B 1000 SYSTEM SOFTHARE RELEASE MARK 10.0

DOCUMENT/NCPNANUAL

B 1000 MCPII

REFERENCE DOCUMENT

EE X E RS FESEREESERRESE LSS RS RS EES R R R R SEERRLERSRANSEEES R ESEESERSS]

&

& TITLE: Bl0OOO SYSTEM SO0FTHARE RELEASE MARK 10.D {SUPPORT)

3

FILE ID= DOCUMENT/MCPMANUAL TAPE ID2 SUPPORT
*
 AREEARARELAALTERAEEEEEAAELERERAAEEE R ARREARKAERARTRAEALESARAA AR AR IRAARE &
k%K . L X &
B oama PROPRIETARY PROGRAM MATERIAL T
& &Kk [2. X
LA X2 THIS MATERIAL IS PROPRIETARY TO BURROUGHS CORPORATION k&
& K&% AND IS NOT TO BE REPRODUCED» USED OR DISCLOSED EXCEPT Eaw
LA 2R IN ACCORDANCE NHWITH PROGRAM LICENSE OR UPON WRITTEN LA R
X mkE AUTHDRIZATION OF THE PATENT DIVISION OF BURROUGHS . w~=x
LR CORPORATION» DETROIT» MICHIGAN 48232. 1SA. LR
i kk& A&k X
* %A COPYRIGHT (C) 1981 ok
k ExKx BURROUGHS CORPORATION * k& f
r Rk X 8
IS FEFEFSESEESTEEIEESS SRR ZERRIRE S S S S S S SNERIFEIS SN RS NSRRI E SRS & 83

*
x
&
*
4
®
&
&
*
&
£
*
>
*
*
*
*
x
*

INIRBDUCIIDN -» - - » » - - - - -» » L] - » -» - - » A L] - - - >
- RELATED DOCUMENTATION

TERMINOLOGY AND DEFINITIONS

THE

B1000 MCP MANUAL
MARK 10.0

JABLE OF CONTENIS

€5 N0 O U1 AN bt et W N TN et s

SA-MACHINE » - - -» » - - -» » " » -» - » » - - - L] - » - »
S0FTHARE
FIRHH ARE » - » » - » » » L] » » L] » L J » » L J » -» » L 4 » - »

MEMORY MANAGEMENT AND MEMORY LINKS » e 8 s ®» s 8 s » »
SEGMENT DICTIONARIES AND SYSTEM DESCRIPTORS
INTERPRETER MANAGEMENT» PARAMETER BLDCKS ANC DICTIONARIES
CODE FILES» PROGRAM PARAMETER BLOCKS AND FILE PARAMETER BL
RUN STRUCTURE
RUN STRUCTURE NUCLEUS ® B @ ™ e ® » ® B m B B s ® e » 2=-11
DATA AND FILE DICTIOMARIES 2=12
RE=ENTRANT PROCESSING AND CODE SEGMENT DICTIONARIES .+ » 2=12
I70 SUBSYSTEM 3-1
I{O DESCRIPTORS - - » - » L » » » » » » » - » » » L] - »
GISMG = THE I/70 DRIVER
CHANNEL]ABLE - L1 - - » -» - ' - -» » » » » » » » L] - » » »
GISMO/HARDWARE INTERFACE
ﬁ\A]Rﬁ CYCLES » » - » » - -» L » E » -» - » » - - » » - »
PROCESSOR I/0 INSTRUCTIONS
STATUS COUNTS 3
DATA TRANSFERS ® % 2 ® & ®» ®w ® ® e w8 wm s mowos » e w 3
I/Z/70 CHAINING 3=-13

3

3

3

N
I?Ff?f?h)Niﬂhfﬂhiﬂ

]
NOWVBDDNTEN

| TR PRI T PR PR FY R PR
[

[
- e

DISK Ilg CHAINING - » L d » » - . . » » » - » » » » » - »

DISK I/0 OVERLAPPED SEEKS =15
TAPE I/70 CHAINING * ® » ® B ® W ® B 8 B ® m s s = s » =16
MONITORING OF PERIPHERAL STATUS 3=-18
I/70 ASSIGNMENT TABLE ® ®» ® o ® ®» » » ® » & & ® s = & » 3-18
UNIT MNEMDONICS 3=22
TEST-ANDLHWAIT 1/0 DPERATORS » ®» ® ®» ® » = 3 » 5 » 8 » 3-23
STATUS PROCEDURE 3=~23
DISK IDENTIFICATION = PACK LABELS + o o » » » » = » 3=24
PACK INFORMATION TABLE 3=-25
TAPE LABELLING», INITIALIZATION AND PURGING » » s s » » 3=26b
PE/NRZ EXCHANGES 3-31
FILE STRUCTURES « ®» ®» » » » ®» ®» ®» e » % » » » »w » s 3=33
CONVENTIONAL FILES 3-33
FILE NAMING CONVENTIONS @ » ® ®» » & ® & » » 8 » & ® » -3=-35
LOGICAL DISK FILES 3-36
PHYSICAL DISK FILES » » ®» 2 » » ®» ®»w » » ®» o » s » » » = 3=30
DISK SPACE ALLOCATION ’ 3=3%
FILE ACCESS AND IDENTIFICATION » ®» » » 2 o » » & » 337
DISKX FILE IDENTIFICATION 3-38
MULTI-PACK FILES » ®» ® ® B ® ® e 8 ® ® ® 5 5 w® ®»» 3=-39
BASE PACKS 3=40

TC~1

B1000 MCP MANUAL
MARK 10.0

CONTINUATION PACKS e » » 2 mom o om o e e w s
MULTI=PACK FILE INFORMATION TABLE
MULTI=-PACK FILE GENERAL RESTRICTIONS » s » »
PRINTER FILES
LINAGE Clause T L L L " T T S
PRINTER AND PUNCH BACKUP CAPASILITIES
BACKUP FILE BLOCKING FACTORS & o« » o » © » = » » » »
BACKUP FILE CONTROL INFORMATION
BACKUP FILE LOGICAL RECORD FORMAT s ® » » 3 ® » ®» »
Relative Files
Direct Files » ®» @ @ B B & 2 & 8 B ® B ® ® B S P ™
Relative File Data Structure ,
Relative File Disk Initialization e » = o » 8 » ® @
Relative File Parameter Blocks (FPBs)
Relative Disk File Headers (DFHS) « o » » = » o » »
Relative File Information Blocks (FIBs)
Relative File Communicate Operators » e ®» e s om e
Indexed Sequential Files
Direct Files » ® ® ®m B ® B B ® B 85 8 W™ B 5 8 B "8 B »
Index Files
Eluster Files » ® ®» ® @ ® B ® ®» 8 » 8 S ® B W s b »
Indexed Sequential Data File 5Structure
Indexed Sequential Index File Structure .« « + 2 = »
Indexed Sequential Memory Structures
Fig Dictionarias » ® W O ® W s ® O M O ® B S ™R O® w ® »
Indexed Sequential User 5Specific Information TUSI)
Indexed Sequential File Global Information (GLOBALS)
Disk File Header Extensions
Indexed Sequential Disk File Header Extension » » »
Indexed Sequential Available Space Allocation

Index File Table Splitting > ® ® ® » B » W » e » o »

Current Record Pointer {CURRENT)

CURRENT Maintenance m» e e a8 m o m s m e s s e o= os
Indexed Sequential Buf fer Management

Indexed Sequential Buf fer Descriptor (BD) & « « o =»
Concurrent Update Operations

Disk I/70 Error Procedures » % ® ® W ® ® a & ® @ B
The 0ffset Procedure

The Strobe Procedure » » W 8 ® ® W M ® 3 B B B e ®»
The Error Correction Procedure

Data and Address Error Recovery = 215 And 225 Drives
Data and Address Error Recovery = 205 And 26 Drives
Data and Address Error Recovery = 207 Drives =« » » =
Data and Address Error Recovery = Disk Cartridges
Remainder of the Disk I/0 E£rror Procedure e o & » »

Tape 170 Error Procedures
S=MEMORY MANAGEMENT AND MEMDORY REQUIREMENTS o = = o »

GENERAL MEMORY MANAGEMENT CONCEPTS
LINKED MEHDRY * - » » - » » - - » » - » - - - » » » -
TYPES OF MEMODRY REQUESTS
THE FENCE - -~ - » - » » » » » » - » » » - - - »
MINIMIZATION DF "CHECKERBOARDING™
VICTIM SELECTIBN » E d L - - » - » » » - » - » » L] »
ROUND-ROBIN VICTIM SELECTION

7C-2

B100D MCP MANUAL
MARK 10.0

WORKING SET DETERMINATION » @ ® » B ®w a B @ ®» 5 B e 4=06

SECOND CHANCE VICTIM SELEFTION 4=6
PRIDRITY VICII" SELECTI{’N - » » » » k3 - - » » - » » "-?
PROGRAMMATIC DETECTION OF MEMORY THRASHING h=9
”EHDRY INITIALIZA][IDN » -» » » - » » - - -»] -» » - - » » #-10
MEMORY REQUIREMENTS 4=15
OPERATING SYSTEM STATIC REQUIREMENTS » » » o o« » » = » 4=15
OPERATING SYSTEM DYNAMIC REQUIREMENTS 4=21
PROGRAM=DEPENDENT STATIC REQUIREMENTS <« o » = » » » » » 4=26
PROGRAM=DEPENDENT DYNAMIC REQUIREMENTS 4=28
M=MEMORY MANAGEMENT ® o » » » % % o ®m s ®m e 2 e s e e » I
DISTRIBUTIGON 5-

) CONTENTION » ® m @ » m » » 8 ® % m » » e » s » » e » a » 5=1
PROCESS (PROGRAM) MANAGEMENT b=-1
DEMAND MANAGEMENT 2 » » 2 % & #» ®» ®» » w » » » » 2 » » » » v =1

MCP DUTER LODOP 7~-1
TIMER INTERRUPT » ® » ®» ® W s 8 B s B #2 B S s B W e -1
I70 INTERRUPTS =1
JOB SCHEDULING AND INTTIALIZATION e » » a m» » s » e » e I™2
COMMUNICATES 7=3
PROGRAM REINSTATE a ® 3 ® B B ® ®W B B & B W ® B ® s s =4
PROGRAM COMMUNICATES =4
COMMUNICATE FORMAT » ®» & ® ™ ® B 3 ® B e s 0 @ am =5
READ C(MICRO MCP) [i

WRITE (MICRO MCP) » » & @ ® ®» ™ & ® s B B B & = =9

SEEK {NICRO MCP) =12

SORTER CONTROL @ % » ®» » o » & & » » s » » » o =13

SORTER READ (MICRO MCP) - T=15

OPEN C(DWM) > ® 2 ® » % ®w 2 m ®» @ » » »n a » » » » =15

CLOSE (DMWY 7=17

OPEN » = ® ®» » ®» » e = » » ®w 8 o » » = w . » s » ™17

Disk File OPEN 7=28

CLosSE . & » =2 » a2 ®» 2 ®» » » » » s » » » » =32
POSITION (MICRO MCP (BACKUP FILES OhLYJ) =38

ACCESS FILE PARAMETER BLOCK (FPB) » 2 o » » » T™41

ACCESS FILE INFORMATION BLOCK (FIB) T=42

DATA OVERLAY » ® W e ™ 2 B e ® ® ® 8 » e ® s » =42

ACCESS DISK FILE HEADER (DFH) 7T~43
FIND/7MODIFY (DM) T A

STORE (DM) 7=45

DELETE (DM) > ® » » » & & ®» » » » » » o » » » I=46
CREATE/RECREATE (DH) =46
SHITCH.TAPE.DIRECTION *» » » » » s » » » » e s TI=47
TERMINATE A570P RUND =47

FREE (DM) * » » ® ®» @ #»# » » » » » 3 » » » » » » =50
TIME/DATE/DAY 7=50
INITIALIZER 170 > ® 8 ®» ® ® ® 8 » 2 s ® 2 » » 7=-51

WAIT {SNODZED 7=52

Z1ip e » » » » » ®» » m ® ®» w2 os » » 8 » » » s « (™52

ACCEPTY 7=53

DISPLAY a ® ® ®» ® ®» ® ®» ® » ™ 3 ® VT S B B ® @ 7T=53
USE/RETURN 7T=54

SORT HANDLER » ® » ® ® 3 ®» ® ® ® e ®B ® » ® " » 7=54

SDL TRACE 7=55

TC=-3

B100O0O MCP MANUAL
MARK 10.0

ENULATOR TAPE (MICRO MCP) » ® & @ 2 » =

C0OBOL PROGRAM ABNORMAL END

SHRT EUJ » » -» » -» - » » - » L d » - » - -»

FREEZE/THAW RUN STRUCTURE

COMPILE CARD INFORMATION s ® ® e s » e
DYNAMIC MEMORY BASE

NEHDRY DUMP TU QISK » » -» » » - ® - » L
GET SESSION NUMBER

DC'I“ITIATEOIG - - » » » "» - » - - -» -
NDL/MACRO COMMUNICATES

QCHRIYE - » - *» - - - “» E J -» » L J -» -» - »
QUICK QUEUE WRITE (RENOTE FILES)

QUICK QUEUVE WRITE (STATION NUMBER) - o
ACCESS USERCODE FILE

PRUGRAH CALLER - - - - . » » » » » » » »
LOAD.DUMP MESSAGE

COMPLEX ®AIT (MICRO MCP) s ® s s » » @
MESSAGE COUNT

RECOVERY COMPLETE =« » = s = » 5 » » & »
GET.ATIRIBUTES

CHANGE.ATTRIBUTES » ® o ® s m s ® » » »
ACCESS.GLOBALS

INDEXED SEQUENTIAL POSITION = = o =» » =
INDEXED SEQUENTIAL READ

INDEXED SEQUENTIAL WRITE = » 3 » » »
INDEXED SEQUENTIAL REWRITE

INDEXED SEQUENTIAL DELETE = o » » » = o

RELATIVE I/0 COMMUNICATE = START
RELATIVE TI/0 COMMUNICATE - WRITE s = »
RELATIVE I/0 COMMUNICATE - REWRITE
RELATIVE I/70 COMMUNICATE = DELETE o « »
RELATIVE I/0 COMMUNICATE = READ

SEQUENTIAL REWRITE (MNCP) o s ® 8 e »
INDEXED/SEQUENTIAL OPEN
INTER~PRODCESS COMMUNICATION o » » o s o » » = » & @
QUEUE SYSTEM AND INTERFACES

DESIGN PHILOSOPHY a ®» s ® = » ®» 2 % & »

QUEUE FILE FAMILIES
QUEUE DESCRIPTORS » o » 2 2 o » = & » =
QUEUE DISK
MESSAGE DESCRIPTORS ®» 2 ® » 2 @ ® e » =
MESSAGE BUFFERS
QUEUE FILE LOGICAL I/0 OPERATIONS
WRITING TO THE TOP OF A QUEUE FILE .
MESSAGE.COUNT COWMMUNICATE
INTER=PROGRAM COMMUNICATION o o = s = o o » o = o »
RUN UNIT DEFINITION
IPC IMPLEMENTATION OF SHARED DATA » ® = e 2 2
IPC RUN STRUCTURE NUCLEUS CHANGES
R5-RUNSUNIT BIT(16) =+ o = » » = = = » » » »
RS+RUNLUNIT.LINK BIT{16)
RS- IPC.PARAMETER.LIST BIT(Z4)

TC~4

]

B=1

| I |
AT B W NN ek e e

oD HOH L
1

[= -]
I & ¢
Lol I |
oN

8=10
8-11
8=12
8=-12
8=12
8=-12
8-13

B100O0 MCP MANUAL
MARK 10.0

RS‘IPC"DICI.SIZE BII(&E’ » » » » » L J E » E 4 » » - » 8-13

RS-EXECUTE.TYPE BIT(4) 8~-13
RS- NAME CHARACTERC30) » & ®» & ® ®& » ® 8 B » s B » 8-13
RS5-CALLERS.LR BIT(24) B=14
RS« IPLLEVENT BIT (1) » % ® ®& ® ® » @ B ™ ® W B » B=14
RS.CANCELED BITC(1) B=14
IPC Program Parameter Block Changes s » 2 = » » » a » B=1l4
PROG.IPC.SIZE BIT(16) 8=14
PROG.IPC.PTR BIT{24) » v = » s » » » & » » » » » » B=15
PROGIPL. MAX-SEND-PARAMS BITI16) 8-15
IPC.DICTIONARY m ® s ® ® @ o » » s ®» » s % » s » » » » 8=15
IPC COMMUNICATE OPERATOR 8=16
IPC Verbdb OpEI‘ation @ = & B @ ® ® ® » » ® & B »® 8 * N » 8—-16
IPC CALL OPERATION 8=-17
IPC CANCEL OPERATION ® ® % ¥ © m» » a » » 2 » » » = » » B8=19
IPC EXIT PROGRAM OPERATION B=19
1PC TERMINATION CONSIDERATIONS » s B W™ W W ® e B ® s ® 8=-19
IPC MICRO MCP/5.MCP COMMUNICATION . . : 8=-20
IPC PROGRAM DUMPS » » ® » s 8 % s 2 s e @ s o v » » 8=-21
IPC CANDIDATES FOR ROLL-OUT 8=-21

IPC PRDGRAM NAME SPECIFICATIONS ' - .o 8=-21

B1000 MCP MANUAL
MARK 10.0

INIRODUCTION

The purpose of this document is to define and discuss the Master
Control Program I1 (MCP) for the Bl00D machines. The concept and
design of the MNCP uillt be discussed and the functional
specifications of the MCP's operations will be catalogued.

The sort» data communication» and data management systems will
not be discussed in any depth in this document. Detailed
descriptions of these features appear in other Burroughs
publications (See Related Documentation belou).

RELAIED DOCUMENTAIION

Name Number
BiQO0 MCP Utildliaties PsSe 2212 5579
B1000 Network Definition Language PS5« 2212 5223
B1000 Data Management Systems II PsSs 2212 S470
BLB0OO/B1700 Sort PaSse 2201 6752
B1000 Software Operational Guide 1068731
These specifications are written for those peapile Wwith

programming experience and a knowledge of basic software
conceptse. Those unfamitiar with operating system design will
gain idnsight into the Burroughs philosophy of system management.
Those individuals familiar with operating systems of other
manufacturers or of other Burroughs machines will gain an
understanding of the Master Control Program implemented
specifically for the Burroughs Bi1000.

Also idncluded in this specification are brief descriptions of
various functions performed by the wmicro-coded 1I/0 driver
routinesa These same routines are often referred to as "GISMO”™
and ™I/0 dinterpreter®™. The discussions are necessary for
completeness and for a thorough wunderstanding of the B1000O
operating system of which the I/0 driver is an integral part.

MCP I1I is a modulars supervisory program that assumes CORMONy
1logically complex functions to simplify and expedite the tasks of
programming and system operation. Its most idmportant duties
include such functions ass

* Scheduling» initiations runnings and termination of jobs

B1000 MCP MANUAL
MARK 10.0

* Providing a symbolic means of communicating with the system
while shielding the user from the detail of the hardware

& Providing a family of common facilities such as managemsent
of input/output operations and file maintenance

* Managing the system®s resources for optimum utitization in a
multi=-programming environment

STHACHINE

The B1000 is a small-to-medium scaler general purpose computer
systems Its distinguishing feature is its flexibility», made
possible through interpretive processings, In any computer system
a representation of any process has two components: (1) a family
of structures representing the state of that processs and {2) a
series of operators able to manipulate those structures. Until
the advent of fourth generation computers» both components were
represented in the machine hardware idtsel f. A compiler or
Language translator transformed the source code {e.gar COBOL»
FORTRAN) into a "machine Llanguage™ {object <code) which was
defined in terms of the hardware architectures.

For the set of processes abide to be generated by any particular
programming Llanguages there exists a machine architecture which
best represents those processes. For 1instances CoBOL is a
character=oriented Language and performs decimal arithmetic
exclusively. Because of its data manipulation featuresr, it might
best utilize a machine architecture with multi-address operatorss
capable of performing efficient "movess™ "comparess™ and simple
expression evaluation. On the other hands FORTRAN was designed
to compute complex mathematical funmctionse It favors a stack
structure for parameter passing and complex expression
evaluation. It performs binary arithmetic and would prefer 30~-
to 50=bit word sizes.

The difficulty of designing a bhardware structure capabie of
handling two such divergent languages in the most efficient
manner becomes apparente. It would be possibler in principle at
leastr to design the harduare in such a way as to adegquately
represent both sets of structuress Howevers this would prove to
be prohibitively expensives« The typical approachs therefores» has
been to either design the hardware to favor one language at the
expense of others or to design a compromise structure capable of
handliing several {danguages» but none in the most efficient
manner. The wide variety of programming languages in current use
has placed a great strain on the capacity of the hardware to
efficiently execute code compiled from very di fferent languagesas

Bi1000 MCP MANUAL
NARK 10.0

It is to this problem that designers of fourth generation
softwares and the B1l000 in particularr have addressed themselves.
Rather than build a particular structure inte the hardware» the
concept of. the ™ soft wmachine™ has been developed whereby the
ideal environment of structures and operators is programmatically
simulated.

The B1000 hardware was designed with as little explicit structure
as possible. Because memory may be addressed to the bit» no one

structure 1is inherently favored over any other. The onily
required structure is that which will allow the simulation of any
*soft machine™, Thus the range of structures able to be

represented on the B1000 is unlinmited.

As stated previouslys, for every compiler language there exists a
machine architecture Wwithin which the algorithms generated by
that compider will best cun. On the B1000 this hypotheticat

enyironment is called the "S-machine™. An S=machine has been
defined for each language such Lthat any process may be
repreasented in its most efficient or most natural form»

unrestrained by any arbitrary hardware configuration.,

Compilers on the B1000 generate code files which contain (1) the
information necessary to initialize the appropriate S—machine at
run timers and (2) the "5=code™ to be executed on this S=machine.
S=code is uwritten in S—-language» the machine language for an
S=machinee Execution 1is achieved by the S—=code being
interpreted» an S—operator at a times by a micro-program called
an interpreter.

S0ETHARE

The term "software®s» as used in this documents refers to all
programming supplied by the S5anta Barbara Plant. When the term
is usedsr it most likely is referring to programs that are written
in a higher—=Level language. This may not always be the case» but
typically», the term will refer to the compilers and wutility
programs created by the Programming Activity.

EIRMHARE

The firmware consists of a set of interpreterss those portions of
the MCP which are micro~coded and reside in an entity known as
the MICRO/MCP» and a program called "GISMO". For each 5-language
a micro-coded program called an interpreter acts upon the
hardware and executes the compiled 5-code as defined by the
S=machines« The B1000 softuware has been implemented in such a way

1-3

B1000 MCP MANUAL
MARK 10.0

that any number of interpretive structures may be active in the
system at any given timee. This is achieved by dynamically
establishing» upon demandr the S=machine structure for any
Processa.

For instances the MCP» uhich is itself a programs is uritten in a
high=ievel {language» SDL» that 1is designed specifically for
Writing software. It has its own optimum environment {the 35DL
S=machine) consisting of, the structures and operators required
for software applications. It has its own S~language and its owun
interpreter {the SDL interpreterd). Running simultaneously in the
system may be another progras written 1in a different language
{esgs» cosgoL). This program also has its own structure (the
COBOL S~machine)» S=languager and interpreters. The systems when
executing the MCP's supervisory functionss» assumes the
architecture of the 5DL S=machine and» when executing the C0BOL
instructions» takes on the COBOL S—-machine structure. This
switching of interpreters and process environments 1is managed
completely by the sceftware and is invisible to the user of the
machines '

The B10OD MCP has actually evolved to its present state.
Driginally. ali functions of the MCP uwere coded in SDL.
Beginning with the 4.0 release of the softwares, the most commonly
used routines of the MCP were uwritten in micro~code and placed in
GISNO. This resulted in substantial performance improvements.
Beginning with the 5.1 release of the softwarer these commonly
used routines were removed from GISMO and placed in the entity
mentioned previousiys the MICRO/NCP.

These specifications have also svolved along with the MCP. Many
of the functions describad herein are now performed by the
MICRO-MCP» though the function itself remains exactly the same as
it was when it was performed by 5DL code. Since this document is
intended to be a functional specification of the B1000 operating
systems all MCP functions are described herein. Whether the
function 1is performed by SDL <code or by micro code shouid be
completely transparent to the user. Actuallys the functional
result is the same for both, but the time and resource
requirements are not identical. The difference is therefore not
always transparent.

Throughout this document» the acronym "MCP"™ may be referring to
the MICRO/MCP or to the SDL MCP. In cases where the distinction
is importants T"MCP" widl not be used but the two terms mentioned
above will bea This documents thens» will actually be a
functional specification of the operating systemr as it uwas
originally intended to ber though it widll actually be describing
tWo separate and distinct programs. Since GISMD is also a
critical part of the operating systenms the document may also

81000 MCP MANUAL
MNARK 10.0

touch upon portions of GISMO.

GISMD is a micro=~coded family of critical routines common to all
processesSas GISMD may also be referred to in this document as
"CSM"» an acronym for Central Service Modutle. It is a central
module of service routines used by atl programs in the system and
per forms three basic functions:

1. Switching of control between all contending processes in the
system» '

2 Recognition and gueueing of interrupts received from the 1/0
controls or from other processes in the system»

3. Initiation and wmanagement of the I/0 controls connected to
the machiness» usually at the reqguest of another precess.

Processor allocations the switching of control between twn or
more processess is handled by the "Micro Scheduler®™ module in
GI5MD. This module may be thought of as an "Duter Loop™. It has
absodlute control over the process which widl be performed next on
the systema

Interrupt resolution consists of routines which perform certain
functions. depending on the type of interrupt and certain other
critical conditions. The interpreter in control senses the
inkterrupt and calls upon GISMO to take the required actione

GISNO?s service request module (soft I/0) performs the function
of a harduware device capable of performing a memory access at the
request of an I/0 control. An I/70 control on the B100O is a
hardware device which acts as an interface between soft I/0 and a
peripheral devices It requests access to memocry on behalf of the
device and manages the device itself. The collection of 170
controls is called the I/0 sub=systema

Typical data transfer operations invoilve frequent but brief calls
upon soft I/0 by the IJ0 sub=system. The firmware was designed
in such a way that between the exescution of any two S5=operators»
the interpreter in control will check a ¥flag in the processor
fcalled the Service Reqguest Bit) to see if the I/0 sub=system is
demanding attention. If it ise the interpreter passes control to
GISMD which performs the necessary memery access and returns
control to the interpreater.

B1000 MCP MANUAL
MARK 10.0

JERMINQLQGY AND DEEINITIONS

Before proceeding with a detailed description of what the MCP
does and how it goes about its» it will be necessary to define a
number - of terms and data structures whose names are used
familiarly throughout the document. The reader shouldd know the
meanings of the terms» but a thorough understanding of the many
diverse programming structures presented herein is not required.
The structures are presented only in t he interests of
completenesss and as a possible aid in understanding the
narrative descriptions of the MCP's functions» presented in the
i{ater sections of the specification. ‘

MEMORY MANAGEMENI AND MEMORY LINKS

The MCP organizes and aldocates space in memory through the use
of fields known as memory links. Each Link immediately precedes
the bhlock of memory it describes and includes such information
as® The size of that block of memorys the type of use (if any)
to which it is puts and pointers to the immediately preceding
and succeeding Linkse. If the block of memory is classified as
available (i.e.» not currently in wuse by any process)s an
additional set of descriptors point to the Links of the oprior
available and next available blocks of memory. Thus it is
possible to search addl dinks or .only those 1links describing
available memory. A programmatic description is given belows

DEFINE MEMORY.LINK.SIZE AS #187#7

DECLARE MEMORY.LINK TEMPLATE BIT(MENORY.LINK.SIZE)?
DEFINE MEMORY.LINK.DECLARATION AS #

DECLARE 01 DUMMY REMAPS MEMORY.LINK.»

2 ML.DISK DSK.ADR»
2 ML.GRQUP»
3 ML-POINTER ‘ ADDRESS»
3 ML.JOB.NUMBER BITL(16)»
3 ML.TYPE BIT(6)»
3 MLa.SAVE BIT(1)»
2 ML.SIZE BIT(24),
2 ML.PRIDRITY.FIELD BITC(30)»
3 ML.DK-INTERVAL BITC10)»
3 ML.CURRENT.DK.INT BIT(10)»
3 ML.INCOMINGLPRIORITY BIT(5)»
3 ML.RESIDENCE.PRIORITY BIT(5)»
4 NL.RP.WHOLE - BIT(4),
4 NL.RP-FRACTION. ' BITL(13»
2 ML-FRONY BIT(24)»
2 ML.BACK BIT(24)»
2 ML.USAGE.BITS BIT(2)»

3 ML.PREVIOUS-SCAN.TOUCH BIT{13»
3 ML.CURRENT.SCAN.TOUCH BITI(1)3 #>

81000 MCP MANUAL
MARK 10.0

USEf ML.DISK
#ML.PDINTER
»MLo.J0OBA NUMBER
» ML TYPE
s ML.SAVE
’ML«I SI ZE
» ML FRONT
s ML.BACK
) OF MEMORYLLINK-DECLARATION?

DEFINE Q.ML.DECLARATION AS#DECLARE

01 Q.MEMORY.LINK TEMPLATE
02 FILLER BITCMEMORY-LINK.SIZE)
02 R.ML-F.AVL ADDRESS
02 RaMLeB-AVYL ADDRESS

LT B

2

DEFINE

TAKE.LD AS#0#
» TAKE.RIGHTMOST AS21#
>
DEF INE X TYPES FOR "ML-.TYPE"™
CODE AS #022%
AVAILABLE AS #2822
RN.5 A5 #3282
MCP.TEMP AS FLE ¥4
USER-FILE AS #5182
SEG.DICTY AS 43 &4
MICROCODE - RTRX
DICT.MASTER AS #8#
QUEUVUE.DIRECTORY.TYPE

AS #9»

¥ ¥ ¢ % % e N @

M3G. BUFFERY

AS #1102
MESSAGE.LIST.TYPE

AS 211»
TO.BE-FORGOTTEN AS #12#
DATA.SEG AS #13%
DBM-BUFFER AS Rl
TERMINATING LINK AS #1522
MCP.PERM AS FleR2
PSR- MEM AS F17%%
MCP-IDAT AS R138#¥X
DISK.HEADER AS #19#X
PACK.MNEM AS R20%%
SD.CNTNR AS #2183
SCHED.NEM AS 222%X
SORT.MEM AS #23#%
DCHe NEH AS #2482
MICROCODE. NON.OVERLAYABLE AS #25#%
QUEUE-AVL.BUF.V AS #2b6%#
DES.DISK.HDR AS#27T#X

h]] A]

v

LY T 2 B TR I TN T R Y

2=2

B1000 MCP MANUAL
MARK 10.0

DMS.STRUCTURE AS#28#Z
DMS.TEMP AS R298X
DM5.GLDBALS AS #30#X
DMS-TEMP.LOCK.DESCR AS #31%#
XM.MEMORY AS #32%
PERM.SP0.BUFF AS #33%

Y N % v e N

"TEMPLATE™ in the above description is defined as "REMAPS BASE".
This is not important to an wunderstanding of memory Llink
operatione. TADDRESS™ is defined in the MNCP symbolic as
“BITL24)", The word "ADDRESS™ here is used as a denotation of
memory address. Hences “"ML.BACK™ in the description above is a
pointer to the previous memory link and "ML.FRONT™ is a pointer
to the succeeding link. ML-SIZE will contain the size of the
arear» in bits» and ML.GROUP is valid only if the area is in use.
MLL.POINTER widl contain the memory address of the segment
dictionary entry associated with this memory areas Segment
dictionaries are described in the next sectione. ML «JOB « NUMBER
will contain the job number of the program using the area.
"ML +5AVE» the description of which is defined as "BOOLEAN,™ is5 set
on if the memory area must be saved on disk before it is
overiaid.

As can- be determined by adding the sizes of the various
componentss a2 memory 1link requires 187 bits of storage spaces
Since memory is allocated dynamicallys it is often difficuldt to
predict Wwith any degree of accuracy exactly how much memory wilil
be required by any taske. The sizes of ald memory links involved
must be included in the calculations. This is discussed further
in a Later paragraph.

SEGHMENT DICTIONARIES AND 3SYSIEM QE.&ERIEIHEi

Virtual memory is supported by allowing process segmentation. By
segmenting codes data» and interpreters and dynamically moving a
segment inte or out of memory as requireds the system is able to
fanction as if it had "wirtually infinite” memory capacitye. The
MCP manages this facility through three structures: Code Segment
Dictionaries» Data Segment Dictionaries» and Interpreter Segment
Dictionaries. Each dictionary consists of a string of system
descriptors each of which describes one segment including its
lengths location and statuse. As a segment is moved in or out of
memory its dictionary entry is updated accordingliy.

At run time the MCP creates the code and data segment
dictionaries from information in the program®s code file. The
interpreter segment dictionary is c¢reated from the interpreter
code file in the same manner and is5 referenced by an entry in the

interpreter
Clear/5tart

into

timees

given below?

SYJTEY DESCRIPIORS

DECLARE

dictionarys

The run

structure

structure of the program contains
pointers to the code and data segment dictionaries and an
the interpreter dictionary.

B1000 MCP MANUAL
MARK 10.0

fixed in memory at

index

A programmatic description is

01 SYSTEM.DESCRIPTOR TEMPLATE BIT(SY.SIZE)S

X

DEFINE SY-DECLARATION AS ZSY.DECLISYSTEM.DESCRIPTORI#7X
DEFINE S5Y.DECLLX) AS #DECLAREZX

01 DUMMY REMAPS X»X

02
02
02
02

02

02

02
02
02

02

02

L 1]

R

SY.IN.USE
SY.MEDIA
SY.LOCK
SY.IN.PROCESS

S5Y.INITIAL

SY.FILE

5Y.DK.FACTOR
SY.S5EG.PG
S5Y.TYPE

5Y.ADDRESS
03 FILLER
03 SY.CORE
SY.LENGTH

BIT(1)»
BIT(1)>»
BIT(1)»
BIT(1)»

BIT{1)»

BIT(1)»:

BIT(3)
BITL7)>»
BIT(4)>»

BITI{3b6)»
BITL12)»
BITL24)»
BIT(24)5

BETC TR IE SE PE M PO B R RE BE RC RGN R RE PO B BE R NE RE SE T 3 M R RE B R pe B R B R

MEMORY MANAGEMENT
1=5=-MEMORY

TO HELP
0=DISK»

TRUE IF THERE IS AN 1I/0 IN
PROCESS FOR THE INFORMATION
REPRESENTED BY THIS DESCRIPTOR.
IF TRUE» "SY.CORE™ CONTAINS A
POINTER TO THE I/0 DESCRIPTOR.
"ADDRESS™ IS5 READ=ONLY MOTHER
COPY» HENCE IF "HWRITE™ THEN GET
NEW DISK AND REPLACE ADDRESS.
THE OBJECT OF THIS DESCRIPTOR
IS A FILE WHOSE USERCOUNT MUST
BE DECREMENTED WHEN THIS
DESCRIPTOR IS5 RETIRED.

MEMORY DECAY FACTOR
MEMDRY.ACTIVITY AUDITING

UNITS FOR SY.LENGTHa

BITS

DIGITS {4 BIT)

CHARACTERS (8 BIT)

NORMAL DESCRIPTORS

DISK SEGMENTS

SYSTENM DESCRIPTORS

SYSTEM INTRINSIC

INDIRECT REFERENCE

ADCRESS GIVES RELATIVE
DISPLACEMENT IN BITS
CSIGNED NUMBER).

8= MICROS

Wowouo NN

NOTNEWN-D

PORT» CHANNEL AND UNIT.

CORE» OR ADDRESS WITHIN UNIT.
NUNBER OF UNITS» AS DETERMINED
BY SY.TYPE.

B1000 NCP MANUAL

MARK 10.0
4

DEFINE ND.DECLARATION AS?#

DECLARE

01 DUMMY REMAPS NORMAL.DESCRIPTOR BIT(ND.SIZE)D»
02 NO-DK.FACTOR BIT(3)»
02 FILLER BIT(6)>»
02 ND.TORE BIT(24)»
02 ND.TYPE ‘ BIT(3)»
02 ND.LENGTH BITL24)7 %3

5Y.51IZE is defined in the MCP code as eightya Hence eighty bits
are rvequired rto contain one segment dictionary entry» or systenm
descriptor. The wuse of the term “DESCRIPTOR™ in B1000O
documentation is often misleading and ambiguouss. There are many
different types of descriptorss» all of which have different
mEROTY requirements and formats, Consequently» systen
descriptors will always be referred to as such or as segment
dictionary entries. '

The comments on the various fields comprising the systenm
descriptor are largely self-explanatory. Perhaps some
explanation of selected fields would be beneficials however.
S5YsLOCK is set true if the system descriptor describes a data
field and if the interpreter is currently accessing the field.
This is to avoid the situation which arises in a simple
replacement statement where the sending and receiving field are
both in overiayable segments. In order to do the replacement»
both data segments must be in memory simultaneously.

SY-INITIAL s true for initialized data oniy. The most common
case of this occurs when executing a ‘COBOL oprogram and the
programmer has used the value clause to initialize data fields
and the data field idtself 1is in an owverlayable segment.
SY-ADDRESS may be either a disk or a memory address, depending on
the setting of SY.MEDIA. If it is a memory addresss» the m=most
significant twelve bits are ignorede If it is a disk address»
the most significant twelve bits contain the porte channel and
unit associated with the disk addresss

INICREREIER MANAGEMENI» PARANLEIER BLOCKS AND DICTIONARIES

The B1000 MCP maintains a List or directory of atl files on disk.
file stored on disk has a unique namer which may consist of up to
three fieldsr» each of which may consist of up to ten characterss
Associated with each file on disk is an ditem called a "Disk File
Header™. The disk file header serves essentially to describe the
filea All of this is described in detail 1in later sections.
This brief discussion is being included at this point to -
facilitate the following discussions on interpreters.

81000 MCP MANUAL
MARK 10.0

Included in the disk file header is a field which denotes the
type of file. There are separate type numbers for data fiies»
code files» interpretersr, and so forthe. Code files (programs)
and interpreters are further described by the first disk segment
contained in the file. This segment is cailed the ™Progranm
Parameter Block™ or the *Interpreter Parameter Block"»
respectively. A detailed description of the program paramter
btock is presented in a later sections A programmatic
description of the interpreter parameter block 1is presented
belous

DEFINE IPBLDECLARATION AS#
DECLARE 01 DUMMY REMAPS IPB BIT(1440)»
02 FILLER BIT(1192)»
02 IPB-HARDWARE CHAR(1)»
02 IPB.ARCHITECTURE.NANE CHARI10)»
02 IPB.COMPILERLLEVEL BIT(8)»
02 IPB.MCP.LEVEL BIT(8)»
02 IPB.GISMO.LEVEL BIT(8)»
02 IPB.ARCHITECTUREL.ATTRIBUTES BIT(80)»
02 FILLER BIT(56)3

IPB-HARDWARE will contain either an "5" or an *"N"» depending upon
whether the interpreter sas generated for an S—-memory or an
M=memory processofe All B1800?s are considered to be M-memory
processorse IPB. ARCHITECTURE.NANE will contain the generic name
of the compilers such as COBOL or FORTRAN. IPB.CONPILERLEYEL
Wwidll be a number which #ill correspond to the release Llevel of
the software» as described below. IPB.MCP.LEVEL, IPB.GISMO.LEVEL
antd IPB. ARCHITECTURELATTRIBUTES are parts of the interpreter
verification feature of the MCP.

The B1l00D MCP idincludes facilities to recognize the hardware
configuation it is executing upon and select the <corresponding
interpreter from the disk directorys All programs which are
compiled for execution on a B1000 wiill have an interpreter "TYPE™
requested the program parameter block of the code file {(described
in a later section)» of the specific name of the interpreter to
be useds As explained in a later section» the program paramseter
block contains space for three names to be associated with an
interpretera For discussion purposes herer, the three names wWill
be referred to as the "PACK” namer the ™FAMILY" name and the
"OFFSPRING™ nameas

The B1000O compilers generate the d4ast two names of the
interpreter only. The family name generated always corresponds
to the QLlanguage. the program is written in. such as "COBOL™ or

B1000 MCP MANUAL
' MARK 10.0

"FORTRAN" S The offspring name is always one of the reserved
words TINTERP™» "DEBUG™ or "TRACE™. At BODJs the MCP modifies the
of fspring name by concatenating one numeric character denoting
the compiler level and either the character "¥" or "S™ depending
upon whether the machine is equipped with an S-memory or an
M-memory processor.

The 1level number concatenated is contained in the program
parameter block as "PROG.COMPILERLEVEL™. Every time the
compilers are changed in such a manner that the interpreter nust
also be changed» the level number geénerated by the compiler is
ingcremented. The interpreters are then modified accordingly and
released to the field under a new name- The new name uill be the
same as the old onesr» except for the Level number contained in the
nameas For a COBOL program which 1is being executed on a
Blr20=series machine and had been compiled by the 4.1 COBOL
compiler» the MCP will generate “"COBOL®"/™INTERPIM" as the
interpreter name to be used for the executions It should be
noted that this feature was first included in the 4.1 software
releases Level numbers were not included in the program
parameter block prior to the 4.1 releasea.

Once the interpreter name is generated» the disk directory is
searched for the interpreter. Upon finding the interpreters, the
MCP will bring it into S-memory» if it is not already theres» and
construct an antry in the "INTERPRETER.DICTIONARY™. Ald
interpreters are re=entrant on the B1000. AlL of this is
described in greater detail in the paragraph which follow. Each
entry in the interpreter dictionary has the following format.

DEFINE ID.DECLARATION AS#DECLARE
01 DUMMY REMAPS INTERPRETER.DICTIONARY»

02 ID.SEG.DIC - 5Y-D5Ch»
02 ID.ENTRY.IN.USE BOOLEAN»
02 ID.R5DNT.USERCOUNT BIT(7)»
02 ID-TOTAL-USERCOUNT BIT(7)»
02 ID.MIN-M.SIZE BIT(4)»
02 ID.HMAX.M.SIZE BITL{4)>
02 ID.PARTIAL.BIT BOOLEAN»
02 ID.BLOCK.COUNT BITC4)»
02 FILLER BIT(19),»
02 ID.MaPRESENCELBIT BOOLE AN»
02 ID.M.ADDR BIT(12)»
02 ID.TOPM BIT(4)>»
02 ID.MEDIA - BITL2)»
02 ID.LOCK BOODLEAN»
02 FILLER BIT (13)»
02 IDLTYPE BIT(4)»
02 ID.ADDRESS BIT(36)»
03 FILLER BIT(12)»
03 ID.CORE BIT(24)»

B1000 MCP MANUAL
MARK 10.0

02 ID.LENGTH BIT(24)5¥5

There is one entry in the interpreter dictionary for each
interpreter presently in uses. The I/70 driver is always the first
interpreter entered in the dictionarye the Micro NCP is5 the
second entry and SDL is always the third entry in the dictionary.
On the B1000» it 1is possible to seqgment interpretersa.
Consequentiy» a code segment dictionary is constructed for each
interpreter as it is brought into memorye. The system descriptors
the first item in the interpreter dictionary» is a pointer to the
interpreter®s code segment dictionarys. Interpreters may be
segmenteds exactly as prograss are. The same routines in the MCP
are used for handling program segments and interpreter segments.

A certain amount of information about each program currently
being executed is5 maintained in memory by the MCP. The field in
which this information 1is maintained 1is known as the Run
Structure Nucleus of the program. It is abbreviated as
R5.NUCLEUS. In the RS-NUCLEUS» there i35 an index into the
interpreter dictionary. All programs being executed at any given
time which are using the same interpreter widi have the same
index in the field in their respective nucleuss In this manners
interpreter re—entrancy is accomplished.

The remaining field in the interpreter dictionary entry will not
be described in detail at this points For a more detailed
description of interpreter managements»_ the reader is referred to
the section of this document which deals with M=memory
management. It should be sufficient at this point to say that
all interpreter segments except the Ffirst are treated as ordinary
code and are considered overlayable. The first segment of each
interpreter is not treated as code and i5 not overlayable»
howevers

The I/0 drivers uWhich is considered an interpreters is an
exception to the above statementss

CODE EILES» BROGRAH PARANEJER BLOCKS AND EILE E2RAMEIER BLOCKS

The code file of every program must contain two types of records
to aliow the MCP to manage the execution of that progranm® the
"File Parameter Block™ (FPB)» and the "Prograr Parameter Block”™
{PPB). There is one FPB for each file declared in a program plus
one entry for a trace file.

The first 2880 bits (two disk segments) of every code file is the
"pProgram Parameter Block™ (PPB) whose format is rigidily defined

B1000 MCP MANUAL
MARK 10.0

by the MLP. Every compiler generates a PPB of the same format.
It provides» for the MCP» all the vital statistics of the program
includings: The program's names’ the name of the interpreter to
be used during executions the relative addresses of the FPB!s»
IPB» code segment dictionary and data segment dictionarys memory
requirements for the progran®s executions and tracing
information.

At run time a working copy of the PPB is written into a temporary
or permanent log fas dictated by the system options). The first
two segments of this four segment entry are an exact copy of the
PPB from the code file. Anot her segment is generated by the MCP
and documents certain features of that particular execution. A
final segment §s reserved for an abnormal termination message.

If the code file is an interpreter code file» it contains an
additional segment called the "Interpreter Parameter Block™, It
contains information concerning the softuware compatibility of the
interpretera. A fiedd in a program’s PPB specifies under which
interpreter it wili rune. When the program is scheduled for
executions the IPB of the interpreter named in the PPB is checked
to insure that the interpreter is compatible with both the code
file and the system softwaree. - The MCP informs the systenm
operator via a SP0O message if the interpreter cannot run. Refer
to the appropriate MCP listing for & programmatic descriptions

The ™File Parameter Block™ (FPB) is a 1440-bit record created by
the compiler from the user?s file attribute deciarations. Its
format i5 rigidly defined by the MCP» and it contains the vital
statistics which aliow the MCP to manage the file?s usage. When
a job 1is scheduled for execution» a working copy of the FPB is
Wwritten into a permanent or temporary log f{(depending on systen
options). In addition to recording the file®s attributes» the
MCP documents the use of the file during that job's execution.
It records such information as the number of times the file was
opened and closed? the total amount of time the file was opens
the number of records reads the number of 1/0 errorss; and the
file type. Refer to the appropriate MCP Listing for a
programmatic description.

EILE INFORMATION BLOCKS

As each file is opened by the user programs a structure known as
a File Information Block (FIB) is created in memory by the MCP.
The FIB contains ali information nscessary for the MCP to perfornm
normal» requestedsr 1I/0 operations on the files Much of the
information in the FIB is taken directly from the FPB. Other
information in the structure is inserted by the MCP» based upon
the characteristics of the peripheral device assigned to the

2=9

B1000 NCP MANUAL,
MARK 10.0

fidlea Device assignment is discussed in the section of this
specification which describes the Open Communicate.

-

FIB*s vary in size» depending upon the type of device assigned to
the file. Due to the amount of information which wmust be
maintained» a disk file FIB is much larger than that of a card
punch files» for examples

I/0 descriptors and buffer memory areas are allocated and
initialized by the NLP at the same time. There will therefore be
one memory link only» for each file that is active in a programe.
Buffer areas and descriptors are not normally shared between
files» though the Data #Management subsystems the Data
Communications subsystenas the Relative file implementation and
the Indexed file implemenation offer sowme exceptions to this -
rulea

A complete structural description of the FIB wiil not be
presented hereins due primarily to the Llength of the structure.
Alsos» the FIB 4is of interest to the various portions of the
gperating System onlys The programmatic description of the
structure is. readily avaiiable 1in the NMCP listings Sizes of
FIB*s for the different peripheral devices are presented in the
foklowing table.

File Assigned to3 Size in Bits
Reader=Sorter 742
Printer 724
Remote Device 557
Tape 724
Disk 976
Queue 385
ALl Other Devices 612

RUN STRUCTURE

The structure in memory that represents the state of any process
is the run structure. Each process has a unique run structure.
When a job is initialized before execution, the MCP creates the
run structure from an analysis of the program?s code file» and
adds certain information it widl need for management of the
executions ALl run structures are linked together by prioritys.

A run structure consists of a prograam"s data or address spaces»
the MCP?s managerial space called the run structure nucleusr and

2=190

B1000 MCP MANUAL
MARK 10.0

the file and data segment dictionariesa. The program?s address
space» residing between its base and Limit registers» is that
area of memory that wmay be accessed and manipulated by the
program Jtself. A program?s base register is a memory address
that marks the lower bound of its addressable space. The Limit
register specifies the upperbound. A program may not access
memory that is outside its own base to limit areas though this
tenet is enforced by the interpreters and not the MCPa

A program®s address space may contain both resident and
overlayable data. The resident data area contains those fields
which will be present in memory throughout the duration of the
executions The overiayable data space contains segmented data
which may be brought into or out of memory as needed.

RUN STRUCTURE NUCLEUS

The Run Structure Nucleus is an area structured and maintained by
the MLCP and contains the essential information about the programe.
It resides in memory directly above the program?s limit register
and is accessible by the MCP and the program®s interpreter., 1t
contains such information ass$

* Pointers to

BASE AND LINIT

SEGMENTY DICTIONARIES (CODE AND DiTAJ
FILE DICTIONARY

INTERPRETER DICTIONARY ENTRY

NEXT RUN STRUCTURE (BY PRIBRITY)
CODE FILE ON DISK

DISK LOCATION OF RUN STRUCTURE If "ROLLED OutT"™
PROGRAN's LOG ENTRY

VIRTUAL DATA SPACE ON DISK

NEXT INSTRUCTION 7O BE EXECUTED

DNS POINTERS

® Structures necessary for communication between the program and
the MCP

- & Fietds to refilect the state of the S—-machine

L] Fields for preogram switches

3

A programmatic description may be obtained from the MCP Listing.

81000 MCP MANUAL .
‘MARK 10.0

DAIA AND EILE DICIIONARIES

The data segment dictionary resides at the end of the Run
Structure Nucieus and is pointed to by a field in the nucleus.
If there is no segmented data and the user has not requested that
his resident data area be initialized» then the pointer will be
null» and there will be no dictionary.

Each entry in the dictionary is an B0-bit system descriptor
pointing to one data segment. . '

The last element of a run structure is the file dictionarye.
There is5 one BO0-bit descriptor for each decdared file plus one
additional descriptor for a trace file (used for tracingl. Hhile
a file is openes its dictionary entry points to the file*s FIB in
memory. If a file has never been opened, its entry is null. 1f¢
a file has been temporarily closed (ieee» “CLOSE ROLLOUT™)» its
dictionary entry points to its FIB which has been written to
diske After a permanent closer the file"s dictionary entry wilil
again be null.

REZENIRANT EROCES3ING AND CODE SEGMENT DICTIONARIES

The 81000 MCP aliows re=entrant processing» the ability of two or
more processes. to use the same code segment dictionary and.
thereby» the same code. The code segment{s) and code segment
dictionary reside outside a program?s run structure» and a field
in the run structure nucleus points to its code segment

dictionary. A structure called the segment dictionary container
contains the information necessary to govern the wuse of a
particular code segment dictionary. When a job is being

initiated for executions the NCP determines whether or not the
code segment dictionary desired by the job is aiready in use. If
it is» that dictionary widl be. used. The segment dictionary
container reflectss among other thingss the number of processes
using the dictionary it describes. If there is more than one
users the segment dictienary container will remain in memory
untii all users have completed execution.

2=12

81000 MCP MANUAL
MARK 10.0

IHE 1/0 SUBSYSIEM

This section of the specifications is a description of3

1. 170 Descriptors
2« GISMD Operation
1. Channel Table
2« GISMO/Harduware Interface
1. CA/RC Cycles
2» Processor I/0 Instructions
3. Service Request
4+ Status Counts
5» Data Transfers
3. I/0 Chaining
4» Disk I70 Chaining
5. Disk I/70 Overdlapped Seek
be Tape I70 Chaining
3» Monitoring of Peripheral Status
1. I/0 Assignment Tabde
2+ Unit Mnemonics
3. Test and ¥ait 170 QOperators
4« STATUS Procedure
5« Disk Identification = Pack Labetis
6. Pack Information Table
- Tape Labelling» Initiatization and Purging
8. Tape PE/NRZ Exchanges
ke File Structures
1» Conventional Files
1. File Attributes
2« File Naming Conventions
3. Logical Disk Files
4= Physical Disk Files
1. Disk Space Adllocation
2+ File Access and Identification
3« Disk File Identification
%« Disk File Header
5« Multi=Pack Files
1. Base Packs
2+ Continuation Packs
3« Multi-Pack File Information Table
4» Multi=Pack File General Restrictions
6» Printer Files
1. Logical/Physical 1I/0 Relationship
2« Logical Page Implementation
7« Printer and Punch Backup Capabilities
1. Backup File Blocking Factors
2» Backup File Control Information
3. Backup File Record Format
2+ Relative Files
1. Direct Fides
2» Data Structure
3» Disk Initialization

3-1

B1000 MCP MANUAL
MARK 10.0

4+ File Parameter Blocks

5» Disk Header

p. File Information Blocks

7 Communicate 0Operators

3. Indexed Sequential Files

1. Direct Files

2+ _Index Files

3. Cluster Files

4e Data File Structure

5+ Index File Structure

bs Memory Structures
1. FIB Dictionaries
2« User Specific Information TUSI)
3. File Global Information (GLUBALS)
4. Structure Descriptor
5« Disk File Header Extension

7» Available Space Allocation

8s Index File Table Splitting

9. Current Record Pointer

10+ Current NMaintenance

11. Buffer Management

12. Buffer Descriptor

13. Concurrent Update fiperations

5 The I/70 Error Procedures

There is some overlap between the information contained in this
section of the specification and that contained in the Demand
Managemsent section of the documente The Demand Managenment
section wWas originally intended to cover the management of the
peripheral after it had been assigned to a user as a file~> the
I70 Subsytem section was intended to cover the management of the
device up to that time. This division is not always possible>
particularly in the case of disk devices« The reader may have to
refer to both sections of the document to find the answer to a
specific question.

10 DESCRIPIORS

Normal state programs request I/0 functions in a2 symbolic fashion
{r.gs» Hrite a Recordds The MCP must transform these expressions
into explicit I70 operators called I1I/70 descriptorse An 170
descriptor allows the MNCP to communicate directly with a
peripheral device via the soft I/0 routines of GISMD. GISNO
manages the execution of these operators by the I/0 subsystem.
Each 1I/0 descriptor provides such information as the type of 1/0
oparation requested» source ovr destination memory addresses» the
device which 145 to execute the operatorss, and space for result
information used when control is passed back to the MCP. Certain
other fields wvary with the type of descriptor and contain
information peculiar to its specific function.

B1000 MCP MANUAL
MARK 10.0

Any number of I/0 descriptors may be linked together to form a
single ™chain™ and *"dispatched” in one MCP operation to lessen
the MCP?*s interaction sith the I/0 subsystem.

The transformation of logical 1I/0 requests to physical 1I/0
descriptor manipulation dis discussed in the Demand Management
section of this specification. The discussion below is intended
to describe the operations per formed upon the descriptor after it
has been transformeda A programmatic description of an I1I/0
descriptor is given belows This particular descriptor is typical
of one which might be constructed for a disk file.

DEFINE I0.DESC.DECLARATION A5 22

DECLARE 01 DUNMY REMAPS I0.DESC

» 02 I0.RESULT WORD

» 03 ID.CONPLETE BIT (1)
» 03 I0.EXCEPTION BIT (1)
’ 03 I10.PACK.NOT.READY BIT (1)
» 03 T0.DATA.ECC.ERROR BIT (1)
» 03 FILLER BIT (1)
» - 03 I0.MEM.PARITY.ERROR BIT (1)
» 03 IDHWRITELLOCKOUT BIT (1)
» 03 FILLER BIT (2)

. » 03 1I0.ADDRESS.PARITY.ERROR BIT (1)
» 03 I0.5ECTOR.ADDRESS-ERROR BIT (1)
» 03 FILLER BIT (3)

» 03 IO0-TRANSMISSION.PARITY .ERROR BIT (1)
» 03 IDRESULT.BITa17 BIT (1)
» 03 I0.PORT.RS BIT (33
» 03 I0.CHANNEL.RS BIT (&)
» 02 I0.LINK ADDRESS
» 02 10.0P WORD

» 03 I0.0P.0P BIT 13)
» 03 10.0P.M BIT (1)
» 03 I1I0.0P.¥H BIT (1)
» 03 10.0P.V BIT (1)
» 03 I0.0P-E BIT (1)
» 03 10.0P.D BIT (1)
» 03 I0.DP.NNN BIT (3)
» 03 FILLER BIT (5)
» 03 IO:OP@? BIT (1]
» 03 FILLER BIT (3)
» 03 I0.DP-UNIT BIT (&)
» 02 I0.BEGIN ADDRESS
» 02 1I0.END ADDRESS
» 02 ID.DISK.ADDRESS ADDRESS
» 02 JI0.MN-EVENTS BIT (8)
» 03 I0.M.EVENTS.IOC BIT (1
» 03 I10.M-EVENT3.510C BIT (1)
» 03 FILLER BIT (1)
» 03 IDM.EVENTS.INT.M BIT (1)

B1000 MCP MANUAL

MARK 10.0

» 03 I0-MEVENTS.S5.INT.SENT BIT (D
» 03 Iﬁ»”nEVENTSaN»INTaSENT BIT (l)
» 03 FILLER BIT (1)

» 03 I0.MaEVENTS-INT.S BIT (1)

» 02 I0.MCP-IO BIT (18D

» 02 1I0.F1IB ADDRESS

» 02 I0FIBaLINK ADDRESS

» 02 I0.BACK.LINK ADDRESS

» 02 10.PORT.CHAN BIT (M

’ 03 ID0.PORT ‘BIT (3)

» 03 I0.CHANNEL BIT (&)

» 02 IB.BEEN.THRU.ERROR BIiT 11)8#s

GISMO0 = IHE 1Z0 DRIVER

With the exception of the Multi-Line Control used on Data
Communications configurationss on the B100C hardware the 1I/0
controls have no direct connection Mmith main menory. All data
transfers between the controls and .memory sust go through the
processors GISMD is a set of micro—-coded routines whose primary
function 1is to interface between the MCPs and the actual
harduares. This altows the MCPs to view the I/0 subsystem as an

I/0 processors The MCP can initiate I/70 Descriptors and GISMO
will handle initiation of the control» data transfer and
termination. The NCPs <¢an queue several descriptors for

execution by a control» by properly setting the link fields in
the descriptorse and GISMO witd initiate each one in turn.

User programs make requests to the Micro MCP» and sometimes the
Micro MCP must ask that the request be handled by the S-MCP» but
in either cases the MCP widl pass the request to GISMD who in
turn will pass it on to the I/70 control.

The I/0 subsystem atldiows fifteen controls or channels to be
connected to any machine. After GISMO initiates a control, it
does not wait for completion of the operation but returns control
to its caller. Consequentliy» one» and possibly more operations
may be in process on the machine at any given time. At any given
moment» howeverr» when GISMO is executing it may only address one
controle

The primary communication betueen the MCPs and GISNO is through
the 1I/70 descriptorss The S.NMCP will initiate 170 operations
using the DISPATCH S—-operator and the M.MCP contains micro—-code
to perform a similar function. This S-operator reguires two
parameterss the port and channel of the device being addressed
and the memory address of the descriptor. The 170 decsriptor
contains all of the information needed by GISMO for the
operation.

B1000 NMCP MANUAL
MARK 10.0

An I/0 descriptor is usuadly docated by its "Reference Address™»
the memory address of the result descriptor field of the 170
descriptore. The resudt descriptor field is often referred to as
the "RS field”» or Result Status fields. All of the descriptors
associated with a given control will be Llinked together in
memorys» by setting I0.LINK to the memory address of the RS fieild
of the next descriptore The descriptors are also linked in the
reverse direction» using the I0.BACK.LINK fieldr to facilitate
adding and deleting descriptors. A Link field may not be zero»
but a descriptor may be linked to itself.

The Reference Address points to the RS field. Each RS field 1is
twenty=four bits in dengths The bits in the RS field have
different meanings at different times. GISMD is most concerned
wikth the setting of the bits when the I/0 is initiateds. The MCPs
are more concerned with the setting of the bits when the I/0 is
completes When the descriptor is ready for initiation» the RS
-field is formatted as shown in the following diagram. This field
-§s wusually referred to as the resuit status field when the
descriptor is5 ready for execution or is in process and as a
result descriptor field when the I/0 operation is complete.

Bits 0=-1 =~ RS Status Bits
00 - Ready to be Executed
01 = 1I/0 Currently in Process
10 - 170 Coaplete with no Exception
11 - 170 Complete with Exception
Bits 2=11 = Gismo Toggles

MCPs mayynot alter any bits in this field if
RS Status = 01.

Bits 12-14 - Port to which this I/0 is directed. {Not used)

Bit 15 = Interrupt requested on I/0 Completion.

Bit 15 = High=Priority interrupt requested on I/0
Completione

Bits 17-19 = Port to which interrupts are to be sent upon
I/0 Compietion (Always Processor Zerod.

Bits 20-23 = Channel on which I/0 is to be performed.

The leftmost bit of an RS field is always set when the operation
is complete. Consequentlys storing a result descriptor locks the
descriptor to GISMO. The MCP may lock a descriptor as wells, if

B1000 MCP MANUAL
MARK 10.0

the status field is not 01. Gismo will only initiate ™ready™
descriptorss» those whose status bits are equal to 00. Hhen the
operation is initiateds GISMO sets the status Lits to 0l. The
GISMD toggles area is used by GISMO when an I/0 is in process to
store information which it needs concerning the operation.

CHANNEL IABLE

Another structure associated with peripheral management 1is the
channel table. There is one channel table for each port and each
element of the table describes one channel of that port. Whide
GISNO uses the I/0 descriptor to communicate directly with the
I/D subsystems the channel table is a structure for passing
information between the MCP and GISMO. The <channel table
reflects the status of a particular channel. L Certain information
is passed to GISMO during a “dispatch™ operation and is used by

sofr I/70 in managing the execution of that operation. Certain
fields are updated before GISND passes control back to the MCP
which direct the course of action the MCP will takes A

programmatic description is given belouz

DEFINE CHANNEL.TABLE.DECLARATION AS # X
DECLARE 01 DUMMY REMAPS CHANNEL.TABLE X

’ 02 CHANNEL.BUSY BOOLEAN X
» 02 CHANNEL.PENDING BOOLEAN %
» 02 CHANNEL -.EXCEPTION BOOLEAN X
’ 02 CHANNEL.PAUSE BOOLEAN X 0 = TAPE» DISK» CAS
» 02 CHANNEL .OVERRIDE BOOLEAN X
» 02 CHANNELEXCHANGE BOOLEAN Z
» 02 CHANNEL.OLD.MODE BOOLEAN X
» 02 CHANNEL.INTEGRITY BOOLEAN 2
» 02 CHANNEL.NOSHALT BOOLEAN X
» 02 FILLER BIT €3> %
» 02 CHANNEL.TYPE BIT (&) 2 DEVICE TYPE FOR DUMP
4 ' TYPE = 0 = SERTAL CEVICE
4 TYPE = 1 = DISK
% TYPE = 2 = TAPE
4 TYPE = 3 = CASSETTE
» 02 CHANNEL.LAST BOOLEAN X DELIMITS CHAN TABLE
» 02 CHANNELAEXCHANGE.PC BIT (7) Z
» 03 CHANNEL.EXCHANGE.P BIT (3) X
» 03 CHANNEL.EXCHANGE.C BIT (&) 2
» 02 CHANNELREF.ADDR - ADDRESS %
IR A 4

In the CHANNEL.TABLE, BUSY is set and reset by GISMO only. It is
set when the control is busyas PENDING is also set and reset by
GISMO. It s wused on tape and disk devices only and it tells
GISM@ to continue Llinking through the head of the queue.
EXCEPTION is used on all devices except tape and disks It causes

3-6

B1000O MCP MANUAL
MARK 10.0

GISMO to inhibit dispatch operations on the channei until a prior
exception condition has been handled by the MCP.

PAUSE is5 also known as the TIMER bita. It is set by the MCP and
it never changesa It causes GISMO to issue a dispatch to the
channel at each 100 wmillisecond timer interval and is used to
implement TEST.AND.WAIT aperations on tape and disk controlse.
This is discussed in more detail later.

The OVERRIDE bit is used on all devices and causes GISMO to reset
BUSY» PENDING and EXCEPTION when a new operation is dispatched.
It is set by the MCPs and reset by GISMD. Essentiallys» it causes
GISMO to override an existing operation with a new operation.

The EXCHANGE bit is set by the MCP and it never changese. It is
used on tape and disk controls only and it means that the
information in EXCHANGE.PC is wvalid» that there is another
control connected to this control by a hardware exchange. The
O0LD.MODE bit» also known as the PAUSE bits is5 also set by the MCP
and never changes. It is set for Single-Line Controls and for
Pisk Cartridge Control One. It causes GISMO to pause for 100
milliseconds when a locked descriptor or a Pause I/0 descriptor
is encountered. If this bit is not sets GISMO will step in this
circumstance on these controlse.

The INTEGRITY bit is set by the MCP when the channel table entry
is initialized. It is also used by the MCP to stop GISMO from
linkimg on the channel.

The TYPE field is used only by the Dump Analyzer program. It is
necessary because the analyzer may have no other means of
determining this informationa The REF.ADDR field contains the
address of the descriptor that is. in process on this channel. It
is5 considered the head of the queue by GISMD.

GISMO/HARDHARE INIEREALE

The 1I/0 descriptor contains most of the inforgation GISMO needs
to accomplish an 170 operation. In the actual hardware
interfaces the 0OPs BEGINs» END» DISK.ADDRESS and ACTUALEND fields
are useds The ACTUALLEND field is twenty=four bits in length and
immediately preceeds the RS fiedd in each descriptor. It is not
shown in the preceding I/0 descriptor diagrame. The field is used
by GISMO while the operation is in process to store the menmory
address of the data that is to bs transferred to or from the
memory buffer. When the operation is completers ACTUALLEND will
contain the address of the next bit that data would bhave been

81000 MCP MANUAL
MARK 10.0

transferred to or froma.

Each control 1is able to buffer» or stores a certain amount of
data to be transferred. The amount wvaries among the devices.
For some devices» such as the card reader and Lline printer» it is
a full record. For others» the size of the buffer may vary and
each contol may contain a portion of the datae Disk controls»
for example» are squipped with a certain number of 180-byte
hardware buffers. The amount of data that may be contained in
the controls and the procedures that GISMO wmust follow in the
execution of an operation are fixed when the control is designed
and do not change afterwards

CALRC CYCLES

The hardware in the processor that is wused by GISMO 1is the
Coamand Registers the Data Register and the Service Request
level. The Command Register is used to send information to a
control», the Data Register to receive from the control and the
Service Request Llevel indicates that a control needs attention
from GISMDa

Most transactions with the control consist of a
Command~Activates/Response~Complete (CA/RL) cycle. Data or
command information §s sent out to a control with a CA. Control
information or data is returned with a RC.

BROCESS0R 170 INSIRUCIIONS
The processor instructions whch GISMO wuses to accomplish an
operation ares
TEST STATUS
GISMO requests and the control returns its current status
count and the device 1ID. GISMD uses this information to
decide what to do nextas '
TEST & CLEAR
This operation clears the controla.

TEST SERVICE REQUEST

GISMD requestse and the processor returns» a mask of alil
channels that are currently requesting services

TERMINATE DATA

B1000 MCP MANUAL
MARK 10.0

This operator is used to terminate data transfer when the
mediar disk and tape for examples has no fixed record size»

TRANSFER DUT A

Moves one or two bytes of data from memory to the control
for output to the device. Data is sent at LA times the
controdl returns its status at RC time.

TRANSFER OUT B

Moves three bytes of data from memory to the controi for
output to the devices

TRANSFER 1IN

Moves ones two or three bytes of data from the control to
main memory on input operationss The data is sent at RC
times When one or two bytes is transferreds the control
also sends its statuse

SERVICE REQULSTY

"The Service Request level is a toggle in the processor which is
settable by any controtl. It is DOR-ed into the ®Any Interrupt™
togglea Fach Interpreters prior to executing an S=oerator» will
test the Any Interrupt toggle ands if it is sels transfer control
to GISMD instead. GISMO wiill determine what caused the toggle to
be sete In this cases it will discover that Service Reguest is
raised.

It witt then do a TEST SERVICE REQUEST CA/RC cycle. The RC will
return a3 mask of ai4i controls that are currently requesting
SBTViCes GISMD will select the highest channel from this mask
and begin handling that control. Conrols are wusualiy in status
count 11 or 18 when they raise Service Request. This status
indicates that the contrel is ready to send 2 Reference Address
to GISMO. GISMO accepts the Reference Address and uses it to
locate I/0 descriptor in memorys.

GISMO will then do a TEST STATUS CA/RC <cycle to detemine what
service the control is regquestings Once the requested service
has been performeds and the control no longer {is reqguesting
services GISM0 will again perform a TEST SERVICE REQUEST CA/RC
cycles It witl continue handling Service Requests from various
controls until the TEST SERVICE REQUEST returns all zeros. GISMO
then returns control to the Interpreter that was interrupted.

B1000 MCP MANUAL
MARK 10.0

SIAIUS COUNTS

The Status Count returned by a control is the primary means 1in
which GISM0O determines what is to be done next in an I/0
operations Operations may consist of sending the Op code and
file address» sending the Reference Address» reoceiving the
Reference Addresss» sending or receiving data and receiving the
results Various controls perform these steps in different
ordersa.

All controls begin in Status Count 1 and return to Status Count 1
after Status Count 23. Each Status value has a particular
meanings Some counts always appear in series together. Ald
contrels begin an operation by going through 5tatus Counts 1
through 6. A simplified table of the allowablie Status Count
transitions is shown in the table belou.’

To send each of the twenty-four bit fields 0OP». DISK.ADDRESS and
Reference Addresss» three TRANSFER DUT operations are useds each
CAJRL sending one byte. ‘For each TRANSFER OUT» the Status
Counter advances by one. Simitarlys %to receive either the Result
Descriptor or the Reference Address» three TRANSFER IN operations
are useds each CA/RC receiving one byte.

B1000 MCP MANUAL

MARK 10.0
Status Count Meaning

0 Control Not Present
1 Cleared (Initial) State

1» 25 3 Ready to Receive 0OP» Bytes 1» 2 and 3

L» 5+ b Ready to Receive DISK ADDRESS» Bytes 1» 2» 3

7» 8» 9 Ready to Receive Reference Addresss Bytes 1ls 2» 3
10 Busy (Opsration in process). From 10» Controls

usually go to Status 11 or 18 and raise
Service Requests

11, 12, 13 Ready to Send Reference Addresss Bytes 1, 2» 3.
14 Ready to Receivé Data (output)
15 Ready to Send Data (input)d
16 End of Harduware Buffer = Ready to Send or Receive

Last Bytes More Buffers Remaine
17 End of Hardware Buffer and Last.Buffer.

18, 19» 20 Ready to Send Reference Addresss» Bytes 1» 2» 3.
Implies that a Result Descriptor is to Follow.

21, 22» 23 Ready to Send Result Descriptors Bytes 1, 2» 3.

Table X»X = Typical Controi Status Counts and their Meaning

3-11

B1000 NCP MANUAL
MARK 10.0

DAIA IRANSFERS

GISMO transfers data to and from the control in one or more
iterations? each iteration widl involve only one control buffer.
For some devicess there is only one buffer and this buffer will
always contain the full physical record. &GISMO will ondy perfornm
data transfer once per 170 operation for these controlse. Bther
controls have physical records of undefined lsngths for these
controlss there are usually multiple buffers of fixed length in
the control and each iteration of GISMD will fill or empty one of
these bufferss

Hhenever Service Request is raised and GISMD is 1invoked» the
regquesting control will first send the reference address. GISMO
will then test the control®s status» If the controi is in Status
14 or 15» GIS5MD will begin data transfera For each operation»
data transfer will continue until either the control's buffer is
empty or the END address of the I/0 descriptor is creacheds In
the first cases the control uill have gone to Status 7 after the
Llast data character{s). GISMD will test its statuss see that it
is in Status 7 and send it the Reference Address» thus completing
the iteration. In the Latter caser» on most controlsr GISHMO will
send it a TERMINATE command. Some controls require data transfer
to continue until the end of the control’s buffer. On input»
GISMO will arccept the remaining data from these controls but will
not store it in memory. On output GISMD will send blanks to
these controlsa

Data is always transferred to a control in oner two or three byte
portions. Most ™Serial™ devices» such as printers and card
devices» use one byte transfers. This data transfer is per formed
from a Aloop within GISND which consists of a CA/RC cycle»
transferring one data byte» until the control?s buffer is full or
the END address is reacheds. A buffer full condition is detected
by the control sending or receiving the {ast data byte in Status
Count 16 or 1i7. o

Many disk and tape controls transfer data two bytes per CA/RC.
Disk input and output is always terminated by GISMO when the END
address is reached» possibly in the tast of multiple disk
sectorss When the record length is an odd numbers GISMO will
normalize the last byte as required. On output operationss the
control wilit pad the remainder of the 1last buffer ({and hence
sector) With zerose.

Tape outputs possibly in the last of multiple buffers» is also
terminated by GISMO when the END address i5 reached. Khen the

3-12

B1000 MCP MANUAL
MARK 10.0

physical record size is an odd number of charactersr, GISMO will
normalize the last byte for the last CA/RLC cycie. It will send a
TERMINATE commands foliowed by a special command which will
indicate "odd character count? to tell the control that the last
data transfer consisted of one byte only. Tape input opsrations
Will terminate either when the END address is reached or when the
end of the physical record is encountered» which may be in the
Last of multiple buffers. If the end of the physicali record
ogcurs and the dlength of the record is an odd number of
characterses the control will set a flag in the RC portion of the
Last CA/RT cycles GISMD wnili then normalize the Last byte of the
records

All disk pack controlss the SN head=per—~track control and all
phase~encoded tape controls use three byte data transfers. In
this case only» an exception is made to the general rule that aili
transactions involve one CA and one RC. On these controls» one
- CA may be followed by one or more RCsa. This is accomplished as
folious.

Prior to entering the transfer loop» on inputs GISMD will use a
special CA/RC cycle to ask the control how many butes it has to
sende. It wilt then initiate the transfer loop with a CA and
continue it with as many RCs as are required» receiving
tuenty~four bits of data on each RC. For outputr, GISNO will tell
the control how many bytes it has to sende. It will then initiate
the transfer loop. with a CA command of TRANSFER OUT Bs and
continue it with as many RCs as are required» sending the data
out with the RC.

140 CHAINING

The 1/0 subsystem of the B1000 system does not use queues for I1/0
operationss Using the facilities presented in the precedings, it
connects all I/0 descriptors that are directed to the same
controls» or group of controls connected by an exchanges in a
circular chain. This eliminates the necessity of an 170 complete
interrupt being directed to the MCP» provided the producer of I/0
requests» most often a user programs does not produce the
requests faster than they can be satisfied. In other uords», if
the I/0 subsystem 1is completing operations before they are
actually required by the users then the user will never need to
Wwait on- the completion of an I/0 request and the MCP witl never
hawe to suspend the program waiting for such a completion.

Even if this isn”t the case» if the user program 1is forced ¢to
Wwait upon the completion of his T1/0 requestsr, the amount of
processing that must be done to accomplish the suspension and to
reinstate the program upon completion 1is minimized using

3-13

B1000 MCP MANUAL
MARK 10.0

chainings The processing is d1imited to only that which is
concerned wWwith program execution and no processing is required to
tall the I/70 subsystem what it should do next. This information
is already contained in the 1/0 descriptor.

For all devices except tape and disks thens the MCP constructs a
circular chain of descriptors in memory. GISND executes the
requested operations in turns as each descriptor is uniocked by
the MCP. Upon encountering a locked descriptors GISND simply
pauses or stops until the descriptor is uniccked. This will
occur when the user program next executes an 1I/0 reguest or when
the file is closed for any reason. If the program rust wait upon
an. operations an 1/0 complete interrupt is requested» wusing the
appropriate bit in the RS field» and the program is suspended
pending the occurrence of the interrupts.

QISK I/0 CHAINING

The disk I/0 subsystem operates somewhat differently from the
operation just describeds. Since each disk 170 descriptor
contains a disk address field» it is not necesary for the
operations to execute in any particular order. Various means are
provided in the software to prevent any contention problems that
might arise. It may be noted that these same means are necessary
on I/0 subsystems which utilize queueing instead of chaining.

Ali I/0 descriptors for all disk controls that are connected to
the system are connected in the same chains. If the system is
equipped with more than one controls then each Channel Table
entry widl point to the head of the chain. 1If GISMO encounters a
descriptor which is not ready for execution or which is already
in processes specified by the first two bits of the RS field being
set to anything other than 00» it does not stop or pause but
continues. to the next descriptor in the chain. Adso» if an
exception condition occurss» GISMD does not stop or pause as it
does on other conirols. Both of these actions are specified by
the CHANNEL.NOLHALT bit in the Channel Tablea. .

Since GISMO continues Linking in both of the <cases mentioned
abowves it must know when it has examined ald of the descriptors
in the chaina When it has examined all of the descriptors, it
must stop to free the processor for other execution. To
accomplish this» the REF.ADDR field in the Channel Table is used
to mark the beginning of the chain. Mhen a disk operation is
dispatched by the NCP» the reference address passed by the
dispatech is discarded and the REF.ADDR fiedd is used instead.

3=-14

B1000 MCP MANUAL
MARK 10.0

In order to operate properily with dispatch operations occurring
in an order different from the order of the descriptor Llink
fields» GISMO must be able to override stopping when it has been
through the entire chain once. For examples if descriptors A» 8»
and C are present in the chain and if B is dispatcheds GISMO will
Link to and initiate B. If» during the time that B is in
processs» A is dispatchedr GISMO must link past C and the REF.ADDR
field and find and initiate A.

To accomplish thiss the PENDING bit in the Channel Table is used.
This bit is set by a dispatch operation and reset by GISMO. If
GISMO arrives at the descriptor addressed by the REF.ADDR field
and if the PENDING bit is set» it does not stop but resets
PENDING and continues Llinkinge If PENDING is already reset at
this points then GISMO stopsa

Since all descriptors for all disk controls are maintained in the
same chains GISMO must be able to recognize descriptors which are
addressed to controls different from the one it is handling.
This is accomplished using the T0.CHANNEL.RS field of the 1/0
descriptora. Upon encountering an unlocked I/70 descriptors GISMD
compares this field to the channel it is executing wupon and if
the two are not squals it does not mark the descriptor in process
but continues Linkings

RI3K I/0 OYERLAPPED SEEKS

When an I/0 operation is initiated on a moveable arm disk device
and the arm is presently positioned to a cylinder different from
the one specified in the descriptors it is necessary to
reposition the arm to the proper cylinder. This operation is
known as a "seek™. On the B1000 systems all seek operations are
implicit’ there is no explicit Seek operation in the harduware.
The MCPs initiate disk I/0 operations without regard for the
current arm position andr §f arm movement is requireds. it is
accomplished by GISMO» the control and the device without the
MCP's participations The MCP does not know that a seek is being
per formed or required.

On this systems ali seek operations are "overlapped”. This means
that the arm of any given drive may be in motion sinultaneously
Wwith the arm of any other drive(s). Alsor the control may be
performing data transfer or any other opsration while the arms
are in motion. ‘ '

This is accomplished by the control returning a result descriptor
Wwith Bit 17» I0-RESULT.BIT17» set to zero. Esssentially» this
informs GISMO that some special action is necessary and that

3=15

B1000- MCP MANUAL
MARK 10.0

GISN0O should not store the result descriptor in memorya In this
particular caser the control also informs GISMO that the selected
drive is now seeking. GISMD widll initiate no further operations
upon that drive until informed» by the harduares that the seek
operation has completed.
‘&\

DCC=2 (Cartridge) and all disk pack controls notify GISMO that a
seek operation has completed by raising Service Request while in
Status Count 1. GISNB wildl again send the descriptor to the
control and this timer after any required latency periods» data
transfer will occure. DCC=1 does not notify GISMO when a seek
operation has completed but must be ™podled™ periodically by
GISMO. The pause time period for DCC=1» the time betwsen the
poll operations» is two milliseconds.

The Disk Subsystem Controldller (DSL) offerred on GEM processors
introduces some exceptions to the statements above. These
exceptions will be defined in a subsequent version of the
specification.

IARE 1Z0 CHALNING

The chaining of 1I/0 descriptors for magnetic tape controls is
perhaps the most complex of the three basic types. The
complexity 1is caused by the fact that tape 1I/0 descriptors
directed to each separate tape unit must be executed in {logical
sequence and there may be several such units attached to the same
control{s)e It doesn't matter which unit GISMC addresses next
but the descriptor that is used to address the unit must be the
next dogical descriptor in the "subchain™ Ffor that unit. It is
therefore necessary to break the channel chain into subchainss»
with one subchain for each physical unite and to implement a
means of remembering the next Logical descriptor that must be
used within each subchain.

Both of these requirements are satisfied by the Lock descriptor.
Lock i5 a pseudo 1I/0 operation which is handled completely by
GISMO0 and actually causes no physical I/0 operations. It aliso
serves. as 2 means of resolving contention problems between the
MCPs and GISMD and between two or more tape controls which are
attached to the same units by an exchanges Lock cperates as
described belowus

The MCP» uwhen the system is Clear/5tarted, constructs a tape
chain with one Lock descriptor for each unit connected to the
systems - The ACTUAL.END fiedd of a Lock descriptor is not wused
and the LINK field wilt contain the memory address of the next
Lock descriptore The BEGIN and END address fiedids of the Lock

B1000 MLP MANUAL
MARK 10.90

descriptor will contain the address of the TEST.AND.WAIT I/0
descriptor that the MCP uses to monitor the status of each unit.
This is discussed in a dater paragraphs.

When a file is opened on a tape unite the MCP changes the BEGIN
and END address fields in the ULock descriptor. The MCP now
constructs a subchain for the unit which Wwidl consist of one I/0
descriptor for each buffer requested by the usera The BEGIN and
END addresses of the Lock descriptor will be set to the memory
address of the first physical I/0 descriptor in the subchain. and
the TEST.AND.HWAIT descriptor will be removed from the subchaine.
The BEGIN address field will not be altered from this point until
the file is Closeda. The END address will be modified by GISMD
each time it executes an operation in the subthaine In effects
The END address field is wused to remember the next logical
operation that is to be performed on the units.

The LINK fields in each 170 descriptor in the subchain will all
address the next physical descriptor in the subchains as they do
for all other controlse An exception to this is the last
physical descripter in the subchain. The LINK field of this
descriptor will contain the address of the Lock descriptor for
that unite This prevent one unit from monopolizing the entire
controls it insures that GISMO willi periodically determine if
there is anything to be done on the sther unitse.

The REF-ADDR field of the Channel Table entry for a tape chain
will contain the address of the first Lock descriptor in the
chain. Gismo» upon receiving a Dispatch for a tape control, will
discard the Reference Address passsed and start at the address
provided by the REF.ADDR fields GISMO first attempts to lock the
Lock descriptor by suwapping Ol into the first tuo bits of the RS
fields If successfulr it fetches the address in the END field of
the Lock descriptor and proceeds to that address. If this
descriptor is unlockedr it begins the operation specified. If
not» it returns to the Lock descriptor and stores the address»
which it previously fetched from the END address field back into
the END address field. ,

Assume now that the descriptor at the address fetched from the
END field of the Lock descriptor was unlockeds GISMO begins this
operation and» assuming that the operation cannot be completed
without some intermediate Service Reguestss returns to the Lock
descriptor and continues Linking through the chain. Eventuallys
the controd will raise Service Reguest and reference the
initiated descriptor. Upon completion of that descriptors GISMO
will store a result and fetch the LINK field of the descriptor.
It wild then proceed to the new descriptor and again check to see
if it is lockede If it is» GISMO returns to the Lock descriptor
for the unit and stores the new address in the END address field.

3=-17

B1000 NMCP MANUAL
MARK 10.0

The new descriptor now becomes the next logical descriptor to be
executed on that unita. In this mannere GISMO effectively
maintains a logical sequence of operations that are to be
per formed on any tape unit.

It may be noticed from the foregoing that there is no possibility
of conflict for a unit between two or more controls connected by
an exchange» since GISMO first attempts to Llock the Lock
descriptor before proceeding down a subchain. Similarlys the MNCP
aust lock the subchain before alterimg any descriptor in the
subchain.

MONITORING OF PERIEHERAL 3TAIUS

The MCP attempts to monitor the status of all peripheral devices
that are attached to the system. To do this» it must remember
the status of each device and wmaintain a certain amount of
information about each. The major portion of the information
about all of the devices connected 1is maintained in the 170
Assignment Table (I0AT).

140 AS2IGNMENY TABLE

The I/0 Assignment Table L{I0AT) allows the MCP to keep track of
alt peripheral units except the system?s 5P0 and those devices
associated with data communicatione. EFach unit is identified by
ports channel» and unit numbers as well as by a symbolic name.
Various fields reflect the status of the unit (e.g.»r AVAILABLE»
SAVED» REWINDING» LOCKED). A programmatic description is given
belows

DEFINE TOAT.SIZE AS #512#7

DEFINE YOAT.DECLARATION - AS # XG L 0 BAL IDAT
DECLARE 1 DUMMY REMAPS I0AT»
02 UNIT.INITIAL BIT (66)» 2
n3 UNIT-HDHR BIT (6)»
03 UNIT.PCD BIT (12)» X
04 UNIT.PORT.CHANNEL BIT (7)s 2
05 UNITLPORT BIT (3)» X
05 UNIT.CHANNEL BIT (4)» X
04 FILLER BODLEAN» X
04 UNIT.UNIT BIT (4)» X
03 UNI T.NAME CHAR (6)»
02 UNIT.LABEL.ADDRESS DSK-ADR>»
03 FILLER BIT (12)»
03 UNIT.PACK.INFO ADDRESS»
02 UNIT.RS ADDRESS»% USER LIMIT REGISTER
02 UNIT.FLAGS BIT(36)»

3~-18

03

02

02
02
02

B1000 MCP MANUAL

MARK 10.0
03 UNIT.AVAILABLE
03 UNIT.AVAILABLE.INPUT
03 UNIT.AVAILABLE.QUTPUT
03 UNIT.HAIT.FOR« NOTLREADY

BOGLE AN»
BOOLEAN»
BOOLEAN»
BOOLEAN>

03 UNI T.TEST- AND. WALT
03 UNIT.SAVED

03 UNIT-REWINDING

03 UNIT-.EQF-SENSED

03 UNIT.LOCKED

03 UNITALABEL.SENSED
03 UNIT.PRINT.BACKUP
03 UNIT.PURGE

03 UNIT-LOCK.ATL.TERM
03 UNIT.TO.BE.SAVED
03 UNIT.FLUSH

03 UNIT.TAPEF

03 UNIT.DISKF

03 UNIT.STOPPED
03 UNIT.TRANSLATE

03 UNITLCTRL-CARD.USING

03 UNIT.REMOTE.JOB
03 UNIT.CLOSED

03 UNIT.CLEARED

03 UNIT.MULTILFILE
03 UNIT.EOT

03 UNIT.TAPE.FILE.STATUS

03 UNIT.TAPE-XCH

BOOLEAN»
BOOLEAN»

BOOLEAN>»
BOOLEAN»
BOOLEAN»
BOOLEAN»
BODLEANS>
BOOLEAN»
BOOLEAN»
BOOLEAN>»
BOOLE AN»
BOOLEAN»
BOOLEAN»Y FLUSH TO EOF
BOOLE AN»

BOOLE AN»
BOOLEAN», X
BOOLE AN

BOOLEAN» %
BOOLEAN»
BOOLE AN»
BODLE AN »
BIT(3)»2X

]

NOT RELEVANTC_ANSI)
BOVIBEG OF VOLUME
BOF{BEG OF FILED
EOYCEND OF VDLUNBE)
EOFCEND OF FILE)D
PFBLPROCESS FILE BLK
UNDEFINED

BOOGLEAN»® FOR MIS-MATCHED UNITS

Wonowonounu

I e W
WV WN O

03 UNIT.NO-TRANS-TBLE BODLEAN»ZIPC=5

UNIT.OFFLINE.YET.IN-USE
03 UNIT.AUDIY

03 UNIT.RESERVED.BY.AB

03 UNIT.LABEL.OP

BOOLEAN,XFOR ASSIGNED UNITS.
BOOLEAN» X DMS AUDIT TAPE
BOOLEAN»X AUTO BACKUP 6.1
BIT(3)»X 0=300E00X3 0ODD TRANS

% 1=300C00Xa 0DD NO TRANS

X 2=300600X3 EVEN TRANS

X 3=300400X3 EVEN NO TRANS
BIT(4)» X DISK ONLY

UNIT.DRIVE.TYPE
I VALUE DCC1s2/3
4 0 32X203
4 1 32X406
X 2 b4X203
4 3 64X40b
4 4 N7 A
X 5 N7A
Y 4 6 N/ A
4 7 N/A
UNIT.STATUS
UNIT-.TO.BE-.POMERED.OFF
FILLER

3~19

DPC1/72 DFC1 DFC3
N/A NZA N7A
215 SYS.MEM 5N
225 N/A N7 A
N/7A L1€-3 N/7A
207 1C=4 N/7A
205 1A-3 N/A
206 1A=4 N7A
N/ A N/ A NZA

BIT €15)»
BOGLEAN»
BITC7)>»

B1000 MCP MANUAL

MARK 10.0

02 UNITV.J0B.NUMBER BITC16)»
02 UNIT.FIB.ADDRESS ADDRE S5 »
02 UNIT.LABEL.TYPE . BIT t2)»

x 0 = OMITTED

z 1 = BURROUGHS

p 2 = USASI

x 3 = INSTALLATION
02 UNIT.TRANS.TBLE.ID BIT(8)» XPC-5 TRAIN ID
02 FILLER WORD» ¥ PLEASE DO NOT DISTURB
02 UNIT.TEST.DESC BIT (DESCRIPTOR.SIZE);

L3 % DELINITY I10AT DEFINE

The entire I0AT is constructed by the NCP wuwhen the system is
Ciear/5tarteds During the Clear/Start operations the NCP directs
a Test descriptor to each of the controls that are <connected to
the systems When it discovers a control that may have more than
one unit connected to it» it sends a Test descriptor to each
possible wunit and makes one entry in the IOAT for each unit that
is connected.,

The UNIT.HDMR field in the IOAT witl contain the hardware
identifier returned by the test descriptor. The following is a
{ist of hardware types and pseudo~types that are supported by the
MCP. Pseudo~types are used in the device assignment process to
indicate generic typess such as "any magnetic tape device™ which
would include seven~trackr nine-tracks phase encodedr NRZ and so
forthe .

3=20

DEVICE

Reserved

80 col READER.PUNCH.PRINTER

8D col CTARD PUNCH
Reserved
FDCa.1

96 col READER PUNCH PRINTER

PAPER TAPE READER
PAPER TAPE READER-1
PRINTER

READER SDORTER=2
READER SORTER

DISK FILE CAny head per track)

DFC~-1
pce=2
pDCcC=-1
DPC-1

DISK PACK (DCC~1s» DCC=2»

DISK CAny disk)
DFC=3 (5-N)

95 col READER
PAPER TAPE PUNCH
80 col CARD READER
5P0-1

SPD=2

TAPE 9 TRK NRZ
TAPE 7 TRK NRZ
TAPE PE (9 TRK)
TAPE CAny tape)
TAPE.9 (Any 9 TRK tape)
Reserved

CASSETTE

LPC=5

QUEUE FILE

RENOTE FILE

B1000 MCP MANUAL
MARK 10.0

FILE STMT

DATA.RECORDER.80
CARDSPUNCH

READER.PUNCH.PRINTER
PAPER. TAPE .READER
PAPER. TAPE .READER
PRINTER
READERSOR TER. 2
READER.SORTER
DISK.FILE
DISK.FILE.1
DISK.CARTRIDGE
DISK.CARTRIDGE
DISK<PACK. 10
DISK.PACK

DISK
DISK.FILE.3
READER.96

PAPER. TAPE.PUNCH
CARD.READER

DpC-=1)

CRT 5PO
TAPE.Y
TAPES7
TAPE.PE
TAPE
TAPE.Y

CASSETTE
PC.5
QUEUE
REMOTE

Table 3.x = Hardware types supported by MCP

3=-21

HDWR TYPE

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
i7
18
19
20
21
22
23
24
25
26
27
28
29
30
31
62
b3

B1000 MCP MANUAL
HARK 10.0

In the table aboves the File Statement column (FILE STMT) is for
use in the MCP's FILE Control Card and is explained in the
Software_QOperatiopal Gyides Generic hardware type numbers are
not stored in the I0AT. Rathers the actual identifiers returned
by the hardware are useds

UNLT MNEMONICS

Unit @mnemonics are also assigned by the NCP during the
Clear/5tart processa. These mnemonics aliow the operator and the
MCP to identify devices uniquelye The tabie below lists the form
of the mnemonic that w#ill be assigned to the various types of
devicess

Card Reader CRx
Card Punch CPx
Data Recorders CDx
Printers LPx
Tape Units MTx
Disk (head-per=-track) , none
Disk Pack DPx
Disk Cartridge _ DCx
Paper Tape Readers PRx
Paper Tape Punches PPx
Reader~Sorters RSx
Cassettes CSx
Flexi=Disk FDx

Ald units will be assigned a three-character anemonic which
begins with the first two letters listed in the table above. The
third character will be unigue to the unit. The first unit of
that type encountered by the MCP during the Clear/S5tart operation
is assigned the 1dletter ™"A%» the second "B™ and so forth.
Assignment proceeds adphabetically and the mnemonic assigned does
not change unless the system configuration changes.

The assigned unit mnemonic is stored in the I0AT in the UNIT.NAME
fielda The entire I0AT is maintained in memory. To minimize
storage requirements» some information which relates to the unit
is not stored in the IDAT but is maintained on disk. File
Identifiers and any other information which is seldom used by the
MCP are stored in an INTERNAL.LABEL field on diskas The disk
address of this field is maintained in the IO0OAT in the
UNIT.LABEL«ADDRESS fields 1Information in this field is typically
updated by the S5TATUS procedure in the MCP.

The STATUS procedure i3 executed whenewver the Ready status of an
unassigned device changes. The MCP is made aware of a status
change by TEST«AND.WAIT 1/0 coperators. These operators do not

BL10O0OO MCP MANUAL
MARK 10.0

truly wait on 2 unit status change but this function is emulated
by GISMO.

IESI-AND-WAIT 1/0 OPERAIORS

The MCP must know when a unit goes from a Not Ready condition to
a Ready condition so that it can read the Label on the media and
update the INTERNAL.LABEL information on disk. It must knouw when
a unit changes from Ready to Not Ready so that it can mark the
unit unavailable and initiate a TEST.AND.WAIT.FOR.READY on the
units TEST.AND.WAIT operations aliow the specification of
certain conditions for completion, such as Test and MWait for
Ready» Not Readys Ready to Transmit» Ready to Receive and so
forthe GISMD will not consider the operation complete unless the
specified conditions are met.

On disk and tape controlss which allow more than one unit per
controls we cannot tie up the entire control with a Test and MWait
operation to one unita For DCC=2», all disk pack and all tape
controls» the PAUSE bit in the Channel Table is used to implement
a periodic test of adl such unitse. At each 100 millisecond timer
intervals, GISMO searches through the Channel Table 1looking for
entries with this bit set to zero. When such an entry is founds»
GISMD initiates that chain at the address specified by REF.ADDR»
also in the Channel Table. During this exacutions» GISMD widdl
initiate all Test operations encountered in the chain. If the
caonditions for completion specified 1in the operator have been
metr» GISNO widl store the result descriptor returned by the
operation and gueue an interrupt for the MCP? the MCP always
regquests an interrupt in Test and Wait descriptorsa

The MCP also sets the type field of this 1I/70 descriptors
I0-MCP10» to a value uhich indicates "Status Change™. In the
HCP?s I/0 Complete procedures which is invoked only when an
interrupt is returned from an I/0 operation» the value stored in
I0.MCP.I0 uwill cause invocation of the NCP's STATUS Procedure.

2IATUS EROCEDURE

As mentioned previousiyr» the STATUS Procedure is @executed only
when the status of an wunassigned peripheral changes. If a
peripheral is being used by a program and if it goes to a Not
Ready condition» the situation is handled by the I/70 Ercror
Procedure. When an assigned peripheral goes from Not Ready to
Ready» no action is required by the MCP since the Test and Wait
descriptor executed in this case will have a LINK field set to
the next logical operation to be performed on the device.

B1000 NCP MANUAL
MARK 10.0

Peripheral devices which are capable of input operations usually
have labels written on the media. The MCP is equipped to
recognize several different Alabel formats on disk and tape
devices and it expects to read control instructions from all card
devices which have input capabilities. Control instructions are
discussed in the Sgftware 0Operational Guides and in Product
Specification 2219 0144» MCP Contrel Synt2ax and widl not be
discussed here. Essentially» when a card device becomes Ready
for input purposess the Status Procedure reads the first card and
control is passed to the Control Card Procedure.

On disk and tape devicesr when a unit becomes Readys the Status
Procedure attempts to read a label from the media. The following
is a description of the various 1abel formatss on disk and tape
devices» the NCP is capable of recognizinge

DIsK IDENTJIFICATION - RACK LABELS

Every disk packs disk cartridger or head=per—=track sub=system is
identified by a standard "ANSI™ pack 1abel. This pack 1abels
written in EBCDIC (8B bit coded)» is tuwo pack sectors long (360
bytes)» and occupies the first two sectors on a packr ToEw>»
cylinder ©0» track 0» sectors 0 and 1. Sector 0 contains pack
identification information and sector 1 is reserved f€for future
implementation of pack security. procedures. A programmatic
description is given belou:

DEFINE PACK.LABEL.DECLARATION AS #2
DECLARE 01 DUMMY REMAPS PALK.LABELZ

’ 02 PL.VOLY CHAR (&) X “vyoL1" :
’ 02 PL-SERIAL.NO CHAR (6) 2 SERIAL (CAN) NUMBER
» 02 PL.ACCESS.CODE CHAR (1) X ACCESS CODE
» 02 PL.ID CHAR (17) % PACK ID
’ 03 PL.NAME CHAR (100 X .
» 03 FILLER CHAR (7) 2
» 02 PL-SYSTEM.INTERCHANGE CHAR (2) X SYSTEM INTERCHANGE/CODE
X 00 = INTERCHANGE
Z 17 = B1l00O INTERNAL
X 35 = B3500 INTERNAL
%X ETC» ETC» ETC
» 02 PL.CODE CHAR (1) X PACK CODE 00 = SCRATCH
’ 02 FILLER CHAR (B) X
»’ 02 PL-OWNERSLID CHAR (14) X
» 02 PL-TYPE CHAR (1) X "R” = RESTRICTED PACK
k4 "U™ = USER PACK
% "S" = SYSTEM.PACK
’ 02 PL.CONTINUE CHAR (1) X CONTINUATION FLAG "C™
» 02 FILLER CHAR (262} X
» 02 PL-INT CHAR (1) X
» 02 PL.VOLZ2 CHAR (4) X "vyoLz2"«

81000 NCP MANUAL

MARK 10.0
» 02 PL.DATELINITIALIZED CHAR (5) X
» 02 PL.INIT.SYSTEM CHAR (8) 2% INITIALIZING SYSTEM
» 02 PL.DISK.DIRECTORY CHAR (8) 2 DIRECTORY ADDRESS
» 02 PL.MASTER.AVAIL CHAR (B) X MASTER AVAILABLE TABLE
’ 02 PL-DISK.AVAILABLE CHAR (8) X WORKING AVAILABLE VABLE
» 02 PL-INTEGRITY CHAR (1) X 0 = NORMAL

k4 1 = RECOVERY REQUIRED

» 02 PL~ERROR.COUNT CHAR () X
» 02 PL-SECTORS.XD CHAR (62 X REMOVED SECTORS
» 02 PL-TENP.TABLE CHAR (8) X TEMP TABLE LINK
» 02 PL.PCD CHAR (3) X LAST PORT» CHAN» DRIVE
» 02 PL.ASSIGNED.T0.BPS CHAR (b) X BASE PACK SERIAL NUMBER

In the case of disk devicesr, additional informations, beyond that
which can be stored in the I0AT» is required by the MCP for
proper operation. The STATUS Procedure and others maintain this
information in a reserved area in m®memory known as the Pack
Information Table (PACK.INFO).

BACK INEOQRMATION JABLE

The pack information table is an MCP maintained 1linked 1ist of
all wuser disk packs and cartridges currently on lines It
contains such information as the name» serial numbers hardware
unite number of wusers» and addresses of the disk directory.»
available table» and temporary table. This structure atlows a
pack or cartridge to be externally referenced by names A
programmatic description is given below:

DEFINE PACK-INFO-.DECLARATION AS #X
DECLARE 01 DUMMY REMAPS PACK.INFO»

02 P.NAME NANE»
02 P-SERIAL.ND WORD»
02 P-.DISK.DIRECTORY DSK.ADR>
02 PeDISK<AVAILABLE DSKaADR»
02 P.TEMP.TABLE D5K.ADR»
02 P.UNIT.NANE CHAR (8)»
02 P.PCD BIT (12)»
03 P.PORT.CHAN BIT (7)»
03 FILLER BIT (1)»
03 P.DRIVE.NO BIT (4)»
02 Pa-NO-USERS BIT (8)»
02 P.ND.MPF.USERS BIT (8,
02 P-TD-.BE.POWMERED.DOWN BOOLEAN»
02 P.RESTRICTED BIT (3)» 2 0 = SYSTEM RESOURCE PACK
Z 1 = RESTRICTED
Z 2 = UNRESTRICTED USER
X 3 = INTERCHANGE
02 P.LONTINUE BOOLEAN, X 1 = CONTINUATION PACK
02 P.SCRATCH BOOLEAN» 2 1 = SCRATCH PACK

3=25

81000 MCP MANUAL

MARK 10.0
02 PaFULL BOOLEAN» % 1 = NO MDRE AVL DISK
02 P.XC BOOLEAN» ZPACK HAS UNDERGONE XC.
02 P+ASSIGNED. TO.BPS WORD» % ASSIGNED TO BASE PACK 2
02 P.BACK.LTINK ADDRESS»
02 P.LINK ADDRES3S?

#3%

IABE LABELLING. INITIALIZAJION AND BURGING

MCP IT includes the capability to create and recognize twuo
di fferent forms of magnetic tape 1abels. The standard 1abel
format ¥for the Bi00O system will conform to that specified in the
publication entitled ™The American Nationai Standard Magnetic
Tape lLabels for Information Exchange™ which is dated 1969 and
published by the American National Standards Instituter Inc.
LANSII). These labels are commonly known as ™ANSII» Version 1™
Labels. It should be noted that "standard label format™ for the
system means that any program which requests standard labels in
its file declaration will cause ANSII labels to be uritten when
the file is assigned to magnetic tape» and the fijle 1{is opened
output. Users are allowed to create the label in ASCII §if they
50 desires

ANSII labels as implemented on the B1000D system <contain several
deviations from the standard as presented by the ANSII documentse.
The deviations are necessary in order to insure that we are
compatible with the B6700 system. The most notewor thy deviation
is the recording mode of the labsl itsel f? it is written in
EBCDIC character code unless ASCII is speci fically requested via
the "SN™ command.

ANSII label formats as implemented» consists of three physical
blocks on the tapes followed by a tape mark. The first of the
three blocks is known as the Volume Header. A programmatic
description is presented below.

01 VOLUME.HEADER

02 FILLER CHARACTER(4)
ZThis field will always contain ™VOL1"

02 VOLUME.ID CHARACTER{(B)

02 ACCESSABILITY CHARACTER(Y)

XThis field is not used by the B1l000
02 RFS XThis field is reserved in the ANSII Standarde. It is
Xbeing used as follows by the B1000 3nd the B6700.

03 MULTI.FILE.ID CHARACTERL17)
X2 "0" if there is no NFID
Z "X0" §if Scratch
%X "BACKUP™ if Backup

03 5YS.5YMBOL CHARACTERL2)

3=26

B1000 MCP MANUAL
MARK 10.0

X Will contain =17 if created on B1000

03 TAPE.TYPE CHARACTER(1)
Z 0 = Scratch
2 1 = User
%2 2 = Backup
2 3 = Library
03 FILLER CHARACTER(S)
02 OMNER.ID CHARACTERC14)
Z This field is not currently usable on the B1000 systenm
02 FILLER CHARACTER{(28)
02 VERSION CHARACTER(C])
%X Will contain ™1" until such time as the label format is
X changed

The second of the three physical blocks is known as *"Header One".
The format is also used for End=of=File and End=of-Volume. A
programmatic description is given below.

01 HEADER1.DECLARATION

‘02 FILLER CHARACTER{H)
, %X May contain "HRD1", ™EDF1™» or "EQVLI™
02 FILELID CHARACTER(C17)
02 FILELSETLID CHARACTER(C(H)

X This field will contain the first six characters from
Z the MFID fiedld in the VOL1 block

02 FILE.SECTION.ND CHARACTERCS)

X Used for Reel number by B6700 and B10GO
02 FILE.SEQND CHARACTER(4)

X Ordinal number of the file within a Multi-File
02 GENERATION.NO CHARACTERC4) X Unused
02 GENERATION.VERSTION.NO CHARACTER(2) X Unused
02 CREATIODNDATE CHARACTER(H) X bYYDDD
02 EXPIRATIONSDATE CHARACTERLSE) X bYYCDD
02 ACCESSABILITY CHARACTER(1) X Unused
02 BLOCK.COUNT CHARACTERLS)

X Zero if this is a Header.One block
02 SYSTEM.CODE CHARACTERC13) X ™B1700"

02 FILLER CHARACTER(7)

The third physical block i5 known as "Header Two™. It is also
used at End=of=File and End-of=Volumes Its format 1is shown
below:

01 HEADERZ.DECLARATION
02 FILLER CHARACTER(A)
X Nay contain "HDR2"», T"EOF2"s or “EQV2™
02 RECORDLFORNAT CHARACTERC1)D
X F Fixed
¥ Var iable
3 Spanned (Not yet implemented by any Burroughs system)

o

x
4

3=27

B1000 MCP MANUAL

MARK 10.0
X U = Undefined
02 BLOCK.LENGTH CHARACTER(5)
02 RECORD.LENGTH CHARACTER(S)
02 RESV.S5YSTEM.USE CHARACTERLC35)
03 DENSITY CHARACTER(1)
20 = > 800
X 1= > 556
22 => 200
2 3 = > 1600
03 SENTINAL CHARACTER(1) X VUnused
03 PARITY CHARACTERC(1)
2 0 = Evens 1 = 0dd)
03 EXT.FORM CHARACTERC1)
X 0 = Unspecified
2 1 = Binary
X 2 = ASCII
Z 3 = BCL
%2 & = EBCDIC
03 FILLER CHARALCTERC(31)
02 BUFFER-OFFSET CHARACTER(2) X Unused
02 FILLER CHARACTERIL{238)

As mentioned in a prior paragraphs the MCP writes ANSII Format
Labels on tapes whenever a file is opened output and the
LABEL-TYPE field in the FPB is set to zero. If the user wishes
to continue writing the old Burroughs format 1abelss» he nmust
modify this field in ali of the files in his programse. This may
be accomplished by recompilationr, by the use of a File Attribute
communicate operation Within the program» by the use of the
MODIFY control instruction or by the use of a FILE card when the
program is executeds Presently wvalid values for the LABEL.TYPE
field ares '

ANSIT
Unlabelled

0
1
2 Burroughs

0o H

ANSII Labelss» though they are written shen the file is opened
outputr, are actuaily created on all magnetic tapes prior to that
time. A keyboard message has been implemented in the MNCP for
purposes of creating the initial ANSII d1abel on all tapese The
mnemonic of the message i5 "SN™ which used to be an acronym. for
Serial Number. The syntax for SN iss

SN <unit mnemonic> <volume=-identifier> 1 ASCII 1

<Volume identifier> may consist of one to six adlphanumeric
characters and is inserted in the VOLUMELID field of the VYOL1
block of the Label which is created. This eperation iss for
conversational purposess known as "initializing™ the tape. All
tapes and cassettes must be initialized on the B1000 before the

3-28

B1000 MCP MANUAL
MNARK 10.0

MCP widl consider them scratches This applies to seven—trackr as
well as all versions of nine-~track tapes.

The <volume identifier> keyed in will remain on the tape until
the tape is re—-initialized. The tape may be purged at any time»
provided the ANSII label 1is still intact on the tape. Tapes
which have Burroughs labels on them must be re~initialized and
may not be purged. Purging» here» implies the use of the "PG™
keyboard message. Similarly», unlabelled tapes may not be purged»
but may be re~initialied. The <volume identifier> is now part of
the output of the "™0L"™ message. The presence of the reserved
word ASCII in an SN statement causes the label to be written in
ASCII character codess

The capability of creating and recoegnizing ANSII labels was not
included in the MNCP prior to the 5.0 release of the softuware.
Before the 5.0 releaser all labels created by the Bl000 system
vwere the old Burroughs {abels first implemented on the B5500
systems« A programmatic description of these labels» as they are
created on the B1000» is shown below. As can be seen from the
descriptionr» certain fields have been added te the 1abels to
improve their utility. These fields are meaningful to the 81000
system only. A programmatic description is presented below.

DEFINE STANDARD.LABEL.DECLARATION AS # X
DECLARE 01 DUMMY REMAPS L.LABEL.RECORD %

» 02 L.LABEL CHAR (9) 2 " LABEL ¢C™

» 02 L.MFID CHAR (7)) X b

’ 02 L.2Z1 CHAR (1) X kbt -

» 02 L.ID CHAR (7) X

» 02 L.REEL CHAR (3) 2

» 02 L.DH CHAR (3) X DATE WRITTEN

» 02 L-CYCLE CHAR (2) X o

» 02 L.PID CHAR (5) X PURGE DATE

» 02 L.S - CHAR (1) X SENTINNEL (1 = END-OF-REEL)

» 02 L.8C CHAR (5) X BLOCK COUNT

». 02 LaRC CHAR (7)) X RECORD COUNT

» 02 L.PB CHAR (1) 2 PRINT BACKUP FLAG

» 02 L«SERIAL CHAR (5) 2 SERTAL NUNMBER

’ 02 L.SYSTEM CHAR (5) X CREATING SYSTEM

» 02 L.BUFSIZE = CHAR{(8) 4 NEW FORNAT DECIMAL BLOGCK SIZE

» 03 L.BSIZE BIT(2Z4) x OLD FORMAT BINARY

» 03 L.RSIZE BIT(24) 4 OLD FORNAT BINARY

» 02 L.RECSIZE CHARCS)) 4 NENWN FORMAT DECIMAL RECORD SIZE

» 02 La.MODE : CHAR(1) b 4 NEW FORMAT RECORDING MODE FOR
X TAPE FILE

.i
*

All Labels on the Bl000 system are written in odd parity.
Beginning with the 4.2 release of the software» tape marks are

3=29

B1000 NCP MANUAL
MARK 10.0

Wwritten in even paritys except where prohibited by the control.
This was done as an accomodation to the B300 system» which can
read only seven=track tape and cannot recognize tape marks which
are written in odd parity.

MCPII will write tapemarks and ending 4dabels on any output
Labeled tape that is not at BOT when a Clear/Start is done« This
will allow the wuser to read that tape and recever the data.
There is one restriction. If the tape is to be read in reverses
the user must specify blocking information.

ANSTI {Labels are also wuritten as the standard 1abel on
seven=track tape. MWhen this is done» the labels are written with
translation to BCL . Burroughs 1abels» when written to
seven=track taper are written in odd parity with the EBCDIC/BCL
transiator enabled.

The STATUS Procedure makes all possible attempts to recognize a
Label when a tape unit becomes Readye. 0On seven=track tape»
particulariy» there are several different variations of parity
and recording mode that may have been used to create the tape.
Seven—=track tape can be written wuwith of without character
translation from EBCDIC to BCL. The MCP will attempt to read
tape labels with all possible variations before giving ups

When the MLP cannot recognize a label» the unit is considered
available for input purposes if the tape does not have a Hrite
Ring din its In this case» it must be manuaily assigned to a
program by the operator» either when the program requests the
file or when the job is executeds If the tape does contain a
Hrite Rings it must be initialized» wusing the 3N instruction
decsribed above. Only when the tape has a Write Ring and
contains a valid ANSI labed indicating "5Scratch™ is5 it considered
available for output purposes automatically by the MCP.

It is5 also the responsibility of the S5TATUS Procedure to record
the other information returned by the Test I/70 coperations This
information s «crucial to the proper operation of the rape
subsystems In particulars if the system s equipped with a
PEJNRZ exchanges the operation of the STATUS Procedure when a
unit becomes Ready is as described below.

3=30

B1000 NCP MANUAL
MARK 10.90

BEZNRZ EXCHANGES

With the inclusion of the M&/M5 MEC supplied by the Hestlake
Plant and described by P.5. #2047 4490» it is possible for a
tape unit to operate in either Phase Encoded (PE) or Non=Return
to Zero (NRZ) recording mode. This can only be accomplished on
the B1000 hardware by connecting one NRZ control and one PE
control to the MEC. The NRZ control i5 designated MHTC~2 and the
PE control is designated MIC-4. A tape subsystem so connected is
spoken of as an exchange subsystem by hardware personnel.
According to the software definition of a subsystems all controls
in the subsystem must be identical. The code in the 1/0 driver
which interfaces to MTC=2 is distinctly different from that which
interfaces wWwith MTC~&. A request for a unit which is operating
in the NRZ mode can only be handled by MTC=2.

Top solve this problems considerable coding has been incorporated
in the MCP. The problem has been rectified in the most efficient
manner possibler however. Tuo separate chains of descriptors,
one for each controls are constructed by the MCP at Clears/Start
time. The two chains are maintained by the MEP dynamically, from
that pointe.

Recording mode information is supplied by the test operator and
actualldly is returned as the density field in the result
descriptor. A density selection of - 1600 bpi» for example»r
indicates that the unit has been selected to be in the
phase~encoded recording mode and that the I/0 descriptors for the

unit should be in the MNTC=4% chain of descriptorss. If the
subchain for the unit is not in the proper chains the MCP will
move the entire subchain to the proper chain. The movement of

the subchain is only attempted when the unit is not in use» of
COUrsea. Selecting a different density while the unit is being
used constitutes an error on the part of the operator. The
operator is notified of the error and the program is allowed to
continue processing only when ‘the proper density has been
selected on the unita

This solution is only possibile if both controls are capable of
reporting recording density properiy. MTC=2 can report the fact
that a unit is selected to be in the 1600 bpi density.
Similarly» MYIC—=4 is able to report the fact that a unit is in the
800 bpi densitye. Density information is commonly used by the MCP
only when a unit goes from a not-ready state to a ready state.
The movement of the subchain is therefore performed by the MCP
status routine when the unit becomes readys.

Unit mnemonics are not affected by the presence of a PE/NRZ
exchange. A unit selected as MTA» for exampler will always be

3=-31

B1000 MCP MANUAL
MARK 10.90

known as MTA» regardiess of which chain contains its subchains or
which density is selected by the operators

Due to differences in the unit numbering scheme between MTC-2 and
MTC~4» there can be no more than eight magnetic tape units
connected to a PLE/NRZ tape subsystenm. This capability 1is not
available on any version of the software prior to the 5.1 release
versions

3=-32

B1000O MCP NANUAL
MARK 10.0

EILE SIRUCTURES

A File is a group of related recordse Files are of central
importance in the 1I/0 Subsystem since effectively all of the
communication between user programs and - the subsysten is
accomplished through filesa.

The B1000 Dperating System supports three di fferent file types or
structuress» exclusive of Data Management System structuress which
correspond roughly to those file types defined in the ANSI %74
COBOL Languages in that danguages these types are called
Segquential» Relative and Indexed Sequential. Sequential and
Indexed S5equential files» in COBOL» <can both ke accessed’ in a
random manner and the use of the word ™Sequential”™ tends to add
confusiona. In this document» the three types Wwill be refferred
to as Conventional Filess, Relative Files and Indexed Files.

CONVEMTIONAL EILES

The basic definition of Conventional file structures is found in
the COBDL *'68 Language» though many functions have been added to
the basic definition. To a program» a file represents a large
collection of ordered data that exists apart from the program.
The program needs to interact with parts of that data from time
to time and the 170 Subsystem makes this interaction possibte.
The 1I/80 Subsystem moves the data into and out of user working
areas in main memorys to which the program has access.

The unit of data moved into and out of the user?s working area is
the record. The record is considereds by the I/0 Subsystem» to
be a string of bits» which the user program will probably group
into <characters or words in some manner» but the I/0 Subsystemnm
deals only with entire records and delivers and rcreceives one
record at a time to and from the user program.

A file has some structure as seen by the user programe The
records may be all of the same length or they may be of wvariable
iength. Length information must be declared by the program or

contained in the record itself or exist in an accessible form in
the physical file or exist in. the information which the NCP
maintains about the files If the record length is variable» then
the Length of each record must exist in that records in the €first
four character positionsas

3=-33

B1000 MCP NANUAL

MARK 10.0
The file» as it is stored on some recording mediunms is often
refferred to as a physical files A physical file may have some
additional elements of structure. It may <contain blocks. A
block is a group of physically <contiguous records which are
transferred to and from the physical medium as a groups The

storage device 1itself may imapose some structure upon the file.
As discussd previouslys, data is transferred to disk in 1440=bit
increments. A block of records to be written to disk must
therefore total some integer multiple of 1440 bits. The disk
itself may be used to store many disjoint physical files. To
minimize storage availability problemss, the MCP adlows disk files
to be broken into "areas™» each of which will contain room for a
specified number of blocks. This §5 described in more detaidl
later.

The physical file inherits many of Jts properties from the
ftogical file decliared by the user program which creates it. When
the user programmer declares a {logical file» the compiler
ge2nerates a File Parameter Block which contains the specified
values for the various attributes of the file. File Parameter
Blocks (FPBs) are defined in Section 2 of this specification.
The MCP» and more specificalily the OPEN procedures converts the
attributes specified by the user to an actual physical fileas
More attributes are added to the physical fite when it is
assigned to a device.

Any file may be described by its attributess File attributes are
system control parameters which are used by the I/0 Subsystem.
The attributes contain all of the information the subsystem needs
when it connects a physical file to a logical file declared in a
user program and when it controls the access to that physical
files

Most of the attributes associated with any file are contained in
the File Parameter Block {FPB) for that file. Certainlys the FPB
i5 the storage medium for the attributes that are declared by the
user and generated by the compiler. Additional attributes will
be obtained when the file is opened and assigned to a device.
When a file is opens its attributes may be stored irn the FPB» the
File Information Block (FIB)» the Disk File Header (DFH) and the
I70 Assignmment Table {I0AT). AlL of these structures have been
presented previousiy.

Beginning wWwith the B8.0 version of the MCP» a communicate
operation was added to allow user programs to dynamically modify
selected attributes of a fide. In subsequent versions of the
MCP» the list of modifiable attribtes has been expanded. The
File Attribute communicate opsration is described in the Demand
Management section of this document.

81000 MTP MANUAL
MARK 10.0

ELILE NAMING CONVENTIONS

All names associated with files on the B1000 MCP may be a maximum
of ten characters in dength. Names in excess of ten characters
will be truncated to the first tene. Looking at the description
of the FPB presented in Section 2 of this specifications, the
first field in the FPBs, FPB.FILE.NAME is the internal name of the
files *Internal”™s in this case» means internal to the user
progranm. This is the name which appears in the File Declaration
of the user program and the name which the programmer uses in all
references to the file within the progranm.

The next three name fields in the FPB provide the "File
Identifier™ for MCP purposes. Aldl physical files introduced to
the system may have one or two names. Files assigned to disk
pack may have a third name which wildl correspond to the pack
names the name contained in the pack Llabel.

If a file has one name only» that name is stored in the field
FPB.MULTILFILE.ID and the field FPB.FILE.ID should be filled with
btanksa. FPB.MULTILFILELID is often referred to as the “"Family
ID*" and is5 only important if the file is assigmed to disk or
tapes If a file has two names» the second name is stored in the
FPB.FILE.ID fields

The assignment of physical files to logical files is discussed in
the Demand Management Section of this specification in the
description of the OPEN communicate operation. Stated in its
simplest formr» the MCP attempts to associate one or two names
with each device that is connected to the system and that is
capable of input operations and to match this external name to
the File Identifier specified in an FPB when a user OPENs a fide.
On output files» the MCP simply attempts to assign an availabile
device of the requested hardware type. '

There are two exceptions to the statements in the preceding
paragraphe When an output file is directed to Printer or Punch
deyvicess» the output data may be actually stored on disk for later
retrievals Such files are known as Backup Files and are
discussed Llaters Input card fiiles may be Loaded to disk files
prior to the time they are required by a prograns. When the
program then requests the card file» MCP may automaticalily
substitute the previously loaded disk files. This is known as
the Psuedo—Reader facility and is discussed in Product
Specification 2222 2265» 3Y3IEM/LDCNIRL-

3=35

B1000 MCP MANUAL
MARK 10.0

LORICAL RISK EILES

It is the MCP's responsibiltiy to convert a logical disk file as
declared in a wuser programs to an actual physical disk file.
This can only oeccur by a program opening a new disk files where
"ngw” in this context specifies that the program intends to
create a file and the physical disk files that are currently
knouwn to the system are of no concern to the user.

Except in the case of Multi=-Pack files» files that extend over
more than one physical pack or cartridge» a nex file can only
become a permanent file that exists when the program is no Longer
executing by the same user doing a close operation on the file
and specifying in the CLOSE communicate operator that the file is
to become permanent. This implies that the file identifier is to
be entered din the disk directory and remeambered by the MCP
forever. This also implies that the disk storage space occupied
by that file 1is to be wused for no other purpose except the
various user manipulations that may occur within that file>»
utilizing a 4dogical file with the same File Identifier. The
Close operation is also described in detail im the Demand
Management section of this specification. Basicallys the QOpen
and Close operations both obey the rules presented in the
definition of the COBOL Language.

BHY3IICAL DISK EILES

In order to manage all of the available storage space on a disk
devicer the MCP must maintain tables which tell it the storage
locations that are availabide for use» the names of the files that
are already stored on the disk and the physical characteristics
of those filesa.

DISK SPACE ALLOCATION

There are three tables» each with the same formates that are used
by the NCP to allocate disk space. The master available table is
a non—expandable table of three contiguous segments beginning at
the second sector on diske. It contains a List of ald4 unusable
segments which have been "XD=ed™ by the operator. The working
avaidable table is a 10-segment table beginning at the 4¥th disk
segment. It contains a tist of all available or unused space on
disk and is expandable as needed. The temporary table is five
contiguous segments and contains a dist of all segments in use
but not reflected in the disk directory. This expandable table
begins at the 57th sector. At Clear/Start time» all sectors in
the temporary table are returned to the available table. A
programmatic description is given belowu?

3=386

B1000 MCP MANUAL

MARK 10.0
DEFINE
DISK.AVAILABLE.DECLARATION ASH
DECLARE :
01 DUMMY REMAPS DISK.AVAILABLE BIT(SEG.SIZE)»
02 AVL.BACK.LINK D5K-ADR>»
02 AVL.SELF DSK<.ADR>
02 FILLER BITL4)»
02 A¥L.BLDCKIL22)»
03 AVL.ADDRESS DSK+ADR>»
03 AVL.LENGTH HORD3Z 23

EILE ACCESS AND IDENIJEICATION

The disk directory is the structure which catalogues and points
to all files on disk. Each entry contains the file's names types
and Disk File Header (DFH) addresss The directory is a two-ilevel
structure containing a primary or "master™ directory and a
secondary directory. The master directory is greated at Cold
Start as 16 contiguous disk sectors beginning at sector 31. Each
sector contains entries for elieven files. As each sector is
filled» another disk segment is allocated and linked to the
filled sectora. If a file has two namess» the primary name
{Multi~File IDentification) is placed in the master directory
with a pointer to a secondary directorys uhere all the files with
that NFID are listed. The secondary directory is structured and
linked in the same fashion as the master directory. A
programmatic description is given belowu:

DECLARE 01 DIRECTORY REMAPS BASE»

02 DISK.SUCCESSOR D3K.ADR»

02 DISK.PREDECESSOR DSK-ADR>»

02 DISKeSELF DSK-ADR»

02 FILLER BIT (12)»

02 DISKeNAME NAME»

02 DISK.ADDRESS DSK.ADR»

02 DISK.FILEL.TYPE BIT (4)»

02 FILLER BIT (120C)7 X 11 ENTRY PER SEG

The Disk File Header (DFH)Y is a variable-length header record»
the size of which is dependent upon the number of declared areas
in the file and is computed as follows:

540~BITS +# (36~BITS = NUMBER=ODF-AREAS)

3=37

B1000 MCP MANUAL
MARK 10.0

The DFH is never {ess than 1440 bits nor greater than 4320 bits
on diskas It ULlists the ophysical characteristics of the file
including its fide type and the disk address for each area. The
following file types are recognized by the MCP3

LOG

DIRECTORY
CONTROL DECK
BACKUP PRINT
BACKUP PUNCH
DUMPFILE
INTERPRETER
CODE FILE

DATA FILE
VARIABLE LENGTH RECORD DATA FILE
INTRINSIC FILE

RIs8 EILE IDENJIFICAIIQN

As discussed previocuslys Disk Fide Headers (DFH) are the

structures wused to identify a file on disk. It is a
var iabdle=length record which describes the physical attributes of
the file and contains pointers to each "area™ of the file. Hhen

a disk file is "opened™» a copy of the DFH is copied into memory.
The headsr in memory points to the header on disk and vice versaes
There will never be more than one copy of the header for a file
in memory at any timee. Multiple users of the file will use the
same copy of +the headers. Maintenance of disk file headers is
covered in another section. A programmatic description is given
belous

DIsK EILE HEADER

DEFINE FILE-HEADER.DECLARATION AS #X%
FHoMAP{FILE-.HEADERD#»

FH-MAP(FILE.HEADER) AS #X

DECLARE 01 DUMMY REMAPS FILE.HEADER»XZ

02 FH-USERS.RANDOM BIT(8)»X FORMERLY FH.CORE.ADDR
02 FH.NENWFILE BIT(1)»% CLEARED WHEN NEW FILE I35 FILED.
02 FILLER BITLT7)>»

02 FH.FILE.KIND BIT(8)»

02 FHa SELF DSK. ADR»

02 FHeNOLUSERS BIT (8)»

02 FH.USERS.OPENLOUT BIT (%),

02 FHaOPEN.TYPE BIT (4)»

02 FH-FILE.TYPE BIT C4)»

02 FH.PERMANENT BIT €4)»

02 FHe JOB.WAITING.ON-CLOSE BOOLEAN»

02 FILLER BIT(9)» X DON?T USE UNTILL 1977

B1000 MCP MANUAL

MARK 10.0
02 FH.HDR.SIZE BITC14)»2% LENGTH OF MYSELF IN BITS.
02 FHaNO.USERS.LOCK BIT(4)» ‘
Z NO.USERS WHO HAVE IT OPENED WITH LOCK
02 FH.RECORD.SIZE BITL20)»% LENGTH IN BITS.
02 FILLER BITC4)»X DON*T USE TILL 1977
02 FH.RCDS.BLOCK BIT(20)»X
02 FHeBLOCKS<AREA WORD»
02 FHaSEGS. AREA HORD»
0z FH.AREAS.ROST BIT (12)»
02 FHaAREA.CTR BIT (12)»
02 FH.EBF-POINTER WORD.»
02 FILLER BIT{4)»2ZDON*T USE TILL 1977
02 FH.BPSa.NO BIT(20)-X
02 FH.BLOCK.COUNTY BIT(24)»,X DON*T USE TILL 1977. IGNORED 5.1.
02 FH-FORMAT BIT(3)»X%X HITHERTO =0. FOR RELEASE, =1.
02 FH.MPF BIT(1)»%X HITHERTO &4 BITS.
02 FILLER BIT(24)»
02 FH.CREATEL.TINE BIT(16)»% HITHERTO 0. HENIGE'S GENEROSITY.
02 FILLER BIT(8)»
02 FH.USER. INFO NORD»
02 FH-SAVE.FACTOR BIT (12)»
62 FH-CREATION.DATE BIT (16)»
02 FH.ACCESS.DATE BIT(16)» 2
02 FH.S5ERND BIT(24)»X DON'T REUSE TILL 1977. 5.1 IGNORE
02 FH.MPF.ADDR DSK-.ADRe X DONT REUSE TILL 1977
02 FILLER BIT(1)»
02 FH.UPDATE.VERSION BOOLEAN»
02 FH.DMS.WRITE.CONTROL»
03 FH.DMS-TO.BE.WRITTEN BOODLEAN»
03 FH.DOMS.CONTROLPOINT BOOLEAN»
0z FH.VERSION BIT{36)» X YEAR»JDAY>TIME
02 FH«.PRDTECTION BIT (2)»,% HOST RJE
02 FH-.PROTECTION.IO BIT €2)»X HOST RJE
02 FILLER BIT (18)»Z HOST RJE
02 FH.AREA. ADDRESS 1105) DSKaADR»
03 FHaUNIT BIT (12%» X
04 FH.PORT BIT (3)» X
04 FHeCHAN BIT (4)» X
04 FH.SER.NO.FLAG - BOOLEAN. X
D& FHWEU BIT (4)» %
03 FH.ADDR BIT (24)3

MULTI-PACK EILES

The B1000 MCP includes the capability to allow a file to extend
over more than one removable pack or cartridge. Such a file is
knoun as a "Multi-Pack Fidle™ (MPF). Quite obviously» there are
some L imitations on the use of such fides. The individual packs
or cartridges which contain portions of the file may not be
removed indiscriminately. Various operational details are
contained in the "B1700 Software Operational Guide™.

3-39

B1000 MCP MANUAL
MNARK 10.0

BASE EACKS

A multi—-pack fiie may have only one "Base Pack” (BP). The name
of the base pack is the pack id as specified by the user in the
FPB of the multi-pack file. The base pack must be on 1line for
all OPENs of the file» The MCP may also require that the base
pack be on=lLine for other operationss such as the assignment of a
new area of disk to the file. An appropriate message wWilli be
typed on the console printer by the MCP if the base pack is
required and it is not on-line. The operator may then mount the
base pack and the requesting program will continue. The base
pack must be on line when the file is closed if it was opened for
output or input/ouktput.

A base pack may contain single files» as well as multi-pack
filess in any combination. It may note be a "continuation pack”
for a waulti-pack file whose base pack is a different physical
pack or cartridgs.

The fide header for a multi-pack file is contained on the base
packs It contains all information concerning the files including
the addresses of every area assigned on the base pack to that
fileas For each area mhich resides on a continuation packs the
header Wwill contain the serial number of the continuation packe.
This allows the MCP to control all processing of the file and
thereby avoids the necessity of updating each continuation pack
as the file is processed.

CONTINUATION PACKS

A pulti=-pack file mays by definitions, reside on two or more packs
or cartridgesa WHhen the file overflows or “contipues™ to
additional packs» the term "continuation pack™ is used. A
multi-pack file may reside on up to sixteen packs or <cartridgesa.
There may be up to fifteen continuation packs assigned to one
nulti-pack file,

A continuation pack may be associated #with only one base pack., A
continuation pack may contain only continuation filess it may
not be a base pack for another file. A continuation pack may
contain information associated with more than one multi-pack
filer but all of the files must be assigned to the same base
pal:k.

3=40

B1000 MCP MANUAL
HMARK 10.0

The file headers which 1s contained on the base pack for a
multi~pack file» contains disk addresses for only those areas of
disk which are assigned to the base packs The same statement can
be made of continutation packss the file header contained on a
continuation pack contains disk addresses that are assigned on
that pack onlye. The file header on the base pack contains the
serial number of the appropriate continuation pack in the disk
address fields of the headers.

Wwhen a file overflows from the base packs the MCP will search for
another continuation pack that 1is already on=line and that is
associated with the same base packe. If such a continuation pack
is found» the file automatically overflows to that continuation
packs If no such continuation pack is present on the system» the
MCP will then search for a scratch packs one which has no files
on its with the same type as the base parcks "Type™ here means
"rastricted™ or unrestricted™ and is determined when the pack is
initialized.

If such a scratch pack is founds the file automatically continues

to that packs I1f no such pack is foundr the NCP temporarily
halts the program and prints an appropriate message on the
consodle printer. The program may be continued when a suitable

continuation pack is present on the system.

MULTI-EACK FILE INEORMAIION IABLE

When 2 multi=-pack file is opened inputs the file®s header is read
into memory from the base pack. When a multi-pack file is opened
outputr, and news a header 1is constructed in memory from
information in the program®s FPB and information from the base
packs During OPEN the MCP will find space on the system pack for
a multi-pack file information tabile. The table will contain
specific information about the base packs along with an exact
copy of the disk file header from the base packas This copy of
the header is treated as a working copy while the file is. opene.
The header on the base pack may therefore not always be correct.

The format of the MPF.INFO.TABLE is presented belows One
MPF.INFO.TABLE per file is requireds regardless of the number of
users.

3=41

01
02
02
02
02
02
02

02
02

02
02
02
02
02
02

03

FIELD NANE

WY T R W W W SR 8

MPF-INFDO-TABLE
MPF .FORWARD

MPF «.BACKWARD
MPF -SELF
MPF - NAME
MPF.HEADER.SIZE

MPF-HEADER. ADDRESS

MPF »BPS.NO
MPF - OPEN. TYPE

MPF .NEW-FILE

MPF .NEW. AREA

MPF .C5S

FILLER

MPF .BASE.PACK. TYPE
MPF .ARRAY

MPF .ONLINE

04 MPF.SERIAL.NO
04 MPF.HDR.DSK

B1000 MCP MANUAL

MARK 10.0

TYPE

1392
36
3%
36
30
24

24

24
4

4

2%
36

BITS
BITS
BITS
BITS
CHAR
BITS

BITS

BITS
BITS

1 BIT
1 BIT

BIT

1 BIT

BITS

BITS
BITS

DESCRIPTION

TABLE.
MPF TABLE.
TABLE.

POINTER TO NEXT MPF
POINTER TO PREVIOUS
POINTER TO THIS MPF
FILE-IDENTIFIER.
SIZE OF COMPOSITE HEADER
MAINTAINED BY THE MCP.

POINTER TO THE COMPOSITE HEADER

IN MEMORY.

BASE PACK (BP) SERIAL NUMBER.

TYPE OF FILE OPENED. SAME AS
DFH.OPEN. TYPE IN DISK FILE HEADER.
NCP FLAG USED IF THIS IS A NEW
FILE.

MCP FLAG USED IF NEW AREA WAS
ADDED.

MCP FLAG TO MARK IF CLEAR/START
WAS PERFORMED SINCE THIS ENTRY

WAS CREATEC.

TYPE OF PACK USED AS BP.
1=RESTRICTED» 2=UNRESTRICTED
USED TO RECORD ALL PACKS THAT
ARE ON-LINE.

MAXIMUM OF 16 ITEMS IN ARRAY.
SERIAL NUMBER OF THE PACK. 4
DISK ADDRESS OF THE FILE HEADER
ON THE PACK.

MULTI-PACK FILE GENERAL RESIRICIIONS

/. . . .
In addition to any restrictions Listed in the foregoing» the
items below are also applicable to multi=pack files.

i.

Ze

Since a system cartridge may not be a base pack»
on systems

files only

drivesas

are

aoperational

nmnulti-pack
With two or more

ALl packs containing any part of a multi-pack file must have
unique serial numbers.

3=42

B100O MCP MANUAL
MARK 10.0

BRINIER EILES

All Burroughs printers and controls have hardware capability of
spacing the paper after writing a line of output but no
capability of spacing the paper before uriting the lines With
the advent of the ANSI *'74 COBOL Language in the 9.0 version of
the software» the need for a more efficient means of performing
the COBOL WRITE AFTER ADVANCING statement became apparent. In
prior versionss this operation was implemented by the compilers»
generated two actual I/0 communicate operators for each such
statement encountereds The first of the two was a Position
communicate or a WRITE of a Line of blankss? the second was a
WRITE of the actual record with no paper motion specifieds Thiss
of courser resulted in two communicates as well as two physical
I0s for every logical WRITE AFTER ADVANCING operation. The
change described below was first implemented in the 9.0 Operating
System and is included in all subsequent versionsa.

The goal of ¢this modification was to reduce the number of
communicate operations to one per logical WRITE and to reduce the
physical I/0 operations to one per communicate operation using
the existing printer hardware. This was accomplished by delaying
the initiation of the physical I/70 operation untii the folliowing
{ogical WRITE is received. By knowing both the previous and
current logical I/0 requests» a physical I1/0 can be initiated
which corresponds to the first reguest and takes advantage of the
Burroughs hardware.

The diagram in Figure 1 shows the relationship between the last
Logical request issued by the users the current logical request
and the actual physical I/0 operation that will be performeds

3=43

B1000 MCP MANUAL

MARK 10,0
A\

Current\ Pending
Logical Operation
Regquest 1\

i Null Nrites No Space Write Before

1 } Single Space

B e 0 T "

Hrites | No=op» 1 HWrites No Space | ¥ritesr 5Space 1 |

No Space 1 Pendings= i Pendings= 1 Pendings= 1

i Hrite/No [Hrite/No 1 Write/No |

e e e e T e
Hrites/8 1 No~op>» 1 HWHriter No 5Space 1 WritesB Space 1 1
Space 1 1 Pending:= 1 Pending:s= i Pending:= i

1 Mrite/B Space 1 1 HWrite/B Space 1 1 ¥Krite/B Space 1 1
o n WD WA WD W oW W™ -—,‘.-----.m- D TD A D W N W RS NN W S D NS W S WP S NS W W W
Write/8 1| Write/B Space 2 | Hrites No Space 1 Krite/B Space 1 1
Space 2 1 Pending:=Null 1 Hrite/B 5pace 2 | Write/B Space 2 1

1 I Pending2=Null 1 Pendings=Null 1
G o e 10 0 T A e
Write/sA | Space 1 { Write/B Space 1 1 Write/B Space 2 1
Space 1 1 Pending:= 1 Pending:= 1 Pendings= 1
1 Writes No Space 1 Hrite» No Space 1 Writesr No Space |
Y kb L EEE L LR PR L L e L e e e e e LR P L P r
Write/A 1 Space 2 I Write/B Space 2 1 Write/B Space 2 1|
Space 2 | Pendings= 1 Pendings= 1 Space 1 1
] Writer» No Space 1 HWriter No Space 1 Pendings= 1
1 1 1 ¥riter No Space |}

4 o» v s on - NS Al A A W A W T e WM W AR D S AR TR AR AN e

Write/B 1 Write/B Channel | Write» No Space | MritesB Space 1 1
Channel 1 Pending3=Null '] Write/B Channel ! Write/B Channel 1

i ‘1 Pending?=Null 1 Pendingz=Null 1
B e e 0 0 T . D 0
Write/A | Space Channel 1 Write/B Channel 1 ¥rite/B Space 1 1
Channel 1 Pending®= i Pending:= i Space Channel |
1 Write» No Space | Hrites No Space | - Pending:= i
1 1 I Krite» No Space 1
o e 0 S e e
Space N | Space x ‘1 Write/B Space x | ¥Write/B Space 2 1

i Space (N-x) i Space (N=-x) 1 Space (N=-1) i
I Pending:=Null 1| Pendings=Null 1 Pending:=Null 1

Figure 1 = Logical/Physical I/70 Relaticnship

In the preceeding diagras» the operations uithin the table
correspond to the actual physical I/0 operations that will be
per formeds which will depend upon the current logical request
supplied by the user and any operations that are still pending

from the preyvious request. Write/B and Write/A may be read
"HWrite Before™ and "krite After™. The symbol (2=) may be read
"is replaced by™. It can be seen in the diagram that some

Llogical requests will» at times» result in two physicatl

3=44

B1000 MCP MANUAL
MARK 10.0

operations being initiated. Under these conditions» it may be
beneficial to supply each printer file with at least two bufferss
if the execution time of the program is the only concern. Totatl
system throughput will not be impacted significantly regardless
of the number of printer buffers and the types of operations’™
being performed. If the NCP must wait for the completion of any
printer physicat 1I/0 operationr, the time that is spent waiting
widl be masked by the processing of other programs.

Along these same lLlines» it should be remembered that any time a
Write operation is QLleft pending and control is returned to the
usarr» the MCP must have an available buffer to store the data
that is to be written. iIf no buffer is availabler controil may
not be returned to the requesting user until a buffer becomes
availabie. Agains this time will be overlapped with the
processing of other programs and system throughput should not be
significantly impacteda.

The action presented in the preceeding chart for a Space
operationm regquires some explanation. A Space of more than two
tines must be handled by the 5.MCPa The Micro MCP will attempt
to space the requested number of lines without calling the S5.MCP»
but this 1is5 not always possiblie. In the diagrams when the
Pending operation is equal to Nulle the Nicro MCP wiillil space the
paper one or two liness indicated by ®"x™ in the diagrams and if
N=x is greater than zeror, it will pass the remainder to the
S«MCP. Similarly» when the Pending operation is equal to a HWrite
with Mo Spacer the Micro NCP will issue a Write/B Space 1 or 2
Lines» also indicated by "x™ in the diagrame and if the remainder
is5 greater than zero», pass it to the S.MCP. ¥hen the Peanding
operation is5 a M#Hrite/B Space 1» the Micro MCP will issue a
Write/B Space 2 and pass N=1 to the S.MCPs if N-1 > 0.

LINAGE Clause

The LINAGE clausesr in ANSI *74 £0OBOL is a mechanism which allowus
the user to define a "iLogicald Page” format and request that the
Operating System maintain printer pages which conform to the
defined formats as wWell as a current line position on that
iogical page. In the languager the user may specify the Logical
Page sizes» an integer which represents the number of lines that
may be printed on any pages This atitribute witl be known as
PAGE.SIZE in the remainder of this discusionas

The user may also specify an Upper Margins, an area at the top of
each page where nothing will be printedr Lower Margins a similar
area at the bottom of each pager» and a Footing arear» a specified
nuaber of lines in the page body immediately above the Lower
Margin area. The wuser may also ask to know the number of the

B1000 MCP MANUAL
MARK 10.0

Line in the page body where the last line of output was printed.
This requires that the Operating System maintain a Line counter»
which will be the number of lines written on the current pagee.

The implementation is calied the "Logical Page™ function in the
Operating System and it includes the followings:

1» Positioning to the beginning of the page body i.e. past the
top margin at OPEN or at page overflowe. .

2-» Reporting End—=of-Page when the user urites or spaces within
the footing area and requests EOP reporting.

3» Detecting page overfliows Page overflow 1is defined as
occurring whenever the execution of a WRITE swould leave the
line counter positioned past the page body.

4o Updating the logical page description when switching from
one logical page size to another.

Essentially» the implementation obeys the rules presented in the
ANSI '74 COBOL specifications. The operating system will
maintain a line counter» a current logical page description and a
new logical page decription. The {ine counter represents the
position on the page body following the open or the {ast 1logical
Writes The current togical page description is used to detect
end=o f-page and page overflow. The new logical page description
is used to initialize the current Logical page description when
page overflow is detected and to calculate the number of lines to
the first line of the next page body.

If the user has specified end=of<-page reporting and the line
counter is greater than or equal to the 4ine number at which the
footing begins» then on completion of the WRITEs, EOP is reported
to the usera. I1f the line counter would be greater than the line
nusber at which the bottom margin begins at the end of the
Llogical HWRITE» an implicit position to the first line of the next
page body 1is generated according to the before/after variant of
the write statementa At this point the line counter will be set
to 1. The number of lines to skip ¥s calculated according to the
following formula:®

linesa.to.s5kip 2= current.page.body.size = line.counter #+
current.bottom.margin.size ¢+ new.top.margin.size’

3=456

B1000 MCP MANUAL
MARK 10.0

The Logical Page description is updated if necessary when a urite
occurs that causes page overflow or whenever an advance to top of
page GCCUrSe

To access the line counter requires a File Attribute Communicate
from the user progranms This will be of no concern to ANSI *'74
COBOL wusers’ they need only be concerned with the proper syntax
in that language for referencing the line counter. The Logical
Page definition i5 changed to the values included in the Hrite
Communicate format whenever page overflow is detected. To
accomodate the above requirementsr, the format had to be expanded
as shouwn in Figure 2 in the WRITE AFTER ADVANCING section of this
document presented previousliy.

The Logical Page implementations since it is implemented entirely
in softwaresr is useable even when the file is directed to a
Backup mediume. The Logical Page implementation is also useable
by programs +that are written in languages other than ANSI 74
COBOL. This is effected by the i{implementation of additional
syntax in the FILE Control Card. Progarms may be permanently
modified to incorporate the required new attributes. The Logical
Page function is activated by the PAGE.SIZE attribute in the File
Parameter Blocka KHhen a printer file is opened and PAGE.SIZE
contains a value other than zero» page format will be controlied
by the Logical Page software implementation and the physical
carriage control tape on the device will be completely ignored
after the file is open.

It is important to note that the Channel One punchs as well as
the Channel Tuwelve punch in the carriage controd tape is ignored
after the file is opens According to ANSI "7y coBOL
specificationss this is as it should be but it dictates that the
attributes which govern logical page format wmust be specified
such that the logiral page size plus the upper margin plus the
Lower margin must total the exact number of Llines on the physical
pageas If this is not dones then eventualily at leastr Lines will
be printed on the crease betuween the physical pages.

I=4u7

~ B1000 NMCP MANUAL
MARK 10.0

The relevant attributes may be referenced in the FILE Controdi
Card as shown belous

Attribute Abbreviation Function

PAGE.SIZE PS5 The number of lines between the
Upper Margin and the Lower MNargin.
May be set to any value between 1
and 255 inclusive.

LOWER. MARGIN LeM The number of lines from the page
body to the bottom of the foram.
May be set to any value betueen
0 and 255 inclusive.

UPPER.MARGIN U.N The number of Lines from the bottom
{or top) of the form to the page body.
May be set to any value betueen
0 and 255 inclusive.

FOOTING fFooTr The number of lines from the
beginning of the page bodys»
within Page.sizes to the point
where the MCP will begin to
report end~of~page to the usera.
May be set to any value between
i1 and 255 inclusive.

ERINICR AND PUNCH BACKUP CAPABILIILES

The MCP includes the capability of directing the output data for
printer and punch files to intermediate storage. The storage
medium mays» at the wuser?s option» be magnetic tape or disk.
Backup files may not be directed to cassette or flexidisk mediae
A utility routines named SYSTEM/BACKUP» is provided to allow
users to retrieve the output data from the intermediate storage
medium. for details on this routine» refer to Product
Specification 2222 2681s System Backupe.

When the output is directed to magnetic tapes nulti=-file tapes
are created wunless the operator intervenes in some manners. 1f
the operator does not intervener» the tape will be closed with no
rewind when the printer or punch file is closed in the program.
The next printer or punch file which is opened by any executing
program and directed to backup tape storage Wwill then be added to
the existing tape. This process will continue until the operator
intervenes or until the physical end of the tape reel is reached.
Operator interventicon procedures are described in the Softuware

3=48

B100O0 MCP MANUAL
MARK 10.0

Operational Guide and in the MCP Control Syntax Product
Specifications

When the output data is directed to intermediate storage on diske
it is entered in the Disk Directory when the printer or punch
file in the program is closed. At that timer» it may be accessed
by any programs though the data contained therein may be
undecipherable unless the accessing program is written expressly
for this purpose. The file may nots» under any circumstances» be
accessed prior to the time the file is closeda

gACKUP EILE BLOCKING EACIORS

The OPEN routine in the MCP attempts to optimize the size of the
physical blocks associated with a Backup file» according to the
declared size of the logical records in the file. The block wiil
typically be set to a size equivalent to three or four disk
sectorss each of 180 bytess» by the MCP. In order to predict the
block size that the MCP will select for any given logical record
size» it is necessary to consider the control information that
the MCP stores in the first physical block of the file as well as
the declared record size. The algorithm that is used by the MCP
to select a block size is not easily described. The block size
which is selected is stored in the file 1abel, for tape filess
and in the Disk File Header for disk files. The logical record
size is5 also stored in these fields.

Consequentlys using the Default Ffile Attribute. which is
described in the Software QOperational Guide and in another part
of this specifications the user may access Backup files without
knowing the blocking factor and logical record size in advance.
Since the algorithm that is ' used by the MCP to calculate block
size may change from version to version» this wmeans of
determining the blocking factor used is preferred. The algorithm
that is - included in the B.0 version of the MCP is described in
the paragraphs that follows.

The dogical record size declared in a file in 2 wuser?s progras
may be any size. If the file is directed to Backup storager it
is set to a2 maximum of 132 bytes. The logical record size is
then idncremented by two bytese. This additional sixteen bits of
information is ngcessary to contain the formatting idinformation
which is. passed with each Hrite and Position communicate
operators

If the file is being directed to magnetic tapes the record size
i5 then incrementeds if necessarys to force it to a number which
is modulo forty=eight. This is necessary since seven=track tape

3=49

81000 MCP MANUAL
MARK 10.0

units require block sizes which are modulo six and phase~encoded
drives require block sizes which are modulo sixteen. It would
not be sufficient to insure ©Crhat ondly block sizes meet this
requirements howevers since the blocks on any tape file may be
partial blocks which contain one or more records.

The buffer size will always be made large enough to contain 100
bits of control information plus 1668 bits to. contain the
original File Parameter Block as it appeared in the user?'s
programe pluss, if the file is a printer file» 1072 bits to
contain a file i{abel plus its associated spacing information. If
the original file is a punch file, a space of 648 bits is
reserved for the label 1instead of 1072. The one fact which
complicates this calculation is that all three of the itenms
Listed above must begin on a logical record boundary within the
physical block. Consequently» for a file with a declared record
size of 132 byteses which is converted to 134 btytes or 1072 bits .
by the OPEN routiner the FPB will begin on the 1073rd bit in the
first physical block of the file. The file 1label» if there is
one» will begin on the 3217th bit €3 x 1072). The first output
data record will then begin on the 428%th bit. The block uwill be
made Large enough to insure that the first block contains at
teast one logical record in addition to all of the information
Listed above.

For backup files which are directed to intermediate storage on
disk» the block size computed above is then incrementeds if
necessary» to make the size module 14#40. The number of records
per block is then computed from record size and block size.
End=of=File is never reported to a user prograr when a Backup
file 1is being createds. The MCP automatically closes the file
when it is full and also automaticaliy opens a rew Backup filea.
The identifier assigned to the second file will revert to the
standard naming convention for Backup files. The MFID will be
set to BACKUP.PRY and the ID field will be set to the next
sequential number maintained by the system. 241 other Backup
file attributes» such as the number of copies requestedsr will be
retained in the second and subsequent filesa Only the name
requested by the user will be Lost.

The MNCP also allows users to specify the file attributes Blocks
per Area (BLOCKS.AREA or B.A)» Records per Block (RECORDS.BLOCK
or R»8)» and Number of Areas (AREAS or ARE) for printer files and
these specified values will override the systewm?s default values
for the same attributes. Using +the proper setting of these
values and the automatic closing and reopening described in the
preceeding paragraphs users may begin printing a Backup file
while the program which created it is stitl executing and
creating the second or subsequent portion of the same file.

3=50

B1000O MCP MANUAL
MARK 10.0

Records in Printer files may not be bloecked. Consequently» the
Records per Block attribute is not applicable when the file is
directed to the printer. Records per Block is utilized only when
the file is directed to a Backup mediume Alsos the wvalue
specified for Records per Block must be greater than a minimum
value» which is a funcktion of the record size associated with the
file and which is computed by the MCP when the file is opened.
it is reccomended that wusers not sa3t Records per Block for
Printer files in the use of this facility but establish the file
size via the Blocks per Area and Number of Areas attributes only.
For a file with 132-byte records» Records per Bilock will be set
to five by the MCP unless overridden by the user. The siaplest
means of determining the value that widl be computed for Records
per Block by the MCP for any other given record size is5 to direct
such a file to the backup medium and interrogate Records per
Blocka

The MLCP insures that access to a backup file is in serial mode
only. If the wuser had requested more than two buffers on the
original fiter» the number is reduced to two on the backup file.
In a similar manners the MCP Limits the number of disk areas
requested to 25. The file type in the original FPB 1is then
changed to 1indicate that the file was directed to disk or tape
intermediate storages,

BACKUE EILE CONIROL INEQORMAIION

The first block in any backup file is filled almost entirely with
control - information. This information is wused by SYSTEM/BACKUP
when the file is printed or punched. The first twenty-four bits
of the block will contain the logical record sizes in bits» as
computed by the prior portion of the OPEN routines. The next six
bits of the block wil contain the number of bits that the record
s5ize was incremented to make it modulo forty—eights if the backup
medium was magnetic tapes If the backup medium was disks these
5ix bits will be equal toc zero. The next eighteen bits specify
the control information size» in bits. This field wiil contain
the number of bits which are used in the first biock of the file
to contain the control informations exclusive of the File
Parameter Block and the 1labed. In the 9.0 version of the MCP»
this number widll be eqgqual to 100» although all of the 100 bits
may not be used.

The next twenty=four bits of the block will specify the FPB size»
in bits. This number may vary from release to releases For the
9.0 version of the software» the FPB size is 1668 bitse The next
twenty=four bits will contain the size of the lLabel» if any»
associated with the printer or punch file. This field wildl
always contain these valuess» regardless of whether the file is

3-51

81000 MCP MANUAL
MARK 10.0

Ltabeled or nota. The next four bits will contain a number which
specifies the type of label that is contained in the label area.
In all caseses at the present timer this number will be either
zeros indicaring a standard labels or ones» indicating that the
file is unlabelled.

Unlkess the computed logical record size of the file is exactly
egqual to the size of the control information listed abover 100
bits for the B.0 version of the MCP» a3 filler will be added after
the control informatione This filler widl be of a size
sufficient to make the next fisld in the first tlocks» the FPB»
begin on a log!cal record boundary. For exampler» if the original
logical record size was 132 bytes and the backup medium was disk»
the filler would consist of 964 bits.

The next field in the first block of the file widl be the
original File Parameter Block as it appeared in the user progran
and before any changes sere made by the OPEN routinee. Onily
pertinent finformations delimited by the size specified by
FPB.SIZE widl be included. following the fFPB» another filler
Will probably be required to make the next field in the #first
block» the original file Label» begin on a logical record
boundarye :

Actually» sixteen bits of spacing information precedes the file
Label? the spacing information thus begins on the logical record
boundary. For the labels all of the sixteen bits will be set to
zeros These sixteen bits willL be followed by the labels» which is
constructed exactly as if the file had been directed to its
intended medium originaldy. The label is aiways constructed and
stored in the Backup filer regardless of whether the original
file swas labelled or not. SYSTEM/BACKUP may or may not cause the
tabel to be printed or punchedr depending upon whether the file
was or was not labelieda. The Label in the first block will be
foddlouwed by a fillers if necessary» to aliow the first {d1ogical
record of output data to begin on a logical record boundary
within the block. The first block will always contain at least
one logical output record.

BACKUP EILE LOGICAL BECORD EORMAL

Each logical record in the file will consist of sixteen bits of
formatting information follouwed by the wuser®s output datasr
unaltereds If the 1logical record was generated by a Position
communicate operators the contents of the data field are
undefined and are ignored by SYSTEM/BACLKUP. The sixteen bits are
defined as followsa

B1000 MCP MANUAL
NARK 10.0

Beginning with the 9.0 version of the softwares the sixteen bits
of carriage control information are subdivided ass

01 CARRIAGE_CONTROL BIT (16)»
02 FILLER BIT (3)»
02 BEFORE_AFTER BIT (1),
02 CHANNEL _OR_SPACING BIT (8)»
02 TYPE BIT (4);

In the description abover the BEFORE_AFTER field is applicablie on
WRITE operations which are directed to a printer file. A one in
this bit position indicates the operation was MWRITE AFTER
ADVANCING. The CHANNEL_OR_SPACING field corresponds to the eight
bits of spacing inforwation passed on a WRITE communicate in the
CT.ADVERB field in the communicate operator. These bits are
defined in the Demand Management section of this documents but
the definition is repeated here for references

CHANNEL _OR_SPACING

= 0000 = No paper motion
0001 = Skip to Channel One
0002 = Skip to Channel Tuo

it i

1011 = Skip to Channel Eleven

1100 = Skip to Channel Tuwelve

1101 = Skip to first Line of the form (1500 LPM
printer only)

1110 = Single space

1111 = Double space

i oo

The TYPE field in the description provides information on the
type of communicate 1issued by the user on this record. The
CARRIAGE _OR_SPACING value will have different meanings» depending
upon the value of the TYPE field. The correspondense between the
two is shown betlowa.

TYPE Operation CARRIAGE _DOR_SPACING Value

0000 WRITE Printer Channel Number

0001 WRITE Punch Stacker Number

0010 SPACE Number of Records to Position

0011 SPACE Printer Channel Nurber on Position
0100 WRITE Printer Spacing Information

3=53

B1000 MCP MANUAL
MARK 10.0

Relative Eiles

A Relative file consists of records which are identified by
retative record numbers. The file may be thought of as composed
of a serial string of areas» each capable of holding a 1logical
recordas Each of these areas is denominated by a relative record
number . fFor exampler the tenth record is the one addressed by
“the relative record number 10 and is in the tenth record areas»
whether or not records have been written in the first through the
ninth record areas Relative files are implemented using direct
filesa

Dicect Files

Direct is the primitive file organization. & direct file is
divided into a number of "record slots™ of fixed length» each of
which may contain one record. A record slot is “eampty™ if it
contains no valid recordes Full record siots may be made empty by
deleting the record they containe making t he contents
unaccessable through the normal mechanisms Since all bit
patterns are potentially meaningful as datar a separate area in
each biock of the file is maintained to indicate which record
slots within that block have been used. There will be one such
"Presence Bit™ for each record slot in that block and the bit
vector thus formed is known as the Block Control Information
{BCI). The wuser s not allowed to have access to the Block
Control Informsation under normal circumstances.

Redative File Data Siructure

The Relative file is a direct file. The blocks of the Relative
fide contain Block Control Information A«BCI) as weli as data

recordss The number of data records in a block is conatined in
the "Records per Block™ field of the disk file header in the case
of an existing file. Originally» of course» this number s

specified by the user programmer in his File Declaration. The
data records will be located on byte boundaries to conform with
the addressing capabilities of the B10006 Interpretersa. The BCI -
Wwill therefore be padded with zeroes to 1insure thise. When a
Relative file is originally createds all of the record slots are
emptys Consequentlys the presence bits in the BCLCI nmust be
initialized when the area is allocated.

3=54%

B1000 MCP MANUAL
MARK 10.0

Retative Eile Disk Ipitialization

The use of presence bits to indicate that a record has been
written into an available record slot means that disk areas that
are allocated to a Relative file must be initialized when they
are allocated. All presence bits in the Bitock Control
Information must be set to zero at this time.

When a disk area is required» the MCP will te responsible for
allocating the areas and wikl also be responsible for
initializing presence bitss If the access mode of the file is
sequentials the MCP just allocates the area and the Logical 1I/0
routines will initialize each block before accessing it. If the
access. mode is random or dynamics the MCP will initialize the
entire area being allocated by automatically executing a special
initialization program which witl run at the wuser?s prioritye.
The wuser Wwill have the option of executing this program himself,
prior to executing the program u4hich accesses the file» to
initialize the entire file or any areas he chosese In the
sequential moder if the file is cdosed with the EOF pointer not
at the end of an areas the MCP will initialize the remainder of
that area.

The program which initializes newly allocated disk areas for
Relative files 1is called SYSTEM/REL.INIT. If this program is
called automaticaildy by the MCP as described abover the program
which requested the new disk area will not be ailowed to axecute
until SYSTENM/REL.INIT has completed the initialization of the new
area.

BReiative Eile Pacameter Blocks (EPBs)

The FPB for a relative file is the same as for a Conventional
random file except that FPB.ACCESS is5 set to a value of 2»
indicating Relative organizatione ’

Redative Risk Eile Headers LDEHs)

The DFH for a relative file is the same as for a Conventional
file except that the block size field will include the size of
the block control information.

81000 MCP MANUAL
MARK 10.0

Relative Eile Informatiopn Blocks CFIBs)

The FIB for a relative file is the same as for a Conventional
random file» except that a field which identifies the file as
being Relative has been added. The field is named the
FIB.ORGANIZATION field and can assume values of zeros indicating
a Conventional or ANSI *74 Sequential file» one» indicating a
Relative filer and twos» indicating an Indexed Seqguential file.

Buffers for Relative files will be the same as for Conventional
filese. They widll be allocated when the file is opened with one
170 descriptor for each buffer and the buffer size equal to the
block sizes» which is equal to the record size times the number of
records per block plus the size of the block control information
{1 bit/record made moduio eight).

Buffer management for Relative files will depend on the user’s
access method = Seguentials, Random or Dynamic. For Random access
the management of the buffers wild be the same as that for
Conventional random filesa READ operations will be initiated on
demand and HWRITE operations will be initiated immediately after
the Logical 1I/0 operation has occurreds If the access mode is
Sequentiatls the buffer management will be the same as that for
Conventional serial filess The Open procedure will fill all of
the buffers and the Operating System wilt try to stay ahead of
the user programs initiating physical Read operations when the
Last logical record in a buffer has been delivered to a user and
initiating physical ¥rite operations when the 1last Llogical record
of the buffer is received.

The Dynamic access wmode in ANSI 74 CDOBOL z11ous the user to
suitch between the Random and Sequential modes. In the Dynamic
access modes when switching from Segquential to Random» the last
block is written to disk if it has been updated. When suitching
from Random to Sequentials, the SMCP §is called on to fill the
buffers as 1f an OPEN or Position had occurred. In the Dynanmic
access modes the access mode desiredr Random or Sequentials pust
be specified in the communicate operator generated by each
logical READ operation.

Belative Eile Compupicare Opecators

Three new communicate operationss corresponding to the verbs
DELETE» S5TART and REWNRITE have been added to the 9.0 O0Operating
Systems To simplify the implementation and to avoid potential
file eguivalence problemss neW communicate operations for
relative files have been added to the softwarer» rather than
modifying an existing operations The READ» WRITE and REWURITE

3=56

B1000O NCP MANUAL
MARK 10.0

communicate operators have a format which is similar to the
format for the READ» WRITE and REWRITE communicate formats for
conventional filese The format for the DELETE operations on
Relative files» is similar to the format for the same operation
on Indexed Sequential files. The ANSI 74 CQOBOL START wverb has
been implemented as a new communicate and is handled by the Micro
MCP.

3=-57

81000 MCP MANUAL
MARK 10.0

Indexed Seguential Files

Indexed Sequential files consist of two new primitive file types:
Direct files and Index filess For each Indexed Segquential file
there is one and only one data file and this file is implemented
as a Direct files For each key of the Indexed Sequential file
there is a corresponding file of type "index™. In the MCP code»
these two types are Llisted as INDEX-SEQ.-DATA.SET.FILE and
INDEX«SEQ.INDEX.FILES they will be refferred to as Direct files
and Index files in this document.

Dipect Files

Direct files were discussed in the documentation on Relative

filese A portion of that discussion is repeated here for
convenience. More details will be found in the preceeding
discussions A Direct file 1is a primitive file type that is

divided -into a number of "record slots” of fixed length» weach of
which may contain one record. A record slot is "empty™ if it
contains no valid record.s Full record siots may be made empty by
deleting the records they contains making the contents of that
slot inaccessable by the normal mechanisnme. S3ince all bit
patterns are potentially meaningful as a recorde a bit flag is
maintained for each record slot to show the wvalidity of its
contentsa

Since all record slots are the same size {(MAXRECSIZE) the
absolute disk address can be easily calculated from the record
siot numbera. The file is divided into groups of record slots
called "blocks™» each consisting of "blocking factor™ record
slots plus the "Block Control Information™» a bit mask which
indicates the presence of a valid record plus enough fitler bits
to make the container modulo eighte There is a significant
difference between the Block Control Information for a Direct
file and an Index filesr hosever.

Index Eiles

An Index file is the second neu file typee. Index files contain
fixed length records organized in tables with Biock Control
Information to describe the table. Each block of an Index file
will constitue a separate table. The importance of this fact
will be explained later.

3-58

B1000 MCP MANUAL
MARK 10.0

The records in the Index file consist of Key/Address pairss. The
addresses point to other tables in the Index file or to records
of the Index Sequential file?s data file» the Cirect file. The
tables in the Index file form a tree structure and the records in
the table are ordered by Key value to atlow fast random accesss
The tables whose entries point to data records are linked
together to allow fast sequential accesse.

Clusier EFiles

in addition to these tuo new file typess there must resider
somewhere on disk» information relating all of the various files

which compose an Indexed Sequential file. This information is -

maintaineds by the MCP» in a third new structure which will be a
separate conventional file on disk and which will be known as a
"Cluster”™ file. The name of the Cluster file will correspoend to
the user?s declared name for his Indexed Sequential file. 1In the
MCP codes this file t ype is referred to as an
INDEX.SEQ.GLOBAL.FILE» though it will be called merely a Cluster
file in this documente.

"The Cluster file provides the ability to reference the entire
Indexed Sequential file structure by simply referencing the
Cluster file. When the Compilers generate code which applies to
Indexed Sequential files» they actually reference the Cluster
file. The Cluster file will contain the names of the other files
associated with the Indexed Sequential filse. As mentioned
previcusly» there will be one Index file for each key listed in
the Indexed S5equential file.

The statement above does not mean that all of the Index files
Wwill be opened when a Cluster file is opened. The Index files
are® only opened when they are first referenced in the program and
this actually happens automatically. The compilers do not
generate code to open the Index filese. The NCP simply detects
that the referenced Index file has not yet been openeds obtains
the necessary information from the Cluster file» and opens the
fide.

The Cluster file does require an additional Disk File Header 1in
memnory» but only while an Indexed Sequential file is being
openeds It is not necessary for it to be in memory after the
file has been opened. The Cluster file also adds an entry to the
user?s disk directory. The diagram below shows a Cluster file
schematically. This particular file has one primary» or "Prime"™
Key and one Alternate Key.

3=59

B1000 MCP MANUAL

MARK 10.0
e -
1 Cluster [}
| File 1
e o o
i 11
tomeees s seessnwn) | jemmrecoonn---—-——f
| 1 1
AN ¥4 A1/ \1l/
poemenanan) o) pemmmmmm———)
1 Primary 1 { Alternate 1 Data 1
1 Index |] Index 1 1 File i
1 File 1 i File 1 1]

Rl b Rl T & wnanwmw-- > - - -

This organization for Indexed Sequential files offers several
advantages over any other. Each file» the file which contains
the actual data and all of the 1Index filess wili have fixed
record and bilock sizess This will simplify the problem of
managing the buffers that are assigned to the files. Both of
these file types are nothing more than Conventional files with
some order imposed upon the contents of the file. Consequentily»
the Disk FfFile Headers» or "File Descriptors™ required for each
file are the same as those for Conventional files. This s
discussed in more detail later in the docusent.

Conceptually» this mechanism is easier to visualize and implement
than would be multiple structures residing in one physical file.
Alsos any of the files may be located on different spindles,
which willd clearly improve per formancer» since arm movement time
may be overlappeds and access to all of the files may occur
asynchronousiye. The Direct file and the Index file may be
accessed independently of each other.

The design does impose certain restrictions» which faill in the
category of "operational”™ restrictions and which do not idmpact
performancea A checking mechanism is required to insure the
integrity of files which are accessed independentiy. The MCP
m4st idnsure that the correct version of the Index file is used
with its corresponding Direct fiile. Also» some extra memory for
Disk File Headers will be required» since more actual Headers
widl be required. A naming convention for ail of the files must
be imposed» thus rewmoving some small amount of generality fromn
the user®s capabilities. This may actually ©be an advantage»
houevera The naming convention is implemented in the Coapiler»
not in the MCPs» though this may not be apparent tor and should
not be important to the user.

3-60

B1000 MCP MANUAL
MARK 10.0

The Cluster file is a Conventional data fiie which contains the
information relating all the component files of the Indexed
Sequential file. The structure of the Cluster file is similar to
the Data Base Dictionary format in the Data Management Systems

A N D W DS NS AR TD D SR S BN I AN W AL AR AR N A

1 Iindex Seguential i 1

1 File Globals j==——]

i] 1 1

e S e EEL L PR L LR PP PP IR SRR 1 1
i] DFH.EXTENSION» Structure 1 1} i 1
1 e e m e e e - e - 1 1
] { DFHLEXTENSIONs Structure 2 1] |
[pommmmmemmscccsecm e resnnsasmng
[/ 4 1 L
i / 7 i 1
| - ! i
] 1 DFH.EXTENSION» Structure n | 1 1
| eemscaEmmm .. .- -]
1 1 File Table = Contains all of 1 1
$o===] the names of the subfiles 1 |
+

+-~--'-~-‘—--‘----l--——---_- ----’(-------

1 Structure Descs Structure 1 1

I Structure Desc. Structure 2 1
A TR 0 D D R WV W WS WD T WS - - - e g
J 7/
/ 1

T R W A A WD R D D VDGR R W TN SR A S W e we =

I Structure Descs Structure n |1

The DFH.EXTENSION and Structure Descriptor fields shown above are
both discussed in the paragraphs that follow. The pointer shoun
above from the File Table is one of many. There is an entry for
each file 1in the File JTable and each entry has a pointer to its
associated DFHL.EXTENSION.

Indexed Seguential Data Eile Stcucture

The data file of an Indexed Sequential file s a Direct file.
The blocks of the data file contain Block Control Information
(BCI) and data recordss» similar to the blocks of a Relative file

as presented previousiya The number of data records in a block
is specified by the Records per Block fieldd of the disk file
header . A similar structure is used on Indexed Sequential files

in the Data Management System. Block Control Information for the
Index files associated uwith all Indexed Sequential files is
significantly different from that for Relative files.

3-61

81000 MCP MANUAL
MARK 10.0

ladexed Seguential Index File Structure

Index files contain records <consisting of Key/Address pairs
Wwithin a blocks. The file itself is a tree structure whose nodes
are blockss Each block of the file is a node or table. The
first node is the root table. The root table and tables on all
levels except the Last are cailled coarse tables. The tables in
the tast 1evel of the tree are called fine tablese. Entries in
coarse tables point to the next Level table whose highest entry
matches the key of the coarse table entry. Fine table entries
point to a record in the Direct file whose key matches the fine
tabie entry (See Figure 3). Fine tables are lLinked together in
togical order to provide fast sequential access and easier
Current Record Pointer (CURRENT) maintenance.

The addresses in these tables are not absolute disk addressese.
Instead» they are thirty—-two bit combinations of an area number»
a segwment number within the area and a displacement into the
segments This displacement is merely the record number within
the block. All addressing of Index tabies as well as of records
in the data file is accomplished on a relative basis as opposed
to an absolute one.

The blocks in Index files contain Block Control Information of a
different content and format. The format and content of the
Block Control Information maintained in an Index file is shoun
below. A simildar structure exists for DMS Index filese.

01 INDEX.FILE BCI BIT (38
02 BC.TYPE BIT (2)»X 0=COARSE» 1=FINE
02 BC.PRESENT.RECORD.COUNT BIT (12)»
02 BC.NEXT.LOGICAL.BLOCK BIT (24)7% VALID FOR FINE TABLES

The individual records in the Index files have a fixed formats
since the Key specified by the user must be contained in these
recordss the size of the records may vary with the keys but the
format will always be as shouwn below. The same format is used by
the Data Management System for records in Index tables.

3-62

B1000 MCP MANUAL
MARK 10.0
01 INDEX.RECORD DECLARATION»Z FOR DM5 AND ANSI *74 INDEX FILES

D2 IR.POINTER>»
03 IR.AREA.DISP»

04 TR.AREA.NMBR BIT(8)»
04 IR.SEG.NMBR BITC(16)»
03 IR.OFFSET BIT(8)» Z VALID FOR FINE TABLES
02 TR.KEY BIT(KEY.SIZEDS

The organization of an Index file is shown in the diagram belowa.

1 root 1 1
1 table 1 1
LD L 1
I D | 1
1 1 1 1 i
memesesesssansee | eweeceecssseweees I n
L 1 1 1 d
\i/ A/ ALY 1 e
tremeneeany fremcenm—-y e mmmn ey 1 x
1 coarse 1 1 «coarse 1 i coarse 1 1
i1 table 1 ! table | 1 table 1 1 f
pmmmemonn-y pemmmaem=-y fomrmeceem-y 1 i
| i 1 1 1 1
1 1 1 1 l e
- . - - - - e - [T T L EL T T T ‘
1 1 | i i
AN ¥4 \l/ N7 At/ 1
pormmmnm——-y LY E L LT e ese-y R LLEL LYY 1
i fine 1 1 fine 1 1 fine 1 1 fine i 1
I table 1¢======] table I1<==-=1 +table Jx=-==] table 1| 1
pommmn - fommmanmm-y e m .-y fommmmm———y w=f

| 1 ! 1 1 1

| ====-ccssscecjossccecw=~ | ————
| - =memie | meme- i e mm e |-
A7 \N/ AS VAR ¥/ LS ¥4 X ¥4 L ¥4
f W00 D AR RS O3 WD W DA D D N A A A SR AD D AR A D AR DD SRR S0P RS D A A AN A0 TR AN AR R A D D SR A WA e e W
i 1
1 data file !
1 1

A T D D D W D WS R D S S AR NE G S D D SR D G D S W R N N (I D A AR D A G A A A WD S s e

Figure 2 = Index File Organization

This structure for the Index files allows the implemantation of
the most efficient search and addition algorithmse Linking the
last Llevel of the fine tables together aldows efficient
sequential access of the records in the data file. Using this
links the CURRENT need only point to the last entry accessed in
the fine tables and not to the path through the coarse tables to
the fine tabless This eliminates the need for restrictions on
the number of levels allouwed in order to maintain the CURRENT.

3=63

B1000 NCP MANUAL
MARK 10.0

It also makes checking for changes in the CURRENT» caused by
other users accessing the filer easier.

The File Parameter Block (FPB) of the Cluster file of an Indexed
Sequential file will be positioned in the code file among the
other FPBs according to the order of it?s declaration in the
user®s source codee. In addition to the information normally
contained in an FPB for a Conventionad file» 3 Cluster file FPB
widl contain a type field which identifies it as a Cluster file
FPB»s a pointer to the data file ¥FPB and an integer which
indicates the number of keys associated with the Index Sequential
files There will be one FPB for each Key dectared and these FPBs
will immediately follow the FPB for the data file in the code
file of the programe This is shown in the diagram in Figure 3.

Default values are wused for the file attributes of a Cluster
files The user may not change these values. The number of disk
areas Wwill be set to oner» records per block nill be set to ones
biock s5ize will be set to 180 bytes and blocks per area will be
set to 50. The ALL-AT.OPEN boolean will be set» causing the disk
area to be allocated when the file is opened for the first timee.

3=64

B1000 MCP MANUAL
MARK 10.0

1 i

1 PROGRAM PARANMETER D2 PRDOG.NUMBER.OF.FPBS BIT(12)»a

1 BLOCK] % nbr of file FPBs and nbr
+m==] PROG.FPB.ADDRESS 1 X of sub FPBs for 1/5 fiigs.

[1 1
i 77 77
1 \\ SCRATCHPAD AREA A\
1 /7 CODE 77
i AN__ A\ 02 FPB-FILE.TYPE BIT (B),«
+==>] FPB (file 0) 1 H
1 1 7 2
1 FPB (Fide 1) 17 02 FPBaI5.5UB.FPB.PTR BITC(12)»>
1 1/ £ number of FPBs displaced from
1 FPB (CLUSTER FILE) 1 X the first FPB (file 0)a
$m==] [AN 02 FPB.IS.NUM-SUB.FPBS BIT 1(B8)»=x
] I/ ' 77 \ 02 FPB.1IS.NUM.IO.DESLC BIT (6)»rx
| \\ REMAINING FPB*S AN
i 7/ __ 7/ A\
#==>1 FPB (DATA FILE) 1
1_ i
{ FPB (KEY 2 1) n
i i
1 FPB (KEY # 2) I\
1 1A\
/77 H 77 01 KEY.PARAMETERS» ®
A H AN/ 02 KEY.FLAES» &
77 27 7 03 KEY.PRINE BIT (1),»
1 FPB (KEY 2 N) n 03 KEY.DUPALLOWED BIT (1)»»
| 1 02 KEY.DESCRIPTION» *
. 03 KEY.OFFSET BITC16)»=

03 KEY.SIZE BITC(12)» =

* New field in 9.0 Software

Figure 3 - Code File on Disk

Some changes were also necessary in the Program Parameter Block
in the 9.0 software. The <changes. are required to prevent
programs wWwhich contain Relative and Indexed Sequential files from
being executed on versions of the MCPs released prior to the 9.0
vVersions Furthers program code files which are executed under
control of the 9.0 MCP may no longer be executed under control of
any prior MCPs. For this reason» users who anticipate returning
to prior versions of the NCP are advised tc retain copies of
their code files and to not execute these copies under control of
the 90 software.

3-65

B1000 MCP MANUAL
MARK 10.0

Indexed Seguential Memory Structuces

Generallys the memory structures used in the Indexed Sequential
implementation are much like the current Data Management Systen
memory structures» with but a few exceptions which take advantage
of the more specific requirements of the ANSI '74 coBoL
definitione. Unlike DN3» which does not use File Information
Blocks in memorys» Indexed Seguential files will bhave an FIB
dictionary entry wWhich will point to an Indexed Sequential FIB.
Since the files may be shared among the programs that are
executinge this FIB will contain only the information pertinent
to a specific user and will be referred to as the User Specific
Information (USI) field.

The USI will contain a pointer to the file specific informations
the information that relates only to the file idtself regardless
of who is using it. The central element in this structure is the
information necessary to relate the various component files of
the Indexed Sequential file. This 1is actually global
information» globad to altl of the users» and will contain a table
whose entries point to information specifically concerning the
component file. The structure which contains this information is
referred to as the Index Fite Structure Descriptor (STR). There
will be one Structure Descriptor ¥for the data file and one for
each Index file associated with the Indexed Sequential file.

Structure Descriptors contain pointers to the DFH» Buffers and
CURRENT information associated with the various Index files. The
relationship of the various memory structures used is showuwn
diagramatically in Figure 4.

3=66

B1000 MCP MANUAL
MARK 10.0

i FIB DIC 1. {User #1) {User #2) 1 FIB DIC |
L Ak b b b Lol A 2 ’—u-------*
{ 1
\17 A V%

4 on o anumun - -
’ BSI '------n----------——'* ‘-—---------------o---i USI l
fgwmmnmewg ‘ ! - - ——

\S VAR V4

o mmmmmey pmeme-y o mem -y

‘.-_--n----------au----u-u-u-islobais ’ ----'.).l IUU '—--)’ IBD ‘--4‘.
s S D D W W . e e ,’\ - —— - o ——— ’
1 1 1
[] U S A D S W e o

LY ¥4

A o wr -

i

1

i

1

[

1 1 5TRO j====> 1i1>
] tmmemmeay

1 i

i 11 pom————4¢
1 I #=====>1 DFH 1
1 1 fm—m——

1 i

1 1 pom——p fomm————y pmm————

] tmmmmme=>] BUF 1<==>1 BUF i<==>] BUF 1--111>
1

1

1

1

+

- - 4 =) +-----”

- G A . .S *---—-----------—*

=>1 STR1 J====>JCURRENT, User #11===>iCURRENT» User #21-=-i11>

v - - }’-------—------n* *-‘------'-------*

11
i ' ™= m—-g

1 #=====3] DFH 1

j o = - -owm g

1

I m-————y

$mmmmm=ax] BUF 1==111>
+-----,‘.

Figure & = I=5 File Memory Structures

EIB Dictionaries

From the user?s view pointr Indexed Sequential files are nmore
Like a Conventional Random file» except for the fact that
symbolic key values are useds than they are Llike DM5 structuress
Though the Data Management System is a superset of the Indexed
Segquential implementations, the user is more dikely to have
several smalt and transient Indexed Sequential files than one
Large file which he would treat as a data base.

B1ODD NMCP MANUAL
MARK 10.0

A secondary» but importants, goal of the design of the ANSI 774
C0BOL implementation was to allow a smooth integration of
Relative and Indexed Sequential files with the Conventional file
aechanisma For this reason and for other reasonss access to an
Indexed Sequential FIB is via the FIB Dictionarys ' which is also
used to access Conventional file FIBs. The FIB for an Indexed
Sequential file is itself quite different from the FIB for a
Conventional file. The Indexed Sequential file is associated
with several physical files» whereas the Conventional file is
associated with only ones Alsos, more than one user may share the
information» including the data buffers» of an Indexed Seguential
FIB> a Conventional fide FIB is used by only one user. If two
users are accessing the same physical Conventional files each
user widl have his own FIB.

For these reasons» an Indexed Sequential FIB contains three major
partss

1= User Specific Information
2e File Global Information
3» Component File Specific Information

The entry in the FIB dictionary corresponding to the Indexed
Sequential file points to the User Specific Information TUSI) of
this Indexed Sequential FIBe

Indexed 3jequential User Specific Information CUSI)

The USI contains information associated with one user only. The
MCP must knouw how the user has opened the filer for example as
INPUT» and how the user 1is accessing the file» such as
sequentially. This information i35 kept in the USI. User
statistics» status and MCP workspace are also kept in this
structures Finally» there is a pointer to the next part of the
Indexed Sequential FIB» the global information associated with
the physical file,

3-68

B1000 MCP MANUAL
MARK 10.0

01 USER.SPECIFIC.INFORMATIONS

02 FIB.COMMON.PORTION BIT(220)»X The first

03 FIB.BOOLEANS BIT(58)s X 220 bits of
04 FIB.OPEN BIT(1)» X USI are the
04 FIB.CLOSING BITC1)» X same as
04 FIB.OUTPUT BIT{1)» I Conwventional"
04 FIB.INPUT BIT(1Y», 2 FIBs

03 FIB.ORGANIZATION BITC4)» %
¥ 1 = RELATIVE
X 2 = INDEXED/SEQUENTIAL

02 USI.FIB»

03 FIBLUSI.NDTLFIRST.TIME.THRU BITL1)»

03 FIB.USI.LAST.OP.READ BIT(1)»

03 FIB.USI.DUPLICATE BIT(1)>»

03 FIB.USI.MATCH.FOUND BITC1)»

03 FIB.USI.UPDATE.FLAG BIT(1),

03 FIB.USI.FIRST.PASS BIT{1)»

03 FILLER BIT(2)»

03 FIB.USI.ACCESS.NODE BITL4)»

03 FIB.U31..J0B.NUMNBER BIT(24)>»

03 FIB.USTI.RECORD.ADDRESS BIT(24),»

03 FIB-USI.KEY.POINTER BIT(24)»

03 FIB-USI.COMMUNICATE-HORKSPACES BIT(b16)»
D4 FIBLUSI-BINARY.SEARCH. ARGUEMENTS BIT{208)»
04 FIB.USI.INTERFACE.PADS BIT{96)»
04 FIBaUSI-SAVEL.STATE.AREA BIT{312)»

03 FIB.USI.GLOBAL.POINTER BIT(24)»

03 FIB.USI.CURRENT.STRUCTURE BIT(8)»

03 FIB-USI.HEADER BIT(24)3

Indexed Sequepntial fFile Global Information CGLOEALS)

As shown in the above diagrams the first 220 bits of the User
Specific Information are the same as the first 220 bits of an FIB
for a Conventional file. The rest of the information can be seen
to be items that are peculiar to a specific user of the
structures It is information that is necessary for Operating
System storage of the "state™ variables that may be reguired to
perform a single operation for this usera.

Included in this information is a pointer to the -next portion of
an Indexed Sequentiat FIB» the file Global informations This
informations known as the GLOBALS fieldr» contains information
about the wvarious physical files which conprise an Indexed
Saquential file. Its main function is to provide a path to the
reguired files necessary to complete an I/0 operation. A
secondary function is to store information global to the Indexed
Sequential file.

3-69

81000 MCP NANUAL
MARK 10.0

The path to a particular component file is provided by a system
descriptor contained in a table of system descriptors. The first
entry of the table points to the data filea The remaining
entries point to Index files» one for each key declared? they
appear in the order of the declaration of their corresponding
keyss. For any operation which specifies a keys the compiler wild
specify the key number» which will be used as an index into this
table.

The global information consists of pointers to the chain of I/0
descriptors to be used for operations on the 1Indexed Segquential
data file» a count of users who are updating the filer, and Lock

bits to support ANST *74 COBOL's file 1Level lockoutas Also
contained 1in GLOBALS are the count and flag fields necessary to

enforce the prohibition on concurrent updatas. A programpatic
description is shown below. . .

01 GLOBALS
02 GLOB.VERSION.NUMBER BIT(8)»
02 GLOB.NUMBER.OF.USERS BIT(&6)»
02 GLOB.NUNBER. OF-UPDATERS BIT(6)»
02 GLOB.DISK.COPY.ADDRESS D5Ke ADR»
02 GLOB-SIZE.IN.BITS BIT(16)>»
02 GLOB.MEMORY.ADDRESS BIT(24)»
02 GLOB.LOCK.BITS BIT(2)»
02 GLOB-I0.DESC.CHAIN.ADDRESS BITi24)>»
02 GLOB.MAXSTRUCTURE.NUMBER BITL8)»
02 GLOB.FLAGS BIT(6)»
03 GLOB.DNS.FILE BIT(1)»
D3 FILLER BITL4)»
03 GLOB.WRITE-ERROR BITC(1)»
02 GLOB-CONCURRENT.INFO» Z AT THIS DNS INFO AND
03 GLOB-INUSE-COUNT BIT{(6)» X IS INFO ARE DIFFERENT
03 GLOB« CONCURRENT.FLAGS» X TIL STR DIRECTORY
0& GLOB.FILE.AVAIL BIT(1)»

04 GLOB.UPDATE.REQUIRED.OR.INPROC BIT(1)»
02 GLOB.STRUCTURE.DIRECTORY.
03 GLOB.STRUCTURE.DESCRIPTOR 5Y.DESC»

AlL of the pointers to subsequent portions of the Indexed
Sequential structure» all of which are known as Structure
Descriptorss» are contained in the GLOBALS fietd. This simplifies
the task of maintaining the structures and it allows the buffers
to be shared asong the various userse. It adds one level of
indirection to alli accesses to the data of courses but this
expense is small for the benefits it yields.

3=70

B1000 MCP MANUAL
MARK 10.0

The Structure Descriptor is similar to an FIB for a Coawventional
file except that ali of the User Specific Inforwation is removed
and maintained in the USI field. For the Index files of an
Indexed Sequential structures> necessary key information is also
kept in the Structure Descriptor. For example» the position of
the key within the data recordss it?*s size» whether or not
duplicates are allowed» and whether or not it is the prime key
are all stored in the STR. A programmatic description is shown
bel OU»

01 STRUCTURE_DESCRIPTOR»

02 STR.NUMBER BIT(8)»
02 STR.TYPE BITC(4)»
02 3TR.USER.COUNT BIT(6)»
02 STR«BUFFER.LOCK BIT(2)»
02 STR-BUFFER.LIST.POINTER BIT(24),
02 STR.RECORDS.PER.BLOCK BI1{8)»
02 S5TR-SEGMENTS-PER-BLOCK BIT(8)»
02 STR-RECORD.SIZE BIT(16)»
02 STR.BLOCK.SIZE BIT(16)>»
02 S5TR.BLOCKS.PER.AREA BIT(16)»
02 5TR.SEGS.PER.AREA BIT{16)»
02 5TR.DFH.ADDRESS BIT(24),»
02 STReDFHaOFF SET.TO-EXTENSION BIT(18)>»
02 STR-CURRENT.POINTER BIT(24)»
02 S5TR.FLAGS
03 STR.PRIMELKEY BIT(1)»
03 STR.DUPLICATES.ALLOWED BIT(1)»
03 STR.SIMPLE.KEY BITC(1)»
02 STR.SPLITFACTOR BIT(12)»
03 STR-NUMBER.OF.KEYS BITL(8B)»
04 STR-ITEM.OFFSET BITC(16)»
04 STR-ITEM.SIZE BIT(12)>

As showun
to the Disk Fiie Headers»
tast ALevel.

the

information
characteristics of the
such as record s5ize and records per blocke
from the program uwhich originaliy created the filea

header»

The

varsion of the
inplementatione.
several pieces of

which

almost
file.

relating

softWware to
Prior to the

should have been part

3=-71

This structure»
exclusively

Any Llogical information in the
was obtained

information associated
the DFH»

in Figure 4» the Structure Descriptor contains a pointer
the MCP~defined structure which
as it always hases

to

format of the disk file header had to be expanded in the 9.0
accomodate the
creation

of
with

contains
physicatl

the 9.0 versions

maintained

81000 MCP MANUAL
MARK 10.0

separately due to a lack of available space in the then curent
definition of the disk file header. These fields have also been
incorporated in the new disk file headera. The new format has
been designed to prevent the occurrence of such probless in the
futures» whenever the need for neuw fields in the DFH arises.

Risk Eile Header Extensions

Some efficient means of available disk space maintenance had to
be devised for Indexed Sequential files. To accomplish thisr» the
necessary information regarding the available space is maintained
in the Cluster file as a data record. When an Indexed Sequential
file is openedsr this informatijon is Dbrought into memory and
stored in a memory area which will immediately follow the Disk
File Header for the data file. This area is known as the Disk
File Header Extension.

Indexed Seauential Disk Eile Header Extension

When the Indexed Sequential file is opened» the information on
the availaole space within the Direct files all of which space is
not available as far as the system is concerneds is brought into
memory and stored in the DFH Extension. The format of this
information in memory is as shown below.

01 DFH.IS-EXTENSION»

02 FILLER BIT(16)»
02 DFH.IS.EXTENSION.SIZE BIT(16)»
02 DFHIS.EXTENSION.VERSION BIT(36)»
02 DFHWTI3.NEXTLFREE-RECORD BIT(32),
02 DFHATIS.NEXT.FREE.BLOCK BIT(32)»
02 DFH.I5.RO00T.TABLE - BIT(24)»
02 DFH.I5.UPDATE.FLAG BIT (1)

Indexed Seguential Available Space Allgcation

The Indexed Sequential file system maintains two fields in the
DFH.EXTENSION of each file which keep track of available space

within the Direct file. This avaiiable space should not be
confused with the available disk space that is maintained by the
systeme Avaitable space in an Indexed 3Sequential file or in a

Relative file means that a record has never been written into an
available record slot or that a record was uwritten at some time
but was subseguently and is now deleted. To the systems all of
the 'space allocated to the file ids in use and none of it is
availables :

3=72

B1000 MCP MANUAL

MARK 10.0
Both of the available space pointers shoun above»
DFHISNEXT.FREELRECORD and DFH.IS.NEXT.FREE.BLOCK, will contain
addredses of blocks which have avail able spaces The

NEXT-FREE-RECORD pointer does not actually point to a record but
points to the block which contains the available record siot.
Record slot allocation within a block is accomplished using the
presence bits in the Block Control Information for that block.

The DFHeIS.NEXTLFREELBLOCK field will contain the area and block
number - of the next totally available block at the logical end of
the files The first disk area of the data file is allocated when
the file is first opened and the NEXT.FREE.BLOCK field is set to
zero» a valid addresss» at that time. Also» when the file is
first opened, the NEXT.FREELRECORD field is set to IFFFFFFFFa.
When the Micro MCP needs to add a record to the file and the
NEXT.FREELRECORD field contains QFFFFFFFFa» it means that no
records are available in a block that has aiready been
initialized. The allocation nust be accomplished using the
NEXT-FREE.BLOCK fielda.

i

The Micro MCP will then initialize the Presence Bits in the Block
Control Information of the block addressed by the NEXT.FREE.BLOCK
field» move the address which is in the NEXT.FREE.RECORD field»
in this case AFFFFFFFF3 to the first thirty~two bits of the last
record siot in the block move the address of this block to the
NEXT.FREE.RECORD field and increment the NEXT.FREE.BLOCK field.
If the incremented value of the NEXT.FREE.BLOCK field causes this
disk area to exceed the specified size of a disk arear 3IFFFFFFFFa
will be stored in the NEXT.FREEL.BLOCK field instead. The use of
this value is discused in a subseguent paragraphe.

The record which is being added is then moved te the first record
slot in the newly alliocated blocke the pressnce bit for this siot
is set and the block is written. The presence bits for the
second and all subseguent record slots within that bleck will be
set to zeros due to the initiaiization process. FFFFFFFF3» the
value that wuwas previously in the NEXT.FREE.RECORD fields will be
stored din the Ffirst thirty—=two bits of the last record slot in
the blockae

When the next record is added to the files the Micro MCP will
again examine the MEXT.FREELRECORD field and it will now contain
the address of the block that was just allocated. The Micro MCP
will read the block into memoryr» 1i1f necessary» and exasine the
Presence Bits in the Block Control Information. The Ffirst
available record slot will be the second silot within the block.
The Presence Bit for this slot will be set ands {if this 1is the
Last record slot in the blockr the IFFFFFFFF3 stored in the first

3=73

B1000 MCP MANUAL
MARK 10.0

thirty=tuo bits of the record sliot widll be moved back to the
NEXTLFREE-RECORD fields and the record will then be stored in the
slot. If the second record slot is not the last in the block»
AFFFFFFFFa will remain in the actual Llast slot and the
NEXTFREESRECDRD field widl not be changed.

Atlocation in the Direct file will proceed in this w@manner»
asuming that no DELETE operations are performedr until the disk
area becomes filled and» as mentioned previouslys JFFFFFFFFQ3 is
stored in the NEXTFREE-BLOCK fielde This value serves as an
indicator to the Micro MCP that the next disk area has not yet
been allocated by the 5.NCP. When the MHicro MCP encounters this
values» it merely passes control to the S.MCP uhich widl allocate
the area and store its address in the disk file header and in the
NEXTLFREE-BLOCK fielde. The Micro MCP wild then initialize the
Block Control Information and proceed as was described
previously.

The process just described may be interrupted by the ogcurrence
of a DELETE request from a user. Khen this occurs» the address
in the NEXT-FREELRECORD slot is stored in the first thirty=tuo
bits of the record being deleted» the Presence Bit associated
with the deleted record is reset and the block is written to
diske The address of the block which contains the deleted record
is then stored in the NEXT.FREE.RECORD field. The next time a
record is added to the filer» it will consequently be stored in
the area occupied by the record that was just dedeted and the
NEXT.FREE-RECORD field will be restored to its prior valuee This.
operation should eliminate the need to periodically rewrite the
entire file to eliminate lLarge numbers of empty record slots» a
process commonly known as "garbage coliection™.

Should more than one record in a block be deleted» the Micro MCP
only needs to insure that the first thirty—-tuo bits of the last
available record slot in that block contains the address of the
next block dn which a record slot is availabde or JIFFFFFFFFA if
there is no such next blocke This is true even if all of the
records in a block are deleted. No pointers need be changeds in
this {atter case» until the next DELETE operation occursas
Assuming that no new records have been added in the interim» the
Micro MCP then needs only to insure that the address of the block
which 1is totally empty is stored in the siot previousiy occupied
by the deleted record.

Allocation of space for an Index file associated with an Indexed
Sequential file is somewhat simpler than for a Data filer» since
record availability does not have to be maintained. Whenever a
record i35 deleted» the pointer to that record in the Index file
is destroyed and the table contained in the block s compacted.
The count of the actual number of entries in that blocks which is

B1000 NCP MANUAL
MARK 10.0

maintained in the Block Control Information of an Index fide» is
decrementeds. No other action is required for the Index file.

Maintenance of the NEXTFREE.BLOCK field of an Index file is
exactly like that for the data file. This field will aiways
contain the address of the next available block at the logical
end of the filea The Micro MCP will set the field to JIFFFFFFFFa
when the next disk area must be allocatedsr exactiy as is done for
the data filea

The NEXTFREELRECORD field is used to address a Llinked 1list of
.blocks within the file that are coaplietely empty» This can only
occur when all: of the records that were addressed through this
bltock have been deletedr a situation which should seldom occur in
actual use.

Index Eilg Iable Splitting

The "splitting” of fine tables in the Index file is an operation
that is always performed by the 5-.MCP. Any time the addition of
a record to the file causes a need for a fine table to be divided
in twos the M#Micro MCP passes controdl to the SDL portion.
Consequentliy» the S5.MCP performs most of the available space
maintenance for the Index filess while the Microc MCP performs the
majority of this work for the data file.

Curceni RBecord Pointer CCUBRENID

The CURRENT is a structure thate for ANSI 74 COBOL» logically
belongs in the User Specific Information field» since there is
only one CURRENT per user. There are two reasons for associating
the CURRENT with the Structure Descriptorr» houever. First» DNS3S
has a CURRENT for each structure and a pointer exists in each STR
to the appropriate CURRENT. To be compatibde with DMS» each S5TR
of an Indexed Sequential file points to the CURRENT for that
structures A current structure number is maintained in the USI
to satisfy ANSI *74 requirements. Seconds since the file can be
shareds» an operation by one user «can affect the CURRENT of
another user. To guard against this» each CURRENT is checked
when an operation which can affect it is performed. To aid the
search of CURRENTss they are lLinked togethers the first one being
pointed to by the 35TR. A programmatic description of the CURRENT
field is presented below.

3=75

B100D MCP MANUAL

MARK 10.0
01 CURRENT_DECLARATIONS
02 CURLINK BIT(24)»
02 CUR.JOB.INVOKE>
03 CUR.CUR.JOB BIT(16)»
03 CUR.CUR.INVOKE BIT{(6)»
02 CUR.STATUS BIT(2)» X O-DEL, 1-VAL
02 CUR-FINETABLE» ,
03 CUR.AREA BIT(8)»
03 CUR.BLOCK BIT(16)»

03 CUR.RECCRD BIT(12)»

CURRENT Maintenpance

The current is maintained for Indexed Sequential files which wuse’
either Seqguential access or Dynamic accesss When the user is
accessing the file sequentially» the current is maintained for
-the key of reference (USI.CURRENT.STRUCTURE). For output files»
the key of reference must be the prime &key and CURRENT adiuays
points &to the Last entry written. For a new filer CURRENT is
initialized to point to the first entry but CUR.STATUS is set to
indicate the entry has not yet been urittene For an old fide
opened OUTPUT EXTEND» the current is initialized to the last
entry written. The Micro MCP uses the current on output files to
insure that records are sritten in sequencer a rsesquirement of
ANSI 74 COBOL.

Sequential INPUT or INPUT=~QUTPUT files require that the current
points to the last record read. On the next READ operations the
current is Incremented to point to the next available record. If
the current record is deleted or the CURRENT was positioned by an
OPEN or S5TART» then CUR.STATUS is set to indicate that a record
has not yet been reade The next READ will deliver the record and
reset CUR.STATUS.

For files in Dynamic access mode» the meaning of CURRENT is more
complicated. The CURRENT will be handled exactly as in the case
of Sequential INPUT or INPUT=-OUTPUT. This wmeans that some
sequences of operations may not produce the desired intuitive
result. The example below idliustrates the problenm.

3=70

B1000 MCP MANUAL

MARK 10.0
Consider the Index tabie at the right. pmmm—————
What should the result of a READ NEXT i ABLE i
bes in the following sequence of operations? 1 pos 1}
it GOLF i
aes READCABLE)» ADD(BAKER)» READ NEXT3 fomesanmeey

b. READ(DOG)» DELETEL(DOG)» ADDCECHO)» READ NEXT;
ce READI(DOG)» DELETE(DOG)» ADDI(CHARLIED» READ NEXT>

For our implementation the READ NEXT produces the following
resultss:
as BAKER
bs GOLF
ce GOLF

¢

Indexed Seguential Buffer Mapagement

The method of allocating buffers in prior versions of the MCP and
in the 9.0 version for Conventional files is known as Static
allocation. This methoed of allocating buffers is simples» once
the number of buffers has been chosen by the user. The buffers
are merely allocated when the file is opened and they remain
assigned to the file until it is closed. If the number of
buffers allocated is too smalls, however» then operations upon the
file may be inefficients If the number of buffers allocated is
too larges then nothing is gained in efficency and memory space
is wasteds '

On an Indexed Sequential file particularly» the number of buffers
actually needed varies with the type of operation and the state
of the Indexed Sequential file. The optimum number of buffers is
best chosen dynamically to avoid the disadvantages mentioned
abovea.

Allocating buffers on demand and deallocating them when the
memory they occupy is required for other purposes is known as
Dynamic alliocationa Dynamic allocation has always been used for
buffers associated with a DMS data base. It is accomplished by
calling the MCP'¥s memory allocation procedures GETSPACE» whenever
a3 buffer is required. Deallocation is accomplished by allowing
GETSPACE to. overlay DMS buffers when necessary. Dynamic
allocation has also been implemented for Indexed S5equential
fiies»

The management of buffers associated with an Indexed Sequential
file presents a special problem for the MCPs since there can be a
varjable number of them» depending upon the operations and they
can be different sizesr depending upon which component file is
being accessed- Yo solve the problems associated with a variable
number of bufferss the Prioritized Memory Management algorithm»

I-r7

B1000 MCP MANUAL

MARK 10.0
developed for the 7.0 release should be wused. This memory
manager overlays buffers uWwhenever space is needed and the
priority of a buffer makes it a candidate to be overlaid. The

FIFO Memory Management algorithm can be used but performance may
be impacted on a multi-programming system.

To solve the problems associated with wvariable size buffers
addressing the same Indexed Sequential filer» all of the buffers
used for one structure are linked together and pointed to by the
structures» so that all buffers in a chain are of the same size.

Indexed Seguential Buffer Descripter (BD)

The Buffer Descriptor i5 the structure wused to maintain the
buffers associated with the Indexed Sequential file. It contains
the necessary Llink fields» identification fields» and state
informations Since the memory manager wmay overlay the first
buffer in a chain» the memory Llink fields ML.POINTER., will
contain the structure address so that STR-BUFFER.LIST.POINTER may
be updated. A programmatic description of the Buffer Descriptor
is presented below.

01 BUFFER_DESCRIPTOR»
02 BD.AREA-DISPLACEMENT»

03 BD.AREA BIT(B)»

03 BD.OFFSET BIT(186)»
02 BD.USER.COUNT BITC(4D»
02 BD.IN.NEMORY BIT(1)»
02 BD-.I0.ERROR BIT(1)>»
02 BD-WRITER-.CONTROL»

03 BD.REQUIRES.A.NRITE BIT(1)»

03 BD.CONTROL.PODINT BIT(12,
02 BD.NEXT.BUFFER.DESCRIPTOR BIT(24)»
02 BD.PRIOR.BUFFER.DESCRIPTOR BIT(24)3

170 descriptors are shared among all the buf fers. The BEGIN and
END addresses in the descriptors may be modified when a

descriptor is used by the 0perating Systemn. The number of
buffers allocated depends on the number of active structures
associated with the Indexed Sequential fites This technique

serves to minimize the number of descriptors in the disk chains
thus reducing the amount of processing required by GISMO» and it
minimizes the wmemory requirements for descriptors. It does
require an allocation mechanise for descriptorsr in addition to
one for bufferss but this expense has been found to be worth the
benefits.

3-78

B100OO MCP MANUAL
MARK 10.0

Concurcent Update Uperations

Concurrent READ operations on the same record of an Indexed
Sequential file are always allowed. For the 5.0 version of the
softuarer» all dogical update operationss, WRITE and REWRITE», wilt
be started only. after all accesses to the file have been
suspendeds. These update operations wiil inhibit further accesses
to the file until they complete. To userss it will appear that
concurrent updates to the file are allowedr, though this will not
actually be the cases.

This restriction simplifies the code necessary to insure that the

appropriate buffers remain in memorye. Since only one update
operation can be in process at any given time» the update
operation will begin with a BD.USER.COUNT of 2zero. Once the

update operation uses a buffers» that buffer¥s user count will be
set to oner thus preventing the Memory Management algorithm from
overlaying it.

Upon completion of the update operation all user counts wiil be
set to zZeroa. For READ operationss the user count field is not
used because each buffer need be wused only once during the
process of the communicate. The buffer is automatically
protected from being owverilaid while the 1I/0 osperation is in
Processs

The code necessary to insure the integrity of the file 1is also
simplifiesde The Record Contention problems» the complex problenms
involving changes to the file while another user is accessing it»
are avoided. For the simple case of one user at a timse updating
the file» The simplified code provides better per formance.

Disk 140 Eccor Progeducres

The disk I/70 error procedures in the MCP perform a certain number
of retry operations each time a disk I/0 operation completes with
the Exception Bit» Bit 1 starting from zeros set to onee
Different procedures may be invokeds depending upon the type of
170 operation that has completed and the type of control and
drive that encountered the errors MCP 170 operations are handled
by a different procedure which is not as extensive as the one
described below. The following description applies to I/0 errors
on user I/0 operations only.

The 170 error procedure first checks the Memory Parity Error bit»
Bit S5 in the Result Descriptor» received from the control. If
the bit is on» it perforuns a maxisum of three retry operationss

3=-79

B1000 MCP MANUAL
MARK 10.0

Loygys the result and exits the procedures» without investigating
any other bits in the result descriptora.

The procedure next checks the Transmission Parity Error bit> Bit
15 in the result descriptor. If this bit is on and if the unit
being used is not a B9482 disk cartridgesr the procedure performs
a maxinmum of three retry operationss logs the result and exits
the procedure without checking any further. iIf the unit is a
B9482» no retry operations are performed for this case but and
the investigation continuess

The procedure next checks the Not Ready bits Bit 2 in the result
descriptores If this bit is on» the procedure performs a maximum
of three retry operationss togs the result and exits the
procedure without checking any further.

The procedure next checks the Write Lockout tite Bit b in the
result descriptor. 1If this bit is on» The procedure looks at the
I70 descriptor itself. If the first three bits of the operation
code are 010, 011 or 101» which would denote Krite» Initialize
and Relocater the procedure performs a maximum of three retry
operations» Logs the result and exits the procedure without
checking further. If the first three bits denote something other
than the three operations listed» Bit 6 is idgnored and the
investigation continuesa.

The procedure next performs a Logical OR operation on:

1+« The Sector Address Error bit» Bit 10.

2« The Seek Timeout bits Bit 11»

3» (The Address Parity bits, Bit 9» AND not B9482)» and
%« The Data Error bit» Bit 3.

If the result of the Logical OR operation is trues the procedure
becomes complex and varies with the type of disk connecteds
Ba fore describing the procedure for each type of disks» some basic
procedures should be described.

Ihe Qffser Progedure

The Dffset Procedure is a subroutine of the disk I/0 Error
procedure. Basicaliys» it performs six retry operations. If any
one of the six effect recovery of the errors» the procedure 1Ws
exited IJimmediately regardless of how many operations have been
performeds The term "offset™ as used here denotes positioning
the disk heads slightly off of the center of the cylinder
specified in the disk address. In all disk pack drives which may
be connected to the Bl000 systems offset may be specified in the

3-89

B1000 MCP MANUAL
MARK 10.0

inward (positive) or ocutward (negative) direction.

The first two operations requested by the 0ffset Procedure are
performed with the original I/0 descriptor unmodified. The next
two operations are performed with negative offset and the tlast
two are performed with positive offset. If recovery is not
effected by any of the six» adl bits which may have been set in
the original 1/0 descriptor to cause the offset operations are
reset and the procedure is exited.

Ihe Strobe Progedure

The term "strobe™ as used here denotes beginning the actual read
operation sligtly before or after the point in the rotation of
the disk where it would normaliy begin. The Strobe Procedure
calis the Offset Procedure 3 maximun of three times. This may
cause 3 maximum of eighteen retry operations to be per formed. If
any one of the eighteen effect recoveryr the procedure is exited
regardless of how many operations have been performed.

The first call on the Dffset Procedure is accomplished with the
original I/0 descriptor in its unmodified form. This will cause
six retry operations to occul» axactly as described for the
Offset Procedures» provided recovery is not effected by any of the
siKa The next call is accomaplished with a bit set in the
descriptor which will cause early strobe to occur. Hence»
anather six retry operations may be performesdsr two with early
strobe and no offset» tuwo with sariy strobe and positive offset
and two with sarly strobe and negative offset.

Tuelve retry operations have been per formed to this point. If
fthe error has not yet been correctedr the {O0ffset Procedure is
again called with bits set in the I/0 descriptor to cause late
strobe to osccur. This may result in another six retry operations
being performedsr as described for the Offset Procedures all with
bits set in the I/0 descriptor to cause late strobing to occur.

If none of these eighteen operations effect recovery» all bits
which may have been set in the I/0 descriptor are reset and the
procedure is exited. In the Strobe Procedure and in the 0Offset
Procedures» if any retry operation does effect recovery» the I/0
descriptor resposible is entered in the log prior to exiting the
Procedures

3~-81

81000 MCP MANUAL
MARK 10.0

Ihe Error Correction Procedure

ALL varieties of disk pack that may be connected to the B1l000
system and some varieties of disk cartridge dinciude error
correcting capabilites in the form of a Fire Code remainder
stored iamediately after the 1440-bit data segment. The
remainder is fifty=six bits in length on the 207 disk pack and
thirty=two bits in {sngth on all others. It is computed and
stored by the disk hardware when the data segment is written. If
an error should occur when the data segment is read» the data as
it should have been written may be reconstructeds provided atl of
the bits in the data that are incorrect reside in the same
*burst™ of bits and provided the length of this burst does not
exceed a specified Limiting number of bitse.

The Error fCorrection Procedure obtains a 2»080~bit buffer from
available memory. If such memory is not availabler» the routine
exits without attempting to correct the errore. In all casess
when error correction is performed» all of the segments described
by the original descriptor are read and corrected one sector at a
time. For all disk devices which store the 32-bit remainder but
which do not have the ability to correct burst errors in input
datar the procedure amust operate in this manner. Devices which
are capable of perforaing error correction» such as the 207 disk
drive» are capable of doing so on mul tiple~sector read
operationss but this feature is not utilized by the software.
Rathers ali of the sectors are read one sector per operation and
the exact addresses of all failed sectors are logged. This
information would be 1ost on a multiple~sector read operationa

Error correction is performed by the software for all. varieties
of disk pack except the 207. The 207 harduare includes error
correcting capabilities. Error correction is also performed by
the software for the B9482 Disk Cartridges The software is
capable of correcting a six=bit error burste. The 207 hardware is
capable of correcting an eleven=bit burste.

Daga and Address Ecror Becovery = 213 And 223 Drives

Tuo different varieties of 215 and 225 disk pack drives have been
delivered during the life of the B1000 hardware. These varieties
are known as Design Lewvel One (DL=1) and Design Level Two (DL=2).
For both varietiess the Strobe Procedure is invoked but there are
sowme operational differences in the harduware itseif. Oon DL-1
drivess the bits which cause plus and minus offset and early and
Late strobing are ignored by the hardwares since it does not
include these capabilities. Consequently» on DL=1 drives» a
total of up to eighteen retry operations will be performed by the
Strobe Procedures but they widl actually be nothing more than

3-82

B1000 MCP MANUAL
MARK 10.0

eighteen repetitions of the original 1/0 descriptor. DL=2 drives
include a full complement of offset and strobe capabilities. The
softwWware cannot distinguish between the two types of drive.

If none of the eighteen retry operations caused by the Strobe
Procedure effect recowvery», the I1/0 descriptor is restored to its
original state» and the Error Correction Procedure is invoked.
Each segment described by the I/0 descriptor is read individually
and error correction is performeds» 1if possibler» by the softuare.
In ali cases» the results of the recovery attempt are entered in
the Engineering Loge

Data apd Address Ecror Recovery = 203 And 206 Driyes

For 205 and 206 disk drivess the S5trobe Procedure is performed
exactly as it 1is described. Eighteen retry operations are
per formed» two operations with esach possible combination of the
strobe and offset variants. If any of these operations effect

recoverys the 1I/0 descriptor 115 restored to its original
condition and the procedure is exited. If nots the Error
Corregction Procedure i5 invoked with the I/0 descriptor in its
original condition. Error correction is performed by the

softuware for 205 and 206 drivess

In any cases the results of the recovery attempt will be entered
in the Engineering Log prior to exiting the procedure. The 1/0
descriptor is always restored to its original condition prior to
exiting the procedure.

Rata and Address Error Recovery = 207 Qrives

207 disk drives include neither offset capabilities nor strobe
capabidities. The hardware does include a capabilty to vary the
threshold of a read operation but its use is not recommended for
recovery purposes by the manufacturing plant. Consequentiy» the
Strobe Procedure is not invoked for 207 drivess Two retry
operations only are performed» both using the original version o
the I/0 descriptor. If either operation ef fects recoverys the
results are logged and the procedure is 2xited. If nots the
Error Correction Procedure is invokeds

207 drive§ include error correcting capabilities in the harduware.
Additionally» the harduare is capable of correcting all errors
that are correctable in all sectors described in one amultiple

sector operatione. This wnmultiple sector <capability is not
utilized by the software» howeverr, and each sector is read and
corrected individually. This 1is done for diagnostic purposes

B1000 NCP MANUAL
MARK 10.0

onlys» to isolate the address of the failed sector{s) and insure
their entry in the Engineering Logs. The results of the recovery
attempt will be logged and the procedure will be exited with the
1/0 descriptor restored to its original conditicone

Rata @nnxédnagﬁa Error Becovery = Disk Cartridges

For aill wversions of disk cartridge except the B9482» the %4400
BPI» 203 or 406 tracks, 6% sector per track variety of cartridge»
the error recovery procedures are very simple. The procedure
merely repeats the original operation a maximum of three times.
The results of this attempt are Logged and the procedure is
exited with no further checking. There are no other options
available in the harduare which might help 1in the recovery
attempta.

For the B9482 cartridger» the recovery artespt is silightiy more
extens ives This drive has error correcting capabilities similar
to those of the 206 drivea Error correction on a Read operation
i5 performed by the softuare in the Error Correction Procedure
exactly as it is described. On a Write operations the recowvery
attempt is actually more complex than for a disk packe.

When a Hrite error occurs on the B9482 cartridger, the I/0 Ercror
procedure will attempt to correct the errors if the three retry
operations wmentioned above fails by uwriting the data one sector
per ogperation. in the case of an Address Parity errore the
procedure will also attempt to write that sector plus the
preceeding sector in an effort to correct the address parity.
The results of the attempt will be logged and the procedure will
be exited when recovery is effected or when all retry attempts
have been completeda

This concludes the discussion of Data and Address Error Recovery
for the various drives that may be connecta The remainder of
this section describes the remaining tests in the I/0 Error
procedureas

Bemainder of the Disk 170 £cror Procedure

If the results of the Logical OR operation mentioned previously
were false» the I/0 Error procedure examines Bits 22 and 23 of
the result descriptora I1f both bits are set to one» they
indicate that an Extended Result Descriptor was returned with the
operations though the ERD may not be stored 1in memorye. The
procedure stores the Extended Result Descriptors if it is
availtables in the Engineering Log and performs 2 maximum of three

3=84

B1000 MCP MANUAL
MARK 10.0

raktry operations using the original I/0 descriptor. The results
of the attempt are logged and the procedure is exited with no
further checking.

Finally» if all of the tests mentioned to this point were false»
the procedure performs a maxkimum of three retry operations and
logs the results. Since an exception did occurs indicated by the
seitting of Bit 1» the data is assumed to be corrupt and an
attempt is made to correct ite

Jape 170 Ecror Procedures

There is one I/0 Ervor procedure that is invoked for all tape 170
operations that complete with the Exception bit in the result
descriptor sete. The procedure is invoked regardless of whether
the operation was a user I/0 or an MCP 1I/0. It is also invoked
on the compiletion of Test operations» where the setting of the
Excepton bit is 3 normal occurrences. It is also invoked for
Enulator Tape operations» though in this cases it may do nothing
more than pass. the result descriptor on to the user for
resolutione

Essentially» the procedure uwilt retry the operation a fixed
number of times and return control to the procedure which called
itas If recovery was effected» this will be so indicated in the
previcusly failed result descriptor wupen returna. 1f the
procedure was not able to effect recoverys the result descriptor
will contain an indication of the failure upon returne In wmost
instances» the procedurse will retry the operation ten times» but
this number will vary with the type of failure and the operation
attempted.

The Tape 1I/D0 Error procedures wWwill be described fully in a
subseguent version of this specificationa.

3=-85

B1000 MCP MANUAL
HARK 1040

STMEMORY MANAGEMENI AND MEMORY REQUIREMENIS

This section of the specification has two principle partse.
S*memory management is described at the functional 1level.
S~memory requirements for a given system configuration are then
presented. Using the second part of this sections it should be
possible to estimate the amount of S5~memory that wili be required
on a system to support a given programs.

S=memory management techniques were changed drastically in the
7«0 version of the software and were changed again in the 9.1
versione The discussion <contained in the first part of this
section may not be applicables in ail casess to wersions of the
software released prior to the 9.1 versiona

GENERAL MEMORY MANAGEMENI CONCEPRIS

The BLO00 software utilizes a ®"segmentation”™ form of memory
managements In such a system» memory is requested and allocated
only when it is required and ondly in the amount that will exactly
satisfy the regquesta In other words» memory is divided into a
variable number of segmentsr» each of which is of any sizes with
some obvious restrictions. A basic element in this form of
memory management is the ™memory Link™.

The format of the memory link uwas presented in a prior sections
Basically» it contains a size field which may contain any value
from zero to 16,777,215 bitsa It contains the addresses of the
memory Links that precede and succeed it and the address of an
associated segment dictionary entrys. It contains a number of
other fields» which will be discussed in turne. It is created and
maintained by the MCP and the executing interpreters store
selected information in ite In all cases» it immediately
precedes the segment of memory that it describes.

LINKED MEMORY

Contiguous blocks of memory are reserved for system use at the
extreme ends of the memory on any systems This .is described in
more detail in the second part of this section. Between the two
conktiguous blocks Llies the area knoun as "linked memory™. At the
end of the reserved area at the low end of memory., there is a
dummy memory link known as the Lower Terminating Memory Link
CLTML) At the beginning of the reserved area at the upper end
of memory is the Upper Terminating Memory Link {(UTHML).

B100O MCP MANUAL
MARK 10.0

The terminating memory Links are created during the Clear/Start
procedure. Each has a size field of zero» a type field which
specifies the area as TERMINATING.LINK» but the "save™ bit will
be set to one in both links. This atlous the memory management
procedures to recognize the terminating wmemory Llinks. The
backward pointer in the LTML will contain IFFFFFFas but the
forward pointer will contain the address of the next memory Llink»
in address order. Simitarly» the backward pointer in the UTHML
Wwill contain the address of the previous memory Link in address
order; the forward pointer will contain AFFFFFFI.

Hencer all memory links form a chain in memory. The memory link
which immediately precedes each allocated memory area will
contain the address of the succeeding and preceding memory links
in the forward and backward peointer field respectively. The
chain w#ill be terminated in the forward direction by the upper
terminating memory link and in the backward direction by the
lower terminating memory Llink.

The area known as Llinked memory is an example of a "memory
subspace®» as this term is used hereine. There may be other
memory subspaces within Llinked mesory. The Run Structure
(Base/Linit area) of certain programs may also be divided and
allocated upon request by the software. The same procedures in
the softuare are used to manage these smaller memory subspaces as
are used to manage linked memory.

IYEES OF MEMORY REQUESITS

Memory reguests may originate in 2 number of diverse manners.
This is evidenced by the large number of different values the
type field of a memory Llink may containe. The most common
occurrence of a memory request 1is for a code segment to be
brought into memory. Other requests originate when a file is
openeds when the MCP needs additional temporary storage for the
performance of one of its tasks» when additional space is
required to hold a queus messages and so forth. :

There is probably no need to discuss each different type of
memory requeste. Many of the numbers assigned to each different
type of memory reqgquest are for the benefit of the Dump/Analyzer
program onky and have only pathological use. The different types
of requests have common characteristics and may hence be grouped
into "classes™. The comamon characteristics will be described and
explaineds

Parameters that are passed with a memory request are the size of
the reguired memory area in bitss the address of the dictionary

B1000 MCP MANUAL
MARK 10.0

entry which will be associated with the memory arear i€ anys the
address of the Run Structure Nucleus of the program which caused
the requests if anys the type field to be stored in the memory
link» the priority of the requestr a boolean variable which
specifies that the memory should be allocated at the highest
possible physical address and a boolean which specifies that the
memory must be allocated above the "fence”.

IHE EENCE

The MCP has one set of stackss onlys» to store the variables that
it must manipulate in the performance of any functions. This set
of stacks cannot be stored anywhere &lses they must be
maintained in memory until the #Function has been performed.
Consequentlys» once the MCP begins per forming any functions it can
per form no other function until the original task is complete.

Almost all MCP functions require more than one MCP code segment
to completes A file Open may require more than thirty code
segments to be brought into memorys The number of code segments
required could obviously be reduced by making each <code segment
farger but this would also reduce the possibility of finding
sufficient memory on small systemse. It would also possibly cause
more user code segments to be removed from memory to make room
for the lLarger MCP segmentas

Should the MCP begin performing a certain request and not be able
to find sufficient wmemory to contain a necessary code segment»
the system would have to halt. A Clear/Start would then be
requireds with idts resulting {oss of aildl programs that were
running at the timees In order to insure that there will always
be sufficient memory to bring in the largest MCP code segmentr, a
fence is established in memorys below which only code segments
are allowed to reside. The 1location of the fence may be
calculated by adding the size of the largest MCP code segment and
jts associated segment dictionary to the address of the lower
terminating memory link.

Cartain exceptions to the statements in the paragraph above

exists Code segments may not be overlayable at all times. To
bring a code segment into memory», the memory area is allocated
and an I/0 operation initiated. The memory area may not be

deallocated until the 1I/0 operation is completes. Should the MCP
encounter such a situation and not be able to find a required
memory area anywhere else in memorys it will wait for the
completion of the operation.

L~3

B1000 MCP MANUAL
MARK 10.0

Certain code segments associated with MICR applications programs
are also not overlayable. This is adso true of seqments of the
interpreter used by such programss Consequentlys, the fact that a
memory reguest is for a <code segment is not sufficient to
determine whether the memory should be allocated below the fence
and the boolean variable is required.

MINIMIZAIION QF "CHECKERBOARDING™

Checkerboarding» also known as External fragmentation» is the
condition which exists when memory contains a large number of
permanently=-allocated areas» or "save™ arease most of which are
separated by swmall overlayabile areas. In such a situationr the
total memory available may well be large enough to satisfy a
given reguest but no single contiguous overlayable area is
sufficiently largee. This situation can have 2 serious fimpact
upon per formancee.

To minimize the possibility of the eccurrence of checkerboarding»
the MCP attempts to allocate all Remory denoted as
noa=overlayable or ™save®” at the highest rpossible physical
addressas Examples of items which are so allocated are prograa
run structuress» files and I/70 buffer areas.

YICTINM SELECTION

When a request for memory allocation is receiveds the management
algorithm must select a "victism™» a portion of memory which is
already alilocated which may be dealdiocated and assigned to
satisfy the new requeste The area to be allocated may also be
marked Available» of courser, though this is seldom the case.
"Victim Selection™ is the process of determining which alliocated
memory segment or segments will be deallocated. This is the most
intricate task of the management adgorithms the task uwhich
requires the most attention to strategy and the task which is
most influential upon the performance of the system. Two victim
selection algorithms are provided in the software. Users may
choose either the priority Victim Selector or the Second Chance
Victim Selector wia a system. option. The change is only
effeccted during a Clear/Strat operations

B1000 MCP MANUAL
MARK 10.0

BOUND=ROBIN VICTIN SELECIION

Prior to the 7.0 releaser, victim selection was essentially a
round=robin among requestss The MCP kept a pointer which served
as the starting point of each search and was updated after. each
aliocation to point to the end of the newly allocated area. This
pointer is typicaily referred to as the "left-off pointer™. The
round=robin algoritha had the advantages of being computaticnaily
simple and it served to minimize external fragmentations but
there are some serious disadvantages associated with this victinm
selection algorithms. Specifically.»

l« It has no knowledge of which segments are actually in use»
el ements . of the ™working set™» and

2« The wmemory resources of each job have equal importances
Uniike processor scheduling» the memory is not allocated on a
priority basise

These flaws tead to some bad performance degradations in certain
situationse One such probliem is the "cascading” phenomenon.

Using Denning's definitions a program?s working set W(T, t) is
the set of all segments accessed by the program in the interval
LT~te Tl. Denote the size of this set (in MCPII contexts, size is
in bits)» as H{T» t)a This definition affords us useful
information with which to manage real store whenever the change
{"drift™") from the set KOLTO» t) to the set KI{Tl, t) is small
for the interval IT0», T1]. The assumption behind working set
wmanagement is that for many programses the drift is indeed small
during most of their execution Lifetimes.

Postulate a situation where the code and dictionary segments of a
single job completeily fill overlayable memorye. The round=robin
algorithms having no information concerning W(T» t) made a choice
of victims among the resident segments which was essentially
randem wWwith respect to this informatione Catl the ratio
WCT» t)/(size of overlayable wmemory) the saturation ratio S.
Then the probability is approximately 5 that the incoming segment
wildl overlay one or amore elements of W{T» t). The overlayed
segment> of courser uwill immediately be needed again and has a
probability of about S of overlaying another element of W(T» t).
This sets up an undesirable oscillation which should eventuatlly
damp back to stabilitys assuming no further external
perturbances. The probable number of extra overlays required to
reach stability increases with S» and becomes quite large when 35
exceedss says 0.9 We call this osciliation ™cascading™ of
overlays. For Large values of S» almost all time is consumed in
waiting for I/0 on the backing storesr so very littie sork ogets
done. This is the situation commonly known as "thrashing”.

B1000 MCP MANUAL
MARK 10.0

NowW» suppose the memory manager has some knowledge of the
elements of WCT» tde If the saturation ratio is not too close to
oner» it will usually be possible to select a window containing no
element of W{T» t). The chance of cascading segments is thereby
decreased in configurations running with S in the range of 0.5 to
0ei5- The difficulty is that elements of W(T» t) nouw clutter
memory and increase external fragmentation. As § approaches {or
exceeds) ones this becomes an important loss and makes selection
difficult for the memory manager. At this points the advantages
of the round-robin strategy begin to outueigh the advantages of
utilizing working set information.

HORKING SET DEIERMINAIIQH

In order to determine whether or not a code segeent in memory is
currently being useds usage bits were added to the memory link in
the 7.0 version of the softuares These appear in the
programmatic description of the memory Link as
ML-PREVIOUS.SCAN.TOUCH and ML.CURRENT.SCAN.TOUCH. Whenever an
interpreter accesses a code segment dictionary entry and finds
the associated rcode segment present 1in memoryr» it sets the
current scan touch bit to a value of one. Interpreters make such
an access whenever they are reinstated and whenever a code
segment transition OCCUrsSas It is not necessary for interpreters
to set the bit in mepory links which are associated with segment
dictionaries. These are usually warked as save space if any of
their code segments are present in memory. Also» data segments
are always overlaid in a round=robin fashiens regardiess of the
victim selector that is currently being used on a system.

SECOND CHANCE VICIIM SELECIION

The Second Chance victim selection algortihms first introduced in
the 9.1 version of the MCPs» addresses the first failing of the
round~robin algorithmes the lack of knowledge of the smorking set

of the code being useds Also» the Second Chance algoritha
compliately supplants the old round=robin strategy. ' The latter is
no longer available for use. The change is complately

transparent to users and the only noticeable effect should be an
improvement in performance in installations where the round-robin
algorithm was used prior to release of the 9.1 softuare.

The Second Chance algoritha utilizes the Lleft-off pointer
described for the round=robin algorithm. It begins searching for
a memory space darge enough to satisfy the regquest at the
Left-off pointer but it will not select any space whose touch
bitr MLLCURRENT.SCAN-TOUCH» 1is sets Upon enceuntering a memory

81000 MCP MANUAL
MARK 10.0

segment whose touch bit is sets it resets the bit and continues
to the next memory link. It wiii allocate the first segment it
encounters that is sufficiently Large and whose touch bit is
reset.

This algorithm thus has the major advantage of the round=robin
algorithm? it is computationally siample and the procesing
required is minimized. Uniike the Prioritized victim selection
algorithm described belowr it reduires no knowledge or action on
the part of the user.

BRIORIIY VICIIM SELECTION

The second failing in the round=-robin strategy is its inability
to insure rapid turnaround to jobs which are designated as . high
priority. 1In MCPII» prior to the 7.0 releaser» only the processor

was allocated on the basis of opriority. A high priority
application was contending for the memory resource on exactly the
same footing as a low priority "background™ job. This 1led to

severe performance degradation for wusers which required many
overlayable memory resources but frequently relinquished
pracessor control to make operating systea reguestse. In
particulars datacoms applications running in sultiple job shops
were suffering badly. Background jobs tended to usurp critical
resources forcing the datacomm application to 1ocose control still
more freguently» allowing background jobs to runs grab more
mamory resourcess» and so forth.

The Prioritized memory management algorithms first introduced in
the 7.0 version of the MCP» addresses both of these problemse.
The priority victim selector makes its choices on the basis of a
priority field in each memory Llink. This field is maintained by
runtime use of working sst informatione The priority field will
be maintained at its original value as 1ong as the code segment
is not used. This field is known as the Residence Priority field
and i35 shown on the programmatic memory link description as
ML -RESIDENCE.PRIORITY.

Associated with each program running on the system 115 a Memory
Priority field. The memory priority value determines the ability
of the program®s code segments to overlay the code segments of
other programs running on the system. Memory Priority is stored
in each memory Llink associated with each of the program®s code
segments. It is shown programpatically as ML.INCOMING.PRIORITY.
Memory priority is also stored initially in the Residence
Priority fielda Nhenever a request for 2 neu ctode segment to be

brought into memory is raceivedr the wmewmory priority of the
associated program is compared to the residence priority of every
mamory link currently present in the system mewcrys The current

B1000 MCP MANUAL
MARK 10.0

implementation of the wvictim selector always chooses a victim
having the lLowest residence priority.

An exception must be made for MCP code segmentss As presented in
a prior paragraph» the MCP cannot be denied a requested code
overlay without halting the systema Consequentlys MCP code
segments ~have an {imperative incoming prioritys» but their
residence priority value will decay at a rate equal to or greater
than the programs running on the system.

At a user—=specified interval» a routine in CISNO known as the
sueeper is5 executed. This routine moves the setting of. the
current touch bit to the previous touch bits destroying the prior
setting of the previous bit and setting the value of the current
touch bit to zero. This routine is discardable and is eliminated
by the initializer if the system is running with the Second
Chance victim selectore

The default time period between executions of the sweeper is B0O
milliseconds. Users may vary this time period via a keyboard
instruction within certain rangess Since the sweeper routine may
be executed between any two S=operationss all code in the
software which manipulates memory Links must always insure that
the chain formed by the address pointer fields is intact.

After the sweeper has moved the current touch bit to the previous
touch bits it then examinas the previous touch bit. 1If the value
is. zero» it idincrements the current decay interval field»,
ML.CURRENT «DKa INT» by the value of the sweep interval. If the
value of the current decay interval is equal to or greater than
the specified decay 1inteval» HL. DK INTERVAL» the residence
priority field is decremented.

The default value of the specified decay interval is zero. Users
may specify different decay interval values via a keyboard
instruction. Users may also specify that certain code segments
within a program are important and that their residence priority
should not decay until the specified decay interval has elapsed.
This is5 accomplished via a supplied normal=state program which
manipulates code files resident on disks The residence priority
of code segments which are not marked as important will decay
after the default decay interval, zero secondss has elapsed.
Notices» however» that this cannot occur for 3t Lleast one sweep
intervala

When executing with the priority wvictim selector» the MCP stildl
maintains a left=off pointer. MWhen the system is thrashing» when
the residence priority fields of all memory 1links have egual

4=8

B1000 MCP MANUAL
MARK 10.0

valuess the victim selected will continue to be the next memory
area below the left=off pointera

ERQGRAMMALIC DETECYION DF MEMORY THRAJHING

One of the serious problems confronting virtual storage systesms
is memory thrashinge On the B1000 systems w@memory thrashing
occurs when the working set of procedures for a program or set of
programs witl not fit within the portion of main memory available
for overlayse When this state occurss the systea®s performance
begins to degrades The amount of degradation depends on the
overlay space available» the size and nusber of segments
competing for memoryr» and the frequency of segment transitions.

As the amount of main memory 1is reduced for a constant
programming task» the amount of degradation due to menmory
overlays normally appears very gradual at first. As the
available memory is further reduceds a point will be reached
where the degradation due to overlays increases rapidly. This is
the point where the main working set of procedures no longer fit
in main memory and are competing for space. This point is
defined as the thrashing point and is shoun in Figure 4.1.

i * 1
1 %
45 * 1
1 x
! 1
1 *
i ® 1
30 + *
i LA |
1 REGION « +== THRASHING POINT
i A X 1 1
i ® i
15 + (SLON XC<==%
| EXECUTION sexxa)
1 TIKES) 1 kxnerikaa)
1
1
e v e]] - " - - -
24 36 48 60 72

MEMORY SIZE (K BYTES)

FIGURE &.13 MEMORY VS EXECUTION TINE

EXAMPLE PROGRAM ARMO020

B1000 MCP MANUAL
" MARK 10.0

As seen in Figure 4.1» execution of the programming task with
less memory than indicated by the thrashing point yields
inefficient execution times in region A.

Beginning with the 7.0 version of the softwares the MCP includes
a programmatic facidity for detecting a thrashing condition in
the systems The facility is included in GISMO as a discardable

sagment’ it is retained or discarded during the Clear/5Start
operation based upon the setting of a system option. It may be
used with either victim selection algorithm. It must be used if

the priority victim selection algorithm is useds.

The facility is actuated by a clock maintained in the softwarea
It utilizes a count of the number of overlay operations performed
by the softwares The count is also maintained in the software»
of courses The sueeper routine discussed previously is actuated
by the same clock that actuates the thrashing detection routine.

At a user=selected intervals, the thrashing detector compares the
number of overlays which occurred during the interval to a
user~specified target number of overlayse. If the overlay target
is exceeded» the thrashing detector suspends teaporarily the
execution of the sweeper routine and begins a count of the number
of consecutive intervals during which the number of overlays
exceeds the target number. The aitowabie number of intervals
during which thrashings as defined by the user» is detected is
threea.

If the thrashing condition persists for three interwvalss the
software informs the operator via a 5P0 message. The message
Wwill be repeated at N-.SECOND intervals until the condition abates
or until the operator requestss via another SP0 messages that it
not be displayed continuaily. The softuware also disables the
schedule when thrashing is detected so that no new jobs are
initiated. The schedule will be automatically enabled again when
a program currently being executed tevrminatess

MEMORY INIYIALIZAIION

Memory is initially allocated by the software during the
Clear/5tart operation. This single operation is composed of
several components. for discussion purposess it may be thought
of as two separate operationss The first of the two 1is the
execution of a stand—~alone routiner commondy known as the
Initializer and stored in the disk directory as SYSTEN/ZINIT. The
initializer s brought 1into memory by the Clears/5tart code
contained on the cassette. The second operation is the execution
of some code in the NCP» <contained in Page Zeresr Segment One of

B1000 MCP MANUAL
MARK 10.0

the MCP's code file.

At the completion of the initializer», memory will be formatted as
shown in Figure 4.2. Permanently allocated areas will be located
at each end of memory. Linked memory will consist of four Llinks
onlys The processor is then passed to the MCP's code segment for
completion of the Clear/3tart operation. Upen completion of the
MCP code» Linked memory will be formatted as shown in Figure $%.3.

4-11

B1000 MCP MANUAL
NARK 10.0

1 GISMO DATA SPACE i

1 INTERRUPT QUEUE |
]-n--nmmuu--------q--——---------i
/ See Note 2 /
4 /

i FIRMWARE TRACE SPACE i

1 GISMO0 CODE 1

1 MICRO MCP DATA SPACE 1

!un---m--------------u---—------'

1 MCP RUN STRUCTURE NUCLEUS i

1
i
1
i

i
Linked
Memory

{]

1
1
1
i
{
i

ADDRESS ZERD

i 1UTNLI
j====] SDL INTERPRETER. [I====|]
1 ML 1 1
|eemrmem e s en s s s s e menean~ |
!
7/
'4

1 ML

‘-----u‘-------------—--u-—‘-----]

| NCP SEGMENT 0»1 i

i-----'------l '

T LTML 1 ML 1 !

- Ny N s

1 NCP SEGMENT 0»0 1

1 CHIP ERROR TABLE 1

i COLD/START VARIABLES 1

]w---------u----------m---—---_-!

1 INTERPRETER DICTIONARY i

1 MCP SEGMENT & PAGE DICTIONARY 1|

!--------- --’u---'----v-m--_-----‘

1 MCP STACKS . |

MAXIMUM ADDRESS

See Note 1

Figure 4.2 Memory Format After Initialization.

B1000 MCP MANUAL
MARK 10.0

Eigure 4=2 Notes

1.

Za

TYTML™ and "LTML"™ are acronyms for upper and lower
terminating memory Llinkss These two Llinks have a size field
of zero and a type field wuhich denotes a terminating memory
Link. The upper lLink has a forward pointer of IFFFFFF3? the
tower Link has a backward pointer of 3FFFFFF3d. The links are
used to mark the boundaries of linked memory for the meaory
aliocation routines. Memory allocated by these routines will
always lie between these two linkse

It is possibles during the initialization procedurer for the
operator to specify a maximum S5-memory address that is less
than the actual maximum address of memory on the system.
When this is done» a proportionate awmount of memory is
resarved at the location showns This memory is» in effect»
deleted from the system. Memory may also be deleted via
certain keyboard instructions available to the operator. In
the latter casesr the deleted memory may Lie at almost any
address in the system.

B1000 MNCP MANUAL
MARK 10.0

1 , 1 UTML I
f==-=1 SDL INTERPRETER (|======]
1ML 1
R e LT Y
1 PORT/CHANNEL TABLE» 1
{====1 SPO0 VARIABLES AND BUFFER
1 ML 1
e ety
! 10AT» TAPE PAUSE AND !
f==-=1 TAPE LOCKX DESCRIPTORS 1
oML 1
l g R T L T T YL ™ I
1 ADDITIONAL PORT/CHANNEL |
f====] TABLE 1
oML 1
] |
1 QUEUE DISK TEMPLATE !
1====1 i
1ML 1
j==~=emcemccecscccccsccmnccm e mae]
i MICRO MCP SEGMENT 1
1====1 DICTIONARY 1
1 ML | 1
e L ey
1 SDL INTERPRETER SEGMENT 1
1====1 DICTIONARY 1
oML 1
|===eecceccmcscecemcecmcen e aan]
! ERD AREA !
j====] 1
1 ML 1 1

;----ﬁ- D S WD D G AR AT N S A S A B R ---‘

7 See Note 1 !

/ 7 .

i 1
FENCE LOCATION] = = = = @ = = & = = = = = =« = «j

i LTHL 1 1

Figure 4.3 Linked Memory Format After Clear/5Start

B1000 MCP MANUAL
MARK 10.0

Eigure 4.3 Notes

1. Thoagh nothing is shown as present in figure 4.3 between the
SDL Interpreter Segment Dictionary and the Lower Terminating
Memory Links this area will typically be filled with MCP code
segments at the completion of the Clear/Start operation.

2» The purpose of the fence shown in figure 4.3 was discussed
previously. The location of the fence is retained in the NCP
stackse It is not necessary to reserve any memory at all at
the fence Locations

MEMORY REQUIREMENIS

The memory that widl be required to execute a given program or
set of »programs is composed of four components. There are the
static requirements of the operating systenmr the dynamic
requirements of the operating system» the static requirements of
the program and the dynamic requirements of the programs.

Static requirements are composed of the data spaces necessary to
operate the system and the programs Once the static requirements
are establisheds they typically do not change. For example» once
a program has all of its files opensr the memory regquired for the
File Information Blocks and the buffers remain fixed until the
files are closed. In the case of the MCP» once the system is
Clear/Started» the static requirements remain fixed until the
system is Clear/Started againe

Dynamic requirements are exclusively code segments. Assuming
that a working set of the code segments of a prograam is
established» the dynamic requirements for that program will then
be the total amount of memory that is regquired to contain the
code segments that are a part of the working set. The operating
system?s working set depends» of courses» upon the communicate
operators that are issued by the program in its oun working sete.

OPERATING 3YSTEM SYTAIIC REQUIREMENIS

Those items shown in figures 4.2 and 4.3 comprise the static
memory requirements of the operating system. Each item will now
be discussed and a wmeans of determining the amount of memory
required by the item will be presented. The nuserical values
presented herein apply to the 9.0 version of the MCP only.

4=15

MCP

MCP

B1000 MCP MANUAL
MARK 10.0

Stacks

The stacks used by the MCP will always reside at location
zero in S=memorys For each released version of the MCP» the
stacks witl be of a fixed sizes vregardless of the machine
configurationa The stacks require roughly 34,416 bits or
4302 bytes.

Page Dictionary and Segment Zero Dictionary

These two items may never be overlaid and are maintained in
memory immediately above the MCP stacks. They will also be
of a fixed size for each released version of the MCP, The
10.0 version of the MCP code is divided into thirty-four
segment pages and Page Zero contains thirteen segments. Each
entry consists of a system descriptor» which requires 80 bits
or 10 bytesa. For the 10.0 version of the MCP» this item
requires 3760 bits or 470 bytes of memory.

Interpreter Dictionary

An Interpreter Dictionary entry requires 224 bits or 28
by tesa The number of interpreters that may be used on a
system at any given timer» and hence the nuaber of entries
allowed in the Interpreter Dictionary» may be specified by

the user to be any value between 3 and 31. If the user does
not specify this number» the Cold/Start routine will set this
value to sixs The memory required for the Interpreter

Dictionary may be calcultated by multiplying the number of
interpreters allowed by the size of one entrye.

Cold/Start Variables

The variabiles contained in this area are originally set by
the Cold/5tart routine. Hany of them may be changed by the
operatore. The memory allocated for their storage may not be
changeds It will also be a constant value for each version
of the operating systenm. For the 10.0 version» the mnemory
required is 2256 bits or 282 bytese

Chip Error Tabte

This area 1is aliocated on B1800 and B1900 series machines
only» 0On ali other machiness no memory is required for this
item. On the B1800 and B1900» the area is used to store the
addresses of memory Jlocations which are exper iencing
correctable memory parity errorse The size of the area in
bits may be calcutated by 40 plus (32 times the number of
entries allowed in the tabled. The operator may specify the
number of entries the table should contain. The default

4=16

MCP

B1000 MCP MANUAL
MARK 10.0

value for the number of entries will be one entry per 15K
bytes of S=memory on the systems

Code in Page Zeros» Segment Zero

This code segment is normally referred to as “Segment Zero™
and the size of the segment is a constant for each released
version of the MCP. This is the only MCP code segment which
does not require a memory Llinks since it is outside of linked
Memorys The code segment regquires roughly S53»%&920 bits or
6686 bytes of memorye.

Upper and Lower Terminating Memory Links

SDL

MCP

In the 10.0 wverson of the softuares a'menorf Link requires
187 bits of memory. These two then require 374 bits or 47
bytes.

Interpreter
The sizes of the SDL 1iInterpreters presented here are for

reference onlye. Accurate size figures and figures for the
various segments of the interpreters are provided in the

appropriate product specificationa Segment 2ero of the
S=Processor version of the SDL Interpreter requires B1656
bytes. The same segment of the M=Processor version requires.

B024 bytess

Run Structure Nucleus

The MCP requires a Run Structure Nucleus field as does ewvery
other program which executes on the system. For the 9.0
version of the softwarer 2386 bits or 298 bytes are allocated
foer this field.

Micro MCP Data Space

Currently» 1249 bits or 156 bytes are allocated for this
spaces This requirement is a constant and is not dependent
upon machine configuration nor system options selecteds but a
dual processor configuration will require two such spaces.

GI5M0 Code

GISMO is not segmented. Selected portions of the GISNO code
are "discarded™ by the Initialization routine if they are not
required on a given system configuration with a given set of
system options selected. The amount of memory that will be

=17

B1000 MCP MANUAL
MARK 10.0

required to contain GISMNG nust therefore always be
calculated.

The Main Block of GISMO requires 5500 bytes of memorys No
memory link is required. The amounts of memory shown in the
following table should be added if the condition specified is

true.

System equipped with Memory Base 5 104 bytes
Processor is a B1830 436 bytes
Processor is Bl1720 series 540 bytes
Processor is Bl860 series 642 bytes
Processor is Dual B18XX 1070 bytes
Reference address check option set 138 bytes
Thrashing detection option set 142 bytes
Prioritized memory management option set 364 bytes
TOUT option set 100 bytes
In the Llist above» the cassette device on the processor

console is not considered a peripherals. Neither the cassette
peripheral segment nor the magnetic tape or cassette segment
should be added due to the console cassette.

The controd exchanges segment should be added when the systenm
is equipped with two or more disk or tape controls and the
controls address the same peripheral units. High=speed
controls are all disk pack controls and any controls which
address phase=encoded tape drives. Under no conditions is it
necessary to add any GISMD ctode segment more than once. The
Dual Processor segment and the Bl860 segment must both be
added if the system is a dual processor version.

Firmware Trace Space
This area is allocated ondy when running with trace versions
of the SDL Interpreters. It should never be atlocated in a
customer?s machines It requires 1,440 bitsa.

Interrupt AQueue

Since interrupts occur asynchronously on the B1000 systea»
they must be queued wuntil they can be handlied by the

appropriate operating system routiness One entry in the
interrupt queue requires thirty=six bits. Forty=two bits are
required for pointers and counterse. The number of entries

which may be queued on a given system depends upon the amount
of memory on the system. The number of entries that will be
allocated may be determined from the following table.

S=Memory on System Entries

4=18

\

B1000O MCP MANUAL

"MARK 10.0
Less than 64K bytes . 16
At least 64K bytes but less than 96K bytes 20
At least 96K bytes but less than 128K bytes 25
12BK bytes or more 30

The smallest amount of memory that will be allocated for the
interrupt gqueue is then (42 # (16 X 38) or 618 bits. The
Largest amount is 1122 bits.

GISM0 Data 5Space

The GISMO data space is a work area required by GISNB. It is
a fixed size and amounts to 376 bits.

DCPU DATA SPACE

This s also a work areae. It is required on all dual
processor machines and requires 350 bits.

Looking now at figure #.3s the MCP» prior to completing the
Clear/Start operations will allocate space ¥for those additional
items shown on the figure. The location of the "Fence™ is not
important to the discussion of the memory requirements of the
MCP. The fence is merely a means of guaranteeing that the NCP
will atways find space for its ouwn purposes when such space is
neededa The system would be forced to halt if the MCP could not
find the space required.

AlL of the items shown in figure 4.3 reside in linked memorye
One memory Link €1B7 bits) is required to describe each of the
items in figure 4.3

Extended Result Descriptor Area

One extended result descriptors 170 descriptor and buffer is
regquired for each SN head-per~track disk control and for each
disk pack spindie on the system. Each descriptor and its
associated buffer reguires 256 bits. This requirement
applies to all disk pack drives interfaced to the 81000
system but not to cartridge drives. The memory requireds, in
bitss may be <calculated by 256 X (5N controls + disk pack
spindles) # memory link.

4=19

B100O0 MCP MANUAL
MARK 10.0

SDL Interpreter Segment Dictionary

The segment dictionary of the 3DL Interpreter is considered

non-overlayables since it contains a descriptor for segment
zero of the interpreter which must be non-overliayable to
execute segment zero of the NCPa. The size of this arear in

bits» may be calculated by 64 plus (80 times the number of
segments which comprise the interpreter) plus the space
required for one memory Llink. The 3DL Interpreter contains 6
segments» plus Segment Zero.

Micro NCP Segment Dictionary

This segment dictionary is also considered non-overlayable.
Its size may be calculated in the same manner as the size of
the SDL Interpreter segment dictionarys» 6% plus (80 times the
number of segments) plus space for one memory Link. The
Micro MNCP contains 18 segments» plus Segment Zero. The
segment dictionary therefore requires 190 bytes.

Queue Disk Template

The MCP reserves 500 segments of system disk for {its own
temporary use. The address of this reserved area of disk»
known as Queue Disks is stored in the memory area known as
the Queue Disk Templates This memory area will also contain
one bit to denote the availability of each of the 500
segments» a 24=bit field which widl be used to store the
memory address of the next Queue Disk Template if an
additional 500 segments must be allocated and a 128-bit field
known as the Communicate Splitter Masks This Latter field is
used to determine which communicate operations may be handled
by the Micro NCP. The size of the infitial Queue Disk
Template field is therefores 500#364+244128 or 688 bitsa
Additional Queue Disk Template fields» if requireds wilt
occupy 560-bit areass One memory link is required on each
Queue Disk Template atlocated.

Additional Port/Channel Tables

The MCP and GISMO communicate in a number of wayss One swuch
way 145 the Port/Channel table. One PortsChannel table is
allocated with the SP0 variables and buffer at the high end
of Linked momory. If the system is equipped with multi-Lline
controlss an additional Port/Channel table will be required
for each one. A Port/Channel table requires 768 bits of
memory plus the space required for one memory Llinks

4=20

B1000O MCP MANUAL

IDAT (1/0 Assignment Table)

Several items are grouped together in the space reserved for
the IDAT. The IOAT itself requires one entry of 512 bits for
each peripheral unit connected to the system with the
exception of the S5P0. Each disk pack spindle is considered a

peripheral unit. Haad=per=track disk is note. Data
compunications devices are not considered peripherai units
for the purpose of calculating ICAT sizes» but each

single~line control connected to the system requires one I0AT
entrys One "Pause™ descriptors requiring 96 bits of memorys
is regquired for each tape controls cassette control and
MTC=2/MTC~4 exchange on the system. One "™Lock™ descriptors»
requiring 168 bits of memory» is required for each tape and
cassette unit connected to the systeme. One I/70 descriptor of
248 bits is required {if any number of flexidisk units are
cennected to the systea. One memory Llink 1is required to
describe the area containing thess items.

Port/Channel Tables» 5P0 Variables and Buffer

Information which the MCP needs to perform its function which
is primarily concerned with the system SPD but also includes
information on other aspects of the system is maintained in
the area known as 5P0 Variabless. This inforeation reguires
1351 bits of memory. The Port/Channel table requires 768
bits and the 5P0 buffer requires 580 bitss, for a total of
2679 bits. One memory link is required to describe the area.

 OQEERATLING SYSTIEM DYNAMIC REQUIREMENIS

The operating system?s dynamic memory requirements are determined
solely by the size of the code segment which performs the
functions reguested by the wuser in the sorking set of his
program. In determining this requirement, it is necessary to
know what the program in question is doing. Hhile programs could
be and are written shich have fite open and close operations as a
part of their working set» this is not normally the case. The
vast majority of programs request only those functions which are
micro~coded and included in the Micro NCP in their working set
codee« This statement is not true for programs which use DMS.

This document will not present the memory requirements for
programs which use DNS. This information will probably be added
at some point in the futuresr Dbut for the present» only the code
segment sizes for operations believed to be common and exclusive
of DMS operations will be presented.

B1000 MCP MANUAL
NARK 10.0

The List below presents a brief description of the function and
the memory requirement for each of the Micro MCP segmentss

SEGMENT.ZERO = 2306 Bytes

Segment Zero of the Micro MCP is always required in memory
when programs are executings.

"SERIAL = 1960 Bytes

This code segment handles reads and urites on serial files

that are opened input or output but not in any combination

form» such as input=output. Also» some files assigned to
"data recorders may nat reqguire this segmente

SEQUENTIAL = 762 Bytes

This code segment handles reads and writes on sequential disk
files that are opened input=outputs.

RANDOM =~ 944 Bytes

This code segment handles readss sdrites and seeks on code
segments whose access mode is randoms This code segment is
required for all random disk filess even if the access mode
is delayed randonm.

COMP-WAIT - 1136 Bytes

This code segment is required to handle complex wait
communicate operationss All data comnmnunications handlers
gensrated by the NDL compiler require the complex wait code
to be presents

DATALRECOR = 344 Bytes

This code segment is required to handle reads and writes on
files which are assigned to data recorders and which are
opened input=ouilput or input with stacker selection
capabilities requested.

HI.PRI.AND = 1292 Bytes

This code segment 1is required to handle all communicate
operations on files which are assigned to reader=sorters.,

81000 MCP MANUAL
MARK 10.0

QUEUE-READ ~ 856 Bytes

This code segment handles read and write operations on
queues. Please refer to the paragraph at the end of this
li'stn

POM.GOM = 2674 Bytes

(Put Queue Hessage.Get Queue Messaged. This rcode segment
handies reads and writes on files assigned to queues and to
remote filese Please refer to the paragraph at the end of
this liste.

REMOTEWHRI = 2300 Bytes
This rode segment is required to handle writes on files
assigned to remote filese Please refer to the paragraph at
the end of this list.

REMOTE.REA = 2890 Bytes
This code segment handles reads on files assigned to remote
files. It is also required to handle many NDL/MACRO
communicatess Please refer to the paragraph at the end of
this Llista.

DCLINITIAT - 410 Bytes
This code segment handlies the DC.INITIATE.IO <communicate
operation. This commaynicate is issued by all data
communications handlers generated by the NDL coapiler.

MESSAGE.CO = 208 Bytes
This code segment is required to handle the message count
comaunicate operator» also issued by all data communications
handlers generated by the NDL compilere

VARIABLE.L = 412 Bytes
This code segment handles read and write operations on tape

and disk files which wuse variable-length records. It is
required in addition to the SERIAL code segmente.

4~23

B1000 MCP NANUAL
MARK 10.0

EMULATOR.T = 508 Bytes

This: code segment is required to handle communicate
operations reguested by any emulator interpreter on files
assigned to tape.

DELAYED.RA = 592 Bytes

This code segments in addition to the randomr code segments is
required to handle readss writes and seeks on files whose
access type is delayed randon. Emulator disk files are in
this categorye.

INDEXED.SE = 3020 Bytes

This seqment is used for I/0 operations on Indexed Sequential
files» first introduced in the 9.0 version of the software
and described in the section of the document on the I/0
Subsystem.

RELATIVE = 3638 Bytes

This segment is used for 1/0 operations performed on Relative
filess also described in the I/70 Subsystem sectione

IPLC.CODE - 568 Bytes

This segment is used to perform Inter=Process communications,
a part of the ANSY *74 COBOL implementation first dincluded in
the 9.0 software.

All code necessary to handle gueues» renmote files» the
DC-INITIATE.ID communicate and the MESSAGE.COUNT communicate are
included in the Micro=MCP. Microcoding these functions resulted
in some substantial performance improvements for most data
coamunications applicationse There are several reasons for the
iaprovements the most obvious being the greater efficiency of the
codes Another factor is that a ainimal amount of state
information must be saved when communicating with the Micro-MCP.

A third factor is the elimination of the "bottieneck™ problems» as
it has come to be calledr for data communications applications.
This problem arises from the fact that MCPII is a flat structure
and is capabte of performing one thing at a time onlye. In other
words» once the MCP begins performing an open request for
example» it can do nothing eise until it completes the open. An

4=24

B1000 MCP MANUAL
MARK 10.0

opens of courses requires many accesses to the disk subsystem and
the MCP must wait on the completion of each one. Normal=state
programs are free to execute while the MCP is waiting on each
accesss provided they do not request an MCP service which must be
handied by MCPII. ‘

Conseguentlys wuser prograss may now use the queue subsystem and
the other items mentioned above while MCPII is servicing another
request for other userss In previous releasesr these same user
programs had to wait wuntil the MCP completed servicing the
request it was working on at the time. Unfortunatelys» houevers
all requests for functions in the queue subsystem are not handled
by the Micro=MCP. Many of thems» and possibly ald of themr» wmay
still be handied by MNCPII.

ALl wmemory management functions are still handled by SDL code in
NCPII. Any queue request which involves memory management will
therefore have to be handled by MCPII. This will most often
occur in situations where the available memory on a system is

Limited. Queue buffers may be written to disk by NCPII» and
hence removed from memory» whenever the MCP needs space for
something else. This Wwill cause MCPII to be invoked when a

program attempts to read a queue entry from that buffera.

Further» if a producer of queue entries fills an entire buffer
before the consumer can empty ite a new memory buffer will be
required. MCPII will be invoked to accomplish the allocation.
Unfortunately» in both of these instances» the entire working set
of Micro=MCP queue handling segments wilil be brought into memorys
only to determine that SDL MCP segments are ready required. This
can result in substantial performance degradation» particul arily
on systems where available memory is limited.

The situation described can be avoided» of courses by insuring
that the consumer of queue entries removes them from the gueue at
the same rate that the producer enters thenm. Since it is ontly
rarely possible for the programmer to insure that synchronization
exists» a system option has also been provided in the 6.1 release
which will insure that all gueue requests are handled exclusively
by the SDL NCPe By setting the options the user may insure that
performance does not degrade when going to the 6.1 releases» as a
result of the microcoded qusue implementations though he will
receive no benefit from it at aii.

S5ix new segments were added to the Micro=MCP to accomodate the
data communications facilities in the 6.1 release. The newu
segments are QUEUEL.READ through MESSAGE-COUNT inclusively.
Typically.» data communication applications which use a handler
program generated by the NDL compiler should consider all six

4=25

81000 NCP MANUAL
MARK 10.0

segments to be a part of their uworking set» though only the first
four of the six are concerned with the queue implementation. The
MESSAGE.COUNT segment is invoked by the communicate operator of
the same name and is used to determsine whether or not a message
exists in the queues. The DC.INITIATE.IQO segment is also invoked
by the communicate operator of the same name and should always be
considered a part of the working set for any data communications
applications.

BROGRAM=DEPENDENI SYATIC REQUIREMENIS

The static memory requirements of a programr that memory which is
required for everything except the program®s coder may be divided
into two classes» Three items which are required are fixed in
size and the user has no control over them. The user actuailly
has little control over many of the static reguirementsr though
there are some items which he may cause to varye. Ttems in the
latter category are referred to as conditional requirements.

The fixed requirements of the Program Static Memory are composed
of three componentse These are listed below.
Run Structure Nucleus
This is a table of information constructed by the MCP when
the program reaches B0J. It is a fixed size of 2386 bits.
Interpreter Segment Zero
The size of Segment Zero» the non-overlayable segments of the
Interpreter being used must be determined and added. Space
for one memory link must be included.
Interpreter Segment Dictonary
The number of segments in the Interpreter must be deteramined.
The space required for 1its segment dictionary is then ten

bytes times the nuaber of segments plus space for one memory
Linke (10 X number of segments) 4+ pmemory link.

The following are the conditional items which must be included in
the calculation of Prograas Dependent 5tatic Requirements.

Program Code Segment Dictionary

The number of code segments which comprise the program may be

81000 MCP MANUAL
MARK 10.0

determined from the compiler listing of the programe Code
segment dictionary space in bytes is then determined by (10 X
pumber of segments) ¢ memory Link.

Data Dictionary

The number of data segments used by the program is knoun to
the programmer and is available from the compiler Llisting.
The space for the data dictionary in bytes is calculated by
€10 X number of data segments)s No memory link is required.

Base~Limit Area {also known as Program Run Structure)
This number is.readily available from the compiler Llisting.
It 1is the total data space required by the program {(betuween

Base and Limit Registers). Space for one memory link must be
added. '

Fide Dictionary
There is one entry in the file dictionary for each file
declared in the programs regardliess of whether it 1is ever
used or note File Dictionary space is given by (10 X number
of files declared). No memory link dis reguired.

File Information Block (FIB) Space

This may be calculated in bits by:

1048 x Nuaber of MICR Files open plus

796 x Number of Printer Files open plus

605 x Number of Remote Files open plus

795 x Number of Tape Files open plus

1048 x Number of Disk Files open plus

433 x Number of Queue Files open plus
1048 x Number of all other files open at the time.

FIB Memory Links

Dne memory Llink is required for each file that is open.

Total Buffer Space

The number of and the size of the buffer areas associated
with each file that is open may be determined from a compiler
Listings. This size should be totadled and added. 1If the code
file on disk has been modifieds howevers the size given on
the Listing may be incorrects True buffer size wmay be

B1000 MCP MANUAL
MARK 10.0

determined through an MCP keyboard instruction. (Refer to
B1000 Software Operational Guide.)

I/D0 Descriptors

There is one 1I/0 descriptor» which requires 272 bits of
spaces for each buffer in each file that is opene

Disk File Headers

Disk file headers are maintainedr, either in memory or on
disks for all disk files that are open. If the file is
processed 1in a random access modesr the header is maintained
in memory. Otherwis2s» the header is stored on disk and
brought into memory uwhen new disk areas are allocated. Each
header will require 530 bits plus 36 bits for each area
requested by the file declarations regardless of whether of
not the area is allocated» plus space for one nmemory Llinka.
This area is required only when the header is in memorye.

Header Dictionaries

Disk file headers are addressed by the MCP through
dictionaries. These dictionaries are segmented. One segment
contains space for ten dictionary entriese Each dictionary
entry is a system descriptor and requires 8C bits of memory.
The space required for header dictionaries may be calculated
by (800 # memory link) X ((disk files open MOD 10) ¢ 1) bits.

ERQGRAMZDEPENDENT DYNAMIC REQUIREMENIS

To determine the working set of segments for any program one must
know where a program spends its time or its "main line” of
procedure calls. The corresponding segment sizes must then be
added up for this main sequence. Segment sizes can be obtained
from compiler listingse For RPG programsr all code segments must
be included in the working set. For aill other programs the
coapilers produce a List of code segments and sizese Then the
working set segments should be listed and totalled. All segment
sizes should have 20 bytes added to account for the size of an
associated memory link.

As previously discussedr if any interpreter segments are used by
the programs» these must also be included in the total.

4=28

B1000 MCP MANUAL
MARK 10.0

M-MEMORY MANAGEMENTY

The function of M—-memory management 1is to best wmanage the
avaitable control wmemory {(N-memory) in a dynamicaliy changing
environmenta There are four events which are able to affect the
system®s demand for M-memory by the introduction or removal of
interpreterss

BO.J
EQJ
ROLLIN
ROLLOUT

Upon the esccurrence of any of these» if the interpreter set
changess the nex demands will be evaluated and M-memory
reallocated.

One of two allocation schemes will be employeds:

RISIRIBUTION

This method distributes the avaitable M=memory statically among
the active interpreters. The size of each portion depends on the
interpreter?®s needs» and the availablde amount of M=memory. The
portion of the interpreter which is not able to be placed in
N-memory remains in S~memorye. As the number of active
interpreters increasess this allocation scheme remains in effect
until further dispersion of M-memory uould result in a severe
performance degradations Hhen this threshold is reached» the
second allocation scheme is put into effecta.

CONTENTION

This method dynamically shares M-memorys in the form of n fixed
size pages» among greater than n interpreters contending for
these pages. HWhen an interpreter succeeds in capturing a page of
M=memorys» the low=order portion of the interpreter will be copied

into the page. from S5=memory. Houevers when the page is
re~captured by another interpreters since there is no mechanism
for transferring information from M=memory tc¢ S=memory» the

information in that page will. be lost. Hence» all active
interpreters must be entirely in S=menmorye.

DETAILED DESCRIPTION

1. When a new interpreter is to be brought into memory» the

Ze

3.

B100D MCP MANUAL
MARK 10.0

procedure "M.IN.M.0OUT* is called. This may be called either
from BOJs E0J» ROLLIN» or ROLL.DUT. The last entry in the
interpreter dictionary is first stored in "DIC.LAST.LOC™.
Then the interpreter dictionary is searched for entries
whose usercount 1is equal to zero {thus no longer in used.
These entries are deleted by calling "M.CLEAROUT"™.

The previous allocation method is then stored. If there is
no M.MEMORY on the system (B1710 series)» then the procedure
"NO.N" i5 calleds NO.M examines in turns» each entry in the
interpreter dictionary to ascertain if it is in S.MEMORY or
notr» and if not» the procedure "D.T0.5" is caliled to bring
in the interpreter from disks The presence bit is then set

“Calthough the system has no M.MEMORY)» and a pseudo M.MEMORY

address is calculated and stored in "ID.N.ADDR". NDO .M then
exits to M.IN.M.0UT and thence to the procedure which called
MalNeMaQUTa

Assuming that M.MEMORY does exist» the total minimum number
of M«sMEMORY pages required for all interpreters is added to
that required for C3M» then this total number of pages is
compared to the total number of pages of M.MEMORY available
en the systews

If the total number of pages required is greater than those
availables then the contention method is dinvokedr otherwise
the distribution method is invoked. The contention method
will be discussed first. For the distribution method»
proceed to step 6.

The contention method calls the procedure "CNTN.SETUP".
CNTN-SETUP first checks to sea if the pages remaining after
€584 is allocated is less than 2» and if s0» then all the
interpreters sill be contending for the remaining page»
including 3DL» and the procedure contention is called
{proceed to step 3)« If the number of remaining pages after
allocating CSM is not less than 2» then this nuaber of pages

is stored in “M.NUMBER.PAGES"™. The 3DL interpreter is
assigned a pagees plus any fraction of a page which may be
teft over. This may occur if C5M does not occupy exactly a

full ‘pager normally 1024 words. Next» the number of active
interpreters is counted and this number compared against
MoNUMBER.PAGESS If M- NUMBERLPAGES is greater than or egual
to the number of active interpreterss then the distribution
method is called (proceed to step 6). {This could be caused
by an interpreter with a3 very large minimum requirement.)

The procedure contention first ascertains {if the . 3DL
interpreter is partially resident in S.MEMORY» and either
M.NUMBER.PAGES is equal to 1» or the portion of the SDL
interpreter in M.MEMORY is greater than the size aliocated
for 5DL. If so» then the procedure "HIL.T0.5" is called»

b

5.

B1000 MCP MANUAL
MARK 10.0

else proceed to step 4. HIL.TO0.S5 saves the current S.MEMORY
address of the 3DL interpreterr, and stores the disk address
of the SDL interpreter in the interpreter dictionary entry
for SDL. The procedure "D«T0.5" i5 then called to bring in
the interpreter from diske P=T0+5 looks for memory for the
interpreter» makes the found address mod. 16» reads the
interpreter into memory and wmarks the interpreter dictionary
entry present. If sufficient memory space was not found»
then the previous (partial) SDL interpreter is restored in
S-MEMORY» and all procedures exiteds returning all zeros to
the procedure which called MaIN= M. QOUTS Otherwises the new
copy (complete) is marked not present in M.MEMORY and the
memory space of the old partial copy marked available.
HIL.T0.5 nou exits» returning to the contention procedure
{proceed to step 5).

If neither "M.NUMBER.PAGES™ is equal to 1 nor the portion of
the SDL interpreter in MN.MEMORY i§s greater than that
allocated for SDLs and if the portion of the 5DL interpreter
in M-MENORY is less than that alloweds» then the procedure
"LK-0UT-MOR™ is5 caldied to move more of the SDL interpreter
from S5.MEMORY to M«.MEMORY

The procedure "M.CLEAROUT™ is then cailed to ciear out of
the interpreter dictionary alt partialiy resident
interpreterss wWith the exception of S5DL. Each entry in the
interpreter dictionary is then in turn examined» and passed
through the procedure "CNTN.LBADR™ wuntil all entries are
examined» at which time contention is exited to M.IN.M.DUT
(proceed to step 10).

The function of the procedure “CNINLLOADR™ is to (Qoad
interpreters either from disk to S.MENORY, and/or from
S5-MEMORY to M.MEMORY. It first examines the interpreter
dictionary entry to determine whether the interpreter is on
disk or in S-MEMORY. If it is not in S.NEMORY» then the
procedure "D.T70.5" is called to bring the interpreter in
from diske If sufficient memory . space is not found» then
DaT0sS exits through all procedures» returning all zeros to
the procedure which called M.IN.M.OUT. "ID.N-ADDR™ and
*IDL.TOPM” are calculateda Each interpreter is set up for
one page of memorys. If there is available M.MEMORY {left»
then the page is overlayed from S.MEMORY to M.MEMORY
{proceed to step 10).

If the totail number of pages required is not greater than
those available» then the distribution method is invoked»
and the procedure “"REDISTRIBUTION™ called. The procedure
redistribution calculates whether the amount of available
M.MEMORY is exactly of a size required to house the amininmunm
requirements of all interpreters and CSNM. If so0» then the

7=

B1000 MCP MANUAL
MARK 10.0

procedure "M.GRINDER™ is called passing a wvalue of 1.
{Proceed to step 7).

Otherwise» the total amount of memory required to house the
maximum requirements of alld interpreters and CSM is
calculated and compared against the total amount of MJMENORY
available» and if less than or. equal to the amount of
M.MEMDRY available» then the procedure M.GRINDER is cadled.»
passing a value (field WHICH) of zero (proceed to staep 7).

I1f neither of the above conditions is met (that is» neither
the minimus nor the maximum of all interpreters wiltl fit in
MaMEMORY) then the procedure "DISTRIBUTE™ is called» passing
a wvalue (field HUH) of zero. The procedure distribute
stores the maximum available M«MEMORYs amount required for
CSM» then if HUH = 0s it initially assigns each interpreter
its minimum required space» idincrements each one in turn by
one pager until all available M.MEMORY is alliocated. If HUH
= 1» each interpreter?s minimum is assumed to be zero» then
incremented by one page until all available M.NEMORY is
allocateds The procedure M.GRINDER is then calleds passing
a value (field WHICH) of 2.

The main function of M.GRINDER is to reallocate M.MEMORY one
of three different ways», depending on the values of "WHICH".
M«GRINDER examines each interpreter dictionary entry in
turns After having examined all interpreters» if there is
still some M.MEMORY gremainings then proceed to step 9»
otheruise proceed to step 10.

If the entry being 2xamined is not in M.MENORY» or the page
being examined is not the current M.MENORY pages then
proceed to step 9a» Otherwiser if the size of this page in
M.MEMORY is not the size it should bes proceed to step 8.

If this M.NEMORY page is the correct size’ and if the
interpreter is either partially resident in S.MEMORY or if
the total tength of the interpreter is less than or equal to
the amount of this interpreter currently in M.MENORY (ie.€es
the interpreter is entirely in M.MENGRY)? and this
interpreter is not in S-MEMORY» then proceed to step 9

Otherwise (that is» the interpreter is entirely resident in
S«MEMORY» 50 the portion of S5.MEMORY which was copied to
M«MEMDRY smust be returned)» the interpreter is wmarked as
partially resident in S.MENORY. If the total length of the
interpreter is less than or equal to the amount of the
interpreter currently in M.MEMORY» then the procedure
"ALLLIN.M" is called to return the entire S.MEMORY space for
this interpretera gtherwises the procedure "LK.DUT.MEN" is
called to return the S.MEMDORY space corresponding to that
portion of the interpreter which has been <copied into
MeMEMOURY .

B8

9a

10.

B1000 MCP MANUAL
MARK 10.0

If the amount of the interpreter in M.NEMORY is Less than
the amount allocated in M«.MEMORY for this interpreter» then
the procedure "LK.OUT.MOR™ is called to <copy wmore of the
interpreter from S.MEMORY to M.MEMORY.

If ¢this point is reacheds then the appropriate interpreter
nust be brought in from disk.. :

The procedure "M.CLEAROUT" is called to clear out all
partial interpreters from the interpreter dictionary (with
the exception of the SDL interpreter and already fitted
interpreters).

If the current entry in the interpreter dictionary is SDL»
then the procedure HIL.T0.S5 is catled (refer to step 3 for
the functions of HILaT0=5). If sufficient memory space is
not found in HIL.TD.5s then exit through all procedures
passing a value of all zeros to the procedure which called
MeINaMa0OUT- Nexts» each entry in the interpreter dictionary
is examined in turn, and if present in S.MEMORY but not in
H.MEMORY» then the procedure "5.T0.M" is called to overlay
the appropriate page from S.MEMORY to M.MEMORY» and to
return either the entire 3S.MEMORY space occupied by the
interpreter or else to return only the portion overlaid.
Each entry in the interpreter dictionary idis once again
examined in turns and if the presence bit is sets proceed to
step 10. :

If the presence bit is not set» then the procedure D.T0.5 is
calied to bring in the interpreter from disk to memory
{refer to step 3 for a description of D.T0.5). If
sufficient memory is not found in DaT70.5» then alil
procedures are exited» passing a value of all zeros to the
procedure which called M.INJMLOUT.

The procedure S.T0.M is then called (see description above).

At this points the atlocation sethod {(either distribution or
contention) has been decided and executed» and control
passed back to M-.IN.M.0UT.

If the new allocation method chosen was successfuls and if
the new adlocation method is the same 35 the old one»
proceed to step 1l. If the new method is distribution
{therefore» the old was contention)d» then the procedure
RELEASE.AL.SEG is called to mark the MCP segment REINLSTATE
available (reset save bit in the memory Llink)d. If the new
method is contentions then the procedure SAVE.ASEG is
called to mark the MCP segment REIN.STATE saved (set save
bit in the memory Llink).

ila

B1GOD NCP MANUAL
MARK 10.0

If the value passes to M.GRINDER (WHICH) was 0 or 1. Then
return from M.GRINDER through redistributions to M-IN.M.OUT.
If the value passed to M.GRINDER (WHICH) was 2» then return
from MaGRINDER through DISTRIBUTE to REDISTRIBUTION» to
MaINN-DUT and thence to the procedure which called
MHeINeMeDUTaA

B1000 MCP MANUAL
MARK 10.0

EROCESS SPROGRAM) MANAGEMENT

Viewing the MCP as a manager of processes emphasizes its role in
the management of job execution. That part of the MCP concerned
with such management may be termed the "process controller™.
While the process controller is not a distinct module in the MCP»
it is a convenient term to describe all those distinct functions
which» taken together» form a conceptual package. Certain of
these functions» namely "ROLLIN™, "ROLLOUT"™» "CAUSE">» *HANG
PROGRAM™» are best understood within this context and will be
discussed in depth in this section.

The actual execution of programs» the allocation of processor
time to processes which are ready tc execute and ares therefores
in the Ready Queue»r 1is accomplished by micro code contained in
GISM0 knoun as the "Micro Scheduler™. The Micro Scheduler is a
part of the process controliera. The MNicro Scheduler is
responsible for the allocation of all processor time on alil
processors which may be attached to the system.

The process controller is driven by the occurrence of certain
software eventsr» called "soft events™» which can be identified
and anticipated by the MCP. ¥hen a process submits a reguest to
the MCP» the process may or may not be regquired to waite. If a
Wwait is necessarys the MUP is able to anticipate the event upon
which that process must wait. Thus the MCP can tabel the job as
waiting for some "soft event™s suspend the job by placing it in
the "wait queue™s and continue to execute its other duties. HWhen
the soft event "happens®» the MNicro MCP can search the wait gqueue
to discover the process marked waiting for the happening of that
event.

The "HANG PROGRAM™ functiones which places programs in the wait
queuUes and the "CAUSE™ function» wWwhich takes programs from the
wait queuesr are crucials Both functions must be cognizant of the
same so0ft events. "HANG PROGRAM®"™ is responsible for creating a
unigque bit string which will represent the soft event for a
processs On the other end "CAUSE"™ must have the proper soft
event generated for it so that the waiting process can be
Lorated.

The main asset of this method of process manipulation is to free
the MCP from waiting for the completion of I/0 coperations. It is
abke to initiate a requested operation and to independently match
a soft event with its corresponding process at a future time when
the operation has been completed.

B1000 MCP MANUAL
MARK 10.90

The process controller receives inputs from two sources®: an "I/0
DEVICE™ or a "CONTROL DEVICE". Both may affect processes in the
systenm. User demands upon the system are submitted through a
coatrod dewice which may accept only control language statementsa
On the B1000O» the supervisory printer (5P0) may only be used as a
control device. The card reader may be dynamicaliy assigned as a
control device or an 170 device. All other peripheral devices
may be used as I/70 devices onty. In additions, a program may act
as a control device by sending a communicate to the MCP which
contains a control ianguage statement. See "PROGRAN
COMMUNICATES"™.

Control Llanguage statements» of direct interest to the process
controller» may be divided into three categoriess

(1) S5Statements uwhich generate a s50ft event f(e.g.» allouw a
suspended process become activer direct a process to a
peripheral device)

(2) Statements which cause job suspension

{3) Statements which request job execution and provide all the
appropriate parametars

If the control language statement requested that a job be
executeds the "Control Language Processor®™ directs that the job
be scheduled., Brieflys the scheduling function involves placing
it in the "schedule queue”™ but allocating no w®machine resources.
In the MCP outer 1oop» the schedule queue is periodicaily
checkedr and the first job in the queue is initialized.

"Program Initialization” involves allocating the machine
resources and setting up the structures necessary for program
executione Once the job has been initializeds it is placed in
the "READY QUEUE™ to await actual executions

Once a program has been initializedr it will move in and out of
six possible states during the course of its life in the system?

READY QUEUE

COMMUNICATE QUEUE

WAIT QUEUE

NOT QUEUED» EXECUTING

NOT QUEUED» COMMUNICATE BEING ANALYZED
M COMMUNICATE QUEUE

81000 MCP MANUAL
MARK 10.0

The ready gueue contains jobs uhich are ready to rvuns The
communicate gqueue <contains jobs which have requested some MCP
function. The wait queue contains jobs which are waiting for the
happening of a "soft event™.

The gueuing mechanisk is managed as follows. All run structures
are Linked in memory by priority. A field in the run structure
nucleus» "RS Q. IDENT™» specifies the current state of the
processs The first member of a3 queue can thus be found by
searching the Alinked 4ist of run structures until the proper
value in RS.0.IDENT is found.

A job waiting in- the ready queue represents a demand for
processor time upon the system. This gueue is interrogated by
the Micro Scheduler. If a job is founds the reinstate functions
which is performed by the Micro Scheduler in GISMD» is called in
preparation for turning the processor over to that job. Briefily»
the reinstate function performs certain housekeeping duties and
causes a processor to begin execution of that job.

The program will execute until one of three things happen:2

{1) The program®s idnterpreter discovers an interrubt which
regquires the MCP's attention.

(2) The program needs some MCP service performed before it can
continue

(3) The master processor instructs the slave