomes available again
when procedure ABS executes a RETURN, that is1 is exited. If no such

5-19

PROnEDURE
cont

duplicate data-n~me problem occurs, all the data-names of each outer
orocedure1 within any nest of procedures, are available to all nested
procedures. F~r example, if orocAdure SQU contains data-name N, and
procedure ABS does not cont~in·a similar data-name, and if procedure
ABS is nested within SQU, then any occurrence of data-name N in either
procedure refers to the same: memory sp3ce.

The FORWA~D PROCEDURE statement resolves the forward reference problem
for the ~PL single-oass comoi ler.

Nested ~rocedures are part of the declaration portion of a procedure,
but must aooe~r after all other types of declarations. They must be
completely defined before other nested procedures on the same Lexie
level and before any executable statements in an outer procedure. That
is, procedures must not overlap.

NOTE
A new Lexie level is created by nesting
a procedure. The limit is 15 Lexie levels.

Executable statements are the operations that are performed when a
PROCEDURE statement is invoked. Any executable UPL statement may be
coded, including procedure·c~lls and function procedure designators.

The scope of the procedure-name defines the r~nge over which a
PROCEDURE can be invoked; therefore, a PROCEDlJRE can call itself
(recursion). The limit for recursion is program available memory
fer aata declarations. Reyond the limit, the MCP aborts the program
and generates an error message. Procedure object code is maintained
outside the base and limit registers of the program and is re-entrant.

An END statement must contain the name of the PROCEDURE that it ends.
A syntax check is performea to guarantee that the END statement is
placed properly.

Procedures can contain code segments, but the procedure itself must
begin and end within the sam~ segment.

The END statement of the procedure, if executed, is equivalent to a
RETURN statement. If the procedure is a function procedure, that is1
a value is to be passed back into the invokinq expression, the follow
ing table shows whRt types and values are passed if the END statement
return is executed.

RIT Clength)

CHARACTER Clength)

FIXED

s-20

Zero bits of the s~ecified length

Blanks Chexarlecimal 40) of the specified
length

Fixed O (zero)

PROCEDURE
cont

BIT VARYING Eight bits of o Czero)

CHARACTER VARYING One blank Chexadecimal 40)

VARYING Fixed 0 Czero>

EXAMPLES.
Examples of the PROCEDURE statement are as follows:

PROCEDURE SQUARE ·cN>J
FORMAL N FIXEDi

•
•
RETURN;

END SQUAREJ

PROCEDURE CUBE CA, 9, C)J
FORMAL CA, 9, C> FIXEDi

.PROCEDURE SQUARE CN)i
FORMAL N FIXED;

IF A THEN RETURN;
•
•

END SQUARE;

•

IF B THEN RETURN;
ELSE oo; SQUARE (C)i

RETURNi
EN Di

END CUBEi

PROCEDURE ABSVAL CX) FIXEDi
F 0 R ·M A L X FI X E D i

RETURN CIF X LSS 0 THEN - X
ELSE + X>i

END ABSVAU

Procedure-name SQUARE is called
from some point in a program.
A value for data-name CN> is
passed by the cal ling
statement.

Two procedures, one nested
within the other, are declared.
The procedure SQUARE can be
invoked only from within the
procedure CUBE.

A function procedure returns
the absolute value of the
actual parameter passed. The
IF expression within the RETURN
statement passes back the posi-

s-21

PROCEDURE
cont

PROCEDURE MSG CHARACTER C20)J
DECLARE DATA CHARACTER C2Q);
RETURN (ACCEPT DATA)i
END MSG;

s-22

tive value of the parameter.

A function procedure accepts a
message from the console printer
and passes it back to its
invokinq statement. For
example,.

IF SUBSTRCMSG, Q,. 3) EQL
"YES"

THEN ••• ;
ELSE ••• ;

SE~~E~I-SI6IE~E~!&
The SEGMENT statement divides program object code into overlayable
sections in order to reduce the run-time memory requirements
of the program.

SYNTAX.
The syntactical structure of the SEGMENT statement is as follows:

SE~~E~I tsegment-namel i

DESCRIPTION.
If no SEGMENT statements appear, the whole program is one
resident segment. All segments are overlayable.

Segment names must begin with .a letter and cannot contain more than 63
characters. If a program is to be SEGMENTed, the first state~ent with
in the program should be a SEGMENT statement. If the first SEGMENT
statement appears within the body of the program, everything up to aoci
ic,iudiog this segment is the first segment. A warning message
appears in the print-out.

Segments may themselves be grouped into pages Crefer to SEGMENT.PAGE
statement, page 5-25).

When unique segment-names are specified, they imply that unique program
segments are to be created at compile-time from the point of insertion.
Non-unique names imply that a continuation of an already existing seg
ment is to be continued and is to be gathered by the compiler.

Procedures and DO groups can extend into more than one segment, but
mu~t-b~gic.acd-~cd within the same segment. In general, for efficient
programming, procedure and DO groups should be completely contained
within the range of a single segment-name.

Certain statements in UPL contain subordinate statements. A SEGMENT
statement that immediately precedes a subordinate statement applies
only to the subordinate statement. The IF ••• THEN ••• ELSE, CASE, READ,
WRITE, and SPACE statements contain subordinate statements.

At run-time, no UPL statements are required to access a non-resident
program segment. Such action is entirely the responsibility of the MCP.

EXAMPLES.

NOTE
Array dat.a-names can also be memory
partitioned. Refer to the PAGED
opt;on in the DECLARE statement.

Examples describing the use of the SEGMENT statement are as follows:

s-2 3

SEGMENT
cont

SEGMENT CONE);

. (statements> . . .
SEGMENT CTWO)i
• • •
• •• (statements>

SEGMENT CTHREE)i

••• <statements>

SEGMENT CTWQ); . . .
••• <statements>

SEGMENT C FOUR); ...
••• (statements) ...
SEGMENT CTWQ); . . .
••• <statements>

SEGMENT CFOUR)i . . .
••• (statements) ...
SEGMENT CN)i

First segment.

Second segment •

Third segment.

This segment is gathered with
the second segment •

Fourth segment.

This segment is gathered with the
second segment •

This segment is gathered with the
fourth segment.

In the above example, program control is not affected by the gathering
technique. The advantages of using such a technique allow for
optimum use of memory allotment at run-time.

IF TEST EQL OK THAN ABX := 4;

s-24

ELSE SEGMENT CERROR)i
oo; MARK.ERR;
RETURN;
EN Di

The statement following ELSE is in a
separate segment and is called in
when the data-name TEST does not
equal data-name OK. MARK.ERR is
a procedure call and should also
be in the segment ERROR.

SEGMENT •1P' AGE

SEG~E~IaEAGE-SIAIE~E~I~
The SEGMENT.PAGE statement allows program code dictionaries and the
corresponding code segments to be paged, thus reducing dictionary
memory requirements for programs with many segments.

SYNTAX.
The syntactical structure of the SEGMENT.PAGE statement is as follows:

SEG~E~IaEAGE (segment-name QE page-name l i

DESCRIPTION.
The segment-name specifies the name of a code segment to the compiler.
Non-unique names within a page are gathered. Segment-names must be
unique regardless of which pages contain them.

The SEGMENT statement can also occur in the source language, and the
effect depends upon the uniqueness of the segment-name.

Unique segment-names that follow a SEGMENT.PAGE statement are contained
in that page.

Two classes of non-unique segment-names are possible. One is the re
occurrence of a segment-name in the current page. The segments are
gathered within the page. The second is the re-occurrence of a
segment-name not in the current page. The current page is altered and
the segment is gathered properly. A following unique segment-name is
included with the new current page. A warning message also appears on
the print-out when the page is implicitly altered.

Sixty-four unique names are allowed in one page.

The page-name specifies the name of the segment-dictionary. Non-unique
names are a continuation of the existing dictionary. Sixteen unique
page-names are allowed.

EXAMPLES.
Examples describing the use of the SEGMENT.PAGE statement are as
follows:

SEGMENT.PAGE CAA of ONE);
•

SEGMENT C88);

A paged segment dictionary is created
with one entry called ONE •

Page ONE contains segments AA and BB
while page TWO contains segments CC and
DD. The re-occurrence of the SEGMENT
C88) statement changes the current page
back to page ONE. The SEGMENT.PAGE COD

s-2s

SEGMENT.PAGE
cont

SEGMENT.~AGE CCC of TWO)J

SEGMENT COO);

SEGMENT CBB)J

SEGMENT.PAGE COD OF TWO)J

5-26

OF TWO) is therefore required to continue
the DD segment.

USE.OEC~6B6Il0~.SI~IE~E~I&
The USE statement declares specific data-names in a defined
structure within a procedure.

SYNTAX.
The syntactical structure of the USE statement is as follows:

USE L data·name-1[[, data·name-21 ••• 11 QE data·name-3i

DESCRIPTION.
The USE statement allows the programmer to declare only those data
names desired within a structured list of data-names. The compiler
generates FILLER wherever necessary to complete the structure. This
results in more rapid procedure entrance and less memory utiliz·
ation than if the whole structure were declared upon each entrance
to the procedure.

The USE statement must appear within a procedure. That is, it may not
be used on Lexie level o.

The structure being referenced must have as its 01 level a DUMMY
REMAPS declare, must not contain arrays, and must be contained within a
DEFINE statement.

The DEFINE statement may contain only the one structure.

EXAMPLES.
Examples describing the use of the USE statement are as follows:

DECLARE PPB BIT Cl440)i

DEFINE PPB. DEC AS #

DECLARE 01 DUMMY REMAPS pp3,

Q2 PROG.NAME CHARACTER ClQ),

02 PROG.DATA.DICT BIT (112),

02 PROG.SEC.DICT BIT.Cl12),

02 PROG.SORT.SPAD BIT (28) #i

The soace to be
remapped.

The DEFINE for
the USE statement.

The required
DUMMY 01 level.

Remaps and the
layout of memory
spare.

5-27

lu:l
L::J

PROCEDURE GET.OICT;

USE CPROG.DATA.DICT,
PROG.SEC,OICT>

OF PPB.DEC;

S-28

The PROCEDURE in
which the USE
stateme~t appears.

Only two memory
spaces arie allo
cated as address
able. Thie rest
of the data-name
PPB is considered
FILLER.

SECTION 6

EXECUTABLE STATEMENTS

~E~EB8l.1.
Executable statements perform the data transformations and the
decision-making functions of a UPL Program.

Executable statements are given ;n alphabetical order. The format of
each statement is described in the following order:

a. Purpose.
b. Syntax.
c. Description.
d. Example.

I ARRAY PAGE TYPE

8BBA~.e6GE.I~e~.SI6IE~E~l&
The array page type statement specifies whether a page need be written
to disk when it is no longer needed in memory.

SYNTAX.
The array page type statement syntax is as follows:

DESCRIPTION.

(paged-array-name,lpage-nu~ber(l
express1on ~

All paged arrays are originaUly read/write. A page can be made read
only after it has been initialized. It is then not written to disk
each time, and it is no longer required in memory. It can be made
read/write again with the MAKE.READ.WRITE statement.

Paged-array-name must be an array that has been declared PAGED.

Page-number-expression must result in a valid number from o to N-1 for
an N page array. It is the prog~ammer's responsibility to calculate
the number of each page being specified in the array page type
statement.

[ASSIGNMENT

AS~lG~~E~I.SI~IE~E~IA
The assignment statement is used to assign the value of an expression
to a specified data-name.

SYNTAX.
The syntactical structure of the assignment statement is as follows:

data·name-1

[operator

DESCRIPTION.

·. -

literal

data·name-3

literal

data·name-2

expression-1

Function Designator

expression-2 l · .
Function Designator

The characters := Ccolon, equal> and +-Cleft arrow> are called the
assignment symbols and are read "is replaced by."

The value of the total expression to the right of the assignment symbol
is assigned to data-name 1.

A data-name must have been previously declared before it can be used.
Each data·name may be of different type Clength> across the assignment
symbol with justification and alignment as follows:

FIXED to FIXED

CHARACTER to CHARACTER

All others

No change occurs.

Data is left-justified with least
significant truncation or space
(hexadecimal 40) fi LL.

Data ;s right-justified with most
significant truncation or zero fill.

The optional operator clause implies one of the following entries,
which are in order of precedence:

ASSIGNMENT
cont

{

::: or

: : = or

+

*

I

+

LSS or <

LEQ or ~

EQL or =
GTR or >

GEQ or :?:

NEQ or '/!

NOT

AND

EXOR

OR

CAT

MOD

C.~II:W~Ct~

Replace and delete l~it part.

Replace and delete cigbt part.
Must be highsr than any operator to its
right and lower than any operator to its
left.

Unary plus.

Unary minus •.

Multiplication.

Division.

Addition.

Subtraction.

Less than.

Less than or equal to.

Equal to.

Greater than.

Greater than or equal to.

Not equal to·.

Explicit NOT: loqic:.

Explicit AND. lo9ic:.

Explicit EXc\usive OR .logic.

Explicit OR logic~

Concatenate.:

Provides the remainder of division.

Replace delete l~lt part.

Replace delete ciabt part.
Must be higher than any operator to its
right and lo~er than any operator to its.
Left.

ASSIGNMENT
cont

A data-name or an address-generating function Crefer to SUBSTR, page
8-25) mu~t appear to the left of replacement operators within an
express i on i n the ass i g nm en t state m·e n t • A data - name, however, may be
the object of another replacement operator in the expression, such as
A := B + X := c; or ACI> := I :=a;. Any assigned data-name is altered
only from its points of assignment in a left-to-right order. Any pre
vious reference to the data-name to the left within the overall state
ment retains its prior value, and any other reference to the right uses
the n~wly assigned value.·

The replacement operator c::= or:+-) is similar in function to the
usual ass;gnment symbol, := or_. The two differences are: f;rst,
that the replacement operator mu~t be used within an expression, and,
second, that the address of the data-name to be used with the next term
during expression evaluation is the data-name to the left of the
operator.

The unary operators (+, -, NOT) may be used to the right of any other
operator.

A semicolon terminates the assignment statement.

EXAMPLES.
Examples describing the use of the assignment statement are as follows:

TAGA := TAGB;

TAGA := @C4>CHq

TAGA := A + 8 - C * E I F +
(4 * CA - B> I CB. - C>>;

TAGA := TAGB := TAGC := Oi

Data-name TAGA is replaced by
t he v a l u e c on t a i n e d i. n d a ta -
name TAGS.

TAGA is replaced by a hexa
decimal bit string. The bit
string is an EBCDIC A.

Data-name TAGA is replaced by
the derived value of the given
expression at object run-time.

The entire set of data-names
is set to O (zero> at object run
t i me.

In the following example DECLARE Al FIXED, Bl CHARACTER (2), Cl BIT
(4) :

Step 1.
Al :=Bl :=Cl := o; All data-names are set to o.

6-5

ASSIGNMENT
cont

Step 2.
Al := Bl := Cl := 7;

Step 3.
Al := Bl := H7";

ALL data-names now contain a value of
binary 7 coo ••• 0111>.

The "7" entry denotes an 8-bit Cbytel
representation of the value of a
numeric 7; therefore, 81 contains F7401
or 63,296 in binary.

NOTE
There is no intrinsic conversion
between data types. The CONV function
must be used if conversion is desired.

Step 4.
Al := 255;
Bl:= ••AA";

Step s.
Bl := AU

Step 6.
Cl := BU

Step 7.
Bl := CU

Step a.
Bl := Cl CAT Cl CAT Cl

CAT CU

Al now contains the binary value
co ••• 11111111, and 81 contairs the
hexadechal equivalent of the
characters AA CCl Cl), binary
1100000111000001.

81 now contains the hexadeciwal value
of OOFF1 binary oo ••• 00011111111.

Cl now contains the hexadecimal value
of f, binary 1111.

81 now contains the hexadeciwal value
cf OOOF1 binary 0000000000001111.

Bl now contains the hexadecimal value
of FFFF1 binary 1111111111111111.

In the following example DECLARE AA ClO) FIXED, BB FIXED:

NOTE
AA ClO) is a 10-element array.

6-6

Eiamgl~~

Step 1 •
BB ·- 5; . -

Step 2.
AA CBB> . - BB . - 3; . - . -

The above
equivalent

Step 3.
BB . - s; . -

Step 4.
AA CBB> ·- 3; ·-

Step 5.
BB := 3;

Step 6.
Al == BB LSS cc;

Step 7.
Al := CBB LSS CC> +

CBB GTR CCH

Step 8.
DECLARE CA1, BB1 cc,
BB ·- s; ·-
cc . - 6i . -
DD . - 7; . -

Step 9.
Al := BB == cc + DDi

Step 10.

DD>

Al := CBB := CC) + DDi

~gmm~ct~

Set BB equal to 5

Save the address
AACS). Set BB =
the address AAC5)
equal to 3,

NOTE

ASSIGNMENT
cont

coo ••• 1ou.

of AA CBB> or
3. Then use

and set it

two statements are
to steps

FIXEDi

3, 4, and s.

Set data-name BB equal to 5,
then,

Set data-name AAC5) equal to
3, then,

Set data-name BB equal to 3.

If the condition where BB is
less than CC is TRUE, then Al
is assigned 1; if the condi
tion is FALSE, then Al is
assigned o.

If the content of data-name BB
~cua!~ the content of data
name cc, then Al is assigned
o; otherwise, Al is assigned
1 •

These three could have been
written as follows:

DO ·- 1 + cc . - 1 + BB . -. - . - . -

Al and BB are both equal to
1 3.

5;

Al equals 13 and BB equals 6.

6-7

ASSIGNMENT
cont

The following two examples use the delete left replacement operator.

DECLARE CAA1CC) CHARACTER C2), BB
BIT C4H
AA := BB := CC := "6"i

X := AA + 88 := 6;

CHARACTER data-name CC is
replaced by the value of the
CHARACTER literal 6. Oata·
name CC contains hexadecimal
F640; and the CHARACTER data·
name CC is deleted Cleft
part), and data-name BB is
replaced by the value of the
CHARACTER literal 6. Data·
name BB contains hexadecimal
6. The BIT data-name BB is
deleted Cleft part), and the
CHARACTER data-name AA is
assiqned the value of the
literal 6. Data-name AA
contains hexadecimal F640.

Data-name BB is replaced by
the literal 6. Data-name 8B
is deleted, and the lheral 6
is added to data-name AA. The
sum is then assigned to data
name x.

The following four examples use the delete right part replacement
operator.

AA := BB

6-8

.. -.. - cc ::= "6"i The CHARACTER data-name CC is
replaced by the value of the
CHARACTER literal 6. Data
name CC contains hexadecimal
F640. The CHARACTER literal
is deleted Cright part), and
BIT data-name BB is replaced
by the value of CHARACTER
data-name CC. Data-name B8
contains hexadecimal o. The
replacement is type CHARACTER
to BIT. Data-name CC is
deleted <right part), and
CHARACTER data-name AA is
a~signed the value of data-

X := AA + BB ::= 6;

PROCEDURE SQRF CX> FIXED;
FORMAL X BIT (4);

AA := SQRF CBS ::=CC);

X := CAA + 88) := 6;

name BB.
contains

ASSIGNMENT
cont

Data-name AA
hexadecimal 0000.

Data-name BB is replaced by
the literal 6. The Literal 6
is deleted, and data•name BB
is added to data-name AA. The
sum is assigned to data-name
x.

The delete-right-part is used
in the procedure call to force
the type and length of the
parameter to agree with the
type and length in the FORMAL
statement of the PROCEDURE.

This is a syntax error because
CAA + BB> is not a data-name
or an address-generating
expression. It is a value
generating expression.

The following eight examples describe the event order in assignment
statements.

DECLARE CA, a, C) FIXED;
A := B := C := o;

A := 1 + 8 := 1 + C := o;

A, 9, and C are all equal to
o. The order of events is
as follows: C is replaced by
o, C is deleted, B is replaced
by o, B is deleted, A is
assigned Q, and the statement
is comoleted.

A equals 2, 8 equals 1, and C
equals o. The order of events
is: C is replaced by o, C
is deleted, 1 is added to o,
and 8 is replaced by the sum.
Then, B is deleted, 1 is added
to the sum, A is assigned the
result' and the statement is
completed.

The underlined parts are syn-

6-9

ASSIGNMENT
cont

A : = B .. -.. - c : = 0;

A.ll~.6 := c := o;

A ·- 1 + 8

A := 1 + B

:= c

.. -.. -

: : = 0;

1 + c := o;

A : = 8 + 1-ll; 1 + C : = Oi

6-10

tax errors. A literal may not
be the object of a replacement
operator.

The order of events is as
follows: C is replaced by
o, C is deleted, B is replaced
by o, O is deleted Cthis is a
replace delete right part
operator), A is assigned the
result. A, g, and C all equal
o.

Syntax error. The assignment
operator must be a delete
left-par t.

The order of events is as
follows: c is replaced ny
o, O is deleted, 8 is replaced
by c, B is deleted, 1 is added
to c, and the sum is assi~ned
to A. A now equals 1, and B
equals c, which equals o.

The order of events is as
follows: C is replaced by
o, C is deleted, 1 is added to
o, Bis replaced by this sum,
the sum is deleted, 1 is added
to s, and this sum is assigned
to A. A = 2, 8 = 1, C = O.

Syntax error. ·A literal may
not be the object of a
replacement operator.

13Ut:1e_sI~IEt:1f:~I.
The BUMP statement is used to increment the contents of a data-name by
a value.

SYNTAX.
The syntactical structure of the BUMP statement i s as follows:

[6~ 1
data-name-2 \} e 1.a1 e data-name-1
expression

DESCRIPTION.
Data-name 1 is incremented by the binary value of data-name 2 or the
expression, and the sum is assigned to data-name 1.

NOTE
The sum is calculated on the Low-order 24
bits of data-name 1, and any bits to the
Left are zero filled by the assignment
operation.

If the BY option is omitted, a value of binary 1 is assumed.

The BUMP may also appear within an expression.

EXAMPLES.
Examples describing the use of the BUMP statement are as follows:

BUMP Xi

BUMP X BY 4;

BUMP X BY z;
A := BUMP X BY z;

IF CBUMP X BY Z> EQL ZERO
THEN ••• ;
ELSE ••• ;

BUMP A BY B := c;

X := BUMP A BY B := Ci

Add 1 to X.

Add 4 to X.

Add the value of Z to x.

Add the value of Z to X and assign the
value to x. Then assign the value of X
to A.

Add the value of Z to x, assign the
value to x, and then perform the
comparison.

Assign the value of C to B and then
add the value of C to A. Notice that
C is added to A because of the
replacement delete left part operator.

Replace B by the value of c, delete 9,
add C to A, and assign the value to A

6-11

r::;:l
L.:::J

PROC.B CBUMP X)i

PROC.8 CCBUMP X));

6-12

and to x.

Data-name X is bumped by 1 and then
passed by name to procedure PROC.8.

The same as above except the pass is by
value because of the extra set of
parentheses.

~ASE-SIAIE~E~I,.
The CASE statement selectively executes only one statement within the
CASE group of statements.

SYNTAX.
The syntactical structure of the CASE statement is as follows:

DESCRIPTION.

~data-name l
lcanditional-expression~ i.

statement i.
[statement] i.
[statement]i.

.
[statement]i.

At execution time the data-name or conditional expression is valued as
a ~inary. This value is used as a selector to choose from among the
statements in the CASE group, such as a value of 2 selects the third
statement. The statements in the group are numbered from 0 to
N-1 for N statements. A negative value or a value greater than the
number of 'statements in the CASE group causes an execution-time error.

All valid UPL statements, including nested CASE statements, DO-group
statements, and IF ••• THEN ••• ELSE statements, are allowed and are
counted as single statements.

After the selected statement has completed execution, program control
passes to the statement immediately following the END CASE statement.

Null statements Crefer to page 6-37) may be used to satisfy statement
positions where no-operation condition is desired.

If a CASE statement is imbedded in a DO-group, then the execution of an
UNDO statement terminates the DO-group and control passes to the end
of the DO-group.

If a CASE statement is imbedded in a procedure, the execution of a
RETURN statement Crefer to page 6-40) passes control back to the state
ment that invoked the procedure.

6-13

r::-1
~

EXAMPLES.

;·.J DTE
There exists an expression form of the
CASE statement t~at has a different
syntax and produces a different result
Crefer to page B-4).

Examples describing the use of the CASE statement are as follows:

CASE x;
PROA;
PROB;
PRoc;

END CASE;

CASE CA * 8) MOD ?i
oo;

IF X THEN LJNDO
x == x + s;

ENO;
CASE Xi

PROt~;

PROU

ENO CASEi
END CASEi

6-14

The value of X determines which procedure is
called. X may vary in value from C through
2. If it is greater than the number of
statements i~ the CASE statement, then a
run-time interrupt occurs.

The value of the expression is used to
choose the statement to execute. A DO
statement or a CASE statement is considererl
as one statement.

c~a~GE.SiaIE~E~I&
The CHANGE statement is used to dynamically alter the attributes of a
file during program execution.

SYNTAX.
The syntactical structure of the CHANGE statement is as follows:

c~a~~~ internal-file-name IQ tdynamic file attribute

CCt dynamic file attribute J •••] l i

DESCRIPTION.
The CHANGE statement alters the attributes associated with a file. Any
attributes declared in a FILE statement can be changed. The changes
become effect i v e w h e.n the f i t e i s 0 PEN ed. If t he f i le i s OPEN when the
CHANGE statement is executed, it must be CLOSEd and re-OPENed to effect
the changes.

Attributes not changed remain as originally declared.

NOTE
Refer to the FILE statement (page 7•7) for
the default attributes associated with each
device type.

DYNAMIC ATTRIBUTES.
The syntax for each of the dynamic attributes is as follows:

MULTI .FILE. ID

The expression is concatenated with a 10-character string of EBCDIC
blanks with the expression on the left. The left-most 80 bits ClO
characters) then become the MULTI.FILE.ID.

If the expression is a bit-string, it will be left justified and right
padded with spaces.

El\awgl~~ ...
Examples describing the use of the MULTI.FILE.ID attribute are as
follows:

MULTI.FILE.ID :="MASTER"

MULTI.FILE.ID := ~(4)FFF@

The MULTI.FILE.ID is changed to
"MASTER "

The MULTI.FILE.ID is changed to the hexa
decimal .string @C4>FFF40404040404040404@.

6-15

CHANGE
c·o nt

FILE.ID

ElLEalO := expression

Notice that this name could not be
entered from the console printer CSPO);
and this file cannot, therefore, be
accessed by any SPO command.

The expression is handled the same as the MULTI.FILE.ID expression.

t:~amgl~a
An example describing the use of the FILE.ID attribute is as follows:

FILE.ID := "PAYROLL" The FILE.ID is now "PAYROLL "

LABEL.TYPE

DEVICE

DE~l~E := expression

Where the expression must result in a bit-string of 10 bits, the hard
ware type Crefer to the table below) is the low-order Cright-most) six
bits and the variant is the high-order Cleft-most) four bits.

The device, hardware type, and variants are as follows:

6-16

Hardware
Ci:~i'~ --1~'2~--

Invalid 0

96-Column Punch 1

BO-Column Punch 2

96-Column Reader/Punch 3

96-Column MFCU 4

96-Column Reader/Punch/Printer 5

Paper Tape Punch 6

Paper Tape Reader 7

Printer 8

Invalid 9

Read-Sorter 10

Any Head per Track Disk C1A,1C,2B> 11

Head per Track Disk C1A'1C> 12

Head per Track Disk c 28) 13

Only Disk Cartridge 14

CHANGE
cont

Same as Printer

Same as Printer

0 = Backup tape or disk

1 = Backup tape

2 = Backup disk

3 = Backup tape or disk

4 = Hardware cnly

5 = Backup tape only

6 = Backup disk only

7 = Backup tape or disk
only

8 = Forms <Forms may be
requested along
with any of the
above, o-7.>

Same as any disk

Same as any disk

Same as any disk

Same as a .n Y disk

6-17

CHANGE
cont

Only Disk Pack

Disk Pack or Cartridge

Any Disk

96-Column Punch/Print er

96-Column Reader

Invalid

80-Column Reader

Console Printer CSP 0 J

Invalid

9-Track Tape CNRZJ

7-Track Tape CNRZ>

9-Track Tape CPE)

7-Track lap e Cluster

9-Track Tape Cluster

9-Track Tape

7-Track Tape

Any Magnetic Tape

PARITY.

e&.6.ll:t := expression 1

15 Same as any disk

16 Same as any disk

17 0 = Serial
1 = Random

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The low-order bit of expression is interpreted as follows: O is ooo,
1 is EVEN.

TRANSLATION.

16.HISLUlQtJ • - expressi <:J
6-18

CHANGE
cont

The Low-order three bits of expression are interpreted as follows:
000 is EBCDIC, 001 is ASCII, and 010 is BCL.

BUFFERS

6UEEEBS := expression

The low-order 24 bits of expression are interpreted as a positive
number representing the number of buffers.

LOCK

~O~~ := expression

The Low-order bit of expression is interpreted as follows: O is NOT
LOCKed, and 1 is LOCKed.

OPTIONAL

aeilO~AL := expression

The low-order bit of expression is interpreted as follows: O indicates
that a file must be present, and 1 indicates that a file is optional.

VARIABLE

~ABIA6LE := expression

The Low-order bit of expression is interpreted as follows: O is fixed
tengt~, and 1 is variable length.

SAVE

SA~E := expression

The tow-order 24 bits of expression are interpreted as a positive
number representing the number of days this file is to be saved.

RECORD.SIZE

BEtDBD&SlZE := expression ~

6-19

CHANGE
cont

The low-order 24 bits of expression are interpreted as a positive
number representing the number of characters in a record.

RECORDS.PER.BLOCK

BECDBDSafEBa6LDC~ •= ex1~~
The low-order 24 bits of expression are interpreted as a positive
number reoresenting the number of records in a physical block.

REEL

BEEL := expression I
The low-order 24 bits of expression are interpreted as a positive
number representing the number of reels of tape for this file.

NUMBER.OF.AREAS

~U~6EBaDEaABEAS := expr•~~
The low-order 24 bits of expression are interpreted as a positive
number representing the maxi~um number of disk areas that can be opened
for this file.

BLOCKS.PER.AREA

6LDC~SafEBaABEA := expr1~~
The low-order 24 bits of expression are interpreted as a positive
number representing the number of blocks of records in a disk area for
this file.

PACK.IO

EAC~&lU := expression

The expression is interpreted as the 10-character PACK.IO.
handled the same as MULTI.FILE.ID.

It is

SINGLE.PACK

~l~~~~&e6C~ == expression I

CHANGE
cont

The low-order bit of expression is interpreted as follows: O is NO,
and 1 is YES. The YES requires the file to be contained on one
removable disk device.

ALL.AREAS.AT.OPEN

The low-order bit of expression is interpreted as follows: O is NO, and
1 is YES. The YES requires all areas of the file to be allocated at
file-open time.

AREA.BY.CYLINDER

The low-order bit of expression is interpreted as follows: O is NO, and
1 is YES. The YES requires each area of the file to begin on a
cylinder boundary.

EU.SPECIAL

EU&SeECl~~ := expression

The low-order 24 bits of expression are interpreted as a positive
number representing the Electronic Unit CEU) of a head-per-track disk
or the system drive number of a removable disk upon which the first
disk area of this file is located.

EU.INCREMENTED

EU&l~CBE~E~IED := expression

The low-order 24 bits of expression are interpreted as a positive
number representing the increment to be added to the current EU or
drive number for the location of the next disk area associated with
this file. When the drive requested exceeds the number of reads-per
track EU's or the number of system drives, the next area is opened on
the EU.SPECIAL drive.

6-21

USE.IN~UT.BLOCKING.

Specifies the record and blodk size are to be taken from the disk filA
header record.

SR.STATION.

-_] SEhSI~!Hl~ = expression ..._ __________________________ __

Specifies which read station(s) is Care) to be used en a sorter reader
f i l e.

END.OF.PAGE ACTION.

Specifies the ON [IJF statemen·t is to he executerJ at the end of a page
(channel 12) on the printer.

EXAMPLES.
Examples describing the use of the CHANGE statement with its various
attributes are as follows:

CHANGE IN.FILE TO C
DEVICE := @(2)0010U;i,
t..1 ULT I • FILE • I D : = ":TEST";,
FILE.ID := "DISK",
8UFFERS := 4,
LOCK:: ~Cl)~,
RECURD.SIZE := 18Q,
RECORDS.PER.BLOCK,:= .3?J•
NUMBER.OF.AREAS := a,
BLOCKS.PER.AREA := 2,
AREA.BY.CYLINDER := 1,
SIN~LE.PACK := 1,
EU.SPECIAL := Q,
EU.INCREMENTED := 1,

) ;

IN.FILE is changed to DISK,
SERIAL, test/DISK, with four
BUFFERS, to be LOCKed, a record
size of one disk segment, ·ol"le
full track per block with eight
areas, two blocks per area, each
new area at the beqinning of a
cvlinder, starting on drive 0 for
the first area with each
additional area on a new drive.

CL.EAB.SIAIEt:1E~I&
The CLEAR statement sets a data-name to a standard UPL-defined value.

SYNTAX.
The syntactical structure of the CLEAR statement is as follows:

Cl.EAB data-name [[z. data-name-21 L •••] i

DESCRIPTION.
Data-names that are to be CLEARed must be arrays. The ~ntire array is
CLEARed. Paged arrays, however, cannot be CLEARed.

Multiple data-names can be specifi~d and mu~t be separated by commas.

A data-name DECLAREd as being type CHARACTER is CLEARed to spaces
(hexadecimal 40). All other types are CLEARed to binary O's~
Paged arrays may not be CLEARed.

A semicolon must terminate the CLEAR statement.

CONDITIONAL INCLUSION

CQ~QlII~~6L.l~CLUSlC~.SI6IE~E~Ia
T he c c n d i t i on a l i n c l us i on st a:t em ·en t c on di t i on a l l y i n c l u des UP L source
code during compilation.

SYNTAX.
The syntactical structure of the conditional inclusion statement is as
follows:

[' [l ~~Q l ~ IE [~OIJ symbol-name .,~ \ CNOTJ symbol·name-2 J ••..]

UPL-source statements

[~ EL~E UPL-source statements]

DESCRIPTICN.
The truth or falsity of the logical combination of the symbol-names
determines the UPL-source statements that are included for comp·ilation.
I f t h e r e s u l t i s t r u e , t h e i mm e d i ·a t e l y f o l l ow i n g U PL s t at e m e n t s a r e c o m -
pi led. If the result is fal~e and the & ELSE portion exists, the UPL
statements following the & ELSE are compiled. The & END statement
terminates the conditional inclusion statement.

The conditional inclusion statement is an UPL source language statement
and can, therefore, be nested. Nested conditional inclusions cannot
overla~J that is, each is matched with the most recent unmatched & IF
statement.

EXAMPLES.
Examples describing the use of the conditional inclusion statement are
as follows:

& SET SWl SW2 SW3

& RESET SW4 SWS

& IF SWS

A : = B;

& IF SWl

6-24

The following statements are
compiled into the program:
DECLARE CA,s,c,o,E,F,G,H) FIXED;

C • - LH
E := FJ
F : = G;
G : = ~;

B

&

&

c

&

D

8.

E

&

F

&

G

. - c; . -
END

ELSE

. - o; . -
IF SW4

. - E; . -
ELSE

. - F; . -
END

. - G; . -
END

. - H; . -

CONDITIONAL INCLUSION
cont

CONDITIONAL PAGE

~~~Qlll0~6~.e6~E.SIAIE~E~I& 
The ccnditional page statement skips to the top of the next page on the 
compiler print-out. 

SYNTAX. 
The syntactical structure of ·the conditional paqe statement is as 
follows: 

DESCRIPTION. 
The conditional page stateme~t is used with other conditional 
statements to control the compiler print-out. 

The & (ampersand) must be in column 1. No semicolon is required at the 
end of the conditional page statement. 



CONDITIONAL SYMBOL 

CC~OlilC~A~.S~~BC~.SIAIE~E~I& 
The conditional symbol statement defines and sets or resets symbols 
used in the conditional compiler statement. 

SYNTAX. 
The syntactical structure of the ccnditional symbol statement is as 
follows: 

l ~ SEI lsymbol-name-1 [[symbol-name-2] ••• ] 
~ BESEI 

DESCRIPTION. 
The conditional symbol statement can appear anywhere in the UPL source 
language. The first occurrence of a symbol-name creates the symbol
name and allows any following conditional compiler statements to test 
its status Cset or reset). 

Symbol-names can be duplicates of data-names without causing syntax 
errors. 

The scope of a symbol-name is from the first conditional symbol state
ment in which it occurs to the end of the input source code. That is, 
it can be referenced by any following statement without regard to 
Lexie level boundaries. 

The conditional symbol statement must contain an & (ampersand) in 
column 1 and be wholly contained in one card. Columns 72 through 80 
of the card are for the sequence number. 

EXAMPLES. 

NOTE 
The semicolon is not part of the 
conditional symbol statement. 

Examples describing the use of the conditional symbol statement are as 
follows: 

& SET A Set symbol-name A. 

& SET A 8 C Set symbol-names A, s, and c. 

& RESET 8 Reset symbol-name B. 



DECREMENT 

a~~BE~E~I-SI~IE~E~I& 
The DECRE~ENT statement is used to decrease the contents of a data-name 
by a value. 

SYNTAX. 
The syntactical structure of the DECREMENT statement is as follows: 

QE,BE~E~I data-name·1' [ fl:C: l data-na~e- 2 l J i 
. express1on 

DESCRIPTION. 
Data-name 1 is DECREMENTed by the binary value of data-name 2 or the 
expression. If the BY option is omitted, a value of binary 1 is 
assumed. The contents of data-name 1 are oermanently altered by the 
DECREMENT statement. If data-name 1 is larger than 24 bits, O's are 
padded on the left. 

The DECREMENT statement may also appear within an expression. 

EXAMPLES. 
Examples describing the use of the DECREMENT statement are as follows: 

DECREtJENT Ai 

DECREMENT A BY 7; 

DECREMENT A BY Bi 

X := DECREMENT A BY Bi 

IF CDECREMENT A BY R> EQL X 
THEN ••• ; 
ELSE ••• ; 

PROC.B CDECREMENT X BY A) 

6-28 

Subtract from A. 

Subtract 7 from A. 

Subtract the value of B from A. 

Subtract the value of B from A 
and assign the value of A to x. 

Subtract the value of R from A 
and then compare A to x. 

The data-name is OECREMENTed by the 
value of A and passed to the proce
dure PROC.B by name. An extra set of 
parentheses results ir a pass by 
value. 



QQ.SI~IE~E~I~ 
The DO statement provides the capability to group a set of related 
statements together for programmatic control purposes. 

SYNTAX. 
The syntactical structure of the DO statement is as follows: 

[group-name] 

statement! 

statementl 

statement l 

statement l 

[qroup-nameJ 

DESCRIPTION. 
The group-name option, if used, must be a uniaue name on its Lexie 
level and must be the same in the DO statement and in its matched END 
statement. 

A set of DO statement groups may be nested, but may not overlap. Every 
END statement is paired with the preceding unmatched DO statement, 
starting at the innermost set. An END statement is required for each 
DC statement grouping. 

NOTE 
For ourposes of clarity, DO ;nd END 
statements may be thouaht of as heing 
a set of ~arentheses that surround a 
group of statements, thereby binding 
t~em as one statement for control 
purposes. 

A DO statemAnt through its ENO st8tement is considered as being a 
single statement. DO statement groups may be imbedded in CASE state
ment 0rouos, IF statements, or another DO statement group. A maximum 
of 32 CASE, oo, or IF statements may be imbedded in any one nest. The 
UNDO statement, however, terminates up to a maximum of 16 nested DO 
statements. 

oc, IF, and CASE statements define a code nesting level that is 
displaced under the column marked NL on the listing. Each nest must be 
wholly contained within its outer nest. That is, code nesting Levels 
may not overlap. 



r-:-1 
L::J 
The FOREVER clause implies that an unlimited iteration of the DO state· 
ment group occurs until an UNDO or a RETURN statement is executed. The 
execution of a RETURN statement causes control to be passed back from 
the PROCEDURE in which the DO statement is imbedded. The DO FOREVER 
option has a limit of 4096 bits of object code. If the FOREVER option 
is not used, no iteration of the DO statement group occurs. 

EXAMPLES. 
Examples describing the use of the DO statement are as follows: 

oo; 

ENO; 

BUMP SUM; 
DECREMENT DIFF; 

IF X EQL 0 
THEN oo; 

BUMP x; 

BUMP SUM; 
EN Di 

ELSE DO OTHER; 
DECREMENT x; 

BUMP SU"1i 
END OTHER; 

DO THIS.ONE FOREVER; 
IF SUM LEQ ZERO 

THEN oo; 
SUM := SUM + U 
END; 

ELSE UNDO; 
END THIS.ONE; 

PROCEDURE ABC; 

6-30 

DO ANY FOREVER; 
IF X GEQ 0 

THEN oo; 
DECREMENT x; 
BUMP SUM; 
EN Di 

IF SUM GEQ 0 
THEN UNDO; 

The format of a DO statement requires 
the DO and a corresponding END. 

One of the two DO statements within 
the IF statement is executed, and 
then control is passed beyord the 
IF statement. The second DO state
ment is named OTHER, and its END 
statement must also contain the same 
name. 

The DO statement named THIS.ONE 
iterates until SUM is greater than 
o. When that condition is reached, 
the UNDO statement following the ELSE 
terminates the DO statement. 

This procedure contains several DO 
statements. The RETURN statement in 
the last IF statement also terminates 
the DO ANY statement by passing con
trol out of PROCEDURE ABC. 



END ABc; 

ELSE RETURN; 
END ANY.; 

~ 
L:::J 

6-31 



El~l.SI6IE~E~!& 
The FINI statement signifies the end of source images to be compiled. 

SYNTAX. 
The syntactical structure of the FINI statement is as follows: 

EI~IL 

DESCRIPTION. 
The FINI statement is required and must be the last statement in the 
source program. 

6-32 



lE-SI~IE~E~I~ 
The IF statement is used to conditionally execute one or two statements 
in a program. 

SYNTAX. 
The syntactical structure of the IF statement is as follows: 

lE conditional-expression ItiE~ statement·l CE~SE statement-2] 

DESCRIPTION. 
The conditional-expression is evaluated, and the least-significant-bit 
of the result is interpreted as the controller bit. 

If the ELSE clause is ogt specified, the controller bit is used to con
ditionally pass control to statement-1. If the controller bit contains 
the value ·of 1, then statement-1 is executed. If the controller bit is 
valued at o, statement-1 is ogt executed and control passes to the 
statement immediately following the IF statement itself. 

If the ELSE clause is specified, the controller bit is used to choose 
between statement-1 and statement-2. If the controller bit contains a 
value of 1, then statement•! is executed and statement-2 is not exe· 
cuted. If it contains the value of O <zero), statement-1 is cgt 
executed and statement-2 i~ executed. 

oo, IF, and CASE statements can be imbedded within an IF statement. 

Each of these imbedded statements is called a nesting level, with a 
maximum of 32 levels allowed. The nesting-level number is given on the 
source code print-out under the NL column. 

When using such nested IF statements, correspondence between the THEN 
and the ELSE statements must be maintained. That is, the innermost 
Chighest NL number> ELSE is associated with the innermost THEN, and 
corresponding pairs continue outward <toward NL zero>. The matching 
ELSE statement is required within nested IF statements. Null 
statements can, however, be used whenever a no-operation is desired. 

Conditional-expression evaluation is performed from left-to-right in 
normal order unl.ess parentheses are specified. The result of each 
operation is applied to the next operand until all operands are 
combined. The right-most bit of this result is the controller bit. 

If all the operands are of type FIXED, all comparisons are signed 
FIXED. If any operand is not of type FIXED, then from that point on 
within the conditional-expression~ comparisons are unsigned BIT. 

If all the operands are of type CHARACTER, comparisons are from left
to-right. If any operand is non-CHARACTER then, from that point on 
within the condit;onal•expression, comparisons are type BIT. 

6-33 



~ 
~ 
The controller bit may itself be used as computational value <refer to 
the last example, page 6-35). A semicolon is not required with the IF 
statement because the subordinate statements end with them. 

NOTE 
There also exists an expression form of 
the If ••• THEN ••• ELSE ••• statement that 
has a different syntax and oroduces a 
different result from the IF statement. 

EXAMPLES. 
Examples describing the use of the IF statement are as follows: 

IF X THEN A := B + c; If the data-name X contains a value 
whose least-significant <right-most> 
bit is a 1, the statement following 
the TKEN is oerformed. Otherwise, 
control passes to the next 
seouential source statement. 

NOTE 
Execution time to choose the ELSE 
statement when coded is less than the 
time to thoose the THEN statement. 

IF X EQL 0 THEN 
oo; A := s + c; 

BUMP x; 
END; 

IF X = 0 THEN A := B + c; 
ELSE A := X + Y 

XYZ := A; 

·IF SUBBIT CSTRING1 X) 
THEN CALL Pli 
ELSE CALL P2i 

6-34 

If X is equal to o, the statement 
that follows the THEN is performed; 
otherwise, control passes to the 
next sequential statement. Notice 
that the statement that follows the 
THEN is a DO statement, which may 
itself contain several statements. 

If X equals o, the statement that 
follows the THEN is performed. If X 
does not equal Q, the statement that 
follows the ELSE is performed. 
After one of the statements is exe
cuted, control is passed to the 
statement that follows the IF state· 
ment, that is, the XYZ := Ai 
statement. 

This is a conditional test of a bit 
string for the least significant bit 
in the string that is returned by 
the SUBBIT function. The rules 
explained in the preceding example 
apply, except that procedure Pl or 
P2 is then called. 



IF CA + 8) = c THEN oo; 
SUM := SUM + i; 

CALL PU 
ENO; 

ELSE CASE C - Ai 
SUM := SUM + U 
CALL P2i 
END CASE; 

IF A THEN 
IF 8 THEN 

IF C THEN CALL.Cl; 
ELSE CALL.C2i 

ELSE CALL.82i 
ELSE CALL.A2; 

~ 
L::J 

This is a conditional test of an 
expression. Subsequent processes 
depend on the outcome of the evalua
tion of the expression CA + B> = c. 
DO and CASE statement groups are 
allowed within IF statements. 

Nested IF statements are allowed to 
any level. The associated THEN/ELSE 
pairs are defined as shown in the 
event tree. 

IF A 

TRUE 

IF B 

TRUE 

IF C 

FALSE 

CALL.C2 

NOTE 
A better programming technique 
is to use DO and END statements 
around simple IF statements. 

IF A OR B OR C THEN 
POSIT I VEi 
ELSE NEGATIVE; 

IF CA GTR 8) + CA LSS 8) 
THEN X := i; 
ELSE X := o; 

If A or B or C ends with the least
significant <right-most) bit a 1, 
the procedure POSITIVE is called. 
If A, 9, and C all have a O Czero> 
i~ their least significant position, 
procedure NEGATIVE is performed. 

Each of the two conditional expres
sions is evaluated and returns a 
bit, 1 for true or O <zero> 
for false. The two bits are then 
added together, and the low-order 
bit of the result becomes the con
troller bit. In this example, if A 
equals a, X is set to O Czero)i 
otherwise, X is set to 1. 

6-35 



LIBRARY 

~laB~B~-SiaIE~E~I~ 
The LIBRARY statement copies source language statements from the 
library into the program being compiled. 

SYNTAX. 
The syntactical structure of the LIBRARY statement is as follows: 

l LIBRARY ~ file-name ',~ 
~ fami Ly-fi le-narret..fi Le-name J 

DESCRIPTION. 
The source language images contained in the named file are copied into 
the program at the location of the LIBRARY statement. 

The & (ampersand) must be in colurrn 1. 

No semicolon is required at the end of the LIBRARY statement. 

The library file to be copied must be created in advance. The utility 
that creates the library files is invoked as follows: 

a. ? EX UPL/LIBRARY 
b. ? FILE DISK - fami Ly-ii le-name/fi Le-name DISK SERIAL 
c. ? DATA 
d. Any UPL-source language statements 
e. ? END 

6-36 



~Ul.l..SI~IE~EtHa 
The null statement performs a no-operation function during object 
run-time. 

SYNTAX. 
The syntactical structure of the null statement is as follows: 

DESCRIPTION. 
Two adjacent semicolons are used to delimit a null statement. 

The null statement is considered a complete statement, and it can be 
used whenever the syntax requires a complete statement. Its most com
mon usage is in the CASE and IF statements to fulfill the syntax 
requirements, but not to perform operations. It also can be used in 
READ1 WRITE, and SPACE statements. 

The null statement can be used to control events within a compound IF 
statement; however, this control is more readily accomplished if DO/END 
statements are used within the compound IF statement sequence. 

EXAMPLES. 
Examples describing the use of the null statement are as follows: 

CASE decodei 
PRO.Ai 
PRO.Bi 

; 
i 

PRo.c; 
PRO.Di 

END CASEi 

The data-name decode is used to select one of the 
six statements within the CASE statement body. If 
the value of decode is a 2 or a 3, no operation is 
performed. 

6-37 



I PROCEDURE CALL 

EBQC~QUBE-'ALL-SIAIE~E~l£ 
The procedure call statement passes control to a regular <non-function> 
procedure. After the procedure has been completed, program control 
returns to the statement that follows the calling statement. 

SYNTAX. 
The syntactical structure of the procedure call statement is as 
follows: 

procedure-name [ l parame:ter 

DESCRIPTION. 
A procedure call statement must always be a separate statement. That 
is, the procedure call statement ~u~t oe~~c appear adjacent to a 
replacement operator or within an expression. 

The procedure being called must reside within range and cannot be a 
function procedure Crefer to section 8). 

Optional parameters must be separated by commas and can be comprised of 
data-names, Literals, and function procedure designators, in any order. 
Evaluation of the parameter list is performed from left-to-right and 
from the innermost set of parentheses. Only a single name or value is 
passed for each parameter. The parameters passed at object run-time 
are matched f~om left-to-right with the parameter-names that are con
tained in the procedure head statement of the invoked procedure. The 
number of parameters that are passed mu~t equal the number of names in 
the procedure head statement. The actual tyoe Cor length) passed and 
the corrasponding FORMAL type C length> for each parameter mu~t agree 
if the $FORMAL.CHECK compiler option has been used. 

Parameters comprised of single data-names, array elements, or SUBSTRs 
that are not enclosed within an e~tra set of parentheses are passed-by
name. That is, the address, rather than a value, of the data-name is 
passed. 

Passed-by-value are parameters COffiprised of literals, single data-names 
that are enclosed in an extra set of parentheses, the value returned 
from function procedures, or the result of any expression evaluation. 

A value is not returned from a called procedure. If such a requirement 
exists, the result must be communicated through the use of global data· 
names or by passing the parameter by name and specifying the corre
sponding formal parameter in the ~rocedure to the left of a replacement 
operator within an executable statement. 

EXAMPLES. 
Examples describing the use of the procedure call statement are as 
follows: 

6-38 



PROXi 

IF x THEN PRox; 
ELSE PROY; 

IF ABC THEN AREA CL, W)i 
ELSE VOLM CL, w, H)i 

AREA CCL), W * H)i 

PROCEDURE CALL 
cont 

PROCEDURE PROX ;s being invoked. 

One of the.two procedures is called 
depending on data-name x. 

One of two procedu~es is called. ALL of 
the parameters are being passed-by-name. 

Both of the parameters are being passed
by-value. 

6-39 



B~IUB~.SI6IE~E~Ia 
The RETURN statement transfers program control out of a procedure and 
back into, or immediately followirg, the invoking statement depending 
on the type of procedure being executed. 

SYNTAX. 
The syntactical structure of the RETURN statement is as follows: 

Regular Format 

BEIUIHU. 

Function Format 

BEIUB~ texpressionl L ] 

DESCRIPTION. 
The RETURN from a regular procedure passes control out of the procedure 
and back to the statement that follows the calling statement. 

The RETURN from a function proced~re also returns control and al~a~~ 
returns a value to be used in place of the function designator within 
the invoking statement. The evaluation of the invoking statement then 
continues. 

An expression WU~t appear in the function procedure RETURN statement. 
The type Clength) of the expression in the function procedure RETURN 
statement must agree with the type Clength) option as contained in the 
procedure head statement if the $FORMAL.CHECK compiler option has been 
sped fi ed. 

The function format used for a regular procedure results in a compiler 
error message. 

The execution of a procedure ENO statement is the equivalent of a 
regular procedure RETURN statement or a function procedure RETURN 
statement containing a value of O's. 

EXAMPLES. 
Examples describing the RETURN statement are as follows: 

PROCEDURE ABC; 

IF X THEN RETURN; 

The regular procedure ABC has 
several conditional RETURN state
ments. It also has an unccndi
tional RETURN if none of the 
others is executed. 



IF Y THEN RETURNJ 

RETURN; 
END ABC; 

PROCEDURE XYZ FIXEDJ 
DECLARE ex, Y) BIT (16), 
Z FIXEDJ 

IF X THEN RETURN CZ 

RETURN C14)J 
END xvz; 

.. -.. - X)i 

PROCEDURE EXP CA, 8) CHARACTER 
VAfHINGi 

FORMAL CA, B> FIXEDJ 
DECLARE X FIXEDJ 

DO CAL FOREVER; 
IF EQL 0 THEN 
RETURN C"B IS" CAT 
"ZERO"); 

ELSE oo; 

EN Di 
END CALi 

END EXPi 

B := B * BJ 
DECREMENT AJ 
IF A EQL ZERO THEN 
RETURN C"B IS" CAT 
CONV CB, CHARACTER>>; 

RETURN 
cont 

The functional procedure has one 
conditional RETURN that calcu
lates a value and passes it as a 
FIXED number. Notice that X and 
Y need not be of type FIXED. A 
second RETURN statement passes 
the value of 14. 

The function procedure EXP calcu
lates B to the A power. It 
RETURNs a VARYING length charac· 
ter string. 

6-41 



REVERSE.STORE 

B'~~BSE&S!CBE-SI6IE~E~l& 
The REVERSE.STORE statement is used to assign each data-name value in 
a list of data-names to the preceding data-name in the list. Also, it 
assigns an expression value to the last data-name. 

SYNTAX. 
The syntact;cal structure of the REVERSE.STORE statement is as follows: 

BElr!EBH1.SIOBE J:data-name•!.r. data-name-2 [ ( .r. data-name-31 ~ 
expressionli. ~ 

DESCRIPTION. 
The value of data-name 2 is assigned to data-name 1, then the value 
of data-name 3 is assigned to data-name 2, and so on, until the value 
of the expression is assigned to data·name-n. 

EXAMPLES. 

NOTE 
Because each address in the data-name-
l i st is calculated only once for the 
whole statement, no equivalent construct 
in UPL is as efficient. 

Examples describing the use of the REVERSE.STORE statement are as 
follows: 

REVERSE.STORE (A,s,c,x+4)i 

REVERSE.STORE CCASE N OF 
cA,s,ccI>,o> Ex+2>; 

6-42 

The effect is the same as from the 
following statements: 

A . - Bi . -
B . - c; . -
c . - x + 4; . -

Notice that REVERSE.STORE {A,s,c,x+4)i 
is agt the same as A := 8 := C := X+4i 

This statement assigns the value EX+2 to 
go~ of the data-names. The one chosen 
depends on the value of n. 



SIOE!.SI!IEt:1E~Ia 
The STOP statement terminates a program in an orderly or normal manner. 

SYNTAX. 
The syntactical structure of the STOP statement is as follows: 

SIOE!! 

DESCRIPTION. 
A STOP statement can appear anywhere that an executable statement can 
appear. 

Any number of STOP statements can be coded within the program, but only 
one is executed. 

The UPL Compiler supplies a STOP statement as the last statement in the 
program if a STOP statement has not been specified. 

When the STOP statement is executed all files are CLOSEd. 

6-43 



Ut:HHJ.~I6IEt:1f.:~I1. 
The UNDO statement provides :the capability to transfer control out of 
DO statement groups. 

SYNTAX. 
The syntactical structure of the UNDO statement is as follows: 

......__U ~-0 a_[ l_o_o -_:: :_u p--n-a m-e l_l] 
DESCRIPTION. 
An UNDO statement is used only in conjunction with a DO statement. It 
passes program control to the statement that immediately follows the 
a p p r o p r i a t e E ND s t a t e m e n t f o :r t h e s p e c i f i c DO s t a t em en t g r o up • 

A simple UNDO statement Cno options> passes control out of the current 
DO statement. The DO - group •;n am 1e 1:> pt i on passes cont r o l out of t he named. 
group. The asterisk passes control out of all nested DO statement 
groups within the procedure.: A m.aximum of 16 DO-groups can be exited 
with one UNDO statement. 

A D O s t a t e m e n t g r o u p i s s u b o: r d i n a in t t o a p r o c e d u r e ; t h e r e f o r e , c o n t r o l 
n e v e r p a s s e s o u t c f a p r o c e d! u r e w i t h a n U N D O s t a t e m e n t • A R E T lJ RN 
statement, however, passes control from the procedure and ter~inates 
any DO - gr o up i n w h i c h i t a p p:e a r s • 

EXAMPLES. 
Examples describing the use of the UNDO statement are as follows: 

oo; 

• 
IF A EQUAL 8 THEN UNDO; 

EN Di 

DO REPEAT FOREVER; 
IF SUM GEQ 0 

6-44 

THEN oo; 
SUM := SUM -i; 

IF SUM GEQ 6 
P~ E N U N 0 0 C * ) ; 
EN Di 

ELSE IF SUM LSS o; 
THEN SUM :d SUM + 1; 

A simple condition that ends 
the DO statement. 

Data-name SUM is tested for 
limits of + or - 5, then a mes
sage is printed. If the value 
is beyond the limits, all DO 
statements are ended. 



ELSE oo; 

ENDi 
END REPEAT; 

DECREMENT SUMi 
IF SUM LSS - 5 
THEN UNOOC*>i 

WRITE P.FILE C"SUM IS BETWEEN 
-5 AND +5"); 

r::l 
L::J 



ZIE.SIAif:~f:tHa 
The ZIP statement passes control information to the MCP as if it had 
been entered on the console printer CSPO). 

SYNTAX. 
The syntactical structure of the ZIP statement is as follows: 

ZlE.!: l control-information I: l 

control-card .information 

DESCRIPTION. 
Any £ontrol information that can be entered via the console printer or 
the card reader can be used in a ZIP statement. The information passed 
must be surrounded by quotes. 

EXAMPLES. 
Examples describing the use of the ZIP statement are as follows: 

ZIP "SO OPEN" ; 

ZIP "EX CAL" ; 

Sets the OPEN option in the MCP. 

Begins the executiori of program 
CAL.-

ZIP "COMPILE PRINT UPL SYNTAX";. Program PRINT is to be compiled 
for SYNTAX only. 

ZIP "SV LPA" ; The MCP is requested to save the 
line printer. 

6-46 



SECTION 7 

INPUT/OUTPUT STATEMENTS 

~E~EB61..a 
The input/output statements control the peripheral devices and READ or 
WRITE data external to the processor and its memory. 

Input/output statements are listed alphabetically. The format of each 
statement is described in the following order: 

a. Purpose. 
b. Syntax. 
c. Description. 
d. Examples. 

7-1 



6CCEEI.SI6IE~E~Ia 
The ACCEPT statement is used to input information from ·the console 
printer. 

SYNTAX. 
The syntactical structure of the ACCEPT statement is as follows: 

1 .. _6_c_c_E_e_r __ d_a_t_a_·_n_a_m_e_E_· _,_~·-c_&_a_E_a_I_E~_1_J __ i.,,,.. 

DESCRIPTION. 
Data-name is the program area into which the information is moved. The 
information from the console printer is considered of type CHARACTER, 
and the assignment operator is used to move the data into the data
name. Therefore, truncation, padding, and left or right adjustment is 
in accordance with the rules of the assignment statement. 

A maximum of 69 characters is allowed per ACCEPT statement. 

The END.OF.TEXT option specifies that the END-OF-TEXT character 
(hexadecimal 03) i~ to be included with the message. 

EXAMPLES. 
Examples describing the use of the ACCEPT statement are as follows: 

PROCEDURE A.MSG CHARACTER VARYING; 
DECLARE MSG CHARACTER C58); 

RETURN CACCEPT MSG); 
END A.MSG; 

Procedure A.MSG READs rressages 
from the console printer and 
passes them back to their invok
ing statement. For example, 
MESSAGE := A.MSG; is a procedure 
call that can be used to input 
console printer message from 
anywhere in a program. 



ACCESS.FILE.INFORMATION 

6CCESS&El~E£l~EQB~a!10~-SI~IE~~~r~ 
The ACCESS.FILE.INFORMATION function returns two commonly required 
items from FILE PARAMETER BLOCK CFPSl. 

SYNTAX. 
The ACCESS~FILE.INFORMATION syntax is as follows: 

8CUS:'uEll.Ealt!EOB~8IlQtJ !,internal-fi Le-name ~ 6
1! ( l ClHBHIEB ~ 

t address-generating-expressionl l 

DESCPIPTION. 
The FPB is interrogated and the end-of-file CEOF) pointer and 
the device type are returnerl. 

If the file is unopen and, therefore, the.file information block CFIB) 
does not exist yet, the MCP ignores thi~ communic~tion. 

The formating of returned data is as follows: 

ltew 6it 

End-of-file pointer 24 8 

Device type 6 2 

The device types are described in the CHANGE statement. The data 
returned is assigned to the location as specified by the address
generating expression. 

7-3 



~l.QSE.SI~If:~E~Ia. 
The CLOSE statement r~leases control of a file from the program. 

SYNTAX. 
The syntactical structure of the CLOSE statement is as follows: 

.--------------------------------------------------------------------.. 

~l.DSf: i nterna L· file-name [ rtlitl CCBUt:JCt;j :. l 

BEEl. 
BEL.f:aSE 
EUBGE 
BEtHl~E 
tHJ.aBf:ktl~~1 

L.O~~ 

.._ ____________________________________________________________________ .. 
DESCRIPTION. 
T he i n t er n a l - f i le - name mu st be th E' same as th e f i l e - name de c l are d i n 
the FILE statement. 

The file must be in the OPEN state before it can be CLOSEd unless the 
IF.NOT.CLOSE option is used. 

Files need not be explicitly CLOSEd. Memory space is immediately 
returned to the system whenever a file is CLOSEd, however, and the 
space can then be userl for other purposes. Files that are closed at 
program termination are equivalent to CLOSE RELEASE. 

The word WITH is optional, and its use has no effect. 

CRUNCH applies to disk fi Les that have only one disk area. The disk 
area al located to the file is cut back to the actual size of the file. 
The word should be used only with files that can never be larger than 
when they are CLOSEd CRUNCH. 

REEL specifies that the current reel of tape is to be CLOSEd, but the 
file is still open. 

NO.REWIND inhibits the rewinding of a reel of tape. 

RELEASE returns the memory file space to the system and does not enter 
file-names into the disk directory unless specified by the LOCK option 
in the FILE statement. 

PURGE removes the file-name from the disk directory and returns the 
disk space to the disk-available! table. 

REMOVE removes a duplicate file-name from the disk directory if it is 
present and re-enters the name as referencing the new file. 



CLOSE 
cont 

LOCK enters the file-name into the disk directory. 

IF.NOT.CLOSEd avoids an MCP termination of a program that attempts to 
CLOSE a file that is not OPEN. 

The default is the same as RELEASE. 

Fi Les that are open at an abnormal program termination are CLOSEd 
with RELEASE. 

If more than one option, excluding CRUNCH or IF.NOT.CLOSED, is 
requested, only the last is used. 

EXAMPLES. 
Examples describing the use of the CLOSE statement are as follows: 

CLOSE HOLD WITH CRUNCH, 
RELEASEi 

The fi Le HOLD is to be cut back to its 
~ctual disk usage area, and its name is to 
be put into the disk directory. 

NOTE 
A file-name must be in the disk directory 
before another program can access it. 

CLOSE MASTERi 

CLOSE OLD.MASTER WITH 
REMOVEi 

The fi Le MASTER is used as input, and its 
name is already in the disk directory. 
The file is no Longer available to this 
program. 

The file OLD.MASTER is created by this 
program, and any other (duplicate) file by 
t h e s a m e 'n a m e i s r e m o v e d f r o m t h e d i s k 
directory when this file-name is entered. 

7-5 



DISPLAY 

Ql~E~8~.SI~I~~~~I£ 
The DISPLAY statement causes a message to be rrinted en the console 
orintPr. 

SYi\JTAX. 
The syntactical structure of the DISPLAY statement is as follows: 

exnression 

DESCf~IPTIDN. 

The expression must be a data-name, literal, or character-string or 
must result in a printable message. 

The CkUNCHEO option removes all trailinc blanks and substitutes one 
blank for each occurrence of multiol~ imbedded blanks. 

EXAMPLES. 
An example describi~g the use of the DISPLAY statement is as follows: 

PROCEDURE SEND.MSG (MSG>; 
FORMAL ~SG.CHARACTER 

VARYING; 
D I S P l.t\ Y " P L E A S E '' 
CAT MSG, CRUNCH; 

RE TU FU~; 
END SENO.~SG; 

Procedure SEND.MSG orints a message on 
the console printer and returns control 
to its calling procedure. For example, 
SEND.MSG ("LOAD FORMS") is a display 
me~sage usinq the SEND.MSG procedure. 
The console printer outputs the message: 

PLEASE LOAD FORMS 



Ell.~-SIAI~~EtJia 
The FILE statement assiqns an internal fi Le-name to a physical inout/ 
output device and a list of attributes. 

SYNTAX. 
The syntactical structure of the FILE statement is as follows: 

FILE internal-file-name~ attribute-1 Ct attribute-2] ••• li 

{
"fami Lv-fi le-name'1 J 
:,:farni Ly-fi le-name:,::f 1 le-name: 

!l E ~ H E _ ; h a r d w a r e - t y P e [ a c c e s s - m o 'l e l [ E !l B t:1 S l ~ !l B l 6 8 C ti lJ E { ~: : : } J 

~UEEEBS.= irteqer 

L.UC~ 

QEil0~81.. 

)L8Bl861.E 

~~~~-; integer 

l characters-per-recorn }
BE~QBQ~_;

characters-per-record,records-per-block

BEEL._; number-of-tape-reels

AB~!S_; number-of-disk-areasLnumber-of-records-per-area

E~C~alQ_; : literal ::

7-7

~
L::::J

OEE~ attribute·l

A~~aABE!Sa.6IaDfE~

6BE6a6:t:a.CH,l~QEB

Slt»~LEa.eACts

[l attribute·2J •••

EUaSEEClAL-: integer

EUal~'BE~E~IEQ.: integer

SBa.SIAilO~.: integer

DESCRIPTION.
The FILE statement options are described and illustrated in the
paragraphs that follow.

FILE STATEMENT. The FILE statement is a declaration statement and must
appear within the DECLARE portion of a program or a procedure. The
fi Le-name is the data-name by which the source program references the
file. The option List must be surrounded by parentheses; all attrib•
utes are optional. A default status is set for omitted options, but
varies by device.

LABEL OPTION. The LABEL option specifies the external fi le-namt!. It
is the name the MCP uses to ~ccess information on an input/output
device. The LABEL has two na.mes,, a fami Ly•fi le-name and a fi le .. name,,
each enclosed in quotes and $eparated by a virgule. The family-file
name allows access to a multffi le group, and the fi Le-name allotl'IS
access to a single file in the group C"PAYROLL"/"W2.SUMMARY">• Each
name must be surrounded by quotation marks. The MCP uses only the
first 10 characters of each name.

The file-name can be omitted. In such a case, the file is assumed to
have no fi Le-name. It is accessed by its family-file-name only .•

The default for the LABEL option is setting a family-file-name the same
as the internal-file-name and the file-name set equal to blanks.

E~amgi~~a
Examples describing the use of the LABEL option are as follows:

7-8

FILE TA.RECS CLABEL=
"MASTER")

FILE ERR CLABEL="MSG"/
"ERROR")J

~
L::J

The internal data-name TA.RECS is declared,
and the external file label MASTER is
assigned.

The data-name ERR is dee lared. An I/O file
named ERROR of the multifile group MSG is
being referenced.

LABEL.TYPE OPTION. The LABEL.TYPE option specifies the type of tape
label. The default option is BURROUGHS.

DEVICE OPTION. The DEVICE optfon specifies the type of input/output
peripheral on which the file resides. The input/output DEVICE types
are as follows:

PUNCH

~UL TI.FUNCTION.CARD

PAPER.TAPE.PUNCH

PAPER.TAPE.READER

PRINTER

SORTER.READER

DISK.FILE

DISK.FILE.!

DISK.FILE.2

DISK.PACK

DISK.CARTRIDGE

DISK.PACK.OR.CARTRIDGE

DISK

CARD

SPO

80-column card

Any input/output functions
on the 96-column card unit

132-column

Any head-per-track disk

lA and lC head-per-track disk

28 head-per-track disk

Disk pack only

Disk cartridge only

Any removable disk

Any disk

80-column card

Console printer

~
~

Qe~i~e

TAPE.9.NRZ

TAPE.7.UPRIGHT

TAPE.9.PE

TAPE.7.CLUST[R

TAPE.9.CLUSTER

TAPE

fAPE.7

TAPE.9

The default option is TAPE.

~2WW~Ot

Any taoe

Any 7·track tape

Any 9-track tape

ACCESS MODE OPTION. The ACCESS MODE specifies the ordering of disk
record accesses. The options are SERIAL or RANDOM. The default is
SERIAL.

FORMS OPTION. The FORMS opti9n allows the operator to adjust the
alignment of an output device. The FORMS option is applicable to
PRINTER, PUNCH, or PAPER.TAPE.PUNCP only.

The default is FORMS omitted.

BACKUP OPTION. The BACKUP option specifies that an alternate outout
device can receive the information in the format of the pri~ary device.
The OR portion of the option specifies that the alternate device is to
be used only if the primary device is unavailable.

The BACKUP option witho~t the OR portion specifies the information must
go to the alternate device.

The BACKUP option primary devices are PRINTER, PUNCH, PAPER.TAPE.PUNCH,
and TAPE. The BACKUP alternate devices are TAPE and DISK.

The default is hardware only as specified in the DEVICE option.

E~awci~~£
Examples describing the use of the DEVICE option and its parallel
options are as follows:

7-10

FILE OUT.MASTER
CDEVICE=PRINTER OR BACKUP
DISK);

FILE W2.SUMMARY CLABEL=
"PAYROLL"/~W2", DEVICE=
DISK.PACK), FILE W2.
REPORT CDEVICE=PRINTER
FORMS OR BACKUP DISK);

~
l..:.::.:_J

The FILE OUT.MASTER is orinted if the
printer is available. If the printer is
unavailable, it goes to the DISK.

Two fi Les are declared, one with a label
from the disk pack and a printer file
with special forms. The printer file
goes to disk if the printer is busy.

MODE OPTION. The MODE option specifies the parity and the code type of
an input/output file. The options are ODD or EVEN parity and EBCDIC,
ASCII, or BCL code. The default is ODD EBCDIC.

BUFFER OPTION. The BUFFER option specifies the number of input/output
buffers to be allocated for the file. The default option is one
buffer.

LOCK OPTION. The LOCK option requests the MCP to enter the file-name
into the disk directory unless the file is closed with ourge.
Programs that are terminated abnormally by the MCP and have open disk
fi Les are entered into the directory. The default is NO LOCK.

OPTIONAL OPTION. The OPTIONAL option allows a program to execute with
out a file if the operator has responded to the NO FILE message with an
OF console input message.

All reads or writes of an optional file that have an OF message execute
the statement following the ON EDF (end of file).

VARIABLE OPTICN. The VARIABLE option allows different length input/
output records per READ/WRITE. The default option is fixed-size
records.

SAVE OPTION. The SAVE option specifies the number of days a file is to
be saved, that is, not to be destroyed. The default option is 30 days.

RECORDS OPTION. The RECORDS option specifies the number of characters
in an unblocked record (physical size), or the number of characters per
record Clogical record size), and the number of records in the block
(physical records per block).

E~gWQ1~~£
Examples describing the use of the RECORD~ option are as follows:

7-11

FILE
cont

FILE CARDSHI
CRECORDS = 80);

FILE TAPEOUT
CRECORDS = 120/lQ);

The FILE CARDSIN contains BO-character
unblocked records.

The FILE TAPEOUT contains 10 records per
block and 120 characters per record.

DEFAULT OPTIONS. The default options depend on the input/output DEVICE
and have the follo~ing unblocked values:

Qe~i~e U c b .L ~ s; I~ ~ d - 'I. a l u ~

CARD or PUNCH 80 characters

PRINTER 132 characters

DISK 180 characters

CONSOLE PRINTER CSPO) 72 characters

A l l others 80 characters

A character is the same as a byte.

REEL OPTION. The REEL number specifies the number of reels of tape on
a file. The default option is 1.

AREAS OPTION. The AREAS option specifies the number of disk areas and
the number of blocks Cphysic~l records) per area. The two values are
separated by a virgule. Each physical record on the disk contains the
number of characters as spectfied in the number of characters per
block of the RECORDS option. The default option is 40 areas with 100
physical records per area.

PACK.ID OPTION. The PACK.ID specifies the name of the removable disk
associated with this file. Only the first 10 left-most characters of
the literal are used.

The default is 10 spaces, which implies the system disk.

OPEN OPTION. The OPEN option specifies the OPEN attributes to be
associated with the file. A$ a result, an automatic OPEN is
performed with the first input/output statement. If an OPEN statement
is executed for the file, the attributes in the statement take prece
dence. The attributes are the same as in the OPEN statement, but here

7-12

must be separated by virgules.

Certain devices are defaulted OPEN as follows:

~tttibut~

PRINTER OUTPUT/NEW

CARO READER INPUT

CARD PUNCH OUTPUT/NEW

DISK INPUT

~
~

ALL.AREAS.AT.OPEN OPTION. The ALL.AREAS.AT.OPEN option specifies that
all requested disk space for a file opened NEW be allocated when the
file is OPENed. The normal MCP procedure is to allocate each addi
tional area as the file requires the space.

AREA.BY.CYLINDER OPTION. The AREA.BY.CYLINDER option specifies that
each disk area begins on a cylinder boundary.

Default is disk space as required.

SINGLE.PACK OPTION. The SINGLE.PACK option specifies that the file
resides completely on only one removable disk device.

Default is disk space as required.

EU.SPECIAL OPTION. The EU.SPECIAL option specifies which head·per
track electronic unit CEU) or systems DISK pack drive the file must be
associated with. The possible range is 0 to 15.

Default is determined by the location of the first systems unit.

EU.INCREMENTED OPTION. The EU.INCREMENTED option is used with the
EU.SPECIAL and specifies the EU or drive number that is incremented for
each additional disk area allocated. The increment range is 0 to 15.

All areas of a file must be contained on systems disks. The increment
number will wrap around when there are no more system units.

Default is 0 (zero).

USE.INPUT.BLOCKING OPTION. This option applies only to disk fi Les. It
specifies the record and block sizes are to be taken from the disk file
header. That is~ the record and block size attributes of the actual
disk file are used.

The default is either the user specified attributes in the file state
ment or the default option of 180 character records unblocked.

~
L_::::_J
SR.STATION OPTION. The number indicates which read stationCs> is Carel
to be used on a sorter-reader file. The oossible stations are the
magnetic ink character reader and the optical character readero The
read stations are interchangeable, and the systems documentation should
be consulted for specific hardware configurations. Possible values
are:

1 = fir.st station
2 = second station
3 = both stations

The default is SR.STATION = o.

ENO.OF.PAGE.ACTION OPTION. The END.OF.PAGE.ACTION causes the ON EDF
statement to be executed at the end of a page on the printer.

The end of a page is detected as a channel 12 p1Jnch on the printer
carriage control loop. The default botion is the skip to channel 1 on
the printer carriage control loop if channels 12 and 1 are punched;
no action occurs if channel 12 is unpunched.

7-14

LJEE~.SI~IEt:jEtH.1.
The UPEN stntement establishes proqrammatic control of a data-file by
requestinq the MCP to make the data-file available to a program.

SYNTAX.
The syntactical structure of the OPEN statement is as follows:

Q E f; ~ i n t e r n a l - f i l e - n a m e [~ l I ti] a t t r i bu t e - 1 [[:. a t t r i b u t e - ?] •••] l

The possiblP. attributes are as follows:

a. INPUT
b. OUTPUT
c. NEW
d. LOCK
P. ~ Loo:.our
f • NO.REV/ IND
g. REVERSE

DESCRIPTION.
The internat-fi le-name must be declared in a FILE statement. Use of
the word WITH is for readability only. Multiple attributes must be
separated by commas and have the followinq meaninqs or effects:

INPUT

OUTPUT

NEW

LOCK

LOCK.OUT

REVERSE

A file exists and is to be read.

A file exists and is to be written.

A file is to be created.

This file cannot be written by any other program.

This file cannot be accessed by any other program.

NOTE
LOCK and LOCK.OUT are true only for
the duration of the lockina program.

A tape is to be accessed in a backward direction.

Any files soecified both INPUT and OUTPUT must be disk files.

No distincticn is made between INPUT,QUTPUT or OUTPUT,INPUT declara
tions. Both imply a file exists and can be written to or read from.

~
~
OUTPUT, NEW creates a new file or a new version of an existing file.
The CLOSE REMOVE option removes the old duplicate of an existing file.

If no attributes are specified, except for the card reader and the card
punch that are defaulted OUTPUT, the default option is INPUT.

The FILE statement for a file being OPENed must be within scope.

Attributes that have been altered via the CHANGE statement are affected
only during OPEN.

Attribute words, when used in an DPEN statement, cannot be DEFINEd.

The OPEN statement should be the first input/output statement executed
for a file. That is, an OPEN statement should precede all READ, WRITE,
and CLOSE statements that can be issued against a given fi le-r.ame. The
OPEN statement c~n be omitted only if the OPEN attributes are explic
itly given in the FILE statement. A CLOSE statement for a given file
must be executed before that file can be re-OPENed.

Because buffer-storage and file attributes are allocated when a file is
DPENed1 memory storage-area utilization can be significantly optimized
by delaying the issuance of an OPEN statement until a file is actually
needed. Also, when a file is no longer required by a program, the
immediate execution of a file CLOSE statement optimizes memory storage
area utilization.

EXAMPLES.
Examples describing the use of the OPEN statement are as follows:

OPEN MASTER WITH INPUT;

OPEN WORK WITH OUTPUT,
INPUT, NEW;

7-16

The MASTER file is to be made available as
input.

The WORK file is a new file on disk to be
used as output and as input.

•
BEAO.SIAIE~E~I&
The READ statement obtains an input record from a peripheral device as
specified in the appropriate FILE statement.

SYNTAX.
The syntactical s;ructure of the READ statement is as follows:

internal-fi Le-name

[lrecord address expressionl] tdata-nameli

[Q~ ~OE executable statementll

[Q~ EABlI~ executable statementll

DESCRIPTION.
The specified internal-fi Le-name WU~t be declared in a FILE statement
and mu~t be OPENed before a READ statement can be executed.

The LOCK option applies only to disk fi Les and reserves a disk record
for exclusive use by a program unit until a non-LOCK READ or WRITE
statement is executed for the file.

The record-address-expression is applicable to random disk fi Les only.
Brackets ([]) are required. Random disk records are addressed by
record-number disolacement from the beginning of a file. The first
record has a record-address of a O <zero), the second a 1 Cone), etc.,
to n-1 for the nth record. The record-address-expression returns a
binary value that is used to randomly access the record in the file.

The data-name is the receiving field for the information be-ing READ.
The internal•fi le-name is considered of type CHARACTER.

The replacement operator is used to move the information from t~e

buffer to the data-name area. Truncation, oadding, and left or right
adjustment of the data is performed during the transfer.

The EOF and PARITY parts are considered subordinate to the READ state
ment and are, therefore, candidates for the special class of SEG~ENT

statements.

The reserved word ON is required before the EOF and PARITY options.

The EDF part specifies a single statement to be executed upon encoun
tering the End-Cf-Ei le. If an EDF is detected and no EOF option is
specified, the program is terminated.

The PARITY part specifies a single statement that is executed if a
parity error occurs on the input/output device during the READ. If no
PARITY part is specified, the normal MCP equivalent routines are exe-

7-17

~
~

• cuted. The MCP can discontinue CDS> the program after trying n times
to correct the situation.

The EDF and PARITY words are class III reserved words and can, there
fore, be used as identifiers. If they are used as class III reserved
words within the READ statement, null. statements must be used to obtain
the proper syntax. Reserved words, when used in the READ statement,
may not be defined.

4

EXAMPLES.
Examples describing the use of the READ statement are as follows:

READ CARO.FILECWORK);
ON EOF srop;

READ DISK.FILE
[RANDOM.KEY] CRECORO);

ON EDF PRO.END;

7-18

The CARD.FILE file is being READ into data
name WORK. When th8 End-Qf-Ei le is
encountered the program terminates normally.

The DISK.FILE file is being accessed in a
random manner under control of data-name
RANOO~.KEY. The data READ is moved into
data-name RECCRO. At EDF or an invalid

.key, procedure PRO.END is invoked.

BE~El~E.SI6IE~E~Ia
The RECEIVE statement is used to input a message to a data
communications handler or another active program.

SYNTAX.
The RECEIVE statement syntax is as follows:

BECEl~E address generates expression EBO~ program-name i

[U~-~aE~eIY executable statement;]

[a~-l~~~~lOaBE~U~SI executable statement;]

DESCRIPTION.
The address-generating expression must contain the message.

The program name is the name of the SENDing program.

The ON Q.EMPTY statement is executed if there are no messages from the
specified program.

The ON INVALID.REQUEST statement is executed if the MCP cannot
recognize the request.

The MCP maintains queues in memory, if space exists, or on the disk.

7-19

SEARCH.DIRECTORY

SEABC~aClBECICB~.SlAIE~E~!&
The SEARCH.DIRECTORY statement returns information, in the format
specified, from the file header record on disk.

SYNTAX.
The SEARCH.DIRECTORY statement syntax is as follows:

.--
{

·.P A C K • I D . C A I mu l t i f i l e - I D C A I f i l e - I D }
SEA&C~aClBECICB~ L

:express1on

address generating expression z. J61I }
lc~ABACIEB l

i.

[O~.ElLE&~l~Sl~G executable statementJ]

[D~-ElLE&LO~~EO executable statement;]

DESCRIPTION.
The disk directory is search~d for the named file and, if found, infor
mation is extracted from the file header record in the format
specified and assigned to the address-generation expression location.

PACK.IO, multifile-ro, and filedID must each be 10 characters long. If
only multifile-10 is used, the PACK.ID and file-ID must be spaces.

Expression must result in a 30-character string, if used.

If the file is not present on disk, the statement following ON FILE.
MISSING is executed.

If the file is open but with LOCK specified, the ON FILE.LOCKED
executable statement is executed.

All values returned are in number of bits.

The format specifications of returned data are as follows:

lt~m:~am~ Sit

OPEN.TYPE 4 1

NO.USERS 8 2

RECORD.SIZE 24 4

7-20

RECORDS.PER.BLOCK

EDF.POINTER

SEGMENTS.PER.AREA

ACCESS.DATE

Bit

24

24

24

1 6

4

6

SEARCH.DIRECTORY
cont

The SEARCH.DIRECTORY statement is recommended in lieu of the ACCESS.
FILE.HEADER statement because the data returned is not dependent on the
MCP file header record layout.

SEARCH.DIRECTORY C"BBB TEST FILEX "'
DATAXX, BIT>;

SEARCH.DIRECTORY (" UPL "
, SAVEINF01 CHARACTER);

A file named TEST/FILEX
on a named user pack of
BBB is being referenced.

The file UPL on the
systems pack is being
referenced.

7-21

SEEIS.SI6IEt:JEt»I1.
The SEEK statement reads a random disk record into a buffer.

SYNTAX.
The syntactical structure of the SEEK statement is as follows:

SEE~ (~QC~J internal-file-name

[trecord-address·expressionJ i

DESCRIPTION.
T h-e SEEK statement rep laces the auto mat i c record-read of s e o u e nt i a l
fi Les. It reads the record into the buffer from where the record is
moved to the program space by the READ command.

The LOCK option reserves a record for exclusive use by a program until
a non-LOCK READ or WRITE is executed for the file.

The internal-file-name must be declared in a FILE statement.

The record-address-exµression returns a binary value that is used as
the ordinal position of the record in the file. The first record is
numbered 0 (zero), the second, 1 Cone), etc., through the nth record,
which is numbered n-1. Brackets ([]) around the record-address
expression are required.

The SEEK statement obtains the next record while the current one is
being processed. Therefore, it often closely follows a READ statement.

EXAMPLES.
Examples describing the use of the SEEK statement are as follows:

SEEK O.FILE [NTH~RECJ;

SEEK O.FILE [SJ;

7-22

The record specified by the NTH.REC key of
the O.FILE file is found and loaded into a
buffer.

The sixth record of the o.FILE file is to
be found and loaded into a main memory
buffer.

~E~Q.SI~IE~E~I&
The SEND statement is used to output a message to a data communications
handler or another active program.

SYNTAX.
The SEND statement syntax is as follows:

~~~Q address generates expression IQ program-name l 

[Q~-~&EU~~ executable statement;] 

·[a~~l~~!~lD&BEQU~SI executable statement;] 

DESCRIP·TION. 
The address-generating expression must contai~ the message. 

The contents of the messaqe are stored in a queue for the named 
program. Maximum message size is 65,535 bits, and maximum number of 
messages is 1023. 

Control returns to the SENDing program, and the MCP will queue messages 
until the named program issues a receive. 

The MCP maintains queues in memory, if space exists, or upon the rlisk. 

The ON Q.FULL statement is executed if the queue has its maximum number 
of messages. 

The ON INVALID.REQUEST statement is expected if the MCP for any reason 
cannot recoqnize the request. 

7-23 



~IHE-SI6IEt:lEt:Ha 
The SKIP statement is used t6 control the carriage on the printer. 

SYNTAX. 
The syntactical structure of the SKIP statement is as follows: 

S~lE internal-file-name IQ channel number i 

DESCRIPTION. 
The SKIP statement causes the line printer to skip to the specified 
cMannel number on its carriage tape. The channel numbers are from 1 
to 12. 

EXAMPLES. 
Examples describing the use of the SKIP statement are as follows: 

SKIP P.FILE TO 1; 

SKIP PRNT TO 12; 

7-24 

The P.FILE file must be an output file on the 
printer. The printer SKIPs to channel 1 
(usually tbe top of a new oage). 

The printer SKIPs to channel 12 (usually at or 
near the erd of a page>. 



Sf 6CE.SIAIE?:1E~I ... 
The SPACE statement allows the user to skip over records in a 
sequential file. 

SYNTAX. 
The syntactical structure of the SPACE statement is as follows: 

Se6CE internal-file-name CTOJ expression i 

[0~ 'OE executable statement!] 

co~ EABlil executable statementiJ 

DESCRIPTION. 
The internal-file-name must be declared in a FILE statement, and the 
file must be OPENed. 

The expression returns a binary value that indicates the number of 
records to be skipped. If the value is negative, reverse or backward 
spacing is indicated. 

The TO option specifies that spacing is in a forward or positive 
direction. 

The ON EDF option soecifies a statement that is to be executed if the 
EDF record is encountered while spacing. 

If a parity error is detected, the ON PARITY option specifies a 
statement that is to be executed. 

If the ON PARITY option is unspecified, the MCP enters its normal 
routines for parity errors. If the parity error is not corrected on 
successive retries, the program is discontinued COS). 

ON EDF and ON PARITY are class III reserved words that can be used as 
data-names. If they are used as data-names in the SPACE statement, 
null statements are required for proper syntax. When used as reserved 
words in the space statement they cannot be DEFINEd. 

The ON EOF and the ON PARITY options are statements subordinate to the 
SPACE statement and can be segmented separately <refer to the SEGMENT 
statement, page 5-23). 

EXAMPLES. 
An example describing the use of the SPACE statement is as follows: 

7-25 



SPACE 
cont 

SPACE TAPE.FILE TO Xi 
ON EDF STOP.: 

7-26 

The TAPE.FILE f;Le is spaced the number 
of tape records specified by the binary 
value of data-name x. If the End-Qf-Eile 
ts encountered, the program ;s STOPped. 



~BI IE-S Ia H:~E~l1. 
The WRITE statement transfers data from a specified output memory area 
to an assigned perioheral. 

SYNTAX. 
The syntactical structure of the WRITE ~t~temPnt is as follows: 

I"'- ..... 

I ~~tl!H.E I 
\ QQU6l.E 

l e~~E 1 
~E~I 

internal-file-name l 

J 2 ' 

lZ -
{

character-string l 
[,lrecord-address-expressionlJ ' ( l_.i. 

data-name ) 

[Q~ 'QE executable statementiJ 

[Q~ E~~EEilQ~ executable statementiJ 

DESCRIPTION. 
A file must be OPENed before a WRITE can be executed. The LOCK option 
reserves a disk record for exclusive use of a program until a non-LOCK 
READ or WRITE is executed for the file. 

The internal-fi Le-name must be declared in a FILE statement. 

The first option is used for printer control. The NO, SINGLE, and 
DOUBLE options specify lines of paper movement. The PAGE option spaces 
paper to the top (channel 1) of the next paqe. The NEXT option spaces 
paper to the next channel punch. The numbers 1, 2, ••• 12 space paper 
to the specified channel punch. 

The record-address-expression returns a binary value that is used as 
the number of the record being written to on a random disk file. The 
records are numbered in sequence from O to n-1 for an n record 
file on disk. Brackets ([]) around the record-address-part are 
required. 

The d~ta-name or character-string option is the program area from 
which the record is written. 



WRITE 
cant 

The ON EDF executable statement is executed at the end of available 
space on disk. 

Execution of the ON EXCEPTION executable statement is dependent upon 
the peripheral device <refer to the MCP manual). 

The EDF and the EXCEPTION options are subordinate to the WRITE 
statement and can be segment~d Crefer to the SEGMENT statement>. 

EDF and EXCEPTION are class III reserved words that can be used as 
data-names. If they are used as data-names within a WRITE statement, 
null statements may be required for proper syntax. When they are used 
as reserved words in the WRITE statement, they may not be DEFINEd. 

If the END.OF.PAGE.ACTION file attribute has been specified in the FILE 
statement and an end of page <channel 12 punch on the printer carriage 
control tape) is detected, then the ON EDF statement is executed. This 
facilitates, for example, printing totals or headinqs without the 
necessity of a line counter. 

EXAMPLES. 
Examples describing the use of the WRITE statement are as follows: 

WRITE P.FILE CREC)i 

WRITE O.FILE [NTH.REC] 
CWORK); 

ON EDF PRO.ENO; 

7-28 

The REC record is written to the P.FILE 
file. The length of the output is coded in 
~he FILE statement. 

A disk file named D.FILE is written in a 
random mode with NTH.REC as the KEY. The 
data-name WORK is outputted. At the End
Qf•[i le procedure PRO.END is called. 



SECTION 8 

FUNCTIONS 

~E~Etl~I." 
UPL-supplied functions are a set of procedures that are incorporated 
directly into the language to facilitate ease of use and speed of 
execution. 

The usage of supplied functions is similar to invocation of a function 
procedure written by a programmer. Such functions always return or 
reference a value; therefore, functions supolied by UPL are 
expressions. 

UPL functions can be divided into three groups. 

The first group is exactly like a user function procedure. 
ance of its name in an expression is replaced, at run-time, 
The following are examples of the first group: 

a. CONVERT. 
b. BINARY. 
c. LENGTH. 
d. CAT. 

The aopear
by a value. 

The second group is more akin to an input/outout statement because it 
requests information from the operating system CMCP). The followinq 
are examples of the second qroup: 

a. TIME. 
b. DATE. 
c. NAME.OF.DAY. 

The third group is similar to a function procedure except that it 
returns an address rather than a value. It may, therefore' appear to 
the left of an assignment or replacement operation. The third group is 
in actualitv an address-generating expression, but it is included here 
for convenience. The following are examples of the third group: 

a. SUBOIT. 
b. SUBSTR. 

8-1 



BASE.REGISTER 

66SE&BE~lSIEB-EU~CilD~~ 
The BASE.REGISTER function re~urns the absolute main memory address of 
the beginning of the data spa~e of the program. 

SYNTAX. 
The BASE.REGISTER function sy~tax is as follows: 

DESCRIPTION. 
The BASE.REGISTER function returns a 24-bit value that is the current 
absolute main memory address ~f the beginning of the data space of the 
program. 

In a multiprogramming environ.ment two separate executions of BASE.
REGISTER may not yield the sa~e results because the MCP may have moved 
the data of the program to a ~ew location in memory. 

8-2 



a r~~B :!. E!.HHa r o~ .. 
The BINARY function converts a character-string to a sign and a 23-bit 
value of tyoe FIXED. 

SYNTAX. 
The syn ta.ct i ca L structure of the BIN ARY fun ct i on i s as f o L Lows : 

6l~~B:! texpressionl 

DESCRIPTION. 
The expression must result in a character-string of eight or fewer 
decimal digits. Truncation occurs on the Left for any strings greater 
than eight characters. 

The character-string is assumed to contain decimal characters. Only 
the Low-order Cright-most> four bits of each character are used during 
the BINARY function; that is, the zone bits are ignored. 

The character-string is converted to a FIXED number. Decimal values in 
excess of a,38816081 but Less th~n 161777,215 Cor any multiple of this 
range), cause the FIXED value to appear negative. Binary lengths in 
excess of 24 bits are truncated on the Left. The DECIMAL function is 
the opposite of the BINARY function. 

EXAMPLES. 
Examples describing the use of the BINARY function are as follows: 

A := BINARY CXYZ); 

8 := BINARY ("255"); 

Data-name XYZ is assumed to contain a char
acter string of eight or fewer numeric char
acters. The character-string is converted to 
a binary value and is assigned to A. 

B now contains 11111111. 



~6SE.E~HH~Il0~& 
The CASE function is used to conditionally evaluate one expression from 
amon9 a list of expressions. 

SYNT/!.X. 
The syntactical structure of the CASE function is as follows: 

C, ~SE e x p r e s s i on - 1 Q E i e x o re s s i_o_n_·_2 __ [_c_z. __ e_x_p_r_e_s_s_i_o_n_·_3 _1 __ ·_·_·8. 

DESCRIPTION. 
The value of expression-1 is used as the ordinal position of the 
expression in the List to be executed. The first expression in the 
list is O Czero). The value of the executed expression is the value of 
the CASE function. A ranqe bheck is performed, and an out-of-bounds 
value for expression-1 cause~ termination of the program. Notice that 
the CASE exoression differs from a CASE statement because the CASE 
expression returns a value. 

EXAMPLES. 
Examples describing the use bf the CASE function are as follows: 

~QWID~Ot~ 

X : = C A S E A 0 F C 8 , C , D , E ) ;; The value assigned to )( i s dependent 
upon the value of A • For example, 

; f A = 0 then x . - g, Of' . -
i f A = 1 then x ·- c, Of' . -
i f A = 2 then x . - o, or· ·-
i f A = 3 then x . - E • . -

z . - A + CASE N OF ( x, y, Evaluation is Z := 5 + (3 + C-4) * 2). 
x + y, x - y ) *2i 
FCR A = 5, N = 2, x = 

and y = -4 
z i s replaced by the value 3. 



~AI-EU~~IlC~& 
The CAT function programmatically concatenates two strings of data and 
forms a new string. 

SYNTAX. 
The syntactical structure of the CAT function is as follows: 

)literal-1 } ~ 61 
(data·name-1 

)literal-2 } 

(data·name-2 

DESCRIPTION. 
Data items can be linked together <concatenated> by using the CAT func-
tion. Although this function is intended to concatenate bit-strings or 
character-strings, it can be used with any combination of data-types. 
The limit of data-items that can be concatenated is 8000 characters or 
8000 bits. 

The CAT function can specify, within the above limit, several operands 
connected ·by the required number of CAT functions. 

If the operands are defined as being character, the result of a CAT 
function operation is a string of characters. For any other 
combination of operand data-types, the result is a string of bits. 

EXAMPLES. 
Assume the following declaration and initializations: 

Declare A character Cl), B bit (3), C fixed, X bit (6), 
Y character C2), Z bit C11), XX bit C27). 

A = "B" 

8 = ~(1)101@ 

c = +10 

Data-name A comprises a character-string 
containing the letter B. 

Data-name B comprises a bit-string that 
contains the binary value of s. The length of 
the data-string is three bits. 

Data-name C comprises a FIXED-string that con
tains the positive (+) decimal value of 10. 

The contents of data-names A, a, and C are known; therefore, 

X := B CAT s; 

Y := A CAT A; 

A binary value of 45; that is1 @(1)101101@ is 
created. The length of the data-string is six 
bits. The result of the concatenation is 
assigned to data·name x. 

A character-string, comprised of two bytes, that 

a-s 



~ 
L:::J 

Z := A CAT Bi 

XX := B CAT CJ 

X := A CAT B := 4J 

8-6 

has the value of "BB" is created. The value is 
assigned to data-name Y. 

A binary value of 1557; that is, 
@(1)11000010101@ is created. The length of the 
data -:st r i n g i s 11 bi ts • The res u l t of t he 
con c a·t en .at ·i on i s assigned to data-name Z • 

A binary s·tring equivalent to the UPL oc:tal 
notation @(3)500000012@ is created. The resul.t 
of the concatenation is assigned to data-name 
xx. 

The CAT function is lower in precedence than the 
:= function. Data-name B is therefore set to 
a value of 4 before B is concatanated with data
name A. The result of the CAT is then assigned 
to data·narne X. 

The second example describing the usage of the 
CONVERT function is also an example of the 
CAT function Crefer to page 8•10). 



I CONVERT 

~O~~'BI.EU~CilO~a 
The CONVERT function faci Litates the conversion of one data type to 
another. 

SYNTAX. 
The synta~tical structure of the CONVERT function is as follows: 

I 

!
CO~~ } \literal ( 

~ 
1 

data-name L data-type f: Logical-group] l 
co~~EBI , ~ 

f expression, 
\ 

DESCRIPTION. 
The entry of a data-~ame, literal, or expression denotes the data-item 
that is converted to the specified data type or logical group. 

The data-type clause is required. It defines the gutgut conversion 
data-type. The data-type is defined as follows: 

a. FIXED. 
b. CHARACTER. 
c. BIT. 

The Logical-group clause is required only when converting from type 
BIT to type CHARACTER or from type CHARACTER to type BIT. It 
specifies the number of bits Cof the bit string) that correspond to a 
character in the character string. The bit-groups specified are as 
follows: 

L.ggis;Ql:~i:g~g Cgmwii:Dt~ 

1 Bit-grouping i s i n binary representation. 

2 Bit-grouping i s i n quart al representation. 

3 Bit-grouping i s in octal representatior. 

4 Bit-grouping i s i n hexadecimal representation. 

If no bit-grouping is indicated, 4 (hexadecimal) is assumed. ALL 
truncation or padding between strings of unequal Lengths is performed 
according to the rules as outlined in the assignment statement. 

The conversion of data from type BIT to type ·cHARACTER expands the 
specified logical bit-grouping into a character (byte) format by pre
fixing O's Czeros) to the most significant positions, and it should cgt 
be construed as being an EBCDIC conversion of the data. Therefore, the 

8-7 



CONVERT 
cont 

conversion d~~~-DQt return printable decimal numbers. The result 
merely represents eight bits of data for further manipulation as may 
be programmatically desired. 

To convert from type BIT to printable characters, first convert type 
BIT to type FIXED and then type FIXED to type CHARACTER. 

The conversion of data from type FIXED to type CHARACTER results in a 
sign and seven printable CEBCOICJ decimal numbers; leading printable 
O's (zeros) are not suporessed. 

The conversion from type CHARACTER to type FIXED is performed in the 
following manner: 

a. The type CHARACTER data-name is scanned from left to right 
until a sign or non-space character is encountered. 

b. If a sign is encountered, it is noted and removed. 

c. After encountering a sign or non-space character, only the 
right-most seven characters of the data-name are converted. 

d. The low-order four bits cf each character are considered a 
binary value times a power of 10 for each position from 
the right. The high-order four bits are ignored. Decimal 
values in excess of 8,388,607 positive or s,3aa,608 
negative have the 2 raised to the 24th power bit ignored. 

If the sign as previously noted is negative, the FIXED number is 
expressed in the complement form of 2. 

The various forms of data conversion are briefly described in the 
following chart. 

8-8 



B 

T 

H 
A 
R 
A 
c 
T 
E 
R 

F 

NO CHANGE. 

CHARACTER 

CONVERTS TO CHARACTER 
STRING UNDER CONTROL 
OF THE LOGICAL BIT 
GROUPING. THE RESULT 
IS RIGHT JUSTIFIED, 
LEADING ZERO FILLED. 

CONVERTS BYTE DATA TO NO CHANGE. 
A BIT STRING UNDER 
CONTROL OF THE 
LOGICAL §.!1 GROUPING 
USING VALID CHARACTER 
ONLY. SEE FIRST SET OF 
EXAMPLES THAT FOLLOW. 

CHANGES TO TYPE BIT. CONVERTS TO SEVEN 
DATA REMAINS AS IS. DECIMAL CHARACTERS 

WITH SIGN AND LEADING 
ZEROS. 

CONVERT 
cont 

RETURNS 24 BITS LEFT 
ZERO Fl LLED OR 
TRUNCATED AS 
NECESSARY. 

SEE SECOND SET OF 
EXAMPLES THAT 
FOLLOW. 

NO CHANGE. 

Figure 8-1. Data Type Conversion Chart 

8-9 



CONVERT 
cont 

EXAMPLES. 
Assume that data~name CX contains a character whose binary value is 
00000111, and data-name 8 is declared t>'Pe BIT (4). 

B := CONV ccx,cHARACTER,4); 

8 := CONV ccx,CHARACTER13)i 

The contents of data-name B 
contain the hexadecimal value 
7 (0111). 

The contents of data-name B 
contain the octal value of 6 
(0110). Only the· right-most 
three bits of data-name ex are 
assigned to 8. 

Assume data-name CARD contains the characters + 4095, and FX is of 
type FIXED. 

FX := CONV CCARD1 FIXED); 

DECLARE N FIXED, B BIT {8); 

N := +s; 

B := @BC@; 

OUTPUT := "ENTRY ~0." 
CAT CONV CN1CHARACTER> 
"IS" 
CAT CONV CB,CHARACTER1 
2); 

The contents of FX contain 
hexadecimal 0007FF. 

Data-name N contains the value 
+00 ••• 101 at object run•time. 

Data-name 8 contains the hexa
decimal value BC (binary value 
1011 1100) at object run-time. 

This statement produces a data
string object run-time in the 
f or m of : "E N'T RY N 0. + 
0000005 IS 2330." 

In the preceding example, the literal value "ENTRY NO.", the result of 
converting data-name N1 the literal value "IS", and the result of con
verting data-name B are made into a continuous string of data by the 
insertion of ~oncatenation CCAT> function designators. The result of 
converting the FIXED value contained in data·name N to a printable 
character is +0000005 with no suppression of O's (zeros) or arith~etic 
sign. The result of converting the bit value contained in data·name g, 
when using the character·to·quartal syntax as soecified, is as follows: 

8-10 



a. 
b. 
c. 

1 0 11 
2 3 

F2 F3 

11 00 
3 0 

F3 FO 

(binary). 
Cquartal). 
(hexadecimal character>. 

CONVERT 
cont 

8-11 



IJAIE;_E!.!~C.IlQ~a 
The DATE function returns a string that contains the current month, 
day, year, or Julian date. 

SYNTAX. 
The syntactical structure of the DATE function is as follows: 

JUL.la~ 
fHI 

l] t:11HII!;j 
L .E I~EC 

!l A :t 
~:JABU~IEB 

:£Ea B 

DESCRIPTION. 
DATE without the option is the same as DATE (MONTH, CHARACTER). 

The format of each option and the lengths of the strings are as 
follows: 

Dig lt 
Qg,tiQO E~i:wat fLLt L.~cg.tb C.bata't~i:~ 

JULIAN YY/000 7/9 213 2/3 

MONTH MM/DD/YY 4/5/7 2/2/ 2 2/2/2 

DAY 00/MM/YY 5/4/7 2/2/2 21212 

YEAR YY/MM/DD 7/4/5 2/2/2 2/2/2 

Notation used in the preceding table is as follows: 

a. YY equals the year, DD or DOD equals the day, MM equals 
the month. 

b. Digits are equal to four bits, that is~ two decimal digits 
per byte. 

c. Characters are eaual to eight bits. 



O~Cl~6L.EU~CI10~& 
The DECIMAL function converts the right-most 24 bits of an expression 
from a binary value to a character-string. 

SYNTAX. 
The syntactical structure of the DECIMAL function is as follows: 

O~Cl~6L 'expression-1 t expression-2l 

DESCRIPTION. 
The right-most 24 bits or less of exoression-1 are converted from a 
binary value to a decimal character-string equal to the number of char
acters in length requested in expression-2. No more than eight charac
ters are produced. If tWe decimal character-string is greater than the 
length requested in an expression•2, truncation occurs on the left. 
If the character-string is less than expression·2, hexadecimal COO) 
zeros are padded on the left. 

EXAMPLES. 
Examples describing the use of the DECIMAL function are as follows: 

X := DECIMAL CA, 4)i 

z := DECIMAL C@FF@, 3)i 

Data-name A is converted from a 24-bit 
binary value to a 4-character nu~eric 
string. 

Z now contains the character-string 255. 

8-13 



HEX.SEQUENCE.NUMBER 

!J E ~ & S E ~ U E ~ C. E a. ~ U t:j a EB - E U ~ ~I l Q t:J:& 
The HEX • SEQUENCE.NUMBER fun c:t i o n a l lows the h ex ad e c i ma l e qui v a I. en t of 
the sequence n•Jmber of the source language statement to be referenced 
at run-time. 

SYNTAX. 
The syntactical structure of: the HEX.SEQUENCE.NUMBER function is as 
follows: 

DESCRIPTION. 
The HEX.SEQUENCE.NUMBER results in a bit-string of eight hexadecimal 
digits that represents the source-language line nu~ber being compiled. 

EXAMPLE. 
An example of the use of the HEX.SEQUENCE.NUMBER function is as 
follows: 

X := HEX.SEQUENCE.NUMBER 
12753000 

The value assigned to the data-name X 
at run-time is ~(4)12753000@. 



lE.EU~CilQ~~ 
The IF function is used to conditionally evaluate one expression from 
a set of two. 

SYNTAX. 
The syntactical structure of the IF function is as follows: 

IE expression-1 I~E~ expression-2 E~SE expression-3 

DESCRIPTICN. 
If the value of expression-1 is TRUE, that is, the least-significant
bit is a 1, the value of the expression that follows the THEN becomes 
the value of the IF function. If the value of expression-1 is FALSE, 
the value of the IF function is the value of exoression-3. Notice that 
the IF function differs from an IF statement because it is an expres
sion rather than a statement. It results in a value that must be used 
in a larger expression. 

EXAMPLES. 
An example describing the use of the IF function is as follows: 

X := IF B MOD 2 
THEN "ODD" 
ELSE "EVEN"; 

Data-name X is assigned the word ODD if B is 
an odd number. If 8 is an even number, data· 
name X is assigned the word EVEN. 

8-15 



l.E~~Itl.EU~CIHlth 
The LENGTH function returns 1the expression length in a 24-bit type BIT 
value format. 

SYNTAX. 
The syntactical structure of: the LENGTH function is as follows: 

( e x p r e s s i on l' I 

DESCRIPTION. 
If the expression returns a character-string, the LENGTH is the number 
of characters; otherwise, the LENGTH is the number of bits. 

EXAMPLES. 
Examples describing the use -0f the LENGTH function are as follows: 

X := LENGTH CABC); 

X := LENGTH C"WARM")J 

8-16 

The length of the data named by 
ABC is assigned to x. 

X contains a binary value of 4. 



LIMIT.REGISTER 

~l~lI&BEGlSIEB.EU~CilC~a 
The LIMIT.REGISTER function returns the main memory limit address of 
the data space of a program. 

SYNTAX. 
The LIMIT.REGISTER function syntax is as follows: 

I Ll~lI~BEGlSIEB 
DESCRIPTION. 
The LIMIT.REGISTER function returns a 24-bit value that is the absolute 
main memory address of the data space of a program. 

In a multiprogramming environment two successive executions of the 
LIMIT.REGISTER function may not yield the same results because the MCP 
may have moved the data of the program to a new location in memory. 

8-17 



[ MEMORY SIZE 

~E~OB~-SIZE-EU~CI10~£ 
The MEMORY SIZE function returns the size of the requested available 
memory. 

SYNTAX. 
The MEMORY SIZE function syntax format is: 

DESCRIPTION. 
The requested memory size is returned as a 24-bit binary value 
indicating the number of bits in the memory. 

S.MEM.SIZE is the size of all installed main memory including any 
be i n g u t i l i zed as control me m:o r y. 

M.MEM.SIZE is the size of high-speed control memory installed in the 
processing unit. 

8-18 



t:10C-EU~CI1D~a 
The MOD function results in the remainder of a divide. 

SYNTAX. 
The syntactical format of the MOD function is as follows: 

DESCRIPTION. 
The MOD function returns a value that is the remainder of a divide. 
If both the divisor and the dividend are type FIXED, the MOD returns 
a FIXED value. 

If either or both are not type FIXED, then the MOD returns a positive 
24-bit value. 

EXAMPLE. 
An example describing the MOD function is as follows: 

x Y MOD 52 The value assigned to Xis in the range Oto 51. 

8-19 



NAME.OF.DAY 

~A~~&0E&C6X.EU~CilC~a 
The NAME.OF.DAY function is a class II reserved word that returns a 
character-string for the name of the day. 

SYNTAX. 
The syntactical structure of the NAME.OF.DAY function is as follows: 

DESCRIPTION. 
The returned character-string is nine characters long, left-justified 
with trailing blanks. 

8-20 



SEARCH.LINKED.LIST 

SEABC~&~l~~EC&~lSI.EU~'IlQ~& 
The SEARCH.LINKED.LIST searches a predefined structure for a true 
condition. 

SYNTAX. 
The syntactical structure of the SEARCH.LINK.LIST function is as 
follows: 

SEAB~~&~l~~ED~~lSI L expression-1 L expression-2 L expression-3 L 

relational L expression-4 l 

DESCRIPTION. 
The predefined structure is searched for a true condition or until the 
end of the structure. If a true condition is found, the base relative 
address of the substructure is returned. If the search fai ts, @FFFFFF@ 
is returned. 

Expression-1 is the base relative address of the first substructure to 
be examined. 

Expression-2 is the relative offset Cin bits) in the substructure of 
the 24-bit field being compared with expression-3. 

Expression-3 is the 24-bit data being compared with a field in the 
substructure. 

The relational is one of the relational operators, that is, 

EQL = 
NEQ ~ 

LSS < 

GTR > 
LEQ ~ 
GEQ ~ 

Expression-4 is the relative offset in the substructure of the 24-bit 
field containing the base relative address of the next substructure to 
be examined if the ~omparison fails. 

NOTE 
The SEARCH.LINKED.LIST 
function is used by the MCP 
to allocate memory space. 

8-21 



SEQUENCE.NUMBER 

SE~UE~CEa~U~6EB-EU~CilO~a 
The SEQUENCE.NUMBER function allows the character equivalent of the 
source language line number being compiled to be used in the program. 

SYNTAX. 
The syntactical structure of the SEQUENCE.NU~BER function is as 
follows: 

DESCRIPTION. 
The SEQUENCE.NUMBER function results in a character-string of eight 
EBCDIC characters that represent the sequence number of the current 
source language statement being compiled. 

EXAMPLE. 
An example describing the use of the SEQUENCE.NUMBER function is as 
follows: 

Z := SEQUENCE.NUMBER 
01234500 

a-22 

~. ' 

The character string "01234500" is a:ssigned 
to data·name z. 



sue Bi I.Eu rHa1 o~,, 
The SUBBIT function provides the capability to address one or more 
data-bits within a data-name. 

SYNTAX. 
The syntactical structure of the SUBBIT function is as follows: 

0 ES C R I PT ION • 

( literal-1 ) 
J data-name-2 \ 
) expression-d [ { 

literal-2 } J 
z. data·na~e-3 

express1on-2 
l 

Data-name 1 is considered a data-name of type BIT regardless of its 
previous declaration. 

Data-name 2, literal-11 or expression-1 at object run-time is evaluated 
as a positive number that is used as the ordinal position of the first 
bit to be accessed within the specified bit-string. The most signifi
cant bit Cleft-most> within a bit-string is bit o. 

Data-name 3, literal-21 or expression-2 is evaluated as a positive num
ber that is used as the number of bits to be accessed within the bit· 
string. 

The omitting of data-name 3, literal-21 or expression-2 results in the 
accessing of a string from the bit specified by the value of data-name 
2 tbcgugb the last bit in the string. 

A range-check is performed on data-name 2 and data-name 3, and an out
of-bounds value causes an interrupt of the program. That is, data
name 2 wu~t point into the string, and data-name 3 must not specify 
more bits than exist between the first bit being accessed and the end 
of the string. 

A resultant value of O Czero> for data-name 3 is valid and results in 
no accessing of the data. 

If a SUBBIT function appears to the left of a replacement operator, it 
is treated as a data-name. Truncation, fill, and data alignment are 
performed by the operator with type BIT being the destination field
type. If data-name 2 or data-name 3 is declared as being of type 
CHARACTER, it is evaluated as being a binary number. That is, if a 
value of 1 is given, it is equal to the internal EBCDIC value of 
111100011 which converts to a decimal representation of 2411 which 
results in the accessing first of the 241st bit within the string. 

The SUBBIT function may be passed to a procedure, by name or by value, 
according to the following conventions: 

a. Statement SUBBIT Cdata·name 1, data-name 2, data-name 3) 
is defined as being a pass•by-name. 

8-2 3 



SUR BIT 
cont 

b. Statement CSUBRIT Cdata•name 1, data-name 2, data-name 3)) 
is defined as being a pass-hy-value because of the extra 
set of parentheses that surroun~s th~ entire statement. 

EXAMPLES. 
An example describing the use of the SUBBIT function is as follows: 

DECLARE SBIT FIXED; 
SBIT := ~(1)00100~; 

A := SUBBIT (SBIT, 23, 1); 

A := SUBBIT cssrr, 21, l)i 

DECLARE SRIT BIT Cll), 
AX2 BIT C9H 
SRIT := @Cl) 1101111001~; 

AX2 := (;)( 1) 1000101QO(Cl; 
SUBBIT CAX2, 3) := 

SUBRIT CSBIT, 3, 2); 

DECLARE OBJ.CODE BIT C16), 
SOC.CODE FIXEDi 

8-24 

SUBBIT COBJ.CODE,5,5) := 
SOC.COD[; 

Statement replaces data-name A with 
a o. 

Statement replaces data-name A with 
a 1 • 

fhen, AX2 contains 100110000. 

The right-most eight bits of the type 
FIXED variable SOC.CODE are assigned 
to the right-most eight positions of 
OBJ.CODE. 



SU6SIB.EU~C!l1H:h 
The SUBSTR function provides the capability of addressing character 
substrings within a data-name. 

SYNTAX. 
The syntactical structure of the SUBSTR functi-0n is as follows: 

SU6SIB ~data-name-1, 

DESCRIPTION. 

{
literal-1 } 
data·name-2 

_expression-1 {

literal-2 ) 
data·name-3 ~ 
expression-2S 

Data-name 1 is considered of type CHARACTER regardless of the type in 
its declare statement. 

Data-name 2, literal·l, or expression-! at object time is evaluated as 
a positive number that is used as the ordinal position of the first 
character to be accessed within the character-string. The most signif
icant Cleft-most) character within a character-string is character o. 

Data-name 3, literat-2, or expression-2 is evaluated as a positive num
ber that is used as the number of characters to be accessed within the 
character-string. 

The omitting of data-name 3, literal-2, or expression-2 results in the 
accessing of the string from the character specified by the value of 
data-name 2 tbtgugb the last character in the string. 

A range check is performed on data-name 2 and data-name 3, and an out
of-bounds value causes an interrupt of the program. That is, data
name 2 wu~t point into the string, and data-name 3 mu~t-DQ1 specify 
more characters than exist bet~een the first character and the end of 
the string. 

A resultant value of 0 (zero> for data-name 3 is valid and results in 
no accessing of data. 

If a SUBSTR function appears to the left of a replacement operator, it 
is treated as a data-name. Truncation, fill, and data alignment are 
performed by the operator with type CHARACTER being the destination 
field-type. That is, if the source field is ogt of type CHARACTER, the 
alignment is to the right and is controlled by the data-name 2 position 
and the number of characters specified by data-name 3. If, however, 
the source field is of type CHARACTER, the alignment is Left-justified 
to the position as specified by data-name 2 and is controlled by the 
contents of data-name 3 to determine the number of positions in length. 

If data-name 2 or data-name 3 is declared as being data of type 
CHARACTER, it is evaluated as being a binary number. That is, if a 
character 1 is given, it is equal to the internal EBCDIC value of 
11110001, which converts to a decimal value of 241, which results in 
the accessing first of the 241st character in the string or a string 

8-25 



SUBS TR 
cont 

length of 241 characters. 

The SUBSTR function may be passed to a procedure, by name or by value, 
according to the following conventions: 

a. Statement SUBSTR Cdata-n1~e 1, data-name 2, data-name 3) 
is defined as being a pass-by-name. 

b. Statement CSUBSTR Cdata-name 1, data-name 2, data-name 3) ) 
is defined as being a oass-by-value because of the extra set 
of parentheses that surrounds the entire statement. 

EXAMPLES. 
In the following examples, assume a data-name of ALPHA that contains a 
character-string consisting of all 26 letters of the alphabet in 
sequence from A throuqh 7. 

X := SU3STRCALFA, Q, 1); 

X ·- SUBSTRCALFA, 24lJ 

f\j : = 0; 
00 ODO FOREVER; 
SUBSTRCPRINT, N, 1) := 
SUBSTRCALFA, 2 * N, lli 
N = N + 1J 
IF (2 * N} GTR 25 THEN 

UNDO; 
END ooo; 

ABC := "OPPOSITE"; 
CH := "VAULT"; 
SUBSTR CABC, o, 1) := .SUBSTR 
CCH, 1, lli 

8-26 

Data-name X contains an A. 

Qata-name X contains the letters 
y z. 

~ssume N is type FIXED. 

Data-name PRINT contains every other 
letter in the string, for example, 
A C E ••• W Y. 

fhis statement replaces data-name ABC 
with APPOSITE, and CH remains as 
VAULT. 



S~AE!-E!JtJ~IlO~a 
The SWAP function is used to synchronize asynchronous processes. 

SYNTAX. 
The SWAP function format is as follows: 

S~Ae (data-name, expressionl 

DESCRIPTION. 
The value of the expression is exchanged with the contents of the data
name in one main memory cycle, and the former contents of the data-name 
are returned by the SWAP function. 

The length of the data to be SWAPped is either the length of the data· 
name or the right-most 24 bits of the data-name, whichever is less. The 
length of the expression is padded or truncated to the length of the 
opera.tion in accordance with the rules of the assignment operator. 

EXAMPLES. 
Examples describing the SWAP function are as follows: 

IF SWAP (A, 1> 
THEN CALL ASSIGN.SPACEi 
ELSE CALL< LOOK.FOR.MORE.SPACE; 

I: = 3i AC I>: = SWAPC I, I+l); 

DECLARE STNG CHARACTER C16), 
B CHARACTER (3), 
A FIXEDi 
STNG: = "THE VALUE IS OOO"J 
A: = 123J 
B: = SWAPCSTNG,CONV 

CA, CHARACTER) >i 

If A contains a O (zero), the 
ELSE portion is executed and A 
then contains a 1. If A 
contains a 1, the THEN portion 
is executed and A then contains 
a 1 • 

An equivalent set of statements 
is as follows: 

I : = 3 i 
ACI>: =3i 
I: = 3 + li 

Data-name 8 now contains the 
characters 000 while STNG con
tains 123. Notice that the 
right-most 24 bits of the second 
expression are used regardless 
of the data-type. 

8-27 



IH1E-EU~CI!Q~,, 
The TIME function returns a strinq that represents the curr~nt time of 
day. 

SYNTAX. 
The syntactical structure of the TIME function is as follows: 

IH1E 

DESCRIPTION. 
The TIME function without the option is the same as TIME CCIVILIAN, 
CHARACTER>. The format of each option and string length is as follows: 

COUNTER TTTT 

MILITARY HHMMSST 

CIVILIAN HHMMSSTAP 

20 

4/6/6/4 

4/6/6/4/16 

6 

Length 
rJisait~ 

2/2/2/l 

2/2/2/1/4 

Notation used in the preceding table is as follows: 

a. HH equals hours. 
b. MM equals minutes. 
c. SS equals seconds. 
d. T equals 10th of a second 

6 

2/2/2/l 

2/2/2/112 

e. AP equals AM Cante meridiem) or PM C post meridiem). 

A digit is a 4-bit decimal number. 

8-28 

NOTE 
Time durations of less 
than one 10th of a second 
may show zero elapsed time. 



TODAYS.DATE 

IQQ6~~&06I~-EU~~Ilau~ 
TODAYS.DATE function is a class I reserved word that returns a 
character-string that represents the time and date the program is 
ccmpi led. 

SYNTAX. 
The syntactical structure of the TODAYS.DATE function is as follows: 

DESCRIPTION. 
The date and time are the date and time the program is compiled. The 
format of the 14-character string that is returned from the TODAYS.DATE 
function is ~M/OD/YY HH:MM • 

• 

8-2 9 





SECTION 9 

HOW TO WRITE A UPL PROGRAM 

!.iE~EB~L.,,, 
The writing of a computer program presupposes an understanding of the 
problem to be solved and ·a selection of the programming language most 
suitable to efficiently solving that problem. Assuming that these 

·conditions are satisfied, the following considerations should be kept 
in mind as a guide in writing a UPL source languaqe program. 

tlBlil~~-BUL.ES,,, 
The UPL Compiler accepts a card image input file where columns 1 
through 72 may be used for statements, declarations, or comments and 
where columns 73 through 80 are the card sequence-numbers and/or 
identification field. 

The ceding can be specified in a completely free form; that is1 any 
number of statements, declarations, or comments can appear on a single 
card or over as many cards as desired. Column 72 is considered 
adjacent to column 1 of the next card. Extra spaces can be used freely 
throughout the UPL code to improve the readability of the text. A oer
cent sign (~) denotes that the rest of a card is composed of comments. 
It can be used to delimit the scan procedure, thus increasing compile 
soeed. 

EXAMPLES. 
For example, the IF statement can be written as: 

IF X EQL Y THEN X := o; 
ELSE X := i; 

EQB~-OE.8-UE~.eBO~B8~,,, 

Each line on the page reoresents a 
separate card. 

Programs are divided into logical units called .PROCEDUREs1 each having 
a head statement at its beginning and being terminated with an ENn 
statement. PROCEDUREs ~ave an internal structure as described in the 
procedure statement. A PROCEDURE has a definite ordered relationship 
to all other PROCEDUREs within a program from either a side-by-side 
(parallel-PROCEDURE) or subordinate (nested-PROCEDURE) position in that 
program. The ordering inherently defines the scope or range of a data
name and the PROCEDURECs) that may be invoked from a given PROCEDURE. 

In the description that follows, the main pro9ram (lexicographical 
level 0) is considered a PROCEDURE except that it has no head or END 
statements and therefore cannot be recursively invoked. 

Data-names and nested PROCEDUREs that are used within a PROCEDURE must 
be declared and completed before any executable statements in that 
PROCEDURE. 



The outer-most PROCEDURE is considered to be the program. The 
PROCEOURECs) conta;ned within the program are considered nested at 
least one level down; that is, they are on lexicographical level 01 6r 
greater, with the maximum depth of 15 sublevels. 

Figure 9-1 shows the structure of a typical, though arbitrary, UPL 
program. Each bracket represents a PROCEDURE and is labeled as being 
PROCEDURE-n CPsubn) through END-n CEsubn). The declarations and 
executable statements are indicated as being Osubn and Xsubn, where n 
denotes the PROCEDURE to which the statement belongs. Although the 
number and nesting of PROCEDUREs will vary among programs, the 
relationship of the parts, declarations, nested-PROCEDUREs, and their 
executable statements mu~t-aQc~at_io_tb~-gtd~t-~bg~o· That is, a!! 
DECLARES for a given PROCEDURE must appear in that PROCEDURE bcfgt~ 
declaration of any nested PROCEDURE and before execution of any state
ments. When one or more nested PROCEDUREs are declared, however, they 
must be completed in their entirety <including the executable state
ments> b~fQt~ the first executable statement of the parent PROCEDURE 
can be specified. 

Five PROCEDUREs, three of which are on lexicographical level 1 CPsubl, 
Psub2, and Psub3) and two on lexicographical Level 2 CPsub4 and PsubS> 
are shown in figure 9-1. The outer-PROCEDURE is called the program and 
has no PROCEDURE head or END statements. The FINI card is used to 
signify the end of compilation. 



DsubO 
DsubO 

[

Psubl 
Dsubl 
Dsubl 
Xsubl 
Xsubl 

Esubl 

Psub2 
Osub2 
Dsub2 

Xsub2 
Xsub2 

Esub2 
Psub3 

Dsub3 
Dsub3 

Psub4 
Dsub4 
Dsub4 

Xsub4 
Xsub4 

Esub4 
Psub5 

Dsub5 

Xsub5 
Esub5 

Xsub3 
Xsub3 

Esub3 
XsubO --------
XsubO 
XsubO --------
FINI 

Declare global data-names Clexic level 0). 

Begin PROCEDURE 1 Clexic level 1). 
Local data declarations of PROCEDURE 1. 

Executable statements of PROCEDURE 1. 

END of PROCEDURE 1. 

PROCEDURE 2 Clexic level 2). 
Local data. 

Executable statements of PROCEDURE 2. 

END of PROCEDURE ~. 

Local data-names of PROCEDURE 3 that also are 
global to PROCEDURES 4 and 5 Clexic level 1). 
Local data-names of PROCEDURE 4 Clexic level 
2). 

Executable statements of PROCEDURE 4. 

END of PROCEDURE 4. 
Local data-names of PROCEDURE 5 Clexic level 
2). 

Executable statements of PROCEDURE s·. 
END of PROCEDURE 5. 

END OF PROCEDURE 3. 
First executable statement in program. 

Last executable statement in progra~. 

Figure 9-1. Typical UPL Program 
Schematic Diagram 

9-J 



Execution of an object UPL Program starts at the first executable 
statement in the outermost PROCEDURE (statement XsubO) and is the 
statement that immediately follows· ali.c~~t~d-EBOCEOUBE~· Execution of 
statements then continues successively from statement to statement 
within the outermost PROCEDURE or until a STOP statement is encountered. 

S i n c e t h e s o u r c e c o d e l i n e f o r m .a t i n U P L i s v e r y f l e x i b l e , i t i s 
suggested that statement le v'e ls be i n dented on new cards to i mp rove the 
documentation references and· the general understanding of a program. 
Thus, each new PROCEDURE may be indented to a new margin, and its 
corresponding END may be placed on that same margin. Also, since 
statements can contain other statements Csuch as DO, IF, and CASE), 
each lower statement Level may be indented. When a higher level is 
resumed, i ts st ate men t s s ho u· l d be p l aced at th e proper l eve l rr a1 r g i n • 
It should be noted that this is gul~ a suggestion and that indenting 
of statements will in no way affect operation of a UPL Program. 

Study i n g the examples and t h;e d '~ta i led des c r i pt i on s of UP L 
statements and declarations in thf s manual should aid in understanding 
how a UPL Program is written. 

EBOCECUBE.CA~~l~Ga 
Any PROCEDURE can call Cinvoke> any other PROCEDURE that is currently 
invoked Cany direct ancestor> or any PROCEDURE that is nested one level 
down within a currently invoked PF~OCEOURE Cany first-generation 
descendant>. 

For definitional purposes, the program is considered to be the outer
most PROCEDURE and is always in a currently invoked status. 

CONCEPT OF SCOPE. 
The rule follows directly from the concept of scope. Each PROCEDURE 
passes all of its declared names as globals to all its descendants. 
This includes the names of all PRCCEDUREs nested one level down. 
Notice the difference between the name of a PROCEDURE on the current 
Lexie level and the PROCEDURE being named that is on the next lower 
Lexie level. 

RELATIONSHIPS. 
Let figure 9-2 depict the compi Le-time relationships of the specified 
PROCEDUREs. 



LEXIC-LEVEL-O 

LEXIC-LEVEL-1 

LEXIC-LEVEL-2 

LEXIC-LEVEL-3 

LEXIC-LEVEL-4 

Fiqure 9-2. Procedure Comoile 
Time Relationships 

Then the SCOPE or range of each PROCEDURE is as follows: 

a. PROCEDURE E~ can invoke any of the following: PN1 
PA1 PAB1 P81 or pc. 

b. PROCEDURE E6 can invoke any of the following: p A, 
c • The parent PROCEDURE can invoke PA1 p 8, and PC. 
d • PROCEDURE E86 can invoke PA81 PABA1 p A, PAA1 PB1 

PA A 81 PAA, 

pg, and PC. 

and PC. 

As another example' let A1 9, c, o, L1 ~, and K be the names of a set 
of PROCEDUREs imbedded in some program. If the compile-time relation
ship of the PROCEOUREs is: 

A CR ( K), c CL1M)1 0) 

then the SCOPE of a PROCEDURE-invokina statement i n each PROCEDURE i s : 

a. ~ can cal l A1 g, c, or o. 
b. e can ca l l g, K1 A, c, or o. 
c. !S can ca l l K, g, A, c, or o. 
d. ~ can cal l c, L" M1 A, or B. 
e • \.. can cal l L1 c, M1 A" 81 or D • 
f. t:1 can call M1 c" L" A1 81 or D • 
g. Q can ca l l D" A1 8, or c. 

In the previous example, the schematic could be represented as shown i n 
figure 9- '3. 

9-5 



-A 

c 

[_ 

Figure 9-3. ~esting Examples 

~OCl~G-E~~t:1El.ES.1. 
A flow chart of a program that reads a card, extracts 11 fields of seven 
columns each, converts each field to a FIXED number, and then prints 
a copy of each FIXED number is sho1~n in figure 9-4. Two methods that 
can be used to code this prohlem'follow the flow chart, with the first 
method (figure 9•5) being a straignt·forward approach that follows the 
f low ch art log i c c lo s e l y. The second method C f i g u re 9 - 6 ) uses r· e curs i v e 
PROCEDURE techniques and more readi Ly exemplifies a typical UPL Program. 



0 ·I 
3 

4 

8 

HOUSEKEEPING 

CONVERT 
A BIT 

TO 
A CHARACTER 

PRINT 
A LINE 

Figure 9-4. 

·I 
SET UP 

EXTRACT 
NEXT SEVEN 

COLUMNS 

·8 

INCREMENT 
THROUGH 

FIXED FIELD 
BY BITS 

INCREMENT 
TO NEXT 

FIELD 

{ READ 
INPUT 
CARD 

CONVERT 
STORE 
FIXED 
DATA 

Programming Flow Chart 

.Q 



'° I 
CX> 

• 

-.,, 

..... 

N~ 

-x 
OJ 
3 
"O 

-

RURROUGHS 81700 UPL COMPILERt MARK 111.l <12120/72 10:21) TUESDAY• 2/ 6/73t 6:16:51 PM 

LL NL SfQllENCE :SOURCE IMAGE 

0 

0 

0 
0 
0 
0 
0 
0 
0 
0 

0 

0 

0 
0 
0 
0 
0 
0 
0 
0 

0 0 
0 l 
0 1 
0 1 
0 l 
0 l 
0 0 
0 0 
0 1 

.o l 
0 2 
0 2 
0 2 
0 2 
0 I 
0 1 
0 l 
0 I 
0 0 
0 0 
0 0 
0 0 

:s CONTQOL 

:s SIMGLf. 

:DECLARE CD CHARACTER <AO)t CHAR CHARACTER <24), F <llJ FIXED i 
:DECLARE ( Nt~• COL> FIXEDI 
:FILE IN ( OfVICE = CARO) I ' 
:FILE OUT C DEVICE= PRINTER )I ~ 

OPEN IN INPUTI 
OPEN OUT OUTPUTS 
N ::M :=COL ::OI 

:oo PRI FOREVERI 
IF COL GTR 70 THEN UNDO PRll 
f(N) :: CONVCSUBSTRCCDtCOLt7)t FIXED) I 
COl := COL + 71 
BUMP NI 
ENO PRl I 

N:= 01 
DO PR2 FORE'VERI 

M:=OI 
00 PRJ FOREVERI 

SUBSTRCCHARtM,1) :a CONVCSUBBITCFCN)tM,l)t CHARACTERtl)I 
SUMP Ml 
IF M GTR 23 THEN UNDO PRJI 

ENO PRJI 
WRITE OUT CCHAR)I 
BUMP NI 
IF N GTR 10 THEN UNDO PR21 

ENO PR21 
CLOSE TNI 
CLOSE OUTI 
STOPS 
FINH 

***** COMPILATION CO~PLETE 

PROCrnURE Sf G~ENT 



'° I 

'° 

..... 
(Q 

c ..., 
(I) 

'° I 
\J1 

_..,, 
(/) ..., 
;;J"" 0 
(1) (.Q 
(1) ..., 

rl- Q) 

3 
I\) 3 

I\) ..,, 

- x 
Q) 

3 
"O 

(1) 

• 

COMPILE STATISTICS: 

NUMBER OF ERRORS DETECTED: 
NUMBER OF CAPOS SCANNED: 
NUMBER OF TOKENS SCANNED: 
LL ZERO NAME STAC~ ENTRIES: 

PROGRAM ST•TISTICS 

0 
30 

197 
8 

CORE REQUIRED TO RUN: 4864 BITS 
NUMBEP OF SEGMENTS: 2 
SIZE OF LARGEST SEGMENT: 1725 BITS 
TOTAL SEGMENT SIZE: 1725 BITS 
OISK SIZE: 8 SEGMENTS 

RUN STATISTICS: 

NA~E STACK SIZE: 12 ENTRIES 
CONTROL STACK SIZE: 15 ENTRIES 
PROGRAM POINTER STACK SIZE: 25 ENTRIES 
EVALUATION STACK SIZE: 20 ENTRIES 
VALUE STACK SIZE: 1168 BITS 
PROGRAM STATIC CORE: 4736 BITS 
PROGRAM DYNAMIC CORE: 0 BITS 

COMPILE TIMES: 

ELAPSED TIME: 0:01:ss.2 
PROCESSOR TIME: CNOT AVAILABLE) 



'° I 
....... 
0 

,, 
ta 
c:: ., 
Cl) 

'° I 

°' 

- .,, 
(/) ., 
~o 

Cl) ta 
Cl), 

.-t Q) 

3 
....... 3 

0 ::J 
-h 1.0 

I'\) f"'1 

- x 
Q) 

3 
u 

Cl) 

I'\) 

~URROUGHS 81700 UPL COMPILERt MAQK III.l <12/20/72 10:21> 

LL NL SfOUENCE :SOURCE IMAGE 

TUESDAY, 21 6/73t 6:09:36 PM 

0 0 

0 0 

0 0 
0 0 

0 0 
0 0 
0 0 
l 0 

l 
0 

l 0 
0 0 
0 0 
1 0 
l 0 
2 0 

2 1 
CHARACTER 

2 0 
1 0 

l 

l 0 
1 0 
0 0 
0 0 
0 0 

0 0 

0 0 
0 0 

:s CONTROL 

:$ SINGLE DETAIL 

:DEFINE CH AS # CHAQACTER #, CALL AS ##1 ~ CALL IS A NULL SYMROL 
:OECLARf. WORK<ll> FIXEDt P.NU~B CH <24), CO CH <AO>; 

:FILf IN <DEVICE= CARO), OUT CDEVICE =PRINTER )J 

PROCEOURf Pl <X>t 
FORMAL C )() Fl XEDt 

IF X LSS 76 THE-N CALL Pl(X+7)C ~A RECURIVE CALL 

WORK(X/7-1) :: CONV<SUBSTRCCO,X-7,7), FIXED> I 
Rf TURN; 

END PlC 
PROCEDURE P2 <Y>t 

FORMAL CYl FIXEOI 
PROCEDUPf PJ <Z>I 

FOQMAL <Z> FIXEDI 
IF Z LSS 23 THEN CALL PJCZ+l)llA RECURSIVE CALL ON PJ 

SUBSTRCP.NUMBtZtU :a CONV<SUBBITCWORK(Y) ,z,u tCHtU i 

END P31 
IF Y NEQ 0 THEN CALL P2CY-l>I ~RECURSE P2 

CALL P3CO>t 

WRITE OUT <P.NUMB)I 
ENO P21 

OPEN IN INPUTI 
:OPEN OUT OUTPUT3 

C~Ll PlC7)1 

CALL P2 Cl 0) I 

STOP; 
F' INI: 

***** COMPILATION COMPLETE 

PROCEDURE 

Pl 

Pl 
Pl 
Pl 

P2 
P-2 
P3 

P3 

P3 

P2 

P2 
P2 

SEGMENT 



t.O 
c ., 
Ctl 

-\) (/') ., 
':::T 0 
Ctl t.O 
Ctl ., 
.-t Q) 

3 
I'\.) 3 

0 ::J 
-+. t.O 

I'\.) 

CO~PILE STATISTICS: 

NUMBER OF ERRORS DETECTED: 
NUMRE~ OF CARDS SCANNED: 
NUMRE~ OF TOKENS SCANNED: 
LL Zf~O NAME STAC~ ENTRIES: 

PROGRAM STATISTICS 

0 
26 

211 
s 

CORE QEOUJREO TO RUN: 4696 BITS 
NUMBER OF Sf.GMENTS: 2 
SIZE OF LARGEST SEGMENT: 1409 BITS 
TOTAL SEGMENT SIZE: l40Q BITS 
DISK SIZE: 7 SEGMENTS 

RUN STATISTICS: 

NAME ~TACK SIZE: 10 ENTRIES 
CONTROL STACK SIZE: 15 ENTRIES 
PROGRAM POINTER STAC~ SIZE: 25 ENTRIES 
EVALUATION STACK SIZE: 20 ENTRIES 
V.ALUE STACK SIZE: 1096 BITS 
PROGP.AM STATIC CORf: 4568 BITS 
PPOGRAM DYNAMIC CORE: 0 BITS 

COMPILE TIMfS: 

fLAPSEO TIME: 0:02:06.A 
PROCESSOR TIME: (NOT AVAILABLE> 



COMMENTS ON PROGRAMMING EXAMPLE 2 .. 
The statement "IF X LSS 76 THEN CALL P1CX+7);" will generate 10 calls 
t o PR 0 C E D U R E P 1 • W i t h e a c h :c a l l , a n a d d r e s s w i l l p o i n t t o t h e n e x t 
statement that is to be executed when the callei PROCEDURE executes a 
RETURN statement. Each invocation of Psubl also will generate new 
space for the new parameter being passed. Run-time statement 
execution, for example, then will be equivalent to the following 
sequence of statements: 

CALL Pl en; 
CALL Pl (14); 

CALL Pl (21); 

CALL Pl C28); 
CALL Pl (35); 
CALL Pl (42); 
CALL Pl (49); 

CALL Pl C56)i 
CALL Pl C63); 
CALL Pl C70)i 
CALL Pl C77)i 

WORK C77/7 - 1 ) ·- CONVCSUBSTR CCO, 77 - 7, 7), 3); 
WORK C70/7 - 1 ) := CONVC-·---- C--, 70 - 7, 7), 3)i 

(63/7 - 1 ·) := 

WORK (7/7 - 11) := CONVC-··---------, 7 - 7, ---> ---); 

Procedures P2 and P3 use similar logic counting down by 1 from 10 in P2 
for a total of 11 iterations.and from 23 to 0 in P3 for 24 iterations. 
Recursive calls will not qenerate new code because all procedures in 
UPL are re-entrant. 

9-12 



SECTION 10 

UPL COMPILER CONTROL 

~CJt:1elL.~.D~~tS,, 
To ccmpile a UPL Program from card~, the following control cards are 
required: 

?COMPILE pg•name[withJUPL LICBRARY] 

C?FILE STATEMENT CARDS] FILE cards can be used to relabel the 
compiler files. <Refer 'to FILE 
statement in the Software Qperational 
~anual.) 

'?DATA CARDS 

[$NEW] 

l.JPL SOURCE CARDS 

FINI 

?END 

The UPL Campi ler files are: 

Eile 

Card so rce inout file. CARDS 
SOURCE 
NEWSDURCE 
LINE 

Primary source file if $MERGE is used. 
Updated source output file if $NEW is used. 
Line or inter file. 

The $~EW compiler control will create a source file on disk that may 
have other source images merged during compilations. 

f;~amgl~ 
To compile using a source file on disk and merge additional source 
images, use the following control cards: 

HOMPILE PG-NAME [WITH] UPL LICBRARYJ 

C?FILE STATEMENT FOR SOURCE] 

[?FILE STATEMENT FOR NEWSOURCEJ 

'?DATA CARDS 

!MERGE 

1 0-1 



( Uff W J 
UPL SOURCE IMAGES TO BE MERGED (PATCHED) 

UPL SOURCE IMAGE WITH SEQUENCE FIELD EQUAL 99999999 

FIN I 

?ENO 

~Q~El~'B-CQ~IBO~-C~BO-QEilQ~~a 
All compiler control cards must have a 1 Cdollar sign) in column 1. 
Control ootions may appear anywhere from columns 2 through 71 and must 
be separated by a space. Columns 72 through 80 are for sequence num
bers. 

The word "NO" may aopear before most options. 
the effect of the option. 

It turns off or reverses 

The following is an alphabetical Listino of the options and their 
actions. 

Qc!i~HHi 

AMPERSAND 

CHECK 

CODE 

CO~HROL 

C S S I Z E I rH E G E R 

DETAIL 

D 0 URL E 

DYNAMICSIZE INTEGER 

10-2 

Prints those ampersand cards that 
are examined. 

Checks the source input file for 
sequence errors. 

Prints the UPL-object code gener
ated for each source statement. 

Turns on the printinq for all 
following control cards. To see 
the control option printed 
requires two control cards. 

Overrides the compiler estimate of 
the control stack size. Integer 
is in number of entries. 

Pr i n ts t he e x pans i on of a.l l def i n e 
invocations. 

Doub le so.aces the l i s t i n 9. 

Overrides the compiler estimate of 
the memory allocated for paged 
arrays. INTEGER is the number of 



bi ts allocated. 

ESSIZE INTEGER Overrides the compiler estimate 
for the size of the evaluation 
stack. INTEGER is the number of 
entries·. 

FORMAL.CHECK The actual parameters passed to 
each procedure will be checked, 
at execution time, against the 
types and Length specifications of 
their corresponding formal decla
rations. Also, the values 
returned from function procedures 
will be checked against the type 
and length in the procedure head 
statement. Lack of correspondence 
is a run-time error. 

INTERPRETER INTERPRETER MULTI-
FILE-NAME/INTERPRETER/FILE NAME Changes the default interpreter 

ID from UPL/INTERPl. When the 
program Cbeing compiled) is 
executed, it will require a new 
interpreter as specified. 

INTRINSIC 

LIST 

LIS TALL 

MER GE 

NEW 

NO 

INTRINSIC-FAMILY-NAME Changes the family name of the 
intrinsics to be used when the 
program Cbeing compiled) is exec
uted. The default intrirsic 
family name is UPL.INTRIN. 

Prints the source input that was 
compiled. A NO list also will 
tur~ off the LISTALL options. 

Prints all source input whether or 
not conditionally excluded. The 
LISTALL turns on LIST, but 
NO LISTALL does not turn off LIST. 

The primary source file is on tape 
or disk and will have cards 
merged from the card reader. 

Creates a new primary source file. 

Turns off or reverses the effect 
of any option that immediately 
follows it. 

10-3 



Qgti'2D~ 

NSSIZE INTEGER 

PAGE 

PPSIZE INTEGER 

SEQ 
CBEGINNING-NUMBER INCREMENT> 

SINGLE 

SIZE 

SUPPRESS 

VOID SEQUENCE NUMBER 

VSSIZE INTEGER 

XMAP 

10-4 

Overrides the compiler estimate of 
the name stack size. INTEGER is 
in number of names. 

Causes a skip to the top of a new 
page listing. 

Overrides the compiler estimate of 
program pointer stack size. 
INTEGER is the number of entries 
in the stack. 

Resequences the new primary output 
f i Le. 

Single spaces the listing. 

Prints code segment names and 
sizes at the end of the compile. 

Suppresses warning messages. To 
suppress sequence error messages, 
use NO CHECK. 

Voids or removes records in the 
primary source file. Begins at 
the sequence number of the VOID 
card and goes through the sequence 
number following the word VOID. 
The VOID card may not be preceded 
by a NO, must be the only compiler 
option on the card, and must con
tain sequence numbers in columns 
72 through 80. 

Overrides the compiler estimate 
for the value stack size. INTEGER 
is in bits. 

Creates an extended UPL-object 
code MAP file showing the relative 
displacement of object code per 
source card sequence number per 
code segment. 



APPENDIX A 

CLASS I RESERVED WORDS 

ACCEPT ANO AS 
BASE BIT BUMP 
BY 
CASE CAT CHANGE 
CHARACTER CLEAR CLOSE 
DECLARE DECREMENT DEFINE 
DISPLAY DO DUMMY 
DYNAMIC 
ELSE END EQL 
EXOR 
FILE FILLER FINI 
FIXED FORMAL FORMAL.VALUE 
FORWARD FHOM 
GEQ. GTR 
IF INTRINSIC 
LEQ LSS 
MOD 
NEQ NOT 
OF OPEN OR 
PAGED PROCEDURE 
READ RECEIVE REMAPS 
SEEK SEGMENT SEND 
SKIP SPACE STOP 
SUBB IT SUBS TR 
THEN TO TODAYS.DATE 
UNDO USE 
VARYING 
WR !TE 





BASE.REGISTER 
CONV 
DATE 
LENGTH 
MAKE.READ.ONLY 
NAME.OF.DAY 
REVERSE.STORE 
S EA RC H • l I ~I K ED • L I S T 
SWAP 
TIME 

APPENDIX B 

CLASS II RESERVED WOROS 

BINARY 
CONVERT 
DECIMAL 
LIMIT.REGISTER 
M.M[M.SIZE 

S.MF.M.SIZE 

B-1 





APPENDIX C 

CLASS III RESERVED WORDS 

ASCII 
BACKUP 
CRUNCH 
DEVICE 
DISK.FILE 
DISK.FILE.2 
DISK.PACK.CAELUS 
EBCDIC 
ENO.OF.TEXT 
FORMS 
LABEL 
LOCK.OUT 
NEW 
ODD 
OUTPUT 
PAPER.TAPE.PUNCH 
PARITY 
PUNCH 
RANDOM 
REEL 
REMOVE 
SERIAL 
SPO 
TAPE.7 
TAPE.7.UPRIGHT 
TAPE.9.CLUSTER 
TAPE.9.PE 
VARIABLE 

AREAS 
CARD 
CRUNCHED 
DISK 
DISK.FILE.1 
DISK.PACK 
DISK.PACK.CENTURY 
EDF 
EVEN 
INPUT 
LOCK 
MULTI.FUNCTION.CARD 
NO.REWIND 
ON 

PAPER.TAPE.READER 
PRINTER 
PURGE 
RECORDS 
RELEASE 
SECURITY.ID 
SORTER.READER 
TAPE 
TAPE.7.CLUSTER 
TAPE.9 
TAPE.9.NRZ 
UNIT 
WITH 

c-1 





INDEX 

Accept statement, 
descriptinn of, 7-2 
examples of, 7-2 
syntax of, 7-2 

Access.file.information statement, 
description of, 7-3 
syntax of, 7-3 

Access mode option of file statement, 7-10 
Actual parameters, 2-s 
All.areas.at.open attribute of change statement, 6-21 
ALL.areas.at.open option of file s·tatement, 7-13 
Area.by.cylinder attribute of change statement, 6-21 
Area.by.cylinder op~ion of file statement, 7-13 
Areas option of file statement, 7-12 
Arithmetic expressions, 3-6 
Array data-name' 3-2 
Array page type statement, 

description of, 6-2 
syntax of, 6-2 

Array in data concepts, 2-2 
Assignment, 2-3 
Assignment statement, 

descriotion of, 4-3, 6-3 
examples of, 6-5 
syntax of, 6-3 

Backup option of file statement, 7-10 
Base.register function, 

description of, B-2 
syntax of, 8-2 

Basic concepts, 
assignment, 2-3 
data concepts, 2-1 
general information on, 2-1 
lexicographic level, 2-8 
procedure types, 2-7 
procedures, 2-4 
replacement, 2-3 
scope, 2-9 
single-pass compiler, 2-4 

Basic symbols, 1-3 
Bit data type, 2-1 
Binary function, 

description of, 8-3 
examples of, 8-3 
syntax of, 8-3 

Blocks.per.area attribute of change statement, 6-20 
Braces in metalanguage, 1-2 
Brackets in metalanguage, 1-2 
Buffers attribute of change statement, 6-19 
Buffer option of file statement, 1-11 
Bump statement, 

description of, 6-11 

one 



INDEX Ccont} 

examples of, 6-11 
syntax of, 6-11 

Case control statement, 4-3 
Case function, 

description of, 8-4 
examples of, 8-4 
syntax of, 8-4 

Case statement, 
description of, 6-13 
examples of, 6-14 
syntax of, 6•13 

Cat function, 
description of, 8-5 
examples of, 8-5 
syntax of, 8-5 

Change statement, 
descriotion of, 6-15 
dynamic attributes of, 6•15 
examples of, 6-22 
syntax of, 6-15 

Character data type in data concepts, 2-1 
Class I reserved words, A-1 
Class II reserved words, s-1 
Class III reserved words, c-1 
Clear statement, 

description of, 6-23 
syntax of, 6-23 

Close statement, 
descriotion of, 7-4 
examples of, 7-5 
syntax of, 7-4 

Conditional inclusion statement, 
description of, 6-24 
examples of, 6-24 
syntax of, 6-24 

Conditional or relational expressions, 3-7 
Conditional page statement, 

description of, 6-26 
syntax of, 6-26 

Conditional symbol statement, 
description of, 6-27 
examples of, 6-27 
syntax of, 6•27 

Consecutive periods in metalanguage, 1-2 
Control statements, 4-1 

case, 4-3 
do, 4•2 
do forever, 4-2 
if,, 4-2 
procedure call,, 4-1 

Convert function,, 
description of, 8•7 
examples of, s-10 

two 



INDEX (cont) 

syntax of, 8-7 

Data concepts, 2-1 
arrays, 2-2 
bit data type, 2-1 
character data type, 2-1 
data storage allocation, 2-2 
data type conversion, 2-2 
duplicate data-names' 2-2 
fixed data type' 2-1 

Data-name values variable, 3-4 
Data names, 

array data-name' 3-2 
simple data-name, 3-2 

Data storage allocation, 2-2 
Data type conversion, 2-2, a-9 
Date function, 

description of, 8-12 
syntax of, a-12 

Decimal function, 
description of, a-13 
examples of, 8-13 
syntax of, 8-13 

Declaration statements, 4-1, S-1 
declare statement, s-2 
define statement, 5-9 
formal statement' s-12 
forward procedure statement' s~1s 

general information on, s-1 
procedure statement, 5-17 
segment statement, s-23 
segment.page statement' s-25, 
use declaration statement, S-27 

Declare statement, 
descriotion of, 5-3 
examples of, 5-5 
syntax of, s-2 

Decrement statement, 
description of, 6-28 
examples of, 6-28 
syntax of, 6-28 

Default options of file statement, 7-12 
Define statement, 

description of, 5-9 
examples of, s-10 
syntax of, 5-9 

Device attribute of change statement, 6-16 
Device option of file statement, 7•9 
Display statement, 

description of, 7•6 
examples of, 7-6 
syntax of, 7•6 

DO control statement, 4•2 
DO forever control statement, 4•2 

three 



INDEX Ccont) 

DO statement, 
descript.ion of, 6-29 
examples of, 6•30 
syntax of, 6•29 

Duplicate data· names, 2-2 
Dynamic attributes of change statement, 

all.areas.at.open, 6-21 
area.by.cylinder, 6•21 
blocks.per.area, 6•20 
buffers, 6-19 
device, 6-16 
end.of.page action, 6•22 
EU.incremented, 6-21 
EU.special, 6-21 
file.IO, 6-16 
Label.type, 6·16 
Loeb 6-19 
multi.file.Io, 6-15 
number of areas, 6-20 
optional, 6-19 
pack.IO, 6-20 
parity, 6-18 
record.size, 6-19 
records.per.block, 6-20 
reel, 6-20 
save, 6•19 
single.pack, 6-21 
SR.station, 6-22 
translation, 6-18 
use.input.blocking, 6-22 
variable, 6-19 

End.of.page action attribute of change statement, 6•22 
End.of.page action option of file statement, 7-14 
EU.incremented attribute- of change statement, 6-21 
EU.incremented option of file statement" 7-13 
EU.special attribute of change statement, 6-21 
EU.special option of fi Le statement, 7-13 
Evaluation of an expression variable, 3-5 
Executable statements, 

array page type, 6-2 
assignment, 6-3 
bump, 6-11 
case, _6-13 
change, 6•15 
clear, 6-23 
conditional inclusion, 6-24 
conditional page, 6-26 
conditional symbol, 6•27 
decrement, 6-28 
oo, 6-29 
FINI, 6-32 
general information on, 6-1 
IF, 6·33 
library, 6•36 

four 



INDEX Ccont) 

null, 6-37 
procedure call, 6-38 
return, 6-40 
reverse.store, 6-42 
stop, 6-43 
undo, 6•44 
zi P' 6-46 

Expression types, 3-6 
arithmetic, 3-6 
fixed arithmetic, 3-6 
function, 3-8 
logical, 3-8 
non-fixed arithmetic, 3•6 
relational or conditional, 3-7 

Expressions, 
data names in, 3-2 
format of, 3-1 
operator precedence in, 3•5 
types of, 3-6 
variables in, 3-3 

File.ID attribute of change statement, 6•16 
Fi le statement, 7-7 

description of, 7•8 
examples of, 7-8, 7-10, 7-11 
syntax of, 7•7 

FINI statement, 
description of, 6•32 
syntax of, 6•32 

Fixed arithmetic expressions, 3-6 
Fixed data type, 2-1 
Formal parameters, 2-6 
Formal statement, 

description of, s-12 
examples of, S-13 
syntax of, s-12 

Format of expression, 3-1 
Forms option of file statement, 7•10 
Forward procedure statement, 

description of, 5-15 
·examples of, 5-16 
syntax of, s-15 

Function expressions, 3-8 
Function procedure, 2-7 
Functions, 

base.register, 8-2 
binary, 8-3 
case, 8-4 
cat, 8-S 
convert, 8-7 
date, 8-12 
d'ecimal, 8-13 
general information on, s-1 
hex.sequence.number, 8•14 

five 



INDE)( Ccont) 

if,. 8-15 
language characteristics of,. 1-6 
length, 8-16 
limit.register, a-17 
memory size,. 8-18 
mod,. 8-19 
name.of.day,. 8-20 
search.linked.list,. 8•21 
sequence.number,. 8•22 
subbit,. 8•23 
substr,. 8-25 
swap, 8-27 
ti me, 8-28 
todays.date, a-29 

Hex.sequence.number function,. 
descriotion of, 8•14 
example of,. 8•14 
syntax of, 8-14 

If control statement, 4-2 
If function, 

descriotion of, 8•15 
examples of,. a-1s 
syntax of, 8-15 

IF statement,. 
description of,. 6-33 
examples of, 6-34 
syntax of,. 6-33 

Input/output statements,. 7-1 
accept, 7-2 
access.file.information, 7-3 
close,. 7-4 
di Sp lay,. 7•6 
file,. 7-7 
general information on, 7-1 
open' 7-15 
read, 7-17 
receive,. 7-19 
search.directory, 7-20 
seeb 7•22 
send, 7-23 
skip, 7•24 
space,. 7-25 
write,. 7-27 

Invocation of procedures,. 2-s 

Key words in metalanguage,. 1-2 

Label.type attribute of change statement, 6-16 
Label.type option of file stqtement,. 7-9 
Language characteristics,. 

basic symbols, 1•3 
functions, 1-6 

s; x 



INDEX (cont) 

general information on, 1-1 
language statement types, 1-5 
metalanguage, 1-1 
reserved words, 1-s 
UPL procedure format, 1-1 
UPL program format, 1-1 
UPL ~roperties, 1-1 

Language statement types' 1-s 
Length function, 

description of, 8-16 
examples of, 8-16 
syntax of, 8-16 

Lexicographic level, 2-8 
Library statement, 

description of, 6-36 
syntax of, 6-36 

Limit.register function, 
description of, 8-17 
syntax of, 8-17 

Literal variable, 3-4 
Lock attribute of change statement' 6-19 
Lock option of file statement, 7-11 
Logical expressions, 3-8 
Logical operator usage, 3-8 
Lower-case words in metalanguage, 1-2 

Memory size function, 
description of, 8•18 
syntax of, B-18 

Metalanguage, 1-1 
braces in, 1-2 
brackets in, 1-2 
consecutive periods in, 1-2 
key words in, 1-2 
lower-case words in1 1-2 
period in, 1-2 
type (length) in, 1-2 

Mod function, 
description of, 8-19 
example of, 8-19 
syntax of, 8-19 

Mode option of file statement, 7-11 
Multi.file.ID attribute of change statement, 6-15 

Name.of .day function, 
description of, a-20 
syntax of, 8-20 

Non-fixed arithmetic expressions, 3-6 
Null statement, 

description of, 6-37 
examples of, 6-37 
syntax of, 6-37 

Number.of.areas attribute of change statement, 6-20 

seven 



INDE)( Ccont> 

Open option of file statement, 1-12 
Open statement, 

descriotion of, 7-15 
examples of, 7-16 
syntax of, 7-15 

Operator precedence in expressions, 3-5 
Optional attribute of change statement, 6-19 
Optional option of file statement, 7•11 

Pack.ID attribute of change statement, 6•20 
Pack.ID option of file statement, 7-12 
Parameters, 

actual, 2-s 
formal, 2-6 

Parameters to procedures, 2-s 
Parity attribute of change statement, 6-18 
Pass-by-name procedure, 2-6 
Pass-by-value procedure, 2-6 
Period in metalanguage, 1-2 
Procedure-call statement, 4-1, 6-38 

description of, 6-38 
examples of, 6-38 
syntax of, 6-38 

Procedure invocation, 2-5 
Procedure statement, 5-17 

description of, 5-19 
examples of, 5-21 
syntax of, 5-17 

Procedure types, 
function procedure, 2-7 
regular procedure, 2-7 

Procedures, 2-4 
actual parameters, 2-s 
formal parameters, 2-6 
parameters to procedures, 2-5 
pass-by-name, 2-6 
pass-by-value, 2-6 
procedure invocation, 2-s 

Read statement, 
description of~ 7•17 
examples of, 7-18 
syntax of, 7•17 

Receive statement, 
description of, ?-19 
syntax of, 7-19 

Record.size attribute of change statement, 6-19 
Records option of file statement, 1-11 
Records.per.block attribute of change statement, 6-20 
Reel attribute of change statement, 6-20 
Reel option o"f file statement, 7•12 
Regular procedure, 2-? 
Relational or conditional expression, 3-7 
Replacement, 2-3 

eight 



INDEX (cont) 

Reserved words, 1-s 
Return statement, 

descript;on of, 6-40 
examples of, 6-40 
syntax of, 6•40 

Reverse.store statement, 
descr;pt;on of, 6-42 
examples of, 6-42 
syntax of, 6•42 

Save attr;bute of change statement, 6-19 
Save option of f;le statement, 7•11 
Scope, 2-9 • 
Search.d;rectory statement, 

descr;ption of, 7-20 
syntax of, 7-20 

Search.l;nked.list function, 
description of, a-21 
syntax of, 8-21 

Seek statement, 
descript;on of, 7-22 
examples of, 7-22 
syntax of, 7•22 

Segment.page statement, 
descr;pt;on of, 5-25 
examples of, S-25 
syntax of, S-25 

Segment statement, 
descr;ption of, 5-23 
examples of, 5•23 
syntax of, 5-23 

Send statement, 
description of, 7•23 
syntax of, 7-23 

Sequence.number funct;on, 
descr;pt;on of, a-22 
example of, a-22 
syntax of, 8-22 

Simple data·name1 3-2 
Single.pack attribute of change statement, 6-21 
Single.pack opt;on of file statement, 7•13 
Single-pass .compiler, 2-4 
Skip statement, 

descr;ption of, 7-24 
examples of, 7-24 
syntax of, 7•24 

Space statement, 
descr;ption of, 7-25 
examples of, 7-25 
syntax of, 7•25 

SR.station option of file statement, 7-14 
Statements, 

assignment statement, 4-3 
control statements, 4-1 

nine 



INDE>( Ccont) 

declaration statements, 4-1 
general information on, 4-1 

Stop statement, 
description of, 6-43 
syntax of, 6-43 

Subbit function, 
description of, 8-23 
exampJes of, 8-24 
syntax of, 8-23 

Substr function, 
description of, 8-25 
examples of, 8•26 
syntax of, 8-25 

Substrings of data-names, 3-3 
Substrings variable, 3-5 
Symbols, basic, 1-3 
Swap function, 

description of, 8•27 
examples of, a-27 
syntax of, 8-27 

Time function, 
description of, 8-28 
syntax of, 8-28 

Today's.date function, 
description of, a-29 
syntax of, 8-29 

Translation attribute of change statement, 6-18 
Type Clength) in metalanguage, 1-2 

Undo statement, 
description of, 6-44 
examples of, 6-44 
syntax of, 6-44 

UPL procedure format, 1-1 
UPL program format, 1-1 
UPL properties, 1-1 
Use declaration statement, 

descriotion of, 5-27 
examples of, s-27 
syntax of, 5-27 

Use.input.blocking attribute of change statement, 6•22 
Use.input.blocking option of file statement, 7-13 

Value function procedure call variable' 3-4 
Variable attribute of change statement, 6-19 
Variable option of file statement, 7-11 
Variables, 3-3 

data-name values, 3-4 
evaluation of an expression, 3-5 
literal, 3-4 
substrings, 3-5 
value function procedure call, 3-4 

ten 



wr;te statement, 
descr;pt;on of, 7-27 
examples of, 7-28 
syntax of, 7•27 

z;p statement, 
descr;ption of, 6•46 
examples of, 6-46 
syntax of, 6-46 

INDEX Ccont) 

eleven 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	10-01
	10-02
	10-03
	10-04
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11

