
Distribution Code SC

Burroughs

Language Manual

Priced Item
Printed in U.S.A.
September 1986

5024490

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material, includ
ing direct, indirect, special or consequential dam
ages. There are no warranties extended or granted
by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with re
spect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Comments or suggestions regarding this document should be submitted on a
Field Communication Form (FCF) with the CLASS specified as 2 (S. W:System
Software), and the Type specified as 1 (F.T.R.), and the product specified as the
7-digit form number of the manual (for example, 5024490).

Section

B I 000 Systems
Pascal Language Manual

TABLE OF CONTENTS

Title Page

INTRODUCTION . 1-1
IMPLEMENTATION RESTRICTIONS . 1-1
ERRORS DURING EXECUTION . 1-2
STRUCTURE OF MANUAL . 1-2
RELATED DOCUMENTS . 1-3

2 PROGRAM STRUCTURE . 2-1
PROGRAM UNIT . 2-1
PROGRAM PARAMETERS . 2-3
PROGRAM BLOCKS . 2-4

Scope . 2-4
Scope: Blocks . 2-4
Scope: Record Definitions . 2-4
Scope: WITH Statements . 2-5
Scope: Record Variables . 2-5

Activation Records . 2-6

3 DECLARATIONS AND DEFINITIONS . 3-1
LABEL DECLARATIONS . 3-1
CONSTANT DEFINITIONS . 3-2
TYPE DEFINITIONS . 3-3

Simple, Structured, and Pointer Types . 3-4
. Simple Types . 3-4
Structured Types . 3-5
Pointer Type . 3-5

Ordinal Types . 3-5
Type Identifiers . 3-6

Same Types . 3-7
Compatible Types . 3-7
Assignment Compatibility . 3-8

Type Descriptions . 3-9
Array Ty]pes . 3-9
Boolean Types . 3-13
Character Types . 3-14
Enumerated Types . 3-14
File Types . 3-15
Integer Types . 3-16
Pointer Types . 3-16
Real Types . 3-1 7
Record Types . 3-1 7
Set Types . 3-20
Subrange Types . 3-21
Textfile Types . 3-22

VARIABLE DECLARATIONS . 3-22
PROCEDURE AND FUNCTION DECLARATIONS 3-24

Procedure Declaration . 3-24
Function Declaration . 3-26
Formal Parameter Lists . 3-28

ACTUAL PARAMETER LISTS AND PARAMETER MATCHING 3-29

5024490 v

Vl

B l 000 Systems
Pascal Language Manual

TABLE OF CONTENTS (Cont.)

Section Title Page

4 STATEMENTS . 4-l
ASSIGNMENT STATEMENTS . 4-2
CASE STATEMENTS 4-2
COMPOUND STATEMENTS . 4-4
FOR STATEMENTS . 4-4
GOTO STATEMENTS . 4-6
IF ST A TEMENTS . 4-8
STRING RELATION . 4-9
PROCEDURE INVOCATION STATEMENTS . 4-10

. REPEAT STATEMENTS . 4-1 l
WHILE STATEMENTS . 4-11
WITH ST A TEMENTS . 4-12

5 EXPRESSIONS . 5-1
ARITHMETIC EXPRESSIONS . 5-1
ORDINAL EXPRESSIONS . 5-2
PRECEDENCE OF OPERA TORS . 5-2
FUNCTION DESIGNATORS . 5-3
EXPRESSIONS BY TYPE . 5-4

Boolean and Relational Expressions . 5-4
Boolean Expressions . 5-5
Relational Expressions 5-6

CHAR Expressions .. 5-9
Enumerated Expressions 5-10
Integer Expressions . 5-11
Pointer Expressions 5-12
Real Expressions . 5-13
Set Expressions . 5-1 5
String Expressions . 5-17

6 PREDEFINED PROCEDURES AND FUNCTIONS 6-1
INPUT/OUTPUT AND FILE-HANDLING CONCEPTS 6-1

Terminology . 6-2
Standard Files and Textfiles . 6-2
Inspection Mode and Generation Mode . 6-3
Buffer Variables . 6-3
File Attributes . 6-3
Logical and Physical Files . 6-3
Permanent and Temporary Files . 6-3

Standard Files . 6-4
Reset Operation . 6-4
Get Operatnon . 6-5
Read Operation . 6-5
Seek Operation . 6-5
Rewrite Operation . 6-6
Put Operation . 6-6
Write Operation .. 6-6
Close Operation . .. 6-6

Section

6 (Cont.)

5024490

B 1000 Systems
Pascal Language Manual

TABLE OF CONTENTS (Cont.)

Title

Textfiles (Including Predefined Textfiles)
Textfiles in General
Predefined Textfiles (Input. Output)
Reset Operation
Get Operation
Read Operation .. .
Readln Operation .. .
Rewrite Operation .. .
Put Operation
Write Operation
Writeln Operation .. .
Close Operation .. .

Lazy I/O
Use of File Attributes
Description of File Attributes

PROCEDURE AND FUNCTION DESCRIPTIONS
File-Handling Procedures and Functions

Close Procedure
EOF Function
EO LN Function .. .
Filevalue Function
Get Procedure
Page Procedure .. .
Put Procedure
Read Procedure .. .
Read Textfile Procedure
Type = <Char variable>
Type = <integer variable>
Type = <real variable>
Readln Procedure .. .
Reset Procedure
Rewrite Procedure .. .
Seek Procedure .. .
Write Procedure
Write Textfile Procedure
<Boolean expression>
<Char expression>
<integer expression>
<real expression> .. .

Floating-Point Format
Fixed-Point Format

Writeln Procedure .. .
Type Transfer Functions

CHR Function
ORD Function .. .
Ordinal Type Transfer Function

Dynamic Allocation Procedures
Mark Procedure .. .
New Procedure .. .
Release Procedure .. .

Page

6-6
6-7
6-7
6-7
6-7
6-8
6-8
6-8
6-8
6-9
6-9
6-9
6-9

6-10
6-10
6-19
6-20
6-20
6-21
6-21
6-21
6-22
6-22
6-23
6-23
6-23
6-24
6-25
6-25
6-26
6-26
6-27
6-27
6-28
6-28
6-29
6-29
6-30
6-30
6-30
6-31
6-31
6-32
6-32
6-33
6-33
6-34
6-36
6-36
6-36

Vil

Section

6 (Cont)

7

Vlll

B I 000 Systems
Pascal Language Manual

TABLE OF CONTENTS (Cont.)

Title

Arithmetic Functions .. .
ABS Function
ARCT AN Function
COS Function
EXP Function
LN Function .. .
ROUND Function
SIN Function .. .
SQR Function
SQRT Function .. .
TAN Function
TRUNC Function .. .

General Proc<::dures and Functions
Abort Procedure
Accept Procedure .. .
Date Procedure .. .
Display Procedure .. .
Getattribute Procedure
Setattribute Procedure
Odd Function
PRED Function .. .
Runtime Function .. .
SUCC Function .. .
Time Procedure .. .

VARIABLES .. .
VARIABLES BY ACCESS

Entire Variables
Indexed Variables .. .
Field Designators
Dynamic Variables .. .
Buffer Variables

VARIABLES BY TYPE
Array Variab1e .. .
Boolean Variable .. .
Char Variable .. .
Enumerated Variable
Fi1e Variab1e .. .
Integer Variable
Pointer Variable
Real Variable
Record Variable
Set Variable
String Variable .. .
Textfile Variable

UNDEFINED VARIABLES

Page

6-37
6-37
6-37
6-38
6-38
6-38
6-38
6-39
6-39
6-39
6-39
6-40
6-40
6-41
6-41
6-42
6-43
6-43
6-44
6-45
6-45
6-46
6-46
6-47

7-1
7-1
7-1
7-2
7-2
7-3
7-4
7-5
7-5
7-5
7-5
7-5
7-5
7-5
7-5
7-5
7-5
7-5
7-6
7-6
7-6

B I 000 Systems
Pascal Language Manual

TABLE OF CONTENTS (Cont.)

Sec:tion Title Page

8 BASIC COMPONENTS . 8-1
CHARACTERS AND CHARACTER STRINGS . 8-1
IDENTIFIERS . 8-2
NUMBERS . 8-2
FILE ATTRIBUTES AND MNEMONIC VALUES 8-4

9 INTERPRETATION OF PROGRAM TEXT . 9-1
PROGRAM TEXT . 9-1
TOKEN . 9-1
RESERVED WORD . 9-2
PREDEFINED IDENTIFIER . 9-2
TOKEN SEPARATOR . 9-3
BLANK . 9-3
COMMENT ... " . . . 9-3
RECORD BOUNDARY . 9-4

A COMPILING, EXECUTING, AND ANALYZING A PASCAL
PROGRAM . A-1
COMPILER OPTIONS . A-1

CCI Syntax Diagrams . A-1
Boolean Options . A-4
Value Options . A-5
Immediate Options . A-5

COMPILING AND EXECUTING A PASCAL PROGRAM A-6
Compile-Time Errors . A-6
Run-Time Errors . A-7

USING THE PASCAL/ANALYZER PROGRAM A-8
USING THE SYSTEM/IDA PROGRAM . A-9

B RAILROAD DIAGRAMS B-1
REQUIRED ITEMS . B-1
OPTIONAL ITEMS . B-2
LOOPS . B-2
BRIDGES . B-3

C EBCDIC AND ASCII CHARACTER SETS . C-1

Index

5024490 ix

Figure

2-1
2-2
2-3
2-4
2-5

x

B I 000 Systems
Pascal Language Manual

LIST OF ILLUSTRATllONS

Title

Syntax Diagrams: Pascal Program Elements
Illustrations of the Scope of Blocks
Scope of Record Definitions
Procedure p Calls Procedure q
Procedure q Calls Procedure p

Page

2-1
2-4
2-5
2-6
2-6

Table

C-1
C-2
C-2

5024490

B 1000 Systems
Pascal Language Manual

LIST OF TABLES

Title

B 1000 Codes in EBCDIC Sequence
B 1000 Codes in ASCII Sequence
B 1000 Codes in ASCII Sequence (Cont)

Page

C-1
C-7
C-9

Xl

B l 000 Systems
Pascal Language Manual

SECTION 1

INTRODUCTION

Pascal is a high-level programming language developed by Niklaus Wirth. based on the block-structured
nature of ALGOL-60 and the data structuring innovations ofC. A. R. Hoare. Because Pascal is an easy
to-learn. general-purpose language, its popularity has increased dramatically in the last several years.
particularly in the university and personal computer markets.

The American National Standards Institute (ANSI) has adopted the International Standards Organiza
tion (ISO) standard 7185 Level 0 as their standard definition of Pascal. The purpose of the ANSI stan
dard is to increase the portability of Pascal programs from one system to another. The Burroughs B 1900
Pascal Compiler complies with this standard with the restrictions described later in this section.
Throughout the remainder of this manual, the Burroughs B 1900 Pascal Compiler is referred to as Bur
roughs Pascal and the Pascal described by the ANSI Standard is referred to as ANSI Pascal.

This manual is intended as a reference manual for Burroughs Pascal. As such. its purpose is to be a com
plete description of the syntax and semantics of Burroughs Pascal within a framework that is designed
for quick access of information. The reader is assumed to be familiar with programming language con
cepts and with the Burroughs B 1900 family of systems. Some advance knowledge of the Pascal language
is helpful.

The notation used in this manual to represent the syntax of Pascal is the "railroad" syntax diagram. A
complete description of railroad syntax is provided in appendix B. Railroad Diagrams.

The remainder of this introduction des~ribes the compiler' s compliance with the ANSI standard for
Pascal. the structure of this manual, and the documents that relate to this description of Burroughs
Pascal.

IMPLEMENTATION RESTRICTIONS
The following items are restrictions in this software release of Burroughs B l 000 Pascal.

DISPOSE Procedure
Not implemented. Dynamic memory is managed by using the MARK and RELEASE
procedures.

Variant Record Declarations
Do not require all labels to be present.

Non-local GOTOs
Not implemented.

PACK. UNPACK
Not implemented.

NEW
Tag constants not permitted in parameter list.

The following is a list of limits imposed by the B l 000 implementation.

• Labels in CASE statements must be in the range 0 to 255 inclusive.
• Labels in variant parts of records must be in the range 0 to 23 inclusive.
•REAL numbers have a precision of approximately 11 decimal digits. The exponents can be with

in the range -4 7 to + 68.

5024490 1-1

• Maxint is 8388607.

B 1000 Svstems
Pascal Language Manual

Introduction

• Routines with local file variables cannot be used recursivelv.
• A file must not be a component of anv structured type. ~
• The maximum nesting of lexic levels Is eight.

ERRORS DURING EXECUTION
The following errors can be detected during the execution of a program.

Integer overflow
Real overflow
Stack limit exceeded
Heap limit exceeded
Text file buffer overflow
Division by zero
Value of end of file wrong for file operation
Operation on improperly defined file
Nil pointer dereference
Undefined pointer dereference
Released pointer dereference
Array index out of range
No label corresponding to case selector
Record variant accessed with incorrect tag
Value out of subrange

Some operations may cause values to go out of range with no error reported. Complete checking is not
guaranteed. but data will not be altered or lost as a result of incomplete checking. The following errors
are not checked:

Changing variables in the li:st of a WITH statement
GOTOs from outside to inside a structured statement
Side effects, especially those thwarting run-time checks
Dangling pointers as a result of a RELEASE operation
Operations on an uninitialized variable
Record variable accessed with incorrect tag type

STRUCTURE OF MANUAL
The structure of this manual is top-down; that is, larger or higher-level syntactic components such as pro
grams, declarations, and statements. are described first and smaller or lower-level components such as
variables and identifiers are described last. A brief description of each section and appendix follows.

Section l. Introduction. introduces the language and the manual.

Section 2. Program Structure, describes Pascal programs, program parameters. and blocks. Thiis section
also describes the concept of scope as it applies to identifiers and activations.

Section 3. Declarations and Definitions, contains a description of the declaration part of a block, includ
ing type definitions and variable declarations. Concepts relating to data types in Pascal are covered
under Type Definitions.

Section 4. Statements. describes the statement constructs available in Pascal.

Section 5, Expressions. describes all expression types and includes a discussion of the precedence of ope
rators within expressions.

1-2

B l 000 Svstems
Pascal Language Manual

Introduction

Section 6. Predefined Procedures and Functions. explains the ready-made procedures and functions that
are available. These procedures and functions provide facilities for file handling. type transfer. dynamic
variable allocation. arithmetic functions. and other general features. A detailed description of Pascal
input/output concepts and how they relate to the Burroughs B 1900 system is included under File Han
dling Procedures.

Section 7. Variables. describes variables of various types and how they are referenced within the
program.

Section 8. Basic Components. defines some of the small. frequently used components of the syntax of
Pascal. such as identifiers and numbers.

Section 9. Interpretation of Program Text, describes how the Burroughs Pascal compiler interprets the
program information it reads from its input files. This section includes lists of reserved words.
predefined identifiers, and context-sensitive identifiers. A description of the use of comments within the
program text is also included.

APPENDIX A. Compiling, Executing and Analyzing a Pascal Program. defines the syntax and semantics
of the options that can be used to direct certain aspects of the compilation and execution of Pascal
programs.

Appendix B, Railroad Diagrams, contains a description of the notation used throughout this manual to
represent the syntax of the Pascal language.

Appendix C, EBCDIC and ASCH Character Sets, provides two tables, the first in EBCDIC sequence and
the second in ASCII sequence, of the B 1000 codes. Each table includes the hexadecimal and ordinal
numbers for the EBCDIC and ASCII codes as well as the assigned graphics and their meanings.

RELATED DOCUMENTS
The following documents contain information of interest to the users of this manual:

American National Standards Institute (ANSI) Programming Language Pascal (X3J9/8 l-093).
1983.

Pascal User Manual and Report by K Jensen and N. Wirth Springer-Verlag, New York, 1978

B 1000 Systems System Software Operation Guide. Volume 1, form number 5024508.

B 1000 Systems System Software Operation Guide, Volume 2, form number 1169091.

Burroughs CSG Standard for Compiler Control Images Burroughs number 1955 2959.

5024490 1-3

B l 000 Systems
Pascal Language Manual

Program Structure

SECTION 2
PROGRAM STRUCTURE

The major components of a Pascal program are described in this section.

PROGRAM UNIT
A <program unit> is the most global Pascal construct, encompassing all data definitions and algorithm
descriptions that are to be compiled as a unit. The form of the < program unit> is very similar to the
forms of the procedures and functions that can be defined within it.

The <program heading> includes a program <id~~ntifier>, which is not used for any subsequent pur
pose, and the optional <program parameters>.

The other major component of the <program> is the <block>. This contains the data definitions and
algorithm descriptions of the program. Details of 1the syntax and semantics of the program block begin
later in this section and continue through the remainder of this manual.

Syntax dliagrams for all the Pascal program elements discussed in this section are presented in Figure
2-1 ..

Program Unit syntax:

-<program>-------·----------------------------1

<program> syntax:

-<program heading>; <block>· ------·-----------------------t

<program heading> syntax:

~PROGRAM<program identtt~r>-~----~--~----~------------~

L (<program parameters>) _J

<program identifier> syntax:

-·<identifier> ------·-------·----------------------1

<program parameter> syntax:

Figure 2-1. Syntax Diagrams: Pascal Program Elements

5024490 2-1

<external file specification> syntax:

B 1000 Systems
Pascal Language Manual

Program Structure

<external file identifier> ------------ --~·-------~---·~-~~

>>---' -'-~--

L __[·-:-]
: FILE -<attribute phrase>---

··---f

<external file identifier> syntax:

-- <identifier> --------------·----

<attribute phrase> syntax:

----<Boolean-value file attf'ibute> = ----TRUE ---·---·---------------,

FALSE -------------1
<integer-value file attribute> =--.----y <unsigned integer> -

+ "=1
<mnemonic-valued file attribute>= <mnemonic value> _, _______

<string-valued file attribute =<character string.> ------------•

<real-valued file attribute> = <number>------------------

<block> syntax:

r-< statement part >

L < declaration part > ___ I

Figure 2-1. Syntax Diagrams: Pascal Program Elements (Cont)

2-2

An example of a program follows.

Example:

B 1000 Systems
Pascal Language Manual

Program Structure

program EXAMPLE(INPUT, OUT_FILE file <maxrecsize= 132>);

var OUT FILE : text;
answer : integer;
val: integer;

function FACT (n: integer) integer;
begin
if n > l then

FACT := n * FACT(n - 1)
else

FACT : = l;
end;

begin
rewrite (OUT FI LE) ;
read(INPUT,val);
answer := FACT(val);
writeln(OUT FILE. 'The factorial of ',val,' equals ',answer);
end. -

This program, named EXAMPLE, computes the factorial of a number entered through a file named
INPUT. The factorial is comput~~d by recursively calling the procedure FACT. The answer is written to
file OUT_ FILE, which may be label-equated to a printer file.

NOTE
The names EXAMPLE, INPUT, OUT FILE, and FACT are spelled in
upper-case here for ease of identification. Pascal does not distinguish be
tween upper-case and lower-case spelling except in literals.

PROGRAM PARAMETERS
The <program parameters> specify permanent files that the program is to read or write. Optionally, the
MAXRECSIZE file attribute of the named files can be assigned a value.

An <external file identifier> specified in the program parameters must later appear in the <variable
declarations> part of the program< block>, where it must be assigned a <file type> or a <textfile type>.
The predefined files named INPUT and OUTPUT are exceptions to this rule; their appearance in the
<program parameters> is equivalent to declaring them in the outer block of the program, they must not
appear in the <variable declarations> of the program.

When a file is named in the list of <program parameters>, the PROTECTION file attribute for that file
is automatically set to SA VE. Thus, a file created by the program becomes a permanent file.

For further information on files, textfiles, and file attributes, please refer to I/O Concepts in Section 6.

The FILE< <attribute phrase> >construct (that is, the ability to specify file attributes for program pa
rameters) is a Burroughs extension to ANSI Pascal.

5024490 2-3

PROGRAM BLOCKS

B 1000 Systems
Pascal Language Manual

Program Structure

A <block> is a set of related declarations and statements. The declarations describe data and the state
ments describe actions. The <declaration part> and the <Statement part> of blocks are described in Sec
tions 3 and 4.

Pascal is a block-structured language derived from the ALGOL family of languages. The Pascal
<program> is basically a block that may itself contain nested blocks in the form of procedures and func
tions. Two related properties of blocks. scope and activation, are fundamental to the structure ofa Pascal
program.

Scope
Scope is a property possessed by all identifiers and labels in a Pascal program. The scope of an entity re
fers to the region of the program text within which that entity has a specified meaning. The text of a pro
gram is divided into these regions by the occurrences of blocks. record definitions. WITH statements.
and record variable qualifications.

Scope: Blocks
A <block> defines a scope for all identifiers and labels declared in the <declaration part> or <formal
parameter list> of that block. If an identifier is declared in block x. that identifier can be referenced with
the defined meaning in all of block x and in all procedures. functions, and record definitions within block
x, with the following exception:

If the same identifier is redefined in the region of a nested procedure, a nested function or a nested
record definition, the former definition is unavailable in that region and the new definition applies.

Figure 2-.2 illustrates the concept of scope for blocks. In viewing the figure, note that a reference to an
identifier or label is always to its closest (most local) definition.

program p;

var a, {declaration of a and b} <-··-- ! <--!
b : rea 1; ! ! scope of

! b of p
procedure q; <--!

var b : rea 1; <--!
begin !

scope of
{statements of q} b of q scope of . a, q of p
end; <--!

begin <--!
! scope of

{statements of p} b of p .
end. <--·-- ! <--!

Figrnre 2-2. Illustrations of the Scope of Blocks

Scope: Record Definitions

The region of a <record type> definition defines a scope for all field identifiers defined in that record.
The same nesting rules apply to records as apply to blocks: field identifiers may be redefined in embed
ded records.

2-4

B l 000 Systems
Pascal Language Manual

Program Structure

In general. if the occurrence of the definition of an identifier or label is in region x, that definition does
not apply to a region enclosing x. However, there is one exception: the appearance of an <enumerated
constant> in an <enumerated type> definition defines that constant identifier for the closest block con
taining the definition. Thus, if such a definition occurs within a record, the enumerated constant identifi
ers can be referenced outside of the record.

In Figure 2-3. the <enumerated constant>s red, green, and blue can be referenced within the block in
which type r is defined.

Every Pascal program has an implied enclosing region in which all predefined identifiers are automati
cally declared. Because this region encloses the program, these identifiers can be redefined at any point.

program p;
<----!

type r = record
fl : rea 1 ; <-- ! scope of

!
!

f2 : (red, green, blue); ! f 1, f2
end; <--!

begin

{statements of p} .
end. <----!

Figure 2-3. Scope of Record Definitions

scope of
r, red,

green, blue

The following rules must be observed when defining identifiers and labels:
• Any identifier or label that is referenced either must be explicitly defined or must be one of the set

of predefined identifiers.
• With one exception, any reference to an identifier or label must textually follow its definition. The

exception is an identifier used to denote the <domain type> of a < pointer type>. In this case, the
identifier need only be defined before the end of the <type definitions> in which it appears.

• An identifier or label cannot be defined more than once in the same procedure, function, or record.

The definition of an identifier or label applies from the beginning to the end of the region, and not from
the point of its definition to the end. Thus, a use of an identifier in a region before it is defined is an inva
lid forward reference even if the same identifier is defined in an enclosing scope.

Scope: WITH Statements
A WITH statement or record variable qualification defines a new scope for the field identifiers of a refer
enced record variable.

In a WITH statement, the occurrence of a <record variable> defines a scope for each <field identifier>
within that record. The scope extends from the occurrence of the record variable to the end of the WITH
statement. WITH statements have the same nesting properties as blocks and records. That is, if a WITH
statement causes a field identifier to be defined that has the same spelling as an identifier in an enclosing
region, the local (that is, the record) definition applies within the WITH statement.

Scope: Record Variables

Record variables may be "qualified" using the syntax <record variable>.<field designator>. In effect,
this syntax establishes a scope for all the field identifiers of the record; the scope extends from the period
(.) to the end of the <field designator>.

5024490 2-5

Activation Records

B 1000 Systems
Pascal Language Manual

Program Structure

When a <block> is entered, the appropriate local variables must be allocated. These include variables
that appear in the <Variable declarations> for that <block>, <value parameter>s from the <formal pa
rameter list>. and the function result (if the < block> is a function). These local variables ar(: allocated
in an area of storage referred to as an "activation record." Each invocation of a procedure or function
has its own activation record. as does the program block.

Storage for an activation record is allocated on entry to the block and deallocated when the block is exit
ed. Thus. on entry, all variables declared within a block arc undefined for that invocation. (Pascal local
variables differ from FORTRAN local variables and from ALGOL OWN variables in that they do not
retain their previous values when the block is re-entered.)

When a procedure or function is called. the activation record for the current block is saved before the
new one is allocated. The processes ofallocating and deallocating activation records can be viewed as op
erations on a stack. Thus, ifprocedurep with local variables a and b calls procedure q with local variables
c and d, the storage allocation can be viewed as shown in Figure 2-4.

E
d] c

b =1 b J a a

Before While in
procedure q procedure
is called q

Figure 2-4. Procedure p Calls Procedure q.

b
a

After
procedure
q is exited

A procedure or function can call itself, either directly or indirectly. If, in the previous example, procedure
q calls procedure p, the stack will contain the activation records shown in Figure 2-5.

b
a
d
c
b
a

seco nd activation rncord of p

ation record of q act iv

first activation record of p

Figure 2-5. Procedure q Calls Procedure p.

Logically, this process could continue indefinitely~ however. the system would eventually run out of stor
age space.

References to variables in a block refer to the most recently allocated activation record for that block in
the stack.

Note that these rules apply to variables. Most are explicitly declared in a block. Variables can also be allo
cated dynamically through the use of the procedure NEW. For a discussion of the dynamic allocation of
variables, refer to Dynamic Allocation Procedures in Section 6.

2-6

B I 000 Systems
Pascal Language Manual

SECTION 3

DECLARATIONS AND DEFINITIONS

The declaration portion of a Pascal program block is described in this section. Label. variable. proce
dures and function declarations are described. as well as constant and type definitions.

Following is the syntax diagram for the <declaration part> of a <block>.

Syntax:

L <label declarations>

>-
L <constant definitions> ----·---

>-
L< type definitions>------ J

)"

>~---------c--<-v-a-ri-ab_l_e_d~-,a-ra-t-io-ns_> __ =====~~--~-------------------------------------->~
>--

L <procedure and function declarations> _]

The declarations and definitions are all optional, but when two or more are used, they must appear in
the sequence shown in the diagram.

The <constant definitions>, <type definitions>, and <variable declarations> primarily are used to de
scribe the data on which the program is to act. The! <label declarations> and <procedure and function
declarations> are tools used in describing the program algorithm. These components are described in
the following sections, in the order in which the components appear in the < declaration part>.

LABEL DECLARATIONS
<label declarations> identify < label>s for use within the < block>. The <label>s are used to indicate
statement locations to which program control can be transferred using the <goto statement>. Any
<label> used within a < block> must be declared in the <declaration part> of that <block>.

A <label> may have up to four significant digits. (Leading zeros are not significant digits.) Therefore.
<label> range is 0 through 9999.

<label declarations> syntax:

--LABEL r <la~,~-

5024490 3-1

<label> syntax:

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

~ <digit>-_..._ _______________ ,

CONST ANT DEFINITIONS

The <constant definitions> associate <identifier>s with constant values, allowing those values to be ref
erenced by name rather than by specifying the actual values throughout the program. The type of each
constant being declared is determined by the type of the constant on the right side of the equal sign.
which may be a literal value of a predefined type or a previously declared constant identifier.

MAX INT is a predefined <integer constant identifier> that has the value 8.388.607 (2 raised to the 23rd
power minus I). TRUE and FALSE are predefined values of the <Boolean type>. < identifier>.
<character literal> . <unsigned integer>, <unsigned real>., and <character string> are defined in Sec
tion 8, Basic Components.

Examples:

1 . .always == TRUE~
2 . .a = 'a':
3. maxbits = 48:
4. minvalue == -4.5:
5. greeting = 'Hello'~
6. intro == greeting:
7. warning == 'Don" t do it':

In example I. always is a <Boole.an constant identifier> with the value TRUE: thus, always may be used
wherever a <Boolean constant> is valid.

In example 2. the letter a is a <char constant identifier> with a as its value.

In example 3. maxbits is an <integer constant identifier> with the value 48.

In example 4. minvalue is a <real constant identifier> with the value -4.5.

In example 5. greeting is a <String constant identifier> with the value ' Hello'.

In example 6. intro is a <String constant identifier> with the same value as greeting (example 5).

In example 7. warning is a <String constant identifier> with the value 'Don' t do it'.

<Constant definitions> syntax:

---CONST-------------~---·----

)i>---

3-2

<char constant identifier> = <char constant> ----t
< integer constant identifier> = < integ1:?r constant>

<real constant identifier> = <real constant> ---

<string constant identifier> = <string constant> ---

<Boolean constant> syntax:

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

--i=TRUE
-<Boolean constant identifier>~ c F=ALSE

<char constant> syntax:

L <character literal>

<char constant identifier> _J

<integer constant> syntax:

~--=rL MAXINT

-· <integer constant identifier> _I c ~~ ~ c<unsigned integer>

<real constant> syntax:

1
----=r--c <unsigned rieal> = ~: .=J - <real constant identifier> _j

<string constant> syntax:

L- <character string> J
- <string constant identifier> -

TYPE DEFINITIONS
Every variable, constant, and function has an associated type which defines its range of valid values. its
internal and external representation, and the operations that may be performed on it. The <type
definitions> allow user-defined types to be named and their characteristics to be specified.

Discussions of some general concepts that apply to types are presented next. followed by descriptions of
all the types, presented in alphabetical order.

5024490 3-3

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

<type definitions> syntax:

-- TYPE------ <array type identifier>

<Boolean type identifier>

<char type identifier>

<enumerated type identifier>

<file type identifier>

<integer type identifier>

<pointer type identifier>

<real type iidentifier >

<record type identifier>

<set type identifier>

<subrange type identifier>

< textfile type identifier>

Simple, Structured, and Pointer Types

pe>-

= <array type>

= <Boolean ty

= <ch.ar type>

= <enumerated type>-

e>

= <file type>

= < intoger typ

= <pointer typ

= <real type>

= < reci:>rd type

= <set type>

e>

>

pe> <subrange ty

<textfile type>

Types may be classified into three categories that reflect their structure.

<type> syntax:

L <simple type>~-j C ~s~uctured type>

<,pointer type> --

Simple Types

Variables of simple types have only one component. The predefined types Boolean. char. in1teger. and
real are simple types. User-defined derivatives of these predefined types, as well as enumerated types and
subrange types. are also simple types.

3-4

<simple type> syntax:

B l 000 Systems
Pascal Language Manual

Declarations and Definitions

---<Boolean type>---...... ------------------------------i
<char type> ----1
<enumerated type> --1

< integer type> ----t
< real type> -----.1
<subrange type> ----

Structured Types

Variables of structured types are composed of multiple components. which may be ofone or more simple
types or may be structured themselves.

<Structured type> syntax:

---<array type>-----------

< set type>------i

< record type>

<tile type>

< tex tfile type>

Pointer Type

Variables of pointer type contain values that are references to variables of simple or structured types.

<pointer type> syntax:

- <pointer type> -----------------------------------.

Ordinal Types

Most simple types are also ordinal types. In an ordinal type. the values have a well-defined sequential
relationship to each other. Each value is assigned an ordinal number that uniquely identifies its position
in the sequence. Thus, a value of an ordinal type can have a successor and a predecessor in the sequence.
Values can also be compared to each other (for example. greater than. less than) based on their ordinal
numbers. The only simple type that is not an ordinal type is the <real type>.

5024490 3-5

B 1000 Systems
Pascal Language Manual

Declarations and Definitions

<Ordinal type> syntax:

----<Boolean type>--.--,~·---------------------------·---'

<char type> ------1
<enumerated type> -

<integer type> __,,

<subrange type>---

Type Identifiers

In <type definitions> and< variable declarations>. a type can usually be defined in one of two ways:

1. As a new type. A new type is a type that has not previously been assigned an identifier. A new type
can be specified by using the <new array type>. <new enumerated type>. <new fi11e type> .
<new pointer type>. <new record type>. <new set type>. <new subrange type>.

2. As a derived type. where an < identifier> that has already been defined or was predefined a:s a
type identifier is specified.

In other contexts requiring a type specification. new types are not allowed; previously defined <type
identifier> s must be used.

<type identifier> syntax:

3-6

Boolean -----------.,~--------·--------------------

char ---------------1
integer----------~

real

text ----------~

<array type identifier> -·---t

<Boolean type identifier>·---t

< char type idel"tifier > -------1
< enumerated type identifiell' > -

<tile type identifier> ------t
< integer type identifier> ---

<pointer type identifier>-,---

< real type identifier> ____,,

<record type identifier> _, __ --t

< set type identifier> ------1
< subrange type identifier> -----t

< textfile type identifier>----

Same Types

B 1000 Systems
Pascal Language Manual

Declarations and Definitions

Because types can be defined in different ways. it is not always clear when two types are actually the same
type. The concept of" same type" is used when describing how < variable parameter>s are matched in
procedure and function invocations. More important. the definition of "same type" is used to define
compatible types and to assignment compatibility. See Compatible Types in this section.

The <type identifier>s T 1 and T2 are the same type if one of the following rules is true:

Rule I
Rule 2

One type is defined to be equal to the other.
Both types are of the same type as a third type.

In the simplest case of same type.Tl is defined to be equal to T2. as shown in the following example:

TYPE Tl = T2; {Rule l}

Rule 2 describes the situation in which T 1 and T2 have a common ancestor. The simplest case is the
following:

TYPE T3 = INTEGER;
Tl = T3;
T2 = T3;

{Rule l }
{Rule I }

TI is the same type as T2 by rule 2. In the following example.TI and T2 are also of the same type:

TYPE T5 = INTEGER;
T4 = T5;
T3 = INTEGER;
T2 = T4;
Tl = T3;

In this example, T2 equals T4, T4 equals T5, and T5 equals INTEGER.Tl equals T3, and T3 equals IN
TEGER. Therefore, Tl and T2 are the same type, namely INTEGER.

In order to apply the same-type rules, all types must have associated <type identifier>s. For example.
even though types T6 and T7. defined below, have exactly the same characteristics and structure, they
are NOT the same type:

TYPE T6 = ARRAY [1 .. 5] OF INTEGER;
T7 =ARRAY [1 .. 5] OF INTEGER;

However, T6 and T7 would be the same type if declared as follows:

Compatible Types

TYPE T6 = ARRAY [1..5] OF INTEGER;
T7 = T6;

In some cases, it is not necessary for types to be the same type. but they must be compatible types for a
particular construct to be valid. In particular, the operands in most relational expressions must be of
compatible types. Also, the <case constant>s in the <variant> part of a < record type> must be type
compatible with the type of the <variant selector>.

5024490 3-7

B l 000 Systems
Pascal Language Manual

Declarations and Definiitions

Two types. Tl and T2, are compatible if any of the following rules are true:

Rule l
Rule 2

Rule 3

Rule 4

TI and T2 are the same type.
One type is a subrange of the other. or both
types are subranges of the same type.
Tl and T2 are <Set type>s with compatible
<base type>s and both T 1 and T2 are packed
or both T 1 and T2 are not packed.
Tl and T2 are <String type>s with identical
character counts.

Examples:
type tl =real;

t2 = t 1 ;
{tl and t2 are compatible by rule l.}

t3 = 1.. 10;
t4 = 5 .. 7;
t5 = 20 •• 30;
{t3, t4, and t5 are compatible by rule 2.}

t6 = set of char;
t7 =set of 1 a 1

••
1 2 1

;

{t6 and t7 are compatible

t8 =packed array [1 •• 10]
t9 =packed array (1 •. 7]
{t8 and t9 are compatible

by rule 3.}

of char;
of char;
by rule 4.}

{t3, t4, and t5 are compatibte by rule 2.}

Assignment Compatibility
Assignment compatibility refers to the validity of assigning a particular value to a variable of a certain
type. The: rules of assignment compatibility are applied under the following circumstances:

In an assignment statement, the value of the< expression> must be assignment compatible with the
type of the variable or function result being assigned.

An expression used as an array index must be assignment compatible with the index type in the array
declaration.

The initial value and final value in a <for statement> miust be assignment compatible with the type
of the control variable.

An actual parameter must be assignment compatible with the type of the formal value parameter it
is to match.

The values returned by the read, time, runtime, and date procedures must be assignment compatible
with tlhe parameters passed to those procedures.

In the definition of assignment compatibility that follows, V l and V2 represent two variables, and Tl
and T2 are the types of V l and V2, respectively. As an illusitration, consider the assignment statement
V2:=V1. V 1 is assignment compatible with V2 (or any variable of type T2) if any of the following state
ments is true:

1. T 1 and T2 are the same type and that type is not a < file type> or <textfile type>.
2. V 1 and V2 were declared in the same <variable identifier list> in a variable declaration. (This

rule allows two variables of the same unnamed type to be assignment-compatible).
3. T2 is the <real type> and Tl is the <integer type>.
4. Tl and T2 are compatible ordinal types and the value of V 1 is valid for type T2.
5. T 1 and T2 are compatible set types and all members of the set of V 1 are valid for type T2.
6. Tl and T2 are compatible <string type> s.

3-8

Exam plies:

type t 1 = rea 1 ;.
t2 = t 1 ;

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

(All values of types tl and t2 are assignment-compatible
with all variables of types tl and t2, by rule 1 .)

var v 1 ,
v2 : array [1 •• 10] of Boolean;
(All values of vl are assignment-compatible with v2, and vice

versa, by rule 2.)

v3 : real~
v4 : i nte~1er;
(All values of v4 are assignment-compatible with v3 by rule

3. V3 us not assignment-compatible with the type of v4.
That is" v3 := v4 is al lowed, but v4 := v3 is not al lowed.)

v5: 7 •• 10;
vG : 1 •• 20;
(All values of v5 are assignment-compatible with v6 by rule

4, but only some values of v6 are assignment-compatible
with v5~)

v7 : set of 1 a 1
••

1 z 1
;

v8 : set of char;
(All values of v7 are assignment-compatible with v8 by rule

5, but only some values of v8 are assignment-compatible
with v7; namely those set values that contain only characters
between 1 a 1 and 1 2 1

, inclusive.)

v9: packed array [l .. 10] of char;
vlO: packed array [l •• 10] of char;
(All values of v9 are assignment-compatible with vlO, and

vice versa, by rule 6.)

(All values of v7 are assignment-compatible with v8 by rule

Type Descriptions
Descriptions of all of the types are presented in alphabetical order in the following paragraphs.

Array Types
An array is a structured type containing identical components of a specified <element type>. The array
is indexed by the values of a given <index type> . The number of components in the array is determined
by the number of values in the <index type>. The < index type> cannot be the <integer type>, but it
can be a <subrange type> whose host type is the <integer type>.

If multiple <index type>s are specified, the array is multidimensional, each dimension being indexed
by one <index type>. An array with N dimensions is synonymous with an array of arrays with N-1
dimensions.

An <array type> that includes the designation PACKED will be stored in as economical an amount of
space as is practical, possibly at the expense of speed in accessing the components. When a multidimen
sional array is declared using a list of <index type>s and the array is designated PACKED. all compo
nent arrays of that array will also be PACKED (that is, all dimensions of the array are considered
PACKED).

5024490 3-9

B l 000 Systems
Pascal Language Manual

Declarations and Definitions

A <discriminated array schema> is a <new array type> which is created by passing constants as the
<discriminant value>s of an <actu'll discriminant part> that correspond to the <discriminant
identifier>s of a <formal discriminant part> of an <array schema definition>. The < array type> de
fined by a <discriminated schema> is said to be a member of the <array schema> defined by th.at <array
schema definition>.

<array type> syntax:

t
<new array type>

<array type identifier> --------1
< discriminated array schema> ----

<new array type> syntax:

~--------...--- ARRAY

L PACKED_J

<index type> syntax:

-- <ordinal type>----

<element type> definition:

I(. l
--""'-- <index type> -] OF -- <element type> ---i

An <element type> is any < type> that is not a <file type>, a <textfile type>, or a < structured type>
containing a <file type> or a <textfile type> as a component.

<discriminated array schema> syntax:

-- <array schema identifier> <actual discriminant part>----------------------

<actual discriminant part> syntax:

-- (_ _L < discrimina~t-value> -~1---)

<discriminant value> syntax:

-- <constant>-----·

3-10

Examples:

B l 000 Systems
Pascal Language Manual

Declarations and Definitions

type t 1 = array [Boolean] of array [1 .. 1 O] of array [size] of real:
t2 = array [Boolean] of array [I .. I 0. size] of real:
t3 = array [Boolean. I.. I 0. size] of real:
t4 = array [Boolean. I .. IO] of array [size] of real:

Types 1t I. t2. t3. and t4 are equivalent ways of exJPressing a three-dimensional array with a <Component
type> of type real and with Boolean as its first dimension. the subrange 1 .. 10 as its second dimension.
and the <ordinal type identifier> size as its third dimension.

type p 1 = packed array [1 .. 10, 1 .. 8] of Boolean:
p2 = packed array [1 .. 1 O] of packed array [1 .. 8] of Boolean:

Types JP I and p2 are equivalent ways of declaring a packed array with "packed array [1..8] of Boolean"
as its component type. This type can also be declared as a discriminant array schema ofan array schema:

Strings

type arrayschema l (m.n : integer) = packed array[m .. n] of Boolean:
discriminantarrayschema l =: arrayschema l (1.8):
arrayschema2(m.n : integer) = packed array[m .. n] of

discriminantarrayschema l;
p3 = arrayschema2(l, l 0):

Strings are a special class of arrays that can be used in ways that arrays normally cannot be used. For ex
ample, a variable of <String type> can be assigned a <character string> value of the same length: indi
vidual characters in the <Character string> are assigned to successive components of the array.

<string type> definition:

A <string type> is an array that is defined as PACKED ARRAY [l .. n] OF CHAR, where n is greater than
or equal to l.

Example:

type str = packed array [1 .. 1 O] of char;

Type str is a <string type> that contains ten characters.

Array Schema Definitions

An <array schema definition> introduces an identifier to denote an <array schema>. An <array
schema> defines a set of < array type>s whose type denoters are specific instances (members) of the
<array schema>, called <discriminated schema> ta. A< discriminated schema> is obtained by specify
ing. in a type definition or variable declaration, values for all the identifiers in the <discriminant identi
fier list> of the <array schema definition>.

All <discriminated schema> derived from an <array schema> are similar in structure: they have the
same number of dimensions. the corresponding dimensions of each are subscripted by the same_ ordinal
type (or subrange thereof). and all have the same <element type>.

The array schema mechanism therefore makes it possible to pass arrays of different sizes and bound val
ues as actual parameters corresponding to the same formal parameter.

The scope of the <discriminant identifier>s occurring in a <formal discriminant part> is the corre
sponding <array schema>, plus any <schema discrimant>s whose variables have a type which is a mem
ber of that <array schema> . Each <discriminant identifier> of the <formal discriminant part> must
be used at least once in the corresponding <array schema> .

5024490 3-11

<array schema definition> syntax:

B 1000 Systems
Pascal Language Manual

Declarations and Definitions

--<schema identifier> <formal discriminant part>= <array schema>---------------

<formal discriminant part> syntax:

-(r -<discriminant specification>-----)

<discriminant specification> syntax:

- < discriminant identifier list> ; <ordinal type identifier>

<discriminant identifier list> syntax:

e.discriminan: identifie<> _=] _ ___. __________ , ______________ , __ _

<array schema> syntax:

--~.-----~----..--- ARRAY

LPACKED~
r· ··-i.

---- <index type>] OF -- <element type> -----1

<schema index type> syntax:

<constant> -------<constant> ---------------·---

L <discriminant Identifier >-__J L <discriminant identifier> ---

<array schema identifier>
<discriminant identifier>
<Ordinal type identifier> syntax:

-- <identifier> -----

3-12

Examples:

B 1000 Systems
Pascal Language Manual

Declarations and Definitions

program prog;
type t(i, j: integer)= array [i •. j] of integer;

t l 00 = t (1 ' l 00) ;
t50 = t(50,99);
rec = record

fl: real;
f2: t (50,99);
f3: packed array [1 •• 12] of boolean;

end;
var

a: tlOO; {an array
b: t (1 t 50) ; {an array
c,d: t50; {an array
e: tlOO; {an array
p: @t(l .• 20);
r: rec;

procedure proc (var par: t) ;
var k: integer;
begin

with
with
with
with

fork:= par.i to par.j do
par[k] := k ,., k;

100 integer elements}
50 integer elements}
50 integer elements}
100 integer elements}

c,d: t50; {an array_with 50 integer elements}

procedure proc (var par: t) ;
B 1000 PASCAL LANGUAGE MANUAL

fork := par.i to par.j do
end;

begin
new (p) ;
proc (a) ;
proc (b) ;
proc (c) ;
proc (r. f 2) ;
proc (p@) ;
end.

In the above program, type t denotes an array schema with two formal parameters, i and j, representing
the lower bound and the upper bound of the array, respectively.

Type t l 00 is defined to be derived from t with a lower bound of I and an upper bound of I 00. and type
t50 is a type derived from t with a lower bound of 50 and an upper bound of99. The variable bis declared
to be a type derived from t by replacing i and j int by I and 50 respectively. In the above program. the
only assignment-compatible variables are a and e, and c and d.

The procedure pis declared with one parameter. The type of the parameter is indicated by the <schema
identifier> t~ that is, it matches all the types derived from t, regardless of their sizes or bound values.

In the body of the program, the procedure "'proc" is called several times. In each call statement. the first
parameter is ofa type derived from the array schema t., but is different from the derived type in the other
call statements. These three different derived types are not assignment-compatible with each other.

Boolean Types

Boolean is a predefined ordinal type that comprises the values TRUE (value = ordinal 1) and FALSE
(value = ordinal 0). All <Boolean type>s are of the same type.

5024490 3-13

Example:
type b = Boolean;

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

Type b is a <Boolean type identifier>.

<Boolean type> syntax:

Boolean ,--------·----·--------------------1
L <Boolean type identifier>-J

Character Types

rrhe character type (<char type>) is a predefined ordinal type that comprises the standard character set
(EBCDIC unless changed to ASCII using the STRINGS compiler control option. The mapping of charac
ters to ordinal numbers is defined in Appendix C EBCDIC and ASCII Character Sets.

All <char type>s are the same type.

Examples:

type ch = char:
c =ch:

Types ch and c are both <char type identifier> s.

<char type> syntax:

L char =i-
<char type identifier>

Enumerated Types

An <enumerated type> is a simple, ordinal type that comprises the values specified in the associated list
of <enumerated constant>s. The order in which the <enumerated constant>s appear determines their
ordinal numbers: the first <enumerated constant> is assigned the ordinal number O. and each subse
quent <enumerated constant> is assigned an ordinal number that is one higher than its predecessor.

The appearance of an <identifier> as an <enumerated constant> in an <enumerated type> definition
defines that < identifier> for the block. Because the < identifier> cannot be redefined in the same block.
the same <identifier> cannot be used in two <enumerated type> definitions in the same bllock.

Examples:

type color= (red, yellow, blue, green, tartan);
card suit= (club, diamond, heart, spade);
tool--= (rake, hoe, spade); { error J

,Type color is an <enumerated type identifier> . The <enumerated constant> red has the ordinal num
ber 0, yelJow the number 1, blue the number 2, green the number 3, and tartan the number 4.

3-14

B I 000 Svstems
Pascal Language Manual

Declarations and Definitions

Type card_suit is an <enumerated type identifier>. The <enumerated constant> club has the ordinal
numbeir of O. diamond the number I. heart the number 2. and spade the number 3.

Type tool is in error because the identifier spade has already been declared (as a value of type card_ suit)
in this block.

<enumerated type> syntax:

-t <new enumerated type> _J
·<enumerated type identifier>

<new enumerated type> syntax:

r::
-- (---- <enumerated constant>-----

<enumerated constant> syntax:

)

-- <identifier> --------------

File Types

A <file type> is a structured type of identical components. It differs from an array in that it is not in
dexed and has no specified upper bound. Instead. components are accessed through predefined proce
dures. For additional information on files. please refer to 1/0 Concepts in Section 6.

The designation PACKED has no effect for file types.

Example:

type employee = record
name, firstname : packed array [l •• 20] of char;
department_code : 0 .. 99;
employee_no : 0 .. 9999;
end;

employee_file =file of employee;

Employee file is a <file type identifier>~ each component of the file is an employee record containing
the following fields: name, firstname, department_code. employee_no.

<file type> syntax:

----c-<new file type> J
- <tile type identifier>-

5024490 3-15

<new file type> syntax:

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

--_J-....-- FILE OF <component type>--------------------

L PACKED

<component type> definition:

Any <type> that is not a <file type>. a <textfile type>. or a <Structured type> containing a< file type>
or a <textfile type> as a component.

Integer Types

Integer is a predefined ordinal type that comprises the integer values from - MAXINT to MAXINT. in
clusive. The ordinal number of a value of type integer is the value itself.

Example:

type int = integer~

Type int is an <integer type identifier>.

<integer type> syntax:

Linteger

<integer type identifier> _J

Pointer Types

A <pointer type> is a special type that is used to reference dynamically allocated variables. A variable
of a <pointer type> may reference a variable of its declared <domain type> or may be NIL. that is. may
not be currently referencing a variable. Please refer to Dynamic Allocation Procedures in Section 6 for
details on dynamic variables.

Example:

type ptr to client• @client;
c 1 ient-= record

name : packed array [1 •• 20] of char;
son, daughter : p1tr _ to_c 1 i ent;
end;

The type ptr _to_ client is a pointer to a record of type client.

<pointer type> syntax:

L< new pointer type> J
<pointer type identifier>-

3-16

<new pointer type> syntax:

-- @ ·- <domain type>

<domain type> definition:

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

The <domain type> can be any < type identifier> except a <file type identifier>. a <textfile type
identifier>. or a <type identifier> of a <Structured type> containing a <file type> or <textfile type>
as a component.

Real Types

Real is a predefined simple type that comprises the range of floating-point approximations. Real num
bers in B ·1000 Pascal have a precision of approximately 11 decimal digits. The exponent range is from
E-47 to +68.

Example:

type r = real~

Type r is a <real type identifier>.

<real type> syntax:

L- real

- <real type identifier> _J

Record Types

A <record type> is a structured type that can contain components of different types. These components,
called "fields," are referenced by name, not by index (as with arrays) or by current position (as with files).

A record may include a <fixed part> or a <variant part> or both or neither. A record that includes nei
ther a fixed nor a variant part contains no components and is said to be empty.

The <fixed part> of a record consists of a group of fields that apply to all variables of the <record type>.
Each field has a <field identifier> by which it is referenced and an associated <field type>.

The <variant part> of a record is a collection of field definitions. called "variants." The <variant part>
allows different variables of the same record type to have different (or partly different) formats, depend
ing on the run-time value of the <variant selector>. Because the format is chosen at run time, there must
be one (and only one) variant defined for every possible value of the type specified by the< ordinal type
identifier> in the <variant selector>.

The interpretation of the variants at run time depends on whether or not the <variant selector> includes
the optional <field identifier>. This <field identifier> is called the "tag field" and is allocated as a field
within the record. If a tag field is defined and a variable of that record type is allocated, only fields in the
<fixed part> and in the <variant> that includes the value of the tag field as a <Case constant> are valid~
any attempt to reference a field in another variant is an error. When the value of the tag field for a partic
ular variable is changed, the old variant becomes inactive and all fields in that variant become inaccessi
ble. The new variant becomes active and all fields within the newly active variant are undefined, regard
less of any prior state.

5024490 3-17

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

If the <field identifier> is omitted (that is. there is no tag field) and a variable of that record type is allo
cated. the active variant is selected by assigning a valid value to a field within that variant. At that point.
all other variants theoreticallv become inactive. similar to the state described above for inactive tagged
variants. However. in this current B I 000 implementation. the restrictions on accessing fields in inactive
non-tagged variants are not enforced. All fields within the <fixed part> and all fields within all variants
may be referenced. but only one storage area is allocated. Thus. the variants effectively "remap''' the stor
age area.

A <record type> that includes the designation PACKED is stored in as economical an amount of space
as practical. possibly at the expense of speed in accessing the components.

Example:

type str =packed array [1 .• 20] of char;
rec = record

name, f irstname : str;
age : 0 •• 99;
case married : Boolean of

end;

true : (spou~sesname : s tr) ;
fa 1 se : (J ;

Type rec is a <record type identifier> that defines a <new record type>. The first component of rec is
name. which is of type str. The next component is firstname, also of type str. The component age is a
subrange from 0 to 99. inclusive.

The word case introduces a set of two < variant>s, wher1e married is a Boolean tag field that is ithe
<variant selector>. If married is true. the next component is spousesname. true. type str. If married is
false. there are no more components.

<record type> syntax:

L <new record type> _j
<record type identifier>

<new record type> syntax:

---..--- RECORD <field test> END----·----------------

L PACKED _J

<field list> syntax:

T~:ed part>------~----_-_-_-_-_ ---1

L / L ; <variant part>

<variant part> ----------

L._T
'

3-18

<fixed]part> syntax:

B 1000 Svstems
Pascal Language Manual

Declarations and Definitions

~<ficldid:ntifier>~~ :<ficld~pe~~-------------------4
<field identifier> syntax:

-- <identifier> ------·-------

<field type> definition:

Any <type> that is not a <file type>, a <textfile type>. or a <Structured type> containing a< file type>
or a <textfile type> as a component is a <field type>.

<variant part> syntax:

<variant selector> syntax:

L <field identifier>: <=J
<ordinal type identifier> --------------------1

<ordinal type identifier> syntax:

<Boolean type> --------.,.....-----·-----------------------t
<char type> -----,----1
< enumerated type identifier>

<integer type> ----,----1
<subrange type identifier> ·

<variant> syntax:

: (<field list>)

5024490 3-19

<case constant> syntax:

1
<Boolean constant> -

<char constant>

<enumerated constant>-~
<integer constant> ---

Set Types

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

A <set type> is a structured type for which the range of values is all possible subsets of the specified
<base type>. In mathematical terms, a <set type> defines the" powerset" of its <base type>. A variable
of a <set type> can contain any subset of the set, including the null set and the entire set.

The range of ordinal numbers associated with the <base type> is 0 .. 255.

The designation PACKED has no effect for set types.

Examples:

type set I = packed set of char~
.. set2 = set of (club, diamond, heart. spade);

Type set 1 is a <Set-type-identifier> defining a range of values consisting of all possible subsets of the set
of type char.

Type set2 is a <set type identifier> defining a range of valu1es consisting of all possible subsets of the set
that includes the elements club, diamond, heart, and spade. The following are the possible values a varia
ble declared of type set2 could assume:

3-20

[]
[club]
[diamond]
[heart]
[spade]
[club,diamond]
[club,heart]
[club, spade]
[diamond,heart]
[diamond,spade]
[heart,spade]
[club,diamond,heart]
[club,diamond,spade]
[cl u b,heart,spade]
[diamond,heart,spade]
[clu b,diamond,heart,spade]

<Set type> syntax:

L <new set type>

<set type identifier>_J

<new set type> syntax:

B 1000 Systems
Pascal Language Manual

Declarations and Definitions

--.---------- SEl OF <base type>------------------------1

LPACKEO _J

<base type> syntax:

-- <ordinal type> -----·------------------------------f

Subrange Types

A <subrange type> is a simple, ordinal type that defines a range of values that is (usually) smaller than
the type from which it is derived, called its "host type." The value range includes all values of the host
type bet.ween the first constant specified and the second constant specified. inclusive. The specified con
stants must be of the same type, and the second constant must be greater than or equal to the first
constant.

The ordinal numbers associated with the values of a < subrange type> are the same as the ordinal num
bers associated with those values in the host type.

Examples:

type letters= 'A' •• 'Z';
color = (red, yellow, blue, green, tartan);
primary= red •. blue;
mixed = green •. tartan;
index. = 1 .. 10;

Type letters is a <subrange type identifier> that selects the subrange of char values consisting of the char
acters from 'A' to 'Z', inclusive.

Type color is an <enumerated type identifier> whose values are red, yellow. blue. green. and tartan.

Type primary is a <subrange type identifier> that selects the subrange of color values from red through
blue (that is. the values red, yellow, and blue).

Type mixed is a <subrange type identifier> that selects the subrange of color values from green through
tartan: the ordinal numbers associated with the values of type mixed are 3 (green) and 4 (tartan).

Type index is a <subrange type identifier> that selects the integer values from 1 to 10, inclusive.

5024490 3-21

<subrange type> syntax:

----,-- <new subrange type> _J
L <subrange type identifier>

<new subrange type> syntax:

B I 000 Svstems
Pascal Language Manual

Declarations and Definitions

1
< Boolean constant> .. <Boolean constant>

<char constant> .. <char constant> ------t
<enumerated constant> .. <enumerated constant>

<integer constant> .. < integer constant>

Textfile Types

A <textfile type> is a structured type for which the components are characters grouped into lines.
Textfiles are similar to files of characters. but they have a different set of defined operations. As with
files. characters are accessed through predefined proceduries.

Example:

A variable declared to be of type streamfile will be a textfile.

<textfile type> syntax:

c text

< textfile type identifier> _J

VARIABLE DECLARATIONS

·--t

The <variable declarations> define the variables that are to be used throughout the< block>. Each vari
able has an associated identifier, by which it is referenced, and an associated< type>, which defines the
range of values and the operations applicable to the variable.

The <type> specified can be a predefined type identifier, a type identifier defined in the <type
definitions>. or a new type specified in the< variable declarations>. Variables that appear in the same
<variable identifier list> are defined to be of the same type. Please refer to the Type Definitions in this
section for additional information on types.

When a block is entered at run time. all variables declared within that block are allocated with undefined
values.

3-22

Examples:

B l 000 Systems
Pascal Language Manual

Declarations and Definitions

type color= (red, yellow, blue, greenJ tartan);

var x, y, z, max: real;
i , · j : integer;
p,· q, r : Boolean;
k : o .. 9;
operator : (plusj minus, times);
a: array [0 .. 63 of real;
m, ml, m2: array [1 ... 10, 1 •• 10] of real;
f : file of char;
c : color;
huel, hue2 : set of color;
date : record

month : 1 •• 12;
year : integer;
end;

days array [1 •• 12] of 28 •• 31;

Variables x. y. z. and max are of type real, variables i and j are of type integer. and variables p. q. and
r are of type Boolean.

Variable k is of the <subrange type> 0 .. 9. for which the host type is integer.

The variable operator is of an <enumerated type>; it can have the value plus. minus. or times.

The variable a is a one-dimensional array of type real that may be indexed by an integer from 0 to 63.
inclusive. Variables m, m 1, and m2 are two-dimensional arrays of type real. Each dimension may be in
dexed by an integer between 1 and 10, inclusive.

The variable f is a file whose component type is char. (Each component is a single character.)

The variable c is a variable of the <enumerated type identifier> color and may contain a value of red.
yellow. blue. green. or tartan. Variables hue 1 and hue2 are both of type "set of color". They may contain
any subset of the <enumerated type identifier> color.

The variable date is a <new record type>. The field month may contain an integer value from 1 to 12.
inclusive. The field year may contain any value of type integer. The variable days is a one-dimensional
array that may contain an integer value from 28 to 31, inclusive~ it may be indexed by an integer value
between I and 12. inclusive.

<variable declarations> syntax:

<variable identifier list> syntax:

F--,
_l __ .e-<variable identifier>----------

5024490 3-23

<variable identifier> syntax:

-- <identifier>----

B l 000 Systems
Pascal Language Manual

Declarations and Definitions

PROCEDURE AND FUNCTION DECLARATIONS
Procedures and functions are subunits of programs and include their own declarations and statements.
The major difference between a procedure and a function is that a function returns a~value associated
with its function identifier: thus, a function is used to generate a value in an expression. whereas a proce
dure is used as a statement.

<procedure and functions declarations> syntax:

--s=~ <procedure declaration~ ;

-- <function declaration>

The declarations used to define procedures and functions are described under the headings Procedure
Declaration and Function Declaration in the pages that follow.

A procedure or function can have an associated list of parameters. This allows the values and variables
on which the procedure or function is to operate to be specified at run time. The parameter list occurring
in the declaration is called the formal parameter list because the parameter names do not refer to actual
variables~ they stand in for variables throughout the procedure or function declaration. When the proce
dure or function is invoked. an actual parameter list is supplied, and the actual values and variables take
the place of the formal parameters.

The syntax and semantics of formal parameter lists are provided under the heading Formal Parameter
Lists. later in this section. Formal parameter lists are identical for both procedures and functions.

The syntax and semantics of actual parameter lists and information on the matching of actual parame
ters with formal parameters when a procedure or function is invoked are provided under Actual Parame
ter Lists and Parameter Matching.

Procedure Declaration

The <procedure declaration> defines a procedure identifier and its parameters. The procedure can then
be invoked by a <procedure invocation statement> .

<procedure declaration> syntax:

- PROCEDURE <procedure identifier>---------------

L <formal paramet1~r list> _J

3-24

L <directive>~

<procedure identifier> syntax:

B l 000 Svstcms
Pascal Language Manual

Declarations and Definitions

-·<identifier> ------·-------

<directive> syntax:

-·<forward>---------------

Before a procedure is invoked by a <procedure invocation statement>, the <procedure identifier> and
the formal parameters of the procedure must be defined. Such a definition can be provided either in a
forward declaration or in an actual declaration for the procedure. A forward declaration is a <procedure
declaration> that includes the forward <directive>. When a procedure is forward-declared, an actual
procedure declaration must appear before the end of the list of <procedure and function declarations>
that contains the forward declaration. When a forward declaration is used, the< formal parameter list>.
if any. must appear in the forward declaration; it must not appear in the actual declaration.

In some situations, a forward declaration is required. For example. if two procedures each invoke the
other. at least one of the procedures must be declared forward.

5024490 3-25

Examples:

B l 000 Systems
Pascal Language Manual

Declarations and Definitions

program procedure decs;
type arraytype = irray [0 .. 10] of integer;
var x, y : arraytype;

m, n : integer;
procedure procl;

begin
di sp 1 ay (' in proc l ') ;
end;

procedure proc2 (i : integer; var j : integer) ;
var k : i nte~ier; { 1oca1 to proc.2 }
begin
di sp 1 ay (' in J?roc2') ;
j := j + i; { Actua 1 parameter fo1r j is changed. }
end;

procedure proc4 (var a : arraytype);
forward;

procedure proc5;
begin
di sp 1 ay (' in proc5 ') ;
x [2J : = 5;
proc4 (x) ;
end;

procedure proc4;

begin

{The formal parameter list was specified in the
forward declaration for proc4. J

display (1 in proc4');
if a[2J = 10 then

proc5;
end;

begin
m := 5;
n : = 1000; I
proc 1;
proc2 (m, n) ;
proc5;
end.

Procedure proc I has no parameters.

Procedure proc2 has two parameters of type integer. The first parameter is a <value parameter> and the
second is a <variable parameter>.

Procedure proc4 has a <variable parameter> of type arraytype. Because procedure proc4 contains a call
on procedure proc5 (and proc5 has a call on proc4), procedlllre proc4 was first declared as forward. The
<formal parameter list> for proc4 is declared only with the forward declaration.

Procedure proc5 has no parameters. Proc5 contains a call on proc4.

Function Declaration

The <function declaration> defines a function identifier., its type. its parameters. and its action. The
function can then be invoked by a <function designator> in an expression.

3-26

<function declaration> syntax:

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

- F:UNCTION -- <function identi'fier> -...----, ~

L <formal parameter list>

>---- : <result type>;

L <directive> ~
<function identifier> syntax:

)

-- <identifier> -------·------------------------------1

<result type> syntax:

c<simple type> =-i
<pointer type>

<directive> syntax:

- <forward> -------·------------------------------1

The <result type> specifies the type associated with the <function identifier>, which is the type of the
value returned to the expression invoking the function. The <result type> must be a <simple type> or
a <pointer type>. (Refer to Type Concepts.) The function result is undefined until and unless the
<function identifier> appears as the left-hand side of an <assignment statement> in the function
<block>. If a value is never assigned to the <function identifier>, an error occurs.

Before a function is invoked by a <function designator>, the <function identifier>. the formal parame
ters, and the < result type> of the function must be defined. This definition can be provided either in
a forward declaration or in an actual declaration for the function. A forward declaration is a <function
declaration> that includes the forward <directive>. When a function is declared forward, an actual
function declaration (that is, a <function declaration>) must appear before the end of the list of
<procedure and function declarations> that contains the forward declaration. When a forward declara
tion is used, the <formal parameter list> (if any) and <result type> must appear in the forward declara
tion and cannot appear in the actual declaration.

In some situations, a forward declaration is required. For example, if two functions each invoke the
other, at least one of the functions must be declared forward.

5024490 3-27

Examples:

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

program function_decs;
type subl = l .. 10;

letter= 1 A 1
••

1 Z 1
;

var b: Boolean;
c: letter;
i nx : integer;
offset : subl;

function funcl : Boolean;
begin
funcl := true;
end;

function func2 (i :: integer) : sub 1;
var k : integer; { 1oca1 to fLtnc2 }
begin
func2 := i - 5;
end;

function func4 (var a : 1 etter)
forward;

function func5 : char;
begin
c := 1 F 1

;

b := func4 (c);
func5 := c;
end;

Boolean;

function fun·c4; { The formal parameter 1 ist was srecif ied in the
forward declaration for func4.

begin
if a < 1 0 1 then

a := f1unc5;
func4 := false;
end;

begin
b : = func 1;
offset := func2 (10);
c := func5;
end.

Fune 1 is a function of type Boolean with no parameters.

Function func2 is of type sub I and has one <value parameter> of type integer.

The function func4 is of type Boolean and has one < variable parameter> of type letter. Because function
func4 contains a call on function func5 (and func5 contains a call on func4). function func4 was first de
clared as forward. The <formal parameter list> and <result type> for function func4 are declared only
with the forward declaration.

Function func5 is of type char and has no parameters.

Formal Parameter Lists
The <formal parameter list> appearing in a <procedure declaration> or < function declaration> de
fines the externally supplied values and variables on which the procedure or function is to operate. The
actual values and variables are provided in the < actual parameter list> when the procedure or function
is invoked.

3-28

<formal parameter list> syntax:

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

-- (-~e parameter>-~----
< variable parameter>

<value parameter> syntax:

L <variable i~entifier> ---- : ---r--- <value parameter type> ----------------t
L._ < schema identifier> ----

<value parameter type> definition:

Any <type identifier> that is not a <file type>, a <textfile type>, or a <structured type> containing a
<file type> or a < textfile type> as a component.

<variable parameter> syntax:

r~··,
-- VAR _ __,_..._._ <variable identifier>---: --r--<variable parameter type>

L_. <schema identifier>------

<variable parameter type> syntax:

-- <type identifier> ------------

Parameters are declared by their appearance in a parameter list. They have associated identifiers. which
are valid only within the procedure or function b~~ing declared, and associated types, which determine
how the parameters can be used within the procedure or function and what type of actual parameters can
be matched with the formal parameters. The two kinds of parameters, value and variable, also determine
the usage of the parameter.

A <value parameter> provides a value to the procedure or function, but an assignment to the formal pa
rameter will not change the value of the actual parameter.

A <variable parameter> provides the procedure or function with a reference to a variable. An assign
ment to the formal parameter will change the value of the actual parameter.

ACTUAL PARAMETER LISTS AND PARAMETER MATCHING
If a procedure or function is declared with a <formal parameter list>, an <actual parameter list> must
be suppllied whenever that procedure or function is invoked. Because the actual parameters will be sub
stituted for the formal parameters in all contexts in which they appear in the <block> of the procedure
or function, it is important that the actual and formal parameters have similar characteristics. This simi
larity is ensured by a mechanism called parameter matching.

5024490 3-29

B I 000 Systems
Pascal Language Manual

Declarations and Definitions

<actual parameter list> syntax:

- (-L <exp.ression> ~--
L <variable>--=r-

Formal and actual parameters are matched according to their positions in their respective parameter
lists. The first formal parameter is matched with the first ac1tual parameter. and so on. There must be the
same number of parameters in the <actual parameter list> as were declared in the <formal parameter
list>.

A formal <value parameter> must be matched by an <expression> or a< variable> in the <actual pa
rameter list>. The <expression> or <variable> must be assignment compatible with the type of the for
mal parameter if it is designated by a< value parameter type>. If the type of the formal parameter is des
ignated by a <Schema identifier>. then the <expression> or < variable> must have a type which is a
member of the <array schema> corresponding to the <schema identifier>.

A formal <variable parameter> must be matched by a <variable> in the <actual parameter list>. The
<Variable> must be assignment compatible with the type of the formal parameter if it is designated by
a <variable parameter type>. If the type of the formal parameter is designated by a <schema identifier>.
then the <variable> must have a type which is a member of the <array schema> correspondiing to the
<schema identifier>. The actual parameter is accessed before the procedure or function is activated. and
this access establishes a reference to the <variable> for the entire activation of the procedure or function.
The existence of this reference implies that. even if the procedure or function changes a variable (such
as an array index) that was used to specify the actual parameter. the actual parameter will not change.
For example. ifa[i] were passed as an actual variable parameter and i had the value 5 at the time the pro
cedure was invoked. the actual parameter would always be a[5]. even if i were changed to 7 within the
procedure.

A component of a variable of a PACKED structured type cannot be passed as an actual variable: parame
ter. nor can the tag field of the <variant part> of a record variable.

Two <formal parameter list>s are congruent if all of the following conditions are true:

I. The <formal parameter list>s contain the same number of parameters.
2. Corresponding parameters are of the same kind (value and variable).
3. Corresponding parameters are of the same type.

3-30

B 1000 Systems
Pascal Language Manual

SECTION 4
STATEMENTS

Every <block> contains a < statement part>, which is simply a list of statements bracketed by the key
words BEGIN and END. Statements are the executable, or active, components of programs. Simple
statements perform a single operation once. Structured statements contain statements as
subcomponents. Depending on the form of the structured statement, the subcomponent statements may
be executed sequentially, repetitively, or conditionally.

<Statement part> syntax:

-- BEGIN <statement list> END --------·---------------------1

<statement list> syntax: ,

<Statement> syntax:

L<label>= <assignment statement> ·----.-..t
<cas;e statement>--. ------c
<compound statement> -----

<for statement> -------

<goto statement> -------

<if statement>---

< procedure invocation statement>

<repeat statement> -·-----.-..t
<while statement> -------

<with statement> _____ __,

The <assignment statement>, the < goto statement>, and the <procedure invocation statement> are
simple statements. The <Compound statement> and the < with statement> are sequential statements.
The <for statement>, the <repeat statement>, and the <while statement> are repetitive statements.
The <if statement> and the <case statement> are conditional statements.

The null path through the <Statement> syntax diagram represents the "empty statement." The empty
statement can be used in. situations where a null operation is required. For example, it might be desirable
to associate an empty statement with a particular <case constant> in a <case statement>.

5024490 4-1

B I 000 Systems
Pascal Language Manual

Statements

A statement may have an associated <label> that identifies its location for later reference in a < goto
statement>. Restrictions on the declaration and placement of labels are described under Label Declara
tions in Section 3. Restrictions on references to labels in <goto statement>s are described under GOTO
Statements in this section.

ASSIGNMENT ST A TEMENTS
The <assignment statement> assigns the value of the <expression> or function identifier to the speci
fied <variable>. The value of the function identifier or th<:~ <expression> must be assignment compati
ble with the type of the < variable> that is being assigned.

<assignment statement> syntax:

-- <variable>: = L <expression> J
<function identifier> -

Examples:

x :== y + z:

The variable x is assigned the sum of y and z.

p := (I <= i) and (i <= 100):

The variable p is assigned the Boolean value true if i is between the values of I and l 00.
inclusive: otherwise. p is assigned the Boolean value falsie.

hue I := [blue. succ(c)]:

The set variable "hue I" is assigned the set consisting of th1e value "blue" and the successor to the value
of the variable c.

p I@. mother := true:

The Boolean mother. which is a field identifier in a dynamically allocated variable pointed to by p 1. is
assigned the value true.

var s : packed array [1 .. 3] of char:
begin
s := 'abc':
end:

This assignment assigns the value 'abc' to the string variable s.

CASE STATEMENTS

The <case statement> allows the selection of one of a group of statements. depending on the value of
the specified <Case index>. The <Case index> is evaluated, and the < statement> associated with the
<case constant> of that value is executed.

If no <Case constant> has the value of the <case index>, the <statement list> following the reserved
word OTHER WISE is executed; if OTHER WISE does not appear, a run-time error occurs.

4-2

B 1000 Systems
Pascal Language Manual

Statements

The values of the <Case constant>S must be unique and must be of the same ordinal type as the <case
index>.

The OTHER WISE construct is a Burroughs extension to ANSI Pascal.

Examples:

case operator of
p 1 us: x : 1= x + y;
mi nus : x : = x - y;
times: x :~ x * y;

end;

The value of the enumerated variable operator determines the case constant whose statement will be
executed ..

case date.month of
4,6,9, 11: days ~date.month~ := 30;
2: days date.month := 28;
otherwise days date.month := 31;

end;

If date.month is a value other than 2, 4, 6, 9, or 11, the statement associated with "otherwise" will be
executed.

<case statement> syntax:

-- CASE <case index> OF _L <case list ;element> j ____L-------------------~>
. _J ,

>-
L OTHERWISE <statement list> ~

END-------------------------t

<case index> syntax:

--<ordinal expression>---------------·----------------------t

<Case list element> syntax:

F--'
__l_ <case constant> --- : <statement>

5024490 4-3

B I 000 Systems
Pascal Language Manual

Statements

COMPOUND STATEMENTS
The <compound statement> allows a <Statement list> to be treated as a single <Statement> .. A
<compound statement> is frequently used as a < statement> within a structured statement (such as an
<if statement> or <while statement>).

<compound statement> syntax:

--BEGIN <statement list> END

Example:

if j > k then
begin
z :• x;
x :•)';
y :• 2:;
end;

If the value of j is greater than the value of k, z will be assigned the value of x. x will be assigned
the value of y. and y will be assigned the value of z.

FOR STATEMENTS
The <for statement> causes the < statement> to be executed repeatedly. each repetition being per
formed with the <Control variable> assigned to a differen1t value within the specified range of values.
The <Statement> within the <for statement> is referred to as the "controlled statement."

<for statement> syntax:

- FOR <control variable>: =<initial value> --r--TO . -_J----------------~

L--DOWNTO

· >>--------<final value> DO <statement> ---------~

<control variable> definition:

A <Boolean variable>. <char variable>, <enumerated variable> . or <integer variable> that is also an
<entire variable>.

<initial value> syntax:

- <ordinal expression>

4-4

<final value> syntax:

B l 000 Systems
Pascal Language Manual

Statements

-·<ordinal expres!;ion> ----------

The range of values is defined by <initial value> and <final value>. If TO is specified. the <Control
variable> is incremented from <initial value> to <final value>. inclusive. If DOWNTO is specified. the
<Control variable> is decremented from <initia~ value> to <final value>. inclusive. The < initial
value> and the <final value> are evaluated only once~ thus. if one or both are variables. subsequent
changes to their values have no effect on the execution of the <for statement>.

Once the <control variable> has been assigned the <final value> and the controlled statement has been
executed for the final time, the value of the <Control variable> becomes undefined and program control
is passed to the statement following the < for statement>. If a <goto statement> within the controlled
statement transfers control to a statement outside the controlled statement. the value of the <control
variable> remains defined.

The <Control variable> must be a locally declared variable of an ordinal type. The <initial value> and
<final value> must be assignment compatible with the <Control variable>. The value of the <control
variable> may be accessed at any time during the execution of the controlled statement, but its value
cannot be changed or "threatened." A "threatening" statement is one of the following types of state
ments occurring in the controlled statement or in any procedure or function declared in the most local
block containing the < for statement>:

l. An assignment statement in which the <control variable> appears on the left-hand side.

2. A statement that invokes a procedure or function in which the <control variable> appears as an
actual variable parameter in the parameter list.

3. A statement in which either the read or the readln procedure is invoked with the <control
variable> appearing in the parameter list.

4. Another <for statement> in which the <control variable> is also used as the <control variable>
for that <for statement>.

Examples:

max : = a [1] ;;
for i := 2 to 63 do

if a[i] >max then
max : == a [i] ;

For each value of i between 2 and 63, inclusive, a[i] will be compared to max. If the value ofa[i] is greater
than max. max will be assigned the value of a[i].

5024490

for i : = 1 to 10 do
for l := 1 to i - 1 do

m Li] [j] : = 0 • 0 ;

4-5

B I 000 Systems
Pascal Language Manual

Statements

For each value of i between 1 and 1 O. inclusive. j is assigned a value of 1 to i - I. inclusive. When i is
1. j is assigned values from 1 to 0. Because there are no values between 0 and I. the controlled statement
of the innermost for statement is not executed when i is I. When i is 2. j is assigned values from 1 to I.
inclusive. so m[2][1] is assigned the value 0.0. This process continues for all values of i up to. and includ
ing. I 0.

for c :• blue downto red do
q (c) ;

For each value of c between blue and red, inclusive. the procedure q is called with c as a parameter. (c
is assigned blue, pred(c), ... , until pred(c) is the value red.)

GOTO STATEMENTS
The <goto statement> transfers program control to the <Statement> associated with the specified
<label>.

<goto statement> syntax:

- GOTO <label>-----·------· ----------------------·

There are several restrictions on the use of the <goto stat~~ment> that depend on the location of the
<label> it specifies. In general, the restrictions prohibit branching into a structured statement from out
side that statement. Specifically, it is valid for a< goto statement> to reference a< label> only if at least
one of the following conditions is true:

4-6

1. The <statement> associated with the <label> is in the same < statement list> as the <goto
statement> or it is in the same <Statement list> as any structured statement containing the <goto
statement>.

2. The <Statement> associated with the <label> is a < statement> within the <Statement part> of
any <block> containing the <goto statement>. That is, the <Statement> associated with the <
label> is a statement at the outermost level ofany <block> containing the <goto statement> and
is not contained within a structured statement.

Example l:

B l 000 Systems
Pascal Language Manual

Statements

program val id_goto_examples;

1abe1 l 0, 20, 9999;
var counter : integer;

procedure p 1 ;
1abe1 l 00;
var local loop integer;
begin -
local loop:==l;

100: -
if local loop > 2 then

goto "g999;
local loop := local_loop + l;
goto Too;
end;

begin
counter:=O;

10:

20:

if counter < 10 then
begin
counter :=counter+ l;
goto 10;
end;

if counter < 20 then
begin

counter :=counter+ 1;
if counter < 25 then

begin
display(' looping');
goto 20;
end;

p 1;
end;

9999:
di sp 1 ay (1 done 1

) ;

end.

In example l, the branches to labels 10, 20, and 100 are valid by rule 1. The branch to label 9999 is valid
by rule 2.

5024490 4-7

Example 2:

B I 000 Systems
Pascal Language Manual

Statements

program inval id_goto_examples;

label 2000, 9000;
var i nx : integer;

procedure pl;
1abe1 ·100;
begin

100:
goto 9000; {l}
end;

begin
inx := 3;
if inx = 3 then

begin
i nx : == 4;
goto 2000; {2}
end

else
begin

2000: •
display (' i 1 legal· branch');
end;

if inx = 4 then
begin

9000:
display (' i 1 legal branch');
end

else
begin
goto 100; {3}
end;

end.

In example 2, the branch at { 1 } is invalid because the statement associated with label 9000 is in a con
taining procedure but is not at the outermost level of the block.

The branch at { 2} is invalid because the statement associated with label 2000 is neither in the < state
ment list> that contains the <goto statement> nor in any s.tructured statement that contains the <goto
statement>.

The branch at { 3} is invalid because label 100 is not in the scope of the <goto statement>.

IF STATEMENTS
The <if statement> allows the selection of one of two <Statement>s, depending upon the value of the
<Boolean expression>. If the value of the <Boolean expression> is true, the <Statement> following the
reserved word THEN is executed. If the value of the <Boolean expression> is false, the < statement>
following the reserved word ELSE is executed; if ELSE does not appear, program execution continues
with the statement immediately following the <if statement>.

4-8

<if statement> syntax:

B I 000 Systems
Pascal Language Manual

Statements

-IF <Boolean expression>THEN <statement> [=:J
- ELSE <statement>

In nested <if statement>s, each ELSE is paired with the nearest preceding unpaired THEN.

Examples:

if x < 1.5 then
z := x + y

else
z := 1 .. 5;

If x is less than 1.5, z will be assigned the sum of x and y. If x is greater than or equal to 1.5. z is assigned
the value 1.5.

if pl <>nil then
pl :a pl@~father;

If the pointer pl is referencing a variable. pl is updated to the value of the pointer contained in the field
named father in the dynamically allocated record pointed to by p 1.

if j = 0 then
if i = O then

writeln(' indefinite')
else

writeln(' infinite')
else
,.. wr i te 1 n (i I j) ;

The following table shows what would be written for various values of i and j:

J = 0 and i = 0 indefinite
J = 0 and i <> 0 indefinite
J <> 0 and i = 0 defined
J <> 0 and i <> 0 defined

STRING RELATION
A <String relation> performs a sequential comparison of the ordinal numbers of corresponding charac
ters in the two <String expression>s. The < string expression>s must be of the same length.

<string relation> syntax:

--<string expression>< rel op><string expression> ..

5024490 4-9

B 1000 Systems
Pascal Language Manual

Statements

Two <String expression>s are equal if every character in both strings is identical. A <String expression>
is less than another <String expression> if, in the first character position that differs between the two
<string expression>s. the first <string expression> contains a character of a lower ordinal number than
the corresponding character in the second string.

Example:

var b : Boolean;
sl, s2 : packed array [1 .. 10] of char;

begin
sl :-= 1 abcdefghij 1

;

s2 :-= 1 abcdefghiz 1
;

b : -= s l < s2;
end;

The strings l is compared, character by character, to string s2. The variable b is assigned the value true
because. at the first character position at which the strings differ (j and z at character 9), the ordinal num
ber of j is less than the ordinal number of z.

PROCEDURE INVOCATION ST ATEMENITS

The <procedure invocation statement> activates the specified <declared procedure> or <predefined
procedure>. When the procedure activated by the <procedure invocation statement> terminates, the
program continues at the point immediately following the <procedure invocation statement>.

<procedure invocation statement> syntax:

--r--<declared procedure> J
L_ <predefined procedure> -

<declared procedure> syntax:

- <procedure identifier> L
- <actual parameter list> -

The <procedure identifier>s and parameter lists for <declared procedure>s are specified by the pro
grammer in <procedure declaration> s. Procedure identifiers and parameter lists for < predefined
procedure>s are described in Section 6.

If the <procedure identifier> was declared with a <formal parameter list>, any <procedure invocation
statement> invoking that procedure must include an <actual parameter list>. Please refer to the Actual
Parameter Lists and Parameter Matching in Section 3 for additional information.

Examples:

printheading;

4-10

B l 000 Systems
Pascal Language Manual

Statements

The declared procedure printheading, which has no parameters, is invoked.

writeln(f, i, j)~

The pr{!defined procedure writeln is called to wirite the values of i and j to the textfile f.

bisect(fct, - 1.0, + 1.0, x);

The declared procedure bisect is called with the actual parameters fct, - 1.0, + 1.0, and x.

REPEAT STATEMENTS
The <repeat statement> causes the <statement list> to be repeatedly executed until the value of the
specified <Boolean expression> is true. The <Statement list> is always executed at least once because
the <Boolean expression> is evaluated after each execution of the <Statement list>.

<repeat statement> syntax:

-- REPEAT< statement list> UNTIL< Boolean expression>-------------------1

Example:
repeat

k :=
i :=
j :=

unt i l j

i mod j;
j;
k;
= O;

The variable k is assigned the value of i mod j. The variable i is assigned the value of j. The variable j
is assigned the value ofk. If j is not equal to 0, the three assignment statements are executed again. When
j is equal to 0, the statement following the repeat statement is executed.

WHILE STATEMENTS
The <while statement> causes the <Statement> to be repeatedly executed until the value of the specified
<Boolean expression> is false. The <Boolean expression> is evaluated before each execution of the
<statement>, so the < statement> will not be executed if the < Boolean expression> is initially false.

<while statement> syntax:

-- WHILE <Boolean expression> DO <statement>

Example:
while i > 0 do

begin
i f odd (i) then

z := 2 'le x;
i := i div 2;
x := sqr(x);
end;

The compound statement in the: WHILE statement is executed ifi is greater than 0. After each execution
of the compound statement, i is compared to 0. If i is greater than 0, the compound statement is executed
again.

5024490 4-11

WITH ST A TEMENTS

B 1000 Systems
Pascal Language Manual

Statements

The <with statement> establishes a scope within which all <field identifier>s in the <statement> are
assumed to be prefixed by the specified <record variable>. Thus, when a <field identifier> is used. the
field referenced is actually <record variable> . <field-identifier>. The <with statement> context per
mits a shorthand notation that is useful when many references are being made to fields within a particu
lar record.

<with statement> syntax:

When multiple <record variable>s are specified, the effect is as if the <record variable>s were specified
in nested <with statement>s. The leftmost <record variabl1e> is assigned the most global scope and the
rightmost the most local scope. Thus, when two or more records have identically named fields and that
field name appears as a < field identifier> in the < statement>, the field is assumed to be the one in the
<record variable> associated with the most local <with statement> scope.

Similarly, when a <field identifier> conflicts with an <identifier> whose scope is global to the <With
statement>, the <with statement> scope overrides and the field of the record is referenced.

Examples:

var date record

begin

month : l •. l 2 ;
year : 1950 .. 2050;
Emd;

with date do
if month = 12 then

begin
month : = 1;
year :=year+ 1;
end

else
month :=month+ 1;

end;

If date.month equals the value 12. date.month is assigned ithe value 1 and date.year is incremented by
1. If date.month is not equal to 12, date.month is incremented by 1.

4-12

B I 000 Systems
Pascal Language Manual

SECTION 5

EXPRESSIONS

An <expression> generates a value of a particular type by performing specified operations on specified
operands. The operands and operations vary according to type. For example, a <Boolean expression>
generates a Boolean value from the application of <Boolean operator>s to <Boolean primary>s
(operands).

<expression> syntax:

· <array variable> -----.......-----

.<Boolean expression>-

. <char expression> --

. <enumerated expression>

·<integer expression>--

. <pointer expression>--

. <real expression> --

. <record expression> --

. <set expression> ------a
· <string expression>--

For most <array type>s and all < record type>s, there are no operations or constants defined; an
<expression> of such a type is simply a variable of that type. Arrays of <String type> can be assigned
<string expression>s, which are defined in this section. Files and textfiles do not directly generate val
ues, and there are no expressions defined for these types.

ARITHMETIC EXPRESSIONS
In some contexts, it is useful to consider <integer expression>s and <real expression>s as <arithmetic
expression>s. For example, many arithmetic functions accept <arithmetic expression>s as parameters.

<arithmetic expression> syntax:

--i=-<integer expression~

- <real expression>

5024490 5-1

B l 000 Systems
Pascal Language Manual

Expressions

ORDINAL EXPRESSIONS
Boolean. char. enumerated. and integer expressions are grouped as <ordinal expression>s. which arc ex
pressions that generate ordinal values. <Ordinal expression>s are frequently used as <case constant>s.
array indices. and set components.

<ordinal expression> syntax:

1
<Boolean expression>

<char expression>---·-i

<enumerated expression> -

<integer expression> --·-'

PRECEDENCE OF OPERA TORS
An operator generates a value by performing a defined operation on either one or two data items. The
data items on which operators act are called operands.

A unary operator acts on only one operand. For example, the Boolean NOT operator produces a value
that is the logical complement of the Boolean operand to which it is applied.

A binary operator applies to two operands. generating a single value by combining or comparing the val
ues of the two items in some way. For example, the arithmetic subtract operator (-)produces a value
by subtracting the value of the second operand from the value of the first operand.

An expression is a combination of operands and operators that generates a value when the operators act
on the operands according to defined rules. The simplest expression is just an operand. with no operators
or other operands specified. A more complicated expression may include many operands and operators.

Theoretically. when there are multiple operators in an expression. there could be multiple interpreta
tions of the expression. For example, A + B * C could be interpreted in two ways:

l. First add A and B, then multiply the sum by C, or
2. First multiply B and C, then add the product to A.

If A is 3. Bis 5, and C is 7, then the value of the expression is 56 if computed by method land 38 if com
puted by method 2.

Rules that define the "precedence of operators" describe the order in which operations are performed
within an expression. Higher precedence operators are applied before lower precedence operators. The
precedence of operators is defined in the following table:

[highest] a) NOT
b) *· I. DIV. MOD, AND. CANO
c) +. -. OR, COR

[lowest] d) =. <>. <=, >=, < .. <, IN

The highest precedence operator is the Boolean NOT operator.

5-2

B I 000 Systems
Pascal Language Manual

Expressions

The multiplication operators have the second highest precedence. These operators arc integer and real
multiply and set intersection (*), real division (/). integer division (DIV). integer remainder division
(MOD). Boolean AND. and Boolean conditional AND (CANO).

The addition operators. the next group in precedence. are integer or real unary plus (+). integer or real
addition (+).set union (+).integer or real unary minus (-). integer or real subtraction (-). set difference
(-). Boolean OR. and Boolean conditional OR (COR).

The lowest precedence operators are the relational operators. These operators. which apply to several
data types. are described under Relational Expressions in this section.

Other languages. such as FORTRAN and ALGOL. define a higher precedence for the relational opera
tors. For example. if A. B. C. and Dare integer operands. the expression shown below is a valid Boolean
expression in FORTRAN and ALGOL (ignoring the minor differences in syntax). but it is not a valid
expression in Pascal:

A= BAND C == D
(A = B) AND (C = D)
A =(BAND C) =

{FORTRAN/ALGOL interpretation}
{Pascal interpretation--INV AUD}

When an expression contains two or more operators of equal precedence. the operators are applied from
left to right. For example, in the expression X * Y I Z. first X and Y are multiplied. then the product is
divided by Z.

The defined precedence of operators can be overridden by enclosing subcomponents of the expression
in parentheses. For example, in the expression A + B * C mentioned earlier. the precedence rules specify
that the multiply operator(*) is to be applied before the addition operator (+).Thus, the result of evalu
ating this expression is 38 if A is 3. Bis 5, and C is 7. The other interpretation can be imposed by enclos
ing the first part of the expression in parentheses:

(A + B) * C
A + (B * C)

{Add A and B. then multiply by C yields 56}
{Identical to default interpretation yields 38}

FUNCTION DESIGNATORS
The appearance ofa <function designator> in an expression activates the specified <declared function>
or <predefined function>. When the function activated by the <function designator> terminates, a
value is returned and evaluation of the expression continues.

<function designator> syntax:

-c <declared function>

<predefined function> _J

5024490 5-3

<declared function> syntax:

B I 000 Systems
Pascal Language Manual

Expressions

- <function identifier>----·----------·--------------

L_ <actual parameter list>~

The <function identifier>s and <formal parameter list>s for <declared function>s are specified by the
programmer in <function declaration>s. Function identifiers and parameter lists for <predefined
function> s are described in Section 6. Predefined Procedures and Functions.

If the <function identifier> was declared with a <formal parameter list>, any <function designator> in
voking that function must include an <actual parameter list>. Please refer to Actual Parameter Lists and
Parameter Matching in Section 3 for additional information.

Examples:

program function example;
var i : integer;-

b : Boolean;
function fl : integer;

begin
'fl := 10;
end;

function f2 U integer)
begin
'f2 : Ill j > 20;
end;

begin
i :=fl;
b := f2 (i);
end.

Boolean;

The variable i is assigned the value of the function designator fl. The variable b is assigned the: value of
the function designator f2, where i is passed as the actual parameter.

EXPRESSIONS BY TYPE
Expression types, in alphabetical sequence, are described in the paragraphs that follow.

Boolean and Relational Expressions
A <Boolean expression> generates a value of the <Boolean type>. A relational expression generates a
Boolean value by comparing two operatands of the same type or of similar types.

5-4

Boolean Expressions

B I 000 Svstcms
Pascal Language Manual

Expressions

Following are syntax diagrams for Boolean expressions.

<Boolean expression> syntax:

S
<Boolean operator>

- ::J <Boolean primary>

-NOT

<Boolean operator> syntax:

1::~0
OR---t

COR

<Boolean primary> syntax:

---- (<Boolean expression>) -'--------·-----------------------t
< Boolean constant> --

<::Boolean variable> -----t

<function designator>

<relational expression> -

<schema discriminant>-

The <Boolean operator>s AND and OR perform the logical AND and logical OR operations. respective
ly. CANO and COR are conditional operators that perform the same operations as AND and OR. with
the following exception: the left-hand <Boolean primary> is always evaluated first and. if the value of
the <Boolean expression> can be determined from the value of the left-hand <Boolean primary> alone.
the right-hand <Boolean primary> is not evaluated.

<Boolean constant> is defined in Constant Definitions in Section 3, <Boolean variable> is defined in
Section 7, Variables, and <function designator> and <relational operator> are defined in this section.

For a <function designator> to return a value of <Boolean type>, it must be declared with <Boolean
type> as its <result type>.

Tlhe CANO and COR operators are Burroughs extensions to ANSI Pascal.

5024490 5-5

B I 000 Systems
Pascal Language Manual

Expressions

Examples:
var bl, b2, b3 : Boolean;
begin
{The fol lowing two expression!; are equivalent.}
bl := bl or b2 and b3;
bl :=bl or (b2andb3);
end;

program cand example (output);
var i : integer;

a : array [1 •• 10] of integer;
f u nc t i on f 1 (i n x : i n t e g er) : Boo 1 ea n ;

begin
f 1 : .. i nx <= 1 O ;
end;

begin
i : - 1 ;
while fl (i) cand (a[i] = 0) de>

i := i + 1;
end.

NOTE
The operator CANO is used in this <Boolean expression> to prevent the '
evaluation of a[i] when i has a value that is outside the declared bounds of
the array.

Relational Expressions

A <relational expression> generates a Boolean value by comparing two operands of the same. or similar.
types. For relations using the <rel op>s (relational operators). the symbols have the following meanings:

Symbol

<>
<
>
<:=
>:=

<relational expression> syntax:

1
<arithmetic relation~
<Ordinal relation>

<set relation>

<string relation> -

5-6

Meaning

Equals
Not equals
Less than
Greater than
Less than or equal to
Greater than or equal to

<rel op> syntax:

<>

<
>-
<=
>=

<arithmetic relation> syntax:

B I 000 Systems
Pascal Language Manual

Expressions

--<arithmetic expression>< rel op><arithmetic expression>

An <arithmetic relation> performs an algebraic comparison of the values of the specified < arithmetic
expression>s.

Examp~e:

var b Boolean;
i : integer;
r : rea 1 ;

begin
i : 1111 45;
r :• 9 .Oe2;
b :• i * 2 >= r;
end;

The value of the variable i is multiplied by 2 and that result is compared to the value of r. If i*2 is greater
than or equal to r, the variable b is assigned the value true~ otherwise, b is assigned the value false.

<ordinal relation> syntax:

E
<Boolean expression> <rel op> <Boolean expression>

char expression> <rel op> <char expression> ·--------t
<enumerated expression> <rel op> <enumerated expression>

<integer expression> <rel op> <integer expre:ssion > ----.J

An <Ordinal relation> compares the ordinal numbers of the two specified ordinal expressions. The ex
pressions being compared must be of compatible types.

5024490 5-7

Examples:

B l 000 Systems
Pascal Language Manual

Expressions

var c : char;
co 1 or : (red , ye 1 1 ow, b 1 ue: , green , tar tan) ;
i : integer;
b : Boolean;

begin
i := 7;
color := tartan;
c := 1 Z 1

;

if i > 5 then
ce>lor := blue;

b := color < green;
b : = (C = I Z I) ;
end;

In the above, i > 5, color < green. and c = 'Z' are illustrations of <Ordinal relation>s.

<pointer relation> syntax:

- <pointer expression> 1- = --J-- <pointer expres!;ion> --------------

l_ < > -

A <pointer relation> compares two <pointer expression> s for equality or inequality. The <pointer
expression>s are equal if they refer to the same dynamic variable or are both NIL. When <pointer
expression>s are compared, they must be of the same type.

Example:

program pointer_relation;
type ptr = @rec;

rec =- record
name : packed array [0 .. 20] of char;
age : O •• 100;
end;

var myptr, yourptr : ptr;
begin
new (myptr) ;
yourptr :=nil;
if (myptr = yourptr) or (yourptr <>nil) then

display ('Error');
end.

This example tests two pointers for equality and then tests a pointer for inequality to NIL.

5-8

<Set relation> syntax:

B l 000 Systems
Pascal Language Manual

Expressions

1
<set expression> L := ~ <set expression>

c<~~
<ordinal expression> IN < se~ e:pression>

There are two kinds of <Set relation>s. The first compares two <set expression>s for equality (=). ine
quality (<>), subset relationship (<=),or superset relationship(>=). The second determines whether or
not the value of the specified <Ordinal expression> is a member of (that is, is IN) the set specified by the
<set expression>. When <set expression>s are compared, they must be of compatible types.

Examples:

var bl, b2 : Boolean;
c : set of char;

begin
c := ['a' .. 'z'];
b 1 : II: [I b I ' I f I ' I A I] <= c ;
b2 := 1 c 1 in c;
end;

The Boolean variable bl is assigned the value true ifthe set containing 'b', 'f', and 'A' is a subset of the
set c~ otherwise. b 1 is assigned the value false. The Boolean variable b2 is assigned the value true if the
character 'c' is a member of the set c~ otherwise, b2 is assigned a value of false.

CHAR Expressions
A <char expression> generates a value of the <char type>. <char constant> is defined in the Constant
Definitions pages of Section 3, <Char variable> in the Variables introduction, and <function
designator> later in that introduction.

<char expression> syntax:

1
<char constant>~.

- <char variable>

<function designator>

<schema discriminant>

For a <function designator> to return a value of <char type>, it must be declared with the <char type>,
or a <subrange type> whose host type is the <char type>, as its <result type>.

5024490 5-9

Examples:

B l 000 Systems
Pascal Language Manual

Expressions

canst ch= 'c';
var charl, char2 : char;
function char function : char.;·

begin -
char function := 1 ? 1

;

end;-
begi n
charl := ch;
charl := char function;
char2 := charT;
end;

The <char variable> char I is assigned the value of the <Char constant> ch (the character 'c'). Char I is
then assigned the value of the <function designator> chair function (the character '?'). The <char
variable> char2 is assigned the value of char I (the charac1ter'?').

Enumerated Expressions

An <enumerated expression> generates a value of an <enumerated type>.

<enumerated expression> syntax:

1
<enumerated constant>~
<enumerated variable>--

< function designator>-

<schema discriminant>

The <enumerated constant> is defined under Enumerated Types in section 3, <enumerated variable>
under Variables, Section 7, and < function designator> in this section.

For a <function designator> to return a value of an <enumerated type>, it must be declared with that
<enumerated type>, or a <Subrange type> whose host type is that <enumerated type>, as its. < result
type>.

Examples:

5-l 0

type colortype = (red, yellow, blue, green, tartan);
var color,

hue : colortype;
function colorwheel : colortype;

begin
colorwheel := succ (color);
end;

begin
co l or : = ye l 1 ow;
hue:= colorwheel;
color := hue;
end;

B l 000 Systems
Pascal Language Manual

Expressions

The <enumerated variable> color is assigned the <enumerated constant> yellow. The <enumerated
variable> hue is assigned the value of the <function designator> colorwheel (in this case, the
<enumerated constant> blue). Color is then assigned the value of hue (the < enumerated constant>
blue).

Integer Expressions
An <integer expression> generates a value of the <integer type>. If the expression generates a value (or
an intermediate result) greater than maxint or less than -maxint, an error occurs.

The <integer operator>s are the familiar arithmetic operators for addition (+), subtraction (-), multi
plication (*), integer division (DIV), and integer remainder division (MOD).

<integer expression> syntax:

<integer operator> -"] -E,_: ______ <integer primary>----

<integer operator> syntax:

DIV

MOD

<integer primary> syntax:

--.-- (<integer expression>)

maxint ------------4
<unsigned integer> --·---t

· <integer constant identifier> -

<integer variable> ------c
· <function designator> -·---

The <unsigned integer> is defined in Section 8, Basic Components, <integer constant identifier> under
Constant Definitions in Section 3, <integer variable> in Section 7, and <function designator> in this
section.

5024490 5-11

J
I

B 1000 Systems
Pascal Language Manual

Expressions

For a <function designator> to return a value of <integer type>. it must be declared with the <integer
type>. or a < subrange type> whose host type is the < integer type>. as its <result type>.

Examples:

Pointer Expressions

var i, j : integer;
begin
j : = 79;
i := max int - U mod 48);
end;

A <pointer expression> generates a value of a <pointer type>.

<pointer expression> syntax:

----c== NIL c <pointer variable>

<function designator> _1
The constant NIL denotes a null reference (a pointer that is not currently referencing a variable). The
<pointer variable> is defined in Section 7 and < function designator> is defined in this section.

For a <function designator> to return a value of a <pointer type>, it must be declared with that
<pointer type> as its < result type>.

5-12

Examples:

B 1000 Systems
Pascal Language Manual

Expressions

program pointer_exp;
type ptr ==@rec;

rec == record
name: packed array [l •• 20] of char;
age : 0 •• 100;
end;

var myptr, yourptr : ptr;
function allocate : ptr;

var tempptr : ptr;
begin
new(tempptr);
allocate:= tempptr;
end;

begin
new (myptr) ;
yourptr := myptr;
myptr := 1nil;
myptr :=allocate;
end.

These assignment statements illustrate the three kinds of < pointer expression>s.

Real Expressions
A <real expression> generates a value of the <real type>. At least one operand in the expression must
be of type real for the expression to be of type real. ff the expression generates a value outside the defined
range for real values, an error occurs.

<real expression> syntax:

<arithmetic operator>

1

J
~~~~~~~~<realprim~y> ~~~~~~~~~~~~~~~~~~~ c : <integer primary> 

<arithmetic operator> syntax: 

* ---f 
DIV 

IVIOD 

5024490 5-13 



<real primary> syntax: 

B I 000 Systems 
Pascal Language Manual 

Expressions 

----(<arithmetic expression>)---.----------·-----------------' 

<unsigned real>----

< real constant identifier> -

<real variable>--------t 

< function designator> -

<schema discriminant> -

The <arithmetic operator>s are the familiar arithmetic operators for addition (+),subtraction ( - ), mul
tiplication(*), division(/), integer division (DIV), and integer remainder division (MOD). The DIV and 
MOD operators can be applied only to <integer primary>s. 

<unsigned real> is defined in Section 8, Basic Components, <real constant identifier> under Constant 
Definitions in Section 3, <real variable> in Section 7, and <function designator> in this section. 

For a <function designator> to return a value of the <real type>, it must be declared with the <real 
type> as its <result type>. 

Examples: 

Schema Discriminant 

const pi• J.14159; 
var a, r real; 
begin 
r :• 4; 
a :•pi * sqr(r); 
end;. 

A <schema discriminant> accesses the value of a constant that was used as a <discriminant value> in 
the <discriminant array schema> defining the type of the <variable identifier>. 

The <variable identifier> establishes the environment of the <array schema definition> from which the 
<variable identifier> type is derived. 

<schema discriminant> syntax: 

-<variable identifier> · <discriminant identifier>--------------------·--

The <variable identifier> of a < schema discriminant> must be of an <array type> that is a member 
of an <array schema>. 

5-14 



Example: 

B 1000 Systems 
Pascal Language Manual 

Expressions 

type t (x) • array [1 .• x] of char; 
var a: t (10); 

i : integer; 
begin 
for i :• a.x downto 1 do 

a [ i ] : = i ,, 1 00 ; 
end. 

The "for loop" iterates over all the elements of the array a. starting with the last element: a[ l O], that is, 
a.x, and ending with the first element: a[ 1 ]. 

Set Expressions 
A <set expression> generates a value of a <Set type>. The <set operator>s perform the set operations 
of union ( + ), difference ( - ), and intersection (t). 

<Set expression> syntax: 

r:E- <set o~erator > ~ 
_J_ <set primary>---....._--~----------------------------. 

<set operator> syntax: 

<set pdmary> syntax: 

(<set expression>) 

1 
<set variable>---

<set constructor>---

5024490 5-15 



<set constructor> syntax: 

B 1000 Systems 
Pascal Language Manual 

Expressions 

-- [ l_ ...... l<_ <membe: de-si-g:::r 

<member designator> syntax: 

- <ordinal expression>-----------

L_ ... <ordinal expression> _J 
·-1 

The operators may be applied to declared <Set variable>s or to sets that are defined within the expres
sion by use of the <set constructor> syntax. The <set primary>s within a <Set expression> must be of 
compatible types. 

A <Set constructor> defines a value of an implied <Set type:>. The members of the set are specified by 
the list of <member designator>s, which must all be of the same type or of <Subrange type>s of the same 
host type. <member designator>s consisting of a single <ordinal expression> denote that <ordinal 
expression> as a member of the set. If the <ordinal expression> .. <ordinal expression> syntax is used, 
the members denoted are those values from the first <ordinal expression> through the second <ordinal 
expression>., inclusive. If the second < ordinal expression> is less than the first < ordinal expression>, 
the set is empty. 

The <base type> of the <set type> implied by the <set constructor> is the type (or host type) of the 
<member designator>s. An empty< set constructor>, that is,[]. has no specific type and may be used 
in any <Set expression>. 

The <set variable> is defined in Section 7. 

Examples: 

type color= (red, yellow, blue, green, tartan) 
var setl, set2 : set of col~r; 
begin 
setl := [red]+ [blue]; 
set2 : = set l 'le [ye 11 ow, b 1 ue, green]; 
setl := setl - set2; 
end; 

Set 1 is assigned the union of the set consisting of the element red and the set consisting of the element 
blue. Set2 is assigned the set whose member is the value blue! (the intersection of the set set 1 and the set 
containing the elements yellow, blue, and green). Set 1 is assigned the set difference of set 1 and set2 or 
the set whose member is the value red. 

5-16 



String Expressions 

B 1000 Systems 
Pascal Language Manual 

Expressions 

A <String expression> generates a value of a <String type>. 

<string expression> syntax: 

<:char expression>=r 

- <string constant> 

- <string variable> 

The <String constant> is defined under Constant Definitions in Section 3, and <String variable> is de
fined in Section 7. 

Examples: 

const strl = 'abcde'; 
var str2, str3: packed array [1 .. 5] of char; 
begin 
str2 := strl; 
str3 := str2; 
str2 := '12345'; 
end; 

The string variable str2 is assigned the value of the string constant str 1. The string variable str3 is as
signed the value of the string variable str2. The string variable str2 is assigned the character string 
'12345'. 

5024490 5-17 



B l 000 Systems 
Pascal Language Manual 

SECTION 6 

PREDEFINED PROCEDURES AND FUNCTIONS 

Following this introduction. this section has two major parts: INPUT/OUTPUT AND FILE
HANDLING CONCEPTS and PROCEDURE AND FUNCTION DESCRIPTIONS. 

The first part presents input/output (1/0) concepts pertaining to Pascal. Some basic terminology is cov
ered and information is presented on files (standard files and textfiles) and related 110 operations. and 
file attributes. Many of the Burroughs extensions to ANSI Pascal pertain to 110 to enable Pascal pro
grams to access the system-defined 110 subsystem. Programmers who are interested in writing portable 
programs are advised to become familiar with this material. 

The second part is a glossary of all the procedures and functions. grouped according to program applica
tion and. within that grouping. in alphabetic order. 

Many Pascal features, including 110 facilities and dynamic variables. are made available through 
predefined procedures and functions. Although procedures and functions are syntactically different 
constructs. that difference is not emphasized in this section. 

<predefined procedure> syntax: 

<file handling procedure> - ~ 
<dynamic allocation procedure> 

<general procedure> 

<predefined function> syntax: 

1
< file handling function> 

<type transfer function> -

- <arithmetic function> -

<general function>---.. 

INPUT/OUTPUT AND FILE-HANDLING CONCEPTS 
The file handling procedures and functions are the basic mechanisms for performing input and output 
operations in Pascal. Some file handling procedures and functions operate on files, some on textfiles. 
and some on both. 

Each procedure and function is defined in the second part of this section, under the heading File Han
dling Procedures and Functions. The general syntax is presented here. 

5024490 6-1 



<file handling procedure> syntax: 

B I 000 Svstems 
Pascal Langu~ge Manual 

Declarations and Definitions 

---- <close procedure>---------·----,----------------

<get procedure> -----1 
<page procedure>-----

< put procedure>-----

< read procedure>---

<read textfile procedure> -

< readln procedure> --

<reset procedure> --

<rewrite procedure>·--

<seek procedure>-----

< write procedure>-----

<write textfile procedure> 

<writeln procedure>--

<file handling function> syntax: 

<eof function> ~ 
<eoln function> 

< filevalue function> --

Terminology 

The following paragraphs describe some of the basic terms used in defining the kinds of files and input/ 
output operations available in Pascal. In some cases, more detailed information appears in the Standard 
Files. Textfiles, and Use of File Attributes discussions in this section. 

Standard Files and Textfiles 

In Pascal, there are two types of files: standard mes (files of any <component type>), and text files (spe
cial files of characters). A standard file is declared with a < file type>. and a textfile is declared with a 
<textfile type>. Note that a variable declared as "file of char" is a standard file, not a textfile. 

Standard files are used to transfer data in machine-readable form between a program and a physical file. 
This form ofl/O is generally faster and more storage-efficient than textfile 110, but it is not as convenient 
for use with terminals, line printers. and other character-or!iented devices. Textfiles provide translation 
between the internal representation of data and an external 1;:haracter format. Thus, textfiles are general
ly better than standard files for representing data in human-readable form. 

The operations defined for these two types of files are quite different from each other and are treated sep
arately throughout this section. 

6-2 



B l 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

Inspection Mode and Generation Mode 

In ANSI Pascal. there are two modes of file operation: inspection mode. in which the file is being read 
and not written. and generation mode. in which the file is being written and not read. In Burroughs Pas
cal. a third mode. inspection/generation. is· provided for standard files and textfiles. allowing the files to 
be both read and written. The B 1900 implementation uses the inspection/generation mode only. 

Buffer Variables 

Associated with each file variable is an implicitly declared buffer variable. The type of the buffer variable 
is the same as the <Component type> of the file (char for textfiles). The buffer variable may be used in 
expressions. assignment statements. and other constructs in just the same fashion as any other variable 
of the same type. For several predefined operations, data is transferred from the buffer variable to the 
file. or vice versa. If the identifier associated with the file is f. the buffer variable is indicated by f@. 

File Attributes 

File attributes are system-defined variables that describe aspects of a file or textfile from the point of 
view of the 110 subsystem. The compiler assigns appropriate values for the various file attributes when 
files are declared. In many cases, no further specifications need be made by the programmer. Syntax is 
provided in the list of <program parameters> and in the < setattribute procedure> to allow program
matic assignment of file attribute values. 

Logical and Physical Files 
As viewed by a program, a file is a logical entity that is read or written somewhat independently of the 
characteristics of the device involved. In terms of the device used to create it or the medium upon which 
it is stored. however. a file is referred to as a physical file. Before data can be transferred between a Pascal 
program and a physical file. a physical file must be assigned to the relevant file or textfile variable. This 
assignment is made when the file is opened. through a call on either the reset procedure or the rewrite 
procedure. 

The desired physical file may be a new file or an existing file. If a file is opened using the <reset 
procedure> an existing file is assumed. If the <rewrite procedure> is used. a new file is created. 

The decision as to which physical file will be assigned is controlled by the values of several file attributes 
for the file and by the particular operation used to open the file. 

The default value of the KIND attribute in Pascal is DISK. The default value of the TITLE attribute is. 
as in ALGOL or COBOL, the first 10 characters (translated to upper case) of the <variable identifier> 
of the file or textfile. 

Permanent and Temporary Files 

Files may be further classified as permanent files or temporary files. A file created by a Pascal program 
is a temporary file unless otherwise specified. A temporary file exists only while the program that created 
it is running. It is discarded as the result of a close operation that does not specify the save or crunch op
tion. A temporary file cannot be accessed by any other program. 

5024490 6-3 



B l 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

A permanent file. on the other hand. may exist beyond the lifetime of the program and can be accessed 
by a logical file other than the one used to create it. A permanent file can be created by a Pascal program 
in one of two ways: 

l. If the file name appears in the <program heading>. the file will become a permanen1t file when 
it is closed. 

2. The file can be closed by a close operation that specifies either save or crunch. 

In both cases. an existing permanent file replaced by a saved file with the same name. but it is not re
placed until the close operation is executed. 

A permanent file can be explicitly removed by executing a close operation with the purge option. 

Examples: 

program p (f) ; 
type employee_record = record 

name: packed array [l •• 25] of char; 
department : 1 •• 9000; 

end; 
var f 

g 
file of employee_record; 
file of employee_record; 

begin 
{The following statement creates a new permanent file. The file 

is permanent because the file f appears in the program parameter 
1 i st. } 

rewrite (f) ; 

{The following statement opens a new file. At this point, the 
file is temporary. } 

rewrite (g) ; 

{The following statement causes file g to become a permanent 
file.} 

close (g, save) ; 
end. 

Standard Files 

A standard file is a variable of a <file type> . It consists of a (theoretically) unbounded sequence of com
ponents of its <Component type>. In practice. of course. a file is limited by the size of the device with 
which it is associated and other system resource limitations. 

No special formatting of data is performed for standard files. 

Operations on standard files are described next. 

Reset Operation 

The reset operation assumes that a file already exists. The file may be open or closed. If the file is open. 
it is repositioned at the beginning of the file. If the file is closed. it is opened. The first component of the 

6-4 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

file is assigned to the buffer variable. Immediately following a reset operation. the position of the file can 
be viewed as follows: 

Reset Operation 
XO Xl X2 X3 Xn eof 
)'t + 

* current value of the buffer variable 
+ next component to be accessed 
Xn last component of the file 
eof special component marking end of file 

Get Operation 

Get. the fundamental input operation. causes the file component indicated by + to be transferred to the 
buffer variable; it then positions the file to the next component. After performing a get operation. the file 
is positioned as follows: 

XO X 1 X2 X3 Xn eof 
,•c + 

The file can be accessed sequentially by successive get operations until the file is positioned at the eof 
component: 

XO Xl X2 X3 Xn eof 
)'C + 

At this point. another application of get causes the buffer variable to become undefined. In addition. the 
<eof function> returns the value true if called. (Until now, the <eof function> returned false.) If get is 
called when the file is at end-of-file. an error occurs. 

Read Operation 
The read operation (read (f.x)) is defined to be equivalent to the following two statements: 

x : = f@; 
get(f); 

Any errors defined for these two statements are defined for read. For example. f@ must be assignment
compatible with the type of x. 

Seek Operation 

The seek operation is an additional function defined as a Burroughs extension; it allows a file to be ac
cessed randomly. The command seek(f.i) positions the file such that the next get operation will assign the 
(i + l )th component of the file to the buffer variable. 

XO Xi . . . . . . eof 
+ 

A seek operation may specify a position that is beyond the eof component. The effect in this case is as 
if each position beyond the last component were occupied by an eof component. 

Xi •.•... Xn eof eof eof •.••.. eof 

5024490 6-5 



B 1000 Systems 
Pascal Language Manual 

Declarations and Definitions 

A get operation at this point causes the <eof function> to return true. leaving the buffer variable unde
fined. A second get operation results in an error. 

Rewrite Operation 

A rewrite operation may be called while the file is open or closed. If the file is open. the attached physical 
file is released and a new empty file is created. The file is positioned such that an item written will occupy 
the first position. 

Put Operation 

The put operation causes the contents of the buffer variable to be transferred to the file at the position 
indicated by + and then moves the file to the next position. It is an error if the value of the buffer variable 
is undefined when put is called. Following a put operation. the buffer variable becomes undefined. A file 
following a rewrite and put would look like this: 

XO 
+ 

The seek operation allows a file to be positioned such that a subsequent put operation will transfer the 
contents of the buffer variable to the specified position in the file: that is. seek(f.i) positions the file at 
the (i + I )th position. The buffer variable is undefined after a seek operation: once it has been assigned 
a value. a subsequent put operation would result in the following file structure: 

<--undefined--> 
XO • • .. ,, • • • • • • • • X i 

+ 

Write Operation 

A write operation (write(f.x)) is equivalent to the following two statements: 

f@ := x~ 
put(f): 

Any errors defined for these two statements are defined for the write operation. For example. x must be 
assignment-compatible with the type of f@). 

When a file is closed. as the result of either a reset or close operation. and the physical file is retained. 
a logical end-of-file component is placed following the last position in the file that was assigned a value. 
At this point. the file might look like this: 

XO X 1 0 • • • Xi Xi+ 1 O Xn eof 

0 marks positions that were nev.er written (because of seek operations) and are therefore undefined. 

Close Operation 

The close operation terminates the processing of the file and disconnects the logical file from the physical 
file. 

Textfiles (Including Predefined Textfiles) 
Textfiles are intended for "human-readable" input and output. The feature provides for formatting and 
translation of values between internal system representation and an external character form. 

6-6 



Textfiles in General 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

A textfilc has some properties in common with a "file of char." but they are not equivalent. A textfile can 
be viewed as a sequence of characters. but special components and operations exist that allow characters 
to be grouped into lines. More specifically. a textfile is a sequence of components called lines. which arc 
separated by logical components called end-of-line markers. Each line consists of a sequence of 
characters. 

A text file is denoted by use of the predefined <type identifier> text. A textfile variable has an associated 
buffer variable that is defined to be of type char. 

Predefined Textfiles (Input, Output) 

There are two predefined textfiles with the names" input" and "output." In order to use these files. their 
names must appear in the list of< program parameters>. When they appear. they become implicitly de
clared~ thus. they must not be declared again in the <variable declarations> of the program. If the names 
input and output do not appear in the list of< program parameters>. the predefined files are not de
clared and therefore are not available for use. Any subsequent declaration of either input or output de
clares a variable other than the predefined one. 

In some file handling procedures such as readln and writeln, the file parameter may be omitted~ in these 
cases. the appropriate predefined textfile (either input or output) is inferred, as specified for each 
procedure. 

Operations on textfiles are described next. 

Reset Operation 
As with a standard file. the reset operation assumes an existing textfile. Following a reset operation. the 
file can be viewed as follows: 

CO Cl Cn eoln 
,'t -1-

CO Cm eoln 

co Cz eoln eof 

* currently defined value of the buffer variable 
+ next component to be accessed. 
eoln end-of-line marker 
eof end-of-file marker 

Eoln exists as a functional definition only~ such a character is not actually present in the file. but is im
plied by position. 

Get Operation 
A textfile can only be accessed sequentially. The basic input operation is get. Get operates on a textfile 
in a manner very similar to a get on a file of char. Each get operation accesses the next component of the 
file. When the file is in the following position. another get operation will put the file in end-of-line state: 

CO Cl 

5024490 

Cn eoln 
)'c + 

6-7 



B 1000 Systems 
Pascal Language Manual 

Declarations and Definitions 

In end-of-line state. the <eoln function>. if called. returns the value true and the value of the buffer vari
able is ' ' (blank). A second get operation results in the following file position: 

CO Cl Cn eoln 

CO Cm eoln 
~·: + 

co Cz eoln eof 

When the file is positioned as follows. a get operation again puts the file into end-of-line state. and a sec
ond get operation puts the file into end-of-file state: 

CO Cl Cn eoln 

CO Cm eoln 

co Cz eoln eof 
* + 

After the second get operation. the <eof function>, if called. returns true and the value of the buffer vari
able is undefined. When the file is in the end-of-file state. an error occurs if get. read. readln. or eoln is 
called. 

Read Operation 

The read operation has special semantics for textfiles. The definition of a read operation depends on the 
type of the variables in the parameter list. The action of the read operation on a textfile is described under 
Read Textfile Procedure. 

Readln Operation 

The readln operation causes the remaining characters in a lilne t() be skipped and positions the file at the 
beginning of the next line. Readln is equivalent to the folio\: 'g statements: 

while not eoln(f) do 
get(f); 

get{f); 

A multiple-value readln operation such as readln(f,X l , ... ,Xn) is equivalent to the following statements: 

Rewrite Operation 

read (f,Xl, ••• ,Xn); 
readln; 

As with a standard file. the rewrite operation creates a new empty textfile. 

Put Operation 

The basic output operation is put. Put is defined as for a "file of char." At any point, there is a current 
line that us either empty or partially generated. An error occurs if an attempt is made, through the use 
of put. write, or writeln, to put more characters in a line than the defined maximum. 

6-8 



Write Operation 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The write operation has special semantics for text files. The definition of write depends on the type of the 
variables in the parameter list. The action of write on a textfile is described under Write Textfilc 
Procedure. 

Writeln Operation 

The current line is terminated by the writeln operation. A multiple-value writeln operation such as 
writeln(f,X l ..... Xn) is equivalent to the following statements: 

write ( f, X l) ; 

. 
wr i te ( f, Xn) ; 
writeln; 

If a reset operation is performed or the file is closed without being released and the current line is not 
empty. an implicit writeln is performed, and an end-of-file mark is written. 

Writeln operations to a textfile assigned to a screen may require the screen in scroll mode. 

Close Operation 

The close operation terminates the processing of the file and disconnects the logical file from the physical 
file. 

Lazy 1/0 
Textfile input operations require special processing to ensure that the operations are performed in the 
order that the programmer expects. In particular, a problem arises when reading from a textfile assigned 
to a remote file. A typical interactive program prompts a user for input and then reads the user's re
sponse. Because reset, read, and readln operations implicitly read one character ahead (that is, the buffer 
variable is assigned a value that will subsequently be stored into a variable in a read or readln parameter 
list), most interactive programs would thus have to wait for the user to respond to a prompt that has not 
yet been displayed. 

To avoid these potentially frustrating interactions, Burroughs Pascal uses an input technique known as 
"lazy 1/0." With lazy 1/0, data is not transferred to the buffer variable until it is required by the program. 
Thus. if a get, read, or readln operation is performed and the value of the buffer variable following the 
operation is defined to be the first character ofa new line, that line is not read and the value is not actually 
assigned until another get. read, or readln operation is performed. 

Other implementations may use other 1/0 techniques under these circumstances, and programs may be
have differently. 

5024490 6-9 



Use of File Attributes 

B l 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

Burroughs Pascal. togetqer with the B l 000 I/O subsystem. provides several methods for assigning and 
interrogating the values of file attributes. File attributes can be assigned in the following ways: 

l. Through file equation as the program is executed. 
2. By specification of the file attributes in the < program parameters>. 
3. Dynamically. through the <Setattribute procedure>. 

When settings from these methods conflict. precedence is determined by the following sequence (highest 
to lowest): 

l. <Setattribute procedure> 
2. Run-time file equation 
3. Settings in the <program parameters> 

Description of File Attributes 

Each of the file attributes available in B 1000 Pascal is described in the following pages. The Pascal type 
of each attribute is given alongside its name. Valid types of attributes are Boolean. integer. and string. 
Integer is further divided into integer and' Integer (Mnemonic)'. Values of 'Integer (Mnemonic)' attri
butes are treated as integers by the setattribute and getattribute general procedures but should be refer
enced by their mnemonics using the filevalue function. In this way. integer values of mnemonics need 
not be known. 

AREALENGTH Integer 
The AREALENGTH file attribute specifies the number of bytes in an area ofa disk file. It represents 
the value of BLOCKSIZE multiplied by the number of blocks per area. This attribute may be read 
any time or changed when the file is closed. Changing the value of AREALENGTH for an existing 
file has no meaning and is ignored by the operating ··system. 

AREAS Integer 
The AREAS file attribute specifies the number of areas that can be allocated for a disk file. This at
tribute may be read any time. It may be increased when the file is closed if the FLEXIBLE file attrib
ute is TRUE. The maximum number of areas allowed for a file is increased to the B I 000 system 
maximum of I 05 for any file opened or created when the FLEXIBLE attribute is TRUE. 

A TTERR Boolean 
The ATTERR file attribute indicates whether the last file attribute action was in error. Mnemonic 
values are TRUE or FALSE. This attribute may be read any time. 

AUDITED Boolean 
The AUDITED file attribute causes disk file updates to be recorded immediately in the file records 
rather than through a list of memory buffers. Mnemonilc values are TRUE or FALSE. This attribute 
can be read any time or changed when the file is closed. When an ISAM file has more than one user 
and one user specifies AUDITED, the ISAM file remains in the AUDITED state for all users until 
the last user requesting that the file to be audited goes to end of job. 

6-10 



AVAILABLE Integer 

B l 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The AVAILABLE file attribute attempts to open a file and. when impossible. reports the reason for 
the failure without suspending the program and requiring operator intervention. However. with the 
use of the AVAILABLE attribute the operator still must resolve duplicate file conditions. The 
A Y AILABLE attribute can be read any time. 

When tested, the AVAILABLE attribute returns: 

0 = the permanent file exists but is not available 
(that is, the file is locked out). 

l = the file is now open and assigned to the logical 
file. (If the file was not previously open, it was 
opened.) 

2 = the permanent file does not exist. 
4 = unmatched serial number. 

l 0 = no resources are available to open the file. 

BACKUPFILENAME String 
The BACKUPFILENAME file attribute returns the file name of the intermediate file used for the 
logical file. This file attribute may be read when the file is open. It is valid only for printer/punch 
files. 

BACKUPKIND Integer (Mnemonic) 
The BACKUPKIND file attribute specifies the device type to be used for printer backup files. Mne
monic values are DISK, TAPE, or DONTCARE. For the mnemonic DONTCARE, the KIND of the 
backup file is determined in the same manner as if BACKUPKIND were never set. This attribute 
may be read any time or changed when the file is closed. 

BACKUPPERMITTED Integer (Mnemonic) 
The BACKUPPERMITTED file attribute specifies whether a printer backup file may be assigned. 
Mnemonic values are DONTBACKUP when no backup is allowed, DONTCARE when backup is 
allowed, and MUSTBACKUP when backup is required. This attribute may be read any time or 
changed when the file is closed. 

BLOCK Integer 
The BLOCK file attribute indicates the number of the logical block referenced in the last 1/0 state
ment. This attribute may be read any time. 

BLOCKSIZE Integer 
The BLOCKSIZE file attribute specifies the value of the length of a block in FRAMESIZE units. 
This attribute may be read any time or changed when the file is closed. 

BLOCKSTRUCTURE Integer (Mnemonic) 
The BLOCKSTRUCTURE file attribute specifies the format of the records of the file. Mnemonic 
values are FIXED or VARIABLE. This attribute may be read any time or changed when the file is 
closed. 

BUFFERS Integer 
The BUFFERS file attribute specifies the number of buffers assigned to a file. This attribute may 
be read any time or changed when the file is closed. 

5024490 6-11 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

CENSUS Integer 
The CENSUS file attribute indicates the number of messages in a subfile of a port file or queue file. 
This subfile attribute can be read when the subfile is open. 

CHANGEDSUBFILE Integer 
The CHANGEDSUBFILE file attribute indicates the number of a subfile with a trne 
CHANGEEVENT subfile attribute. The CHANGEDSUBFILE port file attribute can be read when 
one or more subfiles are open. · 

CREA TIONDA TE Integer 
The CREATIONDA TE file attribute indicates the creation date of a disk file with a string of five 
characters, (YYDDD). This attribute may be read any time. 

COMPRESSION Boolean 
The COMPRESSION file attribute specifies that data is compressed for transmission by means of 
a subfile of a port file. Mnemonic values are TRUE or FALSE. This subfile attribute can be read any 
time or changed when the subfile is closed. 

CURRENTBLOCK Integer 
The CURRENTBLOCK file attribute indicates the size, in FRAMESIZE units, of the blodk current
ly in use. This attribute may be read any time. 

DENSITY Integer (Mnemonic) 
The DENSITY file attribute specifies the recording density of a magnetic tape file. Mnemonic val
ues are BPI200, BPI556, BPI800. BPI 1600, or BPI6250. This attribute may be read any time or 
changed when the file is closed. 

DEPENDENTSPECS Boolean 
The DEPENDENTSPECS file attribute specifies whether the attributes BLOCKSTRUCTURE. 
MINRECSIZE, MAXRECSIZE, BLOCKSIZE. and FRAMESIZE of a logical file are to be changed 
to agree with corresponding values of an associated permanent file. Mnemonic values are TRUE or 
FALSE. This attribute may be read any time or changed when the file is closed. 

DIRECTION Integer (Mnemonic) 
The DIRECTION file attribute specifies the direction in which records of a file are to be accessed. 
Mnemonic values are FORWARD or REVERSE. This attribute may be read any time or changed 
when the file is closed. 

EXTEND Boolean 
The EXTEND file attribute indicates whether an OPEN EXTEND will be performed for a file at 
open time or not. The mnemonics of the EXTEND attriibute are TRUE and FALSE. This file attrib
ute can be read any time and written when the file is closed. Valid only for disk and tape files. 

EXTMODE Integer (Mnemonic) 

6-12 

The EXTMODE file attribute specifies the recording mode of records within a file. Mnemonic val
ues are EBCDIC, ASCII, or BINARY. This attribute may be read any time or changed when the file 
is closed. 



B 1000 Systems 
Pascal Language Manual 

Declarations and Definitions 

FAMILYNAME String 
The FAMIL YNAME file attribute specifies the identifiers ofa disk on which the file will reside. This 
attribute may be read any time or changed when the file is closed. 

FILEKIND Integer (Mnemonic) 
The FILEKIND file attribute specifies the purpose of a disk file. Mnemonic values are DATA. 
CONTROLDECK for a pseudo-reader file. CO DEFILE for an object code file. or INTRINSICFILE 
for a file containing one or more intrinsics. This attribute may be read any time or changed any time. 

FILENAME String 
The FILENAME file attribute is an external file name and is used to associate a logical file with a 
physical or permanent file. The default FILENAME for the file is the value of the INTNAME attrib
ute .. Valid FILENAMEs may be 

B 
B/C 

where B is the multi-file-id and C is the file-id. 

This file attribute can be read any time and written when the file is closed. 

FILESECTION Integer 
The FILESECTION file attribute specifies the reel number of a tape file. This attribute may be read 
any time or changed when the file is closed. 

FI LEST ATE Integer (Mnemonic) 
The FI LEST A TE file attribute indicates the current disposition of a subfile of a port file. The 
FI LEST ATE subfile attribute can be read when the subfile is open. Mnemonic values and their de
scrnptions follow. 

Mnemonic 

AW AITINGHOST 

BLOCKED 

CLOSED 

5024490 

Description 

The host specified by the HOSTNAME 
subfile attribute is unreachable. The 
subfile remains in this state until the 
host becomes reachable. The FI LEST A TE 
attribute can then change to OFFERED. 
OPENED or CLOSED. 110 operations are 
not valid when the file is in the 
A WAITING HOST state. 

The remote host is temporarily unreachable. 
The port file remains open. and all 110 
operations are valid. 

Initial state of a subfile. The subfile 
returns to this state when it is closed 
by the user. 

6-13 



l\.lnemonic 

CLOSEPENDING 

DEACTIVATED 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

Description 

The user has closed the subfile. but the 
remote subfile has not acknowledged the 
closure. When acknowledgment of the 
closure is received. the FILESTATE subfile 
attribute is changed to CLOSED. 

The remote subfile has been closed. and 
this subfile does not have data 
queued for input. Close is the only 
valid operation for a subfile in this 
state. 

DEACTIV A TIONPENDING The remote subfile has been closed. and 
this subfile has data queued for input. 

OFFERED 

OPENED 

SHUTTING DOWN 

FLEXIBLE Boolean 

A file open has occurred and the host 
specified by the HOSTNAME subfile 
attribute is reachable, but no matching 
subfile has been found. 110 operations 
are not valid when the file is in this 
state. 

The subfile is open and can be used to 
send or receive data. 

The system operator has requested that 
communications with the host involved in 
the subfile dialog be terminated. This 
notification gives the program the 
opportunity to terminate in an orderly 
manner. The port file remains open. and 
all 110 operations are valid. 

The FLEXIBLE file attribute specifies whether a disk file may be allocated more than the number 
of areas originally specified at file creation time. The mnemonic value may be TRUE or FALSE. 
This attribute may be read any time or changed when the file is closed. 

NOTE 
Use of the FLEXIBLE attribute to increase the maximum number of areas 
for an existing ISAM file can cause one or more of the subfiles to exceed its 
alloted space before the data file exhausts its maximum number of areas. 

FRAMESIZE Integer 

6-14 

The FRAMESIZE file attribute specifies the number of bits to be transferred as a unit of data. For 
B l 000 Systems. FRAMESIZE is equal to 8. This is the same as the number of bits required to repre
sent an EBCDIC character. This attribute may be read any time or changed when the file is closed. 



HOSTNAME String 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The HOSTNAME file attribute specifies the name of the host system on which the file resides. This 
subfile attribute can be read any time or changed when the subfile is closed. 

INTNAME String 
The INTNAME file attribute specifies the value of the internal file name. This attribute may be read 
any time or changed when the file is closed. 

KIND Integer (Mnemonic) 
The KIND file attribute specifies the device to be associated with the logical file. Mnemonic values 
are DISK. PRINTER. PUNCH. PAPERPUNCH, PAPERREADER. READER, READER80. 
READER96, ODT, TAPE. TAPECASSETTE, TAPEPE, TAPE7. orTAPE9. This attribute may be 
read any time or changed when the file is closed. 

LABEL Integer (Mnemonic) 
The LABEL file attribute specifies whether or not the file has label records. Mnemonic values are 
EBCDICLABEL. ASCII LABEL, STANDARD or OMITTED. This attribute may be read any time 
or changed when the file is closed. 

LASTRECORD Integer 
The LASTRECORD file attribute indicates the record number of the last record in the physical file. 
This attribute may be read only when the file is opened. 

LASTSUBFILE Integer 
The LASTSUBFILE file attribute indicates the subfile number of the last subfile for which an input 
or output operation occurred. This attribute may be read only when the port or queue file is open. 

LINENUM Integer 
The LINENUM file attribute points to the next line in the logical page to be written. LINENUM can 
have a value of 0 through 255 inclusive. The maximum value should never be greater than 
PAGESIZE. 

MAX CENSUS Integer 
The MAXCENSUS file attribute indicates the maximum number of messages that can exist in a 
subfile of a port or queue file. This subfile attribute can be read when the file is open. 

MAXRECSIZE Integer 
The MAXRECSIZE file attribute specifies the maximum size of records in FRAMESIZE units. This 
attribute may be read any time or changed when the file is closed. 

MAXSUBFILES Integer 
The MAXSUBFILES file attribute specifies the maximum number of subfiles ofa port or queue file. 
This attribute can be read any time or changed when the port file is closed. If this port file attribute 
is not specified, the default value is l. 

MINRIECSIZE Integer 
The MINRECSIZE file attribute The MINRECSIZE file attribute specifies the minimum size of re
cords in FRAMESIZE units. This attribute may be read any time or changed when the file is closed. 

5024490 6-15 



B 1000 Systems 
Pascal Language Manual 

Declarations and Definitions 

MYHOSTNAME String 
The MYHOSTNAME file attribute indicates the name of the host system from which a port file is 
transmitting. This port file attribute can be read any time. 

MYNAME String 
The MYNAME file attribute indicates the name of a port file. This port file attribute can be read 
any time. 

MYUSE Integer (Mnemonic) 
The MYUSE file attribute specifies whether the file is used for input. output. or both. Mnemonic 
values are IN. OUT. or IO. This file attribute can be read any time or changed when the file iis closed. 

NEWFILE Boolean 
The NEWFILE file attribute specifies whether the file is a new file. Mnemonic values are TRUE or 
FALSE. This attribute may be read any time or changed when the file is closed. 

NEXTRECORD Integer 
The NEXTRECORD file attribute indicates the relative: record number of the next record 1to be pro
cessed in an I/O statement. This attribute may be read any time. 

OPEN Boolean 
The OPEN file attribute indicates whether the file is open. Mnemonic values are TRUE or FALSE. 
This attribute may be read any time. 

OPTIONAL Boolean 
The OPTIONAL file attribute specifies whether or not the assignment of a permanent file is option
al. Mnemonic values are TRUE or FALSE. This attribute may be read any time or changed when 
the file is closed. 

OTHERUSE Integer (Mnemonic) 
The OTHER USE file attribute specifies how the files can be used by other programs during the time 
a program has the file opened. Mnemonic values are SECURED for neither input nor output. IN for 
input only, OUT for output only. and IO for both input and output. This file attribute can be read 
any time or changed when the file is closed. 

PAGESIZE Integer 
The PAGESIZE file attribute indicates the number ofli:nes on a logical page. The PAGESIZE attrib
ute can have a value in the range 0 through 255 inclusive. It can be read and written any time and 
is valid for printer files only. 

PARITY Integer (Mnemonic) 

6-16 

The PARITY file attribute specifies the parity used for TAPE or PAPERT APE files. Mnemonic val
ues are EVEN or ODD. This attribute may be read any time or changed when the file is closed. 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

PRINTDISPOSITION Integer (Mnemonic) 
The PRINTDISPOSITION file attribute is valid for printer files only. This attribute specifies 
whether and when a backup print file is to be automatically printed. The DONTPRINT mnemonic 
value suppresses the printing of the file when the system option AUTO PRINT is in effect. The mne
monic value CLOSE causes the file to be automatically printed as soon as the file is closed. The EOJ 
mnemonic value causes the file to be included in the job summary if it belongs to a task within a 
WFLjob. Otherwise, EOJ has the same function as CLOSE. The default value is EOJ. This attribute 
may be read any time. 

PROTECTION Integer (Mnemonic) 
The PROTECTION file attribute indicates the amount of extra effort desired to preserve a file in 
case of a system failure. The mnemonics of the PROTECTION attribute are as follows: 

TEMPORARY 
ABNORMALSA VE 
SAVE 
PROTECTED 

The default value of PROTECTION is TEMPORARY. This means that a new disk file is not re
tained when the program is discontinued, unless the file is explicitly closed with an overriding 
CLOSE statement. If PROTECTION is set to ABNORMALSA VE, an entry is made in the disk di
rectory if the program terminates abnormally while the file is open. If PROTECTION is set to 
SA VE, an entry is made in the disk directory immediately when the file is opened. The file becomes 
a permanent file and remains on disk unless explicitly purged. If PROTECTION is set to PRO
TECTED, an entry is made in the disk directory immediately when opened, and as areas are allocat
ed. they are encoded with a pattern that allows the MCP to find the last valid segment written in 
that area in the event of a CLEAR/START OJPeration while the file is open. The PROTECTION at
tribute can be read and changed any time. 

RECORD Integer (Mnemonic) 
The RECORD file attribute indicates the current relative record number of a file. This attribute 
may be read any time. 

RESIDENT Boolean 
The RESIDENT file attribute indicates whether a permanent file exists for the current user. Speci
fying RESIDENT will not cause the logical file to be opened or the program to be suspended. Mne
monic values are TRUE or FALSE. This file attribute may be read any time. 

SA VEFACTOR Integer 
The SA VEFACTOR file attribute specifies the number of days following the creation date, after 
which the retention period for a tape file is considered to have expired. This attribute may be read 
any time or changed when the file is closed. 

SECURITYTYPE Integer (Mnemonic) 
The SECURITYTYPE file attribute specifies what kind of security applies to the file. Mnemonic 
values are PRIVATE for access only by a privileged user or the owner, or PUBLIC for access by any 
user who references the file using the" (usercode)/file-name" form of the file name. This file attrib
ute can be read any time or changed when the file is closed. 

5024490 6-17 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

SERIALNO String 
The SERIALNO file attribute specifies the serial number of the labeled tape or base member of the 
disk family to which the logical file is assigned. The serial number is an EBCDIC string of six charac
ters.left-justified in a field of blanks. This attribute may be read any time or changed when the file 
is closed. 

SUBFILEERROR Integer (Mnemonic) 
The SUBFILEERROR file attribute indicates the current status of an error register of a subfile of 
a port file following an 110 operation on the subfile. This is a read-only attribute and is always set. 
Mnemonic values and their descriptions follow. 

Mnemonic o,~scription 

DAT ALOST A close operation or an abort occurred before all mes
sages were sent. 

DISCONNECTED The subfile has been disconnected from the remote 
subfile associated with it. 

NOBUFFER The last operation of this subfile was a WRITE, and 
the attempt to place the message in a queue failed. 

NOERROR There were no errors on the last 110 operation on the 
subfile. 

NOFILEFOUND An OPEN AVAILABLE operation was attempted, 
and no matching subfile was found. 

UNREACHABLEHOST An OPEN operation was started, but the remote host 
became unavailable while the OPEN was in 
process. 

The SUBFILEERROR file attribute can be read at any time. 

TITLE String 

6-18 

The TITLE file attribute specifies the external file name with the form B/C ON A. The "B/C" por
tion represents the multi-file-id and file-id, which is the same as the FILENAME attribute. The "A" 
portion represents the pack-id. which is the same as the FAMIL YNAME attribute. Valid TITLEs 
may be: 

B 
B/C 
B ON A 
B/C ON A 

When creating multi file tapes. the multi-file-id must be: the same for all files on the tape. Only the 
file-id may change. 

The TITLE file attribute, when used with the USERBACKUPNAME file attribute assigns a usier
declared name to a backup print file. 

This attribute may be read any time or changed when the file is closed. Refer to the B l 000 Systems 
Software Operation Guide, Volume l, for the formation of file names. 



B 1000 Systems 
Pascal Language Manual 

Declarations and Definitions 

TRANSLATE Integer (Mnemonic) 
The TRANSLATE file attribute specifies whether software translation takes place when using ta
bles. Mnemonic values are FORCESOFT or NOSOFT. This file attribute can be read any time or 
changed when the file is closed. 

TRANSLATING Boolean 
The TRANSLATING file attribute indicates when software translation is being performed on the 
records of the file. Mnemonic values are TRUE or FALSE. This file attribute may be read any time 
or changed when the file is closed. 

UPDATEFILE Boolean 
The UPDA TEFILE file attribute specifies whether or not the disk file is used with an update 110 ac
cess method. Mnemonic values are TRUE or FALSE. This attribute mav be read anv time or 
changed when the file is closed. · · 

USEDA TE Integer 
The USEDA TE file attribute indicates the Julian date that a disk file was last used. This attribute 
may be read when the file is open. 

USERBACKUPNAME Boolean 
When the USERBACKUPNAME file attribute is set, a user specified name can be declared for a 
print file using the TITLE file attribute. This attribute may be read any time or changed when the 
file is closed. 

VOLUMEINDEX Integer 
The VOLUMEINDEX file attribute specifies the reel number of a tape file. This attribute may be 
read any time or changed when the file is closed. 

YOUR NAME String 
The YOURNAME file attribute specifies the name of a corresponding subfile of a port file with 
which this subfile of a port file is to be matched. This subfile attribute can be read any time or 
changed when the subfile is closed. 

YOURUSERCODE String 
The YOURUSERCODE file attribute specifies the usercode of a corresponding subfile of a port file 
with which this subfile of a port file is to be matched. This subfile attribute can be read any time or 
changed when the subfile is closed. 

PROCEDURE AND FUNCTION DESCRIPTIONS 
Described next, in alphabetic order within groups, are all the procedures and functions available in 
B l 000 Pascal. The groups are 

File-Handling Procedures and Functions 
Type Transfer Functions 
Dynamic Allocation Procedures 
Arithmetic Functions 
General Procedures and Functions 

5024490 6-19 



B 1000 Systems 
Pascal Language Manual 

Declarations and Definitions 

File-Handling Procedures and Functions 
Following are descriptions of all the file-handling procedwres and functions. 

Close Procedure 

The <close procedure> terminates processing of the file denoted by <textfile variable> or <file 
variable>. An error occurs if the file is not open when the <close procedure> is invoked. 

<close procedure> syntax: 

-close --- ( --,--- <textfile variable> 

L._ <file variable>--- L , <close option> ~ 
) 

<close option> syntax: 

crunch 

purge =1 
save----

After a close operation, the value of the buffer variable associated with the file becomes undefined. A 
subsequent attempt to perform any read. write, or seek operation after a close operation, without first 
calling the open. reset, or rewrite procedure. is an error. 

A <close option> may be used to further specify the disposition of the file being closed. If a < close 
option> is not specified, permanent files remain permanent and are repositioned to the beginniing of the 
file if the device permits this. Temporary files are released. The connection between the logical file and 
the physical file is always severed. 

The meaning of a particular <close option> depends on the KIND of the file being closed. The valid 
< close option>s are defined as follows: 

crunch 

purge 

save 

6-20 

The crunch option causes the file to be made a permanent file. In ad
dition, the value of the file attribute CRUNCHED is set to true. 
which has the effect of returning unused storage areas to the system. 
The connection between the logical file and physical file is severed. 
The crunch option is valid for disk files only. 

The purge option causes the file to be discarded. A tape file is re
wound, and. if a write ring is present, a scratch label is written. A 
disk file is removed from the directory. The connection between the 
logical file and the physical file is severed. The purge option is valid 
for tape and disk files only. 

The save option repositions the file to the beginning and makes it a 
permanent file. The connection between the logical file and the 
physical file is severed. Tlhe save option is valid for tape and disk 
files only. 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

If a <close option> that is invalid for the KIND of the file is specified. a simple close appropriate to the 
device is performed. 

The <dose procedure> is a Burroughs extension to ANSI Pascal. 

EOF Function 

The <eof function> returns. as a Boolean value. an indication of whether or not an operation attempted 
to access beyond the last component of a specified file. The function returns true if the last operation on 
the file was a get. read. or reset beyond the last component. 

<eof function> syntax: 

-- eof 
(<me variable>)~ 
< textfile variable: · 

The file to which the function applies may be specified by including a <file variable> or <textfile 
variable> in the function call. If no file is specified, the function applies to the textfile named input. If 
the file is not open. the function returns false. If the specified file is not open when the <eof function> 
is called. an error occurs. 

EOLN Function 

The <eoln function> returns, as a Boolean value. an indication of whether or not a particular textfile is 
positioned at an end-of-line marker. If the file is positioned at an end-of-line marker. the function returns 
true: otherwise. the function returns false. 

<eoln function> syntax: 

~· eoln-----------------------------------~--------------------------------------; 

L ( < textfi le variable>) _J 

The file to which the function applies may be specified by including a <textfile variable> in the function 
call. If no file is specified, the function applies to the textfile named input. 

If the specified file is not open when the <eoln function> is called. an error occurs. 

Filevalue Function 

The <filevalue function> returns the integer value corresponding to the specified <mnemonic value>. 
which must be a value for the specified <mnemonic-valued file attribute>. The <filevalue function> 
eliminates the need to permanently embed integer values for mnemonic file attribute values in a 
program. 

<filevalue function> syntax: 

-·< filc~value> ( <mnemonic-value file attribute> , <mnemonic value> ) ------------------t 

5024490 6-21 



B l 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The <filevaluc function> is a Burroughs extension to ANSI Pascal. 

Example: 

var i : integer; 
i : = f i 1eva1 ue (kind, di s;k) ; 
i := fi levalue(units, characters); 

The first example returns the integer value associated with the DISK mnemonic of the KIND file attnib
ute and places it into the variable i. 

The second example returns the integer value associated with the CHARACTERS mnemonic of the 
UNITS file attribute and places it into the variable i. 

Get Procedure 

The <get procedure> assigns to the buffer variable of the file denoted bv <textfile variable> or <file 
variable> the value of the component corresponding to the current position of the file. If the fille is posi
tioned beyond the last component when the <get procedure> is invoked, the < eof function> becomes 
true and the value of the buffer variable associated with the file becomes undefined. 

<get procedure> syntax: 

- get - ( ----i-- < textfile variable> 

L_ <file variable> ---

) 

If a <textfile variable> is specified and the end-of-line marker is reached, the value assigned to the buffer 
variable is ,. ' (blank)~ at this point. the <eoln function> would return true. The next call on the <get 
procedure> will access the first component of the next line or, if there are no more lines, will put the file 
in end-of-file state. 

An error occurs if the file>is not open. If, immediately preceding the invocation of the get procedure, the 
<eof function> yields the value true, an error occurs if the <eof function> still yields true following the 
invocation. 

Page Procedure 

The <page procedure> causes a < writeln procedure> without carriage control, followed by a skip-to
top-of-page action. If the <textfile variable> is omitted, the action applies to the textfile output. 

<page procedure> syntax: 

- page 

L ( < textfile variable>) =i--
If the <page procedure> is invoked for a file that is not associated with a printer, the effect is equivalent 
to invoking the <writeln procedure>. An error occurs if the file is not open prior to the execution oft.he 
<page procedure>. 

6-22 



Put Procedure 

B I 000 Svstems 
Pascal Language Manual 

Declarations and Definitions 

The <put procedure> writes to the file denoted bv <textfile variable> or <file variable> the value of the 
buffer variable associated with that file. The value of the buffer variable then becomes undefined. 

<put procedure> syntax:. 

-· put ( ---,--- < textfile variable> 

L_ <file variable> ---

An error occurs if the file is not open prior to execution of the <put procedure>. An error also occurs 
if a <textfile variable> is specified and the <put procedure> causes the line to exceed the length deter
mined by the value of the MAXRECSIZE file attribute. 

Read Procedure 
The <read procedure> causes the specified <varuable>s to be assigned sequential values from the file 
denoted by <file variable>. The action of read(f.x) is equivalent to the following statements: 

x:=f@; 
get(f); 

{ x is assigned the value of the buffer variable } 
{ f@ is assigned the next value in the file } 

Thus. the value of the buffer variable (f@) must be assignment compatible with the <variable> being 
read (x). 

<read procedure> syntax: 

Read Textfile Procedure 
The <read textfile procedure> is similar to the <read procedure>, except that it applies to textfiles in
stead of standard files. When the <textfile variable> is not specified. the read is performed on the 
predefined textfile named input. 

<read textfile procedure> syntax: 

read < __ L __________ _J __ ..... L ...... --:;-., •• d P•;•m•t••>-_.__- > 

< textfile variable> 

5024490 6-23 



<read parameter> syntax: 

L <char variable>~ c <integer variable> 

<real variable> 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The list of <read parameter>s specifies the variables into which the information in the textfile is to be 
read. As is true of the <read procedure>. reading a list of <read parameter>s is equivalent to reading 
the variables in successive read statements. 

An error occurs ifthe textfile is not open. or if the< eof function> would return true prior to the execu
tion of the <read textfile procedure> or any inferred subcomponent of it. 

The action of the <read text file procedure> depends on the type of the specified <read parameter>. as 
explained next. 

Type = <Char variable> 

The action of the <read textfile procedure> with a <Char variable> parameter is equivalent to the fol
lowing two statements, where c is the specified <char varilable> and f is the file to be read: 

Example: 

If the textfile contains the characters 

c := f@:; 
get (f) 

var cl, c2 : char; 
f : text; 

begin 
read (f ,cl ,c2); 
end; 

"def gh' 11 

>'r 

and the buffer variable is at the location indicated by the asterisk, the read procedure assigns the va~ue 
d to variable c 1 and the value e to the variable c2. 

6-24 



Type = <integer variable> 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

Beginning with the character at the current buffer variable location. characters are scanned. across sever
al lines if necessary. until a nonblank character is encountered. Starting with the first nonblank character. 
the sequence of nonblank characters is then interpreted as an integer value. which may include a sign. 
The format of the number must be consistent with the format defined for an <integer constant> appear
ing in a Pascal program. and the value must be assignment compatible with the type of the parameter. 

Following the <read textfile procedure>. the buffer variable is assigned the value of the next character 
or. if there are no more characters in the line. it is put into eol state. 

Example: 

var integer; 

f : text; 
begin 
read (f, i) ; 
end; 

If the textfile contains the character sequence 

II -123degrees" 
-Jc 

and the buffer variable is positioned at the location indicated by the first asterisk. the read procedure as
signs the value - 123 to the variable i and leaves the buffer variable positioned at the location indicated 
by the second asterisk. (d is not a valid character in an integer.) 

Type == <real variable> 
Beginning with the character at the current buffer variable location, characters are scanned, across sever
al lines if necessary, until a non blank character is encountered. Starting with the first non blank character. 
the sequence of non blank characters is then interpreted as a real value. which may include a sign and an 
exponent. The format of the number must be consistent with the format defined for a< real constant> 
appearing in a Pascal program. 

Following the <read textfile procedure>. the buffer variable is assigned the value of the next character 
or. if there are no more characters in the line, it is put into eol state. 

Example: 

5024490 

var f : text; 
r : real; 

begin 
read (f, r) ; 
end; 

6-25 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

If the text file contains the character sequence 

II 98.6degrees 11 

* 

and the buffer variable is positioned at the location indicated by the first asterisk. the read procedure as
signs the value 98.6 to the variable rand leaves the buffer variable positioned at the location indicated 
by the second asterisk. (d is not a valid character in a real value.) 

If the textfile contains the character sequence 

II -1234e-27Mev" 
* 

and the buffer variable is positioned at the location indicated by the first asterisk. the read procedure as
signs the value - 1234 times I 0 to the power of -27 to the variable rand leaves the buffer variable posi
tioned at the location indicated by the second asterisk. 

Readln Procedure 

The <readln procedure> performs the same action as the <read textfile procedure> and then moves the 
file to the start of the next line. If there is no next line. the file is positioned at end-of-file. 

<readln procedure> syntax: 

) _J--1 - readln --[------

( ~-- r -<read pa;ameter > 

<textfilevariable> .~ 
< textfile variable> 

If no <textfile variable> is specified, the <readln procedure> applies to the textfile named input. 

An error occurs if the file is not open, or if the <eof function> would return true prior to the iexecutnon 
of the <readln procedure> or any subcomponent of it. 

Reset Procedure 
The <reset procedure> positions the file to the beginning. If the file is already open. it is repositioned 
to the beginning. If the file is closed. it is opened. If the < reset procedure> is applied to a textfile that 
is currently in generation mode and there is a partially generated line. an automatic <Writeln procedure> 
is performed before the textfile is repositioned. 

6-26 



--:reset procedure> syntax: 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

- reset ( - ...... L~- <file variable> - =i 
· < textfile variable> 

If the file is not open. the <reset procedure> invokes the 1/0 subsystem search logic to find a matching 
physical file with which to associate the internal Pascal <file variable>. Unless otherwise specified. an 
attempt is made to locate an existing disk file whose title is given by the first l 0 characters (translated 
to upper case) of the <file variable> or <textfile variable> identifier. If the identifier is the predefined 
file identifier "input." a search is made for a remote file. This search can be modified by changing certain 
file attributes, such as TITLE. or through file equation. 

When the <reset procedure> is called. an existing file is always assumed. If a matching file cannot be 
found, the program is suspended in a system NO FILE condition. awaiting an operator response. 

Following a <reset procedure>, the file is in end-of-file state if the file is empty. Otherwise. the buffer 
variable is defined to have the value of the first component of the file. 

Rewrite Procedure 

The <rewrite procedure> creates a new. empty file. If the file is already open. it is discarded. and a new. 
empty file is created. If the file is closed. a new. empty file is created. Unless otherwise specified. a disk 
file with a title given by the first l 0 characters (translated to upper case) of the <file variable> or <textfile 
variable> identifier is created. (If the identifier is the predefined file identifier "output." a remote file 
is created.) 

<rewrite procedure> syntax: 

- rewrite (--,-<file variable> --_J---) 
L_ < textfile variable> 

Immediately following the invocation of the <rewrite procedure>. the value of the buffer variable is un
defined and the <eof function> will return true. The <eof function> returns true as long as the file is 
in generation mode. 

Seek Procedure 
The <seek procedure> positions the file denoted by <file variable> at a specified point in the file. The 
file is positioned such that the next <get procedure:> or <put procedure> is performed on the component 
specified by the <integer expression>. Components are numbered beginning at 0 (that is, zero relative). 
If the value of the specified <integer expression> is less than O. an error occurs. 

<seek procedure> syntax: 

- seek (<file variable>,< integer expression>) 

The <Seek procedure> is a Burroughs extension to ANSI Pascal. 

5024490 6-27 



Write Procedure 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The <write procedure> causes the specified <expression>s lo be written sequentially to the file denoted 
by <file variable>. 

<write procedure> syntax: 

An error occurs if the values of the < expression>s specified in the <write procedure> are not assign
ment compatible with the file type of the specified <file variable>. An error also occurs if the file is not 
open. 

Write Textfile Procedure 

The <write textfile procedure> is similar to the <write procedure>. except that it applies to textfiles in
stead of standard files. When the <textfile variable> is not specified. the write is performed to the textfile 
named output. 

<write textfile procedure> syntax: 

- write ( --.-----' , ____ ~ ___ r __ <write? parameter> -----

L < textfile variable> 

) 

<write parameter> syntax: 

1 
<Boolean expressio3> L 
<char expression> : <field width> ---------t 
< integer expression> 

<real expression> -c------------------~ 

: <field width>--c---.-<--f-ra_c_d-ig-it_s_>_--4 

<field width> syntax: 

- <integer expression> 

6-28 



<frac digits> syntax: 

B I 000 Svstems 
Pascal Language Manual 

Declarations and Definitions 

-- <integer expression> -----------

An error occurs if the textfile is not open. Also. an error occurs if the operation causes the length of the 
current line to exceed the maximum length. which is determined by the value of the MAXRECSIZE file 
attribute .. 

The list of <write parameter>s specifies the variables whose values are to be written to the textfile. The 
<field width> and <frac digits> specifications allow the programmer to control aspects of the 
formatting of the values written. If these specifications are omitted (where they are allowed). an appro
priate representation of the value is chosen by the compiler. If specified. <field width> and <frac digits> 
must be greater than or equal to one. 

The action of the <write text file procedure> for each type of <write parameter> is described in the fol
lowing paragraphs. 

<BoolE~an expression> 
For the values of true and false. the characters strings" TRUE" and "FALSE". respectively. are written. 
The default <field width> for a <Boolean expression> is five characters. If a <field width> is specified 
that is smaller than the length of the string to be written, the first <field width> characters are written. 
If the specified <field width> is larger. leading blanks are written. 

Examples: 

<Char expression> 

Procedure 

write{f,b) 

write {f, true:2) 
write {f, true: 10) 

Result 
11 TRUE" if b is true 
"FALSE" if b is false 
11TR 11 

II TRUE" 

Quotation marks show spacing. 

For a value of the <char type>. the character is simply moved to the buffer variable and "put" into the 
file. The default <field width> for a <Char expression> is 1 character. If a <field width> greater than 
I is specified. leading blanks are written. 

5024490 6-29 



B I 000 Svstcms 
Pascal Language Manual 

Declarations and Definitions 

Examples: (c is a <Char variable> that contains the value $) 

Procedure 

write(f,c) 
wr i te ( f ., c: 3) 

Result 

II s II 
II s II 

Quotation marks show spacing. 

<integer expression> 
Values of the <integer type> are formatted with a sign (minus if the number is negative. blank if the 
number is positive). followed by the decimal representation of the integer value. The default <field 
width> for an <integer expression> is ten characters. If a <field width> is specified that is smaller than 
the length of the number to be written, the <field width> specification is ignored. and the entire number 
is written. ·If the specified <field width> is larger. leading blanks are written. 

Examples: (i is an integer with value - 12345) 

Procedure 

write (f, i) 
write (f, i : 3) 
write (f, i : 12) 

Result 

II -12345 11 

11 -12345 11 

II -12345 11 

Quotation marks show spacing. 

<real expression> 
Values of the <real type> are written in floating-point or fixed-point format. depending on whether the 
<frac digits> specification is provided. If it is provided. the number is written in fixed-point format: if 
it is not, the number is written in floating-point format. The default <field width> foir a <real 
expression> is 15 characters. 

Floating-Point Format 

In floating-·point format, the number contains the following components: 

1. A sign~ minus if the number is negative. blank if i1t is positive. 
2. The first significant digit. or zero. if the number is zero. 
3. A decimal point (.). 
4. The fractional part (at least one digit). 
5. The exponent symbol (E) 
6. The sign of the exponent ( + or - ). 
7. Two digits of exponent. 

6-30 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

If the <field width> specified is smaller than the minimum number of characters necessary to represent 
the number, the <field width> specification is ignored, and the number is written with only one fraction
al digit. If the specified <field width> is larger, the number is expanded by adding trailing zeros to the 
fractional part. 

Fixed-Point Format 

In fixed-point format, the number contains the following components: 

I. A minus sign ( - ) if the number is negative. 
2. The integral part of the number - trunc( <real expression>). 
3. A decimal point (.). 
4. <frac digits> of the fractional part of the number. 

If a <field width> is specified that is smaller than the minimum number of characters necessary to repre
sent the number in fixed-point format, the <field width> specification is ignored and the entire number 
is written, including <frac digits> of the fractional part. If the specified <field width> is larger, the num
ber is written with leading blanks. If the number of significant digits requested is fewer than the number 
of significant digits in the system representation of the number, the number is rounded at the last digit 
written. 

Examples: 

Procedure 

wr te (f, 1.2345:6:4) 
wr te(f,1.2345:20) 
wr te(f,-27.1828E-3:14) 
wr te ( f , 0. 3 1 : 3) 
wr te(f,-96E12:7) 
wr te (f ,0.317269: 3) 
wr te(f,-965E12:7~ 
wr te(f,0.31726E7:7:3) 
wr te(f,-965E12:1:7) 
wr te(f,0.31726E7:13:3) 
wr te(f,-965E-2:12:7) 
wr te(f,3.1776E-1:13:3) 
wr te(f,-962.5E-2:12:2) 

Result 
11 1.234511 

II 1.2344999313354E+OO" 
"-2.7182801E-02" 
II 3. 1 E -o 111 

11 -9.6E+l311 

II 3.2E-Ol 11 

11 -9.6E+14 11 

11 3172600. 0 31 '' 
11 -964999961853027.3437500 11 

II 3172600.031 11 

II -9.6499996 11 

II 0.318 11 

II -9.625 11 

Quotation marks show spacing. 

Writeln Procedure 

The <writeln procedure> performs the same action as the <write textfile procedure> and then starts a 
new line. If no <textfile variable> is specified, the <writeln procedure> applies to the textfile named 
output. lf no <write parameter>s are specified, a single blank line is written to the textfile named output. 
Following the execution of the <writeln procedure>, the value of the buffer variable becomes undefined. 

An error occurs if the file is not open. 

Writeln operations to a iextfile assigned to a screen may require the screen in scroll mode. 

5024490 6-31 



<writeln procedure> syntax: 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

-·writeln----L--------) 

1
.--1 

( 1 r -<write ~arameter>------....
-<textfile variable> T 
- <textfile variable> ------------------6 

Type Transfer Functions 
One of the major reasons for data typing is to allow the compiler to enforce type compatibility restric
tions. These restrictions help the programmer ensure that data is handled in a controlled and consistent 
fashion throughout the program. For example. the compiler will not allow two values of an enumerated 
type such as " color" to be arithmetically subtracted. 

Type transfer functions are provided to allow values of a few data types to be converted to values of cer
tain other data types. 

<type transfer function> syntax: 

t <chr function> 

<ord function> 

<ordinal type transfer func.1ion >---

CHA Function 

The <Chr function> returns the character whose ordinal number is designated by <integer expression>. 
If the <integer expression> is not a valid ordinal number for the standard character set, an error occurs. 
Valid ordinal numbers for the EBCDIC character set are in the range 0 .. 255. 

<Chr function> syntax: 

-- chr ( <integer expression>) 

6-32 



Examples: 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

var cl, c2 : char; 
begin 
cl := chr(129); 
c2 : = chr (240) ; 
end; 

The character a is assigned to c 1 and the character 0 is assigned to c2 

ORD Function 

The <Ord function> returns. as an integer value, the ordinal number of the specified <ordinal 
expression>. 

<ord function> syntax: 

· - ord ( <ordinal expression>) 

Examples: 

var i 1 , i 2 : integer; 
begin 
il :• ord('a'); 
i 2 := ord (true); 
end; 

In the standard EBCDIC character set. i I is assigned the integer value 129 and 12 is assigned the integer 
value 1. 

Ordinal Type Transfer Function 
The <ordinal type transfer function> is actually a set of functions. each of which accepts an < integer 
expression> and returns the corresponding value of the ordinal type specified by the <ordinal type 
identifier>. These functions perform the inverse of the <ord function>. 

The <ordinal type identifier> may be any declared ordinal type or one of the predefined types" integer," 
"Boolean." or "char" (the "char" function is identical to the <chr function>). If the <integer 
expression> is not a valid ordinal number for the specified ordinal type, an error occurs. 

The <ordinal type transfer function> is a Burroughs extension to ANSI Pascal. 

<ordinal type transfer function> syntax: 

-<ordinal type identifier> (<integer expression>) ----------------------1 

5024490 6-33 



B l 000 Systems 
Pascal Language Manual 

Declaratioltls and Definitions 

Examples: 

type color= (red, yellow, blue, green, tartan); 
var rslt : Boolean; 

shade : cc> lor; 
begin 
r s 1 t : = B ~o 1 ea n ( l ) ; 
shade := color (3); 
end; 

Rslt is assigned the value true. and shade is assigned the color green. 

Dynamic Allocation Procedures 

The dynamic allocation procedures. used in conjunction with <Pointer variables>. allow variables to be 
allocated and deallocated dynamically. that is. iITTdependently of the activation of a specific <block>. A 
variable that is allocated in this way is called a dynamic variable. 

<dynamic allocation procedure> syntax: 

<mark procedure 3 
<new procedure> 

<release procedure> -

Dynamic variables are allocated in a storage area called the "heap." Creation of dynamic variables and 
manipulation of the heap is performed through the use of the three predefined procedures new. mark. 
and release. 

The new procedure is used to allocate a dynamic variable. It accepts a <pointer variable> as a parameter. 
to which it assigns a reference value that can be used to refer to the newly assigned variable. The new pro
cedure is the only way to allocate a dynamic variable. and it is used for both the collection and the stack 
methods of heap management. 

The mark and release procedures are used to manage the heap as a stack. A stack can be viewed as a time
ordered sequence of variables. where the most recently allocated variables are "on top or' variables allo
cated earlier. Stack management is particularly useful when the lifetime of a group of variables is 
identical. 

The mark procedure stores a reference to the dynamic variable that is the top-of-stack variable at the 
time the procedure is called. A •''mark value" is assigned to the < pointer variable> that is passed as a 
parameter. This value cannot be used to access the top-of-stack variable; instead, it is used to indicate 
a position in the stack for later use by the release procedure. Once the mark procedure has been called. 
the new procedure allocates all niew variables such that they are logically above the mark in the stack. 

The release procedure deallocates all variables that were allocated above the mark specified by the 
<pointer expression> passed as its parameter. The pointer must contain a mark value. that is, a value 
assigned by the mark procedure. The variable that was the top-of-stack variable at the time the mark pro
cedure was called again becomes the top-of-stack variable:. 

6-34 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

To maintain the heap as a stack. one typically calls the mark procedure, then the new procedure one or 
more times, then the release procedure. The mark procedure may be called several times before the re
lease procedure is finally called. When release is called. it deallocates variables down to the mark it is 
passed as a parameter. regardless of whether or not there exist marks above that one in the stack. 

Example: 

program mark_release; 

type 

var 

ptr to node = @node; 
node =-record 

name : packed array [1 •• 20] 
next node : ptr to node; 
end;- - -

marker : ptr to node; 
personl, - -
person2, 
person3 : ptr_to_node; 

begin 
mark (marker) ; 
new (person 1) ; 
new (per son2) ; 
new(person3); 
release(marker); 
end. 

of char; 

The call on the <mark procedure> marks the heap at the point of the call. After new items have been 
created nn the heap, the call on the <release procedure> causes all three dynamic variables to be 
deallocated. The three pointers person 1, person2, and person3 are undefined after the execution of the 
<release procedure>. 

Dynamic variables can be very useful for certain applications. They can also cause confusion when used 
incorrectly. In particular, care should be exercised to ensure that the correspondence between pointers 
and variables is properly maintained. If a variable is deallocated while a pointer to the variable still ex
ists~ the pointer becomes a "dangling reference" (a reference to a nonexistent variable). If a variable ex
ists but all references to it have been lost (for example. because a new value was assigned to the only 
pointer that referenced the variable), the variable is inaccessible and its space is wasted. In ANSI Pascal. 
the use of a dangling reference illl an attempt to access a nonexistent dynamic variable is defined to be 
invalid, but in this implementation, as in most others. these errors are not always detected. 

5024490 6-35 



Mark Procedure 

B I 000 Svstems 
Pascal Language Manual 

Declarations and Definitions 

The <mark procedure> assigns to the <pointer variable> a mark value. a value that corresponds to the 
location of the most recently allocated dynamic variable. that is. the current top-of-stack variable. Subse
quent calls to the <new procedure> allocate dynamic variiables "above" this mark: such variables are 
referred to as marked variables. 

<mark procedure> syntax: 

--mark ( <pointer variable>) 

The <pointer variable> can later be used in a call on the <release procedure>. which simultaneously 
deallocates all variables above the mark. Because the mark value identifies a set of variables rather than 
a single variable. an error occurs if a variable that contains a mark value is used in any other context. for 
example. as a reference to a variable. 

The <mark procedure> is a Burroughs extension to ANSI Pascal. 

New Procedure 
The <new procedure> allocates space for a new dynamic variable of the type with which the <pointer 
variable> is associated. The <pointer variable> then becomes a reference to the location of the new 
variable. 

<new procedure> syntax: 

- new (<pointer variable>) -

Release Procedure 
The <release procedure> deallocates the marked variables denoted by the < pointer-expression>. An 
error occurs if the< pointer expression> does not contain a mark value. (Refer to the Mark Procedure.) 

<release procedure> syntax: 

· - release (<pointer expression>)------------------------------~ 

Following the execution of the <release procedure>. all pointer variables and functions that reference 
the variables that have been deallocated become undefined. 

The <release procedure> is a Burroughs extension to ANSI Pascal. 

6-36 



Arithmetic Functions 

B 1000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The <arithmetic function>s provide functions for use in <arithmetic expression>s. 

<arithmetic functions> syntax: 

- <abs function> _____ , ______ _ 

- <arctan function> 

- <cos function> --

<exp function>--~ 

- <tn function>-----t 

- <round function> 

- <sin function>----1 

- <sqr function> ----1 

<sqrt function> __ _. 

- <tan function> ---1 

< trunc function> 

ABS Function 
The <abs function> returns the absolute value of the specified <arithmetic expression>. The result re
turned is of the same type as the specified < arithmetic expression>. 

<abs function> syntax: 

-- abs ( <arithmetic expression>) 

ARCT AN Function 
The <arctan function> returns, as a real value in radians, the principal value of the arctangent function 
at the specified <arithmetic expression>. 

<arctan function> syntax: 

-· arctan (<arithmetic expression>) -------------------------------1 

5024490 6-37 



COS Function 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The <COS function> returns. as a real value. the cosine of the angle specified by the <arithmetic 
expression>. which is assumed to be in radians. 

<COS function> syntax: 

EXP Function 

The <exp function> returns. as a real value. e (the base of the natural logarithms) raised to the< arithme
tic expression> power. 

<exp function> syntax: 

-- exp (<arithmetic expression>) ----------------------------------1 

LN Function 

The <In function> returns. as a real value. the natural logarithm of the specified <arithmetic 
expression>. 

<In function> syntax: 

- In (<arithmetic expression>) -'------------------------------

ROUND Function 

The <round function> returns the nearest integer value to the specified <real expression>. If the value 
of the <real expression> is positive or zero. the result of the <round function> is equivalent to the value 
of trunc(<real expression> +0.5). If the value of the <real expression> is negative, the result of the 
<round function> is equivalent to the value of trunc(<rcal expression>-0.5). 

It is an error if the nearest integer to the <real expression> Is greater than maxint or less than -max int. 

<round function> syntax: 

- round ( <real expression>) 

6-38 



Examples: 

B l 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

round(3.5) yields the value 4 

round( - 3.5) yields the value -4 

SIN Function 
The <sin function> returns. as a real value. the sine of the angle specified by the <arithmetic 
expression>. which is assumed to be in radians. 

<sin function> syntax: 

- sin (<arithmetic expression>)-------, 

SQR Function 
The <sqr function> returns the square of the value of the specified <arithmetic expression> . The result 
returned is of the same type as the < arithmetic expression>. 

If the result value is out of range for its type, an error occurs. 

<sqr function> syntax: 

-- sqr (<arithmetic expression>)·,-----------------------------' 

SQRT Function 
The <sqrt function> returns, as a real value, the square root of the value of the specified <arithmetic 
expression>. The <arithmetic ~:!xpression> must be greater than or equal to 0. 

<Sqrt function> syntax: 

-- sqrt (<arithmetic expression>) -----------------------------t 

TAN Function 
The <tan function> returns, as a real value. the tangent of the angle specified by the <arithmetic 
expression>. which is assumed to be in radians. 

5024490 6-39 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The <tan function> is a Burroughs extension to ANSI Pascal. 

<tan function> syntax: 

TRUNC Function 

The <trunc function> returns the integer value. computed by truncation. of the specified <real 
expression>. If the result is greater than maxint or less than - maxint. an error occurs. 

<trunc function> syntax: 

- trunc (<real expression>)-

Examples: 

trunc(3.5) yields the value 3 

trunc( -- 3.5) yields the value - 3 

General Procedures and Functions 

Many general procedures and functions are Burroughs extensions to ANSI Pascal. They allow the pro
gram to access system-specific features. such as file attributes. the program's accumulated run time. 110 
time. and elapsed time, the interface to the Operator Display Terminal (ODT). and the system's time and 
date values. Other general procedures and functions are part of ANSI Pascal and provide features that 
are not described elsewhere in this manual. 

<general procedure> syntax: 

--- <abort procedure>-------------·----------------

6-40 

<accept procedure>---

<date procedure>---

<display procedure> --

< getattribute procedure>--... 

< setattribute procedure>

<time procedure>---

< wait procedure> ---



<general function> syntax: 

1 
<odd function>~ 
<pred function> 

<runtime function> 

<succ function> 

Abort Procedure 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The <abort procedure> forces an immediate, abnormal termination of the program. 

The <abort procedure> is a Burroughs extension to ANSI Pascal. 

<abort procedure> syntax: 

-- abor1t 

Accept Procedure 

The <accept procedure> displays the contents of the <string constant> or< string variable> on the Op
erator Display Terminal (ODT), suspends the program until a response from the operator is entered 
(through the AX ODT command), and then places the operator' s response into the <String variable> 
with either blank fill or truncation if the message size is not the same size as the <string variable>. The 
maximum length of the <String variable> is 255 bytes. 

The <accept procedure> is a Burroughs extension to ANSI Pascal. 

<accept procedure> syntax: 

--accept ( L <string constant> ==r- , <string variable>) 

<string variable> 

Example: 

var str ~ packed array [1 •• 3] of char; 
begin 
accept ('Do you want to continue? (yes or no) ', str) ; 
end; 

The string "Do you want to continue? (yes or no)" is displayed on the ODT. The response is placed in 
str. 

5024490 6-41 



Date Procedure 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The <date procedure> returns the current date in the parameters <year>.< month>. and <day>. Val
ues returned are all of the <integer type> and are in the following ranges: 

parameter ra111ge 

<year> 0 .. 9999 
<month> 1 .. 12 
<day> 1 .. 3 l 

The <date procedure> is a Burroughs extension to ANSI Pascal. 

<date procedure> syntax: 

<year> syntax: 

- <variable>-------·----------

<month> syntax: 

- <variable>-----, 

<day> syntax: 

--<variable>-----

Example: 

var year 
month 
day : 

begin 
date (year, 
end; 

integer; 
integer; 
l.. • 31; 

mc>nth, day) ; 

The year is placed in the variable year. the month is placed in the variable month. and the day of the 
month is placed in the variable day. 

6-42 



Display Procedure 

B 1000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The <display procedure> displays the contents of the string on the ODT. The maximum length of the 
display string is 255 bytes. 

The <display procedure> is a Burroughs extension to ANSI Pascal. 

<display procedure> syntax: 

-- display ( ----c-<string constant> ----r-) 
<string variable> _J 

Getattribute Procedure 
The <getattribute procedure> returns the value of the specified file attribute. The file attribute is re
turned for the file denoted by the <textfile variable> or <file variable>. The attribute value is returned 
in the variable provided as the third parameter. 

The <getattribute procedure> is a Burroughs extension to ANSI Pascal. 

<getattribute procedure> syntax: 

--- < getattribute > ( < file attribute request> ) 

<file attribute request> syntax: 

--i- <file variable>~ , ~<Boolean-valued file attribute> , <Boolean expression> 

I_ < textfile variable> _J < integer-valued file attribute> , <integer expression> ----t 
< mnemonic-valued file attribute> , <integer expression> ---i 

< string-valued file attribute> , < vlstring expression> ----

Example: 

var i integer; 
b boolean; 
f : file of integer; 

begin 
getattribute(f, userbackupname, b); 
getattribute(f, maxrecsize, i) 
end; 

The first example places the value of the USERBACKUPNAME file attribute of the file variable f into 
the variable b. 

5024490 6-43 



B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

The second example places the value of the MAXRECSIZE file attribute of the file variable f into the 
variable i. 

All of the file attributes described in the Use of File Attributes section are available to the getattributc 
procedure. 

Setattribute Procedure 
The <Setattribute procedure> assigns the value of the expression to the specified file attribute. The at
tribute is assigned for the file denoted by the <textfile variable> or <file variable>. 

The <setattribute procedure> is a Burroughs extension to ANSI Pascal. 

<setattribute procedure > syntax: 

- < setattribute > ( <file attribute assignment> ) ----·-----------------, 

<file attribute assignment> syntax: 

--r- <file variable> J , ~<Boolean-valued file attribute> ' <Boolean expression>--· 

L_ < textfile variable>- < integer-valued file attriibu~e > , <integer expression> -

<mnemonic-valued file attribute> ' <integer expression> -

<string-valued file attribute> ' < vlstring expression> -----

Example: 

var f : file of integer; 
begin 
setat tribute (f, kind, f i l eva 1 ue (kind, disk) ; 
setattribute(f, title, 1 8/C ON A'); 
end; 

The first example sets the KIND file attribute of the file f to the value of the DISK mnemonic. 

The second example sets the TlTLE file attribute of the file f to the value 'B/C ON A'. 

All of the file attributes described in the Use of File Attributes paragraphs in this section are available 
to the < setattribute procedure> except the following: 

6-44 

ATTERR 
AVAILABLE 
BACKUPFILENAME 
BLOCK 
CHANGEDSUBFILE 
CURRENTBLOCK 
DISPOSITION 



FI LEST ATE 
LASTRECORD 
LASTSUBFILE 
LINENUM 
NEXTRECORD 
OPEN 
RESIDENT 
STATE 
STATIONNAME 
USEDATE 

B I 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

Some of these file attributes may require an <attribute parameter list>. A list of these attributes can be 
found under the File Attributes and Mnemonic Values paragraphs in Section 8. 

Odd F·unction 

The <odd function> returns. as a Boolean value. a result indicating whether or not the value of the 
<integer expression> is odd. The function returns true if the value is odd and false if it is even. 

<odd function> syntax: 

-- odd ( <integer expression>) 

Example: 

PRED Function 

var b : Boolean; 
begin 
b := odd(79 mod 27); 
end; 

The <pred function> returns the predecessor of the <ordinal expression>: that is. a value whose ordi
nal number is one less than that of the <ordinal expression>. If the <ordinal expression> has no prede
cessor value, an error occurs. 

The function returns a result of the same type as the < ordinal expression>. 

<pred function> syntax: 

-- pred (<ordinal expression>) 

5024490 6-45 



Examples: 

B l 000 Systems 
Pascal Language Manual 

Declarations and Definitions 

type color= (red, yellow, blue, green, tartan); 
var swatch : color; 

i : integer; 
begin 
swatch := pred(blue); 
i := prE!d (7); 
end; 

The first example assigns yellow to the variable swatch. 

The second example assigns 6 to the variable i. 

Runtime Function 

The <runtime function> returns. as a real value (units: seconds). the processor time that has been 
charged to the program. 

The <runtime function> is a Burroughs extension to ANSI Pascal. 

<runtime function> syntax: 

-- runtime ---------------·---------------------

SUCC Function 

The <succ function> returns the value of the successor of the <Ordinal expression>~ that is. the value 
whose ordinal number is one greater than that of the <Ordinal expression>. If the< ordinal expression> 
does not have a successor value. an error occurs. 

The function returns a value of the same type as the < ordinal expression>. 

<succ function> syntax: 

-- succ ( <ordinal expression>) 

Examples: 

type color= (red, yellow, blue, green, tartan); 
var wool dye : color; 

alpha : char; 
begin 
wool __ dye := succ(blue); 
alpha : = succ ( 1 y 1 ) ; 

end; 

The first example assigns green to the variable wool_dye. 

The second example assigns 'z' to the variable alpha. 

6-46 



Time Procedure 

<time procedure> syntax: 

B l 000 Svstems 
Pascal Langm'ige Manual 

Declarations and Definitions 

-- time (<hours>, <minutes>, <seconds>)---

<hours> syntax: 

-- <variable> ------·-------

<minutes> syntax: 

-- <variable> ---· 

<seconds> syntax: 

-- <variable> ------·-------

The <time procedure> returns the current time of day (based on a 24-hour clock) in the parameters 
:<hours>. <minutes>. and <seconds>. The values returned are of <integer type> and within the follow
ing ranges: 

parameter 

<hours> 
<minutes> 
<Seconds> 

range 

0 .. 23 
0 .. 59 
0 .. 59 

The <time procedure> is a Burroughs extension to ANSI Pascal. 

Example: 

var hours 
minutes 
seconds 

begin 
1t ime (hours, 
•~nd; 

integer; 
integer; 
0 •• 59; 

minutes, seconds); 

The hour is placed in the variable hours, the number of minutes past the hour is placed in the variable 
minutes. and the number of seconds into the minute is placed in the variable seconds. 

5024490 6-47 



B I 000 Systems 
Pascal Language Manual 

SECTION 7 

VAR~ABLES 

A <variable> is a declared item that, unlike a constant, can be assigned a value during the execution of 
the program. Every <variable> has an associated type that determines the values that may be assigned. 
Anotheir characteristic of a <variable> is its "access." This refers to the method by which it is identified 
when its value is to be referenced or changed. 

This section has three parts: VARIABLES BY ACCESS, VARIABLES BY TYPE, and UNDEFINED 
VARIABLES. Variables of specific types, such as <array variable>s and <Boolean variable>s, are de
scribed in the Variables by Type portion of this section. 

VARIABLES BY ACCESS 
The access characteristic is basically independent of the type of the variable. In general, the access char
acteristic depends on whether or not the variable is a component of a structured variable and, if so, on 
the type of the structured variable of which it is a component. For the variables described in the follow
ing paragraphs (entire, indexed, dynamic, and buffer variables, and field designators), the possible ac
cess characteristics are defined. 

<variable> syntax: 

<entire variable>--__.·----

<indexed variable> 

<field designator> 

<dynamic variable> 

<buffer variable> 

Entire Variables 

An <entire variable> is a < variable identifier> that was declared in a < variable identifier list> in a 
group of< variable declarations> or was defined as a formal parameter. An <entire variable> can be 
accessed simply by its name. 

<entire variable> syntax: 

-- <variable identifier> ---------------------------------., 

5024490 7-1 



Example: 

B l 000 Systems 
Pascal Language Manual 

Variables 

var x 
str 

rea 1; 
packed array [1 •. 5] of char; 

X and str are <entire variable>s: str[ I], str[2]. str[3]. str[ 4]. and str[5] are not <entire variable>s. 

Indexed Variables 
An <indexed variable> denotes a variable that is a component of an array. In order to access an 
<indexed array variable>, the <array variable> of which it is a component must be identified and the 
location of the variable within that array must be specified by providing an <index expression> for each 
dimension of the array. The value of each <index expression> must be assignment compatibk with the 
<index type> of the array dimension it specifies. 

<indexed variable> syntax: 

- <indexed array variable> 

<indexed array variable> syntax: 

-- <array variable> -- [ _c <;= e~pression> =i__ 

<index expression> syntax: 

-- <ordinal expression>----------- ,------------------------

Examples: 

Field Designators 

var x : array [char] of char; 
a: array [Boolean] of 1 •. 10; 

a[fa1se], x['a'], and x['4'] are 
<indexed variab1e>s. 

A <field designator> is a < variable> that denotes a <field identifier> in a <record variable>. The 
<record variable> of which the field is a component must be specified unless the <field identifier> ap
pears in a < with statement> that designates the appropriate <record variable>. 

7-2 



<field designator> syntax: 

B l 000 Systems 
Pascal Language Manual 

Variables 

·-c<record variable>.~ 
<field identifier> -----------------------1 

It is an error to change the active <variant> of a record while a <field designator> within the currently 
active <variant> is being refer,enced in any of the following ways: 

1. as the <record variable> of a <with statement>, 
2. as an actual variable parameter in an <actual parameter list>, or 
3. as the left-hand side of an <assignment statement>. 

For additional information, refer to Actual Parameter Lists and Parameter Matching in Section 3, and 
Assignment Statements and With Statements in Section 4. 

Example: 

var r 1, r2 record 
i : integer; 
b : Boolean; 
end; 

R 1.i, rl.b, r2.i, and r2.b are <field designator>s. 

Dynamic Variables 

A <dynamic variable> is a < variable> accessed through a <pointer variable> declared as a pointer to 
the type of the <variable>. In order for a variable to be a <dynamic variable>, it must have been allocat
ed dynamically, through the <new procedure>. 

<dynamic variable> syntax: 

--< pe1inter variable>@ -----------·-----------------------1 

An error occurs if the <pointer variable> is NIL, is undefined, contains a mark value, or references a dy
namic variable that has been deallocated through the use of the < release procedure>. (See Mark Proce
dure and Release Procedure in Section 6.) It is an error to " release" a dynamic variable while it is being 
referenced in any of the following ways: 

1. as the <record variable> of a <with statement>, 
2. as an actual variable parameter in an <actual parameter list>, or 
3. as the left-hand side of an <assignment statement>. 

Refer to Actual Parameter Lists and Parameter Matching in Section 3, Assignment Statements and With 
Statements in Section 4, and Dynamic Allocation Procedures in Section 6. 

5024490 7-3 



B I 000 Systems 
Pascal Language Manual 

Variables 

Example: 

type ptr = @node; 
inode = record 

name : packed array [1 •• 20] of char; 
next : ptr; 
end; 

var pl, p2: ptr; 
per son : node;; 

begin 
new (pl) ; 
pl@.name := 'Robert Smith'; 
pl@. next : = n i l ; 
person := pl@; 
end; 

P 1 is a pointer to a dynamically allocated record of type node. Pl@ is a record of type node and is assign
ment compatible with person. 

Buffer Variables 
A <buffer variable> is automatically associated with each declared <file variable> and <textfile 
variable>. The< buffer variable> for a file or textfile is the means by which the file component associat
ed with the current file position can be examined or modifiied. The type of the <buffer variablle> is the 
<Component type> of the file. For textfiles, the <buffer variable> is of type char. 

<buffer variable> syntax: 

file~~~>--_J-~-@---------------------------~ 

L < textfile variable> 

It is an error to alter the position of a file while the buffer variable is in use in one of the following ways: 

1. As the <record variable> of a <with statement>, 
2. as an actual variable parameter in an <actual parameter list>, or 
3. as the left-hand side of an <assignment statement>. 

Refer to Actual Parameter Lists and Parameter Matching in Section 3, and Assignment Statements and 
With Statements in Section 4 for additional information. 

Example: 

7-4 

var myfile : file of integer; 
i nx : integer; 

begin 
rewr i te (myf i 1 e) ; 
myf i le@ :r.: 3; 
put (myf i 1 e) ; 
reset (myf i 1 e) ; 
inx := myf i le@; 
end; 



B I 000 Systems 
Pascal Language Manual 

Variables 

The type of <buffer variable> myfile@ is the same as the component type of the file. Therefore. in this 
example. myfile@ may be used as a variable of type integer. 

VARIABLES BY TYPE 
Following are definitions of the variable types. 

Array Variable 
A <variable> declared of an < array type>. 

Boolean Variable 
A <variable> declared of the < Boolean type> or of a <:subrange type> whose host type is the <Boolean 
type>. 

Char Variable 
A <:variable> declared of the <char type> or of a <Subrange type> whose host type is the <char type>. 

Enumerated Variable 
A <variable> declared of an < enumerated type> or of a <subrange type> whose host type is an 
<enumerated type>. 

File Variable 
An <entire variable> declared of a <file type>. 

Integer Variable 
A <variable> declared of the < integer type> or of a <subrange type> whose host type is the 
<integer type>. 

Pointer Variable 
A <variable> declared of a < pointer type>. 

Real Variable 
A <variable> declared of the < real type>. 

Record Variable 
A <variable> declared of a < record type>. 

Set Variable 
A <variable> declared of a <set type>. 

5024490 7-5 



String Variable 

B 1000 Systems 
Pascal Language Manual 

Variables 

A <variable> declared of a < string type>. 

Textfile Variable 
An <entire variable> of the < textfile type>. 

UNDEFINED VARIABLES 
An undefined variable is a variable whose value is invalid for some reason and therefore must not be ex
amined. For example, when a block is entered at run time, all variables declared within that block are 
allocated as undefined variables. The use of any undefined variable in an expression is an error. 

An undefined variable becomes defined when it is assigned a valid value, for example, when it appears 
as the left-hand side of an <assignment statement> or as an actual variable parameter to a procedure or 
function that will assign it a value (such as the read procedure). 

Example: 

7-6 

var i integer; 
j integer; 

begin 
j : == i ; { ERROR -- the va 1 Lie of 
end; 

is undefined. } 



B l 000 Systems 
Pascal Language Manual 

SECTION 8 

BASIC COMPONENTS 

The basic components defined in this section are syntactic items that appear in the syntax diagrams in 
previous sections of the manual. These components are both simple and widely distributed throughout 
the text. For this reason, they are not explained in place in the text but are explained once in this section. 
The components include characters, identifiers. and numbers. 

Section 9. Interpretation of Program Text. describes representation of the program and the compiler's 
interpretation of it. Those items include reserved words. comments, context-sensitive identifiers. and 
special symbols (and their notational synonyms. if any). 

A special convention for the railroad syntax notation is used in this section. The basic components de
scribed here must not contain embedded blanks, comments. or record boundaries, even though the stan
dard interpretation of railroad diagrams permits those token separators between any two distinct items 
in a diagram. Of course, blanks are allowed as <character>s within a <character string>. but they are 
significant in that context and are not treated as token separators. 

CHARACTERS AND CHARACTER STRINGS 
A <character string> represents a constant of the <string type>. and a < character literal> represents 
a constant of the <char type>. A single apostrophe(') character contained within a <character string> 
or <character literal> is represented by two successive apostrophes. For example,"' A"' is a <character 
string> containing the three characters' A' (apostrophe, A. apostrophe). A <Character string> that con
tains no values (' ') is a null string. 

<character string> syntax: 

-- ' __________ l_ ' 
<non-apostrophe character> 

'' ~-----------------------

<character literal> syntax: 

-- ' ·--r- <non-apostrophe character> 

L_ "---------------------------

<non-apostrophe character> definition: 

Any <character> except the apostrophe ('). 

<character> definition: 

Any one of the characters in the standard character set. The standard character set is EBCDIC. 

5024490 8-1 



IDENTIFIERS 

B I 000 Systems 
Pascal Language Manual 

Basic Components 

Identi tiers may be of any length greater than 0. subject to the constraint that an identi tier may not be split 
across source records. All characters. including underscores. are significant in distinguishing identifiers. 
An <identifier> must not have the same spelling as a <reserved word>. (Refer to Section 9. Interpreta
tion of Program Text.) 

Allowing underscores in identifiers is a Burroughs extension to ANSI Pascal. 

<identifier> syntax: 

- <letter> _....._--r-------.--_..._--·-------------------·---
<digit> 

<letter> 

<letter> definition: 

Any one of the letters A through Zora through z. The lower-case characters (a through z) are synonymous 
with the upper-case characters (A through Z). 

<digit> definition: 

Any one of the decimal numbers 0 through 9. 

Examples: 

Index 
BEGIN 
1776 
W2 form 

NUMBERS 

MESSAGE COUNT item 3 { Three valid identifiers } 
{ INVALIO--:.- reserved word} 
{ INVALID -- doesn't start with a letter } 
{INV AUD -- embedded blanks not allowed } 

A <number> is an integer or real value optionally preceded by a sign. If no sign is specified, + is as
sumed. Numbers are symmetrical around zero~ that is, any magnitude that can be represented as a posi
tive value can also be represented as a negative value, and vice versa. 

The type of a <number> is determined by its format. A simple string of one or more digits is an < un
signed integer>. The largest <unsigned integer> can be referred to by the predefined <integer constant 
identifier> maxint. 

A number that includes a fractional part or an <exponent part> is an <unsigned real> number. Up to 
11 significant digits of precision are maintained. 

In the <exponent part>. the letter E introduces a decimal exponent. (E has the meaning "times 10 to the 
power of'.) The exponent can range from -47 to +68. 

8-2 



<number> syntax: 

~~~<unsigned number> 

<unsigned number> syntax:

-i- <unsigned integer> __J
- <unassigned real>

<unsigned integer> syntax:

B 1000 Systems
Pascal Language Manual

Basic Components

r <digit>'---------------------,--------~
<unsigned real> syntax:

L <digit> ~ . _L <digit>-c L <exponent part> ---1
< exponent part> ---- -

<exponent part> syntax:

Examples:

5024490

123
0.0

-1000
-23.45

+2
24567.4e-20

0
9El5

{ integers }
{ reals }

8-3

B I 000 Systems
Pascal Language Manual

Basic Components

FILE ATTRIBUTES AND MNEMONIC VALUES
File attributes and values are system-defined identifiers describing characteristics of files. See the Use
of File Attributes paragraphs in Section 6 for a description of the file attributes available in B I 000
Pascal.

Certain file attributes may either require or allow parameters in order to further qualify the property of
the file that is to be modified or queried. In order to access such attributes, an <attribute parameter list>
may be used in the < setattribute procedure>. If an <attribute parameter list> is used, it must immedi
ately follow the name of the attribute to be accessed.

Attributes:

<Boolean-valued file attribute>
<integer-valued file attribute>
<mnemonic-valued file attribute>
<string-valued file attribute>
<mnemonic value>

<attribute parameter list> syntax:

-- (<integer expression>)

Example:

type t =packed array [l •• 80] of char;
var f : file oft;

i : integer;
be!~i n
i :: = l;
setattr i bute (f, Tl TLE, 1 TAPE l ') ;
end.

The following file attributes require an <attribute parameter list>:

filestate
maxcensus
subfileerror
yourname
yourusercode

The following file attributes allow, but do not require, an <attribute parameter list>:

8-4

changedsubfile
hostname
maxrecs1ze
title

B 1000 Systems
Pascal Language Manual

SECTION 9

INTERPRETATION OF PROGRAM TEXT

The Pascal program to be compiled is presented to the compiler as one or more files in a particular for
mat. The merging of multiple files, and the files themselves, are described in Appendix A. This section
describes how the compiler interprets its input during the compilation process.

For purposes of this discussion, the program input file can be considered a sequence of records (from
whatever source) that the compiler reads during compilation. Each record includes the following fields:

Columns

1-72
73-80
81-90

Contents

<program text> and < compiler control record>s
sequence number (optional)
mark information (optional)

Records containing a dollar sign ($) in column 1 are < compiler control record>s, which are not part of
the Pascal program; they are described in Appendix A. Records that do not contain a dollar sign ($) in
column l are assumed to contain <program text>, that is, the Pascal program to be compiled. Optional
ly, there can be sequence information in columns 73-80 (refer to the SEQUENCE compiler control op
tion) and mark information in columns 81-90. Tlhese fields are not discussed further here.

PROGRAM TEXT
The Pascal <program text> can be considered a continuous stream of <token>s, all of which may be,
and some of which must be, separated by <token separator>s.

<program text> syntax:

E <token' separator> l
~ <token? ~~~-~--'--~-------------------------~------~-------------------t

TOKEN
A token is a sequence of characters in the program text that the compiler recognizes as a syntactic unit.
Every pair of tokens must be separated by a <token separator> unless one token in the pair is a <special
token>.

5024490 9-1

<token> syntax:

B 1000 Systems
Pascal Language Manual

Interpretation of Program Text

<reserved word>----·----.-----·------------------------1

< predefined identifier>---

< context-sensitive identifier>--

<identifier> ------

<number>-------

<character string> -----1
<character literal>-·--

<special token>------

RESERVED WORD
<Reserved word>s are language keywords that cannot be redefined by the programmer. In general, these
are words the compiler uses to recognize declarations, sta1tements, and operators.

<reserved word> list:

AND
ARRAY
BEGIN
CAND
CASE
CONST
COR

DIV
DO
DOWNTO
ELSE
END
FILE
FOR

FUNCTION
GOTO
lF
lN
LABEL
LIBRARY
MOD

PREDEFINED IDENTIFIER

NIL
NOT
OF
OR
OTHERWISE
PACKED
PROCEDURE

PROGRAM
RECORD
REPEAT
SET
THEN
TO
TYPE

UNTIL
VAR
WHILE
WITH

<Predefined identifier>s are < identifier>s that have a predefined meaning in Pascal. As with user
defined <identifier>s, <predefined identifier>s may be redefined, but the former definition becomes
unavailable within the scope of the redefinition.

<predefined identifier> list

abort exp ord seek
abs false output setattribute
accept get page sin
arctan getattribute pred sqr
Boolean input put sqrt
char integer read succ
chr length readln tan
close In real text
cos log release time
date mark reset true
display max int rewrite trunc
eof new round write
eoln odd runtime writeln

9-2

TOKEN SEPARATOR

B I 000 Systems
Pascal Language Manual

Interpretation of Program Text

<Token separator>s are required as delimiters for alphanumeric tokens, to separate tokens so that the
compiler will interpret them properly. However, this function is incidental for <comment>s~ their pur
pose is to allow the programmer to interleave descriptive text with the program text.

<token separator> syntax:

1
-<blank> j
- <comment>

-<record boundary>

BLANK
Blanks can be used freely throughout the program text to improve readability and to separate tokens that
must be separated so that the compiler will interpret them properly.

<blank> definition:

One or more blank characters.

COMMENT
Comments are used to include documentation in a program. A <Comment> may appear anywhere that
a <blank> can appear; a < comment> may not appear in a <Character string> or in another
<comment>. Comments may contain any <character>s except the delimiting characters } and *).

Compiler control records that appear between the record containing the beginning of a comment and the
record containing the end of that comment are processed as normal compiler control records; they are
not treated as part of the comment.

<comment> syntax:

1< ~ -----r- { ____ _ - <character> } ----r
L-<•_j •)-_J

Examples

{ This is a comment. }
(,~ This comment uses the two-chairacter synonyms for braces. *)

5024490 9-3

RECORD BOUNDARY

B l 000 Svstems
Pascal Langu~ge Manual

Interpretation of Program Text

The <record boundary> acts as an implicit token separator. Thus. a token cannot be split at the column
72 boundary of one record and then be continued beginning in column 1 of the next record. The~ compiler
interprets a split item as two separate items.

<record boundary> definition:

A theoretical boundary between column 72 of one record and column 1 of the next record.

9-4

B I 000 Systems
Pascal Language Manual

APPENDIX A

COMPILING, EXECUTING, AND ANALYZING A PASCAL PROGRAM

The input file to the B l 000 Pascal compiler is a standard data file created by any of the various editors.
Only the first 72 characters of each record are significant. Sequence numbers may appear in positions
73 through 80. These are not used by the compiler but are printed on the listing. Any patch information
that may be present in columns 81-90 also appears on the listing.

The Pascal code may be entered in free format, but the general rules for formatting, as illustrated in any
Pascal textbook, should be followed to create readable source programs.

COMPILER OPTIONS
Certain aspects of the compilation of a Pascal program may be controlled by directives to the compiler
in the form of compiler control images (CCls).

The CCI enables a user to control options that are provided in the Pascal compiler. Each option falls into
one of the following six categories:

Source language inputs
Source language output
Optional compilation mechanism
Printed outputs
Compiler diagnostic messages
Compiler debugging

A CCI contains compiler control statements comprised of options or groups of options and any associat
ed parameters. CCis are totally distinct from the Pascal language, although they are typically inter
spersed with program source lines. CCI syntax differs from Pascal source syntax. Also, the following con
ventions differ between Pascal source text and CCI text.

l. CCis may not contain comments.
2. Only upper-case letters may be used in CCis, except within character strings.
3. Character strings (for example, in file titles) are delimited by double quotation marks ("), not

apostrophes (').

Because a CCI is not part of the Pascal language, a Pascal comment cannot occlude a CCI. Any source
image with a dollar sign ($) in column l is processed as a CCI by the Pascal compiler, even if a Pascal
comment begins before and ends after the CCI.

CCI Syntax Diagrams
The syntax diagrams for CCis are shown next. Options that are allowed within a Pascal source are listed
in the paragraphs that follow under the headings Boolean Options, Value Options, and Immediate Op
tions. Except as noted, the syntax and semantics of these options are as specified by the CCI Standard.

5024490

NOTE
The CCI Standard is a Burroughs document. The full title is Burroughs
Corporation CSG Standard for Compiler Control Images.

A-1

CCI Syntax:

B 1000 Systems
Pascal Language Manual

Compiling. Executing, and Analyzing a Pascal Program

---r- $~-,-.---,---~~·--~~--~----r~------------------~----~

L_ $$

>

'---+-- <Boolean-option> ---+---J

- < value-option>----.1

- <immediate-option>·

------------------1

.._ __ SET -----< Boolean-option-settin~>
· <value-option>-

< immediate-option> -

RESET - r-::=option> _ _.__ ___ ~
POP _T<... t:Joo1ea1

<Boolean-option> syntax:

---r- <user-specified Boolean option identifier>

L_ <one of the predefined Boolean options described below>-_j

<value-option> syntax:

~- <oneofthevalueoptionsd~cribed~lo~-------·---·---~----------~·

<immediate-option> syntax:

-- <one of the immediate options described below> ---------------------,---

A-2

B I 000 Systems
Pascal Language Manual

Compiling, Executing, and Analyzing a Pascal Program

<Boolean-option-setting> syntax:

- <Boolean-option> --.-----------------..-----------------1
L = <Boolean-option-expression> _J

<Boolean-option-expression> syntax:

- <option-term> -i---=
~O,_R_<_o_p-ti-on--t-e-rm_>_·_=i __

<Option-term> syntax:

-· <option·factor>--ct

AN,_D_<_o_p-tio-n--f-ac_t_o_r >-_=] __ _

<Option-factor> syntax:

(<Bo~~~option~xpre~ion>)--~----~·~~-------------------~~
NOT <option-factor>-------1

<Boolean-option> -------

TRUE -----------~---------~

FALSE

5024490

NOTE
$ must be in column I or$$ in columns l and 2 of a CCI. The listing of a
CCI with$$ is controlled by LIST and LISTINCL, not by LISTDOLLAR.
User options are implicity declared by their first use, which may not be in
a Boolean-option-expression. The usual precedence of Boolean operators
(NOT, AND, OR) is used.

A-3

B I 000 Systems
Pascal Language Manual

Compiling, Executing, and Analyzitng a Pascal Program

Boolean Options
The following Boolean options are defined in the CCI Standard.

ANSI
Default = FALSE. The ANSI option causes any extensions to the ANS Pascal Reference: Standard
to be treated as errors. Enabling this option currently has no effect.

CODE
Default = FALSE. The CODE option causes the compiler to produce a listing of the object code pro
duced by the compilation process.

LINEINFO
Default = FALSE. The LINEINFO option causes the compiler to generate operators to determine
the source line number in case ofabnormal termination. If the option is not enabled, the line number
of the beginning of the active procedure is determim:d instead.

LIST
Default = TRUE. The LIST option causes the compiler to include in the listing the source derived
from the CARD file.

LISTDOLLAR
Default = FALSE. The LISTDOLLAR option causes the compiler to include in the listing all CCis
(single $) encountered during the compilation. LIST must also be TRUE.

LISTINCL
Default = FALSE. The LISTINCL option causes the compiler to include in the listing that part of
the source which was accepted for compilation as a result of the enabling of the INCLUDE option.
LIST must also be TRUE.

MAP
Default = FALSE. The function normally associated with this option is to produce an output listing
with information cross referencing line numbers to object code addresses. However, this function
is not needed because the Pascal compiler error message and the analyzer program output reference
source line numbers rather than code addresses. The MAP option in this compiler is actually equiva
lent to the CODE option.

NO BOUNDS
Default= FALSE. The NO BOUNDS option causes the compiler to forego generating operators to
check for subrange variables going out of range assignments.

NOTAGFIELD
Default = FALSE. VARIANT causes the compiler to forego generating operators to check tag values
on accesses to fields of tagged record variants.

OMIT

A-4

Default = FALSE. The OMIT option causes all source language images to be ignored for the purpose
of compilation until it is disabled. Any source language images encountered while this option is ena
bled are processed in the normal manner. A lower-case letter o is printed on the listing just before
the sequence number field for all records that are omitted.

XREF

B l 000 Systems
Pascal Language Manual

Compiling. Executing. and Analyzing a Pascal Program

Default= FALSE. The XREF option produces a listing of the line number where each identifier is
referenced. The XREF option may be SET and RESET to cross reference various portions of a
program.

NOTE
The cross reference option currently uses a memory sort. If a program with
a large number of identifiers is being cross referenced. then the compile
will require more memory than when cross referencing is not being done.
The code file is closed before the cross reference is started so that the code
file is saved even if the cross reference routines run out of memory.

Value Options
The following value options are defined in the CCI Standard.

ERRORLIMIT
Default value = 100. Causes compilation to terminate when the number of errors detected by the
compiler equals or exceeds the integer value specified.

ERRORLIMIT syntax:

-- ERRORLIMIT = L100 =i
<integer>

STRINGS
Default= EBCDIC. Input to the compiler is assumed to be in EBCDIC. If this option is set to ASCII.
all character and string literals generated to the code file are translated from EBCDIC to ASCII. No
translation occurs with the option set to EBCDIC.

STRINGS syntax:

--STRINGS =---,--EBCDIC J
LASCll-

Immediate Options
The following immediate options are defined in the CCI Standard.

CLEAR
This option causes the compiler to disable (set false) the following Boolean options: ANSI, CODE.
LIST. LISTDOLLAR. LISTINCL, OMIT, XREF.

PAGE
This option causes the compiler to eject a page on the output listing if the appropriate list options
are set.

5024490 A-5

B I 000 Systems
Pascal Language Manual

Compiling. Executing. and Analyzing a Pascal Program

INCLUDE
This option causes the compiler to suspend reading inJPut from the CARD file and to begin reading
input from the file specified by the parameter. An INCLUDE CCI may not appear in th1e included
file. The file-title is specified using the ON syntax: that is. Y /Z ON X means file X/Z on pack X. No
other option may follow the INCLUDE on the same input image. If file-title has a quotation mark
(")within it. it must be represented by two quotation marks(""). A lower-case letter i is printed on
the listing just before the sequence number field for all records that are included.

INCLUDE syntax:

- INCLUDE " <file-title> ,.

COMPILING AND EXECUTING A PASCAL PROGRAM
The Pascal compiler. PASCAL is itself a Pascal program. It has three external files:

l. CARD. the program source text, modified to be DISK.
2. UNE, the program listing. modified to PRINTER BACKUP.
3. CODE. the B l 000 code file.

The compiler is run by using the MCP COMPILE command. usually with file statements to name its ex
ternal files and possibly a static memory (MS) specification for a large compilation. Standard memory
size is 500,000 bits. The LIBRARY and SYNTAX options of the COMPILE command both have the
same effect of compiling to LIBRARY.

The compiler automatically segments the object code. A code segment is filled with at least 1500 bytes
of code. At the end of the procedure in which the code segment was filled to 1500 bytes, a segment is start
ed for the next procedure. Procedures are never broken across segments, but several proceduries may be
placed into one segment.

The file CODE is saved unless the program being compiled has syntax errors. The saved file is locked
into the directory with the name that was assigned in the COMPILE command

Example:

COMPILE PROG WITH PASCAL TO LIBRARY:
FILE CARD NAME = SOURCE/PROG~
FILE LINE NAME = LIST/PROG USER.BACKUP.NAME:

Compile-Time Errors

Each error detected at compile time is printed on the listing following the line in error. with a special
character that points to the token that was being scanned when the error was detected. In some instances.
the symbol being pointed to follows the actual error point, because the compiler parsed ahead before the
error was evident to it.

A-6

Run-Time Errors

B I 000 Systems
Pascal Language Manual

Compiling, Executing, and Analyzing a Pascal Program

Errors detected at run time are reported by means of the MCP DS OR DP message. A standard run-time
error message contains a segment number and displacement, usually of the program's next instruction
pointer. In the case of Pascal. however, the segment number is always zero and the displacement value
is the source line number at which the program failed.

Example:

TEST = 1631 -- VALUE OUT OF RANGE: S=O, 0=13 (@000@,@00000@); OS OR DP

In this example. TEST = 1631 is the job name and number supplied by the MCP, and D= 13 shows that
the error occurred on line 13 of the source listing.

Some standard routines such as the routine to read and write real numbers are contained in a library file
(PASCAL/LIBRARY). When a program uses any of the routines. the library is bound with the code of
the program. If an error occurs in a library routine, the line number of the error is in the library rather
than in the invoking program. The best way to determine the program line from which the library routine
was called is to run the PASCAL/ ANALYZER program on a dump of the program. The dump analysis
shows the appropriate line. The PASCAL/ ANALYZER program is described later in this appendix.

A run-time error may occur incorrectly when a program is close to running out of memory. If an error
seems questionable, try running the program again with more memory.

Following is a list of all the run-time errors with notes on possible causes.

INDEX OUT OF RANGE
The value of the expression used to index an array is outside the bounds of the array.

VALUE OUT OF RANGE
The value of the expression is outside the range of the variable to which the expression is being
assigned.

INTEGER OVERFLOW
The value the expression is greater than maxint or less than - max int.

REAL OVERFLOW
The exponent part of the real-valued expression is greater than the maximum exponent for real
numbers.

INV PTR REFERENCE
A pointer which was pointing above the current top of the heap was dereferenced. The item that the
pointer is pointing to has already been released.

DIVIDE BY ZERO
A division or modulo by zero was attempted.

STACK LIMIT
The program has run out of memory while trying to allocate space for local variables. Run the pro
gram again with more memory using the MCP MS command.

HEAP LIMIT
The program has run out of memory while trying to allocate space for a dynamic variable. Run the
program again with more memory using the MCP MS command.

SET OUT OF RANGE
A member of the set expression is outside the range of the set to which it is being assigned.

5024490 A-7

B I 000 Systems
Pascal Language Manual

Compiling. Executing. and Analyzing a Pascal Program

--------------·

INV AUD OPCODE
The interpreter attempted to execute an invalid operator.

INV STD ROUTINE
The compiler generated faulty code which resulted in an attempt to call an invalid standard routine.

VARIANT ERROR
A field of a variant record was accessed and the value of the tag field does not correspond to the vari
ant part containing this field.

NIL POINTER ERROR
A pointer with the value of NIL was dereferenced.

INV AUD CASE
A CASE statement was executed but the value of the case selector does not correspond to any case
label and the case statement has no OTHER WISE clause.

FILE AT EOF
A file operation was attempted but the end of the file was encountered.

PROGRAM ABORT
The program was terminated by calling the ABORT procedure.

TEXT BUF OVERFLOW
Too many WRITE operations without a WRITELN procedure to this textfile have been done. Ei
ther insert a WRITELN procedure or increase the size of the buffer associated with this tex1tfile using
the file attribute specification in the program heading.

FILE NOT OPEN
A file operation was attempted on an unopen file.

UNDEFINED POINTER
A pointer which has not been assigned any value has been dereferenced.

FILE NOT AT EOF
A file operation was attempted but the file was not at end of file.

INV AUD CHAR READ
An invalid character was encountered during an attempt to read an integer from a text.file.

FILE NOT CLOSED
A file operation was attempted which required the file to be closed, but it is open.

USING THE PASCAL/ANALYZER PROGiRAM
When a run-time error occurs. the user has the option of getting a dump file of the current state of the
program.

The standard analyzer program (SYSTEM/IDA) can be used to analyze dumps of Pascal programs. but
it is not based on the internal structure of the Pascal virtual machine and. thus. produces a very general
analysis. It is invoked with the MCP PM command. with switch I set to I, and analyzes standard pro
gram components such as the run structure nucleus and file information blocks. Values of variables and
the nesting of procedures are not shown.

A-8

B I 000 Systems
Pascal Language Manual

Compiling, Executing. and Analyzing a Pascal Program

The PASCAL/ ANALYZER program is written specifically to analyze dumps of Pascal programs and is
based on the Pascal run-time system. It contains two external files:

• DUMPFILE. the input dump file created by the MCP.
• LINE, the output listing file.

The PASCAL/ANALYZER program gives a detailed analysis of the state of the program at the point at
which the error occurred.

The output is organized as follows:

The program name and date and the name oftlhe run-time error appear at the top of the printout.

The values of all of the scratchpad registers are next.

Information for each file that was declared in the program is given next.

Analysis of the stack appears next. Each activation record. beginning with the most recent one, is
ana~yzed. The analysis of each activation record includes the local variable, stack temporaries, and
parameters. The name and current value of each variable is included.

At the end, the contents of the heap are printed in hexadecimal.

The PASCAL/ ANALYZER program is executed as follows:

EX PASCAL/ANALYZER;
FILE DUMPFILE NAME DUMPFILE/124;
FILE LINE NAME PROG/DUMP USER.BACKUP.NAME

USING THE SYSTEM/IDA PROGRAM
The SYSTEM/IDA program (the standard analyzer) is executed as follows:

PM 124; SW l = 1

DUMPFILE/ 124 is removed when the analysis is done. To retain the dump, file invoke the SYSTEM/
IDA program with the following command:

PM 124 SA VE; SW 1 = 1

5024490 A-9

B I 000 Systems
Pascal Language Manual

APPENDIX B

RAILROAD DIAGRAMS

Railroad diagrams graphically represent the syntax of software commands.

The railroad diagrams are traversed left to right or in the direction of the arrowhead. Adherence to the
limits illustrated by bridges produces a syntactically valid statement. Continuation from one line of a
diagram to another is represented by a right arrow (!ra) appearing at the end of the current line and the
beginning of the next line. The complete syntax diagram is terminated by a vertical bar (!vr).

Items contained in broken brackets (<>) are syntactic variables that arc defined in the manual or are
information that the user is required to supply.

Upper-case items not enclosed in broken brackets must appear literally. Minimum abbreviations of up
per-case items are underlined.

Example:

-- A RAILROAD DIAGRAM CONSISTS OF-------<bridges>-----.---1~--------_..,...

<loops> ----

-<optional items>

-<required items>

>- ,--AND IS TERMINATED BY A VERTICAL BAR. -------------------t

The following syntactically valid statements can be constructed from the preceding diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED
BY A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional items> AND IS
TERMINATED BY A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND IS
TERMINATED BY A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <Optional items>, <required
items>, <optional items>, < bridges>, <loops> AND IS TERMINATED BY
A VERTICAL BAR.

REQUIRED ITEMS
No alternate path through the railroad diagram exists for required item or required punctuation.

Example:

---·REOUIREDITEM--t

5024490 B-l

B l 000 Systems
Pascal Language Manual

Railroad Diagrams

OPTIONAL ITEMS
Items shown as a vertical list indicate that the user must make a choice of the items specified. An empty
path through the list allows the optional item to be absent..

Example:

- REQUIRED ITEM --c ---------------·-1 c ~optional item-1> =r--
- <optional item-2> ~

The following valid statements can be generated from the preceding diagram:

REQUIRED ITEM
REQUIRED ITEM <optional item- I>
REQUIRED ITEM <optional item-2>

LOOPS
A loop is a recurrent path through a railroad diagram and has the following general format:

rE- <bridges> <return character>=i

__j_ <object of the loop> , _____ ________ ·-------------------.

Example:

-~~--- <optional~e~-1>~~~~~---~-----·--~-------------~
<optional item-2> _J

The following statements can be constructed from the raillroad diagram i the preceding example.

<Optional item-1 >
<Optional item-2>
<Optional item- I>, <optional item- I>
<Optional item- I >,<optional item-2>
<Optional item-2>,<0ptional item-I>
<Optional item-2>,<optional item-2>

A loop must be traversed in the: direction of the arrowheads, and the limits specified by bridges cannot
be exceeded.

B-2

BRIDGES

B 1000 Systems
Pascal Language Manual

Railroad Diagrams

A bridge illustrates the minimum or maximum number of times a path can be traversed in a railroad
diagram.

There are two forms of bridges:

~ n is an integer that specifies the maximum number of times the path may be traversed.

_(r;*__ n is an integer that specifies the maximum number of times the path may be traversed. The
asterisk (*) indicates that the path must be traversed at least once.

Example:

< optlonalltem-1 > _J
~<optional item-2>

The loop may be traversed a maximum of two times. and the path for <Optional item-2> must be trav
ersed at least once but no more than twice.

The following statements can be constructed from the preceding diagram:

<optional item- I>. <Optional item-2>
<Optional item-2>.<optional item-2>.<0ptional item-1 >
<optional item-2>

5024490 B-3

B 1000 Systems
Pascal Language Manual

APPENDIX C

EBCDIC AND ASCII CHARACTER SETS

Tables C-1 and C-2 show the hexadecimal representation and ordinal number for each EBCDIC and
ASCII character. Table C-1 is sorted by EBCDIC ordinal number and represents the EBCDIC-to-ASCII
translation that is performed when necessary. Table C-2 is sorted by ASCII ordinal number and repre
sents the ASCII-to-EBCDIC translation that is performed when necessary.

Hex

00
01
02
03
04
OS
06
07
08
09
OA
OB
oc
OD
OE
OF
10
11
12
13
14
15
16

5024490

NOTES
The graphic representations forthe EBCDIC hex codes 1 S, SF, 6A, 79, and
A 1 are hardware dependent. Therefore, no EBCDIC graphic is shown in
Table C-1 for those codes.

Similarly, the graphic representations for the ASCII hex codes 21, SE, 6C,
and 7C are hardware dependent. Therefore, no ASCII graphic is shown in
Table C-2 for those codes.

Table C-1. B 1000 Codes in EBCDIC Sequence

EBCDIC ASCII (EBCDIC Graphic)

Decimal H4~X Decimal Graphic Meaning

0 00 0 NUL Null
1 01 1 SOH Start of Heading
2 02 2 STX Start of Text
3 03 3 ETX End of Text
4 9C 1S6
s 09 9 HT Horizontal Tabulation
6 86 134
7 7F 127 DEL Delete
8 97 151
9 8D 141

10 8E 142
11 OB 11 VT Vertical Tabulation
12 oc 12 FF Form Feed
13 OD 13 CR Carriage Return
14 OE 14 so Shift Out
lS OF 15 SI Shift In
16 10 16 DLE Data Link Escape
17 11 17 DCl Device Control 1
18 12 18 DC2 Device Control 2
19 13 19 DC3 Device Control 3
20 90 157
21 8S 133
22 08 8 BS Backspace

C-1

EBCDIC

Hex Decimal

17 23
18 24
19 25
IA 26
lB 27
lC 28
lD 29
IE 30
IF 31
20 32
21 33
22 34
23 35
24 36
25 37
26 38
27 39
28 40
29 41
2A 42
2B 43
2C 44
2D 45
2E 46
2F 47
30 48
31 49
32 50
33 51
34 52
35 53
36 54
37 55
38 56
39 57
3A 58
3B 59
JC 60
3D 61
3E 62
3F 63
40 64
41 65
42 66
43 67
44 68

C-2

B I 000 Systems
Pascal Language Manual

EBCDIC and ASCII Character Sets

Table C--1. B 1000 Codes in EBCDIC Sequence (Cont)

ASCII (EBCDIC Graphic)

Hex Decimal Graphic Meaning

87 135
18 24 CAN Cancel
19 25 EM End of Medium
9~' 146
8F 143
IC 28 FS File Separator
ID 29 GS Group Separator
IE 30 RS Record Separator
IF 31 us Unit Separator
80 128
81 129
8:1 130
83 131
84 132
OA 10 LF Line Feed
17 23 ETB End of Transmission Block
lB 27 ESC Escape
88 136
89 137
8A 138
8B 139
8C 140
05 5 ENQ Enquiry
06 6 ACK Acknowledge
07 7 BEL Bell
90 144
91 145
16 22 SYN Synchronous Idle
93 147
94 148
95 149
96 150
04 4 EQT End of Transmission
98 152
99 153
9A 154
9B 155
14 20 DC4 Device Control 4
15 21 NAK Negative Acknowledge
9E 158
IA 26 SUB Substitute
20 32 SP Space
AO 160
Al 161
A2 162
A3 163

EBCDIC

Hex Decim·aI

45 69
46 70
47 71
48 72
49 73
4A 74
4B 75
4C 76
4D 77
4E 78
4F 79
50 80
51 81
52 82
53 83
54 84
55 85
56 86
57 87
58 88
59 89
5A 90
58 91
5C 92
5D 93
5E 94
5F 95
60 96
61 97
62 98
63 99
64 100
65 I 01
66 102
67 103
68 104
69 105
6A 106
68 107
6C 108
6D 109
6E 110
6F 1 1 1
70 112
71 113
72 114

5024490

B I 000 Systems
Pascal Language Manual

EBCDIC and ASCH Character Sets

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont)

ASCII (EBCDIC Graphic)

Hex Decimal Graphic Meaning

A4 164
A5 165
A6 166
A7 167
A8 168
5B 91 Opening Bracket
2E 46 Period
3C 60 < Less Than
28 40 Opening Parenthesis
2B 43 + Plus
21 33 ! Exclamation Point
26 38 & Ampersand
A.9 169
AA 170
AB 1 71
AC 172
AD 173
AE 174
AF 175
BO 176
Bl 177
5D 93] Closing Bracket
24 36 $ Dollar Sign
2A 42 * Asterisk
29 41) Closing Parenthesis
3B 59 Semicolon
5E 94
2D 45 Hyphen (Minus)
2F 47 I Slant (Slash)
B2 178
B3 179
B4 180
B5 181
B6 182
B7 183
B8 184
B9 185
7C 124
2C 44

'
Comma

25 37 % Percent
5F 95 Underscore
3E 62 > Greater Than
3F 63 ? Question Mark
BA 186
BB 187
BC 188

C-3

EBCDIC

Hex Decimal

73 115
74 116
75 117
76 118
77 119
78 120
79 121
7A 122
78 123
7C 124
70 125
7E 126
7F 127
80 128
81 129
82 130
83 131
84 132
85 133
86 134
87 135
88 136
89 137
8A 138
88 139
8C 140
80 141
8E 142
8F 143
90 144
91 145
92 146
93 147
94 148
95 149
96 150
97 151
98 152
99 153
9A 154
9B 155
9C 156
9D 157
9E 158
9F 159
AO 160

C-4

B I 000 Systems
Pascal Language Maniual

EBCDIC and ASCII Charncter Sets

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont)

ASCH (EBCDIC Graphic)

Hex Decimal Graphic Meaning

BD 189
BE 190
BF 19 l
co 192
Cl 193
C2 194
40 96
3A 58 Colon
23 35 # Number Sign
60 64 @ Commercial At
27 39 ,

Apostrophe, Closing Quote
30 61 Equal Sign
22 34 ,,

Quotation Marks
C3 195
61 97 a Lower Case a
62 98 b Lower Case b
63 99 c Lower Case c
64 100 d Lower Cased
65 10 l e Lower Case e
66 102 f Lower Case f
67 103 g Lower Case g
68 104 h Lower Case h
69 105 Lower Case i
C4 196
cs 197
C6 198
C7 199
C8 200
C9 201
CA 202
6A 106 J Lower Case j
6B 107 k Lower Case k
6C 108 I Lower Case I
6D 109 m Lower Case m
6E 110 n Lower Case n
6F l l l 0 Lower Case o
70 112 p Lower Case p
71 113 CJ! Lower Case q
72 114 r Lower Case r
CB 203
cc 204
CD 205
CE 206
CF 207
DO 208
DI 209

EBCDIC

Hex Decimal

Al 161
A2 162
A3 163
A4 164
AS 16S
A6 166
A7 167
A8 168
A9 169
AA 170
AB l 71
AC 172
AD 173
AE 174
AF 17S
BO 176
Bl 177
B2 178
B3 179
B4 180
BS 181
B6 182
B7 183
B8 184
B9 18S
BA 186
BB 187
BC 188
BD 189
BE 190
BF 191
co 192
Cl 193
C2 194
C3 19S
C4 196
cs 197
C6 198
C7 199
C8 200
C9 201
CA 202
CB 203
cc . 204
CD 20S
CE 206

S024490

B 1000 Systems
Pascal Language Manual

EBCDIC and ASCII Character Sets

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont)

ASCII (EBCDIC Graphic)

Hex Decimal Graphic Meaning

7E 126
73 11 S s Lower Cases
74 116 t Lower Case t
7S 117 u Lower Case u
76 118 v Lower Case v
77 119 w Lower Case w
78 120 x Lower Case x
79 121 y Lower Casey
7A 122 z Lower Case z
D2 210
D3 211
04 212
OS 213
06 214
07 21S
08 216
09 217
DA 218
DB 219
DC 220
DD 221
DE 222
DF 223
EO 224
El 22S
E2 226
E3 227
E4 228
ES 229
E6 230
E7 231
7B 123 { Opening Brace
41 6S A Upper Case A
42 66 B Upper Case B
43 67 c Upper Case C
44 68 D Upper Case D
4S 69 E Upper Case E
46 70 F Upper Case F
47 71 G Upper Case G
48 72 H Upper Case H
49 73 I Upper Case I
E8 232
E9 233
EA 234
EB 23S
EC 236

C-S

EBCDIC

Hex Decimal

CF 207
DO 208
Dl 209
D2 210
DJ 211
04 212
05 213
06 214
07 215
08 216
09 217
DA 218
DB 219
DC 220
DD 221
DE 222
OF 223
EO 224
El 225
E2 226
E3 227
E4 228
ES 229
E6 230
E7 231
E8 232
E9 233
EA 234
EB 235
EC 236
ED 237
EE 238
EF 239
FO 240
Fl 241
F2 242
FJ 243
F4 244
F5 245
F6 246
F7 247
F8 248
F9 249
FA 250
FB 251
FC 252
FD 253
FE 254

C-6 FF 255

B l 000 Systems
Pascal Language Manual

EBCDIC and ASCII Character Sets

Table C-1. B 1000 Codes in EBCDIC Sequence (Cont)

ASCII (EBCDIC Graphic)

Hex. Decimal Graphic Meaning

ED 237
7D 125 } Closing Brace
4A 74 J Upper Case J
4B 75 K Upper Case K
4C 76 L Upper Case L
40 77 M Upper Case M
4E 78 N Upper Case N
4F 79 0 Upper Case 0
50 80 p Upper Case P
51 81 Q Upper Case Q
52 82 R Upper Case R
EE 238
EF 239
FO 240
Fl 241
F2 242
F3 243
5C 92 \ Reverse Slant
9F 159
53 83 s Upper Case S
54 84 T Upper Case T
55 85 lJ Upper Case U
56 86 v Upper Case V
57 87 w Upper Case W
58 88 x Upper Case X
59 89 y Upper Case Y
5A 90 z Upper Case Z
F4 244
F5 245
F6 246
F7 247
F8 248
F9 249
30 48 0 Zero
31 49 1 One
32 50 2 Two
33 51 3 Three
34 52 4 Four
35 53 5 Five
36 54 6 Six
37 55 7 Seven
38 56 8 Eight
39 57 9 Nine
FA 250
FB 251
FC 252
FD 253
FE 254
FF 255

ASCII

Hex Decimal

00 0
01 1
02 2
03 3
04 4
05 5
06 6
07 7
08 8
09 9
OA 10
OB 1 l
oc 12
OD 13
OE 14
OF 15
10 16
1 l 17
12 18
13 19
14 20
15 21
16 22
17 23
18 24
19 25
IA 26
IB 27
IC 28
ID 29
IE 30
IF 31
20 32
21 33
22 34
23 35
24 36
25 37
26 38
27 39
28 40
29 41
2A 42
2B 43

5024490

B l 000 Svstcms
Pascal Language Manual

EBCDIC and ASCII Character Sets

Table C-2. B 1000 Codes in ASCII Sequence

EBCDIC (ASCII Graphic)

Hex Decimal Graphic Meaning

00 0 NUL Null
01 I SOH Start of Heading
02 3 STX Start of Text
03 4 ETX End of Text
37 55 EQT End of Transmission
2D 45 ENQ Enquiry
2E 46 ACK Acknowledge
2F 47 BEL Bell
16 22 BS Backspace
05 5 HT Horizontal Tabulation
25 37 LF Line Feed
OB 1 1 VT Vertical Tabulation
oc 12 FF Form Feed
OD 13 CR Carriage Return
OE 14 so Shift Out
OF 15 SI Shift In
10 16 OLE Data Link Escape
l I 17 DCl Device Control 1
12 18 DC2 Device Control 2
13 19 DC3 Device Control 3
JC 60 DC4 Device Control 4
30 61 NAK Negative Acknowledge
32 50 SYN Synchronous Idle
26 38 ETB End of Transmission Block
18 24 CAN Cancel
X9 25 EM End of Medium
3F 63 SUB Substitute
27 39 ESC Escape
IC 28 FS File Separator
10 29 GS Group Separator
IE 30 RS Record Separator
lF 31 us Unit Separator
40 64 SP Space
4F 79
7F 127 Quotation Marks
7B 123 # Number Sign
SB 91 $ Dollar Sign
6C 108 % Percent
50 80 & Ampersand
70 125 Apostrophe, Single Quote
40 77 (Opening Parenthesis
50 93) Closing Parenthesis
5C 92 * Asterisk
4E 78 + Plus

C-7

ASCII

Hex Decimal

2C 44
20 45
2E 46
2F 47
30 48
31 49
32 50
33 51
34 52
35 53
36 54
37 55
38 56
39 57
3A 58
3B 59
3C 60
3D 61
3E 62
3F 63
40 64
41 65
42 66
43 67
44 68
45 69
46 70
47 71
48 72
49 73
4A 74
48 75
4C 76
4D 77
4E 78
4F 79
50 80
51 81
52 82
53 83
54 84
55 85
56 86
57 87
58 88
59 89 '

C-8

B 1000 Systems
Pascal Language Manual

EBCDIC and ASCII Character Sets

TabDe C-2. B 1000 Codes in ASCH Sequence (Cont)

EBCDIC (ASCII GRAPHIC)

Hex Decimal Graphic Meaning

6B 107 Comma
60 96 Hyphen (Minus)
48 75 Period
61 97 I Slant (Slash)
FO 240 0 Zero
Fl 241 l One
F2 242 2 Two
F3 243 3 Three
F4 244 4 Four
F5 245 5 Five
F6 246 6 Six
F7 247 7 Seven
F8 248 8 Eight
F9 249 9 Nine
7A 122 Colon
5E 94 Semicolon
4C 76 < Less Than
7E 126 Equals
6E 110 > Greater Than
6F I l 1 ') Question Mark
7C 124 @ Commercial At
Cl 193 A Upper Case A
C2 194 B Upper Case 8
C3 195 c Upper Case C
C4 196 D Upper Case D
C5 197 E Upper Case E
C6 198 F Upper Case F
C7 199 G Upper Case G
C8 200 H Upper Case H
C9 201 I Upper Case I
DI 209 J Upper Case J
02 210 K Upper Case K
03 211 L Upper Case L
04 212 M Upper Case M
05 213 N Upper Case N
06 214 0 Upper Case 0
07 215 p Upper Case P
08 216 Q Upper Case Q
09 217 R Upper Case R
E2 226 s Upper Case S
E3 227 T Upper Case T
E4 228 u Upper Case U
Er .) 229 v Upper Case V
E6 230 w Upper Case W
E7 231 x Upper Case X
E8 232 y Upper Case Y

ASCII

Hex Decimal

5A 90
5B 91
5C 92
50 93
5E 94
5F 95
60 96
61 97
62 98
63 99
64 100
65 101
66 102
67 103
68 104
69 105
6A 106
6B 107
6C 108
60 109
6E 110
6F I I I
70 112
71 113
72 114
73 115
74 116
75 117
76 118
77 I 19
78 120
79 121
7A 122
7B 123
7C 124
7D 125
7E 126
7F 127
80 128
81 129
82 130
83 131
84 132
85 133
86 134
87 135

5024490

B 1000 Systems
Pascal Language Manual

EBCDIC and ASCII Character Sets

Table C-2. B 1000 Codes in ASCII Sequence (Cont)

EBCDIC (ASCII Graphic)

Hex Decimal Graphic Meaning

E9 233 z Upper Case Z
4.A 74 [Opening Bracket
EO 224 I Reverse Slant
5.A 90] Closing Bracket
5F 95
6D 109 Underscore
79 121
81 129 a Lower Case a
82 130 b Lower Case b
83 131 c Lower Case c
84 132 d Lower Cased
85 133 e Lower Case e
86 134 f Lower Case f
87 135 g Lower Case g
88 . 136 h Lower Case h
89 137 Lower Case i
91 145 J Lower Case j
92 146 k Lower Case k
93 147 I Lower Case I
94 148 m Lower Case m
95 149 n Lower Case n
96 150 0 Lower Case o
97 151 p Lower Case p
98 152 q Lower Case q
99 153 r Lower Case r
A2 162 s Lower Cases
A3 163 t Lower Case t
A4 164 u Lower Case u
A5 165 v Lower Case v
A6 166 w Lower Case w
A7 167 x. Lower Case x
A8 168 y Lower Casey
A9 169 z Lower Case z
co 192 { Opening Brace
6A 106
DO 208 Closing Brace
Al 161
07 7 DEL Delete
20 32
21 33
22 34
23 35
24 36
15 21
06 6
17 23

C-9

ASCII

Hex Decimal

88 136
89 137
8A l3S
SB 139
SC 140
80 141
SE 142
8F 143
90 144
91 145
92 146
93 147
94 148
95 149
96 150
97 151
9S 152
99 153
9A 154
98 155
9C 156
90 157
9E 158
9F 159
AO 160
Al 161
A2 162
A3 163
A4 164
A5 165
A6 166
A7 167
A8 168
A9 169
AA 170
AB 1 71
AC 172
AD 173
AE 174
AF 175
BO 176
Bl 177
B2 178
B3 179
B4 180
B5 181

C-10

B I 000 Systems
Pascal Language Manual

EBCDIC and ASCII Character Sets

Table C-2. B 1000 Codes in ASCII Sequence (Cont)

EBCDIC (ASCII GRAPHIC)

Hex Decimal Graphic Meaning

2S 40
29 41
2A 42
2B 43
2C 44
09 9
OA 10
lB 27
30 4S
31 49
lA 26
33 51
34 52
35 53
36 54
08 s
38 56
39 57
3A 58
3B 59
04 4
14 20
3E 62
El 225
4~ 65
42 66
43 67
44 68
45 69
46 70
47 71
48 72
49 73
51 81
52 82
5.3 83
54 84
55 85
56 86
57 87
58 88
59 89
62 98
63 99
64 100
65 101

ASCII

Hex Decimal

B6 182
B7 183
88 184
89 185
BA 186
BB 187
BC 188
BD 189
BE 190
BF 191
co 192
Cl 193
C2 194
C3 195
C4 196
cs 197
C6 198
C7 199
C8 200
C9 201
CA 202
CB 203
cc 204
CD 205
CE 206
CF 207
DO 208
DI 209
D2 210
D3 211
D4 212
D5 213
D6 214
D7 215
D8 216
D9 217
DA 218
DB 219
DC 220
DD 221
DE 222
DF 223
EO 224
El 225
E2 226
E3 227

5024490

B I 000 Systems
Pascal Language Manual

EBCDIC and ASCII Character Sets

Tabic C-2. 8 1000 Codes in ASCII Sequence (Cont)

EBCDIC (ASCII Graphic)

Hex Decimal Graphic Meaning

66 102
67 103
68 104
69 105
70 112
71 l 13
72 114
73 I 15
74 116
75 117
76 I 18
Tl 119
78 120
80 128
8A 138
8B 139
8C 140
80 141
8E 142
8F 143
90 144
9A 154
9B 155
9C 156
90 157
9E 158
9F 159
AO 160
AA 170
AB I 71
AC 172
AD 173
AE 174
AF 175
BO 176
Bl 177
B2 178
B3 179
B4 180
B5 181
B6 182
B7 183
B8 184
B9 185
BA 186
BB 187

C-11

ASCII

Hex Decimal

E4 228
E5 229
E6 230
E7 231
E8 232
E9 233
EA 134
EB 235
EC 236
ED 237
EE 238
EF 239
FO 240
Fl 241
F2 242
F3 243
F4 244
F5 245
F6 246
F7 247
F8 248
F9 249
FA 250
FB 251
FC 252
FD 253
FE 254
FF 255

C-12

B 1000 Systems
Pascal Language Manual

EBCDIC and ASCII Character Sets

Table C-2. B 1000 Codes in ASCIU Sequence (Cont)

EBCDIC (ASCII Graphic)

Hex Decimal Graphic Meaning

BC 188
BO 189
BE 190
BF 191
CA 202
CB 203
cc 204
CD 205
CE 206
CF 207
DA 218
DB 219
DC 220
DD 221
DE 222
OF 223
EA 234
EB 235
EC 236
ED 237
EE 238
EF 239
FA 250
FB 251
FC 252
FD 253
FE 254
FF 255

B 1000 Systems
Pascal Language Manual

< 5-7
<> 5-7. 5-8. 5-9
<= 5-7. 5-9
<abort procedure> 6-40
<abort procedure> syntax 6-41
<abs function> 6-37
<abs function> syntax 6-37
<accept procedure> 6-40
<accept procedure> syntax 6-41
<actual parameter list> 4-10, 5-4
<arctan function> 6-37

INDEX

<arithmetic expression> 5-7, 5-14, 6-37, 6-38,
6-39, 6-40

<arithmetic expression> syntax 5-1
<arithmetic function> 6-1, 6-40
<arithmetic functions> syntax 6-37
<arithmetic operator> 5-13
<arithmetic operator> syntax 5-13
<arithmetic relation> 5-6
<arithmetic relation> syntax 5-7
<array schema definition> 3-11
<array type identifier> 3-4, 3-6, 3-10
<array type> 3-4, 3-5
<array variable> 5-1, 7-2
<assignment statement> 4-1
<assignment statement> syntax 4-2
<attribute parameter list> syntax 8-4
<attribute phrase> syntax 2-2
<base type> 3-21
<blank> 9-3
<blank> definition 9-3
<block> syntax 2-2
<Boolean constant identifier> 3-2, 3-3
<Boolean constant> 3-2, 3-20, 3-22, 5-5
<Boolean expression> 4-9, 4-11, 5-1, 5-2,

5-5, 5-7' 6-28, 6-29
<Boolean expression> syntax 5-5
<Boolean operator> 5-5
<Boolean operator> syntax 5-5
<Boolean primary> 5-5
<Boolean primary> syntax 5-5
<Boolean type identifier> 3-4, 3-6, 3-14
<Boolean type> 3-4, 3-5, 3-6, 3-19
<Boolean variable> 5-5
<Boolean-option> A-3
<Boolean-option-expression> A-3
<Boolean-option-expression> syntax A-3

5024490

<Boolean-option-setting> A-2
<Boolean-option-setting> syntax A-3
<Boolean-option> A-2, A-3
<Boolean-option> syntax A-2
<buffer variable> 7-1
<buffer variable> syntax 7-4
<Case constant> 3-19, 4-3
<case index> 4-3
<case index> syntax 4-3
<Case list clement> 4-3
<case list clement> syntax 4-3
<case statement> 4-1
<Case statement> svntax 4 .. 3
<char constant identifier> 3-2, 3-3
<char constant> 3-2, 3-20, 3-22, 5-9

B 1000 Systems
Pascal Language Manual

INDEX (CONT)

<Char expression> 5-1, 5-2, 5-7, 5-17, 6-28.
6-29

<char expression> syntax 5-9
<Char type identifier> 3-4, 3-6, 3-14
<char type> 3-4, 3-5, 3-6, 3-19
<char variable> 5-9, 6-24
<character literal> 3-3, 9-2
<Character literal> syntax 8-1

· <character string> 3-3, 9-2
<character string> syntax 8-1
<character> definition 8-1
<chr function> 6-32
<chr function> syntax 6-32
<close option> 6-20
<close option> syntax 6-20
<close procedure> 6-2
<close procedure> syntax 6-20
<comment> 9-3
<comment> syntax 9-3
<component type> 3-16
<compound statement> 4-1
<compound statement> syntax 4-4
<Constant definitions> 3-1., 3-2
<context-sensitive identifier> 9-2
<control variable> 4-4
<control variable> definition 4-4
<cos function> 6-3 7
<cos function> syntax 6-38
<date procedure> 6-40
<date procedure> syntax 6-42
<day> 6-42
<day> syntax 6-42

2

B 1000 Systems
Pascal Language Manual

<declared function> 5-3
<declared function> syntax 5-4
<declared procedure> 4-10
<declared procedure> syntax 4-10
<digit> 3-2, 8-2, 8-3
<digit> definition 8-2
<directive> 3-24, 3-27
<discriminated array schema> 3-10
<display procedure> 6-40
<display procedure> syntax 6-43
<domain type> 3-17

INDEX (CONT)

<dynamic allocation procedure> 6-1, 6-34
<dynamic variable> 7-1
<dynamic variable> syntax 7-3
<element type> 3-10
<entire variable> 7-1
<entire variable> syntax 7-1
<enumerated constant> 3-15, 3-20, 3-22, 5-10
<enumerated expression> 5-1, 5-2, 5-7
<enumerated expression> syntax 5-10
<enumerated type identifier> 3-4, 3-6, 3-15,

3-19
<enumerated type> 3-4, 3-5, 3-6
<enumerated variable> 5-10
<eof function> 6-2
<eof function> syntax 6-21
<eoln function> 6-2
<eoln function> syntax 6-21
<exp function> 6-37
<exp function> syntax 6-38
<exponent part> 8-3
<exponent part> syntax 8-3
<expression> 3-30, 4-2, 6-28
<expression> syntax 5-1
<external file identifier> syntax 2-2
<external file specification> syntax 2-2
<field designator> 7-1
<field designator> syntax 7-3
<field identifier> 3-19, 7-3
<field list> 3-18, 3-19
<field type> 3-19
<field width> 6-28
<field width> syntax 6-28
<file attribute assignment> syntax 6-45
<file attribute request> syntax 6-43
<file handling function> 6-1
<file handling function> syntax 6-2

5024490 3

<file handling procedure> 6-1
<file handling procedure> syntax 6-2
<file type identifier> 3-4. 3-6. 3-15
<file type> 3-4. 3-5

B 1000 Systems
Pascal Language Manual

INDEX (CONT)

<file variable> 6-20, 6-21, 6-22, 6-23. 6-27.
6-28, 7-4

dilevalue function> syntax 6-21
<final value> 4-4
<final value> syntax 4-5
<fixed part> 3-18
<for statement> 4-1
<for statement> syntax 4-4
<formal parameter list> 3-24. 3-27
<forward> 3-25. 3-27
<frac digits> 6-28
<frac digits> syntax 6-29
<function declaration> 3-24
<function designator> 5-5. 5-9, 5-10, 5-11,

5-12, 5-14
<function designator> syntax 5-3
<function identifier> 3-27, 4-2, 5-4
<general function> 6-1
<general function> syntax 6-41
<general procedure> 6-1
<general procedure> syntax 6-40
<get procedure> 6-2
<get procedure> syntax 6-22
<getattribute procedure> 6-40
<goto statement> 4-1
<goto statement> syntax 4-6
<hours> 6-47
<hours> syntax 6-4 7
<identifier> 3-15, 3-19, 3-24, 3-25, 3-27,

9-2
<identifier> syntax 8-2
<if statement> 4-1
<if statement> syntax 4-9
<immediate-option> A-2
<immediate-option> syntax A-2
<index expression> 7-2
<index expression> syntax 7-2
<index type> 3-10
<indexed array variable> 7-2
<indexed array variable> syntax 7-2
<indexed variable> 7-1
<indexed variable> syntax 7-2
<initial value> 4-4

4

<initial value> syntax 4-4

B 1000 Systems
Pascal Language Manual

INDEX (CONT)

<integer constant identifier> 3-2, 3-3, 5-11
<integer constant> 3-2, 3-20, 3 .. 22
<integer expression> 5-1, 5-2, 5-7, 5-11,

6-27. 6-28, 6-29, 6-30,
6-32, 6-33, 6-45, 8-4

<integer expression> syntax 5-11
<integer operator> 5-1 1
<integer operator> syntax 5-11
<integer primary> 5-11, 5-13
<integer primary> syntax 5-11
<integer type identifier> 3-4, J-6, 3-16
<integer type> 3-4, 3-5, 3-6, 3-19
<integer variable> 5-11, 6-24
<label declarations> 3-1
<label> 3-1, 4-1, 4-6
<letter> 8-2
<letter> definition 8-2
<111 function> 6-37
<In function> syntax 6-38
<mark procedure> 6-34
<mark procedure> syntax 6-36
<member designator> 5-16
<member designator> syntax 5-16
<minutes> 6-4 7
<minutes> syntax 6-4 7
<month> 6-42
<month> syntax 6-42
<new array type> 3-10
<new enumerated type> 3-15
<new file type> 3-15
<new pointer type> 3-16
<new procedure> 6-34
<new procedure> syntax 6-36
<new record type> 3-18
<new set type> 3-21
<new subrange type> 3-22
<non-apostrophe character> 8-1
<non-apostrophe character> definition 8-1
<number> 9-2
<number> syntax 8-3
<odd function> 6-41

, <odd function> syntax 6-45
<option-factor> A-3
<option-factor> syntax A-3
<Option-term> A-3
<Option-term> syntax A-3

5024490 5

B I 000 Systems.
Pascal Language Manual

INDEX (CONT)

<Ord function> 6-32
<Ord function> syntax 6-33
<ordinal expression> 4-3. 4-4. 4-5, 5-9. 5-16.

6-33, 6-45. 6-46, 7-2
<ordinal expression> syntax 5-2
<ordinal relation> 5-6
<ordinal relation> syntax 5-7
<ordinal type identifier> 3--19
<ordinal type transfer function> 6-33
<ordinal type> 3-10, 3-21
<page procedure> 6-2
<page procedure> syntax 6-22
<pointer expression> 5-1, 6-36
<pointer expression> syntax 5-12
<pointer relation> 5-6, 5-8
<pointer relation> syntax 5-8
<pointer type identifier> 3-4, 3-6, 3-16
<pointer type> 3-4, 3-27
<pointer variable> 5-12, 6-36, 7-3
<pred function> 6-41
<pred function> syntax 6-45
<predefined function> 5-3
<predefined function> syntax 6-1
<predefined identifier> 9-2
<predefined identifier> list 9-2
<predefined procedure> 4-10
<predefined procedure> syntax 6-1
<procedure and function declar 3-1
<procedure declaration> 3-·24
<procedure identifier> 3-24, 4-10
<procedure invocation statemen 4-1
<procedure invocation statement> syntax 4-10
<program heading> syntax 2-2
<program identifier> syntax 2-2
<program parameters> syntax 2-2
<program text> syntax 9-1
<program> syntax 2-1
<put procedure> 6-2
<put procedure> syntax 6-23
<read parameter> 6-23, 6-26
<read parameter> syntax 6-24
<read procedure> 6-2
<read procedure> syntax 6-23
<read textfile procedure> 6-2
<read textfile procedure> synt 6-23
<readln procedure> 6-2
<readln procedure> syntax 6-26
<real constant identifier> 3-2, 3-3, 5-14

6

B l 000 Systems
Pascal Language Manual

<real constant> 3-2
<real expression> 5-1, 6-28, 6-30, 6-38
<real expression> syntax 5-13
<real primary> 5-13
<real primary> syntax 5-14
<real type identifier> 3-4, 3-6, 3-17
<real type> 3-4, 3-5
<real variable> 5-14, 6-24
<record boundary> 9-3
<record boundary> definition 9-4
<record type identifier> 3-4, 3-6, 3-18
<record type> 3-4, 3-5
<record variable> 4-12, 5-1, 7-3
<rel op> 4-9, 5-7
<rel op> syntax 5-7
<relational expression> 5-6
<relational expression> syntax 5-6
<release procedure> 6-34
<release procedure> syntax 6-36
<repeat statement> 4-1
<repeat statement> syntax 4-11
<reserved word> 9-2
<reserved word> list 9-2
<reset procedure> 6-2
<reset procedure> syntax 6-27
<result type> 3-27
<rewrite procedure> 6-2
<rewrite procedure> syntax 6-27
<round function> 6-37
<round function> syntax 6-38
<runtime function> 6-41
<runtime function> syntax 6-46
<seconds> 6-4 7
<seconds> syntax 6-4 7
<Seek procedure> 6-2
<Seek procedure> syntax 6-27
<Set constructor> 5-15
<Set constructor> syntax 5-16
<Set expression> 5-1, 5-9, 5-15
<set expression> syntax 5-15
<Set operator> 5-1 5
<set operator> syntax 5-15
<Set primary> 5-15
<Set primary> syntax 5-15
<Set relation> 5-6
<Set relation> syntax 5-9
<Set type identifier> 3-4, 3-6, 3-21

5024490

INDEX (CONT)

7

B 1000 Systems
Pascal Language Manual

<set type> 3-4, 3-5
<Set variable> 5-15
<Setattribute procedure> 6-40
<simple type> 3-4, 3-2 7
<sin function> 6-3 7
<sin function> syntax 6-39
<Special token> 9-2
<sqr function> 6-3 7
<sqr function> syntax 6-39
<sqrt function> 6-37
<Sqrt function> syntax 6-39
<statement list> 4-1, 4-3, 4-4, 4-11
<Statement list> syntax 4-1
<statement part> syntax 4-1

INDE.X (COMT)

<Statement> 4-1, 4-3, 4-4, 4-9, 4-11, 4-12
<Statement> syntax 4-1
<string constant identifier> 3-2, 3-3
<String constant> 3-2, 5-1 7, 6-41, 6-43
<string expression> 4-9, 5-1
<string expression> syntax 5-17
<string relation> 5-6
<string relation> syntax 4-9
<string type> 3-11
<string variable> 5-17, 6-41, 6-43
<Structured type> 3-4
<subrange type identifier> 3-4, 3-6, 3-19,

3-22
<subrange type> 3-4, 3-5, 3-6
<succ function> 6-41
<succ function> syntax 6-46
<tan function> 6-37
<tan function> syntax 6-40
<textfile type identifier> J-4, 3-6, 3-22
<textfile type> 3-4, 3-5
<textfile variable> 6-20, 6-21, 6-22, 6-23,

6-26, 6-27' 6-28, 6-32,
7-4

<time procedure> 6-40
<time procedure> syntax 6-4 7
<token separator> 9-1
<token separator> syntax 9-3
<token> 9-1
<token> syntax 9-2
<trunc function> 6-3 7
<trunc function> syntax 6-40
<type definitions> 3-1
<type identifier> 3-29

8

B 1000 Systems
Pascal Language Manual

<type transfer function> 6-1
<type transfer function> syntax 6-32
<type> 3-23
<unsigned integer> 3-3, 5-11, 8--3
<unsigned integer> syntax 8-3
<unsigned number> 8-3
<unsigned number> syntax 8-3
<unsigned real> 3-3, 5-14, 8-3
<unsigned real> syntax 8-3
<value parameter type> 3-29
<Value parameter> 3-29
<value-option> A-2
<value-option> syntax A-2
<variable declarations> 3-1
<variable identifier list> 3-23
<variable identifier> 3-23, 3-29, 7-1
<variable parameter> 3-29
<variable> 3-30, 4-2, 6-23, 6-42, 6-4 7
<variable> syntax 7-1
<variant part> 3-18
<variant selector> 3-19
<variant> 3-19
<wait procedure> 6-40
<while statement> 4-1
<While statement> syntax 4-11
<with statement> 4-1
<With statement> syntax 4-12
<write parameter> 6-28, 6-32
<Write parameter> syntax 6-28
<Write procedure> 6-2
<Write procedure> syntax 6-28
<write textfile procedure> 6-2
<write textfile procedure> syntax 6-28
<writeln procedure> 6-2
<writeln procedure> syntax 6-32
<year> 6-42
<year> syntax 6-42
? J-3, 5 .. 11, 5-13, 5-15, 8-3
$ A-2
$$ A-2
* 5-11, 5-13, 5-15
- J-3, 5 .. 11, 5-13, 5-15, 8-3
I 5-13
- (underscore) 8-2
> 5-7
>== 5-7
@ 3-17

5024490

INDEX (CONT)

9

abort 6-41
Abort Procedure 6-41
abs 6-37
ABS Function 6-3 7
accept 6-41
Accept Procedure 6-41
Activation Records 2-6

B I 000 Systems
Pascal Language Manual

INDEX (CONT)

ACTUAL PARAMETER LISTS AND PARAMETER MATCHING 3-30
AND 5-5, A-3
ANSI A-4
arctan 6-37
ARCT AN Function 6-3 7
AREALENGTH 6-10
AREAS 6-10
Arithmetic Functions 6-37
Array Types 3-9
Array Variable 7-5
ARRAY; 3-10
Assignment Compatibility 3-8
ASSIGNMENT STATEMENTS 4-2
ATTERR 6-10
AUDITED 6-10
AVAILABLE 6-11

BACKUPFILENAME 6-11
BACKUPKIND 6-11
BACKUPPERMITTED 6-11
BASIC COMPONENTS 8-1
BEGIN 4-1, 4-4
BLANK 9-3
BLOCK 6-11
BLOCKSIZE 6-11
BLOCKSTRUCTURE 6-11
Boolean 3-6, 3-14
Boolean and Relational Expressions 5-4
Boolean Expressions 5-5
Boolean Options A-4
Boolean Types 3-1 3
Boolean Variable 7-5
BRIDGES B-3
Buffer Variables 6-3, 7-4
BUFFERS 6-11

CAND 5-5
CASE 3-19, 4-3
CASE ST A TEMENTS 4-2
CCI Syntax Diagrams A-1

10

CENSUS 6-12
CHANGEDSUBFILE 6-12
char 3-6. 3-14
CHAR Expressions 5-9
Char Variable 7-5
Character Types 3-14

B l 000 Systems
Pascal Language Manual

INDEX (CONT)

CHARACTERS AND CHARACTER STRIN 8-1
chr 6-32
CHR Function 6-32
CLEAR A-5
close 6-20
Close Operation 6-6. 6-9
Close Procedure 6-20
CODE A-4
COMMENT 9-3
Compatible Types 3-7
Compile-Time Errors A-6
COMPILER OPTIONS A-1
COMPILING AND EXECUTING A PASCAL PROGRAM A-6
COMPILING, EXECUTING, AND ANAL A-1
COMPOUND STATEMENTS 4-4
COMPRESSION 6-12
CONST 3-2
CONST ANT DEFINITIONS 3-2
COR 5-5
cos 6-38
COS Function 6-38
CREATIONDATE 6-12
crunch 6-20
CURRENTBLOCK 6-12

date 6-42
Date Procedure 6-42
DECLARATIONS AND DEFINITIONS 3-1
DENSITY 6-12
DEPENDENTSPECS 6-12
Description of File Attributes 6-10
DIRECTION 6-12
display 6-43
Display Procedure 6-43
DISPOSE Procedure 1-1
DIV 5-11, 5-13
DIVIDE BY ZERO A-7
DO 4-4, 4-11, 4-12
DOWNTO 4-4
Dynamic Allocation Procedures 6-34
Dynamic Variables 7-3

5024490 1 1

E 8-3
e 8-3

B 1000 Systems
Pascal Language Manual

INDEX (CONIT)

EBCDIC AND ASCII CHARACTER SET C-1
ELSE 4-9
END 3-18, 4-L 4-3. 4-4
Entire Variables 7-1
Enumerated Expressions 5-10
Enumerated Types 3-14
Enumerated Variable 7-5
eof 6-21
EOF Function 6-21
eoln 6-21
EOLN Function 6-21
ERRORLIMIT A-5
ERRORS DURING EXECUTJ:ON 1-2
exp 6-38
EXP Function 6-38
EXPRESS.IONS 5-1
EXPRESS.IONS BY TYPE 5-4
EXTEND 6-12
EXTMODE 6-12

FALSE 3-3. A-3
FAMILYNAME 6-13
Field Designators 7-2
FILE 3-16
FILE AT EOF A-8
File Attributes 6-3
FILE ATTRIBUTES AND MNEMONIC VALUES 8-4
FILE NOT AT EOF A-8
FILE NOT CLOSED A-8
FILE NOT OPEN A-8
File Types 3-15
File Variable 7-5
File-Handling Procedures and Functions 6-20
FILEKIND 6-13
FILENAME 6-13
FILESECTION 6-13
FILEST A TE 6-13
FILEST A TE attribute-name mnemonic 6-13

AWAITINGHOST 6-13
BLOCKED 6-13
CLOSED 6-13
CLOSEPENDING 6-14
DEACTIVATED 6-14
DEACTIV A TIONPENDING 6-14
0 FFERED 6-14
OPENED 6-14
SHUTTINGDOWN 6-14

12

Filevalue Function 6-21
Fixed-Point Format 6-31
FLEXIBLE 6-14
Floating.-Point Format 6-30
FOR 4-4
FOR STATEMENTS 4-4
Formal Parameter Lists 3-28
FRAMSIZE 6-14
FUNCTION 3-27
Function Declaration 3-26
FUNCTION DESIGNATORS 5-3

B 1000 Systems
Pascal Language Manual

INDEX (CONT)

General Procedures and Functions 6-40
get 6-22
Get Operation 6-5, 6-7
Get Procedure 6-22
Getattribute Procedure 6-43
GOTO 4-6
GOTO ST A TEMENTS 4-6

HEAP LIMIT A-7
HOSTNAME 6-15

identifier, predefined 9-2
IDENTffIERS 8-2
IF 4-9
IF STATEMENTS 4-8
Immediate Options A-5
IMPLEMENTATION RESTRICTIONS 1-1
IN 5-9
INCLUDE A-6
INDEX OUT OF RANGE A-7
Indexed Variables 7-2
input file 6-7
INPUT/OUTPUT AND FILE-HANDLING 6-1
Inspection Mode and Generation 6-3
integer 3-6, 3-16
Integer Expressions 5-11
INTEGER OVERFLOW A-7
Integer Types 3-16
Integer Variable 7-5
INTERPRETATION OF PROGRAM TEXT 9-1
INTNAME 6-15
INTRODUCTION 1-1
INV PTR REFERENCE A-7

5024490 13

INV STD ROUTINE A-8
INV AUD CASE A-8
INV AUD CHAR READ A-8
INV AUD OPCODE A-8

KIND 6-15

LABEL 6-15
LABEL DECLARATIONS 3-1
LASTRECORD 6-15
LASTSUBFILE 6-15
Lazv 1/0 6-9
UNEINFO A-4
UNENUM 6-15
LIST A-4
USTDOLLAR A-4
LISTINCL A-4
In 6-38
LN Function 6-38
Logical and Physical Files 6-3
LOOPS B-2

MAP A-4
mark 6-36
Mark Procedure 6-36
MAXCENSUS 6-15
MAXINT 3-3
maxint 5-11
MAXRECSIZE 6-15
MAXSUBFILES 6-15
MINRECSIZE 6-15
MOD 5-11, 5-13
MYHOSTNAME 6-16
MYNAME 6-16
MYUSE 6-16

NEW 1-1
new 6-36
New Procedure 6-36
NEW FI LE 6-16
NEXTRECORD 6-16
NIL 5-12
NIL POINTER ERROR A-8
NOBOUNDS A-4
Non-local GOTOs 1-1
NOT 5-5, A-3

14

B l 000 Systems
Pascal Language Manual

INDEX (CONT)

NOT AGFIELD A-4
NUMBERS 8-2

odd 6-45
Odd Function 6-45
OF 3-10, 3-16, 3-19, 3-21, 4-3
OMIT A-4
OPEN 6-16
OPTIONAL 6-16
OPTIONAL ITEMS B-2
OR 5-5, A-3
ord 6-33
ORD Function 6-33
ORDINAL EXPRESSIONS 5-2
Ordinal Type Transfer Function 6-33
ordinal type transfer function 6-33
Ordinal Types 3-5
OTHERUSE 6-16
OTHERWISE 4-3
output file 6-7

PACK, UNPACK 1-1
PACKED 3-10, 3-16, 3-18, 3-21
page 6-22
PAGE A-5
Page Procedure 6-22
PAGESIZE 6-16
parameter list congruity 3-30
PARITY 6-16
Permanent and Temporary Files 6-3
Pointer Expressions 5-12
Pointer Type 3-5
Pointer Types 3-16
Pointer Variable 7-5
POP A-·2

B 1000 Systems
Pascal Language Manual

INDEX (CONT)

PRECEDENCE OF OPERATORS 5-2
pred 6-45
PRED Function 6-45
PREDEFINED IDENTIFIER 9-2
PREDEFINED PROCEDURES AND FUNCTIONS 6-1
predefined textfile 6-7
Predefined Textfiles (Input, Output) 6-7
PRINTDISPOSITION 6-17
PROCEDURE 3-24
PROCEDURE AND FUNCTION DECLARA 3-24
PROCEDURE AND FUNCTION DESCRIPTIONS 6-19
Procedure Declaration 3-24

5024490 15

B 1000 Systems
Pascal Language Manual

INDEX (CONIT)

PROCEDURE INVOCATION STATEMENT 4-10
PROGRAM ABORT A-8
PROGRAM BLOCKS 2-4
PROGRAM PARAMETERS 2-3
PROGRAM STRUCTURE 2-1
PROGRAM TEXT 9-1
PROGRAM UNIT 2-1
Program Unit syntax 2-1
PROTECTION 6-17
purge 6-20
put 6-23
Put Operation 6-6. 6-8
Put Procedure 6-23

RAILROAD DIAGRAMS B-1
read 6-23
Read Operation 6-5, 6-8
Read Procedure 6-23
Read Textfile Procedure 6-23
readln 6-26
Readln Operation 6-8
Readln Procedure 6-26
real 3-6, 3-· l 7
real expression> 5- l
Real Expressions 5-13
REAL OVERFLOW A-7
Real Types 3-1 7
Real Variable 7-5
RECORD 3-18, 6-17
RECORD BOUNDARY 9-4
Record Types 3-1 7
Record Variable 7-5
RELATED DOCUMENTS 1-3
Relational Expressions 5-6
release 6-36
Release Procedure 6-36
REPEAT 4-11
REPEAT ST A TEMENTS 4-11
REQUIRED ITEMS B-1
RESERVED WORD 9-2
reserved words 9-2
reset 6-27
RESET A-2
Reset Operation 6-4, 6-7
Reset Procedure 6-26
RESIDENT 6-17
rewrite 6-27

16

Rewrite Operation 6-6, 6-8
Rewrite Procedure 6-27
round 6-38
ROUND Function 6-38
Run-Time Errors A-7
runtime 6-46
Runtime Function 6-46

Same Types 3-7
save 6-20
SAVEFACTOR 6-17
Scope 2·-4
Scope Blocks 2-4
Scope Record Definitions 2-4
Scope Record Variables 2-5
Scope WITH Statements 2-5
SECURITYTYPE 6-17
seek 6-27
Seek Operation 6-5
Seek Procedure 6-27
SERIALNO 6-18
SET 3-21, A-2
Set Expressions 5-15
SET OUT OF RANGE A-7
Set Types 3-20
Set Variable 7-5
Setattribute Procedure 6-44
Simple Types 3-4
Simple, Structured, and Pointe 3-4
sin 6-39
SIN Function 6-39
sqr 6-39
SQR Function 6-39
sqrt 6-39
SQRT Function 6-39
ST ACK LIMIT A-7
Standard Files 6-4
Standard Files and Textfiles 6-2
ST A TEMENTS 4-1
String Expressions 5-17
STRING RELATION 4-9
String Variable 7-6
STRINGS A-5
STRUCTURE OF MANUAL 1-2
Structured Types 3-5
SUBFILEERROR 6-18

5024490

B l 000 Systems
Pascal Language Manual

INDEX (CONT)

17

B I 000 Systems
Pascal Language Manual

INDEX (CONT)

SUBFILEERROR attribute mnemonic 6-18
DATALOST 6-18
DISCONNECTED 6-18
NOBUFFER 6-18
NOERROR 6-18
NOFILEFOUND 6-18
UNREACHABLEHOST 6-18

Subrange Types 3-21
succ 6-46
SUCC Function 6-46

tan 6-40
TAN Function 6-39
Terminology 6-2
text 3-6, 3-12
TEXT BUF OVERFLOW A-8
Textfile Types 3-22
Textfile Variable 7-6
Textfiles (Including Predefined Textfiles) 6-6
Textfiles in General 6-7
THEN 4-9
time 6-47
Time Procedure 6-4 7
TITLE 6-18
TO 4-4
TOKEN 9-l
TOKEN SEPARATOR 9-3
TRANSLATE 6-19
TRANSLATING 6-19
TRUE 3-3, A-3
trunc 6-40
TRUNC Function 6-40
TYPE 3-4
Type = <char variable> 6-24
Type = <integer variable> 6-25
Type = <real variable> 6-25
TYPE DEFINITIONS 3-3
Type Descriptions 3-9
Type Identifiers 3-6
Type Transfer Functions 6-32

UNDEFINED POINTER A-8
UNDEFINED VARIABLES 7-6
underscore (-) 8-2
UNTIL 4-11
UPDATEFILE 6-19
Use of File Attributes 6-10
USEDATE 6-19

18

USERBACKUPNAME 6-19

B I 000 Svstems
Pascal Langu~\gc Manual

INDEX (CONT)

USING THE PASCAL/ANALYZER PROGRAM A-8
USING THE SYSTEM/IDA PROGRAM A-9

Value Options A-5
VALUE OUT OF RANGE A-7
VAR 3-23, 3-29
VARIABLE DECLARATIONS 3-22
Variable parameter type> 3-29
VARIABLES 7-1
VARIABLES BY ACCESS 7-1
VARIABLES BY TYPE 7-5
VARIANT ERROR A-8
Variant Record Declarations l-1
VOLUMEINDEX 6-19

WHILE 4-11
WHILE STATEMENTS 4-11
WITH 4-12
WITH ST A TEMENTS 4-12
write 6-28
Write Operation 6-6, 6-9
Write Procedure 6-28
Write Textfile Procedure 6-28
writeln 6-32
Writeln Operation 6-9
Writeln Procedure 6-31

XREF A-5

YOURNAME 6-19
YOURUSERCODE 6-i 9

5024490 19

Documentation Evaluation Form

Title: _1B 1000 Systems Pascal Language Manual Form No: _s 0...,.2...,4_..4._90..__ ____ _

Date:. September 1986

Burroughs Corporation is interested in receiving your comments
and suggestions, regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

0 Addition 0 Deletion 0 Revision D Error

Comments:

--------------------------------------~--~--------------------------------------

--

-------,~---

---~---

---~~---

From:

Name

Title

Company ---~-------------------
Address

Phone Number ------------------------

Remove form and mail to:

Burroughs Corporation
Documentation Dept., TIO - West

1300 John Reed Court
City of Industry, CA 917 45

. U.S.A.

Date----------

	001
	002
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	8-04
	9-01
	9-02
	9-03
	9-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	replyA

