
B 1000 PASCAL .LANGUAGE MANUAL

Announcement Letter

???? ?? I 1985

81000 SYSTEMS

PASCAL LANGUAGE MANUAL

With this letter, we are announcing the availability of the
B 1000 Systems Pascal Language Manual, form 1152048, dated
?????????.

This manual includes Burroughs extensions to the ANSI Pascal
programming language.

All technical communication relative to this document should be
directed to:

Burroughs Corporation
Manager, 81000 Software Documentation
6300 Hollister Avenue
Goleta, California 93117 USA

Copies of this publication may be ordered from the Publ icat10ns
Center, Dearborn, Michigan U.S.A.

Raymond J. Renzul Lo, Manager
Documentation - West

Form 1152048 File DOCUMENT/PASCAL

B 1000 PASCALif.:ANGLlAGE"MANUAL

!f

u TITLE: B1000 SYSTEM SOFTWARE RELEASE MARK 12.0 (DOCUMENT)
!f

u FILE IO: DOCUMENT/PASCAL TAPE ID: PASCALSRC
ll !I

* ououuuoounonuooooonuoaaaonannunauuuououuau***ll*!f**"***"**"**ll******* *

If !llf !f

PROPRIETARY PROGRAM~MATERIAL

THIS MATERIAL IS PROPRIETARY TO BURROUGHS CORPORATION AND
IS NOT TO BE REPRODUCED, USED OR DISCLOSED EXCEPT IN
ACCORDANCE WITH PROGRAM LICENSE OR·· UPON WRITTEN
AUTHORIZATION OF THE PATENT DIVISION ~OF BURROUGHS
CORPORATION, DETROIT, MICHIGAN 48232, USA.

COPYRIGHT (CJ 1985
BURROUGHS CORPORATION

l<;

TH E I NF 0 RM AT ION w IT H I N I s N 0 T IN TENO rn I TO :a E N 0 R s H 0 u L D B E .
CONSTRUED AS AN AFFIRMATION OF F'ACT',· REPRESENTATION OR
WARRANTY, BY BURROUGHS CORPORATION, OF ANY TYPE, KIND, OR
CHARACTER. ANY PRODUCT AND RELATED MATERIALS DISCLOSED
HEREIN IS ONLY FURNISHED PURSUANT AND SUBJECT TO THE TERMS
AND CONDITIONS OF A DULY EXECUTED '~GECENSE AGREEMENT.
THE ONLY WARRANTIES MADE BY BURROUGHS WITH RESPECT TO THE
PRODUCTS DESCRIBED IN THIS MATERIAL ARE SET FORTH IN THE
ABOVE MENTIONED AGREEMENT.

THE CUSTOMER SHOULD EXERCISE CARE TO ASSURE THAT USE OF
THE SOFTWARE WILL BE IN FULL COMPLIANCE WITH LAWS, RULES
AND REGULATIONS OF THE JURISDICTIONS WITH RESPECT TO
WHICH IT IS USED.

RELATIVE TO THE MARK 12.0.000 RELEASE

*** *
0 !f !I 0

*!HI- U
lHIO !I

!f * 0 !I

*** •

*** *
!I** ll

ll ll tt U

!I!! 0 0

*!I !J !f

!HHt *
!f I•* !f

ti *
11 u u n

!I<} 0 tt

!~ ll lt *

Farm 1152048 2 File DOCUMENT/PASCAL

\

I

,j
q

B 1000 PASCAL LANGUAGE MANUAL

Burroughs cannot accept any financial or other responsibilities
that may be the result of your use of this information or
software material, including direct, indirect, special or
consequential damages. There are no warranties extended or
granted by this document or software material.

Yau should be very careful to ensure that the use of this
software material and/or information complies with the laws,
rules, and regulations of the jurisdictions with respect ta which
it is used.

The information contained herein is subject to change without
notice. Revisions may be issued to advise of such changes and/or
additions.

Comments or suggestions regarding this document should be
submitted to PA&S Santa Barbara at the fallowing address:

Form 1152048

Burroughs Corporation
PA&S/Santa Barbara
6300 Hollister Ave.
Santa Barbara, CA 93117

3 File DOCUMENT/PASCAL

Burroughs

:!

B 1000 PASCAL• LANGUAGE MANUAL:

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

IMPLEMENTATION RESTRICTIONS
ERRORS DURING EXECUTION
STRUCTURE OF MANUAL
RELATED DOCUMENTS

SECTION 2
PROGRAM STRUCTURE

PROGRAM UNIT
PROGRAM PARAMETERS
PROGRAM BLOCKS

Scope
Scope: Blocks
Scope: Record Definitions
Scope: WITH Statements
Scape: Record Variables

Activation Records
SECTION 3

DECLARATIONS AND DEFINITIONS
LABEL DECLARATIONS
CONSTANT DEFINITIONS
TYPE DEFINITIONS

Simple, Structured, and Painter Types
Simple Types
Structured Types
Pointer Type

Ordinal Types
Type Identifiers

Same Types ..
Compatible Types
Assignment Campa~ibility

Type Descriptions
Array Types
Boolean Types
Character Types
Enumerated Types
File Types
Integer Types
Pointer Types,.
Real Types
Record lypes
Set Types
Subrange Types
Textf ile Types

VA~IABLE DECLARATIONS
PROCEDURE ANO FUNCTION DECLARATIONS

Procedure Declaration
Function Declaration

1-1
1-1
1-1
1-2
1-3
1-4
2-1
2-1
2-1
2-4
2-5
2-5
2-5
2-8
2-9
2-9
2-·9
3-1
3-1
3-1
3-2
3-4·
3-5
3-5
3-6
3-6
3-6
3-7
3-~
3-9

3-10
3-12
3-12
3-14
3-14
3-15
3-16
3-17
3-17
3-18
3-18
3-21
3-22
3-23
3-24
3-26
3-27
3-29

Farm 1152048 TC-1 File DOCUMENT/PASCAL

t~c..=m-...c-......c...-.WO., __ __.

Burrough'&

Formal Parameter Lists
ACTUAL PARAMETER LISTS AND PARAMETER MATCHING

SECTION 4
STATEMENTS

ASSIGNMENT STATEMENTS
CASE STATEMENTS
COMPOUND STATEMENTS
FOR STATEMENTS
GOTO STATEMENTS

.. IF STATEMENTS
STRING RELATION . i ! ~

PROCEDURE INVOCATION·STATEMENTS
REPEAT STATEMENTS
WHILE STATEMENTS
WITH STATEMENTS

SECTION 5
EXPRESSIONS

ORDINAL EXPRESSIONS
PRECEDENCE OF OPERATORS
FUNCTION DESIGNATORS
EXPRESSIONS BY TYPE

Boolean and Relational Expressions
Boolean Expressions
Relational Expressions

CHAR Expressions
Enumerated Expressions
Integer Express1ons
Pointer Expressions
Real Expressions
Set Expressions
String Expressions

l ~.

SECTION 6
PREDEFINED PROCEDURES AND FUNCTIONS

INPUT/OUTPUT AND FILE-HANDLING 'CONCEPTS
Terminology

Standard Files and Textfiles
Inspection Mode and Generation Mode
Buffer Variables
File Attributes
Logical and Phys1caL·if1 i'le·s
Permanent and Temporary Files

Standard Files .
Reset Operation
Get Operation
Read Operation
Seek Operation
Rewrite Operation
Put Operation
Write Operation

:1
D :t.

:! r'

Close Operation ·· ..
Textf iles {Including Predefined Textf iles)

Textf iles in General ... '.
Pre de f in e d Text f i l es (In p u t , 0 u t p U't·)
Reset Operation

3-31
3-32

4-1
4--1
4-2
4-3
4-4
4-4
4-6
4-9

4-10
4-10
4-11
4-12
4-12

5-1
5-1
5-2
5-2
5-4
5-5
5-5
5-5
5-7

5-11
5-11
5-12
5-13
5-14
5-16
5-17

6-1
6-1
6-1
6-2
6-3
6-3
6-3
6-3
6-4
6-4
6-5
6-6
6-6
6-6
6-7
6-7
6-· 7
6-8
6--8
6-8
6-8
6-9
6-9

Form ·1152048 TC-2 File DOCUMENT/PASCAL

-·

Get Operation
Read Operation 1

Readln Operation
'•. I i '~

' :.
,i "<"''•

I ~ • < .1 1

Re'.trite Operation ;,,
Put Operation .i: .1!.!~<T:
Write Operation .;;'.i''.;'iJi .•
W r i t e l n O p e r a t i o n '..' , 1 • ·: • : • , .• '. ~.

Close Operation ,~,·,;;;,

Lazy I I 0 ;·1

Us e o f F i l e A t t r i b u t e s •... l • (:'
PROCEDURE AND FUNCTION DESCRIPTIONS , 1 t: .·, · ;;

F i l e - H a n d l i n g P r o c e d u r e s .: ;a n d · Fu n c (tl 1 o n s • ' . ''·' i . . , •.
C l o s e P r o c e d u r e . 1; ! ~·~ ·, . : r •:
E 0 F F u n c t i o n . . , :) 1·' , , ,

E OL N Function . : • 1 • •• ,

Get Procedure
Page Procedure
Put Procedure
Read Procedure
Read Textf ile Procedure

Type <char variable>
;,: i ~ 1-d.l .. J ~ .

Type = < i n t e g er var i ab t e > :: ; 1 ~. , j .. ~ .. 1

Type= <real variable> ,:.;1

Readln Procedure , !;: i)··

Reset Procedure
Re'.trite Procedure
Seek Procedure
Write Procedure
Write Textf ile Procedure

<Boolean expression>
<char expression>
<integer expression>

·'.' li.:'
. L •, ! .

f;.

< re a l exp res s i on >l '. 1 ; vl u :; \,: l 11 '•,l.:

Floating-Point Far·ma:t1i/1\· 1 • 'i.!l .. '«V.
Fixed-Point Format

Writeln Procedure .i ...: h i . ; . ~I i: ••

T y p e T r a n s f e r F u n c t i o n s _, , , :.1 .1 • 1 , ·' . : ... : ;· •

CHA Function
ORD Function

Dy n am i c A l l a c a t i o n P r o c. a: d u r• e s i.. : , : L ~i : . ~: ... , ,,

.!

Mark Procedure
Ne'.t Procedure
Release Procedure l:-::!.1

Arithmetic Functions
ABS Function
ARCTAN Function
COS Function
EXP Function
LN Function
ROUND Function
SIN Functi.on
SOR Function
SQRT Functio;n,,,
TAN Function

J', ..

;,

• ; . i :) . ; ;..1 ~ . r . ~ .

~ i i.. J .

·,.

6-10
6-10
6-11
8-11
S-11
6-11
6-11
6-12
6-12
6-12
6-13
6-13
8-13
8-14
6-15
6-15
6-16
6-16
6-17
6-17
8~18
6-18
8-19
6-20
6-20
8-21
6-22
6-22
6-22
6-23
6-24
6-24
6-25
6-25
6-25
6-26
6-27
6-27
6-28
8-28
6-30
6-31
6-31
6-31
6-32
6-32
6-32
6-33
8-33
6-33
6-34
6-34
6-34
6-34

Farm 1152048 TC-3 File DOCUMENTtPASCAL

4
I
I

i

·a· 1oon- PASCAL lANGUA~f MANUAL

TRUNC Function
General Procedures and Functions

Abort Procedure
Accept Procedure
Date Procedure
Display Procedure
Odd Function
PRED Function
Runtime Function
SUCC Function
Time Procedure

SECTION 7
VARIABLES

VARIABLES BY ACCESS
Entire Variables
Indexed Variables
Field Designators
Dynamic Variables
Buff fer Variables

VARIABLES BY TYPE
Array Variable
Boolean Variable
Char Variable
Enumerated Variable
File Variable
Integer Variable
Painter Variable
Real Variable
Record Variable
Set Variable
String Variable
Textf ile Variable

UNDEFINED VARIABLES
SECTION 8

BASIC COMPONENTS
CHARACTERS AND CHARACTER STRINGS
IDENTIFIERS
NUMBERS
FILE ATTRIBUTES AND MNEMONIC VALUES

SECTION 9
INTERPRETATION OF PROGRAM TEXT

PROGRAM TEXT
TOKEN
RESERVED WORD
PREDEFINED IDENTIFIER
TOKEN SEPARATOR
BLANK
COMMENT
RECORD BOUNDARY

APPENDIX A
COMPILING, EXECUTING, AND ANALYZING A PASCAL PROGRAM

COMPILER OPTIONS
CCI Syntax Diagrams
Boolean Options

6-35
6-35
6-36
6-36
6-36
6-37
6-37
6-38
6-38
6-39
6-39

7--1
7-1
7--1
7-1
7-2
7-2
7-3
7-4
7--5
7-5
7-5
7-- 5
7-6
7--6
7-6
7-- 6
7-6
7-- 6
7--6
7--6
7-6
7-6
8-1
8-1
8--1
8-2
8--3
8-4
9--1
9-1
9-1
9--2
9-2
9-2
9-3
9--3
9-3
9--4
A-1
A-1
A--1
A--2
A--4

Form 1152048 TC-4 File DOCUMENT/PASCAL

B 1oma~PA$CALJlANGU~Gi~MANUAL

Value Options :..l•J,,

Immediate Options •. i·,..; •• ~ ! . ~ ; I . .1

COMPILING AND EXECUTING A PASCAL PROGBAM
Compile-Time Errors
Run-Time Errors

0 0 • • o • I I ; '. ; f • i • • i 0 < • ~ :. l' .l n 0 O 0

USING THE PASCAL/ANALYZER PROGRAM
USING THE SYSTEM/IDA PROGRAM

APPENDIX B
RAILROAD DIAGRAMS

REQUIRED ITEMS
OPTIONAL ITEMS
LOOPS
BRIDGES

APPENDIX C
EBCDIC AND ASCII CHARACTER SETS

·: ·,., ' :r J.

• J : ~ ' ' ~- i '

,/;; ; .IJ !

A-5
A-6
A-7
A-7
A-7

A-10
A-11

B-1
B-1
B-2
8-2
8-2
B-3
C-1
C-1

Farm 1152048 TC-5 File DOCUMENT/PASCAL

B 1 ODO 1PASCAL LANGUAGE MANUAL

SECTION 1

INTRODUCTION

Pascal is a high-level programming language developed by Niklaus
Wirth, based on the block-structured nature of ALGOL-60 and the
data structuring innovations of C. A. R. Hoare. Because Pascal
is an easy-to-learn, general-purpose language, its popularity has
increased dramatically in the last several years, particularly in
the university and personal computer markets.

The American National Standards Institute· (ANSI) has adopted the
International Standards Organization (ISO] standard 7185 Level 0
as their standard definition of Pascal. ~he purpose of the ANSI
standard is to increase the portability of Pascal programs from
one system to another. The Burroughs B 1900 Pascal Compiler
comp! ies with this standard with the restrictions described later
in this section. Throughout the remainder of this manual. the
Burroughs B 1900 Pascal Compiler is referred to as Burroughs
Pascal and the Pascal described by the ANSI Standard is referred
to as ANSI Pascal.

This manual is intended as a reference manual for Burroughs
Pascal. As such, its purpose is to be a complete description of
the syntax and semantics of Burroughs Pascal within a framework
t h a t i s d e s i g n e d f o r q u i c k a c c e s s o f ii n f o rm a t i on . Th e r e ad e r 1 s
assumed to be familiar with programming langua]e concepts and
with the Burroughs B 1900 family o~ sy~tems. Some advance
knowledge of the Pascal language i~ h~lpful.

T h e n o t a t i o n u s e d i n t h i s ma n u a l t o ·· r e p r e s e n t t h e s y n t a x o f
Pascal is the "railroad" syntax diagram. A complete description
of railroad syntax is provided in appendix B, Railroad Diagrams.

The remainder of this introduction describes the compiler's
compliance with the ANSI standard far Pascal, the structure of
this manual, and the documents that relate to this description of
Burroughs Pascal.

IMPLEMENTATION RESTRICTIONS

The fol lowing items are restrictions 1n the initial Pascal
implementation. Many will be removed or changed in future
releases.

DISPOSE Procedure
Not implemented. Dynamic memory 1s managed by using the
MARK and RELEASE procedures.

Form 1152048 1-1 File DOCUMENT/PASCAL

!

B 1000 PASCAL LANGUAGE MANUAL

Variant Record Declarations
Do not require all Labels to be present.

Procedural Parameters
Nat implemented.

Nan-Local GOTOs
Nat implemented.

PACK, UNPACK
Nat implemented.

NEW
Tag constants not permitted is parameter list.

The followinQ is a list of limits imposed by the B 1000
implementation.

!bu Labels in CASE statements must be in the range 0 ta 255
inclusive.

!bu Labels in variant parts of records must be in the range 0 to
23 inclusive.

!bu REAL numbers have a precision of approximately eight decimal
digits. The exponents can be within the range -47 to +68.
The routines that print REAL numbers print a maximum of
seven significant d1gits. This is done so that the last
digit can be guaranteed ta be accurate.

!bu Maxint is 8388607.

!bu Routines with local file variables cannot be used
recursively.

!bu A file must not be a component of any structured type.

!bu The maximum nesting of Lexie Levels is eight.

ERRORS DURING EXECUTION

The following errors can be detected during the execution of a
program.

Integer averf low
Real overflow
Stack Limit exceeded
Heap limit exceeded
Text tile buffer overflow
Division by zero
Value of end of tile wrong for file operation
Operation an improperly defined tile
Nil pointer dereference

Farm 1152048 1-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Undefined pointer dereference
Released pointer dereference
Array index out of range
Na label corresponding ta case selector
Record variant accessed with incorrect tag
Value out of subrange

Some operations may cause values to go out of range with no e~ror
reported. Complete checking is not guaranteed, but data will not
be altered or Last as a result of incomplete checking. The
fallowing errors are not checked:

Changing variables in the list of a WITH statement
GOTOs from outside to inside a structured statement
Side effects, especially those thwarting run-time checks
Dangling painters as a result of a RELEASE operation
Operations an an uninitialized variable
Record variable accessed with incorrect tag type

STRUCTURE OF MANUAL

The structure of this manual is top-down; that is, larger or
higher-level syntactic components such as programs, declarations,
and statements, are described first and smaller or lower-level
components such as variables and identifiers are described last.
A brief description of each section and appendix fallows.

Section 1, Introduction, introduces the language and the manual.

Section 2, Program Structure, describes Pascal programs, program
parameters, and blacks. This section also describes the concept
of scape as it applies ta identifiers and activations.

Section 3, Declarations and Definitions, contains a description
of the declaration part of a black, including type def 1nitians
and variable declarations. Concepts relating ta data types in
Pascal are covered under Type Definitions.

Section 4, Statements, describes the statement constructs
available in Pascal.

Section 5, Expressions, describes all expression types and
includes a discussion of the precedence of operators within
expressions.

Section 6, Predefined Procedures and Functions, explains the
ready-made procedures and functions that are available. These
procedures and functions provide facilities for file handling,
type transfer, dynamic variable allocation, arithmetic functions,
and other general features. A detailed description of Pascal
input/output concepts and how they relate ta the Burroughs B 1900
system is included under File Handling Procedures.

Farm 1152048 1-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Section 7, Variables. describes variables of various types and
how they are referenced within the program.

Section 8, Basic Components, defines some of the small,
frequently used components of the syntax of Pascal. such as
identifiers and numbers.

Section 9, Interpretation of Program Text, describes how the
Burroughs Pascal compiler interprets the program information it
reads from its input files. This section includes Lists of
reserved words, predefined identifiers, and context-sensitive
identifiers. A description of the use of comments within the
program text is also included.

APPENDIX A, Compiling, Executing and Analyzing a Pascal Program,
defines the syntax and semantics of the options that can be used
to direct certain aspects of the compilation and execution of
Pascal programs.

Appendix B, Railroad Diagrams, contains a description of the
notation used throughout this manual to represent the syntax of
the Pascal language.

Appendix C, EBGDI~ and ASCII Character Sets, provides two tables,
the first in EBCDIC sequence and the second in ASCII sequence, of
the B 1000 codas. Each table includes the hexadecimal and
ordinal numbers for the EBCDIC and ASCII codes as well as the
assigned graphics and their meanings.

RELATED DOCUMENTS

The following documents contain information of interest to the
users of this manual:

American National Standards Institute (ANSI)
Programming Language Pascal (X3J9/81-093) Proposed

Pascal User Manual and Report by K Jensen and N. Wirth
Springer-Verlag, New York, 1978

B 1000 Systems System Software Operation Guide, Volume 1
Form No. 1151982

B 1000 Systems System Software Operation Guide, Volume 2
Form No. 1152097

Burroughs CSG Standard for Compiler Control Images
Burroughs No. 1955 2959

Form 1152048 1-4 File DOCUMENT/PASCAL

Burroughs

8 1000 PASCAL LANGUAGE MANUAL

SECTION 2

PROGRAM STRUCTURE

Syntax diagrams for all the Pascal program elements discussed in
this section are presented in figure 2-1.

PROGRAM UNIT

A <program unit> is the most global Pascal construct,
encompassing all data definitions and algorithm descriptions that
are to be compiled as a unit. The form of the <program unit> is
very similar ta the forms of the procedures and functions that
can be defined within it.

The <program heading> includes a program <identifier>, which is
not used for any subsequent purpose, and the optional
<program paramenters>.

The other major component of the <program> is the <block>. This
contains the data definitions and algorithm descriptions of th~

program. Details of the syntax and semantics of the program
block begin later in this section and continue through the
remainder of this manual.

Form 1152048 2-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Program Unit s~ntax:

<program> ---

<program> syntax:

---- <program heading> ---- <block> ----

<program heading> syntax:

----PROGRAM -- <program identifier> --+----------------------------+
! !
+- (<program parameters>) -+

<program identifier> syntax:

<identifier> --

<program parameters> syntax:

+<------------- ' ------------------+
! !

--------+-- <external file specification> --+-------------------------

<external tile specification> syntax:

---- <external file identifier> --------------------------------------

>---------+--+------
! +<--------- , -----------+
! ! !
+---- : -- FILE < --+-- <attribute phrase> --+-- > --+

<external file identifier> syntax:

<identifier>

Figure 2-1. Syntax Diagrams: Pascal Program Elements

Form 1152048 2-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<attribute phrase> syntax:

--+<Boolean-value file attribute>

+ <integer-value file attribute>
!
!

+<mnemonic-valued file attribute>
!
+<string-valued file attribute>
!
+ <real-valued file attribute>

<black> syntax:

--+ TRUE --------------------+-
!

FALSE -------------------+
!

--+---+-- <unsigned in~eger> +
! ! !
+ + + !
! !
+ - +

<mnemonic value> ------------+
!

<character string> ------~---+
I

<number> ----------------~---+

----+----------------------------+---- <statement part> -------------
! !
+---- <declaration part> ----+

Figure 2-1 Continued.

Form 1152048 2-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

An example of a program follows.

Example:

program EXAMPLE(INPUT, OUT FILE : file <maxrecsize= 132>);

var OUT FILE : text;
answer : integer;
val : integer;

function FACT (n integer) : integer;
begin
if n > 1 then

FACT - n * FACT(n - 1)
e Ls e

FACT -1·
end;

begin
rewrite(OUT FILE);
read(INPUT,val);
answer := FACT(val);
writeln(OUT FILE, 'The factorial of ',val,' equals ',answer);
end.

This program, named EXAMPLE, program computes the factorial of a
number entered through a file named INPUT. The factorial is
computed by recursively calling the procedure FACT. The answer
is written to file OUT FILE, which may be label-equated to a
printer file.

NOTE

The names EXAMPLE, INPUT, OUT FILE, and FACT
are spelled in upper case here for ease of
identification. Pascal does not distinguish
between upper-case and lower-case spelling
except in Literals.

PROGRAM PARAMETERS

The <program parameters> specify permanent files that the program
is ta read or write. Optionally, various file attributes af the
named files can be assigned values.

An <external tile identifier> specified in the program parameters
must Later appear in the <variable declarations> part of the
program <block>, where it must be assigned a <file type> or a
<textf ile type>. The predefined files named INPUT and OUTPUT are
exceptions to this rule; their appearance in the
<program parameters> is equivalent to declaring them in the outer

Form 1152048 2-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

block of the program, they must not appear in the
<variable declarations> of the program.

When a file is named in the list of <program parameters>, the
PROTECTION file attribute for that file is automatically set ta
SAVE. Thus, a file created by the program becomes a permanent
f i le . ·

Far further information on files, textfiles, and file attributes,
please refer to I/O Concepts in section 6.

The FILE < <attribute phrase> > construct (that is, the ability
to specify file attributes for program parameters) is a Burroughs
extension to ANSI Pascal.

PROGRAM BLOCKS

A <block> is a set of related declarations and statements. The
declarations describe data and the statements describe actions.
The <declaration part> and the <statement part> of blocks are
described in sections 3 and 4.

Pascal is a block-structured language derived from the ALGOL
family of Languages. The Pascal <program> is basically a block
that may itself contain nest~d blacks in the farm of procedures
and functions. Two related properties of blacks, scape and
activation, are fundamental ta the structure of a Pascal program.
scape and activation.

Scape

Scape is a property possessed by all identifiers and labels in a
Pascal program. The scope of an entity refers to the region of
the program text within which that entity has a specified
meaning. The text of a program is divided into these reg1ons by
the occurrences of blocks, record def initians, WITH statements,
and record variable qualifications.

Scope: Blacks

A <block> defines a scope for all identifiers and lebels declared
in the <declaration part> or <formal parameter list> of that
black. If an identifier is declared in block x, that identifier
can be referenced with the defined meaning in all of block x and
in all procedures, functions, and record definitions within block
x, with the following exception:

If the same identifier is redefined in the region of a
nested procedure, a nested function or a nested record
definition, the farmer definition is unavailable in that
region and the new definition applies.

Form 1152048 2-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Figure 2-2 illustrates the concept of scope for blocks. In
viewing the figure, note that a reference to an identifier or
label is always to its closest (most Local) definition.

Form 1152048 2-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

program p;

var a, {declaration of a and b} <----! <--!
b real ; ! !

procedure q; <--!
var b real ; <--!
begin !

! scope 0 f
{statements 0 f q} b 0 f q scope 0 f

a, q 0 f p
end; <--!

begin <--!
!

{statements 0 f p} !

end. <----! <--!

Figure 2-2. Illustrations of the Scope of Blocks

program p;

type r = record
<--!

<----!
!

scope of

scope 0 f
b 0 f p

scope 0 f
b a f p

f 1 : re a l ;
f2 : (red,
end;

green, blue); ! f1, f2 scope of

begin

{statements of p}

end.

<--!

!
!

<----!

r. red,
green. blue

Figure 2-3. Scope of Record Definitions

Fnrm 1152048 2-7 File DOCUMENT/PASCAL

Burrough.s

B 1000 PASCAL LANGUAGE MANUAL

Scope: Record Definitions

The region of a <record type> definition defines a scope for all
field identifiers defined in that record. The same nesting rules
apply to records as apply to blocks: field identifiers may be
redefined in embedded records.

In general, if the occurrence of the definition of an identifier
or Label is in region x, that definition does not apply to a
region enclosing x. However, there is one exception: the
appearance of an <enumerated constant> in an <enumerated type>
definition defines that constant identifier for the closest block
containing the definition. Thus, if such a definition occurs
within a record, the enumerated constant identifiers can be
referenced outside of the record.

In figure 2-3, the <enumerated constant>s red, green, and blue
can be referenced within the block in which type r is defined.

Every Pascal program has an implied enclosing region in which al L
predefined identifiers are automatically declared. Because this
region encloses the program, these identifiers can be redefined
at any point.

The following rules must be observed when defining identifiers
and labels:

!bu Any identifier or label that is referenced either must be
explicitly defined or must be one of the set of predefined
identifiers.

!bu With one exception, any reference to an identifier or label
must textually follow its definition. The exception is an
identifier used to denote the <domain type> of a
<pointer type>. In this case, the identifier need only be
defined before the end of the <type definitions> in which it
appears.

!bu An identifier or Label cannot be defined more than once in
the same procedure, function, or record.

The definition of an identifier or Label applies from the
beginning to the end of the region, and not from the point of its
definition to the end. Thus, a use of an identifier in a region
before it is defined is an invalid forward reference even if the
same identifier is defined in an enclosing scope.

Form 1152048 2-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Scope: WITH Statements

A WITH statement or record variable qual tf ication defines a new
scape far the field identifiers of a referenced record variable.

In a WITH statement, the occurrence of a <record variable>
defines a scope for each <field identifier> within that record.
The scope extends from the occurrence of the record variable ta
the end of the WITH statement. WITH statements have the same
nesting properties as blocks and records. That is, if a WITH
statement causes a field identifier to be defined that has the
same spelling as an identifier in an enclosing region, the local
[that is, the record) definition applies within the WITH
statement.

Scope: Record Variables

Record variables may be "quat ified" using the syntax
<record variable>.<field designator>. In effect, this syntax
establishes a scope for all the field identifiers of the record;
the scope extends from the period (.) to the end of the
<field designator>.

Activation Records

When a <block> is entered, the appropriate Local variables must
be allocated. These include variables that appear in the
<variable declarations> for that <block>, <value parameter>s from
the <formal parameter list>, and the function result (if the
<block> is a function). These local variables are allocated in
an area of storage referred to as an "activation record." Each
invocation of a procedure or function has its own activation
record, as does the program block.

Storage far an activation record is allocated on entry ta the
block and deal located when the black is exited. Thus, on entry,
all variables declared within a block are undefined for that
invocation. (Pascal local variables differ from FORTRAN local
variables and from ALGOL OWN variables; those retain their
previous values when the block is re-entered.)

When a procedure or function is called, the activation record for
the current block is saved before the new one is allocated. The
processes of allocating and deallocating activation records can
be viewed as operations on a stack. Thus, if procedure p with
local variables a and b calls procedure q with local variables c
and d, the storage allocation can be viewed as shown in figure
2--4.

Form 1152048 2-9 File DOCUMENT/PASCAL

Burroughs

i
µ,

!
J,

B 1000 PASCAL LANGUAGE MANUAL

A procedure or function can call itself, either directly or
indirectly. If, in the previous example, procedure q calls
procedure p, the stack will contain the activation records shown
in figure 2-5.

Logically, th1s process could continue indefinitely; however,
the system would eventually run out of storage space.

References to variables in a block refer to the most recently
allocated act1vation record for that block in the stack.

Note that these rules apply to variables. Most are explicitly
declared in a block. Variables can also be allocated dynamically
through the use of the procedure NEW. For a discussion of the
dynamic allocation of variables, refer to Dynamic Allocation
Procedures in section 6.

Form 1152048 2-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

b
a

Before
procedure q
is called

d
c

!---------!
b !
a

While in
procedure
q

b
a

After
procedure
q is exited

Figure 2-4. Procedure p Calls Procedure q.

b 1 second activation record of p
a I

d 1 activation record of q
C I

---------!
b ! first activation record of p
a I

Figure 2-5. Procedure q Calls Procedure p.

Form 1152048 2-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 3

DECLARATIONS AND DEFINITIONS

Following is the syntax diagram for the <declaration part> of a
<block>.

Syntax:

----+--+-------------->
! !
+---- <label declarations> ---------------------+

>---+---+-------------->
! !
+----<constant def in1tions> -------------------+

>---+---+-------------->
! !
+----<type definitions>-----------------------+

>---+---+-------------->
! !
+---- <variable declarations> ------------------+

>---+---+--------------!
! !
+---- <procedure and function declarations> ----+

The declarations and definitions are all optional, but when two
or more are used, they must appear in the sequence shown in the
diagram.

The <constant definitions>, <type definitions>, and
<variable declarations> primarily are used to describe the data
on which the program is to act. The <label declarations> and
<procedure arrd function declarations> are tools used in
describing the program algorithm. These components are described
in the following sections, in the order in which the components
appear in the <declaration part>.

LABEL DECLARATIONS

<label declarations> identify <label>s for use within the
<block>. The <label>s are used to indicate statement locations
to which program control can be transferred using the <goto
statement>. Any <label> used within a <block> must be declared
in the <declaration part> of that <block>.

Form 1152048 3-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

A <label> may have up to four significant digits. (Leading zeros
are not significant digits.) Therefore, <label> range is O
through 9999.

<label de~Larations> ~yntax:

+ <----· ; -----+
! !

---- LABEL --+-- <label> --+--

<Label> syntax

+ <---1 4 \ ----+
I ! .

----+-- <digit> --+-----------------------~----------~----~-~---------

CONSTANT DEFINITIONS

The <constant defiriitions> as~ociate <identtfier>s with constant
v a L u es . a l l ow i n g ·those v a l u e,!i{ t-o be re f e re n c e d by name r a the r
t ha n by s. p e c i f y i n g t .. h e a c tu~ ·l v ·a.J u es th rough. cl" u t the· p r o g ram'.· The
type of each co'nstant. being :dee fE).re·d ·is de~.ermined by the type· of
the constanton the r·ight st~de .of, th..e equat sign, whi·ch m·ay. be a
l it e r a l v a l ti e o f a p r e d e ::f i n g d ·: t Y:P e 1:fr a p r e v i a u s l y d e c t a r e d
c an s t a:n t · i d·e n t i f;. i er . · · ·.\·,.

. '\. "~- .

MAXINT. i .. ~_,p, ps.e.definJ~d <J··nf~g~r-:;'.:"'c,ons't~~J identifier> thtit has the
v a l i.ie-:· 8 , .3".13:§.~~ ~g 7 (2 : r.-'e:'.r:~pfd ·· t:ri.;;, · the: "·=r2 3 r·a · \ro\p::! r rn-1,.:nu s 1 J . TA u E er n d
FALSE are pr"'e'defined values of the <Bocnean'tyj:Je>. <identif.ie·r>,
<ch a r a c t e r L.. it e r a l > , < u n s i g n e d i n t e g er> , · < u n·s ,i g n e d re a l ;. ·, and
<ch a r a c t e r s t'r i n g > are de f i n e d 1 n sec t .i on a.·.,-: B a.sj c Corn po r:i en ts .

Examples.

1 always TRUE;
2 . a 'a' ;
3. maxbits 48;
4 . m i n v a .. l u e - 4 . 5 :
5. greeting 'Hello';
6. intro greeting;
7,.,. warn.in g 'Do~,;'.,~\~;&-?· i t ' ; ·• '".

In ex·ittip·l'ti ·1 a.lw·ays iS;,"¢1' <Boolean .constant ide(rl-:·~~"t<f ier> ~/i.th the
value tRUE; thus. always may be used wherever a
<Boolea.n c-.onstant> is vaL-i.d.

' ' . . '

I i1 e x am p:l. e 2 , th e l e t t e r a i s a < c ha r ca n s t a n t _jd en t i f i e r> 'vJ i t h a
as its value.

In example 3, maxbits is an <integer constant 1!~ntifier> with
tl1e value 48.

F!Jrm 1152048 3-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

In example 4, minvalue is a <real constant identifier> with the
value -4.5.

In example 5, greeting is a <string constant identifier> with the
value 'Hello'.

In example 6, intro is a <string constant identifier> with the
same value as greeting (example 5).

In example 7, warning is a <string constant identifier> with the
v a l u e ' Don , t do i t·' .

<constant definitions> syntax:

---- CONST ---

+<--+
! !

>-+--+<Boolean constant identifier>
!

<Boolean constant> +-- ; --+---

+<char constant identifier>
!

<char constant> +
!

+<integer constant identifier> <integer constant> +

+ <real constant identifier>
!

<real constant> +

+<string constant identifier> <string constant> +

<Boolean constant> syntax

----+-- TRUE ---------------------------+-----------------------------
! I

+-- FALSE --------------------------+
I

+--<Boolean constant ident1f ier> --+

<char constant> syntax

----+-- <character literal>----------+-------------------------------
!
+--<char constant identifier>--+

<integer constant> syntax:

----+-----+---+--
! ! !

+ ! +--
!

+ + +--

Form 1152048

MAXI NT -------------------------+-------------------
!

<unsigned integer>--------------+
!

<integer constant identifier>--+

3-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<real constant> syntax:

----+-----+---+-- <unsigned real> ----------------+-------------------
! ! ! !

+ +-- <real constant identifier> -----+

+ +

<String constant> syntax:

----+-- <character string>-------------+------------------------~-----
! !
+-- <string constant identifier> --+

TYPE DEFINITIONS

Every variable, constant, and function has an associated type
which defines its range of val id values, its internal and
external representation, and the operations that may be performed
an it. The <type definitions> allow user-defined types ta be
named and their characteristics to be specified.

Discussions of some general concepts that apply to types are
presented next, followed by descriptions df all the types,
presented in alphabetical order.

Form 1152048 3-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<type definitions> syntax:

-- TYPE --->

+<---+
! !

>-+-+ <array type identifier>
!
+ <Boolean type identifier>
!
+<char type identifier>

+<enumerated type identifier>
!
+ <file type identifier>
!
+ <integer type identifier>
!
+<pointer type 1dentif ier>
!
+<real type identifier>
!
+<record type identifier>
!
+ <set type identifier>

+ <subrange type identifier>

+ <textf ile type identifier>

Simple, Structured, and Pointer Types

<array type> ---------+-- . --+-
!

<Boolean type> ------+
!

<char type> ---------+
!

<enumerated type> ---+
!

<file type>---------+
!

<integer type> ------+
!

<pointer type> ------+
!

<real type> ---------+
!

<record type> -------+
!

<set type> ----------+
!

<subrange type> -----+
!

<textf ile type> -----+

Types may be classified into three categories that reflect their
structure.

<type> syntax:

----+-- <simple type> ------+---
!

+-- <structured type> --+
! !
+-- <pointer type> -----+

Simple Types

Variables of simple types have only one component. The
predefined types Boolean, char, integer, and real are simple
types. User-defined derivatives of these predefined types, as
well as enumerated types and subrange types, are also simple
types.

Form 1152048 3-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<simple type> syntax:

----+-- <Boolean type>-------+---------------------------------------
! !
+-- <char type>----------+
! !
+-- <enumerated type> ---+

!
+-- <integer type> ------+
! !
+-- <real type> ---------+
! !
+-- <subrange type> -----+

Structured Types

Variables of structured types are composed of multiple
components, which may be of one or more simple types or may be
structured themselves.

<Structured type> syntax:

----+-- <array type> -------+------------~----------------------------
! !
+-- <set type> ---------+
! !
+-- <record type> ------+
! !
+--<file type>--------+
! !
+-- <textf ile type>----+

Pointer Type

Variables of pointer types contain values that are references to
variables of simple or structured types.

<pointer type> syntax:

-·--- <pointer type> --

Ordinal Types

Most simple types are also ordinal types. In an ordinal type,
the values have a well-defined sequential relationship to each
other. Each value is assigned an ordinal number that uniquely
identifies its position in the sequence. Thus, a value of an
ordinal type can have a successor and a predecessor in the
sequence. Values can also be compared to each other (for
example, greater than, less than) based on their ordinal numbers.

Form 1152048 3-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The only simple type that is not an ordinal type is the <real
type>.

<ordinal type> syntax:

----+-- <Boolean type>------+---
! !
+-- <char type> --------+
! !
+-- <enumerated type> --+

!
+-- <integer type>------+

!
+-- <subrange type> ----+

Type Identifiers

In <type definitions> and <variable declarations>, a type can
usually be defined in one of two ways:

(1) as a new type (that 1s, by using the <new array type>,
<new enum~rated type>, <new file type>, <new pointer type>,
<new record type>, <new set type>, <new subrange type>, or

(2) as a derived type, where an <identifier> that has already
been defined or was predefined as a type identifier is
specified.

In other contexts requiring a type specification, new types are
not allowed; previously defined <type identifier>s must be used.

Form 1152048 3-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<type identifier> syntax:

----+-- BOOLEAN------------------------+------------------------------
!

+-- CHAR --------------------------!
!

+-- INTEGER -----------------------+
!
+-- REAL --------------------------+
! !
+-- TEXT --------------------------+

!
+-- <array type identifier> -------+

!
+--<Boolean type identifier>-----+
! !
+--<Char type identifier>--------+
! !
+-- <enumerated type identifier> --+
I !
+-- < f i le type id en t i f i er> --------+

!
+-- <integer type identifier> -----+
! !
+-- <pointer type identifier> -----!

!
+-- <real type id en t i f i er> --------+
! !
+--<record type identifier>------+
! l
+-- <Set type identifier> ---------+
! !
+--<subrange type identifier>----+
! !
+-- <te><tfile type identifier>----+

Same Types

Because types can be defined in different ways, it is not always
clear when two types are actually the same type. The concept of
"same type" is used v1hen describing how <variable parameter>s are
matched in procedure and function invocations. More important,
tl1e definition of "same type" is used ta define compatible types
and to assignment compatibility. See Compatible Types, later in
this section.

The <type identif ier>s T1 and T2 are the same type if one of the
fDllowing rules is true:

FDrm 1152048 3-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Rule One type is defined to be equal to the other.

Rule 2 Both types are of the same ty~e as a third type.

In the simplest case of same type, T1 is defined to be equal to
T2, as shown in the fallowing example:

TYPE T1 = T2; {Rule 1}

Rule 2 describes the situation in which T1 and T2 have a common
ancestor. The simplest case is the following:

TYPE T3
T1
T2

INTEGER;
T3;
T3;

{Rule 1}
{Rule 1}

T1 is the same type as T2 by rule 2.
T1 and T2 are also of the same type:

In the following example,

TYPE TS
T4
T3
T2
T1

INTEGER;
T5;
INTEGER;
T4;
T3;

In this example, T2 equals T4, T4 equals T5, and T5 equals
INTEGER. T1 equals T3, and T3 equals INTEGER. Therefore, T1 and
T2 are the same type, namely INTEGER.

In order ta apply the same-type rules, all types must have
associated <type identif ier>s. For example, even though types TS
and T7, defined below, ·have exactly the same characteristics and
structure, they are NOT the same type:

TYPE TS ARRAY [1 . . 5] OF INTEGER;
T7 = ARRAY [1 . . 5] OF INTEGER;

However, TS and T7 would be the same type i f declared as follows:

TYPE TS ARRAY [1 . . 5] OF INTEGER;
T7 TS;

Compatible Types

In some cases, it is not necessary for types to be the same type,
but they must be compatible types for a particular construct to
be valid. In particular, the operands in most relational
expressions must be of compatible types. Also, the

Form 1152048 3-9 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<case constant>s in the <variant> part of a <record type> must be
type-compatible with the type of the <variant selector>.

Two types, T1 and T2, are compatible if any of the following
rules are true:

Rule T1 and T2 are the same type.

Rule 2 One type is a subrange of the other, or both types are
subranges of the same type.

Rule 3

Rule 4

Examples·

T1 and T2 are <set type>s with compatible <base type>s
and both T1 and T2 are packed or both T1 and T2 ere not
packed.

T1 and T2 are <string type>s with identical character
counts.

type t1 =real:
t2 = t1;
{t1 and t2 are compatible by rule 1 .}

t3 1 .. 10;
t4=5 .. 7;
ts= 20 .. 30;
{t3, t4, and tS are compatible by rule 2.}

t6 =set of char;
t7 =set of ·a· .. ·2·;
{t6 and t7 are compatible by rule 3.}

tB =packed array [1 .. 10] of char;
t9 =packed array [1 .. 7] of char;
{tB and t9 are compatible by rule 4.}

Assignment Compatibility

Assignment compatibility refers to the validity of assigning a
particular value to a variable of a certain type. The rules of
assignment compatibility are applied under the following
circumstances:

In an assignment statement, the value of the <expression>
must be assignment compatible with the type of the variable
or function result being assigned.

An expression used as an array index must be assignment
compatible with the index type in the array declaration.

The initial value and final value in a <for statement> must
be assignment compatible with the type of the control

FDrm 1152048 3-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

variable.

An actual parameter must be assignment compatible with the
type of the formal value parameter it is to match.

The values returned by the read, time, runtime, and date
procedures must be assignment compatible with the parameters
passed to those procedures.

In the definition of assignment compatibility that follows, V1
and V2 represent two variables, and T1 and T2 are the types of V1
and V2, respectively. As an illustration, consider the
assignment statement V2 := V1. V1 is assignment compatible with
V2 (or any variable of type T2) if any of the following
statements is true:

1. T1 and T2 are the same type and that type is not a
<file type> or <textfile type>.

2. V1 and V2 were declared in the same
<variable identifier List> in a variable declaration. (This
rule allows two variables of the same unnamed type to be
assignment-compatible)

3. T2 is the cre~l type> and T1 is the <integer type>.

4. T1 and T2 are compatible ordinal types and the value of V1
is valid for type T2.

5. T1 and T2 are compatible set types and all members of the
set of V1 a~e val id for type T2.

6 T1 and T2 are compatible <string type>s.

Form 1152048 3-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

type t1 real;
t2 = t1;
(All values of types t1 and t2 are assignment-compatible

with all variables of types t1 and t2. by rule 1.)

var v1,
v2 : array [1 .. 10) of Boolean;
(All values of v1 are assignment-compatible with v2, and vice

versa, by rulB 2.)

v3: real;
v4 : integer;
(All values of v4 are assignmentNcompatible with v3 by rule

3. V3 is not assignmentNcompatible with the type of v4.
That is, v3 := v4 is allowed, but v4 := v3 is not allo\./ed.

v5 7 .. 10;
vB 1 .20;
(All values of v5 are assignment-compatible with vB by rule

4, but only some values of vG are assignment-compatible
with v5.)

v7: set of 'a' .. 'z';
vB : set of char;
(All values of v7 are assignment-compatible with vB by rule

5, but only some values of vB are assignment-compatible
with v7, namely those set values that contain only characte
between 'a' and 'z', inclusive.)

v9 : packed anay [1 .. 10] of char;
v10: packed array (1 10] of char;
(All values of v9 are assignment-compatible with v10, and

vice versa, by rule 6.)

Type Descriptions

Array Types

An array is a structured type containing identical components of
a specified <element type>. The array is indexed by the values
of a given <index type>. The number of components in the array
is determined by the number of values in the <index type>. The
<index type> cannot be the <integer type>, but it can be a
<subrange type> whose host type is the <integer type>.

If multiple <index type>s are specified, the array is
mu L t i d i m e n s i o n a L , e a c h d i m e n s i o n b e i n g 1 n d e x'e d b y o n e
<index type>. An array with N dimensions is synonymous with an
array of arrays with N-1 dimensions. ·

Form 1152048 3-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

An <array type> that includes the designation PACKED will be
stored in as economical an amount of space as is practical,
possibly at the expense of speed in accessing the components.
When a multidimensional array is declared using a list of
<index type>s and the array is designated PACKED, all component
arrays of that array will also be PACKED (that is, all dimensions
of the array are considered PACKED).

Examples:

type t1
t2
t3
t4

array [Boolean] of array [1 .. 10] of array [size] of real
=array [Boolean] of array [1 .. 10, size] of real;

array [Boolean, 1 .. 10, size] of real;
array [Boolean, 1 .. 10] of array [size] of real;

Types t1, t2, · t3, and t4 are equivalent ways of expressing a
three-dimensional array with a <component type> of type real and
with Boolean as its first dimension, the subrange 1 .. 10 as its
second dimension, and the <ordinal type identifier> size as its
third dimension.

type p1 =packed array (1 .. 10, 1 .. 8] of Boolean;
p2 =packed array [1 .. 10] of packed array [1 .. 8] of Boolean;

Types p1 and p2 are equivalent ways of declaring a packed array
with "packed array (1 .. 8) of Boolean" as its component type.

Strings are a special class of arrays that can be used in ways
that arrays normally cannot be used. For example, a variable of
<string type> can be assigned a <character string> value of the
same length; individual characters in the <character string> are
assigned ta successive components of the ~rray.

Example:

type str =packed array [1 .. 10] of char;

Type str is a <string type> that contains ten characters.

<array type> syntax:

----+-- <new array type>-----------+---------------------------------
! !
+--<array type identifier>---+

Farm 1152048 3-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<new array type> syntax:

----+--------+- ARRAY
! !
+ PACKED +

<index type> syntax:

+<----- ' -----+
! !

--+ <index type> +-- OF -- <element type>

---- <ordinal type> --

<element type> definition:

An <element type> is any <type> that is not a <file type>, a
<textf ile type>, or a <structured type> containing a <file type>
or a <textf ile type> as a component.

<string type> definition:

A <string type> is an array that is defined as PACKED ARRAY
(1 .. n] OF CHAR, where n is greater than or equal to 1.

Boolean Types

Boolean is a predefined ordinal type that comprises the values
TRUE (value= ordinal 1) and FALSE (value= ordinal OJ. All
<Boolean type>s are of the same type.

Example:

type b =Boolean;

Type b is a <Boolean type identifier>.

<Boolean type> syntax:

-----+-- BOOLEAN --------------------+---------------------------------
! !
+-- <Boolean type identifier> --+

Character Types

The character type (<char type>) is a pr~def ined ordinal type
that comprises the standard character set (EBCDIC unless changed
to ASCII using the STRINGS compiler control option. The mapping
of characters to ordinal numbers is defined in appendix C, EBCDIC
and ASCII Character Sets.

Form 1152048 3-14 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

ALL <char typa>s are the same type.

Examples:

type ch char;
c = ch;

Types ch and c are both <char type identif ier>s.

<char type> syntax:

----+-- CHAR ----------------------+----------------------------------
! !
+-- <char type ident1f ier> ----+

Enumerated Types

An <enumerated type> is a simple, ordinal type that comprises the
values specifted in the associated list of
<enumerated constant>s. The order in which the
<enumerated constant>s appear determines their ordinal numbers:
the first <enumerated constant> is assigned the ordinal number 0,
and each subsequent <enumerated constant> is assigned an ordinal
number that is one higher than its predecessor.

The appearance of an <identifier> as an <enumerated constant> in
an <enumerated type> definition defines that <identifier> far the
block. Because the <identifier> cannot be redefined in the same
block, the same <identifier> cannot be used in ti.-10

<enumerated type> definitions in the same black.

Examples:

type color= (red, yellow, blue, green, tartan);
card suit= (club, diamond, heart, spade);
tool-= (rake, hoe, spade); { error }

Type color is an <enumerated type identifier>. The
<enumerated constant> red has the ordinal number 0, yellow the
number 1, blue the number 2, green the number 3, and tartan the
number 4.

Type card suit is an <enumerated type identifier>. The
cenumerat~d constant> club has the ordinal number of 0, diamond
the number 1, heart the number 2, and spade the number 3.

Type tool is in error because the identifier spade has already
been declared (as a value of type card suit) in this black.

Farm 1152048 3-15 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<enumerated type> syntax:

----+-- <new enumerated type>----------+-----------------------------
!

+-- <enumerated type identifier> --+

<new enumerated type> syntax:

+<----------- I ------------+
! !

---- (+-- <enumerated constant> --+) -------------------------------

<enumerated constant> syntax:

----<identifier>--

File Types

A <file type> is a structured type of identical components. It
differs from an array in that it is not indexed and has no
specified upper bound. Instead, components are accessed through
predefined procedures. For additional information on files,
please refer to I/O Concepts in section 6.

The designation PACKED has no effect far file types.

Example:

type employee record
name, f irstname : packed array [1 .. 20] of char;
department code : 0 .. 99;
employee n~ : 0 .. 9999;
end;

employee file= file of employee;

Employee file is a <file type identifier>; each component of the
file is an employee record containing the following fields:
name, f irstname, department code, employee no.

<file type> syntax:

-·---+-- <new file type>----------+------------------------------------
!

+-- <file type identifier> --+

<new file type> syntax:

-----+--------+---- FILE -- OF -- <component type> -------------------
! !
+ PACKED +

FDrm 1152048 3-16 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<component type> definition:

Any <type> that is not a <file type>, a <textf ile type>, or a
<structured type> containing a <file type> or a <textf ile type>
as a component.

Integer Types

Integer is a predefined ordinal type that comprises the integer
values from -MAXINT to MAXINT, inclusive. The ordinal number of
a value of type integer is the value itself.

Example:

type int integer;

Type int is an <integer type identifier>.

<integer type> syntax:

----+-- INTEGER --------------------+---------------------------------
! !
+--<integer type identifier>--+

Painter Types

A <pointer type> is a special type that is used to reference
dynamically allocated variables. A variable of a <painter type>
may reference a variable of its declared <domain type> or may be
NIL, that is, may not be currently referencing a variable.
Please refer ta Dynamic Allocation Proc~dures in section 6 for
details on dynamic variables.

Example:

type ptr to client= @client;
cl i"ent-= record

name : packed array (1 .. 20] of char;
son, daughter ptr to client;
end;

The type ptr to client is a pointer to a record of type client.

<pointer type> syntax:

----+-- <new pointer type>----------+--------------------------------
! !
+-- <pointer type identifier> --+

Form 1152048 3-17 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<new pointer type> syntax:

@ --- <domain type> ---

<domain type> definition:

Any <type identifier> except a <file type identifier>, a
<textf ile type identifier>, or a <type identifier> of a
<Structured type> containing a <file type> or <textf ile type> as
a component.

Real Types

Real is a predefined simple type that comprises the range of
floating-point approximations. Real numbers in B 1000 Pascal
have a precision of approximately seven decimal digits. The
routines that print real numbers print a maximum of seven
significant digits in order ta guarantee the accuracy of the last
digit. The exponent range is from E-47 ta E+68.

Example:

typer= real;

Type r is a <real type identifier>.

<real type> syntax:

----+-- REAL --------------------+------------------------------------
!

+-- <real type identifier> --+

Record Types

A <record type> is a structured type that can contain components
of different types. These components, called "fields," are
referenced by name, not by index (as with arrays) or by current
position (as with files).

A record may include a <fixed part> or a <variant part> or both
or neither. A record that includes neither a fixed nor a variant
part contains no components and is said to be empty.

The <fixed part> of a record consists of a group of fields that
apply to all variables of the <record type>. Each field has a
<field identifier> by which it is referenced and an associated
dield type>.

FClrm 1152048 3-18 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The <variant part> of a record is a collection of field
definitions, called "variants." The <variant part> allows
different variables of the same record type to have different (or
partly different) formats, depending on the run-time value of the
<variant selector>. Because the format is chosen at run time,
there must be one (and only one) variant defined for every
possible value of the type specified by the
<ordinal type identifier> in the <variant selector>.

The interpretation of the variants at run time depends on whether
or not the <variant selector> includes the optional
<field identifier>. This <field identifier> is called the "tag
field" and is allocated as a field within the record. If a tag
field is defined and a variable of that record type is allocated,
only fields in the <fixed part> and in the <variant> that
includes the value of the tag field as a <case constant> are
val id; any attempt to reference a field in another variant is an
error. When the value of the tag field for a particular variable
is changed, the old variant becomes inactive and all fields in
that variant ba~ome inaccessible. The new variant becomes active
and all fields within the newly active variant are undefined,
regardless of any prior state.

If the <field identifier> is omitted [that is, there is no tag
field] and a variable of that record type is allocated, the
active variant is selected by assigning a valid value to a field
within that variant. At that point, all other variants
theoretically became inactive, similar to the state described
above for inactive tagged variants. However, in this
implementation, the restrictions on accessing fields in inactive
non-tagged variants are not enforced. All fields within the
<fixed part> and all fields within all variants may be
referenced, but only one storage area is allocated. Thus, the
variants effectively "remap" the storage area.

A <record type> that includes the designation PACKED is stored in
as economical an amount of space as practical, possibly at the
expense of speed in accessing the components.

Example:

type str packed array [1 .. 20) of char;
rec ::: record

name, firstname : str;
age 0 .. 99;
caae married : Boolean of

true (spousesname str];
false ();

end;

Type rec is a <record type identifier> that defines a
<ne\.1 record type>. The first component of rec: is name, which is
of type str. The next component is f irstname, also of type str.
The component age is a subrange from O to 99, inclusive.

Form 1152048 3-19 File DOCUMENT/PASCAL

B·urroughs

8 1000 PASCAL LANGUAGE MANUAL

The word case introduces a set of two cvariant>s, where married
is a Boolean tag field that is the <variant selector>. If
married is true, the next component is spousesname, TRUE, type
str. If married is FALSE, there are no more components.

<record type> syntax:

----+-- <new record type>----------+---------------------------------
! !
+--<record type identifier>--+

cnew record type> syntax:

----+--------+--RECORD -- <field list> -- END----------------------
! !
+ PACKED +

<field list> syntax:

----+---------------------------------------+---+---+-----------~-----

! ! ! !
+--<fixed part>--+--------------------+
! ! !

+ ; <variant part> --+
!

+-- <variant part> ---------------------+

<fixed part> syntax:

+ ; +

+<---+
! !
! +<-------- ' ------------+ !
! ! !

----+----+--<field identifier>--+-- --<field type>--+------------

<field identifier> syntax:

-----<identifier>--

<field type> definition:

Any <type> that is not a <file type>, a <textf ile type>, or a
<structured type> containing a <file type> or a <textf ile type>
as a component.

<Variant part> syntax:

+<----- ; ------+
! ! !

-----CASE -- <variant selector> -- OF --+-- <variant> --+-------------

Form 1152048 3-20 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<variant selector> syntax:

----+-----------------------------+--<ordinal type identifier>-----
! !
+--<field identifier> -- : --+

<ordinal type identifier> syntax:

----+-- <Boolean type>------------------+----------------------------
! !
+-- <char type>---------------------+
! !
+--<enumerated type identifier>---+
! !
+-- <integer type> -----------------+
! !
+-- <subrange type identifier> -----+

<variant> syntax:

+<------- ' ----------+
!

----+-- <case constant> --+-- -- (<field l is t >) ------------------

<case constant> syntax:

----+-- <Boolean constant>-------+------------------------------------
!

+-- <char c~rr~tant>----------+
! !
+-- <enumerated constant> ---+

+-- <integer constant> ------+

Set Types

A <set type> is a structured type for which the range of values
is all possible subsets of the specified <base type>. In
mathematical terms, a <set type> defines the "pawerset" of its
<base type>. A variable of a <set type> can contain any subset
of the set, including the null set and the entire set.

The range of ordinal numbers associated with the <base type> is
0 .. 2 55.

The designation PACKED has no effect far set types.

Examples:

type set1
set2

Form 1152048

packed set of char;
= set of (club, diamond, heart, spade);

3-21 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Type set1 is a <set-type-identifier> defining a range of values
consisting of all possible subsets of the set of type char.

Type set2 is a <set type identifier> defining a range of values
consisting of all possible subsets of the set that includes the
elements club, diamond, heart, and spade. The fallowing are the
possible values a variable declared of type set2 could assume:

[]
[club 1
[diamond]
[heart]
(spade)
(club.diamond]
[club.heart]
[club.spade)
[diamond.heart)
[diamond,spade]
[heart.spade]
[club,diamond,heart]
[club,diamond,spade]
[club,heart,spade)
[diamond,heart,spade)
[club,diamond,heart,spade]

<set type> syntax:

----+-- <new set type>----------+-------------------------------------
! !
+-- <set type identifier> --+

<new set type> syntax:

-----+--------+-- SET -- OF -- <base type> ---------------------------
! !
+ PACKED +

<base type> syntax:

----- <ordinal type> --

Subrange Types

A <subrange type> is a simple, ordinal type that defines a range
of values that is (usually) smaller than the type from which it
is derived, called its "host type." The value range includes all
values of the host type between the first constant specified and
the second constant specified, inclusive. The specified
constants must be of the same type, and the second constant must
be greater than or equal ta the first constant.

Form 1152048 3-22 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The ordinal numbers associated with the values of a
<subrange type> are the same as the ordinal numbers associated
with those values in the host type.

Examples:

'A' .. 'Z'; type Letters
color
primary
mixed
index

(red, yellow, blue, green, tartan);
red .. blue;
green .. tartan;
1 .. 1 0.

Type Letters is a <subrange type identifier> that selects the
subrange of char val~es consisting of the characters from 'A' to
'Z', inclusive.

Type color is an <enumerated type identifier> whose values are
red, yellow, blue, green and tartan.

Type primary is a <subrange type identifier> that selects the
subrange of color values from red through blue (that is, the
values red, yellow, and blue).

Type mixed is a <subrange type identifier> that selects the
subrange of color values from green through tartan; the ordinal
numbers associated with the values of type mixed are 3 (green)
and 4 (tartan). ·

Type index is a <subrange type identifier> that selects the
integer values from 1 to 10, inclusive.

<subrange type> syntax:

----+-- <new subrange type>--------+---------------------------------
! !
+-- <subrage type identifer> --+

<new subrange type> syntax:

----+-- <Boolean constant> .. <Boolean constant> --------+-----------!
! !
+-- <char constant> <char constant> --------------+
! !
+-- <enumerated constant> <enumerated constant> --+
! !
+-- <integer constant> <integer constant> --------+

Textfile Types

A <textf ile type> is a structured type for which the components
are characters grouped into Lines. Textfiles are similar to
files of characters, but they have a different set of defined
operations As with files, characters are accessed through

Form 1152048 3-23 File DOCUMENT/PASCAL

Burroughs

8 1000 PASCAL LANGUAGE MANUAL

predefined procedures.

Example:

type streamf ile =text;

A variable declared to be of type streamf ile will be a textfile.

<textfile type> syntax:

----+------------ TEXT --------------+--------------------------.~-----
! !
+-- <textfile type identifier> --+

VARIABLE DECLARATIONS

The <variable declarations> define the variables that are ta be
used throughout the <block>. Each variable has an associated
identifier, by which it is referenced, and an associated <type>,
which defines the range of values and the operations applicable
to the variable.

The <type> specified can be a predefined type identifier, a type
identifier defined in the <type def initians>, or a new type
specified in the <variable declarations>. Variables that appear
in the same <variable identifier list> are defined ta be of the
same type. Please refer ta the Type Oef initians in this section
far additional information an types.

When a block is entered at run time, all variables declared
within that block are allocated with undefined values.

Form 1152048 3-24 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

type color= (red, yellow, blue, green, tartan);

var x, y, z, max: real;
i, j integer;
p, q, r : Boolean;
k : 0 .. 9;
operator : (plus, minus, times);
a : array [O .. 63] of real;
m, m1, m2: array (1 .. 10, 1 .. 10] of real;
f file of char;
c : color;
hue1, hue2 : set of color;
date : record

month 1 .. 12;
year integer;
end;

days : array (1 .. 12) of 28 .. 31;

Variables x, y, z, and max are of type real, variables i and
are of type integer, and variables p, q, and r are of type
Boolean.

Variable K is of the <subrange type> 0 .. 9, for which the hast
type is integer.

The variable operator is of an <enumerated type>;
the value plus, minus, or times.

it can have

The variable a is a one-dimensional array of type real that may
be indexed by an integer from 0 to 63, inclusive. Variables m,
m1, and m2 are two-dimensional arrays of type real. Each
dimension may be indexed by an integer between 1 and 10,
inclusive.

The variable is a file whose component type is char.
component is a single character.)

(Each

The variable c is a variable of the <enumerated type identifier>
color and may contain a value of red, yellow, blue, green, or
tartan. Variables hue1 and hue2 are both of type "set of color "
They may contain any subset of the <enumerated type identifier>
color .

The variable date is a <new record type>. The field month may
contain an integer value from 1 to 12, inclusive. The field year
may contain any value of type integer. The variable days is a
one-dimensional array that may contain an integer value from 28
to 31, inclusave; it may be indexed by an integer value between
1 and 12, inclusive.

Form 1152048 3-25 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<variable declarations> syntax:

+<---+
! !

----VAR--+-- <variable identifier list> -- : -- <type> -- ; --+-----

<variable identifier list> syntax:

+<----------- ' ------------+
! ! !

----+-- <variable identifier> --+-------------------------------------

<variable identifier> syntax:

----<identifier>--

PROCEDURE AND FUNCTION DECLARATIONS

Procedures and functions are subunits of programs and include
their own declarations and statements. The major difference
between a procedure and a function is that a function returns a
value associated with its function identifier; thus, a function
is used ta generate a value in an expression, whereas a procedure
is used as a statement.

<procedure and functions declarations> syntax:

+<-----------------------------------+
! !

----+--+-- <procedure declaration> ---+--+-
! ! !
+-- <function declaration> ----+

The declarations used to define procedures and functions are
described under the headings Procedure Declaration and Function
Declaration in the pages that fallow.

A procedure or function can have an associated list of
parameters. This allows the the values and variables an which
the procedure or function is ta operate ta be specified at run
time. The parameter list occurring in the declaration is called
the formal parameter list because the parameter names do not
refer to actual variables; they stand in for variables
throughout the procedure or function declaration. When the
procedure or function is invoked, an actual parameter List is
supplied, and the actual values and variables take the place of
the formal parameters.

The syntax and semantics of formal parameter Lists are provided
under the heading Formal Parameter Lists, later in this section.
Formal parameter lists are identical far bath procedures and
functions. functions.

Form 1152048 3-26 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The syntax and semantics of actual parameter lists and
information an the matching of actual parameters with formal
parameters when a procedure or function is invoked are provided
under Actual Parameter Lists and Parameter Matching.

Procedure Declaration

The <procedure declaration> defines a procedure identifier and
its parameters. The procedure can then be invoked by a
<procedure invocation statement>.

<procedure declaration> syntax:

----PROCEDURE <procedure identifier> --+-------------------------+-
! !
+<formal parameter List>+

>--- ----+-----------------+---------------------------------------!
! !
+--<directive.> --+

cprocedure identifier> syntax:

----<identifier>--

<directive> syntax:

---- <forward> --

Before a procedure is invoked by a
<procedure invocation statement>, the <procedure identifier> and
the formal parameters of the procedure must be defined. Such a
definition can be provided either in a forward declaration or in
an actual declaration for the procedure. A forward declaration
is a <procedure declarat1on> that includes the forward
<directive>. When a procedure is forward-declared, an actual
procedure declaration must appear before the end of the list of
<procedure and function declarations> that contains the forward
declaration. When a forward declaration is used, the
<formal parameter List>, if any, must appear in the forward
declaration; it must not appear in the actual declaration.

In some situations, a forward declaration is required Far
example, if two procedures each invoke the other, at Least one of
the procedures must be declared forward.

Farm 1152048 3-27 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

program procedure decs;
type arraytype =array [O .. 10] of integer;
var x, y arraytype;

m, n integer;
procedure proc1;

begin
display ('in proc1');
end;

procedure proc2 (i
var k : integer;
begin

integer; var j integer);
{ local to proc2 }

display ('in proc2');
j := j + i; { Actual parameter for
end;

procedure proc4 (var a : arraytype);
forward;

procedure prac5;
begin
display ('in proc5'};
x[2] := 5;
proc4 (x);
end;

is changed.

procedure proc4; { The formal parameter list was specified in the
forward declaration for proc4. }

begin
display ('in proc4');
if a(2] 10 then

proc5;
end;

begin
m : = 5;
n := 1000;
proc1;
proc2(m,n);
proc5;
end.

Procedure proc1 has no parameters.

Procedure proc2 has two parameters of type integer. The f trst
parameter is a <value parameter> and the second is a
<variable parameter>.

Procedure proc4 has a <variable parameter> of type arraytype.
Because procedure proc4 contains a call an procedure proc5 (and
proc5 has a call on proc4), procedure prac4 was first declared as
forward. The <formal parameter list> for proc4 is declared only
with the forward declaration.

Form 1152048 3-28 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Procedure proc5 has no parameters.
proc4.

Proc5 contains a call on

Function Declaration

The <function declaration> defines a function identifier, its
type, its parameters, and its action. The function can then be
invoked by a <function designator> in an expression.

<function declaration> syntax:

----FUNCTION -- <function identifier>

>-+---------------------------+ <result type> --+---------------+-
I !
+-<formal parameter List>-+

<function identifier> syntax:

! !
+- <directive> -+

----<identifier>---

<result type> syntax:

----+-- <simple type>----+---
!

+-- <pointer type> --+

<directive> syntax:

---- <forward> ---

The <result type> specifies the type associated with the
<function identifier>, which is the type of the value returned to
the expression invoking the function. The <result type> must be
a <simple type> or a <pointer type>. (Refer to Type Concepts.)
The function result is undefined until and unless the
<function identifier> appears as the left-hand side of an
<assignment statement> in the function <block>. If a value is
never assigned to the <function identifier>, an error occurs.

Before a function is invoked by a <function designator>, the
<function identifier>, the formal parameters, and the
<result type> of the function must be defined. This definition
can be provided either in a forward declaration or in an actual
declaration for the function. A forward declaration is a
<function declaration> that includes the forward <directive>.
When function is declared forward, an actual function declaration
(that is, a <function declaration> must appear before the end of
the list of <procedure and function declarations> that contains
the forward declaration. When a forward declaration is used, the
<formal parameter list> (if any) and <result type> must appear in
the forward declaration and cannot appear in the actual
declaration.

Form 1152048 3-29 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

In some situations, a forward declaration is required. For
example, if two functions each invoke the other, at least one of
the functions must be declared forward.

Examples:

program function decs;
type sub1 = 1.--:-10;

letter = 'A' .. 'Z';
var b: Boolean;

c: letter;
inx : integer;
offset : sub1;

function func1 : Boolean;
begin
func1 := true;
end;

function
var k
begin
f unc2
end;

func2 (i
integer;

: = i - 5;

integer) : sub1;
{ local ta func2

function func4 (var a
forward;

letter) : Boolean;

function func5 : char;
begin
c := 'F';
b := func4 (c);
func5 := c;
end;

function func4; The formal parameter list was specified in the
forward declaration for func4. }

begin
if a < 'D' then

a := func5;
func4 false;
end;

begin
b := func1;
offset := func2(10);
c := func5;
end.

Func1 is a function of type Boolean with no parameters.

Form 1152048 3-30 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Function func2 is of type sub1 and has one <value parameter> of
type integer.

The function func4 is of type Boolean and has one
<variable parameter> of type Letter. Because function func4
contains a call on function func5 (and func5 contains a call on
func4). function func4 was first declared as frrrward. The
<formal parameter List> and <result type> for function func4 are
declared only with the forward declaration.

Function func5 is of type char and has no parameters.

Formal Parameter Lists

The <formal parameter List> appearing in a
<procedure declaration> or <function declaration> defines the
externally supplied values and variables on which the procedure
or function is ta operate. The actual values and variables are
provided in the <actual parameter list> when the procedure or
function is invoked.

<formal parameter List> syntax:

+<------------ ' ----------------+
! !

---- (--+--+--- <value parameter> ----+--+--) ---------------------
! !
+-- <variable parameter> --+

<value parameter> syntax

+<---------- . -------------+
! !

----+-- <variable identifier> --+-- : -- <value parameter type> ------

<value parameter type> definition:

Any <type identifier> that is not a <file type>, a
<textf ile type>, or a <structured type> containing a <file type>
or a <textf ile type> as a component.

<variable parameter> syntax:

+<---------- I -------------+
! I

----VAR--+-- <variable identifier>--+ : <variable parameter type> -

<variable parameter type> syntax:

---- <type identifier> --·-

Farm 1152048 3-31 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Parameters are declared by their appearance in a parameter list.
They have associated identifiers, which are valid only within the
procedure or function being declared, and associated types, which
determine how the parameters can be used within the procedure or
function and what type of actual parameters can be matched with
the formal parameters. The two kinds of parameters, value and
variable, also determine the usage of the parameter.

A <value parameter> provides a value to the procedure or
function, but an assignment ta the formal parameter will not
change the value of the actual parameter.

A <variable parameter> provides the procedure or function with a
reference ta a variable. An assignment to the formal parameter
will change the value of the actual parameter.

ACTUAL PARAMETER LISTS AND PARAMETER MATCHING

If a procedure or function is declared with a
<formal parameter List>, an <actual parameter list> must be
supplied whenever that procedure or function is invoked. Because
the actual parameters will be substituted for the formal
parameters in all contexts in which they appear in the <block> of
the procedure or function, it is important that the actual and
formal parameters have similar characteristics. This similarity
is ensured by a mechanism called parameter matching.

<actual parameter list> syntax:

+<--------- I -----------+
! I

---- (--+--+-- <expression> --+--+--) -----------------------------
! !
+--- <variable> ---+

Formal and actual parameters are matched according ta their
positions in their respective parameter lists. The first formal
parameter is matched with the first actual parameter, and so on.
There must be the same number of parameters in the
<actual parameter List> as were declared in the
<formal parameter list>.

/ A formal <value parameter> must be matched by an <expression> or f a <variable> in the <actual parameter list>. The <expression> or
\ cvariable> must be assignment compatible with the type of the

formal parameter.

(

A formal <variable parameter> must be matched by a <variable> in
the <actual parameter list>. The actual <variable> must be of
the same type as the formal parameter. The actual parameter is
accessed before the procedure or function is activated, and this
access establishes a reference ta the <variable> for the entire
activation of the procedure or function. The existence of this

Form 1152048 3-32 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

reference implies that, even if the procedure or function changes
a variable (such as an array index) that was used to specify the
actual parameter, the actual parameter will not change. For
example, if a[i) were passed as an actual variable parameter and
i had the value 5 at the time the procedure was invoked, the
actual parameter would always be a[5], even if i were changed to
7 within the procedure.

A component of a variable of a PACKED structured type cannot be
passed as an actual variable parameter, nor can the tag field of
the <variant part> of a record variable. to.parameter List
congruity

Two <formal parameter list>s are congruent if all cf the
following conditions are true:

1. The <formal parameter L ist>s contain the same number of
parameters.

2.

3.

Corresponding parameters are af the same kind (value and
variable).

corresponding parameters are of the same type. \

-·

Form 1152048 3-33 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 4

STATEMENTS

Every <block> contains a <statement part>, which is simply a list
of statements bracketed by the keywords BEGIN and END.
Statements are the executable, or active, components of programs.
Simple statements perform a single operation once. Structured
statements contain statements as subcomponents. Depending on the
form of the structured statement, the subcomponent statements may
be executed sequentially, repetitively, or conditionally.

<statement part> syntax:

----BEGIN -- <statement list> -- END--------------------------------

<Statement List> syntax:

+<------ ' -------+
! !

-·---+-- <statement> --+---

<statement> syntax:

-·---+------------------+-+--------------------------------------+-----
! ! ! I

+-- <label> -- : --+ +-- <assignment statement> ------------+
! !
+-- <case statement> ------------------+
! !
+-- <compound statement> --------------+

I

+-- <for statement> -------------------+
! !
+-- <goto statement> ------------------+
! !
+-- <if statement> --------------------+

I

+-- <procedure invocation statement> --+
! !
+-- <repeat statement> ----------------+
! !
+-- <while statement>-----------------+
! !
+-- <with statement> -------------~----+

The <assignment statement>, the <goto statement>, and the
<procedure invocation statement> are simple statements. The
<compound statement> and the <with statement> are sequential
statements. The <for statement>, the <repeat statement>, and the
cwhile statement> are repetitive statements. The <1f statement>
and the <Case statement> are conditional statements.

Form 1152048 4-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The null path through the <statement> syntax diagram represents
the "empty statement." The empty statement can be used in
situations where a null operation is required. For example, it
might be desirable to associate an empty statement with a
particular <case constant> in a <case statement>.

A statement may have an associated <label> that identifies its
location for later reference in a <goto statement>. Restrictions
on the declaration and placement of labels are described under
Label Declarations in section 3. Restrictions on references to
labels in <goto statement>s are described under GOTO Statements
in this section.

ASSIGNMENT STATEMENTS

The <assignment statement> assigns the value of the <expression>
or function identifier to the specified <variable>. The value of
the function identifier or the <expression> must be assignment
compatible with the type of the <variable> that is being
assigned.

<assignment statement> syntax:

---- <variable> -------------- .- --+-- <expression> ------------+----
!

+--<function identifier>---+

Examples:

x := y + z;

The variable x is assigned the sum of y and z.

p := (1 <= i) and (i <= 100);

The variable p is assigned the Boolean value true if i is between
the values of 1 and 100, inclusive; otherwise, p is assigned the
Boolean value false.

hue1 := [blue, succ(c)];

The set variable "hue1" is assigned the set consisting of the
value "blue" and the successor to the value of the variable c.

p1@.mother := true;

The Boolean mother, which is a field identifier in a dynamically
allocated variable pointed to by p1, is assigned the value true.

var s : packed array (1 .. 3] of char,

Farm 1152048 4-2 File DOCUMENT/PASCAL

Burroughs

begin
s := 'abc/;
end;

B 1000 PASCAL LANGUAGE MANUAL

This assignment assigns the value 'abc/ to the string variable s.

CASE STATEMENTS

The <case statement> allows the selection of one of a group of
statements, depending on the value of the specified <case index>.
The <case index> is evaluated, and the <statement> associated
with the <case constant> of that value is executed.

If no <case constant> has the value of the <case index>, the
<statement list> following the reserved word OTHERWISE is
executed; if OTHERWISE does not appear, a run-time error occurs.

The values of the <case constant>s must be unique and must be of
the same ordinal type as the <case index>.

The OTHERWISE construe~ is a Burroughs extension to ANSI Pascel.

Examples:

case operator of
plus: x
minus: x
times: x

end;

x + y;
x - y;
x !! y;

The value of the enumerated variable operator determines the case
constant whose statement will be executed.

case date.month of
4,6,9,11: days [date.month]
2: days [date.month]
otherwise days [date.month]

end;

=
=
=

30
28 I

31 I

If date.month is a value other than 2, 4, 8, 9, or 11, the
statement associated with "otherwise" will be executed.

<case statement> syntax:

+<------ ; -----------+
! ! !

----CASE <case index> OF--+ <case list element>+--+---+----------
! !
+ ; +

>----+-----------------------------------+-------- END
! !
+--OTHERWISE -- <statement list>--+

F!lrm 1152048 4-3

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

<case index> syntax:

---- <ordinal expression> --

<case List element> syntax:

+<------- ' ----------+
!

----+-- <ca~e constant> --+-- : -- <statement> -----------------------

COMPOUND STATEMENTS

The <compound statement> allows a <statement list> to be treated
as a single <statement>. A <compound statement> is frequently
used as a <statement> within a structured statement (such as an
<if statement> or <while statement>).

<compound statement> syntax:

---- BEGIN -- <statement l is t > -- END --------------------------------

Example:

if j > k then
begin

- x;
x : = y;
y : = 2;
end;

If the value of j is greater than the value of k, z will be
assigned the value of x, x will be assigned the value of y, and y
will be assigned the value of z.

FOR STATEMENTS

The <for statement> causes the <statement> to be executed
repeatedly, each repetition being performed with the
<control variable> assigned to a different value within the
specified range of values The <statement> within the
<for statement> is referred to as the "controlled statement."

<for statement> syntax:

FOR -- <control variable> - -- <initial value> --+---TO---+
! !
+- OOWNTO -+

>---<final value> -- DO -- <statement>

Form 1152048 4-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<control variable> definition:

A <Boolean variable>, <char variable>, <enumerated variable>, or
<integer variable> that is also an <entire variable>.

<initial value> syntax:

---- <ordinal expression> --

<final value> syntax:

---- <ordinal expression> --

The range of values is defined by <initial value> and <final
value>. If TO is specified, the <control variable> is
incremented from <initial value> to <final value>, inclusive. If
DOWNTO is specified, the <control variable> is decremented from
<initial value> ta <final value>, inclusive. The <initial value>
and the <final value> are evaluated only once; thus, if one or
both are variables, subsequent changes to their values have no
effect on the execution of the <for statement>.

Once the <control variable> has been assigned the <final value>
and the controlled statement has been executed for the final
time, the value of the <control variable> becomes undefined and
program control is passed to the statement following the <for
statement>. If a <goto statement> within the controlled
statement transfers control to a statement outside the controlled
statement, the value of the <control variable> remains defined.

The <control variable> must be a locally declared variable of an
ordinal type. The <initial value> and cf inal value> must be
assignment compatible with the <control variable>. The value of
the <control variable> may be accessed at any time during the
execution of the controlled statement, but its value cannat be
changed or "threatened." A "threatening" statement is one af the
following types of statements occurring in the controlled
statement or in any procedure or function declared in the most
local block containing the <for statement>:

1. An assignment statement in which the <control variable>
appears on the left-hand side.

2. A statement that invokes a procedure or function in which
the <control variable> appears as an actual variable
parameter in the parameter list.

3. A statement in which either the read or the readln procedure
is invoked with the <control variable> appearing in the
parameter list.

FDrm 1152048 4-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

4. Another <for statement> in which the <control variable> is
also used as the <control variable> for that
<for statement>.

Examples:

max:= a(1];
for i := 2 to 63 do

if a[i] >max then
max:= a[i];

For each value of i between 2 and 63, inclusive, a[i] will be
compared to max. If the value of a[i] is greater than max, max
will be assigned the value of a[i].

for i := 1 to 10 do
for j := 1 to i - 1 do

m[i][j] - 0.0.

For each value of i between 1 and 10, inclusive, is assigned a
value of 1 to i - 1, inclusive. When i is 1, j is assiqned
values from 1 to 0. Because there are no values between 0 and 1,
the controlled statement of the innermost for statement is not
executed when i is 1. When i is 2, j is assigned values from 1
to 1, inclusive, so m[2)[1] is assigned the value 0.0. This
process continues for all values of i up to, and including, 10.

for c := blue downto red do
q (c) ;

For each value of c between blue and red, inclusive, the
procedure q is called with c as a paramet~r. (c is assigned
blue, pred[c), , until pred(c) is the value red.)

GOTO STATEMENTS

The <goto statement> transfers program control to the <statement>
associated with the specified <Label>.

<goto statement> syntax:

----GOTO -- <Label> ---

There are several restrictions on the use of the <goto statement>
that depend on the Location of the <Label> it specifies. In
general, the restrictions prohibit branching into a structured
statement from outside that statement. Specif ical Ly, it is val 1d
for a <goto statement> to reference a <label> only if at least
one of the following conditions is true:

Form 1152048 4-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

1. The <statement> associated with the <label> is in the same
<statement list> as the <goto statement> or it is in the
same <statement list> as any structured statement containing
the <goto statement>.

2. The <statement> associated with the <Label> is a <statement>
within the <statement part> of any <block> containing the
<goto statement>. That is, the <statement> associated with
the <Label> is a statement at the outermost level of any
<block> containing the <goto statement> and is not contained
within a structured statement.

Example 1:

program val id goto examples;

Label 10, 20, 9999;
var counter : integer;

procedure p1;
label 100;
var local Loop integer;
begin
local loop:=1;

100:
if local loop > 2 then

goto '9'999;
local loop local Loop + 1;
goto TOO;
end;

begin
counter:=O;

10:

20:

if counter < 10 then
begin
counter .- counter + 1;
goto 10;
end;

if counter < 20 then
begin

counter .- counter + 1;
if counter < 25 then

begin
display('looping');
goto 20;
end;

p 1 ;
end;

9999:
display('dane');

end.

Furm 1152048 4-7

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

In example 1, the branches to Labels 10, 20, and 100 are valid by
rule 1. The branch to label 9999 is val id by rule 2.

Example 2:

program invalid goto examples;

label 2000, 9000;
var inx : integer;

procedure p1;
Label 100;
begin

100:
goto 9000; {1}
end;

begin
i nx : = 3;
if inx = 3 then

begin
i nx : = 4;
goto 2000; {2}
end

else
begin

2000:
display ('illegal branch');
end;

if inx = 4 then
begin

9000:
display ('illegal branch');
end

e Ls e
begin
goto 100; {3}
end;

end.

In example 2, the branch at {1} is invalid because the statement
associated with Label 9000 is in a containing procedure but is
not at the outermost Level of the black.

The branch at {2} is invalid because the statement associated
with label 2000 is neither in the <statement List> that contains
the <goto statement> nor in any structured statement that
contains the <goto statement>.

Form 1152048 4-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The branch at {3} is invalid because label 100 is not in the
scope of the <goto statement>.

IF STATEMENTS

The <if statement> allows the selection of one of two
<statement>s, depending upon the value of the <Boolean
expression>. If the value of the <Boolean expression> is true,
the <statement> following the reserved ward THEN is executed. If
the value of the <Boolean expression> is false, the <statement>
following the reserved ward ELSE is executed; if ELSE does not
appear, program execution continues with the statement
immediately fallowing the <if statement>.

<if statement> syntax:

---- IF -- <Boolean expression> -- THEN -- <statement>----------------

>----+-------------------------+--------------------------------------
! !
+-- ELSE -- <statement> --+

In nested <if statement>s, each ELSE is paired with the nearest
preceding unpaired THEN.

Examples:

if x < 1.5 then
z .- x + y

else
2 1 . 5 ;

If x is less than 1 .5, 2 will be assigned the sum of x and y. If
x is greater than or equal to 1 .5, z is assigned the value 1 .5.

if p1 <>nil then
p1 := p1@.father;

If the pointer p1 is referencing a variable, p1 is updated to the
value of the pointer contained in the field named father in the
dynamically allocated record pointed ta by p1.

if j = 0 then
if i = 0 then

writeln('indef inite')
else

\.Jr i t e l n (' i n f i n i t e ')
else

writeln(i I j);

FDrm 1152048 4-9

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

The fallowing table shows what would be written far various
values of i and j:

STRING RELATION

O and
= O and
<> 0 and
<> 0 and

0
<> 0

0
i <> 0

indefinite
infinite
i I j
i I j

A <string relation> performs a sequential comparison of the
ordinal numbers of corresponding characters in the two
<string expressian>s. The <string expressian>s must be of the
same length.

<string relation> syntax:

---- <string expr~~sian> -- <rel op> -- <string expression> ----------

Two <string expressian>s are equal if every character in bath
strings is identical. A <string expression> is less than another
<string expression> if, in the first character position that
differs between the two <string expressian>s, the first
<string expression> contains a character of a Lower ordinal
number than the corresponding character in the second string.

Example:

var b Boolean;
sl, s2 : packed array [1 .. 10] of char;

begin
s1 'abcdefghij';
s2 := 'abcdefghiz';
b s1 < s2;
end;

The string s1 is compared, character by character, to string s2.
The variable b is ass1gned the value true because, at the first
character position at which the strings differ (j and z at
character 9), the ordinal number of j is Less than the ordinal
number of z.

PROCEDURE INVOCATION STATEMENTS

The <procedure invocation statement> activates the specified
<declared procedure> or <predefined procedure>. When the
procedure activated by the <procedure invocation statement>
terminates, the program continues at the paint immediately
following the <procedure invocation statement>.

Form 1152048 4-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<procedure invocation statement> syntax:

----+-- <declared procedure> ----+-------------·----------------------
!

+-- <predefined procedure> --+

<declared procedure> syntax:

---- <procedure identifier> --+-----------------------------+--------
! !
+-- <actual parameter list> --+

The <procedure identif ier>s and parameter lists far
<declared procedure>s are specified by the programmer in
<procedure declaratian>s. Procedure identifiers and parameter
lists for <predefined procedure>s are described in section 6.

If the <procedure identifier> was declared with a
<formal parameter list>, any <procedure invocation statement>
invoking that procedure must include an <actual parameter list>.
Please refer ta the Actual Parameter Lists and Parameter Matching
in section 3 for additional information.

Examples:

pr inthead ing;

The declared procedure printheading, which has no parameters, is
invoked.

writeln(f, i, j);

The predefined procedure writeln is called to write the values of
and j ta the textfile f.

bisect(fct, -1.0, +1.0, x);

The declared procedure bisect is called with the actual
parameters fct, -1.0, +1.0, and x.

REPEAT STATEMENTS

The <repeat statement> causes the <statement list> to be
repeatedly executed until the value of the specified
<Boolean expression> is true. The <statement list> is always
executed at Least once because the <Boolean expression> is
evaluated after each execution of the <statement list>.

Form 1152048 4-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<repeat statement> syntax:

-- REPEAT --<statement list>-- UNTIL --<Boolean expression>--!

Example:

repeat
k i mod j;
i
j

until

. - j;
- k•

= O;

The variable k is assigned the value of i mad j. The variable 1
is assigned the value of j. The variable j is assigned the value
of k. If j is not equal to 0, the three assignment statements
are executed again. When j is equal to 0, the statement
following the repeat statement is executed.

WHILE STATEMENTS

The <while statement> causes the <statement> to be repeatedly
executed until the value of the specified <Boolean expression> is
false. The <Boolean expression> is evaluated before each
execution of the <statement>, so the <statement> will not be
executed if the <Boolean expression> is initially false.

<while statement> syntax:

---- WHILE -- <Boolean expression> -- DO -- <statement> --------------

Example:

while i > 0 do
begin
if odd(i) then

z : ::::: z ;,)(;
i - i div 2;
x := sqr(x);
end;

The compound statement in the WHILE statement is executed if i is
greater than 0. After each execution of the compound statement,
i is compared to 0. If i 1s greater than 0, the compound
statement is executed again.

WITH STATEMENTS

The <with statement> establishes a scape within which all
<field identif ier>s in the <statement> are assumed to be prefixed
by the specified <record variable>. Thus. when a
<field identifier> is used, the field referenced is actually

Form 1152048 4-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<record variable>.<field-identif ier>. The <With statement>
context permits a shorthand notation that is useful ~1hen many
references are being made to fields within a particular record.

<With statement> syntax:

WITH -- <record variable> -- DO -- <statement>

When multiple <record variable>s are specified, the effect is as
if the <record variable>s were specified in nested
<with statement>s. The leftmost <record variable> is assigned
the most global scope and the rightmost the most local scope.
Thus, when two or more records have identically named fields and
that field name appears as a <field identifier> in the
<statement>, the field is assumed to be the one in the
<record variable> associated with the most local <with statement>
scope.

Similarly, when a <field identifier> conflicts with an
<identifier> whose scope is global to the <with statement>, the
<with statement> scope overrides and the field of the record is
referenced.

Examples:

var date record
month
year
end;

begin

1 .. 1 2 ;
1950 .. 2050;

with date do
if month 12 then

begin
month = 1;
year := year + 1;
end

else
month month + 1;

end;

If date.month equals the value 12, date.month is assigned the
value 1 and date.year is incremented by 1. If date.month is not
equal to 12, date.month is incremented by 1.

Fnrm 1152048 4-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 5

EXPRESSIONS

An <expression> generates a value of a particular type by
performing specified operations on specified operands. The
operands and operations vary according to type. For example, a
<Boolean expression> generates a Boolean value from the
application of <Boolean operator>s to <Boolean primary>s
(operands).

<expression> syntax:

----+-- <array variable> --------+------------------------------------
! !
+-- <Boolean expre~sion> ----+
! !
+-- <char expression> -------+

!
+-- <enumerated expression> -+
! !
+-- <integer expression> ----+

!
+-- <pointer expression> ----+
! !
+-- <real expression> -------+

!
+-- <record expression> -----+
! !
+-- <set expression> --------+
! !
+-- <string expression> -----+

For most <array type>s and all <record type>s, there arP. no
operations or constants defined; an <expression> of such a type
is simply a variable of that type. Arrays of <string type> can
be assigned <string expression>s, which are defined in this
section. Files and textfiles do not directly generate values,
and there are no expressions defined for these types.

ARITHMETIC EXPRESSIONS

In some contexts, it ls useful ta consider <integer expression>s
and <real expression>s as <arithmetic expression>s. For example,
many arithmetic functions accept <arithmetic expression>s as
parameters.

<arithmetic expression> syntax:

----+-- <integer expression> --+-------------------------------------·
! !
+-- <real express1on> -----+

Form 1152048 5-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

ORDINAL EXPRESSIONS

Boolean, char, enumerated, and integer expressions are grouped as
<ordinal expression>s, which are expressions that generate
ordinal values. <Ordinal expression>s are frequently used as
<case canstant>s, array indices, and set components.

<ordinal expression> syntax:

----+-- <Boolean expression> -----+--------------------------------~-
! !
+-- <char expression> --------+
! !
+-- <enumerated expression> --+
! !
+-- <integer expression> -----+

PRECEDENCE OF OPERATORS

An operator generates a value by performing a defined operation
on either one or two data items. The data items on which
operators operate are called operands.

A unary operator applies to only one operand. For example, the
Boolean NOT operator produces a value that is the Logical
complement of the Boolean operand to which it is applied.

A binary operator applies to two operands, generating a single
value by combining or comparing the values of the two items in
some way. For example, the arithmetic subtract operator (-)
produces a value by subtracting the value of the second operand
from the value of the first operand.

An expression is a combination of operands and operators that
generates a value by applying the operators ta the operands
according to defined rules. The simplest expression is just an
operand, with no operators or other operands specified. A more
compl irated expression may include many operands and operators.

Theoretically, when there are multiple operators in an
expression, there could be multiple interpretations of the
expression. For example, A+ B • C could be interpreted in two
ways:

(1) First add A and B, then multiply the sum by C, or

(2) first multiply Band C, then add the product ta A.

Form 1152048 5-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

If A is 3, B is 5, and C is 7, then the value of the expression
is 56 if computed by method 1 and 38 if computed by method 2.

Rules that define the "precedence of operators" describe the
order in which operations are performed within an expression.
Higher precedence operators are applied before Lawer precedence
operators. The precedence of operators is defined in the
fallowing table:

[highest] a) NOT
b) * I, DIV, MOO, AND, CANO
c) + - DR, COR

[lowest] d) <>. <=. >=, <, <, IN

The highest precedence operator is the Boolean NOT operator.

The multipl icatian operators have the second highest precedence.
These operators are integer and real multiply and set
intersection{*), real d1visian (/), integer division (DIV).
integer remainder division (MOD), Boolean AND, and Boolean
conditional AND (CANO).

The addition operators, the next group in precedence, are integer
or real unary plus (+], 1nteger or real addition (+], set union
(+), integer or real unary minus (-), integer or real subtraction
(-), set difference (-). Boolean OR, and Boolean conditional OR
(COR).

The lowest precedence operators are the relational operators.
These operators, which apply to several data types, are described
under Relational Expressions in this section.

Other languages, such as FORTRAN and ALGOL, define a higher
precedence tor the relat1onal operators. For example, if A, B,
C, and D are integer operands, the expression shown below is a
valid Boolean expression in FORTRAN and ALGOL (ignoring the minor
differences in syntax), but it is not a val id expression in
Pascal:

A
(A

A

B AND C
B) AND (C

(B AND C)

0
D)
D

{FORTRAN/ALGOL interpretation}
{Pascal interpretatian--INVALID}

When an expr~ssian contains two or mare operators of equal
precedence, the operators are applied from left ta right. Far
example, in the expression X * Y I Z, first X and Y are
mu l t i p l i e d , then the pr ad u c t i s d i v i de d by Z .

The defined precedence of operators can be overridden by
enclosing subcomponents of the expression in parentheses. Far
example, in the expression A+ Bu C mentioned earlier, the
precedence rules specify that the multiply operator (*) is ta be
applied before the addition operator (+). Thus, the result of

Form 1152048 5-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

evaluating this expression is 38 if A is 3, B is 5, and C is 7.
The other interpretation can be imposed by enclosing the first
part of the expression in parentheses:

(A + BJ * C
A + (B * C)

{Add A and B, then multiply by C yields 56}
{Identical to default interpretation yields 38}

FUNCTION DESIGNATORS

The appearance of a <function designator> in an expression
activates the specified <declared function> or
<predefined function>. When the function activated by the
<function designator> terminates, a value is returned and
evaluation of the expression continues.

<function designator> syntax:

----+-- <declared function> ----+------------------------------------
! !
+-- <predefined function> --+

<declared function> syntax:

----<function identifier>--+-----------------------------+---------
! !
+--<actual parameter List>--+

The <function identifier>s and <formal parameter list>s for
<declared functian>s are specified by the programmer in
<function declaration>s. Function identifiers and parameter
lists for <predefined function>s are described in section 6,
Predefined Procedures and Functions.

If the <function identifier> was declared with a
<format parameter list>, any <function designator> invoking that
function must include an <actual parameter list>. Please refer
to Actual Parameter Lists and Parameter Matching in section 3 far
additional information.

Form 1152048 5-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

program function example;
var i integer;

b : Boolean;
function f1 integer;

begin
f 1 1 0;
end;

function f2 (j integer}
begin
f2 := j > 20;
end;

begin
i . - f 1 ;
b := f2 (i};
end.

Boolean;

The variable is assigned the value of the function designator
f1. The variable b is assigned the value of the function
designator f2, where i is passed as the actual parameter.

EXPRESSIONS BY TYPE

Expression types, in alphabetical sequence, are described in the
paragraphs that follow.

Boolean and Relational Expressions

A <Boolean expression> ·generates a value of the <Boolean type>.
A relational expression generates a Boolean value by comparing
two operatands of the same type or of similar types.

Boolean Expressions

Following are syntax diagrams for Boolean expressions.

<Boolean expression> syntax:

+<--------- <Boolean operator> ------+
! !

----+--+---------+-- <Boolean primary> --+---------------------------
! !
+-- NOT --+

Form 1152048 5-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<Boolean operator> syntax:

----+-- AND ---+--
! !
+-- CANO --+
! !
+-- OR ----+
! !
+-- COR ---+

<Boolean primary> syntax:

----+-- (<Boolean expression>) --+-------------------------------'
! !
+-- <Boolean constant>---------+
! !
+-- <Boolean variable>---------+
! !
+-- <function designator>------+
! !
+-- <relational expression> ---+

The <Boolean operator>s AND and OR perform the logical AND and
logical OR operations. respectively. CANO and COR are
conditional operators that perform the same operations as AND and
OR, with the following exception: the left-hand
<Boolean primary> is always evaluated first and, if the value of
the <Boolean expression> can be determined from the value of the
left-hand <Boolean primary> alone, the right-hand
<Boolean primary> is not evaluated.

<Boolean constant> is defined in Constant Definitions in section
3, <Boolean variable> is defined in section 7, Variables, and
<function designator> and <relational operator> are defined 1n
this section.

Far a <function designator> to return a value of <Boolean type>,
it must be declared with <Boolean type> as its <result type>.

Tile CANO and COR operators are Burroughs extensions ta ANSI
Pascal.

Form 1152048 5-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

var b1, b2, b3 : Boolean;
begin
{The following two expressions are equivalent.}
b1 b1 or b2 and b3;
b1 := b1 or (b2 and b3);
end;

program cand example (output);
var i : integer;

a : array [1 .. 10] of integer;
function f1 (inx: integer) : Boolean;

begin
f1 .- inx <= 10;
end;

begin
i : = 1 ;
while f1(i) cand (a[·i]

i : = i + 1.
0) do {See note below.}

end.

NOTE

The operator CANO is used in this
<Boolean expression> to prevent the
evaluation of a[i] when i has a value that is
outside the declared bounds of the array.

Relational Expressions

A <relational expression> generates a Boolean value by comparing
two operands of the same, or similar, types. For relations using
the <rel op>s (relational operators), the symbols have the
following meanings:

Symbol

Form 1152048

< >
<

<=

Meaning

Equals
Not equals
Less than
Greater than
Less than or equal to

5-7

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

<relational expression> syntax:

----+-- <arithmetic relation>--+-------------------------------------
' !
+-- <ordinal relation> ----+
I !
+-- <set relation>---------+

!
+-- <string relation>------+

<rel op> syntax:

----+-- --+--
!

+-- <> --+
! I

+-- < --+

+-- > --+
! !
+-- <= --+
I !
+-- >= --+

<arithmetic relation> syntax:

---- <arithmetic expression> -- <rel op> -- <arithmetic expr~sstdn>

An <arithmetic relation> performs an algebraic comparison of the
values of the specified <arithmetic expression>s.

Example:

var b

r
begin

.- 45;

Boolean;
integer;
real ;

r - 9.0e2;
b ·- i n 2 >= r;
end;

The value of the variable is multiplied by 2 and that result is
compared to the value of r. If in2 is greater than or equal to
r, the variable b is assigned the value true; otherwise, b is
assigned the value false.

Fnrm 1152048 5-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<ordinal relation> syntax:

----+----- <Boolean expression> <rel op> <Boolean expression> ------+--
! !
+--------- char expression> <rel op> <char expression> --------+
! !
+-- <enumerated expression> <re l op> <enumerated expression> --+
! !
+----- <integer expression> <rel op> <integer expression> -----+

An <ordinal relation> compares the ordinal numbers of the two
specified ordinal expressions. The expressions being compared
must be of compatible types.

Examples:

var c : char;
color : (red, yellow, blue, green, tartan);
i integer;
b : Boolean;

begin
i : = 7;
color := tartan;
c := 'Z';
if i > 5 then

color :=blue;
b := color < green;
b := (c = 'r);
end;

In the above, i > 5, color < green, and c
of <ordina relation>s.

<pointer relation> syntax:

'Z' are illustrations

----+-- <pointer expression> --+ +-- <pointer expression> ---------

+ < > +

A <pointer relation> compares two <pointer expression>s for
equality or inequality. The <pointer expression>s are equal if
they refer to the same dynamic variable or are both NIL. When
<pointer expression>s are compared, they must be of the same
type.

Form 1152048 5-9 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:

program pointer relation;
type ptr @rec;

rec = record
name : packed array (0 .. 20] of char;
age 0 .. 100;
end;

var myptr, yourptr : ptr;
begin
new(myptr):
yourptr :=nil;
if (myptr = yourptr) or (yourptr <> nil) then

display ('Error');
end.

This example tests two painters for equality and then tests a
pointer for inequality to NIL.

<set relation> syntax:

----+-- <set expression> --+-- = ---+-- <set expression> ----+--------
! ! ! !

+-- <> --+

' !
+-- <= --+

+-- <ordinal expression> -- IN -- <set expression> ------+

There are two kinds of <set relation>s. The first compares two
<set expression>s far equality (=), inequality (<>), subset
relationship (<=), or superset relationship (>=). The second
determines whether or not the value of the specified <ordinal
expression> is a member of (that is, is IN) the set specified by
the <set expression>. When <set expressian>s are compared, they
must be of compatible types.

Examples:

var b1, b2 : Boolean;
c : set of char;

begin
c := ['a' .. 'z'];
b1 ['b','f','A') <= c;
b2 := 'c' inc;
end;

The Boolean variable b1 is assigned the value true 1f the set
containing 'b', 'f', and 'A' is a subset of the set c;
otherwise, b1 is assigned the value false. The Boolean variable
b2 is assigned the value true if the character 'c' is a member of
the set c; otherwise, b2 is assigned a value of false.

Form 1152048 5-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

CHAR Expressions

A <char expression> generates a value of the <char type>.
<char constant> is defined in the Constant Definitions section,
<char variable> in the Variables introduction, and
<function designator> Later in that introduction.

<char expression> syntax:

----+-- <char constant>---------+-------------------------------------
! !
+-- <char variable> --------+
! !
+-- <function designator> --+

For a <function designator> to return a value of <char type>, it
must be declared with the <char type>, or a <subrange type> whose
host type is the <char type>, as its <r~sult type>.

Examples:

canst ch = 'c';
var char1, char2 : char;
function char function : char;

begin
char function - '?'·
end;

begin
char1 .- ch;
char1 .- char function;
char2 charT;
end;

The <char variable> char1 is assigned the value of the
<char constant> ch (the character 'c,). Char1 is then assigned
the value of the <function designator> char function (the
character '?'). The <char variable> char2 1s assigned the value
of char1 (the character '?,).

Enumerated Expressions

An <enumerated expression> generates a value of an
<enumerated type>.

<enumerated expression> syntax:

----+-- <enumerated constant> --+------------------------------------
! !
+-- cenume~ated variable> --+
! !
+-- <function designator> --+

Form 1152048 5-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The <enumerated constant> is defined under Enumerated Types in
section 3, <enumerated variable> under Variables, section 7, and
<function designator> in this section.

Far a <function designator> to return a value of an
<enumerated type>, it must be declared with that
<enumerated type>, or a <subrange type> whose hast type is that
<enumerated type>, as its <result type>.

Examples:

type calartype =(red, yellow, blue, green, tartan);
var color,

hue : calortype;
function colorwheel colortype;

begin
calarwheel succ(calar);
end;

begin
color :=yellow;
hue := colorwheel;
color :=hue;
end;

The <enumerated variable> color is assigned the
<enumerated constant> yellow. The <enumerated variable> hue ls
assigned the value of the <function designator> colorwheel (in
this case, the <enumerated constant> blue). Color is then
assigned the value of hue (the <enumerated constant> blue).

Integer Expressions

An <integer expression> generates a value of the <integer type>
If the expression generates a value (or an intermediate result)
greater than maxint or less than -maxint, an error occurs.

The <integer aperatar>s are the familiar arithmetic operators far
addition (+), subtraction (-), multiplication (*), integer
division (DIV), and integer remainder division (MOD).

<integer expression> syntax:

+<-- <integer operator> --+
! !

-----+-------+--+--- <integer primary> ---+---------------------------
! !
+-- + --+
! !
+-- - --+

Form 1152048 5-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<integer operator> syntax:

----+-- + --+---
!

+-- - --+
! !
+-- a --+

!
+-- DIV --+
! !
+-- MOD --+

<integer primary> syntax:

----+-- (<integer expression>) ---------+-------~------------------
! !
+-- MAXINT ---------------------------+
! !
+-- <unsigned integer>----------------+
! !
+-- <integer constant identifier> ----+
! !
+-- <integer variable> ---------------+

!
+-- <function designator> ------------+

The <insigned integer> is defined in section 8, Basic Components,
<integer constant identifier> under Constant Definitions in
section 3, <integer variable> in section 7, and
<function designator> in this section.

For a <function designator> ta return a value of <integer type>,
it must be declared with the <integer type>, or a <subrange type>
whose host type is the <integer type>, as its <result type>.

Examples:

var i, integer;
begin
j := 79;
i .- maxint - (j mod 48);
end;

Pointer Expressions

A <pointer expression> generates a value of a <pointer type>.

Form 1152048 5-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<pointer expression> syntax:

----+-- NIL --------------------+-------------------------------------
+-- <pointer variable> -----+
! !
+-- <function designator> --+

The constant NIL denotes a null reference (a pointer that is not
currently referencing a variable). The·<pointer variable> 1s
defined in section 7 and <function designator> is defined in this
section.

For a <function designator> ta return a value of a
<pointer type>, it must be declared with that <pointer type> as
its <result type>.

Examples:

program pointer exp;
type ptr @rec;

rec = record
name
age
end;

packed array [1 .. 20) of char;
0 .. 100;

var myptr, yaurptr : ptr;
function allocate : ptr;

var tempptr : ptr;
begin
new(tempptr);
allocate tempptr;
end;

begin
new(myptr);
yaurptr := myptr;
myptr =nil;
myptr :=allocate;
end.

These assignment statements illustrate the three kinds of
<pointer expression>s.

Real Expressions

A <real expression> generates a value of the <real type>. At
least one operand in the expression must be of type real for the
expression to be of type real. If the expression generates a
value outside the defined range for real values, an error occurs.

Form 1152048 5-14 File DOCUMENT/PASCAL

Burroughs

8 1000 PASCAL LANGUAGE MANUAL

<real express~on> syntax:

+<---- <arithmetic operator> --+
I !

----+-----+--+--+-- <real primary> -----+---+-------------------------
! ! ! !
+- + -+ +-- <int~ger primary> --+
! !
+- - -+

<arithmetic operator> syntax:

----+-- + --+------~--
! !
+-- --+

+-- *

+-- DIV

+-- MOD

--+
!

--+

--+

<real primary> syntax:

----+-- (<arithmetic expression>--) --+----------------------------
! !
+-- <unsigned real> ----------------+
! !
+-- <real constant identifier> -----+
! !
+-- <real variable> ----------------+
! !
+-- <function de~ignator> ----------+

The <arithmetic operator>s are the familiar arithmetic operators
for addition(+), subtraction(-), multiplication(*), division
[/), integer division (DIV), and integer remainder division
(MOD). The DIV and MOD operators can be applied only to
<integer primary>s.

<unsigned real> is defined in section 8, Basic Components,
<real constant identifier> under Constant Definitions in section
3, <real variable> in section 7, and <function designator> in
this section.

For a <function designator> to return a value of the <real type>,
it must be declared with the <real type> as its <result type>.

Form 1152048 5-15 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

canst pi
var a, r
begin
r . - 4;

3.14159;
real ;

a:= pi i; sqr(r);
end;

Set Expressions

A <set expression> generates a value of a <set type>. The
<set operator>s perform the set operations of union (+),
difference (-), and intersection (*).

<set expression> syntax:

+<-- <set operator> --+
! !

----+--- <set primary> ---+---

<set operator> syntax:

----+-- + --+--~--------

' !
+-- --+
! !
+-- --+

<set primary> syntax:

----+-- (<set expression>) --+-------------------------------------
! !
+-- <set variable> --------+
! !
+-- <set constructor> -----+

<set constructor> syntax:

--+----------------------------+-- J --------------------------
! !

+<-------- ' -------------+
! I !
+--+-- <member designator> --+

<member designator> syntax:

---- <ordinal expression> --+--------------------------------+-------
! !
+-- .. -- <ordinal expression> --+

Fnrm 1152048 5-16 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The operators may be applied to declared <set variable>s or to
sets that are def i~ed within the expression by use of the
<set constructor> syntax The <set primary>s within a
<set expression> must be of compatible types.

A <set constructor> defines a value of an implied <set type>.
The members of the set are specified by the l 1st of
<member designator>s, which must all be of the same type or of
<subrange type>s of the same host type. <member designator>s
consisting of a single <ordinal expression> denote that
<ordinal expression> as a member of the set. If the
<ordinal expression> <ordinal expression> syntax is used, the
members denoted are those values from the first
<ordinal expression> through the second <ordinal expression>,
inclusive. If the second <ordinal expression> is less than the
first <ordinal expression>, the set is empty.

The <base type> of the <set type> implied by the
<set constructor> is the type (or host type) of the
<member designator>s. An empty <set constructor>, that is, (],
has no specif ac type and may be used in any <set expression>

The <set variable> is defined in section 7.

Examples:

type color= (red, yellow, blue, green, tartan);
var set1, set2 : set of color;
begin
set1 - [red]+ [blue];
set2 set1 * [yellow, blue, green];
set1 set1 - set2;
end;

Set1 is assigned the union of the set consisting of the element
red and the set consisting of the element blue. Set2 is assigned
the set whose member is the value blue (the intersection of the
set set1 and the set containing the elements yellow, blue, and
green). Set1 is assigned the set difference of set1 and set2 or
the set whose member is the value red.

String Expressions

A <string expression> generates a value of a <string type>.

<string expression> syntax:

----+-- <char expression> --+-------------------------·---------------
! !
+-- <string constant> --+

+-- <string variable> --+

Form 1152048 5-17 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The <string constant> is defined under Constant Definitions in
section 3, and <string variable> is defined in section 7.

Examples:

canst str1 = 'abcde';
var str2, str3 : packed array [1 .. 5] of char;
begin
str2 str1;
str3 str2;
str2 = '12345';
enL;

The string variable str2 is assigned the value of the string
constant str1. The string variable str3 is assigned the value of
the string variable str2. The string variable str2 is assigne~
the character string '12345'.

FCJrm 1152048 5-18 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 6

PREDEFINED PROCEDURES AND FUNCTIONS

Following this introduction, this section has two major parts:
INPUT/OUTPUT AND FILE-HANDLING CONCEPTS and PROCEDURE AND
FUNCTION DESCRIPTIONS.

The first part presents input/output (1/0) concepts pertaining to
Pascal. Some basic terminology is covered and information is
presented on files (standard files and textf iles) and related 1/0
operations, and file attributes. Many of the Burroughs
extensions to ANSI Pascal pertain to 1/0 to enable Pascal
programs to access the system-defined I/O subsystem. Programmers
who are interested in writing portable programs are advised to
become familiar with this material.

The second part is a glossary of all the procedures and
functions, grouped according to program application and, within
that grouping, in alphabetic order.

Many Pascal features, including I/O facilities and dynamic
variables, are made available through predefined procedures and
functions. Although procedures and functions are syntactically
different constructs, that difference is not emphasized in this
section.

<predefined prn~edure> syntax:

----+--<file handling procedure>--------+----------------------------
!

+--<dynamic allocat1on procedure>--+
! !
+-- <general procedure>--------------+

<pre de f in e d f u nc t i on> syn tax :

----+-- <file handling function> --------+----------------------------
!
+-
!
+-
!
+--

<type transfer function> --------+
!

<arithmetic function> -----------+
!

<general function> --------------+

INPUT/OUTPUT AND FILE-HANDLING CONCEPTS

The file handling procedures and functions are the basic
mechanisms for performing input and output operations in Pascal.
Some file handling procedures and functions operate on files,
some on textf iles, and some on both.

Farm 1152048 6-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Each procedure and function is defined in the second part of this
section, under the heading File Handling Procedures and
Functions. The general syntax is presented here.

<file handling procedure> syntax:

----+-- <close procedure> ----------+--------------------------------
! !
+-- <get procedure> ------------+

!
+-- <page procedure> -----------+
! !
+-- <put procedure> ------------+

!
+-- <read procedure> -----------+
! !
+-- <read textf ile procedure> --+
! !
+-- <readln procedure> ---------+
! !
+-- <reset procedure> ----------+
! !
+-- <rewrite procedure> --------+
! !
+-- <seek procedure> -----------+
! !
+-- <write procedure> ----------+
I !
+--<write textf ile procedure>-+
! !
+-- <writeln procedure>---------+

<file handling function> syntax:

-·---+-- <eof function>----+---
! !
+-- <ealn function> --+

Terminology

The following paragraphs describe same of the basic terms used in
defining the kinds of files and input/output operations available
in Pascal. In same cases, mare detailed information appears in
the Standard Files, Textf iles, and Use of File Attributes
discussions in this section.

Form 1152048 6-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Standard Files and Textfiles

In Pascal, there are two types of files: standard files (files
of any <component type>), and textfiles (special files of
characters). A standard file is declared with a <file type>, and
a textfile is declared with a <textfile type>. Note that a
variable declared as "file of char" is a standard file, not a
textfile.

Standard files are used to transfer data in machine-readable form
between a program and a physical file. This form of I/O is
generally faster and more storage-efficient than textfile I/O,
but it is not as convenient for use with terminals, line
printers, and other character-oriented devices. Textf iles
provide translation between the internal representation of data
and an external character format. Thus, textf iles are generally
better than standard files for representing data in
human-readable form.

The operations defined far these two types of files are quite
different from each other and are treated separately throughout
this section.

Inspection Mode and Generation Mode

In ANSI Pascal, there are two modes of file operation:
inspection mode, in which the file is being read and not written,
and gene r a t i on mode , i n "'h i ch the f i l e i s be i n g ..,, r i t ten and no t
read. In Burroughs Pascal, a third mode, inspection/generation,
is provided for standard files and textfiles, allowing the files
to be both read and written. The B 1900 implementation uses the
inspection/generation made only.

Buffer Variables

Associated with each file variable is an implicitly declared
buffer variable. The type of the buffer variable is the same as
the <component type> of the file (char for textf iles). The
buffer variable may be used in expressions, assignment
statements, and other constructs in just the same fashion as any
other variable of the same type. For several predefined
operations, data is transferred from the buffer variable ta the
file, or vice versa. If the identifier associated with the file
is f, the buffer variable is indicated by f@.

File Attributes

File attributes are system-defined variables that describe
aspects of a file or textfile from the point of view of the I/O
subsystem. The compiler assigns appropriate values for the
various file attributes when files are declared. In many cases,

Form 1152048 6-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

no further specifications need be made by the programmer. Syntax
is provided in the list of <program parameters> and in the
<setattribute procedure> to allow programmatic assignment of file
attribute values.

Logical and Physical Files

As viewed by a program, a file is a logical entity that is read
or written somewhat independently of the characteristics of the
device involved. In terms of the device used ta create it or the
medium upon which it is stared, however, a file is referred ta as
a physical file. Before data can be transferred between a Pascal
program and a physical file, a physical file must be assigned ta
the relevant file or textf ile variable. This assignment is made
when the file is opened, through a call on either the reset
procedure or the rewrite procedure.

The desired physical file may be a new file or an existing file.
If a file is opened using the <reset procedure> an existing file
is assumed. If the <rewrite procedure> is used, a new file is
created.

The decision as to which physical file will be assigned is
controlled by the values of several file attributes far the file
and by the particular operation used to open the file.

The default value of the KIND attribute in Pascal is DISK. The
default value of the TITLE attribute is, as in ALGOL or COBOL,
the first 10 characters (translated to upper case) of the
<variable identifier> of the file or textfile.

Permanent and Temporary Files

Files may be further classified as permanent files or temporary
files. A file created by a Pascal program is a temporary file
unless otherwise specified. A temporary file exists only while
the program that created it is running. It is discarded as the
result of a close operation that does not specify the save or
crunch option. A temporary file cannot be accessed by any other
program.

A permanent file, on the other hand, may exist beyond the
lifetime of the program and can be accessed by a logical file
other than the one used to create it. A permanent file can be
created by a Pascal program in one of two ways:

(1) If the file name appears in the <program heading>, the file
will became a permanent file when it is closed.

Form 1152048 6-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

(2) The file can be closed by a close operation that specifies
either save or crunch.

In both cases, an existing permanent file replaced by a saved
file with the same name, but it is not replaced until the close
operation is executed.

A permanent file can be explicitly removed by executing a close
operation with the purge option.

Examples:

program p(f);
type employee record record

name packed array [1 .. 25) of char;
department : 1 .. 9000;

var
g

begin

end;
file of employee record;
f 1le of employee record;

{ The following statement creates a new permanent file. The file
is permanent because the file f appears in the program parameter
l is t . }

rewrite(f};

{ The following statement opens a new file. At this point, the
file is temporary. }

rewrite(g);

{ The following statement causes file g to become a permanent
file. }

close[g,save);
end.

Standard Files

A standard file is a variable of a <file type>. It consists of a
(theoretically) unbounded sequence of components of its
<component type>. In practice, of course, a file is limited by
the size of the device with which it is associated and other
system resource limitations.

No special formatting of data is performed for standard files.

Operations on standard files are described next.

Form 1152048 6-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Reset Operation

The reset operation assumes that a file already exists. The file
may be open or closed. If the file is open, it is repositioned
a t t h e b e g i n n i n g o f t h e f i l e . I f t h e f i l e i.s c l o s e d , i t i s
opened. The first component of the file is assigned to the
buffer variable. Immediately following a reset operation, the
position of the file can be viewed as follows:

XO X1
+

{(

+
Xn
eof

X2 X3 Xn eof

current value of the buffer variable
next component to be accessed
last component of the file
special component marking end of file

Get Operation

Get, the fundamental input operation, causes the file component
indicated by + to be transferred to the buffer variable; it then
positions the file to the next component. After performing a get
operation, the file is positioned as follows:

XO X1 X2 X3 Xn eof
+

The file can be accessed sequentially by successive get
operations until the file is positioned at the eof component:

XO X1 X2 X3 Xn eof
+

At this point, another application of get causes the ouffer
variable to become undefined. In addition, the <eof function>
returns the value true if called. (Until now, the <eof function>
returned false.) If get is called when the file is at
end-af-f ile, an error occurs.

Read Operation

The read operation (read (f ,x)) is defined to be equivalent ta
the fallowing two statements:

x : = f@;
get(f);

Form 1152048 6-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Any errors defined for these two statements are defined for read.
For example, f@ must be assignment-compatible with the type of x.

Seek Operation

The seek operation is
Burroughs extension;
The command seek(f, i)
operation will assign
buffer variable.

XO

an additional function defined as a
it allows a file to be accessed randomly.
positions the file such that the next get
the [i+1)th component of the file to the

xi
+

e 0 f

A seek operation may specify a position that is beyond the eof
component. The effect in this case is as if each position beyond
the last component were occupied by an eof component.

xi Xn eof eof eof

A get operation at this paint causes the <eof
true, leaving the buffer variable undefined.
operation results in an error.

Rewrite Operation

eof

function> to return
A second get

A rewrite operation may be called while the file is open or
closed. If the file is open, the attached ph~sical file is
released and a new empty file is created. The file is positioned
such that an item written will occupy the first position.

Put Operation

The put operation causes the contents of the buffer variable to
be transferred to the file at the position indicated by+ and
then moves the file to the next position. It is an error if the
value of the buffer variable is undefined when put is cal led.
Following a put operation, the buffer variable becomes undefined.
A file following a rewrite and put would look like this:

XO
+

The seek operation allows a file to be positioned such that a
subsequent put operation will transfer the contents of the buffer
variable ta the specified position in the tile; that is,
seek(f, i) positions the file at the (i+1)th position. The buffer
variable is undefined after a seek operation; once it has been

Form 1152048 6-7 File DOCUMENT/PASCAL

Burroughs

8 1000 PASCAL LANGUAGE MANUAL

assigned a value, a subsequent put operation would result in the
following file structure:

<--undefined-->
XO xi

+

Write Operation

A write operation (write(f ,x)) is equivalent to the following two
statements:

f@ : =)(;
put(f);

Any errors defined for these two statements are defined for the
write operation. For example, x must be assignment-compatible
with the type of f@).

When a file is closed, as the result of either a reset or close
operation, and the physical file is retained, a logical
end-of-file component is placed following the last position in
the file that was assigned a value. At this point, the file
might look like this:

XO X1 0 .. Xi Xi+1 0 Xn eof

0 marks positions that were never written (because of seek
operations) and are therefore undefined.

Close Operation

The close operation terminates the processing of the file and
disconnects the logical file from the physical file.

Textf iles (Including Predefined Textfiles)

Textf iles are intended for "human-readable" input and output.
The feature provides for formatting and translation of values
between internal system representation and an external character
form.

Textfiles in General

A textfile has some properties in common with a "file of char",
but they are not equivalent. A textf Ile can be viewed as a
sequence of characters, but special components and operations
exist that allow characters to be grouped into lines. More

Form 1152048 6-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

specifically, a textf ile is a sequence of components called
lines, which are separated by logical components called
end-of-Line markers. Each line consists of a sequence of
characters.

A textf ile is denoted by use of the predefined <type identifier>
text. A textfile variable has an associated buffer variable that
is defined ta be of type char.

Predefined Textf iles (Input, Output)

There are two predefined textf iles with the names "input" and
"output." In order ta use these files, their names must appear in
the list of <program parameters>. When they appear, they become
irnpl icitly declared; thus, they must not be declared again in
the <variable declarations> of the program. If the names input
and output do not appear in the list of <program parameters>, the
predefined files a~e not declared and therefore are not available
far use. Any subsequent declaration of either input or output
declares a variable other than the predefined one.

In some file handling procedures such as readln and writeln, the
tile parameter may be omitted; in these cases, the app~opriate
predefined textf ile (either input or output) is inferred, as
specified for each procedure.

Operations on textf iles are described next.

Reset Operation

As with a standard file, the reset operation assumes an existing
textfile. Following a reset operation, the file can be viewed as
fallows:

co
*

co

co
it

+
eoln
eat

C1
+

Cn eoln

Cm eoln

Cz eoln eof

currently defined value of the buffer variable
next component ~o be accessed.
end-of-line marker
end-of-file marker

Eoln exists as a functional definition only; such a character is
not actually present in the file, but is implied by position.

Form 1152048 6-9 File DOCUMENT/PASCAL

Burroughs

8 1000 PASCAL LANGUAGE MANUAL

Get Operation

A textf ile can only be accessed sequentially. The basic input
operation is get. Get operates on a textfile in a manner very
similar to a get on a file of char. Each get operation accesses
the next component of the file. When the file is in the
following position, another get operation will put the file in
end-of-line state:

CO C1 Cn eoln
* +

In end-of-line state, the <eoln function>, if called, returns the
value true and the value of the buffer variable is ' ' (blank).
A second get operation results in the following file position:

CO C1 Cn ealn

CO Cm ealn
+

co Cz ealn eaf

When the file is positioned as fallows, a get operation again
puts the file into end-of-line state, and a second get operation
puts the file into end-of-file state:

CO C1 Cn eotn

CO Cm eoln

co Cz eoln eof
+

After the second get operation, the <eof function>, if called,
returns true and the value of the buffer variable is undefined.
When the file is in the end-of-file state, an error occurs 1f
get, read, readln, or eoln is called.

Read Operation

The read operation has special semantics for textf iles. The
definition of a read operation depends on the type of the
variables in the parameter list. The action of the read
operation on a textf ile is described under Read Teaxf ile
Procedure.

Form 1152048 8-10 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Readln Operation

The readln operation causes the remaining characters in a Line to
be skipped and positions the file at the beginning of the next
line. Readln is equivalent to the following statements:

while not e.oln(f) do
get(f);

get(f);

A multiple-value readln operation such as readln(f ,X1, ... ,Xn) is
equivalent to the following statements:

read(f,X1, .. ,Xn);
readln;

Rewrite Operation

As with a standard file, the rewrite operation creates a new
empty textfile.

Put Operation

The basic output operation is put. Put is defined as for a "file
of char." At any paint, there lS a current line that is either
empty or partially generated. An error occurs if an attempt is
made, through the use of put, write, or writeln, to put more
characters in a line than the defined maximum.

Write Operation

The write operation has special semantics far textf iles. The
definition of write depends on the type of the variables in the
parameter list. The action of write on a te~tf ile is described
under Write Textf ile Procedure.

Writeln Operation

The current Line is terminated by the writeln operation.
multiple-value writeln operation such as writeln(f ,X1,.
equivalent to the following statements:

A
, Xn) is

Form 1152048 6-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

write(f,X1);

write(f,Xn);
writeln;

If a reset operation is performed or the file is closed without
being released and the current line is not empty, an implicit
writeln is performed and an end-af-f ile is written.

Clase Operation

The close operation terminates the processing of the file and
disconnects the Logical file from the physical file.

Lazy I/O

Textf ile input operations require special processing to ensure
that the operations are performed in the order that the
programmer expects. In particular, a problem arises when reading
from a textfile assigned ta a remote file. A typical interactive
program prompts a user far input and then reads the user's
response. Because reset, read, and readln operations implicitly
read one character ahead (that is, the buffer variable is
assigned a value that will subsequently be stared into a variable
in a read or readln parameter list), mast interactive programs
would thus have to wait for the user to respond to a prompt that
has not yet been displayed.

To avoid these potentially frustrating interactions, Burroughs
Pascal uses an input technique known as "lazy I/O." With lazy
I/O, data is not transferred ta the buffer variable until it is
required by the program. Thus, if a get, ·read, or readln
operation is performed and the value af the buffer variable
fol lawing the operation is defined ta be the first character of a
new Line, that line is not read and the value is not actual Ly
assigned until another get, read, or readln operation is
performed.

Other implementations may use other I/O techniques under these
circumstances, and programs may behave differently.

Use of File Attributes

Burroughs Pascal, together with the B 1000 I/O subsystem,
provides several methods for assigning and interrogating the
values of file attributes. File attributes can be assigned in
the following ways:

Farm 1152048 6-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

1. Through file equation as the program is executed.

2. By specification of the file attributes in the
<program parameters>.

3. Dynamically, through the <setattribute procedure>.

When settings from these methods conflict, precedence is
determined by the following sequence (highest to lowest): (1)
<setattribute procedure>. (2) run-time file equation, (3)
settings in the <program parameters>.

PROCEDURE AND FUNCTION DESCRIPTIONS

Described next. in alphabetic order within groups, are all the
procedures and functions available in 8 1000 Pascal. The groups
are

File-Handling Procedures and Functions
Type Transfer Functions
Dynamic Allocation Procedures
Arithmetjc Functions
General Proc~dures and Functions

File-Handling Procedures and Functions

Following are descriptions of all the file-handling procedures
and functions.

Close Procedure

The <close procedure> terminates processing of the file denoted
by <textfile variable> or <file variable>. An error occurs if
the file is not open when the <close procedure> is invoked.

<close procedure> syntax:

----CLOSE -- (-+- <textf ile variable> -+-+--------------------+-) -
! ! ! !
+-<file variable> -----+ +- , <close option> -+

<close option> syntax:

----+-- CRUNCH --+--
! !
+-- PURGE ---+
! !
+-- SAVE ----+

Form 1152048 6-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

After a close operation, the value of the buffer variable
associated with the file becomes undefined. A subsequent attempt
to perform any read, write, or seek operation after a close
operation, without first calling the open, reset, or rewrite
procedure, is an error.

A <close option> may be used to further specify the disposition
of the file being closed. If a <close option> is not specified,
permanent files remain permanent and are repositioned to the
beginning of the file if the device permits this. Temporary
files are released. The connection between the logical file and
the physical file is always severed.

The meaning of a particular <close option> depends on the KIND of
the file being closed. The valid <close option>s are defined as
follows:

crunch

purge

save

The crunch option causes the file to be made a
permanent file. In addition, the value of the file
attribute CRUNCHED is set to true, which has the effect
of returning unused storage areas to the system. The
connection between the logical file and physical file
is severed. The crunch option is valid for disk files
only.

The purge option causes the file to be discarded. A
tape file is rewound, and, if a write ring is present,
a scratch label is written. A disk file is removed
from the directory. The connection between the Logical
file and the physical file is severed. The purge
option is val id for tape and disk files only.

The save option repositions the file to the beginning
and makes it a permanent file. The connection between
the Logical file and the physi~al file is severed. The
save option is valid for tape and disk files only.

If a <close option> that is invalid for the KIND of the file is
specified, a simple close appropriate ta the device is performed.

The <close procedure> is a Burroughs extension to ANSI Pascal.

EDF Function

The <eof function> returns, as a Boolean value, an indication of
whether or not an operation attempted ta access beyond the last
component of a specified file. The function returns true if the
last operation on the file was a get, read, or reset beyond the
Last component.

Farm 1152048 6-14 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<eaf function> syntax:

EDF --+-------------------------------+---------------------------
! !
+-- (-- <file variable> --) --+
! !
+---- <textf ile variable> ------+

The tile ta which the function applies may be specified by
including a <file variable> or <textfile variable> in the
function call. If no file is specified, the function applies to
the textf ile named input If the file is not open, the function
returns false. If the specified file is not open when the <eof
function> is called, an error occurs.

EOLN Function

The <eoln function> returns, as a Boolean value, an indication of
whether or not a particular textf ile is p~sitioned at an
end-of-line marker. If the file is positioned at an end-of-Line
marker, the function returns true; otherwise, the function
returns false.

<eoln function> syntax:

---- EOLN --+-----------------------------------+----------------------
!
+-- (-- <textf ile variable> --) --+

The file to which the function applies may be specified by
including a <textfile variable> in the function call. If no file
is specified, the function applies to the textf ile named input.

If the specified file is not open when the <eoln function> is
called, an error occurs.

Get Procedure

The cget procedure> assigns ta the buffer variable of the file
denoted by <textf ile variable> or cf ile variable> the value of
the component corresponding ta the current position of the file.
If the file is positioned beyond the last component when the
<get procedure> is invoked, the <eof function> becomes true and
the value of the buffer variable associated with the file becomes
undefined.

<get procedure> syntax:

GET -- (--+-- ctextf ile variable> --+--) ----------------------
!

+--<file variable>-------+

Farm 1152048 6-15 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

If a <textf ile variable> is specified and the end-of-line marker
is reached, the value assigned to the buffer variable is ' '
(blank); at this point, the <eoln function> would return true.
The next call on the <get procedure> will access the first
component of the next line or, if there are no more lines, will
put the file in end-of-file state.

An error occurs if the file is not open. If, immediately
preceding the invocation of the get procedure, the <eof function>
yields the value true, an error occurs if the <eof function>
still yields true following the invocation.

Page Procedure

The <page procedure> causes a <writeln procedure> without
carriage control, followed by a skip-to-top-of-page action. If
the <textf ile variable> is omitted, the action applies ta the
textf ile output.

<page procedure> syntax:

---- PAGE --+-----------------------------------+---------------------
! !
+-- (-- <textf ile variable> --) --+

If the <page procedure> is invoked for a file that is not
associated with a printer, the effect is equivalent to invoking
the <writeln procedure>. An error occurs if the file is not open
prior ta the execution of the <page procedure>.

Put Procedure

The <put procedure> writes to the file denoted by
<textf ile variable> or <file variable> the value of the buffer
variable associated with that file. The value of the buffer
variable then becomes undefined.

<put procedure> syntax:

PUT -- (--+-- <textf ile variable> --+--) ---------------------
! !
+--<file variable>-------+

A n e r r o r o c c u r s i f t h e f i l e i s n o t o p e n p r i o'r t o e x e c u t i o n o f t h e
<put procedure>. An error also occurs if a <textfile variable>
is specified and the <put procedure> causes the line to exceed
the Length determined by the value of the MAXRECSIZE file
attribute.

Form 1152048 6-16 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Read Procedure

The <read procedure> causes the specified <variable>s to be
assigned sequential values from the file denoted by
<file variable>. The action of read(f ,x) is equivalent to the
following statements:

x:=f@;
get(f);

{ x is assigned the value of the buffer variable
{ f@ is assigned the next value in the file }

Thus, the value of the buffer variable (f@) must be assignment
compatible with the <variable> being read (x).

<read procedure> syntax:

----READ -- (-- <file variable> -- , -- <variable> --) ------------

Read Textf ile Procedure

The <read textf ile procedure> is similar to the <read procedure>,
except that it applies to textfiles instead of standard files.
When the <textf ile variable> is not specified, the read is
performed on the predefined textf ile named input.

<read textfile procedure> syntax:

+<------- ' ---------+
! !

---- READ -- (-+-----------------------+-+- <read parameter> -+--) -
!
+ <textfile variable> , +

<read parameter> syntax:

----+-- <char variable>------+---------------------------------------·-
! !
+-- <integer variable> --+

!
+-- <real variable> -----+

The list of <read parameter>s specifies the variables into which
the information in the textf ile is to be read. As is true of the
<read procedure>, reading a List of <read parameter>s is
equivalent to reading the variables in successive read
statements.

An error occurs if the textf ile is not open, or if the
<eof function> would return true prior to the execution of the
<read textf ile procedure> or any inferred subcomponent of it.

Form 1152048 6-17 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The action of the <read textf ile procedure> depends on the type
of the specified <read parameter>, as explained next.

Type = <char variable>

The action of the <read textf ile procedure> with a
<char variable> parameter is equivalent ta the following two
statements, where c is the specified <char variable> and f is the
file to be read:

Example:

c : = f@;
get(f)

var c1, c2 : char;
f text;

begin
read(f ,c1 ,c2);
end;

If the textfile contains the characters

"defgh"
{}

and the buffer variable is at the location indicated by the
asterisk, the read procedure assigns the value d ta variable c1
and the value e to the variable c2.

Type = <integer variable>

Beginning with the character at the current buffer variable
location, characters are scanned, across several lines if
necessary, until a nonblank character is encountered. Starting
with the first nonblank character, the sequence of nonblank
characters is then interpreted as an integer value, which may
include a sign. The format of the number must be consistent with
the format defined for an <integer constant> appearing in a
Pascal program, and the value must be assignment compatible with
the type of the parameter.

Fallowing the <read textf ile procedure>, the buffer variable is
assigned the value of the next character or, if there are no more
characters in the line, it is put into eal state.

Form 1152048 6-18 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:

var integer;
text;

begin
read[f,i);
end;

If the textf ile contains the character sequence

-- 1 2 3 d e g r e e s "
* *

and the buffer variable is positioned at the location indicated
by the first asterisk, the read procedure assigns the value -123
to the variable i and Leaves the buffer variable positioned at
the location indicated by the second asterisk. (d is not a val id
character in an integer.)

Type = <real variable>

Beginning with the character at the current buffer variable
location, characters are scanned, across several lines if
necessary, until a nonblank character is encountered. Starting
with the first nonblank character, the sequence of nonblank
characters is then interpreted as a real value, which may include
a sign and an exponent. The format of the number must be
consistent with the format defined for a <real constant>
appearing in a Pascal program.

Following the <read textfile procedure>, the buffer variable is
assigned the value of the next character or, if there are no more
characters in the line, it is put into eol state.

Example:

var f text;
real; r

begin
read(f ,r);
end;

If the textf ile contains the character sequence

BB. 6degrees"
*

and the buffer variable 1s positioned at the location indicated
by the first asterisk, the read procedure assigns the value 98.6
to the variable r and Leaves the buffer variable positioned at
the location indicated by the second asterisk. (d is not a val id
character in a real value.)

Form 1152048 6-19 File DOCUMENT/PASCAL

B·urroughs

B 1000 PASCAL LANGUAGE MANUAL

If the textf ile contains the character sequence

-1234e-27Mev"
a a

and the buffer variable is positioned at the location indicated
by the first asterisk, the read procedure assigns the value -1234
times 10 to the power of -27 to the variable r and leaves the
buffer variable positioned at the location indicated by the
second asterisk.

Readln Procedure

The <readln procedure> performs the same action as the
<read textfile procedure> and then moves the file to the start of
the next line. If there is no next line, the file is positioned
at end-of-file.

<readln procedure> syntax:

---- READLN ---~~-->

>-+--+-------
!
! +<-------- I --------+

! !
+ (+--------------------------+-+- <read parameter> -+-+ -+

! ! !
+- <textf ile variable> , -+
!
+- <textf ile variable>-----------------------------+

If no <textf ile variable> is specified, the <readln procedure>
applies to the textfile named input.

An error occurs if the file is not open, or if the <eof function>
would return true prior to the execution of the
<readln procedure> or any subcomponent of it.

Reset Procedure

The <reset procedure> positions the file to the beginning. If
the file is already open, it is repositioned to the beginning.
If the file is closed, it is opened. If the <reset procedure> is
applied to a textf ile that is currently in generation mode and
there is a partially generated line, an automatic
<writeln procedure> is performed before the textf ile is
repositioned.

Form 1152048 6-20 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<reset procedure> syntax:

----RESET---- (--+--<file variable>------+--) -----------------
! !
+-- <textf ile variable>--+

If the file is not open, the <reset procedure> invokes the I/O
subsystem search logic ta find a matching physical file with
which to associate the internal Pascal <file variable>. Unless
otherwise specified, an attempt is made to locate an existing
disk file whose title is given by the first 10 characters
(translated to upper case) of the <file variable> or
<textf ile variable> identifier. If the identifier is the
predefined file identifier "input," a search is made for a remote
file. This search can be modified by changing certain file
attributes, such as TITLE, or through file equation.

When the <reset procedure> is called, an existing file is always
assumed. If a matching file cannot be found, the program is
suspended in a system NO FILE condition, awaiting an operator
response.

Following a <reset procedure>, the file is in end-of-file state
if the file is empty. Otherwise, the buffer variable is defined
to have the value of the first component of the file.

Rewrite Procedure

The <rewrite procedure> creates a new, empty file. If the file
is already open, it is discarded, and a new, empty file is
created. If the file is closed, a new, empty file is created.
Unless otherwise specified, a disk file with a title given by the
first 10 characters (translated to upper case) of the
<file variable> or <textf ile variable> identifier is created.
(If the identifier is the predefined file identifier "output," cl

remote file is created.)

<rewrite procedure> syntax:

----REWRITE -- (--+--<file variable>------+--) ------------------

+-- <textf ile variable> --+

Immediately following the invocation of the <rewrite procedure>,
the value of the buffer variable is undefined and the
<eof function> will return true. The <eof function> returns true
as long as the file is in generation mode.

Form 1152048 6-21 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Seek Procedure

The <seek procedure> positions the tile denoted by
<file variable> at a specified point in the file. The file is
positioned such that the next <get procedure> or <put procedure>
is performed on the component specified by the
<integer expression>. Components are numbered beginning at 0
(that is, zero relative). If the value of the specified
<integer expression> is less than 0, an error occurs.

<seek procedure> syntax:

----SEEK -- (-- <file variable> -- , -- <integer expression> --] --

The <seek procedure> is a Burroughs extension ta ANSI Pascal.

Write Procedure

The <write procedure> causes the specified <expression>s to be
written sequentially ta the file denoted by <file variable>.

<write procedure> syntax:

----WRITE -- (-- <file variable> <expression> --] ---------

An error occurs if the values of the <expressian>s specified in
the <write procedure> are not assignment compatible with the file
type of the specified <file variable>. An error also occurs if
the file is not open.

Write Textfile Procedure

The <write textf ile procedure> is similar ta the
<Write procedure>, except that it applies ta textfiles instead of
standard files. When the <textf ile variable> is not specified,
the write is performed to the textf ile named output.

<Write textfile procedure> syntax:

----write

Farm 1152048

+<------- ' ---------+
! !

-+-----------------------+-+ <write parameter> -+--) -
! !
+ <textf ile variable> , +

6-22 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<Write parameter> syntax·

----+-- <Boolean expression> --+-+--------------------------------+---
! ! ! !
+--<char expression>-----++ : <field width>----------------+
! ! !
+-- <integer expression> --+
!
+-- <real expression> --+-------------------------------------+

! !
+ : < f i el d width> --+------------------+

! !
+ : <frac digits> +

<field width> syntax:

---- <integer expression> --

<frac digits> syntax:

---- <integer express1on>

An error occurs if the textf ile is not open. Also, an error
occurs if the operation causes the length of the current Line ta
exceed the maximum length, which is determined by the value of
the MAXRECSTZE file attribute.

The list of <write parameter>s specifies the variables whose
values are to be written to the textf ile. The <field width> and
<frac digits> specifications allow the programmer to control
aspects of the formatting of the values written. If these
specifications are omitted (where they are allowed), an
appropriate representation of the value is chosen by the
compiler. If specified, <field width> and <frac digits> must be
greater than or equal to one.

The action of the <write textf ile procedure> for each type of
<Write parameter> is described in the fol lowing paragraphs.

<Boolean expression>

For the values of true and false, the characters strings " TRUE"
and " FALSE " , resp e.c t i v e l y , are w r l t ten . The de f au l t
<field width> for a <Boolean expression> is five characters. If
a <field width> is specified that is smaller than the length of
the string to be written, the first <field width> characters are
written. If the specified <field width> is larger, leading
blanks are written.

Form 1152048 6-23 File DOCUMENT/PASCAL

Burroughs

Examples:

B 1000 PASCAL LANGUAGE MANUAL

Procedure

write(f,b)

write(f,true:2)
write(f ,true:10)

Result

" TRUE" if b is true
"FALSE" if b is false
II TR II

TRUE II

Quotation marks show spacing.

<char expression>

For a value of the <char type>, the character is simply moved ta
the buffer variable and "put" into the file. The default
<field width> for a <char expression> is 1 character. If a
<field width> greater than 1 is specified, leading blanks are
written.

Examples: (c is a <char variable> that contains the value $)

Procedure

write(f,c)
write(f ,c:3)

Result

"$"
II $"

Quotation marks show spacing.

<integer expression>

Values of the <integer type> are formatted with a sign (minus 1f
the number is negative, blank if the number is positive),
followed by the decimal representation of the integer value. The
default <field width> for an <integer expression> is ten
characters. If a <field width> is specified that is smaller than
the Length of the number to be written, the <field width>
specification is ignored, and the entire number is written. ff
the specified <field width> is Larger, leading blanks are
written.

Examples: (i is an integer with value -12345)

Procedure

\Hite(f,i)
write(f,i:3)
write(f,i:12)

Result

-12345"
"-12345"

-12345"

Quotation marks show spacing.

Farm 1152048 6-24

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

<real expression>

Values of the <real type> are written in floating-point or
fixed-point format, depending on whether the <frac digits>
specification is provided. If it is provided, the number is
written in fixed-point format; if it is not, the number is
written in f Loating-point format. The default <field width> for
a <real expression> is 15 characters.

Floating-Point Format

In floating-point format. the number contains the following
components:

1. A sign; minus if the number is negative, blank if it is
positive.

2. The first significant digit, or zero, if the number is zero.

3. A decimal point (.)

4. The fractional part [at Least one digit).

5. The exponent symbol [E)

6. The. sign of the exponent (+ or -)

7. Two digits of exponent.

If the <field width> specified is smaller than the minimum number
of characters necessary to represent the number, the
<field width> specification is ignored, and the number is written
with only one fractional digit. If the specified <field width>
is larger, the number is expanded by adding trailing zeros to the
fractional part.

Fixed-Point Format

In fixed-point format, the number contains the following
components:

1. A minus sign (-) if the number is negative.

2. The integral part of the number -- trunc(<real expression>).

3. A decimal point (.).

4. <frac digits> of the fractional part of the number.

Form 1152048 6-25 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

If a <field width> is specified that is smaller than the minimum
number of characters necessary to represent the number in
fixed-point format, the <field width> specification is ignored
and the entire number is written, including <frac digits> of the
fractional part. If the specified <field width> is larger, the
number is written with leading blanks. If the number of
significant digits requested is fewer than the number of
significant digits in the system representation of the number,
the number is rounded at the last digit written.

Examples:

Procedure

write(f, 1.2345:8:4)
write(f ,1 .2345:20)
write(f ,-27.1828E-3:14)
write(f ,0.31 :3)
write(f,-98E12:7)
write(f,0.317269:3)
write(f ,-985E12:7)
write(f ,0.31728E7:7:3)
write(f ,-965E12:1 :7)
write(f,0.31726E7:13:3)
write(f ,-985E-2: 12: 7)
write(f ,3.1778E-1 :13:3)
write(f,-962.5E-2:12:2)

Result

"1.2345"
" 1. 2344999313354E+OO"
"-2. 7182801 E-02"
" 3.1E-01"
"-9.6E+13"
" 3.2E-01"
"-9.8E+14"
"3172800. 031"
"-964999961853027. 3437500"

3172600. 031"
-9.8499998"

0, 318 II

-9.625"

Quotation marks show spacing.

Writeln Procedure

The <writeln procedure> performs the same action as the
<write textfile procedure> and then starts a new line. If no
<textf ile variable> is specified, the <writeln procedure> applies
to the textf ile named output. If no <write parameter>s are
specified, a single blank line is written to the textfile named
output. Following the execution of the <writeln procedure>, the
value of the buffer variable becomes undefined.

An error occurs if the file is not open.

Form 1152048 6-26 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<writeln procedure> syntax:

---- WRITELN -->

>-+--+------
! !

+ (

+<-------- I --------+
! !

+--------------------------+-+- <write parameter>
!

+-+
!
! +- <textf ile variable> , -+

!
+- <textf ile variat1le> -----------------------------+

Type Transfer Functions

-+

One of the major reasons for data typing is to allow the compiler
to enforce type compatibility restrictions. These restrictions
help the programmer ensure that data is handled in a controlled
and consistent fashion throughout the program. For example, the
compiler will not allow two values of an enumerated type such as
"color" to be arithmetically subtracted.

Type transfer functions are provided to allow values of a few
data types to be converted to values of certain other data types.

<type transfer function> syntax:

----+-- <chr function> ---+--
! !
+-- <ord function> --+

CHA Function

The <chr function> returns the character whose ordinal number is
designated by <integer expression>. If the <integer expression>
is not a valid ordinal number for the standard character set, an
error occurs. Valid ordinal numbers for the EBCDIC character set
are in the range 0 .. 255.

<chr function> syntax:

CHR -- (-- <integer expression> --) ---------------------------

Form 1152048 6-27 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

var c1, c2 : char;
begin
c1 chr(129);
c2 := chr(240);
end;

The character a is assigned to c1 and the character 0 is assigned
to c2

ORD Function

The <ord function> returns, as an integer value, the ordinal
number of the specified <ordinal expression>.

<ord function> syntax

ORD -- (-- <ordinal expression> --) ---------------------------

Examples:

var i1, i2: integer;
begin
i1 ord('a');
i2 := ord(true);
end;

In the standard EBCDIC character set, i1 is assigned the integer
value 129 and !2 is assigned the integer value 1.

Dynamic Allocation Procedures

The dynamic allocation procedures, used in conjunction with
<pointer <pointer variables>, allow variables to be allocated and
deallocated dynamically. that is, independently of the
activation of a specific <block>. A variable that is allocated
in this way is called a dynamic variable.

<dynamic allocation procedure> syntax:

----+-- <mark procedure-------+--------------------------------------!
!

+-- <new procedure> ------+
! !
+-- <release procedure> --+

Dynamic variables are allocated in a storage area called the
"heap." Creation of dynamic variables and manipulation of the
heap is performed through the use of the three predefined
procedures new, mark, and release.

Form 1152048 6-28 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The new procedure is used ta allocate a dynamic variable. It
accepts a <pointer variable> as a parameter, to which it assigns
a reference value that can be used to refer to the newly assigned
variable. The new procedure is the only way to allocate a
dynamic variable, and it is used for both the collection and the
stack methods of heap management.

The mark and release procedures are used to manage the heap as a
stack. A stack ~an be viewed as a time-rrrdered sequence of
variables, where the most recently al Located variables are "on
tap of" variables allocated earlier. Stack management is
particularly useful when the lifetime of a group of variables is
identical.

The mark procedure stores a reference to the dynamic variable
that is the top-of-stack variable at the time the procedure is
called. A "mark value" 1s assigned to the <pointer variable>
that is passed as a parameter. This value cannot be used to
access the top-of-stack variable; instead, it is used to
indicate a position in the stack for later use by the release
procedure. Once the mark procedure has been called, the new
procedure allocates all new variables such that they are
Logically above the mark in the stack.

The release procedure deallocates all variables that were
allocated above the mark specified by the <pointer expression>
passed as its parameter. The pointer must contain a mark value,
that is, a value assigned by the mark procedure. The variable
that was the top-of-stack variable at the time the mark procedure
was called again becomes the top-of-stack variable.

To maintain the heap as a stack, rrrre typically calls the mark
procedure, then the new procedure one or more times, then the
release procedure. The mark procedure may be called several
times before the release procedure is finally called. When
release is called, it deallocates variables down to the mark it
is passed as a parameter, regardless of whether or not there
exist marks above that one in the stack.

Farm 1152048 6-29 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:

program mark release:

type ptr to node= @node;
node =-record

name : packed array [1 .. 20] of char;
next node : ptr to node;
end;

var marker ptr to node;
person1,
persan2,
person3 ptr to node;

begin
mark(marker);
new(person1):
new(person2);
new(person3);
retease(marker);
end.

The call an the <mark procedure> marks the heap at the point of
the call. After new items have been created in the heap, the
call on the <release procedure> causes all three dynamic
variables to be deallocated. The three painters persan1,
persan2, and persons are undefined after the execution of the
<release procedure>.

Dynamic variables can be very useful for certain applications.
They can also cause confusion when used incorrectly. In
particular, care should be exercised ta ensure that the
correspondence between pointers and variables is properly
maintained. If a variable is deallocated while a pointer ta the
variable still exists, the pointer becomes a "dangling reference"
(a reference to a nonexistent variable). If a variable exists
but all references to it have been last (far example, because a
new value was assigned to the only pointer that referenced the
variable), the variable is inaccessible and its space is wast~d.
In ANSI Pascal, the use of a dangling reference in an attempt ta
access a nonexistent dynamic variable is defined to be invalid,
but in this implementation, as in mast others, these errors are
not always detected.

Mark Procedure

The <mark procedure> assigns to the <painter variable> a mark
value, a value that corresponds to the location of the mast
recently allocated dynamic variable, that is, the current
top-of-stack variable. Subsequent calls to the <new procedure>
allocate dynamic variables "above" this mark; such variables are

Farm 1152048 8-30 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

referred to as marked variables.

<mark procedure> syntax:

---- MARK -- (-- <pointer variable> --) ----------------------------

The <painter variable> can Later be used in a call on the
<release procedure>, which simultaneously deallocates all
variables above the mark. Because the mark value identifies a
set of variables rather than a single variable, an error occurs
if a variable that contains a mark value is used in any other
context, for example, as a reference to a variable.

The <mark procedure> is a Burroughs extension to ANSI Pascal.

New Procedure

The <new procedure> allocates space for a new dynamic variable of
the type with which the <pointer variable> is associated. The
<pointer variable> then becomes a reference to the location of
the new variable.

<new procedure> syntax:

NEW -- (-- cpo1nter variable> --) -----------------------------

Release Procedure

The <release procedure> deallocates the marked variables denoted
by the <painter-expression>. An error occurs if the
<pointer expression> does not contain a mark value. (Refer ta
the Mark Procedure.)

<release procedure> syntax:

---- RELEASE -- (-- cpo1nter expression> --) -----------------------

Fallowing the execution of the <release procedure>, all painter
variables and functions that reference the variables that have
been deallocated became undefined.

The ere lease procedure> is a Burroughs extension ta ANSI Pascal.

Arithmetic Functions

The <arithmetic functian>s pra~ide functions for use in
<arithmetic expression>s.

Form 1152048 6-31 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<arithmetic functions> syntax:

----+-- <abs function> ----+---
! !
+-- <arctan function> -+
! !
+-- <cos function> ----+
! !
+-- <exp function> ----+

! '
+-- <ln function> -----+
! !
+-- <round function> --+

' ! +-- <sin function> ----+

' !
+-- <sqr function> ----+

! '
+-- <sqrt function> ---+

' !
+-- <tan function> ----+
! !
+-- <trunc function> --+

ABS Function

The <abs function> returns the absolute value of the specified
<arithmetic expression>. The result returned is of the same type
as the specified <arithmetic expression>.

<abs function> syntax:

ABS -- (-- <arithmetic expression> --) ------------------------·

ARCTAN Function

The <arctan function> returns, as a real value in radians, the
principal value of the arctangent function at the specified
<arithmetic expression>.
p1 .<arctan function> syntax:

---- ARCTAN -- (-- <arithmetic expression> --) ---------------------

COS Function

The <cos function> returns, as a real value, the cosine of the
angle specified by the <arithmetic expression>, which is assumed
to be in radians.

Farm 1152048 S-32 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUA~E MANUAL

<cos function> syntax:

COS -- { -- <arithmetic expression> --) -----------------------

EXP Function

The <exp function> returns, as a real value, e (the base of the
natural logarithms) raised to the <arithmetic expression> power.

<exp function> syntax:

EXP -- (-- <arithmetic expression> --) -----------------------

LN Function

The <Ln functtan> returns, as a real value, the natural logarithm
of the specified <arithmetic expression>.

<ln function> syntax:

LN -- (-- <arithmetic expression> --) ------------------------

ROUND Function

The <round function> returns the nearest integer value to the
specified <real expression>. If the value of the
<real expression> is positive or zero, the result of the
<round function> is equivalent ta the value of trunc(<real
expression>+0.5). If the value of the <real expression> is
negative, the result of the <round function> is equivalent to the
value of trunc(<real expressian>-0.5).

It is an error if the nearest integer to the <real expression> is
greater than maxint or less than -maxint.

<round function> syntax:

ROUND -- (-- <real expression> --) ---------------------------

Examples:

round(3.5) yields the value 4

raund(-3.5) yields the value -4

Farm 1152048 6-33 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SIN Function

The <sin function> returns, as a real value, the sine of the
angle specified by the <arithmetic expression>, which is assumed
to be in radians.

<sin function> syntax:

SIN -- (-- <arithmetic expression> --) -----------------------

SQR Function

The <sqr function> returns the square of the value of the
specified <arithmetic expression>. The result returned is of the
same type as the <arithmetic expression>.

If the result value is out of range far its type, an error
occurs.

<sqr function> syntax:

SQR -- (-- <arithmetic expression> --] ----------------------~

SQRT Function

The <sqrt function> returns, as a real value, the square root of
the value of the specified <arithmetic expression>. The
<arithmetic expression> must be greater than or equal to 0.

<sqrt function> syntax:

SORT -- (-- <arithmetic expression> --] ----------------------

TAN Function

The <tan function> returns, as a real value, the tangent of the
angle specified by the <arithmetic expression>, which is assumed
to be in radians.

The <tan function> is a Burroughs extension ta ANSI Pascal.

<tan function> syntax:

TAN -- (-- <arithmetic expression> --] -----------------------

Form 1152048 6-34 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

TRUNC Function

The <trunc function> returns the integer value, computed by
truncation, of the specified <real expression>. If the result is
greater than maxint or Less than -maxint, an error occurs.

<trunc function> syntax:

-6658902 to 665800
TRUNC -- (-- creal expression> -- (---------------------------

Examples:

trunc(3.5) yields the value 3

trunc(-3.5) yields the value -3

General Procedures and Functions

Many general procedures and functions ~re extensions to ANSI
Pascal to allow the program to access system-specific features,
such as file attributes, the program's accumulated run time, I/O
time, and elapsed time, the interface to the Operator Display
Terminal (DDT), and the system's time and date values. Other
general procedures and functions are part of ANSI Pascal and
provide featu~es that are not descri~~d elsewhere in this manual.

<general procedure> syntax:

----+-- cabort procedure> -----+-------------------------------------
!
+-- <accept procedure> ---
!
+-- <date procedure> ------

+-- <display procedure> --
!
+-- <time procedure>-------

+-- cwait procedure> ------

<general function> syntax:

----+-- codd function>-------+--
! !
+-- cpred function> -----!

!
+-- <runtime function> --!
! !
+-- csucc function> -----!

Form 1152048 6-35

Burroughs

File DOCUMENT/PASCAL

8 1000 PASCAL LANGUAGE MANUAL

Abort Procedure

The <abort procedure> forces an immediate, abnormal termination
of the program.

The <abort procedure> is a Burroughs extension to ANSI Pascal.

<abort procedure> syntax:

---- ABORT ---

Accept Procedure

The <accept procedure> displays the contents of the
<string constant> or <string variable> on the Operator Display
Terminal (DDT), suspends the program until a response from the
operator is entered (through the AX ODT command), and then places
the operator's response into the <string variable> with either
blank fill or truncation if the message size is not the same size
as the <string variable>. The maximum length of the
<string variable> is 255 bytes.

The <accept procedure> is a Burroughs extension to ANSI Pascal.

<accept procedure> syntax:

----ACCEPT -- (-+ <string constant> +- , -- <string variable> --) -
! !
+ <string variable> +

Example:

var str : packed array (1 .. 3] of char;
begin
accept('Do you want to continue? (yes or no)' ,str);
end;

The string "Do you v1ant to continue? (yes or no)" is displayed
on the DDT. The response is placed instr.

Date Procedure

The <date procedure> returns the current date in the parameters
<year>, <month>, and <day>. Values returned are all of the
<integer type> and are in the following ranges:

Form 1152048

parameter

cyear>
cmonth>
<day>

8-38

range

0 .. 9999
1 .. 12
1 .. 31

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

The <date procedure> is a Burroughs extension to ANSI Pascal.

<date procedure> syntax:

---- DATE -- [-- <year> -- , -- <month> -- , -- <day> --) ----------

<year> syntax:

---- <variable>

<month> syntax:

---- <variable>

<day> syntax:

---- <variable> ---

Example:

var year
month
day

begin
date (year,
end;

integer;
1nteger;
1 .. 31 ;

month, day):

The year is placed in the variable year, the month is placed in
the variable month, and the day of the month is placed in the
variable day.

Display Procedure

The <display procedure> rlisplays the contents of the string an
the DDT. The maximum Length of the display string is 255 bytes.

The <display procedure> ls a Burroughs extension to ANSI Pascal.

<display procedure> syntax:

---- DISPLAY -- (--+-- <string cons~ant> --+----) -----------------
! !
+-- <string variable> --+

Odd Function

The <odd function> returns, as a Boolean value, a result
indicating whether or not the value of the <integer expression>
is add. The function returns true if the value is add and false
if it is even.

Farm 1152048 6-37 File DOCUMENT/PASCAL

Burroughs

8 1000 PASCAL LANGUAGE MANUAL

<add function> syntax

ODD -- (-- <integer expression> --) ---------------------------

Example:

var b : Boolean;
begin
b := add(79 mad 27);
end;

PRED Function

The <pred function> returns the predecessor of the
<ordinal expression>; that is, a value whose ordinal number is
one less than that of the <ordinal expression>. If the
<ordinal expression> has no predecessor value, an error occurs.

The function returns a result of the same type as the
<ordinal expression>.

<pred function> syntax:

---- PRED -- (-- <ordinal expression> --) --------------------------

Examples:

type color= (red, yellow, blue, green, tartan);
var swatch : color;

i integer;
begin
swatch := pred(blue);
i .- pred(7);
end;

The first example assigns yellow to the variable swatch.

The second example assigns 6 to the variable i.

Runtime Function

The <runtime function> returns, as a real value (units:
seconds), the processor time that has been charged to the
program.

The <runtime function> is a Burroughs extension to ANSI Pascal.

<runtime function> syntax:

---- RUNTIME ---

Farm 1152048 6-38 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SUCC Function

The <succ function> returns the value of the successor of the
cardinal expression>; that is, the value whose ordinal number ts
one greater than that of the cardinal expression>. If the
cardinal expression> does not have a successor value, an error
occurs.

The function returns a value of the same type as the
cardinal expression>.

csucc function> syntax:

---- SUCC -- (--ordinal expression> --) ----------------------------

Examples:

type color= [fed, yellow, blue, green, tartan);
var wool dye : color;

alphi : c~ar;
begin
wool dye := succ[blue);
alph~ := succ['y');
end;

The first example assigns green to the variable wool dye.

The second example assigns 'z' to the variable alpha.

Time Procedure

ctime procedure> syntax:

---- TIME -- (-- <hours> <minutes> -- . -- cseconds> --

<hours> syntax:

---- cvariable> ---

cminutes> syntax:

---- <variable> --·----

<seconds> syntax:

---- cvariable> --

The ctime procedure> returns the current time of day [based on a
24-hour clock) in the parameters chours>. <minutes>, and
cseconds>. The values returned are of <integer type> and within
the following ranges:

Form 1152048 6-39 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

parameter

<hours>
<minutes>
<seconds>

range

0 .. 23
0 .. 5 9
0 .. 59

The <time procedure> is a Burroughs extension to ANSI Pascal.

Example:

var hours
minutes
seconds

begin
time (hours,
end;

integer;
integer;
0 .. 5 9;

minutes, seconds);

The hour is placed in the variable hours, the number of minutes
past the hour is placed in the variable minutes, and the number
of seconds into the minute is placed in the variable seconds.

Farm 1152048 6-40 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 7

VARIABLES

A <variable> is a declared item that, unlike a constant, can be
assigned a value during the execution of the program. Every
<variable> has an associated type that determines the values that
may be assigned. Another characteristic of a <variable> is its
~access. tt This refers to the method by which it is identified
when its value is to be referenced or changed.

This section has three parts: VARIABLES BY ACCESS, VARIABLES BY
TYPE, and UNDEFINED VARIABLES. Variables of specific types, such
as <array variable>s and <Boolean variable>s. are described in
the Variables by Type portion of this section.

VARIABLES BY ACCESS

The access characteristic is basically independent of the type of
the variable. In general. the access characteristic depends on
whether or not the variable is a component of a structured
variable and, if so, on the type of the structured variable of
which it is a component. For the variables described in the
fallowing paragraphs (entire, indexed, dynamic, and buffer
variables, and field designators), the possible access
characteristics are defined.

<variable> syntax:

----+-- <entire variable> ---+--
!

+-- <indexed variable> --+
! !
+-- <field designator> --+
! !
+-- <dynamic var1able> --+
! !
+-- <buffer variable> ---+

Entire Variables

An <entire variable> is a <variable identifier> that was declared
in a <variable identifier list> in a group of
<variable declarations> or was defined as a formal parameter. An
<entire variable> can be accessed simply by its name.

~entire variable> syntax:

----<variable identifier>

Farm 1152048 7-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:

var x
str

real;
packed array [1 .. 5] of char;

X and str are <entire variable>s; str(1], str[2], str[3],
str[4], and str[5] are not <entire var1able>s.

Indexed Variables

An <indexed variable> denotes a variable that is a component of
an array. In order to access an <indexed array variable>, the
<array variable> of which it is a component must be identified
and the location of the variable within that array must be
specified by providing an <index expression> far each dimension
of the array. The value of each <index expression> must be
assignment compatible with the <index type> of the array
dimension it specifies.

<indexed variable> syntax:

---- <indexed array variable> ---

<indexed array variable> syntax:

+<--------- ' -----------+
! !

---- <array variable> -- [--+-- <index expression> --+--) ----------

<index expression> syntax:

---- <ordinal expression> --

Examples:

var x : array [char] of char;
a : array [Boolean] of 1 .. 10;

a[false], x('a'], and x('4'] are
<indexed variable>s.

Field Designators

A <field designator> is a <variable> that denotes a
<field identifier> in a <record variable>. The <record var1able>
of which the field is a component must be specified unless the
<field identifier> appears in a <With statement> that designates
the ap~ropriate <record variable>.

Farm 1152048 7-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<field designator> syntax:

----+----------------------------+--<field identifier>-------------
! !
+-- <record variable> -- . --+

It is an error to change the active <variant> of a record while a
<field designator> within the currently active <variant> is being
referenced in any of the following ways:

(1) as the <record variable> of a <with statement>,

(2) as an actual variable parameter in an
<actual parameter list>, or

(3) as the left-hand side of an <assignment statement>.

For additional information, refer to Actual Parameter Lists and
Parameter Matching in section 3, and Assignment Statements and
With Statements in section 4.

Example:

var r1, r2 record
i integer;
b : Boolean;
end;

R1. i, r1 .b, r2. i, and r2.b are <field designator>s.

Dynamic Variables

A <dynamic variable> is a <variable> accessed through a
cpointer variable> declared as a painter to the type of the
cvariable>. In order for a variable to be a <dynamic variable>,
it must have been allocated dynamically, through the
<new procedure>.

<dynamic variable> syntax:

---- <pointer variable> -- @ ---

An error occurs if the <pointer variable> is NIL, is undefined,
contains a mark value, or references a dynamic variable that has
been deallocated through the use of the <release procedure>.
(See Mark Procedure and Release Procedure in section 6.) It is an
error to "release" a dynamic variable 1,1hile it is being
referenced in any of the fallowing ways:

Form 1152048 7-3 File OOCUMENT/PASCAL

Burroughs

8 1000 PASCAL LANGUAGE MANUAL

(1) as the <record variable> of a <with statement>,

(2) as an actual variable parameter in an
<actual parameter list>, or

(3) as the left-hand side of an <assignment statement>.

Refer ta Actual Parameter Lists and Parameter Matching in section
3, Assignment Statements and With Statements in section 4, and
Dynamic Allocation Procedures in section 8.

Example:

type ptr
node

@node;
record
name
next :
end;

packed array [1 .. 20) of char;
ptr;

var p1, p2 ptr;
person : node;

begin
ne-..1(p1);
p1@.name .- 'Robert Smith';
p1@.next - nil;
person := p1@!;
end;

P1 is a painter to a dynamically allocated record of type node.
P1@ is a record of type node and is assignment compatible with
person.

Bufffer Variables

A <buffer variable> is automatically associated with each
declared <file variable> and <textfile variable>. The
<buffer variable> far a file or textf ile is the means by which
the file component associated with the current file position can
be examined or modified. The type of the <buffer variable> is
the <component type> of the file. For textfiles, the
<buffer variable> is of type char.

<buffer variable> syntax:

----+--file variable>-------+--@---------------------------------
' !
+-- <textf ile variable>--+

It is an error ta alter the position of a file while the buffer
variable is in use in one of the following ways:

Form 1152048 7-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

(1) As the <record variable> of a <with statement>,

(2) as an actual variable parameter in an
<actual parameter list>, or

(3) as the Left-hand side of an <assignment statement>.

Refer to Actual Parameter Lists and Parameter Matching in section
3, and Assignment Statements and With Statements in section 4 for
additional information.

Example:

var myf ile : file of integer;
inx : integer;

begin
rewrite(myf ile);
myf ile@ := 3;
put(myfile);
reset(myfile);
in>< := myfile@;
end,

The type of <buffer variable> myf ile@ is the same as the
component type of the file. Therefore, in this example, myf ile@
may be used as a variable of type integer.

VARIABLES BY TYPE

Following are definitions of the variable types.

Array Variable

A <variable> declared of an <array type>.

Ba a le an Var i ab Le

A <variable> declared of the <Boolean type> or of a <subrange
type> whose host type is the <Boolean type>.

Char Variable

A <variable> declared of the <char type> or of a <subrange type>
whose host type is the <char type>.

Form 1152048 7-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Enumerated Variable

A <variable> declared of an <enumerated type> ar af a
<subrange type> whose hast type is an <enumerated type>.

File Variable

An <entire variable> declared af a <file type>.

Integer Variable

A <variable> declared af the <integer type> ar af a
<subrange type> whose hast type is the <integer type>.

Painter Variable

A <variable> declared of a <painter type>.

Real Variable

A <variable> declared of the <real type>.

Record Variable

A <variable> declared of a <record type>.

Set Variable

A <variable> declared of a <set type>.

String Variable

A <variable> declared of a <string type>.

Textfile Variable

An <entire variable> of the <textf ile type>.

UNDEFINED VARIABLES

An undefined variable is a variable whose value is invalid far
some reason and therefore must not be examined. Far example,
when a block is entered at run time, all variables declared
within that block are allocated as undefined variables. The use
of any undefined variable in an expression is an error.

Form 1152048 7-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

An undefined variable becomes defined when it is assigned a valid
value, for example, when it appears as the left-hand side of an
<assignment statement> or as an actual variable parameter to a
procedure or function that will assign it a value (such as the
read procedure).

Example:

var i
j

begin
j . - i;
end;

Form 1152048

integer;
integer;

{ ERROR -- the value of i

7-7

is undefined. }

File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

SECTION 8

BASIC COMPONENTS

The basic components defined in this section are syntactic items
that appear in the syntax diagrams in previous sections of the
manual. These components are bath simple and widely distributed
thraught the text. Far this reason, they are not explained in
place in the text but are explained oncein this section. The
components include characters, identifiers, and numbers.

Section 9, Interpretation of Program Text, describes a different
set of basic components -- those that relate ta the
representation of the program and the compiler's interpretation
of it. Those items include reserved wards, comments,
context-sensitive identifiers, and special symbols (and their
notational synonyms, if any).

A special convention for the railroad syntax notation is used in
this section. The basic components described here must not
contain embedded blanks, comments, or record boundaries. even
though the standard interpretation of railroad diagrams permits
those taken separators between any two distinct items in a
diagram. Of course, blanks are allowed as <character>s within a
<character string>, but they are significant in that context and
are not treated as taken separators.

CHARACTERS AND CHARACTER STRINGS

A <character string> represents a constant of the <string type>.
and a <character literal> represents a constant of the
<Char type>. A single apostrophe (') character contained within
a <character string> or <character literal> is represented by two
successive apostrophes. For example, '''A''' is a
<character string> containing the three characters 'A'
(apostrophe, A, apostrophe). A <character string> that contains
no values('') is a null string.

<character string> syntax:

+<-------------------------------------+
! • !

--+--+--------------------------------+--+-- , --------------!

Form 1152048

! !
+-- <nan-apostrophe character> --+
! !
+-- ,, --------------------------+

8-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<character literal> syntax:

--+-- <non-apostrophe character> --+-- ' ---------------------
!

+-- --------------------------+
<non-apostrophe character> definition:

Any <character> except the apostrophe (').

<Character> definition:

Any one of the characters in the standard character set. The
standard character set is EBCDIC.

IDENTIFIERS

Identifiers may be of any length greater than 0, subject to the
constraint that an identifier may not be split across source
records. ALL characters. including underscores, are significant
in distinguishing identifiers. An <identifier> must not have the
same spelling as a <reserved word>. [Refer to section 9,
Interpretation of Program Text.)

Allowing underscores in identifiers is a Burroughs extension to
ANSI Pasca L.

<identifier> syntax:

+<-------------------+
! !

---- <Letter> --+--+--------------+--+--------------------------------
! !
+-- <cligit> ---+
! . !
+-- <Letter> --+
! !
+-- ---------+

<letter> definition:

Any one of the letters A through Z or a through z. The
lower-case characters (a through z) are synonymous with the
upper-case characters (A through Z).

<digit> definition:

Any one of the decimal numbers 0 through 9.

Form 1152048 8-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Examples:

Index
BEGIN
1776

MESSAGE COUNT item 3 {Three valid identifiers
{ INVALID reserved word }
{ INVALID doesn't start with a letter

W2 form { INVALID embedded blanks not allowed

NUMBERS

A <number> is an integer or real value optionally preceded by a
sign. If no sign is specified, + is assumed. Numbers are
symmetrical around zero; that is, any magnitude that can be
represented as a positive value can also be represented as a
negative value, and vice versa.

The type of a <number> is determined by its format. A simple
string of one or more digits is an <unsigned integer>. The
largest <Unsigned nteger> can be referred to by the predefined
<integer constant identifier> maxint.

A number that includes a fractional part or an <exponent part} is
an <unsigned real> number. Up to seven significant digits of
precision are maintained.

In the <exponent part>, the Letter E introduces a decimal
exponent. (E has the meaning "times 10 to the power of".) The
exponent can range from -47 to +68. The routines that print real
numbers print a maximum of six significant digits. This is done
so that the Last digit can be guaranteed to be accurate.

<number> syntax:

----+ --------+-- <unsigned number> ----------------------------------
' !
+-- + --+
! !
+-- --+

<unsigned number> syntax:

----+-- <unsigned integer> --+---------------------------------------
! !
+-- <Unsigned real> -----+

<Unsigned integer> syntax:

+<------------+
! !

----+-- <digit> --+---

Form 1152048 8-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<unsigned real> syntax:

+<------------+ +<------+
! ! ! !

----+-- <digit> --+--+-- --+-- <digit> --+---------------------+----
!
!

! !
+-- <exponent part> --+

!
+-- <exponent part>----------------------------+

<exponent part> syntax:

+<---------------------+
! !

----+-- E --+--+---------+--+----/3\---- <digit> --+-----------------·
!
+-- e

Examples:

123
0.0

--+ +--
!
+--

-1000
-23.45

+ ---+
!

--+

+2
24567.4e-20

FILE ATTRIBUTES AND MNEMONIC VALUES

0
9E15

integers
reals }

File attributes and values are system-defined identifiers
describing characteristics of files.

Certain file attributes either may require or allow parameters in
order to further qualify the property of the file that is to be
modified or queried. In order to access such attributes, an
<attribute paramente list> may be used in the
<setattribute procedure>. If an <attribute parameter list> is
used, it must immediately follow the name of the attribute to be
accessed.

Attributes:

<Boolean-valued tile attribute>
<event-valued file attribute>
<integer-valued file attribute>
<mnemonic-valued file attribute>
<string-valued file attribute>
<real-valued file attribute>
<mnemonic value>

Form 1152048 8-4

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

<attribute parameter list> syntax:

---- [<integer expression> --+-------------------------------+--) -
! !
+-- , -- <integer expression> --+

Example:

type t = packed array [1 .. 80] of char;
var f : file of t;

i : integer;
begin
i : = 1 ;
setattribute(f, TITLE, 'TAPE1');
end.

Farm 1152048 8-5

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

SECTION 9

INTERPRETATION OF PROGRAM TEXT

The Pascal program to be compiled is presented to the compiler as
one or more files in a particular format. The merging of
multiple files, and the fileJ themselves, are described in
appendix A. This section describes how the compiler interprets
its input during the compilation process.

For purposes of this discussion, the program input file can be
considered a sequence of records [from whatever source) that the
compiler reads during compilation. Each record includes the
following fields:

Columns Contents

1-72
73-80
81-90

<program text> and <compiler control record>s
sequence number (optional)
mark information (optional)

Records containing a dollar sign ($) in column 1 are
<compiler control record>s, which are not part of the Pascal
program; they are described in appendix A. Records that do not
contain a dollar sign ($) in column 1 are assumed to contain
<program text>, that lS, the Pascal program to be compiled.
Optionally, there can be sequence information in columns 73-80
(refer to the SEQUENCE compiler control option) and mark
information in columns 81-90. These fields are not discussed
further here.

PROGRAM TEXT

The Pascal <program text> can be considered a continuous stream
Of <token>s, all of which may be, and some of which must be,
separated by <token separator>s.

<program text> syntax:

+<-- <token separator> -----+
! !
+<--------------------------+
! !

----+-- <token> ----------------+-------------------------------------

Form 1152048 9-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

TOKEN

A token is a sequence of characters in the program text that the
compiler recognizes as a syntactic unit. Every pair of tokens
must be separated by a <token separator> unless one token in the
pair is a <special token>.

<taken> syntax:

----+-- reserved word> ------------------+----------------------------
!

+-- <predefined identifier> ---------+
! !
+-- <context-sensitive identifier> --+

' ! +-- <identifier> --------------------+
! !
+-- <number> -----------------------~+
' !
+-- <character string> --------------+
! !
+--<character Literal>-------------+

!
+-- <special token> -----------------+

RESERVED WORD

<Reserved word>s are language keywords that cannot be redefined
by the programmer. In general, these are wards the compiler uses
to recognize declarations, statements, and operators.

<reserved word> list:

AND
ARRAY
BEGIN
CANO
CASE
CONST
COR

DIV
DO
DOWN TO
ELSE
END
FILE
FOR

PREDEFINED IDENTIFIER

FUNCTION
GOTO
IF
IN
LABEL
LI BR ARY
MOD

NIL
NOT
OF
OR
OTHERWISE
PACKED
PROCEDURE

PROGRAM
RECORD
REPEAT
SET
THEN
TO
TYPE

UNTIL
VAR
WHILE
WITH

<Predefined identif ier>s are <identifier>s that have a predefined
meaning in Pascal. As with user-defined <identif ier>s,
<predefined identifier>s may be redefined, but the farmer
definition becomes unavailable within the scope of the
redefinition.

Form 1152048 9-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<predefined identifier> List

abort
abs
accept
arc tan
Boolean
char
chr
close
cos
date
display
eof
e o l n

TOKEN SEPARATOR

exp
false
get
input
integer
length
l n
l 0 g
mark
max int
new
odd
ord

output
page
pred
put
read
readln
real
rel ease
reset
rewrite
round
runtime
seek

setattribute
sin
sqr
sqrt
succ
tan
text
ti me
true
trunc
write
writeln

<Token separator>s are required as delimiters for alphanumeric
tokens, to separate tokens so that the compiler will interpret
them properly, However, this function is incidental for
<comment>s; their purpose is to allow the programmer to
interleave descriptive text with the program text.

<token separator> syntax:

----+-- <blank> -----------+--

BLANK

!
+-- <comment>----------+
! !
+-- <record boundry> --+

Blanks can be used freely throughout the program text to improve
readability and to separate tokens that must be separated so that
the compiler will interpret them properly.

<blank> definition:

One or more blank characters.

COMMENT

Comments are used to include documentation in a program. A
<comment> may appear anywhere that a <blank> can appear; a
<comment> may not appear in a <character string> or in another
<comment>. Comments may contain any <character>s except the
delimiting characters } and *).

Form 1152048 9-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Compiler control records that appear between the record
containing the beginning of a comment and the record containing
the end of that comment are processed as normal compiler control
records; they are not treated as part of the comment.

<comment> syntax:

+<----------------+
! !

----+-- ----+--+-- <character> --+-- --+-------------------------
! ! !
+-- (* --+ +-- *) --+

Examples

{ This is a comment. }
(* This comment uses the two-character synonyms for braces. *)

RECORD BOUNDARY

The <record boundary> acts as an implicit token separator. Thus,
a token cannot be split at the column 72 boundary of one record
and then be continued beginning in column 1 of the next recortl.
The compiler interprets a split item as two separate items.

<record boundary> definition:

A theoretical boundary between column 72 of one record and column
1 of the next record.

Form 1152048 9-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

APPENDIX A

COMPILING, EXECUTING, AND ANALYZING A PASCAL PROGRAM

The input file to th~ B 1000 Pascal compiler is a standard data
file created by any ri~ the various editors. Only the first 72
characters of each record are significant. Sequence numbers may
appear in positions 73 through 80. These are not used by the
compiler but are printed on the listing. Any patch information
that may be present in columns 81-90 also appears on the listing.

The Pascal code may be entered in free format, but the general
rules for formatting, as illustrated in any Pascal textbook,
should be followed to create readable source programs

COMPILER OPTIONS

Certain aspects of th~ compilation of a Pascal program may be
controlled by directives to the compiler in the form of compiler
control images (CCls).

The CCI enables a u~er to control options t~at are provided in
the Pascal compiler. Each option falls into one of the following
six categories:

Source language inputs
Source language output
Optional compilation mechanism
Printed outputs
Compiler diagnostic messages
Compiler debugging

A CCI contains compiler control statements comprised of options
or groups of options and any associated parameters. CCis are
totally distinct from the Pascal language, although they are
typically interspersed with program source lines. CCI syntax
differs from Pascal source syntax. Also, the following
conventions differ between Pascal source text and CCI text.

1. CCis may not contain comments.

2. Only upper-case letters may be used in CCis, except within
character strings.

3. Character strings (for example, in file titles) are
delimited by double quotation marks (tt}, not apostrophes
(,) .

Form 1152048 A-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Because a CCI is not part of the Pascal language, a Pascal
comment cannot occlude a CCI. Any source image with a dollar
sign ($) in column 1 is processed as a CCI by the Pascal
compiler, even if a Pascal comment begins before and ends after
the CCI.

CCI Syntax Diagrams

The syntax diagrams for CCis are shown next. Options that are
allowed within a Pascal source are listed in the paragraphs that
follow under the headings Boolean Options, Value Options, and
Immediate Options. Except as noted, the syntax and semantics of
these options are as specified by the CCI Standard.

NOTE

The CCI Standard is a Burroughs document.
The full title is Burroughs Corporation CSG
Standard for Compiler Control Images.

CCI Syntax:

$ ---
!

!- $$ -1 !<-----------------------!
! ! !

!----- <Boolean-option> -------!
!

!-- <value-option> ------!
! !
!-- <immediate-option> --!

>---
!
! !<---!

! !
!<-----------------------------!

! ! ! !
!------- SET <Boolean-option-setting> ------------!

! !
!-- <value-option> ------------!

!
'-- <immediate-option> --------!

! !<---------------------!
! ! ! !
!-- RESET--!-- <Boolean-option> --!------------!

!
!-- POP ---!

Form 1152048 A-2

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

<Boolean-option> syntax:

------ <user-specified Boolean option identifier> -------------------
!

!-- <one of the predefined Boolean options described below>--!

<value-option> syntax:

------<one of the value options described below> ---------------------

<immediate-option> syntax:

------ <one of the immediate options described below> ----------------

<Boolean-option-setting> syntax:

---- <Boolean~option> --
!
!--- = -- <Boolean-option-expression> ---!

<Boolean-option-expression> syntax:

------ <option-term> ---

!<----------------------!
! ! !
f---- OR -- <option-term> ----!

<option-term> syntax:

------ <option-factor> ---
!

!<-------------------------! !
! ! ! !
!----AND -- <option-factor> ----1

<option-factor> synta~:

- (-- <Boolean-option-expression> --) -- ---------------------

NOT -- <option-factor> -------------

<Boolean-option> -------------------

TRUE -------------------------------

1----- FALSE ------------------------------

Form 1152048 A-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

NOTE

$must be in column 1 or $$ in columns 1 and
2 of a CCI. The listing of a tcI with$$ is
controlled by LIST and LISTINCL, not by
LISTDOLLAR. User options are implicity
declared by their first use, which may not be
in a Boolean-option-expression. The usual
precedence of Boolean operators (NOT, AND,
OR) is used.

Boolean Options

The following Boolean options are defined in the CCI Standard

ANSI
Default= FALSE. The ANSI option causes any extensions to
the ANSI Pascal Reference Standard to be treated as errors.
Enabling this option currently has no effect.

CODE
Default= FALSE. The CODE option causes the compiler to
produce a listing of the object code produced by the
compilation process.

LINE INFO
Default= FALSE. The LINEINFO option causes the compiler to
generate operators ta determine the source line number in
case of abnormal termination. If the option is not enabled,
the line number of the beginning of the active procedure is
determined instead.

LIST
Default= TRUE. The LIST option causes the compiler to
include in the listing the source derived from the CARD
f i le .

LI STOOL LAA
Default= FALSE. The LISTDOLLAR option causes the compiler
to include in the listing all CCis (single$) encountered
during the compilation. LIST must also be TRUE.

LIST INCL

MAP

Default= FALSE. The LISTINCL option causes the compiler ta
include in the listing that part of the source which was
accepted for compilation as a result of the enabling of the
INCLUDt option. LIST must also be TRUE.

Default = FALSE. The function normally associated with this
option is to produce an output listing with information
crass referencing line numbers to object code addresses.
However, this function is not needed because the Pascal

Farm 1152048 A-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

compiler error message and the analyzer program output
reference source Line numbers rather than code addresses.
The MAP option in this compiler is actually equivalent to
the CODE option.

NOBOUNDS
Default= FALSE. The NOBOUNDS option causes the compiler to
forego generating operators to check for subrange variables
going out of range assignments.

NOTAGFIELD
Default= FALSE. VARIANT causes the compiler to forego
generating operators to check tag values on accesses to
fields of tagged record variants.

OMIT
Default= FALSE. The OMIT option causes all source language
images to be ignored for the purpose of compilation until it
is disabled. Any source language images encountered while
this opttan is enabled are processed in the normal manner
A Lower-case Letter o is printed on the Listing just before
the sequence number field for all records that are omitted.

XREF
Default =FALSE. The XREF option produces a listing of the
Line number where each identifier is referenced. The XREF
option may be SET and RESET to cross reference various
portions of a program.

NOTE

The cross reference option currently uses a
memory sort. If a program with a Large
number of identifiers is being crass
referenced, then the compile will require
more memory than when cross referencing is
not being done. The code file is closed
before the cross reference is started so that
the code file is saved even if the cross
reference routines run out of memory.

Value Options

The following value options are defined in the CCI Standard.

ERRORLIMIT
Default vaL~e = 100. Causes compilation to terminate when
the number of errors detected by the compiler equals or
exceeds the integer value specified.

Form 1152048 A-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

ERRORLIMIT Syntax:

---- ERRORLIMIT ------ ----------- 100 -------------------

!--- <integer>---!

STRINGS
Default= EBCDIC. Input to the compiler is assumed to be in
EBCDIC. If this option is set to ASCII, all character and
string literals generated ta the code file are translated
from EBCDIC ta ASCII. No translation occurs with the option
set to EBCDIC.

STRINGS Syntax:

---- STRINGS ---------

Immediate Options

-------- rncorc
!

!--- ASCII ---!

The following immediate options are defined in the CCI Standard.

CLEAR
This option causes the compiler to disable (set false) the
following Boolean options: ANSI, CODE, LIST, LISTDOLLAR,
LISTINCL, OMIT, XREF.

PAGE
This option causes the compiler to eject a page on the
output listing if the appropriate List options are set.

INCLUDE
This option causes the compiler ta suspend reading input
from the CARD file and ta begin reading input from the file
specified by the parameter. An INCLUDE CCI may not appear
in the included file. The file-title is specified using the
ON syntax; that is, Y/Z ON X means file X/Z on pack X. Na
other option may fallow the INCLUDE an the same input image.
If file-title has a quotation mark (") within it, it must be
represented by t1,10 quotation marks (""). A lower-case
letter i is printed on the listing just before the sequence
number field far all records that are included.

INCLUDE Syntax:

---- INCLUDE --- " --- <file-title> --- "-------------------!

Form 1152048 A-6 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

COMPILING AND EXECUTING A PASCAL PROGRAM

The Pascal compiler, PASCAL, is itself a Pascal program.
three external files:

1. CARD, the pra]ram source text, madif ied to be DISK.

It has

2. LINE, the program listing, modified ta PRINTER BACKUP.

3. CODE, the B 1000 code file.

The compiler is run by using the MCP COMPILE command, usually
with file statements to name its external files and possibly a
static memory (MS) specification for a large compilation.
Standard memory size is 500,000 bits. The LIBRARY and SYNTAX
options of the COMPILE command bath have the same effect of
compiling to LIBRARY.

The compiler automatically segments the object code. A code
segment is filled with at least 1500 bytes of code At the end
of the procedure in which the code segment was filled to 1500
bytes, a segment is started far the next procedure Procedures
are never broken across segments, but several procedures may be
placed into one segment.

The file CODE is saved unless the program being compiled has
syntax errors. The saved file is locked into the directory with
the name that was assigned in the COMPILE command

Example:

COMPILE PROG WITH PASCAL TO LIBRARY;
FILE CARD NAME SOURCE/PROG;
FILE LINE NAME = LIST/PROG USER BACKUP.NAME;

Compile-Time Errors

Each error detected at compile time is printed on the listing
following the line in error, with a special character that points
to the token that was being scanned when the error was detected.
In some instances, the symbol being pointed to follows the actual
error point, because the compiler parsed ahead before the error
was evident to it.

Run-Time Errors

Errors detected at run time are reported by means of the MCP OS
OR DP message. A standard run-time error message contains a
segment number and displacement, usually of the program's next
instruction pointer. In the case of Pascal, however, the segment
number is always zero and the displacement value is the source
line number at which the program failed.

Form 1152048 A-7 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:

TEST = 1631 -- VALUE OUT OF RANGE: S=O, 0=13 (@000@,@00000@); OS OR DP

In this example, TEST =1631 is the job name and number supplied
by the MCP, and 0=13 shows that the error occurred on line 13 of
the source listing.

Some standard routines such as the routine to read and write real
numbers are contained in a library file (PASCAL/LIBRARY). When a
program uses any of the routines, the library is bound with the
code of the program. If an error occurs in a library routine,
the line number of the error is in the library rather than in the
invoking program. The best way to determine the program line
from which the library routine was called is to run the
PASCAL/ANALYZER program on a dump of the program. The dump
analysis shows the appropriate line. The PASCAL/ANALYZER program
is described later in this appendix.

A run-time error may occur incorrectly when a program is clase ta
running out of memory. If an error seems questionable, try
running the program again with mare memory.

Following is a list of all the run-time errors with notes on
possible causes.

INDEX OUT OF RANGE
The value of the expression used ta index an array is
outside the bounds of the array.

VALUE OUT OF RANGE
The value of the expression is outside the range of the
variable ta which the expression is being assigned.

INTEGER OVERFLOW
The value the expression is greater that maxint or less than
-max int.

REAL OVERFLOW
The exponent part of the real-valued expression is greater
than the maximum exponent far real numbers.

INV PTA REFERENCE
A pointer which was pointing above the current top of the
heap was dereferenced. The item that the painter is
painting ta has already been released.

DIVIDE BY ZERO
A division or modulo by zero was attempted.

Farm 1152048 A-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

STACK LIMIT
The program has run out of memory while trying to allocate
space for local var·iables. Run the program again with more
memory using the MCP MS command.

HEAP LIMIT
The program has run out of memory while trying to allocate
space for a dynamic variable. Run the program again with
more memory using the MCP MS command.

SET OUT OF RANGE
A member of the set expression is outside the range of the
set to which it is being assigned.

INVALID OPCODE
The interpreter attempted to execute an invalid operator.

INV STD ROUTINE
The compjler generated faulty code which resulted in an
attempt to call an invalid standard routine.

VARIANT ERROR
A field of a variant record was accessed and the value of
the tag field does not correspond to the variant part
containing this f ir:Ld.

NIL POINTER ERROR
A pointer with the value of NIL was dereferenced.

INVALID CASE
A CASE statement was executed but the value of the case
selector does not correspond to any case label and the case
statement has no OTHERWISE clause.

FILE AT EDF
A file operation was attempted but the end of the file was
encountered.

PROGRAM ABORT
The program was terminated by calling the ABORT procedure.

TEXT BUF OVERFLOW
Too many WRITE operations without a WRITELN procedure to
this textf ile have been done. Either insert a WRITELN
procedure or increase the size of the buffer associated with
this textfile using the file attribute specification in the
program heading.

FILE NOT OPEN
A file operation was attempted on an unopen file.

Form 1152048 A-9 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

UNDEFINED POINTER
A pointer which has not been assigned any value has been
dereferenced.

FILE NOT AT EDF
A file operation was attempted but the file was not at end
0 f f i le .

INVALID CHAR READ
An invalid character was encountered during an attempt to
read an integer from a textf ile.

FILE NOT CLOSED
A file operation was attempted which required the file to be
closed, but it is open.

USING THE PASCAL/ANALYZER PROGRAM

When a run-time error occurs, the user has the option of getting
a dump file of the current state of the program.

The standard analyzer program (SYSTEM/IDA) can be used to analyza
dumps of Pascal programs, but it is not based on the internal
structure of the Pascal virtual machine and, thus, produces a
very general analysis. It is invoked with the MCP PM command,
with switch 1 set to 1, and analyzes standard program components
such as the run structure nucleus and file information blacks.
Values of variables and the nesting of procedures are not shown.

The PASCAL/ANALYZER program is written specifically ta analyze
dumps of Pascal programs and is based on the Pascal run-time
system. It contains two external files:

!bu DUMPFILE, the input dump file created by the MCP.

!bu LINE, the output listing file.

The PASCAL/ANALYZER program gives a detailed analysis of the
state of the program at the point at which the error occurred.

The output is organized as follows:

The program name and date and the name of the run-time error
appear at the tap of the printout.

The values of all of the scratchpad registers are next.

Information for each file that was declared in the program
is given next.

Form 1152048 A-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Analysis af the stack appears next. Each activation record,
beginning with the mast recent one, is analyzed. The
analysis of each activation record includes the local
variable, stack temporaries, and parameters. The name and
current value af each variable is included.

At the end, the contents of the heap are printed in
hexadecimal.

The PASCAL/ANALYZER program is executed as follows:

EX PASCAL/ANALYZER;
FILE DUMPFILE NAME DUMPFILE/124;
FILE LINE NAME PROG/DUMP USER.BACKUP.NAME

USING THE SYSTEM/IDA PROGRAM

The SYSTEM/IDA program (the standard analyzer) is executed as
fol laws:

PM 124; SW 1 :::: 1

DUMPFILE/124 is removed when the analysis is done. To retain the
dump, file invoke the SYSTEM/IDA program with the following
command:

PM 124 SAVE; SW 1 = 1

Farm 1152048 A-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

APPENDIX B

RAILROAD DIAGRAMS

Railroad diagrams graphically represent the syntax of software
commands.

The railroad diagrams are traversed left ta right or in the
direction of the arrowhead. Adherence ta the limits illustrated
by bridges produces a syntactically val id statement.
Continuation from one line of a diagram to another is represented
by a right arrow (!ra) appearing at the end of the current line
and the beginning of the next line. The complete syntax diagram
is terminated by a vertical bar (!vr).

Items contained in broken brackets (<>) are syntactic variables
that are defined in the manual or are information that the user
is required to supply.

Upper-case items not enclosed in broken brackets must appear
literally. Minimum abbreviations af upper-case items are
underlined.

Example:

!<-/3\------- ' -------!
! !

-- A RAILROAD DIAGRAM CONSISTS OF -----<bridges>------------------->
! !
!-<loops>----------!
! !
!-<optional items>-!

! ' !-<required items>-!

>-AND IS TERMINATED BY A VERTICAL BAR. ---------------------------!

The following syntactically valid statements can be constructed
from the preceding diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS
TERMINATED BY A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional items> AND IS
TERMINATED BY A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND
IS TERMINATED BY A VERTICAL BAR.

Farm 1152048 B-1 File DOCUMENT/PASCAL

Burroughs

8 1000 PASCAL LANGUAGE MANUAL

A RAILROAD DIAGRAM CONSISTS OF <optional items>,
<required items>, <optional items>, <bridges>, <Loops>
AND IS TERMINATED BY A VERTICAL BAR.

REQUIRED ITEMS

No alternate path through the railroad diagram exists for
required items or required punctuation.

Example:

-- REQUIRED ITEM

OPTIONAL ITEMS

Items shown as a vertical list indicate that the user must make a
choice of the items specified. An empty path through the list
allows the optional item to be absent

Example:

-- REQUIRED ITEM
!-<optional item-1>-!
! !
!-<optional item-2>-!

The following valid statements can be generated from the
preceding diagram:

LOOPS

REQUIRED ITEM

REQUIRED ITEM <optional item-1>

REQUIRED ITEM <optional item-2>

A loop is a recurrent path through a railroad diagram and has the
following general format:

!<-<bridges> <return character>-!
! !

----<object of the Loop>---

Form 1152048 B-2 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Example:

!<-/1\-------- ' -------!
! !

------<optional item-1>---
! !
'-<optional item-2>-!

The fallowing statements can be constructed from the railroad
diagram in the preceding example.

<optional
<optional
<optional
<optional
<optional
<optional

item-1>
item-2>
item-1>. <optional
item-1>,<optional
item-2>,<aptional
item-2>,<aptional

item-1>
item-2>
item-1>
item-2>

A loop must be traversed in the direction of the arrowheads, ~nd
the limits specified by bridges cannot be exceeded.

BRIDGES

A bridge illustrates the minimum or maximum number of times e
path can be traversed in a railroad diagram.

There are two forms of bridges:

/n\ n is an integer that specifies the maximum number of times th
path may be traversed.

In*\ n is an integer that specifies the maximum number of times t
path may be traversed. The asterisk (*) indicates that the pa
must be traversed at least once.

Example:

!<-/2\---------
!

----------!
!

------<optional item-1>--
!
!-/2*\-<optionat item-2>-!

The loop may be traversed a maximum of two times, and the path
for <optional item-2> must be traversed at least once but no more
than twice.

Form 1152048 B-3 Fite DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

The following statements can be constructed from the preceding
diagram:

<optional item-1>,<optional item-2>

<optional item-2>,<optional item-2>,<optional item-1>

<optional item-2>

Form 1152048 B-4 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

APPENDIX C

EBCDIC AND ASCII CHARACTER SETS

Tables C-1 and C-2 show the hexadecimal representation and
ordinal number far each EBCDIC and ASCII character. Table C-1 is
sorted by EBCDIC ordinal number and represents the
EBCDIC-ta-ASCII translation that is performed when necessary.
Table C-2 is sorted by ASCII ordinal number and represents the
ASCII-to-EBCDIC translation that is performed when necessary.

NOTES

The graphic representations far the EBCDIC
hex codes 1S, SF, BA, 79, and A1 are hardware
dependent. Therefore, no EBCDIC graphic is
shown in table C-1 far those codes.

Similarly, the graphic representations far
the ASCII hex codes 21, SE, SC, and 7C are
hardware dependent. Therefore, no ASCII
graphic is shown in table C-2 for those
codes.

Form 11S2048 C-1 • File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Table C-1 . B 1000 Codes in EBCDIC Sequence

E B c D I c A s c I (EBCDIC Graphic)
--------------- ---------------------------------
Hex Decimal Hex Decimal Graphic Meaning

------- ------- ------- -------
00 0 00 0 NUL Null
01 1 01 1 SOH Start 0 f Heading
02 2 02 2 STX Start 0 f Text
03 3 03 3 ETX End 0 f Text
04 4 SC 156
05 5 09 9 HT Horizontal Tabulation
06 6 86 134
07 7 7F 127 DEL Delete
OB 8 97 1 51
09 9 8D 1 41
OA 10 BE 142
OB 11 OB 11 VT Vertical Tabulation
oc 1 2 oc 1 2 FF Form Feed
DD 1 3 OD 1 3 CR Carriage Return
OE 1 4 OE 1 4 so sh if t Out
OF 1 5 OF 1 5 SI sh if t In
1 0 1 6 10 1 6 OLE Data Link Escape
11 1 7 11 1 7 OC1 Device Control 1
1 2 1 8 12 1 8 OC2 Device Control 2
1 3 1 9 1 3 1 9 DC3 Device Control 3
14 20 90 157
1 5 21 85 133
1 6 22 08 8 BS Backspace
1 7 23 B7 135
1 B 24 1 8 24 CAN Cancel
1 9 25 1 9 25 EM End 0 f Medium
1A 26 92 146
1 B 27 BF 143
1C 28 1C 28 FS Fi le Separator
10 29 1D 29 GS Group Separator
1E 30 1E 30 RS Record Separator
1F 31 1F 31 us Unit Separator
20 32 80 128
21 33 81 129
22 34 82 130
23 35 83 1 31
24 36 84 132
25 37 DA 1 0 LF Line Feed
26 38 1 7 23 ETB End of Transmission Bloc
27 39 1B 27 ESC Escape
28 40 88 136
29 41 89 137
2A 42 BA 138
28 43 BB 139
2C 44 BC 140
20 45 05 5 ENO Enquiry
2E 46 06 6 ACK Acknowledge
2F 47 07 7 BEL Bell

Form 1152048 C-2 Fi le DOCUMENT/PASCAL

Burroughs

E B C D I C

Hex

30
31
32
33
34
35
36
37
38
39
3A
38
3C
30
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
48
4C
40
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
58
5C
50
5E
5F

Decimal

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
84
65
66
67
68
69
70
71
72
73
74
75
78
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Form 1152048

B 1000 PASCAL LANGUAGE MANUAL

Table C-1. (continued)

A S C I I (EBCDIC Graphic)

Hex Decimal Graphic Meaning

90
91
1 6
93
94
95
96
04
98
99
9A
98
14
1 5
9E
1A
20
AO
A1
A2
A3
A4
A5
AG
A7
AB
58
2E
3C
28
28
21
26
A9
AA
AB
AC
AD
AE
AF
BO
81
50
24
2A
29
38
5E

144
145

22
147
148
149
1 50

4
152
153
154
155

20
21

158
26
32

160
1 61
162
163
164
165
166
167
168

91
48
80
40
43
33
38

169
1 70
1 71
172
173
174
1 7 5
176
177

93
36
42
41
59
94

C-3

SYN

EDT

OC4
NAK

SUB
SP

+
!
&

]
$

Burroughs

Synchronous Idle

End of Transmission

Device Control 4
Negative Acknowledge

Substitute
Sp ace

Opening Bracket
Period
Less Than
Opening Parenthesis
Plus
Exclamation Paint
Ampersand

Closing Bracket
Dollar Sign
Asterisk
Closing Parenthesis
Semicolon

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

Table C-1 . (continued)

E B c D I c A s c I I (EBCDIC Graphic)
--------------- ---------------------------------
Hex Decimal Hex Decimal Graphic Meaning

------- ---~--- ------- -------
60 96 20 45 Hyphen (Minus)
B1 97 2F 47 Slant (Slash)
62 98 82 17B
63 99 B3 1 7 9
64 100 B4 1 80
65 101 B5 1 81
66 102 BB 182
67 103 B7 183
68 104 BB 1 84
69 105 B9 185
SA 106 7C 124
BB 107 2C 44 Comma
BC 108 25 37 % Percent
BO 109 5F 95 Underscore
SE 11 0 3E 62 > Greater Than
SF 11 1 3F 63 ? Question Mark
70 11 2 BA 186
71 11 3 BB 187
72 11 4 BC 188
73 11 5 BO 1B9
74 11 B BE 190
75 11 7 BF 1 91
7B 11 8 co 192
77 11 9 C1 193
78 1 20 C2 1 94
79 1 21 40 9B
7A 122 3A 58 Colon
7B 123 23 35 # Number Sign
7C 124 60 64 @ Co mm er c i a l At
70 125 27 39 Apostrophe, Closing Quot
7E 126 30 61 Equal Sign
7F 127 22 34 Quotation Marks
80 1 28 C3 195
81 129 B1 97 a Lower Case a
82 130 62 98 b Lower Case b
83 1 31 63 99 c Lower Case c
84 132 64 100 d Lower Case d
85 133 65 101 e Lower Case e
86 134 BS 102 f L O'v/ er Case f
87 135 67 103 g Lo"'' er Case g
88 136 68 104 h Lo"'' er Case h
89 137 69 105 Lower Case i
BA 138 C4 19B
BB 139 C5 197
BC 140 CB 19B
BO 1 41 C7 199
BE 142 CB 200
BF 143 C9 201

Form 1152048 C-4 Fi le DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Table C-1 . (continued)

E B c D I c A S c I I {EBCDIC Graphic)
--------------- ---------------------------------
Hex Decimal Hex Decimal Graphic Meaning

------- ------- ------- -------
90 144 CA 202
91 145 SA 10S j Lawer Case j
92 14S S8 107 k LOWE! r Case k
93 147 SC 108 l Lower Case l
94 148 SD 109 m Lo\.1er Case m
95 149 SE 11 0 n Lower Case n
96 1 50 SF 111 0 Lower Case 0

97 1 51 70 11 2 p Lower Case p
98 152 71 11 3 q L ov1e r Case q
99 153 72 11 4 r LOWE! r Case r
9A 154 CB 203
98 155 cc 204
9C 1 5 s CD 205
90 157 CE 208
9E 158 CF 207
9F 159 DO 208
AO 1 60 D1 209
A1 1 61 7E 126
A2 1S2 73 11 5 s Lawer Case s
A3 163 74 11 8 t Lawer Case t
A4 1S4 75 11 7 u Lower Case u
AS 165 76 11 8 v Lower Case v
AS 166 77 11 9 w Lower Case w
A7 187 78 120 x Lower Case)(

AB 1S8 79 1 21 y Lower Case y
A9 1S9 7A 122 z Lower Case z
AA 1 7 0 02 210
AB 1 71 03 211
AC 1 7 2 04 212
AD 173 05 213
AE 174 DB 214
AF 175 D7 215
BO 176 08 218
91 1 77 09 21 7
82 178 DA 218
B3 179 DB 219
84 180 DC 220
B5 1 81 DD 221
86 182 DE 222
87 183 OF 223
88 184 ED 224
89 185 E 1 225
BA 186 E2 226
BB 187 E3 227
BC 188 E4 228
BO 189 ES 229
BE 1 90 ES 230
BF 1 91 E7 231

Farm 1152048 C-5 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Table C-1 . (continued)

E B c D I c A s c I I (EBCDIC Grai-1hic)
--------------- ---------------------------------
Hex Decimal Hex Decimal Graphic Meaning

------- ------- ------- -------
co 1s2 7B 123 { Opening Brace
C1 1S3 41 65 A Upper Case A
C2 1S4 42 66 B Upper Case B
C3 1s5 43 67 c Upper Case c
C4 1S6 44 68 D Upper Case D
C5 1S7 4S SS E Upper Case E
cs 1s8 46 70 F Upper Case F
C7 1SS 47 71 G Upper Case G
CB 200 48 72 H Upper Case H
cs 201 4S 73 I Upper Case I
CA 202 EB 232
CB 203 ES 233
cc 204 EA 234
CD 205 EB 235
CE 206 EC 236
CF 207 ED 237
DO 20!3 70 125 } Closing Brace
01 209 4A 74 J Upper Case J
02 210 48 75 K Upper Case K
D3 211 4C 76 L Upper Case L
D4 21 2 40 77 M Upper Case M
05 213 4E 78 N Upper Case N
06 214 4F 7S 0 Upper Case 0
07 215 so 80 p Upper Case p
08 216 S1 81 0 Upper Case 0
OS 217 52 82 R Upper Case R
DA 218 EE 238
DB 219 EF 23S
DC 220 FD 240
DD 221 F1 241
DE 222 F2 242
OF 223 F3 243
ED 224 SC S2 Reverse Slant
E1 225 SF 1S9
E2 226 S3 83 s Upper Case s
E3 227 54 84 T Upper Case T
E4 228 5S 85 u Upper Case u
ES 22S 56 86 v Upper Case v
EB 230 57 87 w Upper Case w
E7 231 S8 88 x Upper Case x
EB 232 . S9 89 y Upper Case y
ES 233 SA 90 z Upper Case z
EA 234 F4 244
EB 23S FS 245
EC 236 FB 246
ED 237 F7 247
EE 238 FB 248
EF 239 F9 249

Form 11S2048 C-6 Fi Le DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Table C-1 . (continued)

E B c D I c A s c I I (EBCDIC Graphic)
--------------- ---------------------------------
Hex Decimal Hex Decimal Graphic Meaning

------- ------- ------- -------
FD 240 30 48 0 Zero
F 1 241 31 49 1 One
F2 242 32 50 2 Two
F3 243 33 51 3 Three
F4 244 34 52 4 Faur
F5 245 35 53 5 Five
F6 248 38 54 6 six
F7 247 37 55 7 Seven
F8 248 38 56 8 E i g ht
F9 249 39 57 9 Nine
FA 250 FA 250
FB 251 FB 251
FC 252 FC 252
FD 253 FD 253
FE 254 FE 254
FF 255 FF 255

Form 1152048 C-7 File DOCUMENT/PASCAL

Burroughs

B 1DDD PASCAL LANGUAGE MANUAL

Table C-2. B 1000 Codes in ASCII Sequence

A s c I I E B c D I c (ASCII Graphic)
--------------- ---------------------------------
Hex Decimal Hex Decimal Graphic Meaning

------- ------- ------- -------
OD 0 OD 0 NUL Nu L l
01 1 01 1 SOH Start of Heading
02 2 02 3 STX Start of Text
03 3 03 4 ETX End 0 f Text
04 4 37 55 EDT End 0 f Transmission
05 5 2D 45 ENQ Enquiry
06 6 2E 46 ACK Acknowledge
07 7 2F 47 BEL Bell
08 8 1 6 22 BS Backspace
09 9 05 5 HT Horizontal Tabulation
OA 10 25 37 LF Line Feed
OB 11 OB 11 VT Vertical Tabulation
DC 1 2 DC 1 2 FF Form Feed
OD 1 3 OD 1 3 CR Carriage Return
OE 14 OE 1 4 so sh i ft Out
OF 1 5 OF 1 5 SI sh i ft In
10 1 6 1 0 1 6 OLE Data Link Escape
11 1 7 11 1 7 DC1 Device Control 1
1 2 1 8 1 2 1 8 DC2 Device Control 2
1 3 1 9 1 3 1 9 DC3 Device Control 3
14 20 3C 60 DC4 Device Control 4
1 5 21 30 61 NAK Negative Acknowledge
1 6 22 32 50 SYN Synchronous Idle
1 7 23 26 38 ETB End of Transmission Bloc
1 8 24 1 8 24 CAN Cancel
1 9 25 1 9 25 EM End of Medium
1A 26 3F 63 SUB Substitute
1B 27 27 39 ESC Escape
1C 28 1C 28 FS Fi Le Separator
10 29 10 29 GS Group Separator
1E 30 1E 30 RS Record Separator
1F 31 1F 31 us Unit Separator
20 32 40 64 SP Space
21 33 4F 79
22 34 7F 127 Quotation Marks
23 35 78 123 # Number Sign
24 36 SB 91 $ Dollar Sign
25 37 SC 108 % Percent
26 38 50 80 & Ampersand
27 39 7D 125 Apostrophe, Sing Le Quote
28 40 40 77 Opening Parenthesis
29 41 50 93 Closing Parenthesis
2A 42 SC 92 if Asterisk
28 43 4E 78 + pl LIS

2C 44 68 107 Comma
20 45 60 96 Hyphen (Minus)
2E 46 48 75 Period
2F 47 61 97 Slant (Slash)

Form 1152048 C-8 Fi le DOCUMENT/PASCAL

Burroughs

B 100D PASCAL LANGUAGE MANUAL

Table C-2. (continued)

A s c I I E B c D I c (ASCII Graphic)
--------------- ---------------------------------
Hex Decimal Hex Decimal Graphic Meaning

------- ------- ------- -------
30 48 FD 240 0 Zero
31 49 F 1 241 1 One
32 50 F2 242 2 Two
33 51 F3 243 3 Three
34 52 F4 244 4 Four
35 53 F5 245 5 Five
36 54 F6 248 8 Six
37 55 F7 247 7 Seven
38 56 F8 248 8 E i g ht
39 57 F9 249 9 Nine
3A 58 7A 122 Colon
38 59 5E 94 Semicolon
3C 60 4C 76 Less Than
30 61 7E 126 Equals
3E 62 SE 11 0 > Greater Than
3F 63 SF 111 ? Question Mark
40 64 7C 124 @ Commercial At
41 65 C1 193 A Upper Case A
42 66 C2 194 B Upper Case 8
43 67 C3 195 c Upper Case c
44 68 C4 196 D Upper Case D
45 69 C5 197 E Upper Case E
46 70 CG 198 F Upper Case F
47 71 C7 199 G Upper Case G
48 72 CB 2DO H Upper Case H
49 73 cs 201 I Upper Case I
4A 74 01 209 J Upper Case J
48 75 02 210 K Upper Case K
4C 76 03 211 L Upper Case L
40 77 04 212 M Upper Case M
4E 78 05 213 N Upper Case N
4F 79 06 214 0 Upper Case 0
50 80 07 215 p Upper Case p
51 81 08 216 Q Upper Case 0
52 82 09 217 A Upper Case R
53 83 E2 226 s Upper Case s
54 84 E3 227 T Upper Case T
55 85 E4 228 u Upper Case u
56 86 E5 229 v Upper Case v
57 87 ES 230 w Upper Case w
58 88 E7 231 x Upper Case x
59 89 EB 232 y Upper Case y
SA 90 ES 233 z Upper Case z
S8 91 4A 74 [Opening Bracket
SC 92 ED 224 \ Reverse Slant
50 93 SA 90 J Closing Bracket
SE 94 SF 95
5F 95 60 109 Underscore

Form 1152048 C-9 File DOCUMENT/PASCAL

Burroughs

Hex

60
61
62
63
64
65
66
67
SB
69
BA
68
6C
60
SE
BF
70
71
72
73
74
75
76
77
78
79
7A
78
7C
70
7E
7F
BO
81
82
B3
B4
85
BB
87
BB
89
BA
BB
BC
BO
BE
BF

A S C I I

Decimal

96
97
98
99

100
101
102
103
104
105
106
107
108
109
11 0
1 1 1
11 2
11 3
11 4
11 5
11 6
11 7
11 8
11 9
120
1 21
122
123
124
125
126
127
128
129
1 30
1 31
132
133
1 34
135
136
137
138
139
140
141
142
143

Form 115204B

8 1000 PASCAL LANGUAGE MANUAL

Table C-2. (continued)

E 8 C 0 I C (ASCII Graphic)

Hex Decimal Graphic Meaning

79
81
82
83
84
85
86
87
8B
B9
91
92
93
94
95
96
97
98
99
A2
A3
A4
AS
AS
A7
AB
AS
co
SA
DO
A1
07
20
21
22
23
24
15
06
1 7
28
29
2A
28
2C
09
OA
19

1 21
129
130
1 31
132
133
134
135
136
137
145
146
147
148
149
1 50
1 51
152
153
162
163
1 64
165
166
167
168
169
192
106
208
1 61

7
32
33
34
35
36
21

6
23
40
41
42
43
44

9
1 0
27

C-10

a
b
c
d
e
f
g
h

j
k
l
m
n
0

p
q

s
t
u
v
w
x
y

DEL

B·urro1.1ghs

Lower Case a
Lower Case b
Lower Case c
Lower Case d
Lawer Case e
Lower Case f
Lovier Case g
Lovier Case h
Lovier Case i
Lawer Case j
Lovier Case k
Lower Case L
Lower Case m
La'l-1er Case n
Lo\.1er Case a
Lo"1-1er Case p
Lower Case q
Lower Case r
Lower Case s
LoHer Case t
Lo1,1er Case u
Lower Case v
Lovier Case w
Lower Case x
Lower Case y
Lower Case z
Opening Brace

Closing Brace

Delete

File DOCUMENT/PASCAL

Hex

90
91
92
93
94
95
96
97
98
9S
SA
SB
SC
SD
SE
SF
AO
A1
A2
A3
A4
A5
AB
A7
AB
AS
AA
AB
AC
AD
AE
AF
BO
81
82
B3
B4
B5
B6
87
BB
B9
BA
BB
BC
BO
BE
BF

A S C I I

Decimal

144
145
1 46
147
148
1 4S
1 50
1 51
152
153
154
155
156
157
158
159
1 60
1 61
162
163
164
165
166
167
168
169
1 70
1 71
1 7 2
1 7 3
174
175
176
177
1 7 8
179
180
1 81
182
183
184
185
186
187
188
189
190
1 91

Form 1152048

B 1000 PASCAL LANGUAGE MANUAL

Table C-2. (continued)

Hex

30
31
1 A
33
34
35
36
08
38
39
3A
38
04
1 4
3E
E 1
41
42
43
44
45
46
47
48
49
51
52
53
54
55
56
57
58
59
62
63
64
65
66
67
68
69
70
71
72
73
74
75

E B C D I C (ASCII Graphic]

Decimal Graphic Meaning

48
49
26
51
52
53
54

8
56
57
58
59

4
20
62

225
65
66
67
68
69
70
71
72
73
81
82
83
84
85
88
87
88
89
98
99

100
101
102
103
104
105
11 2
11 3
11 4
11 5
11 6
11 7

C-11 File DOCUMENT/PASCAL

Burroughs

He><

co
C1
C2
C3
C4
C5
cs
C7
CB
C9
CA
CB
cc
CD
CE
CF
DO
01
02
03
D4
D5
DS
D7
DB
D9
DA
DB
DC
DD
DE
OF
EO
E1
E2
E3
E4
E5
ES
E7
EB
E9
EA
EB
EC
ED
EE
EF

A S C I I

Decimal

192
193
1 94
195
196
197
19B
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
21B
219
220
221
222
223
224
225
226
227
22B
229
230
231
232
233
234
235
236
237
23B
239

Farm 1152048

B 1000 PASCAL LANGUAGE MANUAL

Table C-2. (continued)

Hex

76
77
78
BO
BA
BB
BC
BD
BE
BF
90
9A
98
SC
90
SE
SF
AO
AA
AB
AC
AD
AE
AF
BO
B1
82
83
B4
B5
BS
87
BB
B9
BA
BB
BC
BO
BE
BF
CA
CB
cc
CD
CE
CF
DA
DB

E B C D I C (ASCII Graphic)

Decimal Graphic Meaning

11 B
11 9
120
128
138
139
140
1 41
142
1 43
144
154
155
156
157
158
159
1 60
1 70
1 71
172
173
174
175
176
177
178
179
1 BO
1B1
182
183
1B4
1B5
1B6
1B7
1B8
1B9
190
1 91
202
203
204
205
206
207
218
219

C-12 File DOCUMENT/PASCAL

Burroughs

8 1000 PASCAL LANGUAGE MANUAL

Table C-2. (continued)

A S C I I E B C 0 I C (ASCII Graphic)

Hex Decimal Hex Decimal Graphic Meaning
------- ------- ------- -------

FO 240 DC 220
F1 2 41 DD 221
F2 242 DE 222
F3 243 OF 223
F4 244 EA 234
F5 245 EB 235
F8 248 EC 238
F7 247 ED 237
FB 248 EE 238
F9 249 EF 239
FA 250 FA 250
FB 251 FB 251
FC 252 FC 252
FD 253 FD 253
FE 254 FE 254
FF 255 FF 255

Farm 1152048 C-13 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

INDEX

< 5-8
<<Baalean-aptian> A-3
<> 5-8, 5-9, 5-10
<= 5-8, 5-10
<abort procedure> S-35
<abort procedure> syntax
<abs function> 6-32
<abs function> syntax:
<accept procedure> S-35

6-36

6-32

<accept procedure> syntax: 6-36
<actual parameter list> 4-10, 5-4
<arctan function> 6-32
<arithmetic expression> 5-8, 5-15, 6-32, 6-33, 6-34
<arithmetic expression> syntax: 5-1
<arithmetic function> 6-1, 6-35
<arithmetic functions> syntax: S-32
<arithmetic operator> 5-15
<arithmetic operator> syntax:
<arithmetic relation> 5-8

5-15

<arithmetic relation> syntax: 5-8
<array type identifier> 3-5, 3-8, 3-13
<array type> 3-5, 3-6
<array variable> 5-1, 7-2
<assignment statement> 4-1
<assignment statement> syntax: 4-2
<attribute parameter List> syntax: 8-5
<attribute phrase> syntax: 2-3
<base type> 3-22
<blank> 9-3
<blank> def initian: 9-3
<black> syntax: 2-3
<Boolean constant identifier> 3-2, 3-3
<Boolean constant> 3-2, 3-21, 3-23, 5-6
<Boolean expression> 4-9, 4-11, 4-12, 5-1, 5-2, 5-6

J 5-9 I 6-23
<Boolean expression> syntax: 5-5
<Boolean operator> 5-5
<Boolean operator> syntax: 5-6
<Boolean primary> 5-5
<Boolean primary> syntax: 5-6
<Boolean type identifier> 3-5, 3-8, 3-14
<Boolean type> 3-5, 3-6, 3-7, 3-21
<Boolean variable> 5-6
<Boolean-option-expression> A-3
<Boolean-option-expression> syntax: A-3
<Boolean-option-setting> A-2
<Boolean-option-setting> syntax: A-3

Farm 1152048 IX-1 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<Boolean-option> A-2, A-3
<Boolean-option> syntax: A-3
<buffer variable> 7-1
<buffer variable> syntax: 7-4
<case constant> 3-21, 4-4
<case index> 4-3
<case index> syntax: 4-4
<case list element> 4-3
<case list element> syntax: 4-4
<case statement> 4-1
<case statement> syntax: 4-3
<char constant identifier> 3-2, 3-3
<char constant> 3-2, 3-21, 3-23, 5-11
<char expression> 5-1, 5-2, 5-9, 5-17, 6-23, 6-24
<char expression> syntax: 5-11
<char type identifier> 3-5, 3-8, 3-15
<char type> 3-5, 3-6, 3-7, 3-21
<char variable> 5-11, 6-17
<character literal> 3-3, 9-2
<character literal> syntax: 8-2
<character string> 3-4, 9-2
<character string> syntax: 8-1
<character> definition: 8-2
<chr function> 6-27
<chr function> syntax: 6-27
<close option> 6-13
<close option> syntax: 6-13
<close procedure> 6-2
<close procedure> syntax: 6-13
<comment> 9-3
<comment> syntax: 9-4
<component type> 3-16
<compound statement> 4-1
<compound statement> syntax:
<constant definitions> 3-1,
<context-sensitive identifier>
<control variable> 4-4
<control variable> definition:
<cos function> 6-32
<COS function> syntax: 6-33
<date procedure> 6-35

4-4
3-2

9-2

4-5

<date procedure> syntax: 8-37
<day> 6-37
<day> syntax: 6-37
<declared function> 5-4
<declared function> syntax:
<declared procedure> 4-10
<declared procedure> syntax:
<digit> 3-2, 8-2, 8-3, 8-4
<digit> definition: 8-2
<directive> 3-27, 3-29
<display procedure> 6-35
<display procedure> syntax:
<domain type> 3-18

Form 1152048

5-4

4-11

6-37

IX-2

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

6-1 cdynamic allocation procedure>
<dynamic allocation procedure> syntax:
<dynamic variable> 7-1
<dynamic variable> syntax: 7-3
celement type> 3-14
cent1re variable> 7-1
centire variable> syntax: 7-1

6-28

cenumerated constant> 3-16, 3-21, 3-23, 5-11
cenumerated expression> 5-1, 5-2, 5-9
cenumerated expression> syntax: 5-11
<enumerated type identifier> 3-5, 3-8, 3-16, 3-21
<enumerated type> 3-5, 3-6, 3-7
<enumerated variable> 5-11
<eof function> 6-2
ceof function> syntax: 6-15
<ealn function> 6-2
<ealn function> syntax: 6-15
<exp function> 6-32
<exp function> syntax: 6-33
cexponent part> 8-4
<exponent part> syntax: 8-4
<express ion> 3-32, 4-2, 6-22
<expression> syntax: 5-1
cexternal file identifier> syntax.
<external file specification> syntax:
cf ield designator> 7-1
<field designator> syntax: 7-3
<field identifier> 3-20, 3-21, 7-3
<field list> 3-20, 3-21
<field type> 3-20
cf ield width> 6-23
<field width> syntax: 6-23
cf ile handling function> 6-1

2-2
2-2

cf ile handling function> syntax: 6-2
<file handling procedure> 6-1
cf ile handling procedure> syntax: 6-2
<file type identifier> 3-5, 3-8, 3-16
<file type> 3-5, 3-6
<file variable> 6-13, 6-15, 6-16, 6-17, 6-21, 6-22

' 7-4
cf inal value> 4-4
<final value> syntax:
<fixed part> 3-20
<for statement> 4-1
cfar statement> syntax:
<formal parameter list>
<forward> 3-27, 3-29
<frac digits> 6-23

4-5

4-4
3-27 I 3-29

cfrac digits> synt}x: 6-23
<function declaration> 3-26
<function designator> 5-6, 5-11, 5-13, 5-14, 5-15
(function designator> syntax: 5-4
<function identifier> 3-29, 4-2, 5-4
<general function> 6-1

Form 1152048 IX-3 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<general function> syntax: 8-35
<general procedure> 6-1
<general procedure> syntax: 6-35
<get procedure> 6-2
<get procedure> syntax: 6-15
<goto statement> 4-1
<goto statement> syntax: 4-6
<hours> 6-39
<hours> syntax: 6-39
<identifier> 3-16, 3-20, 3-26, 3-27, 3-29, 9-2
<identifier> syntax: 8-2
<if statement> 4-1
<if statement> syntax: 4-9
<immediate-option> A-2
<immediate-option> syntax: A-3
<index expression> 7-2
<index expression> syntax: 7-2
<index type> 3-14

7-2 <indexed array variable>
<indexed array variable> syntax:
<indexed variable> 7-1
<indexed variable> syntax: 7-2
<initial value> 4-4
<initial value> syntax: 4-5

7-2

<integer constant identifier> 3-2, 3-3, 5-13
<integer constant> 3-2, 3-21, 3-23
<integer expression> 5-1, 5-2, 5-9, 5-13, 6-22, 6-23

' 6-24, 6-27, 6-38, 8-5
<integer expression> syntax: 5-12
<integer operator> 5-12
<integer operator> syntax: 5-13
<integer primary> 5-12, 5-15
<integer primary> syntax: 5-13
<integer type identifier> 3-5, 3-8,
<integer type> 3-5, 3-6, 3-7, 3-21
<integer variable> 5-13, 6-17
<label declarations> 3-1, 3-2
<label> 3-2, 4-1, 4-6
<letter> 8-2
<Letter> definition:
<ln function> 6-32
<ln function> syntax:
<mark procedure> 6-28

8-2

6-33

<mark procedure> syntax: 6-31
<member designator> 5-16
<member designator> syntax: 5-16
<minutes> 6-39
<minutes> syntax: 6-39
<month> 6-37
<month> syntax: 6-37
<new array type> 3-13
<new enumerated type> 3-18
<new file type> 3-16
<new pointer type> 3-17

Farm 1152048 IX-4

3-17

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

<new procedure> 6-28
<new procedure> syntax:
<new record type> 3-20
<new set type> 3-22

6-31

<new subrange type> 3-23
<non-apostrophe character>
<non-apostrophe character>

8-1 J 8-2
definition:

<number> 9-2
<number> syntax: 8-3
<odd function> 6-35
<odd function> syntax:
<option-factor> A-3
<option-factor> syntax:
<option-term> A-3

6-38

A-3

A-3

6-28

8-2

<Option-term> syntax:
<Ord function> 6-27
<Ord function> syntax
<ordinal expression> 4-4, 4-5, 5-10, 5-16, 6-28, 6-38

. 6-39. 7-2
<ordinal expression> syntax: 5-2
<Ordinal relation> 5-8
<ordinal relation> syntax. 5-9
<ordinal type identifier> 3-21
<ordinal type> 3-14, 3-22
<page procedure> 6-2
<page procedure> syntax. 6-16
<pointer expression> 5-1, 6-31
<pointer expressirrn> syntax: 5-14
<pointer relation> 5-8. 5-9
<pointer relation> syntax: 5-9
<pointer type identifier> 3-5, 3-8, 3-17
<pointer type> 3-5, 3-29
<pointer variable> 5-14, 6-31, 7-3
<pred function> 6-35
cpred function> syntax: 6-38
cpredef ined function> 5-4
<predefined function> syntax: 6-1
cpredef ined identifier> 9-2
<predefined identifier> List 9-3
<predefined procedure> 4-10
cpredef ined procedure> syntax: 6-1
<procedure and function declarations> 3-1
<procedure d~claration> 3-26
<procedure identifier> 3-27, 4-10
<procedure invocation statement> 4-1
<procedure invocation statement> syntax 4-11
<program heading> syntax: 2-2
<program identifier> syntax: 2-2
<program parameters> syntax: 2-2
<program text> syntax: 9-1
<program> syntax: 2-2
<put procedure> 6-2
cput procedure> syntax: 6-16
<read parameter> 6-17, 6-20

form 1152048 IX-5 file DDCUMF.NT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

<read parameter> syntax:
<read procedure> 6-2
<read procedure> syntax:
<read textf ile procedure>

6-17

6-17
6-2

<read textfile procedure> syntax: 6-17
<readln procedure> 6-2
<readln procedure> syntax:
<real constant identifier>
<real constant> 3-2

6-20
3-2, 3-4, 5-15

<real expression> 5-1, 6-23, 6-25, 6-33
<real expression> syntax: 5-15
<real primary> 5-15
<real primary> syntax:
<real type identifier>
<real type> 3-5, 3-6

5-15
3-5, 3-8, 3-18

<real variable> 5-15, 6-17
<record boundary> 9-3
<record boundary> definition: 9-4
<record type identifier> 3-5, 3-8, 3-20
<recorD type> 3-5, 3-6
<record variable> 4-12, 5-1, 7-3
<rel op> 4-10, 5-8, 5-9
<rel op> syntax: 5-8
<relational expression> 5-6
<relational expression> syntax:
<release procedure> 6-28
<release procedure> syntax:
<repeat statement> 4-1
<repeat statement> syntax:
<reserved word> 9-2
<reserved word> list: 9-2
<reset procedure> 6-2
<reset procedure> syntax:
<result type> 3-29
<rewrite procedure> 6-2
<rewrite procedure> syntax:
<round function> 6-32
<round function> syntax:
<runtime function> 6-35
<runtime function> syntax:
<seconds> 6-39
<seconds> syntax: 6-39
<seek procedure> 6-2
<Seek procedure> syntax:
<set constructor> 5-16

6-31

4-12

6-21

6-21

6-33

6-38

6-22

<Set constructor> syntax: 5-16
<set expression> 5-1, 5-10, 5-16
<set expression> syntax: 5-16
<set operator> 5-16
<set operator> syntax: 5-16
<set primary> 5-16
<set primary> syntax: 5-16
<set relation> 5-8
<Set relation> syntax: 5-10

Form 1152048 IX-6

5-8

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

<set type identifier> 3-5, 3-8, 3-22
<Set type> 3-5, 3-6
<set variable> 5-16
<simple type> 3-5, 3-29
<Sin function> 6-32
<sin function> syntax: 6-34
<special token> 9-2
<sqr function> 6-32
<sqr function> syntax: 6-34
<sqrt function> 6-32
<sqrt function> syntax: 6-34
<Statement list> 4-1, 4-3, 4-4, 4-11
<statement List> syntax: 4-1
<Statement part> syntax: 4-1
<statement> 4-1, 4-4, 4-9, 4-12
<statement> syntax: 4-1
cstring constant identifier> 3-2, 3-4
cstring constant> 3-2, 5-17, 6-36, 6-37
<string expression> 4-10, 5-1
<string expression> syntax: 5-17
<String relation> 5-8
<String relation> syntax 4-10
<String type> 3-13
<String variable> 5-17. 6-36, 6-37
<structured type> 3-5
<subrange type identifier> 3-5, 3-8, 3-21, 3-23
<subrange type> 3-5, 3--6, 3-7
<succ function> 6-35
<succ function> syntax: 6-39
<tan function> 6-32
~tan function> syntax: 6-34
<textf ile type identifier> 3-5, 3-8, 3-24
ctextf ile type> 3-5, 3-6
<textf ile variable> 6-13, 6-15, 6-16, 6-17, 6-20, 6-21

I 6-22 > 6-27 I 7-4
<time procedure> 6-35
<time procedure> syntax: 6-39
ctoken separator> 9-1
<taken separator> syntax: 9-3
<taken> 9-1
ctoken> syntax: 9-2
ctrunc function> 6-32
ctrunc function> syntax: 6-35
ctype definitions> 3-1
<type identifier> 3-31
ctype transfer function> 6-1
ctype transfer function> syntax: 6-27
<type> 3-26
cunsigned integer> 3-3, 5-13, 8-3
cunsigned integer> syntax: 8-3
cunsigned number> 8-3
cunsigned number> syntax: 8-3
cunsigned real> 3-4, 5-15, 8-3
cunsigned real> syntax: 8-4

Form 1152048 IX-7 File DOCUMENT/PASCAL

B·urroughs

B 1000 PASCAL LANGUAGE MANUAL

<Value parameter type> 3-31
<value parameter> 3-31
<value-option> A-2
<value-option> syntax: A-3
<variable declarations> 3-1
<variable identifier list> 3-26
<Variable identifier> 3-26, 3-31, 7-1
<Variable parameter> 3-31
< v a r i a b l e > 3- 3 2 , 4- 2 , ·6-1 7 , 6- 3 7 , 6- 3 9
<Variable> syntax: 7-1
<variant part> 3-20
<Variant selector> 3-20
<Variant> 3-20
<vlstring type identifier> 3-8
<Vlstring type> 3-6
<wait procedure> 6-35
<while statement> 4-1
<while statement> syntax: 4-12
<with statement> 4-1
cwith statement> syntax: 4-13
<Write parameter> 6-17, 6-22, 6-27
<write parameter> syntax: 6-23
<write procedure> 6-2
<Write procedure> syntax: 6-22
<write textf ile procedure> 6-2
<Write textf ile procedure> syntax: 6-22
<writeln procedure> 6-2
<writeln procedure> syntax: 6-27
<year> 6-37
<year> syntax: 6-37

+ 3-3, 3-4, 5-12, 5-13, 5-15, 5-16, 8-3, 8-4

$ A-2
$$ A-2

n 5-13, 5-15, 5-16

3-3, 3-4, 5-12, 5-13, 5-15, 5-16, 8-3, 8-4

5-15

(underscore) 8-2

5-8
>= 5-8

@ 3-18

Abort 6-36
Abort Procedure 6-36
Abs 6-32
ABS Function 6-32
Accept 6-36

Farm 1152048 IX-8 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Accept Procedure 6-36
Activation Records 2-9
ACTUAL PARAMETER LISTS AND PARAMETER MATCHING 3-32
AND 5-6, A-3
ANS I A-4
Arc tan 6-32
ARCTAN Function 6-32
Arithmetic Functions 6-31
Array Types 3-12
Array Variable 7-5
ARRAY; 3-14
Assignment Compatibility 3-10
ASSIGNMENT STATEMENTS 4-2

BASIC COMPONENTS 8-1
BEGIN 4-1, 4-4
BLANK 9-3
Boolean 3-8, 3-14
Boolean and Relatirrrral Expressions 5-5
Boolean Expressions 5-5
Boolean Options A-4
Boolean Types 3-14
Boolean Variable 7-5
BRIDGES B-3
Buffer Variables 6-3
Bufffer Variables 7-4

CANO 5-6
CASE 3-20, 4-3
CASE STATEMENTS 4-3
CCI Syntax Diagrams A-2
Char 3-8, 3-15
CHAR Expressions 5-11
Char Variable 7-5
Character Types 3-14
CHARACTERS ANO CHARACTER STRINGS 8-1
Chr 6-27
CHA Function 6-27
CLEAR A-6
Close 6-13
Close Operation 6-8. 6-12
Close Procedure 6-13
CODE A-4
COMMENT 9-3
Compatible Types 3-9
Compile-Time Errors A-7
COMPILER OPTlbNS A-1
COMPILING AND EXECUTING A PASCAL PROGRAM A-7
COMPILING, EX~CUTING, AND ANALYZING A PASCAL PROGRAM A-1
COMPOUND STATEMENTS 4-4
CONST 3-2
CONSTANT DEFINITIONS 3-2
COR 5-6
Cos 6-33

Form 1152048 IX-9 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

COS Function 6-32
Crunch 6-13

Date 8-37
Date Procedure 6-36
DECLARATIONS AND DEFINITIONS 3-1
Display 8-37
Display Procedure 8-37
DISPOSE Procedure 1-1
DIV 5-13, 5-15
DIVIDE BY ZERO A-8
DO 4-4, 4-12
DOWN TO 4-4
Dynamic Allocation Procedures 8-28
Dynamic Variables 7-3

E 8-4
EBCDIC AND ASCII CHARACTER SETS C-1
ELSE 4-9
END 3-20, 4-1, 4-3, 4-4
Entire Variables 7-1
Enumerated Expressions 5-11
Enumerated Types 3-15
Enumerated Variable 7-6
Eaf 8-15
EDF Function 6-14
Eoln 6-15
EOLN Function 6-15
ERRORLIMIT A-5
ERRORS DURING EXECUTION 1-2
Exp 8-33
EXP Function 6-33
EXPRESSIONS 5-1
EXPRESSIONS BY TYPE 5-5

FALSE 3-3, A-3
Field Designators 7-2
FILE 3-16
FILE AT EOF A-9
File Attributes 8-3
FILE ATTRIBUTES AND MNEMONIC VALUES 8-4
FILE NOT AT EOF A-10
FILE NOT CLOSED A-10
FILE NOT OPEN A-9
File Types 3-16
File Variable 7-6
File-Handling Procedures and Functions 6-13
Fixed-Point Format 6-25
Floating-Point Format 6-25
FOR 4-4
FOR STATEMENTS 4-4
Formal Parameter Lists 3-31
FUNCTION 3-29
Function Declaration 3-29

Farm 1152048 IX-10 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

FUNCTION DESIGNATORS 5-4

General Procedures and Functions 6-35
Get 6-15
Get Operation 6-6, 6-10
Get Procedure 6-15
GOTO 4-6
GOTO STATEMENTS 4-6

HEAP LIMIT A-9

Identifier, predefined 9-3
IDENTIFIERS 8-2
IF 4-9
IF STATEMENTS 4-9
Immediate Options A-6
IMPLEMENTATION RESTRICTIONS 1-1
IN 5-10
INCLUDE A-6
INDEX OUT OF RANGE A-8
Indexed Variables 7-2
Input file 6-9
INPUT/OUTPUT AND FILE-HANDLING CONCEPTS 6-1
Inspection Mode and Generation Mode 6-3
Integer 3-8, 3-17
Integer Expressions 5-12
INTEGER OVERFLOW A-8
Integer Types 3-17
Integer Variable 7-6
INTERPRETATION OF PROGRAM TEXT 9-1
INTRODUCTION 1-1
INV PTA REFERENCE A-8
INV STD ROUTINE A-9
INVALID CASE A-9
INVALID CHAR READ A-10
INVALID OPCODE A-9

LABEL DECLARATIONS 3-1
Lazy I/O 6-12
LINE INFO A-4
LIST A-4
LI STOOL LAA A-4
LIST INCL A-4
Ln 6-33
LN Function 6-33
Logical and Physical Files 6-4
LOOPS 8-2

MAP A-4
Mark 6-31
Mark Procedure 6-30
Max int 5-13
MAXI NT 3-3
MOD 5-13, 5-15

Form 1152048 IX-11 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

New 6-31
NEW 1-2
New Procedure 6-31
NIL 5-14
NIL POINTER ERROR A-9
NO BOUNDS A-5
Non-local GOTOs 1-2
NOT 5-5, A-3
NOTAGFIELD A-5
NUMBERS 8-3

Odd 6-38
Odd Function 6-37
OF 3-14, 3-16, 3-20, 3-22, 4-3
OMIT A-5
OPTIONAL ITEMS B-2
OR 5-6, A-3
Ord 6-28
ORD Function 6-28
ORDINAL EXPRESSIONS 5-2
Ordinal Types 3-6
OTHERWISE 4-3
Output file 6-9

PACK, UNPACK 1-2
PACKED 3-14, 3-16, 3-20, 3-22
Page 6-16
PAGE A-6
Page Procedure 6-16
Permanent and Temporary Files 6-4
Pointer Expressions 5-13
Painter Type 3-6
Pointer Types 3-17
Pointer Variable 7-8
POP A-2
PRECEDENCE OF OPERATORS 5-2
Pred 6-38
PRED Function 6-38
PREDEFINED IDENTIFIER 9-2
PREDEFINED PROCEDURES AND FUNCTIONS 6-1
Predefined textfile 6-9
Predefined Textf iles (Input, Output) 6-9
Procedural Parameters 1-2
PROCEDURE 3-27
PROCEDURE AND FUNCTION DECLARATIONS 3-26
PROCEDURE AND FUNCTION DESCRIPTIONS 6-13
Procedure Declaration 3-27
PROCEDURE INVOCATION STATEMENTS 4-10
PROGRAM ABORT A-9
PROGRAM BLOCKS 2-5
PROGRAM PARAMETERS 2-4
PROGRAM STRUCTURE 2-1
PROGRAM TEXT 9-1

Form 1152048 IX-12 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

PROGRAM UNIT 2-1
Program Unit syntax: 2-2
Purge 6-13
Put 6-16
Put Operation 6-7, 6-11
Put Procedure 6-16

RAILROAD DIAGRAMS B-1
Read 6-17
Read Operation 6-6, 6-10
Read Procedure 6-17
Read Textf ile Procedure 6-17
Readln 6-20
Readln Operation 6-11
Readln Procedure 6-20
Real 3-8, 3-18
Real expression> 5-1
Real Expressions 5-14
REAL OVERFLOW A-8
Real Types 3-18
Real Variable 7-6
RECORD 3-20
RECORD BOUNDARY 9-4
Record Types 3-18
Record Variable 7-6
RELATED DOCUMENTS 1-4
Relational Expressions 5-7
Release 6-31
Release Procedure 6-31
REPEAT 4-11
REPEAT STATEMENTS 4-11
REQUIRED ITEMS B-2
RESERVED WORD 9-2
Reserved words 9-2
Reset 6-21
RESET A-2
Reset Operation 6-6, 6-9
Reset Procedure 6-20
Rewrite 6-21
Rewrite Operation 6-7, 6-11
Rewrite Procedure 6-21
Round 6-33
ROUND Function 6-33
Run-Time Errors A-7
Runtime 6-38
Runtime Function 6-38

Same Types 3-8
Save 6-13
Scope 2-5
$cope: Blocks 2-5
Scope: Record Definitions
Scope: Record Variables
Scope: WITH Statements

2-8
2-8

2-9

Form 1152048 IX-13

Burroughs

File DOCUMENT/PASCAL

B 1000 PASCAL LANGUAGE MANUAL

Seek 6-22
Seek Operation 6-7
Seek Procedure 6-22
SET 3-22 I A-2
Set Expressions 5-16
SET OUT OF RANGE A-9
Set Types 3-21
Set Variable 7-6
Simple Types 3-5
Simple, Structured, and Pointer Types 3-5
Sin 6-34
SIN Function 6-34
Sqr 6-34
SOR Function 6-34
Sqrt 6-34
SQRT Function 6-34
STACK LIMIT A-9
Standard Files 6-5
Standard Files and Textfiles 6-3
STATEMENTS 4-1
String Expressions 5-17
STRING RELATION 4-10
String Variable 7-6
STRINGS A-6
STRUCTURE OF MANUAL 1-3
Structured Types 3-6
Subrange Types 3-22
Su cc 6-39
SUCC Function 6-39

Tan 6-34
TAN Function 6-34
Terminology 6-2
Text 3-8, 3-24
TEXT BUF OVERFLOW A-9
Textf ile Types 3-23
Textf ile Variable 7-6
Textf iles (Including Predefined Textf iles) 6-8
Textf iles in General 8-8
THEN 4-9
Time 6-39
Time Procedure 6-39
TO 4-4
TOKEN 9-2
TOKEN SEPARATOR 9-3
TRUE 3-3 I A-3
Trunc 6-35
TRUNC Function 8-35
TYPE 3-5
Type = <char variable> 6-18
Type= <integer variable> 8-18
Type = <real variable> 6-19
TYPE DEFINITIONS 3-4
Type Descriptions 3-12

Form 1152048 IX-14 File DOCUMENT/PASCAL

Burroughs

B 1000 PASCAL LANGUAGE MANUAL

Type Identifiers 3-7
Type Transfer Functions 6-27

UNDEFINED POINTER A-10
UNDEFINED VARIABLES 7-6
Underscore () 8-2
UNTIL 4-11-
Use of File Attributes 6-12
USING THE PASCAL/ANALYZER PROGRAM A-10
USING THE SYSTEM/IDA PROGRAM A-11

Value Options A-5
VALUE OUT OF RANGE A-8
VAR 3-26 I 3-31
VARIABLE DECLARATIONS 3-24
Variable identifier> 3-31
Variable parameter type> 3-31
VARIABLES 7-1
VARIABLES BY ACCESS 7-1
VARIABLES BY TYPE 7-5
VARIANT ERROR A-9
Variant Record Declarations 1-2

WHILE 4-12
WHILE STATEMENTS 4-12
WITH 4-12
WITH STATEMENTS 4-12
Write 6-17, 6-22
Write Operation 6-8, 6-11
Write Procedure 6-22
Write Textfile Procedure 6-22
Writeln 6-27
Writeln Operation 6-11
Writeln Procedure 6-26

XREF A-5

Burroughs

	00-01
	00-02
	00-03
	00-TC1
	00-TC2
	00-TC3
	00-TC4
	00-TC5
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15

